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Abstract

This paper considers the problem of constructing optimal discriminating experimental

designs for competing regression models on the basis of the T -optimality criterion intro-

duced by Atkinson and Fedorov (1975a). T -optimal designs depend on unknown model

parameters and it is demonstrated that these designs are sensitive with respect to misspec-

ification. As a solution of this problem we propose a Bayesian and standardized maximin

approach to construct robust and efficient discriminating designs on the basis of the T -

optimality criterion. It is shown that the corresponding Bayesian and standardized max-

imin optimality criteria are closely related to linear optimality criteria. For the problem

of discriminating between two polynomial regression models which differ in the degree by

two the robust T -optimal discriminating designs can be found explicitly. The results are

illustrated in several examples.

AMS Subject Classification: 62K05
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1 Introduction

An important problem of regression analysis is the identification of an appropriate model to de-

scribe the relation between the response and a predictor. Typical examples include dose response

studies [see e.g. Bretz et al. (2005)] in medicine or toxicology or problems in pharmacokinetics,

where a model has usually to be chosen from a class of competing regression functions [see e.g.

Atkinson et al. (1998), Asprey and Macchietto (2000), Ucinski and Bogacka (2005) or Foo and

Duffull (2011)]. Because a misspecification of a regression model can result in an inefficient - in

the worst case incorrect - data analysis, several authors argue that the design of the experiment

1



should take the problem of model identification into account. Meanwhile a huge amount of liter-

ature can be found which addresses the construction of efficient designs for model discrimination.

The literature can be roughly decomposed into two groups.

Hunter and Reiner (1965), Stigler (1971), Hill (1978), Studden (1982), Spruill (1990), Dette

(1994, 1995), Dette and Haller (1998), Song and Wong (1999) (among many others) considered

two nested models, where the extended model reduces to the “smaller” model for a specific

choice of a subset of the parameters. The optimal discriminating designs are then constructed

such that these parameters are estimated most precisely. This concept relies heavily on the

assumption of nested models, and as an alternative Atkinson and Fedorov (1975a) introduced

in a fundamental paper the T -optimality criterion for discriminating between two competing

regression models. Since its introduction this criterion has been studied by numerous authors

[Atkinson and Fedorov (1975b), Ucinski and Bogacka (2005), Waterhouse et al. (2008), Dette

and Titoff (2009), Atkinson (2010), Tommasi and López-Fidalgo (2010), Wiens (2009, 2010) or

Dette et al. (2012) among others].

The T -optimal design problem is essentially a maximin problem and the criterion can also be

applied for non-nested models. Except for very simple models, T -optimal discriminating de-

signs are not easy to find and even their numerical determination is a very challenging task.

Moreover, an important drawback of this approach consists in the fact that the criterion and,

as a consequence, the corresponding optimal discriminating designs depend sensitively on the

parameters of one of the competing regression models. In contrast to other optimality criteria

this dependence appears even in the case where only linear models have to be discriminated.

Therefore T -optimal designs are locally optimal in the sense of Chernoff (1953) as they can only

be implemented if some prior information regarding these parameters is available. Moreover, we

will demonstrate in Example 2.1 that the efficiency of a T -optimal design depends sensitively

on a precise specification of the unknown parameters in the criterion. This problem has already

been recognized by Atkinson and Fedorov (1975a) who proposed Bayesian or minimax versions

of the T -optimality criterion. However - to the best knowledge of the authors - there exist no

results in the literature investigating optimal design problems of this type more rigorously (we

are even not aware of any numerical solutions).

The present paper is devoted to a more detailed discussion of robust T -optimal discriminating

designs. We will study a Bayesian and a standardized maximin version of the T -optimal dis-

criminating design problem [see Chaloner and Verdinelli (1995) and Dette (1997)]. It is demon-

strated that optimal designs with respect to these criteria are closely related to optimal designs

with respect to linear optimality criteria. For the particular case of discriminating between two

competing polynomial regression models which differ in the degree by two, robust T -optimal dis-

criminating designs are found explicitly. These results provide - to our best knowledge - the first

explicit solution in this context. Interestingly, the structure of these Bayesian and standardized

maximin T -optimal discriminating designs is closely related to the structure of designs for a most

precise estimation of the two highest coefficients in a polynomial regression model [see Gaffke

(1987) or Studden (1989)].
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The remaining part of the paper is organized as follows. In Section 2 we revisit the T -optimality

criterion introduced by Atkinson and Fedorov (1975a) for two regression models, which will be

called locally T -optimality criterion in order to reflect the dependency on the parameters of one

of the competing models. In particular it is demonstrated that locally T -optimal designs can

be inefficient if the parameters in the optimality criterion have been misspecified. Section 3

is devoted to robust versions of the T -optimality criterion and properties of the corresponding

optimal designs, while Section 4 gives explicit results for Bayesian and standardized maximin

T -optimal discriminating designs for two competing polynomial regression models. In Section

5 we illustrate the results and construct robust optimal discriminating designs for a constant

and quadratic regression. These two models have been proposed in Bretz et al. (2005) to detect

dose response signal in phase II clinical trial if there is some evidence that the shape of the dose

response might be u-shaped.

2 Locally T -optimal designs

We assume that the relation between a predictor x and response y is described by the regression

model

y = η(x) + ε,

where x varies in a compact designs space X ⊂ Rk and ε denotes a centered random variable

with finite variance. We also assume that observations at experimental conditions x1 and x2

are independent and that there exist two competing continuous parametric models, say η1 or η2,

for the regression function η with corresponding parameters θ1 ∈ Rm1 ; θ2 ∈ Rm2 , respectively.

In order to find “good” designs for discriminating between the models η1 and η2 we consider

approximate designs in the sense of Kiefer (1974), which are defined as probability measures on

the design space X with finite support. The support points, say x1, . . . , xs, of an (approximate)

design ξ give the locations where observations are taken, while the weights give the correspond-

ing relative proportions of total observations to be taken at these points. If the design ξ has

masses ωi > 0 at the different points xi (i = 1, . . . , s) and n observations can be made by the

experimenter, the quantities ωin are rounded to integers, say ni, satisfying
∑s

i=1 ni = n, and the

experimenter takes ni observations at each location xi (i = 1, . . . , s).

To determine a good design for discriminating between the two rival regression models η1 and

η2 Atkinson and Fedorov (1975a) proposed in a fundamental paper to fix one model, say η2

(more precisely its corresponding parameter θ2), and to determine the design which maximizes

the minimal deviation

(2.1) T (ξ, θ2) = min
θ1∈Θ1

∫
χ

(η1(x, θ1)− η2(x, θ2))2 ξ(dx)

between the model η2 and the class of models {η1(x, θ1) | θ1 ∈ Θ1} defined by η1, that is

(2.2) ξ∗ = arg max
ξ
T (ξ, θ2).
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θ2,0 θ2,2 x∗ w1 w2 w3 θ2,0 θ2,2 x∗ w1 w2 w3

−2 2 1.368 0.206 0.499 0.295 −2 1 1.352 0.211 0.499 0.29

−1 2 1.347 0.176 0.495 0.329 −1 1 1.321 0.165 0.491 0.344

−1/2 2 1.211 0.040 0.584 0.376 −1/2 1 1.590 0.619 0.336 0.045

1/2 2 1.400 0.260 0.498 0.242 1/2 1 1.384 0.261 0.498 0.239

1 2 1.390 0.247 0.499 0.254 1 1 1.378 0.253 0.499 0.248

2 2 1.387 0.238 0.499 0.263 2 1 1.337 0.244 0.500 0.256

Table 1: The support points and the weights of T -optimal discriminating designs for a Michaelis

Menten and an EMAX model and various specifications of the parameters θ2,0 and θ2,2 of the

EMAX model. The locally T -optimal design puts weights w1, w2 and w3 at the points 1, x∗ and

2, respectively.

Throughout this paper we call the maximizing design and optimality criterion in (2.2) locally

T -optimal discriminating design and local T -optimality criterion, respectively, because they will

depend on the specification of the parameter θ2 used for the model η2. The local T -optimal

design problem is a maximin problem and except for very simple models the corresponding

optimal designs are extremely hard to find. Even their numerical construction is a difficult

and challenging task. Nevertheless, since its introduction the optimal designs with respect to

the criterion (2.1) have found considerable interest in the literature and we refer the interested

reader to the work of Ucinski and Bogacka (2005) or Dette and Titoff (2009) among others.

The latter authors showed that the optimization problem (2.2) is closely related to a problem in

nonlinear approximation theory, that is

(2.3) R(θ2) := max
ξ

T (ξ, θ2) = inf
θ1∈Θ1

sup
x∈X
| η1(x, θ1)− η2(x, θ2) |2,

where T (ξ, θ2) is defined in (2.1). Because of its local character locally T -optimal designs are

rather sensitive with respect to the misspecification of the unknown parameter and the following

example illustrates this fact.

Example 2.1 We consider the problem of constructing a T -optimal discrimination design for

the Michaelis Menten model

η1(x, θ1) =
θ1,1x

θ1,2 + x

[see for example Cornish-Bowden (1965)] and the EMAX model

η2(x, θ2) = θ2,0 +
θ2,1x

θ2,2 + x
,

[see for example Danesi et al. (2002)]. It is easy to see that the T -optimal discriminating design

does not depend on the parameter θ2,1 and therefore we assume without loss of generality θ2,1 ≡ 1.
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In Table 1 we display some locally T -optimal discriminating designs on the interval [1, 2] for

various values of parameters θ2,i, i = 0, 2. We observe that the resulting designs are rather

sensitive with respect to the specification of the values θ2,0 and θ2,2. Note that in contrast to the

T -optimal discriminating design the T -efficiency

EffT (ξ, θ2) =
T (ξ, θ2)

supη T (η, θ2)
(2.4)

depends also on the parameter θ2,1 of the EMAX model and some efficiencies are depicted in

Figure 1 if the true values are given by θ2,0 = −1, θ2,1 = 1, θ2,2 ∈ (2, 6) and one uses the T -optimal

discriminating design calculated under the assumption θ2,0 = −1/4, θ2,1 = 1 and θ2,2 ∈ (2, 6).

We observe a substantial loss of T -efficiency in some regions for θ2,2. If θ2,2 ∈ (0, 2) the efficiency

is larger than 50%, if θ2,2 ∈ (2, 3) ∪ (5.5, 6) it varies between 15% and 40%, if θ2,2 ∈ (3, 5.5)

the efficiency is smaller than 15% and the locally T -optimal design cannot be recommended.

On the basis of these observations it might be desirable to use designs which are less sensitive

with respect to misspecification of the parameter θ2,0 and the corresponding methodology will

be developed in the following section. Robust T -optimal designs for discriminating between the

Michaelis and EMAX model will be discussed at the end of this paper where we construct a

uniformly better design [see Section 5.3].

Figure 1: T -efficiency (2.4) of the locally T -optimal discriminating design for Michaelis Menten

and Emax model calculated under the assumption θ2,0 = −1/4, θ2,1 = 1 while the “true” values

are given by θ2,0 = −1, θ2,1 = 1. The efficiencies depend on the parameter θ2,2 ∈ (2, 6).
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3 Robust T -optimal discriminating designs

Because the previous example indicates that locally T -optimal discriminating designs are sensi-

tive with respect to misspecification of the parameters θ2 of the model η2 in the T -optimality

criterion (2.1), the consideration of robust optimality criteria for model discrimination is of great

interest. In the context of constructing efficient robust designs for parameter estimation in

nonlinear regression models Bayesian and standardized maximin optimality criteria have been

discussed intensively in the literature [see Chaloner and Verdinelli (1995), Dette (1997) or Müller

and Pázman (1998) among many others]. However – to our best knowledge – these methods have

not been investigated rigorously in the context of model discrimination so far and in this section

we will define a robust version of the local T -optimality criterion. Recall the definition of this

criterion in (2.1) and its optimal value R(θ2) in (2.3), then a design ξ∗M is called standardized

maximin T -optimal discriminating (with respect to the set Θ2) if it maximizes the criterion

VM(ξ) = inf
θ2∈Θ2

T (ξ, θ2)

R(θ2)
,(3.1)

where Θ2 is a pre-specified set, reflecting the experimenter’s belief about the unknown parameter

θ2. Similarly, if π denotes a prior distribution on the set Θ2, then a design ξ∗B is called Bayesian

T -optimal (with respect to the prior π) if it maximizes the criterion

VB(ξ) =

∫
Θ2

T (ξ, θ2)π(dθ2).(3.2)

In the following discussion we investigate the problem of constructing robust discriminating

designs for two linear regression models

η1(x, θ1) =

m1−1∑
i=0

θ1,ifi(x), η2(x, θ2) =

m2−1∑
i=0

θ2,ifi(x),(3.3)

where m2 > m1, f0, . . . , fm2−1 are given linearly independent regression functions and θi =

(θi,0, . . . , θi,mi−1)T denotes the parameter in the model ηi (i = 1, 2). We introduce the notation

b1 = θ2,m1/θ2,m2−1, . . . , bm2−m1−1 = θ2,m2−2/θ2,m2−1, m = m2 − 1, s = m2 − m1, qi = θ1,i − θ2,i

(i = 0, 1, . . . ,m− s) and obtain for the difference η1(x, θ1)− η2(x, θ2) the representation

η̄(x, q, θc2,m, θ2,m) =
m−s∑
i=0

qifi(x)− (b1fm−s+1(x) + . . .+ bs−1fm−1(x) + fm(x))θ2,m,(3.4)

where θc2,m = (θ2,m−s+1, . . . , θ2,m−1)T . Thus the locally T -optimality criterion in (2.1) can be

rewritten as

T (ξ, θ2) = inf
θ1∈Rm−s+1

∫
X

(η1(x, θ1)− η2(x, θ2))2dξ(x) = θ2
2,m inf

q∈Rm−s+1

∫
X
η̄2(x, q, b, 1)dξ(x),

where b = (b1, . . . , bs−1)T . Consequently, locally T -optimal designs depend only on the ratios

bi = θ2,m−s+i/θ2,m (i = 1, . . . , s− 1). Similarly, if π is a prior distribution for the vector θ2, then
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it follows from these discussions that the Bayesian T -optimality criterion depends only on the

induced prior distribution, say π̄, for the parameter b = (b1, . . . , bs−1). Therefore we assume that

the vector b varies in a subset B ⊂ Rs−1 and define π̄ as a prior distribution on B. With these

notations the Bayesian T -optimality criterion in (3.2) simplifies to

VB(ξ) =

∫
B

inf
q∈Rm−s+1

∫
X
η̄2(x, q, b, 1)ξ(dx)π̄(db)(3.5)

Similarly, we have with the notation θ̄2 = θ2/θ2,m

R(θ2) = max
ξ
T (ξ, θ2) = θ2

2,m max
ξ
R(θ̄2)

and defining B = {(θ2,m−s+1/θ2,m, . . . , θ2,m−1/θ2,m)T | θ2 ∈ Θ2} ⊂ Rs−1 and for b ∈ B

(3.6) R̄(b) = R((b1, . . . , bs−1, 1)T )

the factor θ2
2,m in (3.1) cancels and the standardized maximin T -optimality criterion reduces to

VM(ξ) = inf
b∈B

inf
q∈Rm−s+1

∫
X η̄

2(x, q, b, 1)ξ(dx)

R̄(b)
= inf

b∈B
effT (ξ, b),(3.7)

where the efficiency is defined in an obvious manner, that is

effT (ξ, b) =
T (ξ, (b1, . . . , bs−1, 1)T )

R̄(b)
.

Throughout this paper we denote by f(x) = (f0(x), f1(x), . . . , fm(x))T the vector of regression

functions with corresponding decomposition

f(1)(x) = (f0(x), f1(x), . . . , fm−s(x))T ∈ Rm−s+1,

f(2)(x) = (fm−s+1(x), . . . , fm(x))T ∈ Rs.

We assume that the functions f0, . . . , fm are linearly independent and continuous on X and

define

M(ξ) =

∫
X
f(x)fT (x)ξ(dx)

as the information matrix of a design with corresponding blocks

Mij(ξ) =

∫
X
f(i)(x)fT(j)(x)ξ(dx), i, j = 1, 2.

and Schur complement

M(s)(ξ) = M22(ξ)−XTM11(ξ)X,

where X ∈ Rm−s+1×s is an arbitrary solution of the equation M11(ξ)X = M12(ξ) (if this equation

has no solutions, then the matrix M(s)(ξ) remains undefined). Our first main result relates the

Bayesian and standardized maximin T -optimality criteria to linear optimality criteria.
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Theorem 3.1 Let π̄ denote a prior distribution for the vector b ∈ B, such that the matrix

L =

∫
B

(
bbT b

bT 1

)
π̄(db).

exists, then the two following statements are equivalent.

(1) The design ξ∗ is a Bayesian T -optimal discriminating design with respect to the prior π̄

for the linear regression models defined in (3.3).

(2) The design ξ∗ maximizes the linear criterion

tr LM(s)(ξ),

in the class of all approximate designs ξ, for which there exists a solution X ∈ Rm−s+1×s

of the equation

(3.8) M11(ξ)X = M12(ξ).

Proof. If the matrix M(s)(ξ) is non-singular, then it follows from Karlin and Studden (1966),

Section 10.8, that (
M(s)(ξ)

)−1
= (OT : Is)M

−(ξ)

(
O

Is

)
,

where Is ∈ Rs×s is the identity matrix, O ∈ Rm−s+1×s is the matrix with all entries equal to

0 and M−(ξ) is an arbitrary generalized inverse of the matrix M(ξ). For any (m − s + 1) × s
matrix K we have the inequality(

−KT : Is
)( M11(ξ) M12(ξ)

M21(ξ) M22(ξ)

)(
−K
Is

)
≥M(s)(ξ),

where there is equality if and only if the matrix K is a solution of the equation (3.8) [see Karlin

and Studden (1966), Section 10.8]. From (3.4) and the discussion in the subsequent paragraph

we obtain the representation

(3.9) T (ξ, θ2) = θ2
2,m min

q∈Rm−s+1
(qT , bT , 1)M(ξ)(qT , bT , 1)T = θ2

2,m(bT , 1)M(s)(ξ)(b
T , 1)T ,

where the last equality follows from the fact that each vector (qT , bT , 1)T can be represented in

the form

(qT , bT , 1)T = (−KT : Is)
T (bT , 1)T

for some appropriate matrix K ∈ Rm−s+1×s (just use the matrix K = −q(bT , 1)/(bT b+ 1)). The

assertion of Theorem 3.1 is now obvious. 2

A similar result for standardized maximin T -optimal discriminating designs is formulated in the

following Theorem. Throughout this paper we will use the notation R̄ = R∪{−∞,∞} with the

usual compactification.
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Theorem 3.2 If B ⊂ R̄s−1 be a given compact set, then the following two statements are equiv-

alent.

(1) The design ξ∗ is a standardized maximin T -optimal discriminating design for the regression

models defined in (3.3) with respect to the set B.

(2) For the design ξ∗ there exists a solution of the equation (3.8) and a matrix L∗ ∈ Rs×s such

that the pair (L∗, ξ∗) satisfies

trL∗M(s)(ξ
∗) = sup

ξ
trL∗M(s)(ξ),(3.10)

trL∗M(s)(ξ
∗) = inf

L
trLM(s)(ξ

∗),(3.11)

where the supremum in (3.10) is taken with respect to all approximate designs and the set

L in (3.11) is defined by

{ k∑
i=1

(bTi , 1)T (bTi , 1)
ωi

R̄(bi)

∣∣∣ bi ∈ B, ωi > 0
k∑
i=1

ωi = 1
}
.

Proof. By a similar argument as used in the proof of Theorem 3.1 the standardized T -optimality

criterion in (3.7) can be represented as

VM(ξ) = inf
b∈B

inf
q∈Rm−s+1

(qT , bT , 1)M(ξ)(qT , bT , 1)T

R̄(b)

= inf
b∈B

(bT , 1)M(s)(ξ)(b
T , 1)T

R̄(b)
= inf

L∈L
trLM(s)(ξ).

The assertion now follows from the von Neumann theorem on minimax problems [see Osborne

and Rubinstein (1994)]. 2

A lower bound for the efficiencies of a standardized maximin T -optimal discriminating design is

given in the following theorem.

Theorem 3.3 Let ξ∗ denote a standardized maximin T -optimal discriminating design for the

linear regression models defined in (3.3) with respect to set B. Then for all b ∈ B

effT (ξ∗, b) ≥ 1

s
.

Proof. Recall the definition of the standardized maximin optimality criterion in (3.7). Because

for any b ∈ B
effT (ξ∗, b) ≥ inf

b∈B
effT (ξ∗, b) = VM(ξ∗)
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the assertion follows, if the inequality

sup
ξ
VM(ξ) ≥ 1

s

can be established. For this purpose we define the function

(3.12) ψ(x) = f(2)(x)−XTf(1)(x),

where X is an (m − s + 1) × s-matrix (the dependence of the function ψ on this matrix is

not reflected in the notation). Let ξ be an arbitrary design such that the matrix M(s)(ξ) is

non-singular, then it follows from the Cauchy Schwartz inequality that

(3.13) inf
l∈Rs\0

lTM(s)(ξ)l

sup
x∈X

(lTψ(x))2
≥ 1

sup
x∈X

ψT (x)M−1
(s) (ξ)ψ(x)

.

By the equivalence theorem for Ds-optimal designs [see (Karlin and Studden (1966), Section

10.8)] there exists a design ξ̃ and a matrix X̃ satisfying M11(ξ̃)X̃ = M12(ξ̃), such that the

corresponding matrix M(s)(ξ̃) and the vector ψ̃(x) = f(2)(x)− X̃Tf(1)(x) satisfy

max
x∈X

ψ̃T (x)M−1
(s) (ξ̃)ψ̃(x) = s.

Consider any design ξ for which a solution X of (3.8) exists, then we have for the corresponding

function ψ in (3.12)

M(s)(ξ) =

∫
X
ψ(x)ψT (x)ξ(dx).

Therefore we obtain from formula (3.9)

R̄(b) = θ2
2,m max

ξ

∫
X

((bT , 1)ψ(x))2ξ(dx) = θ2
2,m max

x∈X
((bT , 1)ψ(x))2,

which gives for the vector l = (θ2,m−s+1, . . . , θ2,m)T

sup
x∈X

(
lTψ(x)

)2
= R̄(b),

where b = (θ2,m−s+1/θ2,m, . . . , θ2,m−1/θ2,m)T . Thus the left hand side in (3.13) equals VM(ξ) and

sup
ξ
VM(ξ) ≥ VM(ξ̃) ≥ 1

s
,

which proves the assertion of Theorem 3.3.
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4 Robust T -optimal designs for polynomial regression

In general locally T -optimal discriminating designs have to be found numerically and this state-

ment also applies to the construction of robust T -optimal discriminating designs with respect to

the Bayesian or standardized maximin criterion. In order to get more insight in the correspond-

ing optimal design problems we consider in this section the case of two competing polynomial

regression models which differ in the degree by two. Remarkably, for this situation the robust

T -optimal discriminating designs can be found explicitly. To be precise, let s = 2, consider the

vectors of monomials

f(1)(x) = (1, x, . . . , xm−2)T , f(2) = (1, x, . . . , xm)T ,

and define

Un(x) =
sin((n+ 1)arcos x)

sin(arcos x)

as the Chebyshev polynomial of the second kind [see Szegö (1959)]. We assume that the design

space is given by the symmetric interval [−a, a] and consider for β > 0 designs ξm,β defined as

follows. If β = 1 then the design ξm,1 puts masses 1/(2(m− 1)) at the points −a, a and masses

1/(m−1) at the m−2 roots of the polynomial Um−2(x/a). If β 6= 1 the design ξm,β is supported

at the m+ 1 roots −a = x0 < x1 < . . . < xm−1 < xm = a of the polynomial

(x2 − a2)
{
Um−1

(x
a

)
+ βUm−3

(x
a

)}
,

where the corresponding weights are given by

ξm,β(∓a) =
1 + β

2[m+ β(m− 2)]
,

ξm,β(xj) =
[
m− 1−

(1 + β)Um−2

(xj
a

)
Um
(xj
a

)
+ βUm−2

(xj
a

)]−1

, j = 1, . . . ,m− 1,

Theorem 4.1

(1) Let π̄ denote a symmetric prior distribution on B ⊆ (−∞,∞) with existing second moment,

and define

(4.1) βB = min
{

1,

∫
B b

2π̄(db)

a2

}
.

The design ξm,βB is a Bayesian T -optimal discriminating on the interval [−a, a] for the

polynomial regression models of degree m− 2 and m.

(2) Define βM = 1− 2h∗, where h∗ is the unique maximizer of the function

(4.2) inf
b∈B

b2 + a2h

a2R̄(b, a)
(1− h),

11



where

R̄(b, a) = inf
q0,...,qm−2∈R

sup
x∈[−1,1]

a2m | xm +
b

a
xm−1 + qm−2x

m−2 + · · ·+ q1x+ q0 |2

in the interval [0, 1
2
]. Then the design ξm,βM is a standardized maximin T -optimal discrim-

inating design on the interval [−a, a] for the polynomial regression models of degree m− 2

and m.

Proof of Theorem 4.1. We will prove the statement using some basic facts of the theory of

canonical moments [see Dette and Studden (1997) for details]. To be precise, let P([−a, a]) denote

the set of all probability measures on the interval [−a, a], and denote for a design ξ ∈ P([−a, a])

its moments by

ci = ci(ξ) =

∫ a

−a
xiξ(dx), i = 1, 2 . . . .

Define Mk = {(c1, . . . , ck)
T | ξ ∈ P([−a, a])} as the kth moment space and Φk(x) = (x, . . . , xk)

as the vector of monomials of order k. Consider for a fixed vector c = (c1, . . . , ck)
T ∈Mk the set

Sk(c) :=

{
µ ∈ P([−a, a]) :

∫ a

−a
Φk(x)µ(dx) = c

}
of all probability measures on the interval [0, 1] whose moments up to the order k coincide with

c = (c1, . . . , ck)
T . For k = 2, 3, . . . and for a given point (c1, . . . , ck−1)T ∈ Mk−1 we define

c+
k = c+

k (c1, . . . , ck−1) and c−k = c−k (c1, . . . , ck−1) as the largest and smallest value of ck such that

(c1, . . . , ck)
T ∈ ∂Mk, that is

c−k = min
{∫ a

−a
xkµ(dx) | µ ∈ S k−1(c1, . . . , ck−1)

}
,

c+
k = max

{∫ a

−a
xkµ(dx) | µ ∈ Sk−1(c1, . . . , ck−1)

}
.

Note that c−k ≤ ck ≤ c+
k and that both inequalities are strict if and only if (c1, . . . , ck−1)T ∈M0

k−1

whereM0
k−1 denotes the interior of the setMk−1 [see Dette and Studden (1997)]. For a moment

point c = (c1, . . . , cn)T , such that c = (c1, . . . , cn−1)T is in the interior of the moment space

Mn−1, the canonical moments or canonical coordinates of the vector c are defined by p1 = c1

and

(4.3) pk =
ck − c−k
c+
k − c

−
k

, k = 2, . . . , n .

Note that pk ∈ (0, 1), k = 1, . . . , n− 1 and pn ∈ {0, 1} if and only if (c1, . . . , cn−1) ∈ M0
n−1 and

(c1, . . . , cn)T ∈ ∂Mn. In this case the canonical moments pi or order i > n remain undefined.

We begin with a proof of the first part of Theorem 4.1. By Theorem 3.1 the determination of

Bayesian T -optimal discriminating designs can be obtained by minimizing the linear optimality

criterion

trLM(2)(ξ)
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for some appropriate matrix L, which is diagonal by the symmetry of the prior distribution.

A standard argument of optimal design theory shows that there exists a symmetric Bayesian

T -optimal discriminating design, say ξ, for which the corresponding 2× 2 matrix M(2)(ξ) is also

diagonal, that is

M(2)(ξ) =

(
am−1 0

0 am

)
.

It now follows from Dette and Studden (1997), Section 5.7, that for such a design the elements

in this matrix are given by

(4.4) ak(ξ) = (2a)2k

k∏
i=1

q2i−2p2i−1q2i−1p2i , k = m− 1,m,

where q0 = 1, qi = 1 − pi (i ≥ 1). Consequently, by Theorem 3.1 the Bayesian T -optimal

discriminating design problem is reduced to maximization of the function

(4.5) trLM(2)(ξ) = am(ξ) + βam−1(ξ),

where the quantities am(ξ) are defined in (4.4) and β =
∫
b2π̄(db) denotes the second moment of

the prior distribution. This expression can now be directly maximized in terms of the canonical

moments, which gives p2m = 1, pi = 1
2
, i = 1, 2, . . . , 2m− 1, i 6= 2m− 2 and

p2m−2 = min

{
a2 + β

2a2
, 1

}
=

1 + βB
2

,

where βB is defined in (4.1). The corresponding design is uniquely determined and can be

obtained from Theorem 4.4.4 and 1.3.2 in Dette and Studden (1997), which proves the first part

of the Theorem.

For a proof of the second part we note that it follows from the proof of Theorem 3.2 that the

standardized maximin T -optimal criterion reduces to

(4.6) inf
b∈B

am(ξ) + b2am−1(ξ)

R̄(b)
→ sup

ξ
.

where R̄(b) is defined in (3.6), that is

R̄(b) = inf
q0,...,qm−2∈R

sup
x∈[−a,a]

| xm + bxm−1 + qm−2x
m−2 + · · ·+ q1x+ q0 |2= R̄(b, a).

From (4.4) it is obvious that the canonical moments of a (symmetric) standardized maximin

T -optimal discriminating design satisfy p2m = 1,

pi =
1

2
, i = 1, 2, . . . , 2m− 3, 2m− 1,
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and it remains to maximize (4.6) with respect to the quantity p2m−2. A straightforward calcula-

tion shows that the optimal value of p2m−2 is determined by the condition p2m−2 = 1−h∗, where

h∗ is a solution of the problem

inf
b∈B

a2h+ b2

R̄(b, a)a2
(1− h)→ max

0≤h≤1/2
.

The corresponding design is uniquely determined and can again be obtained from Theorem 4.4.4

and 1.3.2 in Dette and Studden (1997), which completes the proof of Theorem 4.1.

Remark 4.1 The structure of the Bayesian and standardized maximin T -optimal designs de-

termined in Theorem 4.1 is the same as the structure of the φp-optimal design for estimating the

two coefficients corresponding to the powers xm and xm−1 in a polynomial regression model of

degree m on the interval [−a, a]. More precisely, it was shown in Gaffke (1987), Studden (1989)

(for the interval [−1, 1]) and in Dette and Studden (1997) (for arbitrary symmetric intervals)

that the designs minimizing

φp(ξ) =
(

trM−p
(2) (ξ)

)1/p

, −1 < p ≤ ∞,

is given by the design ξm,β(p) where β(p) is the unique solution of the equation(1− β
2

)p+1

− a−2pβ = 0

in the interval [0, 1].

5 Some illustrative examples

In this section we illustrate the results in a few examples. We restrict ourselves to the problem

of discriminating between a constant and the quadratic regression model on the interval [−1, 1].

Additionally, we construct robust designs for the situation considered in Example 2.1. Further

results for other models are available from the authors.

5.1 Standardized maximin T -optimal discriminating designs for

quadratic regression

Consider the problem of discriminating between a constant and a quadratic regression on the

interval X = [−1, 1]. As pointed out in Bretz et al. (2005), these models are of importance for

detecting dose response signals in phase II clinical trials. If B = [−d, d], then it it follows from

Theorem 4.1 (m = 2) that a standardized maximin T -optimal design is given by

ξ∗M =

 −1 0 1
1− h∗

2
h∗

1− h∗

2

 ,
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where h∗ is a solution of the problem (4.2). Due to formula (3.9) in Dette et al. (2012) we have

(5.1) R̄(b) = R̄(b, 1) =


1

4

(
1 +
|b|
2

)4

, |b| ≤ 2,

b2, |b| ≥ 2.

We define

K(h, b) =
h+ b2

R(b)
(1− h)

then the solution of the problem

max
h∈[0,0.5]

inf
b∈[−d,d]

K(h, b)

can be obtained by straightforward but tedious calculaions, which are omitted for the sake of

brevity. For the solution one has to distinguish 3 cases

(1) If 0 < d ≤ 1
2

the minimum of the function K(h, b) with respect to the variable b is attained

at the boundary of the interval B = [−d, d] and the optimal value is given by h∗ = (1−d2)/2.

A typical situation is depicted in the left part of Figure 2. A standardized maximin T -

optimal discriminating design has masses (1+d2)/4, (1−d2)/2 and (1+d2)/4 at the points

−1, 0 and 1, respectively.

Figure 2: The behavior of the function K(h∗, b), for different values of d. Left panel d = 1/2,

middle panel d = 2, right panel d = 10.

(2) In the case 1/2 < d ≤ 5
√

10/4 the solution is given by h∗ = 3/8, b∗ = 1/2. Therefore

the design with masses 5/16, 3/8 and 5/16 at the points −1, 0 and 1 is a standardized

maximin T -optimal discriminating design. The behavior of the function K(h∗, b) in this

case is depicted in the middle panel of Figure 2.

(3) In the case d ∈ [5
√

10
4
,∞] the structure of the solution changes again. For this interval the

optimal pair h∗, b∗ is obtained as a solution of the system

K(h, b) = K(h, d) ,
∂

∂b
K(h, b) = 0,
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and we find by a direct calculation that b∗ is the unique root of the equation

x4 + 6x3 + (−2d2 + 12)x2 + (−16d2 + 8)x+ 8d2 = 0

in the interval [−4 + 2
√

5, 1/2]. We have h∗ = b∗ − (b∗)2

2
and a standardized maximin

T -optimal discriminating design has masses 1/2 − b∗/2 + (b∗)2/4, b∗ − (b∗)2/2, and 1/2 −
b∗/2 + (b∗)2/4 at the points −1, 0 and 1, respectively. In the limiting case d =∞, that is

B = R, we have b∗ = −4 + 2
√

5, h∗ = −22 + 10
√

5 and a standardized maximin T -optimal

discriminating design has masses 23/2− 5
√

5, −22 + 10
√

5, and 23/2− 5
√

5 at the points

−1, 0 and 1, respectively. A typical case for the function K(h∗, b) in this case is depicted

in right panel the Figure 2 for d = 10.

5.2 Bayesian T -optimal discriminating designs for quadratic re-

gression

For the Bayesian T -optimality criterion a prior has to be chosen and we propose to maximize

an average of the efficiencies ∫ a

−a
effT (ξ, b)db

with respect to the uniform distribution on the interval [−a, a]. In the criterion (3.2) this

correspond to an absolute continuous prior with density proportional to

f(b) =

{
3(2+a)3

16a(12+6a+a2)
1

R̄(b)
, a ≤ 2

3a
17a−6

1
R̄(b)

, a ≥ 2.
,

where R̄(b) is defined in (5.1) and the term depending on a is the corresponding normalizing

constant. By direct calculations we obtain∫ a

−a
b2f(b)db = 2

∫ a

0

b2f(b)db =

{
4a2

12+6a+a2
, a ≤ 2,

6a2−4a
17a−6

, a ≥ 2.

In order to apply Theorem 4.1 we consider βB = min{1,
∫ a
−a b

2f(b)db} and again 3 cases

have to be considered.

(1) If 0 < a ≤ 2 we have βB = 4a2

12+6a+a2
and a Bayesian T -optimal discriminating design

has masses 5a2+6a+12
4(12+6a+a2)

, −3a2+6a+12
2(12+6a+a2)

, and 5a2+6a+12
4(12+6a+a2)

at the points −1, 0 and 1.

(2) If 2 ≤ a ≤ 7+
√

33
4

we have βB = 3a2−4a
17a−6

, and a Bayesian T -optimal discriminating

design has masses 6a2+13a−6
4(17a−6)

, −6a2+21a−6
2(17a−6)

, and 6a2+13a−6
4(17a−6)

at the points −1, 0 and 1.

(3) If 7+
√

33
4
≤ a we have β = 1 and a Bayesian T -optimal discriminating design has

masses 1/2 and 1/2 at the points −1 and 1.
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Figure 3: T -efficiency (2.4) of the standardized maximin optimal discriminating design (dotted

line) and the locally T -optimal discriminating design for the Michaelis Menten and Emax model

(calculated under the assumption θ2,0 = −1/4, θ2,2 = 1, solid line). The “true” values are given

by θ2,0 = −1, θ2,1 = 1 and the efficiencies depend on the parameter θ2,2 ∈ (2, 6) .

5.3 Robust T -optimal discriminating designs for the Michaelis

Menten and EMAX model

In this section we briefly illustrate the application of the methodology in the situation

described in Example 2.1, where the interest is in designs with good properties for discrim-

inating between the Michaelis Menten and EMAX model. We have calculated the standard-

ized maximin T -optimal discriminating design for the Michaelis Menten and EMAX model,

where the region for the parameter (θ2,0, θ2,1, θ2,2) is given by [−1.1,−0.2] × {1} × [2, 6].

The corresponding robust design is given by

ξ =

(
1 1.36 2

0.410 0.205 0.385

)
As pointed out in Example 2.1, the efficiency of locally T -optimal discriminating designs

can be low if some of the parameters of the regression models have been misspecified, and

in Figure 3 we compare the performance of the locally and robust optimal discriminating

design if the true values are θ2,0 = −1, θ2,1 = 1 and θ2,2 ∈ (2, 6). We observe a substan-

tial improvement by the standardized maximin T -optimal discriminating design. Other

scenarios showed a similar picture and are not displayed for the sake of brevity.
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