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Abstract

Two key ingredients to carry out inference on the copula of multivariate obser-
vations are the empirical copula process and an appropriate resampling scheme for
the latter. Among the existing techniques used for i.i.d. observations, the multiplier
bootstrap of Rémillard and Scaillet (2009) frequently appears to lead to inference
procedures with the best finite-sample properties. Bücher and Ruppert (2013) re-
cently proposed an extension of this technique to strictly stationary strongly mixing
observations by adapting the dependent multiplier bootstrap of Bühlmann (1993,
Section 3.3) to the empirical copula process. The main contribution of this work is
a generalization of the multiplier resampling scheme proposed by Bücher and Rup-
pert (2013) along two directions. First, the resampling scheme is now genuinely
sequential, thereby allowing to transpose to the strongly mixing setting all of the
existing multiplier tests on the unknown copula, including nonparametric tests for
change-point detection. Second, the resampling scheme is now fully automatic as a
data-adaptive procedure is proposed which can be used to estimate the bandwidth
(block length) parameter. A simulation study is used to investigate the finite-
sample performance of the resampling scheme and provides suggestions on how to
choose several additional parameters. As by-products of this work, the weak con-
vergence of the sequential empirical copula process is obtained under many serial
dependence conditions, and the validity of a sequential version of the dependent
multiplier bootstrap for empirical processes of Bühlmann is obtained under weaker
conditions on the strong mixing coefficients and the multipliers.
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1 Introduction

Let X be a d-dimensional random vector with continuous marginal cumulative distribu-
tion functions (c.d.f.s) F1, . . . , Fd. From the work of Sklar (1959), the c.d.f. F of X can
be written in a unique way as

F (x) = C{F1(x1), . . . , Fd(xd)}, x ∈ Rd,

where the function C : [0, 1]d → [0, 1] is a copula and can be regarded as capturing
the dependence among the components of X. The above equation is at the origin of the
increasing use of copulas for modeling multivariate distributions with continuous margins
in many areas such as quantitative risk management (McNeil et al., 2005), econometric
modeling (Patton, 2012), environmental modeling (Salvadori et al., 2007), to name a very
few.

Assume that C and F1, . . . , Fd are unknown and let X1, . . . ,Xn be drawn from a
strictly stationary sequence of continuous d-dimensional random vectors with c.d.f. F . For
any i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, denote by R1:n

ij the rank of Xij among X1j, . . . , Xnj

and let Û1:n
ij = R1:n

ij /n. The random vectors Û 1:n
i = (Û1:n

i1 , . . . , Û1:n
id ), i ∈ {1, . . . , n}, are

often referred to as pseudo-observations from the copula C, and a natural nonparametric
estimator of C is the empirical copula of X1, . . . ,Xn (Rüschendorf, 1976; Deheuvels,
1981), frequently defined as the empirical c.d.f. computed from the pseudo-observations,
i.e.,

C1:n(u) =
1

n

n∑
i=1

1(Û 1:n
i ≤ u), u ∈ [0, 1]d.

The empirical copula plays a key role in most nonparametric inference procedures
on C. Examples of its use for parametric inference, nonparametric testing and goodness-
of-fit testing can be found in Tsukahara (2005), Rémillard and Scaillet (2009), and Genest
et al. (2009), respectively, among many others. The asymptotics of such procedures
typically follow from the asymptotics of the empirical copula process. With applications
to change-point detection in mind, a generalization of the latter process central to this
work is the two-sided sequential empirical copula process. It is defined, for any (s, t) ∈
∆ = {(s, t) ∈ [0, 1]2 : s ≤ t} and u ∈ [0, 1]d, by

Cn(s, t,u) =
1√
n

bntc∑
i=bnsc+1

{
1(Û

bnsc+1:bntc
i ≤ u)− C(u)

}
, (1)

where, for any y ≥ 0, byc is the greatest integer smaller or equal than y. The lat-
ter process can be rewritten in terms of the empirical copula Cbnsc+1:bntc of the sample
(Xbnsc+1, Ybnsc+1), . . . , (Xbntc, Ybntc) as

Cn(s, t,u) =
√
nλn(s, t){Cbnsc+1:bntc(u)− C(u)}, (s, t,u) ∈ ∆× [0, 1]d,

where λn(s, t) = (bntc − bnsc)/n and with the convention that Ck:k−1(u) = 0 for all
u ∈ [0, 1]d and all k ∈ {1, . . . , n}.

The quantity Cn(0, 1, ·, ·) is the standard empirical copula process which has been
extensively studied in the literature (see e.g. Rüschendorf, 1976; Gänssler and Stute, 1987;
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Tsukahara, 2005; van der Vaart and Wellner, 2007; Segers, 2012; Bücher and Volgushev,
2013) while the quantity Cn(0, ·, ·, ·) is a sequential version of the latter investigated in
Kojadinovic and Rohmer (2012) in the case of i.i.d. observations with nonparametric tests
for change-point detection in mind. Notice that the process Cn(0, ·, ·, ·) does not coincide
with the sequential process initially studied by Rüschendorf (1976) and defined by

C◦n(s,u) =
1√
n

bnsc∑
i=1

{
1(Û 1:n

i ≤ u)− C(u)
}
, (s,u) ∈ [0, 1]d+1.

The above process, unlike Cn(0, ·, ·, ·), cannot be rewritten in terms of the empirical copula
unless s = 1. Note that the weak convergence of C◦n was further studied by Bücher and
Volgushev (2013) under a large number of serial dependence scenarios and under mild
smoothness conditions on the copula.

As mentioned earlier, a first key ingredient of many of the existing inference proce-
dures on the unknown copula C is the process Cn defined in (1). A second key ingredient
is typically some resampling scheme allowing to obtain replicates of Cn. When dealing
with independent observations, several such resampling schemes for the empirical copula
process Cn(0, 1, ·, ·) were proposed in the literature, ranging from the multinomial boot-
strap of Fermanian et al. (2004) to the multiplier technique of Rémillard and Scaillet
(2009). Their finite-sample properties were compared in Bücher and Dette (2010) who
concluded that the multiplier bootstrap of Rémillard and Scaillet (2009) has, overall,
the best finite-sample behavior. In the case of strongly mixing observations, Bücher and
Ruppert (2013) recently proposed a similar resampling scheme by adapting the dependent
multiplier bootstrap of Bühlmann (1993, Section 3.3) to the process Cn(0, 1, ·, ·). Their
empirical investigations indicate that the latter outperforms in finite samples a block
bootstrap for Cn(0, 1, ·, ·) based on the work of Künsch (1989) and Bühlmann (1994).
Note that the dependent multiplier bootstrap of Bühlmann (1993, Section 3.3) was re-
cently independently rediscovered by Shao (2010) in the context of the smooth function
model but not in the empirical process setting. For the sample mean as statistic of in-
terest, the author connected this resampling technique to the tapered block bootstrap of
Paparoditis and Politis (2001).

The main aim of this work is to provide an extended version of the multiplier resam-
pling scheme of Bücher and Ruppert (2013) adapted to the two-sided sequential process
Cn defined in (1). The influence of the parameters of the resulting bootstrap proce-
dure is studied in detail, both theoretically and by means of extensive simulations. An
important contribution of the paper is an approach for estimating the key bandwidth
parameter which plays a role analogue to that of the block length in the block bootstrap.
As a practical consequence, the resulting dependent multiplier for Cn can be used in a
fully automatic way and all of the existing multiplier tests on the unknown copula C
derived in the case of i.i.d. observations can be transposed to the strongly mixing case,
including the nonparametric tests for change-point detection investigated in Kojadinovic
and Rohmer (2012).

There are two important by-products of this work that can be of independent interest.
First, the weak convergence of the two-sided sequential empirical copula process Cn is
established under many serial dependence scenarios as a consequence of the weak con-
vergence of the multivariate sequential empirical process. The weak convergence of Cn
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under strong mixing is a mere corollary of this very general result. Second, the validity
of a sequential version of the dependent multiplier bootstrap for empirical processes of
Bühlmann (1993, Section 3.3) (which has also been considered in Bücher and Ruppert,
2013, proof of Proposition 2) is obtained under weaker conditions on the rate of decay
of the strong mixing coefficients and the multipliers. The derived result is based on a
sequential unconditional multiplier central limit theorem for the multivariate empirical
process indexed by lower-left orthants that is adapted to the case of strongly mixing
observations.

The paper is organized as follows. In the second section, the weak convergence of
the two-sided sequential empirical copula process Cn is established for many serial de-
pendence conditions. The third section presents a sequential extension of the seminal
work of Bühlmann (1993, Section 3.3). Based on this generalization, a dependent mul-
tiplier bootstrap for Cn is derived in the next section. In the fifth section, a procedure
for estimating the key bandwidth parameter of the dependent multiplier bootstrap is
proposed by adapting to the empirical process setting the approach put forward in Poli-
tis and White (2004), among others. The sixth section discusses two ways to generate
dependent multiplier sequences which are central to this resampling technique. The last
section partially reports the results of large-scale Monte Carlo experiments whose aim
was to investigate the influence in finite samples of the various parameters involved in
the dependent multiplier bootstrap for Cn.

The following notation is used in the sequel. The arrow ‘ ’ denotes weak convergence
in the sense of Definition 1.3.3 in van der Vaart and Wellner (2000), and, given a set T ,
`∞(T ) (resp. C(T )) represents the space of all bounded (resp. continuous) real-valued
functions on T equipped with the uniform metric.

2 Weak convergence of the sequential empirical cop-

ula process under serial dependence

Let U1, . . . ,Un be the unobservable sample obtained from X1, . . . ,Xn by the probabil-
ity integral transforms Uij = Fj(Xij), i ∈ {1, . . . , n}, j ∈ {1, . . . , d}. It follows that
U1, . . . ,Un is a marginally uniform d-dimensional sample from the unknown c.d.f. C.
The corresponding sequential empirical process is then defined as

B̃n(s,u) =
1√
n

bnsc∑
i=1

{1(Ui ≤ u)− C(u)}, (s,u) ∈ [0, 1]d+1. (2)

Note that, in the rest of the paper, the notation of most of the quantities that are directly
computed from the unobservable sample U1, . . . ,Un will involve the symbol ’∼’.

We shall derive the weak limit of the two-sided empirical process Cn defined in (1)
under the following condition. In the case of i.i.d. observations, it is an immediate
consequence of Theorem 2.12.1 in van der Vaart and Wellner (2000).

Condition 2.1. The sample U1, . . . ,Un is drawn from a strictly stationary sequence
(Ui)i∈Z such that B̃n converges weakly in `∞([0, 1]d+1) to a tight centered Gaussian process
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BC concentrated on

{α? ∈ C([0, 1]d+1) : α?(s,u) = 0 if one of the components of (s,u) is 0, and

α?(s, 1, . . . , 1) = 0 for all s ∈ (0, 1]}.

We shall also consider the following smoothness condition on C proposed by Segers
(2012). As explained by the latter author, this condition is nonrestrictive in the sense
that it is necessary for the candidate weak limit of Cn to exist and have continuous sample
paths.

Condition 2.2. For any j ∈ {1, . . . , d}, the partial derivatives Ċj = ∂C/∂uj exist and
are continuous on {u ∈ [0, 1]d : uj ∈ (0, 1)}.

As we continue, for any j ∈ {1, . . . , d}, we define Ċj to be zero on the set {u ∈ [0, 1]d :
uj ∈ {0, 1}} (see also Segers, 2012; Bücher and Volgushev, 2013). It then follows that,
under Condition 2.2, Ċj is defined on the whole of [0, 1]d. Also, for any j ∈ {1, . . . , d} and

any u ∈ [0, 1]d, u(j) is the vector of [0, 1]d defined by u
(j)
i = uj if i = j and 1 otherwise.

The following theorem is the main result of this section. It is proved in Appendix A.

Theorem 2.3 (Weak convergence of the sequential empirical copula process). Assume
that the sample U1, . . . ,Un satisfies Condition 2.1 and that C satisfies Condition 2.2.
Then,

sup
(s,t,u)∈∆×[0,1]d

∣∣∣Cn(s, t,u)− C̃n(s, t,u)
∣∣∣ P→ 0,

where

C̃n(s, t,u) = {B̃n(t,u)− B̃n(s,u)} −
d∑
j=1

Ċj(u){B̃n(t,u(j))− B̃n(s,u(j))}. (3)

Consequently, Cn  CC in `∞(∆× [0, 1]d), where, for (s, t,u) ∈ ∆× [0, 1]d,

CC(s, t,u) = {BC(t,u)− BC(s,u)} −
d∑
j=1

Ċj(u){BC(t,u(j))− BC(s,u(j))}. (4)

The weak convergence of Cn under strong mixing immediately follows from the previ-
ous theorem. For a sequence of d-dimensional random vectors (Yi)i∈Z, the σ-field gener-
ated by (Yi)a≤i≤b, a, b ∈ Z∪{−∞,+∞}, is denoted by F ba. The strong mixing coefficients
corresponding to the sequence (Yi)i∈Z are then defined by α0 = 1/2 and

αr = sup
p∈Z

sup
A∈Fp−∞,B∈F

+∞
p+r

|P (A ∩B)− P (A)P (B)|, r ∈ N, r > 0.

The sequence (Yi)i∈Z is said to be strongly mixing if αr → 0 as r →∞.

The following corollary is an immediate consequence of the strong approximation
result of Dhompongsa (1984), which implies that, if U1, . . . ,Un is drawn from a strictly
stationary sequence (Ui)i∈Z whose strong mixing coefficients satisfy αr = O(r−a), a >
2 + d, then B̃n  BC in `∞([0, 1]d+1), that is, U1, . . . ,Un satisfies Condition 2.1.
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Corollary 2.4. Assume that X1, . . . ,Xn is drawn from a strictly stationary sequence
(Xi)i∈Z whose strong mixing coefficients satisfy αr = O(r−a), a > 2 + d. Then, provided
C satisfies Condition 2.2,

sup
(s,t,u)∈∆×[0,1]d

∣∣∣Cn(s, t,u)− C̃n(s, t,u)
∣∣∣ P→ 0,

where C̃n is defined in (3).

The conditions of the above corollary are for instance satisfied (with much to spare)
when X1, . . . ,Xn is drawn from a stationary ARMA process (see e.g. Mokkadem, 1988).

3 A multiplier central limit theorem under strong

mixing

The multiplier bootstrap of Rémillard and Scaillet (2009) that has been adopted as a
resampling technique in the case of i.i.d. observations in many tests on the unknown
copula C is a consequence of the multiplier central limit theorem for empirical processes
(see e.g. Kosorok, 2008, Theorem 10.1 and Corollary 10.3). A sequential version of
the previous result can be proved (see Holmes et al., 2013, Theorem 1) by using the
method of proof adopted in van der Vaart and Wellner (2000, Theorem 2.12.1). While
investigating the block bootstrap for empirical processes constructed from strongly mixing
observations, Bühlmann (1993, Section 3.3) obtained what resembles to a conditional
version of the multiplier central limit theorem. The main idea of his approach is to
replace i.i.d. multipliers by suitable serially dependent multipliers. In the rest of the
paper, we say that a sequence of random variables (ξi,n)i∈Z is a dependent multiplier
sequence if:

(A1) The sequence (ξi,n)i∈Z is strictly stationary with E(ξ0,n) = 0, E(ξ2
0,n) = 1 and

E(|ξ0,n|ν) <∞ for all ν ≥ 1, and is independent of the available sampleX1, . . . ,Xn.

(A2) There exists a sequence `n → ∞ of strictly positive constants such that `n = o(n)
and the sequence (ξi,n)i∈Z is `n-dependent, i.e., ξi,n is independent of ξi+h,n for all
h > `n and i ∈ N.

(A3) There exists a function ϕ : R → [0, 1], symmetric around 0, continuous at 0,
satisfying ϕ(0) = 1 and ϕ(x) = 0 for all |x| > 1 such that E(ξ0,nξh,n) = ϕ(h/`n) for
all h ∈ Z.

Let M be a large integer and let (ξ
(1)
i,n )i∈Z, . . . , (ξ

(M)
i,n )i∈Z be M independent copies of

the same dependent multiplier sequence. Then, for any m ∈ {1, . . . ,M} and (s,u) ∈
[0, 1]d+1, let

B̃(m)
n (s,u) =

1√
n

bnsc∑
i=1

ξ
(m)
i,n {1(Ui ≤ u)− C(u)}. (5)
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From the previous display, we see the bandwidth sequence `n defined in Assumption (A2)
plays an analogue role to that of the block length in the block bootstrap. Two ways of
forming the dependent multiplier sequences (ξ

(m)
i,n )i∈Z will be presented in Section 6.

The following result, inspired by Bühlmann (1993, Section 3.3), could be regarded
as an extension of the multiplier central limit theorem to the sequential and strongly
mixing case for empirical processes indexed by lower-left orthants. Its proof is given in
Appendix B.

Theorem 3.1 (Dependent multiplier central limit theorem). Assume that `n = O(n1/2−ε)
for some 0 < ε < 1/2 and that U1, . . . ,Un is drawn from a strictly stationary sequence
(Ui)i∈Z whose strong mixing coefficients satisfy αr = O(r−a), a > 3 + 3d/2. Then,(

B̃n, B̃(1)
n , . . . , B̃(M)

n

)
 
(
BC ,B(1)

C , . . . ,B(M)
C

)
in {`∞([0, 1]d+1)}M+1, where BC is the weak limit of the sequential empirical process B̃n

defined in (2), and B(1)
C , . . . ,B(M)

C are independent copies of BC.

Before commenting on the assumptions of the above theorem, let us state a corol-
lary that can be regarded as an unconditional and sequential analogue of Theorem 3.2
of Bühlmann (1993), and may be of interest for applications of empirical processes outside
the scope of copulas. Recall that X1, . . . ,Xn is drawn from a strictly stationary sequence
of continuous d-dimensional random vectors with c.d.f. F and that the margins of F are
denoted by F1, . . . , Fd. Then, let

Zn(s,x) =
1√
n

bnsc∑
i=1

{1(Xi ≤ x)− F (x)}, (s,x) ∈ [0, 1]× Rd
,

be the usual sequential empirical process and, for any m ∈ {1, . . . ,M}, let

Ẑ(m)
n (s,x) =

1√
n

bnsc∑
i=1

ξ
(m)
i,n {1(Xi ≤ x)− Fn(x)}, (s,x) ∈ [0, 1]× Rd

,

where R = [−∞,∞] and Fn is the empirical c.d.f. computed fromX1, . . . ,Xn. The follow-
ing corollary is then a consequence of the fact that Zn(s,x) = B̃n{s, F1(x1), . . . , Fd(xd)}
for all (s,x) ∈ [0, 1] × Rd

and that, under the conditions of Theorem 3.1, for all m ∈
{1, . . . ,M},

sup
(s,x)∈[0,1]×Rd

∣∣∣Ẑ(m)
n (s,x)− B̃(m)

n {s, F1(x1), . . . , Fd(xd)}
∣∣∣ P→ 0,

a proof of which follows from the proof of Lemma C.2.

Corollary 3.2 (Dependent multiplier bootstrap for Zn). Assume that `n = O(n1/2−ε)
for some 0 < ε < 1/2 and that X1, . . . ,Xn is drawn from a strictly stationary sequence
(Xi)i∈Z of continuous d-dimensional random vectors whose strong mixing coefficients
satisfy αr = O(r−a), a > 3 + 3d/2. Then,(

Zn, Ẑ(1)
n , . . . , Ẑ(M)

n

)
 
(
ZF ,Z(1)

F , . . . ,Z(M)
F

)
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in {`∞([0, 1] × Rd
)}M+1, where ZF is the weak limit of Zn, and Z(1)

F , . . . ,Z(M)
F are inde-

pendent copies of ZF .

Remark. In the literature, the “validity” (or “consistency”) of a bootstrap procedure is
often shown by establishing weak convergence of conditional laws (see e.g. van der Vaart,
1998, Chapter 23). In most theoretical developments of this type, the necessary addi-
tional step of approximating conditional laws by simulation from the random resampling
mechanism sufficiently many times is typically omitted (van der Vaart, 1998, page 329).
An appropriate unconditional weak convergence result of the form of the one established
in Corollary 3.2 already includes the repetition of the random resampling mechanism and
can be used directly to deduce “consistency” of a bootstrap procedure. It also allows
for instance to show that related statistical tests hold their levels and are consistent, as
n → ∞ followed by M → ∞. An additional advantage is that the usual workhorses
for weak convergence in function spaces such as the functional delta method and the
(extended) continuous mapping theorem can be directly applied, whereas the application
of the conditional versions of the latter results appear to be more restrictive (Kosorok,
2008, Section 10.1.4).

From a practical perspective, Corollary 3.2 allows for instance to transpose to the
strongly mixing setting the goodness-of-fit and nonparametric change-point tests consid-
ered in Kojadinovic and Yan (2012) and Holmes et al. (2013), respectively.

We end this section by a few comments on the assumptions of Theorem 3.1 and
Corollary 3.2:

• The requirement that `n = O(n1/2−ε) for some 0 < ε < 1/2 is used for proving
the finite-dimensional convergence involved in Theorem 3.1, while the condition
αr = O(r−a), a > 3+3d/2, is needed for the proof of the asymptotic equicontinuity.

• Theorem 3.2 of Bühlmann (1993) can be regarded as a non sequential conditional
analogue of Corollary 3.2 with slightly more constrained multiplier random vari-
ables. The condition on the rate of decay of the strong mixing coefficients in that
result is

∑∞
r=0(r + 1)pα

1/2
r <∞ with p = max{8d+ 12, b2/εc+ 1} and is therefore

stronger than the condition involved in Theorem 3.1 which remains comparable
with that of Dhompongsa (1984) for the sequential empirical process.

• The condition on the strong mixing coefficients in Theorem 3.1 and Corollary 3.2 is
clearly satisfied if X1, . . . ,Xn are i.i.d., so that the above unconditional resampling
scheme remains valid for independent observations. In the latter case however, the
Monte Carlo experiments carried out in Bücher and Ruppert (2013) suggest that a
simpler scheme with i.i.d. multipliers (based for instance on Theorem 1 of Holmes
et al., 2013) might lead to better finite-sample performance.
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4 A dependent multiplier bootstrap for Cn under

strong mixing

By analogy with the approach adopted in Rémillard and Scaillet (2009) (see also Segers,
2012), the multiplier central limit theorem obtained in the previous section can be used
to obtain a dependent multiplier bootstrap for Cn under strong mixing. The main result
of this section can be regarded as an extension of Theorem 3 in Bücher and Ruppert
(2013), where a similar but conditional weak convergence result has been established
in the non-sequential setting and under stricter conditions on the mixing rate and the
multipliers.

The underlying idea is as follows: Theorem 3.1 suggests regarding B̃(1)
n , . . . , B̃(M)

n as
“almost” independent copies of B̃n when n is large. Unfortunately, the B̃(m)

n cannot be
computed because C is unknown and the sample U1, . . . ,Un is unobservable. Estimating
C by the empirical copula C1:n and U1, . . . ,Un by the pseudo-observations Û 1:n

1 . . . , Û 1:n
n ,

we obtain the following computable version of B̃(m)
n defined, for any (s,u) ∈ [0, 1]d+1, by

B̂(m)
n (s,u) =

1√
n

bnsc∑
i=1

ξ
(m)
i,n {1(Û 1:n

i ≤ u)− C1:n(u)}. (6)

To define “almost” independent copies of Cn for large n in the spirit of Rémillard and
Scaillet (2009), we additionally need to estimate the partial derivatives Ċj, j ∈ {1, . . . , d}
appearing in (4). As we continue, we consider estimators Ċj,n of Ċj satisfying the following
condition put forward in Segers (2012):

Condition 4.1. There exists a constant K > 0 such that |Ċj,n(u)| ≤ K for all j ∈
{1, . . . , d}, n ≥ 1 and u ∈ [0, 1]d, and, for any δ ∈ (0, 1/2) and j ∈ {1, . . . , d},

sup
u∈[0,1]d

uj∈[δ,1−δ]

|Ċj,n(u)− Ċj(u)| P→ 0.

We can now define empirical processes that can be fully computed and that, under
appropriate conditions, can be regarded as “almost” independent copies of Cn for large n.
For any m ∈ {1, . . . ,M} and (s, t,u) ∈ ∆× [0, 1]d, let

Ĉ(m)
n (s, t,u) = {B̂(m)

n (t,u)− B̂(m)
n (s,u)} −

d∑
j=1

Ċj,n(u){B̂(m)
n (t,u(j))− B̂(m)

n (s,u(j))}. (7)

The following proposition is proved in Appendix C by adapting the arguments of
Segers (2012) to the current sequential and strongly mixing setting.

Proposition 4.2 (Dependent multiplier bootstrap for Cn). Assume that `n = O(n1/2−ε)
for some 0 < ε < 1/2 and that X1, . . . ,Xn is drawn from a strictly stationary sequence
(Xi)i∈Z whose strong mixing coefficients satisfy αr = O(r−a), a > 3 + 3d/2. Then, under
Conditions 2.2 and 4.1,(

Cn, Ĉ(1)
n , . . . , Ĉ(M)

n

)
 
(
CC ,C(1)

C , . . . ,C(M)
C

)
9



in {`∞(∆× [0, 1]d)}M+1, where CC is the weak limit of the two-sided sequential empirical

copula process Cn defined in (4), and C(1)
C , . . . ,C(M)

C are independent copies of CC.

Let us now briefly illustrate how Proposition 4.2 would be typically used in the context
of change-point detection. As discussed in Kojadinovic and Rohmer (2012), a broad class
of nonparametric tests for change-point detection particularly sensitive to changes in the
copula can be derived from the process

Dn(s,u) =
√
nλn(0, s)λn(s, 1){C1:bnsc(u)− Cbnsc+1:n(u)}, (s,u) ∈ [0, 1]d+1.

The above definition is a mere transposition to the copula context of the “classical con-
struction” adopted for instance in Csörgő and Horváth (1997, Section 2.6). Under the
null hypothesis of no change in the distribution, the process Dn can be simply rewritten
as

Dn(s,u) = λn(s, 1)Cn(0, s,u) + λn(0, s)Cn(s, 1,u), (s,u) ∈ [0, 1]d+1.

To be able to compute approximate p-values for statistics derived from Dn (given the
unwieldy nature of the weak limit of Dn), it is then natural to define the processes

D̂(m)
n (s,u) = λn(s, 1)Ĉ(m)

n (0, s,u) + λn(0, s)Ĉ(m)
n (s, 1,u), (s,u) ∈ [0, 1]d+1,

m ∈ {1, . . . ,M}, which could be thought of as “almost” independent copies of Dn under
the null hypothesis of no change in the distribution. Under the null and the conditions of
Proposition 4.2, we immediately obtain from Proposition 4.2 and the continuous mapping
theorem that Dn, D̂(1)

n , . . . , D̂(M)
n weakly converge jointly to independent copies of the same

limit. The latter result is the key step for establishing that tests based on Dn hold their
level asymptotically. A more involved use of Proposition 4.2 for change-point testing will
be presented in a companion paper.

We end this section by briefly mentioning three possible choices for the estimators of
the partial derivatives. Rémillard and Scaillet (2009) proposed to estimate the partial
derivatives Ċj, j ∈ {1, . . . , d}, by finite-differences as

Ċj,n(u) =
1

2n−1/2

{
Cn(u1, . . . , uj−1, uj + n−1/2, uj+1, . . . , ud)

−Cn(u1, . . . , uj−1, uj − n−1/2, uj+1, . . . , ud)
}
, u ∈ [0, 1]d. (8)

A slightly different definition consisting of a “boundary correction” was proposed in
Kojadinovic et al. (2011, page 706). Yet another definition is mentioned in Bücher and
Ruppert (2013, page 212). Note that, for any δ ∈ (0, 1/2), all three definitions coincide
on the set {u ∈ [0, 1]d : uj ∈ [δ, 1 − δ]} provided n is taken large enough. Now, under
the assumptions of Corollary 2.4, we have that Cn(0, 1, ·)  CC(0, 1, ·) in `∞([0, 1]d).
The latter weak convergence implies the first statement of Lemma 2 of Kojadinovic et al.
(2011), which in turn implies that Condition 4.1 is satisfied for the above defined Ċj,n
as well as for the two slightly different definitions considered in Kojadinovic et al. (2011,
page 706) and Bücher and Ruppert (2013, page 212), respectively.
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5 Estimation of the bandwidth parameter `n

The bandwidth parameter `n defined in Assumption (A2) plays a role similar to that of
the block length in the block bootstrap of Künsch (1989). Its value is therefore expected
to have a crucial influence on the finite-sample performance of the dependent multiplier
bootstrap for Cn. The choice of a similar bandwidth parameter is discussed for instance in
Paparoditis and Politis (2001) for the tapered block bootstrap using results from Künsch
(1989). Related results are presented in Bühlmann (1993, Lemmas 3.12 and 3.13) and
Shao (2010, Proposition 2.1) for the dependent multiplier bootstrap when the statistic
of interest is the sample mean. The aim of this section is to extend the aforementioned
results to the dependent multiplier bootstrap for Cn and propose an estimator of `n in
the spirit of those investigated in Paparoditis and Politis (2001) and Politis and White
(2004) for other resampling schemes. Since the dependent multiplier bootstrap for Cn is
based on the corresponding bootstrap for B̃n, we propose to base our estimator of the
bandwidth parameter on the accuracy of the latter technique.

Let Eξ and Covξ denote the expectation and covariance, respectively, conditional on
the data X1, . . . ,Xn, and, for any u,v ∈ [0, 1]d, let σC(u,v) = Cov{BC(1,u),BC(1,v)}.
Now, fix m ∈ {1, . . . ,M} and, for any u,v ∈ [0, 1]d, let

σ̃n(u,v) = Covξ{B̃(m)
n (1,u), B̃(m)

n (1,v)} = Eξ{B̃(m)
n (1,u)B̃(m)

n (1,v)}

=
1

n

n∑
i,j=1

Eξ(ξ
(m)
i,n ξ

(m)
j,n ){1(Ui ≤ u)− C(u)}{1(Uj ≤ v)− C(v)}

=
1

n

n∑
i,j=1

ϕ{(i− j)/`n}{1(Ui ≤ u)− C(u)}{1(Uj ≤ v)− C(v)},

where B̃(m)
n is defined in (5). For the moment, although it is based on the unobservable

sample U1, . . . ,Un and the unknown copula C, we shall regard σ̃n(u,v) as an estimator
of σC(u,v).

The following two results extend Lemmas 3.12 and 3.13 of Bühlmann (1993) and
Proposition 2.1 of Shao (2010), and are proved in Appendix D.

Proposition 5.1. Assume that `n = O(n1/2−ε) for some 0 < ε < 1/2, that U1, . . . ,Un

is drawn from a strictly stationary sequence (Ui)i∈Z whose strong mixing coefficients sat-
isfy αr = O(r−a), a > 3, and that ϕ defined in Assumption (A3) is additionally twice
continuously differentiable on [−1, 1] with ϕ′′(0) 6= 0. Then, for any u,v ∈ [0, 1]d,

E{σ̃n(u,v)} − σC(u,v) =
Γ(u,v)

`2
n

+ rn,1(u,v),

where supu,v∈[0,1]d |rn,1(u,v)| = o(`−2
n ) and

Γ(u,v) =
ϕ′′(0)

2

∞∑
k=−∞

k2γ(k,u,v) with γ(k,u,v) = Cov{1(U0 ≤ u),1(Uk ≤ v)}.
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Proposition 5.2. Assume that U1, . . . ,Un is drawn from a strictly stationary sequence
(Ui)i∈Z whose strong mixing coefficients satisfy αr = O(r−a), a > 3, and that there exists
λ > 0 such that ϕ defined in Assumption (A3) additionally satisfies |ϕ(x)−ϕ(y)| ≤ λ|x−y|
for all x, y ∈ R. Then, for any u,v ∈ [0, 1]d,

Var{σ̃n(u,v)} =
`n
n

∆(u,v) + rn,2(u,v),

where

∆(u,v) =

{∫ 1

−1

ϕ(x)2dx

}[
σC(u,u)σC(v,v) + {σC(u,v)}2

]
and supu,v∈[0,1]d |rn,2(u,v)| = o(`n/n).

Under the combined conditions of Propositions 5.1 and 5.2, we have that, for any
u,v ∈ [0, 1]2, the mean squared error of σ̃n(u,v) is

MSE{σ̃n(u,v)} =
{Γ(u,v)}2

`4
n

+ ∆(u,v)
`n
n

+ rn(u,v),

where rn(u,v) = {rn,1(u,v)}2 + 2Γ(u,v)rn,1(u,v)/`2
n + rn,2(u,v). This allows us to

define the integrated mean squared error

IMSEn =

∫
[0,1]2d

MSE{σ̃n(u,v)}dudv ∼ Γ̄2

`4
n

+ ∆̄
`n
n
, (9)

where

Γ̄2 =

∫
[0,1]2d

{Γ(u,v)}2dudv and ∆̄ =

∫
[0,1]2d

∆(u,v)dudv. (10)

Notice that ∆̄ can be rewritten as

∆̄ =

{∫ 1

−1

ϕ(x)2dx

}[{∫
[0,1]d

σC(u,u)du

}2

+

∫
[0,1]2d

{σC(u,v)}2dudv

]
.

Differentiating the function x 7→ Γ̄2/x4 + ∆̄x/n and equating the derivative to zero, we
obtain that the value of `n that minimizes IMSEn is, asymptotically,

`optn =

(
4Γ̄2

∆̄

)1/5

n1/5. (11)

Note that, in the context of the dependent multiplier bootstrap for Cn, it might
seem more meaningful to base the previous construction on the mean squared error of an
estimator of the covariance Cov{CC(1,u),CC(1,v)} instead of working with the estimator
σ̃n(u,v) of σC(u,v) = Cov{BC(1,u),BC(1,v)}. This would be in principle possible
since, for any u,v ∈ [0, 1]d, starting from (4), Cov{CC(1,u),CC(1,v)} can be expressed
in terms of the function σC and the partial derivatives Ċj, j ∈ {1, . . . , d}, of C (see e.g.
Genest and Segers, 2010, Equation (5) and the proof of Proposition 1 for the case d = 2).
An estimator of Cov{CC(1,u),CC(1,v)} follows immediately from the aforementioned
expression by replacing σC by σ̃n. By linearity of the expectation, we then immediately

12



obtain the analogue of Proposition 5.1. The analogue of Proposition 5.2 requires more
work as covariances of the form Cov{σ̃n(u,v), σ̃n(s, t)} are needed. From a practical
perspective, we feel however that the possible gain resulting from this theoretically more
meaningful approach is not worth the additional computation brought in by the partial
derivatives of C and the covariance terms Cov{σ̃n(u,v), σ̃n(s, t)}.

From (11), we see that, to estimate `optn , we need to estimate the infinite sums
K(u,v) =

∑
k∈Z k

2γ(k,u,v) and σC(u,v) =
∑

k∈Z γ(k,u,v) for all u,v ∈ [0, 1]d. Should
U1, . . . ,Un be observable, this could done by adapting the procedures described in Pa-
paroditis and Politis (2001, page 1111) or Politis and White (2004, Section 3) to the
current empirical process setting. Let L ≥ 1 be an integer to be determined from
X1, . . . ,Xn later and fix u,v ∈ [0, 1]d. Proceeding in the spirit of Politis and Ro-
mano (1995) and Politis (2003), the quantity K(u,v) could be estimated by Ǩn(u,v) =∑L

k=−L κF,0.5(k/L)k2γ̌n(k,u,v), where

κF,c(x) = [{(1− |x|)/(1− c)} ∨ 0}] ∧ 1, c ∈ [0, 1], (12)

is the “flat top” (trapezoidal) kernel parametrized by c ∈ [0, 1] (see Figure 1), and
γ̌n(k,u,v) is the estimated cross-covariance at lag k ∈ {−(n− 1), . . . , n− 1}, computed
from the sequences {1(Ui ≤ u)}i∈{1,...,n} and {1(Ui ≤ v)}i∈{1,...,n}, that is,

γ̌n(k,u,v) =

{
n−1

∑n−k
i=1 {1(Ui ≤ u)− H̃n(u)}{1(Ui+k ≤ v)− H̃n(v)}, k ≥ 0,

n−1
∑n

i=1−k{1(Ui ≤ u)− H̃n(u)}{1(Ui+k ≤ v)− H̃n(v)}, k ≤ 0,

with H̃n being the empirical c.d.f. computed from U1, . . . ,Un. Similarly, σC(u,v) could
be estimated by

σ̌n(u,v) =
L∑

k=−L

κF,0.5(k/L)γ̌n(k,u,v).

As U1, . . . ,Un is unobservable, it is natural to consider the sample of pseudo-observations
Û 1:n

1 , . . . , Û 1:n
n instead, and to replace γ̌n(k,u,v) by

γ̂n(k,u,v) =

{
n−1

∑n−k
i=1 {1(Û 1:n

i ≤ u)− C1:n(u)}{1(Û 1:n
i+k ≤ v)− C1:n(v)}, k ≥ 0,

n−1
∑n

i=1−k{1(Û 1:n
i ≤ u)− C1:n(u)}{1(Û 1:n

i+k ≤ v)− C1:n(v)}, k ≤ 0,

which gives the computable estimators

σ̂n(u,v) =
L∑

k=−L

κF,0.5(k/L)γ̂n(k,u,v) and K̂n(u,v) =
L∑

k=−L

κF,0.5(k/L)k2γ̂n(k,u,v)

(13)
of σC(u,v) and

∑
k∈Z k

2γ(u,v), respectively.

To estimate Γ̄2 and ∆̄ defined in (10), we then propose to use a grid {ui}i∈{1,...,g} of
g points uniformly spaced over (0, 1)d, and to compute

ˆ̄Γ2
n =
{ϕ′′(0)}2

4

1

g2

g∑
i,j=1

{K̂n(ui,uj)}2
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and

ˆ̄∆n =

{∫ 1

−1

ϕ(x)2dx

}{1

g

g∑
i=1

σ̂n(ui,ui)

}2

+
1

g2

g∑
i,j=1

{σ̂n(ui,uj)}2

 ,

respectively. Plugging these into (11), we obtain an estimator of `optn which shall be
denoted as ˆ̀opt

n as we continue.

The above estimator depends on the choice of the integer L appearing in (13). To
estimate L, we suggest proceeding along the lines of Politis and White (2004, Section
3.2) (see also Paparoditis and Politis, 2001, page 1112). Let ρ̂j(k), j ∈ {1, . . . , d}, be
the autocorrelation function at lag k estimated from the sample X1j, . . . , Xnj. For any
j ∈ {1, . . . , d}, let Lj be the smallest integer after which ρ̂j(k) appears negligible. Notice
that the latter can be determined automatically by means of the algorithm described in
detail in Politis and White (2004, Section 3.2). Then, we merely suggest taking L =
2ψ(L1, . . . , Ld), where ψ is some aggregation function such as the median, the mean,
the minimum or the maximum. The previous approach is clearly not the only possible
multivariate extension of the procedure of Politis and White (2004). Nonetheless, the
choice ψ = median was found to give meaningful results in our Monte Carlo experiments
partially reported in Section 7.

6 Generation of dependent multiplier sequences

The practical use of the results stated in Sections 3 and 4 requires the generation of
dependent multiplier random variables satisfying Assumptions (A1), (A2) and (A3). We
describe two ways of constructing such dependent sequences. The first one generalizes
the moving average approach proposed by Bühlmann (1993, Section 6.2) (see also Bücher
and Ruppert, 2013) and produces multipliers that satisfy Assumption (A3) only asymp-
totically. The second one extends the method used by Shao (2010) and is based on the
calculation of the square root of the covariance matrix implicitly defined in Assump-
tion (A3).

6.1 The moving average approach

Let κ be some positive bounded real function symmetric around zero such that κ(x) > 0
for all |x| < 1. Let bn be a sequence of integers such that bn → ∞, bn = o(n) and
bn ≥ 1 for all n ∈ N. Let Z1, . . . , Zn+2bn−2 be i.i.d. random variables independent of the
available sample X1, . . . ,Xn such that E(Z1) = 0, E(Z2

1) = 1 and E(|Z1|ν) < ∞ for all
ν ≥ 1. Then, let `n = 2bn − 1 and, for any j ∈ {1, . . . , `n}, let wj,n = κ{(j − bn)/bn} and

w̃j,n = wj,n(
∑`n

j=1w
2
j,n)−1/2. Finally, for all i ∈ {1, . . . , n}, let

ξi,n =
`n∑
j=1

w̃j,nZj+i−1.

Clearly, ξ1,n, . . . , ξn,n are identically distributed with E(ξ1,n) = 0, E(ξ2
1,n) = 1 and E(|ξ1,n|ν) <

∞ for all ν ≥ 1. Furthermore, ξ1,n, . . . , ξn,n are (`n − 1)-dependent and, for any i ∈
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{1, . . . , n} and r ∈ {0, . . . , (`n − 1) ∧ n},

Cov(ξi,nξi+r,n) =
`n∑
j=1

`n∑
j′=1

w̃j,nw̃j′,nE(Zj+i−1Zj′+i+r−1) =
`n∑

j=r+1

w̃j,nw̃j−r,n

=

(
`n∑
j=1

w2
j,n

)−1 `n∑
j=r+1

κ{(j − bn)/bn}κ{(j − r − bn)/bn}.

For practical reasons, only a sequence of size n has been generated. From the pre-
vious developments, we immediately have that the infinite size version of ξ1,n, . . . , ξn,n
satisfies Assumption (A1) and Assumption (A2) (as (`n − 1)-dependence clearly implies
`n-dependence). Let us now verify that it satisfies Assumption (A3) asymptotically.

Assume additionally that κ(x) = 0 for all |x| > 1, and, for any f, g : Z→ R, let f ∗ g
denote the discrete convolution of f and g, that is, f ∗g(r) =

∑∞
j=−∞ f(j)g(r− j), r ∈ Z.

Then, let κbn(j) = κ(j/bn), j ∈ Z, and notice that the previous covariance can be written
as

Cov(ξi,nξi+r,n) =

∑∞
j=−∞ κbn(j − bn)κbn(j − r − bn)

κbn ∗ κbn(0)
+ o(1) =

κbn ∗ κbn(r)

κbn ∗ κbn(0)
+ o(1)

for all i ∈ {1, . . . , n} and r ∈ {0, . . . , n − i}, where the o(1) term comes from the fact
that κ(1) is not necessarily equal to 0.

Assume furthermore that there exists λ > 0 such that |κ(x)− κ(y)| ≤ λ|x− y| for all
x, y ∈ [−1, 1] and let rn be a positive sequence such that rn/bn → γ ∈ [0, 1]. We shall
now check that b−1

n κbn ∗ κbn(rn) → κ ? κ(γ), where ? denotes the convolution operator
between real functions. We have

1

bn
κbn ∗ κbn(rn) =

1

bn

bn∑
j=−bn

κ(j/bn)κ{(rn − j)/bn}.

On the one hand,∣∣∣∣∣ 1

bn

bn∑
j=−bn

κ(j/bn)κ{(rn − j)/bn} −
1

bn

bn∑
j=−bn

κ(j/bn)κ(γ − j/bn)

∣∣∣∣∣
≤ λ|rn/bn − γ|

2bn + 1

bn
sup
x∈R

κ(x)→ 0,

and, and on the other hand,

1

bn

bn∑
j=−bn

κ(j/bn)κ(γ − j/bn)→
∫ 1

−1

κ(x)κ(γ − x)dx = κ ? κ(γ).

It follows that
κbn ∗ κbn(rn)

κbn ∗ κbn(0)
→ κ ? κ(γ)

κ ? κ(0)
.
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Figure 1: Graphs of the functions κB, κF,0.14 and κP , as well as κU,6 and κU,8 defined in
Section 6.2.

Now, let

ϕ(x) =
κ ? κ(2x)

κ ? κ(0)
, x ∈ R, (14)

where the factor 2 ensures that ϕ(x) = 0 for all |x| > 1. Then, for large n, Cov(ξi,nξj,n) ≈
ϕ{(i − j)/`n}, for any i, j ∈ {1, . . . , n}. Hence, the infinite size version of ξ1,n, . . . , ξn,n
satisfies Assumption (A3) asymptotically.

In our numerical experiments, we considered several popular kernels for the function κ
(see e.g. Andrews, 1991), defined, for any x ∈ R, as

Truncated: κT (x) = 1(|x| ≤ 1),

Bartlett: κB(x) = (1− |x|) ∨ 0,

Parzen: κP (x) = (1− 6x2 + 6|x|3)1(|x| ≤ 1/2) + 2(1− |x|3)1(1/2 < |x| ≤ 1),

as well as the flat top kernel already defined in (12). The above kernels satisfy all the
assumptions on the function κ mentioned previously. Their graphs are represented in
Figure 1. The flat top (or trapezoidal) kernel, parametrized by c ∈ [0, 1], was used in
Paparoditis and Politis (2001) in the context of the tapered block bootstrap for the mean.
These authors found that, within the class of trapezoidal kernels symmetric around 0.5
and with support (0, 1), κF,0.14, rescaled and shifted to have support (0, 1), minimizes the
asymptotic mean squared error of the bootstrapping procedure. The latter kernel was
also used in Shao (2010) who connected the tapered block bootstrap with the dependent
multiplier bootstrap for the mean.

6.2 The covariance matrix approach

Let `n be a sequence of strictly positive constants such that `n →∞ and `n = o(n). Let
ϕ be a function satisfying Assumption (A3) such that, additionally,

∫∞
−∞ ϕ(u)e−iuxdu ≥ 0

for all x ∈ R, and let Σn be the n×n (covariance) matrix whose elements are defined by
ϕ{(i− j)/`n}, i, j ∈ {1, . . . , n}. The integral condition on ϕ ensures that Σn is positive

definite which in turn ensures the existence of Σ
1/2
n . From a practical perspective, Σ

1/2
n

can be computed either by diagonalization, singular value decomposition or Cholesky
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factorization of Σn. We use the first approach. Then, let Z1, . . . , Zn be i.i.d. random
variables independent of the available sampleX1, . . . ,Xn such that E(Z1) = 0, E(Z2

1) = 1
and E(|Z1|ν) <∞ for all ν ≥ 1. A dependent multiplier sequence ξ1,n . . . ξn,n can then be
simply obtained as

[ξ1,n, . . . , ξn,n]> = Σ1/2
n [Z1, . . . , Zn]>.

If ϕ(1) > 0, then the above construction generates `n-dependent multipliers, while if
ϕ(1) = 0, the generated sequence is (`n − 1)-dependent. Clearly, the infinite size version
of ξ1,n, . . . , ξn,n satisfies Assumptions (A1), (A2) and (A3).

From a practical perspective, for the function ϕ, we considered the Bartlett and
Parzen kernels κB and κP , as well as κU,6 and κU,8, where κU,p is the density function
of the sum of p independent uniforms centered at 0, normalized so that it equals 1
at 0, and rescaled to have support (−1, 1). The functions κU,6 and κU,8 are represented
in Figure 1. Notice that κT = κU,1, κB = κU,2 and κP = κU,4. This also implies
that κU,8 is a rescaled and normalized version of the convolution of κP with itself, i.e.,
κU,8(x) = κP ? κP (2x)/κP ? κP (0) for all x ∈ R. A numerically stable and efficient way of
computing κU,p consists of using divided differences (see e.g. Agarwal et al., 2002). Finally,
note that the truncated and flat top kernels cannot be used as they do not satisfy the
integral condition ensuring that Σn is positive definite.

6.3 Relationship between the two multiplier generation meth-
ods

In the case of the moving average approach presented in Section 6.1, we have seen that
κ determines ϕ asymptotically through (14). It follows that, for the same type of initial
i.i.d. sequence, the same value of `n and for large n, we could expect the dependent mul-
tiplier sequences generated by the moving average and the covariance matrix approaches,
respectively, to give close results when κ in Section 6.1 and ϕ in Section 6.2 are related
through (14). For instance, all other parameters being similar, using the Bartlett kernel
for κ in Section 6.1 should produce similar results to using the Parzen kernel for ϕ in
Section 6.2.

7 Monte Carlo experiments

Recall that M is a large integer. For m ∈ {1, . . . ,M}, let

Sn =

∫
[0,1]d
{Cn(0, 1,u)}2du and S(m)

n =

∫
[0,1]d
{Ĉ(m)

n (0, 1,u)}2du, (15)

where Cn is defined in (1) and where Ĉ(m)
n is defined in (7) with the partial derivative

estimators defined as in (8). Under the conditions of Proposition 4.2 and from the con-

tinuous mapping theorem, we then immediately have that (Sn, S
(1)
n , . . . , S

(M)
n ) converges

weakly to (S, S(1), . . . , S(M)), where S =
∫

[0,1]d
{CC(0, 1,u)}2du and S(1), . . . , S(M) are

independent copies of S.
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The first aim of our Monte Carlo experiments was to assess the quality of the es-
timation of the quantiles of S by the empirical quantiles of the sample S

(1)
n , . . . , S

(M)
n .

Let S
(1:M)
n ≤ · · · ≤ S

(M :M)
n denote the corresponding order statistics. An estima-

tor of the quantile of S of order p ∈ (0, 1) is then simply S
(bpMc:M)
n . For each data

generating scenario, the target theoretical quantiles of S of order p, for p ∈ P =
{0.25, 0.5, 0.75, 0.9, 0.95, 0.99}, were accurately estimated empirically from 105 realiza-
tions of S1000. Then, for each data generating scenario, N = 1000 samples X1, . . . ,Xn

were generated and, for each sample, S
(bpMc:M)
n was computed for each p ∈ P using the

dependent multiplier bootstrap with M = 2500 yielding, for each p ∈ P , N estimates
of the quantile of S of order p. This allowed us to compute, for each data generating
scenario and each p ∈ P , the empirical bias and the empirical mean squared error (MSE)
of the estimators of the quantiles of S of order p . Similar simulations were performed
for the Kolmogorov–Smirnov statistics

Tn = sup
u∈[0,1]d

|Cn(0, 1,u)| and T (m)
n = sup

u∈[0,1]d
|Ĉ(m)

n (0, 1,u)|, m ∈ {1, . . . ,M}. (16)

The dimension d was fixed to two, and the suprema and the integrals in (15) and (16),
respectively, were computed approximately using a fine grid on (0, 1)2 of 400 uniformly
spaced points.

Four data generating models were considered. The first one is a simple AR1 model.
Let Ui, i ∈ {−100, . . . , 0, . . . , n}, be a bivariate i.i.d. sample from a copula C. Then,
set εi = (Φ−1(Ui1),Φ−1(Ui2)), where Φ is the c.d.f. of the standard normal distribution,
and X−100 = ε−100. Finally, for any j ∈ {1, 2} and i ∈ {−99, . . . , 0, . . . , n}, compute
recursively

Xij = 0.5Xi−1,j + εij. (AR1)

The second and third data generating models are related to the nonlinear autoregressive
(NAR) model used in Paparoditis and Politis (2001, Section 3.3), and to the exponential
autoregressive (EXPAR) model considered in Auestad and Tjøstheim (1990) and Papar-
oditis and Politis (2001, Section 3.3). The sample X1, . . . ,Xn is generated as previously
with (AR1) replaced by

Xij = 0.6 sin(Xi−1,j) + εij. (NAR)

and
Xij = {0.8− 1.1 exp(−50X2

i−1,j)}Xi−1,j + 0.1εij, (EXPAR)

respectively. The fourth and last data generating model is the bivariate GARCH-like
model considered in Bücher and Ruppert (2013). The sample of innovations is defined
as for the models above. In addition, for any j ∈ {1, 2}, let σ−100,j =

√
ωj/(1− αj − βj)

where ωj, αj and βj are usual GARCH(1,1) parameters whose values will be set below,
and, for any j ∈ {1, 2} and i ∈ {−99, . . . , 0, . . . , n}, compute recursively

σ2
ij = ωj + βjσ

2
i−1,j + αjε

2
i−1,j and Xij = σijεij. (GARCH)

Following Bücher and Ruppert (2013), we take (ω1, β1, α1) = (0.012, 0.919, 0.072) and
(ω2, β2, α2) = (0.037, 0.868, 0.115). The latter values were estimated by Jondeau et al.
(2007) from SP500 and DAX daily logreturns, respectively.
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Figure 2: For various choices of the function κ/ϕ (see Section 6), empirical MSE×104

of the estimator S
(b0.95Mc:M)
n with M = 2500 versus the bandwidth parameter `n under

the NAR, EXPAR and GARCH data generating scenarios with C being the Gumbel–
Hougaard copula with parameter 1.5. The line segments in the lower-right corners of
the graphs correspond to the empirical MSEs of the estimator with estimated bandwidth
parameter following the procedure described in Section 5. The line styles of the segments
correspond to the choice of ϕ.

The other factors of the experiments are as follows. Four different copulas were
considered: Clayton copulas with parameter value 1 and 4, respectively, and Gumbel–
Hougaard copulas with parameter value 1.5 and 3, respectively. The lower (resp. higher)
parameter values correspond to a Kendall’s tau of 1/3 (resp. 2/3), that is, to mild (resp.
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strong) dependence. Notice that the Clayton copula is lower-tail dependent while the
Gumbel–Hougaard is upper-tail dependent (see e.g. McNeil et al., 2005, Chapter 5). The
values 100, 200 and 400 were considered for n.

We report the results of the experiments very partially. Figure 2 displays the empir-
ical MSE of the estimator S

(bpMc:M)
n of the quantile of order p = 0.95 of Sn versus the

bandwidth parameter `n for the different choices of κ/ϕ mentioned in Section 6. The
top (resp. middle, bottom) line of graphs was obtained from datasets generated under
the NAR (resp. EXPAR, GARCH) scenario with C being the Gumbel–Hougaard copula
with parameter value 1.5. The results for the AR1 scenario being very similar to those
for the NAR scenario are not reported. Very similar looking graphs were obtained for the
other three copulas used in the simulations and when replacing the Cramér–von Mises
statistics by the Kolmogorov–Smirnov statistics defined in (16). In a related manner, the
shapes of the graphs were not too much affected by the value p of the quantile order: the
empirical MSEs were smaller for p < 0.95 and higher for p = 0.99.

The black (resp. red) curves in Figure 2 were obtained for dependent multiplier se-
quences generated using the moving average (resp. covariance matrix) approach described
in Section 6.1 (resp. Section 6.2). The functions κT , κB, κF,0.14 and κP were considered
for κ in the case of the moving average approach, while the function ϕ in the covariance
matrix approach was successively taken equal to κB, κP , κU,6 and κU,8. Looking at the
graphs for n = 100, we see that, when the functions κ and ϕ are chosen to match in
the sense of Section 6.3, the resulting empirical MSEs are very close. For that reason,
to facilitate reading of the plots, only the curves obtained with the moving average ap-
proach and κ ∈ {κT , κB, κP} are plotted when n ∈ {200, 400}. As it can be seen, for the
NAR and EXPAR scenarios, the empirical MSEs tend to decrease first with `n, reach
a minimum, and increase again. It is not the case for the GARCH setting for which
it seems that `n = 1 always leads to the smallest MSE. In other words, the use of the
dependent multiplier bootstrap does not seem necessary in that context as the usual i.i.d.
multiplier of Rémillard and Scaillet (2009) provides the best results. Looking again at
the graphs for the NAR and EXPAR settings, we see that the smallest MSEs are reached
by choosing κ = κP/ϕ = κU,8, which is in accordance with Proposition 5.2 which states
that, asymptotically, kernels with the smallest integral will lead to the lowest variance.
Another observation is that, unlike what was expected by Shao (2010, Remark 2.1) in
the case of the mean as statistic of interest, the choice κ = κF,0.14 did not lead to better
results than the choice κ = κP .

In view of the small differences between the moving average and covariance matrix
approaches for generating dependent multipliers, we suggest to use the former which is
faster and more stable numerically as it does not require the computation of the square
root of a large covariance matrix.

Before discussing the estimation of `n using the results of Section 5, let us mention
two observations of practical interest. Firstly, the distribution of the initial i.i.d. sequence
necessary for generating dependent multipliers in Sections 6.1 and 6.2 did not seem to
affect the results much. Indeed, we considered i.i.d. Rademacher, Gamma and normal
sequences, centered and scaled to have variance one, and did not notice any substantial
changes in terms of empirical MSE, all other parameters remaining fixed. The results
reported above are those obtained with an initial normal i.i.d. sequence. Secondly, work-
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Figure 3: For the previously considered choices of the function ϕ, IMSEn defined in (9),
computed approximately using a grid of 25 uniformly spaced points on (0, 1)2 and 1000
samples versus the bandwidth parameter `n under the AR1 data generating scenario
with C being the Gumbel–Hougaard copula with parameter 1.5 (top row) and parameter 3
(bottom row), respectively.

ing with the same random seed, we replicated the experiments described above using the
two alternative definitions of the partial derivative estimators mentioned at the end of
Section 4. To our surprise, the best results, overall, were obtained with the proposal of
Rémillard and Scaillet (2009) given in (8).

We end this section by an empirical investigation of the estimator ˆ̀opt
n of `optn (see (11)

and Section 5). We first report an experiment based on the AR1 model which will serve
as a benchmark for judging about the performance of ˆ̀opt

n . The setting is the follow-
ing: a grid {ui}i∈{1,...,g} of g = 25 points uniformly spaced over (0, 1)2 was created, and
σC(ui,uj) was accurately estimated for all i, j ∈ {1, . . . , g} from 105 samples of size 1000
generated under the AR1 model described previously. The latter estimation was carried
out as follows: given a sampleX1, . . . ,Xn generated from the AR1 model, the marginally
standard uniform sample U1, . . . ,Un was formed using the fact that the marginal c.d.f.s
of the Xi are centered normal with variance 1/(1− 0.52) in this case; this enabled us to
compute B̃n(1, ·) at the grid points, where B̃n is defined in (2); for any i, j ∈ {1, . . . , g},
σC(ui,uj) was finally accurately estimated as the sample covariance of 105 independent
realizations of (B̃n(1,ui), B̃n(1,uj)).
Next, for n ∈ {100, 200, 400} and `n ∈ {1, 3, . . . , 39}, IMSEn defined in (9) was approxi-
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Table 1: Mean and standard deviation of 1000 estimates of `optn , defined in (11), computed
as explained in Section 5 from 1000 samples generated from the AR1 model in which C
is the Gumbel–Hougaard copula with parameter θ. The computations were carried out
for the choices ϕ = κP and ϕ = κU,8.

ϕ = κP ϕ = κU,8
θ n mean std mean std

1.5 100 9.07 4.34 12.60 7.03
200 10.60 4.33 14.50 5.09
400 13.00 3.72 17.62 5.15

3.0 100 9.09 5.25 12.17 5.29
200 10.59 3.89 14.69 5.81
400 12.85 3.91 17.73 5.44

mated as follows: 1000 samples X1, . . . ,Xn were generated under the AR1 model, and,
for each sample, the processes B̂(1)

n (1, ·), . . . , B̂(M)
n (1, ·) with M = 1000 were evaluated at

the grid points, with B̂(m)
n defined in (6); computing sample covariances, this allowed us

to obtain 1000 bootstrap estimates of σC(ui,uj) for all i, j ∈ {1, . . . , g}, from which we
approximated IMSEn. The results are represented in the graphs of Figure 3 for the pre-
viously considered choices of the function ϕ. The top (resp. bottom) row of graphs was
obtained when C in the AR1 data generating scenario is the Gumbel–Hougaard copula
with parameter 1.5 (resp. 3).
The procedure described in Section 5 was finally used to obtain 1000 estimates of `optn

under the AR1 model based on the Gumbel–Hougaard copula with parameter θ, for
n ∈ {100, 200, 400}, ϕ ∈ {κP , κU,8} and θ ∈ {1.5, 3}. The mean and standard deviation
of the estimates are reported in Table 1. A comparison with Figure 3 reveals that the
procedure described in Section 5 for estimating `optn gives surprisingly good results on
average for the experiment at hand. Another observation is that the estimates do not
seem much affected by the value of θ, that is, the strength of the dependence.

For the final experiment, we reverted to the setting of the estimation of the quantiles
of the statistic Sn defined in (15). This time, with M = 2500, we focused on the estimator

S
(b0.95Mc:M)
n based on the estimated bandwidth ˆ̀opt

n computed as explained in Section 5.
For the NAR, EXPAR and GARCH data generating scenarios and ϕ ∈ {κP , κU,8}, its
MSE was estimated from 1000 samples of size n ∈ {100, 200, 400}. The results are
represented by line segments in the lower-right corners of the graphs of Figure 2. The line
styles of the segments correspond to the choice of ϕ. As it can be seen, the empirical MSEs
of the estimator with estimated bandwidth decrease with n and are, overall, reasonably
close to the lowest observed MSE. The choice ϕ = κU,8 appears in general to lead to a
slightly lower MSE, although the improvement might not be of practical interest.
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A Proof of Theorem 2.3

The proof of Theorem 2.3 is based on the extended continuous mapping theorem (van
der Vaart and Wellner, 2000, Theorem 1.11.1). The intuition of the proof is as follows:
the aim is to construct suitable maps gn and g such that gn continuously converges to
g and such that we may conclude that, as a process indexed by s, t,u, Cn(s, t,u) ≈
gn{B̃n(t,u)− B̃n(s,u)} converges weakly to g{B̃(t,u)− B̃(s,u)} = C(s, t,u).

In the following, all the convergences are with respect to n→∞. Let E be the set of
c.d.f.s on [0, 1] with no mass at 0, that is,

E = {F : [0, 1]→ [0, 1] : F is right-continuous and nondecreasing with

F (0) = 0 and F (1) = 1},

let

E?n = {F ? : ∆× [0, 1]→ [0, 1] : u 7→ λn(s, t)−1F ?(s, t, u) ∈ E if bnsc < bntc
and F ?(s, t, ·) = 0 if bnsc = bntc},

where λn(s, t) = (bntc − bnsc)/n, and let In be the sequence of maps defined, for any
F ? ∈ E?n and any (s, t, u) ∈ ∆× [0, 1], by

In(F ?)(s, t, u) = inf{v ∈ [0, 1] : F ?(s, t, v) ≥ λn(s, t)u}.

Furthermore, given a function H? ∈ `∞(∆× [0, 1]d), for any j ∈ {1, . . . , d}, we define

H?
j (s, t, u) = H?(s, t,u{j}), (s, t, u) ∈ ∆× [0, 1],

where, for any u ∈ [0, 1], u{j} is the vector of [0, 1]d whose components are all equal to 1
except the jth one which is equal to u. Then, let

E?n,d = {H? : ∆× [0, 1]d → [0, 1] : H?
j ∈ E?n for all j ∈ {1, . . . , d}}

and let Φn be the map from E?n,d to `∞(∆ × [0, 1]d) defined, for any H? ∈ E?n,d and

(s, t,u) ∈ ∆× [0, 1]d, by

Φn(H?)(s, t,u) = H?{s, t, In(H?
1 )(s, t, u1), . . . , In(H?

d)(s, t, ud)}. (17)

Let additionally U?
n ∈ E?n be defined as U?

n(s, t, u) = λn(s, t)u for all (s, t, u) ∈ ∆×[0, 1],
and let C?

n(s, t,u) = λn(s, t)C(u) for all (s, t,u) ∈ ∆ × [0, 1]d. Clearly, we have that
C?
n,1 = · · · = C?

n,d = U?
n. Moreover, Φn(C?

n) = C?
n.

Also, let

D? = {α? ∈ `∞(∆× [0, 1]d) : α?(s, t, ·) = 0 if s = t, and

α?(s, t,u) = 0 if s < t and if one of the components of u is 0 or u = (1, . . . , 1)},

let D?n = {α? ∈ D? : C?
n + n−1/2α? ∈ E?n,d}, and let D?0 = D? ∩ C(∆× [0, 1]d). Finally, for

any α?n ∈ D?n and any (s, t,u) ∈ ∆× [0, 1]d, let

gn(α?n)(s, t,u) =
√
n
{

Φn(C?
n + n−1/2α?n)(s, t,u)− Φn(C?

n)(s, t,u)
}
, (18)
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and, for any α? ∈ D?0 and any (s, t,u) ∈ ∆× [0, 1]d, let

g(α?)(s, t,u) = α?(s, t,u)−
d∑
j=1

Ċj(u)α?(s, t,u(j)).

The following Lemma is the main ingredient for the proof of Theorem 2.3. Its proof is
given subsequent to the proof of Theorem 2.3.

Lemma A.1. Suppose that C satisfies Condition 2.2, and let α?n → α? with α?n ∈ D?n for
every n and α? ∈ D?0. Then, gn(α?n)→ g(α?) ∈ `∞(∆× [0, 1]d).

Proof of Theorem 2.3. Under Condition 2.1, we have that B̃n  BC in `∞([0, 1]d+1).
Now, for any (s, t,u) ∈ ∆× [0, 1]d, define B̃∆

n (s, t,u) = B̃n(t,u)− B̃n(s,u), B∆
C (s, t,u) =

BC(t,u)− BC(s,u), and

H̃?
n(s, t,u) =

1

n

bntc∑
i=bnsc+1

1(Ui ≤ u).

Notice that B̃∆
n =
√
n(H̃?

n−C?
n) and that, by the continuous mapping theorem, B̃∆

n  B∆
C

in `∞(∆× [0, 1]d). Clearly, B̃∆
n , as a function of ω, takes its values in D?n and B∆

C is Borel
measurable and separable by Condition 2.1, and, as a function of ω, takes its values in
D?0. Now, consider the map hn from D?n to {`∞(∆ × [0, 1]d)}2, defined, for any α?n ∈ D?n
and any (s, t,u) ∈ ∆× [0, 1]d, by

hn(α?n)(s, t,u) = (gn(α?n)(s, t,u), g(α?n)(s, t,u)) .

Using Lemma A.1 and the fact that g is linear and bounded, we have from the extended
continuous mapping theorem (van der Vaart and Wellner, 2000, Theorem 1.11.1) that
hn(B̃∆

n )  h(B∆
C ) in {`∞(∆ × [0, 1]d)}2, where, for any α? ∈ D?0 and any (s, t,u) ∈

∆× [0, 1]d,
h(α?)(s, t,u) = (g(α?)(s, t,u), g(α?)(s, t,u)) .

An application of the continuous mapping theorem immediately yields that gn(B̃∆
n )−C̃n =

gn(B̃∆
n )−g(B̃∆

n ) 0 in `∞(∆× [0, 1]d), where C̃n is defined in (3). To complete the proof,
it remains to show that

An = sup
(s,t,u)∈∆×[0,1]d

∣∣∣gn(B̃∆
n )(s, t,u)− Cn(s, t,u)

∣∣∣ = oP(1).

Note that it suffices to restrict the supremum over all pairs (s, t) ∈ ∆ such that bnsc <
bntc. From the definition of gn, we have that

gn(B̃∆
n )(s, t,u) =

√
n
{

Φn(H̃?
n)(s, t,u)− Φn(C?

n)(s, t,u)
}

=
1√
n

bntc∑
i=bnsc+1

[
1{Ui1 ≤ In(H̃?

n,1)(s, t, u1), . . . , Uid ≤ In(H̃?
n,d)(s, t, ud)} − C(u)

]
.
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Now, let H̃bnsc+1:bntc be the empirical c.d.f. computed from the sample Ubnsc+1, . . . ,Ubntc,

and let H̃bnsc+1:bntc,1, . . . , H̃bnsc+1:bntc,d be the corresponding marginal c.d.f.s. Given F ∈ E ,
let F−1 be its generalized inverse defined by F−1(u) = inf{v ∈ [0, 1] : F (v) ≥ u}. Then,
let

H̃−1
bnsc+1:bntc(u) =

(
H̃−1
bnsc+1:bntc,1(u1), . . . , H̃−1

bnsc+1:bntc,d(ud)
)
, u ∈ [0, 1]d.

Using the fact that, for any j ∈ {1, . . . , d}, In(H̃?
n,j)(s, t, u) = H̃−1

bnsc+1:bntc,j(u) for all

(s, t, u) ∈ ∆× [0, 1] such that bnsc < bntc, we obtain

gn(B̃∆
n )(s, t,u) =

1√
n

bntc∑
i=bnsc+1

[
1{Ui ≤ H̃−1

bnsc+1:bntc(u)} − C(u)
]

=
√
nλn(s, t)

[
H̃bnsc+1:bntc{H̃−1

bnsc+1:bntc(u)} − C(u)
]
.

Hence, we obtain that

An = sup
(s,t,u)∈∆×[0,1]d

√
nλn(s, t)

∣∣∣Cbnsc+1:bntc(u)− H̃bnsc+1:bntc{H̃−1
bnsc+1:bntc(u)}

∣∣∣
= n−1/2 max

1≤l<k≤n
sup

u∈[0,1]d
(k − l)

∣∣∣Cl+1:k(u)− H̃l+1:k{H̃−1
l+1:k(u)}

∣∣∣ .
Proceeding for instance as in Lemma 1 of Kojadinovic and Rohmer (2012), it can be
verified that

sup
u∈[0,1]d

∣∣∣Cl+1:k(u)− H̃l+1:k{H̃−1
l+1:k(u)}

∣∣∣ ≤ d

k − l
,

which implies that An → 0 and completes the proof. �

It remains to prove Lemma A.1. For that purpose, another Lemma is needed.

Lemma A.2. Let α?n → α? with α?n ∈ D?n for every n and α? ∈ D?0. Then, for any
j ∈ {1, . . . , d},

sup
(s,t,u)∈∆×[0,1]

∣∣√nλn(s, t)
{
In(U?

n + n−1/2α?n,j)(s, t, u)− u
}

+ α?j (s, t, u)
∣∣→ 0.

Proof. The assertion is trivial for u = 0 because α? ∈ D?0 and U?
n + n−1/2α?n,j ∈ E?n.

Clearly, for any s ∈ [0, 1], ns ≥ bnsc, that is, s ≥ λn(0, s). Furthermore, under the
constraint s ≤ t, bntc = bnsc is equivalent to 0 ≤ t − λn(0, s) < 1/n, which can be
written as 0 ≤ t− s+ s− λn(0, s) < 1/n, which means that there exists hn ↓ 0 such that
t− s < hn. Then, we have

sup
bntc=bnsc,u∈[0,1]

|λn(s, t)
√
n
{
In(U?

n + n−1/2α?n,j)(s, t, u)− u
}

+ α?j (s, t, u)|

≤ sup
t−s<hn,u∈[0,1]

|α?j (s, t, u)| → 0

by uniform continuity of α?j on ∆× [0, 1].
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Hence, it remains to consider the case bnsc < bntc and u ∈ (0, 1]. Given F ∈ E ,
let F−1 be its generalized inverse defined by F−1(u) = inf{v ∈ [0, 1] : F (v) ≥ u}.
Then, notice that, for any bnsc < bntc and u ∈ [0, 1], In(U?

n + n−1/2α?n,j)(s, t, u) =

F−1
s,t,n(u), where Fs,t,n = λn(s, t)−1(U?

n + n−1/2α?n,j)(s, t, ·) ∈ E . It follows that, for any

bnsc < bntc and u ∈ (0, 1], ξn(s, t, u) = In(U?
n + n−1/2α?n,j)(s, t, u) > 0, and therefore

that εn(s, t, u) = n−1 ∧ ξn(s, t, u) > 0. Also, for any F ∈ E , it can be verified that
F{F−1(u)−η} ≤ u ≤ F ◦F−1(u) for all u ∈ (0, 1] and all η > 0 such that F−1(u)−η ≥ 0.
Hence, for any bnsc < bntc and u ∈ (0, 1],

(U?
n+n−1/2α?n,j){s, t, ξn(s, t, u)−εn(s, t, u)} ≤ λn(s, t)u ≤ (U?

n+n−1/2α?n,j){s, t, ξn(s, t, u)},

that is

− n−1/2α?n,j{s, t, ξn(s, t, u)} ≤ λn(s, t){ξn(s, t, u)− u}
≤ λn(s, t)εn(s, t, u)− n−1/2α?n,j{s, t, ξn(s, t, u)− εn(s, t, u)}, (19)

which in turn implies that

sup
bnsc<bntc,u∈(0,1]

|λn(s, t){ξn(s, t, u)− u}| → 0 (20)

since, by uniform convergence of α?n to α? and the fact that α? ∈ D?0, sup(s,t,u)∈∆×[0,1] |α?n,j(s, t, u)|
is bounded. From (19), exploiting the fact that εn(s, t, u) ≤ n−1, we then obtain that

sup
bnsc<bntc,u∈(0,1]

∣∣√nλn(s, t){ξn(s, t, u)− u}+ α?j (s, t, u)
∣∣ ≤ An +Bn + n−1/2

where
An = sup

bnsc<bntc,u∈(0,1]

∣∣α?n{s, t, ξn(s, t, u)} − α?j (s, t, u)
∣∣ ,

and
Bn = sup

bnsc<bntc,u∈(0,1]

∣∣α?n,j{s, t, ξn(s, t, u)− εn(s, t, u)} − α?j (s, t, u)
∣∣ ,

For Bn, we write Bn ≤ Bn,1 +Bn,2, where

Bn,1 = sup
bnsc<bntc,u∈(0,1]

∣∣α?n,j{s, t, ξn(s, t, u)− εn(s, t, u)} − α?j{s, t, ξn(s, t, u)− εn(s, t, u)}
∣∣

≤ sup
(s,t,u)∈∆×[0,1]

∣∣α?n,j(s, t, u)− α?j (s, t, u)
∣∣→ 0,

and
Bn,2 = sup

(s,t,u)∈∆×[0,1]

∣∣α?j{s, t, ξn(s, t, u)− εn(s, t, u)} − α?j (s, t, u)
∣∣ .

It remains to show that Bn,2 → 0. Let ε > 0. Since α? ∈ D?0, there exists δ > 0 such that
supt−s<δ,u∈[0,1] |α?j (s, t, u)| ≤ ε. We have Bn,2 = max{Bn,3, Bn,4}, where

Bn,3 = sup
t−s<δ,u∈[0,1]

∣∣α?j{s, t, ξn(s, t, u)− εn(s, t, u)} − α?j (s, t, u)
∣∣ ≤ 2ε,
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and
Bn,4 = sup

t−s≥δ,u∈[0,1]

∣∣α?j{s, t, ξn(s, t, u)− εn(s, t, u)} − α?j (s, t, u)
∣∣

Now, it is easy to verify that t − s ≤ λn(s, t) + 1/n, so that, for n sufficiently large,
t− s ≥ δ implies that λn(s, t) ≥ δ/2. Then, from (20) and the fact that ξn(·, ·, 0) = 0, we
immediately have that, for n sufficiently large,

an = sup
t−s≥δ,u∈[0,1]

|ξn(s, t, u)−u| ≤ sup
t−s≥δ,u∈[0,1]

|λn(s, t){ξn(s, t, u)−u}|× sup
t−s≥δ

λn(s, t)−1 → 0.

Hence, we can write

Bn,4 ≤ sup
t−s≥δ,u,u′∈[0,1]

|u′−u|≤an+n−1

∣∣α?j (s, t, u′)− α?j (s, t, u)
∣∣→ 0

since α?j is uniformly continuous on ∆ × [0, 1]. Proceeding as for Bn, it can be verified
that An → 0, which completes the proof. �

Proof of Lemma A.1. Starting from the definitions of gn and Φn given in (18) and (17),
respectively, we have the decomposition

gn(α?n)(s, t,u) = An,1(s, t,u) + An,2(s, t,u),

where

An,1(s, t,u) = α?n{s, t, In(U?
n + n−1/2α?n,1)(s, t, u1), . . . , In(U?

n + n−1/2α?n,d)(s, t, ud)},

and

An,2(s, t,u)

=
√
nλn(s, t)

[
C{In(U?

n + n−1/2α?n,1)(s, t, u1), . . . , In(U?
n + n−1/2α?n,d)(s, t, ud)} − C(u)

]
.

We begin the proof by showing that sup(s,t,u)∈∆×[0,1]d |An,1(s, t,u) − α?(s, t,u)| → 0.
Let ε > 0. Using the fact that α? ∈ D?0, there exists δ > 0 such that |α?(s, t,u)| ≤ ε for
all t− s < δ and u ∈ [0, 1]d. Then, we write

sup
(s,t,u)∈∆×[0,1]d

|An,1(s, t,u)− α?(s, t,u)| ≤ Bn,1 +Bn,2 +Bn,3

where

Bn,1 = sup
(s,t,u)∈∆×[0,1]d

|An,1(s, t,u)

− α?{s, t, In(U?
n + n−1/2α?n,1)(s, t, u1), . . . , In(U?

n + n−1/2α?n,d)(s, t, ud)}|
≤ sup

(s,t,u)∈∆×[0,1]d
|α?n(s, t,u)− α?(s, t,u)| ≤ ε,

for sufficiently large n, where

Bn,2 = sup
t−s<δ

u∈[0,1]d

|α?{s, t, In(U?
n + n−1/2α?n,1)(s, t, u1), . . . , In(U?

n + n−1/2α?n,d)(s, t, ud)}

− α?(s, t,u)|,
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and

Bn,3 = sup
t−s≥δ

u∈[0,1]d

|α?{s, t, In(U?
n + n−1/2α?n,1)(s, t, u1), . . . , In(U?

n + n−1/2α?n,d)(s, t, ud)}

− α?(s, t,u)|.

For Bn,2, using the triangle inequality, we have that

Bn,2 ≤ 2 sup
t−s<δ,u∈[0,1]d

|α?(s, t,u)| ≤ 2ε.

For Bn,3, we use the fact that Lemma A.2 implies that, for any j ∈ {1, . . . , d},

an,j = sup
t−s≥δ,u∈[0,1]

|In(U?
n + n−1/2α?n,j)(s, t, u)− u| → 0, (21)

and the fact that

Bn,3 ≤ sup
t−s≥δ,|u1−v1|≤an,1,...,|ud−vd|≤an,d

|α?(s, t,u)− α?(s, t,v)| .

By uniform continuity of α?, for sufficiently large n, we obtain that Bn,3 ≤ ε. Hence, we
have shown that, for sufficiently large n, sup(s,t,u)∈∆×[0,1]d |An,1(s, t,u)−α?(s, t,u)| ≤ 4ε,
and therefore that sup(s,t,u)∈∆×[0,1]d |An,1(s, t,u)− α?(s, t,u)| → 0.

Let us now deal with An,2. Fix n ≥ 1 and s < t such that bnsc < bntc. For any
u ∈ [0, 1]d, j ∈ {1, . . . , d} and r ∈ [0, 1], let ūj(r) = uj+r{In(U?

n+n−1/2α?n,j)(s, t, uj)−uj}
and define ū(r) = (ū1(r), . . . , ūd(r)). Now, fix u ∈ (0, 1)d and let f be the function defined
by

f(r) = C?
n{s, t, ū(r)} = λn(s, t)C{ū(r)}.

Obviously, we have that 0 < ūj(r) < 1 for all r ∈ (0, 1) and j ∈ {1, . . . , d}. Therefore,
the function f is continuous on [0, 1], and, by Condition 2.2, is differentiable on (0, 1).
Hence, by the mean value theorem, there exists r∗ ∈ (0, 1) such that f(1)−f(0) = f ′(r∗),
which implies that

An,2(s, t,u) =
d∑
j=1

Ċj{ū(r∗)}λn(s, t)
√
n{In(U?

n + n−1/2α?n,j)(s, t, uj)− uj}. (22)

The previous equality remains clearly valid when bnsc = bntc. Let us now verify that
it also holds when bnsc < bntc and u is on the boundary of [0, 1]d. When uj = 0 for
some j ∈ {1, . . . , d}, In(U?

n + n−1/2α?n,j)(·, ·, uj) = 0, which implies that ūj(r) = 0 for
all r ∈ [0, 1]. It then immediately follows that the left side of (22) is zero and that the
jth term in the sum on the right is zero. The d − 1 remaining terms in the sum on the
right of (22) are actually also zero because, for any k ∈ {1, . . . , d}, k 6= j, Ċk(v) = 0
for all v ∈ [0, 1]d such that vk = 0. Hence, (22) remains true whenever uj = 0 for some
j ∈ {1, . . . , d}.

Let us now assume that bnsc < bntc and that uj = 1 for some j ∈ {1, . . . , d}.
Two cases can be distinguished according to whether In(U?

n + n−1/2α?n,j)(s, t, 1) = 1 or
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In(U?
n + n−1/2α?n,j)(s, t, 1) < 1. In the later case, 0 < ūj(r) < 1. In the former case, we

obtain that ūj(r) = 1 for all r ∈ [0, 1] and that the jth term in the sum on the right
of (22) is zero so that neither the left nor the right side of (22) depend on uj anymore. It
follows that, when some components of u are one, the previous equality can be recovered
by an application of the mean value theorem similar to the one carried out above.

Now, we write

An,2(s, t,u) =
d∑
j=1

Ċj(u)λn(s, t)
√
n{In(U?

n + n−1/2α?n,j)(s, t, uj)− uj}+ rn(s, t,u), (23)

where rn(s, t,u) =
∑d

j=1 rn,j(s, t,u) and, for any j ∈ {1, . . . , d},

rn,j(s, t,u) = [Ċj{ū(r∗)} − Ċj(u)]λn(s, t)
√
n{In(U?

n + n−1/2α?n,j)(s, t, uj)− uj}.

By Lemma A.2 and from the fact that 0 ≤ Ċj ≤ 1 for all j ∈ {1, . . . , d}, the dominating
term in decomposition (23) converges to

−
d∑
j=1

Ċj(u)α?(s, t,u(j))

uniformly in (s, t,u) ∈ ∆× [0, 1]d. It therefore remains to show that

sup
(s,t,u)∈∆×[0,1]d

|rn(s, t,u)| → 0.

Let us first show that sup(s,t,u)∈∆×[0,1]d |rn,1(s, t,u)| → 0. We have that

sup
(s,t,u)∈∆×[0,1]d

|rn,1(s, t,u)| ≤ Bn,4 +Bn,5,

where

Bn,4 = sup
(s,t,u)∈∆×[0,1]d

|Ċ1{ū(r∗)} − Ċ1(u)|

× sup
(s,t,u)∈∆×[0,1]d

∣∣λn(s, t)
√
n{In(U?

n + n−1/2α?n,1)(s, t, u1)− u1}+ α?1(s, t, u1)
∣∣ ,

and
Bn,5 = sup

(s,t,u)∈∆×[0,1]d

∣∣∣[Ċ1{ū(r∗)} − Ċ1(u)]α?1(s, t, u1)
∣∣∣ .

From the fact that 0 ≤ Ċ1 ≤ 1 and Lemma A.2, we immediately obtain that Bn,4 → 0. It
remains to show that Bn,5 → 0. To this end, let ε > 0. Since α? ∈ D?0, there exists δ > 0
such that |α?1(s, t, u)| ≤ ε for all t − s < δ and all u ∈ [0, 1]. Then, Bn,5 ≤ Bn,6 + Bn,7,
where

Bn,6 = sup
(s,t,u)∈∆×[0,1]d

|Ċ1{ū(r∗)} − Ċ1(u)| × sup
t−s<δ,u∈[0,1]

|α?1(s, t, u)| ≤ 2ε,
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and
Bn,7 = sup

t−s≥δ,u∈[0,1]d

∣∣∣[Ċ1{ū(r∗)} − Ċ1(u)]α?1(s, t, u1)
∣∣∣ .

For Bn,7, we use the fact that, since α? ∈ D?0, there exists 0 < κ < 1/2 such that

sup
t−s≥δ,u∈[0,κ)∪(1−κ,1]

|α?1(s, t, u)| ≤ ε.

Then, we write Bn,7 ≤ Bn,8 +Bn,9, where

Bn,8 = sup
(s,t,u)∈∆×[0,1]d

|Ċ1{ū(r∗)} − Ċ1(u)| × sup
t−s≥δ,u∈[0,1]d,u1∈[0,κ)∪(1−κ,1]

|α?1(s, t, u1)| ≤ 2ε,

and

Bn,9 = sup
t−s≥δ,u∈[0,1]d,u1∈[κ,1−κ]

|Ċ1{ū(r∗)} − Ċ1(u)| × sup
(s,t,u)∈∆×[0,1]

|α?1(s, t, u)| .

From (21), we obtain that

Bn,9 ≤ sup
u,v∈[0,1]d,u1,v1∈[κ/2,1−κ/2]
|u1−v1|≤an,1,...,|ud−vd|≤an,d

|Ċ1(u)− Ċ1(v)| × sup
(s,t,u)∈∆×[0,1]

|α?1(s, t, u)| .

Since Ċ1 is uniformly continuous on [κ/2, 1− κ/2]× [0, 1]d−1 according to Condition 2.2,
and since sup(s,t,u)∈∆×[0,1] |α?1(s, t, u)| is bounded, we have that Bn,9 → 0, which implies
that, for n sufficiently large, Bn,9 ≤ ε. It follows that, for n sufficiently large, Bn,5 ≤ 5ε,
which implies that sup(s,t,u)∈∆×[0,1]d |rn,1(s, t,u)| → 0. One can proceed similarly for rn,j,
j ∈ {2, . . . , d}. Hence, sups≤t,u∈[0,1]d |rn(s, t,u)| → 0. �

B Proof of Theorem 3.1

The proof of Theorem 3.1 is based on three lemmas. The first lemma establishes weak
convergence of the finite-dimensional distributions, while the second and third lemmas
concern asymptotic tightness.

Lemma B.1 (Finite-dimensional convergence). Assume that `n = O(n1/2−ε) for some
0 < ε < 1/2 and that (Ui)i∈Z is a strictly stationary sequence whose strong mixing
coefficients satisfy αr = O(r−a), a > 2. Then, the finite-dimensional distributions of

(B̃n, B̃(1)
n , . . . , B̃(M)

n ) converge weakly to those of (BC ,B(1)
C , . . . ,B(M)

C ).

Proof. Fix m ∈ {1, . . . ,M}. For the sake of brevity, we shall only show that the finite-

dimensional distributions of (B̃n, B̃(m)
n ) converge weakly to those of (BC ,B(m)

C ), the proof
of the stated result being a more notationally complex version of the proof of the latter
result.

Let q ∈ N, q > 1, be arbitrary, and let (u1, s1,v1, t1), . . . , (uq, sq,vq, tq) ∈ [0, 1]2(d+1).
The result is proved if we show that(

B̃n(s1,u1), B̃(m)
n (t1,v1), . . . , B̃n(sq,uq), B̃(m)

n (tq,vq)
)

 
(
BC(s1,u1),B(m)

C (t1,v1), . . . ,BC(sq,uq),B(m)
C (tq,vq)

)
.
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Let c1, d1, . . . , cq, dq ∈ R be arbitrary. By the Cramér–Wold device, it then suffices to
show that

Zn =

q∑
l=1

clB̃n(sl,ul) +

q∑
l=1

dlB̃(m)
n (tl,vl) Z =

q∑
l=1

clBC(sl,ul) +

q∑
l=1

dlB(m)
C (tl,vl).

Now, for any i ∈ {1, . . . , n}, let

Zi,n =

q∑
l=1

cl{1(Ui ≤ ul)− C(ul)}1(i ≤ bnslc)

and

Z
(m)
i,n = ξ

(m)
i,n

q∑
l=1

dl{1(Ui ≤ vl)− C(vl)}1(i ≤ bntlc).

Hence, Zn = n−1/2
∑n

i=1(Zi,n+Z
(m)
i,n ). To prove the convergence in distribution of Zn to Z,

we employ a blocking technique (see e.g. Dehling and Philipp, 2002, page 31). Each block
is composed of a big subblock followed by a small subblock. Let 0 < ηb < ηs < ε such that
ηs < 1/2− 1/a. The length of the small subblocks is sn = bn1/2−ηsc and the length of the
big subblocks is bn = bn1/2−ηbc so that the length of a block is bn + sn. The total number
of blocks is kn = bn/(bn+sn)c, and we can write n = kn(bn+sn)+{n−kn(bn+sn)}. Note
that sn ∼ n1/2−ηs , bn ∼ n1/2−ηb and kn ∼ n1/2+ηb and that both bn and sn dominate `n.
As we continue, n is taken sufficiently large so that bn > sn > `n. Notice also that the
condition ηs < 1/2− 1/a implies that ns−an → 0. Now, for any j ∈ {1, . . . , kn}, let

Bj,n =

(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

(Zi,n + Z
(m)
i,n ) and Sj,n =

j(bn+sn)∑
i=(j−1)(bn+sn)+bn+1

(Zi,n + Z
(m)
i,n )

be the sums of the (Zi,n + Z
(m)
i,n ) in the jth big subblock and the jth small subblock,

respectively. Then,

Zn = n−1/2

kn∑
j=1

Bj,n + n−1/2

kn∑
j=1

Sj,n + n−1/2Rn,

where Rn =
∑n

i=kn(bn+sn)+1(Zi,n+Z
(m)
i,n ) is the sum of the (Zi,n+Z

(m)
i,n ) after the last small

subblock. It follows that

Var(Zn) = Var

(
n−1/2

kn∑
j=1

Bj,n

)
+ 2n−1

kn∑
j,j′=1

E(Bj,nSj′,n) + 2n−1

kn∑
j=1

E(Bj,nRn)

+ n−1

kn∑
j,j′=1

E(Sj,nSj′,n) + 2n−1

kn∑
j=1

E(Sj,nRn) + E(n−1R2
n). (24)

We shall now show that all the terms on the right except the first one tend to zero.
Notice that the convergence of the fourth and sixth term to zero will imply that |Zn −
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n−1/2
∑kn

j=1Bj,n| = |n−1/2
∑kn

j=1 Sj,n + n−1/2Rn|
P→ 0. We start with the second one. For

any i ∈ Z and any u,v ∈ [0, 1]d, let γ(i,u,v) = Cov{1(U0 ≤ u),1(Ui ≤ v)}. We have

E(Bj,nSj′,n) =

j(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

j′(bn+sn)∑
i′=(j′−1)(bn+sn)+bn+1

{E(Zi,nZi′,n) + E(Z
(m)
i,n Z

(m)
i′,n )}.

Now,

|E(Zi,nZi′,n)| ≤
q∑

l,l′=1

|clcl′ ||γ(i′ − i,ul,ul′)| ≤ 4α|i′−i|

q∑
l,l′=1

|clcl′ |,

where the last inequality is a consequence of Lemma 3.9 in Dehling and Philipp (2002),
which implies that

sup
u,v∈[0,1]d

|γ(i,u,v)| ≤ 4α|i|, i ∈ Z. (25)

Similarly,

|E(Z
(m)
i,n Z

(m)
i′,n )| ≤ 1(|i′ − i| ≤ `n)4α|i′−i|

q∑
l,l′=1

|dldl′ |

since, by Cauchy-Schwarz’s inequality, E(ξ
(m)
i,n ξ

(m)
i′,n ) ≤ E{(ξ(m)

0,n )2} = 1. It follows that

|E(Bj,nSj,n)| ≤ const×
bn∑
i=1

bn+sn∑
i′=bn+1

α|i−i′| ≤ const×
bn+sn−1∑
i=1

iαi <∞

since
∑∞

i=1 iαi < ∞. Similarly, we obtain that |E(Bj,nSj−1,n)| < ∞. For j′ ≥ j + 1 or
j > j′ + 1, E(Bj,nSj′,n) = O(bnsnαbn) = O(bnsnb

−a
n ). Hence,

2n−1

kn∑
j,j′=1

E(Bj,nSj′,n) = O(n−1kn) +O(n−1k2
nbnsnb

−a
n ) = O(b−1

n ) +O(nsnb
−a−1
n ).

Since nsnb
−a−1
n < ns−an , the previous term converges to zero. In a similar way, for the

third summand in (24), we have

2n−1

kn∑
j=1

E(Bj,nRn) = 2n−1

kn−1∑
j=1

E(Bj,nRn) + 2n−1E(Bkn,nRn)

= O(n−1knbn(n− kn(bn + sn))αbn) +O(n−1bn(n− kn(bn + sn)))

= O(b−a+1
n ) +O(n−1b2

n)→ 0

using the fact that n− kn(bn + sn) < bn + sn. The case of the fifth summand is similar.
Regarding the fourth summand in (24), we have

E(Sj,nSj′,n) =

j(bn+sn)∑
i=(j−1)(bn+sn)+bn+1

j′(bn+sn)∑
i′=(j′−1)(bn+sn)+bn+1

{E(Zi,nZi′,n) + E(Z
(m)
i,n Z

(m)
i′,n )},
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which implies that

E(S2
j,n) ≤ const×

bn+sn∑
i,i′=bn+1

α|i′−i| ≤ const× 2
sn−1∑
i=0

(sn − i)αi ≤ const× sn
∞∑
i=0

αi = O(sn)

and that, for j 6= j′, E(Sj,nSj′,n) = O(s2
nαbn) = O(s2

nb
−a
n ). Hence,

n−1

kn∑
j,j′=1

E(Sj,nSj′,n) = O(n−1knsn) +O(n−1k2
ns

2
nb
−a
n ) = O(b−1

n sn) +O(ns2
nb
−a−2
n )

which converges to 0 since b−1
n sn → 0 and ns2

nb
−a−2
n < ns−an . Finally, for the sixth

summand in (24), we have

E(n−1R2
n) = O(n−1(n− kn(bn + sn)2) = O(n−1(bn + sn)2) = O(n−1b2

n)

since n− kn(bn + sn) < bn + sn.

In order to prove that Zn converges in distribution to Z, it suffices therefore to prove
that n−1/2

∑kn
j=1Bj,n converges in distribution to Z. Let ψj,n(t) = exp(itn−1/2Bj,n), t ∈ R,

j ∈ {1, . . . , kn}, and observe that the characteristic function of n−1/2
∑kn

j=1Bj,n can be

written as t 7→ E
{∏kn

j=1 ψj,n(t)
}

. Also, for two σ-fields F1 and F2, let

α(F1,F2) = sup
A∈F1,B∈F2

|P(A ∩B)− P(A)P(B)|.

Now, for any t ∈ R, we can write∣∣∣∣∣E
{

kn∏
j=1

ψj,n(t)

}
−

kn∏
j=1

E{ψj,n(t)}

∣∣∣∣∣ ≤
∣∣∣∣∣E
{

kn∏
j=1

ψj,n(t)

}
− E{ψ1,n(t)}E

{
kn∏
j=2

ψj,n(t)

}∣∣∣∣∣
+ |E{ψ1,n(t)}|

∣∣∣∣∣E
{

kn∏
j=2

ψj,n(t)

}
− E{ψ2,n(t)}E

{
kn∏
j=3

ψj,n(t)

}∣∣∣∣∣+ . . .

· · ·+

∣∣∣∣∣
kn−2∏
j=1

E{ψj,n(t)}

∣∣∣∣∣
∣∣∣∣∣E
{

kn∏
j=kn−1

ψj,n(t)

}
−

kn∏
j=kn−1

E{ψj,n(t)}

∣∣∣∣∣ .
Using the fact that the modulus of a characteristic function is smaller than one and
applying kn − 1 times Lemma 3.9 of Dehling and Philipp (2002), we obtain∣∣∣∣∣E

{
kn∏
j=1

ψj,n(t)

}
−

kn∏
j=1

E{ψj,n(t)}

∣∣∣∣∣ ≤ 2πkn max
1≤i≤kn−1

α

[
σ {ψi,n(t)} , σ

{
kn∏

j=i+1

ψj,n(t)

}]
.

Since the big subblocks are sn observations apart, the right-hand side of the previous
inequality is smaller than 2πknαsn = O(kns

−a
n ) which tends to zero as kns

−a
n ≤ ns−an → 0.

Hence, for any t ∈ R, ∣∣∣∣∣E
{

kn∏
j=1

ψj,n(t)

}
−

kn∏
j=1

E{ψj,n(t)}

∣∣∣∣∣→ 0.
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In other words, the characteristic function of n−1/2
∑kn

j=1 Bj,n is asymptotically equiva-

lent to the characteristic function of n−1/2
∑kn

j=1B
′
j,n, where B′1,n, . . . , B

′
kn,n

are indepen-
dent and B′j,n and Bj,n have the same distribution for all j ∈ {1, . . . , kn}. To conclude

that n−1/2
∑kn

j=1 Bj,n converges in distribution to Z, it suffices therefore to show that

n−1/2
∑kn

j=1B
′
j,n converges in distribution to Z. This will be accomplished using the

Lindeberg–Feller central limit theorem for triangular arrays. Hence, let us first show that

Var
(
n−1/2

∑kn
j=1 B

′
j,n

)
→ Var(Z).

We have

Var(Z) =

q∑
l,l′=1

clcl′(sl ∧ sl′)
∑
i∈Z

γ(i,ul,ul′) +

q∑
l,l′=1

dldl′(tl ∧ tl′)
∑
i∈Z

γ(i,vl,vl′).

Note that, for any u,v ∈ [0, 1]d,
∑

i∈Z γ(i,u,v) = Cov{BC(1,u),BC(1,v)} < ∞ since,
from the fact that γ(i,v,u) = γ(−i,u,v) and (25),

∑
i∈Z

|γ(i,u,v)| =
∞∑
i=1

|γ(i,v,u)|+ |γ(0,u,v)|+
∞∑
i=1

|γ(i,u,v)| ≤ 1 + 8
∞∑
i=1

αi <∞. (26)

Now, we shall first show that

Var

(
n−1/2

kn∑
j=1

B′j,n

)
= Var(Zn) + o(1)

and then that Var(Zn)→ Var(Z). We have

Var

(
n−1/2

kn∑
j=1

B′j,n

)
= n−1

kn∑
j=1

Var
(
B′j,n

)
= n−1

kn∑
j=1

Var (Bj,n)

= Var

(
n−1/2

kn∑
j=1

Bj,n

)
− n−1

kn∑
j,j′=1
j 6=j′

E (Bj,nBj′,n) .

From (24), we know that Var(n−1/2
∑kn

j=1Bj,n) = Var(Zn) + o(1). Hence, it remains to
show that the double sum in the last displayed formula converges to 0. Proceeding as for
the summands on the right of (24), we have that, for j 6= j′, E(Bj,nBj′,n) = O(b2

nαsn) =
O(b2

ns
−a
n ). Hence,

n−1

kn∑
j,j′=1
j 6=j′

E (Bj,nBj′,n) = O(n−1k2
nb

2
ns
−a
n ) = O(ns−an )→ 0.

Thus, it remains to show that Var(Zn)→ Var(Z). Now,

Var(Zn) = n−1

n∑
i,i′=1

{E(Zi,nZi′,n) + E(Z
(m)
i,n Z

(m)
i′,n )}.
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It follows that

Var(Zn) =

q∑
l,l′=1

clcl′n
−1

bnslc∑
i=1

bnsl′c∑
i′=1

γ(i′ − i,ul,ul′)

+

q∑
l,l′=1

dldl′n
−1

bntlc∑
i=1

bntl′c∑
i′=1

ϕ{(i′ − i)/`n}γ(i′ − i,vl,vl′), (27)

where ϕ is the function appearing in Assumption (A3). Let us first deal with the second
term on the right. Let l, l′ ∈ {1, . . . , q} be arbitrary and suppose without loss of generality
that tl ≤ tl′ . Then,

n−1

bntlc∑
i=1

bntl′c∑
i′=1

v{(i′ − i)/`n}γ(i′ − i,vl,vl′) = n−1

bntlc∑
i=1

bntlc∑
i′=1

v{(i′ − i)/`n}γ(i′ − i,vl,vl′)

+ n−1

bntlc∑
i=1

bntl′c∑
i′=bntlc+1

v{(i′ − i)/`n}γ(i′ − i,vl,vl′). (28)

The first sum on the right-hand side is equal to

n−1

bntlc∑
i=−bntlc

{bntlc − |i|}ϕ(i/`n)γ(i,vl,vl′) =

bntlc∑
i=−bntlc

{λn(0, tl)− |i|/n}ϕ(i/`n)γ(i,vl,vl′)

and converges to tl
∑

i∈Z γ(i,vl,vl′) by Assumption (A3), (26) and dominated conver-
gence. The second sum on the right-hand side of (28) is bounded in absolute value

by 4n−1
∑bntl′c−1

i=1 iαi → 0. Hence, the second term on the right of (27) converges to∑q
l,l′=1 dldl′(tl ∧ tl′)

∑
i∈Z γ(i,vl,vl′). Similarly, the first term on the right of (27) con-

verges to
∑q

l,l′=1 clcl′(sl ∧ sl′)
∑

i∈Z γ(i,ul,ul′). Thus, Var(Zn)→ Var(Z).

To be able to conclude that n−1/2
∑kn

j=1B
′
j,n converges in distribution to Z, it remains

to prove the Lindeberg condition of the Lindeberg-Feller theorem, i.e., that, for every
δ > 0,

n−1

kn∑
j=1

E{(B′j,n)21(|B′j,n| > n1/2δ)} = n−1

kn∑
j=1

E{B2
j,n1(|Bj,n| > n1/2δ)} → 0.

Let δ > 0 be arbitrary. Using Hölder’s inequality with p = 1 + ν/2, where ν > 0 is to be
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chosen later on, and Markov’s inequality, we have

n−1

kn∑
j=1

E{B2
j,n1(|Bj,n| > n1/2δ)}

≤ n−1

kn∑
j=1

{E(|Bj,n|2+ν)}2/(2+ν){P(|Bj,n| > n1/2δ)}ν/(2+ν)

≤ n−1

kn∑
j=1

{E(|Bj,n|2+ν)}2/(2+ν){P(|Bj,n|2+ν > n(2+ν)/2δ2+ν)}ν/(2+ν)

≤ n−1

kn∑
j=1

{E(|Bj,n|2+ν)}2/(2+ν){E(|Bj,n|2+ν)}ν/(2+ν)(n1/2δ)−ν

≤ n−1

kn∑
j=1

E(|Bj,n|2+ν)n−ν/2δ−ν .

Now, from Minkowski’s inequality,

{E(|Bj,n|2+ν)}1/(2+ν) ≤
(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

[
{E(|Zi,n|2+ν)}1/(2+ν) + {E(|Z(m)

i,n |2+ν)}1/(2+ν)
]

= O(bn)

since, for any ν > 0,

max
1≤i≤n

E(|Zi,n|2+ν) ≤ E

[ q∑
l=1

|cl||1(U0 ≤ ul)− C(ul)|

]2+ν
 <∞,

and

max
1≤i≤n

E(|Z(m)
i,n |2+ν) ≤ E

[|ξ(m)
1,n |

q∑
l=1

|dl||1(U0 ≤ vl)− C(vl)|

]2+ν
 <∞.

It follows that

n−1

kn∑
j=1

E{B′2j,n1(|B′j,n| > n1/2δ)} = O(n−1knb
2+ν
n n−ν/2) = O(b1+ν

n n−ν/2) = O(n1/2−ηb(1+ν)),

which converges to zero for ν > 1/(2ηb)− 1. �

Regarding the tightness, let us first extend B̃(m)
n , m ∈ {1, . . . ,M}, to blocks in [0, 1]d+1

in the spirit of Bickel and Wichura (1971). For any (s, t] ⊂ [0, 1] and A = (u1, v1]× · · · ×
(ud, vd] ⊂ [0, 1]d, we define B̃(m)

n ((s, t]× A) to be

B̃(m)
n ((s, t]× A) =

1√
n

bntc∑
i=bnsc+1

ξ
(m)
i,n [1(Ui ∈ A)− ν(A)],
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where

ν(A) = P(U1 ∈ A) =
∑

(ε1,...,εd)∈{0,1}d
(−1)

Pd
i=1 εiC{(1− ε1)v1 + ε1u1, . . . , (1− εd)vd + εdud}.

Lemma B.2 (Moment inequality). Assume that (Ui)i∈Z is a strictly stationary se-
quence whose strong mixing coefficients satisfy αr = O(r−a), a > 6. Then, for any
m ∈ {1, . . . ,M}, q ∈ (2a/(a−3), 4), (s, t] ⊂ [0, 1] and A = (u1, v1]×· · ·×(ud, vd] ⊂ [0, 1]d,
we have

E
[
{B̃(m)

n ((s, t]× A)}4
]
≤ κ[λn(s, t)2{ν(A)}4/q + n−1λn(s, t){ν(A)}2/q],

where κ > 0 is a constant.

Proof. The proof is similar to that of Lemma 3.22 in Dehling and Philipp (2002). Fix
m ∈ {1, . . . ,M}. For any i ∈ Z, let Yi = 1(Ui ∈ A)− ν(A). Then,

E
[
{B̃(m)

n ((s, t]× A)}4
]

=
1

n2

bntc∑
i1,i2,i3,i4=bnsc+1

E[ξi1,nξi2,nξi3,nξi4,n]E[Yi1Yi2Yi3Yi4 ],

≤ 4!λn(s, t)

n

∑
0≤i,j,k≤bntc−bnsc−1
i+j+k≤bntc−bnsc−1

|E[ξ0,nξi,nξi+j,nξi+j+k,n]E[Y0YiYi+jYi+j+k]|.

(29)

On one hand, |E[ξ0,nξi,nξi+j,nξi+j+k,n]| ≤ E[ξ4
0,n] 1(i ≤ `n, k ≤ `n). On the other hand, by

Lemma 3.11 of Dehling and Philipp (2002), for any q ∈ (2a/(a − 3), 4) and p ∈ (2, a/3)
such that 1/p+ 2/q = 1, we have

E[Y0(YiYi+jYi+j+k)] ≤ 10α
1/p
i ‖Y0‖q‖YiYi+jYi+j+k‖q ≤ 10α

1/p
i ‖Y0‖2

q,

E[(Y0YiYi+j)Yi+j+k] ≤ 10α
1/p
k ‖Y0‖2

q,

and

|E[(Y0Yi)(Yi+jYi+j+k)]| ≤ |E[Y0Yi]E[Yi+jYi+j+k]|+ 10α
1/p
j ‖Y0Yi‖q‖Yi+jYi+j+k‖q

≤ 100α
1/p
i α

1/p
k ‖Y0‖4

q + 10α
1/p
j ‖Y0‖2

q.

Proceeding as in Lemma 3.22 of Dehling and Philipp (2002), we split the sum on the right
of (29) into three sums according to which of the indices i, j, k is the largest. Combining
this decomposition with the three previous inequalities, we obtain

E

[∣∣∣B̃(m)
n ((s, t]× A)

∣∣∣4] ≤ 24E[ξ4
0,n]λn(s, t)

n

100‖Y0‖4
q

bntc−bnsc−1∑
j=0

∑
i,k≤j

α
1/p
i α

1/p
k

+30‖Y0‖2
q

bntc−bnsc−1∑
i=0

∑
j,k≤i

α
1/p
i

 .
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Observing that
∑∞

i=1 α
1/p
i <∞ and

∑∞
i=1 i

2α
1/p
i <∞ (note that p < a/3 by construction),

we can bound the expression on the right of the previous inequality by

κ
{
λn(s, t)2‖Y0‖4

q + n−1λn(s, t)‖Y0‖2
q

}
,

where κ > 0 is a constant depending on the mixing coefficients and E[ξ4
0,n]. Finally,

since q > 2 by construction, the assertion follows from the fact that E[|Y0|q] ≤ E[Y 2
0 ] =

ν(A)− ν(A)2 ≤ ν(A). �

Let us introduce additional notation. For any δ ≥ 0, T ⊂ [0, 1]d+1 and f ∈ `∞([0, 1]d+1),
let

wδ(f, T ) = sup
x,y∈T
‖x−y‖1≤δ

|f(x)− f(y)|,

where ‖ · ‖1 is the Euclidean L1-norm.

Lemma B.3 (Asymptotic equicontinuity). Assume that (Ui)i∈Z is a strictly stationary
sequence whose strong mixing coefficients satisfy αr = O(r−a), a > 3 + 3d/2. Then, for

any m ∈ {1, . . . ,M}, B̃(m)
n is asymptotically uniformly ‖·‖1-equicontinuous in probability,

i.e., for any ε > 0,
lim
δ↓0

lim sup
n→∞

P{wδ(B̃(m)
n , [0, 1]d+1) > ε} = 0.

Proof. Fix m ∈ {1, . . . ,M}. Let K ≥ 1 be a constant and let us first assume that, for

any n ≥ 1 and i ∈ {1, . . . , n}, ξ(m)
i,n ≥ −K. Then, let Z

(m)
i,n = ξ

(m)
i,n +K ≥ 0. Furthermore,

let γ ∈ (0, 1/2] be a real parameter to be chosen later, and define

In = {i/n : i = 0, . . . , n}, In,γ = {i/bn1/2+γc : i = 0, . . . , bn1/2+γc},

and Tn = In × Idn,γ. Also, for any s ∈ [0, 1], let s = bsnc/n and s̄ = dsne/n; clearly,
s, s̄ ∈ In and are such that s ≤ s ≤ s̄ and s̄ − s ≤ 1/n. Similarly, for any u ∈ [0, 1], let
uγ, ūγ ∈ In,γ such that uγ ≤ u ≤ ūγ and ūγ − uγ ≤ 1/bn1/2+γc. Then, for any u ∈ [0, 1]d,
we define uγ ∈ Idn,γ (resp. ūγ ∈ Idn,γ) as uγ = (u1,γ, . . . , ud,γ) (resp. ūγ = (ū1,γ, . . . , ūd,γ)).

Now, for any (s,u) ∈ [0, 1]d+1,

B̃(m)
n (s,u)− B̃(m)

n (s,uγ) ≤
1√
n

bnsc∑
i=1

Z
(m)
i,n {1(Ui ≤ ūγ)− 1(Ui ≤ uγ)}

+
√
nK{C(ūγ)− C(uγ)},

that is,

B̃(m)
n (s,u)− B̃(m)

n (s,uγ) ≤ B̃(m)
n (s, ūγ)− B̃(m)

n (s,uγ)

+K{B̃n(s, ūγ)− B̃n(s,uγ)}+

√nK +
1√
n

bnsc∑
i=1

Z
(m)
i,n

 {C(ūγ)− C(uγ)},
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and therefore

B̃(m)
n (s,u)− B̃(m)

n (s,uγ) ≤
∣∣∣B̃(m)

n (s, ūγ)− B̃(m)
n (s,uγ)

∣∣∣
+K

∣∣∣B̃n(s, ūγ)− B̃n(s,uγ)
∣∣∣+ d(nγ − 1)−1(K + max

1≤i≤n
|Z(m)

i,n |),

using the fact that C satisfies the Lipschitz condition

|C(u)− C(v)| ≤ ‖u− v‖1, ∀u,v ∈ [0, 1]d, (30)

and that n1/2(bn1/2+γc)−1 ≤ (nγ − 1)−1 for all n ≥ 1. Similarly, for any (s,u) ∈ [0, 1]d+1,

B̃(m)
n (s,uγ)− B̃(m)

n (s,u) ≤ 1√
n

bnsc∑
i=1

Z
(m)
i,n {C(ūγ)− C(uγ)}

+
K√
n

bnsc∑
i=1

{1(Ui ≤ ūγ)− 1(Ui ≤ uγ)}

≤ d(nγ − 1)−1(K + max
1≤i≤n

|Z(m)
i,n |) +K

∣∣∣B̃n(s, ūγ)− B̃n(s,uγ)
∣∣∣ .

Hence, for any (s,u) ∈ [0, 1]d+1, we have that∣∣∣B̃(m)
n (s,u)− B̃(m)

n (s,uγ)
∣∣∣ ≤ ∣∣∣B̃(m)

n (s, ūγ)− B̃(m)
n (s,uγ)

∣∣∣
+K

∣∣∣B̃n(s, ūγ)− B̃n(s,uγ)
∣∣∣+ d(nγ − 1)−1(K + max

1≤i≤n
|Z(m)

i,n |). (31)

Then, noticing that, for any s ∈ [0, 1], B̃(m)
n (s, ·) = B̃(m)

n (s, ·), and applying (31) to the
first and the third summand on the right-hand side of the decomposition

B̃(m)
n (s,u)− B̃(m)

n (t,v) = {B̃(m)
n (s,u)− B̃(m)

n (s,uγ)}
+ {B̃(m)

n (s,uγ)− B̃(m)
n (t,vγ)}+ {B̃(m)

n (t,vγ)− B̃(m)
n (t,v)},

we obtain that, for any δ > 0,

wδ(B̃(m)
n , [0, 1]d+1) ≤3wδ+(d+1)/bn1/2+γc(B̃(m)

n , Tn) + 2Kwδ+d/bn1/2+γc(B̃n, [0, 1]d+1)

+ 2d(nγ − 1)−1(K + max
1≤i≤n

|Z(m)
i,n |),

≤3w2δ(B̃(m)
n , Tn) + 2Kw2δ(B̃n, [0, 1]d+1) + 2d(nγ − 1)−1(K + max

1≤i≤n
|Z(m)

i,n |),

for sufficiently large n. Now, from the previous inequality, for any ε > 0,

P{wδ(B̃(m)
n , [0, 1]d+1 > ε} ≤ P{3w2δ(B̃(m)

n , Tn) > ε/3}
+ P{2Kw2δ(B̃n, [0, 1]d+1) > ε/3}+ P{2d(nγ − 1)−1(K + max

1≤i≤n
|Z(m)

i,n |) > ε/3}.

Since a > 2+d, we have from Dhompongsa (1984) that B̃n  BC in `∞([0, 1]d+1). Because
the limiting process BC is Gaussian, B̃n is asymptotically uniformly ρ-equicontinuous
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in probability, where ρ is the standard deviation semimetric (see van der Vaart and
Wellner, 2000, page 41). Proceeding as in van der Vaart and Wellner (2000, page 226)
and using the fact that C satisfies the Lipschitz condition (30), it can be verified that
B̃n is asymptotically uniformly ‖ · ‖1-equicontinuous in probability. This implies that the
second term on the right of the previous display converges to 0 as n → ∞ followed by

δ ↓ 0. The third term converges to zero because n−γ max1≤i≤n |Z(m)
i,n |

P→ 0. Indeed, since

E(|Z(m)
1,n |1/γ+1) =

∫∞
0

(1/γ + 1)x1/γP(|Z(m)
1,n | > x)dx < ∞, we immediately obtain that

x1/γP(|Z(m)
1,n | > x)→ 0 as x→ +∞. Then, for any η > 0,

P(n−γ max
1≤i≤n

|Z(m)
i,n | > η) ≤ nP(|Z(m)

1,n | > ηnγ)→ 0.

Thus, it remains to show that, for any ε > 0, limδ↓0 lim supn→∞ P{wδ(B̃(m)
n , Tn) > ε} = 0,

or equivalently (see e.g. van der Vaart and Wellner, 2000, Problem 2.1.5) that, for any

positive sequence δn ↓ 0, limn→∞ P{wδn(B̃(m)
n , Tn) > ε} = 0. To do so, we shall use

Lemma B.2 together with Lemma 2 of Balacheff and Dupont (1980) (see also Bickel and
Wichura, 1971, Theorem 3 and the remarks on page 1665).

Recall that ν is the measure on [0, 1]d corresponding to the c.d.f. C, and let µ be a
measure on [0, 1]d+1 defined by µ = λ(1) ⊗ ν + λ(d), where λ(d) denotes the d-dimensional
Lebesgue measure. Now, it is easy to verify that q ∈ (2a/(a − 3), 4) if and only if
1− 2/q ∈ (3/a, 1/2). Consequently, it is possible to choose q ∈ (2a/(a− 3), 4) such that
1−2/q = 3/a+ε for some small ε ∈ (0, 4/q−1). Next, let β = 1+ε/2. Clearly, β ∈ (1, 4/q).
Furthermore, consider a non-empty set (s, t]×A = (s, t]×(u1, v1]×· · ·×(ud, vd] of [0, 1]d+1

whose boundary points are all distinct and lie in Tn. Then, starting from Lemma B.2,

E
[
{B̃(m)

n ((s, t]× A)}4
]
≤ κ[λn(s, t)2{ν(A)}4/q + n−1λn(s, t){ν(A)}2/q]

≤ κ[{λn(s, t)ν(A)}4/q + n−1{λn(s, t)ν(A)}2/q]

≤ κµ((s, t]× A)β
{
µ((s, t]× A)4/q−β + n−1µ((s, t]× A)2/q−β}

≤ κµ((s, t]× A)β
{

24/q−β + n−1n−(1+d/2+dγ)(2/q−β)
}

= κµ((s, t]× A)β{24/q−β + n(β−2/q)(1+d/2+dγ)−1}.

For the above choice of β, we have β − 2/q = 3/a + ε/2. Because 3/a < 2/(2 + d) from
the assumption on the mixing rate, it is possible to choose ε ∈ (0, 4/q−1) and γ > 0 (the
parameter involved in the grid Idn,γ) small enough such that 3/a+ ε/2 < 2/(2 + d+ 2dγ).
For the aforementioned parameter choices, (β−2/q)(1+d/2+dγ)−1 < 0, which implies
that n(β−2/q)(1+d/2+dγ)−1 ≤ 1 for all n ≥ 1.

With some abuse of notation consisting of incorporating the constant {κ(24/q−β +
1)}1/β into the measure, we obtain

E
[
{B̃(m)

n ((s, t]× A)}4
]
≤ µ((s, t]× A)β,

which, by Markov’s inequality, implies that, for any ε > 0,

P
{
|B̃(m)

n ((s, t]× A)| ≥ ε
}
≤ ε−4µ((s, t]× A)β.
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Now, let µ̃n denote a finite measure on Tn defined from its values on the singletons {(s,u)}
of Tn as

µ̃n({(s,u)}) =

{
0 if s ∧ u1 ∧ · · · ∧ ud = 0,

µ((s′, s]× (u′1, u1]× · · · × (u′d, ud]) otherwise,

where s′ = max{t ∈ In : t < s} and u′j = max{u ∈ In,γ : u < uj} for all j ∈ {1, . . . , d}.
By additivity of µ̃n, the previous estimation reads

P
{
|B̃(m)

n ((s, t]× A)| ≥ ε
}
≤ ε−4µ̃n[{(s, t]× A} ∩ Tn]β.

We shall now conclude by an application of Lemma 2 of Balacheff and Dupont (1980).
Consider a positive sequence δn ↓ 0, and let δ′n ↓ 0 such that, for any n ∈ N, δ′n ∈ {1/i :
i ∈ N} and δ′n ≥ max{δn, 1/bn1/2+γc}. Applying Lemma 2 of Balacheff and Dupont
(1980) (note that 1/bn1/2+γc = max{1/n, 1/bn1/2+γc} is denoted by τ in the lemma) and
using the fact that ‖ · ‖2 ≤ ‖ · ‖1, we obtain that, for any ε > 0, there exists a constant
λ > 0 depending on ε, β and d, such that

P{wδn(B̃(m)
n , Tn) > ε} ≤P{wδ′n(B̃(m)

n , Tn) > ε} ≤ λµ̃n(Tn)

×
[

max{ sup
s,t∈In
|s−t|≤3δ′n

|µ̃n({0, ..., s} × Idn,γ)− µ̃n({0, ..., t} × Idn,γ)|,

sup
u,v∈In,γ
|u−v|≤3δ′n

|µ̃n(In × {0, . . . , u} × Id−1
n,γ )− µ̃n(In × {0, . . . , v} × Id−1

n,γ )|,

. . . ,

sup
u,v∈In,γ
|u−v|≤3δ′n

|µ̃n(In × Id−1
n,γ × {0, . . . , u})− µ̃n(In × Id−1

n,γ × {0, . . . , v})|}
]β−1

,

that is,

P{wδn(B̃(m)
n , Tn) > ε} ≤ λµ([0, 1]d+1)

×
[

max{ sup
s,t∈[0,1]

|s−t|≤3δ′n

|µ([0, s]× [0, 1]d)− µ([0, t]× [0, 1]d)|,

sup
u,v∈[0,1]

|u−v|≤3δ′n

|µ([0, 1]× [0, u]× [0, 1]d−1)− µ([0, 1]× [0, v]× [0, 1]d−1)|,

. . . ,

sup
u,v∈[0,1]

|u−v|≤3δ′n

|µ([0, 1]d × [0, u])− µ([0, 1]d × [0, v])|}
]β−1

,

which converges to 0 by uniform continuity of the functions s 7→ µ([0, s] × [0, 1]d), u 7→
µ([0, 1]× [0, u]× [0, 1]d−1), . . . , u 7→ µ([0, 1]d × [0, u]) on [0, 1]. This concludes the proof

for the case ξ
(m)
i,n ≥ −K.

Let us now consider the general case. Let Z+
i,n = max(ξi,n, 0), Z−i,n = max(−ξi,n, 0),

K+ = E(Z+
0,n) and K− = E(Z−0,n). Furthermore, define ξ

(m),+
i,n = Z+

i,n −K+ and ξ
(m),−
i,n =
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Z−i,n −K−. Then, using the fact that K+ −K− = 0, we can write

ξ
(m)
i,n = Z+

i,n − Z−i,n = Z+
i,n −K+ − (Z−i,n −K−) = ξ

(m),+
i,n − ξ(m),−

i,n .

Setting

B̃(m),±
n (s,u) = n−1/2

bnsc∑
i=1

ξ
(m),±
i,n {1(Ui ≤ u)− C(u)}, (s,u) ∈ [0, 1]d+1,

we obtain that B̃(m)
n = B̃(m),+

n −B̃(m),−
n . The case treated above immediately yields asymp-

totic equicontinuity of B̃(m),+
n and of B̃(m),−

n , which implies asymptotic equicontinuity of
B̃(m)
n . �

Proof of Theorem 3.1. Weak convergence of the finite-dimensional distributions is es-
tablished in Lemma B.1. Asymptotic tightness of B̃n is a consequence of the the weak con-
vergence of B̃n to BC in `∞([0, 1]d), which follows from Dhompongsa (1984) as a > 2 + d.

From Lemma B.3, we have that, for any m ∈ {1, . . . ,M}, B̃(m)
n is asymptotically uni-

formly ‖ · ‖1-equicontinuous in probability. Together with the fact that [0, 1]d+1 is totally
bounded for ‖ · ‖1 and Lemma B.1, we have, for instance from Theorem 2.1 in Kosorok

(2008), that, for any m ∈ {1, . . . ,M}, B̃(m)
n  B(m)

C in `∞([0, 1]d), which implies asymp-

totic tightness of B̃(m)
n . The proof is complete as marginal asymptotic tightness implies

joint asymptotic tightness. �

C Proof of Proposition 4.2

Let us first introduce some additional notation similar to those used in Appendix A. Let
H̃n denote the empirical c.d.f. of the unobservable sampleU1, . . . ,Un and let H̃n,1, . . . , H̃n,d

denote the corresponding marginal c.d.f.s. Also, for any j ∈ {1, . . . , d}, let

H̃−1
n,j(u) = inf{v ∈ [0, 1] : H̃n,j(v) ≥ u}, u ∈ [0, 1],

and let
H̃−1
n (u) =

(
H̃−1
n,1(u1), . . . , H̃−1

n,d(ud)
)
, u ∈ [0, 1]d.

Finally, for any m ∈ {1, . . . ,M}, let

B̌(m)
n (s,u) =

1√
n

bnsc∑
i=1

ξ
(m)
i,n {1(Ui ≤ u)− H̃n(u)}, (s,u) ∈ [0, 1]d+1.

The proof of Proposition 4.2 is based on two lemmas given after the proof.

Proof of Propositon 4.2. For any m ∈ {1, . . . ,M} and (s, t,u) ∈ ∆× [0, 1]d, let

C̃(m)
n (s, t,u) = {B̃(m)

n (t,u)− B̃(m)
n (s,u)} −

d∑
j=1

Ċj(u){B̃(m)
n (t,u(j))− B̃(m)

n (s,u(j))}.
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From Theorem 3.1 and the continuous mapping theorem, we then immediately obtain
that (

C̃n, C̃(1)
n , . . . , C̃(M)

n

)
 
(
CC ,C(1)

C , . . . ,C(M)
C

)
in {`∞(∆ × [0, 1]d)}M+1, where C̃n is defined in (3). Proceeding for instance as in
Segers (2012, proof of Proposition 3.2) or as in Kojadinovic and Rohmer (2012, proof
of Lemma 6), we obtain that, for any m ∈ {1, . . . ,M},

sup
(s,u)∈[0,1]d+1

[∣∣∣Ċj,n(u)− Ċj(u)
∣∣∣ ∣∣∣B̃(m)

n (s,u)
∣∣∣] P→ 0

using Condition 4.1 and the fact that B̃(m)
n  B(m)

C in `∞([0, 1]d+1). The desired result
is finally a mere consequence of Corollary 2.4, Condition 4.1, and Lemmas C.1 and C.2
below. �

Lemma C.1. For any m ∈ {1, . . . ,M},

sup
(s,u)∈[0,1]d+1

∣∣∣B̂(m)
n (s,u)− B̌(m)

n {H̃−1
n (u)}

∣∣∣ P→ 0

where B̂(m)
n is defined in (6).

Proof. The proof is similar to that of Lemma 1 of Kojadinovic and Rohmer (2012).

We here additionally use the fact that E(|ξ(m)
0,n |3) =

∫∞
0

3x2P(|ξ(m)
0,n | > x)dx < ∞, which

implies that n−1/2 max1≤i≤n |ξ(m)
i,n |

P→ 0. �

Lemma C.2. Assume that `n = O(n1/2−ε) for some 0 < ε < 1/2 and that (Ui)i∈Z
is a strictly stationary sequence whose strong mixing coefficients satisfy αr = O(r−a),
a > 3 + 3d/2. Then, for any m ∈ {1, . . . ,M},

sup
(s,u)∈[0,1]d+1

∣∣∣B̃(m)
n (s,u)− B̌(m)

n {H̃−1
n (u)}

∣∣∣ P→ 0.

where B̃(m)
n is defined in (5).

Proof. Let us first show that

Jn = sup
(s,u)∈[0,1]d+1

∣∣∣B̃(m)
n (s,u)− B̌(m)

n (s,u)
∣∣∣ P→ 0.

Writing Zk =
∑k

i=1 ξ
(m)
i,n for k ∈ {1, . . . , n}, we have Jn ≤ Kn × Ln, where

Kn = n−1 max
1≤k≤n

|Zk| and Ln = n1/2 sup
u∈[0,1]d

∣∣∣H̃n(u)− C(u)
∣∣∣ .

Let ν > 1. Then,

E

{(
n−1 max

1≤k≤n
|Zk|

)ν}
= n−νE

(
max

1≤k≤n
|Zk|ν

)
≤ n−νE

(
n∑
k=1

|Zk|ν
)
≤ n1−ν max

1≤k≤n
E (|Zk|ν) .
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For ν = 4, using the fact that the sequence (ξ
(m)
i,n )i∈Z is strictly stationary and `n-

dependent, we obtain

E
(
|Zk|4

)
=

k∑
i1,i2,i3,i4=1

E
(
ξ

(m)
i1,n
ξ

(m)
i2,n
ξ

(m)
i3,n
ξ

(m)
i4,n

)
≤ 4!

∑
1≤i1≤i2≤i3≤i4≤n

∣∣∣E(ξ(m)
i1,n
ξ

(m)
i2,n
ξ

(m)
i3,n
ξ(m)

4,n

)∣∣∣
≤ 4!n

∑
1≤i2≤i3≤i4≤n

∣∣∣E(ξ(m)
1,n ξ

(m)
i2,n
ξ

(m)
i3,n
ξ

(m)
i4,n

)∣∣∣ ≤ 4!n
`n∑
i2=1

n∑
i3=i2

`n∑
i4=i3

∣∣∣E(ξ(m)
1,n ξ

(m)
i2,n
ξ

(m)
i3,n
ξ

(m)
i4,n

)∣∣∣ .
From Cauchy-Swcharz’s inequality, |E(ξ

(m)
1,n ξ

(m)
i2,n
ξ

(m)
i3,n
ξ

(m)
i4,n

)| ≤ E{(ξ(m)
1,n )4}, and therefore

max1≤k≤n E (|Zk|4) = O(n2`2
n). It follows that

E

{(
n−1 max

1≤k≤n
|Zk|

)4
}

= O(n−2ε)→ 0,

which implies that Kn
P→ 0. As a > 2 + d, from Dhompongsa (1984), Ln = OP(1), which

implies that Jn
P→ 0.

It remains to show that

sup
(s,u)∈[0,1]d+1

∣∣∣B̌(m)
n (s,u)− B̌(m)

n {s, H̃−1
n (u)}

∣∣∣ P→ 0.

The assumptions of Theorem 3.1 being satisfied, B̃(m)
n  B(m)

C in `∞([0, 1]d+1). Since Jn
P→

0, we obtain that B̌(m)
n  B(m)

C in `∞([0, 1]d+1). The previous result together with the Lip-
schitz continuity of C in (30) implies the asymptotic uniform ‖·‖1-equicontinuity in proba-

bility of B̌(m)
n . The desired result finally follows from the fact that supu∈[0,1] |H̃−1

n,j(u)−u| =
supu∈[0,1] |H̃n,j(u) − u| P→ 0 for all j ∈ {1, . . . , d}, the latter convergence being a conse-
quence of the fact that Ln = OP(1). �

D Proofs of Propositions 5.1 and 5.2

Proof of Propositions 5.1. From (25) and the fact that αr = O(r−a), a > 3 , we have
that

sup
u,v∈[0,1]d

∑
k∈Z

k2|γ(k,u,v)| ≤ 4
∑
k∈Z

k2α|k| = 8
∞∑
k=1

k2αk <∞.

Furthermore,

E{σ̃n(u,v)} =
1

n

n∑
i,j=1

ϕ(|i− j|/`n)γ(j − i,u,v) =
1

n

n∑
k=−n

(n− |k|)ϕ(k/`n)γ(k,u,v)

=
`n∑

k=−`n

ϕ(k/`n)γ(k,u,v) + sn(u,v),
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where sn(u,v) = − 1
n

∑`n
k=−`n |k|ϕ(k/`n)γ(k,u,v). Using the fact that ϕ is bounded, we

get

sup
u,v∈[0,1]d

|sn(u,v)| ≤ 8

n

∞∑
k=1

|k|αk = O(n−1) = o(`−2
n ).

Now, from the second-order mean value theorem, for any n ≥ 1 and k 6= 0, |k| ≤ `n,
there exists ζk,n strictly between 0 and k/`n such that

ϕ(k/`n) = ϕ(0) + ϕ′(0)k/`n + ϕ′′(ζk,n)k2/(2`2
n) = 1 + ϕ′′(ζk,n)k2/(2`2

n)

= 1 + ϕ′′(0)k2/(2`2
n) + {ϕ′′(ζk,n)− ϕ′′(0)}k2/(2`2

n).

Hence,

`n∑
k=−`n

ϕ(k/`n)γ(k,u,v) =
`n∑

k=−`n

γ(k,u,v) +
ϕ′′(0)

2`2
n

`n∑
k=−`n

k2γ(k,u,v) + tn(u,v),

where

tn(u,v) =
1

2`2
n

`n∑
k=−`n

{ϕ′′(ζk,n)− ϕ′′(0)}k2γ(k,u,v).

Furthermore,

2`2
n sup

u,v∈[0,1]d
|tn(u,v)| ≤ 8

`n∑
k=1

|ϕ′′(ζk,n)− ϕ′′(0)|k2αk → 0

by dominated convergence. Indeed, pointwise in k, |ϕ′′(ζk,n) − ϕ′′(0)|k2αk → 0 and, for
any k ≥ 1, |ϕ′′(ζk,n)− ϕ′′(0)|k2αk ≤ 2 supx∈[−1,1] |ϕ′′(x)|k2αk which converges absolutely.
Therefore, supu,v∈[0,1]d |tn(u,v)| = o(`−2

n ). The result finally follows with rn,1(u,v) =
sn(u,v) + tn(u,v) +

∑
|k|>`n γ(k,u,v) and the fact that

`2
n sup

u,v∈[0,1]d

∣∣∣∣∣∣
∑
|k|>`n

γ(k,u,v)

∣∣∣∣∣∣ ≤ 8`2
n

∞∑
k=`n+1

αk ≤ 8
∞∑

k=`n+1

k2αk → 0.

�

Proof of Propositions 5.2. The proof is based on an appropriate version of Eq. (A.1)
of Künsch (1989). For any i ∈ {1, . . . , n} and u ∈ [0, 1]d, let Yi(u) = 1(Ui ≤ u)− C(u).
Then, let us show that, for any u,v,w, z ∈ [0, 1]d and any i, j, k, l ∈ {0, . . . , n} such that
1 ≤ i+ j + k + l ≤ n,

|E{Yi(u)Yi+j(v)Yi+j+k(w)Yi+j+k+l(z)} − E{Yi(u)Yi+j(v)}E{Yi+j+k(w)Yi+j+k+l(z)}
− E{Yi(u)Yi+j+k(w)}E{Yi+j(v)Yi+j+k+l(z)}
− E{Yi(u)Yi+j+k+l(z)}E{Yi+j(v)Yi+j+k(w)}| ≤ 16αmax{j,k,l}. (32)

Fix u,v,w, z ∈ [0, 1]d and i, j, k, l ∈ {0, . . . , n} such that 1 ≤ i + j + k + l ≤ n, and
let A, B1, B2 and B3 denote the four terms appearing in the absolute value on the left
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of (32). Assume first that j = max{j, k, l}. Then, using Lemma 3.9 in Dehling and
Philipp (2002) as well as the facts that E{Y1(·)} = 0 and |Y1(·)| ≤ 1, we obtain that
|A| ≤ 4αj, |B1| ≤ 4αj, |B2| ≤ 4αj+k ≤ 4αj and |B3| ≤ 4αj+k+l ≤ 4αj, which, combined
with the triangle inequality, implies (32). Assume now that k = max{j, k, l}. Then,
|A − B1| ≤ 4αk, |B2| ≤ 4αj+k ≤ αk and |B3| ≤ 4αj+k+l ≤ αk, and (32) holds. Finally,
suppose that l = max{j, k, l}. Then, |A| ≤ 4αl, |B1| ≤ 4αl, |B2| ≤ 4αk+l ≤ 4αl and
|B3| ≤ 4αj+k+l ≤ 4αj and (32) follows again.

Fix u,v ∈ [0, 1]d. Starting from the expression of σ̃n(u,v), we have that

Var{σ̃n(u,v)} =
1

n2

n∑
i,j,k,l=1

ϕ{(i− j)/`n}ϕ{(k − l)/`n}Cov{Yi(u)Yj(v), Yk(u)Yl(v)}.

Let us now write

Var{σ̃n(u,v)} =
1

n2

n∑
i,j,k,l=1

[
ϕ{(i− j)/`n}ϕ{(k − l)/`n}

× {γ(k − i,u,u)γ(l − j,v,v) + γ(l − i,u,v)γ(k − j,v,u)}
]

+ sn(u,v),

and show that supu,v∈[0,1]d |sn(u,v)| = o(`n/n). Using the fact that ϕ is bounded by one,
we have

sup
u,v∈[0,1]d

|sn(u,v)| ≤ 1

n2

n∑
i,j,k,l=1

sup
u,v∈[0,1]d

∣∣Cov{Yi(u)Yj(v), Yk(u)Yl(v)}

− γ(k − i,u,u)γ(l − j,v,v)− γ(l − i,u,v)γ(k − j,v,u)
∣∣,

which implies that

sup
u,v∈[0,1]d

|sn(u,v)| ≤ 1

n2

n∑
i,j,k,l=1

sup
u,v,w,z∈[0,1]d

∣∣E{Yi(u)Yj(v)Yk(w)Yl(z)}

− E{Yi(u)Yj(v)}E{Yk(w)Yl(z)} − E{Yi(u)Yk(w)}E{Yj(v)Yl(z)}
− E{Yi(u)Yl(z)}E{Yj(v)Yk(w)}

∣∣
=

4!

n2

n∑
i,j,k,l=0

1≤i+j+k+l≤n

sup
u,v,w,z∈[0,1]d

∣∣E{Yi(u)Yi+j(v)Yi+j+k(w)Yi+j+k+l(z)}

− E{Yi(u)Yi+j(v)}E{Yi+j+k(w)Yi+j+k+l(z)}
− E{Yi(u)Yi+j+k(w)}E{Yi+j(v)Yi+j+k+l(z)}
− E{Yi(u)Yi+j+k+l(z)}E{Yi+j(v)Yi+j+k(w)}

∣∣.
Then, we obtain from (32),

sup
u,v∈[0,1]d

|sn(u,v)| ≤ 4!

n2

n∑
i,j,k,l=0

1≤i+j+k+l≤n

16αmax{j,k,l} ≤
384

n

n∑
j,k,l=0

1≤j+k+l≤n

αmax{j,k,l}

≤ 3× 384

n

n∑
j=1

j∑
k,l=1

αj ≤
1152

n

∞∑
j=1

j2αj = o(`n/n).
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Hence, we have that

Var{σ̃n(u,v)} =
1

n2

n∑
i,j,k,l=1

ϕ{(i− j)/`n}ϕ{(k − l)/`n}γ(k − i,u,u)γ(l − j,v,v)

+
1

n2

n∑
i,j,k,l=1

ϕ{(i− j)/`n}ϕ{(k − l)/`n}γ(l − i,u,v)γ(k − j,v,u) + sn(u,v). (33)

Now, for any u,v ∈ [0, 1]d, let

an(u,v) =
1

n

∞∑
p,q,r=−∞

ϕ(p/`n)ϕ{(q − r)/`n}γ(q,u,u)γ(r − p,v,v).

Our next goal is to show that the first term on the right of (33) is equal to an(u,v) plus
a term that is o(`n/n) uniformly in u,v ∈ [0, 1]d. For any u,v ∈ [0, 1]d, let

ai,n(u,v) =
1

n

n−i∑
p=1−i

n−i∑
q=1−i

n−i∑
r=1−i

ϕ(p/`n)ϕ{(q − r)/`n}γ(q,u,u)γ(r − p,v,v),

and notice that, by setting j = i+ p, k = i+ q and l = i+ r, the first term on the right
of (33) can be written as n−1

∑n
i=1 ai,n(u,v). Hence, it suffices to show that

sup
u,v∈[0,1]d

n−1

n∑
i=1

|ai,n(u,v)− an(u,v)| = o(`n/n).

For any i ∈ {1, . . . , n}, let Ai,n = {1− i, 2− i, . . . , n− i− 1, n− i}, and let

ψn(p, q, r) = ϕ(p/`n)ϕ{(q − r)/`n}α|q|α|r−p|, p, q, r ∈ Z.

Then, using (25),

sup
u,v∈[0,1]d

|ai,n(u,v)− an(u,v)| ≤ const× 1

n

∑
p,q,r

ψn(p, q, r),

where the sum on the right is over all p, q, r ∈ Z such that at least one of the indices does
not lie in Ai,n. Next, we can bound the right-hand side of the last display by the sum of
three sums Bn,i,1 +Bn,i,2 +Bn,i,3, where the first one is over p ∈ Z \Ai,n and q, r ∈ Z, the
second one over q ∈ Z\Ai,n and p, r ∈ Z and the last one over r ∈ Z\Ai,n and p, q ∈ Z. We
shall estimate each of them individually and have to show that n−1

∑n
i=1Bn,i,k = o(`n/n)

for k ∈ {1, 2, 3}. Regarding Bn,i,1, we have

Bn,i,1 ≤
const

n

∞∑
p=n−i+1

∑
q,r∈Z

ψn(p, q, r) +
const

n

−i∑
p=−∞

∑
q,r∈Z

ψn(p, q, r) =: B′n,i,1 +B′′n,i,1.

Now, B′n,i,1 is equal to 0 if n − i + 1 > `n, that is, if i ≤ n − `n, and is bounded by a
constant multiple of {`n− (n− i)}/n ≤ `n/n for i > n− `n. Similarly, B′′n,i,1 is equal to 0
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if i > `n and is bounded by a constant multiple of {`n− i+ 1}/n ≤ `n/n for i ≤ `n. This
implies that

1

n

n∑
i=1

Bn,i,1 =
1

n

{
n∑

i=n−`n+1

B′n,i,1 +
`n∑
i=1

B′′n,i,1

}
= O{(`n/n)2} = o(`n/n).

Next, let us consider Bn,i,2, and, as previously, split the sum into two sums B′n,i,2 +B′′n,i,2,
where the first considers the summands with q ≥ n − i + 1 and the second those with
q ≤ −i. Regarding B′n,i,2, we distinguish two cases. On one hand, when i ≤ n− 3`n,

B′n,i,2 =
const

n

∞∑
q=n−i+1

q+`n∑
r=q−`n

`n∑
p=−`n

ψn(p, q, r) ≤ const

n

∞∑
q=3`n

αq

q+`n∑
r=q−`n

`n∑
p=−`n

α|r−p|

≤ const

n
× `2

n × α`n ×
∞∑

q=3`n

αq = O(n−1`2−a
n )× o(1) = o(`n/n),

where we used the fact that ϕ is bounded by one, the fact that |r−p| ≥ r−p ≥ q−2`n ≥ `n
(which implies that α|r−p| ≤ α`n) and the assumption on the mixing rate. On the other
hand, when i > n− 3`n,

B′n,i,2 ≤
const

n

∞∑
q=1

αq

q+`n∑
r=q−`n

∞∑
p=−∞

α|r−p| = O(`n/n).

Therefore,
1

n

n∑
i=1

B′n,i,2 =
n− 3`n

n
o(`n/n) +

3`n
n
O(`n/n) = o(`n/n).

The quantity B′′n,i,2 can be treated similarly. It remains therefore to consider Bn,i,3 which
we split again into two sums B′n,i,3 +B′′n,i,3, where the first considers the summands with
r ≥ n− i+ 1 and the second those with r ≤ −i. On one hand, when i ≤ n− 2`n + 1,

B′n,i,3 =
const

n

∞∑
r=n−i+1

r+`n∑
q=r−`n

`n∑
p=−`n

ψn(p, q, r) ≤ const

n
× α`n × `n ×

∞∑
r=n−i+1

`n∑
p=−`n

αr−p,

where we used the fact that |q| ≥ q ≥ r − `n ≥ `n. The double sum on the right-hand
side can be bounded by (2`n + 1)

∑∞
s=`n

αs = o(`n), whence B′n,i,3 = o(`n/n) by similar
arguments as before. On the other hand, when i > n− 2`n + 1,

B′n,i,3 ≤
const

n

∞∑
r=1

∑
q∈Z

α|q|

`n∑
p=−`n

α|r−p| = O(`n/n).

Hence,
1

n

n∑
i=1

B′n,i,3 =
n− 2`n + 1

n
o(`n/n) +

2`n − 1

n
O(`n/n) = o(`n/n),

The quantity B′′n,i,3 can be treated similarly, by considering the cases i ≥ 2`n and i < 2`n.
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This completes the proof for the first term on the right (33). Proceeding similarly for
the second term, we obtain that

Var{σ̃n(u,v)} =
1

n

∞∑
p,q,r=−∞

ϕ(p/`n)ϕ{(q − r)/`n}γ(q,u,u)γ(r − p,v,v)

+
1

n

∞∑
p,q,r=−∞

ϕ(p/`n)ϕ{(q − r)/`n}γ(q,u,v)γ(r − p,v,u) + s′n(u,v),

where supu,v∈[0,1]d s
′
n(u,v) = o(`n/n). Setting s = p− r, we get

Var{σ̃n(u,v)} =
1

n

∞∑
s,q,r=−∞

ϕ{(s+ r)/`n}ϕ{(q − r)/`n} {γ(q,u,u)γ(s,v,v)

+γ(q,u,v)γ(s,u,v)}+ s′n(u,v).

To finish the proof, it remains to show that supu,v∈[0,1]d |s′′n(u,v)| = o(`n/n), where

s′′n(u,v) =
1

n

∞∑
s,q,r=−∞

[
ϕ{(s+ r)/`n}ϕ{(q − r)/`n} − {ϕ(r/`n)}2

]
{γ(q,u,u)γ(s,v,v)

+γ(q,u,v)γ(s,u,v)} .

Using (25), we have

sup
u,v∈[0,1]2

|s′′n(u,v)| ≤ const

n

∞∑
s,q=−∞

α|q|α|s|

∞∑
r=−∞

∣∣ϕ{(s+ r)/`n}ϕ{(q − r)/`n} − {ϕ(r/`n)}2
∣∣.

The sum over r on the right-hand side consists of at most 3×(2`n+1) non-zero summands
(those r for which either |s + r|, |q − r| or |r| is smaller than or equal to `n). Now, for
any s, q, r such that |s+ r|, |q− r| or |r| is smaller than or equal to `n, we have, from the
conditions on ϕ,∣∣ϕ{(s+ r)/`n}ϕ{(q − r)/`n} − {ϕ(r/`n)}2

∣∣
=
∣∣ϕ{(s+ r)/`n}

[
ϕ{(q − r)/`n} − ϕ(r/`n)

]
+ ϕ(r/`n)

[
ϕ{(s+ r)/`n} − ϕ(r/`n)

]∣∣
≤ sup

x∈[−1,1]

|ϕ(x)| ×
[∣∣ϕ{(q − r)/`n} − ϕ(r/`n)

∣∣+
∣∣ϕ{(s+ r)/`n} − ϕ(r/`n)

∣∣]
≤ λ{|q|+ |s|}/`n,

and therefore, from the conditions on the strongly mixing coefficients,

∞∑
s,q=−∞

α|q|α|s|

∞∑
r=−∞

∣∣ϕ{(s+ r)/`n}ϕ{(q − r)/`n} − {ϕ(r/`n)}2
∣∣

≤
∞∑

s,q=−∞

α|q|α|s|(6`n + 3)λ{|q|+ |s|}/`n ≤ const
∞∑

s,q=−∞

α|q|α|s|{|q|+ |s|} <∞.

Hence, supu,v∈[0,1]2 |s′′n(u,v)| = O(1/n) = o(`n/n). The stated result finally follows from

the fact that `−1
n

∑`n
r=−`n{ϕ(r/`n)}2 =

∫ 1

−1
ϕ(x)2dx+ o(1). �
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Statistique de l’Université de Paris, 26:29–50, 1981.

H. Dehling and W. Philipp. Empirical process techniques for dependent data. In
H. Dehling, T. Mikosch, and M. Sorensen, editors, Empirical process techniques for
dependent data, pages 1–113. Birkhäuser, Boston, 2002.
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