
Connections on Cahen-Wallach

spaces

Frank Klinker

Preprint 2013-08 August 2013

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund tu-dortmund.de/MathPreprints





CONNECTIONS ON CAHEN-WALLACH SPACES

FRANK KLINKER

Abstract. We systematically discuss connections on spinor bundles of Cahen-
Wallach symmetric spaces. A large class of these connections is closely con-
nected with a quadratic relation on a Clifford algebra. This relation in turn is
associated to a symmetric linear map that defines the underlying space. We
present various solutions of this relation. Moreover, we show that the solutions
we present here provide a complete list with respect to a particular algebraic
condition.
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1. Introduction

In this text we examine spinor connections on solvable Lorentzian symmetric spaces
and a closely related quadratic relation on the Clifford algebra of a Euclidean vector
space, V . One parameter that connects the two topics is a symmetric endomorphism
B ∈ End(V ). Solvable Lorentzian symmetric spaces have been classified in [5] and
thus we will use the term Cahen-Wallach-spaces or CW-space. From a differential
geometrical point of view CW-spaces are considered in the classification of holonomy
groups of Lorentzian manifolds, see [20, 3]. In physics they are used as backgrounds
of supergravity theories because they have a large space of isometries and admit
many supersymmetry generators, see for example [8, 11, 12, 22, 10, 9]. In physics
and in the supersymmetry setting CW-spaces are also called KG-spaces or pp-
waves. In all applications spinor connections on CW-spaces play a major role, but
a systematic treatment is missing. This is the aim of the text at hand.
In the first part of our text we present the above mentioned relation on a Clifford
algebra, see Definition 2.1. We develop solutions of this relation: the quadratic
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Clifford pairs. We do this by investigating certain special approaches. As a result
we get solutions for any symmetric map B according to some restriction on its
eigenvalue structure, see Propositions 2.5, 2.16, 2.21, and 2.23.
The second part is on the origin of the quadratic relation. As we will see, it
naturally arises when we consider connections on the spinor bundle of CW-spaces.
We will recall some basic facts on invariant connections on homogeneous spaces
and especially on CW-spaces. Therefore, we introduce some notation that is well
adapted to the algebraic nature of the topic, see Definition 3.1. The quadratic
relation then is shown to correspond to the vanishing of the curvature of a particular
class of connections. This class is defined by a trivial action of the center of the
CW-space, see (23). For the result see Theorem 3.6 and we remark that this also
been found true by the author in [24]. We will also give the result for a general
connection, see Theorem 3.7. We will also discuss some restrictions of the spinors
on which the Clifford-algebra acts and show that some of the properties of the
connections survive.
In a last part we will discuss an algebraic condition that turns the examples of
quadratic Clifford pairs found in the first part into a complete list, i.e. we classify
the flat homogeneous connections on irreducible spinor bundles over CW-spaces,
see Proposition 4.1 and Theorem 4.3.

2. Quadratic Clifford pairs

Let us consider an finite dimensional real vector space V with Euclidean metric g.
We denote by C`(V ) its complex Clifford algebra1 subject to the Clifford relation

vw + wv = −2g(v, w) (1)

for all v, w ∈ V .

Definition 2.1. Let (V, g) be a Euclidean vector space and C`(V ) as above. For
a, b ∈ C`(V ) consider the map qa,b : C`(V )→ C`(V ) that is defined by

qa,b(x) := a2x+ xb2 − 2axb . (2)

A quadratic Clifford pair is a pair (a, b) ∈ C`(V )× C`(V ) that obeys

(1) qa,bV ⊂ V and
(2) qa,b restricted to V is a g-symmetric element in End(V ).

We call the quadratic Clifford pair (non)-degenerate if qa,b is a (non)-degenerate
symmetric map.

For a, b ∈ C`(V ) the map qa,b is the square of the map sa,b with sa,b(x) := ax−xb.
Therefore, we have

qa1+a2,b1+b2 = qa1,b1 + qa2,b2 + sa1,b1 ◦ sa2,b2 + sa2,b2 ◦ sa1,b1 (3)

for all a1, a2, b1, b2 ∈ C`(V ) .

1For more details on Clifford algebras, aka geometric algebras, that go beyond the facts we
state in this text we recommend the books [7], [13], [19], or [21]
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Remark 2.2. We write a, b ∈ C`(V ) as a = α + a′ and b = β + b′ with α and β
being the scalar parts of a and b respectively. Then qa,b reads as

qα+a′,β+b′(x) = (α− β)2x+ qa′,b′(x)− 2(α− β)sa′,b′(x) . (4)

This means that qa,b is invariant under the action of the scalars given by (a, b) 7→
(a + α, b + α). Therefore, we may assume that the scalar part of a or b vanishes
when we look for quadratic Clifford pairs (a, b).

Let Γ be an irreducible matrix representation of C`(V ) and let {Γµ} be a set of
γ-matrices associated to an orthonormal basis {eµ} of V , i.e. Γµ = Γ(eµ) with
ΓµΓν + ΓνΓµ = −2gµν1. When qa,b obeys (ii) this basis can be chosen as a basis
of eigenvectors of qa,b.
We use the following abbreviation for products of γ-matrices. Consider I = (i1, . . . , ik) ∈
{1, . . . , n}k for k = 0, . . . , n be a multi-index, then

ΓI = Γµ1...µk := Γ[µ1Γµ2 · · ·Γµk] .

For k = 0 we set Γ∅ = 1 and we write Î for the length of the index, i.e. Î := k for
I ∈ {1, . . . , n}k. If Γµ is associated to an orthonormal basis and I and J contain the
same indices we have ΓI = εIJΓJ , where εIJ is the sign of the permutation. If we do
not care about the ordering of the indices within I we identify the multi-index with
the set of indices itself. Therefore, the notations I ∩ J , I ∪ J and I{ make sense.
Moreover, due to (1) we have Γ2

I = σI1 with σI ∈ {±1}. For the combination of
γ-matrices of maximal length we write

Γ∗ = i[
n+1

2 ]Γ1...n.

Then Γ∗ is the image of the complex volume form and obeys (Γ∗)2 = 1.

Remark 2.3. We shortly recall two important involutions of the Clifford algebra:
By ¯ : C`(V ) → C`(V ) we denote the extension of V 3 v → −v ∈ V to an
automorphism of C`(V ) and by ˜ : C`(V ) → C`(V ) we denote the extension of
V 3 v 7→ v ∈ V to an antiautomorphism of C`(V ). For I = (µ1, . . . , µÎ) we get
Γ̄I = (−)ÎΓI and Γ̃I = ΓµÎ ...µ1 = (−1)

Î(Î−1)
2 ΓI . The elements in the +1 and −1

eigenspaces of ¯ are called even and odd respectively.

Due to relation (1) a generic element c ∈ C`(V ) can be written as2

c =
∑
I

cIΓI , cI ∈ C .

Remark 2.4. Suppose c and d are both even or odd with respect to the Z2-grading
of C`(V ) and c, d is a quadratic Clifford pair. Then so is (−Γ∗c,Γ∗d) with qc,d =
(−1)deg

Z
cq−Γ∗c,Γ∗d if dim(V ) is even, and (Γ∗c,Γ∗d) with qc,d = qΓ∗c,Γ∗d if dim(V )

is odd.

2When we consider such expansions, the sum is meant to be taken over indices of the form
I = (i1, . . . , iÎ) with i1 < i2 < . . . < iÎ .
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2.1. Traces and symmetry. Let us identify C`(V ) = End(S) via Γ where S is
an irreducible Clifford module for C`(V ). Then the I-component of a =

∑
I aIΓI ∈

C`(V ) can be evaluated by the trace via

aI = (−1)
Î(Î+1)

2
1

tr(1) tr (aΓI) . (5)

The trace yields an inner product on C`(V ) by 〈a, b〉 = tr(ab̃) where for b =
∑
I bIΓI

is given by b̃ =
∑
I(−1)

Î(Î−1)
2 bIΓI , see Remark 2.3. This product is naturally

induced by the inner product g on V that defines the Clifford algebra in such a
way that it coincides with the extension of g to the Grassmann algebra Λ∗V ∗.
In particular, the basis {ΓI}Î≥0 obtained from an orthonormal basis {eµ} of V is
orthogonal, i.e. tr(ΓI Γ̃J) = δIJtr(1) with δJI = δĴ

Î
δ
j1...jĴ
i1...iÎ

.

The transpose of qc,d with respect to the induced inner product on C`(V ) is deter-
mined by qd,c. More precisely,

(qc,d)JI = (−)
Ĵ(Ĵ−1)

2 tr(qc,d(ΓI)ΓJ)

= (−)
Ĵ(Ĵ−1)

2 tr(c2ΓIΓJ + ΓId2ΓJ − 2cΓIdΓJ)

= (−)
Ĵ(Ĵ−1)

2 tr(d2ΓJΓI + ΓJc2ΓI − 2dΓJcΓI)

= (−)
Ĵ(Ĵ−1)

2 tr(qd,c(ΓJ)ΓI)

= (−)
(Î+Ĵ)(Î+Ĵ−1)

2 (−)ÎĴ(qd,c)IJ .

In particular, if (c, d) is a quadratic Clifford pair, i.e. qc,d
∣∣
V

is a symmetric on V ,
then projV qd,c(v) = qc,d(v) on V . Moreover, if (c, d) is a quadratic Clifford pair
then (d, c) is a quadratic Clifford pair if and only if qc,d respects the vector space
splitting C`1(V )⊕

⊕
r 6=1 C`r(V ). All quadratic Clifford pairs we will introduce in

the following subsections are of this type.

2.2. Monomial solutions. Let us consider w ∈ V , then qw,−w(v) = B(v) with
B = wwt. This map is symmetric but degenerate, of course. However, this easy
example motivates the first important class of quadratic Clifford pairs. For this,
consider homogeneous elements c = αΓI and d = βΓJ . Then c2 = α2σI1 and
d2 = β2σJ1 and (2) reduces to

qc,d(eµ) = (σIα2 + σJβ
2)Γµ − 2αβΓIΓµΓJ . (6)

We will take a look at the second term in (6) and consider three cases. We set
I ∩ J = K, I = I0 ∪K, J = J0 ∪K, and discuss (a) µ 6∈ I ∪ J , (b) µ ∈ I0 ∪ J0, and
(c) µ ∈ K. We get the following results:
Case (a): We have ΓI = εII0K

ΓI0ΓK and ΓJ = εJKJ0
ΓKΓJ0 such that

ΓIΓµΓJ = εII0Kε
J
KJ0

ΓI0ΓKΓµΓKΓJ0 = −σK(−1)K̂εII0Kε
J
KJ0

ΓI0ΓµΓJ0

= (−1)Î0(−1)K̂σKεII0Kε
J
KJ0

ΓµI0J0 .
(7)
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Case (b): This case is independent of whether µ ∈ I0 or µ ∈ J0 and we get for
µ ∈ J0

ΓIΓµΓJ = εII0Kε
J
KJ0

ΓI0ΓKΓµΓKΓJ0 = −σKεII0Kε
J
KJ0

ΓI0ΓµΓJ0

= −(−1)Î0σKε
I
I0Kε

J
KJ0

(Î0 + Ĵ0)gµ[i1Γi2...iÎ0
J0] .

(8)

Case (c):

ΓIΓµΓJ = εII0Kε
J
KJ0

ΓI0ΓKΓµΓKΓJ0 = (−1)Ĵ0εII0Kε
J
KJ0

ΓI0ΓJ0ΓKΓµΓK

= (−1)Î0(−1)K̂−1σKε
I
I0Kε

J
KJ0

ΓµI0J0 ,
(9)

where the last equality is due to the following observation: We have ΓKΓµΓK =
(−1)K̂0(−1)K̂0ΓµΓµΓK0ΓK0Γµ = −σK0Γµ and σK = −(−1)K̂0σK0 for K = (µ,K0).

Proposition 2.5. Two monomials c = αΓI , d = βΓJ yield a non-degenerate
quadratic Clifford pair if and only if the index sets I and J coincide up to order
or one of both entries vanishes. If I and J coincide up to order and Î > 0 the
eigenvalues of qc,d are given up to sign by (α±β)2 with multiplicities Î and dimV−Î.

Proof. If c, d 6= 0, equations (7)-(9) yield I0 = J0 = ∅ for qc,d to be contained in V ,
such that the index sets I and J coincide up to order. Therefore, qc,d = (α2−β2)1
if K̂ = 0, i.e. I = J = ∅. If K̂ > 0, (7) and (9) reduce to (−1)K̂εIJσKΓµ and
−(−1)K̂εIJσKΓµ respectively, such that

qc,d(eµ) =
{
σI
(
α+ (−1)ÎεJI β

)2Γµ for µ ∈ I
σI
(
α− (−1)ÎεJI β

)2Γµ for µ 6∈ I
. (10)

Regardless of the assumption, this also includes the case αβ = 0. �

Definition 2.6. The pairs from Proposition 2.5 are called monomial quadratic
Clifford pairs.

Remark 2.7. Consider two non-zero positive numbers λ1, λ2. Then for any I with
0 < Î < dim(V ) there exist a monomial quadratic Clifford pair (c, d) such that qc,d
obeys (ii) with eigenvalues λ1, λ2. The pair is (almost) unique. The mild restriction
on uniqueness is due to the obvious Z2-symmetry determined by the squares in (10).
It is clear, that for every Clifford pair (c, d) and for any non-vanishing scalar α the
pair (αc, αd) is a Clifford pair, too. If we consider such pairs as equivalent, then
– in case of monomial quadratic Clifford pairs – an equivalence class is (almost)
uniquely determined by the ratio of the two eigenvalues.
If we in addition fix the multiplicities of the eigenvalues then there exist at most
two pairs associated to Î ≤ Ĵ with Î = dim(V ) − Ĵ . These two cases are related
by the volume form ΓI = Γ∗ΓJ . Therefore, if dim(V ) is odd we will restrict to
Î ≤ 1

2 dim(V ) because Γ∗ = ±1.

2.3. Pseudo monomial solutions. We consider slightly more general maps qc,d
by taking Clifford elements c = αΓI + βΓJ and d = γΓI + δΓJ with scalars α, β,
γ, and δ. The calculations in Section 5.1 show that the following holds.
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Proposition 2.8. The approach c = (αΓI+βΓJ)ΓK , d = (γΓI+δΓJ)ΓK with non-
vanishing scalars α, β, γ, δ and I ∩ J = I ∩K = J ∩K = ∅ yields a non-monomial
quadratic Clifford pair if and only if the combination is from Table 1.
If one of the entries vanishes, the pair (c, 0) or (0, d) yields a quadratic Clifford pair
if and only if (−1)ÎĴ+(Î+Ĵ)K̂ = −1. Then qc,0 = (α2σIK + β2σJK)1, for example.

Table 1. Non-monomial quadratic Clifford pairs

Case Conditions on K, I, J Pairs
1b Î Ĵ 6= 0, K̂ = 0, (I ∪ J){ 6= ∅

(
c, c̄
)
, c = αΓI + βΓJ

Î Ĵ ≡ 0 mod 2
2a Î Ĵ 6= 0, K̂ 6= 0, (I ∪ J ∪K){ = ∅,

(
c,−c̄

)
, c = (αΓK + βΓ∗)ΓI

ΓJΓIΓK = Γ∗

2b Î Ĵ 6= 0, K̂ = 0, (I ∪ J){ = ∅
(
c,±c

)
, c = (α+ βΓ∗)ΓI

ΓJ = Γ∗ΓI , Î ≡ Ĵ ≡ 0 mod 2
Î Ĵ 6= 0, K̂ = 0, (I ∪ J){ = ∅

(
α(cos(φ)eiψ + sin(φ)Γ∗)ΓI ,

ΓJ = Γ∗ΓI , Î ≡ Ĵ ≡ 1 mod 2 β(cos(φ)eiψ − sin(φ)Γ∗)ΓI
)†

3a Î = 0, K̂ 6= 0, (J ∪K){ 6= ∅
(
c+, c̄−

)
, c± = (α± βΓJ)ΓK

K̂Ĵ ≡ 0 mod 2
3b Î = K̂ = 0, J{ 6= ∅

(
α+ βΓJ , α+ δΓJ

)
4a Î = 0, K̂ 6= 0, (J ∪K){ = ∅

(
αΓK + βΓ∗, γΓK − βΓ∗

)
Ĵ ≡ K̂ ≡ 0 mod 2,ΓJΓK = Γ∗

4b Î = K̂ = 0,ΓJ = Γ∗
(
α+ βΓ∗, α+ δΓ∗

)
,

Ĵ = dim(V ) ≡ 0 mod 2
(
α+ βΓ∗, γ − βΓ∗

)
† If in case 2b with Î odd both prefactors do not vanish one may write

the pair in the form (c, d) = (α(γ + Γ∗)ΓI , β(γ + Γ∗)ΓI . If one restricts
to real or imaginary pairs one may consider ψ = 0. Finally, there are
corresponding monomial pairs, namely for φ = 0 or φ = π

2 .
The preceding Proposition tells us what combination yields non-monomial qua-
dratic Clifford pairs. The next natural question is: Which of these is non-degenerate
or obeys qc,d 6∼ 1? The answer is also given by the discussion in Section 5.1 and is
summarized as follows.

Remark 2.9. The Clifford pairs of Table 1 are non-degenerate only in Cases 2b, 3b,
4a, and 4b. In Case 3b the map qc,d has two eigenvalues that are independent of
the parameter α. Therefore, we may choose α = 0 such that we are left with a
monomial pair. The same is true for the first pair in Case 4b.3 In Case 4a and
the second pair of Case 4b the eigenvalues are independent of β such that we may
choose β = 0. Moreover, for the pairs in Case 4b we have qc,d ∼ 1.

3With respect to Remark 2.2 we could have chosen a priori α = 0 in the cases with Î = K̂ = 0.
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Last but not least we are left with Case 2b in even dimensions. Here the quadratic
form generically admits two eigenvalues. The eigenvalues and their multiplicities
in the different subcases are given in the second column of Table 2.

Table 2. Non-monomial, non-degenerate quadratic Clifford pairs
in Case 2b

Pair Eigenvalues(
(α+ βΓ∗)ΓI , (α+ βΓ∗)ΓI

) 4σIα2 , Î even
4σIβ2 , dim(V )− Î even(

(α+ βΓ∗)ΓI ,−(α+ βΓ∗)ΓI
) 4σIβ2 , Î even

4σIα2 , dim(V )− Î even(
α(cos(φ) + sin(φ)Γ∗)ΓI ,

β(cos(φ)− sin(φ)Γ∗)ΓI
) σI(α− β)2 cos(2φ) , Î odd

σI(α+ β)2 cos(2φ) , dim(V )− Î odd

Definition 2.10. The pairs of Case 2b are called pseudo-monomial quadratic Clif-
ford pairs of even and odd type respectively.

Remark 2.11. We will briefly explain why the name pseudo-monomial pair is rea-
sonable in this situation. From Table 2 we see that the form of the quadratic
Clifford pairs is a bit different for Î even or odd.

• For Î even we may write c = ±d in a more symmetric way c = (a+Π+ +
a−Π−)ΓI with α± = α ± β and Π± = 1

2 (1 ± Γ∗) being the projections on
the two spaces of half spinors. Then the two eigenvalues of qe,f again arise
as the squares of difference and sum of the two coefficients.

• For Î odd we consider sin(φ) 6= 0 and write γ = cot(φ) as well as ᾱ =
sin(φ)α and β̄ = sin(φ)β. We may write γ + Γ∗ = (γ + ε) − 2εΠ−ε
with ε = ±1. Then c = ᾱ(γ + ε)ΓI − 2ᾱεΓIΠ+ε and d = β̄(γ + ε)ΓI −
2β̄εΓIΠ−ε. We insert this in (3) and see qᾱΓIΠ+ε,β̄ΓIΠ−ε(v) = 0 as well as{
sᾱΓI ,β̄ΓI , sᾱΓIΠ+ε,β̄ΓIΠ−ε

}
= qᾱΓI ,β̄ΓI such that

qc,d = (γ + ε)2qᾱΓI ,β̄ΓI − 2ε(γ + ε)qᾱΓI ,β̄ΓI = (γ2 − ε2)qᾱΓI ,β̄ΓI .

Again, the eigenvalues are sum and difference of the two coefficients of the
equivalent monomial pair (c′, d′) = (

√
cos(2φ)αΓI ,

√
cos(2φ)βΓI).

Proposition 2.5 and Remark 2.9 yield the following.

Proposition 2.12. Let B be a non-degenerate symmetric linear map on a Rie-
mannian vector space V that has two different non-zero eigenvalues. If dim(V ) is
odd then there exists one monomial quadratic Clifford pair with qc,d = B. If dim(V )
is even then there exist two monomial quadratic Clifford pairs as well as a family of
pseudo-monomial quadratic Clifford pair(s). The family is parameterized by {±1}
or S1 if the multiplicity of each eigenvalue is even or odd, respectively. In any case
there is a further discrete symmetry coming from the squares in (10) and Table 2.

2.4. Linear solutions. The second pair of Case 4b in Table 1 has an additional
property: The square root sc,d of qc,d obeys sc,d

∣∣
V
⊂ V . In the sense of [24] the

quadratic Clifford pairs (c, d) for which the restriction to V of the square root of
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qc,d is a map into V are called linear pairs. We will relax this notion of linearity
in the following definition and we will examine the pairs with this property. This
yields a classification of linear quadratic Clifford pairs.
Definition 2.13. Consider the square root of qa,b given by sa,b : x 7→ ax− xb. We
call a pair (a, b) ∈ C`(V ) linear if sa,b restricted to V ⊗C has image in V ⊗C.
Lemma 2.14. The restriction of sa,b : x 7→ ax − xb to V ⊗ C is a map into
V ⊗ C if and only if there exists scalars α0, α1, β0 and A ∈ C`2(V ) such that
a = α0 + A + α1Γ∗ and b = β0 + A − α1Γ∗ if dim(V ) is even, or a = α0 + A and
b = β0 +A if dim(V ) is odd.
Remark 2.15. sa,b

∣∣
V

in Lemma 2.14 is independent of the terms proportional to Γ∗.
Therefore, we may consider α1 = 0 when we are only interested in this restriction.
Furthermore, we may consider α0 = 0 because of sa,b = sα+a,α+b for all scalars α.

Proof. Consider a =
∑
I aIΓI and b =

∑
I bIΓI and define θµI = 1 if µ 6∈ I and

θµI = −1 if µ ∈ I. Then sa,bΓµ =
∑
I(aI − θ

µ
I (−1)ÎbI)ΓIΓµ and we write4

sa,bΓµ =
∑
µ∈I

ηµI (aI + (−1)ÎbI)ΓI\µ +
∑
µ6∈I

(aI − (−1)ÎbI)ΓI∪µ .

The condition sa,bΓµ ∈ V for all µ is equivalent to (a) aI + (−1)ÎbI = 0 for all I
such that there exists a µ with µ ∈ I and Î \ µ 6= 1 and (b) aI − (−1)ÎbI = 0 for
all I such that there exists a µ with µ 6∈ I and Î ∪ µ 6= 1.

If dim(V ) = 2m is even than this is the same as (a) aI + (−1)ÎbI = 0 for all I with
Î 6= 0, 2 and (b) aI − (−1)ÎbI = 0 for all I such Î 6= 0, 2m. Therefore aI = bI = 0
for all Î 6= 0, 2, 2m. Furthermore there is no restriction for Î = 0, i.e. for the scalar
part. For Î = 2 the coefficients have to obey a(2) = b(2) and for Î = 2m the sole
coefficients must obey a(2m) = −b(2m). For dim(V ) = 2m + 1 we only need to
consider Î ≤ m due to Γ∗ ∼ 1 such that the same calculations as before yield
aI = bI = 0 for Î 6= 0, 2, no restriction for Î = 0, and a(2) = b(2). �

If we identify C`2(V ) in the usual way with the skew-symmetric endomorphism of
V ⊗C, i.e.

(Aµν) 7→ −1
4
∑
µ,ν

AµνΓµν , (11)

the action of sA,A on x ∈ V ⊗ C is just the action of the endomorphism A on x.
We write sA,A(x) = Ax − xA = [A, x] = A(x) in this special case. In particular,
the restriction of sA,A to V ⊗C is skew-symmetric.
Proposition 2.16. A quadratic Clifford pair is linear if and only if it is of the
form (0, β) with a scalar β or (A,A) with A = A0 + iA1 ∈ C`2(V ) such that A0
and A1 anti-commute when considered as endomorphisms of V .

Proof. Consider a linear pair (a, b) given by a = A and b = β + A this yields
qa,b(x) = βx+ qA,A(x) + β[A, x]. This is symmetric if and only if β = 0 or A = 0.
Moreover, for A = 0 condition (i) is fulfilled for β real. Now consider β = 0 such
that a = b = A0 + iA1 is a complex skew-symmetric endomorphism. Then qA,A,

4ηµI denotes the sign of the permutation that indicates the place of µ within the multiindex I.
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i.e. the endomorphism A2 = (A2
0−A2

1) + i{A0, A1}, preserves the real vector space
V if and only if the real skew-symmetric endomorphisms A0 and A1 anti-commute.
For a characterization of skew-symmetric endomorphisms with this special feature
see [23], for example. �

Remark 2.17. Two particular cases in Proposition 2.16 are provided by A skew-
symmetric and real or purely imaginary. In this situation qA,A is negative or positive
(semi-)definite respectively. In particular, all eigenvalues come in pairs such that
in the odd dimensional case qA,A is always degenerate.

Corollary 2.18. Given a symmetric linear map B on the vector space V such that
all nonzero eigenvalues of B have even multiplicities. Then there exists A ∈ C`2(V )
such that (A,A) yields a linear quadratic Clifford pair associated to B.

Proof. We consider an orthonormal basis W of (V, g) with induced isomorphism
ΦW : V → Rn such that ΦW ◦ B ◦ Φ−1

W = ∆2 is a diagonal matrix. The square
root ∆ is defined by ∆ = ∆0 + i∆1 with ∆0 = diag (Σ1, . . . ,Σr,0n−2r) and ∆1 =

diag (02r,Σr+1, . . . ,Σr+s,0n−2r−2s) where Σj =
(

0 λj
−λj 0

)
for 1 ≤ j ≤ r and

Σr+k =
(

0 κk
−κk 0

)
for 1 ≤ k ≤ s and λj , κk > 0. Let A := Φ−1

W ∆ΦW and

identify this skew-symmetric map as usual with A ∈ C`2(V ). This element obeys
qA,A = B. �

Remark 2.19. Let a = a′ and b = β + b′ be a quadratic Clifford pair with scalar
part β 6= 0. Then either (a′, b′) is no quadratic Clifford pair or it doesn’t contribute
to qa,b

∣∣
V

.

Suppose (a′, b′) is a quadratic Clifford pair and recall qa,b(x) = β2x + qa′,b′(x) −
2β sa′,b′(x). From Lemma 2.14 we know that sa′,b′ is a self-map of V if and only
only if a′ = b′ = A if dim(V ) is odd or a′ = A+α1Γ∗ and b′ = A−α1Γ∗ if dim(V )
is even. In this situation sa′,b′

∣∣
V

= sA,A
∣∣
V

is skew-symmetric, such that A = 0.

Corollary 2.20. In dimension n = 3 any symmetric linear map that can be realized
by quadratic Clifford pairs is either proportional to 1 or degenerate with a non-zero
eigenvalue of multiplicity two.

2.5. Generalized monomial solutions. We generalize the results obtained so far
and show that we can realize symmetric maps B with more than two eigenvalues.
The proof of the following proposition is given in Section 5.1, too.

Proposition 2.21. Consider c =
∑
α cαΓIα and d =

∑
α dαΓIα with dα = εαcα for

εα ∈ {±1}, Iα ∩ Iβ = ∅ for α 6= β, and
(⋃

α Iα
){ = ∅. Furthermore, let the amount

of summands in c be bigger than two. Then (c, d) is a non-degenerate quadratic
Clifford pair if and only if Îα is even for all α in even dimension and Îα is even
up to one exception in odd dimension. Furthermore we have εα = (−1)Îα . In this
situation the eigenvalues of qc,d are given by 4σIαc2α with multiplicities Îα.

Remark 2.22. • Suppose c and d decompose into two summands such that
the subcases we denoted by a) in the table of Section ?? do not appear.
Then the conditions on the signs that describe d are less restrictive and we
recover the pseudo-monomial solutions of Table 2.
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• Because there are no restrictions to the values of cα, some of them may coin-
cide. So the result in Proposition 2.12 is extended by generalized monomial
pairs with exactly two different parameters.

• For Îα = 2 for all α we have c = d ∈ so(V ) such that we are left with a
linear pair described in Proposition 2.16.

• For Î even we have [ΓI ,Γµ] = 2kδµ[ν1Γν2...νÎ ] = 2ΓµbΓI . Therefore, in
situation of Proposition 2.21 the square root of qc,d is given by sc,c(v) =
2vbc.

We may further generalize the above result in the even dimensional case and allow
pseudo-monomial summands in the above construction.

Proposition 2.23. Consider c, d with

c =
∑
α

cαΓIα + Γ∗
∑
α

ĉαΓIα and d =
∑
α

εαcαΓIα + Γ∗
∑
α

ε̂αĉαΓIα

and εα = −ε̂α = (−1)Îα . Then (c, d) yields a non-degenerate quadratic Clifford pair
if and only if it is of one of the following types:

(1) All summands are even with ĉαcα = 0 for all α, i.e. either ΓIα or Γ∗ΓIα
contributes to c and d.

(2) Two summands are odd, e.g. Îα0 , Îα1 , and all others obey Îα even with
ĉα = 0 as well as cα0cα1 = ĉα0 ĉα1 . For example(

c = cα0(γ + Γ∗)ΓIα0
+ cα1(1 + γΓ∗)ΓIα1

+
∑

Îα even

cαΓIα ,

d = −cα0(γ − Γ∗)ΓIα0
− cα1(1− γΓ∗)ΓIα1

+
∑

Îα even

cαΓIα
)

if ĉα0 , cα1 6= 0.

Remark 2.24. Regardless of whether the choice of signs εα, ε̂α we use here is unique,
we will see later that this choice is natural. Nevertheless, in Section 5.1 we list the
general conditions such that a pair that satisfies the approach used in Proposition
2.23 but without the sign fixing yields a quadratic Clifford pair.

Definition 2.25. The quadratic Clifford pairs of Propositions 2.21 and 2.23 are
called generalized monomial.

3. Spinor connections on Cahen-Wallach spaces

3.1. Cahen-Wallach spaces. Solvable Lorentzian symmetric spaces – short CW-
spaces – have been classified By M. Cahen and N. Wallach in [5]. They discovered
a one-to-one correspondence between CW-spaces and triples (V, 〈·, ·〉, B). Here V
is an n-dimensional real vector space, 〈·, ·〉 is a block-diagonal Lorentzian metric
on the extension W := V ⊕ R2 such that g := 〈·, ·〉

∣∣
V

is positive definite, and
B ∈ End(V ) is symmetric with respect to g.
We shortly recall this correspondence. We choose a null-basis e+, e− of the factor
R2 of W , i.e. 〈e+, e+〉 = 〈e−, e−〉 = 0, 〈e+, e−〉 = 1. Therefore, we may identify
R+ = Re+ = R and Re− = R− = R∗, i.e. (e+)∗ = e− with ∗ : W → W ∗ being
the isomorphism w 7→ 〈w, ·〉.
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The space g = V ∗ ⊕W = V ∗ ⊕ (V ⊕ R+ ⊕ R−) is a Lie algebra subject to the
commutation relations

[v∗, w] = −v∗(Bw) · e+ = −〈Bv,w〉 · e+ , (12)
[v∗, e−] = Bv , (13)
[e−, w] = w∗ , (14)

and all other combinations vanishing. In particular, R+ is the one dimensional
center of g. Within g the factor V ∗ acts on W , [W,W ] = V ∗ and 〈·, ·〉 is V ∗-
invariant. From (12)-(14) we see, that the embedding

V ∗ −→ R+ ⊗ V ↪→ so(W ) = so(V ) ⊕ (R+ ⊗ V ) ⊕ (R− ⊗ V ) ⊕ (R+ ⊗R−) (15)

is given by v∗ 7→ Bv∧e+ where x∧y(z) := 〈y, z〉x−〈x, z〉y. Then these data provide
a symmetric space with Lorentz metric determined by 〈·, ·〉 and B. The resulting
Lorentzian space MB is indecomposable if and only if the symmetric map B is non-
degenerate. This can best be seen if we recall that MB is decomposable if there
exists a V ∗-invariant subspace W̃ ⊂W such that 〈·, ·〉|W̃×W̃ is non-degenerate, see
[3, 25]. Moreover, two Lorentzian spaces defined in this way by symmetric maps
B1 and B2 are isometric, if and only if B1 and B2 are conformally equivalent,
i.e. there exists a real scalar c > 0 and an orthogonal transformation O such that
B2 = cOtB1O.
Mainly to fix our notation, we recall some facts on the Clifford algebra in this
special situation. We consider C`(R1,1) = gl2C with generators Γ+ = Γ(e+) =
1√
2 (iσ2 + σ1) =

√
2
(

0 1
0 0

)
, Γ− = Γ(e−) = 1√

2 (iσ2 − σ1) =
√

2
(

0 0
−1 0

)
and we

denote the two-dimensional volume element by σ := 1
2 [Γ+,Γ−] = −σ3 =

(
−1 0
0 1

)
.

If we denote the generators of C`(V ) by {Γµ}1≤µ≤n those of C`(W ) = gl2C ⊗̂C`(V )
are given by {Γ+ ⊗ 1,Γ− ⊗ 1, σ ⊗ Γµ}. In particular,

gl2C 3 r 7→ r ⊗̂1 = r ⊗ 1 ∈ C`(W ) (16)
C`(V ) 3 a 7→ 1 ⊗̂ a = 1⊗ a0 + σ ⊗ a1 ∈ C`(W ) (17)

where a = a0 + a1 ∈ C`(V ) is the decomposition in even and odd part defined
by ¯ : C`(V ) → C`(V ) according to Remark 2.3. Consider the irreducible Clifford
modules S2 and S(V ) of C`(R1,1) and C`(V ) respectively whose elements are called
spinors. The first one decomposes into a sum of two one dimensional half spinor
spaces S±2 = ker(Γ∓) given by the ±1-eigenspaces of σ. If we denote the two
projections on the two eigenspaces by σ± = 1

2 (1 ± σ) then (17) is rewritten as
1 ⊗̂ a = σ− ⊗̂ a + σ+⊗̂ a = σ− ⊗ ā + σ+ ⊗ a. In our choice of γ-matrices the
eigendirections are given by ~e1 = (1, 0)t and ~e2 = (0, 1)t such that a spinor in

S(W ) = S2 ⊗̂S(V ) can be written as ~η =
(
η1

η2

)
= ~e1 ⊗ η1 + ~e2 ⊗ η2. The action of

C`(W ) on S(W ) is now given by

(r ⊗̂ a)
(
η1

η2

)
=
(
r11ā r12a

r21ā r22a

)(
η1

η2

)
= r

(
āη1

aη2

)
(18)
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for r ∈ gl2C and a ∈ C`(V ). In particular, the image of v∗ ∈ V ∗ considered as an
element of so(W ) ⊂ C`(W ) under the spin representation, is given by

v∗ = Bv ∧ e+ 7→
1
4
(
(Γ+ ⊗ 1)(σ ⊗Bv)− (σ ⊗Bv)(Γ+ ⊗ 1)

)
= 1

4(Γ+σ − σΓ+)⊗Bv = 1
2Γ+ ⊗Bv = 1√

2

(
0 Bv

0 0

)
.

(19)

3.2. Invariant connections and Clifford maps. We follow here the explana-
tions in [18, ch. X] and [6, ch. 1] and we cordially refer the reader to these texts
for more details. Consider a reductive spin homogeneous space G/H, i.e. the Lie
algebras g and h of G and H are complemented by an adh-invariant subspace p such
that g = h⊕p. We identify h with its image in so(p) via the isotropy representation.
Furthermore, let h′ ⊂ so(p) be a subalgebra such that [h′, h] ⊂ h. In particular, h′
is the Lie algebra to a sub group H ′ of NH/H where NH ⊂ SO(p) is the normalizer
of H in SO(p). Under mild conditions on H ′ we may assume G/H ' Ḡ/H̄ with
Lie(Ḡ) = g⊕ h′, Lie(H̄) = h⊕ h′, see [4, 7.B].
Let G/H be a reductive homogeneous space with decomposition g = h ⊕ p. A
principal bundle K → P → G/H over G/H is called homogeneous if there exist a
smooth homomorphism ı : H → K such that P ' G×HK via the left action of H on
K. For example K = H and ı = id yields the H-principal bundle H → G→ G/H.
The G-invariant connections on P are in one-to-one correspondence with linear
maps Λ : g → k such that Λ(h) = ı∗(h) and Λ ◦ adh = adı∗(h) ◦ Λ for all h ∈ h.
This correspondence is taken over to associated bundles in the following manner.
Consider a representation β : K → Gl(V ) and let E = P ×β V = G ×β◦ı V be
the vector bundle associated to P . Then the G-invariant linear connections on
E are in one-to-one correspondence with linear maps Λ : g → gl(V ) such that
Λ(h) = β∗ ◦ ı∗(h) and Λ([h, x]) = [β∗ ◦ ı∗(h),Λ(x)] for all h ∈ h, x ∈ g.
The curvature of the connection that is defined by Λ is given by

RΛ(x, y) =
[
Λ(x),Λ(y)]− Λ([x, y]p)− β∗ ◦ ı∗([x, y]h) . (20)

We will apply the above to the case of CW-spaces and take over the notations from
Section 3.1. We consider G with Lie(G) = V ∗⊕W and a vector bundle associated
to G via the spin representation Γ : spin(W ) ⊃ V ∗⊕h′ → C`(W ). Here h′ ⊂ soB(V )
where

soB(V ) := {A ∈ so(V ) | [A,B] = 0} ⊂ so(V ) ⊂ so(W ) (21)
denotes the subalgebra that leaves invariant the symmetric map B that defines the
CW-space.
Let us denote by S the spinor module on which C`(W ) acts, i.e. C`(W ) ⊂ gl(S) and
by D an invariant connection of the associated bundle �S = G×Γ S defined by the
equivariant map Λ. Then the space of parallel sections K1 := {ψ ∈ sec(�S) |Dψ =
0} is isomorphic to the subspace S′ ⊂ S given by S′ := {ξ ∈ S |RΛ(x, y)ξ =
0 for all x, y ∈ V ∗ ⊕W}, see [2].
To emphasize the algebraic character of invariant connections expressed by the
defining equivariant linear map we introduce the following notions.
Definition 3.1. Let MB be a CW-space defined by the symmetric map B and
h′ ⊂ soB(V ) be a subalgebra.
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(1) A Clifford map of (MB , h
′) is a V ∗⊕h′-equivariant linear map ρ : h′⊕V ∗⊕

W → C`(W ). Moreover, the image of the Clifford map ρ of (MB , h
′) acts

on a Clifford module S and the restriction to V ∗ ⊕ h′ is fixed to be the
spin-representation, i.e. ρ

∣∣
V ∗⊕h′ = Γ.

(2) A Clifford map ρ is called Clifford representation if it is a representation of
h′ ⊕ V ∗ ⊕W on the Clifford module S.

Notation 3.2. A Clifford map ρ is called simple if h′ = 0. It is called irreducible
if S is, otherwise it is called reducible.

Remark 3.3. • If we consider a Clifford map as invariant connection the Clif-
ford representations are exactly those connections for which the curvature
vanishes. Therefore, the curvature of a Clifford map ρ measures the defect
from being a Clifford representation.

• In case of a Clifford representation the space K1 of parallel sections has
maximal dimension dim(S).

• It is also interesting to consider subspaces S′ ⊂ S and Clifford maps for
which the Clifford map restricted to the subspace is indeed a representa-
tion. They are associated to connection with a reduced amount of parallel
sections, namely dim(K1) = dim(S′) < dim(S). We will come back to this
in Section 3.5.

3.3. Simple irreducible Clifford representation of MB. We consider a CW-
space MB with associated Lie algebra g = V ∗⊕W = V ∗⊕(V ⊕R−⊕R+) as before.
An irreducible simple Clifford map of MB is a V ∗-equivariant map ρ : g→ C`(W )
that acts on the irreducible Clifford module S = S(W ) = S2 ⊗̂S(V ), see Definition
3.1 Moreover, the restriction ρ

∣∣
V ∗

is assumed to be given by the spin representation
Γ : V ∗ ⊂ so(W )→ C`(W ), Γ(v∗) = 1

2Γ+ ⊗̂Bv.
An examination of the involved brackets regarding to the V ∗-equivariance yields
that a Clifford map ρ of g on S is of the form

ρ(v∗) = 1
2Γ+ ⊗̂Bv , (22)

ρ(e+) = Γ+ ⊗̂ a , (23)
ρ(e−) = σ− ⊗̂ c+ σ+ ⊗̂ d+ Γ+ ⊗̂ e− Γ− ⊗̂ b , (24)

ρ(w) = −σ− ⊗̂wb− σ+ ⊗̂ b̄w −
1
2Γ+ ⊗̂ sc̄,d(w) , (25)

for a, b, c, d ∈ C`(V ), see Section 5.2. In terms of matrices as in (18) this is

ρ(v∗) = 1√
2

(
0 Bv

0 0

)
, ρ(e+) =

(
0
√

2 a
0 0

)
,

ρ(e−) =
(

c̄
√

2 e
√

2 b̄ d

)
, ρ(w) =

(
wb̄ − 1√

2sc̄,d(w)
0 −b̄w

)
.

An additional non-trivial condition that is a consequence of the (V ∗,R−)-bracket
is

Γ{µb̄Γν} = gµνa . (26)



14 FRANK KLINKER

If we consider (26) as a bilinear expression on V and take the trace with respect to
the metric on V we get

a = 1
n

n∑
µ=1

Γµb̄Γµ . (27)

If we again use the images Γµ of an orthonormal basis we get for the expansion of
b̄ =

∑
I bIΓI and for all µ 6= ν

0 =2
∑
I

bIΓ{µΓIΓν} = 2
∑

I:µ6∈I,ν∈I
(−1)IbIΓIΓµν − 2

∑
I:µ∈I,ν 6∈I

(−1)IbIΓIΓµν .

Therefore, bI = 0 for all I such that there exist µ, ν with µ ∈ I and ν 6∈ I, i.e. for
all I with Î 6= 0, n. If n is odd this yields that b̄ = α is a scalar and if n is even we
have b̄ = α + βΓ∗. Then a is determined by b̄, because (27) yields a = −α if n is
odd and a = −(α − βΓ∗) if n is even. At this point we found the simple Clifford
maps of MB :

Proposition 3.4. A simple Clifford map of MB is given by (22)-(25) with a =
α+ βΓ∗ and b = −α+ βΓ∗ if dim(V ) is even, and a = −b = α if dim(V ) is odd.

Remark 3.5. As noticed in (20) the (W,W )-brackets of a Clifford map interpreted
as an invariant connection are connected to its curvature. In the case that dim(V )
is odd it is given by

Rρ(e−, e+) = [ρ(e+), ρ(e−)] = α2 + αΓ+ ⊗ (c̄− d) ,
Rρ(eµ, eν) = [ρ(eµ), ρ(eν)] = α2Γµν − αΓ+ ⊗

{
sc̄,d(Γ[µ),Γν]

}
,

Rρ(e−, eµ) = [ρ(e−), ρ(eµ)]− Γ([e−, eµ]) .
(28)

In particular, for generic parameters the curvature is generic, too. The same holds
in the even dimensional case. Although we will first emphasize on Clifford repre-
sentations, i.e. flat connections, we will also consider non-flat connections later, see
Section 3.5

The examination of the (W,W )-brackets yields further conditions for the Clifford
map to be a Clifford representation. We get

c̄a− ad = 0 , ab̄ = b̄a = 0 , (29)

from [R+,R−],

b̄Γ[µb̄Γν] = Γ[µb̄Γν]b̄ = 0 , Γ[µb̄sc̄,d(Γν])− sc̄,d(Γ[µ)b̄Γν] = 0 , (30)

from [V, V ], and

Γµ(b̄c̄+ db̄)− 2c̄Γµb̄ = (b̄c̄+ db̄)Γµ − 2b̄Γµd = 0 , b̄Γµb̄ = 0 , (31)
qc̄,d(v) + 2seb̄,−b̄e(v) = −Bv . (32)

from [R−, V ]. Of course, (30-1) is a consequence of (31-2).
Taking into account Proposition 3.4 and (29-2) we get a = b = 0 in the odd
dimensional case. In the even dimensional case α2 = β2 for the two scalars such
that b̄ = −αΠ∓ and a = αΠ± where Π± = 1

2 (1 ± Γ∗) denote the projections on
the two half spinor subspaces of S(V ). We remark that (31-2) is fulfilled in this
situation. In the odd dimensional case and in the even dimensional case with α = 0
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equations (29)-(31-2) are satisfied such that we get the following result, which is in
analogy to Theorem 2.3 in [24].
Theorem 3.6. Any simple irreducible Clifford representation of MB with ρ(e+) = 0
is given by

ρ(v∗) = 1
2Γ+ ⊗̂Bv , ρ(w) = −1

2Γ+ ⊗̂ sc̄,d(w)

ρ(e−) = σ− ⊗̂ c+ σ+ ⊗̂ d+ Γ+ ⊗̂ e
(33)

with (c̄, d) being a quadratic Clifford pair representing the symmetric map −B. In
particular, e ∈ C`(V ) is a free parameter of the representation.

Now consider α 6= 0, i.e. a = αΠ± and b = −αΠ∓. We restrict in the following to
the upper sign and we denote the blocks of c̄ and d with respect to the half spinor
splitting by c+− = Π+c̄Π−, and so on. Equation (29-1) yields c−+ = d+

− = 0 and
c++ = d+

+ = r. The only surviving components of (31-1) are v+
−(c−−+d−−)−2rv+

− = 0
and (c−− + d−−)v−+ − 2v−+r = 0. Therefore, r, c−−, and d−− are scalars that obey
2r = c−−+d−−, in particular, r−d−− = −(r− c−−). This also solves the only surviving
component of equation (30-2), which in this situations reads (d−−+c−−−2r)(v+

−w
−
+−

w+
−v
−
+) = 0. The mixed components of (32) are (r − d−−)2v+

− − 2αv+
−e
−
− = −(Bv)+

−
and (d−−−r)2v−+−2αe−−v−+ = −(Bv)−+ and if we apply this to a basis of eigenvectors
we see that the only symmetric map B that can be realized has to be diagonal,
B = −2λ1. In this situation the scalars obey (r − d−−)2 = (r − c−−)2 = 2(αe−− + λ).
The +/+-component of (32) connects the off-diagonal blocks of c̄, d, and e via
(d−− − r)(c+−v−+ − v+

−d
−
+) = 2α(e+

−v
−
+ + v+

−e
−
+) or (d−− − r)sc+

−,d
−
+

(v) = 2αse+
−,−e

−
+

(v)
such that the only unconstrained component of ρ(e−) is e+

+.
We summarize the discussion above in the following proposition.
Theorem 3.7. A simple Clifford representation of MB with ρ(e+) 6= 0 is only
possible in even dimension and for B = −2λ1. It is given by
ρ(v∗) = − λΓ+ ⊗̂ v , ρ(e+) = αΓ+ ⊗̂Π± ,

ρ(e−) = ρ01 ⊗̂1+ (αΓ− + βΓ+ −
√

2(αβ + λ)σ− +
√

2(αβ + λ)σ+) ⊗̂Π∓

+ σ− ⊗̂ c±∓ + σ+ ⊗̂ d∓± + Γ+ ⊗̂ (e+
− + e−+ + e±±)

ρ(v) = ασ− ⊗̂Π±v + ασ+ ⊗̂Π∓v +
√
αβ + λ

2 Γ+ ⊗̂ v + 1
2Γ+ ⊗̂ sc̄±∓,d∓±(v) .

(34)

The free parameters that describe the representation are the scalars α, β, ρ0 and the
Clifford element e±±. The further contributions are related by√

2αse±∓,−e∓±(v) =
√
αβ + λ sc̄±∓,d

∓
±

(v) for all v ∈ V .

Remark 3.8. A special choice of parameters in Proposition 3.7, namely ρ0 = 0,
α = −λ, β = 1 as well as c±∓ = d∓± = e+

− = e−+ = e±± = 0, yields a representation
which is similar to the one found in [24]: ρ(v∗) = −λΓ+ ⊗̂ v, ρ(e+) = −λΓ+ ⊗̂Π±,
ρ(w) = −λσ− ⊗̂Π±w − λσ+ ⊗̂wΠ∓, and ρ(e−) = −λΓ− ⊗̂Π∓ + Γ+ ⊗̂Π∓.
This choice is the same as taking c = d = 0 in (22)-(25). Then (32) reduces to
−2α(eΠ∓v+vΠ±e) = −Bv. From Lemma 2.14 we get that the solutions must obey
eΠ∓ = βΠ∓ and −Π∓e = −βΠ∓, i.e. e = βΠ∓ + Π±e′Π± which is only possible
for B = −2λ1 with λ = −αβ. Again, e±± = Π±e′Π± is the same free parameter we
found before.
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Regardless of our assumption that led to Proposition 3.7 we may consider α = 0 and
furthermore β = ρ0 = 0 as well as c±∓ = d∓± = e+

− = e−+ = e±± = 0. This leads to a
rather simple representation associated to B = −2λ1, also covered in Theorem 3.6,
namely ρ(v∗) = −λΓ+ ⊗̂ v, ρ(e+) = 0, ρ(w) =

√
λ
2 Γ+ ⊗̂w, ρ(e−) = −

√
2λσ ⊗̂Π∓.

The quadratic Clifford pair that defines this representation is pseudo-monomial in
the sense of Remark 2.10.

3.4. Non-simple Clifford representations of MB. For any non-simple Clifford
representation the restriction of ρ from g ⊕ h′ to g is a simple one. Therefore, the
non-simple representations can be obtained by the simple ones by demanding the
further compatibility with h′. As stated before, for a CW-space MB defined by the
symmetric map B the algebra h′ is a subalgebra of soB(V ) which can be written
as
⊕

α so(Vα) where Vα are the distinct eigenspaces of B. Due to the nature of the
Clifford representation ρ we have ρ(A) = A when we consider A ∈ C`2(V ) such
that the further relations are

[ρ(A), ρ(e+)] = 0 , (35)
[ρ(A), ρ(e−)] = 0 , (36)
[ρ(A), ρ(v∗)] = ρ((Av)∗) , (37)
[ρ(A), ρ(w)] = ρ(Aw) . (38)

Regardless what comes afterwards, (22)-(25) yield that the parameters that define
the Clifford representation ρ have to be invariant with respect to h′, i.e. [A, a] =
[A, b] = [A, c] = [A, d] = [A, e] = 0 for A ∈ h′.

Proposition 3.9. (1) The simple Clifford representation of Theorem 3.6 ex-
tend to non-simple ones if and only if c, d and e are invariant with respect
to h′ ⊂ soB(V ).

(2) The simple Clifford representations of Theorem 3.7 extend to non-simple
ones for all choices of sub algebras of so(V ) for the special choices of pa-
rameters as discussed in Remark 3.8.

Remark 3.10. The invariance of an element of the Clifford algebra C`(V ) with
respect to certain subalgebras of so(V ) is reflected in a special form of this element.

• Let V = V1 ⊕ V2 be an orthogonal decomposition of V . Then c ∈ C`(V ) =
C`(V1) ⊗̂C`(V2) is invariant with respect to so(E1) ⊂ so(V ) if and only if
c ∈ C`(V2) + ΓIC`(V2) with ΓI = Γi1 · · ·Γidim(V1) being proportional to the
volume element of V1 in C`(V1) ⊂ C`(V ).
• Symmetrizing this example and extending to more than two factors yields

the following generalization. Consider h′ =
⊕

α so(Vα) with
⊕

α Vα = V
being an orthogonal decomposition. Denote by ΓIα some multiple of the
volume form of Vα in C`(V ). Then c ∈ C`(V ) =

⊗̂
αC`(Vα) is invari-

ant with respect to h′ if and only if the homogeneous components of c
are proportional to products of volume forms of the different factors. For
example, the elements that yield quadratic Clifford pairs as considered in
Propositions 2.12, 2.16, 2.21, and 2.23 are of this type.

3.5. Restrictions of the Clifford module.
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3.5.1. Canonical restrictions. When we talk about Clifford maps and Clifford rep-
resentations ρ we may ask, if we are able to consider subspaces S′ of the Clifford
module S such that the restriction to S′

• obeys ρ(x)S′ ⊂ S′ for all x ∈ V ∗ ⊕W or
• ρ is a representation of V ∗ ⊕W on S′

although S′ is no Clifford module. Of course, for a Clifford represenation ρ both
conditions coincide. As we mentioned in Remark 3.3 Clifford maps that yield repre-
senations on the restrictions are strongly related to connections for which the space
of parallel sections of the associated spinor bundle doesn’t have maximal dimension.
We will call a restriction of S that is compatible with the action of so(V ) ⊂ so(W )
a canonical restriction. In particular, such restrictions are compatible with any
non-simplicity factor h′ ⊂ so(V ).
If dim(V ) is odd, there are two subspaces defined by the chiral structure on the two-
dimensional factor of W . If we use the notations of Section 3.1, i.e. S±2 = ker(Γ∓) =
ker(σ∓) = Eig(σ,±), these subspaces are given by S−2 ⊗ S(V ) = S(V ) ⊕ {0} and
S+

2 ⊗ S(V ) = {0} ⊕ S(V ).
If dim(V ) is even we have a decomposition into four canonical subspaces because
each of the former is further decomposed with respect to the chiral structure on the
second factor. The possible spaces are S+

2 ⊗S+(V ) = {0}⊕S+(V ), S−2 ⊗S−(V ) =
S−(V ) ⊕ {0}, S+

2 ⊗ S−(V ) = {0} ⊕ S−(V ), and S−2 ⊗ S+(V ) = S+(V ) ⊕ {0}. In
particular, the first two sum up to S+(W ) = S−(V ) ⊕ S+(V ) and the remaining
ones to S−(W ) = S+(V )⊕ S−(V ).
We will discuss these two cases separately with regard to Section 3.3:
dim(V ) odd: In this case we consider (33) from Theorem 3.6. The reduction to
S−2 ⊗ S(V ) immediately implies S′ to be trivial as the action of V ∗ shows. The
reduction to S+

2 ⊗ S(V ) yields a trivial action of V ∗ and V , and ρ(e−)(ξ1) = c̄ξ1.
In particular any Clifford map yields a representation on such reduction.
dim(V ) even: Firstly, we consider Clifford maps of the form (33) and go through
the different cases of restrictions. For this we write it in terms of the canonical
decomposition:

ρ(v∗)~ξ = 1√
2


Bvξ−2

Bvξ+
2

0
0

 , ρ(w)~ξ = − 1√
2


sc̄+
−,d
−
+

(w)ξ+
2 + sc̄+

+,d
−
−

(w)ξ−2
sc̄−−,d

+
+

(w)ξ+
2 + sc̄−+ ,d

+
−

(w)ξ−2
0
0

 ,

ρ(e−)~ξ =


c̄++ξ

+
1 + c̄+−ξ

−
1 +
√

2e+
+ξ

+
2 +
√

2e+
−ξ
−
2

c̄−+ξ
+
1 + c̄−−ξ

−
1 +
√

2e−+ξ+
2 +
√

2e−−ξ−2
d+

+ξ
+
2 + d+

−ξ
−
2

d−+ξ
+
2 + d−−ξ

−
2

 .

(39)

We restrict to the upper sign and discuss the different cases.
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• [S′ = S(V ) ⊕ S∓(V ), i.e. ξ±2 = 0] We consider the upper sign, and see that ρ
restricts to a representation if and only if d+

− = 0. In this case we have

ρ(v∗)


ξ+
1

ξ−1

ξ−2

 = 1√
2


Bvξ−2

0
0

 , ρ(w)


ξ+
1

ξ−1

ξ−2

 = − 1√
2


sc̄+

+,d
−
−

(w)ξ−2
c−+wξ

−
2

0

 ,

ρ(e−)


ξ+
1

ξ−1

ξ−2

 =


c̄++ξ

+
1 + c̄+−ξ

−
1 +
√

2e+
−ξ
−
2

c̄−+ξ
+
1 + c̄−−ξ

−
1 +
√

2e−−ξ−2
d−−ξ

−
2

 .

In the case of the lower sign the restriction of ρ yields a representation only if
d−+ = 0 and is treated similarly with an adapted change of notation.

Remark 3.11. In this situation let us consider the quadratic Clifford pairs from
Section 2.
For a monomial quadratic Clifford pair the calculation above only holds for Î even.
In this case c−+ = c+− = 0 as well, such that only the first component of ρ(v∗)~ξ
and ρ(w)~ξ survives. The same is true for (c, d) pseudo-monomial and even, i.e.
c = ±d = (α+Π++α−Π−)ΓI or even generalized monomial with c = d =

∑
α cαΓIα .

Such pairs yield a representation on the reduction only if the pair is associated to
B, i.e. qc,d(eµ)ξ = b(eµ)ξ for all ξ ∈ S′.

The situation is different for a pseudo-monomial quadratic Clifford pair with Î odd,
e.g. c = α(γ+Γ∗)ΓI , d = β(γ−Γ∗)ΓI . We have d+

− = α(1−γ)
2 Π+ΓI , such that γ = 1

is fixed. Therefore, we are left with c = c+− = αΠ+ΓI and d = d−+ = βΠ−ΓI and
B = 0 is mandatory if we look for representations.

• [S′ = S∓(W ) = S±(V ) ⊕ S∓(V ), i.e. ξ∓1 = ξ±2 = 0] The restriction to ξ∓1 =
0 immediately yields a further restriction to ξ±2 = 0 due to the action of V ∗.
Therefore, we are left with a special subcase of the first reduction: S′ = S∓(W ).
In particular, the consequences of Remark 3.11 still hold.
• [S′ = S(V )⊕ {0}, i.e. ξ+

2 = ξ−2 = 0] This case is treated analogously to the odd
dimensional case, i.e. the action of R− alone survives and is given by ρ(e−)(ξ1) =
c̄ξ1.
• [remaining cases] All further canonical reductions of S yield further subcases of
the discussed ones or forces S′ to be trivial.
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Next, we turn to (34) of Theorem 3.7 and do as before. Here we restrict to Clifford
representations. We recall

ρ(v∗)~ξ = −
√

2λ


vξ−2

vξ+
2

0
0

, ρ(e+)~ξ = α


ξ+
2

0
0
0

,

ρ(w)~ξ =


−αwξ−1 +

√
αβ + λwξ−2 + 1√

2sc̄+
−,d
−
+

(w)+
+ξ

+
2

√
αβ + λwξ+

2

0
αwξ+

2

,

ρ(e−)~ξ =


ρ0ξ

+
1 + c̄+−ξ

−
1 +
√

2e+
+ξ

+
2 +
√

2e+
−ξ
−
2

ρ0ξ
−
1 +
√

2βξ−2 −
√

2(αβ + λ)ξ−1 +
√

2e−+ξ+
2

ρ0ξ
+
2

ρ0ξ
−
2 −
√

2αξ−1 +
√

2(αβ + λ)ξ−2 + d−+ξ
+
2

.

(34)

and again go through the different cases.
• [S′ = S(V ) ⊕ S−(V ), i.e. ξ+

2 = 0] In contrast to the preceding discussion the
symmetry in ξ+

2 and ξ−2 is broken, because the projections on the two factors enter
into the representation. For ξ+

2 = 0 we see that the action of R+ is trivial. We are
left with

ρ(v∗)


ξ+
1

ξ−1

ξ−2

 = −
√

2λ


vξ−2

0
0

 , ρ(w)


ξ+
1

ξ−1

ξ−2

 =


−αwξ−1 +

√
αβ + λwξ−2

0
0

 ,

ρ(e−)


ξ+
1

ξ−1

ξ−2

 =


ρ0ξ

+
1 + c+−ξ

−
1 +
√

2e+
−ξ
−
2

ρ0ξ
−
1 +
√

2βξ−2 −
√

2(αβ + λ)ξ−1
ρ0ξ
−
2 −
√

2αξ−1 +
√

2(αβ + λ)ξ−2

 .

This is example is not covered by Theorem 3.6 although the action of R+ is triv-
ial, because b in (25) does not vanish. This is of course no contradiction, but a
consequence of S′ not being a Clifford module. Therefore, identities (29)-(32) only
have to be satisfied after being applied to the subset S′ ⊂ S. In fact, the above is
a solution of this relaxed condition.
• [S′ = S−(W ) = S+(V )⊕ S−(V ), i.e. ξ+

2 = ξ−1 = 0] For ξ−1 = 0 the action of V ∗
immediately yields ξ+

2 = 0. This is a possible reduction for β = 0 as can be seen
from the case before.
• [S′ = S+(V )⊕ {0}, i.e. ξ+

2 = ξ−2 = ξ−1 = 0] Starting with ξ−2 = 0 and assuming
α 6= 0 the action of V and R− immediately yield a further reduction to ξ+

2 =
ξ−1 = 0. But then, again from the first subcase, V , V ∗ and R+ act trivially and
ρ(e−)(ξ+

1 ) = ρ0ξ
+
1 .

• [remaining cases] Starting with ξ+
1 = 0 the action of V ∗ yields ξ−2 = 0 such that

S′ = 0 in this case.
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3.5.2. A note on non-canonical restrictions. Up to now we discussed canonical re-
strictions but there are interesting non canonical restrictions, too. A basic example
for a Clifford representation cf. Theorem 3.6 is obtained as follows. Consider a
monomial quadratic Clifford pair (c, d) with c = αΓI , d = βΓI . Then Γ2

I = σI1
such that XI

± := 1
2 (1 ± √σI ΓI) are the two projections on the ±1-eigenspaces of√

σI ΓI . Then

S′ := S(V )⊕XI
+S(V ) ⊂ S (40)

is a possible restriction such that ρ remains a representation. This restriction is
not compatible with the action of so(V ), thus not canonical, but compatible with
the action of so(Î)⊕ so(n− Î) = soB(V ) ⊂ so(V ).
This example can be extended to pairs (c, d) according to the approach in Propo-
sition 2.8 that do not yield quadratic Clifford pairs. Therefore, we consider a pair
c = (αΓI + βΓJ)ΓK , d = (α′ΓI + β′ΓJ)ΓK . This pair obeys

qc,d(eµ) = αµ+ΓµXIJ
+ + αµ−ΓµXIJ

− (41)

where XIJ
µ = 1

2 (1 ± ıIJΓIJ). Here ı2IJ = σIJ = (−1)ÎĴσIσJ such that XIJ
± are

the projections on the ±1-eigenspaces of ıIJΓIJ . The numbers αµ± run through the
eight values α± β ± α′ ± β′.
We consider the restriction

S′ = ker(Γ+ ⊗X−)S = S(V )⊕X+S(V ) . (42)

Then ρ restricted to S′ is a representation if and only if it is compatible with the
action of R−, i.e. dX+ξ ∈ X+S(V ) or X−dX+ = 0 for ξ ∈ S(V ). A careful
calculation yields

4XIJ
∓ dXIJ

± =
(
1− (−1)ÎĴ+(Î+Ĵ)K̂)((α′∓β′ıIJσJ)ΓIK + (β′∓α′ıIJσI(−1)ÎĴ)ΓJK

)
(43)

which vanishes if and only if

α′ = ±ıIJσIβ′ or (−1)ÎĴ+(Î+Ĵ)K̂ = 1 (44)

In the first case we get the more special result dX± = 0 such that the construction
of the Clifford map is independent of d and we may assume d = 0. In this case we
have

qc,d(eµ) = c2Γµ = (σIKα2 + σJKβ
2)Γµ =: −λΓµ (45)

such that for ~ξ = (ξ1, ξ2) ∈ S′ the Clifford map ρ is given by

ρ(e−)~ξ = (cξ1, 0)t , ρ(e∗µ)~ξ = λ√
2

(Γµξ2, 0)t , ρ(eµ)~ξ = − 1√
2

(cΓµξ2, 0)t . (46)

This is in fact a representation on S′ for B = λ1.
In the generic situation the pair (c, d) and the associated Clifford map ρ are not
compatible with the action of so(V ) but with the action of so(Î)⊕so(n−Î) ⊂ so(V ).
ρ is a representation on S′ if B is defined by (41), i.e. B(eµ)XIJ

+ = qc,d(eµ)XIJ
+ .
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4. Distinguished quadratic Clifford pairs

4.1. A compatibility condition. We show in this section, that the quadratic
Clifford pairs we constructed in Section 2, Propositions 2.12, 2.16, 2.21, and 2.23
yield a complete list in a particular way.
Let (c, d) ∈ C`(V )2 be a quadratic Clifford pair associated to the symmetric map
B, i.e. B(v) = qc,d(v) for v ∈ V . Then we know from Remark 3.10 that if (c, d)
is from Section 2 it is invariant with respect to soB(V ). We associate to (c, d) an
element Ωc,d ∈ V ∗ ⊗ V ∗ ⊗ C`(V ) defined by

Ωc,d(v, w) := sd,c(v)w + wsc,d(v) (47)

for all v, w ∈ V . For an orthonormal basis {eµ} of V (47) reads as

Ωc,d(eµ, eν) = 2Γ[µcΓν] − {Γµν , d} . (48)

Consider homogeneous elements c = cIΓI , d = dIΓI ∈ C`(V ) and let θµI = −1 if
µ ∈ I and θµI = 1 if µ 6∈ I. Then

Ωc,d(eµ, eν) =
(
(θµI + θνI )(−1)ÎcI − (θµI θ

ν
I + 1)dI

)
ΓIΓµν

=


−2((−1)ÎcI + dI)ΓIΓµν if µ, ν ∈ I ,
2((−1)ÎcI − dI)ΓIΓµν if µ, ν 6∈ I ,
0 else .

(49)

To simplify the computation, let λ1, . . . , λr be the distinct eigenvalues of B and
consider the decomposition of V =

⊕r
α=1 Vα into the respective eigenspaces. The

dimension of Vα is denoted by α̂ and let {eα,µ}µ=1,...,α̂;α=1,...,r be an adapted or-
thonormal basis. Then ΓIα = Γα,1 · · ·Γα,α̂ with Îα = α̂ represents a multiple of the
volume form of Vα in C`(V ). A consequence of (49) is the following.

Proposition 4.1. Let c, d ∈ C`(V ) be invariant with respect to soB(V ). Then
Ωc,d ∈ soB(V )⊗ C`(V ) if and only if 5

c = c0 + ĉ0Γ∗

d = d0 + d̂0Γ∗
(50)

if B = λ1,
c = (c0 + ĉ0Γ∗) + (c1 + ĉ1Γ∗)ΓI1

d = (c0 − (−1)dim(V )ĉ0Γ∗) + (d1 + d̂1Γ∗)ΓI1

(51)

if the number of different eigenvalues of B is two, and

c = (c0 + ĉ0Γ∗) +
∑
α

(cα + ĉαΓ∗)ΓIα

d = (c0 − (−1)dim(V )ĉ0Γ∗) +
∑
α

(−1)Îα(cα − (−1)dim(V )ĉαΓ∗)ΓIα
(52)

if the number of different eigenvalues of B exceeds two. If the dimension of V is
odd, we can choose ĉα = d̂α = 0, because Γ∗ = ±1.

5We consider the Clifford elements to be expanded in the basis that is adapted to the eigenspace
decomposition of V with respect to B.
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Proof. We consider an orthonormal Basis {eµ} adapted to the eigenspace decom-
position with respect to B as introduced above and write Ωµν = Ωc,d(eµ, eν). Then
Ωc,d ∈ soB(V ) ⊗ C`(V ) if and only if Ωµν = 0 for eµ, eν belonging to different
eigenspaces. Consider c, d be invariant with respect to soB(V ), then

c =
∑

0≤t≤r

∑
α1<···<αt

cα̂1...α̂tΓIα1
· · ·ΓIαt

and d analogously, see Proposition 3.9 and Remark 3.10. Because of (48) we may
apply (49) to each homogeneous component of c and d. First we notice that for the
term with t = 0, i.e. the scalar part, only the second case of (49) is present such
that c∅ = d∅. Next consider a term with 1 < t < r − 1, e.g. ΓI = ΓIα1

ΓIα2
· · ·ΓIαt .

Take eµ ∈ Eα1 , eν ∈ Eα2 , then the first case of (49) implies (−1)ÎcI + dI = 0.
Similarly, consider eµ ∈ Eβ1 , eν ∈ Eβ2 with β1 6= β2 and (Iβ1 ∪ Iβ2) ∩ I = ∅, then
the second case in (49) implies (−1)IcI + dI = 0 such that cI = dI = 0. Now
consider t = 1. If there exists more than two eigenspaces, the second case in (49)
implies (−1)ÎcI −dI = 0. If there exists exactly two eigenspaces E1, E2, there is no
such restriction because µ, ν 6∈ I1 is equivalent to µ, ν ∈ I2. Next consider t = r.
Then ΓI represents the volume form of V and only the first case in (49) is present
such that (−1)ÎcI + dI = 0. Last but not least consider t = r − 1 for r > 3. Then
case two in (49) yields no restriction but the first requires (−1)ÎcI + dI = 0. In the
case where B ∼ 1 there are no restrictions on c and d. The results are collected in
(50)-(52). �

Remark 4.2. A similar discussion as before yields that Ω vanishes identically if and
only if c = α + v, d = α − v in odd dimensions or c = (α + v) + (β + w)Γ∗, d =
(α−v)−(β−w)Γ∗ in even dimension. Here α, β are scalars and v, w are orthogonal
vectors.

If we restrict Proposition 4.1 to quadratic Clifford pairs we get the following result.

Theorem 4.3. Let (c, d) be a quadratic Clifford pair associated to the symmetric
map B. Then Ωc,d ∈ soB(V )⊗ C`(V ) if and only if (c, d) is

• a pair of scalars or a pair of pseudo scalars if B ∼ 1,
• a monomial or a pseudo-monomial quadratic Clifford pair according to

Proposition 2.12 if B admits two different eigenvalues, and
• a generalized monomial quadratic Clifford pair according to Propositions

2.21 and 2.23 if B admits more than two different eigenvalues.

In fact, the multiplicity of the eigenvalues is even for all up to at most two.

Proof. Proposition 4.1 yields a necessary form for c and d and we examine the
quadratic Clifford condition.
If B = −λ1 we may assume d0 = 0. If furthermore c0 6= 0 in (50) we get a quadratic
Clifford pair if and only if ĉ0 = −d̂0. In this Situation qc,d

∣∣
V

is independent of the
pseudo scalar parts such that we may choose (c, d) = (

√
λ, 0). If we instead assume

c0 = 0, we get a monomial solution defined by two pseudo scalars. If B has more
than one eigenvalue, we see that qc,d

∣∣
V

is independent of the scalar as well as the
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pseudo scalar part, such that we my assume c0 = ĉ0 = 0. If B admits two different
eigenvalues, the possible values are

c = (c1 + c2Γ∗)ΓI , d = (d1 + d2Γ∗)ΓI

and they yield a quadratic Clifford pair if and only if the pair is (pseudo)-monomial,
see Proposition 2.12. In the case that B has more than two different eigenvalues
c, d are given by

c =
∑
α

(cα + ĉαΓ∗)ΓIα , d =
∑
α

(−1)Îα(cα − ĉαΓ∗)ΓIα

and they form a quadratic Clifford pair if only if they are of the form described in
Propositions 2.21 and 2.23. �

We close the discussion with two non trivial algebraic properties which are proved
by a straight forward calculation.

Remark 4.4. All quadratic Clifford pairs (c, d) according to Theorem 4.3 obey

dsd,c(eν)Γµ + dΓµsc,d(eν)− sd,c(eν)Γµd− Γµsc,d(eν)d = 0

and

sd,c(eν)sc,d(eµ) + sd,c(eµ)sc,d(eν) = Bµν .

4.2. Concluding remark. As we mentioned in the introduction the spaces and
connections discussed in this text play an important role in the treatment of back-
grounds of supergravity theories. For this we have to consider enlargements of the
Lie algebra of infinitesimal isometries of a given space to a super Lie algebra. The
odd part of it is characterized by spinors that are parallel with respect to a given
connection, see [1, 15, 16, 17], for example, in addition to the references from the
introduction. Starting from the text at hand, the next natural step is the classifi-
cation of super algebras that extend the isometries of CW-spaces. Work on this is
in progress and the tensor Ω apparently plays a key role in this study.

5. Some technical proofs

5.1. Proofs from Section 2. We take over the notations of Section 2 and consider
c, d ∈ C`(V ) to be the sum of two monomials and of the same type. More precisely,
we consider c = (αΓI + βΓJ)ΓK 6= 0 and d = (α′ΓI + β′ΓJ)ΓK 6= 0 with I ∩ J =
I ∩K = J ∩K = ∅ and set Γ2

I = σI1 and the same for J and K. Of course, the
results will be symmetric in I and J . We use the notation θµI = 1 if µ 6∈ I and
θµI = −1 if µ ∈ I. The follwoing calculations yield the proof of Proposition 2.8. We
have

sc,d(Γµ) = αΓIΓKΓµ + βΓJΓKΓµ − α′ΓµΓIΓK − β′ΓµΓJΓK

= (α− (−1)K̂+ÎθµI θ
µ
Kα
′)ΓIΓKΓµ + (β − (−1)K̂+ĴθµJθ

µ
Kβ
′)ΓJΓKΓµ
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such that

qe,f (eµ) =
(

(−1)ÎK̂σIσK(α− (−1)K̂+ÎθµI θ
µ
Kα
′)2

+ (−1)ĴK̂σJσK(β − (−1)K̂+ĴθµJθ
µ
Kβ
′)2
)

Γµ

+ σK

(
αβ
(
(−1)ĴK̂ + (−1)ÎK̂+ÎĴ)

+ α′β′
(
(−1)ĴK̂ + (−1)ÎK̂+ÎĴ)(−1)Ĵ+ÎθµI θ

µ
J

+ 2αβ′(−1)(Ĵ+1)(K̂+1)θµJθ
µ
K

+ 2α′β(−1)(Î+1)(K̂+1)+ÎĴθµI θ
µ
K

)
ΓIΓJΓµ .

(53)

qc,d restricted to V is a self map if and only if the summand proportional to ΓIΓJΓµ
vanishes (at least, when it is present). This yields a homogeneous linear system for
the four coefficients αβ, α′β′, αβ′, and α′β with matrix6

(−1)ĴK̂ + (−1)ÎK̂+ÎĴ −(−1)Î+Ĵ((−1)ĴK̂ + (−1)ÎK̂+ÎĴ)
(−1)ĴK̂ + (−1)ÎK̂+ÎĴ −(−1)Î+Ĵ((−1)ĴK̂ + (−1)ÎK̂+ÎĴ)
(−1)ĴK̂ + (−1)ÎK̂+ÎĴ +(−1)Î+Ĵ((−1)ĴK̂ + (−1)ÎK̂+ÎĴ)
(−1)ĴK̂ + (−1)ÎK̂+ÎĴ +(−1)Î+Ĵ((−1)ĴK̂ + (−1)ÎK̂+ÎĴ)

−2(−1)(Ĵ+1)(K̂+1) +2(−1)ÎĴ(−1)(Î+1)(K̂+1)

+2(−1)(Ĵ+1)(K̂+1) −2(−1)ÎĴ(−1)(Î+1)(K̂+1)

+2(−1)(Ĵ+1)(K̂+1) +2(−1)ÎĴ(−1)(Î+1)(K̂+1)

−2(−1)(Ĵ+1)(K̂+1) −2(−1)ÎĴ(−1)(Î+1)(K̂+1)

 (54)

We note that in the two special situations c = 0 or d = 0 the map qc,d is a self map
if and only if (−1)ÎĴ+ÎK̂+ĴK̂ = −1. We then have qc,0(eµ) = (σIKα2 + σJKβ

2)Γµ,
for example.
We solve the linear system by considering several cases by excluding the cases c = 0
and d = 0.
Case 1a: We consider the generic case K̂ÎĴ 6= 0 and (K ∪ I ∪ J){ 6= ∅. We have
to distinguish eight cases due to the value of K̂, Î, and Ĵ mod 2. The matrices in
these cases are7( 1 −1 1 −1

1 −1 −1 1
1 1 −1 −1
1 1 1 1

)
000

,

( 1 1 −1 −1
1 1 1 1
1 −1 1 −1
1 −1 −1 1

)
001

,

( 1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

)
010

,( 0 0 −1 −1
0 0 1 1
0 0 1 −1
0 0 −1 1

)
011

,

( 1 −1 −1 1
1 −1 1 −1
1 1 1 1
1 1 −1 −1

)
100

,

( 0 0 −1 1
0 0 1 −1
0 0 1 1
0 0 −1 −1

)
101

,( 0 0 −1 1
0 0 1 −1
0 0 1 1
0 0 −1 −1

)
110

,

( 0 0 −1 −1
0 0 1 1
0 0 1 −1
0 0 −1 1

)
111

.

(55)

The first three as well as the fifth systems have the unique solution αβ = α′β′ =
αβ′ = α′β = 0 which yield α = α′ = 0 or β = β′ = 0. Therefore, the result is a

6The rows are related to θµJ = −1, θµI = −1, θµI = θµJ = θµK = 1, and θµK = −1, respectively.
The columns are related to αβ, α′β′, αβ′, and α′β, respectively.

7The rows and columns are as before. In addition, the subscript indicates the value of
(K̂, Î, Ĵ) ∈ Z3

2.
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monomial pair according to Proposition 2.5. Systems four and six to eight yield
αβ′ = α′β = 0 with solutions α = α′ = 0 or β = β′ = 0 and yield monomial pairs,
too. In the generic Case 1a there are no new quadratic Clifford pairs beside the
monomial ones.
Case 1b: Turning to the case K̂ = 0, Î Ĵ 6= 0, and (I ∪ J){ 6= ∅ we can take over
the first four matrices of (55) with last row erased( 1 −1 1 −1

1 −1 −1 1
1 1 −1 −1

)
000

,
( 1 1 −1 −1

1 1 1 1
1 −1 1 −1

)
001

,
( 1 1 1 1

1 1 −1 −1
1 −1 −1 1

)
010

,( 0 0 −1 −1
0 0 1 1
0 0 1 −1

)
011

.
(56)

The fourth system only yields monomial pairs due to its solution αβ′ = βα′ = 0.
The first system yields αβ = α′β′ = αβ′ = α′β which is α(β − β′) = β(α − α′) =
α′(β−β′) = β′(α−α′) = 0. In addition to the monomial ones we get a further pair
connected by α = α′ and β = β′. Therefore, the new solution is of the form (c, c̄).
The remaining two system have similar solutions and again yield the quadratic
Clifford pair (c, c̄).
The quadratic Clifford pairs in Case 1b are

(
c, c̄
)

with c = αΓI + βΓJ and Î Ĵ ≡
0 mod 2.
Case 2a: If we consider (K ∪ I ∪ J){ = ∅ and Î Ĵ 6= 0 as well as K̂ 6= 0 we have to
look at all of (55) with third row erased:( 1 −1 1 −1

1 −1 −1 1
1 1 1 1

)
000

,
( 1 1 −1 −1

1 1 1 1
1 −1 −1 1

)
001

,
( 1 1 1 1

1 1 −1 −1
1 −1 1 −1

)
010

,( 0 0 −1 −1
0 0 1 1
0 0 −1 1

)
011

,
( 1 −1 −1 1

1 −1 1 −1
1 1 −1 −1

)
100

,
( 0 0 −1 1

0 0 1 −1
0 0 −1 −1

)
101

,( 0 0 −1 1
0 0 1 −1
0 0 −1 −1

)
110

,
( 0 0 −1 −1

0 0 1 1
0 0 −1 1

)
111

.

(57)

A discussion similar to the one before yields the following result. The only systems
which admit additional non-monomial quadratic Clifford pairs are the first three
and the fifth. The pairs in this case are of the form (c,−c̄). Due to (I∪J ∪K){ = ∅
we have Î + Ĵ + K̂ = dim(V ). If dim(V ) is odd we may assume ΓIΓJΓK = 1 or
ΓIΓK = ΓJ and ΓJΓK = (−1)K̂ΓJ such that e = aΓJ + (−)K̂bΓI and the pair
is of type 1b. If dim V is even we have ΓIΓJΓK ∼ Γ∗ such that we may assume
c = (αΓI + βΓ∗)ΓK .
In Case 2a the quadratic Clifford pairs are

(
c,−c̄

)
with c = (αΓK + βΓ∗)ΓI and

K̂ ≡ Î ≡ Ĵ ≡ 0 mod 2.
Case 2b: The case (I ∪ J){ = ∅, Î Ĵ 6= 0, and K̂ = 0 (i.e. ΓJ ∼ ΓIΓ∗) can be
read from the first four systems of (57) with last row erased. Furthermore, we may
exclude the systems two and three because in this case Γ∗ ∼ 1 and the Clifford pair
is a priori monomial. ( 1 −1 1 −1

1 −1 −1 1
)

000 ,
( 0 0 −1 −1

0 0 1 1
)

011 . (58)

For Î ≡ Ĵ ≡ 0 mod 2 the solution is α = β = α′β′ and αβ′ = α′β. Non-monomial
pairs are related to solutions with αβα′β′ 6= 0. In this situation the coefficients obey
α2 = α′2 and β2 = β′2 such that the pairs are given by

(
c,±c

)
with c = (α+βΓ∗)ΓI .
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The situation is less restrictive for Î ≡ Ĵ ≡ 1 mod 2 with ΓJ = Γ∗ΓI . The system
has solution αβ′ = −α′β which yields non-monomial pairs at most for αβα′β′ 6= 0.
For α

β = −α
′

β′ = cot(φ)eiψ we get c = β
sin(φ) (cos(φ)eiψΓI + sin(φ)ΓJ) and d =

− β′

sin(φ) (cos(φ)eiψΓI + sin(φ)ΓJ).

The quadratic Clifford pairs in Case 2b are given by
(
c,±c

)
with c = (α+ βΓ∗)ΓI

for Î ≡ 0 mod 2, and
(
α(cos(φ)eiψ + sin(φ)Γ∗)ΓI , α′(cos(φ)eiψ − sin(φ)Γ∗)ΓI

)
for

Î ≡ 1 mod 2.
Case 3a: We turn to the cases with Î = 0 and consider first K̂ 6= 0 and (J∪K){ 6= ∅.
In this case we are left with systems one, two, five and six of (55) with second row
erased: ( 1 −1 1 −1

1 1 −1 −1
1 1 1 1

)
000

,
( 1 1 −1 −1

1 −1 1 −1
1 −1 −1 1

)
001

,
( 1 −1 −1 1

1 1 1 1
1 1 −1 −1

)
100

,( 0 0 −1 1
0 0 1 1
0 0 −1 −1

)
101

(59)

There is no non-monomial solution of the fourth system. The first system has
solution αβ = −α′β′ = −αβ′ = βα′ with non-monomial pair

(
(α + βΓJ)ΓK , (α −

βΓJ)ΓK
)
. In the same way second system yields αβ = α′β′ = αβ′ = βα′ with(

α + βΓJ)ΓK , (α + βΓJ)ΓK
)
, and the third one yields αβ = −α′β′ = αβ′ = −α′β

with
(
(α+ βΓJ)ΓK , (−α+ βΓJ)ΓK

)
.

In Case 3a the relevant pairs are (c+, c̄−) with c± = (α±βΓJ)ΓK and K̂Ĵ ≡ 0 mod 2.
Case 3b: Next we turn to the case Î = K̂ = 0 and J{ 6= ∅. In this case we may
consider the first two systems from Case 3a with last row erased, i.e.( 1 −1 1 −1

1 1 −1 −1
)

000 ,
( 1 1 −1 −1

1 −1 1 −1
)

001 , (60)

The solutions of both systems are β′(α − α′) = 0 and β(α − α′) = 0 with non-
monomial pairs defined by the solution α = α′. In this case the pair is given by
(α+ βΓJ , α+ β′ΓJ). The case Ĵ = 0 is the same.
The quadratic Clifford pair in Case 3b is (α+ βΓJ , α+ β′ΓJ).
Case 4a: This case is Î = 0, K̂ 6= 0 and (J ∪K){ = ∅. The systems in this case
are ( 1 −1 1 −1

1 1 1 1
)

000 ,
( 1 1 −1 −1

1 −1 −1 1
)

001 ,
( 1 −1 −1 1

1 1 −1 −1
)

100 ,( 0 0 −1 1
0 0 −1 −1

)
101

(61)

There are non-monomial solutions for the systems one, two, and three. The result-
ing pairs are

(
(α+βΓJ)ΓK , (α′−(−1)dim(V )βΓJ)ΓK

)
. We may consider ΓJ = Γ∗ΓK

such that we may rewrite the pair as
(
αΓK + βΓ∗, α′ΓK − (−1)dim(V )βΓ∗

)
. For

dim(V ) odd we are left with Case 3b.
Case 4a yields the quadratic Clifford pairs

(
αΓK + βΓ∗, α′ΓK − βΓ∗

)
.

Case 4b: The last case is Î = K̂ = 0 and J{ = ∅, i.e. ΓJ = Γ∗. We only consider
the case dim(V ) = Ĵ even, because in the other case c and d are scalars. So the
two elements are of the form c = α+βΓ∗, d = α′+β′Γ∗. The obstruction for (c, d)
being a quadratic Clifford pair is αβ − α′β′ + αβ′ − βα′ = (α− α′)(β + β′) = 0.
In Case 4b the non-monomial quadratic Clifford pairs are of the form (α+βΓ∗, α+
β′Γ∗) or (α+ βΓ∗, α′ − βΓ∗).
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A generalization of the results from Propositions 2.5 and 2.8 is given by the following
approach. Let (

⋃
α Iα){ = ∅ and c =

∑
α aαΓIα as well as d =

∑
α εαaαΓIα with

εα ∈ {±1}. Then

c2Γµ =
(∑

α

aαΓIα
)2

Γµ =
∑
α

a2
α +

∑
α<β

aαaβ
(
1 + (−1)α̂β̂

)
ΓIαIβΓµ

and

Γµd2 = Γµ
(∑

α

εαaαΓIα
)2

=
∑
α

a2
αΓµ +

∑
α̂<β̂

εαεβθ
µ
αθ

µ
βaαaβ(−1)α̂+β̂(1 + (−1)α̂β̂

)
ΓIαIβΓµ

as well as(∑
α

aαΓIα
)

Γµ
(∑

α

εαaαΓIα
)

=
∑
α

εαθ
µ
α(−1)α̂a2

αΓµ +
∑
α̂<β̂

aαaβ
(
εβθ

µ
β(−1)β̂ + εαθ

µ
α(−1)α̂+α̂β̂)ΓIαIβΓµ

with θµα := θµIα and α̂ := Îα. Due to Remark 2.2 we may assume that α̂ > 0.
Therefore, our approach yields

qc,d(eµ) = 2
∑
α

(
1− εαθµα(−1)α̂

)
a2
α + (. . .) . (62)

The further summands collected in ”(. . .)” in (62) are of order higher than one.
Therefore, (c, d) is a quadratic Clifford pair if and only if the ΓIαIβΓµ-component
of qc,d(eµ) vanishes. The coefficient of this contribution is given by(

1 + (−1)α̂β̂
)(

1 + εαεβθ
µ
αθ

µ
β(−1)α̂+β̂)− 2

(
εβθ

µ
β(−1)β̂ + εαθ

µ
α(−1)α̂+α̂β̂) .

In the following table we list this for all possible combinations of θµα, α̂, and β̂.

1) α̂ ≡ β̂ ≡ 0 mod 2
1a) θµα = 1, θµβ = 1 : 2

(
1 + εαεβ − εβ − εα

)
= 2(1− εβ)(1− εα)

1b) θµα = −1, θµβ = 1 : 2
(
1− εαεβ − εβ + εα

)
= 2(1− εβ)(1 + εα)

1c) θµα = 1, θµβ = −1 : 2
(
1− εαεβ + εβ − εα

)
= 2(1 + εβ)(1− εα)

2) α̂ ≡ 1 mod 2, β̂ ≡ 0 mod 2
2a) θµα = 1, θµβ = 1 : 2

(
1− εαεβ − εβ + εα

)
= 2(1− εβ)(1 + εα)

2b) θµα = −1, θµβ = 1 : 2
(
1 + εαεβ − εβ − εα

)
= 2(1− εβ)(1− εα)

2c) θµα = 1, θµβ = −1 : 2
(
1 + εαεβ + εβ + εα

)
= 2(1 + εβ)(1 + εα)

3) α̂ ≡ β̂ ≡ 1 mod 2
3a) θµα = 1, θµβ = 1 : 2(εβ − εα)
3b) θµα = −1, θµβ = 1 : 2(εβ + εα)
3c) θµα = 1, θµβ = −1 : −2(εβ + εα)

The proof of Proposition 2.21 is now done by the following considerations.
Firstly, suppose that the amount of summands in c is bigger or equal to four, such
that all sub cases are present if one is present at all. We see, that 1) and 2) are
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fulfilled for εα = (−1)α̂. Moreover 3) can not be fulfilled if it is present, such that
the amount of odd summands is at most one. If the amount of summands is three,
a similar argument excludes the case of two odd summands: 2b) and 2c) would
yield εeven = −εodd1 = −εodd2 and 3) εodd1 = −εodd2 .
Therefore, in even dimensions our approach yields a quadratic Clifford pair if and
only if Îα is even for all α, i.e. c = d. In odd dimensions all Îα would be even but
one. Nevertheless, in both situations we have εα = (−1)α̂

In the case of two summands the subcases denoted by a) in the above list do not
appear and we recover the pseudo-monomial solutions of Table 2. In either case,
we have

qc,d(eµ) = 2
∑
α

(
1− θµα

)
a2
αΓµ . (63)

As promised after Proposition 2.23 we will list next the conditions such that the
pair (c, d) with

c =
∑
α

cαΓIα + Γ∗
∑
α

ĉαΓIα , d =
∑
α

εαcαΓIα + Γ∗
∑
α

ε̂αĉαΓIα

yields a quadratic Clifford pair:

0 = cαĉβ

((
1− (−1)α̂θµαεα

)(
(−1)α̂β̂ + (−1)α̂+β̂θµβ ε̂β

)
+ (−1)α̂(−1)α̂β̂

(
1 + (−1)β̂θµβ ε̂β

)(
(−1)α̂β̂ − θµαεα

))
+ ĉαcβ

(
(−1)α̂β̂

(
1− (−1)β̂θµβεβ

)(
(−1)α̂β̂ + (−1)α̂+β̂θµαε̂α

)
+ (−1)β̂

(
1 + (−1)α̂θµαε̂α

)(
(−1)α̂β̂ − θµβεβ

))
,

0 = cαcβ

((
1− (−1)β̂θµβεβ

)(
1− (−1)α̂(−1)α̂β̂θµαεα

)
+ (−1)α̂β̂

(
1− (−1)α̂θµαεα

)(
1− (−1)β̂(−1)α̂β̂θµβεβ

))
+ ĉαĉβ

(
(−1)α̂

(
1 + (−1)β̂θµβ ε̂β

)(
1 + (−1)β̂(−1)α̂β̂θµαε̂α

)
+ (−1)β̂(−1)α̂β̂

(
1 + (−1)α̂θµαε̂α

)(
1 + (−1)α̂(−1)α̂β̂θµβ ε̂β

))
,

0 =
∑
α

cαĉα

((
1− (−1)α̂θµαεα

)(
1 + θµαε̂α

)
+ (−1)α̂

(
1 + (−1)α̂θµαε̂α

)(
1− θµαεα

))
.

A discussion similar to the one before yields the strong restrictions described in
Proposition 2.23 if we consider εα = −ε̂α = (−1)α̂.

5.2. Proof of (22)-(25). We consider the following matrix form of the images of
the Clifford map ρ:

ρ(v∗) = 1√
2

(
0 Bv

0 0

)
, ρ(w) =

(
ρ̄11(v) ρ12(v)
ρ̄21(w) ρ22(w)

)
,

ρ(e+) =
(

ā11
√

2a12√
2ā21 a22

)
, ρ(e−) =

(
b̄11

√
2b12√

2b̄21 b22

)
.

(64)
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The V ∗-equivariance is expressed as

[ρ(v∗), ρ(e+)] = 1√
2

(√
2Bva21 Bva22 − a11Bv

0 −
√

2a21Bv

)
= 0 ,

(65)

[ρ(v∗), ρ(w)] = 1√
2

(
Bvρ̄21(w) Bvρ22(w)− ρ̄11(w)Bv

0 −ρ̄21(w)Bv

)

= − 〈Bv,w〉

(
ā11

√
2a12√

2ā21 a22

)
,

(66)

[ρ(v∗), ρ(e−)] = 1√
2

(√
2Bvb21 Bvb22 − b̄11Bv

0 −
√

2b̄21Bv

)

=
(
ρ̄11(Bv) ρ12(Bv)
ρ̄21(Bw) ρ22(Bw)

)
.

(67)

(65) yields ā21 = 0 and (67) yields ρ̄21 = 0. Then (66) immediately yields ā11 =
a22 = 0.
Furthermore, (67) yields ρ12(v) = − 1√

2sb̄11,b22
(v) as well as ρ̄11(v) = vb̄21 and

ρ22(v) = −b̄21v. The last two equations together with (66) yield vb̄21w + wb̄21v =
2〈v, w〉a12. We consider a basis Γµ for which the latter is written as Γ{µb̄21Γν} =
gµνa12 and get after taking the trace a12 = 1

n

∑
µ Γµb̄21Γµ.
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[6] Andreas Čap and Jan Slovák: Parabolic Geometries I. Mathematical Surveys and
Monographs, 154. American Mathematical Society, 2009.

[7] Claude Chevalley: The Algebraic Theory of Spinors and Clifford Algebras (Collected
Works, Vol. 2). Springer-Verlag, Berlin, 1997.
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