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Chapter 1

Motivation

Seamless, instant communication with people all around the world has become an

integral part of everyday life. It is hard to picture today's society without fast data

exchange, in private and business matters. This revolution in telecommunication

is to a large extent related to the massive utilization of optical �bers as a tool for

conveying information over large distances. The �rst publications on optical �bers

in 1954 [1, 2] and the development for telecommunication by Kao et al. in 1961

[3] were the starting point of a fast progressing domain. The interface between

optical data transmission and electronic circuits are the so-called optoelectronic

devices. Optical transmitters consist typically of light-emitting diodes (LEDs) [4]

or semiconductor lasers [5]. Up to now, it was possible to demonstrate a data-

sending rate of 101.7 Tbit/s (370x273 Gbit/s) through 165 km of �ber [6]. Besides

further research in the �eld of optical �bers, such as photonic-band-gap �bers [7],

it could also be desirable to switch from electronic to optical data processing by

creating photonic circuits. Even though this way of processing will most probably

also involve some electronics, it could help to reduce the heat load and to increase

the net speed in computing systems [8]. The �rst step towards optical processing

is the realization of an optical transistor as a fundamental component of each

processing system. With an optical transistor, the creation of optical logic gates

would be possible. Several approaches are subject of the current scienti�c research

on optical transistors such as quantum dots in nanocavities [9], semiconductor

nanocrystals [10] and ring resonators [11]. To realize optical logic for mainstream

applications several criteria such as logic-level restoration, cascadability, fan-out

or input/output isolation [12] have to be ful�lled. Therefore, all-optical computers

remain a future major challenge.

Since computing is a nonlinear process, where multiple signals have to inter-

act, electronic as well as optical processing depends on the Coulomb interaction

of electrons. For light this can be implemented by using materials with a non-

linear refractive index. Given that the nonlinear coe�cients of these materials

are generally small, optical gates require high power to function. This is contrary

to the goal of reducing the heat load with optical processing. Realizing polari-

tonic instead of photonic circuits, this high power requirement could be loosened.
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2 Motivation

Exciton-polaritons are the result of strong-coupling between excitons and photons

in semiconductor microcavities [13, 14]. The photonic nature of the polariton pro-

vides a high speed of exchanging information and the excitonic character opens the

�eld to nonlinear switching processes due to Coulomb interactions. As a results of

their bosonic nature in the low density limit, polaritons obey Bose statistics and

are able to undergo Bose-Einstein condensation (BEC). With this phase transition

at a critical temperature or density, a collective and coherent state of matter is

created where individual entities cannot be distinguished anymore. First exper-

imental evidence of atomic BEC at a few nanokelvin was presented in 1995 by

the group of Cornell and Wieman [15] and Ketterle [16]. Though, the required

low critical temperature that is related to the high atomic masses makes atomic

BEC impractical for large scale applications. In contrast, polaritons, due to their

photonic nature, have a comparably small e�ective mass. In 2006 Kasprzak et

al. experimentally demonstrated Bose-Einstein condensation of exciton polaritons

in a semiconductor microcavity at 19 K [17]. A few years later, the �rst polari-

ton laser in a GaN-based microcavity at room-temperature was presented [18, 19].

The condensate properties and the nature of polaritons make polariton conden-

sates perfect candidates for logic circuits. Several experimental demonstrations of

controlling and manipulating polaritonic systems all optically [20], with further

cavity con�nement [21, 22] or by adding metallic layers on top of the cavity [23],

took place in the last years. Recently, �rst proposals for a polariton spin switch

[24], polariton transistor [25, 26] and polariton resonant tunneling diodes [27] were

presented.

The main topic of this thesis is the optical control and manipulation of a po-

lariton condensate in a planar GaAs-based microcavity. Optical methods have

the advantage of introducing a fast change of experimental conditions without the

necessity to reprocess the sample. The strong repulsive interactions of polaritons

under nonresonant excitation lead to a blueshift of the condensate. It is propor-

tional to the excitation density at a given spatial position. Hence, the spatial shape

of the excitation spot de�nes the polariton potential under nonresonant excitation.

In the �rst part of this thesis the excitation spot is di�erently shaped using a spatial

light modulator. By imprinting a wire-shaped spot on the sample, the polariton

condensate is spatially trapped to this shape and the dynamics of a 2D con�ned

polariton condensate can be studied. Furthermore, it is possible to create also

nontrivial potential landscapes such as a staircase, which allows a direct tailoring

of the externally accessible momentum-space properties. Results of far-�eld spec-

troscopy visualize this control of the polariton �ow via change of the excitation

density. Additionally, the spatial dynamics under this pumping conditions and for

several excitation densities are demonstrated and analyzed. Second, a steady-state

polariton condensate, created with a resonant continuous-wave laser, is perturbed

by a nonresonant short laser pulse. The in�uence of the external disturbance

on the polariton �ow is examined with results of time-resolved momentum-space

measurements. Both approaches to manipulate and control polariton condensates

all-optically, demonstrated in this thesis, could represent a further step towards
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the realization of polariton logic circuits.

The thesis is structured as follows. Chapter 2 provides a theoretical background

for the thesis: it starts with a description of exciton polaritons and microcavities

and ends with a report on Bose-Einstein condensation especially in 2D polari-

ton systems. Chapter 3 contains an introduction to the investigated sample, the

method of momentum- and real-space imaging and the experimental setup. In

Chap. 4 the results of wire-shaped, nonresonant excitation are analyzed followed

by Chap. 5 with a demonstration of the optical control of the polariton �ow on

a polariton staircase. Chapter 6 includes an analysis of the temporal and spatial

behavior of a polariton condensate under a perturbation with short, nonresonant

laser pulses. Finally, a summary of the main results and an outlook conclude the

thesis in Chap. 7 .





Chapter 2

Theoretical Background

This thesis thematically embraces the formation of a polariton condensate in a

planar semiconductor microcavity system and optical methods which are appro-

priate to in�uence such a condensate. For a detailed analysis of the corresponding

experimental results, theoretical background information is provided within this

chapter, which is organized in two main parts. In the �rst part, the theory of

microcavity polaritons is presented. Firstly the exciton in a direct band-gap semi-

conductor is described. It is followed by the theory of photons con�ned in a

semiconductor microcavity leading to the discussion of cavity polaritons and their

properties. The second part of this chapter covers the theory of Bose-Einstein

condensation: starting with an ideal Bose gas and ending with a presentation of

polariton Bose-Einstein condensates under nonresonant excitation.

2.1 Microcavity Polaritons

Under optical excitation the fundamental electronic excitations above the ground

state of a semiconductor with a direct band-gap are excitons. With regard to

momentum conservation it is possible that the created exciton couples strongly to

a photon mode and a new quasiparticle is formed, called exciton-polariton. Due

to momentum conservation in the light-matter-coupling two normal-modes with

an energy splitting are formed, the upper and lower polariton, �rst described by

Agranovich (1957)[28] and Hop�eld (1958)[29]. With the possibility of creating

semiconductor nanostructures, the dimensionality of the exciton does no longer

match that of the photon (3D). Instead of normal-mode splitting an irreversible

radiative decay was found as a consequence of the coupling between an exciton

mode and a continuum of photon modes [30]. With the development of semicon-

ductor microcavities it was possible to con�ne simultaneously the photon as well

as the exciton. In 1992, Weisbuch presented for the �rst time strong coupling in a

2D system [13].

The present section gives an overview on the concepts of microcavity polaritons.
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6 Theoretical Background

If not indicated otherwise, the discussion below follows the work of Klingshirn [31],

Kavokin [32], Savona [14] and Deng [33].

2.1.1 Excitons

A semiconductor is characterized by a completely occupied valance band and an

empty conduction band. The extreme values of the valance- and conduction band

of an idealized direct band-gap semiconductor are at the center of the Brillouin

zone. To create free carriers this band-gap has to be transcended energetically.

This is possible through absorption of a photon with an energy equal or greater

than the gap. The electron excited into the conduction band leaves a positively

charged hole in the valance band. Because of attractive Coulomb interaction be-

tween the electron and hole a quasiparticle is formed - the exciton. If the radius of

this bound complex is larger than several unit cells it is called Mott-Wannier exci-

ton. With a radius in the order of the lattice constant it is called Frenkel exciton.

Frenkel excitons are common in molecular- or insulator crystals. For an inorganic

semiconductor the description of the Mott-Wannier excitons is more relevant [31].

The stability of an exciton is mostly determined by collisions with phonons.

The phonon energy at temperature T is de�ned by kBT , where kB is the Boltzmann

constant. Since Frenkel excitons have a small radius their binding energy is of the

order of 100 meV to 1 eV. So the exciton stability is given at room temperature.

Since the binding energy of Mott-Wannier excitons is relatively low due to their

large radius (in the order of about 1 meV) and kBT is about 25 meV at room

temperature, it is clear why in bulk semiconductors they are only observed at

cryogenic temperatures [34]. In the following only Mott-Wannier excitons will

be considered since they are the relevant excitons in semiconductors investigated

within this thesis.

Within the e�ective mass approximation, the electron and hole energies read

Ee = Eg +
~2
k

2

2m∗e
and Eh =

~2
k

2

2m∗h
, (2.1)

wherem∗e andm
∗
h are the e�ective electron and hole masses and Eg is the band-gap

energy. In consideration of the attractive Coulomb interaction, the Hamiltonian

of the exciton is given by

H = Eg +
~2∇2

e

2m∗e
+

~2∇2
h

2m∗h
− e2

εrε0|r e − rh|
. (2.2)

εr and ε0 are the relative permittivity of the material and the vacuum permittivity,

respectively and e is the elementary electric charge. With a separation ansatz into

center of mass (R) and relative (r) coordinates, the exciton problem can be treated

in analogy to the hydrogen-atom problem. By use ofR = (m∗er e−m∗hrh)/(m∗e+m∗h)
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and r = r e+rh the Schrödinger equation in relative coordinates is decoupled from

the equation based on center of mass coordinates:

(
~2∇2

R

2M

)
Ψ(R) = ERΨ(R), (2.3)(

~2∇2
r

2µ
− e2

4πεrε0|r |

)
Φ(r) = ErΦ(r), (2.4)

with the reduced µ = (m∗e + m∗h)/(m
∗
em
∗
h) and total mass M = m∗e + m∗h. Solving

the di�erential equation for the energy spectrum of a free exciton, the exciton

dispersion is written as:

EX(K ) = Eg −
Eb

n2 +
~2
K

2

2M
(2.5)

Eb = e2/(2ε0a0) is the binding energy, a0 = ~2ε0/(e
2µ) the Bohr radius and

n the quantum number of the free exciton. In contrast to the hydrogen-atom,

excitons have a considerably shorter lifetime. In direct band-gap semiconductors

the lifetime is of the order of nanoseconds, while in indirect band-gap materials

the exciton decays after a few microseconds until some milliseconds. A deeper

discussion of excitons, for example their interaction behavior or the possibility of

exciton condensation, can be found e.g. in the work of Hanamura et al. [35].

Excitons in Low-Dimensional Semiconductors

By reducing the spatial extent of the semiconductor material to the order of the

thermal de Broglie wavelength

λe,hdB =
2π~√

3m∗e,hkBT
, (2.6)

properties of the electron in the conduction band (CB) and hole in the valance

band (VB) become in�uenced. Particularly, the density of states and energies

of the carriers become quantized. In the following, the density of states for the

electron in the CB shall be focused on. The density of states D(E) represents

the number of available eigenstates for the electrons at a certain energy E within

an in�nitesimal interval dE. In Tab. 2-1 the density of states is presented for

systems with di�erent dimensionality � from a 3D to a 0D system. With decreasing

dimensionality a further quantization of the energy levels occurs, as schematically

visualized in Fig. 2-1.
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Dimension Density of states

3D D(E) = 1

2π
2

(
2m
∗
e

~2

)3/2√
E − ECB

2D D(E) = m
∗
e

π~2
∑
i

Θ(E − ECB −∆Ei)

1D D(E) =

√
2m
∗
e

π~
∑
i

niΘ(E−ECB−∆Ei)√
E−ECB−∆Ei

0D D(E) = 2
∑
i

δ(E − ECB −∆Ei)

Table 2-1: Electron density of states for semiconductors of di�erent dimensionality.
Θ(E) is the Heaviside unit step-function and ∆Ei is the di�erence between the minimum
and the i-th energy level of the CB. ni denotes the degeneracy of the respective energy
level. With decreasing dimensionality a further quantization of the energy levels occurs,
as schematically visualized in Fig. 2-1.

When the motional degree of freedom is reduced in a three dimensional bulk

semiconductor along one direction, one obtains a thin �lm semiconductor. It is

also known as quantum well (QW). A quantum wire (QWR) is an example for an

one-dimensional semiconductor. In a quantum dot (QD) the carrier mobility is

con�ned in all directions. Since 2D-semiconductors are used as active medium in

the microcavities studied in this work, the focus is placed on the e�ects on excitons

in QWs.

The electronic con�nement in one dimension leads to a splitting into light- and

heavy-hole excitons; within a QW the potential symmetry is reduced, hence, the

valance-band states are split. This is one of the most striking changes resulting

from the reduction of dimensionality. Another e�ect is that the increase in the

overlap of the wave functions of electron and hole and the growing Coulomb at-

traction between these two carriers lead to a larger exciton oscillator strength.

This corresponds to a decrease in the exciton Bohr radius and larger binding en-

ergy of the exciton in the QW compared to the exciton in a bulk semiconductor.

The change in the binding energy strongly depends on the width lz of the QW

along the growth axis z and on the semiconductor material. In the case of the

ground-state 1S exciton and in�nitely high barriers, where lz = 0, the binding

energies in terms of the bulk values E3D
b are given by [36]:

E2D
b (1S) =

E3D
b

(n− 1
2
)2 . (2.7)

For realistic QWs with a �nite barrier height there is a local maximum of the

binding energy depending on the material and the QW width [37]. In the case of

a 1S exciton Eb is still two to three times higher than in bulk materials.
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Figure 2-1: Schematic diagram of the electronic density of states for di�erent spatial
dimensionalities. With decreasing dimensionality of the material there is a discretization
of the energy levels.

2.1.2 Photons in a Planar Microcavity

To in�uence the density of states of the light �eld an optical resonator can be

used. Two planar mirrors in a distance LCav can build a resonator to con�ne the

light. Due to multiple re�ection and interference there is a build-up of standing

waves for certain resonance frequencies. Hence, in contrast to the linear dispersion

relation of a free photon, the resonator mirrors lead to a discretization of the wave

vector:

kz =
Nπ

LCav
(2.8)

with the number N ∈ N of the particular resonant Fabry-Perot mode and the

cavity length LCav. The in-plane wave vector k|| =
√
k2
x + k2

y stays una�ected.

Hence, the dispersion relation for photons in a planar resonator is

ECav(k||) =
~c
nCav

√(
π2N2

L2
Cav

+ k2
||

)
(2.9)
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with nCav as the refraction index inside the cavity. For small momentum, the

dispersion has a parabolic shape and can be described by an e�ective photon mass

m∗Cav = hnCav/(cLCav) [38]. With increasing momentum the dispersion curve joins

the linear relation E(k||) = ~ck||/nCav. The relation between the emission angle Θ

from the cavity and the photon in-plane wave vector k|| is given by k|| = k sin Θ and

o�ers the possibility of experimentally investigating the energy dispersion relation

by performing angle resolved spectroscopy.

The longitudinal mode separation δλ, which is the spectral distance of two

resonant frequencies in a resonator, is given by [39]

δλ =
λ2

2nCavLCav
. (2.10)

Thus, macroscopic Fabry-Perot resonators (LCav � λ) have a large number of

modes next to each other, while for microcavities (LCav ≈ λ) the mode separation

is large enough to allow single-mode emission.

An ideal cavity possesses precise values for the con�ned resonant modes and

has no losses. To describe the discrepancy between the ideal and real case a

quality factor Q is used. The quality factor is given by the ratio of the resonance

wavelength λCav and its linewidth ∆λCav and is proportional to the cavity lifetime

τCav:

Q =
λCav

∆λCav
= 2π

c τCav
λCav

. (2.11)

Typical Q-factor values for di�erent kinds of microcavities can be found in the

publication of Vahala et al. [40].

If the linewidth is small the lifetime of the photon inside the cavity increases.

For high Q-factors the number of round trips of the wave in the resonator and,

therefore, the photonic con�nement increase. In order to realize microcavities with

a high Q-factor, distributed Bragg re�ectors (DBR) are used as mirrors, see details

in chapter 3.1. DBRs consist of many layers of alternating �lms with low (L) and

high (H) refractive indices. The optical path d(λ) in each �lm is determined by

the quarter of the cavity center wavelength d(λ) = λCav/(4nL/H). This ensures the

build-up of a broad-band high re�ectivity region - it is called stop band. In this

region the re�ectivity is given by [41]

R =
1− nsub

n0

(
nL
nH

)2mDBR

1 + nsub
n0

(
nL
nH

)2mDBR

(2.12)

where nsub and n0 are the refractive indices of the substrate beyond the DBRs and

of the closing layer on top of the microcavity, respectively. mDBR is the number of

pairs of mirror layers. To have the electric �eld antinode of the standing wave at

the center of the cavity, the size of the cavity is commonly chosen as a multiple of
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λCav/2.

Since the photon �eld penetrates into the DBR structure, the cavity length

LCav from a standard Fabry-Perot cavity has to be replaced by an e�ective cavity

length Le� [14]:

Le� = LCav + LDBR (2.13)

with

LDBR =
λCav

2nCav

nL nH
nH − nL

. (2.14)

Moreover, if there is an imperfection during the growth of the DBR structure,

di�erences in the cavity resonance frequency ωCav and center frequency ωDBR of

the stop-band appear. Thus, the real microcavity resonance frequency is

ωMC =
LCav ωCav + LDBR ωDBR

Le�
. (2.15)

2.1.3 Polaritons - Strong Coupling in Microcavities

How can one achieve that an exciton and a photon mutually interact to form a

polariton? By placing a QW into a microcavity system the excitons of the QW and

the photon of the cavity can interact. In order to increase the oscillator strength of

the exciton and, therefore, also its coupling to the light �eld, the QWs are placed at

the antinodes of the microcavity. The interaction can be described in a simpli�ed

model as an ensemble of coupled harmonic oscillators.

The Hamiltonian of the system near resonance (ECav ≈ EX) takes the following

form in the rotating wave approximation :

ĤPol = ĤCav + ĤX + Ĥint (2.16)

=
∑
k

ECav(k) â†k âk +
∑
k

EX(k) b̂†k b̂k +
∑
k

~g(k)(â†k b̂k + b̂k â
†
k ). (2.17)

Here â† and â correspond to the photon creation and annihilation operators and

b̂† and b̂ to those of the exciton, respectively. To simplify the notation k stands in

this section for k ||. ~g(k) accounts for the exciton-photon dipole interaction given

through the exciton optical transition-matrix element M . Here, it is assumed that

M is nonzero only for modes with the same in-plane wave vector.

By the following transformation

p̂k = Xk b̂k + Ck âk , (2.18)

q̂k = Xk âk − Ck b̂k , (2.19)
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the Hamiltonian (2.17) can be diagonalized to

ĤPol =
∑
k

ELP(k)p̂†k p̂k +
∑
k

EUP(k)q̂†k q̂k . (2.20)

These two new eigenmodes of the system are called exciton-polaritons. p̂
(†)
k is the

(creation) annihilation operator of the lower polariton (LP) and q̂
(†)
k the one of the

upper polariton (UP). The operators ful�ll the commutation relation [p̂k , p̂
†
k ] = 1

and [q̂k , q̂
†
k ] = 1 and, therefore, they have bosonic character. In that context,

an important parameter, the detuning ∆k , has to be de�ned. It is the energy

di�erence between the dispersion relation of the photon ECav(k) and the exciton

EX(k):

∆k = ECav(k)− EX(k). (2.21)

The dispersion relation for the new quasi-particles depends on the detuning and

on the coupling strength ~g(k):

ELP/UP(k) =
1

2

{
EX(k) + ECav(k)±

√
4~2g(k)2 + ∆2

k

}
. (2.22)

In Fig. 2-2 (a)-(c) the polariton dispersions are plotted and compared to the bare

cavity and exciton modes for three di�erent detunings.

At resonance of the uncoupled modes (EX = ECav), there is a minimal splitting

between the eigenmodes. This results in EUP − ELP = 2~g(k), which is called

normal mode- or Rabi-splitting ∗. The coe�cients Ck and Xk , known from the

equations (2.18) and (2.19), are called Hop�eld coe�cients. For di�erent detunings

the percentage of the photonic and excitonic character of the LP and UP changes,

as can be seen in Fig. 2-2 (d)-(f). The quadratic form of the Hop�eld coe�cients

describe these percentages:

∗
Originally the term "Rabi splitting" comes from atomic physics, where at atomic resonance

a splitting in energy occurs. In semiconductor microcavities, the term is frequently used and

is an indicator for the system to be in the strong coupling regime. It can be identi�ed by an

anticrossing of exciton and photon resonance in the re�ection spectra. In general, values of the

Rabi splitting range from a few meV in GaAs microcavities with one QW to several hundreds of

meV in organic systems with Frenkel excitons.
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Figure 2-2: Polariton dispersions and squared Hop�eld coe�cients for negative detuning
∆k = −7 meV [(a) and (d)], zero detuning ∆k = 0 meV [(b) and (e)] and positive
detuning ∆k = +7 meV [(c) and (f)]. (a)�(c) The dotted line corresponds to the pure
cavity mode while the dashed line represents the pure exciton mode. The red line is the
lower polariton branch and the blue line indicates the upper polariton branch. (d)�(f)
|X |2 (dashed) represents the excitonic content for the LP and the photonic fraction for
the UP. The photonic fraction for the LP is given by |C|2 (dotted) while it stands for the
excitonic content in the case of the UP. The �gure is adapted from reference [42].
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|Xk |2 =
1

2

1 +
∆k√

∆k + 4~2g(k)2

 , (2.23)

|Ck |2 =
1

2

1− ∆k√
∆k + 4~2g(k)2

 . (2.24)

In the case of the LP, the photonic content is given by |Ck |2 and the excitonic

part by |Xk |2. The photonic part decreases for increasing detuning, while the

excitonic content raises. This behavior is exactly the opposite for the UP, where

|Xk |2 stands for the photonic fraction and |Ck |2 for the excitonic one. In every

case, |Ck |2 + |Xk |2 = 1 has to be ful�lled.

By changing the detuning the polaritons become more exciton- or photon-like.

This in�uence can be expressed by the e�ective masses of the lower and upper

polariton for k = 0, as they are controlled by the detuning:

1

mLP

=
|X0|2

mX

+
|C0|2

mCav

, (2.25)

1

mUP

=
|C0|2

mX

+
|X0|2

mCav

. (2.26)

As the photon dispersion is bent more strongly at k = 0 than that of the exciton

and thus the e�ective photon mass is smaller than the exciton one, the mass of

the lower polariton is approximately given by:

mLP =
mCav

|C0|2
. (2.27)

Another important aspect has to be taken into account: since the photon in

the cavity has a �nite lifetime due to imperfect mirrors and the exciton can also

decay nonradiatively, the dispersion relations of the polariton are modi�ed to

ELP/UP(k) =
1

2

(
EX + ECav + i(γCav + γX)±

√
4~2g(k)2 + (∆k + i(γCav − γX))2

)
,

(2.28)

where γCav is the decay rate of the photon due to the �nite re�ectivity of the

cavity mirrors and γX is the decay rate of the exciton due to interactions. For zero

detuning ∆k = 0 the equation is reduced to
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ELP/UP(k) = ECav +
i(γCav + γX)

2
± 1

2

√
4~2Ω2 − i(γCav − γX)2. (2.29)

Here 2~Ω = 2~g(0) corresponds to the Rabi splitting at zero detuning. The split-

ting itself depends on the oscillator strength fosc, the number NQW of embedded

QWs and the cavity length Le� [43]:

~Ω ∼

√
foscNQW

Le�
. (2.30)

The Eq. (2.29) provides solutions for two special cases: in the case of ~Ω > |γX −
γCav|/2, the losses due to scattering and transmission are smaller than the oscillator

strength and the strong coupling regime is reached. Otherwise if ~Ω < |γX −
γCav|/2, the energy splitting disappears because the losses are too high. This is the
so-called weak coupling regime with the bare cavity and exciton modes corrected

by their altered lifetimes.

To determine the lifetime of the polaritons, the lifetime of the photon in the

cavity τCav = ~/γCav and the lifetime of the exciton in the QW τX = ~/γX can be

used. In analogy to Eq. (2.25) one obtains for the lower polariton branch:

1

τLP,k
=
|X |2

τX
+
|C|2

τCav
. (2.31)

Since the lifetime of the photon in a planar microcavity (τCav ≈ 1−10 ps) is much

shorter than the lifetime of the exciton (τX ≈ 1 ns), the polariton lifetime is almost

completely determined by τLP,k ≈ τCav/|C|2.

2.1.4 Scattering Mechanisms in Microcavities

The polariton energy dispersion relation can be gathered from angle-resolved

micro-photoluminescence measurements. Hereby, the semiconductor sample is op-

tically excited either resonantly near the bottleneck region in the trap of the lower

polariton branch or nonresonantly at higher energies.

In the case of nonresonant excitation (Fig. 2-3) a large number of free electron-

hole pairs is generated - called electron-hole plasma. These free pairs lose their

coherence due to strong carrier-carrier interaction. Their initial carrier tempera-

ture lies in the order of several thousands of Kelvin and, therefore, they are also

called hot carriers [45]. To create excitons in the quantum well these hot carriers

have to thermalize by emitting optical phonons through interaction with the lat-

tice. This phonon relaxation process occurs on a subpicosecond timescale. It is

followed by a slower scattering with acoustic phonons leading to a formation of a

thermal exciton reservoir with a �xed temperature at high momentum. The total

process of reaching the lattice temperature takes about hundreds of picoseconds.
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Figure 2-3: Schematic diagram of the relaxation processes in a QW microcavity under
nonresonant excitation. The red and blue curves represent the LP and UP dispersions,
respectively. The dashed line stands for the uncoupled exciton dispersion while the dotted
line corresponds the the uncoupled cavity photon mode. Under nonresonant excitation
hot electron-hole pairs are created at high energies and relax towards the QW exciton
dispersion via LO phonon emission. The created excitons relax under acoustic (AC)
phonon emission and populate the exciton reservoir. The bottleneck e�ect leads to a less
e�ective AC phonon scattering into the lower polariton branch illustrated by the size of
the circles which indicate the state of occupancy. The �gure is adapted from reference
[44].

The Bragg mirrors of the cavity re�ect the light only within a �nite angular cone,

so that the excitons couple strongly to the light �eld as soon as their in-plane wave

vector matches the one corresponding to the angular cone. Since the formed polari-

tons at high momentum are exciton-like, the thermalization via acoustic phonons

stays e�cient until the region of the anti-crossing point is reached. Due to their

light mass in the region of the polariton dispersion minimum, the relaxation with

acoustic phonons is slower than the decay time of the polaritons. This leads to a

less populated ground state compared to the edge of the polariton trap at the anti-

crossing point. This phenomenon of a suppressed relaxation towards the ground

state is called bottleneck e�ect. Tassone et al. [46] �rst introduced the e�ect for

microcavity polaritons and a few years later Tartakovskii et al. [47] and Müller

et al. [48] observed it experimentally. The slow relaxation for small values of the

momentum is the reason why a thermal equilibrium can not be achieved in this

region. By use of high excitation power it is possible to suppress the bottleneck

e�ect by an increase in polariton-polariton and polariton-free-carrier interaction.
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When a considerable number of excitons is collected in the excitonic reservoir

at high momentum, the coupling between photon and exciton is weakened. Thus,

the number of QWs in the microcavity must be large enough to reach excita-

tion powers which enable a suppression of the bottleneck e�ect without leaving

the strong coupling regime. The occurring polariton-polariton interaction at high

excitation powers leads to their separation in momentum space: one of the polari-

tons is scattered into the parabolic-shaped dispersion valley, while the other one

scatters into the excitonic-like dispersion part of the lower polariton branch and

correspondingly obtains a higher energy level. Another scattering mechanism to

overcome the bottleneck e�ect is based on polariton-free-carrier interactions. Here,

polaritons scatter with hot carriers (e.g. electrons) created by the optical excita-

tion [49]. Because of the small e�ective mass of the interacting electron which

arranges an energy dissipation via wave vector exchange, it is possible to extend

the polariton lifetime at moderate densities. This in turn is helpful for overcoming

the bottleneck e�ect. Since polaritons are bosons the bosonic �nal state stimula-

tion plays a signi�cant role which leads to a macroscopic occupation of the ground

state and therefore to a build-up of a coherent Bose-Einstein condensate. The

basic concept of Bose-Einstein condensation and its occurring characteristics, the

equilibrium conditions for polariton BEC will be discussed in detail in the next

sections.

For resonant excitation, polaritons are injected directly at the polariton trap,

as shown in Fig. 2-4. Hereby, a population of the exciton reservoir and the

mechanism to bypass the bottleneck are not necessary anymore. Via polariton-

polariton scattering a ground-state population is �nally achieved. This parametric

process leads to stimulation of the (k|| = 0)-state and a build-up of macroscopic

coherence. The macroscopic population of the ground state is accompanied by a

nonlinearity in the emitted intensity.

To describe the polariton relaxation mentioned above, the so-called semi-classical

Boltzmann rate equations for bosons and fermions can be used, provided that

only weak interactions play a role. In the strong coupling regime the interactions

between polaritons are weak and, therefore, the Boltzmann equations are valid.

The corresponding rate equations for the time-dependent number of bosons and

fermions at k are given by [32]:

dnk
dt

= Pk − Γknk − nk
∑
k
′

Wk→k
′(1 + nk ′) + (1 + nk )

∑
k
′

Wk
′→knk ′ (Bosons),

(2.32)

dnk
dt

= Pk − Γknk − nk
∑
k
′

Wk→k
′(1− nk ′) + (1− nk )

∑
k
′

Wk
′→knk ′ (Fermions),

(2.33)

where Pk is the pumping generation term, Γk is the particle decay rate, andWk→k
′
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Figure 2-4: Schematic diagram of the relaxation processes in a QW microcavity under
resonant excitation. The red and blue curves represent the LP and UP dispersion, re-
spectively. Due to momentum- and energy conservation, one polariton gets scattered to
(k || − k ||, laser) and the other one to (k || + k ||, laser).

is the total scattering rate between the k - and k
′-state. The total scattering

rate consists of the scattering rates of the di�erent relaxation mechanisms for the

polariton

Wk→k
′ = WPhonon

k→k
′ +WPolariton

k→k
′ +WElectron

k→k
′ , (2.34)

and can be calculated with Fermi's Golden rule, see details in Ref. [50].

2.1.5 Breakdown of Strong Coupling Regime

With increasing excitation density the oscillator strength fosc gets renormalized

due to the presence of an electron-hole plasma. This means that with increasing

excitation power the concentration of electron-hole pairs increases and starts to

screen the Coulomb attraction, so that an exciton state is no longer stable. The

critical density at which the exciton becomes unstable is called Mott-density, the

corresponding transition is named as Mott-transition [51].

The change in the oscillator strength leads to a reduction in the vacuum Rabi

splitting and the system passes from the strong into the weak coupling regime [52].

Due to the smaller Rabi splitting the coupling is weaker than the photon decay

rate in the cavity and nonradiative recombination rate of excitons. Hence, the
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anti-crossing behavior is replaced by the crossing of the bare cavity and exciton

modes.

The light-matter interaction in a weakly coupled system can be described by

Fermi's Golden rule, since the coupled and uncoupled eigenstates are similar. It

gives the probability of the transition from an initial |i〉 to a continuum of �nal

|f〉 states, whose coupling is described by a Hamiltonian H ′:

1

τ
=

2π

~
|〈f |H ′|i〉|2ρf, (2.35)

with ρf as the density of �nal states.

For QWs embedded in a microcavity acting as optical emitter, it is given by the

electric dipole d and light �eld E(r , t) at the position r and time t. The emission

energy of the emitter is designated by ~ωemit. The spontaneous emission rate is

de�ned as

γsp =
1

τ
=

2π

~
|d · E (r , t)|2ρCav(ωemit), (2.36)

with the density of states ρCav of the light �eld being in resonance with the

emitter. In terms of the fundamental mode frequency ωCav and quality factor

Q = ωCav/∆ωCav, the photon density of states in the cavity reads

ρCav(ω) =
2

π

∆ωCav

4(ω − ωCav)2 + ∆ω2
Cav

. (2.37)

The spontaneous emission rate into the cavity di�ers from the one into the

vacuum, since the resonator in�uences the photon density of states. When the

emitter is out of resonance with the cavity mode, the spontaneous emission rate

into the cavity is reduced compared to the one into vacuum. At resonance between

the emitter and the cavity mode the spontaneous emission rate is enhanced with

respect to the one in vacuum. This e�ect of enhancement in a cavity is known as

the Purcell e�ect and is described by the Purcell factor FP [53]:

FP =
3Q(λCav/n)3

4π2Ve�
. (2.38)

Here, λCav is the cavity wavelength, n the refractive index, and Ve� the e�ective

mode volume of the cavity, which is de�ned by Le�. As one can clearly see from Eq.

(2.38), the enhancement solely depends on parameters of the cavity. For planar

microcavities the Purcell factor is generally of the order of unity [54] while it can
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reach values of about 30 for micropillars† [55].

Note, the system of a microcavity in the weak coupling regime will start to

lase if, due to high excitation densities, electronic population inversion is reached.

The conditions for stimulated emission in semiconductors is discussed in the work

of Bernard and Dura�ourg [56]. In the case of stimulated emission a photon

in the cavity forces the active medium to release another photon with the same

polarization and which is in phase with the original photon. On account of energy

conservation, an excited electron falls back into the valence band. The onset of

coherent light emission due to photon lasing becomes visible by a nonlinear increase

in the input-output curve, where the PL intensity is plotted against the excitation

power.

2.2 Bose-Einstein Condensate

Thermodynamics can force bosons to undergo a phase transition and build up a

macroscopic population of their ground state. Reaching a critical density nc or

temperature Tc, a Bose-Einstein condensate (BEC) is formed. It is characterized

by e.g. a macroscopic coherence and the macroscopic occupation of the lowest

state by bosons. Polaritons can be treated as bosons in the low-density limit and,

therefore, they are perfect candidates for showing Bose-Einstein condensation. A

condensate in a microcavity system represents a coherent-light-emitter with the

advantage of having a lower threshold carrier density compared to photon lasing

using the same structure. Furthermore, due to their half-matter nature polariton

condensate systems are perfect candidates for cavity quantum electrodynamics.

This section gives an overview of the concept of Bose-Einstein condensation in

general and case of con�ned polaritons in a 2D system. As a basic reference for

the discussion in this chapter, the publications from Deng [33], Kavokin [32] and

Wouters [57] were taken, unless speci�ed otherwise.

2.2.1 Ideal Bose Gas

Consider a gas with N free, identical and noninteracting bosons in thermal equi-

librium at a temperature T in a volume V . The distribution of these bosons is

then as follows:

fb(k , µ, T ) =
1

e
E(k)−µ
k
B
T − 1

. (2.39)

†
Micropillars are further dimensional reduced cavities created by plasma etching of a planar

microcavity.
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E(k) = ~2
k

2/2m is the energy-momentum dispersion of the free particles and µ

the chemical potential, where −µ is the energy needed to add a further boson to

the system. The total number of bosons is given by

N =
∑
k

fb(k, µ, T ). (2.40)

The number of bosons in the lowest state with energy E0 is determined by

N0 =
1

e
E0−µ
k
B
T − 1

. (2.41)

It is possible to separate the ground state from all excited states:

N = N0 +
∑
k ,k 6=0

Nk (2.42)

= N0 +
∑
k ,k 6=0

fb(T, µ, k). (2.43)

In the case of bosons in a 3D system with size L and in the thermodynamical

limit L3 →∞, the total number of bosons occupying the excited states takes the

following form:

Nk = 4π

(
L

2π

)3
∞∫

0

dk
1

k
2fb(k , T, µ), (2.44)

NE = 4π

(
L

2π

)3
1

2

(
2m

~2

) 3
2

∞∫
0

dE
√
Efb(E, T, µ). (2.45)

Considering now the density of the excited states, Eq. (2.45) turns into

nE =
1

4π2

(
2m

~2

) 3
2

∞∫
0

dE
√
E

1

e
E−µ
k
B
T − 1

. (2.46)

The integral reaches a maximum value when the chemical potential µ is equal to

E0. If this critical density nc is achieved, each further added particle has to occupy

the ground state in order to ful�ll the Bose-Einstein distribution. So, there is a

macroscopic occupation of the ground state. This macroscopic occupation caused

by saturation of the excited states is the phase transition known as Bose-Einstein

condensation.

The critical temperature Tc of Bose-Einstein condensation can be phenomeno-

logically described by the distance between the free identical bosons. Each boson

has a certain expansion - the thermal de Broglie wavelength λdB =
√

(2π~2)/(mkBT )

[59]. It characterizes the thermal broadening of the particle wave function.
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Figure 2-5: A phenomenological approach of Bose-Einstein condensation for an ideal
Bose gas at di�erent temperatures. For high temperatures T � Tc (top panel) the
particles can be described as point particles with an inter-particle distance D. For lower
temperatures T > Tc (2nd panel) the particles can no longer be treated as point particles
but as wave packets. Their thermal de Broglie wavelength is still smaller than the particle
distance. This is changed for temperatures below the critical temperature T < Tc (3rd
panel from top). Here, the averaged particle distance is in the order of the λdB and the
di�erent wave packets can overlap. A collective ground-state wave function is formed
- the Bose-Einstein condensate. At absolute zero temperature all particles join this
ground-state wave function (bottom panel). The �gure is adapted from reference [58].

In the case of an inter-particle distance D in the order of the de Broglie wave-

length, the particles interfere with each other and a macroscopic occupation of

the ground state occurs. For nc ∝ λdB(Tc)
−d with d as the system dimension, the
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critical temperature is proportional to

kbTc ∝ 3.31
~2n2/d

m
, (2.47)

and, therefore, it varies inversely with the particle mass m.

Beside the macroscopic occupation of the ground state, a further indicator

for the occurrence of BEC is the o�-diagonal-long-range-order (ODLRO) or long-

range-phase-coherence in the condensed state. When a system shows ODLRO, its

single-particle density matrix

ρ(r , r ′) ≡ Tr{ρ̂Ψ̂†(r)Ψ̂(r ′)} ≡ 〈Ψ̂†(r)Ψ̂(r ′)〉 (2.48)

has an eigenvalue which is proportional to the absolute number of particles in

the system. Here, the density operator is ρ̂, and Ψ̂† and Ψ̂ are the creation and

annihilation �eld operators, respectively. In principle the matrix in Eq. (2.48)

expresses the probability amplitude that a system will stay in the same state, even

if a particle is removed at position r and added at r ′. For the normal states the

density matrix has a nonvanishing value, when the distance |r − r ′| is in the order

of the de Broglie wavelength. It tends to zero for distances well above the de

Broglie wavelength of the bosons. This stands in contrast to the behavior in the

condensed state, where the single-particle density matrix has a nonzero value, even

in the case of |r − r ′| → ∞. When a particle is inserted at r into the condensate

and a particle at r ′ is removed, a quantum coherent amplitude and phase still

exist.

A further attribute of BEC is the spontaneous gauge-symmetry breaking caus-

ing a phase transition. To describe this symmetry breaking the �eld operator Ψ̂(r)

is separated into the ground state and uncondensed excited states:

Ψ̂(r) = φ0(r)â0 +
∑
i6=0

φi(r)â†i (2.49)

with the single particle wave function φ and the creation (annihilation) operator

â† (â), respectively. Making use of the Bogoliubov approximation [60] with

â0 =
√
N0 and N0 = 〈â†0â0〉, (2.50)

and in the case of a macroscopic occupation of the ground state (N0 � 1), the

�eld operator can be de�ned as follows:

Ψ̂(r) = Ψ0(r) + δΨ̂(r). (2.51)
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Ψ0 =
√
N0φ0 is the wave function of the condensate and order parameter of the

phase transition. The order parameter has to ful�ll the requirement to be zero

above the phase transition and nonzero below. For the wave function of the con-

densate the relation

Ψ0 = |Ψ0(r)|eiS(r) (2.52)

is essential, with |Ψ0(r)|2 = n0 and S(r) as the phase connected to the coher-

ence and super�uidity phenomenon of the condensate. The absolute phase of

the condensate is irrelevant and an arbitrary phase factor eiα can be added with-

out changing physical characteristics. Assuming a certain phase S(r) at the phase

transition of the BEC in absence of a preferred phase value is a spontaneous break-

ing of the gauge symmetry. To describe the spontaneous symmetry breaking the

condensate is characterized as a coherent state (or being rather close to one) and

the order parameter is chosen in a way that it matches the expectation value of the

�eld operator 〈Ψ̂(r)〉. Above the phase transition the ground state is occupied by

statistically independent number eigenstates. This changes below the transition,

where the ground state can be described as a coherent state with a well-de�ned

phase, it is given by [61]

â|α〉 = α|α〉. (2.53)

Here, |α|2 = N0 is the average particle number in the condensed state. The

coherent state can be expressed by the particle-number eigenstate:

|α〉 = e
−|α|2

2

∑
n

αn√
n!
|n〉. (2.54)

For a condensate in a coherent state, the time dependence of the order parameter

can be assumed to

Ψ0(r , t) ≡ 〈α|φ0â0|α〉 = 〈Ψ̂(r)〉e−i(EN−EN−1)t/~. (2.55)

If N0 � 1, the energy term in Eq. (2.55) corresponds to the chemical potential:

EN − EN−1 '
∂EN
∂N

= µ. (2.56)

Since the expectation value of the �eld operator 〈Ψ̂(r)〉 equals the order parameter,

for the time-dependent wave function of the condensate follows:

Ψ0(r , t) = Ψ0(r)e−iµt/~. (2.57)

In summary, BEC is observed when a macroscopic number of particles occupy
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the ground state and a single-particle wave function is able to describe this conden-

sate. At the phase transition, there is a build-up of coherence over a macroscopic

distance.

2.2.2 Weakly Interacting Bose Gas

The ideal Bose gas is a description of the condensation phenomenon in theory,

but it is not an explanation for a real experimental system, since there will always

be at least weakly repulsive interactions among the bosons. In 1947, Bogoliubov

presented a mean-�eld description for a weakly interacting Bose gas on macroscopic

scale.

The �eld operator is used to express the Hamiltonian of two weakly interacting

bosons in the following form:

Ĥ =

∫ (
~2

2m
∇Ψ̂†∇Ψ̂

)
dr +

1

2

∫
Ψ̂†Ψ̂†′V (r ′ − r)Ψ̂Ψ̂′dr dr′, (2.58)

where V (r ′ − r) is the interaction potential of both bosons; it is considered as

weak and short-ranged. Using the description

Ψ̂(r) =
1√
L3

∑
k

âke
ik r (2.59)

to express the �eld operator, Eq. (2.58) can be written as

Ĥ =
∑
k

~2
k

2

2m
â†k âk +

1

2L3

∑
k ,k
′
,q

Vq â
†
k+q â

†
k
′
- q
âk âk ′ (2.60)

with the Fourier-transformed potential Vq =
∫
V (r)e−(iqr)/~dr. Since the common

two-body potential has a short-range term r0, which is resulting in a di�culty

to solve the Schrödinger equation on a microscopic scale for a cold and dilute

system, an e�ective potential Ve�(r) is assumed for small momentum where q is

much smaller than ~/r0. The macroscopic properties of the condensate are fully

determined for the momentum q = 0. Hence, the potential can be written as

V0 =

∫
Ve�(r)dr (2.61)

and for the Hamiltonian:

Ĥ =
∑
k

~2
k

2

2m
â†k âk +

V0

2L3

∑
k ,k
′
,q

â†k+q â
†
k
′
- q
âk âk ′ . (2.62)

With the Bogoliubov approximation, already mentioned in Eq. (2.50) and the

Bogoliubov ansatz (2.51), the ground-state energy in the lowest mean-�eld ap-
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proximation can be evaluated to

E0,0 =
g

2L3N
2
0 '

g

2L3N
2. (2.63)

N0 = N is valid, since in a cold and diluted system the occupation of the excited

states is negligible. g is the potential expressed by the Born approximation to

g = V0 =
4π~2a

m
(2.64)

where a is the s-wave scattering length. The chemical potential of the system is

therefore given by

µ =
∂E0

∂N
= gn (2.65)

with the density of the gas n = N/V . Using the Hamiltonian from Eq. (2.62) and

the Heisenberg equation of motion

i~
∂

∂t
Ψ̂(r , t) =

[
Ψ̂(r , t), Ĥ

]
, (2.66)

the time development of the macroscopic and also classical wave function of the

condensate is given by the Gross-Pitaevskii equation:

i~
∂

∂t
Ψ0(r , t) =

(
−~2∇2

2m
+ g|Ψ0(r , t)|2

)
Ψ0(r , t). (2.67)

To be able to describe also the excitation spectrum a higher order of the mean-

�eld approximation has to be considered. Therefore, the normalization relation is

used

â†0â0 +
∑
k 6=0

â†k âk = |α|2 +
∑
k 6=0

â†k âk = N. (2.68)

This leads to the following expression of the higher-order mean-�eld Hamiltonian

[62]:

Ĥ =
g

2L3N
2 +

∑
k 6=0

~2
k

2

2m
â†k âk +

1

2
gn
∑
k 6=0

(
2â†k âk + â†k â

†
−k + âk â−k +

mgn

~2
k

2

)
(2.69)

The third term in the Hamiltonian corresponds to the self-energy of the excited

states caused by interaction. At momentum k there is the creation of the excited

states, while simultaneously at −k the annihilation of the excited states takes

place. Making use of the linear Bogoliubov transformation, the Hamiltonian can
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be diagonalized with

âk = uk b̂k + v∗−k b̂
†
−k , (2.70)

â†k = u∗k b̂
†
k − v−k b̂−k . (2.71)

With uk = u−k , vk = v−k and |uk |2 − |v−k |2 = 1 the new operators ful�ll the

bose commutation relations, as the operators before. To achieve a vanishing of the

nondiagonal terms in Eq. (2.69) the coe�cients have to satisfy

gn

2

(
|uk |2 + |v−k |2

)
+

(
~2
k

2

2m
+ gn

)
ukv−k = 0, (2.72)

which leads to coe�cients that are determined by

uk , v−k = ±

√√√√( ~2k2

2m
+ gn

2EBog(k)
± 1

2

)
. (2.73)

EBog(k) is known as the Bogoliubov dispersion law of the excitation spectrum and

is de�ned as

EBog(k) =

√
gn

m
~2
k

2 +

(
~2
k

2

2m

)2

. (2.74)

Using now the Bogoliubov transformation and the determination of the coe�cients

the Hamiltonian turns out to be

Ĥ = E0,1 +
∑
k 6=0

EBog(k)b̂†k b̂k . (2.75)

With E0,1 as the ground-state energy in a higher-order mean-�eld approximation,

one obtains

E0,1 = E0,0 +
1

2

∑
k 6=0

[
EBog(k)− gn− ~2

k
2

2m
+
mg2n2

~2
k

2

]
. (2.76)

For low momentum

k .
1

ξ
=

√
2mgn

~
, (2.77)

the Bogoliubov dispersion law has a phonon-like behavior

EBog(k) =

√
gn

m
~k = cs~k (2.78)

with the sound velocity cs. ξ is called the healing length and plays an important

role in super�uidity. It also characterizes the transition from the phonon-like



28 Theoretical Background

Figure 2-6: Exemplary polariton dispersion representing the lower polariton branch
(red line), the blue shifted lower polariton branch (red dotted line) and the Bogoliubov
dispersion (black line) with a linear guide to the eye (green dashed line). The transition
from the linear behavior for small momentum towards a parabolic one at high momentum
is marked with a black dotted line. Here, k ||ξ has a value of 1.

behavior to a free-particle one for higher momenta:

EBog(k) =
~2
k

2

2m
+ gn. (2.79)

2.2.3 Super�uidity

Super�uidity is deeply connected to BEC, but both do not require each other; they

also exist on their own. A super�uid can �ow through small capillaries without any

energy dissipation. One of the main and mostly referred criteria for super�uidity

follows the suggestions of Landau; he drew a connection between super�uidity and

BEC for the �rst time.

A large body with mass M is considered to �ow with velocity v i into a liquid.

As soon as the �ow is able to induce excitations in the liquid, dissipation will

occur. If the motion is below a so-called Landau critical velocity, the excitation

of any particle is not possible and, therefore, the motion is without any energy

dissipation. This critical velocity can be established by letting the massM scatter
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with a particle of the liquid. This scattering leads to a change of the velocity from

v i to v f. If the energy and momentum of the scattered particle are given by ε(p)

and p, respectively, conservation law implies the following:

1

2
Mv

2
i =

1

2
Mv

2
f + ε(p), (2.80)

Mv i = Mv f + p. (2.81)

Equation (2.81) is solved for v f and inserted into Eq. (2.80), which leads to:

ε(p)− pv i +
p2

2M
= 0. (2.82)

The last term in the equation above will be negligible, if the mass M is large.

Hence, the critical Landau velocity is given by:

vL =

[
ε(p)

p

]
min

. (2.83)

For a weakly interacting Bose gas as discussed in the previous section, the critical

Landau velocity equals the sound velocity of the Bogoliubov dispersion for small

momentum. Thus, a weakly interacting Bose gas at zero temperature is a super-

�uid. When the interactions are strong, the Landau criterion is still ful�lled with

a critical velocity smaller than the sound velocity. In general, it is obvious that the

critical velocity decreases as the interaction decreases and vanishes completely for

an ideal gas without interaction and a free particle dispersion ε(p) = p2/(2m). The

criterion can also be deduced from a liquid moving in a small tube or capillary.

In addition to the Landau criterion, phase coherence and long range order are

necessary for a super�uid, since all particles of a super�uid coherently participate

within a super�uidity �ow. Therefore, another connection between super�uidity

and BEC, besides the critical Landau and sound velocity of the Bogoliubov ex-

citation spectrum, is the coupling between the velocity of the super�uid v s and

the phase S of the BEC order-parameter Ψ0. To derive this connection the Gross-

Pitaevskii equation (2.67) has to be multiplied with Ψ∗0(r , t) and subtracted with

the complex conjugate so that a continuity equation is obtained:

d

dt
n(r , t) + div [j (r , t)] = 0, (2.84)

where j (r , t) is the particle-current density and is given as

j (r , t) = − i~
2m

(Ψ∗0∇Ψ0 −Ψ0∇Ψ∗0) . (2.85)

With the expression in Eq. (2.52) one obtains

Ψ0(r , t) =
√
n(r , t)eiS(r ,t) (2.86)
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and the particle-current density can be rewritten as

j (r , t) = n(r , t)
~
m
∇S(r , t). (2.87)

Hence, for the connection between BEC and super�uidity follows that the super-

�uidity velocity v s is given as the product of the local particle density and the

gradient of the phase S of the order parameter:

v s(r , t) =
~
m
∇S(r , t). (2.88)

Accordingly, for a nonzero �eld operator Ψ(r , t) and a well-de�ned phase S(r , t)

it follows that

∇× v s(r , t) = 0. (2.89)

Thus, the integral of the super�uidity velocity v s is zero, but for the appearance of

singularities with the consequence that Ψ(r , t) vanishes. The change in the phase

4S(r , t) has to be an integer multiple of 2π

4S(r , t) =

∮
∇S(r , t)dl = 2πl l = ...− 2,−1, 0, 1, 2... (2.90)

due to the fact that the phase itself is de�ned modulo 2π. This leads to a quantized

circulation

Γ =

∮
v sdl = l

h

m
(2.91)

called Onsager-Feynman quantization condition and results in the occurrence of

quantized vortices.

2.2.4 BEC in a 2D System

If in the thermodynamic limit the dimension of a system is reduced to 2D, the

critical density (2.46) de�ned for the BEC phase-transition in a 3D system will

diverge for µ → 0. This is due to the fact that the critical density depends

on the density of states of a 2D system which has a nonzero value for E0. As

a consequence, no phase transition towards a BEC in the thermodynamic limit

can occur. Only at T = 0 BEC exists. Since there is no macroscopic ground-

state population, the appearance of long-range-order is not possible due to phase

�uctuations. But these phase �uctuations do not destroy any super�uidity and,

therefore, a new phase transition has been declared by Kosterlitz and Thouless.

Above a critical temperature TKT the density of the super�uid ns is zero and

there is only local condensation. These local condensates are completely decoupled

from each other because free thermally excited vortices prevent the �ow of the

local condensates until the critical temperature is reached. At this point, the free
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vortices become unstable and form pairs and clusters with a total binding number

equal to zero. This allows the �ow of the local condensates where phase coherence

exists. Hence, there is a sudden jump in the super�uid density ns to a nonzero

value and a global super�uid is formed. The critical temperature is given by [63]

kBTKT =
π~2ns
2m

. (2.92)

To describe this transition in dependence of the thermal de Broglie wavelength at

temperature TKT the following relationship is used [64]:

nsλ
2
dBKT

= 4 (2.93)

The formed super�uid can be described by the Bogoliubov theory for weakly in-

teracting bosons, even though its wave function has a �nite extension in reciprocal

space and true long-range-order can only be achieved when no vortices exist, such

as for T = 0.

Nevertheless, it is also possible to achieve a BEC transition at �nite temper-

atures in a 2D system by con�ning the Bose gas in a spatially varying potential

U ∼ rη. This leads to a density of states ρ(E) ∼ E2η with the consequence that

Eq. (2.46) converges for η > 0. Hence, it is possible to de�ne a critical temperature

for the phase transition again [65]:

kBTc ∼
( n
m

)η/(2+η)

. (2.94)

Therefore, it is only necessary to have discrete energy levels Ei (i = 1, 2, ..) and

a �nite total particle number arising from the �nite size L2 to achieve a critical

density de�nition for a 2D system:

µ = E1, (2.95)

nc =
1

L2

∑
i≥2

1

eEi/(kBT ) − 1
. (2.96)

By use of the expression of the thermal de Broglie wavelength, for the 2D critical

density follows:

nc =
2

λ2
dB

ln

(
L

λdB

)
. (2.97)

To conclude, in the thermodynamic limit BEC is absent in a two-dimensional

system, whereas in a �nite system BEC phase-transition occurs. Super�uidity in

a 2D system can be achieved below the Kosterlitz and Thouless transition tem-

perature. In the last few years several condensation signatures were veri�ed for

polaritons in microcavity systems. In 2006, Kasprzak et al. presented results show-

ing macroscopic occupation of the ground state and a nonlinear threshold behavior
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[17]. Spatial coherence and ODLRO for polariton condensates were illustrated in

the publication of Deng et al. in 2007 [66]. Demonstrations of Bogoliubov excita-

tions [67], quantized vortices [68], half vortices [69] and spontaneous polarization

[70] followed. Furthermore it was possible to show super�uid behavior [71, 72]. The

expected coherence build-up was con�rmed by results of correlation measurements

[73].

2.2.5 BEC under Nonresonant Excitation

In the case of a planar microcavity with embedded QWs the possibility of nonres-

onant excitation has to be considered as well. Under this con�guration the BEC

strongly depends on the geometry of the pump spot, since the in�uence of the

exciton reservoir cannot be neglected anymore. The derivations in this section

follow the publication of Wouters et al. [57].

To explain the occurring phenomena under nonresonant pumping a mean-�eld

approach can be used. The generalized nonequilibrium Gross-Pitaevskii equation

(GPE) describes the dynamics of the macroscopic condensate with the wave func-

tion Ψ(r).

i~
∂Ψ(r)

∂t
=

{
E0 −

~2

2m
∇2

r +
i~
2

[R[nR(r)]− γcon] + Vext(r) + ~g|Ψ(r)|2 + VR(r)

}
Ψ(r).

(2.98)

E0 represents the ground-state energy of the LP and m is its e�ective mass. Vext
stands for an external potential such as disorder in the excitonic and photonic

structure [74]. g describes the repulsive Coulomb-interaction strength between two

condensate polaritons and γcon is the linear polaritonic cavity-loss rate. R[nR(r)]

represents the condensate gain rate and can be described by a monotonically grow-

ing function of the local density nR(r) of the noncondensed reservoir polaritons.

Caused by the reservoir a mean-�eld repulsive potential VR(r) occurs and can be

approximated by

VR(r) ' ~gRnR(r) + ~GP (r). (2.99)

Here, P (r) is the pumping rate and gR and G are interaction strengths induced by

condensate polariton scattering with reservoir polaritons and free carriers. When

the GPE is now coupled to a rate equation of the reservoir population, it follows:

ṅR(r) = P (r)− γRnR(r)−R[nR(r)]|Ψ(r)|2. (2.100)

Therefore, polaritons reach the reservoir with a rate P (r) and relax with an e�ec-

tive rate γR � γcon. This large e�ective decay rate is due to the thermalization

of bottleneck polaritons with a bath of hot carriers created by the pump beam.

Final state-stimulated scattering into the condensate mode causes a depletion of

the reservoir density which is proportional to R[nR(r)]|Ψ(r)|2.
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In the following, the spatially homogeneous case of the pump spot geometry

P (r) = P will be considered so that in absence of an external potential analyti-

cally stationary solutions are found for Eqs. (2.98) and (2.100). One obtains for

the condensate density |Ψ(r)|2 = 0 below the condensation threshold, thus, the

reservoir density grows linearly with the excitation intensity nR(r) = P/γR. When

the threshold pump intensity P th is reached, the stimulated scattering equals the

losses R[nR,th(r)] = γcon, while the solution with |Ψ(r)|2 = 0 becomes unstable.

With further increasing excitation power and therefore well-above the threshold,

the reservoir density becomes homogeneous nR(r) = nR. The condensate wave

function has now the form Ψ(r) = ei(kconr−ωcont)Ψ0, and it leads to a condensate-

density dependence of |Ψ0|2 = (P − P th)/γcon. k con is the condensate wave vector

and, even though it is still undetermined, stable solutions exist. Corresponding to

each value of k con, the given oscillation frequency ωcon reads

ωcon − ω0 =
~2
k

2
con

2m
+ g|Ψ0|2 + gRnR + GP. (2.101)

In the case of a heterogeneous pump pro�le P (r) one has to de�ne a local

density ρ(r) and a local phase φ(r) instead of a global de�nition. Thus, stationary

solutions have the following form:

Ψ(r , t) = Ψ0(r)eiωcont =
√
ρ(r)ei[φ(r)−ωcont], (2.102)

nR(r , t) = nR(r). (2.103)

While the condensate oscillation frequency stays the same throughout the spot,

its local wave vector varies and is determined as the spatial gradient of the phase:

k con = ∇rφ(r). (2.104)

By use of Eqs. (2.102) and (2.103), the generalized GPE and the rate equation

lead to:

~ωcon = ~ω0 +
~2
k

2
con

2m
+ Vext +

~2

2m

∇2
r

√
ρ

√
ρ

+ ~gρ+ ~gRnR + ~GP, (2.105)

0 = [R[nR]− γcon]ρ−
~
m
∇rρk con, (2.106)

P = γRnR +R[nR]ρ. (2.107)

Under the condition that the variation of the pump pro�le is su�ciently plain, a

local density approximation (LDA) can be used. As a consequence, the quantum-

pressure term in Eq. (2.105) and the term of the current divergence in (2.106)

are negligible. Hence, under the LDA the condensate is treated as homogeneous

system with a local value of the intensity of the pump spot P (r). Therefore,

below threshold P (r) < P th the condensate-density pro�le vanishes ρ(r) = 0 for all

points r . Since the condensate oscillation frequency ωcon is constant, this variation

has to be balanced by a variation in the wave vector in space k con = k con(r).
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It is possible for a symmetric pump pro�le to elaborate an analytic solution

if there is no external potential such as disorder. Under this circumstance the

stationary solutions are cylindrically symmetric and the condensate wave vector

vanishes at the center of the spot k con(r = 0) = 0. Accordingly, it leads to

ωcon − ω0 = gρ(r = 0) + gRnR(r = 0) + GP (r = 0). (2.108)

In case of an experimental conventional Gaussian pump spot the intensity decreases

along the radial direction and the condensate wave vector points in this direction

and increases with r. At the point where P (r) reaches the threshold value P th,

the wave vector value is at its maximum. If so, the repulsive interactions lead to

an anti-trapping potential Vat giving rise to a ballistical acceleration of polaritons

away from the center of the spot:

Vat(r) = ~gρ(r) + ~gRnR(r) + ~GP (r). (2.109)

Having a closer look at the di�erent sizes of a Gaussian excitation spot, one

notices a quite huge in�uence of the size onto the dynamics of the condensate. In

the following, a spot with a waist of about σp = 20 µm is compared to one with

σp ≈ 2 µm. For the calculations shown in Fig. 2-7 a parabolic polariton dispersion

was assumed.

Large Gaussian Pump spot

In the case of a large Gaussian pump spot a signi�cant broadening of the polariton

distribution in real-space due to the anti-trapping potential is noticeable, as shown

in panel (c) of Fig. 2-7. Panel (d) shows that as soon as the spatial polariton

density vanishes, the local condensate wave vector saturates. In consequence of

the steep behavior of the local condensate wave vector next to the center of the

pumping spot, there is a quite wide polariton distribution in momentum-space

which is centered around k|| = 0. The highest wave vector value kc0 which can

be reached is the one where the free polariton dispersion equals the condensate

frequency ωcon(kc0) = ωLP. All in all, these results are able to explain the occurring

�at condensate behavior shown in panel (a). Due to the Gaussian shaped pump

spot the polariton density in real- and momentum-space is higher at the center of

the spot than at the side. This leads to a higher blueshift at the center and with a

constant condensate frequency and a parabolic free polariton dispersion it results

in a �at condensate mode.

Small Gaussian Pump Spot

There is a change in the behavior as soon as the excitation spot gets smaller than

the ballistic propagation distance of the polaritons. In this case the polaritons

are able to travel away from the pump spot before decaying. As a result of this
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Figure 2-7: Numerical results of generalized GPE simulations for a small and large
pumping spot performed by Wouters et al. in 2008 [57]. On the left side, (a)-(d), results
for a spot with σp = 20 µm are shown, and on the right side, (e)-(h), results for a pump
spot with σp = 2 µm are presented. The panels on top (a) and (e) give the polariton
condensate dispersion under nonresonant excitation. The dashed black line represents
the free polariton dispersion with the corresponding wave vector kc0 at ωcon indicated
by the red dotted line, also seen in (b) and (f). The panels below (b) and (f) show the
polariton distribution in momentum space and panels (c) and (g) the one in real space.
The red dashed line in (g) is the analytical approximation to the density tail, since LDA
cannot be performed for a small excitation spot but for regions far outside the pump
spot. The lowest panels (d) and (h) present the local condensate wave vector kcon(r).
The dashed red lines here are LDA predictions of the local condensate wave vector. As
can be seen for the large spot, the accordance with the numerical results is quite good.
The �gure is taken from reference [57].

geometry, the local density approximation can no longer be performed, but, under

the assumption of no polariton interactions an analytical solution for the conden-

sate wave function far from the pump spot is possible. As can be seen in the

plots on the right side of Fig. 2-7, there is also a broadening visible in real-space

(g) and a steep behavior of the condensate wave vector around the center of the

pump spot (h). Beyond the pump spot the condensate wave vector saturates im-

mediately, which is di�erent to the behavior for a large excitation spot, where kcon
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saturates with the disappearance of the polariton density. In momentum-space (f),

the small spot leads to a ballistic expanding of the polaritons towards kc0. Thus,

the emission has a ring shape with a radius kc0. Experimentally, this behavior was

already observed by Richard et al. in 2005 [75]. Inside of the ring a weak emission

intensity is noticeable, whereas beyond the ring almost no emission is present. In

the dispersion diagram (e) the ring shape gets visible through two emission peaks

occurring where ωLP equals ωcon(kc0).



Chapter 3

Experimental Methods

This chapter contains basic explanations of the utilized experimental methods to

perform exciton-polariton condensation measurements at low temperatures. In

the �rst section of this chapter the investigated sample is described. This is fol-

lowed by a section which presents the method of momentum- and spatially-resolved

spectroscopy. The third section describes a basic micro-photoluminescence (µPL)

setup to study the energy- and time-depending properties of the polariton conden-

sate. For the results presented in Chap. 5 and 6 the basic µPL setup is extended

in di�erent ways. These changes are discussed in detail in the last two sections of

this chapter.

3.1 Sample

For all results presented in this thesis the same sample was used, which will be

described in the following paragraph.

The sample is a planar microcavity consisting of III-V semiconductor material

and was grown by molecular-beam epitaxy (MBE) in the group of Prof. Alfred

Forchel at the Julius-Maximilians-Universität in Würzburg. The Bragg mirrors

enclose a λ/2-resonator with 20 layer pairs underneath and 16 on top of the cavity.

The pairs are an alternating bedding of AlAs and Ga0.8Al0.2As layers. With this

mirror con�guration a quality factor of about 1800 can be achieved. The resonator

itself has 12 quantum wells (QWs) embedded with AlAs barriers as separators. To

increase the coupling between the excitons of the QWs and the photons of the

cavity, the QWs are embedded at the three central antinodes of the cavity with

four wells at each maximum. The cavity itself is slightly wedged. This makes

it possible to change the detuning between the pure photon and exciton mode by

simply varying the position of excitation on the sample. The microcavity structure

itself is grown in a GaAs substrate. A schematic drawing of the whole sample

pattern is shown in Fig. 3-1.

With the high number of QWs the strong coupling regime can be stabilized.

37
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Figure 3-1: Schematic drawing of the planar microcavity examined in the measurements
performed for this thesis. It consists of AlAs/GaAlAs Bragg mirrors which enclose a λ/2
cavity with alternating layers on top and underneath the cavity. 3 stacks of 4 QWs are
embedded at the three central antinodes of the cavity. The sample was grown on a GaAs
substrate using molecular-beam epitaxy.

The polariton wave function is delocalized over the whole microcavity and for a

certain polariton density the exciton density decreases with increasing number of

QWs. Therefore, one can reach a higher polariton density before an occurrence of a

transition into the weak coupling regime caused by exciton bleaching. Additionally,

the normal mode splitting (NMS) increases from about 4 meV for one QW in a

planar GaAs microcavity to about 14 meV for 12 QWs (see Fig. 3-2) due to the fact

that the coupling strength g(k) is proportional to the square root of the number

N of QWs [76].

3.2 Momentum- and Real-Space Imaging

The µPL spectroscopy o�ers the possibility to study the dispersion and time-

dependence of the cavity emission. The following section starts with an explanation

of the relation between the in-plane wave vector k|| and the emission angle Θ.

Afterwards the method of Fourier- and real-space imaging is described.

As already mentioned in section 2.1.2, the emission angle Θ from the cavity

is directly related to the in-plane wave vector k|| of the photons inside of the
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Figure 3-2: Energy of the lower (red squares) and upper (blue squares) polariton as well
as for the uncoupled cavity (dotted line) and exciton (dashed line) mode in dependence of
the radial position on the sample wafer. The arrow illustrates the normal mode splitting
of 2~g(0) = 2~ΩR ≈ 14 meV. The data set results from re�ectivity measurements
performed by the group of Prof. Alfred Forchel at the Julius-Maximilians-Universität in
Würzburg.

microcavity. When a photon is leaving the resonator, it leads to the decay of the

polariton. And due to in-plane translation invariance in the cavity, the in-plane

component of the polariton is equivalent to that of the emitted photon. Given that

the energy has to be conserved when the photon leaves the microcavity, the energy

of the photon equals that of the polariton. Therefore, it is possible to extract the

full information by performing angle-resolved µPL measurements of the emitted

photons following the relation:

k|| = k sin Θ =
2π

λ
sin Θ =

Eph

~c
sin Θ. (3.1)

The emission from the microcavity is collected by a microscope objective whose

focal plane corresponds to a virtual plane - the Fourier plane. Each position on

this plane represents a certain emission angle Θi and due to Eq. 3.1 also a certain

in-plane wave vector k||. Fig. 3-3 illustrates the concept of the Fourier plane

schematically for two di�erent angles.
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Figure 3-3: Illustration of the functionality of angle-resolved measurements. The light
which leaves the sample under the same angle Θ will be collected at one point in the
Fourier plane. To collect the light a microscope objective (MO) with the focal length
fMO is used. Imaging this Fourier plane onto the entrance slit of a spectrometer allows
for dispersion measurements.

Performing spectrally-resolved measurements to investigate the dispersion of

the emission the Fourier plane has to be imaged onto the entrance slit of a

monochromator. This is realized by two lenses. For time-resolved measurements

in momentum-space the Fourier plane is imaged with two lenses onto the entrance

slit of a streak camera. If the distribution in real-space instead of momentum-space

is of concern, the emission collected by the MO will be imaged onto the entrance

slit of a monochromator or the streak camera by means of only one lens.

3.3 Basic Optical Setup

In this section the basic optical setup for the performed measurements is described.

At �rst, the laser systems used for excitation and their characteristics are ex-

plained. Afterwards, the sample excitation technique is speci�ed and in the last

part of this section the detection methods are illustrated. Fig. 3-4 presents the

scheme of the complete basic setup.

For optical excitation of the sample two di�erent laser systems are available.

On the one hand, a pulsed Ti:Sapphire laser (Coherent Mira 900) and, on the

other hand, a continuous-wave (CW) Ti:Sapphire laser (Spectra Physics 3900).

The pulsed Ti:Sapphire laser (Mira) emits pulses with a duration of either 1.5 ps

or 100 fs at a repetition rate of 75.39 MHz and is pumped by a Nd:YVO4 CW

laser with 10 W. While the pump laser (Verdi V10) has a precise wavelength of

532 nm, the Mira can be tuned in a range of 700 to 980 nm. For time-resolved

measurements with the streak camera a trigger signal is needed and, therefore, a

small fraction of the laser emission is detected by a fast photo diode. The CW
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Ti:Sapphire laser is also pumped by a Nd:YVO4 CW laser (Sprout G10) which has

an output power of 10 W at a wavelength of 532 nm. The CW laser has two sets

of optics which allow an operation in a range of 700− 850 nm and 850− 1000 nm.

For compensation of the beam divergence for either the pulsed or CW laser,

two lenses (L1 and L2) are used as a telescope. This optical arrangement has

the advantage that the beam diameter can also be adapted depending on the

requirement of the experiments. Two variable neutral density �lters (NDF) are

used to control the excitation power. To minimize the spatial displacement of

the emission beam caused by varying one of the �lters they are oriented in the

opposite direction to each other and as close as possible to the sample in the

cryostat. To polarize the excitation beam, a Glan-Taylor prism (GTP) is used and

with λ/2 and λ/4 waveplates it is possible to switch between linear-, circular- and

elliptical-polarized excitation. Finally, there are two possibilities of focusing the

excitation beam onto the sample. On the one hand, a lens (L3) is used when the

excitation takes place under an angle of 45◦ from normal incidence. On the other

hand, for excitation from normal incidence the combination of a beam splitter and

a microscope objective (MO) is used. With a f = 60 mm-lens, the spot size is in

the order of 20 − 30 µm, and in the case of excitation with the MO it is in the

range of a few micrometers. The sample is mounted on a cold �nger inside of a

helium-�ow cryostat (Cryovac Konti-Cryostat Micro). By controlling the �ow of

the helium through the cryostat and in addition with external heating it is possible

to accomplish measurements at temperatures between 6 and 300 K. To vary the

excitation spot on the sample, the cryostat is mounted on three micrometer-screw

operated translation stages. This makes it possible to perform measurements at

di�erent detunings of the photon and exciton mode.

The PL of the sample is either collected by a microscope objective with a

numerical aperture of 0.26 and a magni�cation factor of 10 or by an objective

with a numerical aperture of 0.42 and a magni�cation by a factor of 50.

Spectrally Resolved Measurements

The lenses (L4 and L5) are used to image the Fourier plane onto the slit of a

monochromator for spectrally-resolved measurements. The monochromator (Ac-

ton SP-2500i) has a focal length of 500 mm and o�ers a triple grating turret. The

gratings with 300 and 1200 grooves per millimeter are blazed at 1000 nm and the

third grating, which has 600 grooves per millimeter, is blazed at 500 nm. The blaze

wavelength is the wavelength at which the grating reaches its maximum e�ciency.

After passing the spectrometer the PL is detected by a charged-coupled-device

(CCD) camera which is mounted on the monochromator exit port. The CCD

camera is a camera cooled by liquid nitrogen to minimize the in�uence of noise

and dark counts on the signal. The CCD itself has 1340x400 pixels with a pixel

size of 20 µm. Under these experimental conditions with an entrance slit width of

20 µm a spectral resolution of about 0.09 nm has been reached.



42 Experimental Methods

Figure 3-4: Scheme of the basic experimental µPL setup. As optical excitation source
a CW or a pulsed Ti:Sapphire laser is used. Two lenses (L1 and L2) form a telescope
to be able to get a certain beam diameter and to correct divergence of the original laser
beam. Two neutral density �lter (NDF) are placed into the excitation beam to control the
excitation power. Furthermore, a Glan-Taylor prism (GTP), a λ/2 and λ/4 waveplate
are placed into the beam. The beam itself can be focused under an angle onto the
sample using a lens (L3) or from normal incidence by making use of a beam splitter (BS)
and a microscope objective (MO). The same MO is used to collect the sample emission.
The system of a �ip mirror, lens (L6) and camera enables an intermediate image of the
sample and spot on the sample. To image the Fourier plane onto the monochromator
slit, lenses L4 and L5 are utilized. For real-space measurements only lens L5 is needed. A
�ip mirror in front of the streak camera enables to switch between time- and spectrally-
resolved measurements. In front of the streak camera a short focal length lens (L7)
focuses the signal onto the entrance slit.
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Time Resolved Measurements

Time-resolved measurements are performed by using a streak camera. In this

case, the emission is going through a liquid-crystal interference �lter (VariSpec

NIRR) to select a single-spectral emission mode. The �lter has a spectral full-

width-at-half-maximum (FWHM) of about 0.75 nm. The �lter can be tuned via

remote-control over a range of 650− 1100 nm. The signal is focused with a short-

focal-lens (L7) onto the entrance slit of the streak camera. Inside of the streak

camera the signal is subsequently guided to a photocathode. The incoming photons

are then converted into photoelectrons scaling with the intensity. In the following,

the free electrons get accelerated and pass two vertical sweep units, which are

provided with a temporally oscillating electric �eld. The electrons therefore get

de�ected in a certain angle, which is proportional to their arrival time. Since the

de�ection voltage is synchronized with the repetition rate of the pulsed laser for

each incoming pulse a new de�ection loop is started. The electrons then pass a

micro-channel-plate, where they are multiplied and hit a phosphor screen. The

brightness of the phosphorescence is proportional to the intensity of the signal. A

CCD camera is used to detect the signal where the horizontal position corresponds

to the position in space and the vertical position to the arrival time.

3.4 Setup for Measurements with a Spatial-Light-

Modulator

In order to perform measurements with di�erently shaped excitation spots and

to change the shape easily, the basic µPL setup is extended by a spatial-light-

modulator (SLM). A scheme of the extended setup is shown in Fig. 3-5.

A phase-only SLM (Holoeye Pluto VIS) with a display consisting of 1920x1080

pixels and a pixel pitch of 8 µm is used. The re�ective liquid-crystal micro display

can provide a phase shift above 2π in the whole visible range and can be addressed

like an external monitor. For the purpose of creating an excitation beam with a

certain spatial shape a di�ractive optical element (DOE) as a 256-graylevel image

has to be created so that the phase of the incoming laser beam is in�uenced when

hitting the SLM. Therefore, the Fourier transform of the initial shape is calculated

and optimized with an iterative Fourier-Transform Algorithm [77]. By means of

this method a di�raction e�ciency of slightly above 80% is achieved. To separate

the di�racted beam from the undi�racted re�ection a DOE phase pattern of a lens

is superimposed onto the created DOE of the beam shape. Thus, the undi�racted

re�ections are blocked by an iris-diaphragm to avoid their leaving from the optical

table. The desired beam shape instead is imaged in the focal plane of the virtual

lens, since focusing is equivalent to performing a Fourier transform. To image the

picture in the focal plane onto the sample a lens and a 50x MO with a numerical

aperture of 0.42 are used. The emission of the sample is collected by the same

MO. The further way of detection is the same as described in Sec. 3.3.
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Figure 3-5: In addition to the basic µPL setup (Fig. 3-4) a spatial-light-modulator
(SLM) is used in the excitation part of the setup. Since the beam hitting the SLM must
have a certain polarization a Glan-Taylor prism (GTP) and a λ/2 waveplate are placed
in front of the SLM. An iris-diaphragm is used to block the undi�racted re�ections. The
SLM can be controlled via extented monitor mode from the computer and its software is
able to compute a di�ractive optical element (DOE) of the desired spot shape to in�uence
the phase of the laser beam. A DOE phase pattern of a lens is added to the beam shape
pattern to separate the di�racted beam from the undi�racted re�ections. This leads to
an imaging of the desired beam shape in distance of the focal length of the virtual lens
and makes it necessary to use a another lens (L8) and a microscope objective to �nally
image it onto the sample.

For the results presented in Chap. 4, measurements are performed with the

SLM creating a wire-like excitation spot. On the surface of the sample, the pro-

jected wire has a length of 15 µm and a width of 2 µm. In Fig. 3-6 an image of

the wire itself, of the created wire DOE phase pattern and an image of the wire

DOE with an additional phase pattern of a lens is shown.

Also, a quasi-one-dimensional wire-staircase potential created by the SLM is

studied. The staircase consists of 16 steps, and projected, onto the sample, each

plateau of a step has a length of about 1 µm and a width of 2 µm. The right panels

in Fig. 3-6 present the staircase pattern in real space, its DOE phase pattern and

the combination of the staircase DOE with a lens phase pattern.
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Figure 3-6: Top panels: The modeled-shape of the excitation spot, wire (left) and
staircase (right). Middle panels: The optimized Fourier transform of the designated
spot shape for both cases. Lower panel: The optimized Fourier transform, as shown in
middle panels, additionally with the DOE of a lens.

3.5 Setup for Two-Laser Excitation Measurements

The results presented in Chap. 6 are obtained with the basic µPL setup extended

by an additional excitation beam, as can be seen in Fig. 3-7. The sample is

excited resonantly with a CW Ti:Sapphire laser under an angle of 45◦ from normal

incidence. The excitation power is chosen in such a way that the regime of polariton

lasing is achieved. A second nonresonant pulsed Ti:Sapphire laser is additionally

focused onto the sample from the other side of the cryostat using a lens (L3b) with

a focal length of f = 150 mm. The short nonresonant laser pulses (width ≈ 2 ps)

are supposed to perturb the polariton condensate created by CW excitation. In the

case of the resonant excitation, the spot diameter is approximately 20 µm, while

the nonresonant probe laser has a spot diameter of about 10 µm and is located

at the center of the resonant pump spot. A chopper is used to avoid damaging of

the sample by simultaneously blocking both laser beams, which assures also that

the sample is excited simultaneously by both beams. The PL of the sample is
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Figure 3-7: The basic µPL setup (Figure 3-4) is extended by an additional excita-
tion beam. Left: Standard µPL-setup using the CW Ti:Sapphire (Spectra 3900) laser
as a resonant excitation source to reach the regime of polariton condensation. Right:
Additional nonresonant excitation with the pulsed Ti:Sapphire (Mira 900) laser to in�u-
ence the polariton condensate through short laser pulses. The emission of the sample is
collected by a 10x MO with a numerical aperture of 0.26.

collected by a 10x MO with an aperture of 0.26. Afterwards, it is detected by a

streak camera in a way already described in section 3.3. The time-resolved results

of these two-beam measurements are presented in Chap. 6.



Chapter 4

Relaxation Dynamics of Optically

Imprinted Polariton Wires

The realization of polariton condensates in microcavity systems is a huge step to-

wards optical circuits and all-optical switching. Due to their macroscopic wave

function, condensed polaritons show collective phenomena and can be in�uenced

by controlling their phase and velocity in an all-optical way [78]. Reports on mul-

tistability [79] or nonlocal spin switches [24] are pointing towards the realization

of optical circuits.

Recently, it has become possible to achieve polariton condensation and to

demonstrate its optical manipulation also in quantum wire microcavity systems

[22]. In that context, phenomena such as bistability [80] are theoretically demon-

strated and neuron-like switching [81] or polariton transistors [82] are already

proposed. Thus, quantum wire microcavity systems are of considerable interest

for all-optical circuits.

Compared to quantum wells, quantum wires are additionally con�ned in a lat-

eral direction and are therefore one-dimensional systems. Due to the additional

spatial con�nement of the cavity, a splitting of the polariton mode into a fan of

subbranches takes place [83]. Quantum wires of a certain width and length can be

created from planar microcavities by lithography. The technique of quantum wire

etching has the disadvantage of de�ning the con�nement potential with the pro-

cessing of the sample. This is not the case when a spatial-light-modulator (SLM)

is used to optically imprint a certain potential and to localize the polaritons due to

the e�ect of gain-trapping [84]. The polaritons are gain-trapped to the imprinted

spot shape due to their short lifetime, which prevents them from moving far away

before they decay. Therefore, this method o�ers the possibility to systematically

study di�erent con�nement potentials.

This chapter presents an analysis of the relaxation dynamics in an optically

created wire shaped potential for polaritons and is structured as follows. Firstly,

the results of time-resolved measurements in real-space are presented including

the study of spatially resolved intensity pro�les at speci�c times in the decay
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Figure 4-1: Spectrally integrated polariton decay dynamics con�ned in an optically
created wire potential. (Left) Time dependence of the absolute emitted intensity spatially
resolved. (Right) The emission intensity from the left panel normalized to the highest
emission intensity at each respective time. The dashed lines represent the times which
are of interest for further examinations. At early times the intense emission peak comes
from the center of the wire. Two additional peaks occur at both sides of the wire after
a few picoseconds. Later on, after about 30 ps these three peaks disappear and at the
spatial position of the former intensity minima at both sides two new peaks arise. This
shape of the pattern remains rather stable throughout the time.

dynamics. Secondly, spectrally resolved emission pro�les at di�erent times in the

decay evolution are demonstrated.

4.1 Temporal and Spectral Dynamics of Optically

Imprinted Quantum Wires

Time-resolved measurements in real-space provide information about the temporal

and spatial dynamics of 1D con�ned polaritons. For this purpose, the microcavity

sample (cf. Sec. 3.1) is excited nonresonantly with a beam shaped like a quantum

wire by making use of a SLM. A detailed description of the optical setup can

be found in Sec. 3.4. Figure 4-1 shows the emission of spectrally integrated

polariton decay dynamics. The origin of the time axis (zero point) is de�ned by

occurrence of the highest emitted intensity. The emission pattern consists of an
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Figure 4-2: Intensity pro�les for three di�erent sample positions with time dependence.
The positions are marked in the time-resolved emission pattern with dashed lines in the
corresponding color. At the wire center the emission occurs with the impact of the pulse.
Two side peaks appear after about 10 ps, followed by a short decrease and an increase
at around 30 ps. The intensity pro�les are normalized to the highest intensity value.

intense peak coming from the center of the wire de�ning the zero point on the

spatial x-axis. The spatial width of the emission at that time is about 4−5 µm. A

few picoseconds later, two additional peaks occur at each side of the central peak

with clear intensity minima between them. This three-peak behavior vanishes at

around 25 ps and two peaks arise at ±4 µm, slightly shifted compared to the

previously mentioned side peaks. At later times, a smooth decrease of intensity

takes place, while the spatial position of the emission stays unchanged. This

stability in spatial position is also con�rmed by the emission pattern with the

absolute emitted intensity normalized to the highest intensity at each respective

time, see right panel of Fig. 4-1. Moreover, at later times a spatial broadening of

both emission peaks is observed.

Figure 4-2 shows the intensity pro�les in dependence of time for three di�erent

sample positions to emphasize the results of the emission pattern shown in Fig.

4-1. The intensity pro�les are normalized to the highest intensity of the respective

position. The �gure visualizes the earlier appearance of emission at the wire center

compared to two positions at each side of the wire. After about 10 ps the side
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Figure 4-3: Spatially resolved intensity pro�les at selected times throughout the emis-
sion pulse, as shown in Fig. 4-1. For a better visibility the pro�les at 69 ps and 111 ps
are multiplied by the factor �ve. The transition from the intense emission pro�le at the
wire center with two side emission peaks towards a double peak behavior at later times
is clearly demonstrated with the intensity pro�les shown.

peaks occur followed by a slight intensity decrease and a further increase after

about 30 ps. At this time the emission mainly stems from the side of the wire.

To illustrate the transition from a three-peak towards a double-peak behavior,

Fig. 4-3 shows real-space intensity pro�les at selected times which are indicated

by dashed lines in Fig. 4-1 with the corresponding color. At early times the center

emission is dominant and only small side peaks are visible. After about 9 ps all

three peaks have about the same height. The center peak emission vanishes after

around 32 ps and a clear double-peak behavior arises.

In order to fully characterize the dynamics of polaritons in optically created

quantum wires, the spectral dynamics are also of interest. Therefore, spectrally

resolved real-space emission pro�les at selected times during the emission pulse

are presented in Fig. 4-4. To allow for distinguishing between the strong and weak

coupling regime, results of previous measurements are used [73]. For the present

detuning the lower polariton energy is 1.6071 eV (771.5 nm) and the bare cav-

ity mode has an energy of 1.6148 eV (767.8 nm). Due to nonresonant pumping,

Coulomb interactions, caused by polariton-polariton and carrier-polariton interac-

tions, play a signi�cant role and lead to a blueshift in the polariton energy. With

increasing blueshift the probability for screening e�ects increases.
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Figure 4-4: Real-space emission pro�les spectrally resolved at selected times (compare
Fig. 4-1) during the emission pulse. For early times the emission, mainly coming from the
center of the wire, arises at wavelengths close to the bare cavity mode. With occurring of
the double peak emission at later times a shift towards higher wavelengths is observable.
The dashed white lines indicate the wavelength of the bare cavity mode.

These e�ects results in a breakdown of the strong coupling and a transition

into the weak coupling regime with conventional photon lasing. In the case of

this sample, the blueshift amounts to about 7.7 meV when the transition from

strong to weak coupling takes place. Thus, it is clear that at early times the main

emission from the wire center occurs at an energy being close to the bare cavity

mode. Hence, the strong coupling is broken and the system is in the weak coupling

regime. This is the case for times up to 9 ps, even though at this time a slight

shift towards lower energies is visible. The two side peaks arising at that time,

as can also be seen in Fig. 4-3, show blueshifts of about 5.9 meV. This is well

below the mentioned transition blueshift. The wire center, where the emission

of the weak coupling came from at earlier times, shows no strong emission peak

anymore. With time passing by, the blueshift decreases continuously which reveals

a slow declining of the polariton-polariton interactions caused by a decrease of the

ground-state occupancy. This smooth process is typical for a condensed polariton

system in the strong coupling regime. After 111 ps the emission is only marginally

blueshifted compared to the lower polariton (LP) energy at this detuning.

In addition to the spectral evidence for photon lasing at the wire center at

early times, the temporal arising of the emission in delay to the excitation time
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is also supporting the interpretation of emission from a weakly coupled system.

Photon lasing, just requiring inversion, can be observed subsequently after the

excitation pulse, while for polariton lasing the hot carriers have to relax towards

the LP branch with further relaxation down to the bottom of the branch before

emission can be observed. Thus, the earlier emission peak in Fig. 4-2 corresponds

to the emission of a photon laser in the weak coupling regime and the side peaks

at later times are consistent with the emission of a polariton laser in the strong

coupling regime.

To explain the spatial multi-mode structure, three possible scenarios are think-

able: imperfect projection of the wire onto the sample with the SLM due to di�rac-

tion, carrier redistribution and spontaneous pattern formation. The �rst and sim-

plest possibility is that di�raction causes an inhomogeneous local pump density.

This may lead to the situation that at some positions on the sample the threshold

to the weak coupling due to screening e�ects is reached and at others it is not.

Although this scenario is possible, it is very unlikely to happen since the density

di�erences would need to be quite huge. Moreover, similar e�ects have been evi-

denced also for other excitation densities which contradict this explanation. The

second possible explanation, carrier redistribution, is likely to happen since non-

condensed carriers may undergo di�usive motion. This leads to a spatial shape

of the background carrier density which is varying in time. For semiconductor

samples excitons are the carriers to deal with and their typical di�usion constants

are of the order of 10− 20 cm
2

s
in GaAs based quantum wells [85]. Thus, this pro-

cess takes place on a much slower timescale than the decay dynamics evidenced

here. The explanation due to spontaneous pattern formation under nonresonant

excitation seems to be more realistic. The boundary conditions of the optically

created quantum wire and the in�uence of polariton interactions onto the conden-

sate wave function as well as onto the relaxation dynamics could lead to a spatial

ordering of the condensate density [86, 87]. For a deeper analysis of this spatial

inhomogeneity, the dynamic results presented here have to be compared to results

of polariton wire measurements imprinted under CW excitation.

4.2 Conclusion

In this chapter the results of time-resolved measurements with an all-optical cre-

ated quantum wire were presented. Under nonresonant excitation the decay dy-

namics of the polariton system were investigated. It was possible to show that at

early times the emission is strongly blueshifted and rapidly decaying. Furthermore,

the main emission comes from the center of the wire. This behavior indicates a

dominating photon lasing emission. This changes after a few tens of picoseconds,

where the emission mainly stems from the edges of the wire. Additionally, the

blueshift is much smaller and the decay dynamics are slower. Thus, at that time

the dominant emission corresponds to polariton lasing.
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Further studies, especially under continuous-wave excitation, are necessary for

a better understanding of the decay dynamics and the spatial formation in quan-

tum wires. Moreover, measurements with di�erent optically created geometries

should be investigated to provide the next steps towards functional optical ele-

ments.





Chapter 5

All-optical Control of the Polariton

Flow on a Polariton Staircase

Spatially shaping the nonresonant excitation spot for a semiconductor microcavity

system o�ers the possibility to in�uence the polariton condensate in a controlled,

all-optical way. By creating an intensity staircase pattern with a spatial light

modulator one can realize a polariton BEC which populates several discrete linear-

momentum-stairs in a given direction. As described in Sec. 2.2.5, nonresonant

excitation leads to the presence of noncondensed background carriers producing

a mean-�eld repulsive potential corresponding to the excitation spot [57]. Since

the sample is excited nonresonantly in this experiment and the potential varies in

space due to the staircase pattern, the local condensate wave vector k con(r) (cf. Eq.

2.104) has to vary in space to overcome the energy di�erence caused by the di�erent

intensity levels of the staircase pattern. This modulation of the local condensate

wave vector is necessary to ful�ll the generalized Gross-Pitaevskii equation in the

local density approximation which describes the condensate dynamic.

This chapter is organized as follows. The �rst Sec. 5.1 presents and discusses

the results of far-�eld measurements under nonresonant and pulsed excitation with

a pump spot shaped like a staircase. The comparison of the momentum emission

pattern in the condensed regime with the one below the threshold of polariton

lasing is part of this section. Furthermore, an analysis of the results at higher ex-

citation power and di�erent detection energies is presented. A comparison to nu-

merical simulations shall emphasize the experimental results. Finally, the build-up

of a single condensate state shall be con�rmed with time-resolved measurements.

The second section of this chapter contains results and discussion of spatially,

spectrally and time-resolved measurements under nonresonant, pulsed excitation.

First of all, emission patterns with an excitation density far below the threshold to

polariton lasing are analyzed. Moreover, a discussion of the dynamics in the po-

lariton lasing regime is presented and compared to numerical results. Afterwards,

the dynamics at excitation densities at the crossover between polariton and photon

lasing are examined. Finally, the emission patterns with an excitation density far

above the threshold of photon lasing are shown and the blueshifts relative to the
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LP mode are plotted versus the time for three di�erent excitation densities. The

chapter ends with a conclusion of the presented results.

5.1 Control of the Condensate's Momenta

One consequence of a spatially varying excitation density is a spatial variation

of the blueshift which the condensed polaritons experience. This dependence of

the blueshift on the excitation density is given through the fact that the blueshift

arises due to polariton-polariton interactions and interactions of the polaritons

with reservoir carriers such as electrons, holes and excitons. A condensate under

steady-state conditions and with a Gaussian-shaped pump spot can be described

as

~(ωcon − ωLP) =
~2k2

con(r)

2m
+ ∆E(r), (5.1)

where ~ωcon and ~ωLP are the energies of the condensate and of the minimum of

the LP branch, respectively. kcon(r) represents the local condensate wave vector

and m is the LP mass. The spatially varying blueshift is given by ∆E(r). Under

the presumption of a single condensate state the variation in the blueshift can

just be compensated by a change of the local condensate wave vector kcon to ful�ll

Eq. 5.1. Assuming a vanishing kcon-vector at the position of the pump intensity

maximum the local wave vector is given as

|kcon(r)| =
√

2m[~(ωcon − ωLP)−∆E(r)]

~2 . (5.2)

As described in section 3.4 the imprinted staircase spot has 16 steps with a spatially

homogeneous pump intensity at each plateau and the intensity at the n-th step is

denoted as:

In = (1− n

16
)I0, (5.3)

where I0 is the pump intensity of the highest plateau. For a pump spot shaped

like this, one expects, inserting Eq. 5.3 into Eq. 5.2, a local condensate wave vector

with the following behavior:

|kcon(r)| =

√
2m[E0 − (1− n

16
)E0]

~2 =

√
2mE0

16~2 ·
√
n. (5.4)

E0 is the blueshift corresponding to the highest step of the staircase potential. So

at each position on one plateau the same wave vector is demanded.

In Fig. 5-1 (a) the real-space image of the staircase patterned excitation spot

is demonstrated realized by imaging the excitation beam after passing the SLM

onto the slit of the monochromator in the energy integrated mode. Due to di�rac-
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Figure 5-1: (a) A real-space image of the excitation spot shaped like a staircase. (b)
The corresponding intensity pro�le integrated along the y-axis. The red line gives a
three-point-smoothed guide to the eye. The blue line represents the target spatial shape
of the excitation spot used as the input for the SLM.

tion and imperfect imaging it is hard to recognize the staircase pattern directly.

Considering the intensity pro�le along the staircase gradient direction, which is

integrated along the y-axis, the staircase behavior gets more visible, see Fig. 5-

1(b). As a comparison the ideal pro�le is added to the experimental pro�le. Under

the assumption of a single condensate state build-up, the shape of the emission

in momentum-space is determined by the local shape of the excitation spot as

discussed before. Such a momentum-space emission pattern for two di�erent exci-

tation densities is shown in the upper panels of Fig. 5-2. For excitation densities

below the threshold of condensation (upper left panel) a broad distribution with-

out peaks is visible. This changes abruptly with reaching the critical density of

condensation where peaks at discrete values of the kx direction are formed sponta-

neously. Fig. 5-2 (b) presents an emission pattern of the momentum distribution

in the regime of polariton condensation. It has a detection energy centered around

7.3 meV above the LP energy of 1.6060 eV.

As mentioned before, the nonresonant excitation leads to an antitrapping po-

tential corresponding to the pump spot pro�le. In the case of a staircase pro�le

this results in a behavior of the condensate wave vector as described in Eq. 5.4.

To make sure that it is due to the presence of the antitrapping background poten-

tial, which causes the quantization of the momentum distribution, the positions of

the polariton density maxima are plotted against the index number of the corre-
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Figure 5-2: (a) The emission pattern of a uncondensed lower polariton branch in
momentum-space at a detection energy of 1.6060 eV. At the same excitation density
but di�erent detection energy (1.6113 eV), the momentum-space emission pattern in the
condensed regime (b) shows discrete momentum states in the kx direction instead of a
broad distribution as seen in panel (a). In panel (c) the center positions of the discrete
maxima are plotted against the step index number. The expected square root depen-
dence of the condensate wave vector for a staircase-shaped excitation spot (cf. Eq. 5.4)
can be observed. The red solid line gives a power-law �t with �t parameters n0, a and
p. Econ corresponds to the central detection energy of the condensate.

sponding maximum. As can be seen in Fig. 5-2 (c), the results show a square root

dependence just as expected for a staircase potential with linear step size (cf. Eq.

5.4). The solid line gives a power-law �t to the function

kx(n) = a(n− n0)p. (5.5)

With the �t parameter a it is possible to directly estimate the blueshift of the

condensate to 7.4 meV with a higher precision than just by using the tunable

spectral �lter, which has a spectral width of 0.75 nm ( ≈ 1.2 meV).

A closer examination of the intensity distribution along the ky-axis for three
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Figure 5-3: Intensity distribution along the ky-direction for three values of kx in the

condensed regime, panel (b) in Fig. 5-2. The line at kx = 0.45 µm−1 shows a double-
peaked shape and di�ers signi�cantly from the other lines.

di�erent kx-values (see Fig. 5-3) shows a noticeable deviation for kx = 0.45 µm−1

compared to the other momentum-space distributions. In this case the distribution

has a two-peak instead of a one-peak shape. Even though the behavior is very dif-

ferent, one could assume that step index 1 belongs to kx = 0.45 µm−1. This would

lead to a clear mismatch between the �tted curve and the other results, whereas

kx = 0.7 µm−1 assigned to step index 1 gives nicely matching results. Therefore,

at kx = 0.45 µm−1 is likely an additional maximum. A possible explanation for

this extra peak in the momentum distribution could be an incomplete momentum

alignment along the x-axis of step index 1. Conceivable are also di�raction e�ects

at the edge of the highest step of the staircase. Moreover, imperfections due to

di�raction could also give rise to the creation of additional small plateaus. And

a last alternative reason could be elastic scattering of polaritons from the highest

plateau on a symmetric circle around k = 0.

To verify the previous results, time-integrated momentum-space polariton emis-

sion patterns were also gathered at another sample position and at higher excita-

tion power. The results for detection energies of 1.6102 eV, 1.6123 eV and 1.6144 eV

are presented in the upper panels of Fig. 5-4, respectively. In general, the results
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Figure 5-4: The emission patterns of a polariton condensate in momentum-space for
a higher excitation density than in Fig. 5-2, but still below the threshold into the weak
coupling regime. Panel (a)-(c) have di�erent central detection energies of 1.6102, 1.6123
and 1.6144 eV, respectively. In panel (d) the center positions of the discrete maxima are
plotted against the step index number of the staircase. The black curve corresponds to
panel (a), the red to panel (b) and the blue to panel (c). The corresponding �t parameters
n0, a and p are given in panel (d). Econ is consistent with the central detection energies.
The highest detection energy has the greatest kx-values.

are comparable to the ones shown before, but two di�erences are recognizable.

First of all, the stripe distance increases with increasing detection energy. Second,

there is a redistribution of the polariton density from ky = 0 towards larger values

of ky with growing detection energy. Fig. 5-4 (d) shows again the positions of the

polariton density maxima in momentum-space plotted against the step index of

the staircase. Power-law �ts indicate the square root behavior with only small de-

viations from the ideal case. The recognized increase of the stripe distance can be

seen in the shift of the curves to higher kx-values with increasing detection energy.

In Fig. 5-5 the e�ect of a stripe distance increase is demonstrated by plot-

ting the intensity pro�le of the kx momentum distribution. The shift to higher

positions is marked with a dashed green line for step index number 1, 4 and

6. In both plots the �rst maximum with step index number 0 stays unchanged.

To check whether the power-law �ts are suitable results or not, the �t values

corresponding to the blueshift are compared to the central detection energy of
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Figure 5-5: Polariton momentum-space distribution integrated along ky with the black,
red and blue curves corresponding to panels (a), (b) and (c) from Fig. 5-4, respectively.
The green dotted lines match the maxima of step index 1, 4 and 6 and emphasize the
increase of the stripe distance for growing detection energy.

each momentum-space distribution. With blueshifts of 4.7, 5.9 and 7.9 meV from

the LP energy of 1.6060 eV one obtains emission energies of 1.6107, 1.6119 and

1.6139 eV,respectively, which is in a good agreement with the central detection

energies mentioned before.

An explanation for the increase of the stripe distance is the decrease of the

background carrier population starting with the highest population right after

the excitation pulse. Since the background carrier number decreases the emission

energy shifts to smaller values. Consequently, the momenta of the condensed

polaritons at each single step also decrease. In this way, it is possible to in�uence

the momenta of the condensed polaritons by varying the blueshift with a change

in the imprinted potential.

While the results shown so far are consistent, it is still noticeable that the

blueshifts are quite large and one has to make sure that e�ects from a transition

into the weak coupling regime can be excluded. The transition into the weak

coupling regime takes place when the blueshift due to polariton-polariton and

polariton-carrier interactions becomes comparable to the energy di�erence between
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Figure 5-6: The emission patterns of a polariton condensate with an ideal staircase-
shaped pumping spot in real- (a) and momentum-space (b). Furthermore, the emission
patterns of a polariton condensate created by an imperfect staircase-shaped pumping
spot in real- (c) and momentum-space (d). The smoothed edge along the y-axis causes
a large broadening in the ky-direction. In both cases only geometrical broadening is
considered.

the LP and the bare cavity mode. For this sample it was already shown in earlier

measurements under similar experimental conditions that the transition into the

weak coupling is expected to be at a blueshift of about 7.7 meV [73]. While the

blueshift observed in Fig. 5-2 is smaller than that, it surmounts the value from Fig.

5-4. Contemplating this case, it is obvious that the emission is not coming from

the area around ky = 0 but from higher ky-values. While Coulomb interactions are

the main factor leading to a blueshift for small k-values, also the kinetic energy of

the polaritons has to be taken into account for higher momenta. The observable

screening of the excitons at the threshold from the strong into the weak coupling

is solely due to Coulomb interaction. This could be the reason for the minimal

condensate emission at k = 0 seen especially in Fig. 5-4 (c), as the strong coupling

would be already broken. However, the major part of the emission comes from

higher k-values of at least 1 µm−1. At this point the polaritons have gained already

a kinetic energy of about 1 meV, which points out that the blueshift caused by

Coulomb interactions is about 7 meV and therefore still below the transition to

the weak coupling regime.

In fact one would expect from Eq. 5.4 due to quantization discrete momenta
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instead of discrete lines in momentum space. So how can this behavior, visible

in all measured emission patterns, be explained? The broadening of the polariton

distribution in momentum space due to the small spot size in ky-direction is caused

either by position-momentum uncertainty or by imperfections of the shape of the

potential due to di�raction. To �nd out which of these two e�ects are playing

a role in the broadening of emission in momentum-space shown before, polariton

distributions from a phenomenological model were calculated for the ideal stair-

case and for an imperfect potential due to di�raction which is called geometrical

broadening from now on.

The theoretical model for the simulations in Fig. 5-6 is based on the Gross-

Pitaevskii Equation (GPE) (cf. equation 2.98). In this calculation the dominant

contribution to the blueshift of the condensate mode is the e�ect of the shape of

the pump spot. E�ects such as polariton-polariton interactions or disorder are

neglected or rather contribute only in a way that there is a slight changing in the

pump spot shape. Under the assumption of a homogeneous system with a local

varying pumping rate it is possible to apply a local density approximation. This

leads to a condensate wave vector kcon which depends only on the local pump rate.

Additional quantum pressure terms in the GPE can be neglected. Even though

these assumptions are not quite right for a staircase potential, it is acceptable to

treat e�ects which go beyond these assumptions as a variation of the pump spot.

For calculation of the momentum-space distribution it is necessary to separate

the information of the x- and y-components of the wave vector. The pumping spot

is classi�ed into stripes in the y-direction for constant x-positions. Within each

stripe the kx-value is expected to be the same at each position and is given by the

di�erence between the highest pump density of the whole pump spot and the high-

est pump density inside the stripe. To obtain the momentum-space distribution

the staircase pump spot has to be Fourier transformed and, therefore, sigmoidals

are used to simulate the plateaus of the staircase. For the imperfect case the edge

steepness of these sigmoidals is varied.

The upper panels of Fig. 5-6 show the real- and momentum-space distribu-

tions of an ideal staircase potential. Just as expected, a full quantization in

momentum-space is recognizable. The case of a potential taking geometrical broad-

ening into account is demonstrated in the lower panels of Fig. 5-6. In real-space a

clear deviation from the ideal staircase is noticeable causing a discrete-line-shaped

momentum-space pattern. These results are already in good accordance with the

experimental results. However, there are still some deviations such as broader

maxima in the kx-direction of the experimental data. One explanation for this

broadening could be the disregard of the disorder in the calculations. Disorder in

the sample adds some random value to the local wave vectors. Another explana-

tion might be connected to the spectral width of the tunable liquid crystal �lter

of roughly 1.2 meV. Under pulsed excitation, just as it is in these experiments,

the energy of the condensate will decrease with increasing time due to the de-

crease of the background carriers with time. As a consequence, the line distances
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decrease as well. Thus, the experimental momentum-space distribution is rather

an average of all momentum-space distributions corresponding to the condensate

energies within the transmission window of the �lter. This averaging is leading to

the observable broadening of the maxima in kx-direction.

Further it has to be checked if next to geometrical broadening also broadening

caused by uncertainty plays a role. With a rectangular, sigmoidal or Gaussian spot

shape the standard deviation of the underlying real-space polariton distribution

in y-direction is about σy ≈ 0.85 µm for the 2 µm full-width-at-half-maximum

step width. With this deviation it is possible to estimate the lower bound of the

polariton wave vector uncertainty in y-direction to σk > 0.59 µm−1. Comparing

this with the standard deviation of the wave vector in the simulated data, which

has a value of 0.7 µm−1 or even larger, it is clear that the broadening is larger

than the value imposed by uncertainty. Therefore, only geometrical broadening

plays a signi�cant role. For really high excitation densities, the e�ective spot

shape in y-direction is more Gaussian- than steplike, which leads to the e�ect

that the polaritons get accelerated ballistically to regions outside of the pump

spot potential. This is the explanation for the spotted redistribution into the

ky-direction seen in the results of Fig. 5-4. Furthermore, it is obvious that the

broadening in momentum-space is close to the limit of uncertainty which means

that the quality of the imprinted potential is su�cient. But the determination

of the lower bound of the polariton wave vector takes place in the limit of very

short polariton lifetime. Hence, as the polaritons move away from the pump spot

at high excitation densities, the real spatial polariton distribution will be broader

than the imprinted step width. Moreover, which step width is needed to reach

the uncertainty limit in the case of a perfectly imprinted potential as shown in

Fig. 5-6? With a typically geometrical broadening of 0.1 µm−1 for the ideal case,

a spatial width of about 10 µm (full-width-at-half-maximum) would already be

required to reduce the uncertainty-limited broadening to the magnitude of the

geometrical broadening.

In the beginning of this chapter one presumption for the staircase pump spot

was that the polariton condensate forms at a single energy state and not sev-

eral condensates at di�erent energies. By performing spatially, spectrally, and

time-resolved measurements it is checked whether a single condensate build-up is

observable using a staircase shaped pump spot or not. The results of these mea-

surements are shown in Fig. 5-7. The upper panels give the emission patterns

early in the pulse and the lower panels show the emission patterns at later times.

On the right side the excitation power is so intense that the system is in the weak

coupling regime at early times, which is noticeable in terms of the large blueshift

compared to the LP energy of 1.6060 eV. If the excitation power is reduced, as

in the case on the left side, a build-up of a single condensate mode blueshifted

compared to the LP mode is recognizable. With increasing time the blueshift de-

creases since the background carrier density is decreasing too. This decrease is

visible in both cases, for the high excitation power in the weak coupling regime

and for the excitation power reaching condensation staying in the strong coupling
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Figure 5-7: Spectrally resolved emission patterns in real-space for excitation densities
below (left side) and above (right side) the threshold into the weak coupling regime. The
panels in the upper row show emission patterns early within the pulse, while in the lower
row the emission patterns after 90 ps (left) and 120 ps (right) are shown.

regime. However, in the case of the higher excitation power even the LP mode

at later times stays fragmented. This behavior is most probably due to direct

coupling of the background carriers to the light �eld in the lasing regime. They

do not need to relax spontaneously towards the LP branch as it is the case in the

strong coupling regime. While the background carrier population decays with a

rate which is constant everywhere, spatial hole burning in the carrier population

caused by stimulated emission takes place. This ends up with a strong reshaping

of the potential.

5.2 Spatial and Temporal Dynamics

In the previous section it was shown that a system with a blueshift E0 at the

position of the highest excitation density builds up a single condensate energy state

and compensates the energy mismatch caused by the external staircase potential by

varying the local condensate wave vector. Hence, a local polariton �ow is created.

In this section the in�uence of this �ow on the spatial emission is of interest.

In Fig. 5-8 the dynamics at excitation below threshold (P = 1 mW) are pre-

sented in spatially, spectrally, and time-resolved emission patterns with an inte-
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Figure 5-8: Nonnormalized (left) and normalized (right) polariton emission patterns
showing the spatially, spectrally, and time-resolved dynamics under nonresonant excita-
tion with a pumping power of 1 mW. The emission pattern is integrated over all energies
(upper panels), all positions (middle panels) or all times (bottom panels). The dashed
white line indicates the bare-cavity mode energy. The solid black line in the upper panel
on the right side represents the target pump-spot shape.

gration over all times, all positions and all energies, respectively. The origin of

the time axis is set to the time of occurrence of the peak intensity in the nonnor-

malized plots. Due to nonresonant excitation of the sample, the arising emission

intensity peak is not synchronized to the impact of the excitation pulse. The

pattern demonstrates an emission mainly coming from the highest staircase step,

which is equal to position 0 and shows quite slow temporal dynamics. Moreover,

the emission stems primarily from the energy of the LP at k|| = 0 and according to

that the system is clearly in the strong coupling regime without condensation yet

and far away from the energy of the bare cavity represented by the dashed white

line.

To show this behavior even clearer, the emission patterns are also shown in

normalized plots in Fig. 5-8. Hence, the highest intensity of each row gets nor-

malized to unity for all three panels. While the plots shown before have a color

scheme from 1 to the highest intensity, here in the normalized plots they range

from 0 to 1. In the top panel the target pump spot shape is indicated by the solid

black line. The normalized emission pattern reveals that a certain time is needed

for a build-up of the system until the shape of the emission gets relatively constant
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Figure 5-9: Nonnormalized (left) and normalized (right) emission patterns showing the
spatially, spectrally, and time-resolved dynamics under nonresonant excitation with a
pumping power of 8 mW. The emission pattern is integrated over all energies (upper
panels), all positions (middle panels) or all times (bottom panels). The dashed white
line indicates the bare-cavity mode energy.

in time. Especially the normalized pattern shows a rather good accordance to the

imprinted staircase pattern.

If the excitation power is increased up to about 8 mW, then a drastic change

in the emission pattern takes place as can be seen in Fig. 5-9. In real-space the

condensate shape does not take the form of the imprinted staircase shape of the

excitation beam as expected for nonresonant excitation in the polariton lasing

regime. Instead it looks like two separated spots, one at the top and one at the

bottom of the staircase potential. Energetically a clear blueshift from the LP

mode becomes visible but the emission energy is still below the one of the bare

cavity mode, therefore, the system must be in the regime of condensation. With

increasing time a smooth decrease of the condensate energy towards the LP energy

takes place. The two spot behavior can be explained by a spatially varying exciton

population creating a linear potential in addition to the existing imprinted spot

potential. First the main emission comes from the top of the staircase potential.

As shown in the upper panel, after a few picoseconds the polariton population at

the beginning of the staircase dies out completely and all polaritons have fallen

down the linear potential and gather at the end of the staircase. For about 70 ps

mainly this region is populated until there is again a jump to the beginning of the
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staircase. The emission is only slightly blueshifted by now, as can be seen in the

lowest panel of the normalized plot.

For a detailed analysis of the dynamics, presented in Fig. 5-9, numerical sim-

ulations based on the generalized Gross-Pitaevskii equation were performed. For

the used GPE, cf. Eq. (5.8), a few further assumptions are needed. First of all,

a nonresonant time-dependent excitation density P (x, t), which creates electrons

and holes in the sample, is de�ned. As the shape of the excitation spot is step-like

the pulse is assumed to be sigmoidal in space and has a duration of 3 ps. The

free electrons and holes are represented by a free-carrier density nR1(x, t). The free

carriers can relax either nonradiatively with a decay rate γNR or they form excitons

with the rate κ12. This formation rate depends also on the density of the electrons

and holes and is proportional to the free-carrier density nR1(x, t). By choosing

κ12 = (nR1)/5000 ps−1 the exciton formation rate lies in between 2 ps and 1 ns for

typical excitation densities, in agreement with measurements by Szcytko et al. in

2004 [88]. The formed hot excitons can now relax further down to the polariton

branch or they decay nonradiatively at a exciton decay rate γR.

The dynamics of the reservoirs of the free carriers nR1 and excitons nR2 is then

given by

dnR1(x, t)

dt
= P (x, t)− γNRnR1(x, t)− κ12nR1(x, t), (5.6)

and

dnR2(x, t)

dt
= κ12nR1(x, t)− γRnR2(x, t)− βαnR2(x, t)|Ψ(x, t)|2. (5.7)

Here, Ψ(x, t) is the one-dimensional mean-scalar-polariton �eld, which describes

the gain-trapped polaritons evoked through a small pump spot [89]. α stands

for the scattering rate of the excitons into the condensate and β quanti�es the

backaction of the condensate on the exciton reservoir. This backaction is required

to be able to reach a steady state also above the threshold where the in-scattering

exceeds the out-scattering rate [90].

The dynamics of the lower polariton branch can be described with the GPE in

the following form:

dΨ(x, t)

dt
=

{
i~

2mLP

∂2

∂x2 −
i

~
g|Ψ(x, t)|2 − i

~
[gRnR2(x, t) + gNRnR1(x, t)]

}
Ψ(x, t)

+

{
1

2
[αnR2(x, t)− γcon]

}
Ψ(x, t),

(5.8)

where mLP is the lower polariton mass and γcon the polariton decay rate from the

cavity and corresponds to the inverse polariton lifetime. g, gR and gNR denote
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Figure 5-10: Comparison of simulated (left panel) and measured (right panel) normal-
ized spatially- and time-resolved emission for excitation slightly above threshold (8 mW
excitation power). The prominent switching process around 75 ps is well reproduced.

the polariton-polariton, the polariton-exciton and the polariton-free carrier inter-

action strength, respectively. For simulations it is important to choose realistic

parameters. First of all the polariton-polariton interaction strength is chosen to

be g = 4 µeVµm2 on the basis of measurements performed by the group of Jacque-

line Bloch in 2011 [91]. The exciton-polariton interaction strength is selected to

be twice as large as g since the interactions take place via the excitonic part of

the polariton wave function and the polaritons of the implemented measurements

have a photonic and excitonic Hop�eld coe�cient of about 0.5. The polariton-

free-carrier interaction strength is chosen to be gNR = 3.5g, so that this leads to

reasonable total interaction energies. Both, the nonradiative decay rate of free car-

riers and the nonradiative exciton decay rate, are much slower than the polariton

decay rate of γcon = 0.2 ps−1. Therefore, it is set to γR = γNR = 0.01γcon. The

exciton scattering rate into the condensate is considered to be α = 0.33 ps−1 and

the backaction of the condensate on the reservoir shall be given by β = 0.5.

In Fig. 5-10 the simulation is compared to the experimental data. It is ob-

vious that there is a qualitative agreement in the long-term behavior and when

it comes to the sudden spectral change of the peak position after about 75 ps.

Therefore, this switching has a physical meaning and is not only observed due to

bad experimental conditions. A local �ow velocity towards the lower end of the
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Figure 5-11: Simulated normalized dynamics of the active exciton reservoir for excita-
tion slightly above threshold (8 mW excitation power).

staircase which increases with increasing distance to the upper end of the staircase

is observable, so that one synchronized polariton condensate is established. This

leads to a strong population of the bottom of the staircase. Spatially there is no

evidence of emission beyond the pump spot which is due to the short lifetime of

the polaritons in the sample of only a few picoseconds. This fact supports the

model of a gain-trapped condensate, since there is no gain beyond the extent of

the pump spot and the length scale−over which polaritons can travel−is limited

by the polariton lifetime. Hence, the emission coming from the lower end of the

staircase is rather due to the fact of spatial separation of the polariton condensate

and the pump spot caused by repulsive interactions of polaritons with carriers of

the reservoir. Similar results shown for a lithographically con�ned polariton pat-

tern are presented in the publication of Ferrier et al. [91]. Thus, the asymmetry of

the pump spot leads to an asymmetry in the polariton pattern and entails the �ow

down the staircase potential. Additionally, the potential landscape is in�uenced

by the separation of the pump spot maximum and the one of the condensate.

For a detailed analysis of the condensate-reservoir interaction a simulation of

the normalized exciton-reservoir population is shown in Fig. 5-11. The nonlinear
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backaction of the condensate on the reservoir is the strongest at the position of the

condensate maximum noticeable by stimulated scattering towards the condensate.

This means that the reservoir is depleted strongly in the regions of low pump

intensity, i.e., at the right side of the staircase. On the contrary, at the upper end

of the staircase the depletion is quite slow. This behavior leads to a sharpening of

the staircase potential. With elapsing time the population pattern of the reservoir

becomes more complicated; peaks occurring at varying positions.

The second jump in the emission pattern towards the upper end of the staircase,

observed in the experimental as well as in the simulated data, is based on exactly

the opposite e�ect of what caused the �ow towards the lower end of the staircase.

With increasing time the density of reservoir carriers decreases and consequently

the potential becomes shallower. With the decrease of the repulsive potential the

�ow towards the lower end of the potential gets reduced as well. At �rst, this

reduction can be compensated by the arising sharpening of the potential, but later

on the �ow is so weak that again an overlap between the condensate and the

population of the reservoir at the upper end of the staircase is occurring. Since

the depletion of the reservoir at that position was rather slow at earlier times,

stimulated scattering towards the condensate gets e�cient now at the top of the

staircase. At this point it should be noted that the switching of the maximum of

the condensate from one end to the other is not consistent with polaritons moving

from the lower to the upper end of the staircase. Instead it is more likely a shortage

of new polaritons �owing in from the top of the staircase or scattering in from the

reservoir at the bottom of the potential. A lack of polariton scattering becomes

apparent in the simulation of the reservoir population (Fig. 5-11). At the time

of the second switch, the population of the reservoir is depleted in the region of

2.5−12.5 µm, which causes a reduction of the polariton �ow towards the end of the

staircase. After the polaritons in this region have left the microcavity, their total

population decreases as well. Hence, the switching dynamics take place on a time

scale of a few picoseconds − corresponding to the lifetime of the polaritons. By

increasing the lifetime of the polaritons in the simulation, this assumption seems

to be con�rmed even though it should be noted that an exact reproduction of the

dynamic switching process is not possible.

In addition to the e�ects discussed above, some e�ects may play a role which

are not considered so far. First of all, the polariton �ow velocity itself may be

relevant, since there is a huge di�erence in the polariton propagation whether the

velocity is subsonic or supersonic [71]. For resonant continuous-wave excitation

the in�uence is already well known [92, 93]: the local sound velocity increases with

the square root of the local polariton density. For a subsonic �ow velocity an inhib-

ited scattering at defects is expected, and for a supersonic �ow a Cherenkov-like

scattering arises. Therefore, the resonant excitation determines the �ow velocity,

while the local sound velocity depends on the polariton density. Thus, it is possible

to switch between the regime of subsonic and supersonic velocity by varying the

pump intensity. For nonresonant excitation, interactions between polaritons and

reservoir carriers play a signi�cant role [94] and dominate over polariton-polariton
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interactions. Accordingly, the situation for nonresonant excitation is more compli-

cated since a critical Landau velocity does not exist but a super�uid density can

be reached [95, 96]. Other e�ects which are not considered in the model because of

the short time scales are intra-condensate relaxations and spatial di�usion of exci-

tons [97]. Further, inactive excitons which cannot scatter directly to the polariton

branch have been neglected, although they are mainly responsible for in�uencing

the relaxation dynamics. In the model used for the simulation the reservoir of free

electrons and holes has the same purpose, nevertheless the inactive excitons may

have greater impact than just in�uencing the relaxation dynamics. The number of

excitons created in a certain time interval depends on the squared free-carrier den-

sity which leads to a change in the potential shape of the free carriers. With time

the potential shape will become more homogeneous. And since the total potential

created by free carriers and excitons will stay constant, the potential of the free

carriers has to roughly preserve its shape, but the exciton reservoir which is cou-

pled to the condensate dynamics will change rapidly. By the creation of inactive

excitons, in addition, a slowly varying potential is formed which is only in�u-

enced by exciton di�usion and other comparably slow mechanisms. Therefore, the

inactive-exciton formation rate can a�ect how the e�ective potential experienced

by the polaritons changes over time.

As a next step, the excitation power is increased so that the dynamics at the

crossover between polariton lasing and photon lasing can be studied. With 30 mW

pump power the emission is signi�cantly above the threshold of condensation and

it changes considerably as can be seen in the emission pattern of Fig. 5-12. Right

after the excitation pulse the emission is observable at the whole width of the

imprinted staircase, although the pattern is modulated and not very homogeneous

throughout the total width. As can be seen in the middle panels of Fig. 5-12, the

emission is spectrally broad at that time. With an emission energy 4 meV above

the bare cavity energy, the emission energy rapidly drops until the energy of the

cavity is reached. This is followed by a continuous exponential decay while the

spatial shape of the emission changes. The main emission is now coming from the

center of the pump spot and for about 100 ps also from the top of the staircase.

A third maximum arises at the end of the staircase with about half the intensity

of the other two maxima. To analyze the dynamics again without experimental

impacts a simulation of the system for this excitation density was performed.

Fig. 5-13 shows the results under usage of the same parameters as before. The

direct comparison with the experimental data reveals a general analogy, such as

the emission maxima at the center of the excitation spot and a dip after roughly

15 ps. But also some features, observed in the experimental data as the emission

maxima at the upper end of the staircase, are missing. Most likely this deviation

is due to the fact that the system has already reached the weak coupling regime

and started to lase which is not considered in the simulations. Another feature

which indicates photon lasing is the fast spatial variation of the blueshift next

to the emission maxima, since the free carrier population in the weak coupling

regime can couple directly to the light �eld which in�uences the potential shape
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Figure 5-12: Nonnormalized (left) and normalized (right) polariton emission pattern
showing the spatially, spectrally, and time-resolved dynamics under nonresonant excita-
tion with a pumping power of 30 mW. The system is here at the crossover between the
strong coupling and weak coupling regime. The emission pattern is integrated over all
energies (upper panels), all positions (middle panels), or all times (bottom panels). The
dashed white line represents the energy of the bare cavity.

drastically. With time the carrier density decreases and the system enters the

strong coupling regime again. Now the formed polaritons will experience an altered

potential. Spatially the emission occurs at the highest pump intensity which di�ers

from what is expected in the strong coupling regime. In contrast to the results

at weaker excitation densities a spatial separation between the region of highest

pump power and the largest degree of depletion does not take place. This is a result

from the e�ect that stimulated emission strongly depletes the carrier reservoir at

the spatial position of the highest pump intensity. Furthermore, it should be

noted that the largest condensate population at later times (where the strong

coupling is reached again), is observed at the spatial position where lasing took

place before. This seems quite contradictory as the carrier reservoir is strongly

depleted at that region, but it is a direct consequence of polariton population

and exciton-reservoir separation. While the reservoir has been depleted at these

positions during the transition into the weak coupling, local potential minima are

formed in these regions. As a result, the polaritons move there and get trapped in

these holes.

Finally, the spatial dynamics of a system being clearly in the weak coupling



74 All-optical Control of the Polariton Flow on a Polariton Staircase

Figure 5-13: Comparison of simulated (left panel) and measured (right panel) normal-
ized spatially and time-resolved emission for excitation signi�cantly above the condensa-
tion threshold (30 mW excitation power).

regime shall be investigated. For this purpose, the excitation power is increased to

70 mW and the experimental data are analyzed as before, as can be seen in Fig.

5-14. The normalized data version is shown in the right panels of Fig. 5-14. The

emission at early times and therefore still with photon lasing character occurs at

di�erent positions from di�erent energies. So a single energy state is not built up.

Instead, a collection of several spots is observed when the system is still in the weak

coupling regime. After about 50 ps the system changes into the strong coupling

regime, since the emission energetically stems from below of the bare cavity mode.

In real-space the main emission is observed at both ends of the pump spot and

very rarely emission comes from the spot center. Another feature occurring at this

excitation density is that there is also emission coming from regions beyond the end

of the pump spot best seen in the lowest panels of Fig. 5-14. Since the simulations

do not consider the transition into the weak coupling regime and, therefore, also

not the consequences on the potential, the experimental data deviate strongly from

the simulations, as can be seen in Fig. 5-15. Thus, it is not possible to explain the

features seen in the experimental data from that theoretical point of view. Two

explanations for the occurrence of emission at both ends and beyond the pump

spot are possible. On the one hand, depletion of the carrier reservoir could be

strongest at both ends. This would lead to an antitrapping potential at the center
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Figure 5-14: Nonnormalized (left) and normalized (right) polariton emission pattern
showing the spatially, spectrally, and time-resolved dynamics under nonresonant excita-
tion with a pumping power of 70 mW. Here, the system is in the weak coupling regime
above the transition to photon lasing emission. The emission pattern is integrated over
all energies (upper panels), all positions (middle panels), or all times (bottom panels).
The dotted white line represents the energy of the bare cavity.

of the pump spot. As a consequence, the polaritons accelerate towards the ends

of the pump spot as soon as the strong coupling regime is reached again. For a

realistic scenario the potential must be quite steep. On the other hand, also the

opposite case is thinkable. If at the center of the spot the depletion of the reservoir

is the strongest, the build-up of two condensates at both ends would be the result.

The required potential landscape has to be rather shallow, so that it is possible

to prevent the polaritons from crossing over between the two condensates. This

landscape can be reached by a staircase potential or polariton disorder, which is

in the order of 100 µeV in this sample.

To reassure that the emission coming from energies above the bare cavity mode

has photon lasing character and the one coming from lower energies can be at-

tributed to strong coupling, the maximum blueshift relative to the LP mode is

plotted against time. As can be seen in Fig. 5-16, at the two higher excitation

powers a biexponential decrease takes place, being visible in the blueshifts in time.

However, at low excitation power the evolution has a single exponential nature.

The decay constant in the lasing regime has a value of τl ≈ 40 ps, whereas the

decay in the polariton regime is much slower with τp ≈ 145 ps. This observation



76 All-optical Control of the Polariton Flow on a Polariton Staircase

Figure 5-15: Comparison of simulated (left panel) and measured (right panel) normal-
ized spatially and time-resolved emission for excitation far above threshold to photon
lasing (70 mW excitation power). The in�uence of lasing is so strong that the numerical
model is not adequate to describe the results.

is quite reasonable, since free carriers can couple directly to the light �eld in the

photon lasing regime in contrast to the carriers in the polariton lasing regime,

where they have to form polaritons and relax towards the bottom of the polariton

branch �rst. The marked crossover between photon and polariton lasing does not

appear at the exact bare cavity energy, but roughly 1 meV below. This is reason-

able since the transition between the two regimes is a gradual one and, therefore,

photon and polariton lasing may also coexist. Thus, it is possible to refer the

biexponential shape of the blueshift decrease to a crossover between the weak and

strong coupling regime.

5.3 Conclusion

In this chapter the emission of a polariton system under nonresonant, pulsed ex-

citation with a staircase-shaped pump spot was investigated.

In the �rst section it was shown that in the polariton lasing regime discrete

steps occur in momentum space. The position of these steps can be in�uenced by

changing the local excitation density. Thus, it is possible to control the polariton
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Figure 5-16: Blueshift of main emission peak versus time. The curves at the higher
excitation power show a biexponential behavior with a fast component indicating photon
lasing and a slower component representing polariton lasing. The crossover takes place
close to the bare cavity energy (shown as a green solid line). At the lowest excitation
power only the slow component is present.

�ow all-optically, once the system undergoes condensation.

In the second section the spatial and temporal dynamics of a polariton conden-

sate were demonstrated. The occurring redistribution of polaritons in the polariton

lasing regime along with a fast relocation as the polariton density increases is sup-

ported by numerical simulations based on the GPE. As soon as photon lasing

e�ects are observed spatial hole burning arises, which leads to polariton trapping.

Furthermore, it was shown that the transition from the strong into the weak cou-

pling is revealed by the biexponential behavior of the blueshift.





Chapter 6

Steady-State Condensate Perturbed

by Short Laser Pulses

In the last years special attention has been paid to the phenomenon of super�uidity

in semiconductor microcavities, which is a result of the partially excitonic char-

acter of the polaritons. When reaching the conditions for polaritons to undergo

condensation, a macroscopic state with common phase and collective �uid behav-

ior is established. Polaritons are then able to �ow without friction. This behavior

is a key feature of super�uidity. Due to the nonequilibrium character of a polari-

ton condensate, the occurring features di�er from that observed for super�uidity

of liquid helium [98, 99] and cold-atom systems [100].

Various experimental con�gurations are possible to explore the �eld of super-

�uidity for exciton-polaritons in semiconductor microcavities. One of the earliest

studies on the collective dynamics in a polariton gas has been performed in the

so-called OPO (optical parametric oscillation) con�guration [71]. In this case, the

microcavity is resonantly excited at the LP branch and the excitation angle is

chosen in such a way that the wave vector kp (pump) lies in the region of the

in�ection point of the LP branch. Due to polariton-polariton interactions, scat-

tering to modes with wave vectors k s (signal) and k i (idler) takes place under

conservation of momentum (2kp = k s +k i) and energy (2~ωp = ~ωs +~ωi). While

at low pumping intensities the photoluminescence of these modes is still incoher-

ent, stimulated-coherent scattering processes set in as soon as the pump intensity

exceeds a threshold value. Then the system is in the OPO regime. Several ex-

perimental studies have exploited the OPO regime for polaritons in recent years

[101, 102, 103]. Hereby, super�uidity features of the polariton condensate have

been shown, e.g. the nondissipative �ow around a defect in this regime [72] or the

generation and manipulation of quantized vortices [104].

Adding a further weak pulsed beam (probe) to the OPO con�guration, either

close to the signal or idler state, this probe gets ampli�ed. The regime of optical

parametric ampli�cation is reached [105]. Using the pulsed laser as a trigger the

observation of a propagating polariton �uid at ultra high speed is achievable [71].
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Figure 6-1: Dispersion relations for two di�erent excitation powers of the CW laser
((a)Pexc = 120 mW and (b) Pexc = 475 mW). Panel (a) gives the dispersion of the
lower polariton below and panel (b) the LP dispersion above the threshold of polariton
condensation.

While the response to an external perturbation has been experimentally studied

in detail under resonant excitation, this is still missing for polariton systems under

nonresonant conditions.

In this chapter results of time-resolved far-�eld measurements are presented,

where a continuously and resonantly pumped polariton condensate is disturbed by

short nonresonant laser pulses.

6.1 Time-Resolved Two-Beam Measurements

In this section experimental results of a perturbed polariton condensate are pre-

sented. The continuous-wave (CW) laser light is focused onto the sample under

an angle of 45◦ from normal incidence. With an excitation wavelength of 770.2 nm

the lower polariton branch is excited resonantly and the regime of polariton lasing

can be achieved. By use of a second nonresonant laser pulse the polariton BEC is

perturbed. The resonant CW laser has a spot diameter of approximately 20 µm

whereas the nonresonant pulsed laser has a smaller one with roughly 10 µm. By

changing the power of the pulsed laser the strength of this perturbation can be

varied. This dependence will be treated in the following. The general setup for

these measurements is described in Sec. 3.3 and 3.5. For the purpose of perform-

ing time-resolved measurements, the Fourier plane of the cavity emission is imaged

onto the entrance slit of the streak camera. The slit of the streak camera e�ectively

cuts out a line along kx at ky = 0. In order to resolve the emission spectrally, a
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Figure 6-2: Input-output-curve of the pulsed excitation with four marked pump powers
(P1 = 600 µW, P2 = 800 µW, P3 = 1300 µW and P4 = 5000 µW), which are used for
the time-resolved measurements in Fig. 6-3 and 6-4.

liquid-crystal tunable �lter with a resolution of about 0.75 nm is used. The mi-

crocavity, kept at cryogenic temperature, is excited at slightly negative detuning.

Moreover, dispersion measurements are done to assure that the system is in the

polariton lasing regime. In reference to Fig. 6-1, it means that the system is in the

polariton lasing regime for excitation powers of PCW = 475 mW.

Fig. 6-2 presents the input-output-curve (i/o-curve) of the pulsed nonresonant

excitation resulting from spectrally resolved measurements. The four circles in-

dicate the excitation powers used for the time-resolved two-beam measurements.

It visualizes which regime is reached with the pulsed laser. Performing several

measurements with varying excitation power it is possible to examine whether the

perturbation strength has any impact on the condensate or if the response of the

condensate just depends on the presence of the perturbation.

For the time-resolved measurements the excitation power of the resonant CW

laser is kept at 480 mW, so that the system creates a stable polariton condensate.

In a second step, the nonresonant probe laser is added and measurements are

carried out at the four di�erent perturbation strengths indicated in Fig. 6-2. The

top panel in Fig. 6-3 shows the results for the lowest excitation power of the

pulsed laser (600 µW). In (a) the time-resolved emission pattern for the CW

excitation is presented, while panel (b) demonstrates the emission pattern for

the pulsed excitation. The origin of the time axis corresponds to the time of
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Figure 6-3: Time-resolved PL in dependence on the in-plane wave vector kx for di�er-
ent excitation conditions. Top (bottom) panels show results for an excitation power of
600 µW (800 µW) of the nonresonant pulsed laser. Panel (a) shows the time-resolved PL
of a polariton condensate under resonant CW excitation only. Panel (b) demonstrates
polariton emission under nonresonant pulsed excitation. Panel (c) shows the results of
applying both laser beams simultaneously. Here, the steady-state condensate created
by CW excitation is disturbed by the short additional nonresonant laser pulse of about
2 ps. Panel (d) gives the relative total condensate population change by dividing the
emission pattern of panel (c) by the sum of panel (a) and panel (b). The condensate
population decreases right after the impact of the pulse. Note the di�erent color scales
in the emission pattern.
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incidence of the excitation pulse with 2 ps width. Note, the emission patterns

have di�erent intensity scales, the colors are not adapted between each other.

Panel (c) shows the results of applying both laser beams simultaneously. Under

this excitation condition, the emission is clearly dominated by the CW excitation.

Nevertheless, at the impact of the laser pulse a small decrease in the intensity

can be observed. This intensity reduction is more obvious in the change of the

total condensate population. In order to illustrate this parameter the intensity

distribution in time and momentum-space of the emission pattern from (c) is

divided by the sum of the intensity distribution of the pattern from (a) and (b)

(ICW+Pulsed/(ICW + IPulsed)). An intensity value of 1 corresponds to an unchanged

polariton condensate population, whereas a value below (above) 1 represents a

reduction (increase) in the population induced by the nonresonant laser pulse. As

shown in Fig. 6-3(d), the impact of the pulse leads to a reduction of the condensate

population, and an increase tens of picoseconds after the impact.

As already discussed in Sec. 2.2.5, under nonresonant excitation the spatial

shape of the pump spot de�nes a repulsive potential which acts on the polaritons.

Here, the additional nonresonant pulsed laser leads to the formation of a Gaussian-

shaped potential, which forces the polaritons of the condensate to �ow away from

kx = 0. As demonstrated in Fig. 6-3(b), the polaritons are redistributed towards

higher wave vectors, which is observable in the reduction of the condensate popula-

tion around kx = 0. After a few picoseconds, the condensate population increases

again by 35% and therefore the additional pulsed excitation leads to a 35% gain

of the population when compared to the sum of pulsed and continuous pumping.

Thus, the polaritons created by nonresonant excitation relax and contribute to the

already existing condensate resulting in an enhancement of the occupation of the

lower momentum polariton states.

As a next step, let us consider the in�uence of the pulsed laser on the polariton

condensate population when the excitation power of the pulsed laser is increased

to 800 µW, bottom panels in Fig. 6-3. At this power, the regime of polariton

lasing is reached, as can be seen in Fig. 6-2. A further evidence for this regime

is the temporal shortening of the detected polariton emission presented in panel

(b). The emission pattern in (c), showing the results of measurements with both

pump sources, indicates that the temporal evolution of the intensity is dominated

by the pulsed contribution. This is in strong contrast to the behavior resulting

from lower power excitation. Nevertheless, in the emission pattern of the relative

total condensate population change, shown in (d), the same phenomenon can be

observed as before. At the time of the pulse impact the intensity decreases, followed

by a population increase tens of picoseconds later. Compared to the increase

seen for 600 µW pulsed excitation, the intensity rise is signi�cantly larger. The

e�ect of polaritons �owing away to higher momenta is still present, but since the

nonresonant pulsed laser is right at the point of the highest nonlinearity (visible in

the i/o-curve in Fig. 6-2), the enhancement due to the pulsed beam is even higher

than for the excitation power presented before. The disappearance of the polariton

population is quite uniform throughout the momentum space whereas the gain of
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intensity is centered around zero. The observed gain has a similar distribution

compared to the intensity of the pulsed excitation only. This behavior changes

when the pump power is further raised to 1300 µW (top panels in Fig. 6-4). Even

though the e�ect of population extinction is similar as well as its following increase,

the intensity distribution in momentum space is now unsettled with an intensity

gain peak around kx = 0 for early times and two side peaks occurring later with

less intensity.

Finally, the pump power of the pulsed laser is increased so far (Fig. 6-4, bottom

panels) that the strong coupling is lost and the system is in the weak coupling

regime where photon lasing is expected. As seen in Fig. 6-2, it is not de�nitely

clear whether a second threshold, indicating the transition from polariton towards

photon lasing, does occur. The expected two-threshold behavior as an evidence

for a transfer from thermal polariton emission to polariton lasing and ending with

photon lasing is presented in the publication of Tempel et al. [73]. The i/o-curves

of these measurements show a saturation behavior after the �rst threshold with a

build-up of an intensity plateau right before the second threshold. This plateau is

also observable in Fig. 6-2, so that the second threshold might be at relatively high

excitation powers in the case at hand. A further hint for photon lasing instead

of polariton lasing for the excitation power at hand is the immediate intensity

increase after the impact of the pulse. Since no relaxation of the carriers to the

ground state of the LP branch is needed to observe emission in the weak coupling

regime, there is no time lag between excitation and emission. Having a look at

the relative total population change presented in Fig. 6-4 (d), a clearly di�erent

behavior in comparison to the former results is observed. Instead of an intensity

decrease with the impact of the pulse an increase with a double peak feature is

observable. Only after about 50 ps a weak intensity dip is recognizable centered

around kx = 0. It is followed by a second increase, which is also centered around

zero momentum, and a maximum after about 300 ps. Due to the additional

high excitation power of the pulsed laser the gain of the streak camera had to be

lowered to prevent damage to the phosphor screen. This leads to a high arti�cial

background, which is especially visible for times when the pulse has not excited the

sample yet. Hence, the observed increase of the intensity shortly before the impact

represents an artifact caused by the background. The reason for the double-peak-

shaped emission at the time of the pulse impact is not clear since the nonresonant

excitation beam leads to photon lasing, which cannot cause an enhancement of the

polariton condensate population. But it might be possible that the regime of weak-

coupling is not reached at the more weakly illuminated spot edges and, therefore,

a creation of polaritons still takes place. The nonresonant excitation with a small

spot diameter leads to a repulsive potential, which forces the condensed polaritons

to gather higher momentum. But in contrast to the results at lower excitation

powers, the repulsive potential is not as steep since the exciton reservoir density

is quite small. This is due to the fact that in the main part of the spot the weak

coupling regime is already reached. Hence, the condensed polaritons do not �ow to

as high momentum states as before and the redistribution is visible in the double-
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Figure 6-4: Time-resolved PL in dependence on the in-plane wave vector kx for di�er-
ent excitation conditions. Top (bottom) panels show results for an excitation power of
1300 µW (5000 µW) of the nonresonant pulsed laser. Panel (a) shows the time-resolved
PL of a polariton condensate under resonant CW excitation only. Panel (b) demonstrates
polariton emission under nonresonant pulsed excitation. Panel (c) shows the results of
applying both laser beams simultaneously. Here, the steady-state condensate due to CW
excitation is disturbed by the short additional nonresonant laser pulse of about 2 ps.
Panel (d) gives the relative total condensate population change by dividing the emission
pattern of panel (c) with the sum of panel (a) and panel (b). The condensate popula-
tion decreases right after the impact of the pulse. Note the di�erent color scales in the
emission pattern.



86 Steady-State Condensate Perturbed by Short Laser Pulses

Figure 6-5: Relative total emission change for four di�erent perturbation strengths.
Weak perturbations of the condensate lead to a decrease of the population immediately
after the impact of the pulse with an increase afterwards. In the case of very strong
perturbation, the intensity increases directly with the impact. The dotted line represents
the region of no condensate population change.

peak-shapes emission. The increase at later times can be explained by reaching

the strong coupling regime again as soon as the exciton density in the QWs is

low enough that the excitons and photons can couple strongly. The additional

polaritons can contribute to the condensate again and enhance the emission.

To analyze the results in more detail the integrated intensity of the time-

resolved measurements (ICW+Pulsed/(ICW + IPulsed)) is plotted against time for

di�erent powers of the pulsed laser in Fig. 6-5. Striking in this illustration is

the simultaneously occurring dip with the impact of the pulse for the three low-

est pumping powers, while the curve shows the opposite behavior for the highest

pumping powers; an intensity increase instead of a decrease. And exactly at the

time where the intensity raises again for the other excitation powers, the expected

decrease appears. Since the intensity value at the dip does not fall signi�cantly

below one, the condensate population is not reduced due to the additional pulsed

excitation as it is the case for lower pump powers. Likewise noticeable is the strong

intensity gain for pulsed excitation at 800 µW. Comparison to the curves for the

other perturbation strengths shows, that the occurring enhancement is largest at
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this excitation power, reaching a maximum value of about two. This fact under-

lines the theory that the most powerful enhancement takes place at the position

of the strongest nonlinearity of the pulsed i/o-curve as depicted in Fig. 6-2.

6.2 Conclusion

In the last section, results of time-resolved momentum measurements in a two-

beam experiment were presented. A polariton condensate is created via resonant

continuous-wave excitation and perturbed by a nonresonant short laser pulse. The

results show a strong dependence on the perturbation strength: for nonresonant

excitation powers in the strong coupling regime a polariton �ow away from small

momenta towards higher wave numbers is noticeable. After relaxation the polari-

tons from nonresonant excitation enhance the emission. For nonresonant excita-

tion powers in the weak coupling regime a weaker polariton redistribution at the

impact of the pulse is observable.

Moreover, for further investigations it would be interesting to perform real-

space time-resolved measurements to be able to follow the polariton �ow. Secondly

it would be possible to vary also the excitation power of the resonant continuous-

wave laser. What happens for excitation powers below the threshold of polariton

condensation and for excitation powers slightly below the threshold to photon

lasing?





Chapter 7

Summary and Outlook

In this thesis, the formation of an exciton-polariton condensate in a semiconduc-

tor microcavity was studied with an emphasis on all-optical methods to in�uence

and control the properties of the polariton condensate. The experimental methods

range from excitation spot shaping using a spatial-light-modulator to the pertur-

bation of a polariton condensate with a nonresonant, pulsed laser beam.

At �rst, the relaxation dynamics in an optically created polariton wire were ex-

amined. With a wire-shaped excitation spot, created with a spatial-light-modulator,

the polaritons are gain-trapped to a length of 15 µm and a width of 2 µm. The

results of spatially and time-resolved measurements show an emission dynamics

originating from the wire center at earlier times and developing towards both ends

of the wire later on. While the emission has a relatively short lifetime at the center

it turns into a longer living emission at both ends. Due to spectrally resolved re-

sults it is possible to characterize the di�erent emission regimes in terms of photon

and polariton lasing.

Hence, an analysis of the decay dynamics in a polariton wire was presented

showing a spatial boundary between photon lasing and polariton lasing emission.

However, further studies have to be performed to fully understand the crossover

from the weak to the strong coupling regime. In analogy to results presented by

Kammann et al. [106], it is still an open question, whether the observed character-

istics are due to population inversion or condensation in the weak coupling regime.

Performing measurements also in momentum-space and with di�erently shaped ex-

citation spots may help to understand the origin of the emission mechanism and

its spatial pattern formation.

The second part of this thesis contained results of a stepwise homogeneously

pumped polariton condensate. With a nonresonant staircase shaped excitation

spot a polariton condensate with well de�ned momentum states was created. By

adjusting the local excitation density the position of these momentum states can

be tuned. In addition, an analysis of the spatial dynamics under such pumping

conditions was presented. Results of spatially, spectrally and temporally resolved

emission show a redistribution of the polaritons in the regime of polariton lasing
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followed by a relocation of the intensity maximum as the polariton density de-

creases. Numerical simulations support the observed redistribution dynamics in

the polariton lasing regime. At higher excitation power the system reaches the

weak coupling regime and spatial hole burning leads to trapped polaritons. The

temporal dependence of the blueshift demonstrates in its biexponential behavior

the crossover between the weak and the strong coupling regime.

The results demonstrate an all-optical method to prepare a polariton conden-

sate in an adjustable momentum state. However, the realization of polaritonic

circuits with this approach requires further scienti�c research. Due to the strong

dependence of the polariton properties on the cavity-exciton detuning, it might be

desirable to examine the optical momentum state control and the spatial dynam-

ics of a stepwise pumped polariton condensate also at other detunings. Further

geometrical changes of the excitation spot might give a more detailed insight into

the control of the polariton �ow. From an application point of view, a transfer

to other materials, which show polariton propagation at room temperature [107],

could be very helpful for the realization of optical circuits.

The third part of this thesis demonstrated the impact of a nonresonant laser

pulse on a steady state polariton condensate. Results, obtained from time-resolved

measurements, show a strong dependence on the strength of the perturbation.

With excitation powers, where the system is in the strong coupling regime, a

polariton �ow towards higher momenta is observed simultaneously with the impact

of the pulse. Afterwards an enhancement of the emission occurs with its highest

value at the point of the strongest nonlinearity of the pulsed excitation. This

behavior changes when the excitation power of the pulsed laser is such that the

weak coupling regime is reached. Here, a weaker polariton redistribution with the

impact of the pulse is visible.

For a deeper understanding of the relation between polariton �ow and pertur-

bation strength further experimental research is needed. For example, real-space

measurements could give further information about the polariton �ow such as its

spatial dynamics. Moreover, it would be worthwhile to study the in�uence of

an external pulsed perturbation on a polariton condensate created by di�erently

shaped excitation geometries.
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Symbols and Abbreviations

~ h/2π = 1.054571 · 10−34 Js = 6.582118 · 10−16 eVs

Eg Band-gap energy

EBog(k) Bogoliubov dispersion

kB Boltzmann constant (1.38062 · 10−23 J/K)

BEC Bose-Einstein condensate

LCav, Le� Cavity length, e�ective cavity length

CCD Charged coupled device

µ Chemical potential

CB,VB Conduction band, valance band

CW Continuous wave

g Coupling factor

TTK Critical temperature for super�uidity (Kosterlitz, Thou-

less)

Tc,nc Critical temperature, critical density

λdB De Broglie wavelength

γ,Γ Decay rate

∆k Detuning between cavity and exciton mode

DOE Di�ractive optical element

DBR Distributed Bragg re�ector

m∗ E�ective mass of a particle in the solid state

e Electron, unit charge (1.602176 · 10−19 C)

D(E) Electronic density of states
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104 Symbols and Abbreviations

Θ Emission angle

E Energy

Eb Exciton binding energy

FWHM Full-width half-maximum

GPE Gross-Pitaevskii equation

ξ Healing length

Ck,Xk Hop�eld coe�cients

i/o Input-output

I Intensity

LDA Local density approximation

LP, UP Lower polariton, upper polariton

MO Microscope objective

MBE Molecular beam epitaxy

NMS Normal mode splitting

NA Numerical aperture

ODLRO O�-diagonal long-range order

OPO Optical parametric oscillation

fosc Oscillator strength

PL Photoluminescence

P Power

Fp Purcell factor

Q Quality factor

QW, QWR, QD Quantum well, quantum wire, quantum dot

ΩR Rabi frequency

SLM Spatial light modulator

c Speed of light (299792458 m/s)

T Temperature

t Time

λ Wavelength
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