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Lévy processes

Sebastian Engelke and Jeannette H.C. Woerner
Preprint 2010-16 Dezember 2010

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund tu-dortmund.de/MathPreprints





A unifying approach to fractional Lévy processes
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Abstract

Starting from the moving average representation of fractional Brownian motion frac-
tional Lévy processes have been constructed by keeping the same moving average kernel
and replacing the Brownian motion by a pure jump Lévy process with finite second mo-
ments. Another way was to replace the Brownian motion by an alpha-stable Lévy process
and the exponent in the kernel by H − 1/α. We now provide a unifying approach taking
kernels of the form a((t− s)γ

+ − (−s)γ
+) + b((t− s)γ

− − (−s)γ
−), where γ can be chosen ac-

cording to the existing moments and the Blumenthal-Getoor index of the underlying Lévy
process. These processes may exhibit both long and short range dependence. In addition
we will examine further properties of the processes, e.g. regularity of the sample paths and
the semimartingale property.

key words: fractional Lévy process, linear fractional stable motion, fractional Brownian mo-
tion, semimartingale, correlation, long-range dependence, Blumenthal-Getoor index
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1 Introduction

Fractional Brownian motion provides a classical approach for modelling dependence structures,
both allowing for long range dependence, as e.g. often seen in financial data, or short range
dependence, as e.g. in turbulence data. However, fractional Brownian motion is a zero mean
Gaussian process and hence possesses normally distributed increments, which in many circum-
stances is not a realistic feature for modelling. This leads to the idea to merge the desirable
properties of the correlation structure of fractional Brownian motion with those of infinitely
divisible distributions of Lévy processes resulting in fractional Lévy processes.
One way of defining fractional Brownian motion with Hurst parameter H is via the moving
average representation (cf. Mandelbrot and Van Ness (1968))

BHt = C

∫
(a((t− s)H−1/2

+ − (−s)H−1/2
+ ) + b((t− s)H−1/2

− − (−s)H−1/2
− ))dBs,

where x+ = max(x, 0), x− = max(−x, 0), a, b ∈ R, H ∈ (0, 1), C a normalizing constant
and (Bt)t∈R denotes a standard two-sided Brownian motion. The resulting processes possess a
correlation of the form

E(BH(t)BH(s)) =
1
2

(|t|2H + |s|2H − |t− s|2H).
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Hence for H ∈ (0.5, 1) the process has positively correlated increments and exhibits long range
dependence, whereas for H ∈ (0, 0.5) it has negatively correlated increments and exhibits short
range dependence. For H = 0.5 the process coincides with the standard Brownian motion.
Furthermore, fractional Brownian motions do not belong to the class of semimartingales except
for H = 0.5 and they possess Hölder continuous sample paths of order less than H.
Benassi et al. (2004) and Marquardt (2006) introduced fractional Lévy processes by replac-
ing the Brownian motion in the moving average representation by a pure jump Lévy process
without drift, which possesses finite second moments. Especially Marquardt (2006) was mainly
interested in the case of long range dependence.
A different approach of generalizing fractional Brownian motion in the direction of Lévy pro-
cesses was followed by Samorodnitsky and Taqqu (1994). They replaced the Brownian motion
in the moving average representation by an α-stable process with α ∈ (0, 2) and the exponent
in the kernel by H−1/α leading to linear fractional stable motions. Due to the self-similarity of
stable processes also linear fractional stable motion keeps this property of fractional Brownian
motion, whereas general fractional Lévy processes are not self-similar.
Based on the special form of the kernel function fractional Lévy processes have the same cor-
relation structure as fractional Brownian motion, but other properties change. Looking at the
path behaviour of fractional Lévy processes, they are only Hölder continuous in the long range
dependent case but with a different Hölder exponent, whereas for the short range dependent
case the sample paths are unbounded, leading to peaks which might be interesting for mod-
elling e.g. electricity data. Furthermore, other than fractional Brownian motion fractional Lévy
processes might lead to semimartingales of finite variation in the long range dependent case, cf.
Basse and Pedersen (2009) and Bender et al. (2010).
In this paper we now provide a unifying approach to fractional Lévy processes. We derive
sufficient conditions on the exponent of the kernel function leading to a larger class of processes,
especially for the short range dependent case. We will see that the upper bound of the exponent
depends on the existing moment of the underlying Lévy process and the lower bound on the
Blumenthal-Getoor index, i.e. the jump activity. In some circumstances only an appropriate
choice of the drift component in the Lévy process ensures the existence of fractional Lévy
processes. In addition we provide both distributional and path properties of the constructed
processes, e.g. regularity of the sample paths and semimartingale property, and compare them
to fractional Brownian motion. Especially we see that for fractional Brownian motion and
fractional Lévy processes the characteristic quantities, i.e. exponent of the kernel function,
exponent in the correlation function, maximal Hölder exponent and self-similarity index do not
stay in the same functional relationship. While for fractional Brownian motion one parameter
H is sufficient to describe them all, for fractional Lévy processes in general we need three
parameters, the exponent of the kernel function, the Blumenthal-Getoor index and the maximal
existing moment, if it is less than two.

2 Integrability conditions and definition of fractional Lévy
processes

Let (Lt)t≥0 be a Lévy process without Brownian component and characteristic triplet given by
(b, 0, ν), where ν is the Lévy measure and b ∈ R the drift of L. More precisely, for t ≥ 0, the
characteristic function of L is given by E[eiuL(t)] = etψ(u) for all u ∈ R, where

ψ(u) = iub+
∫
R0

(
eiux − 1− iux1{|x|≤1}

)
ν(dx). (1)
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From now on we will always work with a two-sided version (Lt)t∈R of the above processes, i.e.
L(t) = L1(t) if t ≥ 0 and L(t) = −L2(−t−) if t < 0, where L1 and L2 denote independent copies
of L. We consider integrals of deterministic functions with respect to these Lévy processes.
Defining

Λ((a, b]) = L(b)− L(a), a, b ∈ R; a < b

yields an independently scattered, infinitely divisible random measure on R. Rajput and
Rosiński (1989) developed and integration theory for this kind of random measures. In this
framework a measurable function f is called Λ-integrable (or L-integrable) if it is the almost
sure limit of approximating simple functions whose integrals converge in probability. The limit
of these integrals is defined as the L-integral of f . In this case it is independent of the approx-
imating sequence of functions (see Urbanik and Woyczynski (1967) for details). Throughout
this paper the integrals will be understood in this sense.
Let (Ω,A,P) be the underlying probability space and let L0(R) denote the space of measur-
able functions on R. According to Rajput and Rosiński (1989, Theorem 2.7), f ∈ L0(R) is
L-integrable if and only if the following two conditions hold:∫

R

∫
R0

(
|f(s)x|2 ∧ 1

)
ν(dx) ds <∞, (2)∫

R

∣∣∣∣f(s)
(
b+

∫
R0

x(1{|f(s)x|≤1} − 1{|x|≤1})ν(dx)
)∣∣∣∣ ds <∞. (3)

Furthermore, for p ∈ R+ the so-called Musielak-Orlicz space is defined as

Lφp(R) =
{
f ∈ L0(R) is L-integrable and

∫
R

∫
R0

1{|f(s)x|>1}|f(s)x|p ν(dx) ds <∞
}
.

Note that Lφp(R) is a complete linear metric space (for details see Musielak (1983)). Applying
Theorem 3.3 of Rajput and Rosiński (1989) to our setting yields the following proposition.

Proposition 1. Let q ∈ R+ and 0 ≤ p ≤ q. Suppose that for any t ∈ R we have E |L(t)|q <∞.
Then {

f ∈ L0(R) : f is L-integrable and E
∣∣∣∣∫

R
f(s)L(ds)

∣∣∣∣p <∞} = Lφp(R)

and the linear mapping

Lφp(R) 3 f 7→
∫

R
f(s)L(ds) ∈ Lp(Ω,P)

is continuous.

For γ ∈ R let us define the following functions:

f+
γ (t, s) = (t− s)γ+ − (−s)γ+,
f−γ (t, s) = (t− s)γ− − (−s)γ−,
fγ(t, s) = |t− s|γ − |s|γ = f+

γ (t, s)− f−γ (t, s).

At first, we only consider the function f+
γ . For two functions h and g on R we will frequently

use the notation f(s) ∼ g(s) as s→ a ∈ [−∞,∞] in the sense of lims→a f(s)/g(s) = C ∈ R.

Proposition 2. For f+
γ as above, γ < 1 and t ∈ R fixed we have the following.

1. |f+
γ (t, s)| ∼ |s|γ−1 for s→ −∞.

3



2. (a) If γ > 0 then |f+
γ (t, ·)| is bounded on R.

(b) If γ < 0 then |f+
γ (t, s)| ∼ |s|γ → ∞ for s ↗ 0 and |f+

γ (t, s)| ∼ |t − s|γ → ∞ for
s↗ t.

3. Let δ > 0.

(a) |f+
γ (t, ·)|δ is integrable at −∞ iff δ > 1

1−γ .

(b) |f+
γ (t, ·)|δ is integrable at 0 and t iff either γ > 0 or γ < 0 and δ < 1

−γ .

Proof. 1. Using l’Hôpital’s rule we obtain

lim
s→−∞

|f+
γ (t, s)|
|s|γ−1

= lim
s→−∞

|(1− t
s )γ − 1|
|s|−1

= lim
u↘0

|(1 + ut)γ − 1|
u

= lim
u↘0

|γ(1 + ut)γ−1t|
1

= |γt|.

2. Obvious from the definition of f+
γ .

3. (a) Let N < min(0, t), then we observe that by the first part of this proposition∫ N
−∞ |f

+
γ (t, s)|δds <∞ is equivalent to

∫ N
−∞ |s|

δ(γ−1)ds <∞ which holds if and only
if δ > 1

1−γ .

(b) If γ > 0 the assertion follows from the boundedness of f+
γ . Let now 0 < ε < |t|.

By part 2(b) we note that
∫ 0

−ε |f
+
γ (t, s)|δds <∞ if and only if

∫ 0

−ε |s|
δγds <∞. The

latter is clearly equivalent to δ < 1
−γ .

We are now in a position to state certain integrability conditions of f+
γ depending on γ and the

Lévy measure ν.

Proposition 3. Let A1 = {(x, s) ∈ R0 × R : |f+
γ (t, s)x| > 1} and γ < 1.

1. For δ ≥ 0 we have that ∫
A1

|f+
γ (t, s)x|δλ⊗ ν(ds dx) <∞ (4)

is equivalent to the following:

(i)
∫
|x|>1

|x|δ∨
1

1−γ ν(dx) <∞,

(ii) δ < −1/γ (for γ < 0),

(iii)
∫
|x|<1

|x|−1/γν(dx) <∞ (for γ < 0).

2. For ξ > 0 ∫
Ac1

|f+
γ (t, s)x|ξλ⊗ ν(ds dx) <∞ (5)

holds if and only if
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(i) ξ > 1
1−γ ,

(ii)
∫
|x|>1

|x|
1

1−γ ν(dx) <∞,

(iii)
∫
|x|<1

|x|ξν(dx) <∞,

(iv)
∫
|x|<1

|x|−1/γν(dx) <∞ (for γ < 0).

Proof. 1. Applying Tonelli’s Theorem, (4) is equivalent to∫
R0

|x|δ
∫
{s∈R:|f+

γ (t,s)|> 1
|x|}
|f+
γ (t, s)|δds ν(dx) <∞.

By Prop. 2.3 for any x ∈ R0 the inner integral is finite and continuous in x if and only if
either γ > 0 or γ < 0 and δ < 1

−γ . In this case we have to establish the convergence of
the outer integral only for |x| → 0 and |x| → ∞.
For the latter case let N be large enough, such that we can approximate |f+

γ (t, s)| by
|s|γ−1 for all s < −N as in Prop. 2. We then clearly have for large M that by Prop. 2.1∫

|x|>M
|x|δ

∫
{s∈R:|f+

γ (t,s)|> 1
|x|}
|f+
γ (t, s)|δds ν(dx) <∞

holds if and only if∫
|x|>M

|x|δ
∫
{s∈R:|s|γ−1> 1

|x|}∩(−∞,−N ]

|s|δ(γ−1)ds ν(dx)

=
∫
|x|>M

|x|δ
(
K1 +

∫ −N
−|x|

1
1−γ
|s|δ(γ−1)ds

)
ν(dx)

=
∫
|x|>M

|x|δ
(
K1 +K2|x|−δ+

1
1−γ

)
ν(dx) <∞,

where K1,K2 denote constants. The last inequality is equivalent to∫
|x|>1

|x|δ∨
1

1−γ ν(dx) <∞.

Let us now consider the case |x| → 0.
If γ > 0, the set {s ∈ R : |f+

γ (t, s)| > 1
|x|} will be empty for sufficiently small x which

implies the convergence.
Now, let γ < 0. Choose ε > 0 small enough such that for all |x| < ε the set {s ∈ R :
|f+
γ (t, s)| > 1

|x|} is contained in {s ∈ R : |s|γ > 1
|x|}∪{s ∈ R : |t− s|γ > 1

|x|} and |f+
γ (t, s)|

behaves as |s|γ on this set. Then we have that∫
|x|<ε

|x|δ
∫
{s∈R:|f+

γ (t,s)|> 1
|x|}
|f+
γ (t, s)|δds ν(dx) <∞

by Prop. 2.2 is equivalent to∫
|x|<ε

|x|δ
∫
{s∈R:|s|γ> 1

|x|}
|s|δγds ν(dx) =

∫
|x|<ε

|x|δK3|x|−δ−
1
γ ν(dx)

= K3

∫
|x|<ε

|x|−
1
γ ν(dx) <∞,

where δ < −1/γ and K3 denotes a constant.
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2. Again by Tonelli’s Theorem, (5) is equivalent to∫
R0

|x|ξ
∫
{s∈R:|f+

γ (t,s)|≤ 1
|x|}
|f+
γ (t, s)|ξds ν(dx) <∞.

By Prop. 2.3 for any x ∈ R0 the inner integral is finite and continuous in x if and only
if ξ > 1

1−γ . In this case we have to establish the convergence of the outer integral only
for |x| → 0 and |x| → ∞. Note that on the set {s ∈ R : |f+

γ (t, s)| ≤ 1
|x|} we clearly have

|f+
γ (t, s)|ξ ≤ |x|−ξ.

Now, consider |x| → ∞ and choose M large enough such that for all |x| > M the set
{s ∈ R : |f+

γ (t, s)| ≤ 1
|x|} is contained {s ∈ R : |s|γ−1 ≤ 1

|x|} ∪ [−N,N ] = {s ∈ R : |s| ≥
|x|

1
1−γ } ∪ [−N,N ], for N large enough. We then have by Prop. 2.1 that∫

|x|>M
|x|ξ

∫
{s∈R:|f+

γ (t,s)|≤ 1
|x|}
|f+
γ (t, s)|ξds ν(dx) <∞

holds if and only if∫
|x|>M

|x|ξ
∫ N

−N
|x|−ξds+

∫ −|x| 1
1−γ

−∞
|s|ξ(γ−1)ds

 ν(dx)

=
∫
|x|>M

|x|ξ
(

2N |x|−ξ +K1|x|−ξ+
1

1−γ

)
ν(dx) <∞,

where K1 denotes a constant. The last inequality is equivalent to∫
|x|>1

|x|
1

1−γ ν(dx) <∞. (6)

Let us now consider the case when |x| → 0. First, assume that γ > 0. For η > 0 small
enough we then observe that {s ∈ R : |f+

γ (t, s)| ≤ 1
|x|} = R for all |x| < η. Hence we

obtain the equivalence of∫
|x|<η

|x|ξ
∫
{s∈R:|f+

γ (t,s)|≤ 1
|x|}
|f+
γ (t, s)|ξds ν(dx) <∞

and ∫
|x|<1

|x|ξν(dx) <∞.

For γ < 0 we choose ε > 0 small enough such that for all |x| < ε the set {s ∈ R :
|f+
γ (t, s)| ≤ 1

|x|} is contained in R \
(
{s < 0 : |s|γ ≤ 1

|x|} ∪ {s < t : |t− s|γ ≤ 1
|x|}
)

. Thus,
we have by Proposition 2.2 that∫

|x|<ε
|x|ξ

∫
{s∈R:|f+

γ (t,s)|≤ 1
|x|}
|f+
γ (t, s)|ξds ν(dx) <∞

if and only if ∫
|x|<ε

|x|ξ
K2 +K3

∫ −|x|− 1
γ

−1

|s|ξγds

 ν(dx)

=
∫
|x|<ε

|x|ξ
(
K4 +K5|x|−ξ−

1
γ

)
ν(dx) <∞,

6



where K2,K3,K4 and K5 denote constants. The last inequality is equivalent to∫
|x|<1

|x|ξ∧(−
1
γ ) ν(dx) <∞.

This concludes the proof.

Suppose that for some 2 ≥ β > 0 and η > 0 the following two conditions hold∫
|x|<1

|x|βν(dx) <∞, (7)∫
|x|>1

|x|ην(dx) <∞. (8)

Condition (8) means that the Lévy process L with triplet (0, 0, ν) possesses a finite η-th moment,
whereas condition (7) is certainly satisfied if β > α, where α denotes the Blumenthal-Getoor
index of L, i.e.

inf{u ≥ 0 :
∫

R0

1 ∧ |x|uν(dx) <∞}.

As an application of the above proposition the following holds.

Corollary 1. Let L be a Lévy process with characteristic triplet (b, 0, ν) whose Lévy measure
ν satisfies (7) and (8). Then for any real number γ with

γ ∈
[
− 1
β
, 1− 1

η

]
∩ (−∞, 1

2
) (9)

the first integrability condition (2) holds for f+
γ (t, ·) and any t ∈ R, i.e.∫

R

∫
R0

(
|f+
γ (t, s)x|2 ∧ 1

)
ν(dx) ds <∞. (10)

Proof. Setting δ = 0 and ξ = 2, Proposition 3 directly yields the desired result.

Note that if we consider a symmetric pure jump Lévy process L, i.e. with characteristic triplet
(0, 0, ν), then the above condition is already sufficient for the integrability of f+

γ . In fact,
condition (3) holds trivially since the inner integral vanishes for any value of f+

γ (t, s). However,
if ν is not symmetric, this condition imposes additional restrictions on the parameter γ.

Corollary 2. Let L be a Lévy process with characteristic triplet (b, 0, ν) whose Lévy measure
ν satisfies (7) and (8). Then for any real number γ with

γ ∈
[
− 1
β
, 1− 1

η

]
∩ (−1, 0) (11)

both integrability conditions (2) and (3) hold for f+
γ (t, ·) and any t ∈ R.

Proof. Since the assumptions of Corollary 1 are satisfied we only need to check integrability
condition (3). This, however, clearly holds if∫

R

∣∣∣∣f+
γ (t, s)

(
b+

∫
R0

x(1{|f+
γ (t,s)x|≤1} − 1{|x|≤1})ν(dx)

)∣∣∣∣ ds
≤
∫

R

∣∣f+
γ (t, s)b

∣∣ ds+
∫

R

∫
R0

∣∣∣f+
γ (t, s)x(1{|f+

γ (t,s)x|≤1} − 1{|x|≤1})
∣∣∣ ν(dx)ds <∞.
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By Proposition 2.3 the first summand is finite for any b ∈ R, since γ ∈ (−1, 0). For the second
summand it suffices to integrate on the sets E1 = {(x, s) ∈ R0 × R : |f+

γ (t, s)x| > 1, |x| ≤ 1}
and E2 = {(x, s) ∈ R0×R : |f+

γ (t, s)x| ≤ 1, |x| > 1} where the indicator functions do not cancel
each other out. By the proof of Proposition 3 we have for all γ with γ > −1 and γ ≥ − 1

β∫
E1

∣∣f+
γ (t, s)x

∣∣λ⊗ ν(ds dx) <∞.

Similarly, for all γ with γ < 0 and γ ≤ 1− 1
η we obtain∫

E2

∣∣f+
γ (t, s)x

∣∣λ⊗ ν(ds dx) <∞.

This concludes the proof.

In the above situation we had to restrict the parameter γ to the interval (−1, 0) which ensured
the integrability of the kernel function at zero and infinity. It is, however, possible to allow for
a broader range of values of γ. In these cases we have either to compensate the small jumps or
the big jumps of L which requires finite variation or finite first moments, respectively. Let us
start with the former case.

Corollary 3. Let L be a Lévy process with finite variation and characteristic triplet (b, 0, ν)
whose Lévy measure ν satisfies (7) and (8) with β ≤ 1. Furthermore, let the drift b be given by

b =
∫
|x|≤1

x ν(dx).

Then for any real number γ with

γ ∈
[
− 1
β
, (1− 1

η
) ∧ 0

]
(12)

both integrability conditions (2) and (3) hold for f+
γ (t, ·) and any t ∈ R.

Proof. By Corollary 1 condition (2) clearly holds. With b as above, the second condition (3)
simplifies to ∫

R

∣∣∣∣∫
R0

f+
γ (t, s)x1{|f+

γ (t,s)x|≤1}ν(dx)
∣∣∣∣ ds <∞,

which holds by Prop. 3 especially if γ < 0 and γ ∈
[
− 1
β , 1−

1
η

]
.

In the case of a Lévy process with finite variation we do not have to restrict γ to negative
values.

Corollary 4. Let L be a Lévy process with finite first moments and characteristic triplet (b, 0, ν)
whose Lévy measure ν satisfies (7) and (8) with η ≥ 1. Furthermore, let the drift b be given by

b = −
∫
|x|>1

x ν(dx).

Then for any real number γ with

γ ∈
[
− 1
β
, 1− 1

η

]
∩ (−1,

1
2

) (13)

both integrability conditions (2) and (3) hold for f+
γ (t, ·) and any t ∈ R.
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Proof. We first note that by Corollary 1 condition (2) is clearly satisfied. Moreover, in this
situation, for any t ∈ R, the second integrability condition (3) takes the form∫

R

∣∣∣∣∫
R0

f+
γ (t, s)x1{|f+

γ (t,s)x|>1}ν(dx)
∣∣∣∣ ds <∞.

By Proposition 3 with δ = 1 this holds especially if γ > −1 and γ ∈
[
− 1
β , 1−

1
η

]
.

We are now able to define fractional Lévy processes.

Definition 1. Let L and γ be as in one of the three corollaries above. We define a stochastic
process by

X+
γ (t) =

∫
R
f+
γ (t, s)L(ds), t ∈ R,

which we call a fractional Lévy process.

Note that the above results on the integrability remain true if we replace the function f+
γ by

either f−γ or fγ . In fact, we observe that f−γ (t, s) = −f+
γ (t, t−s) and fγ(t, s) = f+

γ (t, s)+f−γ (t, s)
for all t, s ∈ R. Now it suffices to recall that Lφ0(R) is a linear space. Thus, we can as well
define fractional Lévy processes by integrating these kernel functions or any of their linear
combinations af+

γ + bf−γ , a, b ∈ R. The properties of the integrals which we will analyze in the
following hold for any of these functions. However, for the sake of simplicity we will formulate
the results for f+

γ .

Proposition 4. Let L and γ be as in the above definition. In particular, L has characteristic
triplet (b, 0, ν) with b ∈ R, b =

∫
|x|≤1

x ν(dx) or b = −
∫
|x|>1

x ν(dx), respectively.
Then the process X+

γ in Definition 1 has stationary increments. Moreover, for n ∈ N, t1, . . . , tn ∈
R and u1, . . . , un ∈ R its finite dimensional distributions have characteristic function given by

E

[
exp

{
i
n∑
i=1

uiX
+
γ (ti)

}]
= exp

{∫
R
ψγ

(
n∑
i=1

uif
+
γ (ti, s)

)
ds

}
,

where

ψγ(y) = iyb+
∫
R0

(
eiyx − 1− iyx1{|x|≤1}

)
ν(dx), y ∈ R.

In particular, X+
γ (t) is infinitely divisible for all t ∈ R with characteristic triplet (bf+

γ
, 0, νf+

γ
)

given by

bf+
γ

=
∫

R
f+
γ (t, s)

(
b+

∫
R0

x(1{|f+
γ (t,s)x|≤1} − 1{|x|≤1})ν(dx)

)
ds,

νf+
γ

(B) =
∫

R

∫
R0

1B(f+
γ (t, s)x)ν(dx) ds, B ∈ B(R0).

Proof. The form of the characteristic function is a direct consequence of Proposition 2.4 in
Rajput and Rosiński (1989) if we note that

∑n
i=1 uif

+
γ (ti, ·) is integrable since Lφ0(R) is a

linear space (see Prop. 1). Theorem 2.7 in the same paper yields the representation of the
characteristic triplet. The stationarity of increments is a consequence of the same property of
the Lévy process.
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Example 1. An important example of fractional Lévy processes are the so-called linear frac-
tional stable motions which were introduced in Samorodnitsky and Taqqu (1994, Example 3.6.5
and Section 7.4) as

Y αH (t) =
∫

R
(t− s)H−1/α

+ − (−s)H−1/α
+ M(ds), t ∈ R,

where M is an α-stable random measure. Here 0 < α < 2 is the stability index and H ∈ (0, 1).
These processes arise as a special case of our definition of fractional Lévy processes. For
instance, in the symmetric case, define a Lévy measure by να(dx) = c|x|−1−αdx. Clearly,
(7) holds for any β ∈ (α,∞) and (8) holds for any η ∈ [0, α). By choosing the Lévy process Lα
with Lévy measure να as in Corollary 2, 3 or 4 for α = 1, α ∈ (0, 1) or α ∈ (1, 2), respectively,
we can define the fractional Lévy process

Xα
γ (t) =

∫
R
f+
γ (t, s)Lα(ds), t ∈ R,

for γ ∈
(
− 1
α , 1−

1
α

)
. Using the characteristic functions it is easy to see that, for γ = H − 1/α,

Y αH and Xα
γ are equal in distribution.

3 Distributional properties

Using Proposition 3 it is now easy to give sufficient conditions for the existence of moments of
the integrated process.

Proposition 5. Let L be as in the previous proposition and p ≥ 0. If

p ≤ η and p <
1
−γ

for γ < 0),

then for any t ∈ R the p-th moment of X+
γ (t) exists, i.e. E|X+

γ (t)|p <∞.

Proof. We first recall that the existence of p-th moments of L is equivalent to∫
|x|>1

|x|p ν(dx) <∞.

By Prop. 1 it suffices to show that for any t ∈ R∫
R

∫
R0

1{|f+
γ (t,s)x|>1}|f

+
γ (t, s)x|p ν(dx) ds <∞.

However, p ≤ η and γ > − 1
p together with Prop. 3 yield the desired result.

The above proposition provides sufficient conditions for the existence of the p-th moments of
X+
γ . If p is a positive integer, Proposition 4 enables us to compute the p-th moment explicitly.

Let us consider the important case p = 2, then we need that L is square-integrable, i.e., η ≥ 2.
Since in this case, L clearly has finite first moments, the assumptions of Corollary 4 hold and we
choose b = −

∫
|x|>1

x ν(dx). This corollary and Proposition 5 show that X+
γ is square-integrable

for any γ ∈ (− 1
2 ,

1
2 ). By Theorem 15.31 in Klenke (2006) we are now able to compute the first

10



and the second moments of X+
γ . This yields for any t ∈ R

EX+
γ (t) = −i ∂

∂u
E exp

(
iuX+

γ (t)
) ∣∣∣∣
u=0

= −i ∂
∂u

exp
{∫

R

∫
R0

(
eiuf+

γ (t,s)x − 1− iuf+
γ (t, s)x

)
ν(dx)ds

} ∣∣∣∣
u=0

= 0,

where by dominated convergence we can interchange differentiation and integration. By similar
arguments the second moment is given by

E
(
X+
γ (t)

)2 = − ∂2

∂u2
E exp

(
iuX+

γ (t)
) ∣∣∣∣
u=0

=
∫

R0

x2ν(dx)
∫

R

(
f+
γ (t, s)

)2
ds

= t2γ+1E (L(t))2
∫

R

(
f+
γ (1, s)

)2
ds. (14)

Example 2. The above situation of a square-integrable Lévy process has been considered by
Benassi et al. (2004) and Marquardt (2006). Their processes can be recovered from our results
by setting b = −

∫
|x|>1

x ν(dx) and γ = H − 1/2 for H ∈ (0, 1). As seen above, the arising
process

X+
H(t) =

∫
R
(t− s)H−1/2

+ − (−s)H−1/2
+ L(ds), t ∈ R

is well-defined and square-integrable. Further properties are studied in Marquardt (2006) for
the case H − 1/2 > 0 where the process X+

H exhibits long range dependence.

Remark 1. Note that if X+
γ is square-integrable with variance given by (14), then it essentially

has the same correlation structure as fractional Brownian motion, namely

Cov
(
X+
γ (t), X+

γ (u)
)

= E (L(t))2
∫

R

(
f+
γ (1, s)

)2
ds
(
|t|2γ+1 + |u|2γ+1 − |t− u|2γ+1

)
.

Therefore, X+
γ exhibits short range dependence if γ < 0 and long range dependence if γ >

0. Hence, to be in line with the structure of fractional Brownian motion we could use the
parametrisation γ = H − 1/2 with H ∈ (0, 1) as it was done in Marquardt (2006).

4 Path properties

Path properties of fractional Lévy processes under the condition of vanishing first moments and
finite second moments have been proved in Marquardt (2006) and Benassi et al. (2004). They
showed that for γ < 0 the sample paths are unbounded on any interval since the kernel in this
case is unbounded. This argument also holds in our more general setting.
For γ > 0 they showed that the process possesses a Hölder continuous version of the order
d with d < γ. We will show that this also holds true in our more general setting, namely
when β < η. However, we have to use a different technique to prove this since we cannot use
the moment structure derived by the characteristic function. Instead we have to go via the
improper Riemann integral representation and the short time behaviour of absolute moments
of a Lévy process.

11



Proposition 6. Let L be a Lévy process with finite first moments and characteristic triplet
(b, 0, ν) whose Lévy measure ν satisfies (7) and (8) with η > 1. Furthermore, let the drift b be
given by

b = −
∫
|x|>1

x ν(dx).

Then for any real number γ with

γ ∈
[
− 1
β
, 1− 1

η

)
∩ (0,

1
2

) (15)

X+
γ possesses a continuous version

X+
γ (t) =

∫
γf+

γ−1(t, s)L(s)ds.

If β < η, it is also Hölder continuous of the order d with d < γ.

Proof. It is clear that we have to restrict ourselves to positive γ, since otherwise the kernel
function is unbounded and hence also the associated process. Then the representation of X+

γ

as improper Riemann integral follows straight forward by integration by parts as in Marquardt
(2006). We only have to note that since we do not assume a finite second moment we cannot
use the law of iterated logarithm to show that

lim
s→−∞

L(s)((t− s)γ − (−s)γ) = 0 a.s.

However instead we can use Proposition 48.10 of Sato (1999), which yields

lim sup
t→∞

sup0≤s≤t |L(s)|
t1/r

= 0 a.s. (16)

for r < β̄. By Pruitt (1981) we know that if E|L(t)| < ∞ and EL(t) 6= 0 then β̄ = 1, and
otherwise β̄ = sup{γ ∈ [0, 2] :

∫
|x|>1

|x|γν(dx) <∞}.
Continuity of X+

γ follows as in Marquardt (2006). For Hölder continuity the arguments are
different. First note that by a change of variables we obtain

X+
γ (t) = γtγ

∫
f+
γ−1(1, u)L(ut)du.

Now we use that by Woerner (2003) E|L(t)|r ≤ tC for t → 0 if η ≥ r > β and obtain by
Minkowski’s inequality that for t→ 0

(E|X+
γ (t)|η)1/η = γtγ(E|

∫
f+
γ−1(1, u)L(tu)du|η)1/η

≤ γtγ
∫
|f+
γ−1(1, u)|(E|L(ut)|η)1/ηdu

≤ tγ+ 1
η γC

∫
|f+
γ−1(1, u)||u|1/ηdu <∞,

where the last integral is finite since γ < 1− 1
η . Hence we obtain as t→ 0

E|X+
γ (t)|η ≤ tηγ+1C.

Using Kolmogorov-Centsov we now obtain Hölder continuity of the order d with d < γ.

12



Note that this proposition does not hold for stable processes, since for them we have η < β.
However, here we can use that by Example 25.10 of Sato (1999) for a symmetric α-stable
process, α ∈ (1, 2) we have E|L(t)|p = tp/αC for −1 < p < α. Hence by inserting this is
the calculation above we obtain E|X+

γ (t)|p ≤ tp(γ+1/α) for p < α, which also yields Hölder
continuity of the order d with d < γ.
By the previous result we see that in contrast to fractional Brownian motion we only have
continuous sample paths in the long-range dependent case and the sample paths are less regular,
namely at most Hölder continuous of the order less than 1− 1/η ≤ 1/2.

Proposition 7. Let L be a Lévy process with finite first moments and characteristic triplet
(b, 0, ν) whose Lévy measure ν satisfies (7) and (8) with η > 1. Furthermore, let the drift b be
given by

b = −
∫
|x|>1

x ν(dx).

Then it is equivalent that
(a)

γ ∈
[
1− 1

β
, 1− 1

η

)
∩ (0,

1
2

) (17)

with β chosen to be the minimal one and η the maximal one which is smaller or equal to two,
and
(b) Xγ

+ is a semimartingale of bounded variation with respect to any filtration it is adapted to.

Proof. The proof is analogous to the proof in Bender et al. (2010). Though they worked under
the condition of finite second moments, they mainly used it to obtain an appropriate decay of
the Lévy process by a law of iterated logarithm. Instead of this we can, as in the previous proof
use (16). Furthermore, they used the property of finite second moments in Lemma 3.5. to show
that for r, t > 0 as t→ 0

E(|1
t

∫ t

−∞
((t− s)γ+ − (−s)γ+)L(ds)− γ

∫ 0

−∞
(−s)γ−1L(ds)|)→ 0.

To show this we can use the same arguments as in the previous proof. First we write the expres-
sion as improper Riemann-integral, where the boundary terms vanish by the same argument as
before. We obtain

Y (t) =
1
t

∫ t

−∞
((t− s)γ+ − (−s)γ+)L(ds)− γ

∫ 0

−∞
(−s)γ−1L(ds)

= γ

∫
1
t

(
(t− s)γ−1

+ − (−s)γ−1
+ − (γ − 1)t(−s)γ−2

+

)
L(s)ds

= tγ−1γ

∫ (
(1− u)γ−1

+ − (−u)γ−1
+ − (γ − 1)(−u)γ−2

+

)
L(ut)du.

Note that we indeed have β < η and η > 1, since otherwise the range of γ is empty. Hence by
the same argument as in the previous proof we obtain as t→ 0 and β ≤ 1 < p < η

E|Y (t)| ≤ (E|Y (t)|p)1/p ≤ tγ−1+1/pC <∞,

which tends to zero since γ > 1− 1/p. This completes the proof.
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Note that obviously linear fractional stable motion and fractional Brownian motion cannot be
semimartingales since in this case we have β = η and hence the range of γ is empty.
Since under the conditions of the previous proposition the fractional Lévy process is a semi-
martingale of finite variation, it has the semimartingale characteristics (Bt, 0, 0), hence it is a
generalized drift Bt. This implies that semimartingale fractional Lévy processes might serve as
drift component to introduce long-range dependence to a Brownian semimartingale model, e.g.
a classical stochastic volatility model.
For the case γ < 1−1/β we restrict ourselves to the class of driving Lévy processes whose Lévy
measure locally around zero behaves like the one of a stable process. The following proposition
is a generalization of Theorem 4.5 in Marquardt (2006) and the proof is essentially the same
and will therefore be omitted.

Proposition 8. Let α ∈ (0, 2) and suppose that the Lévy measure ν has a Lebesgue density g,
such that

lim
x→0

g(x)
|x|−1−α = c,

g(x) ≤ C|x|−1−α, for all x ∈ R,

where c, C > 0, and an appropriate drift b (depending on α, cf. Example 1). For γ ∈(
− 1
α , 1−

1
α

)
, X+

γ is locally self-similar with parameter γ + 1/α. More precisely, for every
fixed t ∈ R, we have

lim
ε↓0

{
X+
γ (t+ εx)−X+

γ (t)
εγ+1/α

}
x∈R

(d)
=
{
Xα
γ (x)

}
x∈R ,

where the limit is in distribution for all finite-dimensional margins and Xα
γ is a linear fractional

stable motion with parameters α and c as in Example 1.

The above proposition tells us how the increments of the integrated process behave at small
scale. The conditions are satisfied by popular classes of Lévy processes with infinite activity
whose Lévy measures possess a Lebesgue density, e.g. CGMY processes or generalized hyper-
bolic Lévy processes.
Note that for fractional Brownian motion we have self similarity and hence local self-similarity
with parameter H. Hence to be in line with this we would use the parameterization γ = H−1/α,
H ∈ (0, 1) as for linear fractional stable motion.
The knowledge of the small time scaling can be used to show a result on the strong p-variation
of the process X+

γ .
Recall that the strong p-variation of a stochastic process X on the interval [a, b] is a measure
of roughness of its sample paths which is defined as

Varp[a,b](X) = sup
τ

(
n−1∑
i=0

|X(ti+1)−X(ti)|p
)1/p

,

where p > 0 and the supremum is taken over all subdivisions τ of [a, b]:

τ : a = t0 < t1 < . . . < tn = b, n ≥ 1.

Proposition 9. Let α ∈ (0, 2) and suppose that the Lévy process L is as in Proposition 8. Then
for γ ∈

(
− 1
α , 1−

1
α

)
, the process X+

γ has a.s. infinite p-variation on every compact interval for
all 0 < p < 1

γ+1/α . In particular, the total variation is always infinite.
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Proof. Let p < 1
γ+1/α . From Prop. 8 we conclude that for every t ∈ R we have

lim
h↓0

∣∣X+
γ (t± h)−X+

γ (t)
∣∣p

|h|p(γ+1/α)

(d)
=
∣∣Xα

γ (±1)
∣∣p > 0, a.s.

Let (Ω,A,P) be the underlying probability space and Ω′ ⊂ Ω an arbitrary subset such that
P(Ω′) > 0. Then, by the same arguments as in the proof of Theorem 4.6 in Marquardt (2006),
we conclude

lim
h↓0

E

[
1Ω′

∣∣X+
γ (t± h)−X+

γ (t)
∣∣p

|h|p(γ+1/α)

]
> 0. (18)

Assume
P
[
Varp[a,b](X

+
γ ) <∞

]
= P

[(
Varp[a,b](X

+
γ )
)p

<∞
]
> 0.

Then we find an Ω′ ⊂ Ω with P(Ω′) > 0 and a K > 0 such that
(

Varp[a,b](X
+
γ )
)p

< K on Ω′

and thus
E
[
1Ω′

(
Varp[a,b](X

+
γ )
)p]
≤ K (19)

On the other hand, by (18) we observe

lim
h↓0

E

[
1Ω′

∣∣X+
γ (t± h)−X+

γ (t)
∣∣p

h

]
= lim

h↓0
hp(γ+1/α)−1E

[
1Ω′

∣∣X+
γ (t± h)−X+

γ (t)
∣∣p

hp(γ+1/α)

]
=∞,

since p(γ + 1/α)− 1 < 0.
Now fix b′ ∈ R with a < b′ ≤ b. By the above consideration we can find for every t ∈ [a, b′] an
εt > 0 with εt < b− b′ such that for all |h| ≤ εt

E
[
1Ω′
∣∣X+

γ (t± h)−X+
γ (t)

∣∣p] ≥ 2K
b′ − a

|h|

holds. Since {(t− εt, t+ εt)}t∈[a,b′] is an open cover of the compact interval [a, b′] we obtain a
finite subcover {(t2i − εt2i , t2i + εt2i)}

m
i=1. Furthermore, for i ∈ {1, . . . ,m− 1} we pick

t2i+1 ∈ (t2i, t2i + εt2i) ∩
(
t2i+2 − εt2i+2 , t2i+2

)
and define t1 = a and b′ < t2m+1 = t2m + εt2m < b′. It is now enough to observe that

E
[
1Ω′

(
Varp[a,b](X

+
γ )
)p]
≥

2m∑
i=1

E
[
1Ω′
∣∣X+

γ (ti+1)−X+
γ (ti)

∣∣p]
≥ 2K
b′ − a

2m∑
i=1

|ti+1 − ti| = (t2m+1 − a)
2K
b′ − a

≥ 2K

which contradicts (19). Hence,

P
[
Varp[a,b](X

+
γ ) =∞

]
= 1.

Finally, from 1 < 1
γ+1/α for any γ ∈

(
− 1
α , 1−

1
α

)
we conclude

P
[
Var1

[a,b](X
+
γ ) =∞

]
= 1.
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This result is similar to the case of fractional Brownian motion, where we also obtain infinite
p-variation for p less than one over the self-similarity index.
Summarizing we see that these differences between fractional Brownian motion and fractional
Lévy processes imply that especially statistical inference by non-parametric methods on the
degree of long-range dependence needs a thorough analysis when it is not clear of which class
the true underlying process is. For example, relying on the Hölder continuity as measure of
the dependence, this might suggest short range dependence instead of long range dependence,
when the true process is a fractional Lévy process instead of a fractional Brownian motion.
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http://www.tu-braunschweig.de/Medien-DB/stochastik/bender-lindner-schicks1.pdf, 2010.

A. Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, 2006.

B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian motions, fractional noises and
applications. SIAM Rev., 10:422–437, 1968.
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1981.
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Extrinsically Immersed Symplectic Symmetric Spaces

2009-12 Alexander Kaplun
Continuous time Ehrenfest process in term structure modelling

2009-11 Henryk Zähle
Ein aktuarielles Modell für die Portabilität der Alterungsrückstellungen
in der PKV

2009-10 Andreas Neuenkirch and Henryk Zähle
Asymptotic error distribution of the Euler method for SDEs with
non-Lipschitz coefficients

2009-09 Karl Friedrich Siburg, Pavel A. Stoimenov
Regression dependence

2009-08 Wilfried Hazod
Continuous convolution hemigroups integrating a sub-multiplicative function

2009-07 Sergio Conti and Ben Schweizer
On optimal metrics preventing mass transfer

2009-06 Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg
Billiards in ideal hyperbolic polygons

2009-05 Ludwig Danzer
Quasiperiodic Tilings - Substitution Versus Inflation

2009-04 Flavius Guiaş
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