Remarks on pseudo stable laws on contractible groups

Wilfried Hazod

Preprint 2012-11 Juni 2012

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund

tu-dortmund.de/MathPreprints
REMARKS ON PSEUDO STABLE LAWS ON CONTRACTIBLE GROUPS

WILFRIED HAZOD

ABSTRACT. In this note we discuss a class of probability distributions on homogeneous groups, called pseudo stable laws which were investigated in [5] for the real line. In particular it is shown that under mild assumptions these distributions belong to the domain of normal attraction of stable laws.

INTRODUCTION

In [5] the authors investigate a class of distributions of real random variables, called \((c,p)\)-pseudo stable laws, which are closely related to symmetric stable laws. These investigations are motivated by an earlier publication [8]. See also [3] and [7] for some generalizations (in the context of weak stability).

In this note we discuss a class of probability distributions \((c,p)\)-pseudo stable laws on contractible groups, homogeneous groups, contracting automorphism; pseudo stable laws; stable laws; domain of attraction.

MSC 2010: 43A05; 60B15.
Recall that Abelian homogeneous groups are just vector spaces. It should be pointed out that the setup chosen here covers also (strictly) operator stable laws on \mathbb{R}^d. For the background on stable laws on groups see e.g. [1], for operator stable laws on vector spaces cf. e.g., [6], or [1], Ch. I, and the references mentioned there.

Our assumptions differ slightly from [5]: In (0.1) $a \leq 0$ or $b \leq 0$ are not admitted, and the distributions γ_u are not supposed to be symmetric. Hence, in particular, one-sided stable distributions on the positive half-line \mathbb{R}_+ are not allowed in [5]. Furthermore, here we fixed the functions c (with given p), whereas in [5] c belongs a priori to a slightly larger class of functions.

We show in Section 2 under mild conditions (satisfied for all examples) that pseudo stable laws belong to the domain of normal attraction of stable laws. Hence in particular, this has a strong impact on the tail behaviour of these laws. (For the existence of moments see e.g., [1], 1.10.17 resp. 2.10.18.)

1. EXAMPLES OF PSEUDO STABLE LAWS

In the following we briefly investigate some examples of pseudo stable laws on groups and indicate methods to construct new examples. Of course, these examples are well-known for \mathbb{R}, more generally, for vector spaces. Throughout, as before, let G be a homogeneous group, let $p, r > 0$ and let $(\tau_i)_{t > 0}$ be a fixed contracting one-parameter group of automorphisms. Furthermore, let $(\gamma_u)_{u > 0}$ be a $(\tau_{1/r})$-stable continuous convolution semigroup, $\gamma_u \not\equiv \nu_c$, and we fix $c(a,b) := (a^p + b^p)^{1/p}$.

Example 1.1. Let $p = r > 0$. Then the stable law $\mu := \gamma_1$ is pseudo stable (with $d(\cdot, \cdot) \equiv 0$).

[Indeed, $\tau_a(\mu) \ast \tau_b(\mu) = \gamma_{a^p} \ast \gamma_{b^p} = \gamma_{a^p + b^p} = \tau_{c(a,b)}(\mu)$.]

Example 1.2. Let $p > r > 0$. Again $\mu := \gamma_1$. Then μ is pseudo stable w.r.t. $(\tau_i, p, r, (\gamma_u))$, where $d(a,b) = a^r + b^r - c(a,b)^r$.

[Let $c := c(a,b)$ and w.l.o.g. $b \leq a$. Then $\tau_a(\mu) \ast \tau_b(\mu) = \tau_a[\mu \ast \tau_u(\mu)]$ with $0 < u := b/a \leq 1$. And $\mu \ast \tau_u(\mu) = \gamma_1 \ast \gamma_{u^r} = \gamma_{1+u^r} = \gamma_{c(1,a)^r} \ast \gamma_{1+u^r-c(1,a)} = \gamma_{c(1,a)}(\mu) \ast \gamma_{d(1,a)}$ with $d(1,u) = 1 + u^r - c(1,u)^r \geq 0$. Thus we can choose $d(a,b) = a^r d(1,u) = a^r + b^r - c(a,b)^r$ and it follows $\tau_a(\mu) \ast \tau_b(\mu) = \tau_{c(a,b)}(\mu) \ast \gamma_{d(a,b)}$.]

Example 1.3. Let $p \geq r > 0$, and let (γ_u) as before. Let $(\delta_i)_{i > 0}$ be a $(\tau_{1/r})$-stable continuous convolution semigroup and assume that all τ_u and δ_i commute. Then $\mu := \gamma_1 \ast \delta_1$ is pseudo stable (w.r.t. $(\tau_i, p, r, (\gamma_u))$, with d as in Example 1.2).

[$\tau_a(\mu) \ast \tau_b(\mu) = \tau_a(\gamma_1) \ast \tau_b(\gamma_1) \ast \tau_a(\delta_1) \ast \tau_b(\delta_1) = \tau_{c(a,b)}(\gamma_1) \ast \gamma_{d(a,b)} \ast \delta_{c(a,b)} = \tau_{c(a,b)}(\mu) \ast \gamma_{d(a,b)}$.]

Example 1.4. a) Let $p \geq r > 0$, and let, for $i = 1, 2$, $\mu^{(i)}$ be pseudo stable, $\tau_u(\mu^{(i)}) \ast \tau_{\delta_1}(\mu^{(i)}) = \tau_{c(a,b)}(\mu^{(i)}) \ast \gamma_{\delta_1}^{(i)}(a,b)$, where $\gamma_{\delta_1}^{(i)}(a,b)$ are $(\tau_{1/r})$-stable. Assume moreover $d^{(i)}$ to be linearly dependent, $d^{(i)}(\cdot, \cdot) = \alpha \cdot d^{(1)}(\cdot, \cdot)$ for some $\alpha \geq 0$, and $\{\tau_u(\mu^{(i)}), \gamma_{\delta_1}^{(i)}(u) : u > 0, v \geq 0, i = 1, 2\}$ commute. Then $\mu := \mu^{(1)} \ast \mu^{(2)}$ is pseudo stable w.r.t. $(\tau_i, p, r, (\gamma_u))$, where $\gamma_u := \gamma_u^{(1)} \ast \gamma_u^{(2)}$, and with $d(\cdot, \cdot) = d^{(1)}(\cdot, \cdot)$.]

are not convolution products of stable laws. (For \(R \) below.) If \(\mu \) is pseudo stable w.r.t. \(\tau \), \(\gamma \) is a convolution product of two \((\tau, \gamma)\) pseudo stable w.r.t. \((\tau, \gamma)\). Contracting automorphism groups \(\tau \) are created via subordination. In Example 1.3. In that case, no new examples of pseudo stable laws which are pseudo stable w.r.t. \((\tau, \gamma)\) are \((\tau, \gamma)\)-stable respectively, then \(\mu \) is pseudo stable, \(\gamma \) is \((\tau, \gamma)\)-stable.

Example 1.5. A particular case: Let \(\mathbb{H} \) be contractible groups with contracting automorphism groups \((\tau, \gamma)\), \(i = 1, 2 \). Let \(\mu \) be pseudo stable w.r.t. \((\tau, \gamma)\), \(\mu = \tau \otimes \gamma \). Put \(G := \mathbb{H} \otimes \mathbb{H} \), \(\tau := \tau \otimes \gamma \), \(\mu := \tau \otimes \gamma \). Then \(\mu \) is pseudo stable if, in Example 1.4, \(\gamma \) is \((\tau, \gamma)\)-stable.

\[
\tau_a \otimes \tau_b = \tau_a \otimes \tau_b = \tau_c(a, b)(\mu_a \otimes \mu_b) = \gamma_{a,b}(\tau) \ast \gamma_{b,c}(\tau) =: \tau_c(\mu) \ast \gamma_{\alpha a b c} \text{, with } c = c(a, b), \, d(1) = d(1), \text{ and } \gamma_a := \mu(1) \ast \gamma_a(2) \text{ is } (\gamma_{a, \gamma_b})\text{-stable.}
\]

b) In particular, let \(\mu \) be as in a), let \(\delta \) be a continuous convolution semigroup which is stable w.r.t. \((\tau, \gamma)\), and assume again that all measures belong to a commutative sub-semigroup \(S \). Assume \(d(1) = \alpha \ast (a^r + b^r - c(a, b)) \) for some constant \(\alpha \geq 0 \). Then \(\mu \) is pseudo stable w.r.t. \((\tau, \gamma)\).

Example 1.6. Let \(G_1, G_2 \) be homogeneous groups with contracting automorphism groups \((\tau, \gamma)\), \(i = 1, 2 \). Let \(\varphi : G_1 \to G_2 \) be a continuous homomorphism satisfying \(\varphi \tau_1 = \tau_2 \varphi \). Let \(\mu \) be \((\tau, \gamma)\)-pseudo stable w.r.t. \((\tau, \gamma)\). Then \(\nu := \varphi(\mu) \) is pseudo stable w.r.t. \((\tau, \gamma)\).

Example 1.7. Subordination. Let \(G \) be a contractible group with contracting automorphism group \((\tau, \gamma)\). Let \((\lambda_i)_{i \geq 0} \) be \((\tau, \gamma)\)-stable continuous convolution semigroups. Let \((\alpha_i) \subseteq \mathcal{M}^1(\mathbb{R}_+)\) be \((\tau, \gamma)\)-stable w.r.t. \((H_i)\). (Hence \(0 < r \leq 1 \).) Let furthermore, \(\xi \in \mathcal{M}^1(\mathbb{R}_+)\) be \((\tau, \gamma)\)-pseudo stable w.r.t. \((\tau, \gamma)\), \(\nu := \int_{\mathbb{R}_+} \lambda \mu(\xi(t)) \in \mathcal{M}^1(\mathbb{G}) \) is pseudo stable w.r.t. \((\tau, \gamma)\).

\[
\text{We have } H_a(\xi) \ast H_b(\xi) = H(a, b)(\xi) \ast \alpha d(\lambda), \text{ Furthermore, } \tau_a(\mu) = \int_{\mathbb{R}_+} \lambda \mu(\xi(t)) = \int_{\mathbb{R}_+} \lambda \mu(\xi(t)) = \int_{\mathbb{R}_+} \lambda \mu(\xi(t)).
\]

In fact, we do not know if on \(\mathbb{R}_+ \) there exist pseudo stable laws which are not convolution products of stable laws. (For \(\mathbb{R} \) cf. Example 1.8 below.) If \(\xi \in \mathcal{M}^1(\mathbb{R}_+) \), where \((\alpha)\) and \((\beta)\) are \((H_{1/r})\)- and \((H_{1/r})\)-stable respectively, then \(\mu = \int_{\mathbb{R}_+} \lambda \mu(\xi(t)) \ast \int_{\mathbb{R}_+} \lambda \mu(\xi(t)) \) is a convolution product of two \((\tau, \gamma)\)- and \((\tau, \gamma)\)-stable factors. So, we are in the situation of Example 1.3. In that case, no new examples are created via subordination.

The next class of examples is found in [5], cf. also [3, 8]: there exist pseudo stable laws which are not representable as convolution products.
of stable laws. We mention these examples in our list since they seem to be the only known concrete examples with that property:

Example 1.8. For $\mathbb{G} = \mathbb{R}$, it is shown in [5], [8], that for $0 < r \leq 2$ there exist $A, B > 0$, $p > 2$ such that $f : \mathbb{R} \ni t \mapsto \exp(-A|t|^r - B|t|^p)$ is the characteristic function of a probability measure μ, i.e. $f(t) = \hat{\mu}(t)$. In fact, for $r \in (0, 1]\cup\{2\}$, $p > 2$ and sufficiently large A, B, f is a characteristic function, but for $r \leq 2, A, B > 0$, the set of $p > 2$, such that f is not a characteristic function, is not empty. It is easily shown that such a probability is pseudo stable w.r.t. τ. In fact, for $\tau(\gamma) = \gamma \ast \tau$, where (γ_u) is the stable continuous convolution semigroup with characteristic function $t \mapsto \exp(-A|t|^r)$. As $p > 2$, μ cannot be represented as convolution product of two stable laws.

Almost verbatim as in the preceding Examples 1.2, 1.3 it follows that again $d(a,b) = a^r + b^r - c(a,b)^r$ (though $t \mapsto \exp(-B|t|^p)$ is not the Fourier transform of a probability).

Remarks 1.9.

a) In Examples 1.4, 1.5 we had to suppose that the functions $d^{(i)}$ are linearly dependent. In all concrete examples in our list we obtained – for fixed $p \geq r - d(a,b) = a^r + b^r - c(a,b)^r$, hence in that cases linear dependence is trivially satisfied. (The case $p < r$ turns out to be trivial, cf. Theorem 2.1 a.)

b) In [5, 3, 8] the authors show furthermore that for $\mathbb{G} = \mathbb{R}$ the characteristic functions of (symmetric) pseudo stable laws are always representable as $t \mapsto \exp(-A|t|^r - B|t|^p)$ for constants $A, B \geq 0, 0 < r \leq 2$ and $p > 0$. Hence a convolution product of two stable laws is pseudo stable, a product of $n \geq 3$ stable laws (with different stability indices) is not pseudo stable. The last result holds true in general:

Let $\gamma^{(i)} = (\tau^{1/i})$-stable, $i = 1, 2, 3$ with $0 < r := r_1 < r_2 < r_3 := p$. Then $µ := γ^{(1)}_1 \ast γ^{(2)}_1 \ast γ^{(3)}_1$ is not pseudo-stable (though, according to our examples, $γ^{(1)}_1$ and the products of two factors are pseudo stable).

[In fact, for $a, b > 0, c = c(a,b)$ we have $\tau_a(µ) \ast \tau_b(µ) = γ^{(1)}_c \ast γ^{(2)}_c \ast γ^{(3)}_c \ast γ^{(1)}_{(a^r+b^r-c^r)} \ast γ^{(2)}_{(a^r+b^r-c^r)} \ast γ^{(3)}_{(a^r+b^r-c^r)} = \tau_c(µ) \ast \left[γ^{(1)}_{(a^r+b^r-c^r)} \ast γ^{(2)}_{(a^r+b^r-c^r)} \ast γ^{(3)}_{(a^r+b^r-c^r)}\right]$. If $µ$ is pseudo stable, we have $\tau_a(µ) \ast \tau_b(µ) = \tau_c(µ) \ast \lambda_{d(a,b)}$ for some $(\tau^{1/r})_c$-stable continuous convolution semigroup (λ_c). By the injectivity of the convolution operator of the embeddable law $\tau_c(µ)$ (cf. [4]) it follows that $\lambda_{d(a,b)} = γ^{(1)}_{(a^r+b^r-c^r)} \ast γ^{(2)}_{(a^r+b^r-c^r)}$. But the right side is not $(\tau^{1/r})_c$-stable, a contradiction.]

As mentioned afore, our examples enable us to construct new non-trivial pseudo stable measures on homogeneous groups. We show e.g., for $\mathbb{G} = \mathbb{H}_1$, the 3-dimensional Heisenberg group, that there exist pseudo stable laws with full support which are not representable as convolution products of stable laws. The reader will easily see how this result may be generalized to arbitrary homogeneous groups.

Example 1.10. Let (τ_i) denote the group of dilations on \mathbb{H}_1 acting on the Lie algebra $\mathfrak{g} \equiv \mathbb{R}^3$ as t^E for the diagonal exponent $E = \text{diag}(1,1,2)$. Let $Z \equiv \mathbb{R}$ denote the center and $i : \mathbb{R} \to Z \subseteq \mathbb{H}_1$ the canonical injection.
Let \((\gamma_1^{(1)}) \subseteq M^1(\mathbb{H}_1) \) be \((\tau_{1/r}) \)-stable with full support, and let \(\mu^{(1)} \in M^1(\mathbb{H}_1) \) be pseudo stable w.r.t. \((\tau_1, p, r, (\gamma_1^{(1)})) \) (e.g., choose \(\mu^{(1)} = \gamma_1^{(1)} \)), such that \(d(a, b) = a^r + b^r - c(a, b)^r \).

Let \((\gamma_2^{(2)}) \subseteq M^1(\mathbb{R}) \) be \((H_{1/2r}) \)-stable and let \(\nu \in M^1(\mathbb{R}) \) be pseudo stable w.r.t. \(((H_1, 2p, 2r, (\gamma_2^{(2)})) \) as in Example 1.8. (Therefore, \(2r \leq 1 \).) Put \(\mu^{(2)} := i(\nu) \in M^1(\mathbb{H}_1) \). \(\tau_{1/r} \mid_\mathbb{Z} = H_{1/2r} \) implies that \(i(\gamma_2^{(2)}) \) is \((\tau_{1/r}) \)-stable, furthermore, \(i(\nu) \) and \(i(\gamma_1^{(1)}) \) are central measures in \(M^1(\mathbb{G}) \). Hence, by Example 1.4, \(\gamma_t := \gamma_1^{(1)} * \gamma_2^{(2)} \) is \((\tau_{1/r}) \)-stable and \(\mu := \mu^{(1)} * \mu^{(2)} \) is pseudo stable w.r.t. \(((\tau_t), p, r, \gamma_t) \), has full support and is not representable as convolution of stable laws.

2. Pseudo stable laws and domains of attraction

In the following we point out that pseudo stable laws are closely related to limit laws. Let, as before, \(\mu \neq \varepsilon_\varepsilon \) be pseudo stable w.r.t. \(((\tau_1), p, r, (\gamma_1)) \). To avoid trivialities, assume again \(\gamma_s \neq \varepsilon_\varepsilon \) for \(s \neq 0 \). Then, putting \(a = b = 1 \) in (0.1), we obtain \(\mu^2 = \tau_{2^{1/p}}(\mu) * \gamma_{d_2} \) with \(c(1, 1) = 2^{1/p} \) and \(d(1, 1) =: d_2 \geq 0 \). By induction we obtain (observing \(c(k^{1/p}, 1) = (k + 1)^{1/p} \)):

\[
\mu^n = \tau_{n^{1/p}}(\mu) * \gamma_{d_n}
\]

with \(d_1 := 0, d_2 = d(1, 1), d_n = \sum d((k - 1)^{1/p}, 1). \)

Theorem 2.1. Assume that \(\{d_n/n\} \) is bounded above. Then we have:

a) If \(p < r \) then \(\tau_{n^{-1/r}}(\mu)^n \rightarrow \mu \), hence \(\lambda_1 := \mu \) is embeddable into a \((\tau_{1/r}) \)-stable continuous convolution semigroup \((\mu_t) \), and \(\gamma_{d(\cdot, \cdot)} \equiv \varepsilon_\varepsilon \).

b) If \(p > r \) then \(\tau_{n^{-1/r}}(\mu)^n \) is relatively compact with accumulation points \(\text{LIM} \{\tau_{n^{-1/r}}(\mu)^n\} \subseteq \{\gamma_s : 0 \leq s \leq K\} \) for some \(K > 0 \). In particular, any accumulation point is \((\tau_{1/r}) \)-stable.

b1) In particular, if \(d_n/n \rightarrow \alpha \) for some \(\alpha > 0 \), then \(\mu \) belongs to the domain of normal attraction DNA\((\gamma_\alpha) \) (w.r.t. \((\tau_{1/r}) \)).

c) If \(p = r \) then again \(\{\tau_{n^{-1/r}}(\mu)^n\} \) is relatively compact, with accumulation points \(\text{LIM} \{\tau_{n^{-1/r}}(\mu)^n\} \subseteq \{\mu * \gamma_s : 0 \leq s \leq K\} \) for some \(K > 0 \). In that case all accumulation points are embeddable into continuous convolution semigroups \((\lambda_t) \) with \(\lambda_1 = \mu * \gamma_s \).

c1) And again, if \(d_n/n \rightarrow \alpha > 0 \), then \(\mu \) is embeddable into a (uniquely determined) \((\tau_{1/r}) \)-stable continuous convolution semigroup \((\mu_t) \) and, as in Example 1.2, \(\gamma_{d(a,b)} = \mu_{a^r + b^r - c(a,b)r} \).

Proof. Equation (2.2) is equivalent with

\[
\tau_{n^{-1/r}}(\mu)^n = \mu * \gamma_{d_n,n^{-1/r}}
\]

(since \((\gamma_\alpha) \) is \((\tau_{1/r}) \)-stable), resp.

\[
\tau_{n^{-1/r}}(\mu)^n = \tau_{n^{1/p-1/r}}(\mu) * \gamma_{d_n,n^{-1}}
\]

In case a) we use equation (2.3), in case b) (2.4), to see that \(\{\tau_{n^{-1/r}}(\mu)^n\} \) resp. \(\{\tau_{n^{-1/r}}(\mu)^n\} \) are relatively compact: In case a), \(r/p > 1 \), we have \(d_n * n^{-r/p} \rightarrow 0 \), thus \(\tau_{n^{-1/r}}(\mu)^n \rightarrow \mu \).

In case b), \(1/p - 1/r < 0 \), we have \(\tau_{n^{1/p-1/r}}(\mu) \rightarrow \varepsilon_\varepsilon \), thus (for some upper bound \(K \) of \(\{d_n/n\} \)), \(\text{LIM} \{\tau_{n^{-1/r}}(\mu)^n\} \subseteq \{\gamma_s : 0 \leq s \leq K\} \).
In case c), \(p = r \), it follows \(\tau_{n^{-1/p}}(\mu)^n = \mu \star \gamma_{d_n/n} \) and therefore, \(\text{LIM} \{ \tau_{n^{-1/p}}(\mu)^n \} \subseteq \{ \mu \star \gamma_s : 0 \leq s \leq K \} \).

In either case, it follows embeddability of \(\mu \) in a) resp. of any accumulation point \(\gamma_s \) resp. \(\mu \star \gamma_s \) in b) resp c), (cf. e.g., [1], 2.6.4). In case b1) or c1) we have in addition \(b_n/n \to \alpha \). Then \(\tau_{n^{-1/p}}(\mu)^n \to \lambda_1 := \gamma_{\alpha} \) resp. \(\lambda_1 := \mu \star \gamma_{\alpha} \) yields \(\mu \in \text{DNA}(\lambda_1) \) w.r.t. \((\tau_{n^{-1/p}}) \); in particular, \(\lambda_1 \) is embeddable into a (unically determined) \((\tau_{1/n^{1/p}}) \)-stable continuous convolution semigroup \((\lambda_t) \) (cf. e.g., [1], 2.6.10 b)). If \(\lambda_1 = \mu \star \gamma_{\alpha} \), stability of \((\lambda_t) \) implies for all \(n \in \mathbb{N} \): \(\lambda^n_1 = \tau_{n^{1/p}} \star \gamma_{n\alpha} \), and on the other hand we have \(\lambda^n_1 = \mu^n \star \gamma_{n\alpha} \). Thus, again by the injectivity of the convolution operators of \(\gamma_{\alpha} \) ([4]) we obtain \(\mu^n = \tau_{n^{-1/p}}(\mu), n \in \mathbb{N} \). I.e., \(\mu \) is B-stable (cf. [1], 2.6.13), and therefore \(\mu \) is embeddable into a stable continuous convolution semigroup \((\mu_t) \) ([1], 2.6.14 b) and 2.6.11* (p. 256)). The last assertion follows as in Example 1.2: \(\tau_{a}(\mu) \star \tau_{b}(\mu) = \tau_{(a^{-1/p} + b^{-1/p})^{1/p}}(\mu) \) by stability, thus \(\tau_{a} \star \tau_{b} = \mu^{a^{-1/p} + b^{-1/p} - c(a,b)^r} \). Hence in view of the defining equation (0.1), \(\tau_{c(a,b)}(\mu) \star \gamma_{d(a,b)} = \tau_{c(a,b)}(\mu) \star \mu^{a^{-1/p} + b^{-1/p} - c(a,b)^r} \). Injectivity of the convolution operators of (the embeddable law) \(\tau_{c(a,b)}(\mu) \) yields \(\gamma_{d(a,b)} = \mu^{a^{-1/p} + b^{-1/p} - c(a,b)^r} \), as asserted.

Let, with the above notations, \(\gamma_{\alpha} = \varepsilon_e \). Then the assertions hold trivially.

In [5, 3, 8] for \(G = \mathbb{R} \) the functions \(d(\cdot, \cdot) \) are explicitly calculated solving functional equations of characteristic functions: If \(c(a,b) = (a^p + b^p)^{1/p} \) then \(d(\cdot, \cdot) \) has the form we obtained in the examples in Section 1. In general we can only show that \(d \) is homogeneous, \(d(ta, tb) = t^r d(a, b) \) for any \(t > 0 \). We indicate a proof to point out which tools are needed if characteristic functions are not available:

\[
\tau_{ta}(\mu) \star \tau_{tb}(\mu) = \tau_{tc(a,b)}(\mu) \star \gamma_{d(a,b)}, \quad \text{with} \quad c(ta, tb) = t \cdot c(a, b).
\]

On the other hand, this equals \(\tau_{t} \{ \tau_{a}(\mu) \star \tau_{b}(\mu) \} \), thus we obtain:
\[
\tau_{c(a,b)}(\mu) \star \gamma_{r \cdot d(a,b)} = \tau_{c(a,b)}(\mu) \star \gamma_{d(a,b)}.
\]

Assume e.g., \(r \cdot d(a,b) \geq d(ta, tb) \), then again injectivity of the convolution operators of \(\gamma_{\alpha} \) yields \(\tau_{c(a,b)}(\mu) \star \gamma_{r \cdot d(a,b) - d(ta, tb)} = \tau_{c(a,b)}(\mu) \), i.e., \(\gamma_{r \cdot d(a,b) - d(ta, tb)} = \varepsilon_e \) since \(G \) is aperiodic.

Whence the assertion.

In our examples 1.2, 1.3, 1.8 we obtained for \(r \leq p \): \(d(k^{1/p}, 1) = k^r/p + 1 - (k + 1)^{r/p} \), thus \(d_n = \sum_1^p d((k - 1)^{1/p}, 1) = n - n^{r/p} \). Hence, \(d_n/n \equiv 0 \) for \(r = p \) and \(d_n/n \to 1 \) for \(r < p \). Thus these examples are covered by Theorem 2.1.

To show that the assumption \(d_n/n \leq K \) in Theorem 2.1 is quite natural we consider briefly the case of infinitely divisible \(\mu \):

Proposition 2.2. Let, with the above notations, \(\mu \) be pseudo stable w.r.t. \((\tau_{1/n}, p, r, (\gamma_t)), \gamma_t \neq \varepsilon_e \). Assume in addition that \(\mu \) is infinitely divisible, hence embeddable into a continuous convolution semigroup \((\mu_t), \mu_1 = \mu \). Furthermore, assume either (1) \(G = \mathbb{R}^d \), or (2) \(\mu_t = \mu_t, t \geq 0 \). Then \(\{ d_n/n \} \) is bounded.

Proof. Inserting \(\mu = \mu_1^n, n \in \mathbb{N} \), in the defining equation, we obtain

\[
\tau_a(\mu_1/n)^n \star \tau_b(\mu_1/n)^n = \tau_{c(a,b)}(\mu_1/n)^n \star \gamma_{d_n/n}^n.
\]

In case (1), \(\mathcal{M}^1(G) \) is commutative and the roots \(\mu_1/n, \gamma_{d_n/n} \) of infinitely divisible laws are
uniquely determined. In case (2), the convolution operators T_{μ_t} on $L^2(G)$ are positive semi-definite functions of T_{μ_1}, hence μ_t are uniquely determined by μ_1 and commute with all measures commuting with μ_1. Furthermore, the stable continuous convolution semigroup (γ_t) is uniquely determined by γ_1.

Hence we obtain $\tau_a(\mu_{1/n}) \ast \tau_b(\mu_{1/n}) = \tau_{c(a,b)}(\mu_{1/n}) \ast \gamma_{d_{n,t}}$ for all n and therefore it follows for all $t \geq 0$,

\[
\tau_a(\mu_t) \ast \tau_b(\mu_t) = \tau_{c(a,b)}(\mu_t) \ast \gamma_{d_{n,t}}
\] (2.5)

As immediately seen, symmetry of (μ_t) yields $\gamma_{d_{n,t}} = \tilde{\gamma}_{d_{n,t}}$ for all t, n, this shows that (γ_t) is symmetric too. Let A, G denote the generating functionals of (μ_t) and (γ_t) respectively, and denote the Lévy measures and Gaussian terms by η_A, η_G and Γ_A, Γ_G respectively. (2.5) easily yields $\tau_a(A) + \tau_b(A) = \tau_{c(a,b)}(A) + d_n \cdot G$, in particular, $2A = \tau_{2^{1/p}}(A) + d_2 \cdot G$, and by induction, for $n \in \mathbb{N}$, $n \cdot A = \tau_{n^{1/p}}(A) + d_n \cdot G$. Equivalently,

\[
A = (1/n) \cdot \tau_{n^{1/p}}(A) + (d_n/n) \cdot G
\]

Consequently,

\[
\eta_A = (1/n) \cdot \tau_{n^{1/p}}(\eta_A) + (d_n/n) \cdot \eta_G
\] (2.6)

\[
\Gamma_A = (1/n) \cdot \tau_{n^{1/p}}(\Gamma_A) + (d_n/n) \cdot \Gamma_G
\] (2.7)

Hence, if $\eta_G \neq 0$ or $\Gamma_G \neq 0$, boundedness of $\{d_n/n\}$ follows by (2.6) resp. (2.7). Since, as mentioned above, (γ_t) is symmetric, $\neq \varepsilon_{\infty}$, the proof is complete.

However, we do not know if in the group case there exist examples μ with different growth behaviour of $\{d_n\}$. Hence we mention

Theorem 2.3. Let (γ_t) be a $(\tau_{t^{1/r}})$-continuous convolution semigroup of full measures. (For the definition of full measures cf. e.g., [1], § 2.2. I.) Assume for a subsequence $(n') \subseteq \mathbb{N}$ that $d_{n'/n} \to \infty$. Then we have:

a) If $p < r$ then $\tau_{d_{n'/n}}(\mu)^n \to \varepsilon_{\infty}$ along the subsequence (n').

b) If $p \geq r$ then $\tau_{d_{n'/n}}(\mu)^n \to \gamma_1$ along (n').

Thus, if $(n') = \mathbb{N}$, μ belongs to the (general) domain of attraction $\mu \in DA(\gamma_1)$ (with norming automorphisms belonging to $B = (\tau_{t^{1/r}})$).

Proof. a) $r > p$, hence $1/r < 1/p$ and thus $\tau_{d_{n'/n}}(\mu)^n = \tau_{(d_{n'/n})^{1/p}}(\mu) \ast \gamma_{d_{n'/n}^{1/p} \cdot d_{n'/n}} \to \varepsilon_{\infty}$ (along (n')), since $d_{n'/n}^{1/p} \cdot d_{n'/n} \to 0$ and $d_{n'/n}^{1-r/p} \to 0$.

b) $r \leq p$. Then $\tau_{d_{n'/n}}(\mu)^n = \tau_{(d_{n'/n})^{1/p}}(\mu) \ast \gamma_{d_{n'/n}^{1/p} \cdot d_{n'/n}^{1-r/p}} \to \varepsilon_{\infty}$ (along (n')) as $d_{n'/n}^{1-r/p} \to 0$, $1/p - 1/r \leq 0$, thus $\tau_{(d_{n'/n})^{1/p}}(\mu) \to \varepsilon_{\infty}$. □

Possible Generalizations. a) As $\text{Aut}(\mathbb{R}) = \{H_u : u \in \mathbb{R} \setminus \{0\}\}$, the definition of pseudo stability (on \mathbb{R}) could be generalized as follows:

$\mu \in M^1(\mathbb{G})$ is called completely pseudo stable if for all $a, b \in \text{Aut}(\mathbb{G})$ we have

\[
a(\mu) \ast b(\mu) = c(\mu) \ast \gamma_d
\]

where $c : \text{Aut}(\mathbb{G}) \times \text{Aut}(\mathbb{G}) \to \text{Aut}(\mathbb{G})$ and $d : \text{Aut}(\mathbb{G}) \times \text{Aut}(\mathbb{G}) \to \mathbb{R}_+$ are (suitable) functions. However, for $d(\cdot, \cdot) \equiv 0$, this defines 'complete stability' (cf. e.g., [1], 1.14.28, 2.11.22). It is known (cf. [9]) that for $\mathbb{G} = \mathbb{R}^n$ and $n \geq 2$, completely stable measures are Gaussian, and vice versa. Thus the definition of complete pseudo stability turns out to be too restrictive.
b) At the first glance it seems natural to investigate pseudo stable laws on more general convolution structures admitting contracting groups \(\tau_t \) of automorphisms (to guarantee the existence of stable laws). E. g. \textit{generalized convolutions} for the state space \(\mathbb{R}_+ \) (cf. e.g., [3, 7] and the literature mentioned there). In the case of hypergroups, as in the group case, the existence of contracting \(\tau_t \) has a strong impact on the underlying structure. E.g., on \(\mathbb{R}_+ \), only Bessel-Kingman hypergroups admit contracting automorphisms. More general examples are hypergroup structures on matrix cones (cf. [10]), which have a considerably rich structure of automorphisms, and hence there exist stable laws in abundance. (Cf. also [2]). Our Examples 1.1–1.7 and Theorem 2.1 hold true in this situation. However, the existence of non-trivial pseudo stable laws \(\mu \), i.e., laws which are not products of stable laws, could not be proved. Therefore, we omit further details.

c) The existence of stable laws and hence of continuous contracting automorphism groups restricts the investigations to homogeneous groups. To get rid of that restrictions one can replace \(G \) by a contractible locally compact group, \(\tau_t \) by a discrete contracting group \(\tau_k \) and assume \(\gamma_t \) to be semistable. Under additional conditions on \(G \) which guarantee a convergence of types theorem and continuous embedding of (certain) infinitely divisible laws, a part of the aforementioned results holds in this general situation. Natural candidates for investigations of examples of such ‘pseudo semistable’ laws are the real line on the one hand and certain contractible totally disconnected groups on the other, e.g., \(p \)-adic groups. Details will appear elsewhere.

References

Faculty of Mathematics, Technische Universität Dortmund, Vogelpothsweg 81, D-44227 Dortmund, Germany
E-mail address: wilfried.hazod@mathematik.tu-dortmund.de
2012-11 Wilfried Hazod
Remarks on pseudo stable laws on contractible groups

2012-10 Waldemar Grundmann
Limit theorems for radial random walks on Euclidean spaces of high dimensions

2012-09 Martin Heida
A two-scale model of two-phase flow in porous media ranging from porespace to the macro scale

2012-08 Martin Heida
On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system

2012-07 Michael Voit
Uniform oscillatory behavior of spherical functions of GL_n/U_n at the identity and a central limit theorem

2012-06 Agnes Lamacz and Ben Schweizer
Effective Maxwell equations in a geometry with flat rings of arbitrary shape

2012-05 Frank Klinker and Günter Skoruppa
Ein optimiertes Glättungsverfahren motiviert durch eine technische Fragestellung

2012-04 Patrick Henning, Mario Ohlberger, and Ben Schweizer
Homogenization of the degenerate two-phase flow equations

2012-03 Andreas Rätz
A new diffuse-interface model for step flow in epitaxial growth

2012-02 Andreas Rätz and Ben Schweizer
Hysteresis models and gravity fingering in porous media

2012-01 Wilfried Hazod
Intrinsic topologies on H-contraction groups with applications to semistability

2011-14 Guy Bouchitté and Ben Schweizer
Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings

2011-13 Waldemar Grundmann
Moment functions and Central Limit Theorem for Jacobi hypergroups on $[0, \infty]$[2]

2011-12 J. Koch, A. Rätz, and B. Schweizer
Two-phase flow equations with a dynamic capillary pressure

2011-11 Michael Voit
Central limit theorems for hyperbolic spaces and Jacobi processes on $[0, \infty]$[2]

2011-10 Ben Schweizer
The Richards equation with hysteresis and degenerate capillary pressure

2011-09 Andreas Rätz and Matthias Röger
Turing instabilities in a mathematical model for signaling networks
2011-08 Matthias Röger and Reiner Schätzle
Control of the isoperimetric deficit by the Willmore deficit

2011-07 Frank Klinker
Generalized duality for k-forms

2011-06 Sebastian Aland, Andreas Rätz, Matthias Röger, and Axel Voigt
Buckling instability of viral capsides - a continuum approach

2011-05 Wilfried Hazod
The concentration function problem for locally compact groups revisited: Non-dissipating space-time random walks, \(\tau \)-decomposable laws and their continuous time analogues

2011-04 Wilfried Hazod, Katrin Kosfeld
Multiple decomposability of probabilities on contractible locally compact groups

2011-03 Alexandra Monzner* and Frol Zapolsky†
A comparison of symplectic homogenization and Calabi quasi-states

2011-02 Stefan Jäschke, Karl Friedrich Siburg and Pavel A. Stoimenov
Modelling dependence of extreme events in energy markets using tail copulas

2011-01 Ben Schweizer and Marco Veneroni
The needle problem approach to non-periodic homogenization

2010-16 Sebastian Engelke and Jeannette H.C. Woerner
A unifying approach to fractional \(\text{Lévy} \) processes

2010-15 Alexander Schnurr and Jeannette H.C. Woerner
Well-balanced \(\text{Lévy} \) Driven Ornstein-Uhlenbeck Processes

2010-14 Lorenz J. Schwachhöfer
On the Solvability of the Transvection group of Extrinsic Symplectic Symmetric Spaces

2010-13 Marco Veneroni
Stochastic homogenization of subdifferential inclusions via scale integration

2010-12 Agnes Lamacz, Andreas Rätz, and Ben Schweizer
A well-posed hysteresis model for flows in porous media and applications to fingering effects

2010-11 Luca Lussardi and Annibale Magni
\(\Gamma \)-limits of convolution functionals

2010-10 Patrick W. Dondl, Luca Mugnai, and Matthias Röger
Confined elastic curves

2010-09 Matthias Röger and Hendrik Weber
Tightness for a stochastic Allen–Cahn equation