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Abstract

This work presents the main ideas, methods and results of the theory of impulse perturbed

stochastic control as an extension of the classic stochastic control theory. Apart from the in-

troduction and the motivation of the basic concept, two stochastic optimization problems are

the focus of the investigations. On the one hand we consider a differential game as analogue

of the expected utility maximization problem in the situation with impulse perturbation,

and on the other hand we study an appropriate version of a target problem. By dynamic

optimization principles we characterize the associated value functions by systems of partial

differential equations (PDEs). More precisely, we deal with variational inequalities whose

single inequalities comprise constrained optimization problems, where the corresponding ad-

missibility sets again are given by the seeked value functions. Using the concept of viscosity

solutions as weak solutions of PDEs, we avoid strong regularity assumptions on the value

functions. To use this concept as sufficient verification method, we additionally have to prove

the uniqueness of the solutions of the PDEs.

As a second major part of this work we apply the presented theory of impulse perturbed

stochastic control in the field of financial risk management where extreme events have to be

taken into account in order to control risks in a reasonable way. Such extreme scenarios are

modelled by impulse controls and the financial decisions are made with respect to the worst-

case scenario. In a first example we discuss portfolio problems as well as pricing problems on

a capital market with crash risk. In particular, we consider the possibility of trading options

and study their influence on the investor’s performance measured by the expected utility of

terminal wealth. This brings up the question of crash-adjusted option prices and leads to

the introduction of crash insurance. The second application concerns an insurance company

which faces potentially large losses from extreme damages. We propose a dynamic model

where the insurance company controls its risk process by reinsurance in form of proportional

reinsurance and catastrophe reinsurance. Optimal reinsurance strategies are obtained by

maximizing expected utility of the terminal surplus value and by minimizing the required

capital reserves associated to the risk process.
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Chapter 1

Introduction

Extreme events like stock market crashes or large insurance claims can cause exceptionally

large financial losses often resulting in the threat to existence for investors or insurers. To

be prepared for such situations is a desirable goal. However, such rare events are difficult or

actually impossible to predict in advance. In this thesis we present a type of stochastic control

taking into account system crashes without modelling the crashes explicitly in a stochastic

way. Under minimal assumptions concerning possible system crashes this approach aims at

avoiding large losses in any possible situation.

Modelling of stock market crashes in finance or large claim sizes in insurance are actively

researched mathematical topics (see, e.g., the pioneering work of Merton [37], or for a com-

prehensive survey Embrechts, Klüppelberg and Mikosch [14], Cont and Tankov [9] and the

references therein). In the majority of cases those approaches rely on modelling the stock

prices or the total claims as Lévy processes. Unfortunately, their analytical handling is not

easy. Even more seriously, choosing the right distribution and fitting it to the market data is

a challenging task, in particular because extreme jumps are rare events, so that there is no

sufficient data available for an estimation. Another problem which arises from Lévy process

models is that they neglect worst-case situations if decisions are based on expected value op-

timization. So the obtained optimal solutions do not necessarily provide sufficient protection

in the course of an unlike movement in the system’s state.

In contrast to modelling the extreme events in form of a stochastic jump process, we

use a different control approach. The controlled state process considered in this setup is

the same as if we would not take into account a possible system crash. The central idea is

to amend a finite impulse control expressing system perturbation. An admissible impulse

strategy represents a possible scenario with at most a fixed number of system perturbations

up to the considered finite time horizon. The extent of these crashes is limited by the use of a

compact set of admissible impulses. The impulse control is chosen by a virtual second agent

acting as an opponent of the real decision maker, meaning that decisions are made from a

worst-case point of view.
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2 CHAPTER 1. INTRODUCTION

In summary, the main characteristics of our model are:

• Decisions are made in respect of the worst-case scenario. This guarantees best perfor-

mance and the reachability of a given target relative to any possible situation.

• We focus on a finite time horizon. This parameter is of crucial importance in crash

modelling because risk positions have to be adjusted to the time to maturity.

• We do not need any distribution assumption, neither for the time nor for the extent of

the crash. Instead we only need the possible number of crashes within the time horizon

and a range for the possible crash sizes.

Such a worst-case approach in the context of stock market crashes was firstly introduced by

Hua and Wilmott [22]. They derived worst-case option prices in discrete time by replicating

the option along the worst-case path by a portfolio consisting of shares of the underlying

risky asset and the secure bond. In the same crash model Wilmott [58] proposed a static

hedge of a portfolio against market crashes by the purchase of a fixed number of options.

Korn and Wilmott [34] took up the crash model and formulated the so-called worst-case

portfolio problem in continuous time. Their work represents the first given example of impulse

perturbed stochastic control. Further studies on the worst-case portfolio problem are [29],

[31], [32] and [33].

The type of control dealt with in this thesis is a combination of stochastic control and im-

pulse control. Nevertheless, it varies from the type of control refered to as combined stochastic

control and impulse control in the literature. In [2] Bensoussan and Lions developed a general

methodology for solving impulse control problems based on the concept of quasi-variational

inequalities (QVIs). A QVI is a non-linear partial differential equation (PDE) consisting of a

differential part combined with an impulse intervention term. Approximating impulse control

by iterated optimal stopping leads to variational inequalities (VIs) in which the intervention

part is given in form of an explicit constraint. If the impulse controller additionally is free

to choose a control process, we are concerned with so-called Hamilton-Jacobi-Bellman (HJB)

(quasi-)variational inequalities, see Øksendal and Sulem [42]. In this case one considers in

the differential part the usual partial differential operator occurring in the HJB equation of

stochastic control. We also refer to Seydel [52] for a deep treatment of the relation between

combined stochastic and impulse control and viscosity solutions of HJBQVIs. In spite of

formal similarities, our situation is not covered by the above results. This is due to the con-

trary objectives of both controllers in our model. Anticipating the worst impulse strategy

for any chosen stochastic control constrains the set of feasible stochastic control processes.

Therefore impulse perturbed stochastic control is related to a VI, reflecting a simultaneous

optimum with respect to both the continuation (without immediate perturbation) and the

perturbation situation.
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Via a dynamic programming principle (DPP) we reduce impulse perturbed stochastic con-

trol problems to problems of antagonistic control and stopping. By the choice of a stochastic

control process the controller governs the state process, while the stopper can halt the con-

trolled process at any time involving an additional cost for the controller. In particular, this

cost depends on the current state of the controller’s strategy what differentiates our control

problem from other already studied mixed games of control and stopping. Here most of

the authors emphasize on relating mixed games to backward stochastic differential equations

which are intended to characterize the value of the game (see, e.g., [12], [19]). Other ap-

proaches are the reduction to a simple stopping problem [26] or a martingale approach [27].

These methods work when only the drift of the underlying state process can be controlled or

under strong restrictions on the diffusion coefficients. Our approach is more direct which is

possible because we work in a Markovian framework, allowing us to apply a DPP in order to

link the problem to a PDE. Differential games in the context of controlled Markov processes

are widely studied when both players control continuously, see for instance the monograph

of Fleming and Soner [15]. To our knowledge, there are no references dealing with controller-

and-stopper problems with simultaneous control of the state process and the costs due to

stopping.

This work consists of two major parts, a rigorous development of the relevant theory and

its applications to financial risk management. The setting of impulse perturbed stochastic

control is introduced in Chapter 2. In this control framework we consider two types of

problems. In Chapter 3 we analyze a differential game as analogue of the expected utility

maximization problem in the situation with impulse perturbation. In this way we obtain a

worst-case bound for the expected utility. In Chapter 4 we study an appropriate version of a

target problem. Its objective is to determine the minimal initial value of some target process

to reach a given stochastic target region at terminal time almost surely, in respect of any

possible scenario. For both problems our guideline is to establish verification results under

minimal assumptions. We prove that the value functions of the problems are unique viscosity

solutions of a system of PDEs. Our results on the differential game are generalizations of the

work of Korn and Steffensen [33] who presented a HJB-system approach (system of VIs) for

solving the worst-case portfolio problem. Formulating the problem in very broad terms for

controlled jump-diffusion processes and using the concept of viscosity solutions, we hope to

allow for applications to a wide variety of problems. The analysis of the target problem, on

the other hand, creates the theoretical foundation for the worst-case option pricing problem

in [22] in a more general framework. From a mathematical point of view, we deal with

a stochastic target problem for a system with jumps limited in number and size. For an

introduction to stochastic target problems without jumps we refer to Soner and Touzi [54],

[55]. Bouchard studied in [5] the problem when the controlled system follows a jump diffusion.

So the stochastic target problem under impulse perturbation can be regarded as the analogue

of this for a finite number of jumps.
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The second part of the thesis is devoted to sample applications concerning stock mar-

ket crashes and large insurance claims. We solve the respective impulse perturbed control

problems by using the results of the first part of the thesis, and we present some examples

illustrating the shape of the value functions and the corresponding optimal strategies. In

Chapter 5 we take up the worst-case portfolio problem on an extended market on which the

investor can trade in stocks and derivatives to discuss crash hedging possibilities and pricing

techniques for the derivatives. Besides lower and upper price bounds, which can be seen

as the continuous versions of the worst-case prices derived in [22] (with a correction with

respect to the terminal condition), we establish a market completion approach. To this end

we consider crash insurance and calculate the insurance premium. As an application of the

obtained pricing rules we introduce a valuation method for defaultable bonds. In Chapter

6 we present a new model of an insurance company utilizing impulse perturbed stochastic

control to dynamically reinsure its insurance risk. Here a main focus of attention is the in-

vestigation of minimal capital requirements for the insurer. Our thesis is complemented by

a summary and conclusions at the end.

In sum, the most important aims of this thesis are

• the presentation of the concept of impulse perturbed stochastic control as an extension

of the classic stochastic control theory,

• the generalization of the HJB-system approach presented by Korn and Steffensen [33] to

differential games of stochastic control and finite impulse intervention in a very general

framework with the analysis of the viscosity solution property of the value functions,

• the adaption of the stochastic target problem to impulse perturbed stochastic control,

• the application of the impulse perturbed stochastic control approach to finance (in-

cluding the pricing of derivatives and crash insurance contracts in our crash model and

the valuation of defaultable bonds) and insurance (computation of optimal reinsurance

strategies and minimal capital requirements for a risk process under the threat of large

insurance claims).
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Notation

Let us introduce some notation used throughout the thesis. Elements of Rd, d ≥ 1, are

identified as column vectors, the superscript T stands for transposition and |.| is the Euclidean

norm. The i-th component of x ∈ Rd is specified by xi, and diag(x) is the diagonal matrix

whose i-th diagonal element is xi. For a subset O ∈ Rd we write O for its closure, Oc for

its complement and ∂O for its boundary. The open ball around x ∈ Rd with radius ε > 0

is refered to as B(x, ε). If A is a quadratic matrix, then tr(A) is its trace. By Sd we denote

the set of all symmetric (d × d)-matrices equipped with the spectral norm (as the induced

matrix norm), Id is the identity matrix. The set C1,2 contains all functions with values in R
which are once continuously differentiable with respect to the time and twice with respect to

the space variables. For ϕ ∈ C1,2 the notations Dxϕ and D2
xϕ correspond to the gradient and

the Hessian matrix, respectively, of ϕ with respect to the x variable. For x ∈ R we also write

ϕx and ϕxx. The positive and negative parts of a function ϕ are denoted by ϕ+ = max(ϕ, 0)

and ϕ− = −min(ϕ, 0), respectively, such that ϕ = ϕ+ − ϕ−.

For ease of reference, here is a partial index of notation introduced in the course of this

work:

Xπ,ξ
t,x , 8,12,44

Xπ
t,x, 8

X̌(τi−), 8

Et,x, 9

J (π,ξ), 12

Un, 8

Vn, 8

T , 19

Lπ, 15,46

Mπ, 15

Mπ
y , 46

N , 47

δN , 47,52

χU , 56

UCx, 26

C1, 27

Pr, 38

u∗, u∗, 109

J 2,+,J 2,−, J̄ 2,+, J̄ 2,−, 112
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Chapter 2

The general setup

In this chapter we introduce the setting of impulse perturbed stochastic control. That is

we set up the underlying state process which is controlled both continuously and by finite

impulse control and which forms the basis on which we carry out our further analysis. Here

the two types of control are chosen by different decision makers with contrary objectives.

After giving the controlled process along with the specific notations of finite impulse control

in Section 2.1, we show in Section 2.2 the strong Markov property as fundamental property

of the state process. In Section 2.3 we outline briefly the proceeding in handling stochastic

control problems in this special setting, and in Section 2.4 we conclude with a short discussion

on the idea of the presented model.

2.1 Combined stochastic and impulse control

Let T > 0 be a fixed finite time horizon and let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability

space. In the classical framework of stochastic control, the state X(t) ∈ Rd of a system at

time t is given by a stochastic process of the form

dX(t) = ϕ(t,X(t−), π(t−))dL(t), (2.1)

where L is a semimartingale and ϕ an appropriate function ensuring a unique solution of

(2.1). The process π with values in a compact non-empty set U ⊂ Rp is the control process,

X = Xπ is called the (purely continuously) controlled process. We refer to the responsible

decision maker concerning π as player A.

Now suppose that there exists a second agent, player B, who is able to influence at any

time the state of the system by giving impulses. An impulse ζ, exercised at time t when the

system is in state x and controlled with π, lets X jump immediately to Γ(t, x, π(t), ζ), where

Γ is some given function. Notice particularly that the jump height depends on the state of

control chosen from agent A. As only restriction we assume that first the allowed impulses

lie in a compact non-empty set Z ⊂ Rq and second the number of allowed interventions is

limited by some integer n.

7
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To cover situations in which player B does not intend to intervene, we assume that there

exists an ineffective impulse ζ0 such that Γ(t, x, π, ζ0) = x for all (t, x, π) ∈ [0, T ] × Rd × U .

Then we can specify the notion of an impulse control:

Definition 2.1.1. An (admissible) n-impulse control is a double sequence

ξ = (τ1, τ2, . . . , τn; ζ1, ζ2, . . . ζn) ,

where 0 =: τ0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τn ≤ τn+1 := T are stopping times and ζi are Fτi-measurable

random variables with values in Z∪{ζ0}. The stopping time τi is called i-th intervention time

with associated impulse ζi. We denote by Vn the set of all admissible n-impulse controls.

The interventions of player B are unknown to player A a priori. But of course he notices

them, so that he is able to adapt his strategy to the new circumstances. So player A will

specify his action completely by a sequence of strategies π(n), π(n−1), . . . , π(0) depending on

the number of intervention possibilities that are still left. At player B’s i-th intervention

time player A switches immediately from the pre-intervention strategy π(n−i+1) to the post-

intervention strategy π(n−i). In this context a sequence π = (π(n), . . . , π(0)) of admissible

processes π(i), i = 0, 1, . . . , n, describes a control for player A.

Definition 2.1.2. Denote by U0 the set of all progressively measurable processes π which

have values in U and are square-integrable, i.e. E[
∫ T

0 |π(t)|2dt] < 0. Then Un := Un+1
0 is the

set of all admissible (continuous) n-controls.

If we deal with a stochastic jump process, we have to distinguish at intervention time τi

between a jump stemming from the semimartingale L and a jump caused by the impulse ζi.

For this purpose we set

X̌(τi−) := X(τi−) + ∆X(τi),

where ∆X(τi) denotes the jump of the stochastic process without the impulse.

With the above definitions the process X = Xπ,ξ, controlled continuously by π ∈ Un and

with impulse control ξ ∈ Vn, is given by

dX(t) = ϕ(t,X(t−), π(n−i)(t−))dL(t), τi < t < τi+1, i = 0, . . . , n,

X(τi) = Γ(τi, X̌(τi−), π(n−i+1)(τi), ζi), i = 1, . . . , n.
(2.2)

If two or more impulses happen to be at the same time, i.e. τi+1 = τi, we want to understand

the jump condition in (2.2) as concatenation in form of

Γ(t,Γ(t, X̌(τi−), π(n−i+1)(t), ζi), π
(n−i)(t), ζi+1).

Let us conclude this section with some helpful notions: For (t, x) ∈ [0, T ]×Rd, we denote

by Xπ,ξ
t,x the solution of the controlled SDE (2.2) with initial condition X(t) = x. In the case

without impulse interventions we use the notation Xπ
t,x, π ∈ U0, for the solution of the purely



2.2. MARKOV PROPERTY 9

continuously controlled SDE (2.1). For the sake of simplicity we will omit the indices t, x, π, ξ

if the context is clear. To still illustrate the dependence of the expectation on the starting

point (t, x), we write

Et,x[.] := E[.|X(t) = x].

For a given impulse control ξ ∈ Vn with intervention times τi, i = 1, . . . , n, we introduce

the counting process

N ξ(t) := max{i = 0, 1, . . . , n : τi ≤ t}.

Then we can indicate the current control process of a control π ∈ Un by π(n−Nξ).

2.2 Markov property

To derive dynamic programming principles for the control problems analyzed in the following

chapters, the controlled process

Y π,ξ(t) := (t,Xπ,ξ(t), N ξ(t))

has to be a strong Markov process, i.e. for any bounded, Borel measurable function h, any

stopping time τ <∞ and all t ≥ 0 we have

E[h(Y π,ξ(τ + t))|Fτ ] = E[h(Y π,ξ(τ + t))|Y π,ξ(τ)].

That means that at any arbitrary random time the process Y π,ξ “starts infresh” independently

of the past. In the following we will often just say that Xπ,ξ is a strong Markov process if we

refer to this affair.

It is a well known fact that the uncontrolled process Ỹ (t) := (t, X̃(t)), with X̃ as the

solution of SDE (2.1) without a control process π, has the strong Markov property, see for

example Protter [46], Theorem V.32. Seydel [52] proved that the strong Markov property

can be extended to controlled processes if we restrict ourselves to Markov controls. That

means that the controls only depend on the current state of the system and do not use

information of the past. This is the case for control processes π(i), i = 0, 1 . . . , n, given

by some measurable feedback function π̄(i) in form of π(i)(t) = π̄(i)(t,X(t−)). For impulse

controls the requirement of the irrelevance of the past leads to the consideration of exit times

of (t, X̌(t−)) as intervention times τi and σ(τi, X̌(τi−))-measurable impulses ζi.

Proposition 2.2.1 (Proposition 2.3.1 in [52]). For Markov controls π, ξ the controlled process

Y π,ξ(t) is a strong Markov process.

As a consequence of this proposition, from now on we consider exclusively Markov controls,

i.e. we suppose that the admissibility sets Un, Vn only contain such controls.
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2.3 Procedure

In this thesis we analyze two types of control problems. In Chapter 3 we study a differential

game where player A tries to maximize some objective function J , whereas player B intends

to minimize J . In Chapter 4 we deal with a target problem in the form that we want to

determine the minimal initial value Y (0) = y of some target process Y that allows player A to

reach a given target Y (T ) ≥ g(X(T )) at final time almost surely, whatever player B attemps

to prevent him from that. In both cases the solution is obtained by an iterative proceeding:

Step 0. We start with computing the solution of the control problem without impulse

control.

Step n. Given the solution of the (n− 1)-impulse control problem we can reduce the

n-intervention problem to an impulse problem with only one intervention

possibility.

2.4 Discussion of the model

The generated strategies secure best performance and the reachability of a given target, re-

spectively, relative to any possible situation, in particular they are crash-resistant. Moreover,

the basic assumptions of the model are very simple. We do not need any distribution assump-

tions for jumps due to impulses, neither for the jump time nor for its height. Of course the

assumption of a limited finite number of possible perturbations is critical. This restriction is

not urgently necessary. But for an unbounded intervention number there exists the risk of no

end of interventions in an instant. To avoid these constellations we would have to weaken the

effects of an impulse in a way that guarantees non-optimality of such degenerate intervention

strategies. But this is inconsistent to the intention of modelling extreme situations where we

want to understand the impulse interventions as rare events with grave consequences. So a

small number of interventions reflects exactly the characteristic feature of such catastrophes.

Of course there are several extensions of the model which are possible. For example

we could allow for time- and state-depending sets U(t, x) and Z(t, x). Else the assumption

of a compact control set U could be dropped. Both changes would lead to other additional

requirements on the admissible set U0 which provide for existence and uniqueness of a solution

of the state equation (2.2). Moreover, we could include a possible regime switch as result of

an intervention by using different coefficients ϕ(n−i), i = 0, 1, . . . , n, in (2.2). For example,

think of a capital market where a crash usually leads to an increase in volatility, see Korn

and Menkens [31] for results of crash hedging with changing market parameters. However,

to keep the notation as easy to get along with, we neglect these generalizations.



Chapter 3

Differential game with combined

stochastic and impulse control

In this chapter we investigate a stochastic worst-case optimization problem consisting of

stochastic control and impulse control. This problem corresponds to the maximization of the

expected utility of a state process in consideration of system crashes, where crash scenarios are

modelled by impulse interventions and we maximize with respect to the worst-case scenario.

The motivation of this problem comes from the portfolio problem under the threat of

market crashes. Hua and Wilmott introduced in [22] a crash model where the sudden drops in

market prices are not modelled stochastically. Based on very simple assumptions on possible

crashes, they chose a worst-case approach to manage the crash risk in any possible situation.

While [22] is focused on the pricing of options in discrete time, Korn and Wilmott [34] applied

this approach in the context of continuous-time portfolio optimization. They formulated the

portfolio problem as a differential game in which the investor meets the market as an opponent

who systematically acts against the interests of the investor by causing crash scenarios. In this

way they obtained portfolio strategies that maximize the worst-case bound of the investor’s

utility. In this chapter we basically refer to Korn and Steffensen [33] who presented a HJB-

system approach (system of inequalities) for solving the worst-case portfolio problem. Our

results are generalizations of their work, in particular we do not require strong regularity

assumptions on the value function by using the concept of viscosity solutions. Examples for

further studies of the worst-case portfolio problem with respect to market crashes are [29],

[31] and [32]. Moreover, there are similar worst-case approaches in the context of portfolio

optimization for considering model risk (see, e.g., [20], [38] and [56] and the references therein).

A reference for deterministic worst-case design with numerous examples and applications to

risk management is the book of Rustem and Howe [47].

To start with we present in Section 3.1 a detailed problem formulation including all

assumptions we make. In the next section we state a PDE characterization of the associated

value function in the viscosity sense as main result of this chapter, and we explain in more

11
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detail how we want to proceed in the following to prove this viscosity property. The main

steps are the transformation of the problem and the derivation of a dynamic programming

principle in Section 3.3, the proof of the continuity of the value function in Section 3.4 and

its characterization as a unique viscosity solution in Section 3.5. An extension of the model

and a relaxation of assumptions is discussed in the last section.

3.1 Problem formulation

Let T > 0 denote a fixed finite time horizon and let (Ω,F , (Ft)0≤t≤T ,P) be a filtered prob-

ability space satisfying the usual conditions, i.e. the filtration (Ft)t is complete and right-

continuous. We consider further an adapted m-dimensional Brownian motion B and an

adapted independent k-dimensional pure-jump Lévy process L. We denote by

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt

its compensated Poisson random measure with jump measureN and Lévy measure ν. Through-

out this chapter we assume that ∫
|z|≥1

|z|ν(dz) <∞. (3.1)

This condition gives us the Lévy-Itô-decomposition in form of

L(t) =

∫ t

0

∫
z∈Rk

zÑ(ds, dz).

For more precise definitions and properties of random measures we refer to Jacod and Shiryaev

[24] or Sato [49]. On this stochastic basis we consider the process X = Xπ,ξ, controlled

continuously by π ∈ Un and with impulse control ξ ∈ Vn, given by

dX(t) = µ(t,X(t), π(n−i)(t))dt+ σ(t,X(t), π(n−i)(t))dB(t)

+

∫
Rk
γ(t,X(t−), π(n−i)(t−), z)dÑ(dt, dz),

τi < t < τi+1, i = 0, . . . , n,

X(τi) = Γ(τi, X̌(τi−), π(n−i+1)(τi), ζi), i = 1, . . . , n.

(3.2)

Here the functions µ : [0, T ] × Rd × U → Rd, σ : [0, T ] × Rd × U → Rd×m, γ : [0, T ] × Rd ×
U × Rk → Rd and Γ : [0, T ] × Rd × U × Z → Rd satisfy conditions detailed in Assumption

3.1.1 below.

As performance criterion we consider a functional of the form

J (π,ξ)(t, x) = Et,x
[ ∫ T

t
f(s,X(s), π(n−Nξ(s))(s))ds+ g(X(T ))

+
∑

t≤τi≤T
K(τi, X̌(τi−), π(n−i+1)(τi), ζi)

]
,
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where f : [0, T ] × Rd × U → R, g : Rd → R and K : [0, T ] × Rd × U × Z → R are functions

satisfying conditions detailed in Assumption 3.1.1 below. Here f can be interpreted as running

profit, g as end profit and K stands for the additional profit resulting from an impulse

intervention (or, from another point of view, as loss, respectively). Bearing in mind the role

of ζ0 as ineffective impulse, we assume K(t, x, π, ζ0) = 0 for all (t, x, π) ∈ [0, T ]× Rd × U .

In view of player B’s role as creator of system perturbation we suppose that both players

have contrary objectives. While player A tries to maximize J , player B is intended to

minimize J . In order to reach their aims both players select their respective strategy from

their admissibity sets Un and Vn, respectively. First agent A settles his control π. Depending

on this choice his opponent B decides to intervene or not. So our stochastic optimization

problem reads as follows: Find optimal controls π̂ ∈ Un, ξ̂ ∈ Vn with associated value function

v(n) such that

v(n)(t, x) = sup
π∈Un

inf
ξ∈Vn

J (π,ξ)(t, x) = J (π̂,ξ̂)(t, x). (3.3)

Such two-player-games with contrary objectives are called differential games. So the prob-

lem (3.3) represents a stochastic differential game combining stochastic control and impulse

control.

Now let us summarize the conditions that form the basis for the investigation of the value

function v(n) in the following assumption:

Assumption 3.1.1. (G1) The control set U ⊂ Rp and the impulse set Z ⊂ Rq are compact

and non-empty.

(G2) The functions µ, σ, γ are continuous with respect to (t, x, π), γ(t, x, π, .) is bounded for

|z| ≤ 1, and there exist C > 0, δ : Rk → R+ with
∫
Rk δ

2(z)ν(dz) <∞ such that for all

t ∈ [0, T ], x, y ∈ Rd and π ∈ U ,

|µ(t, x, π)− µ(t, y, π)|+ |σ(t, x, π)− σ(t, y, π)| ≤ C|x− y|,

|γ(t, x, π, z)− γ(t, y, π, z)| ≤ δ(z)|x− y|,

|γ(t, x, π, z)| ≤ δ(z)(1 + |x|).

(G3) The transaction function Γ and the profit functions f , g, K are continuous and Lipschitz

in x (uniformly in t, π and ζ), i.e. there is a constant C > 0 such that for all t ∈ [0, T ],

x, y ∈ Rd, π ∈ U and ζ ∈ Z,

|Γ(t, x, π, ζ)− Γ(t, y, π, ζ)|+ |f(t, x, π)− f(t, y, π)|

+|g(x)− g(y)|+ |K(t, x, π, ζ)−K(t, y, π, ζ)| ≤ C|x− y|.

The assumptions (G1) and (G2) guarantee the existence of a unique strong solution to

(3.2) with initial condition X(t) = x ∈ Rd (for general existence and uniqueness results for

SDEs with random coefficients see Gichman and Skorochod [17] or Protter [46]). The assump-

tion (G3) implies that Γ, f , g, K satisfy a global linear growth condition with respect to x.
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Therefore the objective function J is well-defined and, using the estimate (B.2) of Lemma

B.1.1 together with the tower property of conditional expectation (see the argumentation in

the appendix subsequent to Lemma B.1.1), we can conclude that

|v(n)(t, x)| ≤ C(1 + |x|) (3.4)

for some constant C > 0 independent of t, x.

Example 3.1.1. Consider the controlled deterministic process

dX(t) = −απ(1)(t)dt, t ∈ (0, τ1),

X(τ1) = X(τ1−)− (1− π(1)(τ))ζ1,

dX(t) = −απ(0)(t)dt, t ∈ (τ1, T ),

with parameter α > 0, 1-impulse perturbation (τ1, ζ1) ∈ [0, T ]×({ζ}∪{0}), ζ > 0, and control

π = (π(1), π(0)) whose processes have values in [0, 1], i.e. the setting is n = 1, U = [0, 1],

Z = {ζ}.
For an interpretation think of an insurer who is faced with one possible claim of size ζ up

to time T . To limit the risk exposure the insurer can reinsure a proportion π of the claim by

paying a continuous reinsurance premium α. If the claim is admitted at time τ , the insurer

has to pay the sum (1− π(τ))ζ. The controlled process X then reflects the insurer’s surplus.

We now want to maximize the expected value of X(T ) in the worst-case sense, i.e. we

consider the differential game

v(1)(t, x) = sup
π∈U1

inf
ξ∈V1

Eπ,ξt,x [X(T )],

where U1,V1 are the sets of admissible controls introduced in the preceding chapter.

It is easy to check that (G1)-(G3) from Assumption 3.1.1 are satisfied for this problem

formulation. So the controlled process as well as the differential game are well-defined.

Step 0. If there is no perturbation to fear, it cannot be optimal to pay for protection

against one. So we have v(0)(t, x) = x with π̂(0) ≡ 0.

Step 1. By intuition we try to determine the optimal strategy π̂(1) and the value function

v(1) via an indifference consideration. We demand as much protection as to be left with the

same final expected value, regardless of the occurrence of a perturbation. So choose π̂(1) such

that

x− (1− π̂(1)(t))ζ = x−
∫ T

t
απ̂(1)(s)ds. (3.5)

The left hand side of (3.5) is the expected value for an immediate impulse intervention and

the right hand side is the expected value without impulse intervention. To be indifferent at

final time we require π̂(1)(T ) = 1. Subtracting x in (3.5), it seems that the optimal control

process π̂(1) is independent of the state of X, so that the process coincides with its feedback

function. Differentiating on both sides of (3.5) we obtain a ODE for π̂(1),

∂

∂t
π̂(1)(t) =

α

ζ
π̂(1)(t), π̂(1)(T ) = 1.
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Solving this ODE and calculating the corresponding value of one side of equation (3.5), we

conclude

v(1)(t, x) = x−
(

1− exp

(
−α
ζ

(T − t)
))

ζ,

π(1)(t) = exp

(
−α
ζ

(T − t)
)
.

We will verify in the next subsection that this is indeed the solution to our problem. Just

note that the strategy π̂ is admissible since π̂(i), i = 1, 2, has values in U , is Markovian (given

in form of some feedback function) and progressively measurable (because it is deterministic).

3.2 Procedure and main result

In the rest of this chapter we devote ourselves to the characterization of the value function

v(n) as the unique viscosity solution of a system of PDEs. To formulate the corresponding

PDEs we introduce for a value π ∈ U the Dynkin second order integro-differential operator

Lπ associated to the process Xπ (with constant control π(.) ≡ π),

Lπϕ(t, x) =
∂ϕ

∂t
(t, x) + µ(t, x, π)TDxϕ(t, x) +

1

2
tr
(
(σσT )(t, x, π)D2

xϕ(t, x)
)

+

∫
Rk
{ϕ(t, x+ γ(t, x, π, z))− ϕ(t, x)− γ(t, x, π, z)TDxϕ(t, x)}ν(dz),

(3.6)

and the intervention operator Mπ transacting the best immediate impulse for player B,

Mπϕ(t, x) = inf
ζ∈Z
{ϕ(t,Γ(t, x, π, ζ)) +K(t, x, π, ζ)}. (3.7)

Supposed n interventions might happen, it seems reasonable for player A to choose at the

point (t, x) a control policy π ∈ U0 fulfilling v(n)(t, x) ≤ Mπ(t)v(n−1)(t, x). Otherwise an

immediate intervention would dissuade player A from achieving the optimal utility v(n)(t, x).

To be able to preserve a similar optimality condition for approximately optimal controls also

after starting time t, we need the following additional requirement:

Assumption 3.2.1. For all (t, x) ∈ [0, T ) × Rd and ε > 0 there exists an ε-optimal control

π ∈ Un in the sense of

inf
ξ∈Vn

J (π,ξ)(t, x) ≥ v(n)(t, x)− ε,

whose feedback functions π̄(i), i.e. π(i)(t) = π̄(i)(t,X(t−)), are continuous.

In particular, this assumption is satisfied if the optimal control itself has continuous

feedback functions. For one part of the characterization of the value function (see the sub-

solution property in Theorem 3.5.5 below) we will use the following consequence: For π

as in Assumption 3.2.1 we can find for any δ > ε a neighborhood B of (t, x) such that

Mπ(s)v(n−1)(s, y) ≥ v(n)(s, y)− δ for all (s, y) ∈ B.
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In the following we show how the differential game with at most n intervention possibilities

can be solved iteratively:

Step 0. We start with computing the value function v(0) of the classic pure continuous

control problem. This problem is studied extensively in the existing literature, also for jump

processes (see, e.g., Øksendal and Sulem [42]), so that we already know that v(0) is a viscosity

solution of the Hamilton-Jacobi-Bellman equation (HJB-equation)

inf
π∈U
{−Lπv(0) − f(., ., π)} = 0 on [0, T )× Rd,

v(0) − g = 0 on {T} × Rd.
(3.8)

Step n. Given the value function of the (n − 1)-differential game we can transfer the

n-intervention problem into a one time stopping problem with a final payoff depending on

v(n−1). Then it turns out that the value function v(n) is a viscosity solution of the equation

inf
π∈U

max
(
−Lπv(n) − f(., ., π), v(n) −Mπv(n−1)

)
= 0 on [0, T )× Rd,

v(n) −min

(
g, sup
π∈U
Mπv(n−1)

)
= 0 on {T} × Rd.

(3.9)

Note that (3.8) and (3.9) are partial integro-differential equations. The precise definition

of a viscosity solution in this case (with a non-local integral term) is given in Section 3.5.

Further we will prove the uniqueness of a viscosity solution of (3.8) and (3.9) in a special

class of functions, so that we can be sure that a solution of the respective equation is indeed

the seeked value function.

Compared to existing results on combined stochastic and impulse control, the special

quality of the equation (3.9) is the simultaneous minimization with respect to the control

π of both the differential and the impulse part. This illustrates the balance problem of

player A who has to find a strategy that is optimal with respect to the worse case of no

intervention at the moment (first argument in the max-term) and an immediate impulse of

the most horrendous proportion (second argument in the max-term). If the effects of player

B’s impulses did not depend on player A’s strategy, the impulse component in (3.9) would

not depend on π any more, so that we could move the infimum within the first argument

of the max-term resulting in the so-called Hamilton-Jacobi-Bellman variational inequality

(HJBVI). That means that player A would not be restricted any more in his decision and

could concentrate on his performance in intervention-free times. On the other hand player A

is at player B’s mercy because A cannot influence the consequences resulting from impulses

at the intervention times. But in view of applications to risk management we are of course

especially interested in limiting the loss even in the extreme situations.

Following Korn and Steffensen in [33] we could also state the value function on [0, T )×Rd

as solution of a variational inequality of two constrained optimization problems:

max

(
inf
π∈U2

{−Lπv(n) − f(., ., π)}, inf
π∈U1

{v(n) −Mπv(n−1)}
)

= 0,
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where we minimize on the subsets

U1 = {π ∈ U : −Lπv(n) − f(., ., π) ≤ 0},

U2 = {π ∈ U : v(n) −Mπv(n−1) ≤ 0}.

Note that Ui = Ui(t, x, n), i = 1, 2, are not given explicitly because they depend on the

studied value function.

Before going any further, we want to validate the above equations for the derived solution

of the deterministic Example 3.1.1.

Example 3.2.1 (Continuation of Example 3.1.1). We concentrate on the PDE characterization

for v(1) and recall our guess from Example 3.1.1,

v(1)(t, x) = x−
(

1− exp

(
−α
ζ

(T − t)
))

ζ.

In view of the dynamics of the controlled process given in Example 3.1.1 we calculate

Lπv(1)(t, x) =
∂

∂t
v(1)(t, x)− απ ∂

∂x
v(1)(t, x) = α

(
exp

(
−α
ζ

(T − t)
)
− π

)
,

and from the jump condition related to an impulse we get

v(1)(t, x)−Mπv(0)(t, x) = x−
(

1− exp

(
−α
ζ

(T − t)
))

ζ − (x− (1− π)ζ)

= ζ

(
exp

(
−α
ζ

(T − t)
)
− π

)
.

So the PDE in (3.9) reads

inf
π∈[0,1]

max

(
α

(
π − exp

(
−α
ζ

(T − t)
))

, ζ

(
exp

(
−α
ζ

(T − t)
)
− π

))
= 0. (3.10)

We see that the max-term in (3.10) is zero for

π = π(1)(t) = exp

(
−α
ζ

(T − t)
)
∈ [0, 1]

and strictly positive else. So we have found a minimizer for the left hand side of (3.10)

with minimum zero. So v(1) fulfills equation (3.10). Furthermore, the terminal condition is

satisfied because of

v(1)(T, x) = x = min

(
x, sup

π∈[0,1]
{x− (1− π)ζ}

)
,

where the above supremum is realized by π = π(1)(T ) = 1. This ends our validation which

confirms the predications of Example 3.1.1.
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The rest of this chapter is organized as follows: From now on we assume n ≥ 1. Then we

start in Section 3.3 with the derivation of a dynamic programming principle (DPP) which is

associated to the stochastic differential game. More precisely, we will state two versions of a

DPP. The first one establishes the connection of v(n) to the value function v(n−1) of the inferior

problem. Here we point out that the impulse part of the control problem can be reduced

to a problem of finding an optimal stopping time for the first intervention. The solution of

the differential game with n intervention possibilities thus turns out to be an iteration of n

differential games combining stochastic control and optimal stopping. Afterwards we give

a second version of a DPP which is similar to the classic principles in which the controlled

system is analyzed up to some stopping time τ while it is supposed to be controlled optimally

in the sequel. The value function v(n) at initial state (t, x) is then refered to itself at the

stochastic state (τ,X(τ)). After showing in Section 3.4 that v(n) is continuous, we use this

representation of v(n) in Section 3.5 to point out the connection to the PDE (3.9). Since we

cannot guarantee that v(n) is smooth enough, we use the concept of viscosity solutions as

weak solutions of PDEs. This gives us a necessary condition for the value function in contrast

to a traditional verification theorem (applicable only under strong regularity requirements)

which presents a sufficient condition. However, the concept of viscosity solutions only makes

sense if we can be sure that a viscosity solution is indeed the seeked value function. So

we have to deal with the question of uniqueness of viscosity solutions of PDE (3.9) in the

sequel. We conclude this chapter in Section 3.6 with a discussion on an extension of the

model framework including relaxed assumptions.

In this chapter we follow Korn and Steffensen [33] where a special differential game of

our type is analyzed, in particular for the derivation of the first DPP. For the handling of a

differential game combining stochastic control and optimal stopping, we copy techniques of

Pham [44] who studied optimal stopping of controlled jump diffusion processes.

3.3 Dynamic programming

In this section we provide a DPP for our differential game that we want to use in the following

to characterize the value function as viscosity solution of a PDE.

We proceed in two steps: First we transform the original problem with impulse control

into a problem associated with combined stochastic control and optimal stopping. Then we

derive a DPP for optimal stopping of a controlled process.

Before doing so, we need to discuss some essential requirements. The basic idea of dy-

namic programming is to split the problem into subproblems, so that the optimal solution

is composed of the solutions of the separate parts. For this method to work, two properties

of the controlled process and the admissible controls are crucial. Firstly, the admissibility

sets have to be stable under concatenation. This means that for any stopping time τ ∈ [0, T ]

a control switching at time τ from one admissible control to another admissible one is ad-
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missible, too. This condition guarantees the admissibility of the composition of solutions of

subproblems. Secondly, splitting the relevant time interval [t, T ] into [t, τ) and [τ, T ] and

observing the system on the latter one separately, it is necessary that, given the state at

time τ , the system is independent of its course on [t, τ). This requirement corresponds to

the strong Markov property of the underlying process which actually is satisfied in our case

according to Proposition 2.2.1.

3.3.1 From impulse control to optimal stopping

For a first version of a DPP we consider the problem up to the first intervention and the

problem with n−1 remaining intervention possibilities as isolated cases. For this decomposi-

tion of the problem the stability assumption on Un, Vn is obviously satisfied in the following

sense:

• If π(n) ∈ U0 and π′ = (π(n−1), . . . , π(0)) ∈ Un−1, then π = (π(n), π(n−1), . . . , π(0)) ∈ Un.

• If (τ1; ζ1) ∈ V1 and ξ′ = (τ2, . . . , τn; ζ2, . . . , ζn) ∈ Vn−1 such that τ1 ≤ τ2, then ξ =

(τ1, τ2, . . . , τn; ζ1, ζ2, . . . , ζn) ∈ Vn.

Recall that Xπ = Xπ
t,x denotes the controlled process with start in (t, x) ∈ [0, T ] × Rd

under control π ∈ U0 and no impulse intervention. We define by T = T (t) the set of all

stopping times τ ∈ [t, T ] which represent admissible intervention times in the sense that they

are independent of the past. Further we recall the definition of the intervention operatorMπ

from (3.7).

Now we can state the first important result of this section which is a generalization of

Lemma 2 in Korn and Steffensen [33]. For the problem of optimization of the final utilility of

a diffusion process with impulse perturbation (with fixed impulse ζ) they derived the relation

v(n)(t, x) = sup
π∈U0

inf
τ∈T

Et,x
[
v(n−1)(τ,Γ(τ,Xπ(τ−), π(τ), ζ))

]
.

We notice that this result implies that intervening is the optimal strategy for player B which

is not true in general. Moreover, in view of our general choice of the performance criterion,

we need to take into consideration the utility functions f , g and K as well as different

admissible impulses. However, the correct version in our case is very intuitive and can be

derived similarly to the lemma in [33].

Theorem 3.3.1 (Dynamic programming principle (version 1)). The value function v(n) in

(3.3) can be represented in form of

v(n)(t, x) = sup
π∈U0

inf
τ∈T

Et,x
[ ∫ τ

t
f(s,Xπ(s), π(s))ds

+Mπ(τ)v(n−1)(τ,Xπ(τ))1{τ<T}

+ min
(
g,Mπ(τ)v(n−1)

)
(τ,Xπ(τ))1{τ=T}

]
.

(3.11)
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Proof: Fix (t, x) ∈ [0, T ] × Rd and consider an impulse control ξ ∈ Vn which is com-

posed of the first intervention (τ1; ζ1) and ξ′ := (τ2, . . . , τn; ζ2, . . . , ζn). On the stochastic

interval [t, τ1) the continuous control given by π = (π(n), . . . , π(0)) ∈ Un equals π(n). Af-

terwards it switches to the (n − 1)-control π′ := (π(n−1), . . . , π(0)). For each path with no

intervention in the relevant time interval [t, T ], we are free to set τ1 = T and ζ1 = ζ0.

Noting that X̌π,ξ(τ1−) = Xπ(n)
(τ1) the controlled process jumps at intervention time to

x′ := Γ(τ1, X
π(n)

(τ1), π(n)(τ1), ζ1). Since E[.|Ft] = E[E[.|Fτ1 ]|Ft] holds for all τ1 ≥ t and any

controlled process has the strong Markov property, we can state the objective functional in

form of

J (π,ξ)(t, x) = Et,x

 ∫ τ1

t
f(s,Xπ(n)

(s), π(n)(s))ds+K(τ1, X
π(n)

(τ1), π(n)(τ1), ζ1)

+Eτ1,x′
[ ∫ T

τ1

f(s,Xπ′,ξ′(s), π(n−1−Nξ′ (s))(s))ds+ g(Xπ′,ξ′(T ))

+
∑

τ1≤τi≤T
i≥2

K(τi, X̌
π′,ξ′(τi−), π(n−i+1)(τi), ζi)

] .
To make the notation more convenient we set

Y π(n),(τ1;ζ1) :=

∫ τ1

t
f(s,Xπ(n)

(s), π(s))ds+K(τ1, X
π(n)

(τ1), π(n)(τ1), ζ1).

Then, using the definition of the objective functional J we obtain

J (π,ξ)(t, x) = Et,x
[
Y π(n),(τ1;ζ1) + J (π′,ξ′)(τ1, x

′)
]
. (3.12)

Let ε > 0. For a given first intervention (τ1; ζ1) choose a control π̂ ∈ Un that is ε
2 -optimal

both up to the first intervention and later on, i.e.

sup
π(n)∈U0

Et,x
[
Y π(n),(τ1;ζ1) + v(n−1)(τ1, x

′)
]
≤ Et,x

[
Y π̂(n),(τ1;ζ1) + v(n−1)(τ1, x̂

′)
]

+
ε

2
, (3.13)

sup
π′∈Un−1

inf
ξ′∈Vn−1

J (π′,ξ′)(τ1, x̂
′) ≤ inf

ξ′∈Vn−1

J (π̂′,ξ′)(τ1, x̂
′) +

ε

2
, (3.14)

where x̂′ = Γ(τ1, X
π̂(n)

(τ1), π̂(n)(τ1), ζ1) is the state after the first intervention (τ1; ζ1) if the

strategy π̂(n) is applied until the first intervention. Furthermore, for a given control π ∈ Un
choose an impulse intervention ξ̂ ∈ Vn that is ε

2 -optimal both for the first intervention and

in the sequel, i.e.

inf
τ1∈T

ζ1∈Z∪{ζ0}

Et,x
[
Y π(n),(τ1;ζ1) + v(n−1)(τ1, x

′)
]
≥ Et,x

[
Y π(n),(τ̂1;ζ̂1) + v(n−1)(τ̂1, x̂

′)
]
− ε

2
, (3.15)

inf
ξ′∈Vn−1

J (π′,ξ′)(τ1, x̂
′) ≥ J (π′,ξ̂′)(τ1, x̂

′)− ε

2
, (3.16)
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where in this context x̂′ = Γ(τ̂1, X
π(n)

(τ̂1), π(n)(τ̂1), ζ̂1). Then we have the following series of

inequalities,

v(n)(t, x) ≥ inf
ξ∈Vn

Et,x
[
Y π̂(n),(τ1;ζ1) + J (π̂′,ξ′)(τ1, x̂

′)
]

≥ inf
τ1∈T

ζ1∈Z∪{ζ0}

Et,x
[
Y π̂(n),(τ1;ζ1) + inf

ξ′∈Vn−1

J (π̂′,ξ′)(τ1, x̂
′)

]

≥ inf
τ1∈T

ζ1∈Z∪{ζ0}

Et,x

[
Y π̂(n),(τ1;ζ1) + sup

π′∈Un−1

inf
ξ′∈Vn−1

J (π′,ξ′)(τ1, x̂
′)

]
− ε

2

≥ inf
τ1∈T

ζ1∈Z∪{ζ0}

sup
π(n)∈U0

Et,x
[
Y π(n),(τ1;ζ1) + v(n−1)(τ1, x

′)
]
− ε

≥ sup
π(n)∈U0

inf
τ1∈T

ζ1∈Z∪{ζ0}

Et,x
[
Y π(n),(τ1;ζ1) + v(n−1)(τ1, x

′)
]
− ε.

Here the first inequality follows from the definition of v(n), (3.12) and plugging in strategy

π̂. The second inequality follows from interchanging the expectation and the infimum over

intervention strategies after the first intervention. The third inequality follows from (3.14).

The fourth inequality follows from the definition of v(n−1) and (3.13). The fifth inequality

follows from the relation inf sup ≥ sup inf.

On the other side we have

v(n)(t, x) ≤ sup
π∈Un

Et,x
[
Y π(n),(τ̂1;ζ̂1) + J (π′,ξ̂′)(τ̂1, x̂

′)
]

≤ sup
π(n)∈U0

Et,x

[
Y π(n),(τ̂1;ζ̂1) + sup

π′∈Un−1

J (π′,ξ̂′)(τ̂1, x̂
′)

]

≤ sup
π(n)∈U0

Et,x

[
Y π(n),(τ̂1;ζ̂1) + sup

π′∈Un−1

inf
ξ′∈Vn−1

J (π′,ξ′)(τ1, x̂
′)

]
+
ε

2

≤ sup
π(n)∈U0

inf
τ1∈T

ζ1∈Z∪{ζ0}

Et,x
[
Y π(n),(τ1;ζ1) + v(n−1)(τ1, x

′)
]

+ ε.

Here the first inequality follows from the definition of v(n), (3.12) and plugging in strategy

ξ̂. The second inequality follows from interchanging the expectation and the supremum over

continuous (n−1)-controls used after the first intervention. The third inequality follows from

(3.16). The fourth inequality follows from the definition of v(n−1) and (3.15).

Since ε > 0 has been chosen arbitrarily, it follows

v(n)(t, x) = sup
π∈U0

inf
τ∈T

ζ∈Z∪{ζ0}

Et,x
[
Y π,(τ ;ζ) + v(n−1)(τ, x′)

]
.

Recall that the impulse ζ is some Fτ -measurable random variable with values in Z ∪ {ζ0},
so that it is deterministic at time τ . Considering the optimal choice of the first intervention

as gradual process of first finding an optimal intervention time τ and then minimizing the

objective function with respect to the associated impulse ζ, we may move the infimum over
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all impulses within the expectation. Obviously it is of no advantage for player B to exercise

the ineffective impulse ζ0 prematurely since by this strategy he only looses one possibility of

intervening in the future. It is just an auxiliary expression to define the intervention strategy

properly even in the no intervention case. So it is sufficient to consider ζ0 as admissible

impulse only at time T . Using the ineffective impulse ζ0 at that time player B leaves the

system as it is, so that the game is over with a final payment of g(x). Then, by the definitions

of Y π,(τ ;ζ), x′ and the impulse operator Mπ(τ), we finally arrive at the representation of v(n)

in (3.11). �

Theorem 3.3.1 motivates to introduce the notation

J (π,τ)
n (t, x) := Et,x

[ ∫ τ

t
f(s,Xπ(s), π(s))ds+Mπ(τ)v(n−1)(τ,Xπ(τ))1{τ<T}

+ min
(
g,Mπ(τ)v(n−1)

)
(τ,Xπ(τ))1{τ=T}

]
.

Then it is our task to solve the following stochastic optimization (sub)problem: Find v(n),

π̂ ∈ U0 and τ̂ ∈ T such that

v(n)(t, x) = sup
π∈U0

inf
τ∈T
J (π,τ)
n (t, x) = J (π̂,τ̂)

n (t, x). (3.17)

Given the solution v(n−1) of the problem with n−1 intervention possibilities, this modified

problem embodies a differential game combining stochastic control and optimal stopping.

Going through the proof of Theorem 3.3.1 shows that the stopping time corresponds to the

first intervention time τ1 of player B and the continuous control is player A’s strategy π(n)

up to the first intervention. Here it is already assumed that both players act optimally in the

sequel. In particular, player B’s impulse ζ1 excercised at τ1 satisfies

ζ1 ∈ arg min
ζ∈Z∪{ζ0}

Mπ(n)(τ1)v(n−1)(τ1, X
π(n)

(τ1))

if this expression is well-defined.

Moreover, note that the representation formula (3.11) gives us directly the final condition

v(n) = min

(
g, sup
π∈U
Mπv(n−1)

)
on {T} × Rd. (3.18)

3.3.2 DPP for optimal stopping

After we have translated our initial problem to a differential game combining stochastic

control and optimal stopping, we now state a DPP for this modified problem. The right

formulation of such a principle in our setting is the following:
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Theorem 3.3.2 (Dynamic programming principle (version 2)). The value function v(n) in

(3.17) can be represented in form of

v(n)(t, x) = sup
π∈U0

inf
τ∈T

Et,x
[ ∫ τ∧θ

t
f(s,Xπ(s), π(s))ds+ v(n)(θ,Xπ(θ))1{θ<τ}

+Mπ(τ)v(n−1)(τ,Xπ(τ))1{θ≥τ,τ<T}

+ min
(
g,Mπ(τ)v(n−1)

)
(τ,Xπ(τ))1{θ=τ=T}

] (3.19)

for any stopping time θ ∈ [t, T ].

Note that Theorem 3.3.2 can be reformulated equivalently in the following way:

Let (t, x) ∈ [0, T ]× Rd. Then we have:

(DP1) For all ε > 0 there exists π ∈ U0 such that for all τ ∈ T and for each stopping time

θ ∈ [t, τ ] we have

v(n)(t, x) ≤ Et,x
[ ∫ θ

t
f(s,Xπ(s), π(s))ds+ v(n)(θ,Xπ(θ))1{θ<τ}

+Mπ(τ)v(n−1)(τ,Xπ(τ))1{θ=τ<T}

+ min
(
g,Mπ(τ)v(n−1)

)
(τ,Xπ(τ))1{θ=τ=T}

]
+ ε.

(DP2) For all π ∈ U0 and ε > 0 there exists τ ∈ T such that for each stopping time θ ∈ [t, τ ]

we have

v(n)(t, x) ≥ Et,x
[ ∫ θ

t
f(s,Xπ(s), π(s))ds+ v(n)(θ,Xπ(θ))1{θ<τ}

+Mπ(τ)v(n−1)(τ,Xπ(τ))1{θ=τ<T}

+ min
(
g,Mπ(τ)v(n−1)

)
(τ,Xπ(τ))1{θ=τ=T}

]
− ε.

Proof of Theorem 3.3.2: We are going to prove the version (DP1)-(DP2). To start with let

us remark that by the definition of the admissibility set U0 we can be sure that two admissible

strategies applied sequentially in time form a new admissible strategy, see [55]. This allows

us the following procedure: Fix (t, x) ∈ [0, T ] × Rd and consider π ∈ U0 and τ ∈ T (t). For

the sake of brevity of notation we write

gn(τ,Xπ(τ)) :=Mπ(τ)v(n−1)(τ,Xπ(τ))1{τ<T} + min
(
g,Mπ(τ)v(n−1)

)
(τ,Xπ(τ))1{τ=T},

so that the expected final value resulting from the strategies π and τ reads

J (π,τ)
n (t, x) = Et,x

[∫ τ

t
f(s,Xπ(s), π(s))ds+ gn(τ,Xπ(τ))

]
.
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Then, by the strong Markov property, for each stopping time θ ∈ [t, τ ] we have

J (π,τ)
n (t, x) = Et,x

[ ∫ θ

t
f(s,Xπ(s), π(s))ds

+ Eθ,Xπ(θ)

[∫ τ

θ
f(s,Xπ(s), π(s))ds+ gn(τ,Xπ(τ))

] ]
= Et,x

[∫ θ

t
f(s,Xπ(s), π(s))ds+ J (π,τ)

n (θ,Xπ(θ))

]
.

(3.20)

Let ε > 0. By the characterization of the value function in (3.17) there exist π̂ ∈ U0 and

τ̂ ∈ T (θ) such that

v(n)(t, x) ≤ J (π̂,τ)(t, x) +
ε

2
and J (π̂,τ̂)(θ,X π̂(θ)) ≤ v(n)(θ,X π̂(θ)) +

ε

2
. (3.21)

Since (DP1) does not depend on the actual stopping time τ in the case of θ < τ , we may

choose τ = τ̂ in this case, i.e. we relabel τ by θ1{θ=τ} + τ̂1{θ<τ}. Considering (3.20) and

noting that J (π̂,τ)
n (θ,X π̂(θ)) = gn(τ,X π̂(τ)) for θ = τ , (3.21) proves (DP1).

In the same way there exist τ̂ ∈ T (t) and π̂ ∈ U0 such that

v(n)(t, x) ≥ J (π,τ̂)(t, x)− ε

2
and J (π̂,τ̂)(θ,Xπ(θ)) ≥ v(n)(θ,Xπ(θ))− ε

2
. (3.22)

Since (DP2) depends on the strategy π only through its realizations in the stochastic interval

[t, θ), we may pass to the control π̂ on [θ, T ]. Therefore, combining (3.20) and (3.22) gives us

(DP2). �

We will use the version (DP1) for the proof of the subsolution property of v(n) in Section

3.5. More precisely, we need the following consequence of (DP1): For all (t, x) ∈ [0, T )× Rd

and ε > 0, there exists π ∈ U0 such that for all θ ∈ T we have

v(n)(t, x) ≤ Et,x
[∫ θ

t
f(s,Xπ(s), π(s))ds+ v(n)(θ,Xπ(θ))

]
+ ε

as well as

v(n)(t, x) ≤Mπ(t)v(n−1)(t, x) + ε.

To see the first inequality, choose in (DP1) the specific stopping time τ = T and note the

terminal condition stated in (3.18). The second inequality is (DP1) for τ = t.

For the proof of the supersolution property of v(n) we will make use of the version (DP2)

as follows: At a closer look on (DP2) we can even say more about the ε-optimal stopping

time τ . For (t, x) ∈ [0, T ]× Rd, π ∈ U0 and ε > 0 define the stopping time

τε := inf{s ≥ t : v(n)(s,Xπ(s)) ≥Mπ(s)v(n−1)(s,Xπ(s))− ε}.

Suppose that τ < τε ∧ T with positive probability. Then, by the definition of τε we conclude

that v(n)(τ,Xπ(τ)) <Mπ(τ)v(n−1)(τ,Xπ(τ))−ε with positive probability. But this represents
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a contradiction to (DP2) in the state (τ,Xπ(τ)) for θ = τ . So we have shown that τ ≥ τε∧T
almost surely. Therefore we are allowed to consider in (DP2) the stopping time θ = τ ε∧(t+h)

with h ∈ (0, T − t). According to (DP1) we can modify each control π ∈ U0 on [θ, T ] such

that

v(n)(θ,Xπ(θ)) ≤Mπ(θ)v(n−1)(θ,Xπ(θ)) + ε.

Then the inequality in (DP2) reads

v(n)(t, x) ≥ Et,x
[∫ θ

t
f(s,Xπ(s), π(s))ds+ v(n)(θ,Xπ(θ))

]
− 2ε

which holds true for all π ∈ U0 because the expression on the right hand side does not depend

on the course of π on [θ, T ]. In view of the arbitrary choice of ε > 0 and the fact that τε′ ≥ τε
for ε′ < ε, it follows

v(n)(t, x) ≥ sup
π∈U0

Et,x
[∫ θ

t
f(s,Xπ(s), π(s))ds+ v(n)(θ,Xπ(θ))

]
for θ = τε ∧ (t+ h) with arbitrary ε > 0 and h ∈ (0, T − t).

3.4 Continuity of the value function

In this section we prove the continuity of the value function. The main result is the following:

Proposition 3.4.1. Let Assumption 3.1.1 be satisfied. Then the value function v(n) in (3.3)

(resp. (3.17)) is continuous and Lipschitz in x (uniformly in t). More precisely, there exists

a constant C > 0 such that for all s, t ∈ [0, T ], x, y ∈ Rd,

|v(n)(t, x)− v(n)(s, y)| ≤ C{(1 + |x|)|t− s|
1
2 + |x− y|}. (3.23)

We adapt the proof to a proof presented in Pham [44] where the continuity of the value

function of a similar stopping problem is shown. The proof essentially makes use of the es-

timates on the moments of the purely π-controlled process Xπ, π ∈ U0, see Lemma B.1.1 in

the Appendix. Furthermore, for the continuity with respect to the time variable t we apply

the DPP in form of (3.19). The difference to [44] lies in necessary sup inf manipulations and

in the extension of the mentioned estimates to impulse perturbed processes which is not a

problem in view of the discussion following Lemma B.1.1.

Proof of Proposition 3.4.1: By the definition of v(n) and the relation | supa∈A infb∈B ϕ(a, b)−
supc∈A infd∈B ψ(c, d)| ≤ supa∈A supb∈B |ϕ(a, b)− ψ(a, b)| we have for all t ∈ [0, T ], x, y ∈ Rd,

|v(n)(t, x)− v(n)(t, y)| ≤ sup
π∈Un

sup
ξ∈Vn

E
[
|g(Xπ,ξ

t,x (T ))− g(Xπ,ξ
t,y (T ))|

+

∫ T

t
|f(s,Xπ,ξ

t,x (s), π(n−Nξ(s))(s))− f(s,Xπ,ξ
t,y (s), π(n−Nξ(s))(s))|ds

+
∑

t≤τi≤T
|K(τi, X̌

π,ξ
t,x (τi−), π(n−i+1)(τi), ζi)−K(τi, X̌

π,ξ
t,y (τi−), π(n−i+1)(τi), ζi)|

]
.
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Using the Lipschitz conditions on Γ, f , g, K of the assumption (G3) and the estimate (B.5)

of Lemma B.1.1 together with the tower property of conditional expectation, we conclude

that

|v(n)(t, x)− v(n)(t, y)| ≤ C|x− y|, (3.24)

i.e. the value function is Lipschitz in x (uniformly in t).

To prove continuity of v(n) in time t, let 0 ≤ t < s ≤ T , x, y ∈ Rd and use the DPP (3.19)

with θ = s implying that

v(n)(t, x) = sup
π∈U0

inf
τ∈T

E
[ ∫ τ∧s

t
f(r,Xπ

t,x(r), π(r))dr + v(n)(s,Xπ
t,x(s))1{s<τ}

+Mπ(τ)v(n−1)(τ,Xπ
t,x(τ))1{s≥τ,τ<T}

+ min
(
g,Mπ(τ)v(n−1)

)
(τ,Xπ

t,x(τ))1{s≥τ=T}

]
.

Using the specific stopping time τ = T and noting that v(n) = min(g, supπ∈UMπv(n−1)) on

{T} × Rd, this leads to

|v(n)(t, x)− v(n)(s, x)| ≤ sup
π∈U0

E
[∫ s

t
|f(r,Xπ

t,x(r), π(r))|dr + |v(n)(s,Xπ
t,x(s))− v(n)(s, x)|

]
.

In view of the linear growth condition on f as consequence of the assumption (G3) and the

Lipschitz relation (3.24) of v(n), this yields

|v(n)(t, x)− v(n)(s, x)| ≤ sup
π∈U0

C

{∫ s

t
(1 + E

[
|Xπ

t,x(r)|
]
)dr + E

[
|Xπ

t,x(s)− x|
]}

.

With the estimates (B.2) and (B.3) of Lemma B.1.1 we deduce

|v(n)(t, x)− v(n)(s, x)| ≤ C(1 + |x|)|s− t|
1
2 ,

which ends the proof. �

That is v(n) is in UCx([0, T ]×Rd), the set of continuous functions on [0, T ]×Rd, uniformly

continuous in x (uniformly in t).

3.5 PDE characterization of the value function

We now come to the main result of this chapter showing that the value function of the

differential game (3.3) can be represented as a viscosity solution of a PDE.

In this way we can apply the viscosity solution concept as a kind of verification method,

allthough the value function does not need to satisfy strong regularity conditions: It is suffi-

cient to verify that v(n) is a viscosity solution of the corresponding PDE. But for this method

to work, it is necessary that we know that v(n) is the unique viscosity solution.
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So we first give an existence theorem of the value function as viscosity solution and after

that turn to the question of the uniqueness of these viscosity solutions. But to start with we

need some preliminaries in order to extend the viscosity approach presented in the appendix

to partial integro-differential equations with its non-local integral part.

3.5.1 Preliminaries

In this section we consider the partial integro-differential equation

inf
π∈U

max
(
−Lπv − f(., ., π), v −Mπv(n−1)

)
= 0 on [0, T )× Rd,

v −min

(
g, sup
π∈U
Mπv(n−1)

)
= 0 on {T} × Rd,

(3.25)

where Lπ is the integro-differential operator from (3.6).

Denote by C1 = C1([0, T ]×Rd) the space of functions ϕ ∈ C([0, T ]×Rd) with linear growth

rate, i.e. there exists a constant C > 0 such that

|ϕ(t, x)| ≤ C(1 + |x|) for all (t, x) ∈ [0, T ]× Rd.

Note that by (3.4) we have v(n) ∈ C1([0, T ]×Rd). As detailed below, Lπϕ is well-defined for

ϕ ∈ C1 ∩ C1,2([0, T )× Rd).
Now let us state more precisely what we mean by a viscosity solution of (3.25).

Definition 3.5.1. Let v ∈ C1([0, T ]× Rd).

(i) We say that v is a viscosity subsolution of (3.25) if

v = min

(
g, sup
π∈U
Mπv(n−1)

)
on {T} × Rd (3.26)

and for any point (t, x) ∈ [0, T )×Rd and all ϕ ∈ C1∩C1,2([0, T )×Rd) such that (v−ϕ)

has a global maximum in (t, x),

inf
π∈U

max
(
−Lπϕ(t, x)− f(t, x, π), v(t, x)−Mπv(n−1)(t, x)

)
≤ 0.

(ii) We say that v is a viscosity supersolution of (3.25) if (3.26) holds and for any point

(t, x) ∈ [0, T ) × Rd and all ϕ ∈ C1 ∩ C1,2([0, T ) × Rd) such that (v − ϕ) has a global

minimum in (t, x),

inf
π∈U

max
(
−Lπϕ(t, x)− f(t, x, π), v(t, x)−Mπv(n−1)(t, x)

)
≥ 0.

(iii) We say that v is a viscosity solution of (3.25) if it is both a viscosity subsolution and

a viscosity supersolution of (3.25).
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Remark 3.5.1. Without loss of generality we can replace the requirement of a “global maxi-

mum” of (v−ϕ) in (t, x) in the definition of a viscosity subsolution by ϕ ≥ v, ϕ(t, x) = v(t, x)

because adding constants to ϕ does not change the value of Lπϕ.

Except for the terminal condition and the non-local integral part of the PDE, the definition

for a viscosity solution used here corresponds to the one given in Appendix A: Recall the

form of the integro-differential operator

Lπϕ(t, x) =
∂ϕ

∂t
(t, x) + µ(t, x, π)TDxϕ(t, x) +

1

2
tr
(
(σσT )(t, x, π)D2

xϕ(t, x)
)

+

∫
Rk
{ϕ(t, x+ γ(t, x, π, z))− ϕ(t, x)− γ(t, x, π, z)TDxϕ(t, x)}ν(dz).

To handle a possible singularity of ν in the origin, i.e. ν(Rk) = ∞, we split as in [44] the

integral in Lπ for η ∈ (0, 1) into two parts,∫
|z|<η

+

∫
|z|≥η

.

To this end define for t ∈ [0, T ], x, p, l ∈ Rd, X ∈ Sd, π ∈ U and ϕ ∈ C1 ∩ C1,2([0, T )× Rd),

F π(t, x, p,X, l) := −1

2
tr
(
(σσT )(t, x, π)X

)
− µ(t, x, π)T p− f(t, x, π)− l,

I1,η
π [t, x, ϕ] :=

∫
|z|<η
{ϕ(t, x+ γ(t, x, π, z))− ϕ(t, x)− γ(t, x, π, z)TDxϕ(t, x)}ν(dz),

I2,η
π [t, x, p, ϕ] :=

∫
|z|≥η
{ϕ(t, x+ γ(t, x, π, z))− ϕ(t, x)− γ(t, x, π, z)T p}ν(dz),

Iπ[t, x, ϕ] := I1,η
π [t, x, ϕ] + I2,η

π [t, x,Dxϕ,ϕ].

We remark that F is a continuous function satisfying the degenerate ellipticity condition

F (t, x, p,X, l1) ≤ F (t, x, p, Y, l2) whenever X ≥ Y, l1 ≥ l2.

Here the fact that F is nonincreasing in l is indeed part of the needed requirements which

make sure that any classical solution in C1,2([0, T ) × Rd) is also a viscosity solution. Since

taking supremum or infimum preserves the ellipticity property, the left hand side of the PDE

(3.25) is degenerate elliptic. Moreover, recalling the definition of the intervention operator,

Mπϕ(t, x) = inf
ζ∈Z
{ϕ(t,Γ(t, x, π, ζ)) +K(t, x, π, ζ)},

and noting that Γ,K are continuous and Z is compact by the made assumptions and that

v(n−1) ∈ UCx([0, T ] × Rd), we conclude by Lemma A.1.1 in the appendix that Mπv(n−1) is

continuous on [0, T ] × Rd. So, due to the compactness of U , the left hand side of the PDE

(3.25) is continuous in (t, x, v(t, x), ∂v∂t (t, x), Dxv(t, x), D2
xv(t, x)).

Let us now turn to the integral part of the PDE in which the test function ϕ is not only

evaluated in the point (t, x). By the Taylor expansion we have for the first integral term

I1,η
π [t, x, ϕ] ≤ 1

2

∫
|z|<η

|γ(t, x, π, z)|2|D2
xϕ(t, x̂)|ν(dz)
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for some x̂ ∈ B(x, sup|z|<η |γ(t, x, π, z)|) (note that sup|z|<η |γ(t, x, π, z)| < ∞ according to

the boundedness assumption of γ in the assumption (G2)). Using the growth condition on γ

from the assumption (G2), the integral is well-defined. In view of the dominated convergence

theorem it follows

lim
η↘0
I1,η
π [t, x, ϕ] = 0. (3.27)

For the second integral I2,η
π [t, x, p, ϕ] we observe that, because of ϕ ∈ C1([0, T ] × Rd), the

integrand is bounded by Cx,p(1 + |γ(t, x, π, z)|2) for a constant Cx,p > 0 depending on x, p.

Since
∫
Rk(|z|2 ∧ 1)ν(dz) <∞ holds for any Lévy measure ν (see, e.g., Protter [46], Theorem

42, or Jacod and Shiryaev [24], Corollary 4.19) and |γ(t, x, π, z)| is bounded for |z| ≤ 1

according to assumption (G2), the integral
∫
|z|≥η ν(dz) is finite. Again by the linear growth

condition on γ from assumption (G2), this implies the well-definedness of I2,η
π [t, x, p, ϕ]. If ν

has finite activity, i.e. ν(Rk) <∞, then I2,η
π [t, x, p, ϕ] is also well-defined for η = 0.

In view of the introduced notation, a function v ∈ C1([0, T ]×Rd) is a viscosity subsolution

(resp. supersolution) of (3.25) if and only if (3.26) holds and for all (t, x) ∈ [0, T ) × Rd we

have

inf
π∈U

max

(
−∂ϕ
∂t

(t,x)+F π(t,x,Dxϕ(t,x),D2
xϕ(t,x),Iπ[t,x,ϕ]),v(t,x)−Mπv(n−1)(t,x)

)
≤ 0

(resp. ≥ 0), whenever ϕ ∈ C1 ∩ C1,2([0, T ) × Rd) such that (v − ϕ) has a global maximum

(resp. minimum) in (t, x).

We now want to replace in the characterization of a viscosity solution the test function

ϕ in the integral I2,η
π [t, x, p, ϕ] by the viscosity solution itself. To this end we need a further

assumption:

Assumption 3.5.2. If we have ν(Rk) = ∞, then the function γ does not depend on π and

for all (t, x) ∈ [0, T ]× Rd,

|γ(t, x, z1)| < |γ(t, x, z2)| for |z1| < |z2| ≤ 1,

|γ(t, x, z)| ≥ sup
|z′|≤1

|γ(t, x, z′)| for |z| ≥ 1.

Example 3.5.1. Assumption 3.5.2 is satisfied for k = d, γ(t, x, z) = γ̃(t, x)z with γ̃ : [0, T ] ×
Rd → R \ {0}.

The following proposition states the intended equivalent formulation for viscosity solutions

in the class C1.

Proposition 3.5.3. Let Assumption 3.5.2 be satisfied and let v ∈ C1([0, T ]×Rd). If we have

ν(Rk) = ∞, then v is a viscosity subsolution (resp. supersolution) of (3.25) if and only if

(3.26) holds and for all (t, x) ∈ [0, T )× Rd and η ∈ (0, 1),

inf
π∈U

max

(
−∂ϕ
∂t

(t, x) + F π(t, x,Dxϕ(t, x), D2
xϕ(t, x),

I1,η
π [t, x, ϕ] + I2,η

π [t, x,Dxϕ(t, x), v]), v(t, x)−Mπv(n−1)(t, x)

)
≤ 0
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(resp. ≥ 0), whenever ϕ ∈ C1,2([0, T ) × Rd) such that (v − ϕ) has a global maximum (resp.

minimum) in (t, x). The same holds for ν(Rk) <∞ with η = 0.

We remark that in the proposition’s version of a viscosity solution it is not necessary

to consider only test functions ϕ in C1 because the integral I1,η
π [t, x, ϕ] is also well-defined

without this requirement. Since any viscosity sub or supersolution v is stipulated to be in

C1, the integral I2,η
π [t, x,Dxϕ(t, x), v] is well-defined, too.

Proof of Proposition 3.5.3: We prove the statement for subsolutions in the case ν(Rk) =

∞. The other statements are proved in quite the same way. So in the following we consider

for some fixed point (t0, x0) ∈ S := [0, T ) × Rd a test function ϕ ∈ C1,2(S) with ϕ ≥ v and

ϕ(t0, x0) = v(t0, x0).

Sufficiency. Supposed in addition ϕ ∈ C1(S), this assertion is a consequence of

I2,η
π [t0, x0, Dxϕ(t0, x0), v] ≤ I2,η

π [t0, x0, Dxϕ(t0, x0), ϕ]

and the ellipticity of F .

Necessity. For this implication we have to construct a function ϕε ∈ C1,2(S) such that

ϕε(t, x) = ϕ(t, x) for x ∈ Nη(x0),

ϕε(t, x) = ψε(t, x) for x ∈ Rd \Nη+ε(x0),

where ψε ∈ C1,2(S) satisfies ||v−ψε||L∞(S) < ε with ψε ≥ v and the subset Nη(x0) is defined

by

Nη(x0) := {λx0 + (1− λ)γ(t0, x0, z) : |z| ≤ η, λ ∈ [0, 1]}.

For the concrete construction we refer to Soner [53], Lemma 2.1, or Sayah [50], Proposition 2.1.

Both references are concerned with elliptic PDEs involving a first order integro-differential

operator with jump coefficient function γ(x, z) = z. But since the second order derivative D2
x

only has impact on the local part of the PDE and the non-local integral part only takes into

account values starting at time t0, their procedure can be adapted to the parabolic case with

second order differential operator. The different jump reaction is handled by the consideration

of the set Nη(x0) instead of the ball B(x0, η) which is possible because of Assumption 3.5.2.

According to this construction, ϕε inherits all local properties in (t0, x0) from ϕ as well as

the linear growth property from v. So for each ε > 0 we can use ϕε as a test function with

respect to the original subsolution definition. Thus we deduce

inf
π∈U

max

(
−∂ϕ

ε

∂t
(t0, x0) + F π(t0, x0, Dxϕ

ε(t0, x0), D2
xϕ

ε(t0, x0),

I1,η
π [t0, x0, ϕ

ε] + I2,η
π [t0, x0, Dxϕ

ε(t0, x0), ϕε]), v(t0, x0)−Mπv(n−1)(t0, x0)

)
≤ 0.

(3.28)
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This infimum is attained in πε ∈ U because of the continuity of the respective objective

function and the compactness of the domain U . Choose a subsequence such that πε → π ∈ U
for ε↘ 0. Along this subsequence we have

lim
ε↘0
I2,η
πε [t0, x0, Dxϕ

ε(t0, x0), ϕε] = I2,η
π [t0, x0, Dxϕ(t0, x0), v],

so that we conclude our result by using the limit in (3.28). �

Remark 3.5.2. It is sufficient to require in the assumption (G2) that γ(t, x, π, .) is bounded

in a neighborhood of z = 0, say for |z| ≤ ρ ∈ (0, 1], and in Assumption 3.5.2

|γ(t, x, z1)| < |γ(t, x, z2)| for |z1| < |z2| ≤ ρ,

|γ(t, x, z)| ≥ sup
|z′|≤ρ

|γ(t, x, z′)| for |z| ≥ ρ.

Then we only consider η ∈ (0, ρ) for ν(Rk) =∞.

For proving the uniqueness result we have to characterize a viscosity solution by the

notion of semijets introduced by Crandall, Ishii and Lions [10]. We refer to the appendix for

the definitions of the semijets J 2,+, J 2,− and their limiting versions J̄ 2,+, J̄ 2,−. In the very

same way as in the appendix, we obtain the following formulation of a viscosity solution in

C1 in terms of the limiting semijets:

Corollary 3.5.4. Let Assumption 3.5.2 be satisfied and let v ∈ C1([0, T ] × Rd). If we have

ν(Rk) =∞, then v ∈ C1([0, T ]×Rd) is a viscosity subsolution (resp. supersolution) of (3.25)

if and only if (3.26) holds and for all (t, x) ∈ [0, T ) × Rd, (a, p,X) ∈ J̄ 2,+v(t, x) (resp.

(a, p,X) ∈ J̄ 2,−v(t, x)) and η ∈ (0, 1),

inf
π∈U

max
(
−a+ F π(t, x, p,X, I1,η

π [t, x, ϕ] + I2,η
π [t, x, p, v]), v(t, x)−Mπv(n−1)(t, x)

)
≤ 0

(resp. ≥ 0), whenever ϕ ∈ C1,2([0, T ) × Rd) such that (v − ϕ) has a global maximum (resp.

minimum) in (t, x). The same holds for ν(Rk) <∞ with η = 0.

3.5.2 Viscosity solution existence

Using the dynamic programming principle derived in Section 3.3 and the concept of viscosity

solutions presented in the preceding section, we link the value function v(n) of our differential

game with the PDE (3.25):

Theorem 3.5.5. Let Assumptions 3.1.1 and 3.2.1 be satisfied. Then the value function v(n)

in (3.3) (resp. (3.17)) is a viscosity solution of (3.25).

Proof: We have already verified that v(n) = min(g, supπ∈UMπv(n−1)) on {T} × Rd, see

(3.18). So let us focus now on the viscosity property of v(n) on S := [0, T )× Rd.
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Subsolution property. Let (t, x) ∈ S and ϕ ∈ C1 ∩ C1,2(S) such that ϕ(t, x) = v(n)(t, x)

and ϕ ≥ v(n) on S. In order to prove the subsolution inequality we argue by contradiction

and assume that there exists a δ > 0 such that

inf
π∈U

max
(
−Lπϕ(t, x)− f(t, x, π), v(n)(t, x)−Mπv(n−1)(t, x)

)
= δ.

So for all π ∈ U we have

− Lπϕ(t, x)− f(t, x, π) ≥ δ or v(n)(t, x)−Mπv(n−1)(t, x) ≥ δ. (3.29)

Let ε ∈ (0, δ). Then, as detailed subsequent to the proof of Theorem 3.3.2, the DPP (DP1)

yields the existence of a control π ∈ U0 fulfilling

v(n)(t, x) ≤Mπ(t)v(n−1)(t, x) + ε (3.30)

as well as, for each stopping time τ < T ,

v(n)(t, x) ≤ Et,x
[∫ τ

t
f(s,Xπ(s), π(s))ds+ v(n)(τ,Xπ(τ))

]
+ ε. (3.31)

Thus, combining (3.29) and (3.30) and noting the continuity of the involved functions, in

particular the continuity of the feedback function of π according to Assumption 3.2.1, we can

find some ρ > 0 such that the parabolic ball B := [t, t+ ρ)× B(x, ρ) surrounding (t, x) with

radius ρ lies within S and

f(., ., π) + Lπ(.)ϕ ≤ −δ on B. (3.32)

Consider the stopping time

τρ := inf{s ≥ t : |Xπ(s)− x| ≥ ρ} ∧ (t+ ρ).

Using the relation v(n) ≤ ϕ and applying Dynkin’s formula (see Theorem B.2.1 in the ap-

pendix) to ϕ(τρ, X
π(τρ)), we deduce from (3.31)

v(n)(t, x) ≤ Et,x
[∫ τρ

t
f(s,Xπ(s), π(s))ds+ ϕ(τρ, X

π(τρ))

]
+ ε

≤ ϕ(t, x) + Et,x
[∫ τρ

t
{f(s,Xπ(s), π(t)) + Lπ(s)ϕ(s,Xπ(s))}ds

]
+ ε.

In view of τρ as first exit time of the set B, we know from (3.32) that f(s,Xπ(s), π(s)) +

Lπ(s)ϕ(s,Xπ(s)) ≤ −δ almost surely for all s ∈ [t, τρ). Hence, by v(n)(t, x) = ϕ(t, x) we

conclude

0 ≤ Et,x
[∫ τρ

t
{f(s,Xπ(s), π(s)) + Lπ(s)ϕ(s,Xπ(s))}ds

]
+ ε ≤ −δEt,x[τρ − t] + ε.
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Since this inequality holds for all ε ∈ (0, δ), it follows τρ = t almost surely. Therefore, by

Markov’s inequality and the estimate (B.4) of Lemma B.1.1, we have for any h ∈ (0, ρ),

1 = P[τρ < t+ h] ≤ P

[
sup

t≤s≤t+h
|Xπ(s)− x| ≥ ρ

]

≤ 1

ρ2
E

( sup
t≤s≤t+h

|Xπ(s)− x|

)2


≤ Ch,

where C > 0 is independent of h. Consequently, sending h → 0 leads to the desired contra-

diction.

Supersolution property. Let (t, x) ∈ S and ϕ ∈ C1 ∩ C1,2(S) such that ϕ(t, x) = v(n)(t, x)

and ϕ ≤ v(n) on S. We must prove that

inf
π∈U

max
(
−Lπϕ(t, x)− f(t, x, π), v(n)(t, x)−Mπv(n−1)(t, x)

)
≥ 0.

If v(n)(t, x) ≥Mπv(n−1)(t, x) for all π ∈ U with f(t, x, π) + Lπϕ(t, x) > 0, then the superso-

lution inequality holds trivially. So assume from now on the case that there exists a π ∈ U
such that

f(t, x, π) + Lπϕ(t, x) > 0 and v(n)(t, x) <Mπv(n−1)(t, x). (3.33)

For ε ∈ (0,Mπv(n−1)(t, x) − v(n)(t, x)), ρ > 0 and the constant control π(.) ≡ π define the

stopping times

τε := inf{s ≥ t : v(n)(s,Xπ(s)) ≥Mπv(n−1)(s,Xπ(s))− ε},

τρ := inf{s ≥ t : |Xπ(s)− x| ≥ ρ}.

For h ∈ (0, T − t) set τ := τε ∧ τρ ∧ (t+ h). In view of the DPP (DP2) and the remarks after

the proof of Theorem 3.3.2, we have

v(n)(t, x) ≥ Et,x
[∫ τ

t
f(s,Xπ(s), π)ds+ v(n)(τ,Xπ(τ))

]
.

Now we use the relation v(n) ≥ ϕ, so that we can deduce by applying Dynkin’s formula to

ϕ(τ,Xπ(τ)),

v(n)(t, x) ≥ Et,x
[∫ τ

t
f(s,Xπ(s), π)ds+ ϕ(τ,Xπ(τ))

]
≥ ϕ(t, x) + Et,x

[∫ τ

t
{f(s,Xπ(s), π) + Lπϕ(s,Xπ(s))}ds

]
.

Then, using the equality v(n)(t, x) = ϕ(t, x) and dividing by h we obtain

Et,x
[

1

h

∫ τ

t
{f(s,Xπ(s), π) + Lπϕ(s,Xπ(s))}ds

]
≤ 0. (3.34)
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We split the integral in the expectation term into two parts,(∫ t+h

t

)
1{τ=t+h} +

(∫ τ

t

)
1{τ<t+h}.

As in the proof of the subsolution property, we deduce from Markov’s inequality and Lemma

B.1.1 that P[τ < t + h] ≤ Ch for some constant C > 0 which is independent of h, i.e.

1{τ<t+h} → 0 almost surely for h↘ 0. Since the integrand is bounded on [t, τ), the expecta-

tion of the second integral disappears for h↘ 0. Thus, sending h↘ 0 in (3.34), we conclude

by the dominated convergence theorem that

f(t, x, π) + Lπϕ(t, x) ≤ 0

which is a contradiction to (3.33). �

Remark 3.5.3. We only used Assumption 3.2.1 for the proof of the subsolution property.

3.5.3 Viscosity solution uniqueness

We now conclude by establishing a comparison result for the equation (3.25) which implies

that v(n) is the unique viscosity solution of (3.25) in the class UCx([0, T ]×Rd) of continuous

functions on [0, T ] × Rd, uniformly continuous in x (uniformly in t). For its proof we refer

to a more general comparison result presented in the next section. Since the proof for the

standard version considered here and for the generalization are very similar, we prove the

generalization.

Theorem 3.5.6 (Comparison theorem). Let Assumptions 3.1.1 and 3.5.2 be satisfied. Fur-

ther, let u ∈ UCx([0, T ]× Rd) be a viscosity subsolution and v ∈ UCx([0, T ]× Rd) a viscosity

supersolution of (3.25). Then we have

u ≤ v on [0, T ]× Rd.

Proof: Supposed all the underlying assumptions hold, Theorem 3.6.6 below states that we

have u ≤ v on [0, T ]× Rd if u ≤ v holds on {T} × Rd. Noting that u and v are viscosity sub

and supersolutions and that viscosity sub and supersolutions are equal at terminal time T ,

it remains to check the assumptions of Theorem 3.6.6.

Assumptions 3.6.1 and 3.6.2 correspond to Assumption 3.1.1 and the fact that v(n−1)

is continuous. So let us finally verify Assumption 3.6.5 for the growth rate r = 1. The

Lipschitz condition (U1) is satisfied because of Assumption 3.1.1. The convergence result in

(U2) is true due to (3.27), and the estimates of the integrals in (U2) are again a consequence

of Assumption 3.1.1. The requirement (U4) is shown in the preliminaries of this section,

supposed Assumption 3.5.2 holds. The single crucial point is assumption (U3), the existence

of a positive function w ∈ C1,2([0, T )× Rd) ∩ C([0, T ]× Rd) and a constant C > 0 such that

min

(
inf
π∈U
{−Lπw}, w

)
≥ C on [0, T )× Rd
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and

lim
|x|→∞

|x|
w(t, x)

= 0 (uniformly in t).

We claim that for some large λ > 0 the function w(t, x) = eλ(T−t)|x|2 + C(T − t + 1) is

the right choice. The strict positivity and the convergence property are evident. For the

condition on the differential operator we calculate

−e−λ(T−t)Lπw(t, x) = λ|x|2 + C − 2µ(t, x, π)Tx− tr
(
(σσT )(t, x, π)Id

)
−
∫
Rk

{
|x+ γ(t, x, π, z)|2 − |x|2 − 2γ(t, x, π, z)Tx

}
ν(dz).

Using the estimates in (G2) of Assumption 3.1.1 and the equality |x+y|2 = |x|2 +2xT y+ |y|2,

we conclude

−e−λ(T−t)Lπw(t, x) ≥ λ|x|2 + C − C̃(1 + |x|2).

For λ ≥ C̃ we obtain the desired inequality.

�

Theorem 3.5.6 directly leads to the following uniqueness result:

Corollary 3.5.7. Let Assumption 3.1.1 be satisfied. Then the value function v(n) in (3.3)

(resp. (3.17)) is the unique viscosity solution of (3.25) in UCx([0, T ]× Rd).

Going through the proof of Theorem 3.6.6 below, it is apparent how one proves the

uniqueness of a viscosity solution v(0) of the HJB-equation (3.8) for the classic control problem

without impulse intervention.

3.6 Extension of the model

Since Assumption 3.1.1, in particular the global Lipschitz condition (G3) on the profit func-

tions f, g,K, is quite restrictive, we want to discuss in this section how we can weaken the

basic assumptions of our model. As minimal requirement we need a set of coefficient func-

tions µ, σ, γ, a transaction function Γ, profit functions f, g,K and admissible control sets

Un = Un+1
0 , Vn such that the following holds:

Assumption 3.6.1.(G1’) The controlled process X = Xπ,ξ
t,x has a unique strong solution for

any starting value (t, x) ∈ [0, T ]× Rd and any controls π ∈ Un, ξ ∈ Vn.

(G2’) The objective function J (π,ξ) is well-defined for any controls π ∈ Un, ξ ∈ Vn.

(G3’) The admissible control sets Un,Vn only contain Markov controls and are stable under

concatenation.
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In addition let us suppose that the process X = Xπ,ξ is controlled in the time interval

[0, T ] only as long as it stays within an open set O ⊂ Rd. We set S := [0, T ) × O and fix a

starting point (t, x) ∈ [0, T ]× Rd. Then the stopping time

τS := inf{s ∈ [t, T ] : (s,X(s)) /∈ S} (3.35)

indicates the end of control. Note that X(s) is the value at s after all impulses in s have been

exercised, so that “intermediate values” between directly successive jumps are not taken into

account by this stopping time. The performance criterion then reads

J (π,ξ)(t, x) = Et,x
[ ∫ τS

t
f(s,X(s), π(n−Nξ(s))(s))ds+ g(τS , X(τS))

+
∑

t≤τi≤τS

K(τi, X̌(τi−), π(n−i+1)(τi), ζi)

]
.

To specify the assumption (G2’), we require as in [42] the integrability condition on the

negative parts of f, g,K,

Et,x
[∫ τS

t
f−(s,X(s),π(n−Nξ(s))(s))ds+g−(τS ,X(τS)+

∑
t≤τi≤τS

K−(τi,X̌(τi−),π(n−i+1)(τi),ζi)

]
<∞.

Of course, we are mainly interested in the value function on the closure S̄ of the control

domain. However, since a possible jump, driven stochastically or by intervention, may send

the system outside S̄, we have to determine v(n) on the entire space [0, T ]×Rd. In particular,

by fixing τS after all jumps, player B is given the chance to intervene even when the system

is in Sc. Consequently, the right boundary conditions reads

v(n) = min

(
g, sup
π∈U
Mπv(n−1)

)
on Sc.

We can furthermore drop the assumption (3.1) concerning the Lévy measure ν. Then we

have to replace the compensated Poisson random measure Ñ by

N̄(dt, dz) = N(dt, dz)− 1{|z|<1}ν(dz)dt.

Dynkin’s operator now takes the form

Lπϕ(t, x) =
∂ϕ

∂t
(t, x) + µ(t, x, π)TDxϕ(t, x) +

1

2
tr
(
(σσT )(t, x, π)D2

xϕ(t, x)
)

+

∫
Rk
{ϕ(t, x+ γ(t, x, π, z))− ϕ(t, x)− γ(t, x, π, z)TDxϕ(t, x)1{|z|<1}}ν(dz),

and we redefine

I2,η
π [t, x, p, ϕ] =

∫
|z|≥η
{ϕ(t, x+ γ(t, x, π, z))− ϕ(t, x)− γ(t, x, π, z)T p1{|z|<1}}ν(dz).

Having this modified setting in the back of our mind, let us now go through the preceding

argumentation of this chapter. For the derivation of the DPPs we have only made use of
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the Markov property of the underlying state process and the stability of admissible controls

under concatenation. So by the assumption (G3’) the representation formulas (3.11) and

(3.19) remain true for the set of admissible stopping times

T := {τ : τ stopping time, t ≤ τ ≤ τS}

and with the time horizon T replaced by τS . Here the exit time τS defined in (3.35) refers to

the state process Xπ without impulse intervention, i.e. T = T π(t, x).

Unfortunately, the proof of the continuity of the value function fails because we cannot

reduce the distance |v(n)(t, x) − v(n)(s, y)| to the estimates of the purely continuously con-

trolled process due to the missing Lipschitz conditions and troubles at the parabolic boundary

∂S := ([0, T ) × ∂O) ∪ ({T} × O). Nevertheless, we can show the viscosity property by us-

ing the notion of discontinuous viscosity solutions which are locally bounded, see Appendix

A.2. To this end, let v∗ and v∗ be the upper and lower semicontinuous envelopes of a locally

bounded function v on S, i.e.

v∗(t, x) = lim sup
S3(s,y)→(t,x)

v(s, y), v∗(t, x) = lim inf
S3(s,y)→(t,x)

v(s, y).

For more details on v∗, v∗ and on upper and lower semicontinuous functions, we refer to

Appendix A.1.

Under the following conditions we can rebuild the proof of Theorem 3.5.5:

Assumption 3.6.2. (V1) The control set U and the impulse set Z are compact and non-

empty.

(V2) The value function v(n−1), the SDE coefficients µ, σ, γ, the transaction function Γ and

the profit functions f, g,K are continuous.

Assumption 3.6.3. (E1) The purely continuously controlled process Xπ satisfies the esti-

mates of Lemma B.1.1 for all π ∈ U0.

(E2) For all ϕ ∈ C1,2(S), (t, x) ∈ S and π ∈ U0 there exists a ρ > 0 such that Lπϕ is

well-defined on [t, t+ ρ)× B(x, ρ), and for each stopping time τ ∈ T satisfying

τ ≤ τρ := inf{s ≥ t : |Xπ(s)− x| ≥ ρ} ∧ (t+ ρ),

we have

Et,x [ϕ(τ,Xπ(τ))] = ϕ(t, x) + Et,x
[∫ τ

t
Lπ(s,Xπ(s))ds

]
.

By the assumption (V1) we ensure continuity properties of the supremum and the infi-

mum with respect to π ∈ U and ζ ∈ Z, repectively, while the requirement (V2) makes the

differential operator Lπ and the intervention operator Mπ preserving continuity. Further-

more, the assumptions (E1) and (E2) justify the crucial steps used in the proof of Theorem

3.5.5.

Now we can formulate a viscosity solution existence result for the extended model:
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Theorem 3.6.4. Let Assumptions 3.6.1, 3.6.2 and 3.6.3 be satisfied. Assume further that

v(n) is locally bounded on S. Then, on S the value function v(n) in (3.3) (resp. (3.17)) is a

viscosity supersolution of the equation

inf
π∈U

max
(
−Lπv − f(., ., π), v −Mπv(n−1)

)
= 0. (3.36)

If in addition Assumption 3.2.1 is satisfied, then it is also a viscosity subsolution of (3.36).

Proof: (Sketch) We do not provide the entire proof because, thanks to the made assumptions,

it follows exactly the line of arguments as in the regular model. We only explain the technical

point of dealing with discontinuous viscosity solutions. We work on sequences (tk, xk)k ⊂
S converging to (t0, x0) ∈ S such that v(n)(tk, xk) → (v(n))∗(t0, x0) for the proof of the

subsolution inequality in (t0, x0) (resp. v(n)(tk, xk) → (v(n))∗(t0, x0) for the proof of the

supersolution inequality). As a test function we consider some ϕ ∈ C1,2(S) such that ϕ ≥
(v(n))∗ and ϕ(t0, x0) = (v(n))∗(t0, x0) (resp. ϕ ≤ (v(n))∗ and ϕ(t0, x0) = (v(n))∗(t0, x0)). Using

the relation (v(n))∗ ≥ v(n) ≥ (v(n))∗ we can approximate (v(n))∗(t0, x0) and (v(n))∗(t0, x0) by

v(n)(tk, xk). Compared to the situation in the proof of Theorem 3.5.5, both the ε-optimal

control π ∈ U0 in the subsolution proof and the control value π ∈ U in the supersolution

proof are substituted by sequences of εk-optimal controls (πk)k ⊂ U0 and analogous control

values (πk)k ⊂ U . As well, instead of the considered stopping times τρ, τε, t + h we use

sequences (τρk )k, (τ
ε
k)k, (tk + hk)k of stopping times which are first exit times of the relevant

controlled processes (t,Xπk
tk,xk

(t)) of appropriate bounded subspaces of S and which converge

to t0. Similarly to the standard case, one verifies by using Lemma B.1.2 that for all τk =

τρk , τ
ε
k , tk + hk the probability of {τk < τS} goes to 1 as k → ∞, so that one finally obtains

the corresponding inequalities by taking the limit k →∞. �

Next we want to state a comparison result for viscosity subsolutions and supersolutions

which are polynomially bounded. Denote by Pr = Pr([0, T ]×Rd) the space of functions v at

most polynomially growing with exponent r > 0, i.e. there exists a constant C > 0 such that

|v(t, x)| ≤ C(1 + |x|r) for all (t, x) ∈ [0, T ]× Rd.

Let us fix some r > 0 for the rest of this section. Studying viscosity solutions of (3.36) in the

class Pr, we only have to consider test functions ϕ ∈ Pr ∩ C1,2(S). Moreover, we will need

the following assumptions for the proof of the comparison result:

Assumption 3.6.5. (U1) Let µ(., ., π), σ(., ., π), f(., ., π) be locally Lipschitz continuous on

S (uniformly in π ∈ U), i.e. for all (t0, x0) ∈ S there exist an open neigbourhood B ⊂ S
of (t0, x0) and a constant C > 0 (independent of π) such that

|µ(t, x, π)− µ(t, y, π)|+ |σ(t, x, π)− σ(t, y, π)|

+|f(t, x, π)− f(t, y, π)| ≤ C|x− y| for all (t, x), (t, y) ∈ B.
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(U2) For all (t, x) ∈ S, π ∈ U and ϕ ∈ Pr∩C1,2(S) the integral Iπ[t, x, ϕ] is well-defined with

lim
η↘0
I1,η
π [t, x, ϕ] = 0,

and there exist an open neigbourhood B ⊂ S of (t, x) and a constant C > 0 such that

for all (t, x), (t, y) ∈ B,∫
Rk
|γ(t, x, π, z)− γ(t, y, π, z)|2ν(dz) ≤ C|x− y|2,∫

|z|≥1
|γ(t, x, π, z)− γ(t, y, π, z)|ν(dz) ≤ C|x− y|.

(U3) There exist a positive function w ∈ C1,2(S) ∩ C([0, T ]× Rd) and a constant C > 0 such

that

min

(
inf
π∈U
{−Lπw}, w

)
≥ C on S

and

lim
|x|→∞

|x|r

w(t, x)
= 0 (uniformly in t).

(U4) Suppose a viscosity solution in Pr([0, T ]×Rd) can be characterized by its limiting semi-

jets as in Corollary 3.5.4.

We are now ready for the crucial result with regard to the uniqueness problem of viscosity

solutions of PDE (3.36), a comparison result. For the proof we need the assumptions (U1)

and (U2) in order to estimate the local and integral part of the PDE, respectively. By the

assumption (U3) we guarantee to attain a compact subset for desired maxima constructed

with the doubling of variables approach introduced from Crandall, Ishii and Lions [10] which

is a standard device used in typical uniqueness proofs for PDEs. A maximum principle

for semicontinuous functions then gives us elements in their limiting semijets which can be

connected to the definition of a viscosity solution due to the assumption (U4).

Theorem 3.6.6 (Comparison theorem). Let Assumptions 3.6.1, 3.6.2 and 3.6.5 be satisfied.

Further, let u ∈ Pr([0, T ]× Rd) be a viscosity subsolution and v ∈ Pr([0, T ]× Rd) a viscosity

supersolution of (3.36) on S. If we have u∗ ≤ v∗ on Sc, then it follows

u∗ ≤ v∗ on [0, T ]× Rd.

Proof: We argue by contradiction and suppose that

sup
(t,x)∈[0,T ]×Rd

{u∗(t, x)− v∗(t, x)} > 0. (3.37)

Consider the function w from the assumption (U3). In view of the growth condition of w for

|x| → ∞, the above supremum remains strictly positive if we substitute v by vε := v+ εw for

a sufficiently small ε > 0, and it is attained on some compact subset of [0, T ]×Rd. (Note that
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u∗− (vε)∗ is upper semicontinuous (usc) and that an usc function assumes its maximum on a

compact set.) It is easy to check via the assumption (U3) that vε is a viscosity supersolution

of

inf
π∈U

max
(
−Lπv − f(., ., π), v −Mπv(n−1)

)
− εC = 0 on S (3.38)

with (vε)∗ ≥ v∗ ≥ u∗ on the parabolic boundary Sc. Therefore we can cut back the relevant

domain of the considered optimization problem on the set S = [0, T )×O. Furthermore, we

can find β, ρ > 0 such that

M := sup
(t,x)∈[0,T )×O

{
u∗(t, x)− (vε)∗(t, x)− β

t+ ρ

}
> 0.

We now employ the doubling of variables approach from [10]. For k ∈ N we define

Mk := sup
(t,x,y)∈[0,T )×O×O

{
u∗(t, x)− (vε)∗(t, y)− β

t+ ρ
− k

2
|x− y|2

}
.

Because of the foregoing argumentation this supremum is attained on some compact subset

of [0, T ) × O × O, independent of large k, and we have 0 < Mk < ∞. Let (tk, xk, yk) be a

corresponding maximizer.

In the following we use the characterization of viscosity solutions by the limiting semijets

in order to work towards a contradiction. At first we conclude from Lemma 3.1 in Crandall,

Ishii and Lions [10] (see Lemma A.3.2 in the appendix) that

lim
k→∞

k|xk − yk|2 = 0. (3.39)

Thus we may pass to a subsequence of (tk, xk, yk) converging to (t0, x0, x0) ∈ [0, T )×O×O.

Let us relabel this subsequence as the original one.

Next we apply Theorem 8.3 in [10] (see Theorem A.3.1 in the appendix) to the function

ϕ(t, x, y) = β
t+ρ + k

2 |x− y|
2 at point (tk, xk, yk). To justify its applicability in the case tk = 0,

note that we can extend the functions u∗, (vε)∗ to the time periode (−ρ, T ) in a trivial way

such that the maximum and the maximizer remain unchanged, but with the maximizer as

inner point of the considered domain. Hence we get a number ak ∈ R and matricesXk, Yk ∈ Sd

such that

(ak, k(xk − yk), Xk) ∈ J̄ 2,+u∗(tk, xk), (ak +
β

(tk + ρ)2
, k(xk − yk), Yk) ∈ J̄ 2,−(vε)∗(tk, yk)

and

xTXkx− yTYky ≤ 3k|x− y|2 for all x, y ∈ Rd. (3.40)

As in Section 3.5 we define for π ∈ U the function F π : [0, T ]× Rd × Rd × Sd × R→ R by

F π(t, x, p,X, l) = −1

2
tr
(
(σσT )(t, x, π)X

)
− µ(t, x, π)T p− f(t, x, π)− l.

Suppose ν(Rk) = ∞ and use the characterization of viscosity solutions of Corollary 3.5.4.

For ν(Rk) < ∞ the proof works in the same way with the choice η = 0 below. Since
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u, v ∈ Pr([0, T ] × Rd) are respectively a sub and a supersolution of (3.36) and vε = v + εw

with w ∈ C1,2(S) is a supersolution of (3.38), in view of the assumption (U4) we can find

ϕk, ψk ∈ C1,2(S) and πk ∈ U such that

max

(
−ak + F πk(tk, xk, k(xk − yk), Xk, I

1, 1
k

πk [tk, xk, ϕk]

+I2, 1
k

πk [tk, xk, k(xk − yk), u∗]), u∗(tk, xk)−Mπkv(n−1)(tk, xk)

)
<

1

k
,

(3.41)

and

max
(
− ak −

β

(tk + ρ)2
+ F πk(tk, yk, k(xk − yk), Yk, I

1, 1
k

πk [tk, yk, ψk]

+I2, 1
k

πk [tk, yk, k(xk − yk), (vε)∗]), (vε)∗(tk, yk)−Mπkv(n−1)(tk, yk)

)
≥ εC.

(3.42)

Let us consider the difference Λk of the first components of the max-terms in (3.41)-(3.42),

and let us split Λk in form of

Λk =
β

(tk + ρ)2
−A1

k −A2
k − I1

k − I2
k

with

A1
k :=

1

2

(
tr
(
(σσT )(tk, xk, πk)Xk

)
− tr

(
(σσT )(tk, yk, πk)Yk

))
+k (µ(tk, xk, πk)− µ(tk, yk, πk))

T (xk − yk),

A2
k := f(tk, xk, πk)− f(tk, yk, πk),

I1
k := I1, 1

k
πk [tk, xk, ϕk]− I

1, 1
k

πk [tk, yk, ψk],

I2
k := I2, 1

k
πk [tk, xk, k(xk − yk), u∗]− I

2, 1
k

πk [tk, yk, k(xk − yk), (vε)∗].

Using the local Lipschitz condition on µ, σ, f from the assumption (U1) and the relation

(3.40), we obtain the estimates of A1
k, A

2
k,

A1
k ≤ Ck|xk − yk|2, A2

k ≤ C|xk − yk|.

By the assumption (U2) we directly get

lim
k→∞

I1
k = 0.

Furthermore, using the fact that (tk, xk, yk) is a maximum point corresponding to Mk and

the equality |x+ y|2 = |x|2 + 2xT y + |y|2, we calculate for arbitrary vectors d, d̃,

u∗(tk, xk + d)− u∗(tk, xk)− kdT (xk − yk)

≤ (vε)∗(tk, yk + d̃)− (vε)∗(tk, yk)− kd̃T (xk − yk) +
k

2
|d− d̃|2.
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Integrating on both sides with d = γ(tk, xk, πk, z) and d̃ = γ(tk, yk, πk, z), we obtain

I2
k ≤

k

2

∫
|z|≥ 1

k

|γ(tk, xk, πk, z)− γ(tk, yk, πk, z)|2ν(dz)

+ k|xk − yk|
∫
|z|≥1

|γ(tk, xk, πk, z)− γ(tk, yk, πk, z)|ν(dz) ≤ Ck|xk − yk|2,

where the last inequality is a consequence of (U2). So in view of (3.39) we arrive at

lim sup
k→∞

Λk ≥
β

(t0 + ρ)2
> 0.

Hence, comparing the subsolution and supersolution inequalities (3.41) and (3.42) of u and

vε, respectively, we conclude by using the continuity of (t, x, π) 7→ Mπv(n−1)(t, x) that for

large k we have

u∗(tk, xk) < (vε)∗(tk, yk).

Recalling the definition of Mk and that (tk, xk, yk) realizes the supremum in Mk, this in-

equality is a contradiction to Mk > 0. �

Recall that a necessary condition for the value function on the parabolic boundary is

v(n) = min

(
g, sup
π∈U
Mπv(n−1)

)
on Sc. (3.43)

Combining this boundary condition with Theorem 3.6.6 leads to the desired uniqueness.

Corollary 3.6.7. Let Assumptions 3.6.1, 3.6.2 and 3.6.5 be satisfied. Then there exists at

most one viscosity solution v ∈ Pr([0, T ] × Rd) of (3.36) on S which satisfies the boundary

condition (3.43), and it is continuous on [0, T ]× Rd.
Proof: Let u, v be two viscosity solutions of (3.36). Then, by Theorem 3.6.6 and the

definition of the upper and lower semicontinuous envelopes, we deduce

u∗ ≤ v∗ ≤ v∗ ≤ u∗ ≤ u∗.

Thus we have u = v and the function is continuous. �

Of course some of the assumptions made in this section are very vague. We do not want

to get involved in delicate technical detail problems. Rather we intend to make the reader

sensible on the critical points where the presented theory might fail under changed model

assumptions. For an example of a precise formulation of a very general setting we refer to

Seydel [52] who investigated a control problem combining continuous and (infinite) impulse

control.



Chapter 4

Stochastic target problem under

impulse perturbation

In this chapter we consider the problem of finding the minimal initial data of a controlled

process which guarantees to reach a controlled target. According to the setup presented in

Chapter 2, we assume that there might be perturbations of the system in form of impulses

resulting in jumps both in the target process and the stochastic target. The target condition

then is intended to be satisfied for any impulse strategy.

Motivated by applications in finance, namely the super-replication problem, stochastic

target problems were first considered by Soner and Touzi [54], [55] assuming the controlled

process follows a diffusion. Bouchard, Elie and Touzi [7] further examined the case where the

target has to be reached only with a given probability, which is called the stochastic target

problem with controlled loss. As an additional extension their investigations on the target

problem include controls with values in an unbounded set. Bouchard [5] and Moreau [41]

extended these results on the classic target problem and the target problem with controlled

loss, respectively, to the jump diffusion case. It will turn out that the stochastic target

problem under impulse perturbation is the analogue of [5] for a finite number of jumps.

In Chapter 6 we will also consider an application of a version of the target problem with

controlled loss in the framework of impulse perturbation, but without a rigorous treatment

of unbounded control sets which are needed in general in the context of this problem type.

Besides the already note resources we refer to [3], [6] and [48] for examples of super-replication

problems in the financial literature.

For the treatment of this new control problem we proceed as in Chapter 3 for the differ-

ential game: The definition of the stochastic target problem under impulse perturbation is

formulated in Section 4.1, followed in the next section by the statement of a PDE character-

ization of the associated value function in the viscosity sense as main result of this chapter.

Section 4.3 deals with the derivation of the dynamic programming principle which forms the

basis for the proof of the viscosity property in Section 4.4. The last section is concerned

43
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with a special variant of the model. We do not derive a general uniqueness theorem for a

viscosity solution of the associated PDE. Anyway, we will show in Chapter 5 and Chapter 6

through uniqueness results for the considered examples that the PDE characterization may

be sufficient in financial applications.

4.1 Problem formulation

For a fixed finite time horizon T > 0 let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space

which is equipped with an adapted d-dimensional Brownian motion B and satisfies the usual

conditions. On this stochastic basis we consider a state process (X,Y ) ⊆ Rd × R which is

controlled continuously by π ∈ Un and with impulse control ξ ∈ Vn. Think of Y as the target

process and X as the stochastic component of the target condition. Between intervention

times τi < t < τi+1, i = 0, . . . , n, the processes evolve according to

dX(t) = µX(t,X(t), π(n−i)(t))dt+ σX(t,X(t), π(n−i)(t))dB(t),

dY (t) = µY (t,X(t), Y (t), π(n−i)(t))dt+ σY (t,X(t), Y (t), π(n−i)(t))dB(t),
(4.1)

while at jump times τi, i = 1, . . . , n, the systems are sent to

X(τi) = ΓX(τi, X(τi−), π(n−i+1)(τi), ζi),

Y (τi) = ΓY (τi, X(τi−), Y (τi−), π(n−i+1)(τi), ζi).
(4.2)

Here the functions µX : [0, T ] × Rd × U → Rd, σX : [0, T ] × Rd × U → Rd×m, µY : [0, T ] ×
Rd+1 × U → R, σY : [0, T ] × Rd+1 × U → R1×m and ΓX : [0, T ] × Rd × U × Z → Rd,
ΓY : [0, T ]× Rd+1 × U × Z → R satisfy conditions detailed in Assumption 4.1.1 below.

In this chapter we restrict ourselves to Itô processes instead of the more general Itô-Lévy

processes. The reason for this is to be found in the fact that we cannot control in general the

jump component of the state processes such that we can guarantee to reach the target zone

almost surely. Bouchard [5] solved the classic stochastic target problem for jump diffusions,

supposed it has a solution. The extension of the results presented in this chapter for the target

problem under impulse perturbation to Bouchards jump setting is quite obvious. So for the

sake of simplicity we do not take into consideration any stochastic jumps. As consequence of

this we may suppose that the state process is continuous between intervention times.

By the stochastic target problem we understand the problem of finding the minimal initial

value y ∈ R of Y , so that we are able to reach at time T the target Y (T ) ≥ g(X(T )) almost

surely, where g : Rd → R is a given function. In consideration of possible system breakdowns

we want to reach this target for any admissible impulse strategy. So the stochastic target

problem under impulse perturbation reads as follows: Find an optimal control π̂ ∈ Un with

associated value function v(n) such that

v(n)(t, x) = inf{y ∈ R : there exists π ∈ Un such that

Y π,ξ
t,x,y(T ) ≥ g(Xπ,ξ

t,x (T )) a.s. for all ξ ∈ Vn}
(4.3)
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and

Y π̂,ξ

t,x,v(n)(t,x)
(T ) ≥ g(X π̂,ξ

t,x (T )) a.s. for all ξ ∈ Vn.

Let us now fix the basic assumptions for the following analysis of the target problem:

Assumption 4.1.1. (T1) The control set U ⊂ Rp and the impulse set Z ⊂ Rq are compact

and non-empty.

(T2) The transaction functions ΓX ,ΓY are continuous.

(T3) The functions µX , σX , µY , σY are continuous and Lipschitz in the variables (x, y) (uni-

formly in the variables (t, π)).

(T4) The value functions v(i), i = 0, . . . , n, are locally bounded on [0, T ]×Rd and g is locally

bounded on Rd.

The assumptions (T1)-(T3) guarantee the existence and uniqueness of a strong solution of

(Xπ,ξ
t,x , Y

π,ξ
t,x,y) to the stochastic differential system (4.1)-(4.2) for each starting point (t, x, y) ∈

[0, T ] × Rd+1 and all controls π ∈ Un, ξ ∈ Vn. By the requirement (T4) the semicontinuous

envelopes

(v(i))∗(t, x) = lim sup
(0,T )×Rd3(s,x′)→(t,x)

v(i)(s, x′), (v(i))∗(t, x) = lim inf
(0,T )×Rd3(s,x′)→(t,x)

v(i)(s, x′),

g∗(x) = lim sup
Rd3x′→x

g(x′), g∗(x) = lim inf
Rd3x′→x

g(x′)

are finite.

Example 4.1.1. Consider the controlled system

dX(t) = µXdt+ σXdB(t), X(τ1) = X(τ1−)− ζ1,

dY (t) = µY π
(i)dt+ σY π

(i)dB(t), Y (τ1) = Y (τ1−)− ζ1π
(1),

with parameters µX , µY , σX , σY > 0, 1-impulse perturbation (τ1, ζ1) ∈ [0, T ] × ({ζ} ∪ {0}),
ζ > 0, and control π = (π(1), π(0)) whose processes have values in [0,m] for some m > 0, i.e.

the setting is n = 1, U = [0,m], Z = {ζ}. The dynamics of Y in the above representation

must be understood in the sense that control process π(1) is used on [0, τ1] and π(0) on (τ1, T ].

Given this system and the target function g(x) = x, we want to solve the stochastic target

problem

v(1)(t, x) = inf{y ∈ R : there exists π ∈ U1 such that Y π,ξ
t,y (T ) ≥ Xt,x(T ) a.s. for all ξ ∈ V1},

where U1,V1 are the sets of admissible controls introduced in the Chapter 2.

It is easy to check that (T1)-(T3) from Assumption 3.1.1 are satisfied for this problem

formulation. So the the controlled processes are well-defined. Ex post we will see that the

derived solutions satisfy the assumption (T4), too, which allows us to use the PDE approach

presented in the next section as a verification tool.
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Step 0. Without impulse perturbation we have

Y π(0)

t,y (T )−Xt,x(T ) = y − x+

∫ T

t
(µY π

(0)(s)− µX)ds+

∫ T

t
(σY π

(0)(s)− σX)dB(s).

Since we want to eliminate uncertainty of the target’s reachability, we have to zero the

integrand of the above stochastic integral. So we are forced to choose π̂(0) ≡ σx
σY

. Here we

assume that m is large enough, so that π̂(0) is admissible. Under this control we obtain

Y π̂(0)

t,y (T )−Xt,x(T ) = y − x+

(
µY

σx
σY
− µX

)
(T − t)

which is strictly increasing in y with root at

v(0)(t, x) = x+

(
µX − µY

σx
σY

)
(T − t).

Step 1. For the same reason as in step 0 we arrive at π̂(1) ≡ σx
σY

. In consideration of an

impulse perturbation we have to distinguish two cases. For σX ≤ σY we have π̂(1) ≤ 1, so

that an impulse sets back the target X more than Y . Consequently, in this case we have

v(1) = v(0). For σX > σY instead we have π̂(1) > 1, so that an impulse endamages X more

than Y . In this case an additional buffer to the amount of the difference between both jump

sizes is necessary. It follows

v(1)(t, x) = v(0)(t, x) + (π̂(1) − 1)ζ = x+

(
µX − µY

σX
σY

)
(T − t) +

(
σX
σY
− 1

)
ζ.

4.2 Procedure and main result

Our main result consists in a PDE characterization of the value function v(n) in the weak sense

of viscosity solutions (see the appendix for the notion of a discontinuous viscosity solution of a

PDE). In order to formulate the corresponding system of PDEs, we need some preliminaries:

For π ∈ U let Lπ denote the differential operator given by

Lπϕ(t, x) :=
∂ϕ

∂t
(t, x) + µX(t, x, π)TDxϕ(t, x) +

1

2
tr
(
(σXσ

T
X)(t, x, π)D2

xϕ(t, x)
)
,

and let Mπ
y denote the intervention operator transacting the worst possible impulse in the

sense of

Mπ
yϕ(t, x) := inf

ζ∈Z
{ΓY (t, x, y, π, ζ)− ϕ(t,ΓX(t, x, π, ζ))}.

Further we introduce the set-valued function

N(t, x, y, p) := {π ∈ U : σY (t, x, y, π)T − σX(t, x, π)T p = 0}

which allows us to control the Brownian part of the SDE (4.1). We make the following

assumption on N :
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Assumption 4.2.1 (Continuity of N). Let (t0, x0, y0, p0) ∈ [0, T ]×Rd×R×Rd. Then, for any

π0 ∈ N(t0, x0, y0, p0) there exist an open neighborhood B of (t0, x0, y0, p0) in [0, T ]×Rd×R×Rd

and a continuous map π̂ defined on B such that π̂(t0, x0, y0, p0) = π0 and π̂(t, x, y, p) ∈
N(t, x, y, p) on B.

For a differentiable function ϕ on [0, T )× Rd → R we set

Nϕ(t, x) := N(t, x, ϕ(t, x), Dxϕ(t, x)).

Furthermore, let δN : [0, T ] × Rd × R × Rd be a function which indicates whether the set

N(t, x, y, p) is non-empty in form of

N(t, x, y, p) 6= ∅ ⇔ δN (t, x, y, p) ≥ 0.

We will point out in Section 4.4 how such a function can be constructed and that it is

continuous. For a differentiable function ϕ on [0, T )× Rd → R we set

δNϕ(t, x) := δN (t, x, ϕ(t, x), Dxϕ(t, x)).

In the following we show how the target problem with at most n system breakdowns can

be solved iteratively:

Step 0. We start with computing the value function v(0) of the classic stochastic target

problem without impulse perturbation. From Soner and Touzi [54], see also Bouchard, Elie

and Touzi [7], we know that on [0, T )× Rd the function v(0) is a viscosity solution of

min

(
sup

π∈Nv(0)

{
−Lπv(0) + µY (., ., v(0), π)

}
, δNv

(0)

)
= 0.

To specify the terminal values we have to consider the limits

G
(0)

(x) := lim sup
t↗T,x′→x

v(0)(t, x′), G(0)(x) := lim inf
t↗T,x′→x

v(0)(t, x′)

which possibly disagree with the “natural” terminal condition v(0)(t, .) = g. According to

[54] and [7], G
(0)

is a viscosity subsolution of

min
(
G

(0) − g∗, δN (T, ., G
(0)
, DxG

(0)
)
)

= 0,

and G
(0)

is a viscosity supersolution of

min
(
G(0) − g∗, δN (T, ., G(0), DxG

(0))
)

= 0.

Step n. Suppose that we are given the value function v(n−1) of the inferior target problem.

Then we will show that on [0, T )×Rd the value function v(n) is a viscosity subsolution of the

equation

min

(
sup

π∈Nv(n)

min
(
−Lπv(n) + µY (., ., v(n), π),Mπ

v(n)(v
(n−1))∗

)
, δNv

(n)

)
= 0



48 CHAPTER 4. TARGET PROBLEM

and, under a local Lipschitz condition concerning the intervention operator applied to v(n−1)

(detailed in Section 4.4), a viscosity supersolution of the equation

min

(
sup

π∈Nv(n)

min
(
−Lπv(n) + µY (., ., v(n), π),Mπ

v(n)(v
(n−1))∗

)
, δNv

(n)

)
= 0.

The “relevant” terminal data is given as follows: The mapG
(n)

(x) := lim supt↗T,x′→x v
(n)(t, x′)

is a viscosity subsolution of

min

G(n) − g∗, sup
π∈N(T,.,G

(n)
,DxG

(n)
)

Mπ

G
(n)(v

(n−1))∗(T, .), δN (T, ., G
(n)
, DxG

(n)
)

 = 0,

and the map G(n)(x) := lim inft↗T,x′→x v
(n)(t, x′) is a viscosity supersolution of

min

(
G(n) − g∗, sup

π∈N(T,.,G(n),DxG(n))

Mπ
G(n)(v

(n−1))∗(T, .), δN (T, ., G(n), DxG
(n))

)
= 0.

The additional condition in the PDEs in step n in comparison with the PDEs in step

0 shows that in the case of possible perturbation we always have to take care that we do

not lose sight of the target due to an immediate impulse intervention. Because such a jump

scenario transfers the system into the (n − 1)-impulse setting, the intervention condition

depends on the value function v(n−1) of the inferior problem. This result is very similar

to the classic target problem in the presence of stochastically modelled bounded jumps as

studied in Bouchard [5]. As only difference, in that case the aftermath of a jump relate to

the value function itself. The fact that we consider different PDEs for sub and supersolution

is just a consequence of possibly discontinuities of the related value function v(n−1) and the

terminal condition g.

Example 4.2.1 (Continuation of Example 4.1.1). Let us test the solution of Example 4.1.1

by verifying the above equations. The continuity assumption on N(t, x, y, p) = {σXσY p} is

obviously satisfied. We recall the form of the derived value functions,

v(1)(t, x) = v(0)(t, x) +

(
σX
σY
− 1

)+

ζ = x+

(
µX − µY

σX
σY

)
(T − t) +

(
σX
σY
− 1

)+

ζ.

Due to the regularity of the value functions, the characterizing PDEs for a viscosity sub and

supersolution are reduced to a single PDE which is solved in the classical sense as follows: In

view of the design of the state process (X,Y ), we compute

Lπv(1)(t, x) = µY
σX
σY

,

Mπ
yv

(0)(t, x) = y − x+ (1− π)ζ −
(
µX − µY

σX
σY

)
(T − t),

N v(1)(t, x) =

{
σX
σY

}
.
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Since the set N v(1)(t, x) is non-empty for all (t, x) ∈ [0, T ]×R, we may ignore the condition

with the function δN in the characterizing PDE. Indeed, on [0, T )× R our solution satisfies

sup
π∈Nv(1)(t,x)

min
(
−Lπv(1)(t, x) + µY π,Mπ

v(1)(t,x)
v(0)(t, x)

)
= min

(
−µY

σX
σY

+ µY π,

((
σX
σY
− 1

)+

+ 1− π

)
ζ

)∣∣∣∣∣
π=

σX
σY

= 0.

Moreover, by the continuity of v(n) we have

G(1)(x) := lim
t↗T,x′→x

v(1)(t, x′) = x+

(
σX
σY
− 1

)+

ζ

and further

G(1)(x) ≥ x = g(x),

Mπ
G(1)(x)

v(0)(T, x)
∣∣∣
π=

σX
σY

=

((
σX
σY
− 1

)+

+ 1− π

)
ζ

∣∣∣∣∣
π=

σX
σY

≥ 0.

Noting that N(T, x,G(1)(x), DxG
(1)(x)) = {σXσY }, we conclude that v(1)(T, x) = G(1)(x) re-

presents the right terminal data. It remains to verify the PDE characterization of v(0) which

is done in the same way.

The plan for the rest of this chapter is as follows: From now on we assume n ≥ 1. In

Section 4.3 we state an appropriate dynamic programming principle (DPP). On this basis

we prove in Section 4.4 that the value function v(n) of the stochastic target problem under

impulse perturbation is a viscosity solution of a PDE. Here we first show the viscosity property

on [0, T ) × Rd. Then we turn to the problem of finding a suitable terminal condition. The

very technical proofs of the PDE characterization are sent to Appendix C. The last section

of this chapter is devoted to a special setting of the model which allows us to simplify the

structure of the PDE characterizing the value function.

4.3 Dynamic programming

In this section we prove a DPP for the stochastic target problem under impulse perturbation

as essential tool for the further characterization of the value function.

Before stating the main result of this section, let us make some preliminary remarks: Let

(t, x) ∈ [0, T )×Rd, y ∈ R and π ∈ U0. For some stopping time τ ∈ [t, T ] we set x′ := Xπ
t,x(τ),

y′ := Y π
t,x,y(τ). Then we have (Xπ

t,x, Y
π
t,x,y) = (Xπ

τ,x′ , Y
π
τ,x′,y′) on [τ, T ]. This is due to the strong

Markov property of the controlled processes (see Proposition 2.2.1), taking into account that

two Fτ -measurable random variables X1, X2 are P-almost equal if and only if
∫
1AX1dP =∫

1AX2dP holds for all A ∈ Fτ . In the same way, for π ∈ Un, π = (π(n), . . . , π(0)), and

ξ ∈ Vn, ξ = (τ1, . . . , τn; ζ1, . . . , ζn), we have (Xπ,ξ
t,x , Y

π,ξ
t,x,y) = (Xπ′,ξ′

τ1,x′
, Y π′,ξ′

τ1,x′,y′
) on [τ1, T ], where
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π′ = (π(n−1), . . . , π(0)) and ξ′ = (τ1, . . . , τn; ζ1, . . . , ζn) are the continuations of π and ξ after

the first intervention.

As a consequence of the foregoing argumentation (and of results concerning the set U0 in

[55]), the definition of Un provides stability under concatenation of admissible controls, i.e.

for all π1, π2 ∈ Un and each stopping time τ the linked control π11[0,τ)+π21[τ,T ) is admissible,

too. This is the crucial condition for the derivation of the following DPP:

Theorem 4.3.1 (Dynamic programming principle). Let (t, x) ∈ [0, T ] × Rd. Then, for the

value function v(n) in (4.3) we have the following:

(DP1) If y > v(n)(t, x), then there exists π ∈ U0 such that for each stopping time τ ∈ [t, T ],

Y π
t,x,y(τ) ≥ v(n)(τ,Xπ

t,x(τ)) and Mπ(s)
Y πt,x,y(s)v

(n−1)(s,Xπ
t,x(s)) ≥ 0 for all s ∈ [t, τ ].

(DP2) For all y < v(n)(t, x), π ∈ U0 and each stopping time τ ∈ [t, T ] we have

P
[
Y π
t,x,y(τ) > v(n)(τ,Xπ

t,x(τ)) and Mπ(s)
Y πt,x,y(s)v

(n−1)(s,Xπ
t,x(s)) > 0 for all s ∈ [t, τ ]

]
<1.

Proof: Let (t, x) ∈ [0, T ]× Rd.
In a first step we derive the part (DP1) of the DPP. To this end choose y ∈ R with

y > v(n)(t, x). Then, by the definition of the target problem there exists a control π ∈ Un,

π = (π(n), . . . , π(0)), such that

Y π,ξ
t,x,y(T ) ≥ g(Xπ,ξ

t,x (T )) for all ξ ∈ Vn. (4.4)

Choose an arbitrary impulse strategy ξ ∈ Vn with ξ = (τ1, . . . , τn; ζ1, . . . , ζn). At the

first intervention time τ1 the controlled processes Xπ,ξ
t,x and Y π,ξ

t,x,y jump to the values x′ =

ΓX(τ1, X
π(n)

t,x (τ1), π(n)(τ1), ζ1) and y′ = ΓY (τ1, X
π(n)

t,x (τ1), Y π(n)

t,x,y (τ1), π(n)(τ1), ζ1), respectively.

Let us denote by π′ = (π(n−1), . . . , π(0)) ∈ Un−1 and ξ′ = (τ2, . . . τn; ζ2, . . . , τn) the continua-

tions of the strategies π and ξ after the first intervention. In view of this notation we have

(Xπ,ξ
t,x , Y

π,ξ
t,x,y) = (Xπ′,ξ′

τ1,x′
, Y π′,ξ′

τ1,x′,y′
) on [τ1, T ]. Thus the condition (4.4) implies

Y π′,ξ′

τ1,x′,y′
(T ) ≥ g(Xπ′,ξ′

τ1,x′
(T )).

Since we have chosen ξ ∈ Vn arbitrarily, this inequality holds for all ξ′ ∈ Vn−1. So by the

definition of the target problem it follows

y′ ≥ v(n−1)(τ1, x
′).

Recall that x′ = ΓX(τ1, X
π(n)

t,x (τ1), π(n)(τ1), ζ1) and y′ = ΓY (τ1, X
π(n)

t,x (τ1), Y π(n)

t,x,y (τ1), π(n)(τ1), ζ1)

with τ1 ∈ [t, T ] and ζ1 ∈ Z ∪ {ζ0} chosen arbitrarily. Then we arrive at

Mπ(τ1)

Y π
(n)

t,x,y (τ1)
v(n−1)(τ1, X

π(n)

t,x (τ1)) ≥ 0 for all τ1 ∈ [t, T ]. (4.5)
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Further, let us introduce another stopping time τ satisfying τ ≤ τ1. Set x′′ := Xπ(n)

t,x (τ)

and y′′ := Y π(n)

t,x,y (τ) and observe that (Xπ,ξ
t,x , Y

π,ξ
t,x,y) = (Xπ,ξ

τ,x′′ , Y
π,ξ
τ,x′′,y′′) on [τ, T ]. In considera-

tion of (4.4) we thus have

Y π,ξ
τ,x′′,y′′(T ) ≥ g(Xπ,ξ

τ,x′′(T )).

Because this inequality holds for all ξ ∈ Vn, it yields y′′ ≥ v(n)(τ, x′′), i.e. by the definition of

x′′ and y′′ we have

Y π(n)

t,x,y (τ) ≥ v(n)(τ,Xπ(n)

t,x (τ)).

This last assertion holds for each stopping time τ ∈ [t, T ] as it is valid for all τ ∈ [t, τ1], where

the stopping time τ1 ∈ [t, T ] is chosen arbitrarily. Hence, together with (4.5) this proves the

statement (DP1).

Next we prove (DP2) indirectly. Let us fix some y ∈ R and suppose that there exists a

control π ∈ U0 and a stopping time τ ∈ [t, T ] such that we have almost surely

Y π
t,x,y(τ) > v(n)(τ,Xπ

t,x(τ)) and

Mπ(s)
Y πt,x,y(s)v

(n−1)(s,Xπ
t,x(s)) > 0 for all s ∈ [t, τ ].

Proceeding in this way we have to show that y ≥ v(n)(t, x).

For that purpose consider an arbitrary impulse strategy ξ ∈ Vn with first interven-

tion (τ1, ζ1) letting the controlled processes Xπ
t,x and Y π

t,x,y jump at time τ1 to x′′ :=

Γ(τ1, X
π
t,x(τ1), π(τ1), ζ1) and y′′ := ΓY (τ1, X

π
t,x(τ1), Y π

t,x,y(τ1), π(τ1), ζ1), respectively. Set θ :=

τ ∧ τ1 and x′ := Xπ
t,x(θ), y′ := Y π

t,x,y(θ). By assumption we then have

y′ > v(n)(θ, x′) on {θ = τ},

y′′ > v(n−1)(θ, x′′) on {θ < τ}.

So by the definition of the value functions v(n) and v(n−1) there exist controls π′ ∈ Un and

π′′ ∈ Un−1 such that

Y π′,ξ
θ,x′,y′(T ) ≥ g(Xπ′,ξ

θ,x′,y′(T )) on {θ = τ},

Y π′′,ξ′

θ,x′′,y′′(T ) ≥ g(Xπ′′,ξ′

θ,x′′,y′′(T )) on {θ < τ}.

If we define the strategy π̂ = (π̂(n), . . . , π̂(0)) according to

π̂(n) := π1[t,τ) + π′(n)1[τ,T ], (π̂(n−1), . . . , π̂(0)) := π′′

and use the Markov property of the controlled processes, we deduce

Y π̂,ξ
t,x,y(T ) ≥ g(X π̂,ξ

t,x,y(T )) for all ξ ∈ Vn.

Consequently this implies y ≥ v(n)(t, x) and therefore proves the assertion (DP2). �
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4.4 PDE characterization of the value function

With the DPP derived in the preceding section we are now prepared to formulate v(n) as

viscosity solution of a PDE. Our notion of viscosity solutions used here agrees with the

concept of discontinuous viscosity solutions as exposed in the appendix. For reasons of

clearness let us recall the operators introduced in Section 4.2,

Lπϕ(t, x) =
∂ϕ

∂t
(t, x) + µX(t, x, π)TDxϕ(t, x) +

1

2
tr
(
(σXσ

T
X)(t, x, π)D2

xϕ(t, x)
)
,

Mπ
yϕ(t, x) = inf

ζ∈Z
{ΓY (t, x, y, π, ζ)− ϕ(t,ΓX(t, x, π, ζ))},

Nϕ(t, x) = {π ∈ U : σY (t, x, ϕ(t, x), π)T − σX(t, x, π)TDxϕ(t, x) = 0},

δNϕ(t, x) = δN (t, x, ϕ(t, x), Dxϕ(t, x)).

Here we still have to define the function δN : [0, T ]× Rd × R× Rd → R in a proper way. To

this end consider the set-valued map Ψ on [0, T ]× Rd × R given by

Ψ(t, x, y, p) := {r ∈ Rd : r = σY (t, x, y, π)T − σX(t, x, π)T p for some π ∈ U}.

We now identify δN as the signed distance function from its complement Ψc, i.e.

δN := dist(0,Ψc)− dist(0,Ψ),

where dist stands for the Euclidean distance. In this way we obtain the desired relation

N(t, x, y, p) = {π ∈ U : σY (t, x, y, π)T − σX(t, x, π)T p = 0} 6= ∅ ⇔ δN (t, x, y, p) ≥ 0.

For the right treatment of δN in our PDE system approach the following result is helpful.

Lemma 4.4.1. Let Assumption 4.1.1 be satisfied. Then the function δN is continuous.

Proof: By the compactness of U , the continuity of σX , σY and Lemma A.1.2 in the appendix,

we deduce that dist(0,Ψ) and dist(0, ∂Ψ) are continuous in (t, x, y, p). Noting that

δN =

{
dist(0, ∂Ψ) , 0 ∈ Ψ,

−dist(0,Ψ) , 0 ∈ Ψc,

and that δN (tk, xk, yk, pk) → 0 for any sequence (tk, xk, yk, pk) converging to (t0, x0, y0, p0)

with 0 ∈ ∂Ψ(t0, x0, y0, p0), proofs the statement. �

Before we can formulate the main results of this section, we need another lemma which

states especially that the intervention operator Mπ
y (for y ∈ R, π ∈ U) preserves continuity.

Lemma 4.4.2. Let v(n−1) be locally bounded on [0, T ]× Rd. Then we have:

(i) Mπ
y (v(n−1))∗(t, x) is lower semicontinuous (lsc) in (t, x, y, π) ∈ [0, T ]× Rd × R× U ,

and Mπ
yv

(n−1)(t, x) ≥Mπ
y (v(n−1))∗(t, x).
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(ii) Mπ((v(n−1))∗(t, x), y) is upper semicontinuous (usc) in (t, x, y, π) ∈ [0, T ]×Rd×R×U ,

and Mπ
yv

(n−1)(t, x) ≤Mπ
y (v(n−1))∗(t, x).

Proof: In view of the properties of semicontinuous functions listed in Appendix A.1, the

function to be minimized in the term Mπ
yv(t, x) is lsc (resp. usc) if v is usc (resp. lsc).

Thus we conclude the semicontinuity statements from Lemma A.1.1 in the appendix. The

inequalities are direct consequences of the monotony of the operator Mπ
y . �

We are now ready for the PDE characterization of the value function.

4.4.1 In the interior of the domain

First we show the viscosity property on [0, T ) × Rd. Theorem 4.4.3 states the subsolution

property, and Theorem 4.4.4 states the supersolution property. For the proofs we use similar

arguments as the ones in [54] and [7] which we adapt to our context. In particular, for the

subsolution property we need the continuity of the set-valued function N (see Assumption

4.2.1), of the signed distance function δN (see Lemma 4.4.1), of the intervention operator

Mπ
y applied to semicontinuous functions (see Lemma 4.4.2) and of the differential operator

Lπ applied to sufficiently differentiable functions, in order to control the state processes such

that the target conditions hold locally. The crucial point in the proof of the supersolution

property is to derive that the optimal strategy has to take on values in the set N and,

simultaneously, fulfills a jump constraint issued from a possible intervention. Therefore we

consider the controlled processes here on time periods whose lengths converge to zero. Since

we have no information about the continuity of the control processes, we are led to require

that the functions depending on the control values π ∈ U are locally Lipschitz. Thus we

can use the Lipschitz condition as an estimate and then go to the limit along some almost

surely converging subsequence. The Lipschitz condition for the differential part is included

in the initial assumtion (T3). For the intervention part we have to require it explicitly for

the negative part of Mπ
yv

(n−1)(t, x).

The results then read as follows. For the detailed proofs we refer to the appendix.

Theorem 4.4.3. Let Assumptions 4.1.1 and 4.2.1 be satisfied. Then, on [0, T ) × Rd the

value function v(n) in (4.3) is a viscosity subsolution of the equation

min

(
sup
π∈Nv

min
(
−Lπv + µY (., ., v, π),Mπ

v (v(n−1))∗
)
, δNv

)
= 0. (4.6)

Proof: See Appendix C.1. �

Theorem 4.4.4. Let Assumptions 4.1.1 and 4.2.1 be satisfied. Further, let Mπ
yv

(n−1)(t, x)−

be locally Lipschitz continuous in (t, x, y) ∈ [0, T ] × Rd × R uniformly in π ∈ U . Then, on

[0, T )× Rd the value function v(n) in (4.3) is a viscosity supersolution of the equation

min

(
sup
π∈Nv

min
(
−Lπv + µY (., ., v, π),Mπ

v (v(n−1))∗

)
, δNv

)
= 0. (4.7)
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Proof: See Appendix C.2. �

Remark 4.4.1. Note that the term −Lπ implies a degenerate ellipticity condition in the same

way as in the situation of the differential game, see Subsection 3.5.1. Since there are no other

second order derivatives included in the above PDEs, the left hand sides of (4.6) and (4.7) are

degenerate elliptic. Furthermore, using the convention min(sup∅, a) = a for a ∈ R, it is easy

to check that the left hand sides of both PDEs are locally bounded. Finally, by the earlier

consideration of the components of both PDEs, under Assumption 4.2.1 the left hand side of

(4.6) is lsc and the left hand side of (4.7) is usc in (t, x, v(t, x), ∂v∂t (t, x), Dxv(t, x), D2
xv(t, x)).

So the formulation of the PDEs agrees with the problem formulation presented in Appendix

A.2.

Remark 4.4.2. The preliminary notes of this section heavily rely on the assumption of a

compact control set U , giving us the semicontinuity of the considered PDEs. We further

make use of the compactness of U for the convergence of a sequence of controls to an optimal

one in the proof of the supersolution property. If we can exclude an exploding strategy as

optimal solution, e.g. if Mπ(v(n−1)(t, x)), y) < 0 for all (t, x) ∈ [0, T ) × Rd, y ≥ v(n−1)(t, x)

and large |π|, then we may even allow for an unrestricted set of control values. Alternatively,

we could capture an unbounded set U by passing over to the technique of relaxed semilimits

presented by Bouchard, Elie and Touzi [7] resulting in a slightly different, not necessarily

continuous PDE for v(n). On the other hand the compactness of U may reflect a constraint

imposed by a regulator. So from a practical point of view this requirement is quite reasonable.

4.4.2 Terminal condition

In order to provide a complete characterization of the value function, we need to specify the

terminal condition of v(n). According to the definition of v(n), we obviously have

v(n)(T, x) = max
(
g(x), inf{y ∈ R :Mπ

yv
(n−1)(T, x) ≥ 0 for some π ∈ U}

)
.

However, v(n) may be discontinuous at time T , so that we are led to introduce the functions

G
(n)

(x) := lim sup
t↗T,x′→x

v(n)(t, x′), G(n)(x) := lim inf
t↗T,x′→x

v(n)(t, x′).

Following the argumentation in Bouchard [5] and Saintier [48], it is straightforward to

derive the terminal data in our case of a bounded number of jumps. Approximating G
(n)
, G(n)

from inside the domain and using the viscosity property of the value function there, we extend

the stochastic controllability and the intervention condition to the time horizon T . For the

sake of completeness, we complemented the appendix by their proofs.

Theorem 4.4.5. Under the assumptions of Theorem 4.4.3, G
(n)

is a viscosity subsolution of

min

(
v − g∗, sup

π∈N(T,.,v,Dxv)
Mπ

v (v(n−1))∗(T, .), δN (T, ., v,Dxv)

)
= 0.

Proof: See Appendix C.4. �
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Theorem 4.4.6. Under the assumptions of Theorem 4.4.4, G(n) is a viscosity supersolution

of

min

(
v − g∗, sup

π∈N(T,.,v,Dxv)
Mπ

v (v(n−1))∗(T, .), δN (T, ., v,Dxv)

)
= 0.

Proof: See Appendix C.4. �

4.5 Variant of the model

In this section we consider a special variant of the target problem. It is the model treated

in [54] in the pure diffusion case and in [5] in the jump-diffusion case. By a slight change of

the model setup we do not need to consider a supremum in the derived PDEs any longer.

We put particular emphasize on this modified setting because it represents the foundation

for the analysis of the super-hedging problem in finance, see Section 5.3. The design of the

model is detailed in the following list of assumptions.

Assumption 4.5.1. (H1) We have d = m = p (where m is the dimension of the Brownian

motion and p the dimension of the control set U).

(H2) The control set U is convex and has a non-empty interior.

(H3) The matrix σX(t, x, π) is invertible and the map

π 7→ σ−1
X (t, x, π)TσY (t, x, y, π)T

is one to one for all (t, x, y) ∈ [0, T ]× Rd+1.

Here, (H3) is the crucial assumption which enables us to match the stochastic parts of

the processes X and Y by a definite control π̂ ∈ Un. To state this control explicitly in form

of a feedback function, let us denote by ψ the inverse of the map in (H3), i.e.

σY (t, x, y, π)T − σX(t, x, π)T p = 0 ⇔ π = ψ(t, x, y, p). (4.8)

Notice that due to the continuity of σX and σY with respect to π and the compactness of

U the function ψ is continuous in (t, x, y, p): Let (tk, xk, yk, pk)k be a sequence converging

to (t, x, y, p) and πk = ψ(tk, xk, yk, pk). Then, for any subsequence of (πk)k there exists a

convergent subsequence (πkj)j with limit π fulfilling π = ψ(t, x, y, p). Since π is uniquely

determined, it follows πk → π.

Using the notion of this chapter we have N(t, x, y, p) = {ψ(t, x, y, p)} if N(t, x, y, p) is

non-empty. So, as a consequence of the last fact, (H3) corresponds to Assumption 4.2.1 in

Section 4.2. We note further that ψ(t, x, y, p) is only well-defined if

p ∈ D(t, x, y) := {σ−1
X (t, x, π)TσY (t, x, y, π)T : π ∈ U} ⊂ Rd.
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In the following we want to use a continuous continuation of ψ to the domain [0, T ] × Rd ×
R× Rd such that ψ(t, x, y, p) /∈ U if p /∈ D(t, x, y). Thus we conclude

δN (t, x, y, p) ≥ 0 ⇔ ψ(t, x, y, p) ∈ U.

We can therefore replace the left inequality as follows: We introduce the support function δU

of the closed convex set U ,

δU (x) := sup
π∈U

xTπ, x ∈ Rd.

Then, using the definition

χU (π) := inf
|x|=1
{δU (x)− xTπ},

we obtain the following characterization of U and ∂U (see, e.g., [54] and the reference therein):

π ∈ U ⇔ χU (π) ≥ 0 and π ∈ ∂U ⇔ χU (π) = 0.

Notice that δU as well as χU are continuous. This follows from the compactness of U and of

the unit sphere of Rd, respectively, and from Lemma A.1.1 in the appendix.

Remark 4.5.1. Example 4.1.1 fits into this framework. The associated feedback function reads

ψ(p) = σX
σY
p.

Combining the considerations in this section with the results of the previous section, we

directly obtain the right PDE characterization for the value function.

Corollary 4.5.2. Let Assumptions 4.1.1 and 4.5.1 be satisfied. Then we have:

(i) In the interior of the domain. On [0, T ) × Rd the value function v(n) in (4.3) is a

viscosity subsolution of the equation

min
(
−Lπ̂v + µY (., ., v, π̂),Mπ̂

v (v(n−1))∗, χU (π̂)
)

= 0

with

π̂(t, x) = ψ(t, x, v(t, x), Dxv(t, x)).

If in additionMπ
yv

(n−1)(t, x)− is locally Lipschitz continuous in (t, x, y) ∈ [0, T ]×Rd×R
uniformly in π ∈ U , then it is also a viscosity supersolution of the equation

min
(
−Lπ̂v + µY (., ., v, π̂),Mπ̂

v (v(n−1))∗, χU (π̂)
)

= 0.

(ii) Terminal condition. G
(n)

(x) := lim supt↗T,x′→x v
(n)(t, x′) is a viscosity subsolution of

min
(
v − g∗,Mπ̂

v (v(n−1))∗(T, .), χU (π̂)
)

= 0

and G(n)(x) := lim inft↗T,x′→x v
(n)(t, x′) is a viscosity supersolution of

min
(
v − g∗,Mπ̂

v (v(n−1))∗(T, .), χU (π̂)
)

= 0

with

π̂(x) := ψ(T, x, v(x), Dxv(x)).



Chapter 5

Portfolio optimization and option

pricing under the threat of a crash

This chapter deals with portfolio problems of an investor taking into consideration the pos-

sibility of market crashes. Here the investor distinguishes between “normal times” where the

prices of risky assets are supposed to follow a geometric Brownian motion and “crash times”

of large price movements. However, he does not know when these crashes take place and how

strong they are. So it is his objective to be well prepared for any possible scenario - even

the worst one. Therefore the portfolio problems can be represented as stochastic differential

games where the investor meets the market as an opponent. The investor tries to maximize

the utility of his terminal wealth by choosing a favourable portfolio strategy, while the “un-

ruly” market is able to intervene by creating crash shocks. Thus the portfolio problems can

be analyzed using the techniques derived in chapter 3.

As pointed out in the introduction of the impulse perturbed stochastic control frame-

work, the attraction of this approach is manifold. First of all it pays attention to worst-case

scenarios. A cautious investor following the advice presented in the following can limit his

maximal potential loss. While portfolio optimization in a jump-diffusion model only provides

strategies that perform best in the mean, but permit of extreme losses in unlikely market

turmoil, the worst-case modelling gives the investor protection in any possible situation.

Moreover, the approach comes up with very simple assumptions. In contrast to a jump-

diffusion model, probability assumptions concerning the occurence and the extent of crashes

are not necessary. Instead, only a maximal number of crashes that might happen up to a

given time horizon as well as a range for possible crash sizes are fixed. Trading in addition

derivatives on the stocks held in the portfolio, it turns out that it even makes sense to allow

for an unrestricted number of crashes.

This worst-case approach to portfolio optimization is already studied in depth in the finan-

cial literature. Korn and Wilmott derived in [34] worst-case optimal strategies for an investor

with a logarithmic utiliy function by choosing an indifference approach. These results were

57
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extended to a more general market setting by Korn and Menkens in [31]. Moreover, they took

into consideration changing market coefficients after the occurence of a crash and introduced

the notion of crash-hedging strategies which make the investor indifferent to sudden jumps

in equity prices. See also Menkens [39] for a detailed analysis of crash-hedging strategies. In

[33] Korn and Steffensen used a control approach fitting to the impulse perturbed stochastic

control concept as presented in this work. Similar to our proceeding in Chapter 3, they stated

a system of inequalities for verifying the value function of the worst-case portfolio problem.

This so-called HJB-system corresponds to the PDE characterization given in Section 3.5

for the concerned general differential game. In [29] Korn solved the portfolio problem for

an insurer who faces a claim process correlated to the developments on the capital market.

Mönnig dealed in [40] with more concrete insurance contracts trying to calculate prices for

equity-linked insurances capturing crash risk. A survey of the status quo of the portfolio

problem under the threat of market crashes can be found in Korn and Seifried [32], including

a recent martingale approach for solving the worst-case portfolio problem.

Here we want to turn to some new aspects of the worst-case approach for modelling

market crashes. Firstly we observe the portfolio problem considering in addition options as

investment class. Assuming that the option prices do not bear the crash risk in mind, we

will show that the crash risk can be reduced or even be eliminated by the employment of

suitable options. In a next step the question is tackled whether the price for such derivatives

has to be adapted to the additional crash risk. To this end we propose two methods, the

concept of super-hedging in the sense of the target problem analyzed in Chapter 4 and a

market completion approach. The latter one makes use of a crash insurance which allows to

replicate the option exactly. For the calculation of the corresponding insurance premium we

argue by utility indifference. Therefore we optimize a portfolio including insurance contracts

in the sense of the differential game of Chapter 3 such that the same utility is achieved as

without insurance.

This chapter is organized as follows: To start with we repeat in the first section the

results from Korn and Steffensen [33] on the portfolio problem under the threat of crashes for

a simple market setting where the investor can trade only a risky asset and a secure bond. In

Section 5.2 we investigate the extended model that gives the investor the possibility to hedge

the crash risk by trading options. Section 5.3 deals with the pricing of derivatives under the

threat of crashes and Section 5.4 with the premium calculation for a crash insurance. We

conclude in Section 5.5 with an application of the crash-adjusted option pricing technique to

defaultable bonds.

5.1 Portfolio with 1 risky asset and n possible crashes

This subsection emphasizes on the introduction of the basic model and sums up the existing

solutions for simple worst-case portfolio problems.
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Consider a capital market with two tradeable assets, a risk-free bond with constant interest

rate r > 0 and a risky asset, say a stock. Suppose that in “normal times” the price of the

stock is given by

dS(t) = µS(t)dt+ σS(t)dB(t) (5.1)

with constant market coefficients µ > r and σ > 0 and with B as a Brownian motion on a

fixed probability space (Ω,F ,P). Assume further that there exists the possibility of a jump

in the stock price due to a market crash. A crash of height ζ then leads to a sudden decline

in the equity price from S to (1 − ζ)S. No probabilistic assumptions are made about the

distribution neither of the crash time nor of the crash size. Only suppose that up to the end

of the time horizon T > 0 at most n ∈ N crashes might occur and that the crash heights lie

in the interval Z = [ζ
¯
, ζ̄] with ζ

¯
≤ ζ̄ and 0 < ζ̄ < 1.

The investor is allowed to trade in the assets continuously in [0, T ]. Here every de-

nomination of the assets is possible which particularly permits unrestricted borrowing and

even short-selling of the stock. Moreover, transaction costs are neglected. At any time

t ∈ [0, T ] the investor has to decide how to distribute his current wealth X(t) = x ≥ 0 on

both assets. Let π(i)(t) denote the fraction of his wealth invested in the stock at time t when

there are still i ∈ {0, . . . , n} remaining crash possibilities. Since consumption and liabilities to

pay are not considered, this automatically determines the bond investment as the remaining

wealth X(t)(1− π(i)(t)). So the investor’s wealth process is of the form

dX(t) = (r + (µ− r)π(n−i)(t))X(t)dt+ σπ(n−i)(t)X(t)dB(t),

τi < t < τi+1, i = 0, . . . , n,

X(τi) = X(τi−)(1− ζiπ(n−i+1)(τi)), i = 1, . . . , n,

where τi is the i-th crash time with associated crash size ζi (where we make the conventions

τ0 := 0 and τn+1 := T ). Note that X = Xπ,ξ depends on the portfolio strategy π =

(π(n), . . . , π(0)) and the crash parameters ξ = (τ1, . . . , τn; ζ1, . . . , ζn). Nevertheless, in the

following X is used most of the time as abbreviation for Xπ,ξ if the connections are obvious.

The separate portfolio strategies π(i) depend on the P-augmentation (Ft)t of the filtration

generated by the Brownian motion B. According to our control framework of Chapter 2, we

require that the process π(i) has values in a compact set

U ⊂

{
(−∞, ζ̄−1] , ζ

¯
≥ 0,

[ζ
¯

−1, ζ̄−1] , ζ
¯
< 0

and is progressively measurable with respect to (Ft)t and Markovian. The choice of the

control set U ensures that the wealth process stays non-negative. In practice U can be

fixed afterwards, so that the optimal strategies are contained. The double sequence ξ of

crash parameters can be interpreted as n-impulse control with Z∪{0}-valued impulses which

is assumed to be Markovian, too. We denote the corresponding admissibility sets by Un
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and Vn. Under the above assumptions on the crash model, decisions are made in order

to perform best in a worst-case scenario. As performance measure consider the expected

utility of the investor’s wealth at time T using a general utility function g : R → R, i.e. g

is once continuously differentiable, monotonously increasing and strictly concave. Then the

worst-case scenario portfolio problem can be stated as

sup
π∈Un

inf
ξ∈Vn

Et,x
[
g
(
Xπ,ξ(τS)

)]
,

where the stopping time τS = inf{s ≥ t : (s,Xπ,ξ(s)) /∈ S = [0, T ) × (0,∞)} takes into

account an early ruin of the investor. It is our objective to determine the corresponding

value function v(n) and to find optimal controls π̂ ∈ Un and ξ̂ ∈ Vn such that

v(n)(t, x) = Et,x
[
g
(
X π̂,ξ̂(τS)

)]
.

Here we do not have to consider v(n) outside S̄ = [0, T ]× [0,∞) because we a priori excluded

jumps outside this domain by the made restriction on the control set U . We solve the problem

by using the results of Section 3.6. To this end let us briefly check the necessary assumptions:

In view of the simple stochastic model with constant SDE coefficients, the condition (G1’) of

Assumption 3.6.1 is satisfied. If we assume that the utility function g is bounded below on

[0,∞), the assumption (G2’) is true, too. Furthermore, (G3’) holds by the definition of Un
and Vn. The validity of Assumption 3.6.2 is obvious except for the continuity of v(n−1), and

the statements of Assumption 3.6.3 follow from the argumentations in Appendix B. Supposed

v(n−1) is continuous, v(n) is locally bounded and there exist ε-optimal controls with continuous

feedback function (see Assumption 3.2.1), Theorem 3.6.4 says that on S the seeked function

v(n) is a viscosity solution of the non-linear PDE

inf
π∈U

max
(
−Lπv(n), v(n) −Mπv(n−1)

)
= 0, (5.2)

where the differential operator Lπ and the impulse operator Mπ are given by

Lπϕ(t, x) = ϕt(t, x) + (r + (µ− r)π)xϕx(t, x) +
1

2
σ2π2x2ϕxx(t, x),

Mπϕ(t, x) = inf
ζ∈[ζ

¯
,ζ̄]
ϕ(t, x(1− ζπ)).

To define v(n) as the unique solution of 5.2, we consider the boundary conditions

v(n)(T, x) = min

(
g(x), sup

π∈U
Mπv(n−1)(T, x)

)
, x ∈ [0,∞),

v(n)(t, 0) = g(0), t ∈ [0, T ].

(5.3)

Noting that we do not allow for stochastic jumps in the stock price process, the only critical

point with respect to the applicability of Corollary 3.6.7 is (U3) in Assumption 3.6.5. Let

us suppose that v(n) is at most polynomially growing with exponent m > 0. Then it is not
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very difficult to compute that the auxiliary function w(t, x) = eλ(T−t)xm+1 + C(1 + T − t),
with an arbitrary constant C > 0 and λ chosen large enough, has all properties we need.

Consequently, if there exists a polynomially bounded viscosity solution of 5.2 satisfying 5.3,

then it is the seeked value function v(n).

Of course, in the simple market setting dealt with in this subsection the worst crash is

always of maximal size as long as the investor holds a long position in the stock. On the

other hand it is never optimal to invest a negative sum in the stock. Obviously the worst-case

scenario would then be a sudden rise in the equity price or the no crash case. But in both

scenarios the pure bond strategy π ≡ 0 which is resistant to any market movements performs

better. Even if no crash happens, the pure bond strategy yields a higher worst-case bound

because of µ > r. Therefore, for π ≥ 0, the worst first crash is given by

τ̂1 = inf
{
s ≥ t : v(n−1)

(
s,Xπ(s)(1− ζ̄π(s))

)
≤ v(n) (s,Xπ(s))

}
∧ T,

ζ̂1 =

{
ζ̄ , if v(n−1)

(
τ̂1, X

π(τ̂1)(1− ζ̄π(τ̂1))
)
≤ v(n) (τ̂1, X

π(τ̂1)) ,

0 , else.

Here Xπ denotes the wealth process under the current portfolio strategy π = π(n) and without

any crash, and it is assumed that the investor trades optimally after the first crash. An

optimal portfolio strategy can be obtained in form of (assuming this expression is well-defined)

π̂(n)(t, x) ∈ arg max
π∈U(n)(t,x)

Lπv(n)(t, x),

where

U (n)(t, x) := {π ∈ U : v(n−1)(t, x− ζ̄π) ≥ v(n)(t, x)}.

The following example summarizes concrete results on the value functions and the optimal

portfolio strategies for various utility functions which are adopted from Korn and Steffensen

[33].

Example 5.1.1. (a) Power utility: Consider a utility function of the form

g(x) =
1

γ
xγ with γ < 1, γ 6= 0.

Then the optimal portfolio strategy π̂ = (π̂(n), . . . , π̂(0)) only depends on the time

variable t and can be calculated iteratively by solving the non-linear ordinary differential

equations (ODEs)

π̂
(i)
t =

1

ζ̄

(
1− ζ̄π̂(i)

)(
(µ− r)

(
π̂(i) − π̂(i−1)

)
− 1

2
(1− γ)σ2

((
π̂(i)
)2
−
(
π̂(i−1)

)2
))

,

π̂(i)(T ) = 0, i = 1, . . . , n,

where the optimal strategy in the crash-free setting reads

π̂(0) =
1

1− γ
µ− r
σ2

.
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The corresponding value function is given by

v(n)(t, x) = v(0)

(
t, x

n∏
i=1

(
1− ζ̄π̂(i)(t)

))
,

where

v(0)(t, x) =
1

γ
xγ exp

(
γ

(
r +

1

2

(
µ− r
σ

)2 1

1− γ

)
(T − t)

)
is the value function in the crash-free setting.

(b) Log utility: Consider the logarithmic utility function

g(x) = ln(1 + x).

As in the case of power utility the optimal portfolio strategy only depends on the time

variable t and is given by the system of non-linear ODEs

π̂
(i)
t =

1

ζ̄

(
1− ζ̄π̂(i)

)(
(µ− r)

(
π̂(i) − π̂(i−1)

)
− 1

2
σ2

((
π̂(i)
)2
−
(
π̂(i−1)

)2
))

,

π̂(i)(T ) = 0, i = 1, . . . , n,

where the optimal strategy in the crash-free setting reads

π̂(0) =
µ− r
σ2

.

The corresponding value function is given by

v(n)(t, x) = v(0)

(
t, x

n∏
i=1

(1− ζ̄π̂(i)(t))

)
,

where

v(0)(t, x) = ln(1 + x) +

(
r +

1

2

(
µ− r
σ

)2
)

(T − t)

is the value function in the crash-free setting.

(c) Exponential utility: Consider the exponential utility function

g(x) = −e−αx for some α > 0.

An investor with this utility function has a constant absolute risk aversion which means

that the total amount of his wealth invested risky is independent of his wealth. There-

fore it looks attractive to interprete the portfolio strategy π as the total sum of the

stock investment. Then the optimal portfolio strategy can be stated as solution of the

system of non-linear ODEs

π̂
(i)
t = rπ̂(i) +

µ− r
ζ̄

(
π̂(i) − π̂(i−1)

)
− αer(T−t)σ2

2ζ̄

((
π̂(i)
)2
−
(
π̂(i−1)

)2
)
,

π̂(i)(T ) = 0, i = 1, . . . , n,



5.1. PORTFOLIO WITH 1 RISKY ASSET AND N POSSIBLE CRASHES 63

where the optimal strategy in the crash-free setting reads

π̂(0)(t) =
e−r(T−t)

α

µ− r
σ2

.

The corresponding value function is given by

v(n)(t, x) = v(0)

(
t, x−

n∑
i=1

ζ̄π̂(i)(t)

)
,

where

v(0)(t, x) = − exp

(
−αer(T−t)x− 1

2

(
µ− r
σ

)2

(T − t)

)
is the value function in the crash-free setting. For n = 1 there exists an explicit solution

which has the form

π̂(1)(t) =
e−r(T−t)

α

µ− r
σ2

(µ− r)(T − t)
(µ− r)(T − t) + 2ζ̄

,

v(1)(t, x) = − exp

(
−αer(T−t)x− 1

2

(
µ− r
σ

)2 (µ− r)(T − t)2

(µ− r)(T − t) + 2ζ̄

)
.

Remark 5.1.1. (a) The forms of the value function v(n) in the above examples show that

the worst-case scenario is always a sudden crash of maximal size ζ̄.

(b) The explicit formula π̂(1) = (µ−r)(T−t)
(µ−r)(T−t)+2ζ̄

π̂(0) for the optimal strategy in the case of

exponential utility reveils π̂(1) < π̂(0). Indeed, one can show via induction that the

solutions of the ODEs characterizing the optimal strategy in the case of power utility,

log utility and exponential utility satisfy the relation

0 ≤ π̂(n) ≤ π̂(n−1) ≤ . . . ≤ π̂(0).

This is a very intuitive result since the more crashes might happen, the less money

should be invested in the stock. By the way it shows that the optimal control processes

take on values in a compact subset U . Moreover, in contrast to the constant (resp.

time-discounted) portfolio processes π̂(0) in the no-crash model, the crash strategies

π̂(i), i = 1, . . . , n, turn out to be strictly decreasing until no stocks are held in the

portfolio at closure time T . The reason can be found in the fact at time T there is

no time left to compensate for losses. Since these properties of the optimal portfolio

strategy π̂ are only stated in [33] without a proof, we provide the proof in Appendix

B.3.

(c) The semi-explicit formulas for the value functions show that their strict increase and

their strict concavity with respect to the wealth variable are inherited in the crash

setting from their counterparts in the crash-free setting.
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(d) In consideration of the continuity of the portfolio processes as well as the continuity

and the polynomial growth of the value functions, the assumptions made beforehand

are indeed satisfied.

Note that without great difficulty the results of this section can be extended to a market

with several risky assets. In this case we deal with a price process modelled by a multi-

dimensional geometric Brownian motion. To keep the notation as clear as possible, we want to

stick to the one-stock-model. However, in the following investigations we consider a derivative

of the stock as additional risky asset.

5.2 Crash-hedging via options

Now suppose that the investor additionally has the possibility to trade with options on the

stock as underlying in order to limit his exposure in the course of a crash. For example he

might invest in a put option which is negatively correlated with the stock. Therefore he will

be compensated if the stock price declines. On the other hand a rise in the equity price might

then reduce his investment gains. So once again he is faced with a kind of balance problem.

Let P = P (t, S) denote the price of such an option depending on the current state S(t) = S

of the price process (5.1). Throughout this section we assume that the price function P is

once continuously differentiable with respect to the time variable and twice with respect to

the stock price variable. Applying Itô’s formula yields

dP (t) =

(
Pt(t, S(t)) + µS(t)PS(t, S(t)) +

1

2
σ2S2(t)PSS(t, S(t))

)
dt

+ σS(t)PS(t, S(t))dB(t).

Furthermore, it is a well known fact that in the crash-free setting the option price P solves

the Black-Scholes differential equation

−rP + Pt + rSPS +
1

2
σ2S2PSS = 0.

Designating δ(i)(t) as the ratio of the number of options that are held in the portfolio and

the present wealth at time t when there are still i ∈ {0, . . . , n} remaining crash possibilities,

the corresponding wealth process of the investor can thus be stated by

dX(t) =
(

1− π(n−i)(t)− δ(n−i)P (t)
)
rX(t)dt+

π(n−i)(t)X(t)

S(t)
dS(t) + δ(n−i)X(t)dP (t)

=
(
r + (µ− r)

(
π(n−i)(t) + δ(n−i)(t)S(t)PS(t, S(t))

))
X(t)dt

+ σ
(
π(n−i)(t) + δ(n−i)(t)S(t)PS(t, S(t))

)
X(t)dB(t)

for τi < t < τi+1, i = 0, . . . , n, and at the i-th crash time, i = 1, . . . , n,

X(τi) = X(τi−)
(

1− ζiπ(n−i+1)(τi)− δ(n−i+1)(P (τi, S(τi))− P (τi, (1− ζi)S(τi)))
)
.
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We are now interested in solving the portfolio problem

sup
(π,δ)∈Un

inf
ξ∈Vn

Et,x
[
g
(
X(π,δ),ξ(τS)

)]
,

where g stands for one of the utility functions considered in Example 5.1.1, and Un is the

modified admissibility set of vectors of control processes (π(i), δ(i)), i = 0, . . . , n, which have

values in a compact subset U ⊂ R2 such that (π, δ) ∈ U satisfies

ζπ − δ(P (t, S)− P (t, (1− ζ)S)) ≤ 1 for all (t, S) ∈ [0, T ]× [0,∞), ζ ∈ [ζ
¯
, ζ̄].

The differential operator Lπ,δ and the impulse operatorMπ,δ associated to the state process

(X(t), S(t)) are defined by

Lπ,δϕ(t, x, S) = ϕt(t, x, S) + (r + (µ− r) (π + δSPS(t, S)))xϕx(t, x, S)

+µSϕS(t, x, S) +
1

2
σ2 (π + δSPS(t, S))2 x2ϕxx(t, x, S)

+σ2 (π + δSPS(t, S))xSϕxS(t, x, S) +
1

2
σ2S2ϕSS(t, x, S),

Mπ,δϕ(t, x, S) = inf
ζ∈[ζ

¯
,ζ̄]
ϕ(t, x(1− ζπ − δ(P (t, S)− P (t, (1− ζ)S))), (1− ζ)S).

Then, supposed v(n) is polynomially bounded, it is the unique polynomially bounded and

continuous viscosity solution of the PDE (5.2) satisfying the boundary conditions (5.3), but

with control variable (π, δ) ∈ U and the operators Lπ,δ, Mπ,δ.

Assuming sufficient regularity and strict concavity of the value function v(n), the first-

order condition for a maximum (π̂(n), δ̂(n)) of Lπ,δv(n)(t, x, S) reads as

σ2x2v(n)
xx π̂

(n) + (µ− r)xv(n)
x + σ2xSv

(n)
xS + σ2x2SPSv

(n)
xx δ̂

(n) = 0

∧ σ2x2S2P 2
Sv

(n)
xx δ̂

(n) + (µ− r)xSPSv(n)
x + σ2xS2PSv

(n)
xS + σ2x2SPSv

(n)
xx π̂

(n) = 0,

where the partial derivatives v
(n)
x , v

(n)
xx and v

(n)
xS are evaluated in (t, x, S) and PS in (t, S).

Resolving the first equation for π̂(n) gives

π̂(n) = −µ− r
σ2

v
(n)
x

xv
(n)
xx

− S
v

(n)
xS

xv
(n)
xx

− δ̂(n)SPS , (5.4)

while the left hand side of the second equation disappears by inserting (5.4). So Lπ,δv(n)(t, x, S)

is maximal for π̂(n) as in (5.4), where δ̂(n) can be chosen arbitrarily. Thus the question arises

how many options the investor is intended to hold. In a crash-free setting it is no matter

whether to invest in the stock or in the option as long as the proper proportion between

stocks and options, expressed in (5.4), is maintained. So for n = 0 the value function v(0) is

independent of the stock price S and equals the value function v(0) from the previous section

where no options are traded. But taking into consideration the threat of a crash, not any
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delta hedge is sufficient any more. To obtain an optimal mixture of π̂(n) and δ̂(n) in the crash

model, we have to consider the constraint

Mπ̂(n),δ̂(n)
v(n−1)(t, x, S) ≥ v(n)(t, x, S).

In view of (5.4) it follows

v(n−1)(t, x(1− ζπ̄ − δ̂(n)∆), (1− ζ)S) ≥ v(n)(t, x, S) for all ζ ∈ [ζ
¯
, ζ̄],

where we have set

π̄ = π̄(t, x, S):= −µ− r
σ2

v
(n)
x

xv
(n)
xx

− S
v

(n)
xS

xv
(n)
xx

,

∆ = ∆(t, S, ζ):= P (t, S)− P (t, (1− ζ)S)− ζSPS(t, S).

If we can find a δ̂(n) such that

ζπ̄ + δ̂(n)∆(t, S, ζ) ≤ 0 for all ζ ∈ [ζ
¯
, ζ̄], (5.5)

the investor’s wealth cannot be affected by large price movements. Since the objective func-

tion only depends on the wealth process, this would mean that the investor can realize

the same utility as in the crash-free world, i.e. v(n)(t, x, S) = v(0)(t, x). In particular, our

initial assumptions on the regularity and concavity of the value function would be true,

and π̄ would correspond to the optimal strategy without crash risk and option trading,

π̂(0) = −µ−r
σ2

v
(0)
x

xv
(0)
xx

> 0. In order to observe the hedging condition (5.5) let us suppose that

the price function P is strictly convex which is the case if we deal with standard call or put

options. Therefore we know that ∆(t, S, ζ) < 0 for all ζ 6= 0. Then (5.5) is equivalent to

δ̂(n) ≥ − ζ

∆(t, S, ζ)
π̄ for all ζ 6= 0. (5.6)

For π̄ > 0 the right hand side of the above inequality is negative for ζ < 0, and it is strictly

decreasing in ζ > 0 because of

d

dζ

ζ

∆(t, S, ζ)
=
P (t, S)− P (t, (1− ζ)S)− ζSPS(t, (1− ζ)S)

∆2(t, S, ζ)
> 0.

So on the one hand we do not have to regard upward jumps by choosing δ̂(n) ≥ 0. On the

other hand, if we neglect infinitesimal jump sizes, i.e. ζ
¯
> 0, then the maximum for the right

hand side in (5.6) is attained for ζ = ζ
¯
. So we can conclude that by trading according to

δ̂ =
ζ
¯

P
¯
− P + ζ

¯
SPS

π̂(0),

π̂ = π̂(0) − δ̂SPS =
P
¯
− P

P
¯
− P + ζ

¯
SPS

π̂(0),

where P
¯

stands for P (t, (1−ζ
¯
)S), the investor can eliminate any crash risk without additional

costs. Note in particular that this strategy is independent of the number of possible crashes.
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But in contrast to the classic portfolio strategy π̂(0), the hedging strategy (π̂, δ̂) depends on

S, although the value function does not. For ζ
¯
≤ 0 a full hedge is not possible any more since

we have

lim
ζ↘0
− ζ

∆(t, S, ζ)
π̄ =∞.

But choosing δ̂ as large as possible (in the set of constrained admissible trading strategies,

e.g. δ ∈ [δ
¯
, δ̄]), we can reduce the negative effects of crashes.

So the message of this section reads as follows: While in the classic Black-Scholes model

it is of no additional benefit to trade with options, we have seen that under the threat of

crashes this extension of the market gives the investor the chance to compensate losses due

to a crash scenario, so that he is even able to perform as well as in the classic Black-Scholes

model. That is he can hedge any crash risk. Moreover, the limiting number n of possible

crashes does not play any role, neither on the value function nor on the optimal investment

strategies.

5.3 Option pricing

In the previous section we have seen that under Black-Scholes option prices the crash risk

can be hedged completely. That might raise the question if Black-Scholes prices really fit

in our crash framework. Black-Scholes prices are obtained by reconstruction of the option’s

payoff in the complete crash-free market. But the crash feature leads to an incompletion of

the market, so that the replication technique does not work any more. In this section we

want to discuss two different approaches leading to upper (or lower) price boundaries and to

indifference prices. We only consider European options, i.e. the option’s buyer is not allowed

to execute the option prematurely.

5.3.1 Super-hedging

For the super-hedging approach we consider a portfolio including a position (long or short)

in an option. The central idea is to find a stock trading strategy and an option pricing rule

that offer at least the risk-free return almost surely for any market scenario. To start with

we derive the PDEs for these super-hedging option prices in an heuristic way. Afterwards we

prove the obtained statements with the theoretical tools provided in Chapter 4 for stochastic

target problems.

Heuristic derivation of the super-hedging prices

We take a portfolio consisting of positions in the bond, the stock and a fixed number δ of

options as basis. Let us denote by P (n) the crash-adjusted option price and by π(n) the

total stock investment sum in the setting with n crashes. To state the corresponding wealth
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process X we suppose enough regularity of P (n). In view of Itô’s formula the dynamic of the

wealth process with n remaining crash possibilities then reads

dX(t) =
(
X(t)− π(n)(t)− δP (n)

)
rdt+

π(n)(t)

S(t)
dS(t) + δdP (n)(t)

=

(
rX(t) + (µ− r)π(n)(t) + δ

(
−rP (n) + P

(n)
t + µSP

(n)
S +

1

2
σ2S2P

(n)
SS

))
dt

+ σ
(
π(n)(t) + δSP

(n)
S

)
dB(t),

where P (n) and its partial derivatives are evaluated in (t, S(t)). Given a crash of size ζ at

time τ there is a jump in form of

X(τ) = X(τ−)− ζπ(n)(τ)− δ
(
P (n)(τ, S(τ))− P (n−1)(τ, (1− ζ)S(τ))

)
.

Now we want to adapt the replication method for complete markets to our crash setting. It

is our purpose to construct a portfolio that is risk-free along the worst-case path. For such a

risk-free portfolio we have to take into consideration the evolution of the wealth process if no

crash occurs as well as the jump condition for a crash scenario. In order to exclude stochastic

fluctuation driven by the Brownian motion, we have to choose

π(n)(t) = −δSP (n)
S . (5.7)

To avoid losses from possible jumps we require

sup
ζ∈[ζ

¯
,ζ̄]

{
ζπ(n)(t) + δ

(
P (n) − P (n−1)(t, (1− ζ)S(t))

)}
≤ 0, (5.8)

where equality holds if a crash embodies the worst-case scenario. To achieve the risk-free

yield, the drift term in the wealth’s SDE must be greater than rX(t) almost surely at any

time t because otherwise there are scenarios with a less return. This gives us the next

condition,

(µ− r)π(n)(t) + δ

(
−rP (n) + P

(n)
t + µSP

(n)
S +

1

2
σ2S2P

(n)
SS

)
≥ 0, (5.9)

where equality holds if the worst case is no immediate crash. Assembling the conditions

(5.7)-(5.9) we conclude

min

(
rP (n)−P (n)

t −rSP
(n)
S −

1

2
σ2S2P

(n)
SS ,P

(n)− sup
ζ∈[ζ

¯
,ζ̄]

{
ζSP

(n)
S +P (n−1)(t,(1−ζ)S)

})
=0

for δ < 0 (short position in option) and

max

(
rP (n)−P (n)

t −rSP
(n)
S −

1

2
σ2S2P

(n)
SS ,P

(n)− inf
ζ∈[ζ

¯
,ζ̄]

{
ζSP

(n)
S +P (n−1)(t,(1−ζ)S)

})
=0

for δ > 0 (long position). Note that apart from the sign of δ the pricing equations are

independent of the portfolio’s position in options. The first equation presents the seller’s

price P
(n)
short for the option and therefore an upper bound. The second one can be regarded

as the buyer’s price P
(n)
long for the option and therefore as a lower bound.
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Remark 5.3.1. Using the price rules of this subsection, crash-hedging is not possible any

more: The hedging condition (5.5) cannot be satisfied since

δ∆(n)(t, S, ζ) = δ
(
P (n)(t, S)− ζSP (n)

S (t, S)− P (n−1)(t, (1− ζ)S)
)
≥ 0 for all δ.

Here we have to use the seller’s option price for δ > 0 and the buyer’s option price for δ < 0

because these are the prices for which the counterparty accepts the trade.

Stochastic target approach

If we choose δ = −1 (short position in one option) and the initial capital X(t) = 0 and split

the replicating portfolio into the option position −P (n)
short and the super-hedging portfolio Y ,

then the seller’s option price at time t corresponds to the initial value of the process Y . Since

we force X(T ) = 0 along the worst-case path, P
(n)
short is the minimal amount of money with

which the option’s seller can set up a hedging portfolio Y that exceeds the option’s payoff at

maturity almost surely. That is the option price is the value function of a stochastic target

problem. The controlled target process is the seller’s hedging process Y and the target is

given by the payoff function depending on the stock price process S. Remember that the

dynamics of (S, Y ) in “calm” times t ∈ (τi, τi+1), i = 0, . . . , n, are given by

dS(t) = µS(t)dt+ σS(t)dB(t),

dY (t) = (rY (t) + (µ− r)π(n−i)(t))dt+ σπ(n−i)(t)dB(t),

whereas at crash times τi, i = 1, . . . , n, we have jumps in form of

S(τi) = S(τi−)(1− ζi), Y (τi) = Y (τi−)− ζiπ(n−i+1)(τi).

Once more is to point out that in contrast to the initially introduced portfolio problem

we want to understand by the control π(i) the absolute investment sum. Moreover, let us

consider here the unconstrained control set U = R. Therefore we impose in addition that an

admissible strategy π ∈ Un provides further on a unique well-defined hedging process Y π,ξ
t,S

for all (t, S) ∈ [0, T ] × [0,∞) and ξ ∈ Vn. Then the crash-adjusted seller’s option price can

be formulated by

P
(n)
short(t, S) = inf{y ∈ R : there exists π ∈ Un s.t. Y π,ξ(T ) ≥ g(Sξ(T )) for all ξ ∈ Vn},

where g is the option’s payoff function, assumed to be continuous in the following. To keep

the notation short we just write P (n) instead of P
(n)
short from now on.

Let us now use the theory of stochastic target problems from Chapter 4. The situation

here corresponds for the most part to the model discussed in Section 4.5. The hedging

strategy π̂, which is essential in order to control the stochastic price movements driven by

the Brownian motion, is uniquely identified by the function ψ(S, p) = Sp in the sense of

(supposed the derivatives exist)

π̂(i)(t) = ψ(S(t), P
(i)
S (t, S(t)) = S(t)P

(i)
S (t, S(t)), i = 0, . . . , n.
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However, we have to elaborate on two differences to the target problem of Section 4.5:

• U is not compact. We needed the compactness of U in Chapter 4 for three aspects.

Firstly, for the existence of a solution of the controlled SDEs which is guaranteed

in the situation here by the definition of the admissibility set Un. Secondly, for the

preservation of continuity properties of the terms building the characterizing PDEs

which applies because of the continuity of the function ψ. And thirdly, for the existence

of a convergent subsequence in the proof of the supersolution property. This is satisfied

if a “nearly optimal” hedging strategy π has values in a compact subset in a local sense,

i.e. as long as (s, St,S(s), Y π
t,y(s)) stays within some open neighborhood of (t, S, y). This

condition is true if we deal with payoff functions g ∈ P1([0,∞)), i.e. there exists C > 0

such that |g(S)| ≤ C(1 + S). In this case we a-priori can restrict the hedge positions

to compacts depending on the current underlying price S because it does not make

sense to trade more than C shares, i.e. π ∈ [−CS,CS]. In particular, this gives us

|P (i)(t, S)| ≤ C(1 + S), i.e. P (i) ∈ P1([0, T ]× [0,∞)). In sum, the viscosity property of

Corollary 4.5.2 still holds, but we do not have to pay attention to the condition π ∈ U .

• The domain of control is restricted to S = [0, T ) × [0,∞). The viscosity properties of

the price functions in the domain S as well as on the boundary part {T}×(0,∞) remain

true. In addition we need boundary conditions for S = 0 in order to characterize the

price functions as the unique solutions of the associated PDEs. Since the stock would

remain worthless if the price once dropped to zero, the natural boundary condition

in the no-crash setting is given by P (0)(t, 0) = e−r(T−t)g(0). This is also the natural

boundary condition if a crash is possible because at the boundary [0, T ]×{0} an impulse

ζ has no impact. It remains to clarify if the natural boundary condition represents the

correct data for a precise characterization of the price functions. This is the case if the

price functions are continuous on the boundary part [0, T ] × {0}. To avoid a tedious

proof of a general statement, let us be content with a simple justification for the use of

the natural boundary condition in the case of a call and a put option. For both option

types we know a-priori estimates. If P (i) denotes the price of a call with strike K, then

we have P (i)(t, S) ∈ [0, S] and therefore limS3(t′,S′)→(t,0) P
(i)(t′, S′) = 0. If P (i) denotes

the price of a put with strike K, then we have P (i)(t, S) ∈ [Ke−r(T−t) − S,Ke−r(T−t)]
and therefore limS3(t′,S′)→(t,0) P

(i)(t′, S′) = Ke−r(T−t).

As it is known, in the no crash case the stochastic target approach leads to Black-Scholes

prices, i.e. P (0) is linked to the system

rP (0) − P (0)
t − rSP (0)

S − 1

2
σ2S2P

(0)
SS = 0 on S,

P (0)(T, S)− g(S) = 0 for S ∈ [0,∞),

P (0)(t, 0)− e−r(T−t)g(0) = 0 for t ∈ [0, T ).
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From the Feynman-Kac theorem we know that under weak assumptions on g there exists a

unique classical solution P (0) ∈ C1,2(S)∩C(S̄) which is polynomially bounded, for example if

g is continuous, non-negative and satisfies a polynomial growth condition (see, e.g., Karatzas

and Shreve [25], Theorem 5.7.6 and Remark 5.7.8, or Korn and Korn [30], Chapter III,

Theorem 18).

Under crash risk the result is the following:

Theorem 5.3.1. Let g ∈ P1([0,∞)) and assume that P (n−1) is continuous and locally Lip-

schitz in (t, x). Then the seller’s option price P (n) is a viscosity solution on S of the PDE

min

(
rP (n) − P (n)

t − rSP (n)
S − 1

2
σ2S2P

(n)
SS ,

P (n) − sup
ζ∈[ζ

¯
,ζ̄]

{
ζSP

(n)
S + P (n−1)(t, (1− ζ)S)

})
= 0.

(5.10)

The terminal data given in form of G
(n)

(S) := lim supt↗T,S′→S P
(n)(t, S′) and G(n)(S) :=

lim inft↗T,S′→S P
(n)(t, S′) is a the viscosity sub and supersolution, respectively, on (0,∞) of

min

(
G(n) − g,G(n) − sup

ζ∈[ζ
¯
,ζ̄]

{
ζSG

(n)
S + P (n−1)(T, (1− ζ)S)

})
= 0. (5.11)

Proof: In view of the argumentation preceding this theorem, the statement is a conse-

quence of Corollary 4.5.2. We remark that the assumptions underlying Corollary 4.5.2 are

evidently satisfied, in particular the required local Lipschitz condition on the map (t, S, y) 7→
supζ∈[ζ

¯
,ζ̄]

{
y − ζπ + P (n−1)(t, (1− ζ)S)

}−
follows from the local Lipschitz continuity of P (n−1).

�

So Theorem 5.3.1 confirms the heuristic PDE characterization. In the same way we can

formulate for δ = 1 the super-hedging problem from the point of view of the option’s buyer.

The result is the target problem

P
(n)
long(t, S) = sup{y ∈ R : there exists π ∈ Un s.t. − Y π,ξ(T ) ≥ −g(Sξ(T )) for all ξ ∈ Vn}.

Writing this in form of

P
(n)
long(t, S) = − inf{y ∈ R : there exists π ∈ Un s.t. Y π,ξ(T ) ≥ −g(Sξ(T )) for all ξ ∈ Vn},

we come to the PDE for the buyer’s option price as in the heuristic derivation. The proper

terminal data is given by

max

(
G(n) − g,G(n) − inf

ζ∈[ζ
¯
,ζ̄]

{
ζSg

(n)
S + P (n−1)(T, (1− ζ)S)

})
= 0.

Due to the similar structure of both pricing rules, we only analyze the seller’s option price in

detail.
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Remark 5.3.2 (The worst-crash size). If the price function P (n−1) is strictly convex, the worst

downward jump is related to the maximal crash size ζ̄ > 0 and the worst upward jump to

the minimal crash size ζ
¯
< 0. So in the case where both downward and upward jumps are

possible (i.e. ζ
¯
< 0, ζ̄ > 0) we have to answer the question when ζ

¯
embodies the worst crash

size and when ζ̄ does so, i.e. the PDE (5.10) simplifies to

min

(
rP (n)−P (n)

t −rSP
(n)
S −

1

2
σ2S2P

(n)
SS ,P

(n)− max
ζ∈{ζ

¯
,ζ̄}

{
ζSP

(n)
S +P (n−1)(t,(1−ζ)S)

})
=0.

If either negative or positive jump sizes are excluded, the above max-term can be replaced

by the relevant argument. For a price function P (n−1) which is not strictly convex, the

worst-crash size might also be an inner point.

To prove uniqueness of a viscosity solution to the PDE (5.10), we need the following

comparison result. As in the proof of the comparison theorem for the PDE considering in

the context of the differential game in Chapter 3, we make use of the doubling of variables

approach from Crandall, Ishii and Lions [10], so that most parts of the proof are equal to

the proof of Theorem 3.6.6. We therefore only sketch the steps which do not require new

arguments. Because of P (n) ∈ P1(S̄) it is sufficient to show uniqueness in the class P1(S̄).

Theorem 5.3.2 (Comparison theorem 1). Let u ∈ P1(S̄) be a viscosity subsolution and

v ∈ P1(S̄) a viscosity supersolution of (5.10) on S. If we have u∗ ≤ v∗ on the parabolic

boundary ∂S = ([0, T )× {0}) ∪ ({T} × [0,∞)), then it follows u∗ ≤ v∗ on S̄.

Proof: We argue by contradiction and suppose that

sup
(t,x)∈[0,T ]×[0,∞)

{u∗(t, x)− v∗(t, x)} > 0.

In view of the growth conditions on u and v, we can find some β, δ, λ, ρ > 0 such that

0 < M := sup
(t,x)∈[0,T ]×[0,∞)

{u∗(t, x)− v∗(t, x)− β

t+ ρ
− 2δeλ(T−t)x2} <∞.

For k ∈ N we set

ϕk(t, x, y) :=
γ

t+ ρ
+
k

2
|x− y|2 + δeλ(T−t)(x2 + y2),

and we consider

Mk := sup
(t,x,y)∈[0,T ]×[0,∞)2

{u∗(t, x)− v∗(t, y)− ϕk(t, x, y)}

with 0 < Mk < ∞. This supremum is attained on some compact subset of [0, T ] × [0,∞)2,

independent of large k. We denote by (tk, xk, yk) a corresponding maximizer. According to

the relation of u∗ and v∗ on the parabolic boundary, we have (tk, xk, yk) ∈ [0, T ) × (0,∞)2.

From Lemma 3.1 in [10] (see Lemma A.3.2 in the appendix) we know that

lim
k→∞

k|xk − yk|2 = 0. (5.12)
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Thus we may pass to a subsequence (tk, xk, yk) converging to (t0, x0, x0) ∈ [0, T )× (0,∞)2.

Next we apply Theorem 8.3 in [10] (see Theorem A.3.1 in the appendix) to the function

w(t, x, y) = u∗(t, x) − v∗(t, y) − ϕk(t, x, y) at point (tk, xk, yk) to get ak ∈ R and Xk, Yk ∈ R
such that

(ak, pk, X̃k) ∈ J̄ 2,+u∗(tk, xk), (bk, qk, Ỹk) ∈ J̄ 2,−v∗(tk, yk),

where

bk := ak +
β

(tk + ρ)2
+ λδeλ(T−tk)(x2

k + y2
k),

pk := k(xk − yk) + 2δeλ(T−tk)xk, X̃k := Xk + 2λδe(T−tk),

qk := k(xk − yk)− 2δeλ(T−tk)yk, Ỹk := Yk − 2λδe(T−tk)

and Xk, Yk satisfy

Xkx
2 − Yky2 ≤ k(x− y)2 for all x, y ≥ 0. (5.13)

The sub and supersolution properties of u and v yield

min

(
ru∗(tk, xk)− ak − rxkpk −

1

2
σ2x2

kX̃k,

u∗(tk, xk)− sup
ζ∈[ζ

¯
,ζ̄]

{
ζxkpk + P (n−1)(tk, (1− ζ)xk)

} )
≤ 0,

(5.14)

min

(
rv∗(tk, yk)− bk − rykqk −

1

2
σ2y2

kỸk,

v∗(tk, yk)− sup
ζ∈[ζ

¯
,ζ̄]

{
ζykqk + P (n−1)(tk, (1− ζ)yk)

} )
≥ 0.

(5.15)

Consider the difference Λk of the first components of the above min-terms and let us split Λk

in form of Λk = A1
k +A2

k −Bk with

A1
k := r(u∗(tk, xk)− v∗(tk, yk)) +

β

(tk + ρ)2
,

A2
k := λδeλ(T−tk)(x2

k + y2
k)− (2r + σ2)δeλ(T−tk)(x2

k + y2
k),

Bk := rk(xk − yk)2 +
1

2
σ2(Xkx

2
k − Yky2

k).

Using the fact that (tk, xk, yk) is a maximizer corresponding to Mk > 0, we have A1
k > 0 for

all k. Choosing λ sufficiently large, i.e. λ ≥ 2r + σ2, we have A2
k ≥ 0 for all k. From (5.13)

we obtain the estimate Bk ≤ (r + 1
2σ

2)k(xk − yk)2. Hence, by (5.13) we conclude Λk > 0 for

k chosen large enough. Thus we deduce from the viscosity inequalities (5.14)-(5.15) that

u∗(tk, xk)− sup
ζ∈[ζ

¯
,ζ̄]

{
ζxkpk + P (n−1)(tk, (1− ζ)xk)

}
≤ 0. (5.16)
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On the other hand, using the fact Mk > 0 and afterwards the inequality (5.15), we deduce

u∗(tk, xk)− sup
ζ∈[ζ

¯
,ζ̄]

{
ζxkpk + P (n−1)(tk, (1− ζ)xk)

}
≥ v∗(tk, yk) + ϕk(tk, xk, yk)− sup

ζ∈[ζ
¯
,ζ̄]

{
ζxkpk + P (n−1)(tk, (1− ζ)xk)

}
+
M

2

≥ ϕk(tk, xk, yk)− sup
ζ∈[ζ

¯
,ζ̄]

{ζ(xkpk − ykqk)}

− sup
ζ∈[ζ

¯
,ζ̄]

{
P (n−1)(tk, (1− ζ)xk)− P (n−1)(T, (1− ζ)yk)

}
+
M

2
.

In view of (5.12) and the continuity of P (n−1), the second of the last two suprema can be

neglected. For the first one we have

sup
ζ∈[ζ

¯
,ζ̄]

{ζ(xkpk − ykqk)} ≤ ζ̄
(
k(xk − yk)2 + 2δeλ(T−tk)(x2

k + y2
k)
)
.

Consequently, choosing k large enough leads to a contradiction to (5.16). �

Theorem 5.3.2 says that if we have continuous boundary conditions for P (n) on ∂S, then

P (n) is the unique continuous viscosity solution of (5.10) in P1(S̄). So let us continue with

a uniqueness result for the terminal data which implicitly gives us continuity of the terminal

data if P (n) is continuous in (T, 0).

Theorem 5.3.3 (Comparison theorem 2). Let u ∈ P1([0,∞)) be a viscosity subsolution and

v ∈ P1([0,∞)) a viscosity supersolution of (5.11) on (0,∞). If we have u∗(0) ≤ v∗(0), then

it follows u∗ ≤ v∗ on [0,∞).

Proof: Analogous to the proof of Theorem 5.3.2. �

Remark 5.3.3. We can write equation (5.11) in form of G(n) −H(S,G(n)) = 0. Comparison

results for such elliptic first-order equations already exist, even for an unbounded domain,

see for example Section 1.2 in Ishii [23]. But these results only compare continuous viscosity

solutions. So if we are not sure that G(n) is continuous, we cannot apply them for a uniqueness

statement. Instead, the continuity of G(n) is just an implication of the comparison theorem.

To simplify matters, from now on let us concentrate on the special case n = 1 and on

options which are linear combinations of standard calls and puts. Then the regularity of

P (0) gives us the Lipschitz condition required in Theorem 5.3.1 and, as shown above, we are

allowed to use the natural boundary condition for S = 0. In sum, the price function P (1) is

the unique viscosity solution in P1(S̄) of (5.10) which satisfies the boundary conditions

P (1)(t, 0)− e−r(T−t)g(0) = 0, t ∈ [0, T ],

P (1)(T, S)−G(1)(S) = 0, S ∈ (0,∞),

where the terminal dataG(1) is the unique viscosity solution on (0,∞) of (5.11) withG(1)(0) =

g(0), and G(1) and P (1) are continuous.
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For a sample of plain vanilla options here are the explicit terminal data functions (with

g(0) := g, g(1) := G(1)):

(a) Call option with strike K (i.e. g(0)(S) = (S −K)+):

crash parameters terminal data function

ζ̄ ≥ ζ
¯
≥ 0,

ζ̄ > 0
g(1)(S) =

 ᾱS
1
ζ̄ , S ≤ K

1−ζ̄
S −K ,S > K

1−ζ̄

, ᾱ := ζ̄
(

1−ζ̄
K

) 1−ζ̄
ζ̄

ζ
¯
≤ ζ̄ ≤ 0,

ζ
¯
< 0

g(1)(S) =

 0 , S ≤ K
1−ζ

¯

α
¯
S

1
ζ
¯ + S −K ,S > K

1−ζ
¯

, α
¯

:= −ζ
¯

(
1−ζ

¯K

) 1−ζ
¯ζ

¯

ζ
¯
< 0,

ζ̄ > 0
g(1)(S) =

 ᾱS
1
ζ̄ , S ≤ K

α
¯
S

1
ζ
¯ + S −K ,S > K,

,
ᾱ := − ζ̄ζ

¯
ζ̄−ζ

¯

K
− 1−ζ̄

ζ̄ ,

α
¯

:= − ζ̄ζ
¯

ζ̄−ζ
¯

K
− 1−ζ

¯ζ
¯

(b) Put option with strike K (i.e. g(0)(S) = (K − S)+):

crash parameters terminal data function

ζ̄ ≥ ζ
¯
≥ 0,

ζ̄ > 0
g(1)(S) =

 ᾱS
1
ζ̄ − S +K ,S ≤ K

1−ζ̄
0 , S > K

1−ζ̄

, ᾱ := ζ̄
(

1−ζ̄
K

) 1−ζ̄
ζ̄

ζ
¯
≤ ζ̄ ≤ 0,

ζ
¯
< 0

g(1)(S) =

 K − S , S ≤ K
1−ζ

¯

α
¯
S

1
ζ
¯ , S > K

1−ζ
¯

, α
¯

:= −ζ
¯

(
1−ζ

¯K

) 1−ζ
¯ζ

¯

ζ
¯
< 0,

ζ̄ > 0
g(1)(S) =

 ᾱS
1
ζ̄ − S +K ,S ≤ K

α
¯
S

1
ζ
¯ , S > K

,
ᾱ := − ζ̄ζ

¯
ζ̄−ζ

¯

K
− 1−ζ̄

ζ̄ ,

α
¯

:= − ζ̄ζ
¯

ζ̄−ζ
¯

K
− 1−ζ

¯ζ
¯

Figure 5.1: Terminal data for a call. On the left: Only downward jumps possible. On the

right: Downward and upward jumps possible.
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(c) Bull spread with strikes K1 < K2 (i.e. g(0)(S) = (S −K1)+ − (S −K2)+):

crash parameters terminal data function

ζ̄ ≥ ζ
¯
≥ 0,

ζ̄ > 0,

K1 ≤ (1− ζ̄)K2

g(1)(S) =


ᾱS

1
ζ̄ , S ≤ K1

1−ζ̄
S −K1 , K1

1−ζ̄ < S ≤ K2

K2 −K1 , S > K2

, ᾱ := ζ̄
(

1−ζ̄
K1

) 1−ζ̄
ζ̄

ζ̄ ≥ ζ
¯
≥ 0,

ζ̄ > 0,

K1 > (1− ζ̄)K2

g(1)(S) =

{
ᾱS

1
ζ̄ , S ≤ K2

K2 −K1 , S > K2

, ᾱ := K
− 1
ζ̄

2 (K2 −K1)

ζ
¯
≤ ζ̄ ≤ 0,

ζ
¯
< 0

g(1)(S) =



0 , S ≤ K1
1−ζ

¯
α
¯
S

1
ζ
¯ + S −K1 , K1

1−ζ
¯

< S ≤ K2
1−ζ

¯
α̃
¯

(S −K2) +K2 −K1 , K2
1−ζ

¯

< S ≤ K2

1−ζ̄

max(˜̄αS
1
ζ̄ +K2, S)−K1 , K2

1−ζ̄ < S ≤ K2

K2 −K1 , S > K2

,

α
¯

:= −ζ
¯

(
1−ζ

¯K1

) 1−ζ
¯ζ

¯ , α̃
¯

:= 1−
(
K2
K1

) 1−ζ
¯ζ

¯ , ˜̄α := ζ̄α̃
¯

(
1−ζ̄
K2

) 1−ζ̄
ζ̄

ζ
¯
< 0,

ζ̄ > 0,

(1− ζ
¯
)K1 ≤ K2

g(1)(S) =


ᾱS

1
ζ̄ , S ≤ K1

α
¯
S

1
ζ
¯ + S −K1 ,K1 < S ≤ K2

1−ζ
¯

α̃
¯

(S −K2) +K2 −K1 , K2
1−ζ

¯

< S ≤ K2

K2 −K1 , S > K2

,

ᾱ := − ζ̄ζ
¯

ζ̄−ζ
¯

K
− 1−ζ̄

ζ̄

1 , α
¯

:= − ζ̄ζ
¯

ζ̄−ζ
¯

K
− 1−ζ

¯ζ
¯1 , α̃

¯
:= 1 + 1

ζ
¯

α
¯

(
K2
1−ζ

¯

) 1−ζ
¯ζ

¯

ζ
¯
< 0,

ζ̄ > 0,

(1− ζ
¯
)K1 > K2

g(1)(S) =


ᾱS

1
ζ̄ , S ≤ K2

1−ζ
¯

α̃
¯

(S −K2) +K2 −K1 , K2
1−ζ

¯

< S ≤ K2

K2 −K1 , S > K2

,

ᾱ := − ζ̄
ζ̄−ζ

¯

(K2 −K1)
(

1−ζ
¯K2

) 1
ζ̄
, α̃

¯
:= 1

ζ̄−ζ
¯

(K2 −K1)
1−ζ

¯K2

Numerical example. Consider the following options:

• Call with strike K = 100.

• Bull spread with strikes K1 = 80 and K2 = 150.

• Time to maturity in each case is T = 1.

• The parameters for the bond and the risky asset are r = 0.05, σ = 0.3, ζ
¯

= −0.3 and

ζ̄ = 0.3.

For the numerical treatment of the variational inequality we use a finite difference scheme

and the PSOR (projected successive over-relaxation) method. The boundary conditions for
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Figure 5.2: Terminal data for a bull spread: Downward and upward jumps possible (with

(1− ζ
¯
)K1 ≤ K2).

S ↘ 0 and S → ∞ can be chosen as in the crash-free case because the respective exercise

decisions are certain, independent of crash scenarios,

call: P (1)(t, 0) = 0 and P (1)(t, S) ∼ e−r(T−t)(S −K) for S →∞,
bull spread: P (1)(t, 0) = 0 and P (1)(t, S)→ e−r(T−t)(K2 −K1) for S →∞.

We make the transformation

τ =
1

2
σ2(T − t), x = ln(S), k =

2r

σ2
, α =

1

4
(k + 1)2, β =

1

2
(k − 1),

u(i)(τ, x) = eατ+βxP (i)(t, S), i = 0, 1.

Then we have to solve the variational inequality

min

(
u(1)
τ − u(1)

xx , u
(1) − sup

ζ∈[ζ
¯
,ζ̄]

{
ζ
(
−βu(1) + u(1)

x

)
− u(0)(τ, x+ ln(1− ζ))

})
= 0 (5.17)

for τ ∈ (0, T0], T0 := σ2T/2, and x ∈ R. For a discretization we restrict the space domain

to x ∈ [x
¯
, x̄] for some adequate x

¯
< x̄, e.g. x

¯
= ln(1) and x̄ = ln(300), and introduce an

equidistant grid with points

(τj , xi) = (js, x
¯

+ ih), j = 0, . . . ,M, i = 0, . . . , N,

where s = T0/M and h = (x̄−x
¯
)/N denote respectively the time and the space mesh size. We

further introduce the notation wji := u(1)(τj , xi). Then the initial conditions in the discretized

model read

w0
i = eβxig(1) (exi) , i = 0, . . . , N,
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where the respective function g(1) can be looked up in the above tables. The boundary

conditions read

wj0 = 0, wjN =

{
e(α−k)τj+βx̄(ex̄ −K) , call

e(α−k)τj+βx̄(K2 −K1) , bull spread
, j = 0, . . . ,M.

For the PDE approximation scheme we use the standard mixed explicit-implicit timestepping

(θ-method with θ ∈ [0, 1]) for the first inequality,

1

s

(
wji − w

j−1
i

)
− θ

h2

(
wji+1 − 2wji + wji−1

)
− 1− θ

h2

(
wj−1
i+1 − 2wj−1

i + wj−1
i−1

)
,

and a pure explicit scheme for the second inequality,

wji − sup
ζ∈[ζ

¯
,ζ̄]

{
ζ

(
−βwji +1{ζ>0}

wj−1
i+1 −w

j
i

h
+1{ζ<0}

wji −w
j−1
i−1

h

)
−u(0)(τj ,xi+ln(1−ζ))

}
,

for j = 1, . . . ,M , i = 1, . . . , N − 1. The split difference quotient in the latter approximation

ensures a monotony condition which is needed for the convergence result presented below.

Writing everything in matrix notation we obtain in each time step j = 1, . . . ,M a vector

wj = (wji )i=1,...,N−1 as solution of a linear complementarity problem in form of

Awj − bj−1 ≥ 0, wj − f j−1

ζ̂
≥ 0, (Awj − bj−1)T (wj − f j−1

ζ̂
) = 0,

where the matrix A is fixed and the vectors bj−1 and f j−1

ζ̂
are computed explicitly from the

data of the last time step. Here the subscript ζ̂ suggests the dependence of f j−1

ζ̂
from the

respective worst-case jump size. Then we apply the SOR algorithm, an iterative method to

solve linear equations, to Awj = bj−1. But after each iteration we project the current value

back to the admissible cone wj ≥ f j−1

ζ̂
. Since the matrix A is symmetric and positive definite,

the resulting sequence converges to the unique solution of the above linear complementarity

problem, see Cryer [11].

It remains to show that the solution of the discretized problem converges to the solution

of the transformed original problem (5.17) for grid spacing s, h↘ 0. For a detailed treatment

of the convergence of approximation schemes in a viscosity solution framework we refer to

Barles and Souganidis [1]. To prove convergence in our situation let us consider for simplicity

a pure implicit timestepping (θ = 1) with respect to the first part of the variational inequality.

So we investigate the discretized PDE

min
(
Ds
τu−D2,h

x u,Ms,hu
)

= 0,

where the operator Ms,h is defined by

Ms,hu(τ,x) =u(τ,x)− sup
ζ∈[ζ

¯
,ζ̄]

{
ζ
(
−βu(τ,x)+

[
1{ζ>0}D

s,h+
x +1{ζ<0}D

s,h−
x

]
u(τ,x)

)
−u(0)(τ,x+ln(1−ζ))

}
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and the finite difference operators are given by

Ds
τu(τ, x) =

u(τ, x)− u(τ − s, x)

s
, D2,h

x u(τ, x) =
u(τ, x+ h)− 2u(τ, x)− u(τ, x− h)

h2
,

Ds,h+
x u(τ, x) =

u(τ − s, x+ h)− u(τ, x)

h
, Ds,h−

x u(τ, x) =
u(τ, x)− u(τ − s, x− h)

h
.

We denote by us,h a solution of the discretized equation and we define

u(τ, x) = lim sup
s,h↘0,

(js,x
¯
+ih)→(τ,x)

us,h(js, x
¯

+ ih), u(τ, x) = lim inf
s,h↘0,

(js,x
¯
+ih)→(τ,x)

us,h(js, x
¯

+ ih).

If we are able to prove that u is a subsolution and u a supersolution of the nondiscretized

PDE (5.17) on S := (0, T0]×(x
¯
, x̄), then, supposed u and u match on the parabolic boundary,

by the comparison principle (which obviously holds for the transformed PDE, too) it follows

that u = u = u is the unique solution of (5.17), and us,h converges locally uniformly to u for

s, h↘ 0.

We only sketch the proof that u is a subsolution, assuming that us,h is uniformly bounded:

Let (τ0, x0) ∈ S and ϕ ∈ C1,2(S) such that u − ϕ has a strict global maximum in (τ0, x0).

Then there exist sequences (sk)k∈N, (hk)k∈N such that, using the abbreviation uk := usk,hk ,

for k →∞ we have

sk, hk ↘ 0, (τk, xk) := (jksk, x
¯

+ ikhk)→ (τ0, x0), uk(τk, xk)→ u(τ0, x0),

(τk, xk) is a global maximum point of uk − ϕ.

Set ϕk := ϕ + uk(τk, xk) − ϕ(τk, xk), so that we have ϕk ≥ uk and ϕk(τk, xk) = uk(τk, xk).

Then it follows

0 = min
(
Dsk
τ u(τk, xk)−D2,hk

x u(τk, xk),Msk,hku(τk, xk)
)

≥ min
(
Dsk
τ ϕk(τk, xk)−D2,hk

x ϕk(τk, xk),Msk,hkϕk(τk, xk)
)
.

(5.18)

If we only use mesh sizes s, k with s ≤ h2 in our approximation scheme, then we get as

s, k ↘ 0,

Ds,h+
x ϕ(τ, x) =

ϕ(τ − s, x+ h)− ϕ(τ, x)

h

=
ϕ(τ, x+ h)− ϕ(τ, x)

h
− ϕ(τ, x+ h)− ϕ(τ − s, x+ h)

s
· s
h

−→ ϕx(τ, x) + ϕτ (τ, x) · 0 = ϕx(τ, x)

and the same for Ds,h−
x ϕ(τ, x). Hence, in view of the consistency of the standard finite

difference approximations for ϕ ∈ C1,2(S), the fact ϕk(τk, xk) = uk(τk, xk) → u(τ0, x0) for

k →∞ and the continuity of u(0), sending k →∞ in (5.18) yields

0 ≥ min

(
ϕτ − ϕxx, u− sup

ζ∈[ζ
¯
,ζ̄]

{
ζ (−βu+ ϕx)− u(0)(τ0, x0 + ln(1− ζ))

})
,
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where the functions on the right hand side are evaluated in (τ0, x0). Therefore u is a subso-

lution of (5.17).

Figures 5.3 and 5.4 show the upper price bounds of the considered options in the in-

complete market involving crash risk as well as the invested sums in the stock in order to

super-hedge the options. For low stock prices these sums are greater than in the crash-free

setting because by an upward price jump both options can be pushed into the money. In the

case of the bull spread also a downward jump can send the option back to the stock price

sensitive zone for high stock prices. But then the option’s seller would lose money from the

hedge and therefore the stock exposure is lower. If the options are in the money, the corre-

sponding hedging strategies tend to be reduced compared to the situation without crash risk

because a large jump might push the options out of the money. As an interesting numerical

result it turns out that for both options a stock price jump only represents the worst-case

scenario at maturity.

Figure 5.3: Super-hedging price of a call under crash risk and associated hedging strategy.

Figure 5.4: Super-hedging price of a bull spread under crash risk and associated hedging

strategy.
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5.3.2 Market completion

In this subsection we want to introduce a new approach to the option pricing problem under

crash risk. Our procedure here will be rather heuristic, in particular it relies on a regularity

assumption for the option price function. The central idea is to complete the market with

crash risk such that the standard replication approach is applicable in some sense. This is

done by introducing crash insurance as auxiliary asset class. Suppose that for insuring the

sum I ∈ R one has to pay a continuous premium with rate C(t, I). In the case of a crash of

height ζ the insured is compensated by a payment of ζI. Here we only consider downward

jumps, i.e. ζ
¯
≥ 0. For ζ

¯
< 0 we would have to include insurance against upward jumps as a

second insurance type.

Now we are able to replicate a derivative by trading with the underlying stock and the

insurance contract. More precisely, we replicate it along the worst-case path. To this end

consider a portfolio with the amount π invested in the stock, the sum I insured against

market crashes and a short position in one option. If the crash-adjusted option prices P (n)

are sufficiently regular, we obtain by Itô’s formula for the dynamic of the wealth process in

the n-crash setting

dX(t) =

(
rX(t) + (µ− r)π(t)− C(t, I(t))−

(
−rP (n) + P

(n)
t + µSP

(n)
S +

1

2
σ2S2P

(n)
SS

))
dt

+ σ
(
π(t)− SP (n)

S

)
dB(t).

Given a crash of size ζ at time τ there is a jump in form of

X(τ) = X(τ−)− ζ (π(τ)− I(τ)) + P (n)(τ, S(τ))− P (n−1)(τ, (1− ζ)S(τ)).

To make the portfolio risk-free we choose π and I such that

π(t) = SP
(n)
S and sup

ζ∈[ζ
¯
,ζ̄]

{
ζ(π(t)− I(t)) + P (n−1)(t, (1− ζ)S)

}
= P (n).

By arbitrage arguments we then have dX(t) = rX(t). It follows

rP (n) − P (n)
t − rSP (n)

S − 1

2
σ2S2P

(n)
SS − C(t, I(t)) = 0, (5.19)

P (n) − sup
ζ∈[ζ

¯
,ζ̄]

{
ζ(SP

(n)
S − I(t)) + P (n−1)(t, (1− ζ)S)

}
= 0. (5.20)

Resolving (5.19) for I(t) and inserting this in (5.20), we get

P (n) = sup
ζ∈[ζ

¯
,ζ̄]

{
ζ

(
SP

(n)
S −J

(
t,rP (n)−P (n)

t −rSP
(n)
S −

1

2
σ2S2P

(n)
SS

))
+P (n−1)(t,(1−ζ)S)

}
,

where q 7→ J(t, q) denotes the inverse of I 7→ C(t, I). If C(t, I) is proportional to I, i.e.

C(t, I) = c(t)I, then the above PDE reads

P (n) = sup
ζ∈[ζ

¯
,ζ̄]

{
ζ

c(t)

(
−rP (n) +P

(n)
t +(r+c(t))SP

(n)
S +

1

2
σ2S2P

(n)
SS

)
+P (n−1)(t,(1−ζ)S)

}
,
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As terminal value we can arrange the natural condition P (n)(T, S) = g(S) because with a

final insurance sum of

I(T ) = π(T ) + sup
ζ∈[ζ

¯
,ζ̄]

g((1− ζ)S(T ))− g(S(T ))

ζ

the portfolio maintains risk-free. With the same arguments as in the previous subsection,

the boundary condition for S = 0 can be formulated as P (n)(t, 0) = e−r(T−t)g(0). For both

conditions we have implicitly used a continuity assumption of the price functions on the

parabolic boundary.

Remark that we have replicated the option’s payoff only along the worst-case path for

the seller of the option. So the above pricing rule states the seller’s price of the option. The

worst-case crash regarded from the buyer’s point of view may differ. Going through the above

argumentation for a portfolio with a long position in one option, we obtain the above pricing

rule with an inf-term instead of the sup-term. Thus, in the case of a single crash size ζ
¯

= ζ̄

the seller’s and the buyer’s price coincide. Given this special case we obtain the linear PDE(
r +

c(t)

ζ̄

)
P (n) − P (n)

t − (r + c(t))SP
(n)
S − 1

2
σ2S2P

(n)
SS =

c(t)

ζ̄
P (n−1)(t, (1− ζ̄)S). (5.21)

A main advantage of this formula is that it generates option prices that are additive. For

example, the value of a bull spread is the difference of the related call prices. Also the put-call

parity holds. For computing the price P (n) in this setting we have to tackle the problem of

calculating the insurance premium c. This task will be addressed in the next section.

Remark 5.3.4. The derivation of the pricing formula (5.21) goes smoothly even for a crash

size of ζ̄ = 1. This is of importance with regard to the pricing of defaultable bonds in Section

5.5.

Numerical example. Using the risk-neutral insurance premium formulas derived in Sec-

tion 5.4 and a finite difference scheme, we can compute the option price under crash risk

numerically. Let us concentrate on the case n = 1. Then we can apply the explicit premium

rule

c(t) =
2(µ− r)ζ̄

(µ− r)(T − t) + 2ζ̄
.

Consequently the crash-adjusted option price is a solution of the PDE(
r +

2(µ− r)
(µ− r)(T − t) + 2ζ̄

)
P (1) − P (1)

t −
(
r +

2(µ− r)ζ̄
(µ− r)(T − t) + 2ζ̄

)
SP

(1)
S − 1

2
σ2S2P

(1)
SS

=
2(µ− r)

(µ− r)(T − t) + 2ζ̄
P (0)(t, (1− ζ̄)S).

In this example we consider the following option:

• Bull spread with strikes 80 and 150.

• Time to maturity is T = 1.
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• The parameters for the bond and the risky asset are r = 0.05, µ = 0.1, σ = 0.3 and

ζ̄ = 0.3.

For the difference scheme we use the standard boundary conditions for a bull spread,

P (1)(T, S) = (S − 80)+ − (S − 150)+,

P (1)(t, 0) = 0 and P (1)(t, S)→ (150− 80)e−r(T−t) for S →∞.

The further proceeding is then very similar to the one presented in the numerical example of

Subsection 5.3.1.

Figure 5.5 compares the option prices and the hedging strategies with and without crash

risk. It promises a low impact of crash risk on the option price. Also the hedging positions

in the risky asset do not differ dramatically if we consider crash risk or not. But under the

threat of a crash the additional risk exposure has to be covered by crash insurance. At the

upper part of the exercise region it is even recommended to sell crash insurance because the

holder of the option is provided with a leeway of risk with regard to a crash scenario. So he

can earn the insurance premium without being threatened by a crash.

Figure 5.5: Price of a bull spread under crash risk and associated hedging strategy.

5.4 Crash insurance

In this section we calculate the price for crash insurance based on the equivalent utility

principle. Here we consider the case of a continuous premium C(n)(t, I) payed by the investor

for insuring the investment sum I in a market with n crash possibilities. If a crash of height ζ

occurs, the investor will be compensated by a payment of ζI. Here we only consider downward

jumps, i.e. ζ
¯
≥ 0. Upward jumps can be treated as independent risk for which a separate

insurance policy is necessary. The calculation of the premium is done in the same way for

both cases. We exclusively use the exponential utility function g(x) = −e−αx because this is
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a utility function with constant absolute risk aversion and therefore leads to premiums which

are independent of the investment sum to be insured.

We consider a portfolio with the investment strategy π = (π(n), . . . , π(0)) and the insurance

sum I ≥ 0, where π(i) denotes the total sum invested in the risky asset for i left crash

possibilities. Then the investor’s wealth is given by

dX(t) =
(
rX(t) + (µ− r)π(n−i)(t)− C(n−i)(t, I)

)
dt+ σπ(n−i)(t)dB(t),

τi < t < τi+1, i = 0, . . . , n,

X(τi) = X(τi−)− ζi
(
π(n−i+1)(τi)− I

)
, i = 1, . . . , n.

The expected utility maximization problem

sup
π∈Un

inf
ξ∈Vn

Et,x
[
− exp(−αXπ,I,ξ(τS))

]
(5.22)

was analyzed in Section 5.1 for the case without crash insurance, i.e. I = 0. We know the

associated value function v(n) and the optimal investment strategy π̂ in form of a system of

ODEs, see Example 5.1.1. The threat of market crashes forces the investor to reduce his risk

capital compared to the no crash model, i.e. π̂(n) ≤ π̂(0). By insuring an investment sum

I the investor is able to increase his exposure in the risky asset by the amount I without

loosing more money due to a crash as before. Since insurance yields costs, an investor does

not demand an insurance sum which allows him to trade more risky than in the no crash

case, i.e. I ≤ π̂(0) − π̂(n). We now want to calculate C(t, I) for I ∈ [0, π̂(0) − π̂(n)] such that

the stochastic control problem (5.22) reveals the same optimal utility as without insurance.

So for all I ∈ [0, π̂(0) − π̂(n)] it has the value function v(n). Hence we have

inf
π∈[0,π̂(0)]

max
(
−Lπ,Iv(n)(t, x), v(n)(t, x)−Mπ,Iv(n−1)(t, x)

)
= 0, (5.23)

where the differential operator Lπ,I and the impulse operator Mπ,I are given by

Lπ,Iϕ(t, x) = ϕt(t, x) + (rx+ (µ− r)π − C(n)(t, I))ϕx(t, x) +
1

2
σ2π2x2ϕxx(t, x),

Mπ,Iϕ(t, x) = inf
ζ∈[ζ

¯
,ζ̄]
ϕ(t, x− ζ(π − I)).

Since π 7→ Lπ,Iv(n)(t, x) is strictly monotonously increasing up to

−µ− r
σ2

v
(n)
x

v
(n)
xx

= −µ− r
σ2

v
(0)
x

v
(0)
xx

= π̂(0)

and π 7→ Mπ,Iv(n−1)(t, x) is strictly mononously decreasing withMπ̄,Iv(n−1)(t, x) = v(n)(t, x)

for

π̄ = π̂(n) + I,

the infimum in (5.23) is attained for π̄ and we have

Lπ̄,Iv(n)(t, x) = 0.
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In view of

Lπ̂(n),0v(n)(t, x) = 0

this yields the following equation for the insurance premium,(
C(n)(t, I)− (µ− r)I

)
v(n)
x − 1

2
σ2
(
I2 + 2π̂(n)(t)I

)
= 0.

Using the semi-explicit formula for v(n) from Example 5.1.1, it follows

C(n)(t, I) = (µ− r)I − 1

2
σ2αer(T−t)

(
I2 + 2π̂(n)(t)I

)
= (µ− r)

(
1− f (n)(t)

)
I − 1

2
σ2αer(T−t)I2,

(5.24)

where f (n)(t) = αer(T−t) σ2

µ−r π̂
(n)(t) solves the system of ODEs

f
(n)
t =

µ− r
ζ̄

(
f (n) − f (n−1)

)
− 1

2

µ− r
ζ̄

((
f (n)

)2
−
(
f (n−1)

)2
)
,

f (n)(T ) = 0, i = 1, . . . , n,

f (0) ≡ 1.

Since we have considered the portfolio decision for I ≥ 0, the formula (5.24) states the

indifference premium for the insurance holder. Therefore let us call the derived premium

C
(n)
holder. Analogously we obtain the indifference premium for the insurer,

C
(n)
insurer(t, I) = (µ− r)

(
1− f (n)

)
I +

1

2
σ2αer(T−t)I2.

Of course we have C
(n)
holder ≤ C

(n)
insurer, but for α ↘ 0 both converge to the risk-neutral

premium

C
(n)
α=0(t, I) = (µ− r)

(
1− f (n)

)
I. (5.25)

So the risk-neutral insurance premium is proportional to I with premium rate c
(n)
α=0(t) =

(µ−r)
(
1− f (n)

)
. Using the properties of the optimal portfolio strategy π̂ stated in the remark

following Example 5.1.1, we deduce that c
(n)
α=0 is monotonously increasing with c

(n)
α=0(T ) = µ−r

and we have the relation 0 ≤ c(1)
α=0 ≤ . . . ≤ c

(n)
α=0 ≤ µ− r. Further we note that

π̂(0)(t)− π̂(n)(t) =
e−r(T−t)

α

µ− r
σ2

(
1− f (n)(t)

)
−→∞ for α↘ 0,

so that the formula (5.25) holds for all I ≥ 0. For I < 0 we set C
(n)
α=0(t, I) = −C(n)

α=0(t,−I).

In the special case n = 0 we have c
(0)
α=0(t) = 0 which goes with our intuition that a crash

insurance in the no-crash model is worthless. For n = 1 we can state the explicit formula

c
(1)
α=0(t) =

2(µ− r)ζ̄
(µ− r)(T − t) + 2ζ̄

.

A remarkable feature of the risk-neutral insurance premium is that it only depends on the

drift coefficients r, µ and the jump size ζ̄, but not on the volatility σ.
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Remark 5.4.1. Using the market completion approach discussed in the foregoing section with

the indifference crash insurance premium of this section, crash-hedging via options is not

possible for an investor with an exponential utility function. To see this, remark that for

the option there exists a perfect hedging strategy in bond, stock and crash insurance. But

the insurance premium is just calculated such that the investor cannot increase his utility by

trading additionally insurance contracts.

Numerical example. We demonstrate the results of this section with a common set of

parameters for the financial market:

• Terminal time is T = 30.

• The parameters for the bond and the risky asset are r = 0.05, µ = 0.1 and ζ̄ = 0.3.

Figure 5.6: Crash insurance premium rate.

5.5 Defaultable bonds

For an application of the crash-adjusted option pricing rules from Section 5.3.2 in a different

context we consider corporate bonds as an alternative risky asset class. The riskiness of the

bonds refers to the possibility of default of the respective issuer which leads to large losses for

the investor. The default event is an extreme scenario which can be modelled as an impulse

perturbation. If the market allows for credit insurance, e.g. in form of credit default swaps,

we can use the option pricing rules derived via market completion to derive a value of a

defaultable bond.
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We are geared to the firm value model in Merton [36]. The model is based on the

assumption that the value process of a firm follows a geometric Brownian motion

dV (t) = µV (t)dt+ σV (t)dB(t)

for some constants µ, σ. The company has further issued one share of stock and a zero

coupon bond with notional K and maturity T . If at time T the firm’s asset value exceeds

the promised payment K, the full notional of the bond can be repaid to the bondholders and

the shareholders receive the residual asset value. If, however, the asset value is less than the

promised payment, the firm defaults, the bondholders receive a payment equal to the asset

value, and the share value drops to zero. Consequently, at the maturity T of the bond we

have the following relations for the share value S(T ) and the bond value D(T ),

S(T ) = (V (T )−K)+, D(T ) = K − (K − V (T ))+.

Hence the value of the share can be interpreted as the price of a call option on the firm’s

asset value with strike K, and the corporate bond can be priced like a portfolio of a risk-free

zero bond with notional K and a short position in a put option on V with strike K.

In this model default can only be detected at maturity. We now want to include the

possibility of an early default at time τ ∈ [0, T ]. In this case the firm’s asset value drops

to zero at τ which corresponds to a jump of size ζ̄ = 1 in the firm value. To make use of

option pricing techniques let us assume that the value V is a tradeable asset. Furthermore,

there exists a credit default insurance such that the default event triggers a payment of

some insurance sum I. The associated premium is payed continuously with rate cI for some

constant c > 0. The consideration of such an insurance secures a complete capital market.

So we can apply the pricing rule (5.21) giving us the following PDEs for the call price C and

the put price P (with V as underlying and strike K),

(r + c)C − Ct − (r + c)V CV −
1

2
σ2V 2CV V = 0,

(r + c)P − Pt − (r + c)V PV −
1

2
σ2V 2PV V = cKe−r(T−t)

with boundary conditions

C(T, V ) = (V −K)+, C(t, 0) = 0,

P (T, V ) = (K − V )+, P (t, 0) = Ke−r(T−t).

Observe that the first PDE is the Black-Scholes PDE for a call on a market with interest

r + c. It follows

C(t, V ) = V Φ(d1(t, V ))−Ke−(r+c)(T−t)Φ(d2(t, V ))

with Φ denoting the cumulative distribution function of the standard normal distribution

and

d1(t, V ) =
ln
(
V
K

)
+ (r + c+ 1

2σ
2)(T − t)

σ
√
T − t

, d2(t, V ) = d1(t, V )− σ
√
T − t.
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From the put-call parity we infer that

P (t, V ) = C(t, V )− V +Ke−r(T−t).

Thus, in view of the relations S(t) = C(t, V (t)) and D(t) = Ke−r(T−t)−P (t, V (t)), we obtain

S(t) = V (t)Φ(d1(t, V (t)))−Ke−(r+c)(T−t)Φ(d2(t, V (t))),

D(t) = Ke−(r+c)(T−t)Φ(d2(t, V (t))) + V (t)Φ(−d1(t, V (t))).

Numerical example. We illustrate the results for the following parameters:

• The issued bond has notional K = 100 and terminal time T = 5.

• The parameters for the (hypothetical) financial market are r = 0.05, µ = 0.1, σ = 0.3

and c = 0.02.

Figure 5.7 compares the values of the share and the defaultable bond with a possible early

default to the corresponding Merton prices (dotted lines). As expected the new bond price

is lower than in the Merton model, especially for high firm values. Instead, the change in

the stock price needs an explanation. An interpretation for the observed phenomenon of a

higher stock price in spite of an additional default risk is that the weak development of the

bond security leads to an increasing demand on the more profitable stock.

Figure 5.7: Share and bond value.

Without much difficulty one can use the derived pricing formula to make portfolio deci-

sions concerning corporate bonds and credit default swaps. Considering that after an early
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default the secure bond is the only investment possibility, it cannot be optimal to enter a

position which would lead to a loss in a default scenario. On the other hand, if one trades

such that a premature default results in a positive profit, then the investor gives away possi-

ble insurance premium revenues. Therefore the relation between the number δ̂ of defaultable

bonds and the insurance sum Î in an optimal portfolio must be Î = δ̂D. Then, using the

dynamics of the process D(t, V (t)), one can verify that, supposed there is no early default,

the investor’s wealth process evolves according to

dX(t) =
(
rX(t) + (µ− (r + c))δ̂V (t)DV (t, V (t))

)
dt+ σδ̂V (t)DV (t, V (t))dB(t).

Remembering the known fact DV (t, V ) = Φ(−d1(t, V )) > 0, it is worthwile to enter a long

position in the defaultable bond if and only if we have c < µ− r. In the case c < µ− r it is

optimal to sell short defaultable bonds.
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Chapter 6

Optimal reinsurance and minimal

capital requirement

In consideration of catastrophes and extreme damage events the worst-case control approach

is very suitable to the insurance business. Our task in this chapter is to find worst-case optimal

reinsurance strategies for an insurer who is faced with a given risk process. Moreover, we

want to calculate the appropriate capital reserves that allow the insurer to bear all the future

damages with a given probability.

The problem of optimal reinsurance strategies has been an area of active research in

recent years. There is a large number of works which address several different kinds of

reinsurance strategies in diverse insurance models. Most of the authors study strategies

which minimize the insurer’s ruin probability in a continuous-time framework where they use

the classical Cramér-Lundberg model or a diffusion approximation of the surplus process as

risk model (see, e.g., [21], [51] and the references therein). For variations of the problem we

refer to Browne [8] and Promislow and Young [45] where the insurer can invest in risky and

riskless assets. We take up their diffusion approximation approach complemented by impulse

perturbation for large insurance losses for our investigations. In almost any cases the time

period being considered is infinite which leads to static reinsurance strategies. In contrast,

we concentrate on a finite time horizon which is conform to our control framework of finite

impulse perturbation. So we obtain dynamic reinsurance strategies, so that the risk position

is adjusted to its duration. However, since the problem of minimizing the ruin probability

in finite time is very difficult to solve even numerically, we have to apply other decision

rules such as utility optimization or minimization of the required capital reserves. To our

knowledge, there are no references dealing with the calculation of capitalization requirements

in this form.

The first section of this chapter introduces the insurance model in detail, and it is followed

by the analysis of some reinsurance problems.

91
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6.1 The insurance model

Let us consider a given probability space (Ω,F ,P). For the risk process we distinguish

between a multitude of small losses and a small number of imaginable large losses. The small

claims can be approximated by a diffusion process as follows: Let C̃(t) =
∑N(t)

i=1 Yi be the

claim process where N(t) denotes the number of claims up to time t and Yi is the size of

the i-th claim. As usual in the classic theory of risk for small claims, N is assumed to be a

Poisson process with rate λ > 0 and Yi are independent and identically distributed random

variables. Then we know from the well studied field of diffusion approximation (see, e.g., [18]

and the references in [8]) that we have C̃ ≈ C with

dC(t) = αdt− βdB(t),

where B denotes a Brownian motion and the drift and the volatility of C are given by

α = λE[Y1] and β2 = λE[Y 2
1 ]. The large claims are modelled by an impulse control. Therefore

we fix a maximal claim size ζ > 0 and a maximal number n of such catastrophes up to the

time horizon T > 0. As filtration we use the P-augmentation (Ft)t of the filtration generated

by the Brownian motion B.

We want to understand these large losses as exceptional events that are necessary to be

taken into consideration for a robust risk control. But the insurer cannot refer to such worst-

case scenarios for his premium calculation since no insurance holder would comply with the

resulting premium rates. So we adopt a premium principle of the classic risk theory defining

the premium rate by c = (1 + θ)α for some loading factor θ > 0. Alternatively, one may

adjust the insurance premium after a large loss. One could argue that in the aftermath

of a catastrophe the insurance company has a better bargaining position to enforce higher

premiums. So we could use different loading factors θ(i) for the setting with i ∈ {0, . . . , n}
possible catastrophes left such that θ(n) ≤ . . . ≤ θ(0). To keep the notation as short as

possible, we want to abandon this technical generalization of the model. Then, ignoring

interest payments on the insurer’s capital, the surplus process of the insurer is given by

dX(t) = cdt− dC(t) = θαdt+ βdB(t),

X(τi) = X(τi−)− ζ,

where τi denotes the time of the i-th large loss. In order to lower the undertaken risk the

insurer can reinsure a part of his risk portfolio. On the one hand we want to consider

proportional reinsurance. Suppose the insurer cedes a fraction of his risk to a reinsurer. Let

π(i)(t) ∈ [0, 1] denote the reinsurance proportion at time t and for i ∈ {0, . . . , n} possible

catastrophes left and let η > θ be the reinsurance loading factor. Then we deal with the

controlled surplus process

dX(t) = (θ − ηπ(n−i)(t))αdt+ (1− π(n−i)(t))βdB(t),

X(τi) = X(τi−)− (1− π(n−i+1)(τi))ζ.
(6.1)
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On the other hand a catastrophe linked reinsurance seems advisable in our situation. A type

of reinsurance which is very common in the insurance of natural catastrophes are CAT-bonds.

By issuing bonds that are linked to special catastrophe scenarios the insurance company can

securitize a part of its catastrophe insurance risk. If such an extreme scenario takes place,

the bond expires without continuing interest and redemption. As compensation for the risk

taken by the investor of a CAT-bond, the insurer pays a risk premium µ > 0. Let us assume

that the insurance company can issue bonds continuously and let us denote by π(i)(t) ≥ 0 the

nominal amount of all bonds issued until time t (in the situation with i ∈ {0, . . . , n} possible

catastrophes left). If we do not allow for a premature cancellation of the bond, π(i) has to be

monotonously increasing. Then we can write the controlled surplus process in form of

dX(t) = (θα− µπ(n−i)(t))dt+ βdB(t),

X(τi) = X(τi−)− ζ + π(n−i+1)(τi).
(6.2)

Actually, there is no payment of π(n−i+1)(τi) in the case of the i-th catastrophe scenario. But

in the above representation we have settled the initial incoming payments and the redemption

(at time T ) which is omitted by the occurrence of a catastrophe.

Besides an optimal reinsurance strategy we strive for another goal. An important task in

insurance is to determine the reserves of the insurance company that are required in order

to fulfill all liabilities. We present two approaches for these connected problems which differ

both in the problem formulation and in the type of reinsurance. In Section 6.2 we maximize

the exponential utility of the insurer’s surplus at final time T by proportional reinsuring.

For the surplus process under the resulting optimal reinsurance policy we then determine the

minimal capital requirements (MCR) of the insurer such that the surplus is positive at time T

with some given probability. So the method used in this section is stepwise. In Section 6.3 we

rather obtain the reinsurance strategy and the MCR simultaneously by solving a stochastic

target problem. Here we use CAT-bonds to lower the risk and therefore the needed capital

reserves, and the MCR is computed as the minimal initial value for the surplus process such

that the surplus is positive at time T with some given probability. We transform this problem

into a target problem whose optimal control is the optimal reinsurance strategy and the value

function is the resulting MCR.

6.2 Exponential utility of terminal surplus

Our first objective is to maximize the exponential utility of terminal surplus of the insurer

by choosing an optimal proportional reinsurance strategy. The analysis of this section is

therefore based on the surplus process given by (6.1). By Un and Vn we denote the adequate

admissibility sets with the underlying control sets U = [0, 1] and Z = {ζ} (see Chapter 2 for

the requirements of admissiblity of the respective controls). Furthermore, by the stopping

time τS = inf{s ≥ t : (s,Xπ,ξ(s)) /∈ S = [0, T )×(0,∞)} we indicate the end of control actions
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due to an early ruin of the insurer or the arrival at the time horizon. Then we want to study

the problem

sup
π∈Un

inf
ξ∈Vn

Et,x [g(X(τS))] for g(x) = −e−γx, γ > 0.

Note that the exponential utility function has a constant absolute risk aversion, −gxx
gx
≡ γ.

As we will see in the following, this is exactly the property that yields an optimal reinsurance

strategy which is independent of the level of reserves of the insurance company.

Let v(n) be the associated value function. The differential operator Lπ and the impulse

operator Mπ corresponding to the surplus process (6.1) are given by

Lπϕ = ϕt + (θ − ηπ)αϕx +
1

2
(1− π)2β2ϕxx,

Mπϕ = ϕ(t, x− (1− π)ζ).

To simplify the calculation let us suppose that γ ≥ ηα
β2 . By this assumption we avoid delicate

boundary problems and are able to state explicit solutions, at least for n = 0 and n = 1. For

n = 0 we can derive the value function as solution of the HJB-equation

sup
π∈[0,1]

Lπv(0)(t, x) = 0, (t, x) ∈ S = [0, T )× (0,∞),

v(0)(t, x) + exp(−γx) = 0, (t, x) ∈ Sc = ([0, T ]× R) \ ([0, T )× (0,∞)).

As result we obtain the constant optimal reinsurance rate

π̂(0)(t) = 1− ηα

γβ2
,

and the value function is

v(0)(t, x) = − exp
(
−γx+ f (0)(t)

)
with

f (0)(t) =

(
γ(η − θ)α− 1

2

η2α2

β2

)
(T − t).

Note that by the made assumptions the optimal control is admissible.

According to Chapter 3, taking into consideration extreme claim sizes we have to solve

the system

inf
π∈[0,1]

max
(
−Lπv(n)(t, x), v(n)(t, x)−Mπv(n−1)(t, x)

)
= 0, (t, x) ∈ S,

v(n)(t, x) + exp(−γx) = 0, (t, x) ∈ Sc.
(6.3)

Here we note that the problem formulation corresponds to the extended differential game

studied in Section 3.6. The underlying assumptions are very easy to check, in particular

we see that v(n) is polynomially bounded on S. Consequently, if the PDE in (6.3) has a

viscosity solution which is continuous at terminal time T with final data as in (6.3) and with
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a continuous associated feedback control function, then we are sure that it is the seeked value

function.

In order to solve the problem (6.3) we state the following lemma:

Lemma 6.2.1. Suppose that for i = 1, . . . , n the value functions v(i) are in C1,2([0, T ] × R)

and are strictly concave in x. Then the characterizing PDE in (6.3) simplifies to

max
π∈U(n)(t,x)

Lπv(n)(t, x) = 0, (6.4)

where we maximize on the subset

U (n)(t, x) := {π ∈ [0, 1] :Mπv(n−1)(t, x) ≥ v(n)(t, x)}.

Furthermore, the unique solution of this restricted maximization problem is

π̂(n)(t, x) = max
(
π(n)∗(t, x), π̄(n)(t, x)

)
with

π(n)∗(t, x) = 1 +
ηα

β2

v
(n)
x (t, x)

v
(n)
xx (t, x)

,

π̄(n)(t, x) = minU (n)(t, x).

Proof: In view of the strict concavity of v(n), the map π 7→ −Lπv(n) is a convex parabola with

minimum at π(n)∗(t, x). Moreover, it is easy to verify that v(n−1) is strictly monotonuously

increasing in x. Therefore the map π 7→ v(n)−Mπv(n−1) is strictly monotonously decreasing.

Because of the continuity of this map and the obvious relation v(n) ≤ v(n−1), the set U (n)(t, x)

is a closed intervall of the form [π̄(n)(t, x), 1] for some π̄(n)(t, x) ∈ [0, 1]. Hence, using con-

tinuity arguments it follows that the infimum in the PDE characterization (6.3) is realized

by π̂(n)(t, x) = max(π(n)∗(t, x), π̄(n)(t, x)) which is the unique solution of the restricted max-

imization problem maxπ∈U(n)(t,x) Lπ(t, x), and the equation reads Lπ̂(n)(t,x)v(n)(t, x) = 0. �

Lemma 6.2.1 yields the optimal reinsurance strategy π̂(n) in the setting with n outstanding

possible catastrophes. Here, the case π̄(n)(t, x) ≥ π(n)∗(t, x) reflects the necessity of a higher

reinsurance rate in order to compensate large claims due to a catastrophe. It seems to be

reasonable that this situation prevails at all time. So let us assume that π̂(n)(t, x) = π̄(n)(t, x)

(which has to be verified later on). Note that for π̄(n)(t, x) ≥ π(n)∗(t, x) the feedback function

π̂(n) satisfies

Mπ̂(n)(t,x)v(n−1)(t, x) = v(n)(t, x). (6.5)

In view of the form of v(0), we make the ansatz

v(i)(t, x) = − exp
(
−γx+ f (i)(t)

)
, i = 1, . . . , n.
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Then we deduce from (6.5)

π̂(n)(t) = 1− f (n)(t)− f (n−1)(t)

γζ
(6.6)

and from (6.4)

f
(n)
t = (θ − ηπ̂(n))αγ − 1

2
(1− π̂(n))2β2γ2. (6.7)

Combining (6.6)-(6.7) we can conclude

π̂
(n)
t =

ηα

ζ
(π̂(n) − π̂(n−1)) +

γβ2

2ζ

(
(1− π̂(n))2 − (1− π̂(n−1))2

)
.

To characterize the control process π̂(n) uniquely we need the correct terminal condition. The

optimal utility − exp(−γx) at time t = T is only attained if the risk process is fully reinsured

at that time, i.e. π̂(n)(T ) = 1.

It remains to check the made assumptions. The value functions are indeed sufficiently

regular and strictly concave in x. The solution of the derived system of ODEs is a unique

differentiable function. Using results from the theory of differential inequalities, we will show

in Lemma 6.2.3 below the relation

1 ≥ π̂(n) ≥ π̂(n−1) ≥ . . . ≥ π̂(0) ≥ 0.

Therefore the assumption π̄(n)(t, x) ≥ π(n)∗(t, x) = π̂(0)(t, x) is true and the strategy π̂ =

(π̂(n), . . . , π̂(0)) is admissible.

So we have proved the following result:

Theorem 6.2.2. The optimal proportional reinsurance strategy π̂ = (π̂(n), . . . , π̂(0)) to max-

imize the expected utility of the surplus at a terminal time T is given by the system of ODEs

π̂
(i)
t =

ηα

ζ
(π̂(i) − π̂(i−1)) +

γβ2

2ζ

(
(1− π̂(i))2 − (1− π̂(i−1))2

)
,

π̂(i)(T ) = 1, i = 1, . . . , n,

(6.8)

where the optimal strategy in the catastrophe-free setting reads

π̂(0)(t) = 1− ηα

γβ2
.

The corresponding value function is given by

v(n)(t, x) = v(0)

(
t, x−

n∑
i=1

(
1− π̂(i)(t)

)
ζ

)
,

where

v(0)(t, x) = − exp

(
−γx+

(
γ(η − θ)α− 1

2

η2α2

β2

)
(T − t)

)
is the value function in the catastrophe-free setting.
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Remark 6.2.1. For n = 1 we can solve the ODE (6.8) explicitly, giving us

π̂(1)(t) = 1− ηα

γβ2

ηα(T − t)
ηα(T − t) + 2ζ

and consequently

v(1)(t, x) = − exp

(
−λer(T−t)x+

(
γ(η − θ)α− 1

2

η2α2

β2

ηα(T − t)
ηα(T − t) + 2ζ

)
(T − t)

)
.

The following lemma states the essential properties of the optimal proportional reinsur-

ance strategy:

Lemma 6.2.3. The solution π̂ = (π̂(n), . . . , π̂(0)) of (6.8) satisfies

(i) 1 ≥ π̂(n) ≥ π̂(n−1) ≥ . . . ≥ π̂(0) ≥ 0,

(ii) π̂
(i)
t ≥ 0 for all i = 1, . . . , n.

Proof: The inequality π̂(0) ≥ 0 is already verified. We prove the remaining statements via

induction.

For i = 1 we can directly compute

π̂(1)(t) = 1− ηα

γβ2

ηα(T − t)
ηα(T − t) + 2ζ

≥ 1− ηα

γβ2
= π̂(0)(t).

In particular we have π̂
(1)
t ≥ 0.

For the induction step we want to consider the function

h(z) := −ηα
ζ
z − γβ2

2ζ
(1− z)2.

For z > z̃ > 0 we verify the one-sided Lipschitz condition

h(z)− h(z̃) ≤ −γβ
2

2ζ

(
(1− z)2 − (1− z̃)2

)
=
γβ2

2ζ
(2− z − z̃)(z − z̃) ≤ γβ2

ζ
(z − z̃).

If we suppose π̂
(i)
t ≥ 0 for i = 1, . . . , n− 1, then we know from the induction hypothesis and

the ODE characterization of π̂(i) that

π̂
(i)
t = −h(π̂(i)) + h(π̂(i−1)) ≥ 0 for i = 1, . . . , n− 1.

Using the ODE characterization of π̂(n) it follows

π̂
(n)
t = −h(π̂(n)) + h(π̂(n−1)) ≥ −h(π̂(n)) + h(π̂(0)).

Since the map z 7→ −h(z) + h(π̂(0)) is a convex parabola with minimum at π̂(0), we deduce

π̂
(n)
t ≥ 0. Furthermore, we calculate

−π̂(n)
t − h(π̂(n)) = −h(π̂(n−1)) ≥ −π̂(n−1)

t − h(π̂(n−1)).

Thus, in view of the terminal condition π̂(n)(T ) = π̂(n−1)(T ), the one-sided Lipschitz condition

of h and Lemma B.3.1 in the appendix, we conclude the desired relation π̂(n) ≥ π̂(n−1).

Because of π̂
(n)
t ≥ 0 and π̂(n)(T ) = 1, it finally follows π̂(n) ≤ 1. �
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So under the threat of large losses the optimal reinsurance rate is not constant any more.

Instead, it is increasing such that at final time the risk portfolio is reinsured completely. And,

very intuitively, the more catastrophes the insurer expects the more he has to reinsure. Fur-

thermore, note that the derived strategy is independent of the insurer’s capitalization which

allows us to split the decision on reinsurance and MCR calculation into two independent

operations.

MCR. After we have found an optimal reinsurance strategy which is independent of x we

next want to calculate the required reserves of an insurer with an exponential utility function.

The final surplus under some strategy π ∈ U0 and without large claims reads in integral form

Xπ(T ) = x+ θα(T − t)− ηα
∫ T

t
π(s)ds+ β

∫ T

t
(1− π(s))dB(s).

If π is a deterministic strategy, we conclude that Xπ(T ) is normally distributed with mean

m(t, x) = Et,x[Xπ(T )] and variance ν(t, x) = Et,x[(Xπ(T )−m(t, x))2] given by

m(t, x) = x+ θα(T − t)− ηα
∫ T

t
π(s)ds,

ν(t, x) = β2

∫ T

t
(1− π(s))2ds.

Thus, in the castastrophe-free setting the ruin probability reads

Pt,x[Xπ(T ) ≤ 0] = 1− Φ

(
− m(t, x)√

ν(t, x)

)
,

where Φ is the cumulative distribution function of the standard normal distribution. So

given some ruin probability p > 0 we can compute the MCR under strategy π by solving the

equation

1− Φ

(
− m(t, x)√

ν(t, x)

)
= p

for x. Let us denote by R
(0)
π (t, p) the solution of this equation. Some elementary calculation

gives us

R(0)
π (t, p) = ηα

∫ T

t
π(s)ds− θα(T − t)− βΦ−1(1− p)

√∫ T

t
(1− π(s))2ds.

Under catastrophe risk the insurer needs an additional cushion. If his reinsurance strategy

π ∈ Un only consists of deterministic control processes π(i), i = 0, . . . , n, then it is reasonable

to maintain the reserve

R(n)
π (t, p) = max

t=:τ (0)≤τ (1)≤...≤τ (n+1):=T

ηα
n∑
i=0

∫ τ (i+1)

τ (i)

π̂(n−i)(s)ds− θα(T − t)

−βΦ−1(1− p)

√√√√ n∑
i=0

∫ τ (i+1)

τ (i)

(1− π̂(n−i)(s))2ds+ ζ

n∑
i=1

(1− π̂(n−i+1)(τ (i)))

 .



6.3. STOCHASTIC TARGET APPROACH 99

Since the reinsurance strategy π̂ of an insurer with exponential utility is deterministic, we

can calculate the associated MCR in this way.

Numerical example. We demonstrate the results of this section with a common set of

parameters for the insurance market:

• Terminal time is T = 30.

• The parameters for the claim process C are α = 1, β = 0.5 and ζ = 1.

• The loading factors are θ = 0.1 and η = 0.3.

• The risk aversion parameter γ is chosen such the optimal reinsurance fraction in the

catastrophe-free setting is 0.1, i.e. γ = ηα
0.9β2 = 4

3 .

• The confidence level for the MCR calculation is p = 0.95.

Figure 6.1 shows the optimal reinsurance strategies and the associated MCR for n ≤ 3. It

points out the trade-off between large insurance losses and the costs for reinsurance. The

latter one increases with the period of reinsurance and becomes negligible for a short time

to maturity, so that the optimal reinsurance proportion increases in time while the MCR

decreases when we near the time horizon.

Figure 6.1: Optimal proportional reinsurance strategy and associated MCR.

6.3 Stochastic target approach

The focus of the last section was the performance of the insurance portfolio measured by

exponential utility. Nevertheless, this approach may lead to a large MCR which is not in

the insurer’s interest because of opportunity costs. This fact shows the disadvantage of the

exponential utility function with its constant absolute risk aversion. Therefore we now look

for reinsurance strategies that minimize the MCR. To this end consider an (arbitrary) risk
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process Xπ,ξ (with π ∈ Un, ξ ∈ Vn). Let us suppose that the company is required to hold

capital as reserves such that loss can be avoided for a given probability. For t ∈ [0, T ],

p ∈ [0, 1] we are interested in

v(n)(t, p) = inf
{
x ∈ R : there exists π ∈ Un s.t. P[Xπ,ξ

t,x (T ) ≥ 0] ≥ p for all ξ ∈ Vn
}
. (6.9)

In order to write v(n) as a value function of a target problem, we follow [7] and introduce an

additional controlled process defined by

dP (t) = φ(t)dB(t),

where the additional control φ is a progressively measurable R-valued square-integrable pro-

cess. By A we denote the set of all progressively measurable R-valued square-integrable

processes and we set Ũn = Un×An+1. Then we can transform the initial problem of reaching

the target with a given probability of success into a standard control problem as follows.

Proposition 6.3.1. For all (t, p) ∈ [0, T )× (0, 1) we have

v(n)(t,p)=inf
{
x∈R : there exists (π,φ)∈Ũn s.t. 1{Xπ,ξ

t,x (T )≥0}≥P
φ
t,p(T ) for all ξ∈Vn

}
. (6.10)

Proof: We denote by ṽ(t, p) the right-hand side of (6.10). For x > v(n)(t, p) we can find

π such that P[Xπ,ξ
t,x (T ) ≥ 0] ≥ p for all ξ. By the martingale representation theorem there

exists a progressively measurable square-integrable process φ such that

p+ 1{Xπ,ξ
t,x (T )≥0} − P[Xπ,ξ

t,x (T ) ≥ 0] = p+

∫ T

t
φ(s)dB(s) = P φt,p(T ).

From this equality we deduce

1{Xπ,ξ
t,x (T )≥0} − P

φ
t,p(T ) = P[Xπ,ξ

t,x (T ) ≥ 0]− p ≥ 0,

and therefore x ≥ ṽ(t, p) from the definition of ṽ.

Conversely, for x > ṽ(t, p) there exist π, φ such that 1{Xπ,ξ
t,x (T )≥0} ≥ P

φ
t,p(T ) for all ξ. Since

P φt,p is a martingale, it follows that

P[Xπ,ξ
t,x (T ) ≥ 0] = E[1{Xπ,ξ

t,x (T )≥0}] ≥ E[P φt,p(T )] = p,

so that x ≥ v(n)(t, p) by the definition of v(n). �

Note that with

g(p) :=


−∞ , p ≤ 0,

0 , p ∈ (0, 1],

∞ , p > 1

the representation (6.10) yields a target problem of the form

v(n)(t,p)=inf
{
x∈R : there exist (π,φ)∈Ũn s.t. Xπ,ξ

t,x (T )≥g(P φt,p(T )) for all ξ∈Vn
}
. (6.11)
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Obviously there are some inconsistencies with the target problem considered in Chapter 4.

First of all, g is not locally bounded on R. However, in view of the initial problem formulation,

it only makes sense to consider v(n) on [0, T ]× [0, 1]. If we assume that v(n) is locally bounded

in the interior of this domain, the viscosity property still holds on [0, T )× (0, 1). As well the

viscosity property of the terminal condition holds on (0, 1) because of the local boundedness

of v(n) in the interior and of g on (0, 1). So it remains to specify the boundary conditions on

[0, T ]×{0, 1}. Furthermore, the introduced stochastic control φ has an unbounded control set.

To cope with this problem we have to make sure that, firstly, the considered SDEs always have

a unique strong solution. Secondly, that the PDE for the subsolution (resp. supersolution)

derived in Chapter 4 is given in form of F (t, p, v(t, p), vt(t, p), vp(t, p), vpp(t, x)) = 0 for a

locally bounded lsc (resp. usc) function F . And, thirdly, that the control φ has values in a

compact subset in a local sense (i.e. as long as (s, P φt,p(s), X
π
t,x(s)) stays within some open

neighborhood of (t, p, x)), allowing us to pass to a converging subsequence in the proof of

the supersolution property (see Appendix C.2, steps 3 and 4). Here the first point is not

critical because φ is square-integrable. The other points will be addressed in relation to the

application considered below. Finally, let us note that the process P φ inherits the strong

Markov property from Xπ,ξ. This fact follows directly from the construction of P φ in the

proof of Proposition 6.3.1. Moreover, since φ is progressively measurable, the set of admissible

stochastic controls is stable under concatenation (see the corresponding introductory notes

in Section 4.3). So the dynamic programming principle of Chapter 4 is valid for the target

problem (6.11).

Application to proportional reinsurance

Let us now apply this reserve calculation technique in the context of proportional reinsurance,

i.e. we consider the controlled system

dX(t) = (θ − ηπ(n−i)(t))αdt+ (1− π(n−i)(t))βdB(t),

dP (t) = φ(n−i)(t)dB(t), i = 0, . . . , n,

X(τi) = X(τi−)− (1− π(n−i+1)(τi))ζ,

P (τi) = P (τi−), i = 1, . . . , n.

According to Chapter 4, the reinsurance policy π and the associated strategy φ have to fulfill

the relation (supposed the derivatives exist)

(1− π(i)(t))β = φ(i)(t)v(i)
p (t, p), i = 0, . . . , n (6.12)

to match the stochastic integrals of X and P . From the definition of v(n) in (6.9) and the

relation Xπ,ξ
t,x = x + Xπ,ξ

t,0 we deduce that v(n) is monotonously increasing in p. We may

therefore assume a gradient constraint of the form v
(n)
p ≥ 0, meaning that in the definition of

a viscosity solution we only consider test functions ϕ with ϕp(t, p) ≥ 0 at the relevant point
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(t, p). If we have ϕp(t, p) > 0, then a control φ(n) fulfilling (6.12) takes on values in a compact

set locally around (t, p). So the proof of the supersolution property can be reproduced without

difficulty in this case. For ϕp(t, p) = 0 we have to force the supersolution property explicitly.

The resulting supersolution equation characterizing (v(n))∗ on [0, T )× (0, 1) is then given by

sup
π∈[0,1]

min

(
−v(n)

t −
1

2
(1−π)2β2 v

(n)
pp

(v
(n)
p )2

+(θ−ηπ)α,v(n)−(1−π)ζ−(v(n−1))∗,v
(n)
p

)
=0.

For the subsolution property no changes are necessary. However, since an authority might

require a non-negative MCR, it seems to be reasonable to reformulate the problem, so that the

initial capital should be non-negative. Noting that in the proof of the subsolution property of

(v(n))∗ at point (t, p) a sequence of initial values is constructed which are non-negative if and

only if (v(n))∗(t, p) > 0 (see Appendix C.1, step 2), we have to exclude the case (v(n))∗ ≤ 0.

Then (v(n))∗ is a viscosity subsolution on [0, T )× (0, 1) of

sup
π∈[0,1]

min

(
−v(n)

t −
1

2
(1−π)2β2 v

(n)
pp

(v
(n)
p )2

+(θ−ηπ)α,v(n)−(1−π)ζ−(v(n−1))∗,−v(n)

)
=0.

Both equations satisfy the semicontinuity requirements (see above) which can be verified by

a distinction of cases. Assuming continuity of v(n) at the parabolic boundary, we can set up

the conditions

v(0)(T, p) = 0, p ∈ (0, 1),

v(0)(t, 0) = 0 and v(0)(t, 1) = (η − θ)α(T − t) + nζ, t ∈ [0, T ),

where for the last condition we used the MCR for the completely reinsured risk process.

Alas, the non-linear term v
(n)
pp /(v

(n)
p )2 together with the fact that v

(n)
p is not bounded

away from zero makes standard numerical solution methods impracticable. So the stochastic

target approach seems not very suitable for proportional reinsurance.

Application to hedging via CAT-bonds

For dealing with special catastrophe reinsurance in form of CAT-bonds as described in Section

6.1, the approach turns out to be more attractive. So let us consider from now on the

controlled surplus process X given by (6.2), but here for simplicity we want to concentrate

first on the risk of large claims and neglect small claim sizes modelled by the Brownian

motion. So we study the process

dX(t) = (θα− µπ(n−i)(t))dt, i = 0, . . . , n,

X(τi) = X(τi−)− ζ + π(n−i+1)(τi) i = 1, . . . , n,

and the auxiliary controlled process P from above. Since X is deterministic up to the jumps

through impulses, we can choose the control φ ≡ 0 (see the construction of P in the proof

of Proposition 6.3.1) and the value function is independent of p. The CAT-bond policy π is
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not affected by a restriction on the corresponding admissibility set U := [0, ζ]. Of course, for

n = 0 issuing CAT-bonds makes no sense and the MCR is v(0)(t) = −θα(T − t). For n ≥ 1

we have to solve the ODE

sup
π∈[0,ζ]

min
(
−v(n)

t + θα− µπ, v(n) − ζ + π − v(n−1)
)

= 0. (6.13)

At time T we can avoid a loss for free by the choice π̂(i)(T ) = ζ for i = 1, . . . , n, so that the

right terminal condition is v(n)(T ) = 0. The supremum in the above equation is obviously

obtained when both components of the min-term equal zero. This implies in particular

that the worst-case scenario leading to the maximal MCR is an immediate occurrence of all

damages which gives us the MCR in form of

v(n)(t) = −θα(T − t) + nζ −
n∑
i=1

π̂(i). (6.14)

Using this representation, the optimal CAT-bond strategy π̂ = (π̂(n), . . . , π̂(0)) can be com-

puted as the solution of the system of ODEs

π̂
(i)
t = µπ̂(i) −

i−1∑
j=1

π̂
(j)
t ,

π̂(i)(T ) = ζ, i = 1, . . . , n,

with π̂(0) ≡ 0. The solution of this ODE system is a unique differentiable function and the

value function given in (6.14) is the unique viscosity solution of (6.13) with linear growth.

Here the latter statement can be shown by a simple comparison result for an ODE.

The construction of the optimal control as solution of both equations for the differential

and the impulse part shows that the optimal reinsurance strategy makes the insurer indifferent

between catastrophe scenarios and “normal times”. Furthermore, via induction one shows

that it is increasing such that at final time the risk portfolio is hedged completely against

large losses. For n = 1 we can explicitly solve the stated ODE giving us

π̂(1)(t) = ζe−µ(T−t)

and consequently

v(1)(t, p) = −θα(T − t) + ζ
(

1− e−µ(T−t)
)
.

It is now very easy to incorporate small claim sizes in the MCR calculation by adding the

stochastic integral
∫ t

0 βdB(s) to the surplus X(t). Since the risk of small and of large claims

is independent and a CAT-bond strategy has no impact on the exposure to small claims, we

can just add the MCRs for both sources of uncertainty. Proceeding as in the second part of

the previous section, the resulting MCR is

v(n)(t, p) = −βΦ−1(1− p)
√
T − t− θα(T − t) + nζ −

n∑
i=1

π̂(i).
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Numerical example. For this example we take the following values for the parameters:

• Terminal time is T = 15.

• The parameters for the claim process C are α = 1, β = 0.5 and ζ = 3.

• The loading factor is θ = 0.1 and the CAT-bond yield is µ = 0.3.

• The confidence level for the MCR calculation is p = 0.95.

Figure 6.2: Optimal CAT-bond strategies and associated MCR.

Figure 6.2 shows the optimal reinsurance strategies and the associated MCR for n ≤ 3.

The dotted lines in the graphic on the right hand side refer to the MCR in the respective set-

ting without issuing CAT-bonds. In contrast to the numerical example given in the previous

section, we have chosen here a severer catastrophe scenario. Reinsuring such scenarios with

a proportional reinsurance would have led to an almost complete risk transfer. That shows

the suitability of CAT-bonds for our specific concern.



Chapter 7

Summary and conclusions

In this thesis we introduced a model for stochastic control taking into account system crashes.

Decisions are made in respect of the worst-case scenario which can be an immediate crash or

no crash relative to each instant. So the decision maker is faced with a balance problem of

controlling satisfactorily in the no crash case and cutting down on the negative consequences

of a crash.

We derived a PDE characterization of the value function for the associated control problem

which is a differential game with combined stochastic and impulse control. As well we derived

a PDE characterization of the value function for the appropriate target problem. In both

cases we proved that the value function solves the respective PDE in the weak sense of a

viscosity solution. For the differential game we even showed uniqueness of the solution which

is necessary in order to use the PDE characterization as a verification result. For the target

problem we formulated a uniqueness statement for a special setting. To allow access to a

wide range of applications we tried to introduce the theory as general as possible. So in the

case of the differential game we studied as underlying control process a jump-diffusion. To

obtain suitable properties we first made some restrictive assumptions concerning the control

sets, the coefficient functions of the jump-diffusion, the transaction function for impulse-

driven jumps and the profit functions. Afterwards we attenuated them to a minimum of

requirements. For the stochastic target problem we limited ourselves to diffusion processes.

However, the results can be extended to underlying controlled jump-diffusion processes under

suitable assumptions on the pure jump measure. The proof is carried out as presented in this

thesis, only with some additional constraint associated to possibly jumps stemming from the

Lévy process (see [5] for this extension in the classic stochastic control framework).

Since we cannot assume the value functions to be differentiable, we chose the viscosity

solution approach. So the results may justify numerical PDE solution techniques for their

computation. However, we hope that analytical presentations can be found in many appli-

cations. Admittedly, the charaterizing PDEs are often either trivial or very difficult to solve.
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In particular, the force to control the stochastic part in the target problem might induce an

uncomfortable non-linearity which complicates even a numerical solution.

As illustrative examples of impulse pertubed stochastic control we studied some problems

in the field of financial risk management. We continued investigations on the worst-case

portfolio problem under crash risk. Here we put our emphasis on the extension of the cap-

ital market by derivatives, crash insurance and defaultable bonds as alternative investment

class. Above all we were concerned with the pricing of these new products. To this end we

presented different approaches. For the pricing of derivatives we considered stochastic target

problems leading to lower and upper price bounds, the buyer’s and seller’s price, in form

of variational inequalities. As an alternative pricing method we introduced the concept of

market completion. By the market completion approach we obtained a unique price function

given by a linear PDE. We introduced the notion of crash insurance and priced such contracts

by an equivalent utility principle. This gave us a time-depending ODE characterization for

the premium rate. Finally we used option prices derived by the market completion approach

to price defaultable bonds on a market with credit default insurance.

Furthermore, we used the impulse pertubed stochastic control framework to handle in-

surance risk. Modelling small claims by a diffusion and large claims in form of impulse

perturbations, we strived for optimal reinsurance strategies. Since we focused on a finite

time horizon, we derived dynamic reinsurance strategies, meaning that the risk position has

to be adjusted to the time to maturity. By maximizing the expected exponential utility of

the insurer’s terminal surplus we first derived an ODE system representation for optimal

proportional reinsurance. As well we determined the associated MCR in terms of the op-

timal strategy. To avoid large capital reserves to be held for the insurer, we considered in

addition the MCR minimization problem. We transformed the origin problem to a stochastic

target problem which allows to find MCR minimizing reinsurance strategies. For this method

to work, we had to choose CAT-bonds as reinsurance type. As result we again obtained a

system of ODEs for the optimal CAT-bond strategy and MCR formulas depending on its

solution. Similar to the investing problem under crash risk, the main feature of the optimal

reinsurance strategies is that they schedule a progressive reduction of the exposed risk until

there is no residual risk any more at the end.

Looking at the worst that can happen is a quite reasonable approach. Nevertheless,

allthough our strategies allow for risky asset investments and uncovered insurance risks, they

can be regarded as too conservative. An interesting extension of our model would be to use

further information on the probability of crash scenarios. For example, one can suppose that

the probability of i ∈ {0, . . . , n} crashes occuring is pi ∈ [0, 1] with
∑n

i=0 pi = 1. Then the

utility maximization problem, if we only consider final utility for simplicity, can be modified

in form of

sup
π∈Un

n∑
i=0

pi inf
ξ∈Ṽi

E
[
g(Xπi,ξ

t,x (T ))
]
, (7.1)
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where Ṽi ⊂ Vi denotes the set of all impulse controls representing i real perturbations, i.e.

ζ ∈ Z for all impulses ζ, and with πi = (π(n), . . . , π(n−i)). We assume that, via a dynamic

programming principle, there is a connection to a control problem of the form

sup
π∈U0

E
[
f(t, x, π(t)) + g(Xπ

t,x(T ))
]
. (7.2)

To account for this, consider for example the worst-case portfolio problem in the case n = 1.

Obviously, the optimal control process for π(0) agrees with the optimal strategy of the portfolio

problem without crash risk. Further, we know that the worst crash scenario is always an

immediate crash, so that (7.1) simplifies to

sup
π(1)∈U0

{
p1Mπ(1)(t)v(0)(t, x) + (1− p1)E

[
g(Xπ(1)

t,x (T ))
]}

,

where v(0) stands for the value function of the classic portfolio problem. By the appropriate

(re)definition of f and g, it follows (7.2). To our knowledge, there are no studies on control

problems of this form. An adequate formulation for the target problem, using a q-quantil

approach as detailed in Section 6.3, q ∈ [0, 1], reads

inf

{
y ∈ R : there exists π ∈ Un s.t.

n∑
i=0

piP
[
Y πi,ξi
t,x,y (T ) ≥ g(Xπi,ξi

t,x (T ))
]
≥ q for all ξi ∈ Ṽi

}
.

Moreover, by the use of information on the probability of crash scenarios, a Value at Risk

approach seems reasonable. In the context of portfolio optimization, Menkens [39] imple-

mented such a procedure exclusively for the “crash times” while the portfolio’s performance

in “normal times” were averaged out. Continuing this approach to a universal Value at Risk

consideration would be a challenging task.
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Appendix A

Viscosity solutions of PDEs

A.1 Semicontinuous functions

Let S be an arbitrary set. A function u : S → R is upper semicontinuous (usc) if

lim sup
k→∞

u(xk) ≤ u(x) for any sequence (xk)k∈N ⊂ S such that xk → x ∈ S.

A function u : S → R is lower semicontinuous (lsc) if

lim inf
k→∞

u(xk) ≥ u(x) for any sequence (xk)k∈N ⊂ S such that xk → x ∈ S.

We denote by USC(S) the set of all usc functions and by LSC(S) is the set of all lsc functions.

Further, for a locally bounded function u : S → R we define the usc envelope u∗ : S → R and

the lsc envelope u∗ : S → R of u by

u∗(x) = lim sup
y→x
y∈S

u(y), u∗(x) = lim inf
y→x
y∈S

u(y).

Note that in general we have

u∗ ≤ u ≤ u∗

and that u is usc if and only if u = u∗ and u is lsc if and only if u = u∗. In particular, u is

continuous if and only if u∗ = u = u∗.

In the following we want to list some properties of semicontinuous functions which are

used in handling possibly discontinuities of viscosity solutions:

(i) u is usc if and only if −u is lsc.

(ii) If u, v are usc with u, v ≥ 0, then uv is usc; if u, v are lsc with u, v ≥ 0, then uv is lsc.

(iii) If u is usc and v is continuous, then u ◦ v is usc; if u is lsc and v is continuous, then

u ◦ v is lsc.

(iv) If u, v are usc, then max(u, v) and min(u, v) are usc; if u, v are lsc, then max(u, v) and

min(u, v) are lsc.
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(v) A usc function attains its maximum on any compact set; a lsc function attains its

minimum on each compact set.

To derive continuity statements for the intervention operatorsMπ in Chapter 3 andMπ
y

in Chapter 4, we need the following lemma which is a generalization of the property (iv).

Lemma A.1.1. Let X be a subset of RN1 and K a non-empty compact subset of RN2. Given

a function f : X ×K → R, we consider the function F : X → R,

F (x) := sup
y∈K

f(x, y).

If f is usc (resp. lsc), then F is usc (resp. lsc).

Proof: Consider a sequence (xk)k∈N ⊂ X converging to x ∈ X.

(i) Let f be usc. Then, in view of the property (v) stated prior to this lemma, the upper

semicontinuity of f and the compactness of K, there exist (yk)k∈N ⊂ K and ŷ ∈ K such that

F (xk) = f(xk, yk) for all k ∈ N and F (x) = f(x, ŷ).

Hence, due to the compactness of K and the upper semicontinuity of f , we can find some

ȳ ∈ K such that

lim sup
k→∞

F (xk) = lim sup
k→∞

f(xk, yk) ≤ f(x, ȳ) ≤ f(x, ŷ) = F (x),

which proofs the upper semicontinuity of F .

(ii) Let f be lsc. For ε > 0 there exists some yε ∈ K such that

f(x, yε) + ε ≥ F (x).

Consider a sequence (yk)k∈N ⊂ K with yk → yε as k →∞. Then, by the lower semicontinuity

of f , it follows

lim inf
k→∞

F (xk) ≥ lim inf
k→∞

f(xk, yk) ≥ f(x, yε) ≥ F (x)− ε.

Since ε > 0 is chosen arbitrarily, we conclude that F is lsc. �

To proof the continuity of the signed distance function δ introduced in Chapter 4, the

following lemma is crucial.

Lemma A.1.2. Let X,Y be subsets of RN1 and RN2, respectively, and let K be a non-empty

compact subset of RN3. Given functions f : X → R and g : Y ×K → RN1, we consider the

function F : Y → R,

F (y) := sup
x∈g(y,K)

f(x).

Let g be continuous. If f is usc (resp. lsc), then F is usc (resp. lsc).

Proof: Consider a sequence (yk)k∈N ⊂ Y converging to ŷ ∈ Y .
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(i) Let f be usc. By the continuity of g and the compactness of U , the set g(y,K) is

compact for all y ∈ Y . Thus, in view of the upper semicontinuity of f and the property (v)

from above, we can find xk ∈ g(yk,K), zk ∈ K and x̂ ∈ g(ŷ, K) such that

F (yk) = f(xk) with xk = g(yk, zk) for all k ∈ N and F (ŷ) = f(x̂).

Since K is compact, we may pass to a subsequence of (zk) converging to ẑ ∈ K. Using the

continuity of g, we obtain xk → x̄ := g(ŷ, ẑ) for k → ∞ along this subsequence. Hence we

conclude

lim sup
k→∞

F (yk) = lim sup
k→∞

f(xk) ≤ f(x̄) ≤ f(x̂) = F (ŷ),

which proofs the upper semicontinuity of F .

(ii) Let f be lsc. For ε > 0 there exists some xε ∈ g(ŷ, K) such that

f(xε) + ε ≥ F (ŷ).

Consider xk ∈ g(y,K) such that xk → xε as k → ∞. Then, by the lower semicontinuity of

f , it follows

lim inf
k→∞

F (yk) ≥ lim inf
k→∞

f(xk) ≥ f(xε) ≥ F (y)− ε.

Since ε > 0 is chosen arbitrarily, we conclude that F is lsc. �

Recalling the relation in terms of semicontinuity between u and −u from the property (i)

in the list stated above, Lemma A.1.1 and Lemma A.1.2 also hold if we consider an infimum

in the respective function F .

A.2 Definition of viscosity solutions

We consider a non-linear second order parabolic PDE of the form

F (t, x, u(t, x),
∂u

∂t
(t, x), Dxu(t, x), D2

xu(t, x)) = 0, (t, x) ∈ S := [0, T )×O, (A.1)

where T > 0 is a fixed time horizon, O is an open subset of Rd and F : S×R×R×Rd×Sd → R
is a continuous map (Sd is the set of all symmetric (d × d)-matrices). As we will see below,

it is of crucial importance for the consistency of the definition of viscosity solutions of (A.1)

that F satisfies the degenerate ellipticity condition

F (t, x, r, a, p,X) ≤ F (t, x, r, a, p, Y ) whenever X ≥ Y. (A.2)

Here X ≥ Y refers to the usual order in Sd in the sense of xTXx ≥ xTY x for all x ∈ Rd.
The following definition specifies a weak notion of a solution of equation (A.1):

Definition A.2.1. Let u : S → R be a locally bounded function.
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(i) We say that u is a (discontinuous) viscosity subsolution of (A.1) if for any point (t, x) ∈
S and all ϕ ∈ C1,2(S) such that (u∗ − ϕ) has a local maximum in (t, x),

F (t, x, u∗(t, x),
∂ϕ

∂t
(t, x), Dxϕ(t, x), D2

xϕ(t, x)) ≤ 0.

(ii) We say that u is a (discontinuous) viscosity supersolution of (A.1) if for any point

(t, x) ∈ S and all ϕ ∈ C1,2(S) such that (u∗ − ϕ) has a local minimum in (t, x),

F (t, x, u∗(t, x),
∂ϕ

∂t
(t, x), Dxϕ(t, x), D2

xϕ(t, x)) ≥ 0.

(iii) We say that u is a (discontinuous) viscosity solution of (A.1) if it is both a viscosity

subsolution and a viscosity supersolution of (A.1).

In consideration of the first and second order condition of a maximum and a minimum, the

requirement (A.2) secures that any classical solution u ∈ C1,2(S) of (A.1) is also a viscosity

solution.

Remark A.2.1. (a) Without loss of generality we can replace the requirement of a “local

maximum” of (u∗ − ϕ) in (t, x) in the definition of a viscosity subsolution by a “strict

local maximum”, “global maximum” or “strict global maximum”. To see this, just

add to ϕ the function h(y) = (y − x)4 which satisfies Dh(x) = 0 and D2h(x) = 0.

Furthermore, if (u∗ − ϕ) has a local maximum in (t, x), by the local boundedness of u

there exists a function ϕ̃ ∈ C1,2(S) such that ϕ̃ = ϕ locally around (t, x) and (u∗ − ϕ̃)

has a global maximum in (t, x). By adding constants to ϕ we may even assume ϕ ≥ u∗,
ϕ(t, x) = u∗(t, x). Apparently, similar modifications for the minimum of (u∗−ϕ) in the

supersolution case hold.

(b) If F is not continuous, but locally bounded and fulfills the degenerate ellipticity con-

dition A.2, then the definition for viscosity solutions persists, when we consider the lsc

envelope F∗ in the subsolution inequality and the usc envelope F ∗ in the supersolution

inequality. For example, u is a viscosity subsolution if for any point (t, x) ∈ S and all

ϕ ∈ C1,2(S) such that (u∗ − ϕ) has a local maximum in (t, x),

F∗(t, x, u
∗(t, x),

∂ϕ

∂t
(t, x), Dxϕ(t, x), D2

xϕ(t, x)) ≤ 0.

Here the envelopes applied to F are taken with respect to all arguments.

It will be useful to give another definition of viscosity solutions which is equivalent to

Definition A.2.1. To this end let us introduce as in Crandall, Ishii and Lions [10] the second

order semijets: We define the superjet J 2,+v(t, x) of a function v ∈ USC(S) at the point

(t, x) ∈ S by

J 2,+v(t, x) := {(a, p,X) ∈ R× Rd × Sd : v(s, y) ≤ v(t, x) + a(s− t) + pT (y − x)

+
1

2
(y − x)TX(y − x) + o(|s− t|+ |y − x|2) as S 3 (s, y)→ (t, x)}.
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Similarly, we define the subjet J 2,−w(t, x) of a function w ∈ LSC(S) at the point (t, x) ∈ S
by

J 2,−w(t, x) := {(a, p,X) ∈ R× Rd × Sd : w(s, y) ≥ w(t, x) + a(s− t) + pT (y − x)

+
1

2
(y − x)TX(y − x) + o(|s− t|+ |y − x|2) as S 3 (s, y)→ (t, x)}.

When we want stress the dependence on the set S = [0, T ) × O, we write the semijets with

subscript S or O, e.g. J 2,+
O .

It is proved in Fleming and Soner [15] (see Chapter V, Lemma 4.1) that

J 2,+v(t, x) =

{(
∂ϕ

∂t
(t, x), Dxϕ(t, x), D2

xϕ(t, x)

)
: ϕ ∈ C1,2(S) and

(v − ϕ) has a local maximum in (t, x)

}
and the same for J 2,−w(t, x) with a local minimum of (w−ϕ) in (t, x) instead of a maximum.

Consequently we can connect Definition A.2.1 with the concept of semijets: A function

u : S → R is a viscosity subsolution of (A.1) if and only if

F (t, x, u∗(t, x), a, p,X) ≤ 0 for all (t, x) ∈ S, (a, p,X) ∈ J 2,+u∗(t, x), (A.3)

and it is a viscosity supersolution of (A.1) if and only if

F (t, x, u∗(t, x), a, p,X) ≥ 0 for all (t, x) ∈ S, (a, p,X) ∈ J 2,−u∗(t, x). (A.4)

For technical reasons we want to extend these viscosity solution qualifications to the

following limiting semijets: For v ∈ USC(S), w ∈ LSC(S) and (t, x) ∈ S we set

J̄ 2,+v(t, x) = {(a, p,X) ∈ R× Rd × Sd : for all k ∈ N there exists

(tk, xk, ak, pk, Xk) ∈ S × R× Rd × Sd svch that (ak, pk, Xk) ∈ J 2,+v(tk, xk)

and (tk, xk, v(tk, xk), ak, pk, Xk)→ (t, x, v(t, x), a, p,X)}

and similarly for J̄ 2,−w(t, x). Let us also remark the obvious relations J 2,−v = −J 2,+(−v)

and J̄ 2,−w = −J̄ 2,+(−w).

For reasons of continuity of F , the characterizations of viscosity subsolutions and super-

solutions by the inequalities (A.3) and (A.4), respectively, remain true if J 2,+ and J 2,− are

replaced by J̄ 2,+ and J̄ 2,−, respectively. So we arrive at the following result:

Proposition A.2.2. A locally bounded function u : S → R is a viscosity subsolution of (A.1)

if and only if

F (t, x, u∗(t, x), a, p,X) ≤ 0 for all (t, x) ∈ S, (a, p,X) ∈ J̄ 2,+u∗(t, x).

The function u is a viscosity supersolution of (A.1) if and only if

F (t, x, u∗(t, x), a, p,X) ≥ 0 for all (t, x) ∈ S, (a, p,X) ∈ J̄ 2,−u∗(t, x).
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A.3 Tools for uniqueness proof

Let us recall two results from Crandall, Ishii and Lions [10] which are essential for proving the

uniqueness of viscosity solutions. The first one is a maximum principle for semicontinuous

functions which is a generalization of the standard maximum principle for C1,2-functions:

Theorem A.3.1 (Theorem 8.3 in [10]). Let ui ∈ USC((0, T )×Oi), i = 1, . . . , k, where Oi is a

locally compact subset of RNi. Let ϕ be defined on an open neighborhood of (0, T )×O1×. . .×Ok
and such that (t, x1, . . . , xk) 7→ ϕ(t, x1, . . . , xk) is once continuously differentiable in t and

twice continuously differentiable in (x1, . . . , xk) ∈ O1 × . . . × Ok. Suppose that t̂ ∈ (0, T ),

x̂i ∈ Oi, i = 1, . . . , k, and

w(t, x1, . . . , xk) := u1(t, x1) + . . .+ uk(t, xk)− ϕ(t, x1, . . . , xk) ≤ w(t̂, x̂1, . . . , x̂k)

for 0 < t < T and xi ∈ Oi. Assume, moreover, that there is an r > 0 such that for every

M > 0 there is a C such that for i = 1, . . . , k,

bi ≤ C whenever (bi, qi, Xi) ∈ J 2,+
Oi ui(t, xi),

|xi − x̂i|+ |t− t̂| ≤ r and |ui(t, xi)|+ |qi|+ |Xi| ≤M.

Then, for each ε > 0 there are Xi ∈ S(Ni) such that

(i) (bi, Dxiϕ(t̂, x̂1, . . . , x̂k), Xi) ∈ J̄ 2,+
Oi ui(t̂, x̂i) for i = 1, . . . , k,

(ii) −
(

1

ε
+ |A|

)
I ≤


X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ A+ εA2,

(iii) b1 + . . .+ bk = ϕt(t̂, x̂1, . . . , x̂k),

where A = (D2
xϕ)(t̂, x̂1, . . . , x̂k).

Moreover, a general uniqueness proof makes use of the following Lemma:

Lemma A.3.2 (Lemma 3.1 in [10]). Let O be a subset of RN , u ∈ USC(O), v ∈ LSC(O)

and

Mα = sup
O×O

{
u(x)− v(y)− α

2
|x− y|2

}
for α > 0. Let Mα <∞ for large α and (xα, yα) be such that

lim
α→∞

{
Mα −

(
u(xα)− v(yα)− α

2
|xα − yα|2

)}
= 0.

Then, limα→∞ α|xα − yα|2 = 0 and

lim
α→∞

Mα = u(x̂)− v(ŷ) = sup
O
{u(x)− v(x)}

whenever x̂ ∈ O is a limit point of xα as α→∞.
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Auxiliary tools

B.1 Estimates of the distribution of a jump diffusion process

Given the stochastic basis of Chapter 3 we consider the stochastic process X = Xπ
t,x started

in (t, x) ∈ [0, T )× Rd and continuously controlled with π ∈ U0,

dX(s) = µ(s,X(s), π(s))dt+ σ(s,X(s), π(s))dB(s)

+

∫
Rk
γ(s,X(s−), π(s−), z))dÑ(ds, dz), X(t) = x,

(B.1)

where the coefficients satisfy the usual growth and Lipschitz conditions, i.e. there exist C > 0,

δ : Rk → R+ with
∫
Rk δ

2(z)ν(dz) <∞ such that for all t ∈ [0, T ], x, y ∈ Rd and π ∈ U ,

|µ(t, x, π)− µ(t, y, π)|+ |σ(t, x, π)− σ(t, y, π)| ≤ C|x− y|,

|γ(t, x, π, z)− γ(t, y, π, z)| ≤ δ(z)|x− y|,

|γ(t, x, π, z)| ≤ δ(z)(1 + |x|).

For the moments of the purely π-controlled jump diffusion (B.1), we get the following

estimates:

Lemma B.1.1. For any k ∈ [0, 2] there exists a constant C > 0 such that for all t ∈ [0, T ],

h ∈ [t, T ], x, y ∈ Rd, π ∈ U0 and any stopping time τ ∈ [t, t+ h] we have

E
[
|Xπ

t,x(τ)|k
]
≤ C(1 + |x|k), (B.2)

E
[
|Xπ

t,x(τ)− x|k
]
≤ C(1 + |x|k)h

k
2 , (B.3)

E

( sup
t≤s≤t+h

|Xπ
t,x(s)− x|

)k ≤ C(1 + |x|k)h
k
2 , (B.4)

E
[
|Xπ

t,x(τ)−Xπ
t,y(τ)|k

]
≤ C|x− y|k. (B.5)

Proof: See Lemma 3.1 in [44]. �
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We use the estimates (B.3) and (B.4) only in the pure continuous control setting without

any impulses. If in the context of impulse perturbation the transaction function Γ is Lipschitz

in x (uniformly in t, π and ζ), then, by the repeated use of the tower property of conditional

expectation, (B.2) and (B.5) hold true also for impulse perturbed controlled processes. For

example we obtain (B.5) for a 1-impulse control ξ = (τ1; ζ1) ∈ V1 and π = (π(1), π(0)) ∈ U1

by

E
[∣∣∣Xπ,ξ

t,x (τ)−Xπ,ξ
t,y (τ)

∣∣∣k] = E

[
E

[∣∣∣∣Xπ(0)

τ1,X
π,ξ
t,x (τ1)

(τ)−Xπ(0)

τ1,X
π,ξ
t,y (τ1)

(τ)

∣∣∣∣k
∣∣∣∣∣Fτ1

]]

≤ E
[
C
∣∣∣Γ(τ1, X

π(1)

t,x (τ1), π(1)(τ1), ζ1)− Γ(τ1, X
π(1)

t,y (τ1), π(1)(τ1), ζ1)
∣∣∣k]

≤ E
[
C ′
∣∣∣Xπ(1)

t,x (τ1)−Xπ(1)

t,y (τ1)
∣∣∣k]

≤ C ′′|x− y|k,

where C,C ′, C ′′ > 0 are constants and we have set ξ = (τ, ζ0) in the case τ1 > τ .

Using the estimates of Lemma B.1.1 one can show the following two lemmas which are

needed for the proof of the supersolution property of the value function of the target problem.

To this end, it is not necessary to prove the assertions for an underlying jump diffusion process.

But we also use the following lemma for the existence proof of a viscosity solution for the

differential game in the extended model.

Lemma B.1.2. Let (tk, xk)k be a sequence in [0, T ]×Rd converging to (t0, x0) ∈ [0, T ]×Rd

and let (πk)k be a sequence in U0. Then, for any sequence (t′k)k in [0, T ] such that t′k ≥ tk

and t′k → t0, we have

sup
tk≤s≤t′k

|Xπk
tk,xk

(s)− x0| → 0 in L2.

Proof: By Doob’s inequality for martingales we have

E

( sup
tn≤s≤t′n

|Xπn
tn,xn(s)− x0|

)2
 ≤ C

{
|xn − x0|2 + E

[∫ t′n

tn

|µ(s,Xπn
tn,xn(s), πn(s))|2ds

]

+ E

[∫ t′n

tn

|σ(s,Xπn
tn,xn(s), πn(s))|2ds

]

+ E

[∫ t′n

tn

∫
Rk
|γ(s,Xπn

tn,xn(s), πn(s), z)|2ν(dz)ds

] }
.

Using the growth conditions on the coefficients, Fubini’s theorem and the estimate (B.2), we

obtain

E

( sup
tn≤s≤t′n

|Xπn
tn,xn(s)− x0|

)2
 ≤ C {|xn − x0|2 + (t′n − tn)(1 + |xn|2)

}
.

The proof is concluded by sending n to infinity. �
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Lemma B.1.3. Let ψ : [0, T ]×Rd×U → R be locally Lipschitz in (t, x) ∈ [0, T ]×Rd uniformly

in π ∈ U . Further, let (hk)k be a strictly positive sequence converging to 0, (tk, xk)k a sequence

in [0, T ]×Rd converging to (t0, x0) ∈ [0, T ]×Rd and let (πk)k be a sequence in U0. Then we

have
1

hk

∫ tk+hk

tk

{ψ(s,Xπk
tk,xk

(s), πk(s))− ψ(t0, x0, πk(s))}ds→ 0 in L2.

Proof: See Lemma 4.1 in [54]. �

B.2 Dynkin’s formula

Given the stochastic basis of Chapter 3 we consider the stochastic process X evolving ac-

cording to the SDE

dX(s) = µ(s,X(s))dt+ σ(s,X(s))dB(s) +

∫
Rk
γ(s,X(s−), z))dÑ(ds, dz), (B.6)

where µ, σ, γ are appropriate (possibly random) functions such that there is a unique strong

solution to (B.6).

For some sufficiently regular map ϕ and some finite stopping time τ , Dynkin’s formula con-

stitutes the expected value of ϕ(τ,X(τ)) in dependence of the Dynkin second order integro-

differential operator L associated to the process X,

Lϕ(t, x) =
∂ϕ

∂t
(t, x) + µ(t, x)TDxϕ(t, x) +

1

2
tr
(
(σσT )(t, x)D2

xϕ(t, x)
)

+

∫
Rk
{ϕ(t, x+ γ(t, x, z))− ϕ(t, x)− γ(t, x, z)TDxϕ(t, x)}ν(dz).

For jump diffusion processes we need the following localized version of Dynkin’s formula:

Theorem B.2.1 (Dynkin’s formula). Let O ⊂ Rd be an open set and define S := [0, T )×O.

Let (t, x) ∈ S, ϕ ∈ C1,2(S) ∩ C(S) and let τ ∈ [t, T ] be a stopping time such that

τ ≤ τS := inf{s ≥ t : (s,X(s)) /∈ S},

(τ,X(τ)) ∈ S a.s.,

Lϕ(s,X(s)) is well-defined for s ∈ [t, τ ]

and

Et,x
[
|ϕ(τ,X(τ))|+

∫ τ

t
{|σ(s,X(s))TDxϕ(s,X(s))|2

+

∫
Rk
|ϕ(s,X(s−) + γ(s,X(s−), z))− ϕ(s,X(s−))|2ν(dz)}ds

]
<∞.

(B.7)

Then we have

Et,x [ϕ(τ,X(τ))] = ϕ(t, x) + Et,x
[∫ τ

t
L(s,X(s))ds

]
.

Proof: The proof of Dynkin’s formula consists of applying Itô’s formula to ϕ (τ,X(τ)) and

taking expectation, so that the integrals with respect to the Brownian motion and the Poisson

martingale measure disappear. �
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Let us briefly verify that this version is strong enough for our applications:

Assume the growth and Lipschitz conditions corresponding to the setting in Chapter 3,

i.e. there exist C > 0, δ : Rk → R+ with
∫
Rk δ

2(z)ν(dz) < ∞ such that for all t ∈ [0, T ],

x, y ∈ Rd,

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y|,

|γ(t, x, z)− γ(t, y, z)| ≤ δ(z)|x− y|,

|γ(t, x, z)| ≤ δ(z)(1 + |x|).

We claim that Dynkin’s formula is applicable for all (t, x) ∈ [0, T )×Rd, ϕ ∈ C1∩C1,2([0, T )×
Rd) and each stopping time

τ ≤ τρ := inf{s ≥ t : |X(s)− x| ≥ ρ} ∧ (t+ ρ), ρ ∈ (0, T − t).

In Section 3.5 we have shown that Lϕ is well-defined on [0, T ) × Rd. Moreover, (τ,X(τ)) ∈
[0, T ]×Rd holds trivially. It remains to check condition (B.7) which follows directly from the

growth conditions on ϕ and on the coefficients σ, γ and from the boundedness of Dxϕ on the

compact set [t, t+ ρ]× B(x, ρ).

For the setting in Chapter 4 it is sufficient to consider the case when there are no jumps,

i.e. N = 0. Apparently, Dynkin’s formula is then applicable to ϕ(τ,X(τ)) for all ϕ ∈
C1,2([0, T )× Rd) and τ ≤ τρ with τρ from above.

B.3 Comparison theorem for ODEs

For the discussion of qualitative properties of the optimal portfolio and reinsurance processes

in Chapter 5 and Chapter 6, respectively, we make use of the following lemma, a comparison

theorem for ODEs.

Lemma B.3.1. Let u, v ∈ C1((0, T )) ∩ C([0, T ]) with v ≥ 0 and suppose that h : R → R
satisfies for some C > 0 the one-sided Lipschitz condition

h(z)− h(z̃) ≤ C(z − z̃) for z ≥ z̃ ≥ 0.

Then

−ut − h(u) ≥ −vt − h(v) on [0, T ),

u(T ) ≥ v(T )

implies u ≥ v on [0, T ].

Proof: The statement is a special case of Lemma XV in Walter [57], Section 28 in Chapter

IV. �

We continue with an application of Lemma B.3.1 in the context of portfolio optimization

under the threat of market crashes.
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Lemma B.3.2. The optimal portfolio strategies π̂ = (π̂(n), . . . , π̂(0)) derived in Example 5.1.1

to maximize expected power utility, log utility and exponential utility at a terminal time T

each satisfy

(i) 0 ≤ π̂(n) ≤ π̂(n−1) ≤ . . . ≤ π̂(0),

(ii) π̂
(i)
t ≤ 0 for all i = 1, . . . , n.

Proof: We carry out the proof in the case of power utility. First we have to transform

the ODE characterizing π̂(i) to separate the variables π̂(i) and π̂(i−1) in the equation. We

substitute 1− ζ̄π̂(i) = e−f
(i)(t) giving us the corresponding ODE in form of

f
(i)
t = −µ− r

ζ̄

(
e−f

(i) − e−f (i−1)
)
− (1− γ)σ2

2ζ̄2

((
1− e−f (i)

)2
−
(

1− e−f (i−1)
)2
)
,

f (i)(T ) = 0, i = 1, . . . , n.

We set

h(z) :=
µ− r
ζ̄

e−z +
(1− γ)σ2

2ζ̄2

(
1− e−z

)2
.

For z ≥ z̃ ≥ 0 one derives the one-sided Lipschitz condition

h(z)− h(z̃) ≤ (1− γ)σ2

2ζ̄2

((
1− e−z

)2 − (1− e−z̃)2)
=

(1− γ)σ2

2ζ̄2

(
2− e−z − e−z̃

) (
e−z̃ − e−z

)
≤ (1− γ)σ2

ζ̄2

(
e−z̃ − e−z

)
≤ (1− γ)σ2

ζ̄2
max
θ≥0

e−θ(z − z̃) =
(1− γ)σ2

ζ̄2
(z − z̃).

For i = 1 we note that π̂(0) = 1
1−γ

µ−r
σ2 ≥ 0 is constant and therefore f (0) ≥ 0 and f

(0)
t = 0.

Thus, in view of the ODE characterization of f (1) we have −f (1)
t −h(f (1)) = −f (0)

t −h(f (0)).

Then, supposed f (1) ≥ 0, we can argue by the use of Lemma B.3.1 that the terminal condition

f (1)(T ) = 0 implies f (1) ≤ f (0), i.e. π̂(1) ≤ π̂(0). Moreover, using the equation f
(1)
t =

−h(f (1))+h(f (0)) and noting that f (0) maximizes the map z 7→ −h(z)+h(f (0)), we conclude

f
(1)
t ≤ 0 and equivalently π̂

(1)
t ≤ 0. Combining the latter result with the terminal condition

for f (1) and π̂(1) proves the positivity of both processes.

For the induction step we suppose f
(i)
t ≤ 0 for i = 1, . . . , n − 1. Then the ODE system

tells us f
(i)
t = −h(f (i)) + h(f (i−1)) ≤ 0 for all i = 1, . . . , n − 1, so that we can estimate

f
(n)
t = −h(f (n)) + h(f (0)). Then the monotony and the positivity of f (n) follow as in the

initial step. From the ODE for f (n) we deduce −f (n)
t −h(f (n)) ≤ −f (n−1)

t −h(f (n−1)). Noting

the terminal condition f (n)(T ) = f (n−1)(T ) = 0, by Lemma B.3.1 it follows f (n) ≤ f (n−1).

Translating the results for the process π̂(n) ends the proof.

The proof of the properties (i) and (ii) in the log utility case is completely analogous, the

one in the exponential utility case is similar to the proof of Lemma 6.2.3. �
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Appendix C

Proof of the PDE characterization

for the target problem

C.1 Subsolution property on [0, T )× Rd

Proof of Theorem 4.4.3: To make the notion more convenient we write v instead of v(n) in

the following. Let (t0, x0) ∈ S := [0, T )×Rd and ϕ ∈ C1,2(S) such that ϕ(t0, x0) = v∗(t0, x0)

and ϕ > v∗ on S \ {(t0, x0)}. If the set Nϕ(t0, x0) is empty, the subsolution inequality holds

trivially by the convention min(sup∅, a) = a with a = δNϕ(t0, x0) < 0. So let us suppose

from now on that Nϕ(t0, x0) is non-empty. We have to show that for all π ∈ Nϕ(t0, x0) we

have

min
(
−Lπϕ(t0, x0) + µY (t0, x0, ϕ(t0, x0), π),Mπ

ϕ(t0,x0)(v
(n−1))∗(t0, x0)

)
≤ 0.

Let us assume to the contrary that there exist π0 ∈ Nϕ(t0, x0) and η > 0 such that

− Lπ0ϕ(t0, x0) + µY (t0, x0, ϕ(t0, x0), π0) ≥ 2η and Mπ0

ϕ(t0,x0)(v
(n−1))∗(t0, x0) ≥ 2η, (C.1)

and let us work towards a contradiction to (DP2). We do so in several steps.

Step 1. According to Assumption 4.2.1 there exists a continuous map π̂ on some open

neighborhood of (t0, x0) in S satisfying π̂(t, x) ∈ Nϕ(t, x) and π̂(t0, x0) = π0. Then, in view of

the lower semicontinuity ofMπ
y (v(n−1))∗ in (t, x, y, π), the relationMπ

yv
(n−1) ≥Mπ

y (v(n−1))∗

and the continuity of the remaining functions which are involved in (C.1), we can find some

ρ > 0 such that

−Lπ̂(t,x)ϕ(t, x) + µY (t, x, y, π̂(t, x)) ≥ η and Mπ̂(t,x)
y v(n−1)(t, x) ≥ η

for all (t, x, y) ∈ S × R such that (t, x) ∈ Bρ and |y − ϕ(t, x)| ≤ ρ
(C.2)

and

π̂(t, x) ∈ Nϕ(t, x) for all (t, x) ∈ Bρ. (C.3)

121
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Here Bρ := B((t0, x0), ρ) := (t0 − ρ, t0 + ρ) × B(x0, ρ) denotes the open parabolic ball sur-

rounding (t0, x0) with radius ρ (For t0 = 0 we set Bρ := [0, ρ)× B(x, ρ).).

Step 2. From the definition of v∗ there exists a sequence (tk, xk)k∈N ⊂ S such that

(tk, xk) → (t0, x0) and v(tk, xk) → v∗(t0, x0) as k → ∞. Choose a sequence (εk)k∈N with

εk ↘ 0 and set yk := v(tk, xk)− εk and δk := yk − ϕ(tk, xk). Then, δk → 0 for k →∞.

Let (Xk, Yk) be the solution of the state equation (4.1) with start in Xk(tk) = xk, Yk(tk) =

yk and controlled via π̂k(t) := π̂(t,Xk(t)), i.e. (Xk, Yk) = (X π̂k
tk,xk

, Y π̂k
tk,xk,yk

). To be more

precise, the feedback control function π̂k(., .) is only well-defined on Bρ. But for our purpose

it is sufficient to consider the controlled system up to the first exit time of (t,Xk(t)) of Bρ.
Remark further that due to the continuity of the map π̂k and the boundedness of Bρ we

can ensure to find a continuation of π̂k outside Bρ such that the associated control π̂k is

admissible. In addition we define the process

Ŷk(t) := ϕ(t,Xk(t))− εk

and compare it to the process Yk. Applying Itô’s formula we obtain

dŶk(t) = Lπ̂k(t)ϕ(t,Xk(t))dt+Dxϕ(t,Xk(t))
TσX(t,Xk(t), π̂k(t))dB(t).

Taking into account (C.3) and using the definition of N , we can conclude that

Dxϕ(t,Xk(t))
TσX(t,Xk(t), π̂k(t)) = σY (t,Xk(t), Yk(t), π̂k(t)) as long as (t,Xk(t)) ∈ Bρ.

So in this situation we have

dŶk(t) = Lπ̂k(t)ϕ(t,Xk(t))dt+ σY (t,Xk(t), Yk(t), π̂k(t))dB(t). (C.4)

Recall that Yk solves the same SDE with a different drift term,

dYk(t) = µY (t,Xk(t), Yk(t), π̂k(t))dt+ σY (t,Xk(t), Yk(t), π̂k(t))dB(t). (C.5)

Step 3. We define the stopping times

τBk := inf{t ≥ tk : (t,Xk(t)) /∈ Bρ} and

τk := inf{t ≥ tk : |Yk(t)− ϕ(t,Xk(t))| ≥ ρ} ∧ τBk .

Because of (tk, xk) → (t0, x0) ∈ Bρ and Yk(tk) − ϕ(tk, Xk(tk)) = δk → 0 as k → ∞, we have

τk > tk for large k. Further, the definition of τk guarantees that both (t,Xk(t)) ∈ Bρ and

|Yk(t)− ϕ(t, x)| ≤ ρ hold for all t ∈ [tk, τk]. Therefore (C.2) yields

Mπ̂k(t)
Yk(t)v

(n−1)(t,Xk(t)) ≥ η for all t ∈ [tk, τk] (C.6)

and

−Lπ̂k(t)ϕ(t,Xk(t)) + µY (t,Xk(t), Yk(t), π̂k(t)) ≥ η for all t ∈ [tk, τk].
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In view of the dynamics of Yk and Ŷk given in (C.5) and (C.4), respectively, we can deduce

from the last inequality the relation

Yk(t) ≥ Ŷk(t) for all t ∈ [tk, τk]. (C.7)

This leads to the conclusion

Yk(τk)− ϕ(τk, Xk(τk)) = ρ for τk < τBk . (C.8)

To see this, just note that in the case of τk < τBk we have |Yk(τk) − ϕ(τk, Xk(τk))| = ρ > 0

with Yk(τk)− ϕ(τk, Xk(τk)) = Yk(τk)− Ŷk(τk)− εk and choose a suitably large k.

Step 4. Now we are in the position to induce a contradiction to (DP2). From the definition

of τBk we know that (τk, Xk(τk)) ∈ ∂Bρ holds for τk = τBk . Since the function ϕ − v∗ has a

strict minimum in (t0, x0) ∈ Bρ with minimum zero, its values on the boundary ∂Bρ are

limited from above by

β := min
∂Bρ
{ϕ− v∗} > 0.

Using the inequalities ϕ− β ≥ v∗ ≥ v on ∂Bρ and ϕ ≥ v∗ ≥ v on Bρ, we can deduce

Yk(τk)− v(τk, Xk(τk)) ≥ 1{τk=τBk }
{Yk(τk)− ϕ(τk, Xk(τk)) + β}

+ 1{τk<τBk }
{Yk(τk)− ϕ(τk, Xk(τk))} ≥ (β − εk) ∧ ρ,

(C.9)

where the last inequality arises from (C.7), (C.8) and the definition of Ŷk. Recall that by

construction we have (Xk, Yk) = (X π̂k
tk,xk

, Y π̂k
tk,xk,yk

) with yk = v(tk, xk)−εk < v(tk, xk). Hence,

for a sufficiently large k the inequalities (C.6) and (C.9) represent a contradiction to (DP2).

�

C.2 Supersolution property on [0, T )× Rd

Proof of Theorem 4.4.4: To make the notion more convenient we write v instead of v(n)

in the following. Let (t0, x0) ∈ S and ϕ ∈ C1,2(S) such that ϕ(t0, x0) = v∗(t0, x0) and ϕ < v∗

on S \{(t0, x0)}. In order to prove the supersolution inequality we have to show that for each

η > 0 there exists π0 ∈ Nϕ(t0, x0) such that

−Lπ0ϕ(t0, x0) + µY (t0, x0, ϕ(t0, x0), π0) ≥ −η and Mπ0

ϕ(t0,x0)(v
(n−1))∗(t0, x0) ≥ −η.

We split the proof into several steps.

Step 1. From the definition of v∗ there exists a sequence (tk, xk)k∈N ⊂ S such that

(tk, xk) → (t0, x0) and v(tk, xk) → v∗(t0, x0) for k → ∞. Set yk := v(tk, xk) + 1
k and

δk := yk−ϕ(tk, xk), and observe that δk → 0 as k tends to infinity. Then, according to (DP1)

there exists a control process πk ∈ U0 such that for each stopping time τk ∈ [tk, T ] we have

Y πk
tk,xk,yk

(τk) ≥ v(τk, X
πk
tk,xk

(τk)) (C.10)
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and

Mπk(t)

Y
πk
tk,xk,yk

(t)
v(n−1)(t,Xπk

tk,xk
(t)) ≥ 0 for all t ∈ [tk, τk]. (C.11)

We set Xk := Xπk
tk,xk

and Yk := Y πk
tk,xk,yk

. Because of v ≥ v∗ ≥ ϕ and the definition of yk and

δk, it follows from (C.10) that

δk + (Yk(τk)− yk)− (ϕ(τk, Xk(τk))− ϕ(tk, xk)) ≥ 0.

By Itô’s formula this can be read as

0 ≤ δk +

∫ τk

tk

{µY (t,Xk(t), Yk(t), πk(t))− Lπk(t)ϕ(t,Xk(t))}dt

+

∫ τk

tk

{σY (t,Xk(t), Yk(t), πk(t))−Dxϕ(t,Xk(t))
TσX(t,Xk(t), πk(t))}dB(t).

(C.12)

Step 2. For ease of notation let us use the abbreviation

ςk(t) := σY (t,Xk(t), Yk(t), πk(t))−Dxϕ(t,Xk(t))
TσX(t,Xk(t), πk(t)).

For λ ∈ R we introduce the probability measure Pλk equivalent to P defined by the density

process
dPλk
dP

∣∣∣∣
Ft

= Lλk(t) := E
(
λ

∫ t

tk

ςk(s)dB(s)

)
.

Here E denotes the Doléans-Dade exponential operator, i.e. the process Lλk is given as the

solution of the SDE

Lλk(tk) = 1,

dLλk(t) = Lλk(t)λςk(t)dB(t) for t ≥ tk.

Set Mk(t) :=
∫ t
tk
ςk(s)dB(s). According to Itô’s product law the process LλkMk obeys the

dynamics

d(LλkMk)(t) = Lλk(t)λ|ςk(t)|2dt+ (Lλk(t)ςk(t) + Lλk(t)λςk(t)Mk(t))dB(t).

Let us call the volatility coefficient in the above representation ς̃k(t). For some ρ > 0 we

choose as stopping time

τk := inf{t ≥ tk : |Xk(t)− xk| ≥ ρ} ∧ inf{t ≥ tk : |Yk(t)− yk| ≥ ρ} ∧ T.

Then the process
∫ τk
tk
ς̃k(s)dB(s) is a P-martingale. Denoting by Eλk the expectation operator

under Pλk , we can conclude

Eλk [Mk(τk)] = E[Lλk(τk)Mk(τk)] = E[

∫ τk

tk

Lλk(t)λ|ςk(t)|2dt] = E[

∫ T

tk

Lλk(t)λ|ςk(t)|21{t≤τk}dt]

=

∫ T

tk

E[Lλk(t)λ|ςk(t)|21{t≤τk}]dt =

∫ T

tk

Eλk [λ|ςk(t)|21{t≤τk}]dt

= Eλk [

∫ T

tk

λ|ςk(t)|21{t≤τk}dt] = Eλk [

∫ τk

tk

λ|ςk(t)|2dt],
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where we are allowed to change the order of integrating by Fubini’s theorem. Hence, taking

expectation under Pλk in (C.12) leads to

0 ≤ δk + Eλk
[ ∫ τk

tk

{µY (t,Xk(t), Yk(t), πk(t))− Lπk(t)ϕ(t,Xk(t))

+ λ|σY (t,Xk(t), Yk(t), πk(t))− σX(t,Xk(t), πk(t))
TDxϕ(t,Xk(t))|2}dt

]
.

In consideration of (C.11) we can write the above inequality as

0 ≤ δk + Eλk
[ ∫ τk

tk

{µY (t,Xk(t), Yk(t), πk(t))− Lπk(t)ϕ(t,Xk(t))

+ λ|σY (t,Xk(t), Yk(t), πk(t))− σX(t,Xk(t), πk(t))
TDxϕ(t,Xk(t))|2

+ λMπk(t)
Yk(t)v

(n−1)(t,Xk(t))
−}dt

]
.

(C.13)

Step 3. Choose a strictly positive sequence (hk)k∈N such that hk → 0 and δk
hk
→ 0 as

k → 0. Since the inequality (C.13) holds for any stopping time smaller than τk, we may

replace τk in (C.13) by θk = τk ∧ (tk + hk). Now we divide this inequality by hk and want to

let converge k to infinity. The integrand Hλ of the right hand side in (C.13) satisfies

1

hk

∫ θk

tk

Hλ(t,Xk(t), Yk(t), πk(t))dt ≤ |Hλ(t̂k, x̂k, ŷk, π̂k)|,

where (t̂k, x̂k, ŷk, π̂k) is a maximizer of the continuous map |Hλ| on the compact subset [tk, tk+

hk] × B(xk, ρ) × B(yk, ρ) × U . Since hk → 0 and (tk, xk, yk) → (t0, x0, y0), y0 := v∗(t0, x0),

for k → ∞, the right hand side of the last inequality converges to |Hλ(t0, x̂, ŷ, π̂)| < ∞ for

some suitable (x̂, ŷ, π̂) ∈ B(x0, ρ) × B(y0, ρ) × U . Moreover, using estimate (B.5) from the

appendix, it can be checked easily that 1{θk=tk+hk} → 1 almost surely for k →∞. Then, by

the dominated convergence theorem and the right continuity of the filtration, we obtain

lim inf
k→∞

1

hk

∫ tk+hk

tk

Hλ(t,Xk(t), Yk(t), πk(t))dt ≥ 0.

By Lemma B.1.3 in the appendix and the Lipschitz conditions assumed in (T3) and in the

statement, it follows

lim inf
k→∞

1

hk

∫ tk+hk

tk

Hλ(t0, x0, y0, πk(t))dt ≥ 0. (C.14)

Furthermore, because of 1
hk

∫ tk+hk
tk

dt = 1 we have

1

hk

∫ tk+hk

tk

Hλ(t0, x0, y0, πk(t))dt ∈ convHλ(t0, x0, y0), (C.15)

where convHλ(t, x, y) is the closed convex hull of the set Hλ(t, x, y) given by

Hλ(t, x, y) := {Hλ(t, x, y, π) : π ∈ U}.
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Therefore it follows from (C.14) and (C.15), together with the convexity of U , that

sup
π∈U

Hλ(t0, x0, y0, π) = sup
ψ∈convHλ(t0,x0,y0)

ψ ≥ 0. (C.16)

Step 4. Note that (C.16) holds for all λ ∈ R, so that we can choose λ = −k for k ∈ N.

By the compactness of U the supremum in (C.16) is attained at some π̂k ∈ U and reads as

µY (t0, x0, y0, π̂k)− Lπ̂kϕ(t0, x0)− kMπ̂k
y0
v(n−1)(t0, x0)−

−k|σY (t0, x0, y0, π̂k)−Dxϕ(t0, x0)TσX(t0, x0, π̂k)|2 ≥ 0.

Taking into account that (π̂k)k∈N ⊂ U is a bounded sequence, we may pass to a subsequence

converging to some π0 ∈ U . Then the last inequality gives us

µY (t0, x0, y0, π0)− Lπ0ϕ(t0, x0) ≥ 0, (C.17)

Mπ0
y0
v(n−1)(t0, x0) ≥ 0, (C.18)

|σY (t0, x0, y0, π0)−Dxϕ(t0, x0)TσX(t0, x0, π0)|2 = 0. (C.19)

From (C.19) we conclude that π0 ∈ N(t0, x0, y0, Dxϕ(t0, x0)). Recalling that y0 = v∗(t0, x0),

the supersolution property thus follows from (C.17), (C.18) and the relationMπ0
y0

(v(n−1))∗ ≥
Mπ0

y0
v(n−1). �

C.3 Subsolution property on {T} × Rd

Proof of Theorem 4.4.5: For ease of simplicity we write v instead of v(n) and G instead of

G
(n)

. Choose x0 ∈ Rd and ϕ ∈ C2(Rd) such that G(x0) = ϕ(x0) and G ≤ ϕ on Rd. Suppose

to the contrary that there exists η > 0 satisfying

min

(
G(x0)− g∗(x0), sup

π∈N(T,x0,G(x0),Dxϕ(x0))

Mπ
G(x0)

(v(n−1))∗(T, x0)

)
≥ 2η. (C.20)

Consider the auxiliary test function ϕ̃ : [0, T ]× Rd → R given by

ϕ̃(t, x) := ϕ(x) + |x− x0|2 +
√
T − t.

Then, limt→T
∂ϕ̃
∂t (t, x) = −∞ uniformly in x. Therefore, by the compactness of U , the

continuity of the coefficients µX , σX , µY and the upper semicontinuity of v∗, we can find

ρ > 0 such that

− Lπϕ̃(t, x) + µY (t, x, v∗(t, x), π) > 0 (C.21)

for all (t, x) ∈ [T − ρ, T ]× B(x0, ρ) and π ∈ U .

Noting that we may substitute v by v∗ in the definition of G, there exists a sequence

(sk, χk) in [T − ρ, T ] × B(x0, ρ) satisfying (sk, χk) → (T, x0) and v∗(sk, χk) → G(x0). Let
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(tk, xk) denote a maximum point of v∗− ϕ̃ on [sk, T ]×B(x0, ρ). Arguing as in Section 5.2 of

[5], we can show that, up to a subsequence,

lim
k→∞

(tk, xk) = (T, x0) with tk < T for sufficiently large k,

and lim
k→∞

v∗(tk, tk) = G(x0).
(C.22)

Passing to this subsequence we calculate

Dxϕ̃(tk, xk) = Dxϕ(xk) + 2(xk − x0)→ Dxϕ(x0) for k →∞. (C.23)

The subsolution property of v on [0, T )× Rd (see Theorem 4.4.3) gives us

min
(
−Lπϕ̃(tk, xk) + µY (tk, xk, v

∗(tk, xk), π),Mπ
v∗(tk,xk)(v

(n−1))∗(tk, xk)
)
≤ 0

for all π ∈ N(tk, xk, v
∗(tk, xk), Dxϕ̃(tk, xk)) and k large enough. In consideration of (C.21)

this implies

sup
π∈N(tk,xk,v∗(tk,xk),Dxϕ̃(tk,xk))

Mπ
v∗(tk,xk)(v

(n−1))∗(tk, xk) ≤ 0. (C.24)

On the other hand, we deduce from (C.20) and the lower semicontinuity of the map (t, x, y, π) 7→
Mπ

y (v(n−1))∗(t, x) that

Mπ
y (v(n−1))∗(t, x) ≥ η for all (t, x, y, π) ∈ Bδ,

where Bδ := [T − δ, T ]×B(x0, δ)×B(G(x0), δ)×B(π0, δ) for some δ > 0 chosen small enough

and π0 ∈ N(T, x0, G(x0), Dxϕ(x0)). In view of the convergence results (C.22)-(C.23) and the

fact

N(tk, xk, v
∗(tk, xk), Dxϕ̃(tk, xk)) ∩ B(π0, δ) 6= ∅ for large k,

which is a consequence of Assumption 4.2.1, this represents a contradiction to (C.24). �

C.4 Supersolution property on {T} × Rd

Proof of Theorem 4.4.6: For ease of simplicity we write v instead of v(n) and G instead

of G(n). First we show that G ≥ g∗. Let x0 ∈ Rd and (tk, xk) ∈ [0, T ) × Rd such that

(tk, xk)→ (T, x0) and v(tk, xk)→ G(x0) for k →∞. Set yk := v(tk, xk)+ 1
k . Then, according

to (DP1) there exists πk ∈ U such that

Y πk
tk,xk,yk

(T ) ≥ g(Xπk
tk,xk

(T )).

Lemma B.1.2 in the appendix implies

(Xπk
tk,xk

(T ), Y πk
tk,xk,yk

(T ))→ (x0, G(x0)) for k →∞

after possibly passing to a subsequence. Thus, sending k →∞ in the last inequality gives us

G(x0) ≥ lim inf
x′→x

g(x′) ≥ g∗(x0).
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Let ϕ ∈ C2(Rd) satisfying G ≥ ϕ on Rd and G(x0) = ϕ(x0) for some x0 ∈ Rd. Since

we may replace v by v∗ in the definition of G, there exists a sequence (sk, χk) converging to

(T, x0) such that sk < T and v∗(sk, χk)→ G(x0). For k ∈ N and α > 0 consider the auxiliary

test function

ϕαk (t, x) := ϕ(x)− α

2
|x− x0|2 + α

T − t
T − sk

.

Let B := B(x0, 1) be the unit ball in Rd centered at x0. Choose (tαk , x
α
k ) ∈ [sk, T ]× B which

minimizes the difference v∗ − ϕαk on [sk, T ]× B. Following line by line the arguments of the

proof of Lemma 20 in [5], we can show that

lim
k→∞

(tαk , x
α
k ) = (T, x0) with tαk < T for sufficiently large k, for all α > 0, (C.25)

and

lim
α↘0

lim
k→∞

v∗(t
α
k , t

α
k ) = G(x0). (C.26)

Furthermore, we have

lim
α↘0

lim sup
k→∞

sup
(t,x)∈[sk,T ]×B

|Dxϕ
α
k (t, x)−Dxϕ(x)| = 0. (C.27)

From the supersolution property of v∗ on [0, T )×Rd, we know that for any ε > 0 there exists

παk (ε) ∈ N(tαk , x
α
k , v∗(t

α
k , x

α
k ), Dxϕ

α
k (tαk , x

α
k )) such that

Mπαk (ε)

v∗(tαk ,x
α
k )(v

(n−1))∗(t
α
k , x

α
k ) ≥ −ε. (C.28)

Noting that U is compact, after possibly passing to a subsequence we get

π(ε) := lim
α↘0

lim
k→∞

παk (ε) ∈ U.

Then, by (C.25)-(C.27) and the remarks on the continuity of (t, x, y, p) 7→ N(t, x, y, p) in

Section 4.4, it follows

π(ε) ∈ N(T, x0, G(x0), Dxϕ(x0)).

In view of (C.25)-(C.26) and the upper semicontinuity of (t, x, y, π) 7→ Mπ
y (v(n−1))∗(t, x), we

deduce from (C.28) that

Mπ(ε)
G(x0)(v

(n−1))∗(T, x0) ≥ lim sup
k→∞

Mπαk (ε)

v∗(tαk ,x
α
k )(v

(n−1))∗(t
α
k , x

α
k ) ≥ −ε.

Since ε > 0 was chosen arbitrarily, this yields

sup
π∈N(T,x0,G(x0),Dxϕ(x0))

Mπ
G(x0)(v

(n−1))∗(T, x0) ≥ 0

which ends the proof. �
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