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Abstract

In this paper we discuss the asymptotical properties of quantile processes under random

censoring. In contrast to most work in this area we prove weak convergence of an appropri-

ately standardized quantile process under the assumption that the quantile regression model

is only linear in the region, where the process is investigated. Additionally, we also discuss

properties of the quantile process in sparse regression models including quantile processes

obtained from the Lasso and adaptive Lasso. The results are derived by a combination of

modern empirical process theory, classical martingale methods and a recent result of Kato

(2009).
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1 Introduction

Quantile regression was introduced by Koenker and Bassett (1978) and provides an important

alternative to classical least squares analysis by focusing on conditional quantiles instead of condi-

tion mean and variance. Since its introduction it has found considerable attention in the literature

because of its flexibility, easy interpretation and robustness properties [see Yu et al. (2003) or

Koenker (2005) for some recent review of this field]. While most of the literature discusses prop-

erties and applications of quantile regression in the case of fully observed data, much less effort
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has been spent to develop quantile regression analysis for censored data. Powell (1984), Powell

(1986) and Newey and Powell (1990) proposed quantile regression methods in the case where

all censoring variables are known [see also Fitzenberger (1997)]. Ying et al. (1995) introduced

median regression in the presence of independent right censoring. This research was continued

by Bang and Tsiatis (2002) and Zhou (2006), who derived various inverse-censoring-probability

weighted methods for parameter estimation in median regression. However, none of those au-

thors considered quantile processes. Portnoy (2003) and Portnoy and Lin (2010) avoided the

rather strong assumption of unconditional independence between survival and censoring times

by adopting the principle of self-consistency for the Kaplan-Meier estimate [see Efron (1967)].

An alternative quantile regression method for survival data subject to conditionally independent

censoring was developed by Peng and Huang (2008). These authors proposed to use martingale

based estimating equations and showed uniform consistency and weak convergence (of an appro-

priately standardized) quantile process. Wang and Wang (2009) pointed out that the methods

of Portnoy (2003) and Peng and Huang (2008) require the conditional quantile curves at lower

quantiles to be linear. In order to relax these assumptions they considered locally weighted cen-

sored quantile regression estimates that adopt the redistribution-of mass idea and employ a local

re-weighting scheme. Closely related approaches were recently investigated by Leng and Tong

(2012) and Tang et al. (2012). However, all methods mentioned above require non-parametric

smoothing and are thus only of limited use for covariate dimensions larger than 3 or 4 due to the

curse of dimensionality. Moreover, these authors did not address the problem of weak convergence

of the quantile process.

If the dimension of the parameter is large compared to the sample size, estimating the parameters

in quantile regression is intrinsically harder. More recently sparse estimation of quantile regression

has found considerable interest in the literature [see Zou and Yuan (2008) or Wu and Liu (2009)

among others]. On the other hand - to the best knowledge of the authors - there are only

two recent papers, which discuss sparse estimation problems in the context of censored quantile

regression [see Shows et al. (2010) and Wang et al. (2012)], and properties of the quantile process

in this context have not been studied so far.

The present research has two main purposes. In the first part of the paper we provide an

alternative analysis of the quantile process compared to the work of Peng and Huang (2008) and

Portnoy and Lin (2010). In contrast to these references the methodology provided here only

requires a linear quantile regression model in the region, where the properties of the quantile

regression process are investigated. This greater flexibility in the modeling part comes with

the price that our approach requires unconditional independence between survival and censoring
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times. We also provide a proof for the consistency of a related resampling procedure. In the

second part of this paper we investigate the properties of the quantile process in sparse regression

models under random censoring, which has - to the best knowledge of the authors - not been

studied before.

The remaining part of the paper is organized as follows. In Section 2 we introduce the quantile

regression process. We derive a representation of this process in terms of a sum of independent

identically distributed random variables which is used to prove weak convergence of the quantile

process. Because the limiting processes depend on certain properties of the data generating

process we introduce a resampling procedure and prove its consistency in Section 2.2.

In Section 3 we investigate the penalized quantile process under random censoring. In particular

we show that for the Lasso the estimators of the non-zero parameters converge weakly to Gaussian

processes and the zero parameters are estimated as exactly zero with positive probability for all

quantiles in the region of investigation. We also prove that the adaptive Lasso penalty yields

consistent model selection and the corresponding quantile process converges weakly to a Gaussian

process. In particular this method possesses the ‘oracle property’ in the sense of Fan and Li (2001).

Finally, all technical details are deferred to an appendix [see Section 4].

2 The unpenalized quantile process estimator

We consider independent identically distributed random variables of the form

{(Ti, Ci, Xi, δi)}i=1,...,n. We assume that only the data {(Yi, Xi, δi)}i=1,...,n can be observed,

where Yi = min{Ci, Ti}, Ti denotes the survival time, Ci is a censoring time independent of

Ti, δi = I{Yi = Ci}, I{·} is the indicator function, and Xi is a (p − 1) dimensional vector of

random covariates not including an intercept. We are interested in statistical inference about

the conditional distribution P T |X and, following Shows et al. (2010), assume the following

parametric form of the conditional quantile of L = log(T )

(2.1) QL(τ |X) = QL(τ |X) = inf{t : P (L ≤ t|X) ≥ τ} = α0(τ) +X tβ̃0(τ),

where τ ∈ [0, 1]. With the notation Zi = (1, X t
i )
t and β0(τ) = (α0(τ), β̃0(τ)t)t model (2.1) can be

alternatively written as

(2.2) L = log(T ) = Ztβ0(τ) + ε(τ),

where the errors ε(τ) have τ -quantile zero. Thus model (2.1) is a generalization of the well known

accelerated failure time (AFT) model [see e.g. Miller (1976); Buckley and James (1979); Louis
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(1981)], which assumes independence of X and ε in (2.2) and places additional restrictions on

the intercept. In this section, we provide the properties of an estimator of the regression quantile

process β0(·) = {β0(τ)}τ∈[τL,τU ] for some interval [τL, τU ] ⊂ (0, 1). To achieve this goal we adopt

the approach of Bang and Tsiatis (2002) who proposed to solve the equation

(2.3)
n∑
i=1

δi

Ĝ(Yi)
Zi

(
I{Li ≤ Zt

iβ} −
1

2

)
≈ 0

with respect to β in order to estimate the conditional median of Li given Xi. Here Ĝ denotes the

Kaplan-Meier estimator based on the data {Yi, 1− δi}, that is the Kaplan-Meier estimator of the

survival function of the censoring variables Ci. Note that solving (2.3) is equivalent to solving

the minimization problem

(2.4) argminβ

n∑
i=1

δi

Ĝ(Yi)
|Li − Zt

iβ|.

A generalization to quantiles other than the median is now straightforward, it suffices to replace

the absolute value in (2.4) by the check function ρτ (x) = x(τ −I{x ≤ 0}). Note that the Kaplan-

Meier estimator of the survival function of the censoring times Ci appears in the denominator of

the above minimization problem. It is well known that this estimator can be very unstable near

the right tail of the survival and censoring distribution. In fact, for many combinations of survival

and censoring distributions it does not even converge with the optimal rate 1/
√
n uniformly on

the interval [0,maxi Yi], see Chen and Lo (1997) and the references therein for further details.

This suggests that in order to stabilize the performance of the estimator, one should take extra

care when considering Ĝ(Yi) for values of Yi that are close to the largest observation. A simple

remedy was recently proposed by Zhou (2006) in the context of median regression, who exploited

the fact that, for any constant M such that M > exp(Ztβ0(τ)), the τ -quantile of random variable

T equals the τ -quantile of the random variable min{T,M}. For this reason, Zhou (2006) suggested

to replace the original observations Y1, . . . , Yn by artificially censored variables on the left hand

side of (2.3). To be precise, this author proposed to choose a constant M > exp(Zt
iβ0(1/2)) for

all i = 1, . . . , n and to minimize (2.4), where the observations Yi, δi and Li are replaced by the

quantities Y M
i = min{Yi,M}, TMi = min{Yi,M}, δMi = I{Y M

i ≤ Ci} = 1 − (1 − δi)I{M > Yi}
and LMi = min{Li, logM}, respectively. For arbitrary quantiles τ ∈ (0, 1) this approach yields

the estimator

(2.5) β̂(τ) = argminβ

n∑
i=1

δMi

Ĝ(Y M
i )

ρτ (L
M
i − Zt

iβ).

Note that Ĝ still denotes the estimator based on the untransformed data, and that only the

values of this estimator at points from [0,M ] enter the minimization above. Assumptions (A4)
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and (A5) made below guarantee that Ĝ is well-behaved on this interval [see also Csörgö and

Horváth (1983) for more details]. Note also that the minimization problem in (2.5) is convex for

each τ and so a minimizer can easily be computed. In order to guarantee that the τ -quantile

of Li is not affected by the artificial censoring, we require M > exp(β0(τ)tZi) for all quantiles τ

that are of interest, i.e. we fix a constant τU < 1 and restrict our attention to the interval [τL, τU ]

after requiring M > exp(Zt
iβ0(τU)).

Remark 2.1 Bang and Tsiatis (2002) and Shows et al. (2010) both implicitly apply some sort

of data transformation similar to the one described above without mentioning this explicitly.

In the paper of Bang and Tsiatis (2002), the constant L (see their discussion in Section 2, in

particular the last paragraph) implicitly plays a role similar to that of M as can be seen from

their asymptotic derivations. Similarly, Shows et al. (2010) mention a quantity τ which they call

“the maximum follow-up”, see Condition 3 in their Appendix A and the subsequent theoretical

developments. Unfortunately, from the discussion given in the papers it is not completely clear

how they treat the data beyond L and τ , respectively. However, we would like to point out that

the proofs given in the two papers cited above will only work if some truncation similar to the

one proposed by Zhou (2006) is applied.

2.1 Asymptotic analysis

In order to formulate the first main result which states the asymptotic behavior of the estimators

defined in (2.5) as a process indexed by τ ∈ [τL, τU ] we introduce some notation. We denote the

survival function of the censoring variable Ci by G0 and the conditional distribution function of

Ti|Zi by F (·|Zi). We assume that F (y|Zi) is continuously differentiable with respect to y and

that the corresponding density f(y|Zi) = ∂/∂yF (y|Zi) is uniformly bounded. Further let the

following assumptions hold.

(A1) There exists a constant CZ such that ‖Z1‖ ≤ CZ almost surely (here ‖ · ‖ denotes the

L2-norm on Rp).

(A2) There exist constants 0 < τL < τU and 0 < C
(L)
Σ < C

(U)
Σ <∞ such that

inf
τ∈[τL,τU ]

λmin(Σ(τ)) ≥ C
(L)
Σ

and

sup
τ∈[τL,τU ]

λmax(Σ(τ)) ≤ C
(U)
Σ
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for all τ ∈ [τL, τU ], where Σ(τ) = E [f(Zt
1β0(τ)|X1)Z1Z

t
1] and λmin(M) and λmax(M) denote

the minimal and maximal eigenvalues of a matrix M , respectively.

(A3) For all τ ∈ [τL, τU ] the vector β0(τ) is an interior point of some bounded convex set B and

there exists a constant M0 such that P (Y > M0) > 0 and βtZ ≤ M0 a.s. for all β ∈ B.

The mapping τ 7→ β0(τ) is continuous.

(A4) G0 has a uniformly bounded density g0 and there exists a constant CG > 0 such that

G0(T1 ∧M) ≥ CG almost surely.

(A5) There exists a constant CM > 0 such that P (Y1 < M) ≤ 1− CM .

Remark 2.2 Assumptions (A1)-(A5) are appropriately modified versions of (1)-(4) in appendix

1 of Zhou (2006). The modifications are needed since we consider process asymptotics while Zhou

(2006) only discussed pointwise results.

For the formulation of our main statements we introduce the quantities

Mn(s) =
n∑
i=1

[
(1− δi)I{Yi ≤ s} −

∫ s

0

I{Yi ≥ x}dΛC(x)

]
,(2.6)

Hτ (s) =
E
[
Z1I{TM1 ≥ s}(τ − I{ε(τ)

1 ≤ 0})
]

P (Y1 ≥ s)
.(2.7)

where ΛC(t) := − logG0(t) denotes the cumulative hazard function of the censoring variables.

Throughout this paper l∞([τL, τU ]) denotes the space of bounded functions on the interval [τL, τU ]

equipped with the supremum norm.

Theorem 2.3 If the assumptions (A1)-(A5) are satisfied the stochastic expansion

(2.8)
√
n(β̂(τ)− β0(τ)) = −Σ(τ)−1Wn(τ) + rn(τ)

holds, where the remainder satisfies supτ∈[τL,τU ] ‖rn(τ)‖ = oP (1) and

(2.9) Wn(τ) =
1√
n

n∑
i=1

δMi Zi
G0(Y M

i )
(I{ε(τ)

i ≤ 0} − τ) +
1√
n

∫ M

0

Hτ (s)dMn(s).

Further the weak convergence

(2.10)
√
n(β̂(·)− β0(·)) w−→ −Σ(·)−1W (·)
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in the space l∞([τL, τU ])p holds. Here W is a centered Gaussian process with covariance function

V (τ1, τ2) = V1(τ1, τ2)− V2(τ1, τ2), where

V1(τ1, τ2) = (min{τ1, τ2} − τ1τ2)E
[
Z1Z

t
1/G0(TMi )

]
and

V2(τ1, τ2) =

∫ M

0

Hτ1(s)Hτ2(s)
tP (Y1 ≥ s)dΛC(s),

respectively.

Remark 2.4 Zhou (2006) proposed an alternative data adapted artificial censoring. Here the

constant M is replaced by the quantities M̂i = Zt
i β̂(τ) + c0 (i = 1, . . . , n), where β̂(τ) is the

estimator defined above, c0 is a positive constant and the quantities Y M
i , δMi , L

M
i in (2.5) are

replaced by Y M̂i
i , δM̂i

i , LM̂i
i , respectively. If we combine the arguments given in the proof of

Theorem 2.3 and in Appendix 2 of Zhou (2006) we also obtain weak convergence of the estimator

based on this data adapted artificial censoring (centered by β0(τ) and scaled by
√
n) to a Gaussian

process. Essentially all processes appearing in the proof of Theorem 2.3 have to be additionally

indexed in the parameter appearing in the definition of the artificial censoring variable and

additional arguments (similar to those already presented in the proof of Theorem 2.3) are needed

to prove the Donsker property of those indexing classes.

2.2 Resampling procedures

The variance functions of the estimators in the last sections are rather complicated and involve

unknown quantities such as the conditional density of the conditional distribution P T |Z . Because

these quantities are hard to estimate in practice statistical inference based on the estimators

discussed in the previous section is very complicated. In order to provide a solution to this

problem we suggest a resampling scheme very similar to that in Jin et al. (2001) and Zhou

(2006). We generate B samples {ξi : i = 1, . . . , n} of independent identically distributed random

variables independent of the data and for each of these samples calculate β∗(τ) as the minimizer

of
n∑
i=1

ξi
δMi

Ĝξ(Y M
i )

ρτ (L
M
i − Zt

iβ),

where

Ĝξ(y) =
∏
s≤y

(
1− ∆Nξ(s)

Ȳξ(s)

)
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and

Nξ(s) =
n∑
i=1

(1− δi)ξiI{Yi ≤ s}, Ȳξ(s) =
n∑
i=1

ξiI{Yi ≥ s}.

The following result shows that for suitable choices of ξi the distribution of the process
√
n(β̂(·) − β0(·)) can be approximated by that of

√
n(β∗(·) − β̂(·)). As a consequence, distribu-

tional characteristics of
√
n(β̂(·)−β0(·)) can be estimated by sample analogons of

√
n(β∗(·)−β̂(·))

calculated on the basis of the B samples {ξi : i = 1, . . . , n}.

Theorem 2.5 Let assumptions (A1)-(A5) hold. Moreover, assume the random variables ξi are

independent of the sample, i.i.d. and have expectation and variance equal to one. Then
√
n(β∗(·)−

β̂(·)) converges weakly to −Σ(·)−1W (·) conditional on (Z, δ, T ) in outer probability.

Remark 2.6 As noted by Kosorok (2008) on page 19, weak convergence on a metric space is

equivalent to convergence in the bounded Lipschitz metric. Following this reference, let Eξ[X]

denote the expectation of the random variable X with respect to the ξ-variables and BL1 the

space of all functions h : l∞([τL, τU ]d) → [0, 1] which are Lipschitz continuous with Lipschitz

constant 1. For random elements Xn, X of l∞([τL, τU ]d) (depending on ξ, Z, δ, Y ) we call the

sequence (Xn)n∈N weakly convergent to X conditional on (Z, δ, Y ) in outer probability if

sup
h∈BL1

|Eξ[h(Xn)]− E [h(X)] | P ∗
−→ 0.

and if Eξ[h(Xn)∗]−Eξ[h(Xn)∗]
P ∗
−→ 0 for all h ∈ BL1 where h(Xn)∗ and h(X)∗ denote measurable

majorants and minorants of h(Xn) and h(X) with respect to (ξ, Z, δ, Y ).

3 Penalized quantile process estimators

In this section we investigate the asymptotic properties of penalized quantile processes. First, let

us consider the classical lasso penalization, i.e.

(3.1) β̂L(τ) = argminβ

n∑
i=1

δMi

Ĝ(Y M
i )

ρτ (L
M
i − Zt

iβ) + λn‖β̃‖1,

where β̃ denotes the last (p− 1) components of β and λn is a tuning parameter depending on the

sample size. To the best of our knowledge, an analysis of the asymptotic properties of the lasso

penalty in combination with censored quantiles is new and has so far not been considered even

in a point-wise sense. The next theorem will show that the estimator defined in (3.1) performs
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both consistent parameter estimation and model selection as usual for lasso penalized estimators.

Thus it can be used to identify the components of the vector Zi, which influences the conditional

quantile function of Li if the dimension of β0 is large. In addition to the assumptions of the last

section we require for all j = 2, . . . , p:

(A6) If β0,j(τ) 6= 0 for some τ ∈ [τL, τU ] then β0,j(τ) 6= 0 for all τ ∈ [τL, τU ],

where β0,j denotes the j-th component of β0. Assumption (A6) excludes scenarios in which the

j-th covariate has an impact on some quantiles but no impact on other quantiles in the region

of interest. It is required because otherwise the limiting process derived below is not necessarily

continuous in τ anymore. Without loss of generality we assume that β0,2, . . . , β0,q 6= 0 and

β0,q+1, . . . , β0,p = 0 for some q ≤ p.

Theorem 3.1 If the assumptions (A1)-(A6) are satisfied and if there exist a λ0 ∈ [0,∞) such

that λn/
√
n→ λ0, then the weak convergence

(3.2)
√
n(β̂L(·)− β0(·)) w−→ argminuu

tW (·) +
1

2
utΣ(·)u+ λ0

q∑
j=2

ujsgn(β0,j(·)) + λ0

p∑
j=q+1

|uj|

in the space l∞([τL, τU ])p holds, where the process W is defined in Theorem 2.3.

Remark 3.2 Define Σ(11)(τ) as the upper left q × q block and Σ(21)(τ) as the lower left

(p − q) × q block of Σ(τ). Further denote by W (1)(τ) the first q and by W (2)(τ) the last

(p − q) components of W (τ). Then the Karush-Kuhn-Tucker conditions directly yield that

(u(1)(τ)t, 0tp−q)
t = (u1(τ), . . . , uq(τ), 0, . . . , 0)t minimizes V (·, τ) if and only if

u(1)(τ) = −
(
Σ(1)(τ)

)−1
(W (1)(τ)− λ0(0, sgn(β0,2(τ)), . . . , sgn(β0,q(τ)))t)

and

−λ01p−q < Σ(21)(τ)u(1)(τ)−W (2)(τ) < λ01p−q,

where the inequalities above are understood component-wise and 1p−q denotes a (p − q) vector

with all entries given by 1. Thus the estimators of the non-zero parameters are asymptotically

Gaussian processes and the zero parameters are estimated as exactly zero with positive probability

for all τ ∈ [τL, τU ] if λ0 > 0.

Another popular penalization is the adaptive Lasso penalty proposed by Zou (2006). This penalty

is also the one which was analyzed by Shows et al. (2010) in a point-wise sense. The estimator

is now defined by

(3.3) β̂AL(τ) = argminβ

n∑
i=1

δMi

Ĝ(Y M
i )

ρτ (L
M
i − Zt

iβ) + λn

p∑
j=2

∣∣∣∣ βj
β̄j(τ)

∣∣∣∣ ,
9



where β̄(τ) denotes a preliminary estimator of β0(τ). We will show that the adaptive Lasso

penalty yields consistent model selection and asymptotic normality in our framework, that is

it has the so called ‘oracle property’ in the sense of Fan and Li (2001). Additionally to the

assumptions (A1)-(A6) stated in the last sections we require the following.

(A7) The preliminary estimator β̄(τ) satisfies supτ∈[τj ,τu] ‖β̄(τ)− β0(τ)‖ = Op(n
−1/2).

Note that assumption (A7) is satisfied for the unpenalized estimator β̂(τ) defined in (2.5) because

of Theorem 2.3. In the next Theorem we denote by β(1) the q- dimensional vector obtained from

the first p components of the q-dimensional vector β.

Theorem 3.3 If the assumptions (A1)-(A7) are satisfied and if λn/
√
n → 0, λn → ∞ then the

weak convergence

(3.4)
√
n(β̂AL,(1)(·)− β(1)

0 (·)) w−→ −
(
Σ(11)(·)

)−1
W (1)(·)

in the space l∞([τL, τU ])q holds, where Σ(11)(τ) denotes the upper left q× q block of Σ(τ) and W (1)

the vector of the first q components of the process W which is defined in Theorem 2.3. Further

(3.5) P

(
sup

τ∈[τL,τU ],q+1≤j≤p
|β̂ALj (τ)| = 0

)
→ 1.

Theorem 3.3 states that the adaptive lasso penalization of censored quantile processes yields

estimators of non-zero components which have the same asymptotic distribution as the estimators

constructed in a smaller model and that the zero components are estimated as zero uniformly

over quantiles. This property can be described as a ’process oracle’ closely related to the classical

’point-wise oracle’ property in the sense of Fan and Li (2001).

Acknowledgements This work has been supported in part by the Collaborative Research Center

“Statistical modeling of nonlinear dynamic processes” (SFB 823, Teilprojekt C1) of the German

Research Foundation (DFG).

4 Appendix: proofs

Remark 4.1 In the following discussion we will sometimes write Xn = oP (1) or Xn = OP (1) for

non-measurable mappings Xn : Ω → X , where (Ω,A, P ) denotes a probability space and X is

a subset of Rp. This means that Xn converges to zero in outer probability for n → ∞ or Xn is

stochastically bounded in outer probability for n→∞, respectively.
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4.1 Proof of Theorem 2.3:

Define the function that

fn(u, τ,G) =
n∑
i=1

δMi
G(Y M

i )
ρτ

(
LMi −

Zt
iu√
n
− Zt

iβ0(τ)

)
,

then it follows by definition (2.5) that

√
n(β̂(τ)− β0(τ)) = argminufn(u, τ, Ĝ)− fn(0, τ, Ĝ).

In the following we will derive an asymptotic representation of fn(u, τ, Ĝ)− fn(0, τ, Ĝ) and then

apply Theorem 2 of Kato (2009) in order to obtain the representation of
√
n(β̂(τ)−β0(τ)) which

is asserted in Theorem 2.3. For this purpose we use the decomposition

(4.1) fn(u, τ, Ĝ)− fn(0, τ, Ĝ) = fn(u, τ,G0)− fn(0, τ, G0) +Rn

where

Rn = fn(0, τ, G0)− fn(0, τ, Ĝ) + fn(u, τ, Ĝ)− fn(u, τ,G0).

We first establish a stochastic expansion of the terms on the right hand side of (4.1). Using

Knight’s identity [see Knight (1998)]

(4.2) ρτ (x− y)− ρτ (x) = −y(τ − I{x ≤ 0}) +

∫ y

0

(I{x ≤ s} − I{x ≤ 0})ds

direct calculations yield

(4.3) fn(u, τ,G0)− fn(0, τ, G0) =
1

2
utΣ(τ)u+

ut√
n

n∑
i=1

δMi Zi
G0(Y M

i )
(I{ε(τ)

i ≤ 0} − τ) + oP (1)

for all τ ∈ [τL, τU ], u ∈ Rp. The statement in (4.3) relies on an application of the CLT and the

lemma of Slutsky to the term
∑n

i=1(Si(τ)− E [Si(τ)]) + nE [S1(τ)], where

Si(τ) =

∫ Zt
iu/
√
n

0

I{ε(τ)
i ≤ s} − I{ε(τ)

i ≤ 0}ds =

∣∣∣∣Zt
iu√
n
− ε(τ)

i

∣∣∣∣ I{|ε(τ)
i | ≤ |n−1/2Zt

iu|}.

Note that a straightforward calculation shows nE [S1(τ)] = 1
2
utΣ(τ)u + o(1) uniformly with

respect to τ . Now uniformity of the approximation in (4.3) with respect to τ can be obtained in

the following way. Observe that
∑n

i=1(Si(τ)− E [Si(τ)]) can be interpreted as empirical process

indexed by a class of functions that is contained in the set

H = {(z, t) 7→ f(z, t)g(z, t)|f ∈ F , g ∈ G},

11



where the classes of functions F ,G are defined by

F = {(z, t) 7→ min(|ztu− c log t+ cztβ|, 2‖u‖CZ) : β ∈ B, c ≥ 0}

and

G = {(z, t) 7→ I{|c log t− cztβ| ≤ |ztu|} : β ∈ B, c ≥ 0}.

Combining Lemmas 2.6.15, 2.6.18 and 2.6.19 of van der Vaart and Wellner (1996) yields that

for each u the classes F and G are uniformly bounded VC-major classes. Now we obtain from

Lemma 2.6.20 of the same reference that H is also a uniformly bounded VC-major class and

Theorem 2.6.14 of van der Vaart and Wellner (1996) yields that this class is Donsker. Thus the

stochastic approximation in (4.3) holds uniformly with respect to τ ∈ [τL, τU ] by an application

of the continuous mapping theorem.

Next we will derive an approximation of the remaining four terms on the right hand side of (4.1).

Again using Knight’s identity (4.2) and the rate of the uniform convergence of the Kaplan-Meier

estimator given for example in Csörgö and Horváth (1983) we obtain that the second term in

(4.1) equals

Rn = −utP1(τ, Ĝ) + P2(τ, Ĝ) + oP (1/
√
n),(4.4)

where

P1(τ, Ĝ) =
−ut√
n

n∑
i=1

δMi
G0(TMi )− Ĝ(TMi )

G2
0(TMi )

Zi(τ − I{ε(τ)
i ≤ 0})

P2(τ, Ĝ) =
n∑
i=1

δMi
G0(TMi )− Ĝ(TMi )

G2
0(TMi )

∫ Zt
iu/
√
n

0

(I{ε(τ)
i ≤ s} − I{ε(τ)

i ≤ 0})ds+ oP (1/
√
n)

uniformly with respect to τ for fixed u. We investigate the term P1 first and show that it can

be approximated by a martingale transformation. Note that by Example 2.6.21, Lemma 2.6.15,

2.6.18 and Example 2.10.8 of van der Vaart and Wellner (1996) the class of functions

F =

{
(δ, z, t) 7→ δ

G0(t)−G(t)

G2
0(t)

z(τ − I{log t ≤ ztβ}) : G : R→ [0, 1] increasing, τ ∈ [0, 1], β ∈ B
}

is Donsker. Thus the process P1(τ,G) − E [P1(τ,G)] (indexed by the class F) converges weakly

to a centered Gaussian process with variance function V (τ,G). Direct calculations yield

E [P1(τ,G)] =
√
nE

[
G0(TM1 )−G(TM1 )

G0(TM1 )
Z1(τ − I{ε(τ)

1 ≤ 0})
]

12



and

V (τ,G) = E

[
(G0(TM1 )−G(TM1 ))2

G0(TM1 )3
Z1Z

t
1(τ − I{ε(τ)

1 ≤ 0})2

]
− E

[
G0(TM1 )−G(TM1 )

G0(TM1 )
Z1(τ − I{ε(τ)

1 ≤ 0})
]

E

[
G0(TM1 )−G(TM1 )

G0(TM1 )
Z1(τ − I{ε(τ)

1 ≤ 0})
]t
.

Using the uniform almost sure convergence of Ĝ to G0 we obtain that

P1(τ, Ĝ) = E
[
P1(τ, Ĝ)|Ĝ

]
+ oP (1),

where the approximation holds uniformly with respect to τ and the notation E[P1(τ, Ĝ)|Ĝ] means

that we treat Ĝ as fixed function. Theorem 3.2.3 in Fleming and Harrington (1991) now yields

E[P1(τ, Ĝ)|Ĝ] =
1√
n

∫
Rp

∫ ∞
0

∫ min{t,M}

0

Ĝ(s−)

G0(s)

1
1
n

∑n
k=1 I{Yk ≥ s}

× z(τ − I{min{log t, logM} ≤ ztβ0(τ)})f(t|z)dMn(s)dtdFZ(z)

=
1√
n

∫ M

0

Ĝ(s−)

G0(s)

1
1
n

∑n
k=1 I{Yk ≥ s}

E
[
Z1(τ − I{ε(τ)

1 ≤ 0})I{TM1 ≥ s}
]
dMn(s),

where FZ denotes the distribution function of Z. This yields the the approximation

(4.5) P1(τ, Ĝ) =

∫ M

0

H(n)
τ (s)dMn(s) + oP (1)

uniformly with respect to τ ∈ [τL, τU ], where the process H
(n)
τ is defined by

H(n)
τ (s) =

1√
n

Ĝ(s−)

G0(s)

1
1
n

∑n
k=1 I{Yk ≥ s}

E
[
Z1(τ − I{ε(τ)

1 ≤ 0})I{TM1 ≥ s}
]
.(4.6)

For the term P2 we obtain by the Cauchy-Schwarz inequality

(4.7) |P2(τ, Ĝ)|2 ≤
n∑
i=1

(G0(TMi )− Ĝ(TMi ))2

G4
0(TMi )

n∑
i=1

(∫ Zt
iu/
√
n

0

(I{ε(τ)
i ≤ s} − I{ε(τ)

i ≤ 0})ds

)2

.

The first factor on the right hand side of (4.7) is of order OP (1) because of the process convergence

of the Kaplan-Meier estimator, assumption (A4) and (A5). A direct calculation involving a Taylor

expansion yields

E
[(∫ Zt

iu/
√
n

0

(I{ε(τ)
i ≤ s} − I{ε(τ)

i ≤ 0})ds
)2]

= O
( 1

n3/2

)

13



uniformly with respect to τ . A similar argument as in the derivation of (4.3) and (4.7) shows

P2(τ, Ĝ) = oP (1) uniformly with respect to τ . Combining the estimates (4.3), (4.4), (4.5) with

(4.1) yields the stochastic expansion

fn(u, τ, Ĝ)− fn(0, τ, Ĝ) = ut

(
1√
n

n∑
i=1

δMi Zi
G0(Y M

i )
(I{ε(τ)

i ≤ 0} − τ) +

∫ M

0

H(n)
τ (s)dMn(s)

)
+

1

2
utΣ(τ)u+ oP (1)(4.8)

for every u, and the approximation holds uniformly with respect to τ .

Now we approximate the second summand on the right hand side of (4.8). Note that the functions

s 7→ Hτ (s), H
(n)
τ (s) are left continuous and adapted to the family of σ-algebras {Fs : 0 ≤ s},

where

Fs = σ{I{Yi ≤ t, δi = 1}, I{Yi ≤ t, δi = 0} : 0 ≤ t ≤ s, i = 1, . . . , n}.

Thus Hτ and Hτ −H(n)
τ are predictable processes [which follows from Lemma 1.4.1 of Fleming

and Harrington (1991)]. The classical Glivenko-Cantelli theorem and the uniform almost sure

consistency of the Kaplan-Meier estimator on the interval [0,M ] give

n∑
i=1

∫ M

0

(
1√
n
Hτ −H(n)

τ

)
(s)

(
1√
n
Hτ −H(n)

τ

)t
(s)I{Yi ≥ s}dΛC(s)

a.s.−→ 0.

Now Theorem 5.1.1 of Fleming and Harrington (1991) yields

(4.9)

∫ M

0

H(n)
τ (s)dMn(s) =

1√
n

∫ M

0

Hτ (s)dMn(s) + oP (1)

for each τ . Next we show that this statement holds uniformly with respect to τ ∈ [τL, τU ] which

will follow from Theorem 1.5.7 of van der Vaart and Wellner (1996) once we establish asymptotic

uniform equicontinuity of the processes
∫M

0
H

(n)
τ (s)dMn(s) and n−1/2

∫M
0
Hτ (s)dMn(s). First we

use integration by parts to obtain∫ M

0

H(n)
τ (s)dMn(s) = Mn(M)H(n)

τ (M)−
∫ M

0

Mn(s)dH(n)
τ (s)

= Mn(M)H(n)
τ (M)−

∫ M

0

Mn(s)h(1)(s)dh(2)
τ (s)−

∫ M

0

Mn(s)h(2)
τ (s)dh(1)(s),(4.10)

where the functions h(1) and h(2) are defined by

h(1)(s) =
1√
n

Ĝ(s−)

G0(s)

n∑n
k=1 I{Yk ≥ s}

,

h(2)
τ (s) = E

[
Z1(τ − I{ε(τ)

1 ≤ 0})I{TM1 ≥ s}
]
.

14



Note that Mn(s) is a sum of centered independent identically distributed random variables and

n−1/2Mn(·) can be viewed as empirical process indexed by the class of functions {(δ, y) 7→ (1 −
δ)I{y ≤ s} −

∫ s
0
I{y ≥ x}dΛC(x) : s ∈ [0,M ]}. This class is Donsker because the functions

y 7→ I{y ≤ s}, y 7→
∫ s

0
I{y ≥ x}dΛC(x) are bounded and monotone. This observation and the

continuous mapping theorem yield

1√
n

sup
s∈[0,M ]

|Mn(s)| = OP (1).

Further note that for n sufficiently large a simple calculation shows that

‖H(n)
τ1

(s)−H(n)
τ2

(s)‖ ≤ OP (1)√
n
|τ1 − τ2|,

‖h(2)
τ1

(s)− h(2)
τ2

(s)‖ ≤ 2CZ |τ1 − τ2|,

where the term OP (1) does not depend on τ1, τ2. The theorem of dominated convergence implies

dh
(2)
τ (s)

ds
= E

[
Z1(I{log s ≤ Zt

1β0(τ)} − τ)f(s|Z1)
]
,

which yields ∥∥∥∥∫ M

0

dh(2)
τ1

(s)−
∫ M

0

dh(2)
τ2

(s)

∥∥∥∥ ≤ 2CZ |τ1 − τ2|.

The mapping
√
nh(1) is, on the interval [0,M ], uniformly bounded with probability tending to

one and can be shown to be of bounded variation because it is a product of uniformly bounded

[again with probability tending to one], monotone functions.

The last statements together with (4.10) imply∥∥∥∥∫ M

0

H(n)
τ1

(s)dMn(s)−
∫ M

0

H(n)
τ2

(s)dMn(s)

∥∥∥∥ ≤ |τ1 − τ2|OP (1),

where the OP (1) does not depend on τ1, τ2, which implies asymptotic equicontinuity in probability.

Similarily but with less effort (note that Hτ (s) has a derivative with respect to s which is Lipschitz

continuous with respect to τ) we also obtain asymptotic equicontinuity in probability of the

process 1/
√
n
∫M

0
Hτ (s)dMn(s). This finally gives that the statement (4.9) holds uniformly with

respect to τ . Observing the definition of Wn in (2.9) this implies

fn(u, τ, Ĝ)− fn(0, τ, Ĝ) = utWn(τ) +
1

2
utΣ(τ)u+ oP (1)(4.11)

uniformly with respect to τ .

Note that the sequence (Wn(·))n is clearly a sequence of bounded stochastic processes (where

the bound depends on n). Now we show stochastic boundedness (for n → ∞) of the quantity

15



supτ∈[τL,τU ] ‖Wn(τ)‖. For each τ the random variable Wn(τ) is a sum of centered independent

identically distributed random variables with finite variance and scaled by n−1/2. It thus converges

weakly to a normal random variable. The class of functions

{(δ, z, t) 7→ δz/G0(t)(I{log t ≤ βtz} − τ) : τ ∈ [τL, τU ], β ∈ B}

is Donsker, which can be shown by similar arguments as given above. This implies tightness of

the process
1√
n

n∑
i=1

δMi Zi
G0(Y M

i )
(I{ε(τ)

i ≤ 0} − τ).

Moreover, the process 1/
√
n
∫M

0
Hτ (s)dMn(s) is asymptotically tight by the arguments given in

the last paragraph. Thus Wn(·) converges weakly to a Gaussian process in the space l∞([τL, τU ])p.

Again the continuous mapping theorem implies

(4.12) sup
τ∈[τL,τU ]

‖Wn(τ)‖ = OP (1).

Because fn(u, τ, Ĝ)− fn(0, τ, Ĝ) is convex in u for each τ and bounded in τ for each u and Σ(τ)

is a positive definite matrix with uniformly bounded eigenvalues on [τL, τU ] the first assertion of

Theorem 2.3 follows from Theorem 2 of Kato (2009). The second assertion follows from the first

one, the arguments in the last paragraph for establishing weak convergence and tightness, and

by a tedious but straight forward covariance calculation. 2

4.2 Proof of Theorem 2.5

Because of the first assertion of Theorem 2.3 we have

√
n(β̂(τ)− β0(τ)) = Σ(τ)−1

(
1√
n

n∑
i=1

δMi
G0(TMi )

Zi(I{ε(τ)
i ≤ 0} − τ) +

1√
n

∫ t

0

Hτ (s)dMn(s)

)
+ oP (1),

uniformly with respect to τ ∈ [τL, τU ] and the term oP (1) is understood with respect to the

probability space generated by (Z, δ, T ). Using the results of Appendix 3 of Zhou (2006) and

similar arguments as in the proof of Theorem 2.3 yields the approximation

√
n(β∗(τ)− β0(τ)) = Σ(τ)−1

(
1√
n

n∑
i=1

ξiδ
M
i

G0(TMi )
Zi(I{ε(τ)

i ≤ 0} − τ) +
1√
n

∫ t

0

Hτ (s)dM
(ξ)
n (s)

)
+ oP (1),
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where M
(ξ)
n (s) = Nξ(s)−

∫ s
0

∑n
i=1 ξiI{Yi ≥ s}dΛC(s) uniformly with respect to τ and for almost

all sequences (ξi)i, and the remainder term oP (1) is understood with respect to the measure

generated by (T1, δ1, Z1), . . . , (Tn, δn, Zn) holds . Thus the representation

√
n(β∗(τ)− β̂(τ)) = Σ(τ)−1 1√

n

n∑
i=1

(ξi − 1)Xi(τ) + rn(τ),

where the random variables Xi(τ) are given by

Xi(τ) =
δMi Zi
G0(TMi )

(I{ε(τ)
i ≤ 0} − τ)−

∫ t

0

Hτ (s)d

(
(1− δi)I{Yi ≤ s} −

∫ s

0

I{Yi ≥ s}dΛC(s)

)
.

and supτ∈[τL,τU ] ‖rn(τ)‖ = oP (1) conditionally on (Zi, δi, Yi) along almost all sequences (ξi). For

h ∈ BL1 we directly obtain∣∣∣Eξ

[
h(
√
n(β∗(·)− β̂(·)))

]
− E

[
h(−Σ(·)−1W (·))

]∣∣∣
≤
∣∣∣Eξ

[
h
(
−Σ(·)−1 1√

n

n∑
i=1

(ξi − 1)Xi(·)
)]
− E

[
h(−Σ(·)−1W (·))

]∣∣∣+ oP (1).

The proof of Theorem 2.3 and Theorem 2.9.6 of van der Vaart and Wellner (1996) now yield the

assertion of Theorem 2.5. 2

4.3 Proof of Theorem 3.1

By definition we have
√
n(β̂L(τ)− β0(τ)) = argminuVn(u, τ),

where

Vn(u, τ) = fn(u, τ, Ĝ)− fn(0, τ, Ĝ) + λ

p∑
j=2

(∣∣∣∣β0,j(τ) +
uj√
n

∣∣∣∣− |β0,j(τ)|
)
.

Equation (4.11) and results from Knight and Fu (2000) directly yield

Vn(u, ·) w−→ utW (·) +
1

2
utΣ(·)u+ λ0

q∑
j=2

ujsgn(β0,j(·)) + λ0

p∑
j=q+1

|uj| = V (u, ·)

in C([τL, τU ]). The mappings u 7→ V (u, τ), Vn(u, τ) are strictly convex for every τ and the

functions τ 7→ V (u, τ), Vn(u, τ) are continuous for every u. Moreover τ 7→ argminuVn(u, τ) is

clearly bounded. For a large norm of u the mapping u 7→ V (u, τ) is dominated by the quadratic

term utΣ(τ)u and (A2) yields that u∞(·) = argminuV (u, ·) ∈ l∞([τL, τU ])p. We will show at the
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end of this proof that the function u∞ is continuous. Therefore the assertion of Theorem 3.1

follows from Theorem 1 of Kato (2009).

In order to prove that u∞ is continuous for τ ∈ [τL, τU ] we assume the contrary. In this case there

exists a sequence τn → τ and a constant δ1 > 0 such that ‖u∞(τn)− u∞(τ)‖ > δ1 for all n. The

continuity and strict convexity of V (·, τ) yield the existence of a constant δ2 > 0 such that

(4.13) V (u∞(τn), τ)− V (u∞(τ), τ) > δ2 for all n.

Boundedness of the set {u∞(τn) : n ∈ N} and the continuity of V (u, ·) imply that for all ε > 0

we can choose n such that the inequalities

|V (u∞(τ), τ)− V (u∞(τ), τn)| < ε, |V (u∞(τn), τn)− V (u∞(τn), τ)| < ε

hold. These imply

V (u∞(τ), τ) > V (u∞(τ), τn)− ε > V (u∞(τn), τn)− ε > V (u∞(τn), τ)− 2ε,

which is a contradiction to (4.13) if ε is chosen sufficiently small. This complete the proof of

Theorem (3.1). 2

4.4 Proof of Theorem 3.3

As in the proof of Theorem 3.1 we obtain

√
n(β̂AL(τ)− β0(τ)) = argminuṼn(u, τ),

where the function Ṽn is defined by

Ṽn(u, τ) = fn(u, τ, Ĝ)− fn(0, τ, Ĝ) + λ

p∑
j=2

|β0,j(τ) + uj/
√
n| − |β0,j(τ)|

|β̄j(τ)|
.

Assumption (A7) directly yields

λ sup
τ∈[τj ,τu]

|β0,j(τ) + uj/
√
n| − |β0,j(τ)|

|β̄j(τ)|
P−→ 0

for all j ≤ q and

λ inf
τ∈[τL,τU ]

|β0,j(τ) + uj/
√
n| − |β0,j(τ)|

|β̄j(τ)|
P−→∞
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for all j ≥ q+ 1. Together with the arguments given in the proof of Theorem 2.3 this implies the

weak epiconvergence (compare e.g. Geyer (1996))

Ṽn(u, ·) w−→

1
2
(u(1))tΣ(11)(·)u(1) +W (1)(·)tu(1), if u(2)(·) = 0p−q

∞ otherwise
,

where u = ((u(1))t, (u(2))t)t, u(1) ∈ Rq and u(2) ∈ Rp−q. Therefore we obtain that the probability

of the set A = {supτ∈[τL,τU ],q+1≤j≤p |β̂ALj (τ)| = 0} converges to 1, which proves (3.5). On the set

A the weak convergence of argminu(1)Ṽn((u(1), 0p−q), ·) follows as in the proof of Theorem 2.3.

Combined with P (A)→ 1 the first assertion (3.4) of Theorem 3.3 follows. 2
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