
SFB 
823 

When outcome 
heterogeneously matters for 
selection: A generalized 
selection correction estimator

D
iscussion P

aper 

 
Arndt Reichert, Harald Tauchmann 
 
 
 
 

 
Nr. 40/2012 

 
 
 
 
 
 



 



WHEN OUTCOME HETEROGENEOUSLY

MATTERS FOR SELECTION: A GENERALIZED

SELECTION CORRECTION ESTIMATOR

Arndt Reichert
RWI

Harald Tauchmann
RWI & CINCH∗

September 2012

Abstract

The classical Heckman (1976, 1979) selection correction estimator (heckit) is

misspecified and inconsistent if an interaction of the outcome variable and an

explanatory variable matters for selection. To address this specification prob-

lem, a full information maximum likelihood estimator and a simple two-step

estimator are developed. Monte-Carlo simulations illustrate that the bias of

the ordinary heckit estimator is removed by these generalized estimation pro-

cedures. Along with OLS and the ordinary heckit procedure, we apply these

estimators to data from a randomized trial that evaluates the effectiveness of fi-

nancial incentives for weight loss among the obese. Estimation results indicate

that the choice of the estimation procedure clearly matters.
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1 Introduction

The Heckman (1976, 1979) selection correction (heckit) estimator is a workhorse of
applied econometrics, commonly used for removing possible bias due to selection
on unobservables.1 In many applications, selection into that subsample of obser-
vations, for which the outcome variable is observed, may be affected by the value
of the outcome variable itself. Think, for instance, of estimating a wage equation.
Here, wages are only observed for individuals who have accepted a wage offer. Yet,
the likelihood of accepting the offer increases with the offered wage. Since in the
regular heckit estimator, typically, all exogenous variables enter the selection part
of the model, the selection equation can be interpreted as a reduced form represen-
tation that implicitly captures such impact of outcome on selection.2

However, the offered pay may be of differential relevance to different individu-
als, e.g., men and women. This renders the effect of the outcome variable on selec-
tion heterogeneous with respect to an explanatory variable. In technical terms, this
means that not only the outcome variable but also an interaction with the relevant
regressor enters the selection model. This, unlike the case of the outcome exert-
ing a homogeneous effect on selection, is not accommodated by the regular heckit
model. Ignoring the deferential effects of outcome on selection renders the econo-
metric model misspecified and, in turn, renders the regular heckit estimator biased
and inconsistent.

The present paper develops generalizations of the regular heckit estimator that
allows for differential effects of outcome on selection. Besides full information
maximum likelihood (FIML), we suggest a computational very simple two-step
approach. Overcoming the inconsistency of the ordinary heckit model, the FIML
allows for identifying the differential effect of the outcome variable on selection.
The simpler two-step approach is also consistent. However, the coefficient of the
interaction term cannot be identified.

We test the performance of the suggested estimators by the means of Monte Carlo
simulations. We also apply them to data gathered from a randomized experiment,
which was conducted to examine the effectiveness of financial for making obese

1Though it has been criticized for being very vulnerable to various kinds of misspecification (e.g.
Puhani, 2000; Grasdal, 2001), and less restrictive semi-parametric alternatives have been proposed
(e.g. Ichimura and Lee, 1991; Ahn and Powell, 1993); see Vella (1998) for a survey.

2The commonly used tobit (type 1) (Tobin, 1958) model represents an extreme case with selection
exclusively depending on the outcome.
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individuals reduce body weight. Here, the incentive scheme makes favorable out-
comes more likely to be reported than unfavorable ones, simply by setting stronger
incentives to report them. Thus, the suggested link between outcome and the prob-
ability of observing the outcome may only exist for the experimental group that is
rewarded for success in losing weight.

The remainder of the paper is organized as follows. Section 2 develops the gen-
eralized heckit estimators. Section 3 compares the performance of the different esti-
mators using a Monte Carlo experiment. Section 4 provides a real data application
and Section 5 concludes.

2 A Generalized Heckit Model

Consider a familiar linear regression model, where the focus of the econometric
analysis is on estimating the coefficient vector β:

Yi = β′Xi + εi. (1)

Here i indexes observations, and Yi, εi, and Xi denote the outcome variable, a ran-
dom error, and the vector of exogenous explanatory variables, respectively. The
latter includes the variable Di, which is of special relevance to the analysis, e.g., a
treatment indicator.

However, Yi is observed only for a subsample of observation. Selection into this
subsample, indicated by Si = 1, is modeled as suggested by Heckman (1979). Yet,
besides a K-dimensional vector Zi that includes Xi and some further exogenous
variables (instruments), Yi as well as the interaction term YiDi are allowed to enter
the selection equation:

Si =

{
1 if θ′Zi + τYi + γYiDi + υi > 0
0 else.

(2)

As in the ordinary heckit model, joint normality N(0, 0, σ2
ε , σ2

υ , σευ) is assumed for
the error terms εi and υi. θ1, . . . , θK, τ, and γ denote unknown coefficients. Substi-
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tuting Yi by (1) and rearranging terms leads to

Si =

{
1 if υ̃i > −α′Zi − γβ′XiDi

0 else
(3)

υ̃i = υi + (τ + γDi) εi, (4)

where αk = θk + τβk holds for any regressor k that is shared by Xi and Zi and
αk = θk holds for the instruments. Evidently, the coefficient τ has no impact on the
general structure of the model.3 For the special case γ = 0, (1), (3), and (4) represent
the standard Heckman (1979) selection model.

For γ 6= 0, however, the model deviates from the standard case for two reasons:
(i) a full set of interaction terms XiDi enters the selection equation and (ii), more im-
portant, Di enters the error υ̃i, rendering the the error variance-covariance structure
heterogeneous with respect to Di:

var(υ̃i|Di) = σ2
υ + 2 (τ + γDi) σευ + (τ + γDi)

2 σ2
ε (5)

cov(εi, υ̃i|Di) = σευ + (τ + γDi) σ2
ε . (6)

Ignored heteroscedasticity in the probit and, hence, in the selection part of the
heckit, is well known to render probit estimation inconsistent (Wooldridge, 2002;
Harvey, 1976). Thus, a generalized estimator is required.

2.1 FIML Estimation

In oder to develop an estimable FIML estimator that accounts for the model struc-
ture, with no loss of generality, we introduce the normalization

σ2
υ + 2τσευ + τ2σ2

ε = 1. (7)

That is, we assume standard normality for υ̃i conditional on Di = 0. This is equiv-
alent to the familiar normalization required for identifying the coefficients of any
probit model. We re-parameterize as follows:

ρ ≡ cor(εi, υ̃i|Di = 0) =
σευ

σε
+ τσε. (8)

3Effectively, τ only changes the unknown error variance-covariance structure, which is subject to
estimation. Hence, τ is not identified.
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Then the individual log-likelihood li reads as

li =



log Φ
(

−α′Zi−γβ′XiDi√
1+2ρσεγDi+σ2

ε γ2D2
i

)
if Si = 0

log Φ
(

α′Zi+γβ′XiDi+(Yi−β′Xi)(
ρ
σε
+γDi)√

1−ρ2

)
−1

2

(
Yi−β′Xi

σε

)2
− log

(
σε

√
2π
) if Si = 1.

(9)

See Appendix A.1 for how (9) is derived from the log-likelihood function of the
ordinary heckit model. Besides the coefficient vectors α and β, the scalar parameters
γ, σε, and ρ are subject to estimation.4 Note that Di may either be continuous, a
count, or binary.

The model is straightforwardly transferred to the case where the effect of Yi on
selection differs across M + 1 mutually exclusive groups, indexed by m = 0, . . . , M.
For group membership being indicated by a set of binary indicators D0i, . . . , DMi,
the log-likelihood conditional on Dmi = 1 is identical to (9), besides Di is substituted
by the value one and γ is replaced by γm.5 Here, γ0 has to be restricted to zero in
order to render the model identified.

2.2 Two-Step Estimation

The model (9) is, however, difficult to fit and may cause problems in the optimiza-
tion procedure. Yet, for a binary variable Di and, more general, group-wise het-
erogeneity, a computationally very simple two-step estimator is available. Here,
the heterogeneity in the selection mechanism is accounted for by estimating group-
wise probit models at the first stage. For each group m, a specific coefficient vector
αm is estimated, where the coefficients attached to D1i, . . . , DMi need to be restricted
to the value of zero. At the second stage a vector of group-specific inverse Mills-
rations λ(·) enter as additional regressors

Yi = β′Xi +
M

∑
m=0

δmλ(α̂′mZi)Dmi + ε̃i if Si = 1. (10)

4Technically, atanh(ρ) and log(σε) are estimated in the optimization procedure in order to avoid
a bounded valid parameter space.

5Typically, all dummies Dmi, except for D0i indicating the reference category, enter Xi and Zi.
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The attached coefficients δm, subject to estimation, capture σε cor(εi, υ̃i|Dmi = 1).
Two-step estimation comes, however, to the cost of efficiency loss. In the present
case, it is not only genuinely less efficient than FIML, like, e.g., the two-step estima-
tor for the ordinary heckit model. It also ignores many parameter restrictions that
stem from the structural model. For this reason, the two-step approach inflates the
number of parameters subject to estimation by M(K− 1)−M2. Moreover, (10) may
suffer from near-collinearity of correction terms and group indicators. On the other
hand, two-step estimating involves less assumptions about the selection mecha-
nism than FIML and, hence, also accommodates types of heterogeneity in selection
that render (9) misspecified.

3 Monte Carlo Analysis

In order to illustrate the performance of the FIML and the two-step estimators and
to compare it with those of ordinary heckit and simple OLS estimation, we run a
Monte-Carlo (MC) experiment, where the endogenous variables Yi and Si are gen-
erated according to (1) and (2). The exogenous variables, i.e. the vector Zi, are
drawn once and then kept fixed. We draw the binary indicator Di from the B(1, 0.5)
distribution and two continuous control variables from the uniform U(−1, 1) dis-
tribution. One of the latter is excluded from the vector Xi, while Di enters (2) not
only trough Zi but also interacted with Yi. For all coefficients βk and θk, we choose
the value of one, except for the constant terms, which both are set to zero. With
respect to the variance-covariance matrix of the normal errors, we choose σ2

ε = 2,
σ2

υ = 1, and σευ = 0.75. We vary the experimental setup with respect to: (i) γ, for
which we try the values −1, 0, and 1; and (ii) τ, for which we try the two values
consistent with (7), i.e., −0.75 and 0. The sample size is 10 000 and the size of the
simulations is 2 000 repetitions. Our focus is on the estimators’ performance in esti-
mating the coefficients β. Hence, for each estimator, we report estimates for bias(β̂)

and MSE(β̂).

As predicted by theory, MC-results (Table 1) display no significant (warranted by
simulation based tests on joint unbiasedness of β̂) bias for the FIML and the Two-
Step estimator, while OLS is biased in any simulation. Furthermore, the ordinary
heckit estimator does not exhibit a significant bias for γ = 0, while it is severely
biased for γ 6= 0. Focussing on the coefficient attached to Di, depending on the sign
of γ, an upward or an downward bias may occur. Interestingly, for γ 6= 0, the ordi-

6



Table 1: Monte-Carlo Simulation Results
FIML Two-Step Ordinary Heckit OLS

Bias MSE Bias MSE Bias MSE Bias MSE

simulation (i): γ = −1; τ = −0.75
D 0.001 0.002 0.005 0.024 −0.496 0.248 −0.756 0.573
control 0.000 0.001 0.001 0.001 −0.035 0.002 0.927 0.861
constant −0.001 0.003 −0.001 0.004 0.272 0.077 −0.506 0.257

simulation (ii): γ = −1; τ = 0
D 0.001 0.004 0.001 0.009 −1.223 1.496 −1.225 1.501
control 0.000 0.001 0.000 0.001 −0.197 0.040 0.841 0.709
constant 0.000 0.002 0.001 0.004 0.612 0.379 0.494 0.244

simulation (iii): γ = 0; τ = −0.75
D −0.002 0.002 0.000 0.008 −0.003 0.001 0.082 0.008
control 0.001 0.001 0.001 0.001 0.001 0.001 1.082 1.172
constant 0.002 0.002 0.000 0.004 0.002 0.002 −0.512 0.263

simulation (iv): γ = 0; τ = 0
D 0.000 0.002 0.002 0.004 0.001 0.002 −0.268 0.073
control 0.002 0.001 0.002 0.002 0.002 0.001 0.737 0.545
constant 0.000 0.002 −0.001 0.004 0.000 0.002 0.515 0.266

simulation (v): γ = 1; τ = −0.75
D −0.001 0.003 −0.002 0.006 0.724 0.526 0.811 0.659
control 0.000 0.001 0.000 0.001 −0.209 0.045 0.842 0.709
constant 0.001 0.002 0.002 0.004 −0.336 0.117 −0.501 0.251

simulation (vi): γ = 1; τ = 0
D −0.001 0.002 −0.002 0.004 0.238 0.058 −0.099 0.011
control −0.002 0.001 −0.001 0.002 −0.058 0.005 0.600 0.361
constant 0.002 0.002 0.001 0.004 −0.102 0.013 0.544 0.297

Notes: results based on 2 000 replications; sample size N = 10 000; exogenous variables drawn once and then kept fixed; true
coefficient values: βD = 1, βcontrol = 1, and βconst = 0.

nary heckit does not perform much better than OLS in terms of the estimated bias.
In simulation (vi), it even perform worse. This means, correcting parametrically for
selection bias but misspecifying the selection mechanism may not be an improve-
ment compared to simply ignoring selectivity. As expected, Two-Step estimation
performs worse compared to FIML, in terms of the estimated MSE.6 Even for γ = 0
(simulations iii and iv), FIML exhibits an MSE that just marginally exceeds the MSE
of the ordinary heckit model.

6For simulations based on a small sample (N = 400), this shortcoming of two-step estimation
becomes even more prominent. There, in terms of the MSE, two-step estimation may even be out-
performed by the biased ordinary heckit estimator.
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4 Real Data Application

We apply the estimators discussed above to data from a randomized trial; see Au-
gurzky et al. (2012) for a detailed description and a comprehensive empirical anal-
ysis. This experiment aims at analyzing the effectiveness of financial incentives for
assisting obese individuals in losing bodyweight. By the end of a rehab hospital
stay, 698 over-weight individuals were set an individual weight-loss target (6 to 8
percent of current body weight), which they were prompted to realize within four
months. Participants were then randomly assigned to two incentive groups and
one control group. While, contingent on success, a reward of up to e 150 and e 300,
respectively, was offered to members of the incentive groups, the control group re-
ceived no financial incentive. Rewards were offered as a function of the degree of
target achievement, i.e., participants who lost some weight but failed to realize the
weight-loss target received less than the maximum reward. After four months, par-
ticipants were requested to visit an assigned pharmacy for verifying actual weight-
loss. Yet, a substantial number of participants failed to show up at the weigh-in.
More precisely, 178 individuals selected themselves out of the trial, while 520 com-
plied and attended the weigh-in. The compliance rate varied substantially between
groups. While for the control group it was 66.5 percent, it was 72.9 and 84.3 per-
cent for the e 150 and the e 300 group, respectively. This nicely meets our earlier
argument that the probability of reporting weight is affected by the interaction of
actual weight-loss and group membership, as only those who were both successful
and members of one of the incentive groups had an financial incentive to attend the
weigh-in.

In the present empirical analysis, the degree of target achievement, i.e., actual
weight-loss divided by targeted weight-loss, serves as dependent variable. Indi-
cators for group membership are the key explanatory variables, with the control
group serving as reference. Besides these, age and indicators for being female and
being born in Germany enter the regression equation as controls. A further dummy
indicating that a participant had to visit a nearby pharmacy, i.e., one within the
same zip-code area as the place of residence, exclusively enters the selection equa-
tion. This exclusion restriction is justified by travel time representing a likely deter-
minant for the decision whether or not to show up at the weigh-in. Yet, there is no
obvious link to success.

Table 2 displays regression results for FIML, two-step, ordinary heckit, and OLS.
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Table 2: Results for Weight-Loss Experiment
FIML Two-Step Ordinary Heckit OLS

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Main equation:
e 150 0.215 0.143 0.238 0.373 0.429∗∗ 0.091 0.408∗∗ 0.088
e 300 0.470∗∗ 0.154 0.272 0.392 0.506∗∗ 0.104 0.452∗∗ 0.086
age −0.001 0.004 −0.001 0.006 −0.003 0.004 −0.005 0.004
female −0.160∗∗ 0.079 −0.147∗ 0.085 −0.172∗∗ 0.077 −0.178∗∗ 0.076
native 0.020 0.088 0.020 0.091 0.013 0.087 0.008 0.087
δcontrol - - 0.059 0.687 - - - -
δe 150 - - 0.470 0.425 - - - -
δe 300 - - 0.762 0.903 - - - -
constant 0.340 0.255 0.409 0.577 0.445 0.302 0.655∗∗ 0.201

Selection equation:
e 150 −0.077 0.206 - - 0.200 0.124 - -
e 300 0.521∗ 0.277 - - 0.595∗∗ 0.133 - -
age 0.020∗∗ 0.005 - - 0.019∗∗ 0.005 - -
female 0.115 0.128 - - 0.076 0.116 - -
native 0.039 0.143 - - 0.057 0.129 - -
nearby pharmacy 0.332∗∗ 0.122 - - 0.309∗∗ 0.108 - -
γe 150 1.206∗∗ 0.484 - - - - - -
γe 300 0.142 0.495 - - - - - -
constant −0.817∗∗ 0.326 - - −0.741∗∗ 0.278 - -

Selection equation control group:
age - - 0.016∗∗ 0.008 - - - -
female - - −0.042 0.198 - - - -
native - - 0.075 0.216 - - - -
nearby pharmacy - - 0.300∗ 0.179 - - - -
constant - - −0.569 0.489 - - - -

Selection equation e 150 group:
age - - 0.024∗∗ 0.008 - - - -
female - - 0.023 0.195 - - - -
native - - −0.018 0.208 - - - -
nearby pharmacy - - 0.537∗∗ 0.183 - - - -
constant - - −0.836∗∗ 0.424 - - - -

Selection equation e 300 group:
age - - 0.019∗∗ 0.009 - - - -
female - - 0.308 0.231 - - - -
native - - 0.175 0.274 - - - -
nearby pharmacy - - −0.056 0.215 - - - -
constant - - −0.077 0.522 - - - -

σε 0.836∗∗ 0.034 - 0.802∗∗ 0.036 0.795
ρ 0.199 0.252 - 0.260 0.271 -

Notes: ∗∗ significant at 5%; ∗ significant at 10%; total number of obs. is 698; for 178 obs. weight-loss information is missing.

Test results do not clearly argue for selection bias being an issue since neither for
ordinary heckit nor for FIML the estimate for ρ significantly deviates from zero.
This equivalently holds for the two-step approach, where the group-specific Mill’s
ratios are jointly insignificant. Yet, conditional on selection correction, both FIML
and two-step are clearly favored over ordinary heckit (p-values 0.03 and 0.01).

Focussing on estimated incentive effects, the choice of estimation method clearly
matters. OLS and ordinary heckit, both, yield the result that receiving a financial
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incentive increases the success rate by roughly 40 to 50 percentage points. Yet, the
amount of the financial reward seems to be immaterial for either model. FIML and
two-step estimation of the generalized model, however, yield a different picture.
For the latter, no significant incentive effect is seen whatsoever. Here, the ineffi-
ciency of two-step estimation is underpinned by rather large standard errors. For
FMIL, the estimated incentive effect for the e 300 group is similar to ist counterpart
from OLS and ordinary heckit estimation. Yet, the estimated effect for the e 150
group is substantially smaller and even becomes statistically insignificant. Hence,
on basis of FIML, one concludes that the amount of the reward matters for weight
loss. The estimates for γe 150 and γe 300 bear the expected positive sign, however
– contrary to expectations – γe 300 is much smaller than γe 150 and is accompanied
by a relatively large standard error, rendering it statistically insignificant. This may
be explained by the small number of dropouts in the e 300 group, rendering the
identification of γe 300 difficult.

5 Conclusions

In this article we demonstrate that the classical Heckman (1976, 1979) selection cor-
rection estimator is misspecified and inconsistent when an interaction of the out-
come and an explanatory variables matters for selection. Randomized trials assess-
ing the effects of incentive scheme, may serve as a typical example for such kind
of sample selection mechanism. An FIML and a simple two-step estimator that
address this specification problem are developed. Monte-Carlo simulations illus-
trate that the bias of the ordinary Heckman (1976, 1979) estimator is cured by these
generalized estimation procedures. Finally, the suggested estimators are applied
to data from a randomized trial that evaluates the effectiveness of financial incen-
tives for assisting obese in their attempt for losing bodyweight. Estimation results
indicate that the choice of the estimation procedure clearly matters.
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A Appendix

A.1 Generalizing the Log-Likelihood Function

In order to generalize the log-likelihood function of the ordinary heckit model (see
e.g. Amemiya, 1985, p. 386), we augment the index function α′Zi by γβ′XiDi and
replace the scalar parameters σ2

υ and σευ by the functions (5) and (6), respectively:

li =



log Φ
(
−α′Zi−γβ′XiDi√

var(υ̃i|Di)

)
if Si = 0

log Φ

 α′Zi+γβ′XiDi+(Yi−β′Xi)

(
cov(εi ,υ̃|Di)

σ2
ε

)
√

var(υ̃i|Di)

(
1− cov(εi ,υ̃i |Di)

2

σ2
ε var(υ̃i |Di)

)


−1
2

(
Yi−β′Xi

σε

)2
− log

(
σε

√
2π
) if Si = 1.

(11)

Then we apply the normalization (7) to (5), and eliminate τ and σευ by entering
(8) into the equation, yielding

var(υ̃i|Di) = 1 + 2γ(σευ + τσ2
ε )Di + σ2

ε γ2D2
i (12)

= 1 + 2ρσεγDi + σ2
ε γ2D2

i ,

which is nonnegative, by ρ being bounded to the [−1, 1] interval. Further, using (6)
and, once more, eliminating τ and σευ by entering (8) into the equation yields

cov(εi, υ̃i|Di)

σ2
ε

=
σευ + (τ + γDi) σ2

ε

σ2
ε

=
ρ

σε
+ γDi. (13)

Finally, using (13) and (12) we simplify

var(υ̃i|Di)

(
1− cov(εi, υ̃i|Di)

2

σ2
ε var(υ̃i|Di)

)
= var(υ̃i|Di)− σ2

ε

(
ρ

σε
+ γDi

)2

(14)

= var(υ̃i|Di)− ρ2 − 2ρσεγDi − σ2
ε γ2D2

i

= 1− ρ2,

and substitute (12), (13), and (14) into (11), yielding (9).

i
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