Determination of suitable driver materials for electromagnetic sheet metal forming

Soeren Gies
Introduction

Effect of driver sheets

State of the art

Experimental setup and procedure

Results

Summary and Outlook
Introduction

Effect of driver sheets

State of the art

Experimental setup and procedure

Results

Summary and Outlook

Agenda
Introduction

- **Objective:** Electromagnetic forming of stainless steel 1.4301 and 1.4509

- **Challenge:** Low electrical conductivity of stainless steel

- **Solution:** Use of driver sheets
Working principle of driver sheets:

- **Upper tool** (Forming die)
- **Lower tool** (Flat working coil)
- **Driver sheet**
- **Coil winding**

Workpiece: 1.4301, \(t_W = 0.8 \text{ mm} \)

Driver: Aluminum, \(t_D = 0.8 \text{ mm} \)
Introduction

Effect of driver sheets

State of the art

Experimental setup and procedure

Results

Summary and Outlook
Use of driver sheets causes **two opposing effects** in the energy conversion sequence.

Energy conversion sequence: *Risch, 2009*
Use of driver sheets causes **two opposing effects** in the energy conversion sequence.

Trade off: higher magnetic pressure vs. additional forming energy.
Effect of driver sheets

Use of driver sheets is beneficial if the following condition is fulfilled:

\[
\text{Additional kinetic energy} > \text{Additional forming energy for driver}
\]

\[
\text{Optimum} \quad \text{MAX} \left(\frac{\text{Additional kinetic energy } E_{\text{kin}}}{\text{Additional forming energy for driver } E_{\text{form}}} \right)
\]

Self-evident consequences:
- High electrical conductivity $\rightarrow E_{\text{kin}}$ ↑
- Low yield strength $\rightarrow E_{\text{form}}$ ↓

Question: Which driver material and which driver thickness t_D maximize the energy ratio?
Agenda

- Introduction
- Effect of driver sheets
- **State of the art**
- Experimental setup and procedure
- Results
- Summary and Outlook
State of the art

Scientific investigations using driver sheets:

- **Seth et al. (2004)**
 - Workpiece: Low-alloy carbon steel, \(t_W = 0.1 \text{ mm} - 0.38 \text{ mm} \)
 - Driver: Aluminium EN AW-6111 T4, \(t_D = 1 \text{ mm} \)

- **Li et al. (2012)**
 - Workpiece: Ti-6Al-4V, \(t_W = 0.5 \text{ mm} \)
 - Driver: CU-DHP, \(t_D = 0.5 \text{ mm} \)

- **Andersson and Syk (2008)**
 - Workpiece: X5CrNiMo17-12-2, \(t_W = 0.25 \text{ mm} / \text{DP600}, t_W = 0.7 \text{ mm} \)
 - Driver: Copper, \(t_D = 0.6 \text{ mm} \)

- **Srinivasan et al. (2010)**
 - Workpiece: Titanium, \(t_W = 0.076 \text{ mm} \)
 - Driver: Copper, \(t_D = 0.381 \text{ mm} \)

- **Ishibashi et al. (2011)**
 - Workpiece: X5CrNi18-10, \(t_W = 0.15 \text{ mm} \)
 - Driver: EN AW-1050-H24, \(t_D = 0.3 \text{ mm} \)
Scientific investigations using driver sheets:

- Tillmann et al. (2008)
 - Workpiece: DC04, $t_W = 0.8$ mm
 - Driver: Copper (sputtered), $t_D = 0.65$ mm (optimum)
 - Recommendation: $t_D = \sigma_s$

- Bely et al. (1977)
 - Recommendation: $t_D = 0.5 \cdot \sigma_s$

- Desai et al. (2011)
 - Workpiece: Stainless steel
 - Driver: Aluminum, Copper
 - Recommendation: Aluminum \rightarrow $t_D = 0.8 \cdot \sigma_s$ / Copper \rightarrow $t_D = \sigma_s$

- Contradicting recommendations
- No recommendation regarding optimal driver material
- No consideration of mechanical workpiece parameters

$t_W \equiv$ Workpiece thickness
$t_D \equiv$ Driver thickness
$\sigma_s \equiv$ Skin depth
Agenda

- Introduction
- Effect of driver sheets
- State of the art
- **Experimental setup and procedure**
- Results
- Summary and Outlook
Free forming of workpiece and driver

Pulse generator used: Maxwell Magneform 7000
- Max. charging energy $E_C = 20$ kJ
- Inner resistance $R_i = 4.2$ mΩ
- Short circuit frequency $f^* = 25$ kHz
- Inner inductance $L_i = 60$ nH
Experimental Setup and Procedure

1. Free forming of workpiece and driver

- Upper tool (Drawing ring)
- Lower tool (Flat coil)
- Coil winding

2. Measuring of workpiece height h_w

Pulse generator used: Maxwell Magneform 7000

- Max. charging energy $E_C = 20$ kJ
- Inner resistance $R_i = 4.2$ mΩ
- Short circuit frequency $f^* = 25$ kHz
- Inner inductance $L_i = 60$ nH

h_w = Workpiece forming height

t_w = Workpiece thickness

t_D = Driver thickness
Experimental Setup and Procedure

Scope of investigations:

- **Workpiece material**
 - **1.4301**, \(t_W = 0.5 / 0.8 / 1.0 \) mm
 - **1.4509**, \(t_W = 0.5 / 0.8 / 1.0 \) mm
 - **DC04**, \(t_W = 0.5 / 0.8 / 1.0 \) mm
 - **EN AW-5083**, \(t_W = 1.0 \) mm

- **Driver material**
 - **CU-ETP**, \(t_D = 0.3 / 0.5 / 0.7 / 0.8 / 1.0 / 2.0 \) mm
 - **EN AW-1050A**, \(t_D = 0.3 / 0.5 / 0.7 / 0.8 / 1.0 / 2.0 \) mm

- **Charging Energy** \(E_C \)
 - \(E_C = 1.0 / 1.8 / 2.4 \) kJ
Agenda

- Introduction
- Effect of driver sheets
- State of the art
- Experimental setup and procedure
- Results
- Summary and Outlook
Results

Workpiece:
Material 1.4509
Thickness $t_w = 0.8$ mm

$h_w = \text{Workpiece forming height}$
$t_w = \text{Workpiece thickness}$
$t_D = \text{Driver thickness}$

Introduction Driver Sheets SotA Setup and Procedure Results Summary
Results

Workpiece:
Material 1.4509
Thickness $t_w = 0.8$ mm

$h_w = $ Workpiece forming height
$t_w = $ Workpiece thickness
$t_D = $ Driver thickness

Optimum

$t_D \approx 1.05 \sigma_S$

Driver thickness t_D
Skin depth σ_S
Results

Workpiece:
- Material: 1.4509
- Thickness $t_w = 0.8$ mm

$h_w = \text{Workpiece forming height}$
$t_w = \text{Workpiece thickness}$
$t_D = \text{Driver thickness}$

![Diagram showing the workpiece with dimensions and labels.]

Optimum
$t_D \approx 1.05$

Forming height h_w in mm

Driver Forming Energy E_{Form}

Kinetic energy E_{Kin}

\[
\frac{\partial E_{\text{Form}}}{\partial t_D} > \frac{\partial E_{\text{Kin}}}{\partial t_D}
\]

Introduction
- Driver Sheets
- SotA
- Setup and Procedure

Summary
Results

Workpiece:

Material: 1.4509
Thickness $t_w = 0.8$ mm

$h_w = \text{Workpiece forming height}$

$t_w = \text{Workpiece thickness}$

$t_D = \text{Driver thickness}$

Optimum $t_D \approx 1.05$

$E_{Form} = \text{Driver Forming Energy}$

$E_{Kin} = \text{Kinetic energy}$

$rac{\partial E_{Form}}{\partial t_D} < \frac{\partial E_{Kin}}{\partial t_D}$

$rac{\partial E_{Form}}{\partial t_D} > \frac{\partial E_{Kin}}{\partial t_D}$

Driver thickness t_D

Skin depth σ_S
Results

Workpiece:
Material: 1.4509
Thickness $t_w = 0.8$ mm

h_w = Workpiece forming height
t_w = Workpiece thickness
t_D = Driver thickness

<table>
<thead>
<tr>
<th>Charging Energy E_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 kJ</td>
</tr>
<tr>
<td>1.8 kJ</td>
</tr>
<tr>
<td>2.4 kJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Driver</th>
<th>AL</th>
<th>CU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin depth σ_S</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>AL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CU</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Forming height h_w in mm

Driver thickness t_D
Results

Workpiece:
Material: 1.4301
Thickness $t_w = 0.8$ mm

$h_w = \text{Workpiece forming height}$
$t_w = \text{Workpiece thickness}$
$t_D = \text{Driver thickness}$

<table>
<thead>
<tr>
<th>Charging Energy E_C</th>
<th>1.0 kJ</th>
<th>1.8 kJ</th>
<th>2.4 kJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>AL</td>
<td>CU</td>
<td></td>
</tr>
<tr>
<td>AL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Driver Sheets SotA Setup and Procedure

Summary
Conclusions

- Aluminium should be favoured as driver material
- Optimum driver thickness $t_{D,\text{opt}} \approx 1.1 \cdot \sigma_s - 1.2 \sigma_s$
- Effect of charging energy E_C because of varying strain
- In case of very small strains (e.g. calibration) copper should be favoured
Results

- Comparision of optimum driver thicknesses $t_{D,\text{opt}}$

 (Driver material: AL)

<table>
<thead>
<tr>
<th>Workpiece material</th>
<th>Workpiece thickness t_W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 mm</td>
</tr>
<tr>
<td>1.4301</td>
<td>0.95$\cdot\sigma_s$</td>
</tr>
<tr>
<td>1.4509</td>
<td>1.0$\cdot\sigma_s$</td>
</tr>
</tbody>
</table>

Conclusions:

- Increasing workpiece thickness $t_W \rightarrow$ Increasing optimum driver thickness $t_{D,\text{opt}}$
- Rule of thumb: Optimum driver thickness $\approx \sigma_s$ (AL)
Agenda

- Introduction
- Effect of driver sheets
- State of the art
- Experimental setup and procedure
- Results
- Summary and Outlook
Summary and Outlook

Summary:
- Aluminum should be favoured as driver material
- Positive correlation between workpiece thickness t_W and optimum driver thickness $t_{D,\text{opt}}$
- Rule of thumb: Optimum driver thickness $\approx \sigma_s$ (AL)

Outlook:
- EMF of stainless steel into a conical die using the optimum driver material and thickness
- Analytical calculation of the optimum driver thickness $t_{D,\text{opt}}$
Questions?