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Motivation

From a human perspective the Universe is full of questions about its mechanism and while
in general theoretical physics tries to find an order in the chaos of phenomena, interface
the physical experiments the mathematical patterns with the considered objects. Thereby,
physics always operates between the philosophical antipodes of realism and phenomenal-
ism. According to this, the physical answers are still overshadowed by the discrepancy
of the unknown relation between the phenomena and the things in itself. Furthermore,
astrophysics in particular, mostly deals with a small amount of theory-loaded observa-
tions, so that even the phenomena have to be made accessible by a certain approach to
the object of observation. Apparently, there seems to be an insuperable gap between an
astrophysical observation and the observed object itself. However, the creation of pictures
of these objects is still right, when they are according to Hertz (1999) used in a logically
self-consistent way, so that the phenomena are a logically necessary consequence of the
pictures, as well as an inherently necessary consequence of the pictured objects. Taking
Hertz’s condition into account the limits of an accurate picture become clear and in the
following there need no further distinction to be drawn between an object and its picture.
But still this heuristic approach gives not a satisfying solution to the epistemological prob-
lem, so that the interested reader is referred to a soon be published monograph by Soler
Gil (2012), since this thesis will no longer focus on that gap of explanation.
Being aware of the basic problem of epistemology the astrophysical motivation behind this
thesis can be stated by one of the eleven most profound questions that human beings have
posed about the cosmos due to the Committee On The Physics Of The Universe (2003):
“How do cosmic accelerators work and what are they accelerating”. Commonly, the most
powerful particle accelerators in the known universe are denoted by active galactic nuclei
(AGN) and gamma-ray bursts (GRBs). Here, the particles are expected to gain energies
up to 1021 eV and subsequently propagate through the Universe, where they interact with
intergalactic magnetic fields, matter fields (like molecular clouds) and photon fields (like
the cosmic microwave background, CMB) till some are detected by a satellite or a ground-
based instrument. The Fig. 0.1 shows a compilation of recent observations of the resulting
energy spectrum of energetic charged subatomic particles (i.e. cosmic rays, CRs) that
reached the Earth’s atmosphere, in which the main constituent (∼ 85 % above 1GeV) are
protons. Hence, the isotropic CR flux F (E) = dN/dE can be described by a combination
of power-laws (Voigt et al., 1999):
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2 Motivation

Figure 0.1: The weighted cosmic ray spectrum, where the kind of observation, the kinks
in the spectral slope, as well as the approximated particle flux per time and
area are indicated (Becker, 2008).

F (E) ∝


E−2.67 , E < 1015.4 eV
E−3.10 , 1015.4 eV < E < 1018.5 eV
E−2.75 , E > 1018.5 eV .

(0.1)

The two kinks in the spectral slope are the so-called “knee” and “ankle”, which commonly
result from different source populations. So, the CRs below the ankle can be produced
within our Galaxy, whereas the particles with higher energies are of extragalactic origin
due to isotropy and confinement arguments (Becker, 2008). In addition, recent results of
the Pierre Auger Observatory have indicated two further kinks in the highest energetic
part of the cosmic ray energy spectrum (The Pierre Auger Collaboration, 2011).
However, the CRs cannot be traced back to their source, as they are deflected by inter-
galactic magnetic fields and thus, other, uncharged messenger particles (like photons or
neutrinos) have to be considered in order to spot the primary particle accelerator (see
Fig. 0.2). The most promising AGN with reference to the open questions of cosmic accel-
erators belong to the blazar class because of their strong non-thermal and highly variable
radiation phenomena over a broad frequency range. Nevertheless, the primary particle
nature (as well as the radiation mechanism) of the observed radiation is especially at
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Figure 0.2: Propagation and detection of different messenger particles from high energy
cosmic accelerators (Wagner 2004).

γ-ray energies still unclear, as a couple of different approaches lead to accurate results
without being mutually exclusive. Hence, for more than one decade there is in particular
the leptonic and the hadronic ansatz coexisting, whereas the in 2007 and 2008, respec-
tively, launched AGILE and FERMI satellite missions together with the new generation of
ground-based air Cherenkov telescopes such as MAGIC, H.E.S.S. and VERITAS provide
unprecedented accurate coverage of our Universe at GeV to TeV photon energies. The new
observational opportunities yield an increase in the AGN phenomena and the observations
of so-called orphan flares (i. e. a high energy flare without a simultaneous enhancement in
the low energy emission) have favored a hadronic explanation, while other data are better
described by a leptonic model. In addition, several multifrequency campaigns on flaring
blazars have recently shown a strong correlation between the optical, the X-ray and the
TeV emission (Aharonian et al., 2009; Donnarumma et al., 2009; Vercellone et al., 2010)
and hence the same origin of all this non-thermal radiation suggests itself. But still there
is no general unification of the emission scenario of AGN found, so that the detection of
extragalactic high energy neutrinos could finally become the smoking gun evidence of a
hadronic signature in the emission process. But to date even IceCube, the most sensitive
high energy neutrino observatory, that has recently been completed in 2011, has shown in
different analysis (R. Abbasi et al., 2011a, 2011b, 2011c) no hint of a significant flux of
extragalactic neutrinos. The current status of observations and theoretical predictions of
the astrophysical neutrino flux is depicted in Fig. 0.3.
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Figure 0.3: The astrophysical neutrino spectrum which has been observed from the sun
(blue lines) and the supernova explosion 1987A (red lines), as well as the
theoretical flux predictions (dashed lines) from AGN, GRB and the Cosmic
Neutrino Background (CνB) which has been decoupled in the Early Universe.
In addition, the measured spectrum of atmospheric neutrinos with energies
> 0.1GeV and the expected neutrino flux that results from the absorption of
protons by the GZK effect is indicated (Becker, 2008).

So, the increasing observational opportunities also require theoretical models which give
testable predictions and criteria for exclusion concerning the different emission scenarios.
Especially, a reasonably prediction of a time slot for the expected high energy neutrinos
from a hadronic emission scenario is a useful tool in order to increase the significance of
neutrino observations. Furthermore, every non-thermal radiation model is associated with
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a typical and well-known cooling rate relating to the radiating particles, so that another
possible distinguishing feature results from the imprint of the cooling scenario in the ob-
served light curves. Summing up, there are four effects determining the temporal behavior
of the emission volume: (1) The initial condition of relativistic particles, its subsequent
(2) spatial diffusion and (3) continuous cooling processes, as well as (4) propagation ef-
fects of the generated particles (i.e. photons and neutrinos, respectively) in the emission
region. Consequently, this thesis will develop a model for leptonic and hadronic emission
where the effects (1)–(4) are considered. But first the Chap. 1 gives some further introduc-
tions into the astrophysical object class of AGN and blazars in particular, as well as the
general ideas behind the leptonic and hadronic emission approaches, respectively. Then,
the Chap. 2 leads to the general formalisms of the primary particle transport, as well as
its possible acceleration and cooling mechanisms. Subsequently, in Chap. 3 the particle
transport equation is specified and solved for the considered case of relativistic electrons
and protons being picked up into the emission knot of an AGN. The resulting emergent
synchrotron intensity which describes the low energy flaring of AGN is investigated in
Chap. 4 and gives some useful formulas of its temporal features. The Chap. 5 models the
high energy flare of AGN by a leptonic, as well as a hadronic ansatz and finally the time
lags of the different approaches are exposed. In addition, both last-mentioned chapters
conclude with a comparison between the results and the simultaneous observations of the
low and high energy flaring of PKS 2155-304 in July 29–30 2006. The thesis closes with
a summary of testable temporal features of a flaring AGN from optical to γ-ray ener-
gies and highlights the differences between the considered leptonic and hadronic emission
scenarios.



Chapter 1
Introduction

1.1 Active Galactic Nuclei

The name Active Galactic Nuclei (AGN) refers to the compact region at the center
of a galaxy, when its energy output exceeds the emission of the host galaxy, i. e. its
constituents (stars, dust and interstellar medium), at least in some parts of the elec-
tromagnetic spectrum. Except for Gamma Ray Bursts (GRBs) with a luminosity
LGRB ∼ 1049−1051 erg s−1 during a few seconds, AGN are the most luminous source class
in the sky with LAGN ∼ 1044 − 1047 erg s−1 on considerably longer time scales (Becker,
2008). About 50 years after the first observations of point sources with an exceptional
high luminosity by M. Schmidt (1963) or strong broadened emission lines by C. K. Seyfert
(1943), the different phenomena are unified by the current picture of AGN (Antonucci,
1993; Urry & Padovani, 1995), that is sketched in Fig. 1.1. Thus, the different types
of objects mainly result from their different orientation to the observer, as well as their
luminosity. Due to the compactness and the extreme luminosity, it is commonly believed,
that a rotating, super-massive black hole is the central engine of the AGN. The matter
close to the black hole forms an accretion disk, which is fed by a dust torus. As a result
of the accretion, the matter is transferred to electromagnetic radiation, as well as elemen-
tary particles like electrons and protons, that are partially emitted in form of discrete and
relativistic plasmoids perpendicular to the disk. In consequence of the strong magnetic
fields, the plasma outflow is highly collimated and aligned by two opposite jet structures.
However, the jets get decelerated by the ambient medium and expand at a distance of
some tens of kilo-parsec to a much wider structure, the so-called lobes or (in case of a
more elongated form) plumes, which are very luminous at radio wavelengths. A further
constituent of an AGN at a distance of one to ten milli-parsec is the Broad Line Region
(BLR), where cold matter is revolving around the black hole with a high angular velocity,
so that its emission lines are broad due to strong varying Doppler shifts. At larger dis-
tances of several parsec the material is less effected by the central engine and hence the
emission lines are narrower, whereby this region is called the Narrow Line Region (NLR).
Consequently, it becomes apparent, that the visibility of the different constituents of the
AGN and therefore the viewing angle determine different phenomena, i.e. different sub-
classes of an AGN. Another convenient classification criterion distinguishes between radio-

6



1.1 Active Galactic Nuclei 7

Figure 1.1: Sketch of the current picture of an AGN with its different classifications ac-
cording to the viewing angle (Schlickeiser, 2002).

quite and radio-loud AGN , so that collectively the so-called “AGN zoo” is obtained, which
is shown in Fig. 1.2. In order to attain a detailed insight into the different forms of appear-
ance of an AGN the reader is referred to the monographs of Krolik (1999) or Schneider
(2006), since the following examinations will focus on blazars.

Blazar

This subclass of AGN contains the BL Lacertaes (BL Lacs) and Flat Spectrum Radio
Quasars (FSRQs), whereby the FSRQs are more luminous, more distant and have stronger
emission lines.
Blazars are commonly observed when the angle α between the line of sight and the jet of
the AGN is negligible. In this case, the physics of the jet determines the observation of the
AGN due to the relativistic beaming of the jet particles and radiation, respectively. Thus,
the observed specific intensity I∗(ν) of the jet radiation is Doppler boosted, according to
I∗(ν) = δ3 I(ν/δ) (see Appendix A for more details), where δ = [Γ(1 − β cosα)]−1 is the
relativistic Doppler factor of an emission knot with a bulk velocity βc and the correspond-
ing Lorentz factor Γ. Apart from measurements of superluminal motion (e. g. Zhang &
Fan, 2008), there is an increasing list of observational support for this thesis (Ghisellini,
1993) and in addition, the Doppler enhanced emission yields an observational bias, so that
the blazars constitute the largest subclass of the observed AGN.
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Figure 1.2: Classification schema of AGN (Becker, 2008).

Further characteristics of the blazar class are a high non-thermal emission from radio to
high γ-ray frequencies with two distinct bumps in its spectral energy distribution (SED),
as well as variability on short timescales (down to minutes; Albert et al., 2007; Aharonian
et al., 2007) and a high degree of polarization (5 − 10 %; Homan, 2005). As a result of
the observed variability timescale ∆t the maximal extension R of the emission knot is
determined by R ≤ δ∆t c, since the radiation has to escape the emission volume before
it varies in order to observe temporal variability. In reference to the frequencies of the
peaks in the SED one distinguishes FSRQs and LBLs (Low-frequency peaked BL Lacs),
where the first spectral maximum is at sub-mm to IR wavelengths and the second at GeV
energies from the HBLs (High-frequency peaked BL Lacs), which have their maxima about
a factor of 103 higher. However, the ratio of both peak frequencies stays approximately
constant (Fossati et al., 1998). Furthermore, the intrinsic power increases in the sequence
HBL → LBL → FSRQ and hence the properties of these classes can be well-defined by
the importance of an external radiation field (Ghisellini et al., 1998).
Although there are some convenient explanations of the different blazar phenomena, the
primary nature of the non-thermal emission spectrum is still an unsolved question. It
is generally agreed due to the imprint of polarization that the low energy peak in the
electromagnetic spectrum of a blazar is a result of the relativistic electrons. But still it
is unclear, whether these electrons are of primary nature or what mechanism accelerates
them to relativistic energies. Before the details of particle transport are discussed in the
subsequent chapter, a brief overview about the current approaches (which can be sepa-
rated in leptonic and hadronic models) to explain the radiation of an AGN are given in
the following.
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1.1.1 Leptonic emission models

Using ultra-relativistic electrons (and positrons) to explain the blazar spectrum, a natural
correlation between the low and the high energy regime is obtained. On the one hand, the
relativistic electrons (or positrons) interact with a magnetic field and consequently emit
synchrotron radiation, referring to the observed low energy bump of the SED. On the other
hand, the same relativistic electrons (or positrons) transfer momentum to photons with
a lower energy by inverse Compton scattering, which yields the high energy bump. This
scenario is called synchrotron self Compton (SSC) emission, when the synchrotron photons
produced within the jet are the target photons and external Compton (EC) emission in
case of an external target photon field from the accretion disk or the BLR.
The observed spectral and variability properties are mostly well described by leptonic
emission models and also the sequence HBL → LBL → FSRQ can be unified by the
increasing importance of EC processes (Böttcher, 2007). However, there are still blazar
observations (e.g. Böttcher et al., 2009) that are hard to explain by a simple one zone
leptonic emission model. And especially the observed orphan flares of 1ES 1959+650
(Krawczynski et al., 2004) or Mkn 421 (Blażejowski et al., 2005) suggest an hadronic
emission scenario or a at least a complexer leptonic model. Introducing multiple emission
knots is an obvious ansatz, since observations of radio-galaxies have often shown a more
structured jet (e.g. Abdo et al., 2010; Aharonian et al., 2009). But the more complex the
emission model becomes, the less understanding is gained about the astrophysical object,
as the number of free parameters increases and the importance of the additional emission
region is uncertain.

1.1.2 Hadronic emission models

In hadronic emission models relativistic protons are a significant constituent of the plasma
and influence the non-thermal jet emission. The favored scenarios are inelastic interactions
with cosmic matter or photon fields, as well as proton synchrotron radiation. The dominant
channel in hadron-hadron and photo-hadron interactions is the production of charged (with
a fraction of ∼ 1/3) and neutral (with a fraction of ∼ 2/3) pions:

p+ p →
{

p+ p+ π0

p+ n+ π+ , p+ γ →
{

π0 + p

π+ + n
. (1.1)

In contrast to the mean neutron lifetime of about 15 minutes is the mean lifetime of the
pion less than 1µs and also its unstable decay product, the muon, has only a mean lifetime
of about 2µs. Hence, in reference to the emission timescales of minutes to hours the decay
of pions and muons can be considered as instantaneous when the particles’ Lorentz factor
is less than ∼ 107. The main decay modes (with a probability of more than 98%) of the
generated pions are listed below:

π0 → 2γ ,
π+ →µ+ + νµ → e+ + νe + ν̄µ + νµ .

(1.2)

Consequently, in both pion production scenarios the generation of gamma-rays has to go
along with an enhancement in the neutrino emission, so that a neutrino signal from AGN
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is expected, when pion production is a significant interaction mechanism. Furthermore,
the generated secondary electrons need to be examined in matters of their influence on the
radiation production according to the leptonic emission scenarios of the previous section.
In contrast, a pure proton synchrotron model yields no leptonic counterpart emission, as
the high energy bump in the blazar’s SED results from the gyration of relativistic protons
around a magnetic field. But in order to obtain the observed jet luminosities and TeV
energies, as well as the rapid time variability, one requires a high magnetic field strength of
at least some tens of Gauss and the existence of extremely high energy (EHE; E ≥ 1019 eV)
protons (Aharonian, 2000). However, Sect. 2.2.3 shows that also in case of pion production
by photo-hadron interactions with a low-frequency radiation field a high proton energy is
needed in order to generate pions.
Using the hadronic emission models one can also differentiate the BL Lac subclasses, since
the high energy bump in the SED of HBLs can be explained by dominant proton syn-
chrotron radiation, whereas in LBLs the pion production mechanism becomes significant
due to the increasing photon field strength (Mücke et al., 2003).
In a nutshell, the hadronic approach often yields an accurate explanation of the observed
AGN phenomena, but also the pure leptonic approach mostly does, so that further dis-
tinguishing features in the emitted messenger particles of AGN are needed in order to
understand the mechanism of these giant cosmic accelerators.



Chapter 2
Primary particle interactions

2.1 Particle transport equation
In order to obtain an accurate description of the flaring behavior of AGN, as well as suit-
able conclusions on the primary particles, the transport of the primary particles has to be
investigated. The statistical mechanics of charged particles and their mutual interactions
by electromagnetic fields have already been treated in great detail by many monographs.
So, only the basic ideas are subsequently presented and in order to obtain a detailed in-
sight into the calculations the reader is referred to Schlickeiser (2002).
Starting with a relativistic charged particle of the sort a, located at r with the spherical
coordinates p, µ = cos θ, φ in momentum space, it interacts with a cosmic plasma and an
external magnetic field. Based on the high conductivity of the AGN plasmas the absence
of large-scale electric fields can be assumed. Thus, the dynamics of the charged cosmic ray
particles are determined by particle-wave interactions with electromagnetic fields, which
can mostly be separated into a leading field structure F and a superposed fluctuating field
δF . In general, the starting point to determine the collisionless transport of the particles
is the Vlasov equation, where the influence of the electromagnetic fields is described by
the Lorentz force. Furthermore, the detailed fluctuations of the phase space density fa are
not of interest, but only its average Fa = 〈fa〉 over all members of the ensemble. Using a
quasilinear approach, where the fluctuations are of small amplitude, one finally obtains the
Fokker-Planck equation including 25 Fokker-Planck coefficients, that account for the ran-
dom electromagnetic forces of the weak plasma turbulence. However, in most applications
this equation cannot be solved and only its diffusion approximation is considered. Here
the magnetohydrodynamic phase speed vph is assumed to be much less than the individual
cosmic ray particle speed v, so that the particle is scattered appreciably in gyrophase φ
and pitch angle µ, whereby the distribution function Fa(r, p, µ, φ, t) becomes quickly close
to an isotropic equilibrium distribution Na(r, p, t). Consequently, one can substitute

Fa(r, p, µ, φ, t) = Na(r, p, t) + Ga(r, p, µ, φ, t) , (2.1)

where

Na(r, p, t) = 1
4π

∫ 2π

0
dφ
∫ 1

−1
dµ Fa(r, p, µ, φ, t) , (2.2)

11
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so that the anisotropic part Ga(r, p, µ, φ, t) of the distribution function is determined by

1
4π

∫ 2π

0
dφ
∫ 1

−1
dµ Ga(r, p, µ, φ, t) = 0 . (2.3)

After averaging the Fokker-Planck equation over µ and φ, the resulting equation has to
be subtracted from the not averaged equation in order to obtain the subsequent diffusion-
convection equation

∂Na
∂t
− S(r, p, t) = ΛrNa + ΛpNa . (2.4)

Here S(r, p, t) denotes the source function and the three dimensional spatial operator Λr,
as well as the momentum operator Λp are defined by

ΛrNa ≡ ∇ · [D(r, p, t)∇Na −VNa] (2.5)

and

ΛpNa ≡
1
p2

∂

∂p

(
p2Dp(r, p, t)

∂Na
∂p

+ p3

3 ∇ ·VNa − p
2 ˙̃pNa

)
− Na
T (r, p) , (2.6)

respectively. In doing so, the spatial and momentum diffusion coefficients D(r, p, t) and
Dp(r, p, t), respectively, as well as the effective cosmic ray bulk velocity V are determined
by integrals of different Fokker-Planck coefficients over the pitch angle. Furthermore,
T (r, p) denotes the time scale of catastrophic momentum losses and ˙̃p describes the con-
tinuous momentum loss rate. Hence, the momentum convection terms can be merged with

ṗ = ˙̃p− p∇ ·V/3 , (2.7)

where the influence of the divergence of the bulk velocity due to adiabatic expansion is
discussed in Sect. 2.2, as well as the different continuous momentum losses of relativistic
electrons and protons.
Dependent on the properties of the plasma turbulence and the background medium arises a
specific physical situation, that defines the influence of the different transport parameters
of Eq. (2.4). In the following, there is no significant particle acceleration within the
emission region assumed, so that momentum diffusion, which refers to the first term in
Eq. (2.6), can be neglected. Additionally, the transport of the injected particles is expected
to be dominated by spatial parallel diffusion due to the high particle velocities and T (r, p)
has to be much larger than the time scale on which the considered continuous losses
operate, in order to obtain significant emission from the radiating particles. Thus, the
transport Eq. (2.4) can be simplified to

∂Na
∂t
− S(r, p, t) = ∇ · [D(r, p, t)∇Na]−

1
p2

∂

∂p

(
p2ṗNa

)
. (2.8)

According to the separation (2.1), the total number density Na(r, t) is defined by

Na(r, t) ≡
∫

d3p Fa(r, p, µ, φ, t) = 4π
∫

dp p2Na(r, p, t) =
∫

dp na(r, p, t), (2.9)
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as the anisotropic part vanishes by definition (2.3). Subsequently, the isotropic, dif-
ferential particle density na(r, p, t), as well as the isotropic, differential source term
q(r, p, t) = 4π p2 S(r, p, t) are considered, so that the kinetic equation (2.8) yields

∂na
∂t

= ∇ · [D(r, γ, t)∇na] + ∂

∂γ
(|γ̇| na) + q(r, γ, t) , (2.10)

where the relativistic momentum p = γmac is substituted by the Lorentz factor γ � 1
and the algebraic sign of the loss term is already taken into account.
In general, the three-dimensional spatial diffusion Eq. (2.10) is solved by spherical Bessel
functions and spherical harmonics, as shown in the Appendix B.1. But due to pitch angle
diffusion, the influence of anisotropy quickly decreases with increasing time and thus,
further calculations idealize that the distribution of relativistic particles is independent of
its solid angle. The temporal and spatial dependence of the diffusion coefficient D(r, γ, t)
possibly refer to the variation of the magnetic energy density according to the influence
of the kinetic energy density of the radiating particles (Schlickeiser & Lerche, 2008). But
in order to obtain an analytical solution of Eq. (2.10), the nonlinear behavior of spatial
diffusion is neglected and the magnetic field, as well as its turbulence are assumed to
have a constant ratio. However, based on the momentum-dependent Larmor radius of the
relativistic particles the spatial diffusion coefficient is still considered to depend on the
particles’ Lorentz factor. Finally, the transport equation becomes

∂na
∂t

= 1
r2

∂

∂r

(
r2D(γ) ∂na

∂r

)
+ ∂

∂γ
(|γ̇| na) + q1(γ, t) q2(r) , (2.11)

with the separable source term q(r, γ, t) = q1(γ, t) q2(r).

2.2 Particle acceleration and cooling
In order to specify the physical conditions of the transport equation (2.11), the acceleration
and cooling processes of the relativistic particles have to be discussed. Generally, an
astrophysical system loses its energy by interactions of its constituents or an adiabatic
expansion of the system itself. Considering the latter in the simple case of a uniformly
expanding sphere of radius R = 1015R15 cm with an expansion velocity V0 = β0 c at the
boundary of the emission knot. Thus, the radial velocity distribution inside the sphere at
a radius r is determined by V = V0(r/R), so that ∇ · V ' 3R−1 v0. Corresponding to
Eq. (2.7) the energy loss of the particles within the expanding volume by adiabatic cooling
can be approximated by (Longair, 1992)

|γ̇ad| =
1
3 (∇ · V ) γ ' 3 · 10−5 β0R

−1
15 γ s−1 . (2.12)

The competing cooling processes according to the interactions of the relativistic particles
with its environment are specified in the Sect. 2.2.2 and 2.2.3. While the astrophysical en-
vironment sets a distinct cooling scenario, there are several possible acceleration scenarios
explaining the relativistic particle energy, as listed by Böttcher (2007). A favored scenario
is the acceleration of particles at an integrated or isolated shock front in the jet, according
to the so-called first order Fermi acceleration. In order to compete with the radiation
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losses, the acceleration process has to be fast. Hence, the particle spectrum obtains a high
energy cut-off, instead of a low energy cut-off, which is in contrast to the required cut-offs
to model the observed radiation spectra of a blazar (Pohl & Schlickeiser, 2000). A rather
general problem of the mechanism of shock acceleration is related to the multiplicity of
basic assumptions (e. g. the nature of the magnetohydrodynamic turbulence in the jet, the
shock structure itself, etc.), which can hardly be verified, especially in the case of multiple
shocks or relativistic shocks with an anisotropic pitch angle distribution.

2.2.1 Pickup model
An alternative explanation based on much less constrains is the pickup model, that de-
scribes kinematically the injection of particles into an ultra-relativistic plasma outflow:
Due to the conversion of electromagnetic into plasma kinetic energy a plasmoid volume
with a particle density Nb escapes with a high Lorentz factor Γ � 1 from the central
engine along the magnetic field structure, through intergalactic and interstellar matter
with a much lower particle density Ni. In the rest frame of the plasmoid the ambient
medium constitutes a relativistic particle beam of mostly electrons and protons parallel
to the magnetic field, that aligns the jet and has as a first approximation the constant
strength B0. This antiparallel plasma streams generate two-stream instabilities, which
amplify small initial plasma fluctuations to electrostatic and electromagnetic waves. In
case of standard AGN jet parameters the beam of ambient electrons and protons is quickly
relaxed to a plateau-distribution in parallel momentum by the electrostatic waves (Pohl et
al., 2001). On considerably longer (but still short in reference to its emission) time scales

τiso ' 0.02N1/2
b N∗−1

i Γ−1 s , (2.13)

the plateau distributed particles become spatially isotropic by the electromagnetic waves
(Pohl & Schlickeiser, 2000) and hence they are picked up by the outflowing plasmoid
volume. Consequently, there is no re-acceleration considered and the pickup process is
already determined by the initial conditions, e. g. Lorentz factor Γ of the plasmoid, as well
as the ambient particle density N∗i in the rest frame of the plasmoid. In case of a nonuni-
form ambient interstellar medium N∗i 6= const. the pickup process is highly variable and
thus, can easily explain the observed short time variability of the non-thermal radiation.
However, the examinations of Vainio (2004) have shown, that the isotropic particle distri-
bution quickly propagates back to the boundary of the plasmoid volume and leaks outside,
while forming a magnetized shock front ahead of the outflow due to the interaction with
the ambient medium. This shock front may shield charged particles from free streaming
into the plasmoid volume and therefore challenge the simple pickup scenario. But the neu-
tral particles of the partially ionized interstellar medium still stream unaffectedly into the
plasmoid volume, where they are ionized according to charge-exchange (electron-impact)
interactions with electron-proton (electron-positron) plasma (Gerbig & Schlickeiser, 2007).
Therewith, the neutral particles sustain the simple form of the pickup model.
After isotropization at a time τiso the energy of relativistic protons is about a factor of
1840 higher than the energy of the relativistic electrons (according to their higher mass),
so that relativistic proton interactions in the outflowing plasma are attractive candidates
for the origin of the high energy radiation of blazars. However, there are about as many
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cooling as acceleration scenarios and thus, the commonly discussed interaction processes
of cosmic ray electrons and protons are investigated in sequence.

2.2.2 Relativistic electron cooling

The dominant interactions of relativistic electrons with their astrophysical environment
are of electromagnetic nature. Hence, there is a clear relation between the observed
electromagnetic radiation spectra and the properties of the radiating electrons, which in
turn are affected by the corresponding energy loss rate. As these interactions and their
exact derivations are the topic of plenty publications since many decades, this thesis will
not emanate from the first principles, but concentrate on the link between the continuous
energy loss rate of the particles and the resulting electromagnetic radiation.

Synchrotron radiation

In the presence of a magnetic field a charged particle is forced to follow the magnetic
field line on a spiral path as a result of the Lorentz force. Thus, the particle ’s trajectory
is deflected by an angle α = λB/rL, where λB is the coherence length of the magnetic
field and rL is the Larmor radius of the charged particle. In doing so, the particle emits
radiation at a beaming angle θ ∝ γ−1, where γ is the Lorentz factor of the particle. As

Figure 2.1: Distinguishing features of synchrotron (a) and jitter (b) radiation according to
the emission from different points along the particle’s trajectory (Medvedev,
2000).

shown in Fig. 2.1 one has to distinguish two different radiation regimes, that depend on
the magnetic field structure: In the case (a) of large scale weakly inhomogeneous magnetic
fields, the particles deflection angle is much larger than the beaming angle and thus one
can average over the pitch angle to derive the so-called synchrotron radiation. However,
in the opposite case (b) of small-scale inhomogeneities, the deflection of the particle’s
trajectory is smaller than the beaming cone and the particle suffers high frequency jittering
in perpendicular direction. The resulting jitter radiation occurs in γ-ray burst (GRB)
shocks where λB ∼ 102 cm (Dermer, 2009), whereas the magnetic field in the jet of an AGN
is commonly supposed to be less inhomogeneous, so that subsequently the synchrotron
radiation is in the focus.
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Here a single relativistic particle with a massm produces a broad continuum of synchrotron
photons with a frequency ν, which can be described by an integral over the modified
Bessel function of the second kind K5/3(x). An accurate approximation of the pitch angle
averaged spectral synchrotron power in vacuum (Crusius & Schlickeiser, 1986, 1988) yields

Ps(ν, γ) ' P0

(
ν

νsγ2

) 1
3

exp(− ν

νsγ2 ) , (2.14)

where P0 = 2.647× 10−10 eV s−1 Hz−1. Below the characteristic frequency

νc = νs γ
2 = 3eBγ2/(4πmc) (2.15)

the spectral power exhibits a ν1/3–dependency, whereas for ν � νsγ
2 the synchrotron

power cuts off exponentially and becomes negligibly small. Integrating the power spectrum
(2.14) over all frequencies ν the pitch angle averaged synchrotron losses in the ultra-
relativistic limit γ � 1 yields

−γ̇syn = 4
3
σT UB
mec

(
me

m

)3
γ2 s−1 , (2.16)

with the energy density UB = B2/8π of the magnetic field of strength B and the Thomson
cross-section σT = 6.65 · 10−25 cm2. Apparently, the synchrotron cooling is most efficient
in the case of light charged particles, like electrons.
According to Schlickeiser & Crusius (1988) this energy loss rate is accurate at a Lorentz
factor γ � γR and exponentially damped when γ � γR, where

γR = 2.1 · 10−3 (Nb/1 cm−3)1/2 (B/1G)−1 (2.17)

denotes the Razin-Tsytovich Lorentz factor in a random magnetic field. But also in the
Razin-Tsytovich regime the modification of Eq. (2.16) has no influence on the total energy
loss rate, as the energy losses by Coulomb, bremsstrahlung or inverse Compton scattering
are mostly dominant. Starting with the latter, these interaction process will be investigated
in turn.

Inverse Compton radiation

The interaction of a single electron at rest with a photon was in mathematical detail
first explained by Arthur Holly Compton in 1923. However, in the case of relativistically
moving electrons the energy exchange is inverted and the electron transfers a part of its
kinetic energy to the lower energetic (compared to the rest mass of the electron) target
photon, which is accordingly scattered to a higher frequency. Hence, this so-called inverse
Compton (IC) scattering may constitute a crucial source of high energy photons, as pointed
out in Sect. 1.1.1.
Here a spatially isotropic particle distribution is considered and thus, the probability that
an electron with the Lorentz factor γ scatters a photon of energy ε up to an energy Eγ is
given by the differential cross-section (Blumenthal & Gould, 1970)

σIC(Eγ , ε, γ) = 3σT
4εγ2 G(q,Γe) cm2 eV−1 , (2.18)



2.2 Particle acceleration and cooling 17

with

G(q,Γe) = 2q ln q + (1 + 2q)(1− q) + (Γeq)2(1− q)
2(1 + Γeq)

, (2.19)

where

Γe = 4εγ
mec2 and q = Eγ

Γe(γmc2 − Eγ) . (2.20)

Due to the kinematics of this process the range of values is confined by

0.25 γ−2 ≤ q ≤ 1 . (2.21)

Using the cross-section (2.18) the IC power of a single relativistic electron in a target
photon field of differential number density nph(ε, r) is determined by (Schlickeiser, 2002)

PIC(Eγ , γ, r) = cEγ

∫ ∞
0

dε nph(ε, r)σIC(Eγ , ε, γ) erg s−1 eV−1 . (2.22)

The resulting energy loss of the relativistic electrons is calculated by integration of the IC
power (2.22) over all scattered photon energies Eγ . In order to obtain an antiderivative
the calculations are in the following restricted by the Thomson limit (Γe � 1), so that the
energy loss is accurately approximated by

−γ̇IC '
4
3
σT Uph(r)
mec

γ2 s−1 , (2.23)

with the target photon energy density

Uph(r) =
∫ ∞

0
dε ε nph(ε, r) . (2.24)

Here the loss term (2.23) shows the same γ2-dependence as the synchrotron radiation
losses (2.16), whereas in the extreme Klein-Nishina limit, i. e. Γe � 1, the IC scattering
loss rate increases only with ln γ.

Non-thermal bremsstrahlung

In the case of non-thermal bremsstrahlung cooling a relativistic electron of energy
E = γmec

2 is deflected by the Coulomb potential of the atoms, ions or molecules in
the traversed medium and emits a γ-ray of energy Eγ . The scattering properties of the
electrostatic target are described by the scattering functions φ1(∆) and φ2(∆), which
depend on the energy-dependent parameter

∆ = Eγmec
2

4αE(E − Eγ) . (2.25)

In terms of these functions (listed in Tab. 2.1) the differential cross-section for the non-
thermal bremsstrahlung interaction, as first derived by Bethe & Heitler in 1934, yields

σB(Eγ , E) = 3ασT
8π

[(
1 + (1− Eγ/E)2

)
φ1 −

2
3(1− Eγ/E)φ2

]
cm2 eV−1, (2.26)
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with the fine structure constant α = 1/137.037. When an unshielded charge Ze is the
target one obtains (Blumenthal & Gould, 1970) φ1 ' φ2 ' Z2φu (see Tab.2.1), where

φu = 4 ln
[

2E
mec2

(
E − Eγ
Eγ

)]
− 2 (2.27)

describes the scattering by a proton or an electron. In the case of a general atom the
scattering functions become more complex due to the shielding effect that reduces the
cross-section for small ∆. However, at large ∆ the scattering system becomes unshielded,
so that the expression (2.27) is convenient.
Hence, the spontaneously emitted non-thermal bremsstrahlung power of a charged particle
that traverses a medium with j different atoms, ions or molecules with the number density
Nj yields (Schlickeiser, 2002)

PB(E,Eγ) = cEγ
∑
j

Nj σB,j(E,Eγ) erg s−1 eV−1 . (2.28)

In order to obtain the bremsstrahlung cooling of a single relativistic electron one has to
integrate the power (2.28) over all photon energies Eγ , but an explicit expression is only
derived in the limiting cases of strong-shielding (∆ � 1) and weak-shielding (∆ � 1)
limits. Consequently, one obtains for an overall neutral and completely ionized plasma
the energy loss rate

−γ̇B = 3αcσT
2π γ

(
ln γ + ln 2− 1

3

) ∑
j

Nj Zj(Zj + 1) s−1 (weak-shielding) . (2.29)

Beyond this plasma conditions the expression is still appropriate for γ . 30/Z. However,
in the strong-shielding limit (γ & 30/Z) the neutral components of the medium have
constant scattering functions with φ1,j ' φ2,j ' φj , as seen in Tab.2.1 and thus the energy
loss rate yields

−γ̇B = 3αcσT
8π γ

∑
j

Nj φj s−1 (strong-shielding) . (2.30)

Only at small particle energies the difference between the equation (2.29) and (2.30) be-
comes significant. So, in contrast to the previous energy loss rates, the non-thermal
bremsstrahlung energy loss rate basically depends linearly on the Lorentz factor γ.

Excitation- and Ionization losses

A relativistic particle of energy E = γmc2, which traverses a medium of atomic matter or
fully ionized plasma transfers a part of its kinetic energy to the particles of the medium.
In atomic matter the energy loss results from the excitation and ionization of the bound
atomic levels. Whereas the energy loss in a plasma arises from the energy gain of individual
plasma constituents (especially the electrons of particle density Ne) by scattering, as
well as the excitation of plasma oscillations, when the particle energy E ≥ hνp, where
νp = (Nee

2/πme)1/2 is the plasma frequency.
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Table 2.1: The scattering function φu for a proton (or electron), as well as φ1 and φ2 when
the scattering system is H, He+ or He (Blumenthal & Gould, 1970).

∆ φu φ1,H φ2,H φ1,He+ φ2,He+ φ1,He φ2,He
0 ∞ 45.79 44.46 ∞ ∞ 134.60 131.40
0.01 33.33 45.43 44.38 113.50 111.14 133.85 130.51
0.05 26.89 44.11 43.65 105.67 104.13 130.86 129.26
0.1 24.12 42.64 42.49 101.28 100.34 127.17 126.76
0.5 17.68 34.97 34.93 84.90 84.87 104.60 105.21
1 14.91 29.97 29.78 74.00 73.72 89.94 89.46
5 8.49 18.09 17.28 44.66 43.04 54.26 51.84
10 5.70 13.65 12.41 32.99 30.52 40.94 37.24

Consequently, the energy loss depends, like in the case of bremsstrahlung, on the traversed
medium, so that the energy loss rate of a relativistic electron yields (Schlickeiser, 2002)

−γ̇C = 3
4cσTNe

(
ln γ + 2 ln mec

2

hνp

)
s−1 (in a plasma) (2.31)

and

−γ̇C = 9
4cσT

∑
j

NjZj

(
ln γ + 2

3 ln mc2

〈∆E〉j

)
s−1 (in atomic matter) , (2.32)

respectively. Here 〈∆E〉j denotes the average energy to excite a bound electron of the
atomic species j. Thus, in both cases there is only a logarithmic energy dependence and
the energy loss rate is basically independent of γ.
The traversed medium becomes heated by the interactions and therefore emits thermal
radiation, so that there is an indirect link between the thermal emission and the relativistic
electrons. Another significant source to heat the cosmic medium are elastic interactions
with relativistic protons, which will be among others discussed in the following section.

2.2.3 Relativistic proton cooling
The previous section has shown that the point-like electromagnetic energy losses of rela-
tivistic electrons involve the Thomson cross-section σT , which is proportional to the square
of the radius of the radiating electron. According to the bigger proton mass mp the cross-
section of electromagnetic interactions of a proton is about a factor of (me/mp)2 smaller,
so that these interactions can be neglected in most of the astrophysical applications.
However, some of the observed γ-ray spectra of AGN (like Mrk 501 or Mrk 421) are also
well described by a proton synchrotron emission model (Mücke & Protheroe, 2001), when a
high magnetic field strength, as well as high particle Lorentz factors are assumed. Referred
to Eq. (2.16) the relativistic protons are cooled down about a factor (mp/me)3 ' 6 · 109

less than electrons, when both particle species have the same Lorentz factor. Furthermore,
the characteristic frequency νc of synchrotron radiation is by a factor mp/me smaller for
protons than for electrons. But using significant particle acceleration the balance of shock



20 Chapter 2 Primary particle interactions

acceleration and synchrotron losses yields the ratio γp,max/γe,max ≥ mp/me (Mücke &
Protheroe, 2001) of the maximal Lorentz factor of protons and electrons. Therefore, the
maximal synchrotron emission of the relativistic protons is nevertheless expected at much
higher energies than the emission of relativistic electrons. However, these ultra-relativistic
protons are at the same time harder to confine in the emission region, since their Lar-
mor radius is proportional to the particles’ momentum. In addition, an efficient particle
acceleration within the emission region is needed (but in this thesis excluded) in order
to obtain a sufficiently high Lorentz factor of the protons and therefore significant syn-
chrotron losses.
As a consequence, the remaining hadronic interaction processes are collisions with cosmic
matter (i. e.mostly protons and α particles) and photon fields. In the general case of inelas-
tic collisions in the center-of-momentum system, the two colliding particles a and b with
the masses ma and mb, as well as the four-momenta Pa = (εa/c,pa) and Pb = (εb/c,pb)
have to satisfy the threshold energy relation

εaεb − papbc2 = mambc
4 + ∆mc4 (ma +mb + ∆m/2) (2.33)

in order to create particles with a mass difference ∆m. When both incoming particles
have non-zero masses the relation yields

γaγb −
√

(γ2
a − 1)(γ2

b − 1) cos θ = 1 + ∆m
( 1
ma

+ 1
mb

+ ∆m
2mamb

)
, (2.34)

whereas in case of particle-photon collision (mb = 0), one obtains

εb

(
γa −

√
γ2
a − 1 cos θ

)
= ∆mc2

(
1 + ∆m

2ma

)
. (2.35)

Here θ denotes the particles’ collision angle in the lab-system.

Interactions with photon fields

There are commonly two important proton-photon interaction scenarios in astrophysi-
cal environments, which are on the one hand, pair production (especially e+e−) in the
field of the proton and on the other hand, photo-hadron (mostly photo-pion) production.
Assuming an isotropic photon distribution in space and a mean photon energy 〈ε〉, the
minimum threshold Lorentz factor γmin results from head-on collisions (θ = π). Thus, the
e+e−-production threshold yields with Eq. (2.35)

γe
+e−
min ' mec

2/〈ε〉 (2.36)

and the minimal Lorentz factor of producing K pions with a mass mπ becomes

γγπmin '
Kmπc

2

2〈ε〉

(
1 + Kmπ

2mp

)
. (2.37)

Both interaction processes have already been treated in detail by Blumenthal (1970),
Chodorowski et al. (1992) and Sikora et al. (1987), respectively, whereon the interested
reader is referred, since this thesis limits itself in the following to the energy losses of these
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interactions without the associated derivation.
A prominent astrophysical application of the photo-pair production is the interaction of
cosmic ray protons with a blackbody radiation field, like the cosmic microwave background.
Here the energy loss of a proton at its threshold Lorentz factor (2.36) is determined by
(Mannheim & Schlickeiser, 1994)

−γ̇e+e− = 2.6·10−4 uγ
erg cm−3

(〈kbT 〉
eV

)−2
s−1 (for γ ' γe+e−

min in a thermal photon field) ,

(2.38)

whereas in the case of a power-law distributed photon density nph(ε) ∝ ε−2

−γ̇e+e− = 2.9 ·10−16 uγ
erg cm−3 γ

2 s−1 (for a general γ in a non-thermal photon field) .

(2.39)

The photon energy density uγ is expressed by the Stefan-Boltzman law (uγ = σT 4, with
σ = 7.56 · 10−15 erg cm−3 K−4).
EHE protons with a Lorentz factor γ � γγπmin lose their energy in interactions with a
photon field predominantly by photo-pion production (see Fig. 2.2). In contrast to the
previous case, this interaction leads to a significant flux of secondary neutrinos (as already
investigated in Sect. 1.1.2). Similar to the previous case, the resulting energy loss of a
proton yields (Mannheim & Schlickeiser, 1994)

−γ̇γπ = 19 uγ
erg cm−3

(〈kbT 〉
eV

)−2
s−1 (for γ ' γγπmin in a thermal photon field) , (2.40)

as well as

−γ̇γπ = 4.0 · 10−16 uγ
erg cm−3 γ

2 s−1 (for a general γ in a non-thermal photon field) .

(2.41)

Beyond the thresholds (2.36) and (2.37), the general behavior of the energy loss time of
EHE protons in a thermal radiation field is shown in Fig. 2.2.

Interactions with matter fields

Another important collision scenario in astrophysical environments are the interactions
with atoms and molecules of the interstellar and intergalactic medium.
First, the inelastic p-p and p-α collisions are investigated which give a hadronic explanation
of the γ-ray flares of AGN (see Sect. 1.1.2) according to the production of secondary
particles (predominantly charged and neutral pions) and its subsequent decay products.
Based on Eq. (2.34) the proton energy threshold Eth = γthmpc

2 = 1.22GeV of hadronic
pion production is much lower than in the case of photo-pion production. With Fermi’s
theory of pion production (Fermi, 1950), the mean Lorentz factor of the generated pions
in the rest frame of one of the initial protons yields γ̄π = γ

3/4
p , so that the differential
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Figure 2.2: The energy loss time and attenuation length of relativistic protons in the 2.7 K
microwave background radiation field according to pair production and photo-
pion production, in comparison with the redshift expansion loss time. Addi-
tionally, the pair production losses of 56Fe is depicted (Puget et al., 1976).

cross section σπk,pp(Eπ, Ep) for the k’th interaction can be approximated by a δ-function
(Schlickeiser, 2002)

∑
k

σπk,pp(Eπ, Ep) ' Kσπpp(Ep)
δ(γπ − γ̄π)
mπc2 . (2.42)

HereK denotes the multiplicity of the reaction and the total inclusive cross-section σπpp(Ep)
is accurately evaluated by (Kelner et al., 2006)

σπpp(Ep) ' (34.3 + 1.88 (Ep/1TeV) + 0.25 (Ep/1TeV)2)
(
1− (Eth/Ep)4

)2
mb. (2.43)

The pion (i. e. π0, π±) power of a single relativistic proton of energy Ep = γpmpc
2 in a

target particle density Nt(r) = NH1(r) + 2NH2(r) that mostly consists of hydrogen is
determined by (Schlickeiser, 2002)

P (Eπ, Ep) = 1.30 c γπNt(r)σπpp(Ep) δ(γπ − γ3/4
p )H[Ep − Eth] erg s−1 eV−1 . (2.44)

The factor 1.30 takes into account the chemical composition of a target medium compara-
ble to the interstellar medium and the Heaviside function H refers to the threshold energy
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of this interaction. Laboratory measurements have shown, that the number of generated
pions per interaction increases slowly and the multiplicity can generally be approximated
by K ' γ1/4

p (Mannheim & Schlickeiser, 1994). Hence, after integration of the pion power
(2.44) over all pion energies Eπ, the energy loss of a single relativistic proton by pion
production yields

−γ̇ppπ = 4.9mπ

mp
cNt σ

π
pp(Ep)H[Ep − Eth]γp s−1 , (2.45)

where the floating point number accounts for the production of the three different π-
mesons, as well as the different collision targets in the target medium. When the target
medium consists of a thermal plasma of protons and electrons, only proton-proton pion
production may occur, so that the factor 4.9 shifts to 3.
Secondly, the excitation of nuclei has to be considered, i. e. the collision of fast protons
with α particles or heavier nuclei at rest. The observation of these spectral features reveal
a lot about the composition and state of the observed medium, since the excited nucleus
emits a characteristic γ-ray due to the nuclear transition to its ground state. However,
the resulting energy losses of the relativistic protons are negligibly small compared to the
energy losses by Coulomb and ionization interactions, which will be discussed at last.
Like in the case of relativistic electrons the energy loss rate due to Coulomb and ionization
processes has to be distinguished by the target medium:
In a fully ionized plasma, the Coulomb collisions are dominated by scattering off the
thermal electrons of particle densityNe and velocity cβe, where βe = 0.026 (Te/2·106 K)1/2.
At large proton velocities βc with β ≥ 0.0286βe the energy loss rate of a single proton
yields

−γ̇C = 3.3 · 10−16Ne
β2

1.3β3
e + β3 s−1 (in a plasma). (2.46)

In neutral matter, the relativistic protons lose most of their energy by ionization. In case of
atomic hydrogen the ionization losses have a maximum at 49 keV, which equals the kinetic
energy of the orbit electrons with the velocity β0 c = 1.4e2~−1 = 0.01 c. For protons with
γp ≤ 918 the energy loss rate due to ionization of a target gas like the interstellar medium
can be approximated by

−γ̇Io = 1.9·10−16Nt (1+0.0185 ln β H[β−β0]) 2β2

β3
0 + 2β3 s−1 (in atomic matter). (2.47)

Comparing the different interaction processes (2.45–2.47) with matter shows that the pion
production sets the dominating energy loss (2.45) of relativistic protons with γ � 1 in
cosmic matter environments. The energy losses by Coulomb (2.46) and ionization (2.47)
effects only have to be taken into account below the energy threshold Eth of hadronic pion
production.





Chapter 3
Primary particle distribution in the
emission knot

In the following all physical quantities are calculated in a coordinate system comoving
with the radiation source. Furthermore, a couple of default parameters (dimensionless
parameters like R15, etc.) are in the course of this thesis investigated which are set to one,
unless otherwise stated, in order to display the results.

3.1 Solution of the particle transport equation
In this section, a general solution of the transport Eq. (2.11) of relativistic electrons (index
e) and protons (index p) is given and afterwards, the physical content is specified using
the knowledge of the previous chapter for a certain astrophysical environment.
Since the spatial diffusion operator is of Sturm-Liouville type, the kinetic transport
Eq. (2.11) is solved in the eigenspace of the operator, where the eigenfunctions are deter-
mined by

1
r2

∂

∂r

(
r2∂f

∂r

)
+ λ2 f = 0 . (3.1)

Here a general function f(r) is applied which corresponds to the relativistic particle density
ne,p(r, γ, t). Using two spatial boundary conditions the eigenfunctions, as well as the
eigenvalue λ, are well-defined.
On the one hand, there has to be a finite density of particles in the center of the emission
knot, i. e.

ne,p(r = 0, γ, t) <∞ . (3.2)

On the other hand, the particle flux at the boundary surface of the knot is exclusively
outward directed. Hence, the radial velocity of the particle has to be positive at r = R
and the total leakage flux jl of particles with relativistic velocity (v ' c) yields

jl(r = R) =
∫ 1

0
dµ cµne,p = 1

2 c ne,p . (3.3)

25
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This leakage is also described by Fick’s law of diffusion

jd = D(γ) ∂ne,p
∂r

, (3.4)

so that the second boundary condition becomes[
∂ne,p
∂r

+ c

2D(γ) ne,p
]
r=R

= 0 . (3.5)

Considering the diffusion limit D(γ)� cR the second term dominates the condition and
the Eq. (3.5) is well approximated by

ne,p(r = R, γ, t) = 0 . (3.6)

With the first boundary condition (3.2) the differential equation (3.1) is solved by

f(r) =
∞∑
k=1

ckfk(r) =
∞∑
k=1

ck
sin(λk r)

r
, (3.7)

where fk is the k’th eigenfunction and ck denote its coefficient of expansion. Using the
second boundary condition (3.5), the eigenvalues λk are generally determined by the tran-
scendental equation

tan(Rλk)
Rλk

= 1
1− cR

2D(γ)
. (3.8)

In the case of full diffusion (D(γ) � cR) this equation, as well as the constraint (3.6),
yield the eigenvalues

λk = kπ

R
, k = 1, 2, 3, ... . (3.9)

Therewith, the orthonormality relation of the eigenfunctions fk(r) is given by∫ R

0
dr r2 fk(r) fi(r) = R

2 δki . (3.10)

Consequently, the spatial source term q2(r), as well as the particle density ne,p(r, γ, t) are
expanded into the spatial eigenfunctions (3.7) in order to simplify the transport Eq. (2.11):

ne,p(r, γ, t) =
∞∑
k=1

ne,pk (γ, t)sin(λk r)
r

(3.11)

and

q2(r) =
∞∑
k=1

bk
sin(λk r)

r
, (3.12)

where due to the Eq. (3.10)

bk = 2
R

∫ R

0
dr q2(r) r sin(λkr) . (3.13)
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Inserting the expansions (3.11) and (3.12) into the kinetic Eq. (2.11) and using the or-
thonormality relation (3.10) yields for the particle expansion functions ne,pk (γ, t) the equa-
tion

∂ne,pk (γ, t)
∂t

+D(γ)λ2
k n

e,p
k (γ, t)− ∂

∂γ

(
|γ̇| ne,pk (γ, t)

)
= bk q1(γ, t) . (3.14)

The ansatz

ne,pk (γ, t) = re,pk (γ, t) exp
(
λ2
k

∫
dγ D(γ)/ |γ̇|

)
(3.15)

leads to the equation

∂re,pk (γ, t)
∂t

− ∂

∂γ

(
|γ̇| re,pk (γ, t)

)
= bk q1(γ, t) exp

(
−λ2

k

∫
dγ D(γ)/ |γ̇|

)
, (3.16)

that is solved by

re,pk (γ, t) = bk

∫ ∞
−∞

dt′
∫ ∞

0
dγ′ q1(γ′, t′) exp

(
−λ2

k

∫
dγ′D(γ′)/

∣∣∣γ̇′∣∣∣) ge,pk (γ, γ′, t, t′) ,

(3.17)

where the Green’s function ge,pk (γ, γ′, t, t′) is defined by

∂ge,pk (γ, t)
∂t

− ∂

∂γ

(
|γ̇| ge,pk (γ, t)

)
= δ(t− t′) δ(γ − γ′) . (3.18)

Substituting Ge,pk (x, x′, t, t′) = |γ̇| ge,pk (γ, γ′, t, t′) with

x(γ) = −
∫

dγ |γ̇|−1 . (3.19)

the differential Eq. (3.18) becomes

∂Ge,pk (x, t)
∂t

+ ∂ Ge,pk (x, t)
∂x

= δ(t− t′) δ(x− x′) . (3.20)

Using Laplace transformation (Appendix B.2) the solution of Eq. (3.20) is finally deter-
mined by

Ge,pk (x, x′, t, t′) = H[t− t′] δ
(
x− (x′ + t− t′)

)
, (3.21)

where H[t − t′] denotes Heaviside’s step function. In order to express the expansion
coefficients in terms of the Lorentz factor, the relation

δ(f(γ′)) =
∑
i

δ(γ′ − γi)
|f ′(γi)|

(3.22)

is applied for the function

f(γ′) = x(γ)− (x(γ′) + t− t′) (3.23)
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and hence

ge,pk (γ, γ′, t, t′) = H[t− t′] |γ̇|−1∑
i

|γ̇i| δ(γ′ − γi) , (3.24)

in which γi is the i’th zero of f(γ′). After inserting in Eq. (3.17), the delta and the
Heaviside function are passed to account, so that the expansion function (3.15) finally
yields

ne,pk (γ, t) = bk |γ̇|−1
∫ t

−∞
dt′

∑
i

|γ̇i| q1(γi, t′)Ee,pk (γ, γi) , (3.25)

with

Ee,pk (γ, γi) = exp
[
−λ2

k

(∫
dγi

D(γi)
|γ̇i|

−
∫

dγ D(γ)
|γ̇|

)]
. (3.26)

So, in the case of full diffusion the particle transport equation (2.11) is solved without loss
of generality by

ne,p(r, γ, t) =
∞∑
k=1

bk
sin(λk r)

r
|γ̇|−1

∫ t

−∞
dt′

∑
i

|γ̇i| q1(γi, t′)Ee,pk (γ, γi) . (3.27)

Subsequently, the general content of the relativistic particle density (3.27) is specified by
the assumed AGN conditions of this thesis, so that further conclusions can be drawn.

3.2 Specification of the particle transport
The previous sections provide an extensive description of charged cosmic rays in an as-
trophysical environment, which are in this section going to be merged with respect to the
underlying AGN model. In doing so, the model should obey the purpose to include known
macrophysical details and neglect the rather unknown microphysical details in order to
obtain an analytical term of the primary particles. Therefore, the simple pickup model,
which has been investigated in Sect. 2.2.1, is used, as well as a spatial and temporal in-
dependent diffusion coefficient in the limit of full diffusion. A spherical emission knot of
radius R = 1015R15 cm is considered that is Doppler boosted towards the observer and con-
sists of a non-relativistic plasma of electrons and protons of density Nb = 1010N10 cm−3.
Using such a high particle density in the emission volume, a significant pion production
by p-p interactions (Pohl & Schlickeiser, 2000) is obtained, as well as a diffusive buildup
of synchrotron photons in the interior, since the optical depth τ = σTNbR > 1.
Furthermore, a magnetic field of strength B = 1 bGauss, that is randomly distributed on
scales much larger than the Larmor radii of the injected particles, is frozen in the highly
conducting thermal plasma of the AGN jet.

Specification of the particle source
Since the intergalactic medium mostly consists of ionized hydrogen, the relativistic pickup
particles are very likely electrons and protons. The particle density of the plasmoid is
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much higher than the density of the ambient medium and thus the plasmoid conditions,
i. e. the magnetic field and the background plasma, determine the distribution of the
injected particles and the transport equations of the relativistic electrons and protons are
not entangled. According to Eq. (2.13) the injected particles are quasi instantaneously
isotropized and plateau distributed, so that the resulting particle distribution can be
considered in terms of the source term q1(γ, t) q2(r). Therefore, an angular independent
q2(r), as well as (i) an instantaneous injection with plateau distributed energy due to

q1(γ, t) = q0
γ0 − 1 H[γ0 − γ] δ(t− t0) (3.28)

are quite reasonable. In addition, Chap. 4 examines also the case of (ii) a monoenergetic,
instantaneous injection

q1(γ, t) = q0 δ(γ − γ0) δ(t− t0) , (3.29)

since it allows some analytical conclusions, as well as the influence of (iii) an instantaneous
injection with power-law distributed energy

q1(γ, t) = q0 γ
α δ(t− t0) (3.30)

and (iv) a monoenergetic injection of the duration T

q1(γ, t) = q0 δ(γ − γ0)H[t]H[T − t] . (3.31)

There is no a priori knowledge of the exact spatial injection region in the emission knot.
Thus, the emergent intensity of the low and high energy radiation is generally deter-
mined and specified afterwards, so that other spatial injection assumptions can easily be
adopted. Here, two illustrative examples are chosen, which result in a high significance of
the first eigenvalues and a good approximation by the first 100 terms of the summation
in Eq. (3.27).
On the one hand, the mathematical convenient case of ultra-relativistic particles being
injected homogeneously in the whole plasmoid volume, i. e. q2(r) = 1 is considered, which
yields with Eq. (3.13)

bk,1 = 2R
kπ

(−1)k+1. (3.32)

On the other hand, a homogeneous injection within an outer shell of the emission
knot of radius r1 < R is assumed (and compared with the previous results), so that
q2(r) = H[r − r1] and the expansions coefficient becomes

bk,2 = − 2R
k2π2

(
kπ cos(kπ) + sin

(kπr1
R

)
− kπr1

R
cos
(kπr1
R

))
. (3.33)

Specification of the spatial diffusion
Based on the assumed pickup process, the relativistic particles excite electromagnetic
turbulences (mostly Alfvén waves) that pitch angle scatter the particles without the loss
of momentum. In order to quantify this scattering the magnetic turbulence tensor has to
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be specified. Guided by the calculations of Schlickeiser (2002), the wave propagation along
the ordered magnetic field has the largest growth rate, which motivates a slab turbulence
model, where only the parallel and antiparallel wave vectors in reference to the background
magnetic field are non-vanishing. Since most of the microphysical details of the magnetic
turbulence in the emission knot of an AGN are unknown, this thesis uses the mathematical
convenient case of isospectral turbulence where the magnetic helicities are independent of
the wavenumber, as well as a power-law dependent turbulence spectrum with a spectral
index 1 ≤ q ≤ 3. Consequently, the spatial diffusion coefficient is determined by

D(γ) = c
√

1− γ−2

2π(q − 1)

(
B

∂B

)2
RL(γ)2−q k1−q

min F (Z,Hc, σf,b) , (3.34)

with the magnetic turbulence ∂B, the minimum wavenumber kmin and the Larmor radius
RL(γ) = me,pc

2√γ2 − 1/(eB) of the relativistic electrons and protons, respectively. In
the special case of q = 2 the Eq. (3.34) becomes independent of the Larmor radius and
even though a nonlinear behavior of the magnetic field is taken into account, the diffusion
coefficient yields a constant, as a similar spatial and temporal dependency of the magnetic
field B and its perturbation δB is expected. The function F is determined by the charge
Z of the particle, as well as the spectral index q and the helicity parameters which are
all independent of the energetic properties of the particle. In the same way the minimum
wavenumber kmin only refers to the maximum Alfvén wavelength λmax = 2πk−1

min, which
has to be smaller than the size R of the emission knot. Thus, most of the energy indepen-
dent parameters of Eq. (3.34) are summarized in the following by a constant mean free
path le,p of the electrons and protons, respectively, with le = (me/mp)2−q lp, which has to
obey the condition of full diffusion, i. e.

le,pγ
β
0 � R . (3.35)

Consequently, the spatial diffusion coefficient at relativistic particle energies (γ � 1) yields

D(γ) = c le,p
3 γβ , (3.36)

where β = 2− q.
Finally, the dominant continuous energy loss process of the relativistic electrons and pro-
tons, respectively, in the emission volume of the AGN has to be quantified, so that a
distinct distribution of these particles can be given.

Specification of the energy losses of relativistic electrons

First, the significant energy loss of relativistic electrons in an AGN jet is investigated.
Since the jet plasma is approximately fully ionized, the excitation and bremsstrahlung
losses according to Eq. (2.31) and Eq. (2.29), respectively, have to be considered. Taking
a background particle density of Nb = 1010N10 cm−3 into account, the latter loss term
yields

|γ̇B| = 5.0 · 10−7N10 γ s−1 , (3.37)
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and the loss rate by excitation processes becomes

|γ̇ex| ' 0.008N10 s−1 , (3.38)

when the logarithmic energy dependence is neglected in both cases.
Furthermore, the initial synchrotron-self Compton (SSC) energy losses are negligible com-
pared to the synchrotron energy losses if the injection parameter α0 = (γ0/γB)2 is less
than unity (Schlickeiser et al., 2010), where γB = 2.17·1027R15/Q

1/2. Here a total number
of injected particles

Q =
∫
dr3

∫
dγ

∫
dt q1(γ, t) q2(r) (3.39)

is adopted, so that Q < QB =
(
2.17 · 1027R15/γ0

)2 and α0 < 1. Hence, the target photon
field of the IC scattering is provided by the external thermal radiation field from the
central engine of the AGN, which becomes isotropic at a radial extent Rsc with the mean
scattering depth τsc by scattering clouds (Sikora et al., 1994). More details to the external
radiation field and its non-radial components are given in Sect. 5.2. In the comoving
frame of the emission knot with a Doppler factor δ = 10 δ1 the gyrophase-averaged photon
energy density can be approximated by (Dermer & Schlickeiser, 1994, Sikora et al., 1994)

Uph(Rsc) = Lad τsc δ
2

4π c (R2
sc +R2) , (3.40)

where Lad denotes the total luminosity emitted by the accretion disk. According to
Eq. (2.16) and (2.23) the synchrotron and IC losses show the same γ2 dependence, so
that these losses are merged by

|γ̇SE | = 1.3 · 10−9 γ2
(
b2 + lEC

)
s−1 . (3.41)

Here, the EC cooling is defined by

lEC = 0.093 L46 δ
2
1 τ−2

R2
pc +R2

15
, (3.42)

with the standard parameters Lad = 1046 L46 erg s−1, τsc = 10−2 τ−2 and Rsc = 1Rpc pc,
so that the energy loss rate (3.41) is dominated by synchrotron losses when b2 � lEC and
EC losses are significant in the opposite case.
Consequently, the energy losses |γ̇ad| and |γ̇B| are smaller than |γ̇SE | for a Lorentz factor
γ > γc, where

γc = (387N10 + 1.5 · 104 β0R
−1
15 ) (b2 + lEC)−1 . (3.43)

Thus, the Fig. 3.1a shows that the synchrotron and EC losses, respectively, are dominant
at high Lorentz factors γ > γq, whereas at γ < γq the relativistic electrons lose their energy
by excitation of the non-relativistic background particles. Equalizing the corresponding
loss rates (3.41) and (3.38) yields

γq =
√
Dex

Ds
' 2481

(
b2 + lEC

)−1/2
N

1/2
10 , (3.44)
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with Dex = 0.008N10 s−1 and Ds = 1.3 · 10−9 (b2 + lEC
)
s−1. Summing up, the significant

total energy loss rate of relativistic electrons in the emission knot of the AGN is determined
by

|γ̇etot| = Dex +Ds γ
2 . (3.45)
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Figure 3.1: Energy loss rates of relativistic electrons (a) and protons (b) using the param-
eters b = 1, lEC = 0.0093, N10 = 1, β0 = 0.1 and R15 = 1.

Conclusions to the relativistic electron distribution
Using the total loss rate (3.45) in Eq. (3.19), the root of Eq. (3.23) is determined by

γi ≡ γt(γ, t, t′) =
γqγ + γ2

q tan(Dsγq(t− t′))
γq − γ tan(Dsγq(t− t′))

(3.46)

and in consideration of the spatial diffusion coefficient (3.36) the Eq. (3.26) yields

Eek(γ, γt) = exp
(

λ2
k c le

3Dex(β + 1)

[
γβ+1

2F1

(
1, β + 1

2 ; β + 3
2 ; γ

2

γ2
q

)

− γβ+1
t 2F1

(
1, β + 1

2 ; β + 3
2 ; γ

2
t

γ2
q

)])

=



(
(γ/γq)2+1
(γt/γq)2+1

)λ2
k
c le

6Ds , for β = 1

exp
(
λ2
k c le

3Ds γq

[
arctan

(
γ
γq

)
− arctan

(
γt
γq

)])
, for β = 0

(
(γq/γt)2+1
(γq/γ)2+1

)λ2
k
c le

6Dex , for β = −1 ,

(3.47)
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where the hypergeometric function 2F1(a, b; c; z) is simplified for an integer β. Defining
the timescale

τ eul = π

2Ds γq
+ t′, (3.48)

two limiting cases are subsequently discussed: When t � τ eul the tangent functions in
Eq. (3.46) can be approximated by its argument, so that

γt(γ, t� τ eul) '
γ

1− γDs(t− t′)
+

γ2
qDs(t− t′)

1− γDs(t− t′)
' γ (3.49)

and thus Eek(γ, γt = 1) ' 1 at small timescales. However, at later times t → τ eul the
tangent functions in Eq. (3.46) diverge and with l’Hôpital’s rule one obtains

lim
t→τe

ul

γt(γ, t, t′) = −γ2
q/γ . (3.50)

Consequently, max(γt/γ) = γ2
q , as well as min(γt/γ) = γ2

q/γ
2
0 and with the full diffusion

limit (3.35) the three integer cases of Eq. (3.47) lead to similar results, as shown in Fig. 3.2.
Using the energy loss rate (3.45) and the root (3.46) the relativistic electron density (3.27)
in the emission volume of the AGN is specified to

ne(r, γ, t) =
∞∑
k=1

bk
sin(λk r)

r

∫ t

−∞
dt′ 1 + (γt/γq)2

1 + (γ/γq)2 q1(γt, t′)Eek(γ, γt) . (3.51)

Since this thesis is restricted to the case of full diffusion (3.35), the diffusion coefficient
(3.36) has no influence on the distribution of relativistic electrons, so that subsequent
calculations are without loss of generality confined by a constant mean free path (β = 0).
Due to the delta function in Eq. (3.24) the timescale of cooling the relativistic electrons
down to γ = 1 is determined by γ′ = γt(γ = 1, t, t′), which results in

t− t′ = 1
Dsγq

arctan

 γ′ − 1
γ′

γq
+ γq

 . (3.52)

When γ′ > (γq +1)/(1−1/γq) the argument of the arc tangent function is > 1 and the arc
tangent function is accurately approximated by π/2. Since no reacceleration inside of the
emission knots is considered, the Eq. (3.52) refers to the maximal duration of an AGN flare
that is generated by relativistic electrons. The variables γ′ and t′ are mostly defined by
the injection assumption q1(γ′, t′) and in the case of an injection duration T � π/(2Ds γq)
the upper limit yields the well-known timescale (see Eq. 3.48)

τ eul '
π

2Ds γq
= 4.9 · 105 s

(b2 + lEC)1/2N
1/2
10

. (3.53)

At high Lorentz factors where the synchrotron and EC losses, respectively, are dominant,
i. e. γq � γ, the Eq. (3.46) is simplified to

γ̃t(γ, t, t′) '
γ

1−Dsγ (t− t′) (3.54)
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and according to Eq. (3.26) one obtains

Ẽek(γ � γq, t, t
′) = exp

(
− λ2

k c le γ
β−1

3Ds (β − 1)
[
(1−Dsγ(t− t′))1−β − 1

])
. (3.55)

As previously shown, the energy dependency of the diffusion coefficient (3.36) is negligible
in the full diffusion limit, so that in the mathematically convenient case of β = 0 the
relativistic electron density at γ � γq yields

ñe(r, γ, t) =
∞∑
k=1

bk
sin(λk r)

r

∫ t

−∞
dt′ exp(−λ2

k c le(t− t′)/3)
(1−Dsγ(t− t′))2 q1(γ̃t, t′) . (3.56)

In order to obtain a detailed description of the flare behavior that results from the relativis-
tic electrons, the differential densities (3.51) and (3.56) are used in Chap. 4 to calculate
the emergent synchrotron intensity and in Sect. 5.2 to derive the emergent gamma-ray
intensity, that results from EC scattering.

Specification of the energy losses of relativistic protons
Finally, the dominant energy loss rate of the injected relativistic protons has to be dis-
cussed. Based on the thermal radiation field of the accretion disk with a photon energy
θ = 10 θ1 eV the production of K pions by photohadronic interactions occurs with ref-
erence to Eq. (2.37) only for ultra-relativistic protons whose minimal Lorentz factor is
γπmin ' 7.3 · 106K θ−1

1 . As the assumed simple pickup model gains rather small Lorentz
factors, the photohadronic pion production is negligible when

γ6 < 7.3K θ−1
1 . (3.57)

According to Eq. (2.36) the pair production losses in the field of the relativistic proton has
a smaller minimal Lorentz factor of γe±min ' 5.1 · 104 θ−1

1 and with the thermal isotropized
radiation density (3.40) of the accretion disk the pair production energy loss rate (2.38)
for protons at threshold yields

|γ̇|pγe± ' 9.5 · 10−9 δ
2
1 L46τ−2
R2
pc θ

2
1

s−1 . (3.58)

The proton interactions with the background plasma is determined by pion production
and after Eq. (2.45) the loss rate is given by

|γ̇|ppπ ' Dc γ , Dc = 7× 10−6N10 s−1 , (3.59)

when γ > 1.30. Comparing the adiabatic energy loss rate (2.12) with the particle inter-
action loss rates (3.58) and (3.59) yields a dominant cooling by hadronic pion production
(Fig. 3.1b) at a background particle density

N10 > 2.7 · 10−8 δ2
1 L46τ−2R

−2
pc θ

−1
1 + 4.3β0R

−1
15 . (3.60)

Since the parameters of AGN jets are rather unknown this thesis subsequently uses pa-
rameters which obey the constraints (3.57) and (3.60).
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Conclusions to the relativistic proton distribution
The total energy loss of relativistic protons is described by Eq. (3.59), so that the root of
Eq. (3.23) yields

γi ≡ γr(γ, t, t′) = γ exp(Dc (t− t′)) (3.61)

and the Eq. (3.26) is with the spatial diffusion coefficient (3.36) simplified to

Epk(γ, γr) =


exp

(
λ2
k c lp

3Dc β (γβ − γβr )
)
, for β 6= 0

(γ/γr)
λ2
k
c lp

3Dc , for β = 0 .
(3.62)

At small timescales where γr is close to γ, both cases in Eq. (3.62) can be simplified to
similar exponential functions whose arguments are vanishing small in the full diffusion
limit (3.35). As shown in Fig. 3.2, the diffusion coefficient consequently has in this limit
no influence on the relativistic proton distribution (analogous to the case of relativistic
electrons).
Using the previous specifications (3.59), (3.61) and (3.62) the relativistic proton density
in the emission knot of the AGN is according to Eq. (3.27) determined by

np(r, γ, t) =
∞∑
k=1

bk
sin(λk r)

r

∫ t

−∞
dt′ γr

γ
q1(γr, t′)Epk(γ, γr) . (3.63)

Based on the delta function in Eq. (3.24) the relation γ′ = γr(γ = 1, t, t′) defines the
cooling timescale

t− t′ = ln γ′

Dc
, (3.64)

which also gives the maximal duration τpul of an AGN flare that is generated by the
relativistic protons. In the special case of a monoenergetic (γ′ = γ0 = 106 γ6) particle
injection of duration T � ln γ0/Dc the upper flare limit yields

τpul = ln γ0
Dc

= 2.0 · 106N−1
10 (1 + ln(γ6)/ ln(106)) s . (3.65)

Consequently, an AGN flare generated by relativistic protons can last significantly longer
than a flare that is produced by relativistic electrons, when the background particle density
N10 < 16.7 (b2 + lEC) (1 + ln(γ6)/ ln(106))2. Due to the assumed AGN parameters the
relativistic protons (3.63) generate gamma rays and high energy neutrinos exclusively by
inelastic proton-proton interactions with the background plasma, which will be discussed
in detail in Sect. 5.3.
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Figure 3.2: Temporal development of the differential number density of relativistic elec-
trons (blue) and protons (red) at r = 0.1R in the full diffusion limit, resulting
from a spatial homogeneous injection of energetically plateau distributed par-
ticles into the whole emission knot. A Lorentz factor of γ = 103 (solid line),
γ = 104 (dashed line) and γ = 105 (dotted line) is considered, as well as a
spatial diffusion assumption according to β = 1 (left panel), β = 0 (middle
panel) and β = −1 (right panel). The remaining parameters are determined
by R15 = 1, γ6 = 1, γ−4 = 1 and b = 1.



Chapter 4
Modeling low energy flares

The low energy flare of an AGN commonly refers to the synchrotron emission of relativistic
electrons. Using the previously derived distribution of primary relativistic electrons (3.51)
and (3.56), respectively, the temporal development of the synchrotron flare is examined in
this chapter.
In order to give an analytical description of the temporal flare development, the complexity
of the problem has to be simplified. At first, a monochromatic approximation of the
synchrotron power spectrum is applied, which yields some rough characteristics of the
synchrotron flare. Afterwards, the influence of the broadband nature of the synchrotron
emission of a single electron is analyzed with respect to the different particle injection
assumptions (3.29)–(3.28). In doing so, the considered synchrotron photon energies are
confined by ε > Eq, where

Eq = h νsγ
2
q = 1.74 · 10−8γ2

q eV = 0.11 (b2 + lEC)−1N10 eV , (4.1)

so that in a first approach the continuous excitation losses of the relativistic electrons are
negligible and the differential electron density of Eq. (3.56) is used. Finally, the emergent
synchrotron intensity is examined when the excitation losses as included in Eq. (3.51) are
taken into account.

4.1 Spontaneous synchrotron emission coefficient
The gyrating relativistic electrons ne(r, γ, t) in the magnetic field of the emission knot
spontaneously emit synchrotron radiation at the beaming angle θ, that is commonly de-
termined by

js(r, t, ν, θ) = 1
4π

∫ ∞
1

dγ ne(r, γ, t)Ps(ν, θ, γ) . (4.2)

However, the assumed large-scale (i. e. on length scales of the emission volume) isotropy of
the magnetic field leads to an isotropic synchrotron emission on large length scales, so that
the pitch angle averaged spectral synchrotron power Ps(ν, γ) of Eq. (2.14) can be used and
the spontaneous emission coefficient becomes angular independent. In order to express the

37
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synchrotron emission in terms of the photon energy ε = h ν, the relation js(ν) dν = js(ε) dε
is used so that the differential expression (4.2) is substituted by js(r, t, ε) = js(r, t, ν)/h.
Consequently, the spontaneous synchrotron emission coefficient yields with Eq. (3.51) and
(2.14) the general expression

js(r, t, ε) = P0
4π h

(
ε

εs

) 1
3
∫ ∞

1
dγ γ−

2
3 exp(− ε

εsγ2 )
∞∑
k=1

bk
sin(λk r)

r

×
∫ t

−∞
dt′ 1 + (γt/γq)2

1 + (γ/γq)2 q1(γt, t′)Eek(γ, γt) ,
(4.3)

where εs = h νs = 17.4 · 10−9 b eV. The energy and time dependent functions γt and
Eek(γ, γt) are defined by Eq. (3.46) and (3.47), respectively.
According to Schlickeiser & Röken (2008) the optical thickness effects due to synchrotron
self absorption are negligible from optical to γ-ray frequencies. As the subsequent calcula-
tions are confined to the case of optical thin synchrotron emission, the considered photon
energies mostly satisfy the condition ε > Eq. Thus, the relativistic electron distribution
according to Eq. (3.56) can be used and the spontaneous synchrotron emission coefficient
yields

j̃s(r, t, ε) = P0
4π h

(
ε

εs

) 1
3
∫ ∞

1
dγ γ−

2
3 exp(− ε

εsγ2 )
∞∑
k=1

bk
sin(λk r)

r

×
∫ t

−∞
dt′ exp(−λ2

k c le(t− t′)/3)
(1−Dsγ(t− t′))2 q1(γ̃t, t′) .

(4.4)

The relativistic electrons emit most of their energy at ε = εsγ
2. Hence, a first crude

estimation of the emergent synchrotron intensity is given by taking the monochromatic
approximation (Felten & Morrison, 1966) of the synchrotron spectral power in vacuum

P 0
s = cσTB

2γ2h

6π δ(ε− εsγ2) , (4.5)

so that the spontaneous synchrotron emission coefficient becomes

j̃0
s (r, t, ε) = cσTB

2

48π2 εs

√
ε

εs
ñe(r, γ =

√
ε/εs, t)

= cσTB
2

48π2 εs

√
ε

εs

∞∑
k=1

bk
sin(λk r)

r

∫ t

−∞
dt′ exp(−λ2

k c le(t− t′)/3)(
1−Ds

√
ε
εs

(t− t′)
)2 q1(γ̃0

t , t
′) ,

(4.6)

where γ̃0
t = γ̃t(γ =

√
ε/εs, t, t

′).
The spontaneous synchrotron emission coefficient is the key parameter to determine the
optical thin synchrotron emission, however, the finite volume of the emission knot accounts
for effects due to causality and retardation relating to the generated photon number density
inside the emission volume.

4.2 Photon propagation and retardation
The relativistic electrons emit photons according to Eq. (4.3), (4.4) and (4.6), respectively,
at every point r = r(

√
1− µ2 cosφ,

√
1− µ2 sinφ, µ) within the spherically-symmetric
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source where r, φ and µ = cos θ denote the photon’s spherical coordinates. Let ρ(r′, ε, t′)
denote the omnidirectional photon production rate per unit volume at a time t′ and a
distance r′ from the center of the source. If the source is optically thin, then the photon
density at a time t, a radius r and an energy ε is given by integrating over all emission
points inside the source, generalizing Gould’s (1979) formula for non-stationary sources:

M(r, ε, t) = 1
c

∫ ∞
−∞

dt′
∫
d3r′

ρ(r′, ε, t′)
4πs2 δ(t− t′ − s

c
) , (4.7)

with the distance

s = |r − r′| =
(
r2 + r′2 − 2rr′

[
µµ′ +

√
1− µ2

√
1− µ′2 cos(φ− φ′)

])1/2
. (4.8)

Because of the assumed spherically-symmetric emission the spherical coordinates can be
chosen in a way that µ = 1, which leaves

s =
√
r2 + r′2 − 2rr′µ′ , (4.9)

so that Eq. (4.7) becomes

M(r, ε, t) = 1
2c

∫ R

0
dr′ r′2

∫ 1

−1
dµ′

ρ(r′, ε, t− s
c )

s2 = 1
2cr

∫ R

0
dr′ r′

∫ r+r′

|r−r′|

ds
s
ρ

(
r′, ε, t− s

c

)
,

(4.10)

where s is substituted from Eq. (4.9) for the variable µ′.
In addition, the Eq. (4.10) has to take into account the loss of photons according to
their escape from the emission volume. But instead of a full diffusive description of the
synchrotron photon propagation, the much simpler escape probability concept of Lightman
& Zdziarski (1987), as well as Coppi (1992) is employed. Here the photons are impeded
from escaping in a time ∼ R/c by scattering off the thermal background electrons, so that

Ṁesc = −∂M
∂t

= c g(x)
R

M(r, ε, t) (4.11)

where x = ε/(mec
2) denotes the dimensionless photon energy and the function

g(x) =


[1 + τKN (x)]−1 for x ≤ 0.1
[1 + τKN (x)(1− x)/0.9]−1 for 0.1 < x < 1
1 for x ≥ 1

, (4.12)

results from detailed Monte Carlo calculations of photon transport (Lightman & Zdziarski,
1987). In doing so, the Klein-Nishina scattering depth is defined by

τKN (x) = (σTRNb)
σKN (x)

3σT
, (4.13)
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with the Klein-Nishina cross-section

σKN (x) = 3σT
8x

[
4
x

+ 2x(1 + x)
(1 + 2x)2 −

2 + 2x− x2

x2 ln(1 + 2x)
]

'
{
σT for x� 1
3σT
16x [1 + 2 ln(2x)] for x� 1

,

(4.14)

which can be accurately approximated by the Thomson cross-section σT at small photon
energies.
Using the light travel time t = s/c, the differential Eq. (4.11) yields

M(r, ε, s) ∝ exp
(
−g(x)

R
s

)
(4.15)

and thus, the escape probability concept represents the fact that, while traversing the dis-
tance s, a photon has the survival probability exp(−gs/R). In the non-relativistic photon
energy regime ε < mec

2 this expression includes the effects of multiple Compton scatter-
ing and gives an accurate approximation of the probability of photon escape according
to Sunyaev & Titarchuk (1980). In the relativistic photon energy regime ε ≥ mec

2 the
large energy shift in a single Compton scattering removes a photon of an energy ε upon
scattering. At these photon energies an energy diffusion by Comptonization in the source
interior no longer occurs (Fabian et al., 1986; Lightman & Zdziarski, 1987). A photon
either scatters and appears at a much lower ε, or it escapes in a time R/c from the source.
Because there are relatively few photons in this relativistic energy region, it is a good
approximation to remove these photons in proportion to their probability for scattering
and to neglect their reappearance at low energies.
In consideration of poton escape, the photon intensity at the source surface r = R is finally
given by

I(R, ε, t) = cM(R, ε, t) = 1
2R

∫ R

0
dr′ r′

∫ R+r′

R−r′

ds
s
ρ

(
r′, ε, t− s

c

)
exp

(
−g(x)

R
s

)
, (4.16)

where the omnidirectional photon production rate is related to the spontaneous photon
emission coefficient by

ρ

(
r, ε, t− s

c

)
= 4πjs

(
r, t− s

c
, ε

)
. (4.17)

As noted before, the near isotropy of the synchrotron photon intensity at the edge of the
emission knot results from the chaotic magnetic field in the emission knot and multiple
Compton scatterings of the generated synchrotron photons of the thermal electrons, which
allows to use the diffusion approximation for the spatial transport of synchrotron photons
(Sunyaev & Titarchuk, 1980).
When the surface of the emission volume is reached, the photons can propagate freely
to the observer. The emergent photon intensity therefore equals the surface intensity
I(R, ε, t).
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4.3 Synchrotron radiation in a first crude approach
Since the emergent synchrotron intensity, that results from the monochromatic approxi-
mation of the synchrotron power spectrum has already been discussed in great detail in
the diploma thesis (Eichmann, 2009), this section resumes only the basic results, that will
be used in the following sections.
Here, the mathematical convenient case of an instantaneous injection of monoenergetic
ultra-relativistic electrons (3.29) is considered, so that the spontaneous synchrotron emis-
sion coefficient (4.6) yields after some simple transformations in the argument of the delta
function

j̃0
s (r, ε, t) =cσT q0B

2

24π2 H[t− t0]δ
(
ε− E0

[1 +Dsγ0(t− t0)]2
)

ε

εs

×
∞∑
k=1

bk
sin(λkr)

r
exp

(
−cleλ2

k(t− t0)/3
)
,

(4.18)

where the initial synchrotron photon energy

E0 = εsγ
2
0 = 17.4bγ2

6 keV (4.19)

is introduced. Using the Eq. (4.17) and (4.16), as well as multiple transformations and
the definition of an energy dependent time scale

ts ≡ t0 + 1
Dsγ0

√E0
ε
− 1

 , (4.20)

the subsequent expression can be integrated analytically. Thus, the emergent synchrotron
intensity becomes

I(R, ε, t) =cσT q0B
2γ0

24πDsR

H[E0 − ε]
(εE0)1/2 H[t− ts]H

[2R
c

+ ts − t
] exp

(
−g(x)c(t−ts)

R

)
t− ts

×
∞∑
k=1

bk
λk

exp

− cleλ
2
k

3Dsγ0
(

√
E0
ε
− 1)

 [cos (λk (R− c(t− ts)))− cos (λkR)] ,

(4.21)

which gives the following immediate conclusion of the synchrotron flare duration and flare
onset time in the comoving frame of reference:
(1) The total duration of the synchrotron flare at all photon energies ε is 2R/c, but it has to
be noted that the resulting sharp cut-offs are a consequence of the adopted monochromatic
approximation (4.5) of the synchrotron power.
(2) During this energy independent total duration, shorter synchrotron photon energy-
dependent time variations are in principle possible. Therefore, the initial spatial distri-
bution of the relativistic electrons according to bk has to emerge the influence of single
eigenvalues with k > 1 on the emergent synchrotron intensity, which requires quite special
locations of the relativistic particle accelerators.
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(3) The starting time of the synchrotron flare at photon energy ε is delayed with respect to
the injection time of electrons t0 by the photon energy dependent time scale ts as defined
in Eq. (4.20). This delay reflects the necessary cooling time which relativistic electrons
need to radiate at photon energies below E0 ∝ Bγ2

0 , but its discrete value is also a conse-
quence of using the monochromatic approximation for the synchrotron power.
The temporal development of the emergent synchrotron intensity (4.21) is illustrated in
Fig. (4.2) and (4.4) for the initial particle distribution due to Eq. (3.32) and (3.33), re-
spectively.

4.4 Synchrotron radiation with respect to the broadband syn-
chrotron power spectrum

The previous examinations have already given some characteristics of the temporal de-
velopment of synchrotron flares, but a significant influence of the used monochromatic
approximation of the synchrotron power spectrum could not be excluded. Furthermore,
the established constant synchrotron flare total duration time is in conflict with recent
observations of optical and X-ray synchrotron emission from flaring blazars. Simultaneous
observations of the blazar PKS 2155-304 in the optical and X-ray regime have shown, that
the optical emission starts at the same time as the X-ray flare, but reaches its maximal
value about some hours later and lasts a significant longer timescale (Fig. 4.11). In order
to remedy this conflicting theoretical result the monochromatic approximation of the syn-
chrotron spectral power is discarded and an improved representation of the synchrotron
power that accounts for the broadband nature of the synchrotron emission of a single
electron is used instead.

4.4.1 Emergent synchrotron intensity by a monoenergetic, instantaneous elec-
tron injection

First, a monoenergetic, instantaneous electron injection q1(γ, t) = q0 δ(γ − γ0) δ(t− t0) is
assumed, so that the spontaneous synchrotron emission coefficient (4.4) yields

j̃s(r, ε, t) =P0q0
4π hH[t− t0]

(
ε

εs

) 1
3
(

γ0
1 +Dsγ0(t− t0)

)− 2
3

exp
(
−ε(1 +Dsγ0(t− t0))2

εsγ2
0

)

×
∞∑
k=1

bk
sin(λkr)

r
e−

cleλ
2
k

3 (t−t0) .

(4.22)

Substituting y = s − R in Eq. (4.16) and inserting the production rate (4.17) by using
Eq. (4.22), one obtains

I(R, ε, τ) =P0q0
2hR

(
ε

E0

) 1
3
∞∑
k=1

bk exp
(
−g(x)− ε

E0
(1 +Dsγ0τ)2 − cleλ

2
k

3 τ

)

×
∫ R

0
dr′ sin(λkr′) J(ε, τ) ,

(4.23)
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with the inner integral

J(ε, τ) =
∫ r′

−r′
dy H[τ − y/c] (1 +Dsγ0(τ − y/c))

2
3

R+ y
exp

(
−Ay2 +Bk(τ) y

)
, (4.24)

where

τ = t− t0 −R/c, (4.25)

A = εD2
sγ

2
0

E0c2 , (4.26)

Bk(τ) = 2ε
cE0

(Dsγ0 +D2
sγ

2
0τ) + leλ

2
k

3 − g(x)
R

(4.27)

and E0 denotes the initial synchrotron photon energy according to Eq. (4.19). Integrating
the Eq. (4.23) by parts (Appendix C.1) results in

I(R, ε, τ) = P0 q0
2hR

(
ε

E0

) 1
3
e
−g(x)− ε

E0
(1+Dsγ0τ)2

H[τ +R/c]
∞∑
k=1

bk
λk

exp
(
−cleλ

2
kτ

3

)

×
∫ U

−R
dr′ (cos(λkr′)− cos(λkR))(1 +Dsγ0(τ − r′/c))

2
3

R+ r′
exp

(
−Ar′2 +Bk(τ)r′

)
,

(4.28)

where

U =
{
cτ for τ < R/c

R for τ ≥ R/c .

Analytical approximation

At τ ≥ R/c the upper limit of the integral in Eq. (4.28) becomes independent of the time
and the expression to the power of 2/3 is dominated by the time τ . In the full diffusion limit
(le � R) the mean scattering length le has a minor influence on the emergent synchrotron
intensity and |Bk(τ)| � 1/r′ when(

5.0 · 10−18 γ−1
6 (b+ b−1lEC) + 1.9 · 10−8

)
(ε/eV) cm−1 � 1/r′ ,

as well as (
6.5 · 10−21 (b3/2 + b−1/2 lEC)2

)
(ε/eV) (τ/s) cm−1 � 1/r′ ,

so that the last exponential term in Eq. (4.28) can be approximated by one. Additionally,
the second exponential term is also negligible for τ � 1019(le/cm)−1 s. In order to obtain
an accurate approximation we choose le = 1010 l10 cm. Due to the trigonometric functions
and (R + r′)−1 in the integrand, the integral reaches its maximal value at r′ � R. Thus,
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the temporal development of the emergent synchrotron intensity can be approximated by

I(ε, z > z0) ' I0

(
ε

E0

) 1
3
z

2
3 exp

(
− ε

E0
z2
)
, (4.29)

with the dimensionless time scale z = 1 +Dsγ0 τ and z0 = 1 +Dsγ0R/c.
The synchrotron light curves reach its maximal value at a time zmax when ∂I/∂z = 0,
which yields the time of maximal synchrotron flare emission

zmax =
√
E0/(3ε) , (4.30)

where

ε < εb = 3.0 b−3R−2
15 eV , (4.31)

so that zmax > z0.
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Figure 4.1: Left panel: The temporal and energy dependent behavior of I/I0 according to
Eq. (4.29).
Right panel: Approximation of the temporal synchrotron flare development
I/Ī0 (blue line) and Ī/Ī0 (red line), respectively, at t ≥ 2R/c + t0. Four
different photon energies (3 eV (solid line), 1 eV (dashed line), 0.5 eV (dotted
line), 0.1 eV (dash dotted line)) are used, as well as the default parameters.

Fig. 4.1 shows, that I(ε, z > z0) decreases with increasing time or energy, so that it confines
the flare duration of optical synchrotron photons. Using the method of the steepest descent
the half-life and the half width of the synchrotron flare can be evaluated analytically.
Therefore, the emergent intensity (4.29) is developed at z = zmax in the argument of the
exponential function (Appendix C.2), which results in

Ī(ε, z > z0) ' Ī0 exp

− 2ε
E0

z −
√
E0
3ε

2
 , (4.32)
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with

Ī0 = I0/(3e)
1
3 . (4.33)

So the optical synchrotron light curves with ε < εb have a Gaussian time distribution at
z > z0.
The equation Ī(ε, z1/2)/Ī(ε, zmax) = 1/2 yields the half-life

z1/2 =

√
E0
3ε

1±

√
3 ln 2

2

 , (4.34)

and the half width

∆z1/2 =
√

2 ln 2

√
E0
ε
. (4.35)

Fig. 4.1 (right panel) illustrates the temporal development of Eq. (4.29) and its ap-
proximation (4.32) at different photon energies. With decreasing photon energy the
delay of the time of maximal synchrotron emission increases, as well as the half-life and
the half width of the light curves. In addition, it shows that Eq. (4.32) is an accurate
approximation of Eq. (4.29), but Ī has a steeper slope at z � zmax and a steeper descent
at z � zmax.
In the following, the analytical approximated temporal behavior (4.32) of the optical flare
will be compared with the results of a numerical evaluation of Eq. (4.28).

Numerical calculations
The temporal synchrotron flare development at t < 2R/c+ t0 and photon energies ε > εb,
respectively, has to be calculated numerically. In order to derive the exact emergent
synchrotron intensity, it is necessary to specify the spatial expansion coefficients bk by
Eq. (3.32) or (3.33). Finally, the Eq. (4.28) is evaluated by Romberg integration with an
extended midpoint rule algorithm (see Appendix E.1 for more details).
Fig. (4.2) shows the temporal behavior of the emergent synchrotron intensity for two
different photon energies that results from taking the spatial injection coefficient (3.32).
Additionally, the emergent synchrotron intensity of the previous section is displayed (dot-
ted lines), where a monochromatic synchrotron power spectrum is used. In consideration
of the broadband nature of the synchrotron power spectrum according to Eq. (2.14) the
light curves increase strictly right after the instantaneous electron injection at t = t0 (in-
dependent of ε) till its maximal value is reached and decrease exponentially after the peak.
Obviously, the X-ray flare (red solid line) is much better approximated by the Eq. (4.21)
than the optical flare (blue solid line), which develops on much longer time scales because
of the temporal behavior of the first exponential expression in Eq. (4.28). Thus, the X-ray
light curve (red solid line) reaches the maximal intensity close to ts at

tmax(ε > εb) ' t0 + cl(ε)
Ds γ0

√E0
ε
− 1

 , (4.36)
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Figure 4.2: Temporal flare behavior of optical synchrotron photons at ε = 1 eV (blue lines)
and soft X-rays at ε = 1keV (red lines) after a homogeneous electron injection
into the whole plasmoid volume with the default parameters in the full diffusion
limit. Using a synchrotron dominated cooling rate with b = 1 and lEC � 1, the
left panel illustrates the light-curves according to Eq. (4.21) of the previous
section (dotted line) and the new results (solid line), that account for the
broadband nature of the synchrotron power spectrum. In addition to the light-
curves dominated by synchrotron cooling (solid line) the right panel shows the
light curves resulting from dominant EC cooling (dashed line) with lEC = 38
and b� 1.

with the linear function cl(ε) = 0.5 (ε/1 keV)+1.8, that yields a heuristic correction value of
the time of maximal X-ray emission in relation to Eq. (4.20). Furthermore, the X-ray light
curve decreases comparably to the light curve that are calculated with the monochromatic
synchrotron power spectrum and the Eq. (4.21) is an accurate approximation for the X-ray
synchrotron photon emission at ts < t < ts + 2R/c. Consequently, the total duration of
the X-ray synchrotron flare is determined by

td(ε > εb) '
2R
c

+ ts − t0 = 2R
c

+ 1
Dsγ0

√E0
ε
− 1

 . (4.37)

The optical synchrotron flare is not accurately described by the results of Sect. 4.3,
but the previously derived, analytical terms can be adopted. So Fig. (4.3) illustrates
normalized light curves at near infrared to ultraviolet photon energies resulting from a
numerical calculation (blue line) and an analytical approximation by Eq. (4.32) (red line).
Apparently, the Eq. (4.32) is a suitable approximation of the temporal development of the
emergent synchrotron intensity at ε < εb and hence, Eq. (4.30) accurately determine that
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Figure 4.3: Normalized temporal development of the emergent synchrotron intensity at
three different photon energies (10 eV (solid line), 1 eV (long dashed line), 0.1 eV
(short dashed line)), calculated by the analytical approximation (4.32) (red
lines) and the numerical integration of Eq. (4.28) (blue lines). The intersection
with the black dotted line yields the half-life of the light curve, when the light
curve has a maximal value of 1.

the optical light curve reaches its maximal intensity at

tmax(ε < εb) ' t0 + R

c
+ 1
Dsγ0

√E0
3ε − 1

 . (4.38)

With Eq. (4.34) the half-life of a synchrotron flare at photon energies ε < εb yields

t1/2(ε < εb) = t0 + R

c
+ 1
Dsγ0

√E0
3ε

(
1 +

√
3 ln 2

2

)
− 1

 . (4.39)

At ε > εb the half-life still decreases with increasing photon energy, but the integral in
Eq. (4.28) admits no further analytical conclusions. However, as stated above the total
synchrotron flare duration at ε� εb converges to the light travel time 2R/c.
Fig. (4.4) shows light-curves at ε = 1 eV (left graphic) and ε = 1keV (right graphic), re-
spectively, resulting from Eq. (4.28) with the spatial injection coefficient (3.33) for different
electron injection shells with an inner radius r1, as well as the corresponding light curves
of Sect. 4.3 where a monochromatic approximation of the synchrotron spectrum is used.
The features are similar to the case of an homogenous injection into the whole knot (black
line), but the amplitudes of the light-curves are lower. However, the amplitude increases
with decreasing r1, as the total number of injected electrons increases. In case of X-ray
photons the synchrotron light curves have a steeper descent after reaching its maximum,
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Figure 4.4: Synchrotron light-curves of photons with ε = 1 eV (left panel) and ε = 1keV
(right panel), respectively, resulting from a homogeneous electron injection
over the outer shell of the plasmoid (r1 ≤ r ≤ R). The solid lines are the
result of the numerical integration of Eq. (4.28), whereas the dotted lines are
calculated according to Eq. (4.21). It is illustrated for r1 = 0.9999R (blue
line), r1 = 0.9R (red line) and r1 = 0 (black line) with the default parameters
in the full diffusion limit.

but the total flare duration stays the same. Consequently, the spatial distribution of an
isotropic source has no influence on the duration of a synchrotron flare, but it sets the
amplitude of the light curves.

4.4.2 Emergent synchrotron intensity by an instantaneous injection of elec-
trons with power-law distributed energy

As next illustrative example, the case of an instantaneous injection of electrons with power-
law distributed energy is considered, so that with Eq. (3.30) the spontaneous synchrotron
emission coefficient (4.4) yields

j̃s(r, ε, t) =P0q0
4π h

(
ε

εs

) 1
3
∞∑
k=1

bk
sin(λkr)

r
H[t− t0]H[(Ds(t− t0))−1 − 1] e−cleλ2

k(t−t0)/3

×
∫ (Ds(t−t0))−1

1
dγ γ−

2
3 +α exp

(
− ε

εsγ2

)
(1−Dsγ(t− t0))−α−2 .

(4.40)

Here the relativistic electrons emit no further synchrotron photons at t > D−1
s + t0, since

also the most energetic electrons are cooled down to γ = 1. But according to Eq. (3.53)
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the synchrotron emission already cuts off much earlier due to the effect of excitation losses.
Using Eq. (4.40), (4.17) and (4.16) the emergent synchrotron intensity is given by

I(R, ε, t) =P0q0
2Rh

(
ε

εs

) 1
3
∞∑
k=1

bk

∫ R

0
dr′ sin(λkr′)

×
∫ R+r′

R−r′

ds

s
H [s− c(t− t0 − 1/Ds)]H [c(t− t0)− s] e−g(x) s

R e−cleλ
2
k(t− s

c
−t0)/3

×
∫ (Ds(t−t0))−1

1
dγ γ−

2
3 +α exp

(
− ε

εsγ2

)
(1−Dsγ(t− s

c
− t0))−α−2 .

(4.41)

The Heaviside functions split the Eq. (4.41) in several integrals, as shown in the Ap-
pendix D, however, at t < c/Ds + t0 the emergent synchrotron intensity is simplified to

I(R, ε, t < c/Ds + t0) = P0q0
2Rh

(
ε

εs

) 1
3
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k=1

bk
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s
e−g(x) s

R e−cleλ
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×
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1
dγ γ−

2
3 +α exp

(
− ε

εsγ2

)
(1−Dsγ(t− s

c
− t0))−α−2

)
(4.42)

with

U =
{
c (t− t0)−R for t < 2R/c+ t0

R for t ≥ 2R/c+ t0 .

The injection of power-law distributed electrons results in a more extensive expression
than in the previous case of an instantaneous, monoenergetic electron injection and no an-
alytical conclusion can be drawn about the temporal development of the synchrotron flare.
After specifying the spatial injection coefficient bk by Eq. (3.32) and (3.33), respectively,
the three dimensional integral expression in Eq. (4.42) has to be solved by a numerical
algorithm of integration. Assuming that most of the sinus and exponential functions in
Eq. (4.42) have rather small arguments, the integrand can be well-approximated by a poly-
nomial and the N -point Gaussian quadrature rule appears suitable (details of the concept
of Gaussian quadrature is given in the Appendix E.2). The complexity of the three di-
mensional integral expression makes it hard to verify which degree of the polynomial gives
an accurate approximation of the integrand, so that a trial-and-error method is used to
determine a capable N . According to Fig. (4.5) a small N leads to distinct inaccuracies at
the beginning of the flare, as well as unphysical fluctuations even at later times. These N
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dependent differences in the light curves vanish for a Gaussian quadrature with N ≥ 40
and in order to minimize the computation time N = 40 is used in the following.
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Figure 4.5: The emergent synchrotron intensity of optical photons at ε = 1 eV (left panel),
as well as soft X-rays at ε = 1keV (middle and right panel), that results
from a N -point Gaussian quadrature, where N = 10 (green line), N = 20
(blue line) and N = 40 (red line). A homogenous electron injection into the
whole plasmoid volume with a spectral index α = −2, as well as the default
parameters in the full diffusion limit are used.

First, the case of a homogeneous electron injection into the whole plasmoid volume is ex-
amined. Fig. (4.6) shows the resulting temporal development of the emergent synchrotron
intensity by assuming a spectral index of α = −3 (solid lines) and α = −2 (long dashed
lines), respectively. In addition, the light curves resulting from the previous injection
assumption, i. e. a monoenergetic and instantaneous injection (short dashed lines), are
illustrated. Due to the power-law distribution of the relativistic electrons the amplitude
of the light curves increases with increasing α, but stays below the (dotted) light curves,
which result from a monoenergetic electron injection. The general temporal development
of the synchrotron flare is roughly independent of the spectral index. However, at low
synchrotron photon energies the light curves differ from the previous results which refer to
Eq. (4.28). The temporal flare behavior slightly shortens with decreasing photon energy
and spectral index α, since the power-law distribution of the initial electrons provides an
increasing number of relativistic electrons with decreasing Lorentz factor when α < 0.
Consequently, the time at which most of the relativistic electrons generate synchrotron
photons with low energies becomes shorter due to less cooling time and this effect logically
increases with decreasing α. But still the Eq. (4.39) and (4.38) give at least an upper limit
of the flare duration and the time of maximal flare emission, respectively.
The second approach uses a homogeneous electron injection till different radii r1 according
to the expansion coefficient (3.33). Fig. (4.7) shows, that the amplitude of the new light
curves increase with increasing source area, but the general temporal development is not
effected by the spatial injection assumption, so that the temporal development stays the
same.
To sum up, an initial particle distribution with a power-law distributed energy yields,
compared with a monoenergetic injection, no significant difference in the synchrotron light
curves at high energies, but at low synchrotron photon energies the temporal development
is slightly shortened. This approves Zacharias & Schlickeiser (2010), who stated that an
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Figure 4.6: Temporal flare behavior of optical photons at ε = 1 eV (blue lines) and soft
X-rays at ε = 1keV (red lines) after a homogeneous electron injection into
the whole plasmoid volume with the default parameters in the full diffusion
limit. The solid and the long dashed lines are calculated by Eq. (4.42) with
α = −3, as well as α = −2 and normalized afterwards. The short dashed
lines show the normalized emergent intensity evaluated by Eq. (4.28) in the
previous section. The maximal emergent intensities (in ster−1 s−1 cm−2) are in
turn: Imax(ε = 1 eV, α = −3) = 1.1 · 107, Imax(ε = 1keV, α = −3) = 1.1 · 103,
Imax(ε = 1 eV, α = −2) = 1.3 · 1011, Imax(ε = 1keV, α = −2) = 4.9 · 108,
Imax(ε = 1 eV, α = 0 s) = 1.0 · 1015 and Imax(ε = 1keV, α = 0 s) = 1.3 · 1014.

initial power-law distribution of relativistic electrons becomes a δ-distribution when the
electrons have cooled significantly.

4.4.3 Emergent synchrotron intensity by a monoenergetic electron injection of
finite duration

In the following, the influence of a finite injection duration T is investigated and com-
pared with the previous results. Therefore, the Eq. (3.31) is used, which results in
power-law distributed relativistic electrons with a spectral index of −2 at the period
1/Ds(1/γ− 1/γ0) < t < 1/Ds(1/γ− 1/γ0) + T and the spontaneous synchrotron emission
coefficient (4.4) yields

j̃s(r, ε, t) = P0q0
4π hDs

(
ε

εs

) 1
3
∞∑
k=1

bk
sin(λkr)

r
exp

(
cleλ

2
k

3Dsγ0

)

×
∫ γ0

1
dγ H

[
γ0

1 +Dsγ0(t− T ) − γ
]
γ−

8
3H

[
γ − γ0

1 +Dsγ0t

]
exp

(
cleλ

2
k

3Dsγ
− ε

εsγ2

)
.

(4.43)
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Figure 4.7: Synchrotron light-curves of optical photons (ε = 1 eV) resulting from an in-
stantaneous injection of power-law distributed electrons with α = −2.5 over
the outer shell of the plasmoid (r1 ≤ r ≤ R). The light curves are shown for
r1 = 0.9999R (blue line), r1 = 0.9R (red line) and r1 = 0 (black line) with
the default parameters in the full diffusion limit.

Inserting the emission coefficient (4.43) in the production rate (4.17), the emergent syn-
chrotron intensity (4.16) becomes

I(R, ε, t) = P0q0
2RhDs

(
ε

εs

) 1
3
∞∑
k=1

bk exp
(
cleλ

2
k

3Dsγ0

)∫ R

0
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s
exp(−g(x)s/R)

×
∫ γ0

1
dγ H

[
γ0

1 +Dsγ0(t− s/c− T ) − γ
]
H

[
γ − γ0

1 +Dsγ0(t− s/c)

]
γ−

8
3

× exp
(
cl0λ

2
k

3Dsγ
− ε

εsγ2

)
.

(4.44)

Like in the previous section, the three dimensional integral expression allows no analytical
conclusion about the temporal development of the synchrotron flare and a 40-point Gaus-
sian quadrature method is used to solve the expression. But first, the Heaviside functions
have to be extricated from the three integrations, so that the limits of integration become
partially time and energy dependent and the number of integrals amplifies to over one
hundred (which is not shown because of the lack of space, but easy to anticipate with
Appendix D). In addition, the spatial injection assumption has to be specified by taking
Eq. (3.32) and Eq. (3.33), respectively.
Fig (4.8) illustrates the resulting temporal development of the emergent synchrotron in-
tensity in two different energy regimes by assuming a homogeneous electron injection into
the whole emission knot and an injection duration of T = 104 s (solid lines) and T = 105 s
(long dashed lines), respectively. The new light curves have a temporal evolution, that is
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Figure 4.8: Temporal synchrotron flare behavior of optical photons at ε = 1 eV (blue lines)
and soft X-rays at ε = 1keV (red lines) after a homogenous electron injection
into the whole plasmoid volume with the default parameters in the full diffu-
sion limit. The normalized light curves are calculated by Eq. (4.44) with an
injection duration of T = 104 s (solid lines) and T = 105 s (long dashed lines),
respectively, whereas the short dashed light curves show the emergent intensity
evaluated by Eq. (4.28) in the previous section. The maximal emergent inten-
sity (in ster−1 s−1 cm−2) are in turn: Imax(ε = 1 eV, T = 104 s) = 1.0 · 1019,
Imax(ε = 1keV, T = 104 s) = 1.2 · 1018, Imax(ε = 1 eV, T = 105 s) = 8.7 · 1019,
Imax(ε = 1keV, T = 105 s) = 3.6 · 1018, Imax(ε = 1 eV, T = 0 s) = 1.0 · 1015 and
Imax(ε = 1keV, T = 0 s) = 1.3 · 1014.

quite similar to the light curves resulting from an instantaneous electron injection (dashed
lines), but as expected is its maximal amplitude T/1 s times bigger since T/1 s times as
many relativistic electrons are injected into the emission volume. In addition, the syn-
chrotron flare temporally extends, so that the temporal features (4.36)–(4.39) are delayed
about T and hence

tmax(ε < εb) '
R

c
+ 1
Dsγ0

√E0
3ε − 1

+ t0 + T . (4.45)

tmax(ε > εb) '
cl(ε)
Ds γ0

√E0
ε
− 1

+ t0 + T , (4.46)

t1/2(ε < εb) '
R

c
+ 2.02
Ds γ0

√
E0
3ε + t0 + T , (4.47)
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+ T . (4.48)

time [s]
310 410 510

in
te

n
si

ty
 [

1/
(s

te
r 

s 
cm

^2
)]

1210

1310

1410

1510

1610

1710

1810

1910

Figure 4.9: Synchrotron light-curves of optical photons (ε = 1 eV) resulting from a homo-
geneous electron injection over the outer shell of the plasmoid (r1 ≤ r ≤ R)
and an injection duration of T = 104 s. It is illustrated for r1 = 0.9999R (blue
line), r1 = 0.9R (red line) and r1 = 0 (black line) with the default parameters
in the full diffusion limit.

Fig. (4.9) shows the temporal development of the emergent synchrotron intensity, cal-
culated by Eq. (4.44) with the spatial injection coefficient (3.33). Like in the previous
sections, the amplitude of the light curves increase with increasing r1, but neither the
flare duration nor the time of maximal intensity is changed by this spatial injection as-
sumption.

4.5 Synchrotron radiation with respect to excitation losses

The latter sections have exposed the importance of the broadband nature of the syn-
chrotron power spectrum, as well as the mostly negligible influence of the different par-
ticle injection assumptions on the temporal development of a synchrotron flare. Below,
another generalization is used: On the one hand, the influence of excitation losses on the
relativistic electrons is investigated and on the other hand are the effects of the self excited
electrostatic turbulences on the particle beam taken into account. However, the temporal
behavior of the emergent synchrotron intensity is not expected to change significantly at
photon energies ε > Eq, since the temporal flare development is predominantly determined
by the broadband nature of the synchrotron power spectrum, as well as the synchrotron
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and EC cooling rate, respectively. But in case of ε < Eq a reduction of the synchrotron
flare is anticipated because of the additional cooling effect.

4.5.1 Emergent synchrotron intensity by an instantaneous injection of elec-
trons with plateau distributed energy

Here the relativistic electrons are quasi instantaneously plateau distributed in momentum
space according to Eq. (3.28), so that the spontaneous synchrotron emission coefficient
(4.3) yields

js(r, t, ε) = P0 q0
4π h(γ0 − 1)

(
ε
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) 1
3
∞∑
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∫ R
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dr′
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Dsγq
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γ2
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)
− t
]

×
∫ γu(t)

1
dγ γ−

2
3

1 + (γt,0/γq)2

1 + (γ/γq)2
Eek(γ, γt,0)

exp (ε/(εsγ2)) ,

(4.49)

where γt,0 = γt(γ, t, t′ = t0) and the upper limit of integration is due to the Heaviside
function in Eq. (3.28) defined by

γu(t) =
γqγ0 − γ2

q tan(Dsγq(t− t0))
γq + γ0 tan(Dsγq(t− t0)) . (4.50)

The omnidirectional photon production rate (4.17) is specified by Eq. (4.49), so that the
emergent synchrotron intensity (4.16) is finally determined by
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1
dγ γ−

2
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1 + (γret/γq)2

1 + (γ/γq)2
Eek(γ, γret)

exp (ε/(εsγ2)) ,

(4.51)

with

γret = γt(γ, t = t− s/c, t′ = t0) =
γqγ + γ2

q tan(Dsγq(t− t0 − s/c))
γq − γ tan(Dsγq(t− t0 − s/c))

, (4.52)

which denotes the retarded γt,0. Once again, the Heaviside functions split the integral
expression in several integrands (Appendix D), that can finally be solved by a numerical
algorithm of integration. Like in the previous sections a 40-point Gaussian quadrature
rule is the most stable algorithm, that yields accurate results, as the integrand is most
likely adequate described by a polynomial of order 79.
The Fig. 4.10 shows the obtained emergent synchrotron intensity and compares it with the
results of an instantaneous injection of monoenergetic electrons disregarding excitation
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Figure 4.10: Temporal development of the emergent synchrotron intensity at an energy
ε = 1 eV (blue line), ε = 100 eV (green line) and ε = 1keV (red line) according
to Eq. (4.51, solid line) and Eq. (4.28, dotted line) where a monoenergetic
particle injection as well as no excitation losses are considered. In doing so,
the default parameters in the full diffusion limit are used.

losses. Apparently, the additional assumptions have no influence on the temporal flare
development of synchrotron photons with ε > Eq, so that the Eq. (4.45)–(4.48) still give
an accurate description of the flare duration and the time of maximal emission. However,
in the case of ε < Eq, which also occurs by increasing the background particle density
Nb or decreasing the synchrotron and EC losses, the light curves in the affected energy
range are shortened significantly. Here, the previously derived analytical formulas of the
temporal features are not suitable.

4.6 Conclusions to the low energy data of PKS 2155-304

The previous sections have shown that the temporal development of a synchrotron flare
differs at different energies due to the cooling time of the relativistic electrons. Hence, the
flare duration, as well as the time of maximal emission increase (independent of the initial
conditions of the seed electrons) with decreasing energy. In the following, the derived
temporal features (4.45)–(4.48) are considered in the observer’s frame (see Appendix A
for the relevant invariance relations) and subsequently compared with the optical and X-
ray observations of PKS 2155-304 in July 29-30 2006 (Fig. 4.11).
The observations of PKS 2155-304 in the optical V-band (ε∗V = 10 εV δ1 = 2.25 eV) show
an increase starting at ∼20:30 on the 29th of July, that lasts several hours until ∼23:45
on the same day, but afterwards the flux hardly decrease and another peak is formed at
∼02:00 on the next day with a distinct subsequent slope. Thus, the minimal optical flare
duration yields t∗1/2,obs(ε

∗
V ) ≥ 6.25 hr, when the rising at ∼02:45 refers to another flare and

the time of maximal flare emission is assumed to be dated somewhere between ∼23:45 and
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Figure 4.11: The optical (red), X-ray (blue) and γ-ray (black) light curves of PKS 2155-
304 in July 29-30 2006. The left panel illustrates the observed flux at different
scales in order to emphasize the temporal pattern in all wavelengths and the
dotted line marks the starting time of the optical and γ-ray flare. In the
right panel are the light curves of the flux at 0.3 TeV, 0.3 keV and 2.25 eV
plotted on the same flux scale. Here the X-ray and optical flux are corrected
for Galactic extinction (AV = 0.071). For more details see Aharonian et al.
(2009).

∼02:00.
Unfortunately, the X-ray observations (with ε∗X = 10 εX δ1 = {0.5...5} keV) starts almost
at its flux maximum ∼ 2 hr after the onset of the optical flare. However, there is a clear
correlation to the VHE flux during the whole time of observation and therefore the X-ray
flare is assumed to behave similar to the VHE flux in these first two hours of missing
data, too. Hence, the first three X-ray data points show probably rather a short time
fluctuation (similar to the VHE data at that time) than a long scale slope. Consequently,
the X-ray flux is considered to start simultaneously with the VHE flare (as well as the
optical flare) at 20:38 on the 29th of July and have its maximum approximately at the
same time as the VHE flare at ∼21:30 on the 29th of July. Right after the beginning of
the X-ray observations the flux sharply decreases appropriate to the third root of the VHE
flux (Aharonian et al., 2009), so that the X-ray flare duration yields at least 2 hours.
According to the previous interpretation of the low energy data the theoretical model has
to account for the following temporal conditions: (i) The observed time lag between the
flux maxima of the optical and X-ray light curves yields 2.25 hr ≤ ∆t∗obs ≤ 4.5 hr, (ii) the
maximal X-ray emission is supposed to be ∼ 1 hr after the beginning of the flare, and (iii)
the lower limits of the flare duration are t∗d,obs(ε∗X) ≥ 2 hr, as well as t∗1/2,obs(ε

∗
V ) ≥ 6.25 hr.

Due to the large Compton dominance (Lc/Ls ∼ 10) of this BL Lac object (Aharonian et al.,
2009), dominant EC losses are assumed, so that lEC � b2. Furthermore, a Doppler factor
δ = 10 δ1 is adopted, since the emission knot is transparent for TeV photons (Appendix F).
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Using the Eq. (4.36) and (4.38) for an injection duration T � R/c the delay between the
peaks of the optical and the X-ray light curves in the observer’s frame yields

∆t∗ = tmax(ε∗V < ε∗b)− tmax(ε∗X > ε∗b)
10 δ1

'
(

56R15 δ
−1
1 +

[
308 (ε∗V /1 eV)−

1
2 − 0.2 (ε∗X/1 keV)

1
2

− 30 (ε∗X/1 keV)−
1
2
]
l−1
EC b

1/2δ
−1/2
1

)
minutes,

(4.53)

when lEC � b2, as well as
√
E∗0/ε

∗
X � 1. Consequently, the EC cooling parameter becomes

lEC '

 ∆t∗obs
1 minutes − 56R15δ

−1
1

205− 30(ε∗X/1 keV)−
1
2

−1

b1/2 δ
−1/2
1 (4.54)

in order to obtain the observed time lag ∆t∗obs according to the condition (i). In addition,
the constraint (ii) determines the time of maximal X-ray emission, so that with Eq. (4.36)
in the observer’s frame

t∗max(ε∗X) '
(
10 (ε∗X/1 keV) + 1.83 · 103) s
δ

1/2
1 b−1/2lEC (ε∗X/1 keV)1/2

' 3.6 · 103 s , (4.55)

when lEC � b2 and
√
E∗0/ε

∗
X � 1 is still taken into account. Thus, the EC cooling

parameter yields

lEC ' 0.51 b1/2 δ−1/2
1 (ε∗X/1 keV)−1/2 (4.56)

for the considered X-ray energies 0.5 keV ≤ ε∗X ≤ 5 keV. Equalizing this term with the
Eq. (4.54) results in

∆t∗obs = (56R15δ
−1
1 + 402(ε∗X/1 keV)1/2 − 59)minutes . (4.57)

A physically meaningful solution requires R15δ
−1
1 > 0 and with the time lags referred to

(i), one finally obtains

0 < R15δ
−1
1 ≤ 5.87− 7.18(ε∗X/1 keV)1/2 , where ε∗X ≤ 0.67 keV . (4.58)

Furthermore, the total duration (4.37) of the X-ray flare, as well as the half-life (4.39) of the
flare in the V-band yields with Eq. (4.56), as well as an injection duration T � 10R15 hr

t∗d(ε∗X) '
(
111R15 δ

−1
1 + 33

)
minutes , (4.59)

and

t∗1/2(2.25 eV) '
(
56R15 δ

−1
1 + 831(ε∗X/1 keV)1/2

)
minutes , (4.60)
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respectively, in the observer’s frame. In order to obey the minimal flare durations according
to (iii) the Eq. (4.59) yieldsR15δ

−1
1 ≥ 0.78, so that all in all, the temporal flare development

of the optical and X-ray flare is accurately described when

0.78 ≤ R15δ
−1
1 ≤ 5.87− 7.18(ε∗X/1 keV)1/2 , where ε∗X ≤ 0.50 keV (4.61)

and the EC cooling parameter is determined by Eq. (4.56).
According to the strong slope in the X-ray spectrum, the photons with the lowest X-
ray energies provide the dominant rate of the observed X-ray flux, so that the energetic
confinement in Eq. (4.61) is in good agreement with the observations. However, the time
lag between the maxima of the optical and X-ray light curves needs to be at least 4.5 hr
when the maximal X-ray emission is about an hour after the beginning of the flare. But
assuming a higher background particle density, excitation losses have to be taken into
account, so that the time lag is decreased significantly, since the temporal features of the
optical flare decrease (see Fig. 5.4) through the additional cooling effect. Based on the
narrow range of the parameters R15, δ1, lEC and b that accounts for the temporal flare
development the ratio between the maxima of the emergent intensity (4.28) at ε∗X = 0.3 keV
and ε∗V = 2.25 eV yields

Imax(ε∗X = 0.3 keV)/Imax(ε∗V = 2.25 eV) ' 0.1 . (4.62)

The observed flux at a certain energy ε∗c is defined by F ∗ ∝ ε∗c I
∗(ε∗c) and with Eq.(4.62)

one obtains

F ∗X/F
∗
V = 0.3 keV

2.25 eV
Imax(ε∗X)
Imax(ε∗V ) ' 13.3 . (4.63)

Hence, the theoretical flux ratio is exactly in line with the observations, as the measured
flux at 0.3 keV varies about a factor 2, whereas the flux variation factor at 2.25 eV is only
0.15, so that its quotient also yields ∼ 13.
Summing up, the theoretical model reasonably describes the flux variation ratio, as well as
the temporal development of the major flare in the X-ray and the V-band of PKS 2155-304
on the 29th and 30th of July 2006 for realistic parameters that account for the Compton
dominance of the source.





Chapter 5
Modeling high energy flares

As discussed in Sect. 1.1.1 and 1.1.2, the high energy flare is commonly explained by a
leptonic or hadronic interaction scenario. Due to the mathematical complexity of SSC
scattering the leptonic emission approach is in this thesis confined to the case of EC
scattering, which refers to a dominant external photon field or an initial particle density
q0 < 109R−1

15 γ
−2
0 (Schlickeiser et al., 2010).

The considered pickup model where no further particle acceleration in the emission knot
takes place yields rather small particle Lorentz factors, so that in consideration of the
constraints (3.57) and (3.60), the relativistic protons can only generate gamma-rays by
pion production through inelastic proton-proton interactions.

5.1 Propagation and retardation of gamma-rays and neutrinos
The production of high energy photons that results from EC scattering (pion production
by inelastic proton-proton interactions) depends on the particle density (3.51) of rela-
tivistic electrons (particle density (3.63) of relativistic protons), as well as the properties
of the external target photon field (the internal target proton field) and the correspond-
ing cross-section. In addition to the generation of γ-rays, the hadronic pion production
generates high energy neutrinos. Latter interact in contrast to the gamma-rays not by
the electromagnetic force, but nevertheless both particle species can be treated by the
same escape probability as subsequently shown. The background particle density of the
plasmoid volume corresponds to a high vacuum, so that neutrino interactions are negli-
gible without any difficulty. In the high energy regime where the dimensionless photon
energy x = Eγ/mec

2 � 1, the photons are predominantly forward scattered. However,
a single scattering event leads to a large energy shift, which approximately removes the
γ-ray in proportion to its probability for scattering (Lightman & Zdziarski, 1987), that
is described by the Klein-Nishina scattering depth (4.13) which yields τKN (x � 1) � 1.
Thus, a diffusive buildup of photons in the interior of the emission volume can not occur
at γ-ray energies and the photon escape probability is dominated by the escape from the
emission knot in a time ∼ R/c. Therefore, the Eq. (4.12) results in g(x) = 1 and the
escape probability is calculated by exp(−s/R) when high energy photons (with x ≥ 1) or
neutrinos are considered.

61
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Consequently, the emergent intensity of gamma-rays (j = γ) and neutrinos (j = {νe, νµ}),
respectively, for an optical thin emission volume is determined, analogous to the case of
the emergent synchrotron intensity (4.16), by

Ij(R,Ej , t) = 1
2R

∫ R

0
dr′ r′

∫ R+r′

R−r′

ds
s
ρl(r′, Ej , t− s/c) exp(−s/R) . (5.1)

Here ρl(r′, Ej , t− s/c) denotes the omnidirectional production rate of γ-rays or neutrinos
with an energy Ej according to the considered leptonic EC scattering or hadronic pion
production.
The previous examinations of the synchrotron radiation have already exposed the influ-
ence of the different initial particle distributions on the temporal development of the flare.
Hence, the different initial particle approaches are not reapplied in the case of high energy
emission, since its general influence is expected to stay the same. So, the subsequent
investigations are confined to the favored case of an instantaneous and homogeneous in-
jection into the whole plasmoid volume (3.32) of relativistic electrons and protons with a
plateau distributed energy distribution (3.28) due to the influence of electrostatic turbu-
lence. In doing so, the mathematical complexity of the leptonic and hadronic interaction,
respectively, allows no analytical treatment.

5.2 External Compton radiation
5.2.1 Spontaneous external Compton emission
In this thesis a low number density of injected particles is considered in order to keep the
nonlinear effects of SSC losses on the relativistic electron distribution negligible. Con-
sequently, a significant γ-ray flare by inverse Compton scattering has to be initiated by
an external photon field. Here, the photon field of the accretion disk is considered with
a temperature θ′ = 10 θ′1 eV and a Planckian distributed spectral luminosity (Dermer &
Schlickeiser, 1993b)

L′(ε′) = 15Ladmec
2

π4 θ′4
ε′3

exp
(
ε′

θ′

)
− 1

(5.2)

where the total luminosity Lad = 1046 L46 erg s−1. As shown in Sikora et al. (1994)
the radiation field becomes at a large distance from the central engine a significant non-
radial component as a result of scattering and reprocessing effects. Gas clouds and dust
are assumed to be spherically distributed around the central nucleus, so that a roughly
isotropic radiation field is obtained by line and thermal infrared emission of irradiated
clouds and dust, respectively, as well as electron scattering in clouds and the intercloud
medium. Subsequently, the latter mechanism is favored and hence, the photon density
n′Ph(ε′) at a distance

√
R2
sc +R2 is determined by

n′Ph(ε′) = L′(ε′) τsc
4π (R2

sc +R2) c ε′ . (5.3)

Here the parameters are the same as in Eq. (3.40) where the distance of significant scat-
tering is given by Rsc = 1Rpc pc and τsc = 10−2 τ−2 denotes the mean scattering depth.
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In the (unprimed) frame of the emission knot with a Doppler factor δ = 10 δ1 the external
photon density yields (Dermer & Schlickeiser, 1993a)

nPh(ε) = n0
ε2

exp
(
ε
θ

)
− 1 , (5.4)

with

n0 = 1.4 · 1010 τ−2 L46 δ
2
1

θ4
1 (R2

pc +R2
15)

eV−2cm−3 (5.5)

and has a spectral maximum at

εmax ' 1.59 θ . (5.6)

Integration of the photon density (5.4) according to Eq. (2.24) yields the previously used
photon energy density (3.40).
Using the convenient δ-function approximation for inverse Compton scattering (Dermer &
Schlickeiser, 1993a) in the limit γ � 1� ε/(mec

2) the spontaneous EC emission coefficient
results in

jc(r, Eγ , t) = EγcσT
12π2mec2

∫ ∞
0

dε nph(ε)
∫ mec2/ε

0
dγ ne(r, γ, t)δ

(
Eγ − γ2ε

)
. (5.7)

Hence, the scattering is most efficient when the relativistic electrons have a Lorentz factor
γ =

√
Eγ/ε.

5.2.2 Emergent gamma-ray intensity
According to Eq. (5.1) the emergent intensity of EC scattered photons at a time t and an
energy Eγ is calculated by

IEC(R,Eγ , t) = 1
2R

∫ R

0
dr′ r′

∫ R+r′

R−r′

ds
s
ργ(r′, Eγ , t− s/c) exp (−s/R) . (5.8)

Here the omnidirectional photon production rate is determined by

ργ

(
r′, Eγ , t−

s

c

)
= 4π jc

(
r′, Eγ , t−

s

c

)
, (5.9)

since there is no preferred direction of the emergent gamma-ray intensity, as the relativistic
electron, as well as the external photon distribution are spatially isotropic. Inserting the
relativistic electron density (3.51) and including the Heaviside functions in the innermost
integral, the emergent γ-ray intensity by EC scattering results in

IEC(R,Eγ ,t) =
√
Eγ c σT q0 n0

12π Rmec2(γ0 − 1)

∞∑
k=1

bk

∫ R

0
dr′ sin(λkr′)

∫ R+r′

R−r′

ds

s
H[c(t− t0)− s]

× H

s− c
t− t0 − 1

Dsγq
arctan

 γ0 − Eγ
mec2

Eγ
mec2

γ0
γq

+ γq

 exp
(
−g(x) s

R

)

×
∫ ε2(Eγ)

ε1(Eγ ,t−s/c)
dε ε

3
2
Eek(

√
Eγ/ε, γt(

√
Eγ/ε, t− s/c))

exp(0.1ε/θ1)− 1
γ2
q + γ2

t (
√
Eγ/ε, t− s/c)

γ2
q + Eγ/ε

,
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Figure 5.1: Temporal development of the emergent gamma-ray intensity by EC scatter-
ing at an energy Eγ = 1GeV (solid line), Eγ = 10GeV (dashed line) and
Eγ = 100GeV (dotted line). Furthermore, we used an accretion disk temper-
ature of θ1 = 0.1(left panel) and θ1 = 1, respectively, as well as the default
parameters in the full diffusion limit.

(5.10)

when the considered energies are in the Thomson limit 4
√
εEγ � mec

2. Here the Heaviside
functions yield the integration limits

ε1(Eγ , t− s/c) = Eγ

(
γ0γq − γ2

q tan(Dsγq(t− s/c− t0))
γq + γ0 tan(Dsγq(t− s/c− t0))

)2

, (5.11)

as well as

ε2(Eγ) = m2
ec

4/Eγ . (5.12)

Subsequently, the Heaviside functions are charged against the integration limits corre-
sponding to Appendix D and the resulting integral expression can be solved numerically.
Therefore, a N -point Gaussian quadrature is used, where a trial-and-error method com-
parable to Fig. (4.5) yields suitable solution for N = 40. Fig. 5.1 shows that the temporal
development of the emergent EC intensity is similar to the case of synchrotron radiation
and the time of maximal flare emission, as well as the flare duration increases with decreas-
ing photon energy Eγ . Furthermore, with increasing disk temperature θ the amplitude of
the light curves decreases and the time of maximal flare emission shifts to later times, as
well as the flare duration enlarges (especially at low gamma energies Eγ), due to the spec-
tral dependence (5.6) of the maximal external photon density and the δ - approximation
in Eq. (5.7).
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5.3 Radiation by inelastic p-p interactions
5.3.1 Production rate of gamma-rays and neutrinos
In the following the relativistic protons of Eq. (3.63) with the energy Ep = γmpc

2 and
their interactions with the non-relativistic protons of the background plasma of constant
density Nb � q0 are considered, so that one obtains a significant pion production rate.
Referred to Kelner et al. (2006) the resulting energy spectrum of the secondary pions of
energy Eπ and the ratio x = Eπ/Ep of the transferred energy is analytically well decribed,
with an accuracy better than 10 % in the proton energy range 0.1TeV ≤ Ep ≤ 105 TeV,
by

Fπ(x, Ep) = 4αBπxα−1
( 1− xα

1 + rxα(1− xα)

)4 ( 1
1− xα + r(1− 2xα)

1 + rxα(1− xα)

) √
1− mπ

xEp
,

(5.13)

with the fit parameters Bπ = a+ 0.25, α = 0.98 a−1/2 and r = 2.6 a−1/2, where

a = 3.67 + 0.83 ln(Ep/1TeV) + 0.075 [ln(Ep/1TeV)]2 . (5.14)

In addition, a less significant rate of η-mesons is also produced, which can analytically be
approximated (with a somewhat less accuracy) by

Fη(x, Ep) = (0.55 + 0.028 ln x)
(

1− mη

xEp

)
Fπ(x, Ep) (5.15)

with the condition Fη(x, Ep) = 0 at x < mη/Ep. The presented energy spectra (5.13) and
(5.15) are obtained by using numerical simulations of the SIBYLL code.
Both meson species decay quasi instantaneously. The main decay modes of the pion
are already given in (1.2) and the main decay modes of the η-meson are presented by
(Eidelman et al. 2004)

η →


2γ, with a probability of 39, 4%,
3π0, with a probability of 32, 5%,
π+π−π0, with a probability of 22, 6%,
π+π−γ, with a probability of 5%.

(5.16)

The energy losses of the intermediate particles (i. e. π-, η-mesons and muons) are negligible,
according to their high masses (in reference to the electron mass) and their short mean
lifetime. In case of the (longer-living) muons the mean lifetime in the rest frame of
the plasmoid yields τµ ' 2.2γµ µs and the energy losses at high Lorentz factors γµ are
dominated by synchrotron cooling with the rate |γ̇|µ = 1.3 ·10−9 b2(me/mµ)3 γ2

µ s−1. Thus,
the mean total muon energy loss Γµ can be approximated in first order by

Γµ ' |γ̇|µ τµ = 3.3 · 10−22 b2 γ3
µ (5.17)

so that the approach Γµ/γµ ' 0 is even accurate at the highest considered Lorentz factors
(γµ ≤ γ0) when b� 100.
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Finally, the energy spectra Fj(Ej/Ep, Ep) of the decay products (j = {γ, e, νe, νµ}) are
determined after integration of the energy spectrum (5.13) and (5.15), respectively, over
the pion energy (see Kelner et al., 2006 for more details). Consequently, the total spectrum
of γ-rays, that describes at x & 10−3 the numerical calculations with an accuracy better
than a few percent, yields

Fγ(x, Ep) = Bγ
ln(x)
x

(
1− xβγ

1 + kγxβγ (1− xβγ )

)4 [ 1
ln(x) −

4βγxβγ
1− xβγ

− 4kγβγxβγ (1− 2xβγ )
1 + kγxβγ (1− xβγ )

]
.

(5.18)

Here x = Eγ/Ep and the best least square fits to the numerical calculations in the energy
range 0.1TeV ≤ Ep ≤ 105 TeV determine the proton energy dependent parameters

Bγ =1.30 + 0.14 ln(Ep/1TeV) + 0.011[ln(Ep/1TeV)]2 ,

βγ =
(
1.79 + 0.11 ln(Ep/1TeV) + 0.008[ln(Ep/1TeV)]2

)−1
,

kγ =
(
0.801 + 0.049 ln(Ep/1TeV) + 0.014[ln(Ep/1TeV)]2

)−1
.

(5.19)

The slight imbalance between the generation of π+ and π− is below the accuracy of
both the measurement and the analytical approximation, so that in the following ν = ν̄
and e+ = e− is adopted. Furthermore, the spectrum of secondary electron-neutrinos is
subsequently estimated with good correctness (less than 5%) by the secondary electrons
and thus

Fνe(x, Ep) ' Fe(x, Ep) = Be
(1 + ke[ln x]2)3

x (1 + 0.3/xβe) (− ln(x))5 . (5.20)

Here x = Eνe/Ep and x = Ee/Ep, respectively, and the fit parameters yield

Be =
(
69.5 + 2.65 ln(Ep/1TeV) + 0.3[ln(Ep/1TeV)]2

)−1
,

βe =
(
0.201 + 0.062 ln(Ep/1TeV) + 0.00042[ln(Ep/1TeV)]2

)−1/4
,

ke =0.279 + 0.141 ln(Ep/1TeV) + 0.0172[ln(Ep/1TeV)]2

0.3 + (2.3 + ln(Ep/1TeV))2 .

(5.21)

The spectrum of muon-neutrinos that results directly from π±-decays is determined by

F
ν

(1)
µ

(x, Ep) = Bµ
ln(y)
y

(
1− yβµ

1 + kµyβµ(1− yβµ)

)4 [ 1
ln(y) −

4βµyβµ
1− yβµ

− 4kµβµyβµ(1− 2yβµ)
1 + kµyβµ(1− yβµ)

]
,

(5.22)

where x = Eνµ/Ep and y = x/0.427, so that the spectrum cuts off at x = 0.427. The fit
parameters are given by

Bµ =1.75 + 0.204 ln(Ep/1TeV) + 0.010[ln(Ep/1TeV)]2 ,

βµ =
(
1.67 + 0.111 ln(Ep/1TeV) + 0.0038[ln(Ep/1TeV)]2

)−1
,

kµ =1.07− 0.086 ln(Ep/1TeV) + 0.002[ln(Ep/1TeV)]2 .

(5.23)
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Figure 5.2: Energy spectra of all decay products (electron-neutrino spectra are quasi equal
to the electron spectra) produced at inelastic proton-proton interactions when
the incident proton has an energy of 0.1 TeV (left panel) and 1000 TeV (right
panel), respectively (Kelner et al., 2006).

The spectrum of the resulting muon-neutrinos from the muon decay can be described by
Eq. (5.20) and thus, the total muon-neutrino spectrum yields

Fνµ(Eνµ/Ep, Ep) = F
ν

(1)
µ

(Eνµ/Ep, Ep) + Fe(Eνµ/Ep, Ep) . (5.24)

Using the energy spectra Fj(Ej/Ep, Ep) of secondary particles in the energy range
Ej ≥ 100GeV, as well as the cross-section (2.43) of hadronic pion production the om-
nidirectional production rate of the particle species j is calculated by (Kelner et al., 2006)

ρppj (r, Ej , t) = cNb

∫ ∞
Ej

dEp
Ep

σppπ (Ep)np(r, Ep, t)Fj(Ej/Ep, Ep) , (5.25)

where np(r, Ep, t) denotes the isotropic relativistic proton density referred to Eq. (3.63).
Due to the mathematical complexity, this first approach neglects additional photon prod-
ucts from the secondary electrons (and positrons), which result from the decay of the gen-
erated charged pions. However, as the energy spectra of secondary electrons are with good
accuracy approximated by the electron-neutrinos, the temporal behavior of the electron-
neutrino intensity shows also when the influence of secondary electrons kicks in.

5.3.2 Emergent intensity of gamma-rays and neutrinos

Using the production rate (5.25) for relativistic protons according to Eq. (3.63), the emer-
gent intensity (5.1) of gamma-rays (j = γ) and neutrinos (j = {νe, νµ}), respectively, with
an energy Ej is determined by
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Figure 5.3: Temporal development of the emergent intensity of gamma-rays (red), muon-
neutrinos (magenta) and electron-neutrinos (orange) by inelastic p-p inter-
actions with a background particle density of N10 = 10 (left panel) and
N10 = 1 (right panel), respectively. The emission is considered at an energy
El = 0.1TeV (solid line), El = 1TeV (dashed line) and El = 10TeV (dotted
line), where the default parameters in the full diffusion limit are used.

Ippj (R,Ej , t) = 1
2R

∫ R

0
dr′ r′

∫ R+r′

R−r′

ds
s
ρppj (r′, Ej , t− s/c) exp(−s/R)

= cNb q0
2R(γ0 − 1)

∞∑
k=1

bk

∫ R

0
dr′ sin(λkr′)

∫ R+r′

R−r′

ds

s
H[c(t− t0)− s]

×H
[
s− c

(
t− t0 −

ln(γ0mpc
2/Ej)

Dc

)]
exp(Dc(t− s/c− t0)− s/R)

×
∫ Eu(t−s/c)

Ej

dEp
Ep

σppπ (Ep)Fj(Ej/Ep, Ep)Epk

(
Ep
mpc2 , γr

(
Ep
mpc2 , t−

s

c

))
,

(5.26)

with the upper limit of integration

Eu(t− s/c) = γ0mpc
2 exp(−Dc(t− s/c− t0)) . (5.27)

Like in the previous sections, the Heaviside functions are charged against the integration
limits according to the Appendix D and subsequently the integral is solved accurately (on
the same ground as in the previous cases) with a 40-point Gaussian quadrature.
Due to the slower cooling mechanism (3.59) of the relativistic protons, the flare duration
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of gammas and neutrinos considerably increases with a decreasing number density Nb of
background protons. Furthermore, the flare duration slightly increase with decreasing Ej ,
which refers to the energy spectra of the secondary particles, whose maximum is around
Ej/Ep ' 0.05 − 0.1, so that the cooling time of relativistic protons increases with de-
creasing secondary particle energy in order to obtain this quotient for most of the primary
particles. However, the time of maximal emission hardly increases with decreasing Ej (see
Fig. 5.3). Except for the amplitudes of the emergent intensities there is only a marginal
difference in the emission of gammas and neutrinos due to the similar behavior of the
energy spectra Fj(Ej/Ep, Ep). However, the logarithmic scaling only exposes huge differ-
ences, so that the temporal features become a single issue in the subsequent section.
In order to observe the calculated neutrino flare with the half-completed IceCube 40 de-
tector the muon-neutrino flux has to be above Fνµ = 10−12 φ90

νµ TeV
−1 cm−2 s−1, where

the factor φ90
νµ has a 90% confidence level and depends on the declination of the neutrino

source (Abbasi et al., 2011c). Assuming a Doppler factor of δ = 10 δ1, as well as the
distance source-observer of D = 1DMpcMpc, the intensity of neutrinos with an energy
E∗ν = δ Eν in the observers frame yields I∗ν (E∗ν) = 1.1 ·10−16 δ3

1 R
2
15D

−2
Mpc Iν(Eν = E∗ν/δ) at

the detector. A crude comparison with the detection limit demonstrates that the maximal
muon-neutrino intensity Iνµ,max has to satisfy the following relation

Iνµ,max(Eνµ = E∗νµ/δ) ≥ 9.1 · 103φ90
νµ(E∗νµ/TeV) δ−3

1 D2
MpcR

−2
15 cm−2 s−1 . (5.28)

Using Fig. 5.3 the minimal background proton density in order to obtain a detectable
neutrino flare with the energy E∗νµ = 1TeV of a source at 1 Mpc distance and optimal
declination condition (φ90

νµ ' 1) yields N10 ' 1. However, the emergent neutrino intensity
also increases by increasing the injected proton density q0, according to Eq. (5.26) and
the upper flux limit of the recently completed IceCube 86 detector is expected to decrease
slightly (Argüelles, Bustamante & Gago, 2010).

5.4 Time lags
In this section the temporal development of the leptonic and hadronic flares are summa-
rized with a focus on the differences in the time of maximal emission, as well as on the
half-life of the flare, i. e. the time at which the emergent intensity is decreased to the half
of its maximum. The amplitude of the emergent intensity by the leptonic and hadronic
scenarios, respectively, strongly depends on several unknown parameters, like the proper-
ties of the emission volume (R, Nb, B) or the external photon field (n0, θ), the (spatial,
temporal and energetic) distribution of seed particles, as well as its particle density q0.
However, the temporal development of the emergent intensity is mainly defined by the
parameters B, θ and Nb of the particular cooling and emission process, as well as the size
R of the emission volume.
Based on the leptonic and hadronic scenario, respectively, Fig. 5.4 shows the half-life of
the emergent intensity and the time of maximal flare emission at an energy range from
1 eV up to 100TeV for a set of standard parameters. In addition to the temporal features
of the high energy flare according to Eq. (5.10) and (5.26), the temporal features of the
synchrotron flare based on Eq. (4.51) are illustrated in Fig. 5.4.
The flare duration, as well as the time of maximal emission of each radiation scenario
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Figure 5.4: Characteristical temporal features of the emission of synchrotron photons (blue
symbols), EC gammas (green symbols), as well as gammas (red symbols),
muon-neutrinos (magenta symbols) and electron-neutrinos (orange symbols)
by inelastic proton-proton interactions. The features are calculated by using
two different plasma densities: N10 = 1 (non-filled symbols) and N10 = 10
(filled symbols) and in case of the leptonic emission scenario the magnetic field
strength is additionally varied, so that b2 + lEC ' 1 (circles) and b2 + lEC ' 0.1
(triangles), respectively. Furthermore, the default parameters in the full diffu-
sion limit are used.

increases with decreasing photon (neutrino) energy and / or decreasing cooling parame-
ters B and Nb, respectively. Especially, the EC emission gets increasingly delayed at low
Eγ with decreasing plasma density Nb, whereas the high energy synchrotron emission is
independent of Nb. Furthermore, there is a distinct difference between the hadronic and
the leptonic scenario, since the time of maximal emission of gammas and neutrinos by
pion production hardly differs by changing the cooling parameter Nb or the energy Ej .
The minimal flare duration is limited by the radius of the emission knot due to the light
crossing time R/c and the maximal flare duration is limited by the cooling mechanism of
the primary particles according to Eq. (3.53) and (3.65), respectively.
Another important feature of Fig. 5.4 is the time lag in the half-life between the neu-
trino and the gamma-ray emission by p-p interactions, which decreases with increasing
cooling and particle density Nb, respectively. So, the spectral half-life development has a
steeper decay in the case of neutrinos which probably results from the bigger difference
in the maximal value of their energy spectra Fνe and Fνµ , respectively, at different pro-
ton energies (see Fig. 5.2). In addition, the time of maximal emission shows also a time
lag between neutrino and gamma-ray emission but in the same way the slope around the
maximal intensity decreases with decreasing cooling parameter Nb (see Fig. 5.3). Thus,
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Figure 5.5: Time lags (in the time of maximal flare emission, as well as the half-life of
the flare) between gammas and neutrinos from hadronic pion production in
the observer’s frame with δ1 = 1. The different colors denote a background
particle density of N10 = 0.1 (blue), N10 = 1 (red), as well as N10 = 10 (green)
and the corresponding colored areas display the range of error that results
from the inaccuracy of the emergent intensity of 1 %. In the right panel the
inaccuracy has a vanishing influence. Thus, different power law fits (dashed
lines) with the parameters of Tab. 5.1 and the generalized power law according
to Eq. 5.29 (solid line) are depicted. The remaining AGN parameters are used
in the default setting.

the temporal differences between gamma-rays and neutrinos are predominantly defined
by the background particle density. Assuming a rather high particle density in order
to obtain an observable neutrino signal (see Sect. 5.3.2), the Fig. 5.5 displays the time
lag between gamma-rays and (electron-) neutrinos over their particle energy E∗j in the
observer’s frame with a Doppler factor of δ = 10 δ1. Based on neutrino oscillation the
neutrino flavor changes while the particle propagates to the observer, so that at large dis-
tances (compared to the oscillation length) the initial electron-neutrino is with the same
probability detected as muon- or tau-neutrino. Therefore, the time lag between gamma-
rays and primary muon-neutrinos, that is according to Fig. 5.4 about a factor of ∼ 0.5
smaller, are neglected here. A detailed look at the light curves in Fig. 5.3 shows that an
inaccuracy of the emergent intensity of ∼ 1 % due to the numerical integration algorithm
has to be taken into account. Hence, the time at which the intensity differs by 1 % from
its maximum and the subsequent half of its maximum, respectively, is used to give an
error estimate. So the time lag of the maximal flare emission leads to a huge range of
error, especially in the case of a small slope around the maximum of the light curve, which
refers to a small background particle density. However, the differences in the half-life of
gamma-ray and neutrino flares in the observer’s frame can be determined with a range of
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Table 5.1: The resulting fit parameters p0 of a power law approximation of the time lags
appropriate to ∆t∗1/2(E∗j ) = p0E

∗−0.55
j for three different background particle

densities Nb = 1010N10 cm−3.
N10 p0 [hr]
0.1 (1.7306± 0.0027) · 108

1 (1.5560± 0.0018) · 107

10 (1.4323± 0.0021) · 106

error that is already hidden by the markers. Small time lags ∆t∗1/2 < 10−2 hr are neglected
due to the limited degree of accuracy of Gaussian quadrature. Using the displayed time
lags in the half-life, a trial-and-error method yields an accurate fit by assuming a power
law according to ∆t∗1/2(E∗j ) = p0E

∗ p1
j with a spectral index p1 = −0.55. The Tab. 5.1

shows the resulting values of p0, which quasi-linearly depend on the background particle
density Nb. Consequently, a general, analytical description of the observed time-lags in
the half-life of gamma-ray and neutrino flares is given by

∆t∗1/2(E∗j ) = 3.9N−1
10

(
E∗j / 1TeV

)−0.55
hr . (5.29)

In a nutshell, at a particle energy of about 1TeV the maximal neutrino intensity from
a flaring AGN with a standard emission radius R15 ' 1 is expected to be delayed, with
reference to the γ-ray intensity maximum, for at most half an hour, whereas the half-life
of gamma and neutrino emission yields a distinct time lag ranging from several minutes to
several hours. At higher energies of some hundreds of TeV the intrinsic time lags between
gamma and neutrino emission vanish.
In summary, the Fig. 5.4 and 5.5 demonstrate that the theoretical model yields significant
time lags between the light curves that arise from leptonic and hadronic emission sce-
narios, as well as temporal differences of gammas and neutrinos resulting from hadronic
pion production. However, apart from the calculated intrinsic time lags between photons
and neutrinos there are two further possible temporal effects on the propagation of these
particles, which will be shortly discussed in turn.

5.4.1 Photon-photon pair attenuation of γ-rays
There are several different matter and photon fields of the inter- or extragalactic medium,
that can be discussed in reference to the attenuation of the emitted gamma-rays, however,
only a temporal correlated and varying particle field can change the general temporal
development (flare duration, time of maximal flare emission) of the high energy photon
intensity (5.10) or (5.26). Consequently, the number of relevant particle interactions re-
duces to those that are related to the initial pickup of the relativistic electrons and protons,
respectively. Thus, the effect of photon-photon pair attenuation by the low energy syn-
chrotron photons of Sect. 4.4 is investigated. According to the Appendix F, the emission
knot is optical thin for gamma-rays independent of the temporal and spatial develop-
ment of the synchrotron photon density. Hence, an analytical estimation is obtained by
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using Eq. (F.13) and neglecting the spatial, temporal and energetic dependence of the
synchrotron photon density MSy = ISy/c, so that the maximal optical depth yields

τmaxγγ ' 2σT Rmec
2

3Eγ c
ImaxSy , (5.30)

where ImaxSy denotes the maximum of the synchrotron intensity ISy(R, ε = 2m2
ec

4/Eγ , t).
Based on observations of flaring blazars, a maximal luminosity of L∗ ' 1046 erg s−1 is
considered at low synchrotron photon energies and with a Doppler factor δ = 10 δ1
the emergent synchrotron intensity in the frame of the emission knot becomes
ImaxSy ' 9 ·1023 (Eγ/1TeV)R−2

15 δ
−3
1 s−1 cm−2. Thus, the maximal optical depth is given by

τmaxγγ ' 0.007R−1
15 δ

−3
1 (5.31)

and the emission knot is optically thin for gamma-rays independent of their energy Eγ .
Consequently, there is no relevant systematic influence on the temporal behavior of the
emergent gamma-ray intensity.

5.4.2 Retardation effects of heavy neutrinos
Another possible effect on the time lags between gamma-rays and neutrinos results from
a non-vanishing neutrino mass since the propagation speed becomes retarded, so that an
additional delay between the photon and the neutrino observation occurs. Due to the large
distance between the emission knot and the observer, the structure of the four dimensional
space-time has to be considered. In case of an homogeneous and isotropic expansion of the
Universe, Einstein’s field equations yield the Robertson-Walker metric, so that a particle
k with the rest mass mk and the energy Ek has at a distance z the delay (Visser, 2004)

∆t ' 15.42 s
H0/

km
sMpc

(
mkc

2

eV

)2 (GeV
Ek

)2
z

[
1− 3 + q0

2 z + 12− j0 + 8q0 + 3q2
0

6 z2 +O(z3)
]
,

(5.32)

to a simultaneously produced massless particle. According to the analysis of 307 super-
novae type Ia in the redshift range 0.015 ≤ z ≤ 1.62 by Guimarães et al. (2009), the
Hubble constant yields H0 = 72 km s−1 Mpc−1, the deceleration parameter q0 = −0.57
and the jerk parameter j0 = −1.
The pion decay generates different neutrino flavors with the mixing ratio
νe : νµ : ντ = 1 : 2 : 0, however, the ratio changes as a result of neutrino oscilla-
tion and one obtains νe : νµ : ντ = 1 : 1 : 1 at a distance much larger than the os-
cillation length Losc = 4π~cE∆m−2

ij . Consequently, the mean neutrino mass
m̄ν =

√
1
3m

2
νe + 1

3m
2
νµ + 1

3m
2
ντ has to be considered. To date there are only upper limits

of the three neutrino masses, so that just an upper limit of the delay (5.32) can be calcu-
lated. The experimental observed upper limits (Altarelli & Winter, 2003) yield the mean
neutrino mass m̄exp

ν = 10.5MeV/c2, whereas theoretical considerations claim a maximal
neutrino mass of 2.5 eV/c2 independent of the flavor (Fukugita & Yanagida, 2003). The
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Fig. 5.6 shows that in case of the theoretical upper limit the delay is negligible even at
large redshifts and small neutrino energies, but in case of the experimental upper limit
the delay (5.32) can increase to several months or years. Thus, the mean neutrino mass is
the crucial parameter and only an improved accuracy of the muon- and tau-neutrino mass
can resolve whether the delay (5.32) is significant or not. Vice versa the observation of a
delay between a correlated gamma and neutrino flare can be used to determine the mean
neutrino mass.
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Figure 5.6: Delay between simultaneously generated neutrinos and photons dependent of
the redshift and the neutrino energy.

5.5 Conclusions to the high energy data of PKS 2155-304
Simultaneous to the low energy flare observations of PKS 2155-304 in July 29-30 2006
there was an extraordinary high γ-ray flare observed by H.E.S.S. and MAGIC (Aharonian
et al., 2009). As stated in Sect. 4.6 the high energy flare at an energy E∗γ ≥ 700GeV starts
simultaneously with the optical flare, but develops on considerably smaller timescales. Ac-
cording to Fig. 4.11 it has a distinct global maximum at ∼21:30 on the 29th of July, i. e. ∼ 1
hour after the onset, which is probably simultaneous with the X-ray flux maximum. The
rise and decay timescales are similar, so that the minimal flare duration of the main γ-ray
flare yields t∗d,obs(E∗γ) ≥ 2 h. The data show at least two other smaller-amplitude flares at
later times, which are not going to be discussed here.
Since PKS 2155-304 is generally classified as an HBL the high energy emission is most
likely explained by SSC scattering when a leptonic scenario is used. However, the high
Compton dominance is more typical for a powerful FSRQ and in addition, the γ-ray flux
decreases with the cube of the X-ray flux (when correlated) which is hard to explain by a
one-zone SSC scenario. Hence, a more unconventional approach should be used in order
to explain the observation.
Guided by the results of the lower energetic counterpart (see Sect. 4.6) a comparison of
the temporal features of the observed γ-ray flare with the previously derived EC and pion
production model is made in the following. Due to the strong correlation to the obser-
vations at lower energies (especially at X-ray energies) the γ-ray fit should also take the
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Figure 5.7: Best fit results of the temporal features of the optical, X-ray and γ-ray flare
resulting from the theoretical model (colored markers) with the observations
of PKS 2155-304 in July 2006 (black bars and arrows). Blue rectangles illus-
trate the temporal features of synchrotron radiation according to Eq. (4.51),
green rectangles display the results of the EC model after Eq. (5.10) and the
circles refer to γ-rays (red), muon-neutrinos (magenta) and electron-neutrinos
(orange) generated by hadronic pion production according to Eq. (5.26). The
parameters, that are not used in the default setting of full diffusion are in turn:
R15 = 1.58, b = 0.25, lEC = 0.36, N10 = 8.9 and θ1 = 10.

constraints (i)–(iii) of Sect. 4.6 into account.
Thus, the Fig. 5.7 displays the observed temporal features (black error bars and arrows)
of PKS 2155-304 that accounts for a temporal inaccuracy of about 5 minutes due to the
binning of the data. Based on the steep slope in the observed spectra at X-ray and TeV
energies the flares at these ranges are expected to be generated at the low energy limits
of observation. Using a trial-and-error method the figure also shows the best fit (col-
ored markers) of the half-life, as well as the time of maximal emission of the γ-ray flare
that results from the leptonic (green rectangles) and hadronic (red circles) scenario which
are calculated with the Eq. (5.10) and (5.26) in the observer’s frame, respectively, where
E∗γ = 10 δ1Eγ . The hadronic scenario yields about 10 minutes after the maximal gamma-
ray emission its maximal muon-neutrino (magenta circles) emission and after further 10
minutes the electron-neutrino (orange circles) intensity is maximal. The flare durations
behave in a similar manner.
In addition, the temporal features of the resulting synchrotron emission (blue rectangles)
at optical and X-ray energies are fitted. Thereby, the match with the observations is
even better than in Sect. 4.6 calculated, since the high density Nb of background particles
yields an additional cooling of the electrons with γ < γq that contribute to the optical
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synchrotron emission.
In the case of the γ-ray flare the results of the hadronic scenario are in good agreement
with the observations, whereas the EC scenario needs an extraordinary high accretion disk
temperature θ1 � 1 corresponding to a low flux, that is in conflict with the Compton domi-
nance of the observations. Based on Fig. 4.11 the maximal flux is F ∗γ ' 10−8.6 erg cm−2 s−1

at E∗γ = 0.3TeV and F ∗X ' 10−9.4 erg cm−2 s−1 at ε∗X = 0.3 keV. In both cases the flux
variation is considerably more than one, so that the ratio of this flux has also to be de-
scribed by the theoretical model. Using a monochromatic approximation of the observed
flux at the lowest observed X-ray and γ-ray energies, the ratio of the emergent intensities
yields

Iobs(ε∗X)/Iobs(E∗γ) =
F ∗X E

∗
γ

F ∗γ ε
∗
X

' 1.6 · 108 (5.33)

according to the observations. Since the expected X-ray flux maximum is one hour before
the onset of the observations in this energy band, the ratio (5.33) is assumed to increase
about a factor x with 1 < x < 3. Calculating the intensities after Eq. (4.51) and (5.26)
with the best fit parameters determines the ratio

ImaxSy (ε∗X)/Imaxpp (E∗γ) ' 3 · 108 , (5.34)

which is in consideration of the inaccuracy x quite close to the observed ratio (5.33).
Summing up, the temporal features, as well as the variation ratios of the observed flare
are at the low and high energy range well described by the theoretical model that takes
relativistic electrons and protons simultaneously into account.



Chapter 6
Summary and conclusions

The theoretical examinations in this thesis have given several useful and verifiable predic-
tions of the temporal development of flaring blazars from optical to γ-ray energies.
Starting with the pickup of electrons and protons from the intergalactic medium the emis-
sion knot gets enriched with relativistic particles, which subsequently generate non-thermal
radiation at different wavelengths in their interactions with the environment. In general,
there are multiple possible acceleration and emission scenarios in AGN, as discussed in
Sect. 1.1.1 and 1.1.2. However, the used pickup model explains the generation of relativis-
tic particles without much speculations about the unknown microphysical details of the
streaming plasmas in the jet of an AGN and furthermore one can exclude several emission
scenarios due to a reasonable confinement of the parameter space. Though, the observed
particle energies above some PeV can hardly be explained by a simple pickup scenario
without subsequent particle acceleration in the emission knot.
After investigation of the different influences of the relativistic particles, Sect. 3.1 yields
the general solution of the particle transport equation

ne,p(r, γ, t) =
∞∑
k=1

bk
sin(λk r)

r
|γ̇|−1

∫ t

−∞
dt′

∑
i

|γ̇i| q1(γi, t′)Ee,pk (γ, γi) , (6.1)

where spatial diffusion (with an energy dependent diffusion coefficient D(γ)), continuous
energy losses with a loss rate |γ̇| and a separable source term q1(γ, t) q2(r) are taken into
account. Here, γi denotes the i’th zero of

f(γ′) = t′ − t+
∫

dγ′
∣∣∣γ̇′∣∣∣−1

−
∫

dγ |γ̇|−1 , (6.2)

which also occurs in the function

Ee,pk (γ, γi) = exp
[
−λ2

k

(∫
dγi

D(γi)
|γ̇i|

−
∫

dγ D(γ)
|γ̇|

)]
. (6.3)

In the full diffusion limit the eigenvalues are defined by λk = k π/R and the spatial source
coefficients yield

bk = 2
R

∫ R

0
dr q2(r) r sin(λkr) . (6.4)

77
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This general formalism has in the following been specified based on the pickup scenario
with no subsequent particle acceleration in order to draw quantitative conclusions.
Hence, the considered particles’ Lorentz factors are limited by γ < 7.3 · 107 (θ/1 eV)−1,
where θ denotes the photon energy of a thermal radiation field, so that photo-hadronic
pion production, as well as high energy proton synchrotron radiation are negligible. Conse-
quently, the favored hadronic emission scenario is pion production by inelastic p-p interac-
tions. For the relativistic electrons the synchrotron and inverse Compton scattering losses,
respectively (that scale with the magnetic field strength B = 1 bG and the scattering pa-
rameter lEC according to Eq. (3.41)), are dominant when γ > 2481

(
b2 + lEC

)−1/2
N

1/2
10 ,

whereas the constant excitation losses (which are proportional to the background particle
density Nb = 1010N10 cm−3) become significant in the opposite case. The nonlinear effects
of initial SSC cooling are due to its mathematical complexity restrained in this thesis by
using an injected particle density of q0 < 109R−1

15 γ
−2
0 or assuming a stronger external

than internal photon energy density.
Hence, the continuous particle cooling yields for hadronic and leptonic emission scenarios
a maximal flare duration, that is given by

τpul = 2.0 · 106N−1
10 (1 + ln(γ6)/ ln(106)) s (6.5)

and

τ eul ' 4.9 · 105 (b2 + lEC)−1/2N
−1/2
10 s , (6.6)

respectively. Thus, the relativistic protons can generate significantly longer flare du-
rations than the relativistic electrons, when the background particle density obeys
N10 < 16.7 (b2 + lEC) (1 + ln(γ6)/ ln(106))2.
In addition to continuous energy losses, the particle transport equation takes energy depen-
dent spatial diffusion into account, but in the considered case of full diffusion (R� γβ0 le,p)
the diffusion coefficient has no impact on the relativistic particle distribution, as well as
the resulting leptonic or hadronic flare emission.
In order to obtain more detailed information about the temporal flare development of
AGN the Chap. 4 and 5 have examined the radiation that results from the interactions of
the primary relativistic particles. However, the influence of secondary electrons that arise
from hadronic interactions has been neglected, however, the timescale of its appearance
can be well approximated by the temporal behavior of the corresponding electron neutrino
intensity.
Low energy (i. e. from optical to X-ray energies) flares of AGN are described by synchrotron
radiation that is generated by relativistic electrons. In a first crude approach analytical
results of the emergent synchrotron intensity are obtained by using a monochromatic
approximation of the synchrotron power spectrum, as well as an instantaneous and mo-
noenergetic electron injection. Subsequently, the influence of the broadband nature of
the synchrotron emission on the temporal flare development is investigated and at late
times t > t0 + 2R/c and photon energies ε < εb = 3.0 b−3R−2

15 eV the emergent synchrotron
intensity (4.28) can be approximated by a Gaussian time distribution (4.32). This reveals
the half-life of the synchrotron flare, as well as the time of maximal emission. However,
at earlier times or photon energies ε > εb, as well as in case of mathematical less conve-
nient injection assumptions the emergent synchrotron intensity has to be calculated by a
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numerical integration algorithm like Romberg’s method or Gaussian quadrature. There
is no a priori knowledge about the exact initial particle distribution, and hence a particle
injection with a finite duration T , a power-law distributed energy and a spatially con-
finement on the outer shell of the emission knot, respectively, is considered with regard
to its influence on the temporal flare development. In contrast to the broad synchrotron
emission spectrum and the continuous synchrotron and EC cooling, respectively, of the
relativistic electrons, the different initial particle assumptions have a negligible effect on
the temporal flare behavior. Only a steep power law with a spectral index α < 0 slightly
shortens the temporal flare development at low synchrotron photon energies, as well as
an injection duration T � R/c extends the flare appropriate to T . Consequently, the
theoretical examinations in the energy range E∗q < ε∗ < E∗0 of the observer’s frame with
δ = 10 δ1, where E∗q = 1.1 (b2 + lEC)−1N10 δ1 eV and E∗0 = 174 bγ2

6 δ1 keV yield three
remarkable general features about a synchrotron flare that are listed (in the observer’s
frame) in turn:

1. The flare starts at all photon energies when the injection of relativistic electrons into
the knot begins.

2. At photon energies ε∗ < ε∗b the synchrotron flare reaches its maximal intensity at

t∗max(ε∗ < ε∗b) '
(

(3.3 · 103R15 + 0.1 (t0 + T )/1 s) δ−1
1 + 1.85 · 104 (ε∗(eV))−1/2

δ
1/2
1 (b3/2 + b−1/2lEC)

)
s

(6.7)

and the half-life of the flare is computed by

t∗1/2(ε∗ < ε∗b) '
(

(3.3 · 103R15 + 0.1T/1 s) δ−1
1 + 3.74 · 104 (ε∗(eV))−1/2

δ
1/2
1 (b3/2 + b−1/2lEC)

)
s . (6.8)

3. At photon energies ε∗ > ε∗b the synchrotron flare reaches its maximal intensity at

t∗max(ε∗ > ε∗b) '
(

0.1 δ−1
1 ((t0 + T )/1 s) + 10 (ε∗/1 keV) + 1.83 · 103

δ
1/2
1 (b3/2 + b−1/2lEC) (ε∗(keV))1/2

)
s

(6.9)

and the total flare duration yields

t∗d(ε∗ > ε∗b) '
(

(6.7 · 103R15 + 0.1T/1 s) δ−1
1 + 1.0 · 103 (ε∗(keV))−1/2

δ
1/2
1 (b3/2 + b−1/2lEC)

)
s . (6.10)

Here ε∗b = δ εb gives the upper limit of the photon energy in the observer’s frame, for which
the analytical approximation of the synchrotron flare is accurate. The last term in the
Eq. (6.7)–(6.10) accounts for the EC and synchrotron losses by the parameters lEC and b,
respectively. The radius R15 of the emission knot and the duration T of the initial electron
injection give a lower limit of the flare duration.
Summing up in few words, the synchrotron flare duration considerably extends over the
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light travel time 2R/(cδ) at optical photon energies and converges towards 2R/(cδ) with
increasing photon energy when the additive effect of the injection duration is negligible.
The origin of the high energy flares is in contrast to low energy flares still under debate,
so that two different possible scenarios were discussed here. Since SSC emission, as well
as proton synchrotron radiation and photo-hadronic pion production could be reasonably
excluded, the most favored scenarios were EC scattering and inelastic proton-proton inter-
actions. The emergent intensities of both scenarios were calculated in turn by assuming
an instantaneous and homogeneous injection into the whole plasmoid volume (3.32) of
particles (i. e. electrons and protons) with a plateau distributed energy distribution (3.28)
according to the influence of the expected electrostatic turbulence in the emission knot.
The effect of other initial particle distributions on the high energy radiation was assumed
to be similar to the case of synchrotron radiation and therefore not investigated again.
Due to the mathematical complexity of the considered interactions the final results were
only obtained by a numerical integration method (Gaussian quadrature), so that general
statements about the high energy emission were hard to express. Especially, the amplitude
of the emergent intensity depends on several unknown parameters of the AGN, whereas
its temporal development is mainly defined by the particular cooling and emission process,
as well as the size of the emission volume. In doing so, the high energy emission shows:

1. A temporal behavior that is similar to the case of synchrotron radiation is exposed,
where the flare starts right after the particle injection and the flare duration, as
well as the time of maximal emission increases with decreasing photon (or neutrino)
energy or decreasing cooling parameter (lEC and Nb, respectively).

2. According to the corresponding particle cooling the temporal features also exhibit
distinct differences between the leptonic and hadronic emission scenarios as illus-
trated in Fig. 5.4. So, in contrast to the leptonic emission behavior the time of max-
imal emission of gammas and neutrinos by hadronic pion production only slightly
differs by changing the cooling parameter Nb or the energy Ej of the considered
particle.

3. Another important temporal feature is the intrinsic time lag between the neutrino
and the gamma-ray emission by p-p interactions as depicted in Fig. 5.5. In particular
the half-life of the neutrino emission at low energies (of some TeV) is considerably
delayed with reference to the corresponding gamma-ray flare and the corresponding
time lag is determined by

∆t∗1/2(E∗j ) = 3.9N−1
10

(
E∗j / 1TeV

)−0.55
hr . (6.11)

Thus, in the observer’s frame with δ1 = 1 the neutrino flare at E∗ν = 1TeV is
expected to last about ∼4 hr longer than the γ-ray flare at E∗γ = 1TeV, and also
its maximal intensity is delayed for several minutes (at most ∼0.3 hr). In doing
so, a standard emission knot volume around R15 ' 1 and a minimal background
particle density of N10 = 1 is used in order to obtain a detectable neutrino flux with
IceCube from a source at 1 Mpc distance and optimal declination condition. Further
systematic retardation effects on the gamma-rays and neutrinos could be excluded
at the considered parameter space and a mean neutrino mass beyond the upper limit
of theoretical calculations.
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In addition, the theoretical results were finally used to explain the flaring of PKS 2155-304
on 2006 July 29-30. For this purpose, the temporal features (time of maximal flux, flare
duration) of the observed optical, X-ray and γ-ray flares were exposed and subsequently
compared with the theoretical predictions. Thus, the Eq. (6.7)–(6.10) yield an accurate fit
with the observations in the optical and X-ray band for a quite narrow range of parameters.
However, the inclusion of the γ-ray data required a higher background particle density
N10 > 1, so that the optical synchrotron photons were in addition cooled by excitation
losses which finally led to an even better agreement with the observations. Consequently,
the whole observations are accurately described using relativistic electrons and protons
simultaneously, so that the synchrotron radiation of the electrons generate the flaring in
the optical and X-ray band and the protons produce the γ-ray flare through inelastic
collisions with the protons of the background plasma.
Summing up, the thesis exposes several verifiable predictions of the flaring behavior of
blazars from optical to γ-ray energies with reference to the primary particle nature and
its radiation mechanism, respectively.
According to the small amount of a priori knowledge about this class of astrophysical
objects, some of the basic assumptions in this thesis are still under debate, like the assumed
pickup model, the constant cooling parameters, as well as the simple diffusion model and
the range of the parameters of an AGN jet in general. Another remaining question is the
influence of significant particle acceleration within the emission region and during the flare
development. However, the effect of a continuous energy gain according to γ̇ = γ/tacc can
easily be applied to the general formalism (6.1) of the relativistic particle density when
the effects of momentum diffusion are still negligible. Thus, there surely remains room
for improvements: On the one hand, the theoretical calculations could be extended by
(i) significant particle acceleration, (ii) nonlinear cooling effects, (iii) the consideration of
SSC radiation and (iv) complexer diffusion models. On the other hand, the theoretical
predictions have to be tested more sophisticatedly (by using also the spectral features) on
the increasing number of multiwavelength observations of blazars.
However, most of these approaches require the room of another thesis and as the very
beginning has already exhibited the epistemological confinement of a physical explanation,
the presented analysis has also shown that a useful explanation is only obtained by a
physical confinement. An important step towards the possible mechanisms of these most
giant cosmic accelerators is made and most certainly more will follow.





Appendix A
Invariance relations

Throughout the thesis the calculations are in some places switched from the rest frame
of the emission knot to the rest frame of the observer. For this purpose, a Doppler
transformation with a Doppler factor δ = [Γ(1−β cosα)]−1 is adopted, where the emission
knot has a bulk velocity βc, the corresponding Lorentz factor Γ and moves with an angle
α to the line of sight. The transformation formulas regarding photon intensities result
from the Lorentz invariance of the photon phase space density (Begelman et al., 1984)

P = dN

dV
= P∗ . (A.1)

With the photon energy-momentum relation ε = p c and spherical momentum coordinates
(i.e. d3p = p2 dp dΩ) the invariance relation (A.1) can be expressed by

P = c3 dN

ε2 dε dΩ d3x
. (A.2)

For the differential photon density M(r, ε, t) = dN
dΩ d3x this gives the invariant

M

ε2 dε
= M∗

ε∗2 dε∗
, (A.3)

so that the intensity I = cM relation yields

I∗(R, ε∗, t∗) = δ3 I(R, ε = ε∗

δ
, t = t∗ δ). (A.4)

Times and photon energies transform as t∗ = δ−1 t and ε∗ = δ ε, respectively.
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Appendix B
Additional calculations to the primary
particle distribution

B.1 Solution of the three dimensional spatial diffusion equation
Here a more rigorous derivation is presented of how to proceed from the general transport
equation

∂na(r, γ, t)
∂t

= ∆D(γ)na(r, γ, t) + ∂

∂γ
[|γ̇|na(r, γ, t)] + q1(γ, t)q2(r) . (B.1)

to obtain a differential number density of relativistic particles na(r, γ, t) at every point
r = r(

√
1− µ2 cosφ,

√
1− µ2 sinφ, µ) within the source where r, φ and µ = cos θ are the

spherical coordinates. Using the ansatz of separation

na(r, µ, φ, γ, t) = F (r)G(µ, φ)n(γ, t) (B.2)

the spatial diffusion operator of the particle kinetic transport Eq. (B.1) is of Sturm-
Liouville type and its eigenfunction form an orthonormal base in position space. The
eigenfunctions are defined by

∆(F (r)Y (µ, φ)) + λ2 F (r)Y (µ, φ) = 0, (B.3)

with the boundary conditions F (0) <∞ and F (R) = 0, as well as Y (φ+ 2π) = Y (φ) and
Y (µ) is regular at µ = 1,−1. Consequently, the eigenfunction Eq. (B.3) is separated into
the angular dependent equation

∂2Y

∂Y 2 + (1− µ2) ∂
∂µ

(
(1− µ2)∂Y

∂µ

)
+ S(1− µ2)Y = 0 (B.4)

and the radial dependent equation

∂

∂r

(
r2∂F

∂r

)
+
(
λ2r2 − S

)
F = 0 (B.5)
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Table B.1: First ten Zeros yl,k of the spherical Bessel functions jl.
l yl,1 yl,2 yl,3 yl,4 yl,5 yl,6 yl,7 yl,8 yl,9 yl,10
0 3.14 6.28 9.42 12.57 15.71 18.85 22.00 25.13 28.27 31.42
1 4.49 7.73 10.90 14.07 17.22 20.37 23.52 26.67 29.81 32.96
2 5.76 9.10 12.32 15.51 18.69 21.85 25.01 28.17 31.32 34.47
3 6.99 10.42 13.70 16.92 20.12 23.30 26.48 29.64 32.80 35.96
4 8.18 11.70 15.04 18.30 21.53 24.72 27.92 31.09 34.27 37.43

where S is the constant of separation.
The well-known differential equation (B.4) is solved by the Laplace’s spherical harmonics

Yl,m(µ, φ) = Nl,m P
m
l (µ) eimφ , (B.6)

with the associated Legendre polynomials Pml (µ) and the normalization constant Nl,m.
Using the boundary conditions for Yl,m(µ, φ) the constant of separation yields S = l(l+ 1)
for the non-negative integer l ≥ |m|.
Accordingly, x = λr is substituted in the radial equation (B.5) and the differential equation
yields

x2∂
2F

∂x2 + 2x ∂F
∂x

+ (x2 − l(l + 1))F = 0, (B.7)

which is solved by the spherical Bessel functions jl(λr) and yl(λr). But only the functions
jl are finite at the center and using the second boundary condition (jl(λl,kR) = 0) one
obtains the eigenvalues λl,k = yl,k/R, where yl,k is the k-th zero of jl.
Due to the two partial differential equations (B.4) and (B.5) the particle density and the
spatial source term is of the form

na(r, µ, φ, γ, t) =
∞∑
l=0

∞∑
k=1

l∑
m=−l

nl,k,m(γ, t)Yl,m(µ, φ) jl(λl,kr) , (B.8)

and

q2(r, µ, φ) =
∞∑
l=0

∞∑
k=1

l∑
m=−l

bl,k,m Yl,m(µ, φ) jl(λl,kr) . (B.9)

Using the orthonormality relation of spherical Bessel functions∫ R

0
dr r2 jl(λl,kr) jl(λl,k′r) = R3

2 [jl+1(λl,kR)]2 δk,k′ , (B.10)

the coefficients bl,k,m are determined by

bl,k,m = 2
R3 [jl+1(λl,kR)]2

∫ 2π

0
dφ

∫ 1

−1
dµ

∫ R

0
dr r2q2(r, φ, µ)Yl,m(µ, φ) jl(λl,kr) . (B.11)
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Inserting the expansions (B.8) and (B.9) into the transport equation (B.1) yields for the
particle expansion functions nl,k,m(γ, t) the equation

∞∑
l=0

∞∑
k=1

l∑
m=−l

Yl,m jl(λl,kr)
[
∂nl,k,m(γ, t)

∂t
− ∂

∂γ
[|γ̇|nl,k,m(γ, t)]

+D(γ)λ2
l,knl,k,m(γ, t)− bl,k,mq1(γ, t)

]
= 0 .

(B.12)

In order to generate an isotropic production rate of non-thermal emission, an isotropic
density of relativistic particles is needed, so that the three dimensional spatial dependence
(B.8) reduces to its radial component and the expansion coefficients with l = 0 have a
dominating influence, respectively. At radii r � R the spherical Bessel function can be
approximated by

jl(λl,kr � 1) ' 2l (λl,kr)l
l!

(2l + 1)! (B.13)

and hence the first eigenfunction (with l = 0) is dominant at the inner part of the emis-
sion volume. Furthermore, the spherical harmonics Yl,m are apart from Y0,0 oscillating
functions with positive and negative values. Additionally, the differential equation of the
particle expansion functions nl,k,m(γ, t) corresponds to Eq. (3.14), which yields according
to Eq. (3.26) an exponentially decreasing behavior of nl,k,m(γ, t) with increasing eigen-
value λl,k. Since y0,k is the smallest zero (see Tab. (B.1)) the full solution is accurately
approximated by its isotropic part when the argument of the exponential function (3.26)
is less than -1. Thus, the spatial diffusion assumption, as well as the continuous energy
loss process have to be specified in order to obtain a more quantitative result.
For example in the case of relativistic electrons that suffer continuous synchrotron losses,
i. e. |γ̇| = Ds γ

2 and have a constant diffusion coefficient D0, the expansion function is
given by

nl,k,m(γ, t) = bl,k,m

∫ t

−∞
dt′ e−D0λ2

l,k(t−t′)

(1−Dsγ(t− t′))2 q1

(
γ′ = γ

1−Dsγ(t− t′) , t
′
)
. (B.14)

Consequently, at a time

t− t′ ≥ R2

D0 y2
l,k

(B.15)

the relativistic electron distribution ne(r, µ, φ, γ, t) is spatially isotropized.
Neglecting the eigenfunctions with l ≥ 1 the angular dependence disappears and the
differential number density of relativistic particles turns from Eq. (B.8) to (3.11). However,
using the one dimensional idealization of the diffusion problem, one has to take into account
that a possible anisotropic initial particle distribution only vanishes with increasing time
due to the influence of spatial diffusion.

B.2 Final approach to solve the transport equation
In order to obtain the expansion coefficients of the relativistic particle density (3.11) the
differential Eq. (3.20) has to be solved. For this purpose a Laplace transformation in t
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and x domain is adopted. The latter yields the function

F e,pk (s, t) = L
{
Ge,pk (x, t)

}
=
∫ ∞

0
dxGe,pk (x, t)e−x s (B.16)

in the Laplace space where the differential ∂Ge,pk (x, t)/∂x is determined by∫ ∞
0

dx ∂G
e,p
k

∂x
e−x s = s F e,pk (s, t)−Ge,pk (x = 0, t) . (B.17)

Since the Green’s function has to vanish in the limits of its arguments x and t, one obtains
Ge,pk (x = 0, t) = 0, so that the differential Eq. (3.20) can be written as

∂F e,pk
∂t

+ s F e,pk = δ(t− t′)e−x′ s. (B.18)

A further Laplace transformation of F e,pk (s, t) defines

Ce,pk (s, T ) = L
{
F e,pk (s, t)

}
=
∫ ∞

0
dxF e,pk (s, t)e−t T (B.19)

and thus∫ ∞
0

dt ∂F
e,p
k

∂t
e−t T = T Ce,pk (s, T )− F e,pk (s, t = 0) . (B.20)

Once again, the last term vanishes due to the general condition
Ge,pk (x, t = 0) = F e,pk (s, t = 0) = 0 and the differential Eq. (B.18) yields

T Ce,pk (s, T ) + sCe,pk (s, T ) =
∫ ∞

0
dt δ(t− t′)e−x′ se−t T , (B.21)

which can be merged to

Ce,pk (s, T ) = 1
s+ T

e−x
′ se−t

′ T . (B.22)

Converting this term back into the t domain results in

F e,pk (s, t) = L−1 {Ce,pk (s, T )
}

= H(t− t′)e−s (x′+t−t′) , (B.23)

with the Heaviside step function H(t− t′) and another transformation into the x domain
yields

Ge,pk (x, t) = L−1 {F e,pk (s, t)
}

= H(t− t′) δ
(
x− (x′ + t− t′)

)
. (B.24)



Appendix C
Additional calculations to the
emergent synchrotron intensity

C.1 Partial Integration of Eq. (4.23)

In order to simplify to integral expression

K =
∫ R

0
dr′ sin(λk r′) J(r′) , (C.1)

the term is partially integrated, i. e.

K = −cos(λk R)
λk

J(r′ = R) +
∫ R

0
dr′

cos(λk r′)
λk

∂J

∂r′
, (C.2)

as J(r′ = 0) = 0. Using Eq. (4.24) and its differential

∂J

∂r′
=H

[
cτ − r′

] (1 +Dsγ0(τ − r′

c )
) 2

3

R+ r′

× exp
(
−Ar′2 +Bk(τ) r′

)

+H
[
cτ + r′

] (1 +Dsγ0(τ + r′

c )
) 2

3

R− r′

× exp
(
−Ar′2 −Bk(τ) r′

)
,

(C.3)
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one obtains

K = 1
λk

(∫ R

0
dr′ cos(λkr′)H

[
cτ − r′

]

×

(
1 +Dsγ0(τ − r′

c )
) 2

3

R+ r′
exp

(
−Ar′2 +Bk(τ) r′

)
+
∫ R

0
dr′ cos(λkr′)H

[
cτ + r′

]

×

(
1 +Dsγ0(τ + r′

c )
) 2

3

R− r′
exp

(
−Ar′2 −Bk(τ) r′

))

− cos(λkR)
λk

∫ R

−R
dy H [cτ − y]

×
(
1 +Dsγ0(τ − y

c )
) 2

3

R+ y
exp

(
−Ar′2 +Bk(τ) r′

)

(C.4)

After substituting r′ to −r′ in the second integral, the first two integrals can be merged,
as the cosine is an even function. In the third integral the variable of integration y is
replaced by r′, which finally yields

K = 1
λk

∫ R

−R
dr′ (cos(λkr′)− cos(λkR))H

[
cτ − r′

]

×

(
1 +Dsγ0(τ − r′

c )
) 2

3

R+ r′
exp

(
−Ar′2 +Bk(τ) r′

)
.

(C.5)

C.2 Approximate Eq. (4.29) by method of steepest descent
Due to Eq. (4.29) the temporal development of the emergent synchrotron intensity can be
approximated by

I(ε, z > z0) ' I0(ε) exp(−f(ε, z)) , (C.6)

with

f(ε, z) = ε

E0
z2 − 2

3 ln z . (C.7)

The first and second derivation of f(ε, z) yield
∂f

∂z
= 2ε
E0

z − 2
3 z
−1 ,

∂2f

∂z2 = 2ε
E0

+ 2
3 z
−2 .

In the following, the function f(ε, z) is developed at its maximum zmax =
√
E0/(3ε) by a

Taylor series, so that

f(ε, z) ' 1
3

(
1− ln

(
E0
3ε

))
+ 2ε
E0

z −
√
E0
3ε

2

(C.8)
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and the emergent synchrotron intensity becomes

I(ε, z > z0) ' I0(ε)
(
E0
3ε

) 1
3
e−

1
3 exp

− 2ε
E0

z −
√
E0
3ε

2
 . (C.9)



Appendix D
General split of a two dimensional
integral by Heaviside functions

In order to calculate the two dimensional spatial integral expressions of the emergent
intensity (4.51), (5.10) and (5.26), respectively, the limitation of the integrals by the
Heaviside functions have to be taken into account. This yields a multiple of integrals,
since the integration limits of the inner integral depend on the outer integral. Hence, the
general Heaviside functions H[A− s] and H[s−B] are considered, so that multiple simple
calculations yield∫ R

0
dr′

∫ R+r′

R−r′
dsH[A− s]H[s−B]

= H[A]
(
H[A− 2R]H[2R−B]

[
H[R−B]

(
H[−B]

∫ R

0
dr′
∫ R+r′

R−r′
ds

+H[B]
(∫ R−B

0
dr′
∫ R+r′

R−r′
ds+

∫ R

R−B
dr′
∫ R+r′

B
ds
))

+H[B −R]H[B]
∫ R

B−R
dr′
∫ R+r′

B
ds

]
+H[A−R]H[2R−A]H[A−B]

[
H[R−B]

(
H[2R−A−B]

∫ A−R

0
dr′
∫ R+r′

R−r′
ds

+H[A+B − 2R]
(∫ R−B

0
dr′
∫ R+r′

R−r′
ds+

∫ A−R

R−B
dr′
∫ R+r′

B
ds
))

+H[B −R]H[A+B − 2R]
∫ A−R

B−R
dr′
∫ R+r′

B
ds

+H[2R−A−B]
(
H[−B]

∫ R

A−R
dr′
∫ A

R−r′
ds

+H[B]
(∫ R−B

A−R
dr′
∫ A

R−r′
ds+

∫ R

R−B
dr′
∫ A

B
ds
))

+H[A+B − 2R]H[B]
∫ R

A−R
dr′
∫ A

B
ds

]
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+H[R−A]H[A−B]
[
H[−B]

∫ R

R−A
dr′
∫ A

R−r′
ds

+H[B]
(∫ R−B

R−A
dr′
∫ A

R−r′
ds+

∫ R

R−B
dr′
∫ A

B
ds
)])

.

(D.1)

After specifying the parameters A and B the emergent intensities can be calculated by a
numerical algorithm of integration.



Appendix E
Numerical integration methods

In general, a numerical integration method (or quadrature rule) gives an approximation
of a definite integral of a function f(x) by constructing an interpolation of f(x) within the
domain of integration [a, b], that is more easy to integrate. Usually one uses polynomials as
interpolation function and in order to increase the precision of the evaluation the interval of
integration is split into multiple sub-intervals, where the approximation is calculated and
summed up with the results of the other sub-intervals afterwards. Obviously the accuracy
of the numerical integration depends very much on the abscissas at which f(x) is evaluated.
In general, one differentiate between methods with equally spaced and unequally spaced
abscissas, where the first are generally called the Newton-Cotes quadrature rules and the
latter mostly refer to Gaussian quadrature. Below, are the basic concepts of the used
quadratures investigated, but in order to obtain a detailed insight into the numerical
algorithm of integration the reader is referred to Press et al. (2007).

E.1 Romberg’s method
The Romberg’s method estimates the definite integral by applying a Richardson extrapo-
lation repeatedly on a Newton-Cotes quadrature rule, like the trapezium or the midpoint
rule. In order to avoid the evaluation at the endpoints of the interval the midpoint rule is
used, where N equal sub-intervals of length h = (b− a)/N are considered, so that

∫ b

a
dx f(x) ' h

N−1∑
i=0

f(xi) , (E.1)

with xi = a + (i + 0.5)h. Romberg’s method is subsequently adopted to increase the
accuracy of the quadrature. Here the length of the sub-intervals develops by the sequence
hn = (b− a)/2n and the quadrature uses an iterative calculation according to

R(n,m) = 1
4m − 1(4mR(n,m− 1)−R(n− 1,m− 1)) , (E.2)

where the zeroth extrapolation R(n, 0) equals the result of the midpoint rule when N = 2n.
The iteration formula leads to an exact calculation of the integral by R(n,m) in case of
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n,m→∞. Thus, a great advance of the iterative method is the regulation of the error of
the extrapolation, which is set to 10−6 in this thesis.

E.2 Gaussian quadrature
The Gaussian quadrature uses that the optimal abscissas are the roots xi of the orthog-
onal polynomials of degree N which have to be a capable approximation of the func-
tion in the considered interval [a, b]. Thus, the integrand can generally be expressed by
f(x) = W (x) g(x), where W (x) denotes a known weight function and g(x) is approxi-
mately polynomial, so that

∫ b

a
dx f(x) =

∫ b

a
dxW (x) g(x) ' b− a

2

N∑
i=1

wi g

(1
2(b− a)xi + 1

2(b+ a)
)
, (E.3)

with the weights wi. This approximation is exact if g(x) is a polynomial of degree 2N − 1
or less.
Here the simplest case of a weight function W (x) = 1 is considered and hence the asso-
ciated polynomials are the Legendre polynomials PN (x), where the weights are given by
(Abramowitz & Stegun, 1984)

wi = 2
(1− x2

i )[P ′N (xi)]2
. (E.4)



Appendix F
The optical depth by photon-photon
pair attenuation

Here the effect of pair attenuation on the target photons of the EC process, as well as
the generated synchrotron photons is examined in order to obtain a significant rate of
TeV photons. According to Dermer and Schlickeiser (1993b) the photon density nad in
the comoving frame of the emission knot at a dimensionless energy ε̃ = ε/(mec

2) and a
distance

√
z2 +R2 from the accretion disk with the total luminosity Lad = 1046L46 erg s−1

yields

nad(ε̃, z) '
15

4π5 θ4
τsc Lad

mec3(z2 +R2)
ε̃2

exp(ε̃/θ)− 1 , (F.1)

where the spectral luminosity is Planckian distributed with the dimensionless accretion
disk temperature θ (in units of mec

2). Using the accretion disk photons the pair attenua-
tion optical depth is calculated by

τγγ(ε̃1) =
∫ ∞
zi

dz

∫ ∞
2/ε̃1

dε̃ σγγ(ε̃1, ε̃)nad(ε̃, z) , (F.2)

for a photon with dimensionless energy ε̃1 = ε1/(mec
2), that is radially emitted at a

distance zi. A convenient approximation of the cross-section σγγ is given by (Zdziarski &
Lightman, 1985)

σγγ(ε̃1, ε̃) = σT
3 ε̃ δ

(
ε̃− 2

ε̃1

)
. (F.3)

Inserting Eq. (F.1), as well as Eq. (F.3) the optical depth becomes

τγγ(ε̃1) = 10
π5

τsc LadσT (π/2− arctan(zi/R))
θ4mec3R

F1(ε̃1) , (F.4)

with

F1(ε̃1) = ε̃−3
1

(
exp

( 2
ε̃1θ

)
− 1

)−1
. (F.5)
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The function F1(ε̃1) reaches its maximum F1,max = 0.178 θ3 at ε̃1,max = 0.709 θ−1 (Dermer
& Schlickeiser, 1993b) and at the distance zi � R the arc tangent function is approximated
by arctan(zi/R) ' π/2−R/zi, so that the maximal optical depth yields

τγγ,max = 5.1 · 10−2 τ−2 L46 θ
−1
−4

zi/1 pc
, (F.6)

when the temperature θ = 10−4θ−4.
In case of energies ε̃1 � ε̃1,max one obtains F1(ε̃1 � ε̃1,max) ' 0.5 θ ε̃−2

1 and thus

τγγ(ε̃1 � ε̃1,max) = τγγ,max
F1(ε̃1 � ε̃1,max)

F1,max
' 0.28

τ−2 L46 θ
−1
−4

zi/1 pc

(
ε̃1,max
ε̃1

)2
. (F.7)

However, at energies ε̃1 � ε̃1,max with F1(ε̃1 � ε̃1,max) ' ε̃−3
1 exp(−2.8 ε̃1,max/ε̃1) the

optical depth becomes

τγγ(ε̃1 � ε̃1,max) = τγγ,max
F1(ε̃1 � ε̃1,max)

F1,max

' 0.80
τ−2 L46 θ

−1
−4

zi/1 pc

(
ε̃1,max
ε̃1

)3
exp

(
−2.8 ε̃1,max

ε̃1

)
.

(F.8)

An observed gamma-ray energy ε∗1 = 1TeV results in ε̃1(TeV) = 1.96 · 105 δ−1
1 in the

comoving frame of the emission knot with a Doppler factor δ = 10 δ1. Consequently, the
optical depth yields

τγγ(ε̃1(TeV)) ' 3.7 · 10−4 τ−2 L46 θ
−1
−4 δ

2
1

zi/1 pc
(F.9)

and thus the emission knot is optical thin for TeV energies at a distance
zi � 3.7 · 10−4 τ−2 L46 θ

−1
−4 δ

2
1 pc.

Finally, the optical depth due to the soft synchrotron photons of energy ε is examined.
Here the calculations are constrained to the case of an instantaneous and monoenergetic
electron injection, since the Chap. 4 showed that only with a total number of injected
electrons of Q � 1041R3

15 q−4, which is obtained by assuming a finite injection duration
T � 1 s, the resulting synchrotron intensities of this case are exceeded. The synchrotron
photon density at the radius r inside of the emission knot is determined by

nsy(r, ε, t) = 2π
c r

∫ R

0
dr′ r′

∫ r+r′

|r−r′|

ds

s
exp

(
−g(x) s

R

)
js(r′, ε, t− s/c) (F.10)

and with the emission coefficient (4.22) one obtains
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Figure F.1: The pair attenuation optical depth due to the low energy synchrotron radia-
tion. Considered are gamma-rays with ε1 = 1TeV (blue lines) and ε1 = 10TeV
(red lines), as well as the initial location r = 0.1R (solid lines) and r = 0.9R
(dashed lines), respectively. Furthermore, b2 + lEC = 1, γ6 = 1, R15 = 1 and
q−4 = 108 is used.
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where

f1(r′, ε, τ) = (1 +Dsγ0(τ − r′/c))
2
3

r + r′
exp(−Ar′2 +Bk(τ) r′) . (F.12)

Using the approximation (F.3) the time dependent pair attenuation optical depth between
r and R for a gamma-ray with the energy ε1 is calculated by

τγγ(ε1, r, t) =
∫ r

R
dr′

∫ ∞
−∞

dt′
∫ ∞

2mec2/ε1
dε σγγ(ε1, ε)nsy(r′, ε, t′) δ(t− t′ + |r′ − r|/c)

= 2σT mec
2

3 ε1

∫ r

R
dr′ nsy

(
r′, 2m2

ec
4/ε1, t+ (r′ − r)/c

)
.

(F.13)

Predominantly, the low energy synchrotron photons attenuate the TeV photons and in
order to obtain the intrinsic optical luminosity Lopt ' 1042.5 δ−3

1 erg s−1 the corresponding
photon density yields

nSy(R, εopt, tmax) = Lopt
4π R2 εopt c

' 5 · 1012 (1 eV/εopt)R−2
15 δ

−3
1 cm−3 . (F.14)

The number of injected electrons is the main parameter that sets the amplitude of the
synchrotron density and thus Q ' 4.2 · 1049R3

15 is needed to realize the observed optical
luminosity of PKS 2155-304. Using q0 T ' 104 cm−3 s the Fig. F.1 shows that the resulting
optical depth (F.13) correlates to the synchrotron radiation of energy ε = 2m2

ec
4/ε1 and

has a energy dependent maximum several hours after the injection of relativistic electrons.
However, the emission knot stays optical thin for TeV photons during the whole time of
synchrotron emission when q0 T � 107 cm−3 s.



List of Figures

0.1 The cosmic ray spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Propagation and detection of different messenger particles . . . . . . . . . . 3
0.3 The astrophysical neutrino spectrum. . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Sketch of the current picture of an AGN. . . . . . . . . . . . . . . . . . . . 7
1.2 Classification schema of AGN. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Distinguishing features of synchrotron and jitter radiation. . . . . . . . . . . 15
2.2 Energy loss time and attenuation length of relativistic protons. . . . . . . . 22

3.1 Energy loss rates of relativistic electrons and protons. . . . . . . . . . . . . 32
3.2 Temporal development of the differential number density of relativistic elec-

trons and protons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Analytical approximation of the emergent synchrotron intensity. . . . . . . 44
4.2 Synchrotron light curves that result from the broadband nature of the syn-

chrotron power spectrum, as well as a monochromatic approximation. . . . 46
4.3 Comparison of the analytical and the numerical calculation of the syn-

chrotron light curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Synchrotron light-curves resulting from an instantaneous and homogeneous

electron injection over the outer shell of the plasmoid. . . . . . . . . . . . . 48
4.5 Trial-and-error method of the numerical integration by Gaussian quadrature. 50
4.6 Synchrotron light curves that result from a spatially homogeneous, energet-

ically power-law distributed and instantaneous electron injection. . . . . . . 51
4.7 Synchrotron light curves after an energetically power-law distributed in-

stantaneous electron injection over the outer shell of the plasmoid. . . . . . 52
4.8 Synchrotron light curves that result from a finite injection duration of mo-

noenergetic electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.9 Synchrotron light curves after a finite injection duration of monoenergetic

electrons over the outer shell of the plasmoid. . . . . . . . . . . . . . . . . . 54
4.10 Synchrotron light curves resulting from an instantaneous injection of elec-

trons with plateau distributed energy. . . . . . . . . . . . . . . . . . . . . . 56
4.11 Light curves of PKS 2155-304 in July 29-30 2006. . . . . . . . . . . . . . . . 57

5.1 Temporal development of the emergent gamma-ray intensity by EC scattering. 64
5.2 Energy spectra of all decay products produced at inelastic proton-proton

interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

i



ii List of Figures

5.3 Temporal development of the emergent intensity of γ-rays and neutrinos by
hadronic pion production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Temporal features of the emergent intensity from optical to γ-ray frequencies. 70
5.5 Time lags between gammas and neutrinos from hadronic pion production. . 71
5.6 Delay between simultaneously generated neutrinos and photons. . . . . . . 74
5.7 Best fit results of the temporal features of the optical, X-ray and γ-ray flare

of PKS 2155-304 in July 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

F.1 Pair attenuation optical depth due to low energy synchrotron radiation. . . 97



List of Tables

2.1 The scattering function φu for a proton (or electron), as well as φ1 and φ2
when the scattering system is H, He+ or He. . . . . . . . . . . . . . . . . . . 19

5.1 Fit parameters of the power law approximation of the time lags in the half-
life of gamma-ray and neutrino flares. . . . . . . . . . . . . . . . . . . . . . 72

B.1 First ten Zeros yl,k of the spherical Bessel functions jl. . . . . . . . . . . . . 85

iii





Bibliography

The references are appearing in the alphabetic order of the abbreviations and thus not
necessarily in the alphabetic order of the name of the first author.

Abbasi, R., et al. Limits on Neutrino Emission from Gamma-Ray Bursts with the 40
String IceCube Detector. Physical Review Letters, 106:141101, 2011a.

Abbasi, R., et al. Measurement of the atmospheric neutrino energy spectrum from 100
GeV to 400 TeV with IceCube. Physical Review D, 83:012001, 2011b.

Abbasi, R., et al. Time-integrated Searches for Point-like Sources of Neutrinos with the
40-string IceCube Detector. Astrophysical Journal, 732:18, 2011c.

Abdo, A. A., et al. Fermi Large Area Telescope Observations of Misaligned Active Galactic
Nuclei. Astrophysical Journal, 720:912–922, 2010.

Abramowitz, M., & Stegun, I. A. Pocketbook of Mathematical Functions. Harri Deutsch,
Frankfurt am Main, 1984.

Aharonian, F. A. TeV gamma rays from BL Lac objects due to synchrotron radiation of
extremely high energy protons. New Astronomy, 5:377–395, 2000.

Aharonian, F. A., Akhperjanian, A. G., Anton, G., et al. Simultaneous multiwavelength
observations of the second exceptional γ-ray flare of PKS 2155-304 in July 2006. As-
tronomy & Astrophysics, 502:749–770, 2009.

Aharonian, F. A., et al. An Exceptional Very High Energy Gamma-Ray Flare of PKS
2155-304. Astrophysical Journal Letters, 664:L71–L74, 2007.

Aharonian, F. A., et al. Discovery of Very High Energy γ-Ray Emission from Centaurus
a with H.E.S.S. Astrophysical Journal, 695:L40–L44, 2009.

Albert, J., et al. Variable Very High Energy γ-Ray Emission from Markarian 501. Astro-
physical Journal, 669:862–883, 2007.

Altarelli, G., & Winter, K., editor. Neutrino Mass. Springer, Berlin, 2003.

Antonucci, R. Unified Models for Active Galactic Nuclei and Quasars. Annual Reviews in
Astronomy and Astrophysics, 31:473–521, 1993.

Argüelles, C. A., Bustamante, M., & Gago, A. M. IceCube expectations for two high-
energy neutrino production models at active galactic nuclei. Journal of Cosmology and
Astroparticle Physics, 12:5, 2010.

v



vi Bibliography

Becker, J. K. High-energy neutrinos in the context of multimessenger astrophysics. Phys-
ical Reports, 458:173–246, 2008.

Begelman, M. C., Blandford, R. D., &Rees, M. J. Theory of extragalactic radio sources.
Reviews of Modern Physics, 56:255–351, 1984.

Bethe, H., &Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive
Electrons. Proceedings of the Royal Society of London, 146:83–112, 1934.
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