Process Model and Design for Magnetic Pulse Welding by Tube Expansion

V. Psyk, G. Gerstein, B. Barlage, B. Albuja, S. Gies, A. E. Tekkaya, F.-W. Bach
Agenda

- Introduction
- Joining by Electromagnetic Forming
- Design Strategy for MPW
 - Model Experiment
 - Electromagnetic forming experiments
- Summary and Outlook
Agenda

- Introduction
- **Joining by Electromagnetic Forming**
- Design Strategy for MPW
 - Model Experiment
 - Electromagnetic forming experiments
- Summary and Outlook
Principle of Magnetic Pulse Welding (MPW)

Advantages of MPW
- Metallic bonding in case of *proper impacting parameters*
- Joining without mechanical contact
- Joining of similar and dissimilar metals
- Avoidance / Reduction of:
 - heat-affected zones
 - intermetallic phases
Current problems in MPW

- Which impacting parameters are required?
- How can the process be adjusted to reach the required parameters?

Research objective:

Design strategy for MPW by electromagnetic tube expansion

- Determination of the required collision parameters (values for α and v)
- Instruments for a proper adjustment of the collision parameters
Introduction

Joining by Electromagnetic Forming

Design Strategy for MPW
- Model Experiment
- Electromagnetic forming experiments

Summary and Outlook
Sub-target I: Identification of suitable impact parameters:

- **angle** and **velocity**

Process design strategy: Magnetic pulse welding

Sub-target II: Systematic adjustment of impact parameters via process parameters

- **equipment** and **charging energy**
Model Experiment - Setup -

Joining unit

- Mounting device
- Joining specimen (dynamic)
- Dynamic support (0.337 kg)
- Joining specimen (static)
- Static support
- Acceleration tube (length: 1000 mm)

Acceleration unit

- Mass (0.066 kg)
- High-velocity valve
- Acceleration chamber
- Pressure chamber

Influencing parameters:
- Angle
- Impact velocity
- Material
Model High Speed Joining Experiment
- Exemplary Results -

Specimen material: EN AW-1050
Specimen thickness: 0.3 mm

<table>
<thead>
<tr>
<th>Workpiece material</th>
<th>Acceleration mass parameters</th>
<th>Support parameters</th>
<th>Impact angle</th>
<th>Weld quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Material</td>
<td>Weight m_m in kg</td>
<td>Velocity v_m in m/s</td>
</tr>
<tr>
<td>EN AW-1050</td>
<td>EN AW-1050</td>
<td>Steel</td>
<td>3.2</td>
<td>8</td>
</tr>
</tbody>
</table>

Joint geometry and process design to reach this collision parameters?

- **Workpiece material:** EN AW-1050
- **Specimen thickness:** 0.3 mm

Model High Speed Joining Experiment - Exemplary Results -

- **Specimen material:** EN AW-1050
- **Specimen thickness:** 0.3 mm

Workpiece material	**Acceleration mass parameters**	**Support parameters**	**Impact angle**	**Weld quality**
Specimen I | Specimen II | Material | Weight m_m in kg | Velocity v_m in m/s | Weight m_s in kg | Velocity v_s in m/s | |
EN AW-1050 | EN AW-1050 | Steel | 3.2 | 8 | 0.31 | 16 | 3.2° | ++ |

Joint geometry and process design to reach this collision parameters?
Electromagnetic Experiments

- **Setup**

<table>
<thead>
<tr>
<th>Machine: SMU 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum charging energy E_{max}</td>
</tr>
<tr>
<td>maximum charging voltage U_{max}</td>
</tr>
<tr>
<td>capacitance c</td>
</tr>
<tr>
<td>inner inductance L_i</td>
</tr>
<tr>
<td>inner resistance R_i</td>
</tr>
<tr>
<td>short circuit frequency f</td>
</tr>
</tbody>
</table>

Tool coil: expansion coil
- outer diameter: 36 mm
- effective length: 27 mm
- number of turns: 13

Workpiece: EN AW-1050
- outer diameter: 40 mm
- wall thickness: 2 mm
- length: 100 mm

Introduction | Joining by Electromagnetic Forming | Design Strategy for MPW | Summary & Outlook
Electromagnetic Experiments
- Free Forming -

<table>
<thead>
<tr>
<th>Charging energy</th>
<th>1000 J</th>
<th>1250 J</th>
<th>1500 J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>108 m/s</td>
<td>120 m/s</td>
<td>186 m/s</td>
</tr>
<tr>
<td>Gap width</td>
<td>1.2 mm</td>
<td>1.2 mm</td>
<td>2.0 mm</td>
</tr>
<tr>
<td>Inner diameter of hub</td>
<td>42.4 mm</td>
<td>42.4 mm</td>
<td>44.0 mm</td>
</tr>
</tbody>
</table>

Forming machine: SMU 1500

Tool coil:
- Outer diameter: 36 mm
- Length: 27 mm
- Turns: 13

Tube:
- EN AW-1050
- Diameter: 40 mm
- Wall thickness: 2 mm
- Length: 100 mm

Graph:
- Displacement dr in mm against forming velocity v_r in m/s.
- Z values: 0 mm, 3 mm, 6 mm, 9 mm.
- Forming machine: SMU 1500
- Tool coil:
 - Outer diameter: 36 mm
 - Length: 27 mm
 - Turns: 13
- Tube:
 - EN AW-1050
 - Diameter: 40 mm
 - Wall thickness: 2 mm
 - Length: 100 mm
Electromagnetic Experiments
- Free Forming -

Nearly parallel expansion of the tube wall \((z \approx 0 - 6 \text{ mm})\)

Assumption: Same deformation in joining experiments before impact
Electromagnetic Experiments - Joining -

<table>
<thead>
<tr>
<th>Phase</th>
<th>Process parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>free forming</td>
<td>charging energy, gap width</td>
</tr>
<tr>
<td></td>
<td>1000 J, 1250 J, 1500 J, 1.2 mm, 2.0 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>joining</th>
<th>Impact velocity, angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 m/s, 156 m/s, 186 m/s, 0°, 3°, 5°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>charging energy</th>
<th>gap width</th>
<th>impact velocity</th>
<th>impact angle α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250 J</td>
<td>1.2 mm</td>
<td>120 m/s</td>
<td>0°, 3°, 5°</td>
</tr>
<tr>
<td>1250 J</td>
<td>2.0 mm</td>
<td>156 m/s</td>
<td>0°, 3°, 5°</td>
</tr>
<tr>
<td>1500 J</td>
<td>2.0 mm</td>
<td>186 m/s</td>
<td>0°, 3°, 5°</td>
</tr>
</tbody>
</table>
Electromagnetic Experiments
- Joining -

<table>
<thead>
<tr>
<th>Tube</th>
<th></th>
<th>Hub</th>
</tr>
</thead>
<tbody>
<tr>
<td>material:</td>
<td>EN AW-1050</td>
<td>material:</td>
</tr>
<tr>
<td>outer diameter:</td>
<td>40 mm</td>
<td>inner diameter:</td>
</tr>
<tr>
<td>wall thickness:</td>
<td>2 mm</td>
<td>hub angle:</td>
</tr>
<tr>
<td>length:</td>
<td>100 mm</td>
<td>length:</td>
</tr>
</tbody>
</table>

Image: Diagram of the joining process with labeled parts: Hub, Tube, Tool coil, Collar, Supporter, and Cross table.
Electromagnetic Experiments - Exemplary Results

Forming velocity v_r in m/s

![Graph showing forming velocity vs displacement](image1.png)

- **1250 J**
- **gap width 1.2 mm**

Welding quality vs Axial position z in mm

- **Hub angle:** 0°; 3°; 5°

Forming machine: SMU 1500

Tool coil:
- outer diameter: 36 mm
- length: 27 mm
- turns: 13

Tube:
- EN AW-1050
- diameter: 40 mm
- wall thickness: 2 mm
- length: 100 mm
Forming machine: SMU 1500

Tool coil:
- outer diameter: 36 mm
- length: 27 mm
- turns: 13

Tube:
- EN AW-1050
- diameter: 40 mm
- wall thickness: 2 mm
- length: 100 mm

Welding quality

Displacement dr in mm

Axial position z in mm

Forming velocity v_r in m/s

Gap width 2 mm

1500 J

Hub angle: 0°; 3°; 5°
Agenda

- Introduction
- Joining by Electromagnetic Forming
- Design Strategy for MPW
 - Model Experiment
 - Electromagnetic forming experiments
- Summary and Outlook
Model experiment for the determination of suitable impacting parameters for MPW

Joining experiments proved that model experiment is especially suitable to determine the optimum collision angle

Tapered joining partner for a proper adjustment of the collision angle during MPW process

Further investigations should concentrate on an improved prediction quality for the impacting velocity