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Abstract

In the common nonparametric regression model Yi = m(Xi) + σ(Xi)εi we consider the

problem of testing the hypothesis that the coefficient of the scale and location function is

constant. The test is based on a comparison of the observations Yi/σ̂(Xi) with their mean

by a smoothed empirical process, where σ̂ denotes the local linear estimate of the scale

function. We show weak convergence of a centered version of this process to a Gaussian

process under the null hypothesis and the alternative and use this result to construct

a test for the hypothesis of a constant coefficient of variation in the nonparametric

regression model. A small simulation study is also presented to investigate the finite

sample properties of the new test.

Keywords and phrases: nonparametric regression, test for constant coefficient of

variation, smoothed empirical process

AMS Subject Classification: 62G10, 62F35

1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) denote a bivariate sample of independent identically distributed ob-

servations corresponding to the nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n, (1.1)

∗Corresponding author. Email: holger.dette@rub.de
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where ε1, . . . , εn are independent identically distributed random variables with E[εi | Xi = t] = 0

and E[ε2i | Xi = t] = 1 for all t. The functionsm(t) = E[Yi | Xi = t] and σ2(t) = E[(Yi−m(Xi))
2 |

Xi = t] are called regression and variance function, respectively. In this paper we are interested

in the problem of testing for a constant coefficient of variation in the nonparametric regression

model (1.1), that is

H0 : m(t) = cσ(t) a.e. (1.2)

for some positive constant c. Several authors have discussed the problem of statistical infer-

ence under the assumption of a constant coefficient of variation. For example McCullagh and

Nelder (1989) considered generalized linear models, Carroll and Ruppert (1988) investigated a

parametric model with a constant coefficient of variation, while Eagleson and Müller (1997) con-

sidered the problem of nonparametric estimation of the regression function in a model where the

standard deviation function is proportional to the regression function. The problem of testing

the hypothesis (1.2) in a general nonparametric regression model has been recently discussed in

Dette and Wieczorek (2009) and Dette et al. (2009). The last named authors investigated the

difference between two empirical processes under the null hypothesis and the alternative and

showed weak convergence. Because the distribution of the limiting process depends in a com-

plicated way on the distribution of the random variable (X1, Y1) a bootstrap procedure is used

to obtain critical values for the corresponding test. This test can detect alternatives converging

to the null hypothesis with the rate 1/
√
n. Dette and Wieczorek (2009) proposed a test which

is based on an L2-distance between an estimate of m(t)/σ(t) under the null hypothesis and the

alternative. The limiting distribution is a normal distribution, but the test is not able to detect

alternatives converging to the null at the rate 1/
√
n.

The purpose of the present paper is to propose a third test for the hypothesis (1.2) which on the

one hand is based on a test statistic with a simple limiting distribution and on the other hand is

able to detect alternatives converging to the null hypothesis at a parametric rate. Our approach

is based on the fact that under the null hypothesis the conditional expectation of the random

variables Y1/σ(X1), . . . , Yn/σ(Xn) is constant and therefore equal to their mean. Consequently,

we propose to consider a smoothed empirical process of the random variables Ui − Ū as the

basis for our test, where Ui = Yi/σ̂(Xi) and σ̂ is the local linear estimate of the scale function.

The test statistic is carefully defined in Section 2 where we also state the necessary assumptions

for the asymptotic theory, which is presented in Section 3. Finally, a simulation study, which

investigates the finite sample properties of the new test is presented in Section 4, while some of

the very technical details are deferred to an Appendix in Sections 5 -7.
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2 Preliminaries and a new test statistic

Let f denote the marginal density of X1. We propose to base a test for the hypothesis (1.2) on

the process

Hn(t) =

∫ t

−∞

1

n

n∑
j=1

ω(Xj)Kh(Xj − x)(Uj − Ū)dx, (2.1)

where the random variables Uj and Ū are defined by Uj =
Yj

σ̂(Xj)
and Ū = 1

n

∑n
i=1 Ui, respectively,

ω(·) denotes a weight function, Kh(·) = 1
h
K( ·

h
), K(·) is a kernel with compact support and h is a

bandwidth converging to 0 with increasing sample size. This definition requires the specification

of an estimate of the variance function σ̂ and throughout this paper we use the local linear

estimate

σ̂2(t) =
1

n

n∑
i=1

Wi(t) (Yi − m̂(Xi))
2 , (2.2)

where m̂ is the local linear estimate of the regression function, i.e.

m̂(t) =
1

n

n∑
i=1

Wi(t)Yi,

the weights Wi(t) are defined by

Wi(t) =
K̃g(Xi − t) [sn,2(t)− (t−Xi)sn,1(t)]

1
n

∑n
j=1 K̃g(Xj − t) [sn,2(t)− (t−Xj)sn,1(t)]

,

sn, l(t) =
n∑
i=1

K̃g(Xi − t)(t−Xi)
l, l = 1, 2,

and K̃g(·) = 1
g
K̃( ·

g
) [see Fan and Gijbels (1996)]. Here g and K̃(·) denote a further bandwidth

and kernel function with compact support, respectively. Note that we use the same bandwidth in

the weights for the estimates of the variance and regression function in order to keep the technical

arguments simple. However, the results presented in this paper are correct for estimates σ̂2 and

m̂ with different bandwidths [see Ruppert et al. (1997) or Yu and Jones (2004) among others].

While the choice of these smoothing parameters is important for a good performance of the

proposed test, it also worthwhile to mention that the procedure is relatively robust with respect

to the choice of the bandwidth h (see the discussion in Section 4).

We illustrate our approach in Figure 1 showing the process {Hn(t)}t∈[0,1] under the null hypoth-

esis m(x) = σ(x) = 0.5(1 + 0.1x) and alternative m(x) = 0.5(1 + 0.1x), σ(x) = (1 + 0.1x+ 2
√
x),
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Figure 1: The process {Hn(t)}t∈[0,1] under the null hypothesis (left panel) and alternative (right

panel).

where the sample size is n = 200, the bandwidth of the estimators have been chosen by cross

validation and h = 1/n0.9 .

In order to prove our asymptotic theory we will require the following basic assumptions, where

C denotes a generic constant which may have different values in different contexts.

(A1) The bandwidths g and h satisfy for n→∞

ng2 −→∞, ng4 −→ 0, h −→ 0, nh −→∞

(A2) The density f of the predictors Xi has compact support, say [0, 1], is twice continuously

differentiable on (0, 1) and f(t) ≥ C > 0 for all t ∈ [0, 1].

(A3) The regression function m : [0, 1] −→ R is twice continuously differentiable.

(A4) The variance function σ2 : [0, 1] −→ R is twice continuously differentiable and

mint∈[0,1] σ
2(t) ≥ C > 0.

(A5) The weight function ω is twice continuously differentiable and has compact support [0, 1].

(A6) The kernels K and K̃ are of order 2, Lipschitz continuous and have compact support, say

[−1, 1].

(A7) The conditional expectations mj(t) = E[εj1 | X1 = t] exist, are continuous for j = 3, 4 and

for all 1 ≤ j ≤ 8 bounded, that is∣∣E[εji | Xi = t]
∣∣ ≤ C <∞, 1 ≤ j ≤ 8.
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We will show in Section 5 and 7 that

Hn(t)−H∗n(t)
P−→ 0

for any t ∈ [0, 1], where {H∗n(t)}t∈[0,1] denotes a deterministic function defined by

H∗n(t) =
n− 1

n

∫ 1

0

f(x1)ct(x1)

(
m(x1)

σ(x1)
−
∫ 1

0

f(x2)
m(x2)

σ(x2)
dx2

)
dx1, (2.3)

and

ct(x1) = ω(x1)

∫ t

−∞
Kh(x1 − u)du.

Note that

lim
n→∞

H∗n(t) = H(t) =

∫ t

0

ϕ(x1)dx1

where

ϕ(x1) = f(x1)ω(x1)

(
m(x1)

σ(x1)
−
∫ 1

0

f(x2)
m(x2)

σ(x2)
dx2

)
. (2.4)

The following Lemma shows that the process {H(t)}t∈[0,1] vanishes if and only if the null hy-

pothesis (1.2) of a constant coefficient of variation is satisfied.

Lemma 2.1 If the assumptions (A2) and (A5) are satisfied, then the null hypothesis (1.2) of

a constant coefficient of variation is satisfied if and only if H(t) = 0 almost everywhere on the

interval [0, 1].

Proof of Lemma 2.1. If the null hypothesis (1.2) is satisfied then there exists a c > 0, such

that m(t) = cσ(t) and

H(t) = 0

almost everywhere on the interval [0, 1]. For the converse assume that H(t) = 0 almost every-

where on the interval [0, 1]. This yields H ′(t) = 0 almost everywhere on [0, 1], i.e.

0 =
∂

∂t
H(t) = ϕ(t)

almost everywhere on [0, 1], where we used the notation (2.4).

Observing that the functions f and ω do not vanish on the interval [0, 1] we obtain

m(t)

σ(t)
−
∫ 1

0

f(x2)
m(x2)

σ(x2)
dx2 = 0
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almost everywhere on the interval [0, 1], which proves the assertion of Lemma 2.1. 2

Lemma 2.1 suggests to construct a statistical test for the hypothesis (1.2) on the basis of

the process {Hn(t)}t∈[0,1]. More precisely we propose to reject the null hypothesis of a constant

coefficient of variation for large values of the Kolmogorov-Smirnov statistic

K̂n = sup
t∈[0,1]

| Hn(t) |

or the Cramér-von-Mises statistic

Ĉn =

∫ 1

0

H2
n(t)dF̂n(t),

where F̂n(t) = 1
n

∑n
j=1 I{Xj ≤ t} denotes the empirical distribution function of X1, . . . , Xn. In

the following section we will study the asymptotic properties of the process {Hn(t)}t∈[0,1], which

will be used to derive critical values for these tests.

3 Asymptotic properties

Throughout this paper D[0, 1] denotes the space of cadlag functions defined on the interval [0, 1]

[see Billingsley (1999)]. Then the following result establishes weak convergence of the process

{
√
n(Hn(t)−H∗n(t))}t∈[0,1] in D[0, 1]. A proof is given in Section 5

Theorem 3.1 If the assumptions (A1)-(A7) are satisfied, then

{
√
n(Hn(t)−H∗n(t))}t∈[0,1] ⇒ {A(t)}t∈[0,1]

in D[0, 1], where {A(t)}t∈[0,1] denotes a centered Gaussian process with covariance kernel

k(t, s) =

∫ s∧t

0

ω2(u)f(u)du−
∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)du (3.1)

+κ(s, t) + 2ν(s, t) + µ(s, t)

and the functions κ(s, t), ν(s, t) and µ(s, t) are defined by

κ(s, t) = Cov(Iω,t(X1)h(X1), Iω,s(X1)h(X1)) (3.2)

+Cov(Iω,t(X1)h(X2), Iω,s(X1)h(X3)) + Cov(Iω,t(X1)h(X2), Iω,s(X2)h(X3))

+Cov(Iω,t(X1)h(X2), Iω,s(X3)h(X1)) + Cov(Iω,t(X1)h(X2), Iω,s(X3)h(X2))

−Cov(Iω,t(X1)h(X2), Iω,s(X1)h(X1))− Cov(Iω,t(X1)h(X2), Iω,s(X2)h(X2))

−Cov(Iω,t(X1)h(X1), Iω,s(X1)h(X2))− Cov(Iω,t(X1)h(X1), Iω,s(X2)h(X1)),
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ν(s, t) = −1

2

∫ s∧t

0

ω2(u)f(u)h(u)m3(u)du (3.3)

+
1

2

∫ t

0

ω(u)f(u)du

∫ s

0

ω(u)f(u)h(u)m3(u)du

+
1

2

∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)h(u)m3(u)du

−1

2

∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)du

∫ 1

0

f(u)h(u)m3(u)du,

µ(s, t) =
1

4

∫ s∧t

0

ω2(u)f(u)h2(u)(m4(u)− 1)du (3.4)

−1

4

∫ t

0

ω(u)f(u)du

∫ s

0

ω(u)f(u)h2(u)(m4(u)− 1)du

−1

4

∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)h2(u)(m4(u)− 1)du

+
1

4

∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)du

∫ 1

0

f(u)h2(u)(m4(u)− 1)du,

respectively. Here the notation Iω,t(X1) = ω(X1)I{X1 ≤ t} and h(t) = m(t)/σ(t) is used.

Note that Theorem 3.1 holds under the null hypothesis and the alternative. However, in the

case of a constant coefficient of variation the limiting process simplifies substantially.

Corollary 3.1 If the assumptions of Theorem 3.1 and the null hypothesis (1.2) are satisfied

with coefficient of variation c > 0, then, under the additional assumption of constant conditional

moments m3(t) ≡ m3 and m4(t) ≡ m4 and ω(t) ≡ 1, we have

{
√
nHn(t)}t∈[0,1] ⇒

√
1− cm3 +

c2

4
(m4 − 1){B ◦ F}t∈[0,1]

in D[0, 1], where F denotes the distribution function of X1 and B is a standard Brownian bridge.

From Corollary 3.1 we obtain by the continuous mapping theorem for the corresponding

Kolmogorov-Smirnov and Cramér-von-Mises statistic

√
nK̂n√

1− cm3 + c2

4
(m4 − 1)

D−→ sup
t∈[0,1]

| B(t) |, (3.5)

nĈn

1− cm3 + c2

4
(m4 − 1)

D−→
∫ 1

0

B2(t)dt. (3.6)
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This yields an asymptotic level α test by rejecting the null hypothesis of a constant coefficient

of variation if

√
nK̂n >

√
1− ĉm̂3 +

ĉ2

4
(m̂4 − 1)k1−α or nĈn >

(
1− ĉm̂3 +

ĉ2

4
(m̂4 − 1)

)
c1−α, (3.7)

where σ̂, m̂3 and m̂4 are appropriate consistent estimates of the quantities c, m3 and m4, respec-

tively, and k1−α and c1−α denote the (1−α)-quantiles of the corresponding limiting distributions

in (3.5) and (3.6), respectively. Note that the consistency of this test follows from Lemma 2.1

and Theorem 3.1 which shows that under the alternative we have
√
nK̂n

P→ ∞ and nĈn
P→ ∞.

Moreover, the test is able to detect alternatives converging to the null hypothesis with a rate

1/
√
n.

We conclude this section by presenting a corresponding result for the case of a fixed design.

For this purpose we consider a triangular array of random variables

Yi,n = m(xi,n) + σ(xi,n)εi,n, i = 1, . . . , n, (3.8)

where E[εi,n] = 0 and E[ε2i,n] = 1. In the model (3.8) xi,n, . . . , xn,n denote fixed design points

defined by

i− 0.5

n
=

∫ xi,n

0

f(t)dt = F (xi,n), (3.9)

where F is a distribution function with a positive density f on the interval [0, 1] which is Hölder

continuous of order γ > 1/2 [see Sacks and Ylvisaker (1966)]. The definition of the process Hn(t)

is given in (2.1), where the random variables Xi are replaced by xi,n, (i = 1, . . . , n). In this case

we also obtain weak convergence of the process {
√
n(Hn(t) −H∗n(t))}t∈[0,1] but with a different

limiting process. The proof is similar to the proof of Theorem 3.1 and some details are indicated

in the Appendix (see Section 6).

Theorem 3.2 Consider the model (3.8). If the assumptions (A1)-(A7) and additionally the

condition

(A8) The functions f, ω,K, K̃ are Hölder continuous of order γ > 1/2,

are satisfied (with the obvious modifications for a fixed design case), then we have as n→∞

{
√
n(Hn(t)−H∗n(t))}t∈[0,1] ⇒ {G(t)}t∈[0,1]

in D[0, 1], where {G(t)}t∈[0,1] is a Gaussian process with covariance kernel

k̄(t, s) =

∫ s∧t

0

f(u)ω2(u)du−
∫ s

0

f(u)ω(u)du

∫ t

0

f(u)ω(u)du+ 2ν(t, s) + µ(t, s).
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Note that if the nullhypothesis (1.2) is satisfied this yields the same limiting process as in the

random design case, as the additional term κ(t, s) which appears in the covariance kernel k(t, s)

of Theorem 3.1 vanishes under the null hypothesis.

4 Finite sample properties

In this section we will study the finite sample properties of the Cramér-von-Mises test (3.7) and

will also compare the new test with the method which has recently been proposed by Dette and

Wieczorek (2009). Following these authors we have considered the model

m(t) = c(1 + 0.1t) , σ(t) = (1 + 0.1t+ γ
√
t),

with c = 0.5, 1, 1.5 and γ = 0, 1, 2, where the case γ = 0 corresponds to the null hypothesis (1.2)

of a constant coefficient of variation. The variables Xi are independently uniformly distributed

on the interval [0, 1] while the errors εi have a standard normal distribution. For the smoothing

parameter h we used h = n−0.9 and h = n−0.5, while the smoothing parameter in the local

linear estimates was chosen by least squares cross validation. As kernels K and K̃ we used the

Epanechnikov kernel and the weight function is given by ω ≡ 1. To calculate the critical values

we estimated the squared coefficient of variation by the least squares estimate

ĉ2 =
( n∑
i=1

(m̂(Xi))
2(Yi − m̂(Xi))

2ω(Xi)
)
/
( n∑
i=1

(σ̂2(Xi))
2ω(Xi)

)
[see Dette and Wieczorek (2009)]. The third and fourth moments of the error variables were

estimated according to Dette and Munk (1998) by

m̂3 = Â4,n · (Ŝ4,n)−1 − 3,

m̂4 =
(
Â5,n · (Ŝ6,n)−1

)1/2
with

Â4,n =
1

2(n− 1)

n∑
j=2

R4
j ,

Â5,n =
1

36(n− 5)

n−3∑
j=3

(Rj −Rj−1)
3(Rj+3 −Rj+2)

3,

Ŝ2k,n =
1

2k(n− 2k + 1)

n−2k+2∑
j=2

R2
j . . . R

2
j+2k−2, k = 2, 3,

Rj = Y ∗j − Y ∗j−1,
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where Y ∗j is the observation belonging to X(j) and X(1) ≤ . . . ≤ X(n) denotes the order statistic of

X1, . . . , Xn. In Table 1 we show the rejection probability of the Cramér-von-Mises test (3.7) for

the sample sizes n = 50, 100, 200 on the basis of 1000 simulation runs. The results in brackets were

calculated with bandwidth h = n−0.5 and for the other results we used h = n−0.9. A comparison

of these results shows that both bandwidth choices yield similar rejection probabilities. This

indicates that the procedure is not very sensitive to the choice of the bandwidth h.

The first part of Table 1 (γ = 0) shows the approximation of the nominal level of the test

(3.7), which is rather good for sample sizes n = 100 and n = 200, while for the smaller sample

size n = 50 the nominal level is slightly overestimated. The results for the power of the test

are shown in the remaining part of Table 1 (γ = 1, 2). Although the deviation from the

multiplicative structure is extremely small for γ = 1, because the predictor varies in the interval

[0, 1], we observe good results for all three coefficients c we studied. A visible increase in power

is recognizable for increasing sample sizes n and increasing γ.

Comparing the results depicted in Table 1 with those of the bootstrap test presented by

Dette and Wieczorek (2009), we see that both testing procedures yield similar results for the

approximation of the nominal level. For the alternatives, however, the test developed in this

paper yields higher relative rejection probabilities in almost all cases under consideration. Only

for sample size n = 200 and coefficient of variation c = 0.5 the test proposed by Dette and

Wieczorek (2009) has a better power.

Acknowledgements. The authors are grateful to Martina Stein who typed numerous versions

of this paper with considerable technical expertise. This work has been supported in part by the

Collaborative Research Center “Statistical modeling of nonlinear dynamic processes” (SFB 823) of the

German Research Foundation (DFG).

5 Proof of Theorem 3.1

In Section 7 we will show that the stochastic expansion

Hn(t) = H̃n(t) + H̄n(t) + op(n
−1/2) (5.1)

holds uniformly with respect to t ∈ [0, 1], where the processes {H̃n(t)}t∈[0,1] and {H̄n(t)}t∈[0,1]
are defined by

H̃n(t) =
n− 1

n2

n∑
j=1

ct(Xj)
Yj

σ(Xj)
− 1

n2

n∑
j=1

ct(Xj)
∑
i 6=j

Yi
σ(Xi)

10



n = 50 n = 100 n = 200

γ c 2.5% 5% 10% 20% 2.5% 5% 10% 20% 2.5% 5% 10% 20%

0.5 .035 .065 .113 .220 .027 .046 .096 .198 .027 .045 .105 .205

(.038) (.067) (.123) (.227) (.035) (.055) (.092) (.176) (.025) (.046) (.096) (.204)

0 1 .039 .070 .110 .203 .026 .046 .093 .192 .027 .052 .102 .198

(.040) (.059) (.092) (.181) (.026) (.049) (.093) (.195) (.029) (.053) (.089) (.184)

1.5 .042 .061 .099 .195 .031 .051 .096 .188 .024 .049 .098 .194

(.033) (.050) (.079) (.183) (.021) (.041) (.096) (.196) (.026) (.044) (.092) (.194)

0.5 .060 .095 .174 .297 .050 .082 .154 .260 .072 .109 .167 .290

(.054) (.100) (.149) (.245) (.046) (.088) (.144) (.253) (.064) (.099) (.171) (.297)

1 1 .088 .123 .197 .289 .105 .151 .216 .329 .131 .187 .264 .423

(.085) (.123) (.193) (.290) (.096) (.147) (.224) (.328) (.135) (.201) (.282) (.393)

1.5 .122 .177 .236 .326 .143 .216 .292 .398 .241 .319 .423 .559

(.107) (.152) (.209) (.301) (.135) (.191) (.281) (.360) (.209) (.297) (.393) (.532)

0.5 .067 .109 .176 .296 .074 .120 .172 .302 .087 .139 .192 .318

(.067) (.092) (.137) (.253) (.066) (.113) (.164) (.331) (.075) (.194) (.181) (.292)

2 1 .128 .173 .226 .323 .129 .183 .235 .395 .182 .254 .363 .504

(.106) (.149) (.204) (.305) (.119) (.174) (.237) (.381) (.159) (.222) (.330) (.463)

1.5 .130 .205 .269 .382 .213 .287 .367 .495 .338 .424 .537 .668

(.138) (.186) (.249) (.342) (.210) (.277) (.353) (.469) (.319) (.424) (.528) (.640)

Table 1: Rejection probabilities of the Cramér-von-Mises test (3.7).
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and

H̄n(t) = −n− 1

2n3

n∑
j=1

n∑
k 6=j

ct(Xj)h(Xj)ψ(Xk, Xj)(ε
2
k − 1)

+
1

2n3

n∑
j=1

n∑
i 6=j

n∑
k 6=i,j

ct(Xj)h(Xi)ψ(Xk, Xi)(ε
2
k − 1),

with

ψ(x, y) =
σ2(x)K̃g(x− y)

σ2(y)f(y)
.

It is easy to see that

E[H̃n(t)] = H∗n(t) and E[H̄n(t)] = 0,

where H∗n(t) is defined in (2.3). Consequently it is sufficient to establish the weak convergence

{
√
n(H̃n(t)−H∗n(t) + H̄n(t))}t∈[0,1] ⇒ {A(t)}t∈[0,1]

in D[0, 1]. For the calculation of the asymptotic covariances we introduce the notation

Aε(t) =
1

n
√
n

n∑
i,j=1

ct(Xj) (εj − εi) ,

Am,σ(t) =
1

n
√
n

n∑
i,j=1

ct(Xj) (h(Xj)− h(Xi))

and obtain by straightforward algebra the decomposition

Cn(t) =
√
n(H̃n(t)−H∗n(t) + H̄n(t)) = Aε(t) + Am,σ(t)−

√
nH∗n(t) +

√
nH̄n(t). (5.2)

In the following discussion we will determine the covariance of Cn(s) and Cn(t). Straightforward

calculations yield

Cov(Aε(s), Aε(t)) = E[Aε(s)Aε(t)] =
n− 1

n

(
E[cs(X1)ct(X1)]− E[cs(X1)]E[ct(X1)]

)
=

(∫ s∧t

0

ω2(u)f(u)du−
∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)du
)

(1 + o(1)),

Cov(Am,σ(s), Am,σ(t)) =
1

n3

n∑
i=1

n∑
j 6=i

n∑
k=1

n∑
l 6=k

{
Cov(ct(Xi)h(Xi), cs(Xk)h(Xk))

+Cov(ct(Xi)h(Xj), cs(Xk)h(Xl))− Cov(ct(Xi)h(Xj), cs(Xk)h(Xk))

12



−Cov(ct(Xi)h(Xi), cs(Xk)h(Xl))
}

=
{

Cov(ct(X1)h(X1), cs(X1)h(X1)) + Cov(ct(X1)h(X2), cs(X1)h(X3))

+Cov(ct(X1)h(X2), cs(X2)h(X3)) + Cov(ct(X1)h(X2), cs(X3)h(X1))

+Cov(ct(X1)h(X2), cs(X3)h(X2))− Cov(ct(X1)h(X2), cs(X1)h(X1))

−Cov(ct(X1)h(X2), cs(X2)h(X2))− Cov(ct(X1)h(X1), cs(X1)h(X2))

−Cov(ct(X1)h(X1), cs(X2)h(X1))
}

(1 + o(1))

= κ(s, t)(1 + o(1)),

where the function κ(s, t) is defined in (3.2). Note that κ(s, t) ≡ 0 if the hypothesis (1.2) is

satisfied. Finally we obtain for the remaining covariances

Cov(Aε(t),
√
nH̄n(s)) = −1

2
E[ct(X1)cs(X2)h(X2)ψ(X1, X2)ε1(ε

2
1 − 1)]

+
1

2
E[ct(X1)cs(X3)h(X3)ψ(X2, X3)ε2(ε

2
2 − 1)]

+
1

2
E[ct(X1)cs(X2)h(X3)ψ(X1, X3)ε1(ε

2
1 − 1)]

−1

2
E[ct(X1)cs(X3)h(X4)ψ(X2, X4)ε2(ε

2
2 − 1)] +O(n−1)

=
(
−1

2

∫ s∧t

0

ω2(u)f(u)h(u)m3(u)du

+
1

2

∫ t

0

ω(u)f(u)du

∫ s

0

ω(u)f(u)h(u)m3(u)du

+
1

2

∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)h(u)m3(u)du

−1

2

∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)du

∫ 1

0

f(u)h(u)m3(u)du
)

(1 + o(1))

= ν(s, t)(1 + o(1)),

nCov(H̄n(t), H̄n(s)) =
1

4
E[ct(X1)h(X1)ψ(X3, X1)(ε

2
3 − 1)2cs(X2)h(X2)ψ(X3, X2)]

−1

4
E[ct(X1)h(X1)ψ(X4, X1)(ε

2
4 − 1)2cs(X2)h(X3)ψ(X4, X3)]

−1

4
E[ct(X1)h(X3)ψ(X4, X3)(ε

2
4 − 1)2cs(X2)h(X2)ψ(X4, X2)]

+
1

4
E[ct(X1)h(X3)ψ(X5, X3)(ε

2
5 − 1)2cs(X2)h(X4)ψ(X5, X4)] +O((ng)−1)

=
(1

4

∫ s∧t

0

ω2(u)f(u)h2(u)(m4(u)− 1)du

−1

4

∫ t

0

ω(u)f(u)du

∫ s

0

ω(u)f(u)h2(u)(m4(u)− 1)du

13



−1

4

∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)h2(u)(m4(u)− 1)du

+
1

4

∫ s

0

ω(u)f(u)du

∫ t

0

ω(u)f(u)du

∫ 1

0

f(u)h2(u)(m4(u)− 1)du
)

(1 + o(1))

= µ(s, t)(1 + o(1)).

All other terms appearing in Cov(Cn(t), Cn(s)) vanish. Combining these results yields for the

covariance kernel of the process Cn(t) defined in (5.2)

Cov(Cn(t), Cn(s)) = k(t, s)(1 + o(1)),

where the kernel k is defined in (3.1). In order to prove weak convergence of the finite dimensional

distributions

(Cn(t1), . . . , Cn(tk))
T D−→ (A(t1), . . . , A(tk))

T , (5.3)

we restrict ourselves to the case k = 2. For this purpose we use Theorem 1 in de Jong (1996),

the Cramér-Wold device and introduce for a1, a2 ∈ R, t1, t2 ∈ [0, 1] the notation

b(Xi) = a1ct1(Xi) + a2ct2(Xi),

Z1,i = b(Xi)
Yi

σ(Xi)
− E

[
b(Xi)

Yi
σ(Xi)

]
,

Z2,i = b(Xi)− E[b(Xi)],

Z3,i =
Yi

σ(Xi)
− E

[
Yi

σ(Xi)

]
,

Z4,i,j =
1

2
b(Xi)h(Xi)ψ(Xj, Xi)− E

[
1

2
b(Xi)h(Xi)ψ(Xj, Xi) | Xj, εj

]
,

Z5,i = ε2i − 1,

Z6,i,j = h(Xi)ψ(Xj, Xi)− E [h(Xi)ψ(Xj, Xi) | Xj, εj] ,

N1,j =
n− 2

n
E [h(Xi)ψ(Xj, Xi) | Xj, εj] , i 6= j,

N2,j =
n− 1

n
E

[
1

2
b(Xi)h(Xi)ψ(Xj, Xi) | Xj, εj

]
, i 6= j.

We consider for v = (a1, a2)
T ∈ R2 the random variable

V (n) = vT (Cn(t1), Cn(t2))
T/τt1,t2 =

∑
I⊂{1,...,n},|I|≤3

WI , (5.4)

where τ 2t1,t2 = limn→∞ v
TCov(Cn(t1), Cn(t2))v denotes the asymptotic variance of the random

variable a1Cn(t1) + a2Cn(t2) and the last identity follows by a straightforward calculation using

14



the notation

WI =



n−1
τt1,t2n

3/2

(
Z1,i − Z2,iE[h(X1)]− Z3,iE[b(X1)]− Z5,iN2,i

+1
2
Z5,iN1,iE[b(X1)]

)
, I = {i}

−1
τt1,t2n

3/2

(
Z2,iZ3,j + Z2,jZ3,i + n−1

n
(Z4,i,jZ5,j + Z4,j,iZ5,i)

−n−2
2n
E[b(X1)](Z6,i,jZ5,j + Z6,j,iZ5,i)− 1

2
(Z2,iZ5,jN1,j + Z2,jZ5,iN1,i)

)
, I = {i, j}

1
2τt1,t2n

5/2

(
Z2,iZ6,j,kZ5,k + Z2,iZ6,k,jZ5,j + Z2,jZ6,i,kZ5,k + Z2,jZ6,k,iZ5,i

+Z2,kZ6,i,jZ5,j + Z2,kZ6,j,iZ5,i

)
, I = {i, j, k}.

For a set I let FI := σ{(Xi, εi), i ∈ I} denote the sigma field generated by {(Xi, εi)| i ∈ I}, then

a straightforward calculation shows E[WI | FJ ] = 0 whenever I 6⊆ J . If the index set I contains

only one element, say I = {i}, we have

Var(W{i}) =
(n− 1)2

τ 2t1,t2n
3
E
[
Z2

1,i + Z2
2,iE

2 [h(X1)] + Z2
3,iE

2[b(X1)] + Z2
5,iN

2
2,i

+
1

4
Z2

5,iN
2
1,iE

2[b(X1)]− 2Z1,iZ2,iE [h(X1)]− 2Z1,iZ3,iE[b(X1)]

−2Z1,iZ5,iN2,i + Z1,iZ5,iN1,iE[b(X1)] + 2Z2,iZ3,iE [h(X1)]E[b(X1)]

+2Z2,iZ5,iN2,iE[h(X1)]− Z2,iZ5,iN1,iE[h(X1)]E[b(X1)]

+2Z3,iZ5,iN2,iE[b(X1)]− Z3,iZ5,iN1,iE
2[b(X1)]

−Z2
5,iN2,iN1,iE[b(X1)]

]
= O(n−1).

Similarly, if I = {i, j} contains two elements it follows

Var(W{i,j}) =
2

τ 2t1,t2n
3
E

[
Z2

2,iZ
2
3,j +

(n− 1)2

n2
Z2

4,i,jZ
2
5,j +

(n− 2)2

4n2
Z2

6,j,iZ
2
5,iE

2[b(X1)]

+
1

4
Z2

2,iZ
2
5,jN

2
1,j + 2Z2,iZ3,iZ2,jZ3,j −

(n− 1)(n− 2)

n2
Z4,i,jZ6,i,jZ

2
5,jE[b(X1)]

−n− 1

n
Z4,i,jZ2,iZ

2
5,jN1,j +

n− 2

2n
Z6,i,jZ2,iZ

2
5,jN1,jE[b(X1)]

+
n− 2

2n
Z6,j,iZ2,jZ

2
5,iN1,iE[b(X1)] + 2

n− 1

n
Z2,iZ3,jZ4,i,jZ5,j

−n− 2

n
Z2,iZ3,jZ6,i,jZ5,jE[b(X1)]− Z2

2,iZ3,jZ5,jN1,j

]
= O(n−3),

and if I = {i, j, k} contains three elements we obtain

Var(W{i,j,k}) =
3

2τ 2t1,t2n
5
E
[
Z2

2,iZ
2
6,j,kZ

2
5,k + Z2,iZ6,j,kZ2,jZ6,i,kZ

2
5,k

]
= O(n−5).
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This yields

max
1≤i≤n

{∑
I

Var(WI) | i ∈ I
}
→ 0

as n → ∞ and establishes the first condition of de Jong’s (1996) theorem. We will show in

Section 7 that the second condition of this theorem∑
(I,J,K,L)

| E[WIWJWKWL] |→ 0 (5.5)

is also satisfied, where the summation is performed over all index sets I, J,K, L of {1, . . . , n}
which are connected. By Theorem 1 of de Jong (1996) we therefore obtain for the statistic V (n)

defined in (5.4) weak convergence, i.e.

V (n)
D−→ N (0, 1)

as n→∞, and the Cramér-Wold device yields assertion (5.3).

The proof of Theorem 3.1 will be completed by showing tightness of the process {Cn(t)}t∈[0,1].
For this property we use Theorem 13.5 in Billingsley (1999) and prove that the condition

E[(Cn(t)− Cn(s))2(Cn(r)− Cn(t))2] ≤ C(r − s)2 (5.6)

holds for all 0 ≤ s < t < r ≤ 1 and some positive constant C > 0. The assertion of Theorem 3.1

then follows, because the processes {Cn(t)}t∈[0,1] and {
√
n(Hn(t) − H∗n(t))}t∈[0,1] have the same

asymptotic distribution by (5.1).

For a proof of (5.6) we use the representation

Cn(t)− Cn(s) =
n− 1

n
√
n

n∑
j=1

Zt,s,j +
1√
n

n∑
j=1

Mt,s,j

with

Zt,s,j = Lt,s(Xj)− E[Lt,s(Xj)]

Lt,s(Xj) = ct,s(Xj)

(
Yj

σ(Xj)
− 1

n− 1

∑
i 6=j

Yi
σ(Xi)

)
,

Mt,s,j = ct,s(Xj)
( 1

2n2

∑
i 6=j

∑
k 6=i,j

h(Xi)ψ(Xk, Xi)(ε
2
k − 1)− n− 1

2n2

∑
k 6=j

h(Xj)ψ(Xk, Xj)(ε
2
k − 1)

)
,

ct,s(Xj) = ω(Xj)

∫ t

s

Kh(Xj − u)du 0 ≤ s, t ≤ 1.
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Note that E[Zt,s,j] = E[Mt,s,j] = 0 and that the random variables Zt,s,j and Mt,s,j (j = 1, . . . , n)

are not independent. For 0 ≤ s < t < r ≤ 1 we have

E
[
(Cn(t)− Cn(s))2(Cn(r)− Cn(t))2

]
(5.7)

=
1

n2

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E [Zt,s,iZt,s,jZr,t,kZr,t,l + 2Zt,s,iZt,s,jZr,t,kMr,t,l + Zt,s,iZt,s,jMr,t,kMr,t,l

+2Zt,s,iMt,s,jZr,t,kZr,t,l + 4Zt,s,iMt,s,jZr,t,kMr,t,l + 2Zt,s,iMt,s,jMr,t,kMr,t,l

+Mt,s,iMt,s,jZr,t,kZr,t,l + 2Mt,s,iMt,s,jZr,t,kMr,t,l +Mt,s,iMt,s,jMr,t,kMr,t,l] .

A straightforward but tedious calculation shows that the expression above is a sum over O(n2)

nonzero summands. The nonzero summands are products of expectations of the form

E
[
cit,s(X1)c

k
r,t(X1)(h(X1))

j(ψ(X1, X2))
lεq2
]

(i, k = 0, 1, 2, j, l = 0, 1, 2, 3, 4, q = 2, . . . , 8)

with bounded coefficients. Moreover, both terms ct,s(X1) and cr,t(X1) appear in each product

exactly two times but not necessarily in the same expectation. Typical products are of the form

E
[
c2t,s(X1)c

2
r,t(X1)h(X1)

]
or E

[
c2t,s(X1)h(X1)

]
E
[
c2r,t(X1)ψ(X1, X2)

]
.

By the continuity of f(·), K̃(·), m(·) and σ(·) all expectations of the form

E
[
(h(X1))

k(ψ(X1, X2))
l
]

yield a rate O(g−l+1) if l = 2, 3, 4 or O(1) if l = 0, 1. In the cases where l = 2, 3, 4 we obtain by

the equality of indices an additional factor 1/nl−1. We now discuss the expectations of different

types separately. If i = 1, k = 0 it follows (observing that the kernel K has compact support)∣∣∣E[ct,s(X1)(h(X1))
j(ψ(X1, X2))

l
]∣∣∣ ≤ C(t− s) ≤ C(r − s)

for some positive constant C (j, l = 0, . . . , 4). If i = 2 and k = 0 we have

E
[
c2t,s(X1)(h(X1))

j(ψ(X1, X2))
l
]

=

∫ 1

0

∫ t

s

∫ (1−u)/h

−u/h
f(x)f(zh+ u)ω2(zh+ u)(h(zh+ u))j(ψ(zh+ u, x))lK(z)∫ z+(u−s)/h

z+(u−t)/h
K(w)dwdzdudx

≤ C(t− s) ≤ C(r − s).

Similar calculations yield for the cases i = 0, k = 2; i = k = 1 and i = 2, k = 1∣∣∣E[cit,s(X1)c
k
r,t(X1)(h(X1))

j(ψ(X1, X2))
l
]∣∣∣ ≤ C(t− s) ≤ C(r − s).
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In the previous cases there always exists a second factor in the corresponding product, which

yields the estimate C(r − s)2. The case i = k = 2 requires a different argument, because

there is no additional second expectation which yields a further factor (r − s). However, in this

case at least four indices are the same, so that there appears an additional factor 1/n in the

corresponding terms and we obtain

1

n

∣∣∣E[c2t,s(X1)c
2
r,t(X1)(h(X1))

j(ψ(X1, X2))
l
]∣∣∣

=
1

n

∣∣∣∣∣
∫ 1

0

∫ 1

0

(∫ t

s

Kh(x1 − u)du

)2(∫ r

t

Kh(x1 − u)du

)2

w(x1)
4h(x1)

jψ(x1, x2)
lf(x1)f(x2)dx1dx2

∣∣∣∣∣
≤ 1

n

∫ 1

0

∫ 1

0

(∫ (x1−t)/h

(x1−s)/h
K(v)dv

)2 ∣∣∣∣∣
(∫ (x1−t)/h

(x1−r)/h
K(v)dv

)(∫ r

t

Kh(x1 − u)du

)
w(x1)

4h(x1)
jψ(x1, x2)

l

∣∣∣∣∣
×f(x1)f(x2)dx1dx2

≤ C̃(r − t)
nh

∫ 1

0

∫ r

t

∫ (1−u)/h

−u/h

∣∣K(x)w(u+ hx)4h(u+ hx)jψ(u+ hx, x2)
l
∣∣ f(u+ hx)f(x2)dxdudx2

≤ C(r − t)2 ≤ C(r − s)2.

Therefore every summand in (5.7) can be bounded by C(r − s)2, which proves tightness of the

process {Cn(t)}t∈[0,1] and completes the proof of Theorem 3.1.

6 Appendix: proof of Theorem 3.2

Note that similar arguments as given in the proof of Theorem 3.1 yield a stochastic expansion

√
n(Hn(t)−H∗n(t)) = Aε(t) +

√
nH̄n(t) + op(1)

=
√
n
(n− 1

n2

n∑
j=1

ct(xj,n)
(
εj,n −

1

n− 1

∑
i 6=j

εi,n

))
+
√
n
( 1

n

n∑
j=1

ct(xj,n)
( 1

2n2

n∑
i 6=j

n∑
k 6=i,j

h(xi,n)ψ(xk,n, xi,n)(ε2k,n − 1)

−n− 1

2n2

n∑
k 6=j

h(xj,n)ψ(xk,n, xj,n)(ε2k,n − 1)
))

+ op(1),

uniformly with respect to t ∈ [0, 1]. Therefore it follows for the covariance of Cn(s) and Cn(t)

Cov(Cn(s), Cn(t)) = Cov(Aε(s), Aε(t)) + Cov(Aε(s),
√
nH̄n(t))

+Cov(
√
nH̄n(s), Aε(t)) + nCov(H̄n(s), H̄n(t)),
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and similar calculations as given for the proof of Theorem 3.1 yield

Cov(Aε(s), Aε(t)) =
1

n

n∑
j=1

cs(xj,n)ct(xj,n)− 1

n2

n∑
j=1

n∑
k 6=j

cs(xj,n)ct(xk,n) + o(1)

=

∫ s∧t

0

f(u)ω2(u)du−
∫ s

0

f(u)ω(u)du

∫ t

0

f(u)ω(u)du+ o(1),

Cov(
√
nH̄n(s), Aε(t)) =

−1

2n2

n∑
j=1

n∑
i 6=j

ct(xj,n)cs(xi,n)h(xi,n)ψ(xj,n, xi,n)E[ε3j,n]

+
1

2n3

n∑
j=1

n∑
k 6=j

n∑
i 6=j

ct(xj,n)cs(xk,n)h(xi,n)ψ(xj,n, xi,n)E[ε3j,n]

+
1

2n3

n∑
j=1

n∑
i=1

n∑
k 6=i

ct(xj,n)cs(xk,n)h(xk,n)ψ(xi,n, xk,n)E[ε3i,n]

− 1

2n4

n∑
j=1

n∑
i=1

n∑
k 6=i

n∑
l 6=i

ct(xj,n)cs(xk,n)h(xl,n)ψ(xi,n, xl,n)E[ε3i,n]

= ν(t, s) + o(1),

nCov(H̄n(s), H̄n(t)) =
1

4n3

n∑
j=1

n∑
k 6=j

n∑
i 6=k

ct(xj,n)cs(xi,n)h(xj,n)h(xi,n)

× ψ(xk,n, xj,n)ψ(xk,n, xi,n)(E[ε4k,n]− 1)

− 1

4n4

n∑
j=1

n∑
k 6=j

n∑
l,i6=k

ct(xj,n)cs(xl,n)h(xj,n)h(xi,n)ψ(xk,n, xj,n)

× ψ(xk,n, xi,n)(E[ε4k,n]− 1)

− 1

4n4

n∑
j=1

n∑
k 6=j

n∑
l,i6=k

ct(xl,n)cs(xj,n)h(xj,n)h(xi,n)ψ(xk,n, xj,n)

× ψ(xk,n, xi,n)(E[ε4k,n]− 1)

+
1

4n5

n∑
j,i=1

n∑
k 6=i,j

n∑
l,q 6=k

ct(xj,n)cs(xl,n)h(xi,n)h(xq,n)ψ(xk,n, xi,n)

× ψ(xk,n, xq,n)(E[ε4k,n]− 1)

= µ(t, s) + o(1),

where we have used (3.9) in the last steps, and ν and µ are defined in (3.3) and (3.4), respectively.

The proof now follows by similar arguments as given in Section 5, which are omitted for the sake

of brevity.
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7 Appendix: auxiliary results

7.1 Proof of the stochastic expansion (5.1)

Recall the definition h(t) = m(t)/σ(t). A Taylor expansion of the function 1/
√
σ̂2(Xj) yields

Hn(t) =
12∑
`=1

Hn,`(t),

where the quantities Hn,`(t) are defined by

Hn,1(t) =
n− 1

n2

n∑
j=1

ct(Xj)h(Xj), Hn,2(t) = − 1

n

n∑
j=1

ct(Xj)
1

n

n∑
i 6=j

h(Xi)

Hn,3(t) =
n− 1

n2

n∑
j=1

ct(Xj)εj, Hn,4(t) = − 1

n

n∑
j=1

ct(Xj)
1

n

n∑
i 6=j

εi

Hn,5(t) = −n− 1

2n2

n∑
j=1

ct(Xj)
m(Xj)

σ3(Xj)

(
σ̂2(Xj)− σ2(Xj)

)
Hn,6(t) =

1

2n2

n∑
j=1

ct(Xj)
n∑
i 6=j

m(Xi)

σ3(Xi)

(
σ̂2(Xi)− σ2(Xi)

)
Hn,7(t) = −n− 1

2n2

n∑
j=1

ct(Xj)
εj

σ2(Xj)

(
σ̂2(Xj)− σ2(Xj)

)
Hn,8(t) =

1

2n2

n∑
j=1

ct(Xj)
n∑
i 6=j

εi
σ2(Xi)

(
σ̂2(Xi)− σ2(Xi)

)
Hn,9(t) =

3(n− 1)

8n2

n∑
j=1

ct(Xj)
m(Xj)

ξ
5/2
j

(
σ̂2(Xj)− σ2(Xj)

)2
Hn,10(t) = − 3

8n2

n∑
j=1

ct(Xj)
n∑
i 6=j

m(Xi)

ξ
5/2
i

(
σ̂2(Xi)− σ2(Xi)

)2
Hn,11(t) =

3(n− 1)

8n2

n∑
j=1

ct(Xj)
σ(Xj)εj

ξ
5/2
j

(
σ̂2(Xj)− σ2(Xj)

)2
Hn,12(t) = − 3

8n2

n∑
j=1

ct(Xj)
n∑
i 6=j

σ(Xi)εi

ξ
5/2
i

(
σ̂2(Xi)− σ2(Xi)

)2
,

and the random variables ξi satisfy | ξi − σ2(Xi) |≤| σ̂2(Xi) − σ2(Xi) | (i = 1, . . . , n ). In the

following we show that all terms Hn,i, i = 7, . . . , 12, in this stochastic expansion are of order

op(n
−1/2), where we restrict ourselves exemplarily to the random variable Hn,7(t). The other

terms Hn,8, . . . , Hn,12 can be treated by similar (but sometimes tedious) arguments.
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Observing the definition of the local linear estimate of the variance function in (2.2) we have

Hn,7(t) = −n− 1

2n3

n∑
j=1

ct(Xj)
εj

σ2(Xj)

n∑
k=1

Wk(Xj)(m(Xk)− m̂(Xk))
2

−n− 1

n3

n∑
j=1

ct(Xj)
εj

σ2(Xj)

n∑
k=1

Wk(Xj)σ(Xk)εk(m(Xk)− m̂(Xk))

−n− 1

2n2

n∑
j=1

ct(Xj)
εj

σ2(Xj)

( 1

n

n∑
k=1

Wk(Xj)σ
2(Xk)ε

2
k − σ2(Xj)

)
= Hn,71(t) +Hn,72(t) +Hn,73(t), (7.1)

where the last identity defines the terms Hn,7i(x) in an obvious manner ( i = 1, 2, 3). From the

estimate maxi=1,...,n | m̂(Xi)−m(Xi) |= Op((ng)−1/2 + g2) [see Yao and Tong (2000)] we get

| Hn,71(t) | ≤ max
i=1,...,n

(m̂(Xi)−m(Xi))
2 1

n2

n∑
j=1

n∑
k=1

| ct(Xj)
εj

σ2(Xj)
Wk(Xj) |= Op

(
(ng)−1 +

g2
√
ng

+ g4
)

= op
(
n−1/2

)
uniformly with respect to t ∈ [0, 1]. Similarly, using the definition of the local linear estimate for

the regression function it follows

Hn,72(t) = −n− 1

n3

n∑
j=1

ct(Xj)
εj

σ2(Xj)

n∑
k=1

Wk(Xj)σ(Xk)εk

(
m(Xk)−

1

n

n∑
l=1

Wl(Xk)m(Xl)
)

+
n− 1

n4

n∑
j=1

ct(Xj)
εj

σ2(Xj)

n∑
k=1

Wk(Xj)σ(Xk)εk

n∑
l=1

Wl(Xk)σ(Xl)εl

= Hn,721(t) +Hn,722(t)

with an obvious definition of Hn,72` (` = 1, 2). For the second moments of these random variables

we have

E[H2
n,721(t)] =

(n− 1)2

n6

n∑
i=1

n∑
j=1

E
[
ct(Xi)ct(Xj)

εiεj
σ2(Xi)σ2(Xj)

n∑
k=1

n∑
q=1

Wk(Xi)Wq(Xj)σ(Xk)εkσ(Xq)εq

×
(
m(Xk)−

1

n

n∑
l=1

Wl(Xk)m(Xl)
)(
m(Xq)−

1

n

n∑
l=1

Wl(Xq)m(Xl)
)]

= O(n−2g2) = o(n−1),

E[H2
n,722(t)] =

(n− 1)2

n8

n∑
i=1

n∑
j=1

E
[
ct(Xi)ct(Xj)

εiεj
σ2(Xi)σ2(Xj)

×
n∑
k=1

n∑
q=1

Wk(Xi)Wq(Xj)σ(Xk)σ(Xq)εkεq
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×
n∑
l=1

n∑
p=1

Wl(Xk)Wp(Xq)σ(Xl)σ(Xp)εlεp

]
= O(n−3g−2) = o

(
n−1
)
,

uniformly with respect to t ∈ [0, 1], where we used the facts

| m(Xk)−
1

n

n∑
l=1

Wl(Xk)m(Xl) |= O
(
g2
)
,

| Wk(Xk) |= O (g−1) (almost surely) and ng2 →∞, as n→∞. This yields Hn,72(t) = op
(
n−1/2

)
uniformly with respect to t ∈ [0, 1]. Finally we provide a corresponding estimate for the remaining

term Hn,73 in the decomposition (7.1). For this purpose we consider its second moment

E[H2
n,73(t)] =

(n− 1)2

4n3
E
[
c2t (X1)

ε21
σ4(X1)

( 1

n

n∑
k=2

Wk(X1)σ
2(Xk)ε

2
k − σ2(X1)

)2]
+

(n− 1)2

2n4
E
[
c2t (X1)

ε41
σ2(X1)

W1(X1)
( 1

n

n∑
k=2

Wk(X1)σ
2(Xk)ε

2
k − σ2(X1)

)]
+

(n− 1)2

4n5
E
[
c2t (X1)ε

6
1W

2
1 (X1)

]
+

(n− 1)3

4n5
E
[
ct(X1)ct(X2)ε

3
1ε

3
2W1(X1)W2(X2)

]
= O

(
n−1g2 + (ng)−2

)
= o

(
n−1
)
,

using the fact

| σ2(Xk)−
1

n

n∑
l=1

Wl(Xk)σ
2(Xl)ε

2
l |= O

(
g2
)

(almost surely). This gives Hn,73(t) = op
(
n−1/2

)
uniformly with respect to t ∈ [0, 1], and shows

that the random variable Hn,7(t) is of order op(n
−1/2). For the terms Hn,5(t) and Hn,6(t) we use

the decomposition

σ̂2(Xj)− σ2(Xj) =
1

nf(Xj)

n∑
i=1

K̃g(Xi −Xj){σ2(Xi)(ε
2
i − 1)− 2σ(Xi)εi(m̂(Xi)−m(Xi))

+(m̂(Xi)−m(Xi))
2}+

g2k2
2

(σ2)′′(Xj) +R(Xj)

where R(Xj) = O
(
gn−1/2

)
(almost surely) and k2 =

∫
u2K̃(u)du [see Fan and Yao (1998)]. This

yields by similar arguments as used for the term Hn,7(t)

Hn,5(t) = −n− 1

2n3

n∑
j=1

n∑
k 6=j

ct(Xj)
m(Xj)σ

2(Xk)

σ3(Xj)

K̃g(Xk −Xj)

f(Xj)
(ε2k − 1) + op

(
n−1/2

)
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and

Hn,6(t) =
1

2n3

n∑
j=1

n∑
i 6=j

n∑
k 6=i,j

ct(Xj)
m(Xi)σ

2(Xk)

σ3(Xi)

K̃g(Xk −Xi)

f(Xi)
(ε2k − 1) + op

(
n−1/2

)
,

which completes the proof of the stochastic expansion (5.1).

7.2 Proof of (5.5)

For a proof we essentially have to distinguish 15 different cases of connected subsets of {1, . . . , n},
where there are no elements contained in only one set among I, J,K, L (otherwise the indepen-

dence would yield E[WIWJWKWL] = 0). We begin with the case where all sets I, J,K, L are

singletons, which implies I = J = K = L = {i} for some i ∈ {1, . . . , n}. This yields

E
[
W 4
{i}
]

=
(n− 1)4

τ 4t1,t2n
6
E
[(
Z1,i − Z2,iE

[
h(X1)

]
− Z3,iE

[
b(X1)

]
− Z5,iN2,i

+
1

2
Z5,iN1,iE

[
b(X1)

])4]
= O

(
n−2
)
.

If there is exactly one set, say L, with two elements, the sets are connected if and only if

I, J,K ⊂ L. In this case there exist two cases of the type L = {i, j} and I = J = K = {i} or

L = {i, j}, I = J = {i} and K = {j}. We only consider the last named case (the other one

yields E[WIWJWKWL] = 0, as the index j is only contained in one of the sets), which gives

E
[
W 2
{i}W{j}W{i,j}

]
=
−(n− 1)3

τ 4t1,t2n
6
E
[(
Z1,i − Z2,iE[h(X1)]− Z3,iE[b(X1)]− Z5,iN2,i +

1

2
Z5,iN1,iE[b(X1)]

)2
×
(
Z1,j − Z2,jE[h(X1)]− Z3,jE[b(X1)]− Z5,jN2,j +

1

2
Z5,jN1,jE[b(X1)]

)
×
(
Z2,iZ3,j + Z2,jZ3,i +

n− 1

n
(Z4,i,jZ5,j + Z4,j,iZ5,i)−

n− 2

2n
E[b(X1)](Z6,i,jZ5,j + Z6,j,iZ5,i)

−1

2
(Z2,iZ5,jN1,j + Z2,jZ5,iN1,i)

)]
= O

(
n−3
)
.

In the case of exactly one set with three elements and all other sets containing only one element,

we just have to consider the case L = {i, j, k}, I = {i}, J = {j} and K = {k}, which yields

E
[
W{i}W{j}W{k}W{i,j,k}

]
= O (n−4). The case of exactly two sets with two elements and two sets

with one element also gives the rate O (n−4) . If two sets are singletons, one set contains two and

one set three elements, we consider exemplarily the case L = {i, j, k}, K = {i, j}, I = J = {k},
which gives E

[
W{i,j,k}W{i,j}W

2
{k}

]
= O (n−5). All other scenarios of this case yield the same
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rate. The case where two sets are singletons and two sets contain three elements and the case

where one set is a singleton, two sets contain two elements and one set contains three elements

both give a rate O (n−6). If one set is a singleton, one set contains two and two sets contain

three elements, the rate is O (n−7), and if two sets contain two elements and two sets contain

three elements we get the rate O (n−8). In the case where there exist precisely three or four sets

with two elements and the remaining set is a singleton we obtain by similar arguments the rates

O (n−5) and O (n−6), respectively. When three sets contain two elements and one set contains

three elements the rate is O (n−7). Finally, when there exist exactly three or four sets with three

elements, we get a rate O (n−8) if the remaining set is a singleton, or O (n−9) if the remaining set

contains two elements, and O (n−10), respectively. Counting the number of nonzero summands

in each case completes the proof of the assertion (5.5).
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