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Abstract

In this paper we develop a test for jumps based on extreme value theory. We consider a continuous-
time stochastic volatility model with a general continuous volatility process, allowing for long- and
short-range dependence and observe it under a high-frequency sampling scheme. We show that a
certain test statistics based on the maximum of increments converges to the Gumbel distribution
under the null hypothesis of no additive jump component and to infinity otherwise. In contrast to
most other tests based on power variation our test naturally allows to distinguish between positive
and negative jumps. As a by-product of our analysis we also deduce an optimal pathwise estimator
for the spot volatility process. In addition we provide a small simulation study and show that our
test is more sensitive to jumps with a larger power than the Barndorff-Nielsen and Shephard test
based on bipower variation. Finally we apply our results to a real data set of the world stock index.

Keywords: jump test, stochastic volatility model, spot volatility, Gumbel distribution, extreme value
theory, high-frequency data
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1 Introduction

Recently the detection of jumps in stochastic volatility models have attained much attention, since this
is an important task for modeling, risk assessment and statistical inference of the integrated volatility
or volatility process itself. Most tests are based on the concept of power and multipower variation and
either use the different limiting behaviour of power and multipower variation in the presence of jumps,
cf. Barndorff-Nielsen and Shephard [2], or use the scaling behaviour of power variation in the absence
of jumps, cf. Aı̈t-Sahalia and Jacod [1]. These methods work for quite general semimartingale stochastic
volatility models observed at a high-frequency sampling scheme on a fixed time-interval and provide
information if jumps are present in this time-interval, but no information concerning the direction and
location of the jumps. However, especially for applications such as risk assessment the direction of jumps
is crucial.

We now propose a method based on extreme value theory, which makes it possible not only to detect
jumps, but also to distinguish between positive and negative jumps and locate the jumps. The idea behind
is that the increments of the Brownian semimartingale in the absence of jumps, behave roughly like
normally distributed random variables and hence the appropriately scaled maximum of the increments
converges to the Gumbel distribution. If positive jumps are present the Gumbel statistics converges to
infinity. Taking minus the log-price process analogously leads to a test for negative jumps.

�Lehrstuhl IV, Fakultät für Mathematik, Technische Universität Dortmund, D-44221 Dortmund, Germany,
christian.palmes@math.tu-dortmund.de, jeannette.woerner@math.tu-dortmund.de
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The idea of using extreme value theory to test for jumps has already been proposed in Lee and Mykland
[9] in an econometric setting, however they did not provide the full potential of this approach. They did
not separate between positive and negative jumps and furthermore their assumptions on the underlying
model are restrictive, namely they have to assume that the volatility and the drift are both α-Hölder
continuous for every α   1{2 and that the additive jumps are of finite activity and independent of the
driving Brownian motion. Whereas we allow for a general drift component, a general jump component,
possibly of infinity activity, an arbitrary correlation structure between continuous and jump component
and a general pathwise Hölder-continuous volatility process, i.e. both long- and short-range dependent
volatility processes. Furthermore, this means that we even allow to leave the setting of semimartingales
for the volatility process. As a by-product of our analysis we also deduce an optimal pathwise estimator
for the spot volatility process based on bipower variation.

In addition to our theoretical results we provide a small simulation study based on two types of volatility
processes: fractional Brownian motions with different Hurst parameters and Ornstein-Uhlenbeck pro-
cesses. For the latter we show that our test is more sensitive to jumps with a larger power than the
Barndorff-Nielsen and Shephard test based on bipower variation. Furthermore, we see that the main
part of the approximation error is due to the regularity of the volatility and not due to the generally
slow convergence to the Gumbel distribution. Finally, we apply our results to a real data set of the world
stock index.

The outline of the paper is as follows, in the next section we provide the basic definitions and notation,
in section 3 we deduce an estimator of the spot volatility, in section 4 and 5 we introduce the asymptotics
of the Gumbel statistics for models without and with jump component respectively and in section 6 we
provide our simulation study and application to real data.

2 Definitions and Notation

Let pΩ,F , pFtqtPr0,1s, P q be a filtered probability space, which we assume to fulfill the usual conditions.
In the following we consider as model for log-prices the following stochastic volatility models, which are
Itô semimartingales of the form

Yt �
» t

0

σs dWs, qYt � » t
0

σs dWs �
» t

0

dsds �
» t

0

σs dWs �Dt, 0 ¤ t ¤ 1,

where W denotes a standard Brownian motion, σ the volatility process and d the drift coefficient. All
processes are pFtq-adapted. With qY we want to emphasize that this process has a possibly non vanishing
drift term. Without loss of generality we consider as time interval the unit interval r0, 1s instead of an
interval r0, T s for some T ¡ 0.

In the following we need some assumptions on the drift and the volatility process. We start with a
stronger set of conditions, which makes it possible to clarify the structure of the proofs.

Assumptions 2.1. There are three global constants 0   V ¤ K   8 and 0   α ¤ 1 such that we have
for every ω P Ω

(i) σ is pathwise bounded, i.e.
V ¤ σtpωq ¤ K, 0 ¤ t ¤ 1,

(ii) σ is Hölder continuous of the order α, i.e.

|σspωq � σtpωq| ¤ K|t� s|α, 0 ¤ s, t ¤ 1,

(iii) t ÞÑ dtpωq is Lebesgue measurable and

|dtpωq| ¤ K, 0 ¤ t ¤ 1.
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Note that we allow for an arbitrary dependence structure between W , σ and d.

These assumptions have the disadvantage, that the two constants V and K are chosen globally, i.e. they
are independent from the path ω. Particularly (ii) in Assumptions 2.1 is restrictive. Let us formulate
here the path dependent counterpart to the Assumptions 2.1. Stopping time arguments are used in order
to extend the subsequent proofs to the weakened Assumptions 2.2.

Assumptions 2.2. Let the volatility σ be pathwise Hölder continuous, strictly positive and let the drift
d be pathwise bounded. This means that there are two functions

α : Ω Ñ p0, 1s and K : Ω Ñ p0,8q,
such that

|σtpωq � σspωq| ¤ Kpωq|t� s|αpωq, 0 ¤ s, t ¤ 1, ω P Ω (1)

and
|σtpωq| _ |dtpωq| ¤ Kpωq, 0 ¤ t ¤ 1, ω P Ω. (2)

Furthermore, we claim t ÞÑ dtpωq to be Lebesgue measurable for all ω P Ω.

Observe that even infωPΩ αpωq � 0 is possible. Moreover, since every path is assumed to be continuous
and strictly positive, it follows directly that

V pωq � inf
0¤t¤1

σtpωq ¡ 0, ω P Ω.

We consider V like K as a function V : Ω Ñ p0,8q.
Note that our assumptions on σ also allow for short-range and long-range dependent volatility processes,
e.g. processes based on fractional Brownian motion with Hurst parameter H   1

2 resp. H ¡ 1
2 .

In the following we draw statistical inference with the sampling scheme of high frequency data or the
infill asymptotics, i.e. we consider observations at the time-points 0, 1

N , . . . , 1. However, for our analysis
we need a two scale grid which we define as follows. We set N � n2 for n P N and obtain as sampling
times l

n2 , l � 0, . . . , n2 � 1 with

l

n2
� kn� j

n2
� tk,j , 0 ¤ k, j   n. (3)

Hence the grid on the unit interval separates in two scales. The coarse one, which is indexed by k, and
the finer one, which is indexed by j.

We also need some approximations of the volatility process and the price process. We define

σt �
n2�1¸
k�0

1p k
n2 ,

k�1

n2 sptqσ k
n2
.

and hence

Y tk,j
�
» tk,j

0

σs dWs �
kn�j�1¸
l�0

σ l
n2
pW l�1

n2
�W l

n2
q.

Next regarding the increments of the finer scale we define

∆Wk,j �Wtk,j�
1
n2
�Wtk,j

, ∆Yk,j � Ytk,j�
1
n2
� Ytk,j

, ∆ Yk,j � Ytk,j�
1
n2
�Ytk,j

and
∆Dk,j � Dtk,j�

1
n2
�Dtk,j

,

which yields
∆ Yk,j � σtk,j

∆Wk,j .

Now setting Zk,j � n∆Wk,j , pZk,jq0¤k,j n is a family of i.i.d. Np0, 1q (standard normal) distributed
random variables, since W is a Brownian motion. Finally, we define some abbreviations concerning the
volatility:

σk,j � σtk,j
, σk � σk,0, εk,j � σk,j � σk.
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3 Estimates of the spot volatility

For our main results we need some estimates of the spot volatility. As a first attempt to infer the spot
volatility we use the concept of bipower variation (cf. Barndorff-Nielsen, Shephard [2]) which is robust to
jumps. To avoid technical difficulties we work first under the Assumptions 2.1 and finally extend them
in Corollary 3.5 to the weakened Assumptions 2.2 by using stopping time arguments.

Definition 3.1. Set for 0 ¤ k   n

pσ2
k � πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j |∆Yk,j�1| (without drift),

qσ2
k � πn2

2pn� 1q
n�2̧

j�0

|∆qYk,j ||∆qYk,j�1| (with drift).

The technique of the following proof of Proposition 3.2 is based on moment estimates, which follow from
the Itô formula. This technique is motivated by the martingale moment inequalities of Millar [10] and
Novikov [11], cf. also Karatzas and Shreve [8][Proposition 3.26].

Proposition 3.2. Let

ck,j � σk,jσk,j�1 � σ2
k, 0 ¤ k, j   n, j   n� 1,

Fk � pσ2
k �

π

2pn� 1q
n�2̧

j�0

pσ2
k � ck,jq|Zk,j ||Zk,j�1|, 0 ¤ k   n,

Hk,j � n∆Yk,j � pσk � εk,jqZk,j , 0 ¤ k, j   n.

Then, there are two constants C1, C2 ¡ 0 for every fixed m P N, such that we obtain for every ε ¡ 0 and
n P N the inequalities

P p|Fk| ¥ εq ¤ C1

n2αm�1εm
, 0 ¤ k   n, (4)

P p|Hk,j | ¥ εq ¤ C2

n4αmε2m
, 0 ¤ k, j   n. (5)

Furthermore we have the trivial relations

|εk,j | ¤ K

nα
, |ck,j | ¤ 3K2

nα
, 0 ¤ k, j   n. (6)

Proof. We separate the proof into four steps. In the first step we establish some useful moment inequal-
ities. Next we prove in the second and third step respectively (4) and (5). Finally (6) is derived in the
fourth step.

step 1. We have to show the following moment inequality

E|∆Yk,j �∆ Yk,j |2m � E

�����
» tk,j�

1
n2

tk,j

pσs � σsq dWs

�����
2m

¤ vmK
2m

n4αm�2m
, m ¥ 1 (7)

with
vm � mmp2m� 1qm.

For proving this, we apply Itô’s formula to f : x ÞÑ x2m and

Mt �
» t
tk,j

pσs � σsq dWs, tk,j ¤ t ¤ 1
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which yields

M2m
tk,j�

1
n2

� f
�
Mtk,j�

1
n2

	
�
» tk,j�

1
n2

tk,j

f 1pMsq dMs �mp2m� 1q
» tk,j�

1
n2

tk,j

M2m�2
s d 〈M〉s .

Taking expectations on both sides, leads to

EM2m
tk,j�

1
n2

� mp2m� 1q
» tk,j�

1
n2

tk,j

EM2m�2
s |σs � σs|2 ds

¤ mp2m� 1qK
2

n4α

» tk,j�
1
n2

tk,j

EM2m�2
s ds

¤ mp2m� 1q K2

n4α�2
EM2m�2

tk,j�
1
n2
, m ¥ 1.

Note for the last inequality that pM2m�2
s ,Fsqs is a submartingale. Hence iteratively we get (7). Analo-

gously we obtain

E|∆Yk,j |2m � E

�����
» tk,j�

1
n2

tk,j

σs dWs

�����
2m

¤ vmK
2m

n2m
, m ¥ 1. (8)

Finally, the Cauchy-Schwarz inequality together with (7) and (8) yields

E|∆Yk,j |m|∆Yk,j�1 �∆ Yk,j�1 |m ¤ vmK
2m

n2αm�2m
, m ¥ 1.

Since

E|∆ Yk,j�1 |2m � σ2m
k,j�1E|∆Wk,j�1|2m ¤ K2mµ2m

n2m

with µ2m � E|U |2m for m ¥ 1 and U � Np0, 1q, we also get

E|∆ Yk,j�1 |m|∆Yk,j �∆ Yk,j |m ¤ pvmµ2mq 1
2K2m

n2αm�2m
, m ¥ 1.

step 2. We proceed with the proof of (4), noting that�����pσ2
k �

πn2

2pn� 1q
n�2̧

j�0

|∆ Yk,j ||∆ Yk,j�1 |
����� (9)

¤ πn2

2pn� 1q
n�2̧

j�0

||∆Yk,j∆Yk,j�1| � |∆ Yk,j ∆ Yk,j�1 ||

¤ πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j ||∆Yk,j�1 �∆ Yk,j�1 | � |∆ Yk,j�1 ||∆Yk,j �∆ Yk,j |.

This together with the results of the first step and the Markov inequality yields

P

�
πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j ||∆Yk,j�1 �∆ Yk,j�1 | � |∆ Yk,j�1 ||∆Yk,j �∆ Yk,j | ¥ ε

�

¤
n�2̧

j�0

P

�
|∆Yk,j ||∆Yk,j�1 �∆ Yk,j�1 | ¥ 1

2pn� 1q
2pn� 1q
πn2

ε



(10)

�P
�
|∆ Yk,j�1 ||∆Yk,j �∆ Yk,j | ¥ 1

2pn� 1q
2pn� 1q
πn2

ε



¤ n

vmK
2mπmn2m

n2αm�2mεm
� n

pvmµ2mq 1
2K2mπmn2m

n2αm�2mεm
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� C1

n2αm�1εm

where C1 is defined by the last equality. Now (4) follows from the inequalities in (9) and (10) together
with

πn2

2pn� 1q
n�2̧

j�0

|∆ Yk,j ||∆ Yk,j�1 | � πn2

2pn� 1q
n�2̧

j�0

σk,jσk,j�1|∆Wk,j ||∆Wk,j�1|

� π

2pn� 1q
n�2̧

j�0

pσ2
k � ck,jq|Zk,j ||Zk,j�1|

which concludes step 2.
step 3. We prove (5) and consider the following decomposition

n∆Yk,j � n∆ Yk,j �np∆Yk,j �∆ Yk,jq � pσk � εk,jqZk,j � np∆Yk,j �∆ Yk,jq. (11)

By the results in step 1 and the Markov inequality we obtain

P p|np∆Yk,j �∆ Yk,jq| ¥ εq ¤ n2mvmK
2m

ε2mn4αm�2m
� C2

ε2mn4αm

where C2 is defined by the last equality. This together with (11) proves step 3.
step 4. Finally we prove (6). The first inequality in (6) follows directly from our Assumptions 2.1. The
second inequality also follows straightforward:

|ck,j | � |σkpεk,j � εk,j�1q � εk,jεk,j�1| ¤ 2K2

nα
� K2

n2α
¤ 3K2

nα
, 0 ¤ k, j   n.

This completes our proof.

Next we provide rates for estimates of the volatility and the log-price increments. For the proofs we need
some inequalities for i.i.d. Np0, 1q-distributed random variables pZiqi which are stated in the appendix.

We introduce the following notation

max
k

fk � max
0¤k n

fk, max
k,j

gk,j � max
0¤k,j n

gk,j , n P N

for real valued functions f resp. g on the domains t0 ¤ k   nu � Ω resp. t0 ¤ k, j   nu � Ω.

Proposition 3.3. For γ   α we obtain

nγ max
k,j

|n∆Yk,j � σkZk,j | Ñ 0, P -a.s. (12)

and for γ   α^ 1
2

nγ max
k

|pσ2
k � σ2

k| Ñ 0, P -a.s. (13)

Proof. We start with the proof of (12). Using the notation of Proposition 3.2 we write

nγ max
k,j

|n∆Yk,j � σkZk,j | � nγ max
k,j

|εk,jZk,j �Hk,j | ¤ Knγ�α max
k,j

|Zk,j | � nγ max
k,j

|Hk,j |.

Using (A.3), (5) and the Markov inequality this yields

P pnγ max
k,j

|n∆Yk,j � σkZk,j | ¥ εq

¤ P

�
Knγ�α max

k,j
|Zk,j | ¥ ε

2



� P

�
nγ max

k,j
|Hk,j | ¥ ε

2
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¤ 2mKmnmpγ�αq

εm
Epmax

k,j
|Zk,j |qm �

¸
0¤k,j n

P

�
|Hk,j | ¥ εn�γ

2




¤ nmpγ�αq
2mKm

εm
�
2mplog n2qm

2 � 2m!
�� n2C2

22mn2γm

ε2m
n�4αm

� O

�
1

n2



, (14)

for any fixed ε ¡ 0 and m large enough, keeping in mind that γ   α. Then applying Borel-Cantelli to

Al � lim sup
n

"
nγ max

k,j
|n∆Yk,j � σkZk,j | ¥ 1

l

*
, l P N

yields the desired result.
step 2. To prove (13) we write with the use of Proposition 3.2 for any 0 ¤ k   n

max
k

|pσ2
k � σ2

k|

� max
k

�����
�

π

2pn� 1q
n�2̧

j�0

|Zk,j ||Zk,j�1| � 1

�
σ2
k �

π

2pn� 1q
n�2̧

j�0

ck,j |Zk,j ||Zk,j�1| � Fk

�����
¤ K2 max

k

����� π

2pn� 1q
n�2̧

j�0

|Zk,j ||Zk,j�1| � 1

������ 3πK2

2pn� 1qnα
n�2̧

j�0

max
k

|Zk,j |max
k

|Zk,j�1|

�max
k

|Fk|

� K2 max
k

η
pkq
1 � η2 �max

k
|Fk|. (15)

For the first term we use Corollary A.2 and get

P

�
nγ max

k
η
pkq
1 ¡ ε



¤

ņ

k�0

P
�
η
pkq
1 ¡ εn�γ

	
¤ nCε�2mn2mγn�m.

Noting that γ   1
2 , we obtain analogously as in the first step with Borel-Cantelli

nγK2 max
k

ηk1 Ñ 0 P -a.s. (16)

Similarly we can show the convergence of the other two terms, by establishing suitable estimates. By
Proposition A.3 and the fact that the random variables maxk |Zk,j | and maxk |Zk,j�1| are independent
for every j � 0, . . . , n� 2 we obtain

P

�
nγ�α

n�2̧

j�0

max
k

|Zk,j |max
k

|Zk,j�1| ¥ εpn� 1q
�

¤
n�2̧

j�0

P

�
max
k

|Zk,j |max
k

|Zk,j�1| ¥ εnα�γ



¤ pn� 1q �2mplog nqm
2 � 2m!

�2
ε�mnmpγ�αq.

and similarly for the last term

P

�
nγ max

k
|Fk| ¡ ε



¤
n�1̧

k�0

P
�|Fk| ¡ εn�γ

� ¤ nε�mnγmC1n
1�2αm.

Recall that γ   α. Piecing together the three estimates lead to the desired result.

The next proposition is a generalization of the previous one to a model with drift term and provides the
result for the spot volatility and not only the squares of the spot volatility. Note that this proposition
is interesting on its own, because it states a possibility to estimate the spot volatility pathwise and
uniformly on a grid.
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Proposition 3.4. For all γ   1
2 ^ α we obtain

nγ max
k,j

|qσk � σk| Ñ 0 P -a.s. (17)

Proof. First consider the difference between the estimates with and without drift

|qσ2
k � pσ2

k| (18)

�
����� πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j ||∆Yk,j�1| � |∆qYk,j ||∆qYk,j�1|
�����

¤ πn2

2pn� 1q
n�2̧

j�0

|∆Yk,jp∆Yk,j�1 �∆qYk,j�1q �∆qYk,j�1p∆qYk,j �∆Yk,jq|

¤ πn2

2pn� 1q
n�2̧

j�0

|∆Yk,j ||∆Dk,j�1| � p|∆Yk,j�1| � |∆Dk,j�1|q|∆Dk,j |

¤ πn2

2pn� 1q
n�2̧

j�0

p|∆Yk,j �∆ Yk,j | � |∆Dk,j |q|∆Dk,j�1| � |∆Yk,j�1 �∆ Yk,j�1 ||∆Dk,j |

� πn2

2pn� 1q
n�2̧

j�0

|∆ Yk,j ||∆Dk,j�1| � |∆ Yk,j�1 ||∆Dk,j |

¤ πK

2pn� 1q
n�2̧

j�0

|∆Yk,j �∆ Yk,j | � K

n2
� |∆Yk,j�1 �∆ Yk,j�1 |

� πK2

2pn� 1q
n�2̧

j�0

|∆Wk,j | � |∆Wk,j�1|.

With (7) we obtain

P

�
nγ max

k

�
1

n� 1

n�2̧

j�0

|∆Yk,j �∆ Yk,j | � |∆Yk,j�1 �∆ Yk,j�1 |
�
¥ ε

�
(19)

¤
n�1̧

k�0

n�1̧

j�0

P
�
|∆Yk,j �∆ Yk,j | ¥ ε

2
n�γ

	
¤ n2 22mvmK

2mn2mγ

n4αm�2mε2m
.

and for the last term

nγ max
k

1

2pn� 1q
n�2̧

j�0

p|∆Wk,j | � |∆Wk,j�1|q ¤ nγ�1 max
k,j

|Zk,j |.

This implies together with Proposition A.3 the inequality

P

�
nγ max

k

1

2pn� 1q
n�2̧

j�0

p|∆Wk,j | � |∆Wk,j�1|q ¥ ε

�
¤ P pmax

k,j
|Zk,j | ¥ εn1�γq (20)

¤ nmpγ�1q

εm
�
2mplog n2qm

2 � 2m!
�

Finally (19) and (20) yield together with (18) and the same Borel-Cantelli argument as in Proposition
3.3 for all γ   1 the convergence

nγ max
k

|qσ2
k � pσ2

k| Ñ 0 P -a.s. (21)
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Now (17) follows from (21) together with (13) and

nγ max
k

|qσk � σk| � nγ max
k

|qσ2
k � σ2

k|qσk � σk
¤ V �1nγ

�
max
k

|qσ2
k � pσ2

k| �max
k

|pσ2
k � σ2

k|


,

where V is defined in Assumptions 2.1 (i).

Corollary 3.5. The statement of Proposition 3.4 still holds under the weakened Assumptions 2.2 if the
function α : Ω Ñ r0, 1q is constant, i.e. all paths of the volatility are α-Hölder continuous for some
constant 0   α ¤ 1.

Proof. Define for each m P N

Sp1qm � inf

"
t ¥ 0 : σt R

�
1

m
,m

�*
, Sp2qm � inftt ¥ 0 : |dt| ¡ mu

and
Sp3qm � inf tt ¥ 0 : Ds   t : |σt � σs| ¡ m|t� s|αu

with inf H � 1. Clearly S
pjq
m , j � 1, 2, 3 are stopping times. Set

Am �
3£
j�1

!
Spjqm � 1

)
X
"

1

m
¤ σ0 ¤ m

*
.

Then (1) and (2) yield Am Ò Ω. Note that σS
p3q
m is Hölder continuous with exponent α and coefficient m.

Next set Sm � S
p1q
m ^ S

p2q
m ^ S

p3q
m and

σ
pmq
t � 1r 1

m ,mspσ0qσSm
t � 1

m
1r 1

m ,mscpσ0q
d
pmq
t � 1r0,Smqptqdt, 0 ¤ t ¤ 1, m P N.

Then σpmq and dpmq fulfill the Assumptions 2.1 with

V � 1

m
, K � m. (22)

As σpmq is pFtqt adapted and t ÞÑ d
pmq
t pωq is measurable, we can define

qY pmq
t �

» t
0

σpmqs dWs �
» t

0

dpmqs dλpsq, m P N.

Using results of Jacod and Shiryaev [7][p. 46 ff.] and the fact that Sm is a stopping time and 1r 1
m ,mspσ0q P

F0, we obtain for every m P N and 0 ¤ t ¤ 1 the P -a.s. equality» t
0

σpmqs dWs � 1r 1
m ,mspσ0q

�qY Sm
t � 1pSm,1sptqpWt �WSm

qσSm

	
� 1r 1

m ,mscpσ0q 1

m
Wt.

This yields qY pmq
t pωq � qYtpωq, 0 ¤ t ¤ 1, ω P Am XN c

m, (23)

for a family of negligible sets pNmq.
Next define pqσpmqk qk�0,...,n�1 as a function of p∆qY pmq

k,j q0¤k,j n instead of p∆qYk,jq0¤k,j n, i.e.

pqσpmqk q2 � πn2

2pn� 1q
n�2̧

j�0

|∆qY pmq
k,j ||∆qY pmq

k,j�1|, 0 ¤ k   n, m P N.
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Then, (17) states that we have for every m P N, the convergence

nγ max
k,j

|qσpmqk � σ
pmq
k |pωq Ñ 0, nÑ8, ω PM c

m (24)

for a negligible set Mm. Crucial for this proof is, that we have

qσpmqk pωq � qσkpωq, σ
pmq
k pωq � σkpωq, 0 ¤ k   n, ω P Am XN c

m, m, n P N. (25)

Now fix any

ω P A �
� ¤
mPN

Am XN c
m

�
X
� ¤
mPN

Mm

�c
.

Then there is a number m P N with ω P Am XN c
m XM c

m. Hence, (24) and (25) yield

nγ max
k,j

|qσk � σk|pωqp25q� nγ max
k,j

|qσpmqk � σ
pmq
k |pωqp24qÑ 0, nÑ8.

Since Am Ò Ω, we have P pAq � 1 and our claim is proven.

Next we aim to show that the rate in the pathwise, uniform convergences setting of our previous Corollary
3.5 is indeed optimal. We assume the Assumptions 2.2 with some constant 0   α ¤ 1. Our estimator
is a linear interpolation of the realized bipower variation estimator in Definition 3.1 on the grid. So its
calculation can be done very easily and quickly. A similar approach with a kernel type estimator has
also been investigated in Fan and Wang [3]. They reach similar convergence rates as our test in the
case α ¡ 1

2 , whereas the case α   1
2 is not covered by their results. Note also an interesting alternative

approach by Hoffman, Munk and Schmidt-Hieber [5]. They use a wavelet type estimator and consider
the Lp error, p   8.

In order to avoid confusion with the notation, the time argument of all processes in this section is denoted
in brackets and the grid fineness is denoted with the subindex n. For (26), this means, for instance, qσk
is denoted as qσn � kn�. Set

qσn �n
n

	
� qσn�n� 1

n



.

Then the statement (17) in Corollary 3.5 yields, together with

nγ
����qσn�n� 1

n



� σ

�n
n

	���� ¤ nγ
����qσn�n� 1

n



� σ

�
n� 1

n


����� nγ�αKpωq,

the convergence

nγ max
0¤k¤n

����qσn�kn


� σ

�
k

n


����Ñ 0, P -a.s. (26)

for all γ   α^ 1
2 . Equation (26) is our starting point. Next, for every n P N, a natural estimator qτn for

the spotvolatility σ is defined, which is based on n2 � 1 equidistant high-frequency observations at the
time points 0, 1

n2 ,
2
n2 , . . . , 1 of the underlying process qY , i.e. we have

qτn : Ω� r0, 1s Ñ R�, n P N.

For this purpose qτn is defined to be the linear interpolation of the points
�qσn � kn��k�0,1,...,n

. This formally
means qτnptq � rptqqσnpkptqq � p1� rptqqqσn�kptq � 1

n



, 0 ¤ t ¤ 1, n P N

with the two deterministic functions k, r : r0, 1s ÞÑ R� defined via

kptq � tntu

n
, 0 ¤ t   1, kp1q � n� 1

n

10



and

rptq �
#

1, nt P t0, 1, . . . , n� 1u
rnts� nt, else

, 0 ¤ t ¤ 1.

An estimator pτn in the case of a vanishing drift term is defined in an analogous way. Note that our
interpolation-based estimators coincide with the estimators in Definition 3.1 on the grid points. Next we
define for every 0   α ¤ 1 the following sets

Vα � tpσ, dq : pσ, dq satisfies Assumptions 2.2 with constant αu
and denote for any continuous function f : r0, 1s Ñ R with

}f}8 � supt|fptq| : 0 ¤ t ¤ 1u
its supremum norm.

Now, a theorem concerning the convergence of the spot volatility estimator qτn can be formulated.

Theorem 3.6. Let the Assumptions 2.2 hold with a constant 0   α ¤ 1. Then, we have for all γ   α^ 1
2

the convergence
nγ}qτn � σ}8 Ñ 0, nÑ8 P -a.s. (27)

and the upper bound α^ 1
2 is sharp in the sense that!

β P R : nβ}qτn � σ}8 P -a.s.Ñ 0 for all pσ, dq P Vα
)
�
�
�8, 1

2
^ α

�
. (28)

Hence, the optimal convergence rate is nα^
1
2 .

Proof. The proof is divided into two steps. The first one is devoted to the convergence result (27) and
the second one to the rate result (28).

step 1. Proof of (27). Using the linear interpolation approach, we obtain for 0 ¤ t ¤ 1

|qτnptq � σptq| ¤ |qτnptq � qτnpkptqq| � |qτnpkptqq � σpkptqq| � |σpkptqq � σptq|
¤ 1

n
max

0¤k¤n
qσn�k

n



� |qσnpkptqq � σpkptqq| � Kpωq

nα

¤ 1

n

�
max

0¤k¤n

����qσn�kn


� σ

�
k

n


�����Kpωq


� |qσnpkptqq � σpkptqq| � Kpωq

nα

which implies together with (26) the convergence (27).

step 2. Proof of (28). Set for any 0   α   1

σpsq � 1� sα, 0 ¤ s ¤ 1,

i.e. σ is positive, deterministic and the prototype of an α-Hölder continuous function. Furthermore, set
d � 0 and note that pσ, dq P Vα. Fix any β ¡ α. Then, we obtain the pointwise divergence

nβ}pτn � σ}8pωq Ñ 8, nÑ8, ω P Ω. (29)

This divergence to infinity is due to our interpolation approach. The proof of (29) is straightforward and
therefore omitted.

With (29) in mind, it obviously suffices to verify

P

�
lim sup

n
n

1
2 }qτn � σ}8 ¡ 0



¡ 0 (30)

for a pair pσ, dq P V1 in order to establish (28). For this purpose, choose σ � 1 and d � 0, i.e. Y is a
standard Brownian motion and obviously pσ, dq P V1. Now, (30) holds because of the classical central
limit theorem (CLT) for i.i.d random variables.
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4 The Gumbel test under the null hypothesis of continuous
sample paths

Now we have all technical background to construct a test statistics and derive their asymptotic behaviour
under the null hypotheses of no jumps. The idea behind is that the increments of our Itô semimartingale
normed with a volatility estimator are close enough to i.i.d. normal random variables to use the classical
extreme value theory.

We start with the approximation of our increments by normal random variables.

Proposition 4.1. Let Assumptions 2.1 hold and let γ   1
2 ^ α be a constant, then we obtain

nγ max
k,j

�����n∆qYk,jqσk � Zk,j

�����Ñ 0 P -a.s. (31)

Proof. We consider

max
k,j

�����n∆qYk,jqσk � Zk,j

����� ¤ max
k,j

�����n∆qYk,jqσk � n∆Yk,j
σk

������ V �1 max
k,j

|n∆Yk,j � σkZk,j |.

By (12) it suffices to prove for γ   1
2 ^ α the convergence

nγ max
k,j

�����n∆qYk,jqσk � n∆Yk,j
σk

�����Ñ 0 P -a.s.

First note that for every δ ¡ 0
n1�δ max

k,j
|∆Yk,j | Ñ 0 P -a.s. (32)

namely
n1�δ max

k,j
|∆Yk,j | ¤ n�δ max

k,j
|n∆Yk,j � σkZk,j | �Kn�δ max

k,j
Zk,j (33)

together with (12), Proposition A.3 and a Borel-Cantelli argument yields the result. Next use a further
decomposition �����n∆qYk,jqσk � n∆Yk,j

σk

����� � n
|∆qYk,jσk �∆Yk,jqσk|qσkσk

� n
|p∆qYk,j �∆Yk,jqσk �∆Yk,jpσk � qσkq|qσkσk

¤
K2

n � n|∆Yk,j ||σk � qσk|qσkσk . (34)

By (17) we obtain the convergence

max
k

|qσkσk � σ2
k| ¤ K max

k
|qσk � σk| Ñ 0 P-a.s.

which yields

min
k
|qσkσk| ¥ min

k
pσ2
k � |qσkσk � σ2

k|q ¥ V 2 �max
k

|qσkσk � σ2
k| Ñ V 2 ¡ 0 P-a.s. (35)

Now we choose δ ¡ 0 such that γ � δ   1
2 ^ α and get

nγ max
k,j

�
K2

n
� n|∆Yk,j ||σk � qσk|
 ¤ K2nγ�1 � n1�δ max

k,j
|∆Yk,j |nγ�δ max

k
|σk � qσk|

Ñ 0 P -a.s., (36)

by (17) and (32). Finally (34), (35) and (36) prove this proposition.

12



Now our main result follows straightforward

Theorem 4.2. Set

aN �
a

2 logN, bN � aN � logplogNq � logp4πq
2
?

2 logN
, N P N (37)

and define a statistics Tn by

Tn � nmax
k,j

�
∆qYk,jqσk

�
, n P N. (38)

Then under the Assumptions 2.2 we obtain

an2pTn � bn2q dÑ G, nÑ8,

where G denotes the Gumbel distribution with the cumulative distribution function x ÞÑ e�e
�x

, x P R.

Proof. First we prove the result under the stronger Assumptions 2.1. From extreme value theory we
know that

an2pmax
k,j

Zk,j � bn2q dÑ G, nÑ8,

compare e.g. Lemma 1.1.7 in Haan and Ferreira [4]. This together with Proposition 4.1, Slutsky’s Lemma
and Lemma A.4 in the appendix proves the desired result under the stronger Assumptions 2.1.

Now we proceed to an extension of this result to the Assumptions 2.2 by defining appropriate stopping

times. Set S
p1q
m , S

p2q
m as in Corollary 3.5 and redefine

Sp3qm � inf
!
t ¥ 0 : Ds   t : |σt � σs| ¡ m|t� s| 1

m

)
. (39)

We need the above modification of S
p3q
m since we do not have a fixed Hölder exponent α ¡ 0 in contrast

to Corollary 3.5. Nevertheless, (23) in Corollary 3.5 still holds with our redefinition in (39) and t ÞÑ σ
pmq
t

is Hölder continuous with the Hölder exponent 1
m . Hence, for every r P R we have

P panpT pmqn � bnq ¤ rq ¤ P panpTn � bnq ¤ rq � P pAcmq, m, n P N, (40)

where T
pmq
n denotes the statistics Tn in (38) with qY pmq instead of qY , compare the notation in Corollary

3.5. Then our result of the first part of this proof yields

anpT pmqn � bnq dÑG, nÑ8 (41)

for all m P N. From (40) and (41) we obtain

lim inf
n

P panpTn � bnq ¤ rq ¥ Gpp�8, rsq � P pAcmq, m P N,

hence Acm Ó H implies
lim inf

n
P panpTn � bnq ¤ rq ¥ Gpp�8, rsq, r P R.

Similar considerations yield

lim sup
n

P panpTn � bnq ¤ rq ¤ Gpp�8, rsq, r P R

which completes our proof.
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5 The Gumbel test under the alternative of an additive jump
component

In the previous section we established that our test statistics Tn appropriately normed converges for
quite general continuous stochastic volatility models to a Gumbel distribution. Now our aim is to de-
rive the behaviour of the normed test statistics when a jump component is added to our continuous
semimartingale model. We will show that when positive jumps are present the normed test statistics
converges to infinity at a certain rate, which makes it possible to distinguish between purely continuous
models and models with jumps. By the construction of our test statistics in terms of maxima we test for
positive jumps. However, negative jumps may be covered analogously by considering �Y instead of Y .
Note that in contrast to other jump test based on power and bipower variation the Gumbel test makes it
possible to test separately for positive and negative jumps, which might be of considerable interest e.g.
for prediction of turbulent periods possibly leading to financial crisis.

We start with a general result for an additive jump semimartingle which leads to a rate of
?
n.

Theorem 5.1. Let pXt,FtqtPr0,1s be a semimartingale and

Λ � tω P Ω : Dt0 P p0, 1s : Xt0pωq �Xt0�pωq ¡ 0u. (42)

For γ   1
2 , we obtain

n�γan2pTn � bn2q Ñ 8 P -stoch. on Λ, (43)

where an, bn are defined in (37), and Tn is defined in (38) with pqYtqt replaced by pXtqt.

Proof. First we have to show that Λ P F . Choose a sequence of stopping times pTnqnPN that exhausts
the jumps of X, cf. Proposition 1.32 in Jacod and Shiryaev [7], then

Λ �
¤

n,mPN

"
∆XTn

¡ 1

m

*
P F1 � F .

Define two functions k, j : p0, 1s Ñ t0, . . . , n� 1u by

kptq � prnts� 1q, jptq � prn2ts� 1q � nMptq, t P p0, 1s
and set as usual

∆Xk,j � Xtk,j�
1
n2
�Xtk,j

, 0 ¤ k, j   n.

Choose pω P Λ and let η P p0, 1s such that ∆Xηppωq ¡ 0. Then we have

lim inf
n

max
k,j

∆Xk,jppωq ¥ lim inf
n

∆Xkpηq,jpηqppωq � ∆Xηppωq ¡ 0, (44)

where the equality sign above holds since the paths of pXtqtPr0,1s are càdlàg.

Next we have establish for arbitrary L P R and γ   1
2 the convergence

P ptn�γan2pTn � bn2q ¤ Lu X Λq Ñ 0, nÑ8.
We will prove this by contradiction, hence we assume the existence of a subsequence pnrqr such that

P ptn�γr an2
r
pTnr

� bn2
r
q ¤ Lu X Λq Ñ η ¡ 0, r Ñ8. (45)

By
n�1̧

k�0

n�1̧

j�0

p∆Xk,jq2 Ñ rX,Xs1, nÑ8, P -stoch.,

cf. Chapter 1, Theorem 4.47 in Jacod and Shiryaev [7], there exists a subsequence pmlql of pnrqr such
that

ml�1¸
k�0

ml�1¸
j�0

p∆Xk,jq2 Ñ rX,Xs1, sÑ8, P -a.s.
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Together with
|∆Xk,j ||∆Xk,j�1| ¤ p∆Xk,jq2 � p∆Xk,j�1q2

this yields

P

�
lim sup

l

ml�1¸
k�0

ml�2¸
j�0

|∆Xk,j ||∆Xk,j�1|   8
�
� 1. (46)

Next consider the inclusions

lim sup
l

tml
�γam2

l
pTml

� bm2
l
q ¤ Lu X Λ

� lim sup
l

#
Tml

¤ Lml
γ

am2
l

� bm2
l

+
X Λ

� lim sup
l

tTml
¤ ml

γu X Λ

� lim sup
l

#?
2
?
ml � 1?
π

max
k,j

∆Xk,j

p°ml�2
i�0 |∆Xk,i||∆Xk,i�1|q 1

2

¤ ml
γ

+
X Λ

� lim sup
l

#
max
k,j

∆Xk,j

p°ml�2
i�0 |∆Xk,i||∆Xk,i�1|q 1

2

¤ 2ml
γ� 1

2

+
X Λ

� lim sup
l

$&%max
k,j

∆Xk,j ¤ 2ml
γ� 1

2

�
ml�1¸
k�0

ml�2¸
j�0

|∆Xk,j ||∆Xk,j�1|
� 1

2

,.-X Λ. (47)

The P -measure of the set in (47) is zero by (44) and (46) since γ � 1
2   0. Hence the above inclusions

together with Fatou’s Lemma yield

lim sup
l

P ptml
�γam2

l
pTml

� bm2
l
q ¤ Lu X Λq ¤ P plim sup

l
tml

�γaml
pTml

� bml
q ¤ Lu X Λq � 0,

which contradicts (45), since pmlql � pnrqr.

Note that (46) is the crucial property we need for the proof of the above theorem. This is a quite general
assumption, which is for example fulfilled by a semimartingale as above. It is a natural question, whether
we can improve the convergence rate

?
n in (43) under stronger assumptions. Assume for this purpose

that we observe a process rY � qY � J

instead of a general semimartingale X. Here J denotes an additive, finite activity jump process. Then
we get the heuristics

n
n�2̧

j�0

|∆rYk,j ||∆rYk,j�1| � n
n�2̧

j�0

|∆qYk,j � Jk,j ||∆qYk,j�1 � Jk,j�1| � OP p1q. (48)

Note that each pair of neighboring increments possesses at most one jump, if the increment size is small
enough, i.e. n is large enough. This is due to the fact that we have only finite many jumps in each path.
Using (48) we get easily the heuristics

nmax
k,j

∆rYk,jrσk � OP pnq (49)

with the corresponding notation prσkq0¤k n for the volatility. Hence (43) should hold for each γ   1
instead of γ   1

2 , i.e. we have the convergence rate n.

Note that, on the other hand, for the quadratic variation estimator

rσ2
k � n

n�1̧

j�0

p∆rYk,jq2,
15



we have the heuristic rσ2
k � n

n�1̧

j�0

p∆qYk,j �∆Jk,jq2 � OP pnq,

so that only a convergence rate of
?
n can be expected, compare (49). Observe that the proof of Theorem

5.1 also works with the quadratic variation estimator. Thus, the above heuristic implies that Theorem
5.1 with the quadratic variation estimator yields the optimal convergence rate

?
n, despite we have in

general infinite activity jump paths.

The following proposition makes the above heuristic rigorous.

Proposition 5.2. Let Assumptions 2.2 hold. Furthermore, assume that there are two families pHlqlPN
and pRlqlPN of random variables on the same probability space with

Rlpωq Ò 8, Rlpωq ¡ 0, Rlpωq   Rl�1pωq, l P N, ω P Ω

and pHlq arbitrary and define a finite activity, pure jump process

Jt �
8̧

l�1

Hl 1rRl,8qptq, 0 ¤ t ¤ 1.

Set rYt � qYt � Jt, 0 ¤ t ¤ 1

and define pTnq as a function of rY . For any fixed γ   1 we obtain

n�γan2pTnpωq � bn2q Ñ 8, nÑ8, ω P ΛXN (50)

for a negligible set N , where Λ is defined in (42).

Proof. The proof is omitted since the arguments are straightforward.

6 Simulation results

In this section, the performance of the test statistics (38) concerning a jump detection test is investigated
using numerical simulations. The resulting test is called the Gumbel test. Furthermore, the latter test is
compared with a test developed by Barndorff-Nielsen and Shephard in [2], and both tests are applied to
a real dataset. For this purpose, we implemented the underlying processes and tests in MATLAB.

Note, that the difference between the distribution of our scaled test statistics (38) and the Gumbel
distribution results from two different error sources. First, the difference

n
∆qYk,jqσk � Zk,j , 0 ¤ k, j   n, (51)

second, the difference between the Gumbel distribution G and the distribution of

Mn � an2pmax
k,j

Zk,j � bn2q. (52)

Concerning (51), consider the following Figure 1. Here, we have chosen the step size n � 50 and the
volatility process

σt � 1� |WH
t |, 0 ¤ t ¤ 1

where WH denotes a fractional Brownian motion with Hurst parameter H. Further, we set the drift
term d � 0 and assume that all processes are independent of each other. Figure 1 presents the empirical
cumulative distribution functions of M50 and our scaled test statistics T50 in (38) with H � 0.05, 0.2, 0.5
and 0.95. The figure clearly shows that the difference depends on the Hurst parameter. It is remarkable
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Figure 1: Approximation to the distribution of M50

that there is no improvement between H � 0.5 and H � 0.95. This attitude is explained by the restriction
γ   1

2 ^α in Proposition 4.1 together with the well known fact that every path of a fractional Brownian
motion with Hurst parameter H is Hölder continuous with every Hölder exponent 0   h   H.

Concerning (52), consider the next Figure 2. This figure demonstrates the weak convergence of Mn to
the Gumbel distribution G if n tends to infinity. It is well-known that this is a rather slow convergence
of logarithmic rate. Hence, it is no surprise that there is not much improvement between n � 50 and
n � 1000. However, if we consider the two error sources in this setting, the error in (51), visualized
by Figure 1, is the crucial one. Therefore, it is reasonable to use for our following statistical tests the
quantiles of the Gumbel distribution rather than the empirical quantiles of the Mn distributions.

The fractional Brownian motions were simulated by use of Cholesky decompositions and the above
empirical cumulative distribution functions were calculated based on 2000 simulated paths.

For the rest of this section, we assume that the drift term is set zero and a classical Ornstein-Uhlenbeck
process is chosen as the volatility process with initial value a � 1, mean reversion µ � 1, mean reversion
speed θ � 0.5 and diffusion σ � 0.2 which is bounded away from zero, i.e.

dZt � θpµ� Ztq dt� σ dBt, Z0 � a, 0 ¤ t ¤ 1, (53)

σt � maxp0.1, Ztq. (54)

Here, B denotes a Brownian motion that is independent of W , i.e. σ and W are independent.

For what follows, the approximation to the Gumbel distribution in Theorem 4.2 is investigated. For
this purpose, in Figure 3, the grid sizes 1

n2 , n � 20, 50, 200, 1000 are used and the respective empirical
distribution functions using 10000 paths for each n are calculated.
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Figure 2: Convergence of the scaled maximum of i.i.d. N(0,1) random variables
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Figure 3: Approximation to the Gumbel distribution
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Next, set n � 50 and consider the additional jump process

Jt �
Nţ

i�0

Ui, 0 ¤ t ¤ 1 (55)

where N,U, σ,W are independent, N is a Poisson process with intensity λ and pUiqi are i.i.d. Γ distributed
random variables with shape parameter k and scale parameter θ, i.e. J is a compound Poisson process.
Figure 4 presents four simulation plots with the respective settings λ � 5, k � 10L2 and θ � 1

500L ,
L � 1, 2, 3, 4. This results in

EpUiq � L

50
, VarpUiq � 1

10 � 502
.

Note that by the Chebyshev inequality

P

�����Ui � L

50

���� ¥ 1

50



¤ 1

10

and that, in the case of a constant, deterministic volatility σ � σ0 ¡ 0 and no external jumps pJ � 0q,
the process Yt � σ0Wt is obtained. In this case, it follows that

E|Y i�1

n2
� Y i

n2
| � σ0E|W 1

n2
| � σ0

?
2

n
?
π
� σ0

?
2?
π

� 1

50
.

Hence, the jumps have a critical size in the sense that it is not clear whether they can be detected or
not. (recall a � 1 in (53))
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Figure 4: Divergence from the Gumbel distribution

Next, the test proposed by Barndorff-Nielsen and Shephard in [2] is compared with the Gumbel test.
Barndorff-Nielsen and Shephard use the statistic

Sn � µ�2Y
r1,1s
n � Y

r2s
nb

ϑµ�4Y
r1,1,1,1s
n
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with

µ �
c

2

π
, ϑ � π2

4
� π � 5

and

Y r2s
n �

n2�1¸
i�0

|∆Yi|2, ∆Yi � Y i�1

n2
� Y i

n
,

Y r1,1s
n �

n2�2¸
i�0

|∆Yi||∆Yi�1|,

Y r1,1,1,1s
n �

n2�4¸
i�0

|∆Yi||∆Yi�1||∆Yi�2||∆Yi�3|.

By Theorem 1 in [2] we obtain

Sn
dÑ Np0, 1q, nÑ8

under certain conditions on σ which are fulfilled by the choice in (54) and

Sn Ñ �8, nÑ8 P -stoch.,

if there is an additional external jump term J as in (55). Define the null hypothesis

H0 : there are no jumps

and the alternative hypothesis

H1 : there are jumps (i.e. J in (55) is added).

We have the two errors types

Type I error : rejecting a true null hypothesis,

Type II error : failing to reject a false null hypothesis

and decide that a path pω possesses a jump on the significance level α P p0, 1q, iff

Gpan2pTnppωq � bn2qq ¥ 1� α resp. φpSnppωqq ¤ α (56)

where G denotes the distribution function of the Gumbel distribution and φ of the standard normal
distribution.

Figure 5 is based on a setting with the gridsize 1
n2 , n � 50, the volatility process in (54) and λ � 10, L � 4

for the jump process. Here, 2000 sample paths for each α � i
1000 , i � 0, 1, . . . , 100 were simulated and it

is verified that the Gumbel test is more sensitive than the test proposed in [2].

In order to check whether the Gumbel test has a larger power, both tests were recalibrated so that the
type I error is exactly α for both tests. Hence G and φ are replaced by Gn and φn in (56) with

Gnpxq � P pan2pTn � bn2q ¤ xq, φnpxq � P pSn ¤ xq, x P R pn � 50q.

Gn and φn were approximated with the empirical distribution functions based on 10000 paths. Figure
6 shows the type I error calculated with 2000 paths per α. Observe the desired approximation to the
diagonal.

As mentioned above, the power of the tests was calculated. It is defined by

powerα � 1� type II errorα

with Gn resp. φn. For this purpose, we set λ � 2, 15 and L � 4.
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Figure 5: Error types
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Figure 6: Recalibrated type I error
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Hence, in this setting the Gumbel test clearly has more power than the test proposed by Barndorff-Nielsen
and Shephard in [2].

Finally, both tests are applied to a real dataset, i.e. the world stock indices constructed according to the
best performing portfolio in Platen et al. [6, 13] of the USA and Ireland with daily observations. With

rT � rTn � an2pTn � bn2q

the results
Gp rT up

Irelandq � 1, Gp rT down
Irelandq � 1, Gp rT up

USAq � 0.99268, Gp rT down
USA q � 1

and
φpSIrelandq � 0, φpSUSAq � 0.81401

are achieved. Note that the Gumbel test not only indicates a jump but also states the position and
direction of the jump, i.e. whether we have an upwards or downwards jump. In order to detect downwards
jumps, we simply have to switch from Y to �Y and the maximum in the Gumbel test statistic turns to
a minimum, this, of course, is a big advantage over the Barndorff-Nielsen and Shephard test.

The latter results indicate the following: Using the Barndorff-Nielsen and Shephard test the world stock
index for Ireland possesses a jump but that of the USA does not. Using the Gumbel test, the index for
Ireland possesses an upwards and downwards jump and that for the USA has a downwards jump for sure
and an upwards jump with high probability. The different results for the indices of the two countries are
not surprising considering that the Gumbel test is more sensitive as discussed above.
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the world stock index data set.

A Auxiliary results

In what follows some rather elementary results concerning i.i.d. standard normal distributed random
variables are stated. All proofs are omitted but can be found, for example, in Palmes [12].

Proposition A.1. Let pHiqiPN be a family of i.i.d. random variables with the property

Dr ¡ 0 : EetH1   8, t P p�r, rq.

Then we have for every N P N

E

��� 1?
n

ņ

i�1

pHi � EH1q
�2N

��Ñ ErNp0,Var H1qs2N , nÑ8 (57)

which implies

E

�
1

n

ņ

i�1

Hi � EH1

�2N

� O

�
1

nN



, nÑ8. (58)

Corollary A.2. Let pZiqiPN be a family of Np0, 1q i.i.d. random variables and N P N. Then there is a
constant C � CpNq ¡ 0 such that

P

������ π

2pn� 1q
n�2̧

i�0

|Zi||Zi�1| � 1

����� ¥ ε

�
¤ C

ε2NnN
(59)

holds for every n P N and ε ¡ 0.
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Proposition A.3. Let pZiqiPN be a family of i.i.d. random variables with Zi � Np0, 1q and N P N. Then
we have

E

�
max

1¤i¤n
|Zi|


N
¤ 2N plog nqN

2 � 2N ! (60)

for all sufficient large n P N.

Finally, let us state an easy, but useful lemma.

Lemma A.4. Fix a1, . . . , an, b1, . . . , bn P R. Then, the following inequalities hold:

(i)
minpb1, . . . , bnq ¤ maxpa1 � b1, . . . , an � bnq �maxpa1, . . . , anq ¤ maxpb1, . . . , bnq

(ii)
|maxpa1 � b1, . . . , an � bnq �maxpa1, . . . , anq| ¤ maxp|b1|, . . . , |bn|q.
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