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Abstract
Multiagent systems are populated with autonomous computing entities called
agents which pro-actively pursue their goals. The design of such systems is an
active field within artificial intelligence research with one objective being
flexible and adaptive agents in dynamic and inaccessible environments. An
agent’s decision-making and finally its success in achieving its goals crucially
depends on the agent’s information about its environment and the sharing of
information with other agents in the multiagent system. For this and other
reasons, an agent’s information is a valuable asset and thus the agent is often
interested in the confidentiality of parts of this information. From research in
computer security it is well-known that confidentiality is not only achieved by
the agent’s control of access to its data, but by its control of the flow of
information when processing the data during the interaction with other agents.
This thesis investigates how to specify and enforce the confidentiality interests
of an agent D while it reacts to iterated query, revision and update requests
from another agent A for the purpose of information sharing.
First, we will enable the agent D to specify in a dedicated confidentiality
policy that parts of its previous or current belief about its environment should
be hidden from the other requesting agent A. To formalize the requirement of
hiding belief, we will in particular postulate agent A’s capabilities for
reasoning about D’s belief and about D’s processing of information to form its
belief. Then, we will relate the requirements imposed by a confidentiality
policy to others in the research of information flow control and inference
control in computer security.
Second, we will enable the agent D to enforce its confidentiality aims as
expressed by its policy by refusing requests from A at a potential violation of
its policy. A crucial part of the enforcement is D’s simulation of A’s
postulated reasoning about D’s belief and the change of this belief. In this
thesis, we consider two particular operators of belief change: an update
operator for a simple logic-oriented database model and a revision operator for
D’s assertions about its environment that yield the agent’s belief after its
nonmonotonic reasoning. To prove the effectiveness of D’s means of
enforcement, we study necessary properties of D’s simulation of A and then
based on these properties show that D’s enforcement is effective according to
the formal requirements of its policy.
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Chapter 1

Introduction

1.1 Confidentiality in Multiagent Systems

In the design and maintenance of IT systems today there are various
challenges like distribution of computing entities, rapid change of processes,
more and more complexity of the overall system and large amounts of data.
As a solution to these challenges the agent paradigm emerged in software
engineering. In simple terms, an intelligent agent is an autonomous computing
entity that interacts with its environment, in particular with other agents, and
is directed by internal goals [95, 94]. The agent’s autonomy mainly
distinguishes it from other computing entities such as objects in the
object-oriented paradigm. An agent’s ability to pro-actively pursue its goals
and, at the same time, to react to changes in its environment with autonomous
decision-making makes it appropriate to face the above mentioned challenges.
Moreover, in a multiagent system, agents may collaborate to achieve a joint
goal, for example, by negotiation. In conclusion, the agent paradigm helps to
reduce the complexity in the design of a computing entity in an inaccessible,
dynamic environment [94] where that entity neither is able to obtain complete,
accurate and up-to-date information about the environment nor has total
control over the changes in the environment. Moreover, the agent paradigm
contributes to increasing the flexibility and scalability of the design. Research
has widely investigated the application of this paradigm in many sectors such
as the business sector and the health care sector, cf. [68, 62, 39, 5, 97] as a
small selection. Examples of application areas are flexible business process

1
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management, supply chain management in particular and electronic commerce.

In many applications, information is a most valuable asset. It might be a
business factor with costly acquisition or personal information under the
protection of law. Consequently, the dissemination of information usually is
restricted by the interests of its owner. For example, a company would not
want to leak details about its product proposals under development to its
competitors. A patient in a hospital would neither want its health report be
read by others than the responsible hospital staff. These interests are
commonly summarized by the security interest of confidentiality of
information. Motivated by such interests, there is a long line of research in
computer security that deals with the control of the flow of information or the
control of access to data. The focus of this thesis is to apply and to extend
several results of this research to design confidentiality preserving multiagent
systems. Mainly, those results come from the areas of database security and
information flow control.

In database security it is well-known that preventing only direct access to
sensitive data items might not suffice to ensure confidentiality of the
information represented by these data. Rather, for example, after accessing
non-protected data items by query requests, a database user might be able to
deduce sensitive information from the retrieved data. Moreover, such a
deduction might exploit the user’s knowledge of database constraints and
further a priori knowledge. The challenge to prevent such deductions is known
as the inference problem [49, 17]. Controlled Interaction Execution [16, 18]
(CIE) presents solutions to the inference problem for query-answering and
updates in logic-oriented database systems.
Another security interest in database security, conflicting with confidentiality,
is the availability of information [35]. A database user should be provided with
the information needed within his duties.

Database systems and multiagent systems by design show differences that
make the application of database security to confidentiality in multiagent
systems more challenging. Database security research often assumes data
models like the relational data model whose theory bases on classical logic
such as first order logic. Moreover, interaction with database systems follows
the client-server paradigm.
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In contrast, to achieve its goals, an intelligent agent has to make decisions on
the basis of incomplete information about its environment. To support its
decision making, usually, the agent processes this information with some
non-classical logic such as nonmonotonic logic which results in the agent’s
belief about its environment. Further, an agent’s autonomy contrasts with the
client-server paradigm of database systems: A database offers a predefined
range of services under preconditions like sufficient authorization of a database
user, without any autonomy on the part of the database.

In [24], there is a first proposal to benefit from the results in database security
research in the specification and construction of a BDI-agent enforcing its
confidentiality aims in a multiagent system. The BDI-agent model describes
an agent’s process of decision making with its beliefs, desires and
intentions [95, 94]. In this agent model, the agent’s belief and its ability to
share information with other agents is a core functionality of an intelligent
agent.

In this thesis, we will focus on this core functionality. In particular, we will
focus on epistemic agents. Epistemic agents have belief about their
environment, themselves and other agents and are capable to change their
belief upon their perceptions. The agent’s belief are propositions that the
agent accepts to hold in its environment or about some agent. Apart from
epistemic capabilities, an intelligent agent is supposed to have further
capabilities such as reactivity, pro-activity and social ability [94]. These
capabilities are not studied further in this thesis.

With our focus on epistemic agents, we mainly consider the following aspects
of a multiagent system under confidentiality requirements.
First, an agent’s epistemic capabilities base on the representation of the
agent’s belief and its processing of this belief by belief change operators upon
receiving information from another agent. In this thesis, we consider the belief
change operators of update and revision.
Second, in the interaction with other agents an agent is principally motivated
to share parts of its belief with the others (for example, to achieve joint goals),
but at the same time the agent usually aims to hide other sensitive parts of its
belief from other agents as an interest in the confidentiality of these belief.
Third, we investigate a scenario of two interacting epistemic agents only whose
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interaction nevertheless may be viewed as a private conversation in a group of
more than two agents. More specifically, we consider that one agent reacts to
the requests of another agent while at the same time the reacting agent aims
to enforce its confidentiality interests towards the requester.

Our study of confidentiality in multiagent systems under these three aspects
partly starts by making use of results in database security research. However,
whereas a major contribution of this thesis is confidentiality under belief
change, in database security research, there is little work on enforcing
confidentiality towards a database user who may update a database beside
issuing queries to that database. Beyond database security research, we will
consider the enforcement of the confidentiality interests of an agent that forms
its belief by nonmonotonic reasoning [38].

Moreover, our study of confidentiality in multiagent systems under these three
aspects bases on further research in computer security. In computer security
research it is well-known that apart from explicitly communicated information
a system may leak information if the system executes some publicly known
algorithm and discloses parts of its output. This issue is dealt with in research
within the field of information flow control, cf. [15, 79, 4] as examples. It must
be accounted for in the formal specification of an agent’s confidentiality
interests. Information flow control in multiagent systems is made difficult by
the complexity of the data structures for the representation of an agent’s belief
and the operators processing these data structures (in this thesis, the belief
operators of update and revision). The specification and control of the
information flow within an intelligent agent with its full functionality, for
example, including decision-making with its desires, intentions and beliefs and
planning its actions, is even more involved. But the consideration of the full
functionality under confidentiality requirements is left for future work beyond
this thesis. Rather, in this thesis we lay the formal foundation for specifying
an (abstract) agent’s confidentiality aims towards other agents, basing and
relating to research on information flow control. Then, we demonstrate how to
enforce these aims in two exemplary implementations of an epistemic agent.

We will give a detailed overview of the contributions of this thesis in the
following two sections.



5

1.2 Research Questions

We illustrate the research questions addressed in this thesis with a running
example of negotiating agents in a supply chain, cf. [97]. The scenario is
motivated by the literature which suggests the use of agents for flexible
business processes in a complex and changing business environment [68],
including proposals in industrial projects [39]. In this context, informational
resources are seen as a business factor whose acquisition might be costly and
whose disclosure might cause severe loss in profit [5].
We roughly outline the scenario in the following. A manufacturer has a
portfolio with different kinds of products and runs its own product
development department. Each project undergoes a feasibility study which
assesses whether the proposed (further) development of a product is realizable.
The manufacturer may have different confidentiality interests:

• While the manufacturer’s product portfolio is well known to everybody,
the manufacturer does not want its competitors to know which products
or even which kind of products in the portfolio have been proposed for
(further) development.

• If proposals had already been leaked to competitors, the manufacturer
still would not want to disclose a positive result of the respective
feasibility study.

• In general, the manufacturer does not even trust possible part suppliers
not to leak this sensitive information to the manufacturer’s competitors.
On the contrary, the manufacturer suspects those suppliers to
self-interestedly reveal this information in order to increase the demand
in their parts on the market.

• Moreover, the manufacturer does not want any supplier to know whether
he has a contract for deployment of parts with another supplier.

Conflicting with the confidentiality interests, the manufacturer needs to share
information with possible part suppliers. First, the manufacturer will make a
request for proposal including the requirement specification of the parts. In
turn, suppliers will give their offers with the technical specification of the parts.
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Afterwards, there may be further negotiation between the two parties refining
the parts’ specification and maybe finally ending in a contract between the
manufacturer and a part supplier.

In this scenario, consider a dialog between two intelligent agents, agent D on
behalf of the manufacturer and agent A on behalf of part supplier #1. The
dialog is a part of the negotiation of supply contracts between the
manufacturer and part supplier #1. Moreover, during this dialog, agent D is
responsible for defending the manufacturer’s confidentiality interests towards
agent A as a potential attacker of these interests. Beforehand, another supplier
#2 and the manufacturer agreed on the deployment of part #1 from supplier
#2.

1. Agent A inquires of D whether the manufacture’s product proposal is
realizable if supplier #1 can supply part #2.

2. Agent D replies with yes.

3. Agent A informs agent D that supplier #1 can supply part #2.

4. Agent D notifies A that it takes into account the received information.

5. Agent A informs agent D that part #1 from supplier #2 and part #2

from supplier #1 are incompatible.

6. Agent D notifies A that it takes into account the received information.

7. Agent A inquires of D whether the product proposal is realizable.

8. Agent D replies with no.

9. Agent A inquires of D whether the manufacturer’s product proposal
would be realizable if the incompatibility between part #1 from supplier
#2 and part #2 from supplier #1 was resolved.

10. Agent D replies with yes.

11. Agent A informs agent D that the incompatibility has been resolved.

12. Agent D notifies A that it takes into account the received information.
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Intuitively, although agent D neither explicitly talked about the positive
realizability of the proposal nor about the previous agreement with another
supplier, it obviously failed in the responsibility for the manufacturer’s
confidentiality interests. For on an intuitive level we understand that agent
D’s replies have revealed several sensitive pieces of information to agent A.
For example, agent A might combine D’s positive answer to the query in
step 1 with D’s confirmation in step 4 and infer that D considers the
manufacturer’s product proposal realizable in step 4. Basing on this inference,
agent A might even infer together with D’s answer in step 8 that the
manufacturer deploys part #1 from supplier #2 in the proposed product.

This small scenario should make clear the motivation and challenges behind
the following research questions that we will treat in this thesis.

1. How could agent D effectively control its reactions to query requests and
revision requests from agent A (that is, being informed by A about the
current situation)? (Steps 1 to 8 in the dialog)

2. How could agent D effectively control its reactions to query requests and
update requests from agent A (that is, being informed by A about a
change in the current situation)? (Steps 9 to 12 in the dialog)

3. How could agent D model and compute agent A’s inferences about agent
D’s processing of the information received from A? (Here, the processing
is either by revision or update operators)

4. How should agent D formally declare its confidentiality aims towards a
rational attacker A so that the effectiveness of its control mechanisms
could be formally proven?

5. How far do D’s control mechanisms agree with agent D’s further goal to
cooperatively share information with agent A?

Although we will first treat research questions 1 and 2 in separation, we will
further discuss the design of a confidentiality-preserving epistemic agent that
processes both update and revision requests and outline the challenges in this
design.
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1.3 Outline of Thesis

This thesis is divided into two parts: Part I covers the formal specification of
confidentiality while Part II covers the implementation of an agent effectively
enforcing confidentiality according to this specification and the verification of
the effectiveness of this enforcement.

In Part I, the main objective is to provide an epistemic agent with means to
declare its confidentiality interests in a confidentiality policy with a formal
semantics. Hence, Part I presents a solution to research question 4 raised in
the previous section. Actually, research on information flow control and
database security is full of formalisms for the specification of confidentiality
interests. In this thesis, we have chosen the framework of Runs & Systems [48]
for the specification of confidentiality basing on the work [58] by Halpern and
O’Neill with various definitions of secrecy. Our aim is to adapt their
definitions of secrecy according to the requirements of an epistemic agent with
confidentiality interests. At the same time, our aim is to relate the adapted
definitions to alternative definitions in the literature. We proceed as follows.
In Chapter 2, we survey related work on the specification of confidentiality
requirements of a computing system that interacts with a potential attacker
against these requirements. Our emphasis is on possibilistic approaches which
define confidentiality as an indistinguishability property, or in other terms, as
a confinement of the attacker’s knowledge about the system. Especially, we
detail the framework [58] by Halpern and O’Neill which we use for our own
specification in this thesis.
Chapter 3 generalizes Halpern and O’Neill’s secrecy definitions in Runs &
Systems to possibility policies and their semantics of policy-based secrecy.
Policy-based secrecy is shown to be more expressive than all of Halpern and
O’Neill’s possibilistic secrecy definitions. The richer expressiveness provides an
epistemic agent with suitable means to declare its confidentiality interests as
we investigate in Chapter 4. Moreover, we discuss how policy-based secrecy
may be related to other confidentiality requirements in the literature.
In Chapter 4, following up the informal dialog of two agents in Section 1.2, we
model a scenario of two epistemic agents that share information from the
perspective of security engineering in the Runs & Systems framework: The
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functionality of the agent with confidentiality interests and the capabilities of
the other agent attacking these interests are postulated and represented in this
model. In terms of this model, we define the semantics of an agent’s
confidentiality policy. To put this semantics into the context of other
definitions on information flow confinement, we show that, when translating
confidentiality policies to a single possibility policy, confidentiality can be
expressed by policy-based secrecy.
In Chapter 5, we summarize our contributions to the formal specification of an
epistemic agent’s confidentiality aims and discuss open problems and
directions for future work.

Part II details the construction of a defending epistemic agent enforcing its
confidentiality aims declared within the framework of Part I. We give two
examples of the construction each with a different implementation of the
agent’s belief component which represents the agent’s information about its
environment. The first implementation is a simple logic-oriented database
model so that the construction of the agent may follow and benefit from
results in database security. The second implementation bases the agent’s
belief on nonmonotonic reasoning and is a standard in artificial intelligence for
intelligent agents in inaccessible environments.
In the construction, we follow the line of work of Controlled Interaction
Execution (CIE) [16, 18]: The defending agent controls its interaction with the
other attacking agent by means of a control function which simulates the
attacker’s reasoning about the defender’s belief. The attacker’s reasoning has
been postulated by the model of Part I while now Part II focuses on the
simulation of the postulated reasoning. The essential differences between
postulated and simulated reasoning are as follows. On the one hand, the
postulated reasoning is about the multiagent system specified by abstract
states and executions on these states and is used by the security engineer for
the specification of confidentiality requirements and their verification. On the
other hand, the simulated reasoning is usually formalized in a known logic or
one of its fragments and is used by the defending agent for computing the
attacker’s inferences at runtime. Overall, Part II covers all research questions
from the previous section but question 4. More specifically, in Part II we
proceed as follows.



10

In Chapter 6, we detail the implementation of the defending agent’s belief
component and the agents’ interaction in the two examples, yet without the
control functions for enforcing confidentiality. Further, we set the two
implementations into the context of related work from the database and
artificial intelligence research communities, with an emphasis on work that
suggests how to combine or enhance the two implementations. Based on the
related work, we outline an implementation of the agent that combines and
extends the functionality of the two proposed implementations for future work.
Chapter 7 bases on the first exemplary implementation: The defending agent
employs a complete propositional database instance with integrity constraints
and reacts to view update transaction requests and queries from the attacking
agent. In particular, Chapter 7 presents a solution to research questions 2
and 3 from the previous section. The chapter focuses on four aspects:

• first, a solution to the conflict between integrity and confidentiality
discussed in database security research;

• second, the enforcement of the confidentiality of the fact that the agent
has previously believed a formula (continuous confidentiality of
Chapter 4);

• third, the correctness of the simulation of the attacker’s reasoning
postulated in Chapter 4;

• fourth, the cooperativeness of the defending agent in sharing information
with the other agent under confidentiality requirements.

With the latter aspect, we address research question 5 raised in the previous
section. The chapter completes the construction of the defending agent with
control functions for iterated query and view update transaction requests and
a proof of their effectiveness in enforcing confidentiality.
Chapter 8 bases on the second exemplary implementation: The defending
agent reasons from incomplete information (called current assertions) about its
environment with a nonmonotonic consequence relation and, this way, forms
its belief about the environment. The defending agent may acquire additional
information through belief revision requests from the attacker. In artificial
intelligence research, nonmonotonic consequence relations model rational
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reasoning from incomplete information. In contrast to classical consequence
relations such as propositional entailment, nonmonotonic consequence relations
might withdraw a conclusion in the presence of additional assertions.
Altogether, Chapter 8 presents a solution to research questions 1 and 3 from
the previous section where research question 3 is the more intricate one. Due
to the complexity of the second implementation, we will not investigate
research question 5 in depth, but only discuss possible approaches to this
question.
Addressing research question 3, the chapter elaborates on the simulation of the
attacker’s postulated reasoning about the defender’s current belief. The main
challenge for the simulation and its computation is the situation that the
defending agent might have hidden parts of its current assertions and its
nonmonotonic consequence relation from the attacking agent in order to
protect its confidential belief. For the computation of the simulation, we define
“allowance properties” of an axiomatization of a class of nonmonotonic
consequence relations. If the defending agent’s nonmonotonic reasoning is an
instance of such a class, then the attacker’s reasoning about the defender’s
current belief may be computed by deduction with an “allowed axiomatization”
of this class.
The chapter completes the construction of the defending agent with control
functions for iterated query and revision requests and a proof of their
effectiveness in enforcing confidentiality.
Finally, in the conclusion of this thesis we highlight the relevance of our
contributions to the perspective of confidentiality preserving intelligent agents
in multiagent systems. For the reader’s convenience, we included the complete
lists of all definitions, figures, assumptions, propositions etc. and an index of
all relevant terms and symbols into the appendix of this thesis. Moreover, we
moved the complete proofs to the appendix. But we added sketches of proofs
at places where it contributes to a better understanding of our concepts.
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1.4 Contributions of Previously Published Work

All publications which contributed to this thesis are joint work with my
advisor Joachim Biskup. Being my advisor, he proofread my drafts, discussed
them with me and suggested to investigate further research questions during
our discussions. His particular contributions are made clear in the following
overview of the publications.

• In [28], we relate the confidentiality requirements in the work of
Controlled Interaction Execution (CIE) [16, 18] to secrecy in multiagent
systems in [58]. The publication for the first time elaborates and shows
the commonalities between research in information flow control and the
framework of CIE. Whereas the publication studies an agent system with
a database user and a database with a query interface, in this thesis we
extend this work and consider general systems of two interacting
epistemic agents with any type of request. The contributions of the
publication are partly included in Chapter 3 and Chapter 4.

• In [29], we study controlled processing of query requests and view
update transactions to propositional databases for preserving
confidentiality of information in the database. Our study especially
proposes a solution to the conflict between confidentiality and
maintenance of the integrity constraints of the database by refusing
transactions for the sake of confidentiality. Previously, in database
security research this conflict was supposed not to be solvable this way.

Since the complexity of information flow control for transactions is
considerably higher than for query processing, the question naturally
emerged whether the procedures restrict the availability of information
unnecessarily. Thus, we complemented our proposal of control
procedures with an analysis of the availability of information provided by
these procedures and of a possible improvement of the procedures under
that aspect.

The contributions of this publication are found in Chapter 7 while we
added detailed proofs and adapted the definition of the system to the
system model of Chapter 4. Moreover, we rewrote the parts on the
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simulation of the attacker A’s reasoning in order to thoroughly relate
that simulation to the postulated reasoning of Chapter 4. This way, we
intended to make clear the translation from postulated to simulated
reasoning and the essential requirements on the simulation.

The definition of local optimality for the availability analysis was
inspired by an earlier talk of my advisor Joachim Biskup on that issue.
The talk suggested properties of control functions for query processing
and a notion of optimality under the availability aspect for functions
with these properties.

• In [30], we investigate the situation of an agent D with nonmonotonic
reasoning that defends its confidentiality interests towards another agent
A while reacting to A’s query and belief revision requests. We present
control procedures for the defender D to effectively enforce
confidentiality and model the attacker A’s skeptical entailment about
D’s belief that is based on an ordinal conditional function [89] for
nonmonotonic reasoning.

The work is preliminary to the following publication in [31] which
significantly contributed to this thesis. The results of [30] are entirely
covered by those in [31]. But as a contribution of its own, their proofs as
sketched in [30] argue model-theoretically in terms of ordinal conditional
functions. Those proofs are not included in this thesis.

• The publication [31] extends the preliminary publication in [30] under
several respects. First of all, it includes the details of all proofs. Second,
while the work in [30] solely is based on the implementation of the
defending agent D’s reasoning by an ordinal conditional function [89], we
in the work of [31] offer the flexibility to take the fixed reasoning from
some class of reasoning that can be characterized by an axiomatization
satisfying dedicated “allowance properties”. Third, while the preliminary
publication does not detail an approach for computing the presented
skeptical entailment of the attacker A, we in [31] also indicate the
algorithms needed by the defender D.

The contributions of the publication are mainly found in Chapter 8 while
the security engineer’s model of the agent system in [31] is brought
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forward in Chapter 4.

My advisor Joachim Biskup suggested to elaborate and to motivate the
model of the agent system from the security engineering perspective and
thus substantially contributed to the security engineer’s model as it is
found in this thesis. Moreover, he put forward the idea to use proof
theory and axiomatizations instead of generic models such as plausibility
structures which led me to consider classes of consequences relations
characterized by axiomatizations with “allowance properties” for the
defender’s reasoning.

In this thesis, we further made some effort to present the results of all
publications in a unified agent model and to highlight their connections under
our leading research question of how to design a confidentiality preserving
epistemic agent.



Part I

Specifying Confidentiality

in Multiagent Systems

15
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The central theme of this thesis will be the task of the security engineer to
construct an interacting epistemic agent enforcing its confidentiality interests.
As anticipated, in this thesis we focus on information sharing between two
epistemic agents, cf. the example scenario in Section 1.2. An agent D reacts to
the requests of the other agent A while it has confidentiality interests towards
the requester. Thus, from the security engineering perspective, the requesting
agent A is seen as an attacker of the reacting agent D’s confidentiality
interests. Conversely, the reacting agent is seen as a defender of these interests.
In the following, we will outline the main activities of the security engineer for
constructing the reacting agent according to [15].
Above all, agent D must be provided with means to declare its confidentiality
interests. This declaration is understood (in terms of a formal semantics) as
requiring a well-defined confidentiality property . In this context, Biskup in [15,
Chapter 1.2] highlights that specifying security requirements involves
identifying the informational activities of the party with security interests as
well as the suspected threats to these interests. Further, all assumptions
underlying an analysis of the achievements with respect to these requirements
should attentively be laid open.
Adhering to these guidelines, the following three activities make up the first
part of the security engineering task, the formal specification.

1. The functionality of the agent D to be constructed by the security
engineer must be specified as a basis of security engineering (referring to
its “informational activities” and “assumptions”).

2. The computational means and informational resources of the potentially
attacking agent A must be postulated and modeled (referring to
“suspected threats” and “assumptions”).

3. The means to declare confidentiality interests in a dedicated policy
language and its semantics must be specified (referring to “security
requirements”).

Further, in Part II of this thesis, we will present the second part of the security
engineering task, the implementation and verification of the specification.
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Chapter 2

Information Flow Control

in the Literature

As a preliminary to the formal specification of an agent’s confidentiality
interests, in this chapter, we survey several approaches for specifying security
requirements by information flow control. These requirements have in common
that they confine the attacker’s information gain. In this thesis, confidentiality
properties will be specified in terms of what the attacker should not know
about the defender basing on the framework by Halpern and O’Neill surveyed
in Section 2.3. In the literature, properties based on the attacker’s knowledge
are also called possibilistic since the attacker knows some fact if it does not
consider possible that this fact is not true. The survey in this chapter should
provide the basis to relate the specification of confidentiality properties in this
thesis to the literature. We will do so in Chapter 3 and Chapter 4.

The chapter is organized as follows. Section 2.1 introduces the basic concepts
for the specification of information flow confinement which are common to a
variety of approaches in the literature. Section 2.2 to 2.3 summarize different
frameworks with a possibilistic model of the attacker’s information gain. The
framework of Section 2.3 on which we base the specification of confidentiality
properties in this thesis will be given a more detailed overview. The last two
sections should make clear the scope of this thesis by pointing to other aspects
in the specification of confidentiality properties to be considered in future
work. Namely, Section 2.4 introduces probabilistic models of the attacker’s
information gain. Section 2.5 surveys literature which specifies confidentiality
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properties syntactically in the language of some logic.

2.1 Modeling the Attacker’s Information Gain

The model of the attacker’s information gain is part of the security engineering
task of formal specification. Within such a model the security engineer
postulates the means of the attacker to acquire information about the
defender, including what the attacker a priori knows about the defender and
the system in general. In the following, we often refer to the defending agent
D as the responder and to the attacking agent A as the observer. This way,
we emphasize that D only reacts to A’s requests in the focused scenario of
Section 1.2, while in turn A observes D’s reactions.

The responder’s confidentiality interests usually are that the observer is not
able to gain particular pieces of information from its observations. This
requirement may reflect the need to protect business information, personal
information or organizational information. Complementing and often
conflicting confidentiality interests, an agent might have other security
interests such as anonymity (hiding the identity of an agent involved in some
event) and integrity “as unmodified content” [15] (preventing the distortion of
information), cf. [15] for an overview. Like confidentiality, the mentioned
interests can be expressed as requirements of information flow confinement,
cf. [57, 42] as examples.

As part of the formal specification of security requirements, here
confidentiality, the observer’s ability as a potential attacker to gain particular
pieces of information from its observations must be described in a
mathematical model. The literature proposes various such models of the
observer’s information gain and corresponding formal frameworks to specify
confidentiality requirements or other security requirements. According to the
survey by Biskup in [15, Chapter 4] these proposals have commonalities which
we will outline in the following.
First, Biskup points out that an observation is a syntactic object, for example
a string sent as a message, whereas confidentiality is concerned with semantic
objects represented by such syntactic objects, for example, events in the
system or values of program variables. Therefore, second, the observer
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interprets the syntactic object as some semantic object. Then, third, the
observer aims to gain information from the interpreted object about other
semantic objects accessible to the responder, exploiting a priori knowledge
about the responder. The a priori knowledge is expressed in a mathematical
model where the mathematical model includes the representation of semantic
objects. Biskup in [15] surveys three classes of simple models: algebra-oriented
models, logic-oriented models and probability-oriented models. Here, we select
examples of modeling the observer’s information gain and the respective
formal framework for specifying confidentiality requirements. As mentioned in
the introduction of this chapter, this selection includes possibilistic models of
information gain as alternatives to that of Section 2.3 which we will use.
Further, the selection includes models to be considered in future work.

2.2 Traces

In this section, the semantic objects the observer attempts to gain information
about are events occurring in the multiagent system. The activities of the
agents in the system generate a sequence of events called a trace of the system.
In the following, we summarize an overview of this model from [15,
Section 5.7]. Formally, a system is comprised of a set of events E including
input events I and output events O and a set of traces Sys ⊆ E∗. The set Sys
must be closed under prefixes, that is, all prefixes of each trace in Sys are
included in Sys. In the context of our scenario of one observer agent and one
responder agent, the observer may observe any event from the set1 V ⊆ E

(either as a sender or receiver of that event) whereas events in the set2 C ⊆ E

are not observable and may represent internal events of the responder. In more
complex scenarios, which events an agent might observe may be determined by
a classification of events and a clearance of that agent, cf. [15] for more details.

The observer’s a priori knowledge about the responder is represented in the
specification of the system in the components E, O, I and Sys which are
known to the observer. After observing the visible events of a trace t as the
sequence t |V , that is, the sequence of all visible events in the trace t, the

1V refers to visible events.
2C refers to confidential events.
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observer might gain further information about t by determining the pre-image

K(Sys, V, t) = {t′ ∈ Sys | t′ |V = t |V }. (2.1)

This way, the observer exploits its a priori knowledge Sys and its observation
t |V . The observer is not able to distinguish any trace in the pre-image of (2.1)
from the trace t after observing t |V . Thus, the greater the pre-image the less
information the observer gained about t.

Confidentiality and several other security requirements confine the information
gain of the observer. A well known requirement is non-interference which says
intuitively that the observer should be “virtually isolated” from the responder.
Non-interference thus requires that for the observed sequence t |V of events
from any trace t ∈ Sys the pre-image determined from the observed sequence
must contain the trace t |V . This means that the observer cannot distinguish
trace t from another trace t′ by observing the visible events of the two traces
where in t′ no confidential event from C occurs at all. The reader may find
examples of different requirements in [15, 58, 79].

In the following, we will outline the “modular assembly kit for security
properties” (MAKS) proposed by Mantel in [79] for the specification of
security requirements basing on this model of the observer’s information gain.
In MAKS several other requirements from the literature, including
non-interference, may be specified. In the context of multiagent systems,
Schairer in [86] uses MAKS for declaring an agent’s interest to hide the value
of some of its internal variables from another agent while exchanging messages.

In MAKS, the partition of events into visible events V , confidential events C
and neither N is called a view V = (V,N,C) of the observer. Above, we
considered such a partition, but only made explicit the sets V and C. Note
that a view essentially defines the occurrence of which events the observer is
allowed to infer (events in V ∪N) and the observer is not allowed to infer
(events in C).

A security requirement is defined by a view and a security predicate which
roughly spoken requires a system to contain perturbations of traces to hide the
occurrence or non-occurrence of events given the observer’s view. Mantel [79]
summarizes the idea behind security predicates as follows. “A security
predicate defines (. . . ) under which conditions can we say that no information
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about occurrences or non occurrences of events in C can be deduced from
observations of events in V . Hence, a security predicate can be understood as
a definition of what critical information flow means . . . .” Formally, a security
predicate is a function SPV : P (E∗)→ {true, false}. Further, security
predicates are “assembled” from basic security predicates that are closure
properties of a set of traces. A closure property is a property of a set of traces
such that each set of traces has a superset owning this property. Or in other
words [15], “Whenever some trace is in the set, some further traces of a specific
form are as well”. We will illustrate how to use basic security predicates to
assemble security requirements with the already introduced example of
non-interference. In [79, Chapter 4.2], Mantel shows that non-interference can
be expressed in MAKS with the basic security predicate RV (R for removal)
defined as follows. Let Tr ⊆ Sys be a set of traces in system Sys.

RV (Tr) = ∀t ∈ Tr ∃t′ ∈ Tr such that t′ |C= 〈〉 and t′ |V = t |V . (2.2)

Then, non-interference of system Sys given view V is equivalent to the
satisfaction of RV (Sys), cf. [79, Theorem 4.2.20]. The predicate requires that
for every trace t in a system there exists another trace t′ in the system that
the observer is not able to distinguish from t by observing the events in V and
in that all confidential events are removed. Mantel describes this requirement
from another perspective: Each trace t in the system may be perturbed by
removing all confidential events C from t and possibly adding some events from
the set N (neither confidential nor observable events); then, the trace obtained
by these modifications must be in the system. Other basic security predicates
vary in the required perturbations; Mantel gives various basic security
predicates in [79] and, based thereupon, assembles them to security predicates
that are equivalent to known security requirements from the literature. In
Section 3.5, we will relate confidentiality properties used in this thesis to the
trace-based model of the observer’s information gain using MAKS.

2.3 Runs & Systems

In this section, the observer’s information gain is described in terms of its
knowledge about the system. This way, security requirements may be
formulated as requirements of what the observer should not know.
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Halpern and O’Neill proposed Runs & Systems introduced by Fagin et al in
[48] as a general model for multiagent systems to formulate various notions of
secrecy [58]. A lot of security requirements in the trace-based model of
information gain from Section 2.2 have been reformulated in this framework by
Halpern and O’Neill in the same paper. In further work [57], Halpern and
O’Neill describe several notions of anonymity in the same framework. All
these examples show that the Runs & Systems framework is rather expressive
for specifying the confinement of information flow. Moreover, Runs & Systems
defines the semantics of a logic of knowledge and time by means of which the
confinement of information flow may be declared in a more convenient way, cf.
Section 2.5. Also, Halpern and O’Neill extended the basic framework to
probability and plausibility measures and corresponding notions of secrecy, cf.
Section 2.4.
In [58] the information accessible to an agent X is encoded in its local state sX
in the description of the system. A system is statically described by a global
state (se, sX1 , . . . , sXn), that is the collection of all agent’s local states
sX1 , . . . , sXn and optionally an environment state se, and dynamically as a set
of runs. A run r is a function from discrete time N0 to global states. Thus, a
run represents one way the system may evolve over time. A system R is a
collection of runs and the set PT (R ) := {(r,m) | r ∈ R ,m ∈ N0} is called the
points of system R . The current view of agent X on the system R at time m
in a run r is

KX (r,m) = {(r′,m′) ∈ PT (R ) | rX(m) = r′X(m′)}, (2.3)

where rX(m) denotes the local state of agent X in the global state r(m). In
words, the set KX (r,m) is the set of points in which agent X has the same
local state as in (r,m). As the agent’s local state represents the runtime
information accessible to the agent, the set KX (r,m) is called X-information
set and models agent X’s reasoning about the system at point (r,m) in the
following sense. In run r at time m agent X is not able to distinguish all
points in the set KX(r,m) by its runtime information in rX(m) whereas it rules
out that the system R is in any point from the set PT (R ) \KX(r,m). This
way, the agent reasons about possible states of the system. In this sense, the
set KX(r,m) contains all possible system states from agent X’s point of view in
run r at time m. If we express an agent X’s reasoning about system R this
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Figure 2.1: A system with two agents: a responder with a database and an
observer issuing queries to that database.
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way, we implicitly assume that agent X knows the system specification R and
is able to determine the set KX(r,m) for all (r,m) ∈ PT (R ).

In the following example, we describe the focused agent scenario in this thesis,
cf. Section 1.2, within Runs & Systems, but in a simple form.

Example 2.1 (Two interacting agents).

To illustrate the concepts in this chapter, we consider a small example with
very simple agents: a reacting agent D, the “responder”, with a local database
and a requesting agent A, the “observer”. Agent A may query agent D’s
database to which D replies in return. Agent D’s local database stores
information in form of two propositions a and b. Its states are taken from the
set StD = {(), (a), (b), (a, b)}. We interpret state (a) as “a holds and b does not
hold” and the other states analogously. Figure 2.1 shows an excerpt of a system
with these two agents. In this excerpt, agent A issues a query about proposition
a at time 0 and receives the answer at time 1. Agent A’s state + denotes
a positive answer, whereas its state − denotes a negative answer. Agent A
reasons in run r2 at time 1 with its runtime information (positive answer) that
the system must be in one of the hatched states. This reasoning is modeled by
the information set KA(r2, 1) = {(r2, 1), (r4, 1), . . .} which is represented by the
hatched states.
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In the following, we will survey Halpern and O’Neill’s notion of secrecy by
means of which the responder (or defender) agent D might express its security
interests towards the observer (or attacker) agent A. The scenario of two
interacting agents of Example 2.1 will be elaborated to a general scenario in
Chapter 4.
The strictest secrecy notion, total secrecy, requires that, in any run r at any
time m agent A cannot determine with its available information rA(m) and
the known specification of the system R that D is currently not in some of the
states specified in R .

Definition 2.1 (Total Secrecy).
Cf. Definition 3.1 of [58]

Agent D maintains total secrecy with respect to agent A in system R if, for
all points (r,m) and (r′,m′) in PT (R )

KA (r,m) ∩KD (r′,m′) 6= ∅.

Note that the set KD (r′,m′) represents D’s local state at run r′ at time m′

where m′ 6= m is possible since D might be in the same state at different times
or A might even not know the current time m exactly.
Halpern and O’Neill weaken their notion total secrecy, which does not allow A

to learn anything about D’s local state, in particular under two aspects, first,
what information about D’s local state should be protected by total f -secrecy
as well as C-secrecy, and, second, when the protection is needed by C-secrecy.
The idea of total f -secrecy is to keep secret “the significant part” of agent D’s
state. For example, item a in D’s local database of Example 2.1 might be the
significant part if it represents sensitive data. Formally, agent D may define
pieces of information in its state with a function f : PT (R )→ V that only
depends on its state. The elements of V abstractly denote pieces of
information about D’s state. These pieces of information should be kept secret
with the requirement of total f -secrecy.
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Definition 2.2 (D-information function f).
Cf. Definition 3.2 of [58]

A D-information function on R is a function f from PT (R ) to some range V
that depends only on D’s local state; that is, f(r,m) = f(r′,m′) if
rD(m) = r′D(m′).

Each abstract information value v ∈ V describes a set of D’s states. This set
comprises all local states of D in the points of f−1(v) where f−1(v) is simply
the preimage of v, that is all points (r′,m′) such that f(r′,m′) = v. Total
f -secrecy requires that agent A cannot decide in any run r at any time m with
its available information rA(m) that D is not in a state defined by v.

Definition 2.3 (Total f -Secrecy).
Cf. Definition 3.3 of [58]

If f is a D-information function, agent D maintains total f -secrecy with
respect to agent A in system R if, for all points (r,m) ∈ PT (R ) and values v
in the range V of f

KA(r,m) ∩ f−1(v) 6= ∅.

Example 2.2 (Total f -Secrecy).

We illustrate how to specify a D-information function and how to check total
f -secrecy in the setting of Example 2.1. The D-information function is based
on the abstract information v1 with meaning “agent D stores item a” and v2

with meaning “agent D does not store item a”. The function is defined
according to the meaning of the abstract pieces of information. Its definition is
illustrated in Figure 2.2: The black bordered states are those mapped to v1

while the double-line bordered states are those mapped to v2. Total f -secrecy
towards agent A is violated in run r2 at time 1 because with the positive
answer agent A excludes v2, formally, KA(r2, 1) ∩ f−1(v2) = ∅.

Another weakening of total secrecy is C-secrecy. The idea of C-secrecy is, that
at a point (r,m) agent D can locally allow agent A to exclude some of its
states, that are all of agent D’s states in the points PT (R ) \ C(r,m) defined
by an allowability function C. The set C(r,m) may define points that are
relevant for the protection of sensitive information about D’s state. For
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Figure 2.2: Violation of total f -secrecy
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example, resuming Example 2.2, if A should not know that D stores item a

with sensitive data, then for all runs r and times m agent A should not rule
out that the system is in one of the points in C(r,m) = f−1(v2) (represented
by the double-line bordered states in Figure 2.2).

Definition 2.4 (A-allowability function C).
Cf. Definition 3.5 of [58]

An A-allowability function on R is a function C from PT (R ) to subsets of
PT (R ) such that KA(r,m) ⊆ C(r,m) for all (r,m) ∈ PT (R ).

C-Secrecy requires that in any run r at any time m agent A should not be
able to decide with its available information rA(m) that D is not in one of the
states given by C(r,m).

Definition 2.5 (C-secrecy).
Cf. Definition 3.6 of [58]

If C is an A-allowability function, then D maintains C-secrecy with respect to
agent A if, for all points (r,m) ∈ PT (R ) and (r′,m′) ∈ C(r,m), we have

KA(r,m) ∩KD(r′,m′) 6= ∅.

The last notion we will consider in this thesis is run-based secrecy. Run-based
secrecy does no longer assume agent A to reason about possible system states
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but about possible runs. Formally, the reasoning in terms of system states is
modeled by the operator K whereas the following operator3 R is used to
model reasoning in terms of runs of the system. Let P ⊆ PT (R ) be a set of
points. Then, the set of runs through these points is defined as

R (P ) = {r ∈ R | there exists time m such that (r,m) ∈ P}. (2.4)

Based on this set, an agent X’s reasoning about possible runs of the system
may be described as follows: With its available information rX(m) at runtime
in any run r at any time m the agent X is not able to distinguish which of the
runs R (KX(r,m)) is the current run r of the system.

Run-based secrecy postulates an attacker A with run-based reasoning by
operator4 R ◦KA. The requirement of run-based secrecy is that for any state s
of D defined in system R , with its available information rA(m), agent A is not
able to infer that D never is in state s throughout the current run.

Definition 2.6 (Run-based Secrecy).
Cf. Definition of [58]

Agent D maintains run-based secrecy with respect to agent A in system R if,
for all points (r,m) and (r′,m′) in PT (R ) it holds

R (KA(r,m)) ∩ R (KD(r′,m′)) 6= ∅.

In Chapter 3, we will extend Halpern and O’Neill’s notions to possibility
policies which are more expressive to declare confidentiality properties.

2.4 Probabilities

The observer may not only consider possible that the responder is in some
state but may assign a probability to this fact. The probability expresses the
agent’s uncertainty about the fact. Then, the observer’s information gain may
be described by comparing a priori and a posteriori probabilities, cf. [15].

3 We use the same notation as the authors of [58] although this notation overloads the
symbol R . However, it should be clear from the context whether R refers to a set of runs or
to the operator.

4 The operator ◦ denotes the composition of two functions.
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There are several approaches in the literature which define an agent’s
probabilistic reasoning about a computing system and give related means to
specify security requirements of the system, cf. [58, 41, 4] as a small selection.
In the following, we will briefly survey these approaches which might be
relevant to refine the model of the attacker’s information gain with
probabilities in future work beyond this thesis.

Halpern and O’Neill [58] propose agents in the Runs & Systems framework
which throughout each run of the system attribute probabilities to the system
being in some global state. Formally, in each point (r,m) of system R an
agent X has a probability space with probability measure µr,m,X on measurable
sets of points. In practice, probability spaces may be derived from
probabilities that the system executes particular runs, cf. [58]. Throughout a
run, an agent’s probability space might change. For example, the agent X’s
probability measures µr,m,X and µr,m+1,X might be different in run r at time m
and at time m+ 1, respectively. Requirements on information flow
confinement must weigh the probabilistic information of agents beside the
runtime information in their local states. Halpern and O’Neill define the strict
property of probabilistic total secrecy . An agent D maintains this property
with respect to another agent A iff the probability that A attributes to D

being in a particular state is constant.

Other approaches in the literature measure information gain by different
measures of entropy , e.g. [41, 4]. Clarkson et al [41] quantify the information
that is leaked to the observing agent by the output of an algorithm executed
by the responding agent. The observer may assign values to public input
variables of the algorithm and observe their values after execution.
Additionally, the responder has a hidden assignment of other input variables.
The focus is on how the observer revises its belief about the responder’s
hidden variable assignment after observing the output values. The observer’s
belief is a probability distribution on assignments and usually differs from the
actual distribution. Now, the observing agent’s information gain about the
responders’s hidden variable assignment is rated as follows. The observer
usually is uncertain or even mistaken about the responder’s actual assignment.
The accuracy of the observer’s postulated distribution compared to the
responder’s actual distribution is measured by relative entropy (also called



31

Kullback-Leibler divergence). Information gain is the increase of accuracy after
the response.

Several other entropy-based approaches are surveyed by Alvim et al in [4].
Many of these approaches define information leakage as the difference of the
attacking agent’s uncertainty before and after observing the responding agent.
Uncertainty is seen as the effort spent in guessing.5 Which entropy is best to
measure the difference, depends on how the attacking agent’s abilities to
interact with the responder are understood and how its efforts to gain some
desired piece of information are rated. For example, the attacking agent may
query the responding agent whether an attribute has some value or not while
it is interested in the actual value of the attribute. The effort is the expected
numbers of queries. Here, the attacking agent does not become certain about
the actual value because the agent has only a very limited way to interact with
the responder.

2.5 Logics of Knowledge and Time

Several approaches define confidentiality properties in a logic of knowledge and
time as introduced by Fagin et al in [48] to express properties of a system. The
reader may find examples of these approaches in [58, 8, 7] or in [92] from the
field of deontic logic. These approaches formulate the attacker’s information
gain in terms of the attacker’s knowledge which can be expressed with a
modality K in the logic. Then, confidentiality properties are syntactical
expressions that confine the attacker’s knowledge. Advantages of these
approaches are the conciseness of presentation of those properties and their
automated verification, for example, by model checking [7].

At first, we illustrate the main concepts of a logical formalization of
confidentiality properties with an outline of Halpern and O’Neill’s work in [58].
Those concepts are common to other approaches like [8, 7]. At the end of this
section, we briefly survey research results on the automated verification of
logically expressed confidentiality properties.

Halpern and O’Neill show in [58] that several of their notions of secrecy can be

5 This understanding of information leakage is criticized by Clarkson et al in the work [41]
summarized above.
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expressed as equivalent requirements in terms of the syntax of this logic. We
recapitulate the logic of knowledge and time as used by Halpern and O’Neill in
brief: A formula F is built by

F :: ≡A|F∨F |F∧F |KX F |♦F

where A is an atomic proposition from alphabet At and X is an agent
identifier. The meaning of a formula F is given by an interpreted system:

Definition 2.7 (Interpreted System I ).
Cf. Section 2 of [58]

Let R be a system and At an alphabet of atomic propositions. An
interpretation π of At in R is a function

π : At × Σ→ {true, false}

where Σ is the set of all global states in R . The pair (R , π) is called an
interpreted system and denoted by I .

We denote the model-of operator for interpreted systems by |=IS. The
interpretation of the propositional connectives is as usual and the modalities
are interpreted as follows:

(I , r,m) |=IS KX F iff (I , r′,m′) |=IS F for all (r′,m′) ∈ KX(r,m),

(I , r,m) |=IS ♦F iff (I , r, n) |=IS F for some n ∈ N0.

In order to give an impression how this logic helps to express confidentiality
properties we cite a result from [58]:

Agent D maintains total secrecy with respect to A in system R iff
for every interpretation π
if F is a D-local formula6 in the interpreted system I = (R , π)

and true in at least one point of system R , then I |=IS ¬KAF .7

The above results says that A may not know any information inherent in some
of D’s states.

6 That is, a formula whose evaluation depends only on the state of agent D in I .
7The expression I |=IS G denotes the validity of formula G in the interpreted system I ,

that is for all points (r,m) it holds (I , r,m) |=IS G.
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Balliu et al in [8] demonstrate the expressiveness of the logic of knowledge and
time by the formalization of declassification properties within this logic.
Declassification properties relax strong requirements that confine the
attacker’s information gain such as non-interference of the trace-based model
in Section 2.2. Roughly, these properties define in what situations the attacker
may know what properties of the defender’s state.
At the end, we summarize a recent result of Balliu et al [7] on the automated
verification of confidentiality properties. The summary should make clear in
which contexts automated verification might be applied. Balliu et al [7]
consider that the defender executes a sequential while-program and aims to
hide properties of hidden input variables of the program from the attacker. In
turn, the attacker may observe output from the program, but may not
contribute any input value. In this setting, Balliu et al in [8] use atomic
propositions of the form Initx(e) in the logic of knowledge and time with the
meaning that the initial value of variable x equals the current value of
expression e (and beside atoms of this form they use only the equality of
expressions). In [7], Balliu et al use abstract properties of the initial value of x
as atomic propositions. The prototype described in [7] is able to do automated
verification for any Java program that uses integer computations only.
The automated verification builds an execution tree, which represents the
control flow of the program on all input states, and based thereupon builds a
symbolic output tree, which represents under which condition (attached to its
edges) the execution yields which properties of the input variables (these
properties are attached to its nodes). Finally, the symbolic output tree is
transformed into an interpreted system and the syntactic confidentiality
property is verified with a model checker. Alternatively, the symbolic output
tree and the confidentiality property can be transformed into a formula of the
existential fragment of first order logic whose satisfiability can be tested with
dedicated solvers.
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Chapter 3

Policy-Based Secrecy

In this chapter we introduce the two notions of policy-based secrecy and
policy-based run-based secrecy in line of the work [58] by Halpern and O’Neill
surveyed in Section 2.3. These notions will be adequate to formally specify the
defending agent D’s confidentiality interests in terms of a model of the
multiagent system in Runs & Systems including a postulated attacking agent
A. The secrecy notions proposed by Halpern and O’Neill do not suffice for this
purpose as we will argue in Chapter 4. Our two proposed notions adopt
Halpern and O’Neill’s models of A’s information gain: On the one hand,
policy-based secrecy postulates A as a reasoner about possible points with
operator KA. On the other hand, policy-based run-based secrecy postulates A
as a reasoner about possible runs with operator R ◦KA. Thus, in particular,
policy-based secrecy and policy-based run-based secrecy will be possibilistic
confidentiality properties, cf. Chapter 2.

Beyond Halpern and O’Neill’s framework of [58], the proposed two notions of
secrecy base on a local declaration of the defender, called possibility policy.
Such a policy may specify

• properties of global states,

• properties of the defender’s local state

• or properties of runs for the protection of confidential information.

First, in Section 3.1, we introduce possibility policies about states and, then,
their semantics by policy-based secrecy in Section 3.2.
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In Section 3.3, we argue that declaring the defender’s interests with possibility
policies is more flexible than the declarations proposed by Halpern and O’Neill.
As one contribution within this chapter, we show that all of Halpern and
O’Neill’s possibilistic notions of secrecy can be expressed by policy-based
secrecy.
Then, in Section 3.4, we briefly study declaring confidentiality interests
towards A as a reasoner about possible runs with a possibility policy about
runs. The semantics of such a policy will be defined by policy-based run-based
secrecy. Yet, as an immediate result, we will see that policy-based run-based
secrecy can be expressed by policy-based secrecy, but is less expressive.
Figure 3.1 summarizes our results on the expressivity of policy-based secrecy.
Finally, in Section 3.4, basing on Halpern and O’Neill’s achievements, we
relate policy-based secrecy and policy-based run-based secrecy to other
requirements of information flow confinement in the literature.

3.1 Possibility Policies and D-Properties

A formal declaration of the defender’s confidentiality interests is, according to
Chapter 2, a requirement to confine the attacker’s information gain. Here,
agent D locally declares in each point (r,m) ∈ PT (R ) which information
about the global state r(m) agent A as a potential attacker must consider
possible in a possibility policy. As a special case, a piece of information about
its local state is expressed as a D-property. Intuitively, a D-property I
describes some property of agent D’s state. In particular, in each point (r,m)

of the system agent D is able to determine whether (r,m) ∈ I holds or not,
given its local state rD(m) and the definition of I, by checking KD(r,m) ⊆ I.

Definition 3.1 (D-Property).

A D-property is a set I ⊆ PT (R ) such that for all (r,m) ∈ I it follows
KD(r,m) ⊆ I.1

Whereas a D-information set (2.3) represents all the information agent D has
in its local state about the system and as such the local state itself, a

1 The converse implication always holds: If KD(r,m) ⊆ I holds, then we obtain (r,m) ∈ I
because (r,m) ∈ KD(r,m) is immediate from the definition of the operator KD in (2.3).
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Figure 3.1: Expressivity of policy-based secrecy
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D-property represents a property agent D may have in several of its states.
All secrecy definitions by Halpern and O’Neill concern only D-properties.
They remark that “any ‘secret information’ that cannot be characterized as a
local proposition is not protected” by their definitions. Further, D-properties
reappear in Chapter 4 in the declarations of the confidentiality aims of an
epistemic agent D.
Throughout this chapter, we will use a running example to illustrate the
concepts.

Example 3.1 (D-Properties).

We take up the setting from Example 2.1. There, a reacting agent D has a
local database which may store items (propositions) a and b and responds to
queries of another agent A. The setting is visualized in Figure 3.2. In this
setting, we consider the following D-properties:

• I(a) = KD(r2, 0): agent D is in state (a), visualized by .

• I(b) = KD(r3, 0): agent D is in state (b), visualized by .

• I(a),(b) = KD(r2, 0) ∪KD(r3, 0): agent D is in state (a) or in state (b).
The global states where D has this property are drawn with double-line
borders in Figure 3.2.

• I(a,b) = KD(r4, 0): agent D is in state (a, b), visualized by .

Depending on run r and time m, agent D’s possibility policy declares
properties of interest attributed to the global state or to D’s local state as a
special case. A property of interest might be, like in the previous example,
that agent D stored a relevant data item. In our context, where agent D has
confidentiality interests, a D-property represents no confidential information
itself, but is essential for the protection of confidential information which we
will shortly illustrate in Example 3.2 below.

Definition 3.2 (Syntax of Possibility Policy and D-Possibility Policy).

A possibility policy is a function policy : PT (R )→ P (P (PT (R ))), where P
denotes the power set operation. If further for all (r,m) ∈ PT (R ) the set
policy(r,m) := {I1, I2 . . .} contains only D-properties Ik, then policy is
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called a D-possibility policy and we write policyD. Both the sets
policy(r,m) and their element sets Ik may be infinite.

Example 3.2 (D-Possibility Policies).

We continue Example 3.1 visualized in Figure 3.2. In this setting, agent D may
declare some D-possibility policies with the D-properties defined in that
example. For all (r,m) ∈ PT (R ) the policies are defined as follows:

• policy1(r,m) := {I(a), I(b)},

• policy2(r,m) := {I(a),(b)},

• policy3(r,m) := {I(a),(b), I(a,b)}.

In our example, all policies do not depend on the current run r and time m
and are thus rather global than local policies. This is not necessary but
simplifies our presentation. The possibility policies get an intuitive meaning if
we understand that they state confidentiality interests of agent D:
By policy1, agent D expresses the following confidentiality interests

• by I(a): If the fact ¬a ∨ b holds in agent D’s database (with the usual
propositional semantics), this situation must be kept confidential.

• by I(b): Analogously for the fact a ∨ ¬b.

The semantics of possibility policies will be defined in the next section. Under
that semantics, policy policy1 implicitly does not allow A to be certain that the
system is in one of the points PT (R ) \ I(a). In these points, agent D has one
of the states in the set StD \ {(a)} = {(), (b), (a, b)}. In these states and only
these the fact ¬a ∨ b holds in D’s database. Thus, policy policy1 implicitly
does not allow A to be certain that the fact ¬a ∨ b holds in D’s database.
Likewise, the policy states the confidentiality of the fact a ∨ ¬b which holds in
D’s database in states StD \ {(b)} = {(), (a), (a, b)}.
Finally, we list the confidentiality interests expressed by the remaining
possibility policies

• policy2 by I(a),(b): If a ≡ b holds in the database (corresponding to the
set of states StD \ {(a), (b)} = {(), (a, b)}), this situation must be kept
confidential.
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Figure 3.2: The graphics shows the D-properties Ia by , I(b) by , I(a),(b) by
and I(a,b) by . Agent A’s reasoning in run r1 at time 1 is about the possible

points visualized by .

• policy3 by I(a),(b): Analogously.

• policy3 by I(a,b): Analogously for the fact ¬a ∨ ¬b which holds in D’s
database in the states StD \ {(a, b)} = {(), (a), (b)}.

3.2 Policy-based Secrecy

In this section, we define the semantics of a possibility policy which may be a
D-possibility policy as a special case. With this semantics, the security
engineer postulates the attacking agent A to be a reasoner about possible
states of the multiagent system and, in particular, about agent D’s state.2 In
this context, a possibility policy describes a set of properties that the attacker
A should not rule out about the system’s global state when reasoning with
operator KA of (2.3). As a special case, a D-possibility policy specifies
properties not to be ruled out about D’s local state. Thus, in every point
(r,m) ∈ PT (R ) and for every property I declared in the local policy
policy(r,m) there is a possible system state r′(m′) from agent A’s point of
view (that is (r′,m′) ∈ KA(r,m) ) such that this state has property I (that is
(r′,m′) ∈ I). This requirement is formalized by policy-based secrecy.

2 The same postulate is made by total secrecy in Def. 2.1, total f -secrecy in Def. 2.3 and
C-secrecy in Def. 2.5.
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Definition 3.3 (Semantics of Possibility Policy: Policy-based Secrecy).

Let policy be a possibility policy. Then agent D maintains policy-based
secrecy with respect to agent A in R if, for all points (r,m) ∈ PT (R ) and for
all I ∈ policy(r,m):

KA (r,m) ∩ I 6= ∅

Example 3.3 (Policy-based Secrecy).

We continue Example 3.2 and discuss the preservation of the D-possibility
policies defined in that example under policy-based secrecy. The example should
be followed with Figure 3.2.
The policy policy1 = {I(a), I(b)} is violated in point (r1, 1) because

KA(r1, 1) ∩ I(a) = ∅

which says that in A’s state (−) agent A can rule out state (a) of agent D.
In contrast, policy2 = {I(a),(b)} is not violated in point (r1, 1) because

KA(r1, 1) ∩ I(a),(b) ⊇ {(r3, 1)} 6= ∅.

The reason is that agent A still considers possible that D is in state (b).
Policy policy3 again is not preserved because KA(r1, 1) ∩ I(a,b) = ∅.

3.3 Relation to Total f-Secrecy and C-Secrecy

In this section, we argue and formally prove that the concept of D-possibility
policies with the semantics of policy-based secrecy generalizes D-information
functions with total f -secrecy (and, thus, total secrecy, cf. [58]) and
A-allowability functions with C-secrecy.
Recall from Section 2.3 that D-information functions define pieces of
information about D’s local state to be kept secret. Each piece v of
information (from an abstract set V of values) attributed to D’s local state by
some D-information function can been seen as defining a D-property Iv, but
the function defines mutually exclusive properties. More precisely, we translate
a D-information function f to a D-possibility policy as follows:

policyf (r,m) = {Iv | v ∈ V } with Iv =
⋃

(r′,m′):f(r′,m′)=v

KD(r′,m′) (3.1)
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First, note that Iv is a D-property because f is a D-information function
(which, by definition, depends only on D’s local state). Second, we observe
that policyf is a global policy since it is a constant so that policyf depends
neither on r nor on m. Third, we observe that, because f can be understood
as a function on D’s state, the D-properties Iv in policyf induce a partition
of agent D’s states (so that they are mutually exclusive). Vice versa a
partition of agent D’s states induces a function on its states. Hence, as
concluded by the following Proposition 3.1, total f -secrecy corresponds to
policy-based secrecy for the class of all global policies where elements of the
policy are D-properties defining a partition on D’s states.

Proposition 3.1 (Total f -Secrecy Is policyf -based Secrecy).

Let f be a D-information function and policyf the resulting policy given by
Equation (3.1). Then, agent D maintains total f -secrecy with respect to agent
A in R iff D maintains policyf -based secrecy with respect to A in R .

Contrary to total f -secrecy with a global function f , C-secrecy bases on a local
declaration called A-allowability function C. Recall from Section 2.3 that an
A-allowability function C allows agent A, depending on run r and time m, to
rule out all of agent D’s state in the points PT (R ) \ C(r,m). The remaining
points may be relevant for the protection of other pieces of information about
D’s state. Thus, D’s state in a point in C(r,m) defines a D-property to be
included into the local possibility policy in run r at time m. Formally, we
translate an A-allowability function to a D-possibility policy as follows:

policyC(r,m) = {KD(r′,m′) | (r′,m′) ∈ C(r,m)} (3.2)

First, policyC needs not be global unlike policyf . Secondly, all properties of
policyC are D-information sets and, thus, are D-properties defining a state of
agent D. Vice versa, if a D-possibility policy just contains D-information sets
in each point (r,m) such that these sets cover the set KA(r,m)3, an
A-allowability function C can be defined by selecting at least one point from
each D-property in policy(r,m). As a conclusion, C-secrecy corresponds to
policy-based secrecy for the class of all policies where the properties are

3The covering is a requirement of the A-allowability function C in [58].
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D-properties, namely D-informations sets, and cover KA(r,m) in each point
(r,m).

Proposition 3.2 (C-secrecy Is policyC-based Secrecy).

Let C be an A-allowability function and policyC the resulting policy given by
Equation (3.2). Then agent D maintains C-secrecy with respect to agent A in
R iff D maintains policyC-based secrecy with respect to A in R .

The proof is immediate from the definitions and Equation 3.2.
A complete overview over the relationship between Halpern and O’Neill’s
definitions of secrecy and policy-based secrecy is in Figure 3.1 on page 37. In
the next section, we will elaborate on the relationship between policy-based
secrecy and run-based secrecy, the last one among the three possibilistic
definitions of secrecy by Halpern and O’Neill.

3.4 R -Possibility Policies and Run-based Secrecy

The semantic objects an agent might reason about in the Runs & Systems
model are runs, global states and local states. In the previous section, we
viewed the attacker A as a reasoner about global states and, as a special case,
about the defender D’s local state. But we might also view the attacker as a
reasoner about runs with the operator R ◦KA introduced in Section 2.3.
Reasoning about runs resembles reasoning about traces in the trace-based
model of the observer’s (here: A’s) information gain surveyed in Section 2.2.
Following the ideas of that section, it might also be convenient for the security
engineer to express security requirements as properties of runs, not as
properties of states. However, in Runs & Systems, that way of specifying
security requirements is less expressive than possibility policies and
policy-based secrecy as we show in this section.
First, will illustrate the main concepts and results of this section with an
example which recapitulates run-based secrecy of Section 2.3 in the context of
policy-based secrecy. Run-based secrecy considers the attacker A as a reasoner
with operator R ◦KA.
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Example 3.4 (Policy-Based and Run-Based Secrecy).
Cf. Example A.2 of [58]

Consider the system

R := {r1 = 〈(A,X), (A,X), . . .〉,
r2 = 〈(B,X), (A, Y ), . . .〉,
r3 = 〈(A, Y ), (A, Y ), . . .〉}

where {X, Y } are the states of agent A and {A,B} those of agent D.
Run-based secrecy in this scenario amounts to two requirements:

1. The first requirement concerns state B of agent D, which is described by
the D-property KD(r2, 0). It says that for all points (r,m) ∈ PT (R )

there exists a possible run r′ ∈ R (KA(r,m)) (from agent A’s point of
view) such that r′ ∈ R (KD(r2, 0)) = {r2}. Thus, r2 must be a possible
run.
Recall that agent A reasons about possible runs with operator R ◦KA

from its available runtime information in run r at time m represented in
its local state rA(m).4 With that information only, a run r′ is possible iff
agent A might reach state rA(m) in that run. This is equivalent to the
fact that there exists n ∈ N0 such that (r′, n) ∈ KA(r,m).
Altogether, we may rewrite the first requirement in our example, saying
that r2 must be a possible run, to the following equivalent requirement.
For all (r,m) ∈ PT (R ) it holds KA(r,m) ∩ {(r2, n) | n ∈ N0} 6= ∅. This
is policy-based secrecy for the property I = {(r2, n) | n ∈ N0}.

2. Considering state A of agent D, which is described by the D-property
KD(r1, 0), run-based secrecy requires that there exists a possible run
r′ ∈ R (KA(r,m)) such that r′ ∈ R (KD(r1, 0)) = {r1, r2, r3} = R .
Clearly, this requirement is dispensable in the considered system.

First, for the system R of this example the requirements of run-based secrecy
can be equivalently expressed by the possibility policy policy(r,m) = {I} and

4 As remarked by Halpern and O’Neill, reasoning from runtime information is different
from the trace-based model of A’s reasoning where A may observe an infinite sequence of
events, cf. Section 3.5 for further discussion.
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policy-based secrecy. Second, note that the property I is not a D-property.
Consequently, run-based secrecy in this example cannot be enforced via
D-possibility policies.

In the following, we will first generalize run-based secrecy to policy-based
run-based secrecy by allowing the declaration of an R -possibility policy in
place of the fixed policy of run-based secrecy. Then, we show that the
generalization still can be expressed by policy-based secrecy as suggested by
the previous example.
Run-based secrecy of [58] just considers the property of a run that agent D
might reach in some particular state in that run, cf. Section 2.3. Regarding
the agent’s state rD(m) in some point (r,m), the property is specified as the
set R (KD(r,m)) of runs. In the declaration of an R -possibility policy, general
properties of runs may be used which are simply defined as sets R ⊆ R .

Definition 3.4 (Syntax of R -Possibility Policy).

A R -possibility policy is a function policyR : PT (R )→ P (P (R )). Both the
sets policyR (r,m) and their element sets R ∈ policyR (r,m) may be
infinite.

Policy-based run-based secrecy generalizes run-based secrecy in the following
way. In any run r at any time m, agent A should not rule out that the current
run has property R if R is declared in the local R -possibility policy
policyR (r,m).

Definition 3.5 (Semantics of of R -Possibility Policy: Policy-Based
Run-Based Secrecy).

Let policyR be an R -possibility policy. Then agent D maintains policy-based
run-based secrecy with respect to agent A in R iff, for all points
(r,m) ∈ PT (R ) and for all R ∈ policyR (r,m):

R (KA (r,m)) ∩R 6= ∅.

If we define policyR (r,m) = {R (KD(r′,m′)) | (r′,m′) ∈ PT (R )} for every
point (r,m), then we have run-based secrecy.
Almost immediately from the definitions we obtain the following relation
between policy-based run-based secrecy and policy-based secrecy.
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Proposition 3.3 (Policy-Based Run-Based Secrecy by Policy-Based Secrecy).

Let R be a system and policyR an R -possibility policy defined over R .
Based on this policy, we define a possibility policy policy of Def. 3.2 by

policy(r,m) = {PT (R) | R ∈ policyR (r,m)}.

Then, agent D maintains policy-based secrecy towards agent A iff agent D
maintains policyR -based run-based secrecy towards agent A.

This result is due to the fact that the operator R ◦KA models reasoning from
the runtime information rA(m), not from observing the entire run r. A similar
result has been given by Halpern and O’Neill in Proposition 3.10 of [58]: For
synchronous multiagent systems, where additionally agents do not forget any
runtime information during execution, run-based secrecy is equivalent to
C-secrecy with an appropriate allowability function C.

Conversely, we may in general not define an equivalent R -possibility policy
from a possibility policy as illustrated in the following example.

Example 3.5 (Expressiveness of Policy-based Run-based Secrecy).

Consider the following simple system taken from the scenario of Example 3.4.

R := {r = 〈(B,X), (A, Y ), (A, Y ), . . .〉}.

Further, consider the D-possibility policy policyD(r,m) = {KD(r, 0)} for all
m ∈ N0. Policy-based secrecy is violated for this policy at time 1, but preserved
at time 0. Modeling the attacker A as a reasoner with operator R ◦KA, the
attacker does not gain any information throughout the execution (because
R ◦KA(r′,m′) = {r} for all points (r′,m′) of the system). Hence, policy-based
secrecy cannot be stated as a requirement of confining the attacker’s
information gain in that model (used by policy-based run-based secrecy).

Thus, possibility policies and policy-based secrecy are more expressive than
R -possibility policies and policy-based run-based secrecy. Finally, we remark
that the possibility policy of Proposition 3.3 need not be a D-possibility policy,
cf. Example 3.4.
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Altogether, possibility policies are a very general means to declare
confidentiality aims since the declaration may refer to arbitrary properties of
global states, cf. Figure 3.1 on the expressivity of policy-based secrecy. In
Chapter 4, we will see that this generality is needed to express an epistemic
agent D’s confidentiality aims when sharing information. In particular,
D-properties do not suffice.

3.5 Relation to Other Approaches

In this section, we mainly compare policy-based secrecy with the “modular
assembly kit for security properties” (MAKS) in Section 2.2. In the
preliminary work [28], the reader may find a comparison between policy-based
secrecy and function views proposed by Hughes and Shmatikov in [64].
Moreover, in our preliminary work [28], we present a syntactic characterization
of policy-based secrecy in the logic of knowledge and time of Section 2.5
following Halpern and O’Neill’s approach in [58].

For the comparison with MAKS, we recapitulate the trace-based model of A’s
information gain which is used in MAKS. We will do so comparing this model
to the Runs & Systems model R of a multiagent system with two agents, the
defender D and the attacker A. The trace-based model defines a system Sys

as a set of traces which are sequences of events. Within Runs & Systems, the
events are of the form sX saying that agent X enters the local state sX. Thus,
we translate a run r = 〈(s0

D, s
0
A), (s1

D, s
1
A), . . . 〉 to a trace

tr = 〈s0
D, s

0
A, s

1
D, s

1
A, . . . 〉. This way, we define the system SysR of traces from

the system R of runs.5 The observer, agent A, may observe every event of the
form sA. These events define the set V of visible events of A’s view
V = (V,N,C) in MAKS. Further, as an example we take the set C of
confidential events as the set of all events where agent D enters a local state
with some D-property I.6

5 Differently, Halpern and O’Neill in [58, Section 5] translate a system of traces to a
system of runs and show an example of a security property in the trace-based model that may
be expressed by total secrecy in that translation. We use the converse translation because it
is simpler and suffices to illustrate the differences and commonalities of the two models of
information gain and its confinement.

6 Recall that property I may not be confidential itself, but relevant for the protection of
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As a first aspect, we compare the model of agent A’s information gain in the
two formalisms. In MAKS, agent A might gain information by observing some
trace t as the sequence t |V of visible events in that trace. Formally, the agent
cannot distinguish all traces in the set K(SysR , V, t) of (2.1) from t. For
comparing MAKS with policy-based secrecy, certainly, we need an equal
understanding of A’s information gain. Formally, we require that for all runs
r ∈ R , which each define a trace tr, for every time m ∈ N0, for all runs r′ ∈ R
it holds that

tr′ ∈ K(SysR , V, tr) iff r′ ∈ R (KA(r,m)). (3.3)

In words, after observing trace tr |V , trace tr′ translated from run r′ is a
possible trace iff r′ is a possible run at point (r,m). First, necessarily, the
equivalence may only hold at time m if agent A has acquired all the
information at that time it would obtain when observing the entire run r.
Second, in system R , agent A might have forgotten prior observations at time
m in which case the equivalence would neither hold. These differences have
already been remarked by Halpern and O’Neill in [58]. They point out that
the operator KA corresponds to reasoning about prefixes of traces, at least, if
agent A does not forget (that is has perfect recall). In particular, in [58,
Section 5.1] the reader may find an example where the slight difference in the
model of information gain matters.

As another aspect, we compare the expressivity of the two formalisms to
specify confinements of agent A’s information gain. To this end, we assume
that (3.3) holds for run r ∈ R at time m. In MAKS, confinement of A’s
information gain is declared by a security predicate, that is a boolean function
SPV on sets of traces depending on A’s view V . Modeling the attacker A as a
reasoner about runs by (3.3), we confine the agent’s information gain by an
R -possibility policy. In Section 3.4, we argued that these policies are less
expressive than possibility-policies.
In the following, we compare security predicates and R -possibility policies. A
security predicate is a closure property of a set of traces, here the system
SysR , which means that it requires the existence of traces of a specific form in
the system. Likewise, an R -possibility policy with policy-based run-based

confidential properties, cf. Example 3.2.
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secrecy semantics requires the existence of particular runs in the system. To
recall this requirement, for any property R declared in the local policy in point
(r,m) there must exist some run r′ with r′ ∈ R (KA(r,m)) ∩R. Thus,
intuitively, R -possibility policies and policy-based run-based secrecy should
essentially be as expressive as security predicates and views in MAKS if we
assume the equivalence in (3.3). For example, in the same way that
non-interference has been equivalently specified in MAKS, cf. Section 2.2, we
may express noninterference by an appropriate R -possibility policy. To this
end, we consider that events where D entered a state with property I should
not interfere with events where A entered any state. This is declared in the
following policy

policyR (r,m) = {{r′ ∈ R | not exists n ∈ N0 such that (r′, n) ∈ I}}.

The reader may compare this policy with policy-based run-based secrecy
semantics to the basic security predicate of (2.2). A formal comparison is
beyond the scope of this thesis.
With the above considerations, we may suppose that declaring confinement of
information gain in MAKS is less expressive than declaring possibility policies.
Possibility policies refer to properties of states and, thus, allow to declare a
finer-grained policy.
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Chapter 4

Epistemic Agents

in Runs & Systems

In this chapter, we outline and model a scenario of two interacting epistemic
agents and based on this model formalize the confidentiality aims of one of the
agents. In Section 1.2, we have already sketched an example of this scenario in
the context of a supply chain application. In our focused scenario, an agent D
reacts to the requests of another agent A while, in terms of security, the
reacting agent D is seen as a defender of its confidentiality interests towards
the requesting agent A as a potential attacker of these interests.
In the beginning of this chapter, we will generally specify the system with the
two agents D and A as part of the security engineering task of the formal
specification. We will complete the specification with a model of the
multiagent system in Runs & Systems. With that model, we will relate the
formal specification of confidentiality defined in this chapter to policy-based
secrecy and this way also to other confidentiality properties in the literature.
Our intention is to give an abstract specification of the interaction interface
and the functionality of the reacting agent D as a defender as a part of the
security engineering task, but in this chapter we will not give examples of
types of interactions or implementations of D’s functionality. Instead we will
treat these aspects in Part II in depth.

The organization of this chapter is as follows. Section 4.1 provides an overview
of the multiagent system from the perspective of the security engineer. Then,
the remaining sections include the activities of the first part of the security
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engineering task, the formal specification, cf. the introduction to Part I on
page 17. In the first activity, the functionality of the reacting agent D to be
constructed is specified in Section 4.2.

In the second activity, the means of the requesting agent A as an attacker
against D’s interests are postulated and modeled in Section 4.3.

In the third activity, the multiagent system as seen by the security engineer is
specified in Runs & Systems in Section 4.4. Then, in Section 4.5, the
semantics of the confidentiality policy is formalized. In Section 4.6, the
semantics of the confidentiality policy is related to the framework of Section 3.

4.1 Two Interacting Epistemic Agents

The focused scenario is visualized in Figure 4.1. In this scenario, an agent A
iteratively sends requests for offering or demanding information to another
agent D who reacts to these requests in return. To this end, the two agents
have agreed on propositional logic LPL over a countably infinite alphabet At
as a base language for their communication. The interaction interface
provided by the reacting agent D to the requesting agent A is defined by pairs
of valid request messages from the set Req and respective valid reaction
messages from the set Rea. Formally, we may define an interaction interface as
a subset of Req × Rea, but will never use this explicit way of defining the
interface in the following. Recall that at this place we will not give specific
types of requests and reactions, but leave this to Part II.

Both agents are epistemic: generally, an epistemic agent should be capable to
reason about its environment and itself and the other agent from its available
information. Here, we focus on specific epistemic behavior of the two agents as
seen by the security engineer which we explain in the following.

First, the reacting agent D has the usual functionality of an interacting,
intelligent and autonomous agent. This functionality includes and bases on D’s
reasoning by means of which D forms its belief about its environment. More
precisely, in the process of reasoning, agent D applies a belief operator BelD on
its epistemic state comprising its background knowledge bknowl and its
evidential knowledge eknowl . The evidential knowledge is specific information
D gathered about the case it reasons about. In contrast, its background
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knowledge represents its general expertise used in its process of reasoning. The
resulting belief is represented by the set BelD(bknowl , eknowl) ⊆ LPL using
the common base language LPL. Due to obligations or own interests, agent D
aims at keeping certain parts of its belief confidential and specifies these
confidential parts by a confidentiality policy conf . The security engineer sees
D as defending its confidentiality aims towards the requesting agent A and
knows and considers D’s functionality, here mainly its belief component, when
designing agent D to enforce these aims.
Second, the security engineer sees the requesting agent A as attacking D’s
confidentiality aims regarding D’s belief and, in this respect, postulates agent
A to be a skeptical reasoner about D’s belief. Skeptical reasoning means that
A aims to become certain about D’s belief in the sense that any conclusion
about D’s belief should indeed be true. This reasoning is in spirit of the
reasoning operators K and R ◦K used by Halpern and O’Neill [58] to model
the attacker’s reasoning because with those operators the attacker considers
the defender D’s state in all possible states of the multiagent system,
respectively in all possible runs of the multiagent system, cf. Section 2.3. In
the artificial intelligence community, the term “skeptical reasoning” is used
similarly, but in the context of nonmonotonic (defeasible) reasoning [6]. Agent
A’s means of reasoning are postulated more specifically as follows. From its
observations, agent A (is assumed to) try to approximate background and
evidential knowledge of D’s epistemic state exploiting its awareness of D’s
functionality. The observations are represented as follows.

Definition 4.1 (History hist of an Interaction).

A history hist of an interaction is a finite sequence of pairs of request θ ∈ Req
and respective reaction react ∈ Rea.

Its approximations and the history are the basis for agent A’s skeptical
reasoning about D’s current or previous belief.
Third, to enforce its confidentiality aims, the defending agent D simulates the
attacking agent A’s postulated reasoning about D’s belief. As a basis for this
simulation, agent D maintains an attacker view on agent A’s approximations
and tracks A’s observations in the history of an interaction. Agent D might
have an a priori view view 0 on agent A’s initial approximations.
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Example 4.1 (A Priori View).

In the application scenario of Section 1.2, the supplier A may have some
expertise in the design of the manufacturer D’s product and, moreover, may
know that the manufacturer D shares this expertise while, in turn, D may be
aware about that knowledge. This awareness is represented by D’s view on A’s
initial approximations of D’s background knowledge.

Finally, we terminate the agents’ process of mutually reasoning about one
another with the following assumption.

Assumption 1 (D’s Complete Knowledge of A’s Approximations).

Agent D’s view and agent A’s approximations coincide.

This assumption is the best case from the defender D’s perspective: D is
completely aware of what A knows about D’s epistemic state. Surely, this
assumption makes it necessary to carefully specify D’s initial view in practice.
We will discuss the assumption in Section 5.2.

4.2 Confidentiality Policy and its Enforcement

by Defender D

4.2.1 Policy Declaration

Under the confidentiality aspect, agent D declares a fixed confidentiality policy
conf that expresses its confidentiality interests or obligations towards agent A.
This policy explicitly declares confidential pieces of information in contrast to
the possibility policies of Chapter 3 which may only implicitly define the
confidentiality of properties of the system, cf. Example 3.2. The declaration of
the confidentiality policy comprises two disjoint finite sets conf (TCP) and
conf (CCP) of propositional formulas whose semantics is roughly explained as
follows.

On the one hand, some parts of D’s belief may only be sensitive and
confidential at the time agent D holds that belief, but may be disclosed after
D has given up that belief. An example is the manufacturer’s result of the



55

background knowledge
bknowl

evidential knowledge
eknowl

epistemic state

belief
BelD(bknowl , eknowl)

BelD

belief component

confidentiality
policy conf

history hist

attacker view view

Reacting Agent D

– in role of defender

approximation of bknowl

approximation of eknowl

history hist

(parts of) D’s
previous or current
belief

skeptically concludes

awareness of D’s
- data components
- operational components

Requesting Agent A

– in role of attacker

request

reaction

observable request (message) observable reaction (message)

internal activity data component

Figure 4.1: The multiagent system specified by the security engineer: the agent
D whose interface and functionality have to specified by the security engineer
and the agent A whose reasoning capabilities have to be postulated by the
security engineer

feasibility study of a product development proposal in the application scenario
of Section 1.2. Such confidentiality interests are expressed by the part
conf (TCP) ⊂fin LPL of the confidentiality policy, the set of temporary
confidential belief . Roughly, this part of the policy has the following semantics:
If D currently believes formula B with B ∈ conf (TCP), then agent D aims to
hide this fact from agent A. Note that each formula B ∈ conf (TCP) is called
a temporary confidential belief regardless of whether or not agent D actually
currently believes B.

Example 4.2 (Confidentiality Policy).

In our example from Section 1.2, in a feasibility study agent D reasons about
whether the proposal for development of a particular product is realizable. The
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atom r represents the fact that the product proposal is realizable. The
manufacturer’s confidentiality interest to hide a current positive result of the
feasibility study from supplier agent A is expressed by the confidentiality policy
conf (TCP) = {r}. More precisely, with this policy agent D aims to conceal
the fact r ∈ BelD(bknowl , eknowl) from agent A whereas the fact
r 6∈ BelD(bknowl , eknowl) and the fact ¬r ∈ BelD(bknowl , eknowl) may be
revealed.

On the other hand, some parts of D’s belief might be sensitive even at the
time when D has already given up that belief such as the physician’s diagnosis
of cancer. Such confidentiality interests are expressed by the part
conf (CCP) ⊂fin LPL of the confidentiality policy, the set of continuous
confidential belief , disjoint with the other part conf (TCP). In this case, if D
has believed or currently believes formula B with B ∈ conf (CCP), then agent
D aims to hide this fact from agent A. Note that each formula
B ∈ conf (CCP) is called a continuous confidential belief regardless of whether
or not agent D has believed or currently believes B. Each formula in the set
conf (TCP) ∪ conf (CCP) is called a confidential belief .

First, we remark that in the policy conf agent D cannot express a purpose of
hiding that it does not believe something, for example, hiding the fact that it
does not have a result of the feasibility study yet (that is the fact that neither
r ∈ BelD(bknowl , eknowl) nor ¬r ∈ BelD(bknowl , eknowl) holds).
Further, note that we assume agent D to aim at hiding its belief only. For
example, although the manufacturer agent D might desire to hide the fact
that the product proposal is realizable, D only aims at hiding its own belief in
the realizability of the proposal. We argue that it is the minimum
responsibility of an agent to ensure the confidentiality of pieces of information
it has already acquired, thus, of its own belief.

4.2.2 Outline of a Confidentiality Preserving Agent D

The main objective of security engineering in this thesis is constructing agent
D to effectively enforce its confidentiality interests expressed by policy conf

towards agent A. The overall construction is outlined by Figure 4.2:

The censor with the control function cexec separates the interaction interface
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Figure 4.2: Design of a confidentiality preserving agent D as defender against
a requesting agent A as attacker

provided to agent A from agent D’s internal data and functionality. The
essential task of the censor’s control function is to check whether a planned
reaction to a request would enable A to skeptically conclude a current or
previous belief of agent D if this belief is declared confidential in the policy. To
this end, the control function cexec simulates agent A’s postulated reasoning
about D’s belief. The simulation is based on the attacker view on agent A’s
approximations and the history of the interaction with A’s observations.
As part of this simulation, the control function incorporates what A has
learned from outgoing reaction messages into the attacker view and tracks
request and respective reaction in the history. Note that the simulation of
agent A is separate from D’s reasoning and resulting belief about its
environment.
Security engineering involves postulating the attacking agent A’s awareness
about D’s data and operational components. To this end, we first define D’s
data components via an abstract state and then define its operational
components via the control function cexec. These definitions provide a
specification for the implementation of agent D in Part II.
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Definition 4.2 (Abstract State of the Defender D).

The set St of agent D’s abstract local states consists of tuples with the
following components:
1. bknowl : background knowledge,
2. eknowl : evidential (or contextual) knowledge,
3. BelD: belief operator,
4. conf : confidentiality policy,
5. hist : history of the interaction,
6. view : attacker view.

Generally, agent D has several operational components within its usual
BDI-agent functionality (shown as a black box in Figure 4.2). However, since
the censor is between the interaction interface to agent A and D’s other
operational components, agent A may well view D’s operational components
as a single black box the inputs and outputs of which agent A may only
observe through inputs and outputs of the censor.1 For conciseness of the
presentation, we simplified the processing of the censor as follows. At an
incoming request, the censor calls its control function cexec. Beside other
computations, the control function writes the reaction to the request into D’s
history component. After the control function terminates, the censor reads the
respective reaction and sends it to the requesting agent A.

The interface of the censor’s control function is defined as follows.

Definition 4.3 (Control Function cexec).

A control function cexec : St × Req → St takes as input an abstract state of D
and a request. Its output is a subsequent abstract state of D. The function
always tracks request and respective reaction in the history component of the
abstract state, formally,

cexec((. . . , hist , . . .), θ) = (. . . , hist � (θ, react), . . .) with θ ∈ Req , react ∈ Rea.

Here, the operator � denotes the concatenation of sequences.

1 If agent D was designed with a BDI architecture, the control function might not be
between the communication interface and the agent functionality. We will discuss this matter
in Section 5.2.
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Note that the set St implicitly defines invariants of the control function.
We illustrate the abstract specification of agent D with a simple
implementation.

Example 4.3 (Database Queries).

We take up the setting from Example 2.1. There, an reacting agent D has a
local database db which may store items (propositions) a and b and responds to
queries of another agent A. In this setting, the state of agent D of
Definition 4.2 is very simple: here we consider that D’s evidential knowledge is
the database instance without any background knowledge. Based thereupon, D’s
belief are just all propositional formulas F ∈ LPL over the alphabet At = {a, b}
that are true in the database (in the usual sense) denoted by db |=PL F . In the
scope of our example, queries are expressed in LPL as well as the
confidentiality policy conf (TCP) ⊂fin LPL (we set conf (CCP) = ∅) and the
attacker’s view view ⊂fin LPL in which query answers should be tracked. Agent
D’s control function computes the simulation of A’s skeptical reasoning about
whether D currently believes formula B ∈ LPL by deciding propositional
entailment view `pl B.
Agent D implemented its control function as the following modified version of
the refusal censor from [19] which on our purpose opens opportunities for agent
A to infer confidential belief.

• Request: query A

• If db |=PL A and view ∪ {A} 6`pl S for all S ∈ conf (TCP),
then append (query A, A) to hist and set view := view ∪ {A}.

• If db |=PL ¬A and view ∪ {¬A} 6`pl S for all S ∈ conf (TCP),
then append (query A, ¬A) to hist and set view := view ∪ {¬A}.

• Otherwise, append (query A, refuse) to hist .
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4.3 Postulates about the Requesting Agent A

as Attacker

As a part of the security engineering task, we need to be more precise about
D’s aim of concealing belief from A, that is, the formal semantics of the
confidentiality policy conf . In order to do that, we first must postulate what
A’s means are to reason about D and D’s belief, especially, to what extent A
is aware of D’s internal functionality, and what are A’s computational
capabilities.
The following open design assumption is essential for understanding agent A’s
means to reason about agent D’s belief. This assumption follows the common
rationale in computer security of “no security by obscurity”. That means that
confidentiality should not rely on A’s ignorance of D’s design.

Assumption 2 (Open Design for Attacker).
Cf. [15] Section 1.5.2

Agent A is aware of agent D’s design.
More precisely, first, regarding the data components of agent D subsumed in its
local state (Def. 4.2), agent A may read the components conf , hist and view

any time during the interaction. Moreover, agent A is aware that D’s initial
state is within the set St Init ⊆ St .
Second, regarding agent D’s operational components (Def. 4.3), A knows the
definition of the control function cexec in the following sense. First, it knows
the interface cexec : St × Req → St of the function. Second, for each input
s ∈ St and θ ∈ Req , agent A is able to determine cexec(s, θ).

Essentially, the effect of an open definition of the control function is that agent
A could simulate D’s processing of an interaction request if it further had
access to D’s background knowledge bknowl and D’s evidential knowledge
eknowl . Although these two components are not accessible to agent A, in
principle, A is able to test by way of simulation whether some instantiation of
bknowl and some instantiation of eknowl together with the known policy conf

and its observations in history hist and view view may produce an observed
reaction to an interaction request. By observation and such testing, finally
agent A might find out more about D’s belief.
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We assume an open policy conf as a matter of precaution, because agent A
could guess or even know (parts of) the confidentiality policy (cf. [18, 19] for
approaches that hide the policy). Likewise, assuming that the view is visible
to A is also a matter of precaution.
In general, we define what agent A a priori knows about a specific
implementation of agent D by defining the domain and the input-output
behavior of the control function cexec. With the set St Init, we may further
define what agent A knows about the preconditions of an implemented control
function. Moreover, with the set St Init we may specify what parts of particular
instantiations of D’s data components bknowl and eknowl agent A a priori
knows. We will do the above formalization of A’s awareness about D’s
implementation in Part II.
Finally, the security engineer has to make assumptions about the attacking
agent’s computational resources and capabilities which are no practical
assumptions about A’s actual computational resources, but also a matter of
precaution in security engineering.
First, the attacker agent A is assumed not to forget about its previous states
so that it is able to reconstruct the whole sequence of its previous states.
Preparing for the next section, we precisely formulate this ability in
Assumption 3 using the property of perfect recall of an agent in the Runs &
Systems framework. In the next section, we will formalize the complete
scenario of D and A outlined so far in this chapter in Runs & Systems.

Definition 4.4 (Perfect Recall).
Cf. Section 2 of [58]

Let R be a system and X an agent in R . Then agent X has perfect recall iff
for all points (r,m) ∈ PT (R ), for all points (r′,m′) ∈ KX(r,m) agent X has
the same local-state sequence at both (r,m) and (r′,m′). A local-state sequence
in a point (r,m) is the result of removing all successive duplicates from the
sequence 〈rX(0), . . . , rX(m)〉.

Assumption 3 (No Loss of Information).

Agent A has perfect recall.

As anticipated, we assume that A is a skeptical reasoner, that is, it aims to
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become certain about D’s belief.

Assumption 4 (Attacker’s Reasoning Capabilities).

Agent A is a skeptical reasoner who has unlimited computational power.

We will discuss the assumptions in Section 5.2.

4.4 Model of Defender D and Attacker A

and Their Interaction in Runs & Systems

The main contribution of this section is a Runs & Systems model of our
scenario of the two interacting epistemic agents D and A from Section 4.1.
With this model, we will compare the semantics of D’s confidentiality policy
with policy-based secrecy of Chapter 3. From that section, we know how
policy-based secrecy relates to several other confidentiality properties from the
literature.

Essentially, our agent model in Runs & Systems is an abstract agent model
from the security engineering perspective and, mainly, should capture all the
postulated means of the attacking agent A for reasoning about D’s
confidential belief as outlined in Section 4.1 and further detailed in Section 4.3.
Thus, importantly, the agent model does not represent the multiagent system
as it is actually implemented; first, the attacker A is modeled as postulated by
the security engineer and, further, the defender D is modeled as seen by the
attacker in the way postulated by the security engineer. However, abstracting
away details from the actual implementation of agent D in the model must be
carefully reviewed under the principle of “no security by obscurity”, cf.
Assumption 2.

In this thesis, as introduced in Section 4.2, agent D’s confidentiality interests
concern just parts of its current or previous belief and hiding them from agent
A. Thus, from the security engineering point of view, the attacker A reasons
only about D’s local state and therefore only the information A has about D’s
local state is represented in A’s local state in Runs & Systems. (Recall that in
Runs & Systems an agent X’s local state rX(m) encodes the information
accessible to the agent at runtime in run r at time m, cf. Section 2.3.)
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The basis for the attacker A’s reasoning about the defender D’s local state is
D’s open design for the attacker in Assumption 2. By that assumption, agent
A understands how agent D might modify its local state when processing agent
A’s request with a call to the control function cexec. Further, agent A may
partially observe the actual modifications by receiving the respective reaction
and by accessing parts of D’s data components as permitted by Assumption 2.

For these reasons, the security engineer models the system of defender D and
attacker A on the basis of the openly defined control function cexec. Recall
that the domain of this function already defines the set of D’s local states
(Definition 4.2) and the form of requests, cf. Definition 4.3.

Definition 4.5 (System R cexec
D,A of Defender D and Attacker A).

Let cexec : St × Req → St be a control function. Then, the global states of the
system R cexec

D,A have the form of pairs (sD, sA) where

sD = (bknowl , eknowl ,BelD, conf , hist , view) ∈ St

sA = (BelD, conf , hist , view).

Thus, A’s abstract state sA is defined as the projection of D’s abstract state sD
of Definition 4.2 to the last four components.
The runs of the system are defined as follows. Let Int = 〈θ1, . . . , θn〉 ∈ Reqn be
a finite sequence of requests and sD ∈ St Init an initial abstract state of D. The
run rInt ,sD is inductively defined by the following definition of D’s abstract
state rInt ,sD

D (k) at time k:

rInt ,sD
D (0) = sD

rInt ,sD
D (k) =





cexec(rInt ,sD
D (k − 1), θk) if k ≤ n

rInt ,sD
D (n) if k > n.2

Beside Assumption 2 about the attacker’s awareness, the definition reflects
also Assumption 1 about the defender’s knowledge about the attacker. Since
in the defined system A’s local state is a projection of D’s local state, agent D
knows at runtime all the information A has about D’s local state. That is, in

2 That is after the last request θn agent D’s state (and thus, the state of the system) does
not change in the considered run.
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each point (r,m) agent D is able to determine with KD(r,m) in which local
state agent A is.
In this thesis, we make the two following simplifying assumptions about agent
D’s functionality.

Assumption 5 (No Policy Modification).

Agent D does not modify its confidentiality policy throughout a run. Formally,
we assume conf (r, n) = conf (r, 0) for all n ∈ N and r ∈ R cexec

D,A .

Assumption 6 (Fixed Belief Operator).

Agent D’s belief operator BelD is fixed in a system R cexec
D,A .

Because agent D’s belief operator is fixed in an implementation of a system, we
usually omit the operator from the two agents’ local states in the remainder.

Example 4.4 (The Attacker’s Reasoning in the Database Example).

We resume Example 4.3 and assume a fixed confidentiality policy
conf (TCP) = {a} (while conf (CCP) = ∅). The excerpt of the system R cexec

D,A is
illustrated in Figure 4.3. Our illustrations in the figure focus on agent D trying
to protect its temporary confidential belief a with the control function of
Example 4.3. In the figure, only D’s state is shown with the components:
history, attacker’s view and database instance as component eknowl from top
to bottom and left to right. The figure illustrates agent A’s reasoning from the
visible components policy, history and view as postulated by the model of
Definition 4.5. Until time 1, agent A cannot distinguish the execution of run
r1 from that of run r2 because the visible components history and view are
equal. The states A considers possible in point (r1, 1) are all the states of the
points in KA(r1, 1). In Figure 4.3, these points are drawn with a single frame.
But at time 2, agent A with the observed answers is able to single out D’s
current state: The set KA(r1, 2) is a singleton. The point within this set is
drawn with a double frame. Note, that A’s information gain from time 1 to
time 2 in run r1 is due to the observed reaction refuse. This kind of
information gain is called meta-inference in the line of research of Controlled
Interaction Execution [16] because the information gain is not explicit in the
reaction refuse.
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How can meta-inferences be characterized formally on the basis of the agent
model R cexec

D,A ? The following example discusses possible ways of
characterization in the context of the running example.

Example 4.5 (Meta-Inference).

In Fig. 4.3, we notice that although with reasoning KA(r1, 2) agent A has
found out that D believes a, the view in that situation does not imply formula
a with propositional entailment `pl, that is, view(r1, 2) = {a ∨ b} 6`pl a.
However, the censor of Ex. 4.3, used in Fig. 4.3, simulates the reasoning KA

by propositional entailment from the view. Thus, the censor of Ex. 4.3 does not
correctly simulate operator KA. How to define a correct simulation formally?
In a first attempt, we may stipulate that the censor incorporates everything A

has learned into the view. We may formalize this with the operator
Kview(r,m) = {(r′,m′) ∈ PT (R cexec

D,A ) | view(r,m) = view(r′,m′)} by requiring
Kview(r,m) ⊆ KA(r,m) for all points (r,m). But the requirement does not
suffice to expose the flaw of the censor’s simulation since it holds in the
situation of Fig. 4.3. Even more, if A reasoned with Kview , it would find out
that D believes formula a in run r1 at time 2.
By these considerations, we see the correctness of simulation cannot be
formalized in the model R cexec

D,A only. Rather the correctness should relate the
reasoning in the simulation, here `pl, to the reasoning KA in the model. Thus,
we defer a formalization to Part II of this thesis where the simulation of A’s
reasoning is detailed for exemplary implementations of agent D.

4.5 Semantics of the Confidentiality Policy

Interacting with an attacking agent A that has means to reason about D’s
belief as outlined in the previous sections, the defending agent D should
guarantee confidentiality as the property of Definition 4.6 below. This
property gives a precise semantics to the confidentiality policy conf and is
summarized as follows.

Starting with any abstract state of D
that is an initial state defined by St Init,
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Figure 4.3: The attacking agent A’s reasoning about the defending agent D of
Example 4.4 as postulated by Definition 4.5

r1
〈〉
∅ (a, b)

〈(a ∨ b, a ∨ b)〉
{a ∨ b} (a, b)

〈(a ∨ b, a ∨ b), (a, refuse)〉
{a ∨ b} (a, b)

r2
〈〉
∅ (b)

〈(a ∨ b, a ∨ b)〉
{a ∨ b} (b)

〈(a ∨ b, a ∨ b), (a, ¬a)〉
{a ∨ b,¬a} (b)

r3
〈〉
∅ ()

〈(a ∨ b, ¬(a ∨ b))〉
{¬(a ∨ b)} ()

〈(a ∨ b, ¬(a ∨ b)), (a, ¬a)〉
{¬(a ∨ b),¬a} ()

time 0 1 2 . . .

a ∨ b?

a ∨ b!

a?

refuse!

a ∨ b?

a ∨ b!

a?

¬a!

a ∨ b?

¬(a ∨ b)!

a?

¬a!

hist

view db


hidden



visible

after any finite interaction between A and D,
for each confidential belief S ∈ conf (TCP) ∪ conf (CCP),
by accessing D’s open data components,
including A’s observations of D’s reactions,
A cannot distinguish the actual abstract state
from an alternative abstract state
in which D does currently not believe S in case S ∈ conf (TCP),
or in which D has never believed S throughout the interaction in
case S ∈ conf (CCP).

D’s opponent agent A is assumed to aim at actually determining what D has
believed or currently believes in each of these indistinguishable states or, in
other words, at being certain that D believes some formula
B ∈ conf (TCP) ∪ conf (CCP) or has believed some formula B ∈ conf (CCP).
Or to put it into another perspective, while agent A knows the declaration of
the policy, that is the sets conf (TCP) and conf (CCP), it tries to determine
the intersections (conf (TCP) ∪ conf (CCP)) ∩ BelD(bknowln, eknowln) for the
current time n and conf (CCP) ∩ BelD(bknowlk, eknowlk) for any previous
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time k. Altogether, the confidentiality property considers agent A to be a
skeptical reasoner about D’s belief because agent A is supposed to accept only
certain conclusions about that belief.
Formally, we define the confidentiality property as the following requirement
on D’s control function cexec based on the explicit confidentiality policy conf .
By way of contrast, possibility policies of Chapter 3 may implicitly express
confidentiality interests of an agent and their semantics of policy-based secrecy
imposes a requirement on the entire system R .

Definition 4.6 (Continuous/Temporary Confidentiality Preservation).

Agent D with control function cexec : St × Req → St of Definition 4.3
preserves continuous/temporary confidentiality with respect to agent A iff

for every initial abstract state of the form
(bknowl0, eknowl0, conf 0, hist0, view 0) ∈ St Init
for all finite sequences Int = 〈θ1, . . . , θn〉 ∈ Reqn of requests,
for all S ∈ conf 0(CCP) ∪ conf 0(TCP):
there exists alternative initial background knowledge bknowl ′0 and
evidential knowledge eknowl ′0 such that
the abstract state (bknowl ′0, eknowl

′
0, conf 0, hist0, view 0) is in St Init

and the following two properties hold:

1. Indistinguishability: same open data components
for all 1 ≤ k ≤ n it holds

conf ′k = conf k hist ′k = histk view ′k = viewk

where

(bknowl ′k, eknowl
′
k, conf

′
k, hist

′
k, view

′
k) =

cexec((bknowl ′k−1, eknowl
′
k−1, conf k−1, histk−1, viewk−1), θk)

(bknowlk, eknowlk, conf k, histk, viewk) =

cexec((bknowlk−1, eknowlk−1, conf k−1, histk−1, viewk−1), θk)
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2. (a) Continuous preservation: sequence of safe belief
If S ∈ conf (CCP ) then
for all 0 ≤ k ≤ n it holds S 6∈ BelD(bknowl ′k, eknowl

′
k).

(b) Temporary preservation: safe current belief
If S ∈ conf (TCP ) then it holds S 6∈ BelD(bknowl ′n, eknowl

′
n).

Clearly, continuous confidentiality is stricter than temporary so we expect the
control function to be more restrictive and to release less information to agent
A. Conversely, by declaring a belief a temporary confidential belief instead of
a continuous confidential belief, agent D may usually share more information
with A.
We call any state of D that A is not able to distinguish from D’s actual state
an alternative state (according to property 1 of Definition 4.6 for the initial
states and all subsequent states in the interaction).

Example 4.6 (Confidentiality Violation in the Database Example).

We resume Example 4.4 and consider the protection of agent D’s temporary
confidential belief a ∈ conf (TCP). The example should be followed with
Figure 4.3 which illustrates the attacker’s reasoning during run r1. The states
indistinguishable to A at time 1 in run r1 are drawn with a single frame. In
this situation, agent D’s state in (r2, 0) is a possible initial state with safe
current belief at times 0 and 1 regarding the temporary confidential belief a.
But at time 2, agent A with the observed answers is able to single out D’s
current state (double framed state in Figure 4.3) where D’s belief is not safe,
but contains a. Therefore, confidentiality is violated in run r1 at time 2.

In our running example so far the control function never modifies D’s
evidential knowledge, in the example the database instance db . In Part II,
however, our major research interest will be the design of control functions
that may modify D’s evidential knowledge after receiving information from A.
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4.6 Confidentiality as Policy-Based Secrecy

In this section, we base on our agent model in Runs & Systems from
Section 4.4 to relate the semantics of the confidentiality policy from
Section 4.5 to policy-based secrecy of Chapter 3. In Chapter 3, policy-based
secrecy has been compared to other requirements of information flow
confinement in the literature, in particular, to the definitions of secrecy by
Halpern and O’Neill in [58].

For comparing confidentiality to policy-based secrecy and related notions, the
basic step is translating local confidentiality policies in the agent system R cexec

D,A

to one single possibility policy of Definition 3.2. Recall that at each point
(r,m) ∈ PT (R cexec

D,A ) a possibility policy declares a set of relevant properties of
the global state that agent A should not be able to rule out with its available
information in its local state rA(m). As a special case, the properties may be
properties of D’s local state and then are called D-properties of Definition 3.1.

The reader may find the idea of the translation in Example 3.2. The example
explains how possibility policies and their semantics by policy-based secrecy
may express confidentiality interests of agent D. Generally, in order to ensure
the confidentiality of the fact that D currently believes S ∈ LPL

3, the
complement fact that D does not currently believe S must be a target of the
D-possibility policy. Thus, for each temporary confidential belief S we define
the following D-property which is relevant for the protection of S:

ITCPS = {(r′,m′) | S 6∈ BelD(bknowl(r′,m′), eknowl(r′,m′))}. (4.1)

Here, bknowl(r′,m′) denotes the defender D’s local background knowledge in
run r′ at time m′ of a system R cexec

D,A of Definition 4.5. In the same way, we
refer to other data components of D’s local state in run r′ at time m′. The set
ITCPS is a D-property of Definition 3.1 since D is able to verify this property in
point (r,m) at runtime by checking S 6∈ BelD(bknowl(r,m), eknowl(r,m)), or
equivalently, KD(r,m) ⊆ ITCPS as required by Definition 3.1.

Likewise, to ensure the confidentiality of the fact that D has believed or
currently believes S ∈ LPL

4, the complement fact that D never has believed S,

3 That is, S is a temporary confidential belief of conf (TCP).
4That is, S is a continuous confidential belief of conf (CCP).
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neither previously nor currently, must be target of the D-possibility policy.
This fact need not define a D property, but for each continuous confidential
belief S defines the following property of runs at time m:

RCCP
S,m = {r′ ∈ R cexec

D,A | for all n ≤ m :

S 6∈ BelD(bknowl(r′, n), eknowl(r′, n))}. (4.2)

Following Section 3.4, an attacker reasoning about runs and their properties
can be equivalently handled by policy-based secrecy, representing a property R
of runs as the property PT (R) of states. The main argument in Section 3.4
was that A’s reasoning about runs with operator R ◦KA bases on the
information rA(m) in the agent’s local state in the current run r at time m.
Therefore, run-based reasoning is not more powerful than state-based
reasoning with KA.
These are the key ideas of the translation from local confidentiality policies to
one system-wide possibility policy in the following definition.

Definition 4.7 (Confidentiality Policies as Possibility Policies).

Let R cexec
D,A be as system of defender D and attacker A. Then, agent D’s local

confidentiality policy conf (r,m) defines the possibility policy
policyR cexec

D,A
: PT (R )→ P (P (PT (R ))) as follows:

policyR cexec
D,A

(r,m) = {ITCPS | S ∈ conf (TCP)(r,m)} ∪

{PT (RCCP
S,m ) | S ∈ conf (CCP)(r,m)}.

The following theorem shows that we can adequately express the requirements
of Definition 4.6 in the Runs & Systems framework using policyR cexec

D,A
-based

secrecy of Definition 3.3.

Theorem 4.1 (Equivalence of Confidentiality Preservation and
policyR cexec

D,A
-based Secrecy).

Let R cexec
D,A be a system of defender D and attacker A. Then, agent D maintains

policyR cexec
D,A

-based secrecy with respect to agent A according to Def. 3.3 iff
cexec preserves continuous/temporary confidentiality according to Def. 4.6.

The proof of the theorem bases on Assumption 3, Assumption 5 and
Definition 4.5 which reflects Assumption 2.
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Corollary 4.1.

Let R cexec
D,A be a system of defender D and attacker A with continuous

confidentiality policy only (that is conf (TCP) = ∅). Further, we define
policyR (r,m) = {RCCP

S,m | S ∈ conf (CCP)(r,m)}. Then, agent D maintains
policyR -based run-based secrecy with respect to agent A according to
Definition 3.5 iff cexec preserves continuous confidentiality according to
Definition 4.6.

Example 4.7 (Confidentiality Properties, Total f-Secrecy and C-Secrecy).

Consider a system R cexec
D,A of defender D and attacker A. Further assume that

agent D’s belief may contain either combination of the atoms a, b ∈ LPL.
Consider now a temporary confidentiality policy conf (TCP)(r,m) = {a, b} for
all system states (r,m). According to Theorem 4.1 this confidentiality policy is
equivalently enforced by policy-based secrecy with D-possibility policy
policyR cexec

D,A
(r,m) = {ITCPa , ITCPb } of Definition 4.7. But it cannot be enforced

by total f -secrecy since there is no D-information function f with co-domain
V = {v1, v2} and equivalent D-possibility policy

policyf (r,m) = {Iv1 , Iv2}
= {ITCPa , ITCPb } = policyR cexec

D,A
(r,m).

The reason is that D-information functions define disjoint D-properties so that
Iv1 ∩ Iv2 = ∅ whereas ITCPa ∩ ITCPb 6= ∅ and ITCPa 6= ITCPb as we have assumed
that D’s belief might contain either combination of the atoms a and b. Thus,
by Proposition 3.1 the confidentiality policy cannot be equivalently enforced by
total f-secrecy.

The confidentiality policy also cannot be enforced by C-secrecy since there is no
A-allowability function C and equivalent D-possibility policy

policyC(r,m) = {KD(r1,m1),KD(r2,m2)}
= {ITCPa , ITCPb } = policyR cexec

D,A
(r,m).

The reason is that ITCPa contains at least two different D-information sets
where either b is an element of D’s belief or not. Thus, by Proposition 3.2 the
confidentiality policy cannot be equivalently enforced by C-secrecy.
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Figure 4.4: Relationship among secrecy notions and confidentiality properties

possible runspossible states

D-properties

C-secrecy run-based secrecy

policy-based secrecy

total f-secrecy policy-based run-based secrecy

continuous confidentialitytemporary confidentiality

A B Property A can be expressed in terms of property B

A B Property A cannot be expressed in terms of property B

When assuming that agent D’s belief does not change during a run, this
example works for continuous confidentiality policies as well.

An overview of the relationship between secrecy notions and confidentiality
properties can be found in Figure 4.4.



Chapter 5

Intermediate Conclusion

5.1 Summary

In Part I, we completed the formal specification of the security engineering
task that provides an agent with means to declare its confidentiality interests
with a well-defined semantics. In the formal specification, we focused on a
system of two epistemic agents sharing information – a requesting agent A as
a potential attacker and a reacting agent D as a defender of its confidentiality
interests against A. As the basic framework of the formal specification we have
chosen the Runs & Systems framework following Halpern and O’Neill’s
formalization of secrecy in multiagent systems in [58]. On this basis, we could
relate the model of the attacker A’s information gain and its confinement to
other definitions in the literature.

The model of information gain was adopted from Halpern and O’Neill’s
definition of secrecy and agrees with other possibilistic models discussed in
Section 3.5. Possibility policies confine the attacker’s information gain as
defined by the policies’ formal semantics of policy-based secrecy or
policy-based run-based secrecy respectively. These definitions of secrecy
generalize Halpern and O’Neill’s definitions, cf. Figure 3.1. The generalization
was proven in Chapter 3 and motivated in Chapter 4 as an appropriate means
for declaring an agent’s confidentiality interests, cf. Figure 4.4.
Complementing the formal specification, we discussed the relation of
policy-based secrecy to other definitions in the literature in Section 3.5. This
discussion gives examples how via policy-based secrecy we may understand the
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confidentiality property of Chapter 4 in terms of other security requirements in
the literature or at least compare them.

5.2 Discussion and Future Work

Agent Model As Figure 4.2 shows, in this thesis, we use the control
function to separate the defending agent’s functionality and the interaction
interface provided to the attacker which eases the modeling of the agent
system from the security engineering point of view in Section 4. Recalling
Section 1, a BDI-agent is an autonomous computing system that interacts
with other agents in its environment directed by internal goals [95]. As a
BDI-agent the defending agent should autonomously consider the decision of
the control function when planning its action or deciding on its options. The
reader may find a proposal of a BDI-agent which tries to preserve its secrets by
choosing appropriate plans in [75]. In contrast, in this thesis we do not
consider a BDI-agent’s full internal functionality. Instead, we will design the
agent to control the information flow during its belief operations. This control
will turn out to be involved, so that information flow control within a
BDI-agent with its full complexity is beyond the scope of this work.
In the design of agent D we decided that D’s simulation of A’s reasoning is
separate from D’s process of reasoning about the world in general. In the
following, we explain this decision. The motivation behind the decision is to
strictly separate the agent’s functionality in order to reduce the complexity of
designing the agent. The separation is justified by the assumptions underlying
the focused scenario of agents. In the focused scenario of D and A, both
agents do not acquire information in any other way but through the
interaction between D and A. Thus, it is possible and straightforward for D to
reason about what A might conclude about D’s belief without any
consideration of the world or other agents in their common environment.
Nevertheless, the assumptions justifying the separation may be argued which
we will do in the next paragraph.
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Postulates About Defender and Attacker We might reconsider several
of the assumptions about the agent’s capabilities in Section 4.1 and
Section 4.3. Especially, Assumption. 1 and Assumption 4 can be argued in
many application scenarios.

By Assumption. 1, agent D a priori knows all sources of information that A
can access before the interaction and that are relevant for protecting D’s belief.
This assumption must be reconsidered if there are many agents in the
environment that contribute information to D’s belief and to which D

discloses parts of its belief. Then, D might need to protect its confidential
belief against a group of agents that might by purpose or accidentally share
information and this way harm D’s confidentiality interests. If D assumed
every other agent to freely distribute any information D disclosed to that
agent, D would rather cautiously control its disclosure of information to other
agents and this way disregard its interest of cooperatively sharing information.

Further, since simulating A’s postulated reasoning is supposed to be generally
computationally expensive, in place of Assumption 4, restrictions on agent A’s
assumed computational capability should be taken into account. A starting
point might be the model of resource-bounded reasoning of an agent in
Runs & Systems proposed by Halpern and Pucella in [59]. They introduce an
algorithmic knowledge operator XY which models the computational
capabilities of agent Y.
Moreover, Assumption 4 postulates that A is a skeptical reasoner which thus
aims to become certain about D’s belief and in this sense is rather cautious
with its conclusions about that belief. Postulating a less cautious attacker
would require more effort in the enforcement of confidentiality, cf. [76] for a
discussion and a different approach.

If we consider a scenario of more than two agents, then we might assume that
communication acts are visible to all agents (but, of course, not the
communicated data). With this assumption, we make sure that agent A is
aware of the fact that, during its interaction with agent D, agent D does not
communicate privately with other agents. In this sense, we may view the
focused scenario of this thesis as a private conversion between A and D among
a group of several agents.
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Policy Declaration In this thesis, the defending agent D can only specify
its confidentiality interests within the propositional language LPL with the
further option to declare either a temporary or continuous confidential belief.

However, within the language LPL, agent D might only adequately express its
confidentiality interests with an extensive or even infinite confidentiality policy.
For example, an interest of the manufacturer in the scenario of Section 1.2
might be that a supplier does not know any agreement of the manufacturer
with another supplier on the deployment of some part. However, there might
be a large (or infinite) number of possible agreements. To make the policy
declaration concise, the authors of [25] introduce a richer language for
confidentiality policies than that of Section 4.2 by means of which the security
administrator can declare a combination of attributes (of a relation) sensitive.
For example, the manufacturer’s interest towards supplier #1 may be declared
by the formula deploy(X, Y ) ∧ (Y 6= supplier#1) where X is a variable
ranging over parts and Y over suppliers.

Moreover, agent D might be interested to hide that it does not believe
something from A or other properties of its belief. For example, the
manufacturer may want to hide from his competitors that he is not able to
reach a conclusion about the realizability of a proposed product yet. In the
context of incomplete databases (essentially, a satisfiable set of propositional
formulas) Biskup and Weibert in [33] use modal logic to express what a
database user should not know about what the database knows or does not
know. In future work, we might follow their approach and use a modal
language for the declaration of the confidentiality policy.

At last, a richer language of the confidentiality policy might enable agent D to
express more accurately which information should be hidden. This has an
impact on how cooperatively D may share information with A.

Declassification Declassification allows to relax the requirements of
information flow confinement such as non-interference of the trace-based model
in Section 2.2. There are several ways to declassify information about the
values of hidden program variables, called dimensions in [85]. Generally, a
property of the value of a hidden variable may be declassified which means
that the attacker is allowed to learn this property, but non-interference modulo
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declassification still requires that the attacker is not able to distinguish
between values that have the declassified property (or those that do not have
the property respectively). The declassification may depend on a condition:
The program must reach a release point to declassify a particular property; or
another property must become true for the declassification of some property.
The security model of the agent system in Chapter 4 allows the attacker A to
access the view and the confidentiality policy by Assumption 2. Apart from
that A should not learn anything about D’s belief. This requirement is similar
to non-interference modulo declassification, where the view and the policy are
declassified. Yet, it is not straightforward to formalize the requirement that A
should not learn anything about D’s state except for the accessible
components, at least in the model of the agent system of Chapter 4. We
discussed this matter in Example 4.5. By way of contrast, Balliu et al in [8]
formalize declassification for sequential while programs in the logic of
knowledge and time (Section 2.5) and in subsequent work [7] present a method
for automated verification.
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Enforcing Confidentiality
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In Part I of this thesis, we focused on postulates about the reasoning
capabilities of the requesting agent A as an attacker of the reacting agent D’s
interests in the confidentiality of its belief. In Part II, now, we focus on the
simulation and computation of A’s postulated reasoning as a means to enforce
D’s confidentiality interests. Moreover, the contributions of this part will be
centered around the second part of the security engineering task, the
implementation and verification of a confidentiality preserving agent D. In this
task, we mainly investigate D’s controlled processing of information received
from A by means of belief change operators of update and revision as
illustrated in the dialog in Section 1.2. Our contributions are motivated by the
research questions raised in that section.

Above all, we will outline the second task of security engineering. Afterwards,
we will give an overview of our general approach and the organization of
Part II.

Essentially, the implementation and verification of agent D must be based on
the postulates about the agents’ capabilities in Part I. Of course, the attacking
agent A further might exploit details about D’s implementation to reason
about D’s belief. These further means of attack must be accounted for in the
second task of security engineering. This task comprises the following
activities:

1. The defender D’s implemented functionality must be outlined.

2. A’s awareness of D’s implementation may be postulated by defining the
set St Init of possible initial states of the system model R cexec

D,A of
Definition 4.5 (in addition to A’s awareness of the implementation of the
control function by Assumption 2).

3. The implementation of the control function must be verified to enforce
the confidentiality property of Definition 4.6.

In the construction of agent D, we design agent D’s control function cexec in
the line with research of Controlled Interaction Execution (CIE) [16, 18]. At a
potential violation of D’s confidentiality policy, the proposed control functions
refuse A’s request. From the research of CIE it is well-known that control
functions with refusal in particular have two major challenges: First, they
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must simulate the attacker’s postulated reasoning about D’s current belief and,
more intricately, D’s previous belief. Second, by means of an appropriate
strategy of generating refusals, the control functions must prevent harmful
meta-inferences the attacker A bases on refusal notifications, cf. Example 4.5.
Yet, this strategy must still respect agent D’s interest of sharing information
as cooperatively as possible with A.
The control function cexec in this thesis simulates A’s reasoning KA about the
system R cexec

D,A from its runtime information rA(m) by an operator skeptical on
the attacker view view . As common in CIE, we design control functions that
preserve the invariant S 6∈ skeptical(view) for all pieces S of information whose
disclosure in the view reveals some current or previous confidential belief to A.
This invariant implies the enforcement of the confidentiality property if the
control function correctly simulates A’s reasoning, cf. Example 4.5.
Finally, we outline the organization of this part. In Chapter 6, we present and
motivate two example implementations of D’s belief component (as Activity 1
of the second task of security engineering) used in the following chapters. At
the end of the chapter, we indicate a possible combination and enhancements
of the exemplary implementations.
Chapter 7 focuses on the controlled processing of update requests while D’s
belief bases on a simple logic-oriented database model. We exploit its
simplicity to investigate more intricate problems, namely, the correctness of
the simulation of A’s postulated reasoning, the protection of continuous
confidential belief and cooperative information sharing.
Chapter 8 focuses on the controlled processing of revision requests while D’s
belief bases on incomplete evidential knowledge and nonmonotonic reasoning.
This implementation of D’s belief is standard in artificial intelligence for
epistemic agents in inaccessible environments. Due to the complexity of this
implementation, we mainly investigate the computation of the simulation of
A’s postulated reasoning. Problems as studied in Chapter 7 are left for future
work.
In both chapters, we will present control functions for handling A’s requests
and prove their effectiveness in enforcing confidentiality.



Chapter 6

Implementing the Defender

in the Scenario of Two Agents

In this chapter, we present two implementation of D’s belief component. The
first implementation is a simple logic-oriented database model. With this
implementation we study several aspects brought up by the research
community on database security in Chapter 7. A major aspect is the conflict
between enforcing confidentiality and preserving integrity constraints of the
database schema when updating a database. A further motivation for this
implementation is that its simplicity makes several tasks of security
engineering easier. Yet, some particularities of the database model are
inadequate to implement the belief component of an intelligent agent D which
reasons about an inaccessible and dynamic environment. We will discuss this
matter in Section 6.4. Therefore, the second implementation bases agent D’s
belief on a nonmonotonic consequence relation. Nonmonotonic consequence
relations have been introduced as a model of rational reasoning in the artificial
intelligence research community. In Section 6.4, we hint at how both
implementations might be combined in future work. Figure 6.1 and Figure 6.2
visualize the two exemplary implementations of D’s functionality as seen by
the security engineer. In the following, we describe the major aspects of the
two implementations as shown by the figures. Then, we finish the introduction
with an outline of the organization of this chapter.

In the scenario of two epistemic agents that we consider in this thesis, cf.
Chapter 4, the defending agent D interacts with agent A for the purpose of
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information sharing, but only reacts to A’s requests. The basis for information
sharing is an agreement on a propositional base language LPL over a countably
infinite alphabet At .

One core of D’s functionality is its belief component. The belief comprises all
formulas of the common propositional language that the agent accepts to be
true in its environment. In this thesis, we only consider D’s processing of the
information shared with agent A and the resulting effect on D’s belief instead
of the full functionality of a BDI-agent, cf. Section 1.1.

For defining the semantics of the formulas of the base language LPL,
essentially, the environment may be ideally seen as a truth-value assignment of
all atomic propositions in the alphabet At . Each truth-value assignment thus
describes some state of the environment and is viewed as a world. Thus, the
base language LPL establishes a common vocabulary to exchange information
about the agents’ environment. This vocabulary is also the basis for the two
implementations of D’s belief component which we outline in the following.

In the first implementation of Figure 6.1, agent D acquired complete
information about its environment stored in a complete propositional database
instance db ⊂fin At . By the closed world assumption (CWA) [1], agent D
assumes that all atoms a it has not found to be true (that is, a 6∈ db) are
actually false in the environment. This way, the agent models its environment
by a unique truth-value assignment. The agent’s background knowledge
defines which database instances are reasonable models of the environment
and is applied during a database update. This knowledge is represented as a
set IC of integrity constraints of the database instance.

In the second implementation of Figure 6.2, the agents are situated in an
inaccessible and dynamic environment [94] where the closed world assumption
is not applicable. Thus, agent D faces generally incomplete information
gathered in a finite set as ⊂fin LPL of current assertions. From these assertions,
agent D defeasibly reasons about which formulas it accepts as true with its
background knowledge and, in this process, forms its belief. The background
knowledge is represented as a fixed nonmonotonic consequence relation Z∼D.

Although agent A is part of the environment, for simplicity, agent D does not
consider A’s reasoning in its belief, but simulates A’s reasoning separately, cf.
the discussion in Section 5.2.
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In both implementations, in principle, we consider the following types of valid
requests agent A may send to agent D: Let A ∈ LPL

• que(A) (query about current belief of A):
reply to “A ∈ BelD(bknowl , eknowl)?”.

• rev(A) (belief revision by A):
add A to the evidential knowledge eknowl or merge A with eknowl .

• up(A) (belief update by A):
update the evidential knowledge eknowl with A.

In the application scenario of Section 1.2, we have presented a dialog with
these types of requests in an informal way. Whereas via a belief revision
request agent A informs D about the current situation, via an update request
A informs D about a change in the current situation. In particular, agent A
indicates to D whether to process the information A by an update operator or
by a revision operator.1

Agent D’s processing of information from agent A and its subsequent reactions
to A might reveal confidential belief to A. Such a disclosure of confidential
pieces of information has rarely been investigated in computer security
research, but will be a major issue of this part of the thesis.
As Figure 6.1 and Figure 6.2 indicate, we will restrict to certain types of
requests depending on the different representations of agent D’s epistemic
state. Moreover, in the database implementation we will not use the
elementary type of update request from the above list, but view update
transaction requests. However, a transaction is comprised of a series of
elementary updates.
Finally, Figure 6.1 and Figure 6.2 show the requesting agent A’s skeptical
reasoning about D’s belief as postulated by the security engineer in Chapter 4.
The postulated reasoning has to be simulated by agent D to achieve its
confidentiality aims. The general tasks within the simulation have been

1 In the informal dialog of Section 1.2 the communication between the two agents is more
realistic. There, agent A indicates a change of the situation by saying “the incompatibility
has been resolved” which suggests to D to process the information with an update operator.
By making this explicit in the type of request as we do in this thesis, we simplify the agents’
communication language and its interpretation by D.
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described in Section 4.2.2. A major contribution of this thesis will be the
simulation of A’s postulated skeptical reasoning and its computation for both
implementations which is treated in Chapter 7 and Chapter 8 respectively.

The remainder of this chapter is organized as follows. Section 6.1 and
Section 6.2 detail the implementation of the belief component and the
processing of requests (without a control function for confidentiality
enforcement). Section 6.3 presents a selection of related work with approaches
to extend the functionality of agent D of the exemplary implementation.
Finally, in Section 6.4 we outline a possible extension of D’s functionality.

6.1 Implementation with

Complete Propositional Databases

6.1.1 Agent D’s Belief

As an exemplary implementation, we deploy agent D with a complete
propositional database as a basis for its belief. The implementation is outlined
by Figure 6.1. The notion of complete propositional databases and the related
terminology originates from the database community. The terminology and
concepts from the database area are surveyed in [1] for advanced data models
like the relational model. In the outline of the implementation, we will adapt
the database community terminology, but we relate each concept to the
multiagent scenario of Chapter 4.

When a database is set up, usually by a database administrator, the
administrator defines the structure of the data in the database schema within
a data definition language. The database schema of propositional complete
databases simply comprises an alphabet At of propositional atoms and a finite
set IC ⊂fin LPL of formulas called integrity constraints. In this thesis, we
assume that the alphabet of the schema is the alphabet of the agents’ base
language.

Data is stored as a finite set db ⊂fin At of atoms taken from the alphabet At
of the schema. This set is called the database instance and has to further
comply with the integrity constraints of the schema in the following sense.
Each database instance db inductively defines a propositional interpretation
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Figure 6.1: Implemented scenario of Figure 4.1 as seen by the security engineer
basing D’s functionality on a complete propositional database instance: agent
D to be constructed by the security engineer and agent A as postulated by the
security engineer to be simulated by D
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Figure 6.2: Implemented scenario of Figure 4.1 as seen by the security engineer
basing D’s functionality on nonmonotonic reasoning: agent D to be constructed
by the security engineer and agent A as postulated by the security engineer to
be simulated by D
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Idb , as usual for the propositional connectives in LPL, and for all atoms a ∈ At
via Idb |=PL a iff a ∈ db . Then, the interpretation defined by an instance db is
required to satisfy all integrity constraints IC of the schema. In the following,
we use the notation db |=PL F to abbreviate Int db |=PL F with F ∈ LPL. The
operator |=PL bases on the closed world assumption (CWA) [1] since all atoms
not included in the database instance db are set to false by the operator.

Definition 6.1 (Database).

Let IC be integrity constraints and db a database instance such that
db |=PL IC . Then, the pair 〈IC , db〉 is called a database.2

In the considered implementation of agent D, the agent’s belief are all formulas
that are true in the database instance db under the closed world assumption:

BelDBD (〈IC , db〉) = {B ∈ LPL | db |=PL B}. (6.1)

Commonly, a database user only acquires information from the database
instance as needed within his duties. Thus, the information frequently needed
by the user is maintained in a database view. A general purpose of a database
view is to hide irrelevant information and to restructure data and, this way, to
assist the database user in the access and maintenance of information [1]. The
restructuring makes sense in the context of relational databases where the
design of the database schema defining the structure of the data aims at
optimal performance of the database operations and minimal redundancy of
the stored data. In the context of relational databases, a materialized database
view (the stored result of a relational query) avoids more costly access to the
database instance itself. In the context of information security, a database user
may only be granted access or update rights on some database view, not on
the full database instance, cf. [15, Chapter 17.2].
In the context of our agent scenario, the database view consists of two parts.
The first part is the set IC of integrity constraints of the database schema.
These constraints are useful to agent A to find out the reasons why updating
the database instance with additional information does not comply with the

2 Commonly, a database would contain the whole definition of the schema. But to shorten
the definition, we omitted the alphabet At since it is not needed for presenting the other
concepts clearly.
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integrity constraints of the schema and why the updating thus fails. Knowing
the reasons for the failure of an update helps A to take appropriate actions.
Therefore, the integrity constraints are included in a database view.
The second part is the set C of all formulas that agent A knows to be true in
the database instance db and thus is called the instance view.

Definition 6.2 (Database View).

Let 〈IC , db〉 be a database and C ⊂fin LPL a finite set of formulas such that
db |=PL C . Then, the set C is called a instance view of instance db and the
pair 〈IC ,C 〉 a database view.

6.1.2 The Agents’ Interaction

In the exemplary implementation with propositional complete databases, cf.
Figure 6.1, in this thesis, we consider a restricted interaction interface of the
reacting agent D to the requesting agent A. Via this interface, agent A may
send query and view update transaction requests to agent D defined by the
set ReqDB of valid request messages

ReqDB = {que(A) | A ∈ LPL}∪
{up({L1, . . . , Ln}) | L1, . . . , Ln ∈ LPL literals over pairwise distinct atoms}

(6.2)

An extension of this interface is discussed in Section 6.4. In the remainder of
this subsection, we detail how agent D reacts to agent A’s requests without
controlling its reactions for the sake of confidentiality.
On query request que(A), agent D returns the result of the following query
evaluation function.

Definition 6.3 (Query Evaluation).

Let 〈IC , db〉 be a database and A ∈ LPL. Then, the query evaluation function
is defined by

eval(A)(IC , db) :=




true if A ∈ BelDBD (IC , db),

false otherwise.
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Commonly, in database applications, a database user may contribute or
modify some information in a database view instead of directly accessing the
database instance, but then the contributed or modified information should be
made valid also in the underlying database instance. To this end, the
modifications in the database view must be translated to the database
instance which is involved for relational databases, cf. [1, 9]. Moreover, a
common database functionality is ensuring that a view update transaction
adheres to the ACID principles. These principles require that either a
transaction is committed as a whole or the previous database instance is
restored (Atomicity); and further, after committing, the integrity constraints
are preserved (Consistency preservation). Here, we neglect the further
requirements of Isolation and Durability.

In our implementation of the multiagent scenario of Chapter 4, agent A may
send a view update transaction request up(L) to D with literals
L = {L1, . . . , Ll}. A positive literal a ∈ LPL requires the insertion of atom a

into the database instance and a negative literal ¬a ∈ LPL the deletion of
atom a from the database instance, respectively. This means that A informs D
that the value of the atom a has changed either to true or to false, respectively.
Then, in return, agent D processes the request. In the following, we outline
the processing for the case that agent D does not control its reaction for the
sake of confidentiality:

1. filter out void update requests from the input literals in L and keep the
outstanding updates in U, that is, set U = L \ BelDBD (〈IC , db〉);

2. check whether U = ∅;

3. if not, check whether updating the database instance by U violates some
integrity constraints;

4. in case of violation, notify agent A;

5. else actually update the database instance and the database view
〈IC ,C 〉 by U and notify agent A.

To implement the processing of a transaction, we introduce the database
update operator • which translates the modifications of the view update
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operator � on the database view to the instance. Both operators are defined
in the sequel.

Definition 6.4 (Database Update •).

Let 〈IC , db〉 be a database and L a set of literals over pairwise distinct atoms.
Then, update of the database instance db by L is defined as

db • L = (At ∩ L) ∪ (db \ {a | ¬a ∈ L}).

Further, update of the database 〈IC , db〉 by L is defined as

〈IC , db〉 • L =




〈IC , db • L〉 if db • L |=PL IC ,

〈IC , db〉 otherwise.

Usually, it should be possible to undo a previous update operation on the
database or on the database view, cf. [9, 27]. However, in this thesis we will
not treat this matter further, except for the basic Lemma 6.1 below which is
needed for some of our results. For undoing updates by the set of literals L ,
we invert these updates by updating with the set of literals ¬(L). This set is
formally defined, in general, for a set of formulas M ⊆ LPL as follows.

¬(M ) :={a | ¬a ∈M , a ∈ At}∪ (6.3)

{¬F | F ∈M and F is not of the form ¬a, a ∈ At}

Note that, by definition, the set ¬(L) is a set of literals.

Lemma 6.1 (Reversing Database Updates).

Let U be a set of literals over pairwise distinct atoms. Further let db be a
database instance such that db 6|=PL L for all L ∈ U. Then, it holds that
db = (db •U) • ¬(U).

A successful view update transaction may modify formulas in the instance
view by means of the view update operator � which bases on the operation of
variable negation neg defined in the following. Essentially, the variable
negation operator ensures that all formulas in the instance view become valid
in the modified database instance and no information is lost. The correctness
of the operator in this respect will be subject of Lemma 6.3 below.
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Definition 6.5 (Variable Negation neg).
Cf. [22]

Let M ⊆ LPL be a set of formulas and L a finite set of literals over pairwise
distinct atoms. Then, variable negation on M by L is defined as
neg(M ,L) := {neg(F,L) | F ∈M } where neg(F,L) is the result of replacing
each occurrence of an atom a ∈ At(L) in F by ¬a (here At(L) is the set of
atoms occurring in L).

We required literals in L instead of atoms for later convenience which by the
following lemma makes no difference. The lemma shows two very basic
properties of variable negation. The second property is important for
properties of iterated database updates discussed in Section 7.3.

Lemma 6.2 (Properties of Variable Negation neg).

Let F be a formula and X and Y sets of literals each over pairwise distinct
atoms. Then, it holds

1. neg(F,X ) = neg(F,At(X )),

2. neg(neg(F,X ),Y ) = neg(F, (X \ Y ) ∪ (Y \ X )).

The view update operator � introduced in the next definition adheres to the
following requirements. First, necessarily, the instance view must be modified
such that all formulas in the instance view become valid in the modified
database instance, cf. Definition 6.2 of database views. Second, after these
modifications no information in the database view must be lost. Third, as all
literals in L become valid in the database instance after up(L), they must be
added to the instance view.

Definition 6.6 (View Update �).

Let 〈IC ,C 〉 be a database view and L a finite set of literals over pairwise
distinct atoms. Then, view update of the instance view C by L is defined as

C � L = neg(C ,L) ∪ L (1. and 3. requirement).

Further, view update of the database view 〈IC ,C 〉 by L is defined as

〈IC ,C 〉� L = 〈IC , (C ∪ IC ) � L〉 (2. requirement).
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The set IC � L represents the information that the integrity constraints have
been valid in the database instance before the update by L .
That the above definition of the operator � indeed satisfies the first and
second requirement is verified by the following lemma. The lemma relates
modifications of the database view by means of the view update operator �
via variable negation neg and modifications of the database instance by means
of the database update operator •.

Lemma 6.3 (Negation Equivalence).
Cf.[22]

Let db be a database instance, M ⊆ LPL a set of formulas, and U a set of
literals over pairwise distinct variables such that db 6|=PL L for all L ∈ U.
Then, it holds that

1. db |=PL M iff db •U |=PL neg(M ,U), and

2. db |=PL neg(M ,U) iff db •U |=PL M .

Especially, by definition of the database update • and the view update � it
follows that db |=PL M iff db •U |=PL M � U.3

6.2 Implementation with

Nonmonotonic Reasoning

6.2.1 Agent D’s Belief

The second exemplary implementation of agent D is outlined by Figure 6.2.
Further, we illustrate the implementation in Section 6.2.2 with a running
example. In inaccessible environments, the defender D faces generally
incomplete information (a finite set of current assertions as ⊂fin LPL) about
its environment. To guide its decisions, D must be capable to draw reasonable
conclusions from the available information as . This capability is modeled by a
consequence relation Z∼⊆ LPL × LPL that maps assertions to conclusions

3 The definition of operator � may well be applied to arbitrary sets M ⊆ LPL without
any change.
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where we read A Z∼ B as “B is a defeasible conclusion from A”. Here, we focus
on nonmonotonic consequence relations that lack the following property of
monotonicity : For all A,B,C ∈ LPL it holds that if A Z∼ C then A ∧B Z∼ C

(cf., e.g., [38] for a comprehensive introduction to nonmonotonic consequence
relations). The consequence relation agent D uses for reasoning is a fixed
instance of a class C of consequence relations and denoted by Z∼D. Examples
of such a class are consequence relations defined from plausibility structures
such as preference orderings, ordinal conditional functions, possibility or
plausibility spaces [50].
Gathering all conclusions from its current assertions, D forms its belief about
the environment as follows:

BelNMR
D ( Z∼D, as) := {B ∈ LPL |

∧
(as) Z∼D B}, (6.4)

where
∧

(as) :=





∧
F∈as

F if as 6= ∅,

> otherwise.
(6.5)

Here, the symbol > refers to a tautology whereas the symbol ⊥ refers to a
contradiction. Among D’s belief, there is unquestionable belief that D is not
willing to give up independently of the assertions as at hand so that
unquestionable belief cannot be revised. In line with [77, 50], we represent the
fact that D unquestionably believes A by ¬A Z∼D ⊥ and also say that ¬A is
contradictory under Z∼D or D considers ¬A contradictory . Agent D should
never hold assertions that conflict with unquestionable belief, or in other
words, that D considers contradictory.4 Thus, the pair 〈 Z∼D, as〉 should be an
epistemic state according to the following definition.

Definition 6.7 (Epistemic State 〈 Z∼, as〉).
Cf. [72]

Let Z∼ be a consequence relation and as ⊂fin LPL a finite set of formulas such
that

∧
(as) Z�⊥. Then, the pair 〈 Z∼, as〉 is called an epistemic state.

Further, we follow a common approach in the literature [74] and only study
consequence relations that extend propositional entailment from the assertions
as ((6.6) in the following list) and that do not depend on the syntax of

4 Otherwise the agent might come to strange conclusions, cf. a discussion in [56].
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premises ((6.7) in the list). These properties can be expressed in terms of the
belief (6.4) induced by the consequence relation Z∼D given assertions as as
follows.

If as `pl F, then F ∈ BelNMR
D ( Z∼D , as). (6.6)

If `pl
∧

(as1)⇔
∧

(as2), then BelNMR
D ( Z∼D , as1) = BelNMR

D ( Z∼D , as2).

(6.7)

6.2.2 Running Example

Overview of Supply Chain Scenario

Above all, we recall the application scenario from Section 1.2: Agent D on
behalf of a manufacturer and agent A on behalf of supplier #1 are negotiating
for supply contracts. The manufacturer has confidentiality interests towards
supplier #1 which D is responsible to enforce. We will focus on the aspect of
confidentiality in Section 8. Moreover, D is informed by A about the supply
and possible deployment of needed parts. With this information, agent D
reasons about the realizability of the manufacturer’s product proposal. In this
subsection, to illustrate this reasoning, we will represent D’s fixed
nonmonotonic consequence relation Z∼D by an ordinal conditional function
(OCF) [89]. To this end, we will simplify the supply chain scenario as follows.
First, we focus on only one product proposal and assume that part #1 and
part #2 and only those are needed for the product and there are only the two
possible suppliers #1 and #2 for these parts. We consider the countably
infinite alphabet At = {r, s11, d11, i11_22, . . .} where r stands for “the
product proposal is realizable”, sij stands for “part i can be supplied by
supplier j”, dij for “part i from supplier j may be deployed in the product”
and ikl_mn for “part k from supplier l and part m from supplier n are
incompatible”.5 Especially, we consider that a supplier might be the
manufacturer of the supplied part. Thus, the incompatibility of two parts may
depend on the suppliers of those parts.
In the simplified scenario, agent D unquestionably believes
r ⇔ (d11 ∨ d12) ∧ (d21 ∨ d22) (abbreviated by U) which will be represented in

5 To make the representation of D’s reasoning concise in the following, we will not use a
proposition saying that a part is needed for the proposed product.
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its fixed reasoning as ¬U Z∼D ⊥. Finally, we consider that before the
negotiation agent D agreed with the other part supplier #2 on the deployment
of part #1. Thus, D’s initial assertions are as = {d12, s12}.

Defining D’s Reasoning by an Ordinal Conditional Function

Agent D’s reasoning about the realizability of the product proposal should
reflect the following two defeasible rules:

1. “Normally, if a part i is needed for the product and can be supplied by
some supplier j then i from j may be deployed in the product” and

2. “Normally, if a part i from some supplier j and a part k from some
supplier l are incompatible then part i from supplier j or part k from
supplier l may not be deployed in the product”.

In the simplified scenario, we use the following three simplified instantiations
of these two rules:

1. “Normally, if part #2 can be supplied by supplier #1, then part #2 from
supplier #1 may be deployed”; and likewise

2. “Normally, if part #2 can be supplied by supplier #2, then part #2 from
supplier #2 may be deployed”;

3. “Normally, if part #1 from supplier #2 and part #2 from supplier #1

are incompatible, then part #2 from supplier #1 may not be deployed”.6

On the basis of these three instantiated rules, we will now construct D’s
nonmonotonic consequence relations by an ordinal conditional function (OCF).
An OCF κ is a function κ : Ω→ N0 ∪ {∞} with κ−1(0) 6= ∅ and defines
plausibility of worlds (truth-value assignments) ranging from 0 (most
plausible) to ∞ (totally implausible). The rank κ(A) of a propositional
formula A is defined by

κ(A) :=





min
ω∈Ω:ω|=PLA

κ(ω) if A is satisfiable,

∞ otherwise.

6 Because the manufacturer has already agreed on the deployment d12 of part #1 from
supplier #2.
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rank world id world id

∞ ∗ ∗ ∗ ¬d21 ¬d22 r l∞1 ∗ ∗ ∗ d21 ¬d22 ¬r l∞2

∗ ∗ ∗ ¬d21 d22 ¬r l∞3 ∗ ∗ ∗ d21 d22 ¬r l∞4

3 ∗ ∗ s22 d21 ¬d22 r l31 ∗ ∗ s22 ¬d21 ¬d22 ¬r l32

2 i12_21 ∗ ¬s22 d21 ∗ r l21 i12_21 ∗ s22 d21 d22 r l22

1 i12_21 s21 ¬s22 ¬d21 d22 r l11 ∗ s21 s22 ¬d21 d22 r l12

i12_21 s21 ¬s22 ¬d21 ¬d22 ¬r l13

¬i12_21 s21 ¬s22 ¬d21 d22 r l14 ¬i12_21 s21 ¬s22 ¬d21 ¬d22 ¬r l15

0 i12_21 ¬s21 ¬s22 ¬d21 d22 r l01 i12_21 ¬s21 s22 ¬d21 d22 r l02

i12_21 ¬s21 ¬s22 ¬d21 ¬d22 ¬r l03

¬i12_21 s21 ¬s22 d21 ∗ r l04 ¬i12_21 s21 s22 d21 d22 r l05

¬i12_21 ¬s21 ¬s22 ∗ d22 r l06 ¬i12_21 ¬s21 s22 ∗ d22 r l07

¬i12_21 ¬s21 ¬s22 d21 ∗ r l08

¬i12_21 ¬s21 ¬s22 ¬d21 ¬d22 ¬r l09

Table 6.1: The OCF κ1 on the relevant atoms for illustrating D’s fixed reasoning
Z∼κ1D (only specified for the worlds satisfying d12 ∧ s12)

In the running example, we define the consequence relation Z∼D by the OCF
κ1 in Table 6.1. For each world, we only write down the truth-value
assignment of atoms as needed for illustrating D’s defeasible reasoning about r
in the simplified scenario. An assignment of atom x to true/false is denoted
by x and ¬x respectively. The symbol ∗ stands for an arbitrary assignment of
the corresponding atom and each (set of) worlds has an identifier lij on its
right for later reference where i corresponds to the rank and j is a consecutive
number within rank i. The OCF κ1 represents D’s unquestionable belief of
r ⇔ (d11 ∨ d12) ∧ (d21 ∨ d22) by ranking the models of its negation as totally
implausible (∞).

With the plausibility of worlds given by an OCF κ in mind, essentially, D
defeasibly concludes a formula B from a formula A iff any world that falsifies
the conclusion of B from A (that is, a model of A ∧ ¬B) is less plausible than
some world that justifies the conclusion (that is, a model of A ∧B):

A Z∼κ B iff κ(A) =∞ or κ(A ∧B) < κ(A ∧ ¬B). (6.8)

We denote D’s fixed reasoning defined by κ1 in Table 6.1 by Z∼κ1D . Table 6.1 is
presented in the way that worlds with equal rank which either falsify or justify
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the conclusion of one of the three instantiated rules or do neither, are grouped
together as closely as possible. Considering these rules, we see that in its
reasoning Z∼κ1D agent D applies these rules to the three situations s21, s22 and
i12_21 that are explicitly the premises of these rules:

s21 Z∼κ1D d21 s22 Z∼κ1D d22 i12_21 Z∼κ1D ¬d21. (6.9)

In the following, we will explain why s21 Z∼κ1D d21 holds indeed. To draw
conclusions from the assertion s21, D only inspects the most plausible models
of s21 (which are given by l04 and l05). By (6.8), D concludes that part #2

from supplier #1 can be deployed (d21) from s21 if and only if s21 has rank
∞ or for all most plausible models ω of s21 it holds ω |=PL d21 which is the
case for both l04 and l05 indeed. The remaining relations of (6.9) can be
verified the same way.

Finally, we explain how D generally applies the three rules to arbitrary
assertions by describing the construction of the OCF κ1. Altogether, we
determined a C-representation7 [70] from the three instantiated rules. But
since the C-representation is not uniquely defined by these rules, we defined
the rank of worlds with equal conditional structure7 [70] in the following way.
Above all, we of course ensure Equation 6.9 like in [70]. But further, we
ensure that an instantiated rule could be applied to the current assertions as
long as its conclusion does not contradict the conclusion of another applicable
rule. For example, that way, we obtain that s22 ∧ i12_21 Z∼κ1 d22 ∧ ¬d21

holds (see l02). If s21 and i12_21 are among the current assertions, then the
two rules “Normally, if s21 then d21” and “Normally, if i12_21 then ¬d21”
might be applied, but their conclusions contradict each other. In this case, we
give priority to the latter rule because for deployment of parts their
incompatibility must be accounted for, despite the availability of the parts

7 We summarize the idea behind a C-representation in simple terms. We can describe the
influence of a defeasible rule “Normally, if A then B” with A,B ∈ LPL on a world ω. First,
the rule renders ω less plausible if the rule is falsified by ω, that is ω |=PL A ∧ ¬B. Second,
the rule renders ω more plausible if the rule is verified by ω, that is ω |=PL A ∧B. At last,
the rule does not influence ω at all if ω is indifferent towards the rule, that is ω |=PL ¬A.
Given a set of defeasible rules, a C-representation of these rules assigns the same rank to
every two worlds that are influenced by these rules in the same way (in formal terms, that
have the same conditional structure).
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from suppliers. With this choice, the following relations hold in D’s
consequence relation Z∼κ1D : s22 ∧ s21 ∧ i12_21 Z∼κ1 d22 ∧ ¬d21 (see l12) and
s22 ∧ s21 ∧ i12_21 Z�κ1d21 (see l12).

6.2.3 The Agents’ Interaction

Implementing agent D with a nonmonotonic consequence relation, cf.
Figure 6.2, we restrict the interaction interface agent D provides to the
requesting agent A. The restriction should simplify our study of confidentiality.
Via the interface, agent A may send query and revision requests to agent D
defined by the set ReqNMR of valid request messages:

ReqNMR = {que(A) | A ∈ LPL} ∪ {rev(A) | A ∈ LPL}. (6.10)

We discuss an extension of this interface in Section 6.4. In the remainder of
this subsection, we detail how agent D reacts to agent A’s requests without
controlling its reactions for the sake of confidentiality.
On a query request que(A), agent D returns the result of the ordinary query
evaluation eval(A)( Z∼D, as), generally defined as follows.

Definition 6.8 (Query Evaluation).

Let 〈 Z∼D, as〉 be an epistemic state and A ∈ LPL. Then, the query evaluation
function is defined by

eval(A)( Z∼D , as) :=





true if A ∈ BelNMR
D ( Z∼D , as),

false if ¬A ∈ BelNMR
D ( Z∼D , as),

undef otherwise.

Via a revision request rev(A) with formula A ∈ LPL, agent A provides D with
information about an environment that does not evolve during the
interaction [69]. Without controlling its reaction for the sake of confidentiality,
on the request rev(A) agent D first checks whether it unquestionably believes
that the assertions A and as cannot hold at the same time, that is, whether
the conjunction of these assertions is contradictory under Z∼D. Only if the
conjunction of the assertions is not contradictory under Z∼D, agent D sets its
epistemic state to the result of the revision operation 〈 Z∼D, as〉 ◦A as follows.
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Definition 6.9 (Revision ◦).
Cf. [12]

Let 〈 Z∼D, as〉 be an epistemic state and A ∈ LPL. Then, revision of 〈 Z∼D, as〉
by A is defined as

〈 Z∼D, as〉 ◦ A =




〈 Z∼D , as ∪ {A}〉 if

∧
(as) ∧ A Z�D⊥,

〈 Z∼D, as〉 otherwise.

Finally, D reacts by notifying A whether D’s epistemic state has been revised
as follows:

notify(A)( Z∼D , as) :=




success if

∧
(as) ∧ A Z�D⊥,

failure otherwise.

Here, we chose to let D throw away the new information A in case of a failure.
With this approach, D’s notification to A after a revision can only reveal
whether D considers

∧
(as) ∧ A contradictory or not. Generally, D should

merge the new information with the previously gathered information but then
it must control the merging process for preserving confidentiality. In
Section 6.4, we discuss how to extend agent D’s functionality including
merging and updating evidential knowledge (here as) with additional
information.

6.3 Related Work

This section should put the two exemplary implementations of agent D into
the broader context of related work. Several of these related works suggest
how to extend agent D’s functionality under various aspects. Others indicate
changes to be made in the design of agent D. These aspects are summarized
by Figure 6.3. Several of these aspects are both treated by the database and
artificial intelligence research community. Thus, we focus on differences and
commonalities in these two research areas so that in Section 6.4 we may sketch
first steps towards a combination of the two exemplary implementations.
However, implementing these steps is still future work.

This section is organized along the aspects shown in Figure 6.3. Note that this
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section should not give an overview over the mentioned research areas, but
rather point out relevant aspects for an extended implementation of agent D.

epistemic state
with knowledge of
– environment
– other agents
[10,37,91]

belief
– unquestionable
[34,56,73,74,77,83]

BelD

belief component

belief change operators

update
[1, 9, 69–71,80,84,87]

merging [45,46]

revision
[3, 46,53,61,70,78]

operational
components for
BDI functionality
[75,95]

history hist

D’s simulation of A’s
postulated behavior

control function [16,
18–20,22,23,25,27,32,
34]

confidentiality
policy conf
[25, 33]

interface
[88,98,99]

shared language
– propositional
– modal [10,11,91]
– conditional [70]
– weighted [12,70,93]

actions
[87]

Figure 6.3: Design of a BDI-agent D as defender with extended functionality

Interface Generally, a BDI-agent may not only share information with other
agents explicitly like in thesis, but also perceive the action performed by
another agent or perceive its environment by sensors. Moreover, the agent
initiates actions itself. Perceiving the performance of an action makes the
agent update its belief. We illustrate this aspect by examples from the
literature in the subsequent paragraph about updating belief.

In order to share information with other agents, agent D may offer various
types of interaction and associate a specific communication language to each
type. The interaction interface also has relevance to confidentiality. On the
one hand, it is the attacker A’s means for actively probing agent D’s epistemic
state. Thus, restricting the types of interaction or the communication
language implies restricting agent A’s means as an attacker. On the other
hand, agent D may want to weaken an answer to a request to enforce its
confidentiality aims which might be more cooperative than a refusal of the
request. Thus, the communication language should provide the agent with
means to weaken information appropriately.

In the following, we will survey several examples of communication languages.
In a modal language [10, 11, 91], agent D is able to make statements about its
belief, for example, Br ∨ B¬r expresses that manufacturer D has a result of
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the feasibility study, but not whether it is positive (r) or negative (¬r). This
way, agent D may weaken statements about its belief, benefiting from the
richer expressivity of the modal language compared to the propositional
language LPL. Agent D may also receive information expressed as sentences in
the modal language and change its epistemic state with that information [11].

In a conditional language [70], agents may share (defeasible) rules which the
receiver may integrate into its background or even its evidential knowledge. In
the latter case, the receiver just wants to apply the additional rules in the case
it reasons about like the feasibility study or the treatment of a particular
patient. By way of contrast, background knowledge includes rules the agent
applies in any case it reasons about. The reader may find examples of
defeasible rules in Subsection 6.2.2.

In a language with weights [12, 70, 93], agent D may express its confidence in
a belief by attributing a weight to this belief. The confidence (or certainty) in
a belief of formula B is the degree of disbelief in the complement ¬B. For
example, agent D as the manufacturer of Section 6.2.2 may express its
confidence in the realizability of the product proposal by the rank κ1(¬r). In
general, the higher the rank is the higher the agent’s confidence is. In
Table 6.1, we see that the rank κ1(¬r) is 0. This means that without any
assertion agent D’s confidence in the realizability of the proposal is low so that
D does not believe that the proposal is realizable: r 6∈ BelNMR

D ( Z∼κ1D , ∅). If
agent D held the assertion d21 that part #2 from supplier #1 may be
deployed, then its confidence in the realizability of the proposal would be
κ1(¬r ∧ d21)− κ1(d21) =∞− 0 =∞.8 Wiese in [93] defines confidentiality
policies as a set of possibilistic formulas (S, α) with S ∈ LPL and α ∈ (0, 1] for
query-answering to a possibilistic belief base. Here, confidence in a belief B is
the necessity degree α that is the maximal possibility of a model of ¬B. A
formula (S, α) in the policy means that the attacker should not know that S is
believed with confidence greater than α. Confidentiality is preserved by
weakening answers: An answer (B,α) means that α is a lower bound to the
necessity degree of B in the belief base.

8 In Table 6.1, the models of ¬r ∧ d21 are given by l∞2 and l∞4.
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BDI Functionality Since BDI-agents are autonomous in their
decision-making, the control function should be used by agent D during its
process of decision-making, cf. the discussion in Section 5.2 on the basis
of [75, 95].

Control Function The line of work of Controlled Interaction Execution
(CIE), cf. a survey in [16, 18], presents control functions to compute reactions
of a server with a logic-oriented information system to requests of a client
under confidentiality requirements like those of Chapter 4. The work deals
with different parameters of the server some of which are part of the aspects of
the defender’s functionality in Figure 6.3. First, the interface of the server to
the client may offer different kind of query requests like open or closed queries
in an appropriate language, for example, open or closed formulas of first order
logic [20]. Further, the server may offer elementary view updates [27] or view
update transactions [22] in an appropriate language which to-date allows only
propositional literals. The server may further restrict the first order language
for query requests in order to reduce the costly simulation of the attacker (in
CIE, the client) to simple pattern matching between the query and sentences
of the confidentiality policy [25, 23]. To this end, the data model must also be
restricted sufficiently. Second, the information system of the server may be
based on different logic-oriented data models including complete propositional
databases [19], incomplete propositional databases [34], relational
databases [20, 23], that is, complete first order databases and incomplete first
order databases [32]. Third, the control function may have different options to
enforce confidentiality. Detecting a potential of confidentiality violation, the
control function may lie by deviating from the functionally expected reaction,
for example, by returning the negation of a query evaluation result instead of
the correct answer. It is, however, crucial that the client cannot distinguish
between a lie and a correct reaction. Another option at the potential of
confidentiality violation is that the control function refuses a reaction to the
request altogether by returning a refusal notification. The third option is
combining lying and refusal. The differences between lying and refusal is
outlined in [16, 18]. The surveys [16, 18] explain further parameters of CIE.
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Confidentiality Policy See the discussion in Section 5.2.

Belief Update Updates have both been studied in the artificial intelligence
research community, for example in [69, 70, 12, 65, 87, 84, 63], and in the
database research community, for example in [1, 9, 84]. The work we present
here is only a small selection of the work in both communities. This selection
should make clear the relation between revision and update and between belief
update in AI research and traditional database update.

In the seminal work of [69], Katsuno and Mendelzon highlight the fundamental
differences between belief updates and belief revision. They consider an agent
X that is in the following situation. The agent has a knowledge base9

kb ⊆ LPL and receives an additional piece A ∈ LPL of information that is
inconsistent with kb . Its knowledge base enables the agent to distinguish
between possible worlds, all models of kb , and impossible worlds. In the
considered situation, the agent X may interpret the piece A of information
differently depending on the context. First, X may interpret the formula A as
evidence conflicting with what the agent learnt so far about a static
environment. In this case, the evidence A indicates “the retroactive
impossibility of [some world]” [69] and the agent would revise kb with A.
Katsuno and Mendelzon explain the concept of revision as follows. “Since the
real world has not changed, and that fact [A] has to be true in all the new
possible worlds, we can forget some of the old possible worlds on the grounds
that they are too different from what we now know to be the case.”
Second, the agent X may interpret the formula A as information about a
change in its environment. In this case, “the fact that the real world has
changed gives us no grounds to conclude that some of the old worlds where
actually not possible.” Therefore, the agent should “find a minimal way of
changing each [of the old possible worlds] so that it becomes a model of that
new fact [A]” [69]. Thus, the agent updates kb with A. As a seminal work,
Katsuno and Mendelzon give requirements for update operators as rationality
postulates complementing the well-known AGM postulates for belief revision
operators [3].

In the work by Katsuno and Mendelzon an agent processes propositional

9 A knowledge base is a consistent set of propositional formulas.
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information only. Kern-Isberner in [70, 71] considers that an agent may
incorporate both propositions and additional (defeasible) rules into its
background and evidential knowledge. The essential difference between update
and revision pointed out by Kern-Isberner is as follows. Iterated revision,
where the agent receives a sequence of pieces of additional information
(propositions or rules), may be processed in a single step revision by collecting
all the information received sequentially. In particular, the agent does not
discard a piece of information received in that sequence. In contrast, the agent
may not process iterated updates in a single step. The reason is that a piece of
information interpreted as an update may override other information received
so far.

Another line of research in artificial intelligence focuses on how an agent
should update its epistemic state due to some specific action the agent
perceived or performed itself, for example, in [80, 87, 84]. How the action
affects the environment is well-known to the agent. For example, an action
might be to open a door. Thus, the ramifications of the action are specified as
well as facts that are invariant under that action. Then, the agent uses the
specification to reason about actions. The formalism for the specification is
the situation calculus of [80]. In this thesis, we study a different kind of an
agent’s perceptions so that this line of research is beyond the scope of this
thesis. However, an agent should have the ability to process both kinds of
perceptions. The following two examples of research give ideas how to do that.
Shapiro et al in [87] extend the situation calculus with a representation of an
agent’s belief similar to the representation of Section 6.2. With that extension,
the effects of an action on the agents’s belief can be specified. The authors
distinguish between actions that do not affect the environment (like a sensing
action) and actions that do so presenting specific properties for each kind of
action in the extended situation calculus. The effects of actions of the former
kind on the agents’ belief satisfy the AGM postulates for belief revision,
whereas the latter satisfy the Katsuno/Mendelzon postulates for belief update.
Reiter in [84] uses the situation calculus for specifying update transaction of
databases. In his work, a database essentially is a first order theory where each
formula is parameterized with the database state in which it holds. A
transaction is an action in the sense of the situation calculus and leads to a
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transition of the database state adhering to axioms defining effects and
invariants with the usual formalism of the situation calculus.10 Thus, the
database supports only some predefined set of transactions.

The formal semantics of view update transactions have further been studied in
other research from the database community, cf. [1] for an introduction. A
seminal work in this community is by Bancilhon and Spyratos in [9]. Their
work presents a solution to the “view update problem” in relational databases:
The definition of a view (that is a database query) does generally not suffice to
translate a view update to the database instance uniquely. The authors
propose to add a complement view to the view definition. The complement
view has to be invariant when an update of the view is translated to the
database instance. This means that the evaluation of the complement view in
the instance before and after the translation is the same. Then, this
requirement uniquely defines the translation of the view update.

Belief Revision Pioneering the work of Katsuno and Mendelzon [69], the
seminal works on belief revision study how an agent X with a consistent
knowledge base kb ⊆ LPL may incorporate an additional piece A ∈ LPL of
information into its knowledge base with a revision operator ? (cf. the surveys
in [61] and in [70, Chapter 2]). In this situation, agent X might have to solve
the problem that the new evidence A contradicts its knowledge base, that is,
kb `pl ¬A holds, but – for some reasons – the agent does not want to drop the
evidence A. Then, the agent has to give up some pieces of information
included in kb so that afterwards it might add the new evidence to its
remaining knowledge base kb ′ consistently (that is, its knowledge base
becomes kb ′ ∪ {A}). In this process, agent X has to decide which information
should be given up. The agent commits to these decisions at the time it
chooses its revision operator ?. The literature defines postulates for properties
of revision operators which follow a principle of minimal change of the agent’s
knowledge base, cf. the surveys in [61, 70] and the fundamental postulates of
AGM in [3]. Further, revision operators may be constructed on the basis of
other information like an entrenchment order on formulas where the agent

10 These axioms make use of second order logic. Because the database includes these
axioms, it is not a pure first order theory.
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prefers to give up a formula over another higher entrenched formula [61].

In Section 6.2, we viewed belief revision as the agent’s process of
nonmonotonic reasoning from its current assertions (that is, its evidential
knowledge). The literature brings together the two lines of research on belief
revision as characterized by the AGM postulates and related work, and
nonmonotonic reasoning. The reader may find references of this literature in
the survey of [70, Chapter 2]. The postulates refer to revision operators that
process a knowledge base and an additional piece of information A ∈ LPL.
Within Section 6.2, agent D’s knowledge base kb is the set BelNMR

D ( Z∼D, as).
Agent D’s processing of new evidence A ∈ LPL by the revision operator ◦ of
Definition 6.9 defines a revision operator ? on its knowledge base. The
operator outputs the knowledge base kb ? A defined by the relation
B ∈ kb ? A = BelNMR

D (〈 Z∼D, as〉 ◦ A) iff as ∧ A Z∼D B (given that as ∧ A does
not contradict D’s unquestionable belief). This relation may be understood as
follows [46] “The AGM postulates of belief revision are in a sense written from
a purely external point of view, as if an observer had access to the agent’s
belief set [here: knowledge base11] from outside, would notice its evolution
under input information viewed as stimuli, and describe its evolution laws.”
Here, these evolution laws are mainly determined by D’s fixed nonmonotonic
reasoning Z∼D.
The Ramsey test further highlights the connection between nonmonotonic
reasoning and belief revision, cf. the survey in [61]. It gives semantics to rules
like “If ¬i12_21 was true (the incompatibility had been resolved), then r
would be true (the proposal would be realizable)” in the agents’ dialog of
Section 1.2 called counterfactual conditionals in the literature. The semantics
of the latter rule according to the Ramsey test is that after the agent revised
its epistemic state with ¬i12_21 it would believe r.

Beyond these two views on an agent’s belief revision process where “belief
revision and nonmonotonic reasoning are two sides of the same coin” [53, 78],
Dubois in [46] points out yet another two different interpretations of a belief
revision process from the literature. First, the evidence acquired by an agent
might be uncertain or unreliable to different degrees. In this situation, the
agent may merge all pieces of evidence according to their reliability and

11A belief set is a set of propositional formulas closed under propositional entailment.



109

certainty and, this way, remove contradicting evidence. The agent may merge
its evidence first and then reason from the merged evidence with its
nonmonotonic consequence relation. In the subsequent paragraph about
merging evidence, we will briefly outline the difference between belief revision
as merging and belief revision as nonmonotonic reasoning.

Second, background knowledge given by a consequence relation (or its defining
structure like an OCF as in Subsection 6.2.2) may be revised by additional
defeasible rules, cf. the approach of Kern-Isberner in [70].

Merging Evidence Delgrande et al in [45] propose that an agent orders its
evidential knowledge, for example, by the credibility of the sources of
information or by the recency of the information. The order determines the
priority that a piece of evidence takes over another one when the agent must
decide between those two pieces of evidence to resolve an inconsistency. The
evidential knowledge thus is represented as a list of multisets so that a
multiset with a lower index in the list has less priority. The agent processes its
evidential knowledge with a merging operator � which removes inconsistencies
from the evidence and outputs a propositional formula. Delgrande et al
propose postulates characterizing merging operators. One intuitive postulate
says that the processing of pieces of evidence is not influenced by evidence
with lower priority. Another intuitive postulate is that consistent evidence is
merged to the conjunction of all pieces of evidence.

Other Types of Interaction The types of interactions that we have
surveyed so far serve the purpose of information sharing in general. Those
general types of interactions are processed by respective belief operators that
we have partly illustrated in the previous paragraphs. However, several
applications of intelligent agents might require more specific types of
interaction. For example, before the agents may collaborate pursuing a joint
goal, the agents first have to agree which goal to achieve. To this end, the
agents are initially involved in a negotiation. As another example, the agents
may settle other agreements in a negotiation like a meeting [24]. We selected
two examples [98, 99] to illustrate research on negotiation in the context of our
work. In a negotiation, each agent has demands which may be a set of
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propositional formulas [98] such as its most preferred times for the meeting or
even a preference order over propositions [99]. The outcome of a negotiation in
general is a subset of the agents’ demands that is accepted by every agent.
The means of negotiation proposed by [98, 99] are belief revision operators.
The idea is that an agent revises its own demands with possibly conflicting
demands of other agents it accepts in an agreement. Research on negotiation
in artificial intelligence is related to other fields such as game theory and
argumentation, cf. [98].

In other applications, where intelligent agents should support human
decision-makers, the agent should not only automatically suggest a decision,
but also give an explanation to be judged by the human agent. Argumentation
systems [88] present formalisms for providing explanations that are easily
followed by humans. According to the overview in [88], argumentation is a
“form of reasoning where the conclusion and the way to arrive at it are
doubted and effectively challenged.” In dialogical argumentation, an agent has
to defend its claim with supporting arguments towards an opposing agent that
raises counter-arguments against the claim or its support. Complementary, an
agent may use internal argumentation to establish its belief. The outcome of
the process of argumentation may be defined by different semantics and
generally decides which arguments are accepted and which are rejected. A
claim is justified and explained to a human agent by a process of
argumentation that leads to acceptance of the claim.

Integrity Constraints and Unquestionable Belief In the two
exemplary implementations, the concept of integrity constraints on the one
hand and the concept of unquestionable belief on the other hand define which
evidential knowledge agent D may accept. In this paragraph, we relate the two
concepts by the literature [74, 77, 13, 73, 56, 83]. The concept of
unquestionable belief follows the work of Lehmann and Magidor [74, 77] who
define a hard constraint A ∈ LPL of an agent’s belief as the constraint
¬A Z∼ ⊥ on the agent’s consequence relation. The constraint means that the
agent only reasons about models of A: The structure defining the consequence
relation ranges only over models of A similar to the representation of the
constraint by ordinal condition functions in Subsection 6.2.2. Lehmann and
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Magidor’s semantics of unquestionable belief essentially allows the agent to
reason with unquestionable belief by propositional entailment – at least if its
consequence relation is defined by Lehmann and Magidor’s ranked models or
ordinal conditional functions.

Konieczny [73] extends this semantics to several levels of belief where a higher
level constitutes the integrity constraints of the lower levels. For example,
facts about a patient, medical expertise and arithmetics form a hierarchy of
three levels of belief from low to high. Levels of beliefs are represented by
transfinite ordinals in the range of an ordinal conditional function where the
first transfinite ordinal ∞ marks the boundary between level one and two (in
the example, facts about a patient and medical expertise).

In database research, Reiter [83] proposes to formalize integrity constraints for
incomplete first-order databases in a fragment of first order modal logic. He
argues that integrity constraints are statements about the state of the
database instance and such statements require a modality saying “the database
knows”. In contrast, database instances as first order theories makes
statements about the state of the world. In the context of incomplete
propositional databases, the modal logic S5 might be the right choice to
formalize integrity constraints [34, 48]. The semantics of the integrity
constraints are S5 Kripke structures which separate the set of propositional
interpretations into the set of models of the database instance (a propositional
theory12) and the complement of this set. This way, the integrity constraints
define propositional theories that may be used as the database instance. In a
similar way, the hard constraints by Lehmann and Magidor define what
assertions (also a propositional theory) the agent may hold.

Finally, we mention the alternative semantics of unquestionable belief by
Goldszmidt and Pearl [56]. They argue that a strict rule A⇒ B should not be
identified with the hard constraint ¬A ∨B (that is, material implication) as
Lehmann and Magidor do. Conversely, the two rules A⇒ B and A⇒ ¬B
should be contradictory, not yield the conclusion of ¬A. Contradictions
according to Goldszmidt and Pearl’s semantics thus expose flaws in the
modeling of background knowledge by strict and defeasible rules. However, the
modeling of background knowledge by rules is not the focus of this thesis.

12Here, a propositional theory is a finite consistent set of propositional formulas.
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Therefore, we neglect such aspects since we aim at a simple representation of
unquestionable belief in a consequence relation Z∼⊂ LPL × LPL.

Knowledge and Reasoning About Other Agents In this thesis, D’s
simulation of A’s postulated reasoning is the key to D’s enforcements of its
confidentiality interests. As an attacker, agent A reasons about D’s process of
forming its belief. D’s simulation of that reasoning might be based on
approaches in the literature on an agent’s reasoning (here A’s) about other
agents (here D).

In the following, we survey selected approaches [91, 10, 37] from the
perspective of our focused scenario of the reacting defender D and the
requesting attacker A. Especially, we point out how each approach considers
important aspects of the focused scenario, that is, the interaction between the
agents (1), the belief change operators applied by D (2), the structure of D’s
epistemic state (3) and the model of A’s reasoning about D (4). This way, we
may judge whether an approach is appropriate for D’s simulation of A in the
context of one of the implementations of agent D.

In the field of dynamic epistemic logic, Van Benthem [91] describes how the
epistemic state of each agent in a multiagent system evolves after public
announcements of propositional or epistemic formulas to all agents. The
epistemic state of each agent is an ordering of worlds by plausibility and
depends on the world the agents are actually situated in. An agent’s epistemic
state involves belief about other agents and, thus, Van Benthem’s work covers
the dynamics of such belief under public announcement. Public announcement
gives rise to the change of the epistemic states of all agents in the system.
Each agent processes the information of the announcement by some particular
belief revision operator (lexicographic upgrade and elite change), but without
any response to other agents. Dynamic epistemic logic in the work [91] by Van
Benthem can express propositions about the agent’s knowledge and belief like
in epistemic logic [48] and propositions about the change of their knowledge
and belief after public announcement. As one contribution, the reasoning with
such propositions is reduced to reasoning in epistemic logic.
In future work of this thesis, it might be necessary for D to integrate the
simulation of A in its process of reasoning, cf. Section 5.2. To this end, we
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might reconsider Van Benthem’s approach because it combines an agent’s
belief about its environment and other agents.

Banerjee and Dubois [10] study a responder13 who communicates epistemic
formulas like in [91] with a possibility and necessity operator. But the
responder does not receive information from the observer and its epistemic
state is just a consistent set of propositional formulas. The observer’s
reasoning about the responder’s epistemic state is modeled by meta-epistemic
logic (MEL) proposed in their work and may be computed by deduction with
the presented sound and complete axiomatization of MEL. The authors further
discuss to extend their results based on possibility/necessity modalities to
degrees of possibility where the responder has weighted belief (cf. the above
paragraph about the interface).

Booth and Nittka [37] consider a responder who may receive query and
revision requests in a propositional language from an observer. The
responder’s epistemic state is comprised of a core (information that cannot be
revised like unquestionable belief) and a sequence of pieces of information
subsequently received in revision requests. The responder processes the
sequence and the core by linear merging [45]. Conversely, the observer is
ignorant about the responder’s initial epistemic state. By means of its requests
and the observed reactions, the observer gives a rational explanation that
should reconstruct the responders’s initial epistemic state.

6.4 Extending D’s Interaction Interface

This section sketches an extension of the interaction interface of the defender’s
implementation with nonmonotonic reasoning to include update requests,
beside revision and query requests. As anticipated, an intelligent agent in an
inaccessible and dynamic environment should rather base its belief on
nonmonotonic reasoning than on a database instance. The extension bases on
approaches from the literature surveyed in Section 6.3.

Mainly, in the proposed extension agent D will update its assertions according
to their recency with a prioritized merging operator as proposed by Delgrande

13 The emitter in [10] may be viewed as a responder, if the observer may issue queries in
the epistemic language.
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et al in [45]. Moreover, in a revision the agent will resolve conflicts of
assertions with its unquestionable belief by means of prioritized merging
according to the credibility of assertions.
Altogether, in the proposed extension, agent D’s assertions will include recency
and credibility information. Further, the belief operator of Equation 6.4 will
be adapted to preprocess the assertions with prioritized merging where we
define priorities by recency and credibility. After this preprocessing, the belief
operator uses nonmonotonic reasoning from the merged assertions.

The purpose of this section is to point out several commonalities and
differences of the two exemplary implementations of D and to outline further
functionality of D to be investigated in future work.

6.4.1 A Simple Update Operator

Before elaborating the extended implementation, we will illustrate that the
way integrity constraints are handled by the database update • of
Definition 6.4 is not appropriate for the implementation of an intelligent agent.
To this end, we will sketch a simple extension of agent D, where the agent
processes updates similar to database updates, and contrast this simple
extension with our proposed extension later on. Apart from the differences,
the simple update operator we will introduce will also make clear similarities
between the implementations in Section 6.1 and in Section 6.2.

For the simple extension, we assume that agent D’s current assertions as are
represented as a finite set of literals only:

as ⊂fin At ∪ {¬a | a ∈ At}.

The database update of Definition 6.4 may only succeed if it does not conflict
with the integrity constraints. As suggested by Section 6.3, unquestionable
belief may be understood as integrity constraints. With this understanding,
following the concept of a database update, we tentatively define an update
operator14 •simp of the agent’s epistemic state as follows. The update operator
preprocesses an input literal L and the assertions as with a flat merging
operator [45] ∗simp which resolves conflicts of L and as with D’s

14 The index simp stands for simple.
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unquestionable belief in analogy to the database update of Definition 6.4:

∗simp( Z∼D, L, as) =





as \ ¬({L})15 ∪ {L} if
∧

(as \ ¬({L}) ∪ {L}) Z�D⊥,
as otherwise.

The operator ∗simp gives priority to the assertions as over the more recent
information L with the exception that L might override ¬L in the processing
of as \ ¬({L}) ∪ {L}. To give an idea how to interpret inconsistency under
Z∼D, we recall the example of the consequence relation Z∼κ1D defined by the
OCF κ1 in Section 6.2.2. There, concluding an inconsistency from a formula
A ∈ LPL, that is A Z∼κ1D ⊥, says that A is propositionally inconsistent with
D’s unquestionable belief because the worlds satisfying the unquestionable
belief are those with rank less than ∞.
The update of the epistemic state proceeds as follows.

〈 Z∼D, as〉 •simp L = 〈 Z∼D, ∗simp( Z∼D, L, as)〉 (6.11)

After processing an update request, agent D will notify A either of the
success or of the failure of the update.
The following proposition shows that the database implementation of
Section 6.1 is a special case of the implementation of Section 6.2 extended
with updates by means of operator •simp if we assume a finite alphabet At .

Proposition 6.1 (Embedding of Database Implementation).

Let 〈IC , db〉 be a database over a finite alphabet At and •db the database
update16 of Def. 6.4. Further, we define a transformation t of a database into
an epistemic state of Def. 6.7 as follows:

t(〈IC , db〉) = 〈t(IC ), t(db)〉
with (A,B) ∈ t(IC ) iff {A} ∪ IC `pl B
and t(db) = db ∪ {¬a | a ∈ At \ db}.

Let L be a literal over At . Then, it holds

1. t(〈IC , db〉) is an epistemic state according to Def. 6.7,
15 The operator ¬() is defined in (6.3).
16In the scope of this proposition and its proof, we use the notation •db for the operator of

Def. 6.4 for clarity of notation.
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2. BelDBD (〈IC , db〉) = BelNMR
D (t(〈IC , db〉)),

3. t(〈IC , db〉 •db {L}) = t(〈IC , db〉) •simp L.

The first property ensures that the transformation is well-defined while the last
two properties enable D to do the operations in the transformed database as
needed to process query and update requests.
Of course, the priority of the assertions over a more recent piece of information
in the processing of •simp may be argued because an update operator should
give priority to recency. In the next section, we will introduce an update
operator •rec using prioritized merging by recency.

6.4.2 Update with Prioritized Merging

In this section, we still focus on the situation that agent D accepts update
requests only. Later on, we will treat the situation that D accepts both update
and revision requests. Following Delgrande et al in [45], an update of
assertions may be considered as a process of merging assertions ordered by
their recency. Thus, for the time being, D’s current assertions are a list of
literals ordered from the least to the most recent piece of information:

as = 〈L1, . . . , Ln〉 with literals Li over At .

To form the agent’s belief, the belief operator processes this list with a
prioritized merging operator17 �rec similar to linear merging [45] and then
applies the agent’s nonmonotonic reasoning Z∼D on the merging result:

BelNMR
D ( Z∼D, 〈L1, . . . , Ln〉) = {B ∈ LPL | �rec( Z∼D, 〈L1, . . . , Ln〉) Z∼D B}.

Following [45], we define the prioritized merging operator �rec as an iterative
application of a flat merging operator ∗rec as follows. Let F,G ∈ LPL and Li
be literals over At :

∗rec( Z∼D, F,G) =




G ∧ F if G ∧ F Z�D⊥
G otherwise,

�rec( Z∼D, 〈〉) = >
�rec( Z∼D, 〈L1, . . . , Ln〉) = ∗rec( Z∼D, L1,�rec( Z∼D, 〈L2, . . . , Ln〉))

17 The subscript annotates that the priority is according to recency.
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The operator �rec prefers more recent information Li over less recent
information Lj (1 ≤ j < i ≤ n). Whereas the linear merging operator in [45]
checks for propositional contradiction, that is, G ∧ F `pl ⊥, the operator ∗rec
checks for conflicts with D’s unquestionable belief, that is, G ∧ F Z∼D ⊥.
When agent D receives a literal L via an update request from A, it updates its
epistemic state with operator •rec and L by appending L to its current
assertions:

〈 Z∼D, as〉 •rec L = 〈 Z∼D, as � 〈L〉〉. (6.12)

In the end of this subsection, we highlight two differences between the
operator •rec and the operator •simp caused by the inverse priority to recency
of information. First, in contrast to the operator •rec, the simple update
operator •simp does not need the record of recency information since it never
overrides less recent information by more recent information due to the lower
priority (except for the possible explicit overriding of literals with their
negation). Therefore, the operator •simp need not be based on prioritized
merging, but flat merging suffices.
Second, the operators •simp and •rec differ in the way of interpreting and
handling unquestionable belief. We illustrate this difference with a small
example.

Example 6.1 (The Effect of Unquestionable Belief during Updates).

Assume that agent D considers a ∧ b contradictory18 and has no assertions in
the beginning. Moreover, its reasoning Z∼κD is implemented by some OCF κ, cf.
the example of Sect. 6.2.2. Then, it receives the update requests up(a) and
up(b) from agent A in sequence. With the simple update operator of (6.11),
the second update fails due to a conflict with D’s unquestionable belief of
¬a ∨ ¬b and the assertion a, that is, ∗simp( Z∼κD, b, {a}) = {a}. Hence, by the
property in (6.6) of D’s nonmonotonic reasoning, agent D believes formula a
after the two updates. Further, D believes ¬b because it reasons with Z∼κD from
the unquestionable belief of ¬a ∨ ¬b and the assertion a as with propositional
entailment like in Sect. 6.2.2.
After processing the sequence of requests with the update operator •rec of
(6.12), agent D has the assertions 〈a, b〉. The belief operator merges this list to

18 That is, it holds a ∧ b Z∼D ⊥ so that D unquestionably believes ¬a ∨ ¬b.
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the formula �rec( Z∼κD, 〈a, b〉) = b. Then, after nonmonotonic reasoning,
by (6.6) agent D believes formula b after the two updates and further believes
¬a due to its unquestionable belief.
With the second approach, agent D reasons on A’s report that the value of b
has changed and b now holds that formula a does no longer hold using its
unquestionable belief of ¬a ∨ ¬b. By way of contrast, with the first approach,
agent A has to report first that formula a does no longer hold before D accepts
the report that formula b now holds. To do so, agent A must reason with D’s
unquestionable belief and D’s assertions to find out the reason of the failure of
the request up(b) - but this is rather cumbersome and even more agent A might
not be able to do that reasoning.

6.4.3 Update and Revision with Prioritized Merging

Still, we have to consider the interplay of update requests and revision
requests. Again, we use prioritized merging proposed by Delgrande at al
in [45]. Assertions that agent D gathers about a static environment (so that
they cannot be ordered by recency) may be ordered by their credibility which
usually depends on from which source of information an assertion comes.
Following [45], assertions about a static environment are represented as a
collection Cas of finite sets of propositional formulas where each set is
additionally attached with a credibility level c ∈ N0. Such collections are then
elements of a list ordered by recency. In the remainder of this section, we let
agent D’s current assertions be represented by such type of lists:

as = 〈Cas1, . . . ,Casn〉 with Cas i = {M [c] |M ⊂fin LPL, c ∈ N0}.

Agent D’s belief operator merges the assertions according to credibility and
recency and then uses nonmonotonic reasoning on the result as follows:

BelNMR
D ( Z∼D, 〈Cas1, . . . ,Casn〉) =

{B ∈ LPL | �rec( Z∼D, 〈�cred( Z∼D,Cas1), . . . ,�cred( Z∼D,Casn)〉) Z∼D B}.

The operators �rec and �cred might be chosen as one of the prioritized
merging operators discussed in [45] like the one presented in the previous
subsection, but the details are not relevant for our purpose of sketching an
extended interface.
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The preprocessing with the prioritized merging operators serves the following
purposes. First, the operator19 �cred resolves conflicts between unquestionable
belief in Z∼D and the formulas contained in the collection Cas i and outputs a
propositional formula for each i = 1, . . . , n. Each output formula is the
information that the agent considers about a particular state of the
environment in the further process of forming its belief. Then, the operator
�rec merges these formulas according to their recency.

During an interaction, we assume that agent A sends with each piece of
information a credibility level c ∈ N0. Alternatively, agent D could set the
level itself according to the credibility it attributes to agent A which might be
appropriate in a system with more than two agents. If agent A wants to
indicate a change in the environment, it sends an update request up(A, c) with
A ∈ LPL and c ∈ N0. In response, agent D adds the received information as
the most recent information into its assertions as follows:

〈 Z∼D, as〉 •rec (A, c) = 〈 Z∼D, as � 〈{A}[c]〉〉.

In contrast, if agent A does not want to indicate a change in the environment,
but only wants to add information to its previous reports, it will send a
revision request rev(A, c) with A ∈ LPL and c ∈ N0 to agent D. Then, agent
D sorts formula A into its collection of most recent assertions according to the
credibility level c of the information A as follows:

〈 Z∼D, as � 〈. . .M [c] . . .〉〉 ◦cred (A, c) = 〈 Z∼D, as � 〈. . . (M ∪ {A})[c] . . .〉〉.

We end this section with a final remark on its scope. With this section, we
mainly intend to sketch a possible design of the defender D combing the full
functionality considered in this thesis whereas the upcoming chapters deal
with aspects of this functionality in separation. However, the sketch leaves
open several questions for future investigations beyond this thesis. To name
only a few: the choice of the prioritized merging operators20 �rec and �cred

and the properties of the update and revisions operators •rec and ◦cred as
studied for other operators in the literature, cf. Section 6.3.

19The subscript annotates that the priority is according to credibility.
20Here, linear merging was used due to its simplicity
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6.4.4 Conclusion

As a conclusion, we see that the implementation of agent D with a complete
propositional database might be seen as a special case of the implementation
with nonmonotonic reasoning if the update operator •simp was implemented
(Proposition 6.1). But with that implementation of update, the agent would
not reason with the information received through update requests as expected
from an intelligent agent as we illustrated in Example 6.1.
Our motivation for investigating the database implementation despite its
shortcomings for intelligent agents in an inaccessible, dynamic environment is
the following. First, the database implementation is simpler than the
nonmonotonic reasoning implementation, even more if the latter is extended as
outlined in this section. Its relative simplicity makes it easier to study
advanced aspects in the security engineering task for the database
implementation which we will do in Chapter 7. Second, the study of the
database implementation should be a preliminary step to the study of the
nonmonotonic reasoning implementation. We may suppose so because the core
of each of the operators •simp, •rec and ◦cred is a flat merging operator ∗ which
essentially checks for a conflict of two pieces of information with D’s
unquestionable belief and drops the piece of information with less priority in
case of a conflict. Taking up the analogy of Proposition 6.1, we may consider
such a check to be analogous to the check for integrity violation during
database update.



Chapter 7

Updating Belief

without Revealing Secrets

In this chapter, we study the defending agent D’s controlled processing of
update requests from the attacking agent A by the example of view update
transactions on complete propositional databases, cf. Figure 6.1.

The contributions of this chapter are centered around three aspects. The first
aspect is the conflict between integrity and confidentiality that has been
studied in database security research: Maintenance of integrity constraints is a
major task during database updates, but notifying integrity violation to a
database user might breach the confidentiality of information in the database.
The second aspect is the correctness of the simulation of the attacker A’s
postulated reasoning KA. Correctness essentially means that all the
information that A gained about D’s epistemic state (here, the database) by
observing the output of D’s control function is represented in the attacker
view used in the simulation, cf. Example 4.5. Related to the second aspect,
the third aspect is the simulation of A’s reasoning about D’s previous belief.
This simulation is necessary for the protection of continuous confidential belief.

The first contribution of this chapter is an implementation of the control
function of the reacting agent D’s censor as outlined in Figure 7.1. Another
contribution is a formal proof of the effectiveness of these control functions in
enforcing D’s confidentiality interests expressed by its policy with the formal
semantics of Definition 4.6. The control function’s effectiveness is partly
achieved by the correctness of the simulation of the attacker’s reasoning. The

121



122

third contribution is an analysis of D’s interest of sharing information with
agent A as cooperatively as possible. To this end, agent D follows a policy of
last-minute intervention [16]. To judge the performance of control functions
under this policy, we list further desirable properties of control functions. One
property defines the requester A’s information need under a policy of
last-minute intervention. Then, we show that the presented control function
for view update transactions achieves all these properties while no other
function can increase availability under the last-minute intervention policy
without lacking one of these properties.

The organization of this chapter is as follows. Above all, we make clear the
scope of our contributions by surveying related work in Section 7.1.
Then, in the remaining sections, we elaborate on constructing a confidentiality
preserving agent D as part of the security engineering task. The final
construction is outlined in Figure 7.1. The implementation of D’s belief
component in Figure 7.1 is the basis of this construction (Activity 1 of security
engineering) and has been introduced in Section 6.1.
Section 7.2 specifies A’s awareness of the details of D’s implementation
(Activity 2 of security engineering).
Afterwards, Section 7.3 presents the simulation of the requesting agent A’s
postulated behavior as an attacker which is the crucial means of the control
functions. In that section, A’s skeptical entailment is simulated by means of
propositional entailment. Choosing propositional entailment, A’s reasoning
about continuous confidential belief is simulated by an appropriate
transformation of each continuous confidential belief to a propositional formula
enforcing its protection. We show both the correctness of the transformation
and the correctness of the simulation (which contributes to Activity 3 of
security engineering).
Then, Section 7.4 presents the control functions for query and view update
transaction execution and formally proves confidentiality preservation by
means of these functions (completes Activity 3 of security engineering).
Finally, Section 7.5 discusses and formally analyses the aspect of information
sharing under a policy of last-minute intervention.
We end this chapter with a discussion of the presented contributions and open
problems in Section 7.6.
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Figure 7.1: Design of a confidentiality preserving agent D as defender against
a requesting agent A as attacker

7.1 Related Work

Conflict Between Integrity and Confidentiality In the database
security community, the so called conflict between integrity and confidentiality
has been treated in several works, for example, in [67, 52, 21, 22]. This conflict
arises from a database user’s awareness of the integrity constraints in the
database schema while the user is not authorized to acquire particular
confidential information from the database instance. For example, assume the
integrity constraint that “each employee is manager of at most one project”.
The database user requests to insert “Smith is manager of project A”. From a
successful insertion the user can conclude that Smith is manager of no other
project than A whereas from a failed insertion (due to the integrity constraint)
he can conclude that Smith is already manager of some other project. The
user may combine the latter fact with the prior knowledge “there are only two
projects A and B” and infer the confidential fact “Smith is manager of project
B”. In this situation, insertion is to fail due to integrity, but the database user
must not be informed about this failure due to confidentiality so that an
immediate conflict between the two requirements emerges. In order to resolve
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this conflict, other work insert misinformation to the user’s database view, for
example, by lying or polyinstantiation. Following the example, an appropriate
lie would be a successful insertion although conforming to the constraint no
insertion has been performed. We will survey a selection of these work in the
following.

Within the line of research of Controlled Interaction Execution (CIE) surveyed
in Section 6.3, control procedures for view update transactions, provider
updates and view refreshments are presented (cf. [21] for the overall framework;
cf. [22] for a detailed study of view update transactions including refreshments).
These procedures resolve the conflict between integrity and confidentiality as
follows. The procedures maintain a materialized database view (called logfile)
for each database user with possibly distorted data in which the procedures
track information released to the respective user. If a database user requests to
modify its materialized database view, but cannot be notified about a
resulting integrity violation, the view update transaction pretendedly succeeds,
yet actually, without updating the database instance. Thus, the procedures
implement the lying approach of CIE, cf. Section 6.3. This solution is close to
polyinstantiation used in the area of multilevel secure (MLS) databases which
we will survey below. Further, by allowing the control procedures to add
spontaneous updates, which might affect the correctness of the data, the
authors of [22] achieve continuous confidentiality, cf. Definition 4.6.

In an MLS database instance, data items and schema objects are assigned a
security level as a classification. Likewise subjects (such as database users)
receive a security level as a clearance. The set of security levels must be
partially ordered. Information flow is only permitted from a lower level to a
higher level in the partial order. The conflict illustrated in the above example
may be caused by the fact “Smith is manager of project B” classified high,
whereas the database user requiring the insertion has clearance low. To resolve
it, the fact “Smith is manager of project A” is inserted but classified to the
user’s clearance low. As a consequence, the instance is polyinstantiated which
means that Smith is a manager of two projects where each project is
associated with a different security level [67, 52]. The inserted fact is implicitly
considered as a cover story (which may be seen as a form of lying) [52, 43].
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Other Works on Confidentiality and Update Xiao and Tao in [96]
study the republication of generalized data from a relational table after
insertions and deletions in that table while the privacy of individuals must be
ensured. The publication of generalized data under privacy constraints has
been widely investigated in research on database security, cf. [51] for a survey.
In this research, an unpublished relational table contains data of individuals.
The privacy interest is the each individual cannot be linked to the value of a
sensitive attribute with a certain accuracy. A common assumption is that for
every individual the attacker a priori knows the individual’s values of
particular attributes, the quasi identifiers1. For data publication, the values of
quasi identifier attributes are generalized, for example, by replacing exact
values with intervals as in [96]. In general, the attacker infers possible values of
a sensitive attribute by linking a set of published generalized tuples (with the
sensitive attribute) to each individual via the quasi identifiers. Xiao and Tao
follow this general approach from research on privacy in data publication, but
additionally consider that the attacker might base its inferences on a history of
generalized tables each released after insertions and deletions in the original
table. Moreover, the authors assume that the attacker knows whether the data
of an individual is present as a tuple in the original table and, hence, whether
that tuple has been inserted or deleted. Clearly, Xiao and Tao assume a very
specific form of the attacker’s knowledge which in particular does not include
integrity constraints. However, their work indicates an interesting aspect for
future work of this thesis. The formal privacy requirement in [96] is defined as
an upper bound on the disclosure risk: In the set of values of a sensitive
attribute that the attacker might link to an individual each value occurs less
than 1

m
-times. The requirement is stricter than the confidentiality property in

this thesis which only refers to indistinguishable situations. To establish the
bound on the disclosure, Xiao and Tao introduce the requirement of
m-invariance on the history of generalized data. Roughly, m-invariance
ensures that the set of sensitive values linked to an individual is an invariant
(under republication) and contains at least m distinct values.

1 Quasi identifiers are understood to identify a relatively small group of individuals.
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Cooperative Information Sharing In the database security community,
several work care for sharing information to the farthest degree possible while
ensuring the confidentiality of particular information in a database instance.
To this end, several approaches optimize some availability measure, for
example, minimize the number of distorted database entries [36] or select a
lowest classification of data in MLS databases [44]. These approaches
precompute a view to be published or a classification, respectively, whereas in
this thesis the attacker’s reasoning about confidential information is simulated
dynamically. Other research preprocess data that is released for statistical
queries or data mining so that after the release the loss of privacy is minimized
whereas subordinately data utility is maximized, cf. [2] for a survey. Yet, these
approaches have not accounted for updates of the database instance so far.

Other Aspects There are several aspects beyond the scope of this thesis.
Other agents than the attacker might initiate an update, for example, in the
MLS database setting, high level users [67] or, in the context of CIE, the data
provider [21]. Then, the attacker’s aged database view has to be refreshed,
cf. [21, 22, 90]. Further, there are other types of unwanted information flow
during the execution of an update transaction. This has been extensively
studied in the MLS area, such as covert channels in concurrency control
protocols etc [66].

7.2 Implementation of Defender D

as Seen by Attacker A

The model R cexec
D,A of the agent system in Definition 4.5 gives us two ways to

detail A’s awareness about D’s implementation. First, we will specify the
interface of the control function. The interface and the implementation of the
function are open to A by Assumption 2. Implicitly, this interface defines
invariants of the control function that A is aware of. Second, we will define the
set StDBInit of the model R cexec

D,A . This set represents facts about D’s initial state
that A is aware of in the implementation.

Beside types of requests that D accepts, D’s abstract state in Definition 4.2
defines the interface of the control function of Definition 4.3. The next
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definition summarizes the implementation of D’s abstract state from
Section 6.1.

Definition 7.1 (State of Defender D with Database).
Cf. Definition 4.2

The set StDB of agent D’s local states consists of tuples with the following
components:

1. Background knowledge:
a set IC of integrity constraints.

2. Evidential knowledge:
a database instance db such that 〈IC , db〉 is a database of Def. 6.1.

3. Belief operator:
the operator BelDBD defined in (6.1).

5. History:
a sequence H DB of pairs of request θ ∈ ReqDB and respective reaction
react ∈ Rea, cf. Definition 4.1.

6. Attacker view (view for short):
a database view 〈IC ,C 〉 of the database 〈IC , db〉 according to
Definition 6.2.

In the definition, the invariants of the control functions are that the
components IC and db form a database and that the attacker view 〈IC ,C 〉 is
a database view. Further, according to the definition, A knows the integrity
constraints IC because they are contained in the view. Thus, all data
components but the database instance are open to A. In the literature on
database security there are alternative approaches which assume that some
integrity constraints may be hidden from the attacker, for example, in [43].

Finally, we specify the attacker’s a priori knowledge about possible initial
states of D in the implementation by defining the set StDBInit of Assumption 2.
These initial states may be seen as preconditions of the control function. The



128

set StDBInit is defined by a predicate pre over StDB

pre(IC , db , conf ,H DB, 〈IC ,C 〉) is true iff

H DB = 〈〉
and IC ∪ C 6`pl B for all B ∈ conf (TCP) ∪ conf (CCP) hold.

(7.1)

The definition of the set StDBInit completes our postulates about A’s awareness
of D’s implementation in this chapter.

Throughout this chapter, we assume that D informs A for each view update
transaction request which of the requested insertions and deletions have been
executed and which have not been executed. Single insertions or deletions
might not be executed because the corresponding atom is already contained in
the database instance or not contained, respectively.

Assumption 7 (Notification About Effective Updates).

Let cexec : StDB × ReqDB → StDB be a control function for the exemplary
implementation of agent D of Section 6.1 and let R cexec

D,A be the system of
defender D and attacker A defined by this function. Further, let
(r,m) ∈ PT (R cexec

D,A ) be a point such the m-th request in run r is of the form
up(L) ∈ ReqDB. Then, by means of the history H DB(r,m), agent A is able to
determine the set U ⊆ L defined by the two properties
db(r,m− 1) •U = db(r,m) and db(r,m− 1) 6|=PL L for all L ∈ U.2 We call
this set effective updates.

The assumption largely simplifies the implementation of control functions in
this chapter and the verification of the confidentiality property. The reason is
that agent D must not take effort to hide the effectiveness of requested
updates. It either reveals the set of all effective updates or refuses the view
update transaction request altogether.

2 The second property is also necessary since by Definition 6.4 for every literal L with
db |=PL L it holds db • {L} = db.
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7.3 Simulating the Attacker’s Skeptical Reason-

ing About View Update Transactions

In Part I, the defending agent D’s confidentiality policy is expressed by an
equivalent possibility policy. The semantics of a possibility policy bases on a
model of the attacking agent A’s reasoning about D’s belief by the operator
KA over the abstract specification R cexec

D,A of the multiagent system. Essentially,
the goal of simulating the attacker A’s reasoning is deciding for each point
(r,m) ∈ PT (R cexec

D,A ) whether agent A is able to skeptically conclude a
confidential belief S ∈ conf (TCP) ∪ conf (CCP), formally, whether

KA(r,m) ∩ IS = ∅ (7.2)

holds where IS is a set of points relevant for the protection of S. In the
following, we will present an algorithmic solution for this decision by means of
propositional entailment. The solution is straightforward for the protection of
temporary confidential belief and follows the standard solution in the work on
Controlled Interaction Execution, for example, in [19]. The relevant
D-property for the protection of a temporary confidential belief S is given by
Definition 4.7 as the set

ITCPS = {(r′,m′) | S 6∈ BelDBD (IC (r′,m′), db(r′,m′))}.

To simulate the attacker A’s reasoning KA, we will identify agent A’s available
information rA(m) in run r at time m with the attacker view 〈IC ,C 〉 (hence,
the history H DB contained in rA(m) will not be used in this simple case of
simulating reasoning about temporary confidential belief). This way, we will
further identify the points KA(r,m) that A considers possible with its
available information rA(m) with the database instances satisfying IC ∪ C .
Then, the simulation will check equation (7.2) for each temporary confidential
belief S ∈ conf (TCP) by deciding whether every database instance satisfying
IC ∪ C is not a model of ¬S or, equivalently, deciding IC ∪ C `pl S. In
summary, the control functions will simulate A’s reasoning with operator KA

by means of the database view V = 〈IC ,C 〉 and the operator

skeptical(〈IC ,C 〉) = {F ∈ LPL | IC ∪ C `pl F}. (7.3)
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In Subsection 7.4.3, we will discuss which invariants of a control function
suffice to ensure that the simulation of KA by means of the database view and
operator skeptical is correct.
In the remainder of this section, we will present the more intricate algorithmic
solution for verifying equation (7.2) for each continuous confidential belief
S ∈ conf (CCP). In this case, by Definition 4.7, the set of points relevant for
its protection is given by the set

PT (RCCP
S,m ) =

{(r′,m′) | m′ ∈ N0 and for all n ≤ m : S 6∈ BelDBD (IC (r′, n), db(r′, n))}.
(7.4)

In contrast to the protection of temporary confidential belief, the set
PT (RCCP

S,m ) involves belief that agent D had previously. In the following, we
elaborate on a transformation of a continuous confidential belief S into a
propositional formula that represents the set PT (RCCP

r,m ) protecting S. To
start with, we illustrate the general idea behind this transformation by the
following example.

Example 7.1 (Reasoning About Continuous Confidential Belief).

Agent D declared its confidentiality interests by conf (TCP) = ∅ and
conf (CCP) = {s1 ∧ s2}. After a view update transaction request up({¬b,¬s2})
from agent A, D successfully updates the database instance db2 = {b, s1, s2}
with integrity constraints IC = {s1 ∨ s2}. The ordinary transaction processing
of Section 6.1.2 results in the database instance db3 := {s1} with instance view
C3 = {¬a,¬b,¬s2, . . .} by Definition 6.6. Agent A is able to infer s1 from ¬s2

in the instance view and the integrity constraints IC by propositional
entailment so that it knows that db3 satisfies s1 ∧¬s2. Now, the agent may use
the result of Lemma 6.3 saying, in this situation, that db3 |=PL s1 ∧ ¬s2 holds
iff db2 |=PL s1 ∧ s2 holds.3 This way, agent A is able to infer that D has
believed the continuous confidential belief s1 ∧ s2 with the previous instance db2.

The key to the just demonstrated inference of continuous confidential belief is
Lemma 6.3. To apply this lemma, it suffices that agent A knows that db2 has

3 To apply the lemma, agent A needs to know that the two equalities db3 = db2•{¬b,¬s2}
and s1 ∧ ¬s2 = neg(s1 ∧ s2, {¬b,¬s2}) hold.
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been updated to db3 by deleting b and s2 or, even less precise, that the atoms
b and s2 have been altered from db2 to db3. This knowledge is postulated by
Assumption 7. The important observation from this example is that D’s
current belief of s1 ∧ ¬s2 becomes relevant for the protection of the continuous
confidential belief s1 ∧ s2.
In the following, we will generalize Lemma 6.3 to iterated view update
transactions. To this end, as illustrated by the example, for each updated
database instance db i we need to determine the atoms that have been altered
from db i to the final instance dbk with i ≤ k. These atoms define the set
∆Up[i] of the following definition.

Definition 7.2 (Sequence ∆Up).

Let Seq = 〈U1, . . . ,Uk−1〉 be a finite sequence of sets of literals with each set
Ui being defined over distinct atoms. Then, we define the sequence ∆Up[Seq ]

as follows

∆Up[Seq ][i] =




(∆Up[Seq ][i+ 1] \ At(Ui)) ∪ (At(Ui) \∆Up[Seq ][i+ 1]) 1 ≤ i ≤ k − 1

∅ i = k.

Lemma 7.1 (Query Evaluation in Previous Instances).

Let Seq = 〈U1, . . . ,Uk−1〉 be a sequence of sets of literals with each set Ui

being defined over distinct atoms. Further, let 〈db1, . . . , dbk〉 be a sequence of
database instances such that for all i = 1, . . . , k − 1 it holds

db i 6|=PL L for all L ∈ Ui and db i+1 = db i •Ui.

Then, for all formulas A ∈ LPL it holds for all i = 1, . . . , k

db i |=PL A iff dbk |=PL neg(A,∆Up[Seq ][i]).

In words, agent D has previously believed formula A with database instance
db i iff agent D currently believes neg(A,∆Up[Seq ][i]). Like Example 7.1, this
result suggests that continuous confidential belief S might be protected by
protecting some current belief. Even more, the result suggests how to define
this current belief from S and a sequence Seq of effective updates appropriately.
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We make this precise in the following. To protect a continuous confidential
belief S, agent A should not be able to skeptically conclude (with operator KA)
that D has previously believed S at some point of time or currently believes S.
Under Assumption 7, agent A may observe the sequence of effective updates
and thus is enabled to reason about D’s previous or current belief by
Lemma 7.1. Using the lemma, a statement about previous or current belief of
S is expressed by the propositional formula ccp(S,∆Up[SUp]) saying “D has
previously believed S at some point of time or currently believes S with
respect to the sequence SUp of effective updates” and defined as follows.

Definition 7.3 (The Transformation ccp).

Let Seq be a finite sequence of k sets of literals and let S be a formula. Then,
we define the following formula

ccp(S, Seq) := neg(S, Seq [1]) ∨ . . . ∨ neg(S, Seq [k + 1]).

If Seq = 〈〉 then we set ccp(S, Seq) = S.

We end this section outlining the simulation of A’s reasoning to decide
Equation 7.2 based on Equation 7.4. Finally, we give a correctness result for
the outlined simulation.
For the simulation, like in the situation with temporary confidential belief,
agent A’s reasoning with operator KA is simulated with the operator of (7.3)
defined on the view. Further, the target of A’s reasoning, some continuous
confidential belief S, is transformed to the formula ccp(S,∆Up[r,m]) where
the sequence ∆Up[r,m] is determined from the effective updates tracked in the
history of run r at time m by Assumption 7. This way, reasoning about the
set of points of (7.4) with operator KA under Assumption 7 is simulated by
propositional entailment of formula ccp(S,∆Up[r,m]) from IC ∪ C . If our
considerations focus on the control function cexec, we will further use the
notation ∆Up[sD] instead of ∆Up[r,m] where sD = rD(m) is agent D’s state in
run r at time m which tracks the effective update in that run until time m in
the history component.
The following result says that agent A may find out that a run r has property
RCCP
S,m of (7.4) by checking the database instance in that run at time m in the

definition R cexec
D,A of the system. Therefore, reasoning about runs can be

reduced to reasoning about database instances.
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Proposition 7.1 (Correctness of Transformation ccp).

Let cexec be a control function of Def. 4.3 with domain StDB × ReqDB.
Further, let R cexec

D,A be the system of defender D and attacker A defined by
cexec. Then, for all points (r,m) ∈ PT (R cexec

D,A ) and for all S ∈ LPL

db(r,m) 6|=PL ccp(S,∆Up[r,m]) of Def. 7.3 holds

iff

r ∈ RCCP
S,m of (4.2) holds.

The proposition follows almost immediately from the definitions and
Lemma 7.1.

7.4 Control Functions For Iterated Query and

View Update Transaction Requests

This section presents the control function of D’s censor for query requests and
view update transaction requests. The control function is abstractly
introduced by Definition 4.3 and its domain StDB × ReqDB in Section 6.1. For
conciseness of the presentation, we present the implementation of the control
function by two separate implementations for each type of request.

7.4.1 Query Requests

On a query request que(A) ∈ ReqDB the control function for controlled query
executions proceeds with checking the following three cases:

1. The answer to the query by ordinary query evaluation of Definition 6.3 is
already included in the current instance view C .

2. In some situations, being informed about D’s belief of formula A or D’s
belief of formula ¬A enables agent A to skeptically conclude that D
currently believes S ∈ conf (TCP) or that D has believed
S ∈ conf (CCP) or currently believes it. This check is designed to be
independent of the ordinary query evaluation result (database instance
independent) to preclude meta-inferences.
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3. The query answer has to be included into the history of the interaction
(and is, thus, forwarded to agent A by the censor).

Procedure 1 cexec for controlled query execution

Input: state s ∈ StDB , request que(A)

Output: state s′ ∈ StDB

Case 1 Agent A knows the query answer

1: if A ∈ skeptical(〈IC ,C 〉) then
2: note = A

3: else if ¬A ∈ skeptical(〈IC ,C 〉) then
4: note = ¬A
Case 2 Answer reveals a potential secret

5: else if

[ccp(S,∆Up[s]) ∈ skeptical(〈IC ,C ∪ {A}〉)
or

ccp(S,∆Up[s]) ∈ skeptical(〈IC ,C ∪ {¬A}〉)] for an S ∈ conf (CCP)

or

[S ∈ skeptical(〈IC ,C ∪ {A}〉)
or

S ∈ skeptical(〈IC ,C ∪ {¬A}〉)] for an S ∈ conf (TCP)

then

6: note = refuse

Case 3 Query evaluation

7: else if A ∈ BelDBD (〈IC , db〉) then
8: note = A

9: V = 〈IC ,C ∪ {A}〉
10: else

11: [then ¬A ∈ BelDBD (〈IC , db〉)]
12: note = ¬A
13: V = 〈IC ,C ∪ {¬A}〉
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14: end if

15: Append (que(A), note) to history

Proposition 7.2 (Output States of Controlled Query Execution).

Procedure 1 outputs a state of Def. 7.1.

The proposition is immediate from the definition of the procedure.

7.4.2 View Update Transaction Requests

In Section 7.1, we surveyed approaches from the literature that deal with an
immediate conflict between integrity and confidentiality, that is updating
violates the integrity constraints, but notifying the requester about the
violation discloses confidential information. To resolve this conflict, those
approaches add lies (or cover stories) to the database view.
As a different approach, the control function for view update transaction
presented here identifies situations in which the enforcement of integrity might
lead to a confidentiality violation, that is, there is a potential conflict. In such
situations, the control function aborts the transaction to escape a possible
immediate conflict in the future. This approach comes at the cost of
cooperative information sharing because the control function aborts in
situations with no immediate, but a potential conflict between integrity and
confidentiality.
The control function for controlled view update transaction executions follows
the ordinary procedure of a view update transaction (especially, achieves
atomicity and consistency), cf. Section 6.1.2, while it ensures that the attacker
A does not skeptically conclude a temporary or continuous confidential belief.
To this end, the function uses the simulation of A’s postulated reasoning
presented in Section 7.3. Essentially, a view update transaction involves
several implicit queries to ensure acceptability [9] and consistency, cf. [22]. On
a view update transaction request up(L) ∈ ReqDB from agent A the control
function proceeds by checking the following four cases:

1. For at least one input literal, due to a conflict with the confidentiality
policy, agent A cannot be informed whether the requested deletion or
insertion has to be executed (outstanding update request). In case of a
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conflict, the transaction aborts to adhere to Assumption 7 and the
atomicity requirement for view update transactions of Section 6.1.2.

2. A successful view update transaction necessarily would violate the
confidentiality policy (because the updated database view reveals a
temporary or continuous confidential belief). In this case, the
transaction aborts.

3. Either a potential conflict between integrity and confidentiality arises or
the integrity constraints cannot be preserved. In this case, the
transaction aborts.

4. The database instance is to be updated.

Procedure 2 cexec for controlled view update transaction execution

Input: state s ∈ StDB , request up(L)

Output: state s′ ∈ StDB

Case 1 Outstanding Updates

1: for all literals L in L do

2: Pose the query que(L) to Procedure 1
(which modifies D’s state s accordingly
so that A is informed about the query notification)

3: if the notification to the query is a refusal then

4: note = transaction refused
5: Append (up(L), note) to history
6: Exit procedure
7: else if the notification to the query is ¬L then

8: U := U ∪ {L}
9: end if

10: end for

Case 2 Performing Transaction Reveals a Potential Secret

11: Set Seq to the sequence of all effective updates from the history in state s
and append U.
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12: if

ccp(S,∆Up[Seq ]) ∈ skeptical(〈IC ,C 〉� U) for an S ∈ conf (CCP)

or

S ∈ skeptical(〈IC ,C 〉� U) for an S ∈ conf (TCP)

then

13: note = view update transaction violates confidentiality
14: Append (up(L), (U, note)) to history
15: Exit procedure
16: end if

Case 3 Integrity check

17: if

Agent A does not know about integrity preservation, that is

neg(IC ,U) 6⊆ skeptical(〈IC ,C 〉)

then

18: if

Agent A knows about integrity violation, that is

neg(¬
∧

(IC ),U) ∈ skeptical(〈IC ,C 〉)

then

19: note = view update transaction violates integrity constraints
20: Append (up(L), (U, note)) to history
21: Exit procedure
22: else if

Notification of integrity violation harms confidentiality, that is

ccp(S,∆Up[Seq ]) ∈ skeptical(〈IC ,C ∪ {neg(¬
∧

(IC ),U)}〉)

for an S ∈ conf (CCP)

or

S ∈ skeptical(〈IC ,C ∪ {neg(¬
∧

(IC ),U)}〉)

for an S ∈ conf (TCP)

then
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23: note = integrity check conflicts confidentiality
24: Append (up(L), (U, note)) to history
25: Exit procedure
26: else if

Integrity violation, that is

IC 6⊆ BelDBD (〈IC , db •U〉)

then

27: note = view update transaction violates integrity constraints
28: V = 〈IC ,C ∪ {neg(¬∧(IC ),U)}〉
29: Append (up(L), (U, note)) to history
30: Exit procedure
31: end if

32: end if

Case 4 View Update Transaction

33: note = view update transaction successful
34: 〈IC , db〉 = 〈IC , db〉 •U
35: V = V � U
36: Append (up(L), (U, note)) to history

Proposition 7.3 (Output States of Controlled View Update Transaction
Execution).

Procedure 2 outputs a state of Def. 7.1.

Case 1 bases on Assumption 7 that the attacking agent has to be informed
about the effective updates U. The assumption may be argued, but we defer a
discussion to Section 7.6.2.
In Case 2, there is no need to check for meta-inferences: Passing Case 1, the set
U of outstanding updates can be made visible to agent A so that, in principle,
the agent is able to execute Case 2 itself and, thus, the execution of Case 2 by
the control function releases no additional information to A. Therefore agent
A cannot exploit the execution of Case 2 to draw meta-inferences.
In Case 3, the integrity check can be understood as the implicit query about
D’s current belief of formula neg(¬∧(IC ),U) saying that updating the
database instance by U violates the integrity constraints. This query can be
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evaluated with the current database db due to the equivalence of the
evaluation db |=PL neg(¬∧(IC ),U) with the evaluation db •U |=PL IC by
Lemma 6.3. The control function first checks whether agent A already knows
the result of the integrity check by its current database view in line 17 and
line 18. This is important to avoid refusal due to inconsistency in the premises
of propositional entailment checked within line 22. Further, the control
function checks whether a notification of integrity violation breaches
confidentiality in line 22. This check is made independently of integrity
violation or preservation with respect to the current database instance and
update transaction to prevent the meta-inference that a refusal in Case 3
occurs if and only if integrity is violated.

Although the integrity check may be seen as an implicit query about the
current belief of formula neg(¬∧(IC ),U), in contrast to the control function
for controlled query execution, Procedure 2 does not check in Case 3 whether
the answer ¬neg(¬∧(IC ),U) to this query reveals some confidential belief.
The answer says that the integrity constraints IC are preserved after updating
the database instance by U. As for continuous confidential belief S, the control
function already prevents such a violation in line 12 (due to ccp(S,∆Up[Seq ])).
As for temporary confidential belief S, the answer would only reveal that agent
D believes S before updating the database instance. But after updating, agent
A is no longer certain that D believes S by the condition checked in line 12.

Example 7.2 (Controlled View Update Transaction Execution).

We consider a situation similar to that of Ex. 7.1. Agent D has the database
instance db1 = {a, s1, s2} under the integrity constraints
IC = {a⇒ s2, s1 ∨ s2, a⇒ ¬b} with policy conf (TCP) = ∅ and
conf (CCP) = {s1 ∧ s2}. Agent A may freely access the view V1 = 〈IC , {a}〉.
In this situation, A sends the request up(〈¬a, b〉).
Next, we follow the computations of Proc. 2 from Case 2 on.4 In Case 2, the
outstanding updates are U = {¬a, b} and we have Seq = 〈{a, b}〉. The updated
view V1 �U contains all the information in the set neg(C1 ∪ IC ,U) ∪U ∪ IC .

4 In Case 1, the evaluation of ¬a and b in db1 follows from the view V1 so that the view
is not modified.
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In (12), Proc. 2 checks this set for revelation of confidential belief:

neg(C1 ∪ IC ,U) ∪U ∪ IC

= {¬a,¬a⇒ s2, s1 ∨ s2, ¬a⇒ b} ∪U ∪ IC

≡ {¬a, s2, b} ∪ IC

6`pl s1 ∧ s2 = ccp(s1 ∧ s2,∆Up[Seq ]).

After the negative check, in (17) the procedure infers that A knows about
integrity preservation:

C1 ∪ IC = {a, s1 ∨ s2, . . .} `pl {¬a⇒ s2, s1 ∨ s2, ¬a⇒ b} = neg(IC ,U).

Finally, the database instance is updated to db2 = {b, s1, s2} and the updated
view V2 may be simplified to the view 〈IC , {¬a, b, s2}〉 containing the same
information under skeptical of (7.3).
Afterwards, A requests up(〈¬b,¬s2〉). Again Case 1 does not modify the view.
Procedure 2 in Case 2 checks for revelation of confidential belief with
U = {¬b,¬s2}:

neg(C2 ∪ IC ,U) ∪U ∪ IC

≡ {¬a,¬b,¬s2} ∪ IC

≡ {¬a,¬b,¬s2, s1 ∨ s2} `pl s1.

The continuous confidential belief s1 ∧ s2 must be protected by preventing the
inference of ccp(s1 ∧ s2, 〈{a}, {b, s2}〉) ≡ (s1 ∧ s2) ∨ (s1 ∧ ¬s2) ≡ s1. Thus, the
procedure detects an inference and refuses the request in (12).

7.4.3 Correctness of Simulation

and Confidentiality Enforcement

Before we verify that the two control functions ensure the confidentiality
property of Definition 4.6, we will present a result needed for that verification.
The essential means of the control functions to enforce confidentiality is the
simulation of agent A’s postulated reasoning KA about D’s belief, using
operator skeptical with view V . The strategy of the presented control
functions is to enforce confidentiality by ensuring the invariants of the
following lemma.
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Lemma 7.2 (No Secrecy Revelation through V ).

Proc. 1 and Proc. 2 maintain the following two invariants:

ccp(S,∆Up[s]) 6∈ skeptical(V ) if S ∈ conf (CCP), and

S 6∈ skeptical(V ) if S ∈ conf (TCP).

In the remainder, we will argue that these invariants suffice for enforcing
confidentiality if the control functions correctly simulate operator KA as
defined in the following.

Definition 7.4 (Correctness of Simulation).

Let cexec be a control function of Def. 4.3 with domain StDB × ReqDB

adhering to Asmp. 7. Further, let R cexec
D,A be the system of defender D and

attacker A defined by cexec. Then, cexec correctly simulates operator KA by
means of the view V and operator skeptical iff the following equivalence holds.
For all (r,m) ∈ PT (R cexec

D,A ) it holds

db |=PL skeptical(V (r,m))

iff

there exists (r′,m) ∈ PT (R cexec
D,A ) such that

db = db(r′,m) and (r′,m) ∈ KA(r,m).

In the following, we will present two requirements on control functions which
guarantee the correctness of simulation.
First, recall that any information that the attacker A has gained by initiating
a request and partially observing the control function’s output is represented
in the attacker’s local state in the model R cexec

D,A , cf. Definition 4.5. For a
correct simulation, necessarily, that information gain must be represented in
the attacker view in a “sound” way. In the following definition, we will make
this requirement explicit.

Definition 7.5 (Soundness of Attacker View).

Let cexec be a control function of Def. 4.3 with domain StDB × ReqDB.
Then, cexec maintains a sound attacker view V iff
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for every request θ ∈ ReqDB

for every two input states sD and s′D of the form

sD = (IC , db t−1, conf ,H DB
t−1 ,Vt−1) ∈ StDB

s′D = (IC , db ′t−1, conf ,H DB
t−1 ,Vt−1) ∈ StDB,

that is the states sD and s′D differ only in the database instance employed, the
following holds:
If A is able to distinguish s′D from sD after execution on state sD and request θ,
that is (H DB

t )′ 6= H DB
t or V ′t 6= Vt, then it follows that there exists a set U of

literals over pairwise distinct atoms such that

db t = db t−1 •U and db ′t−1 •U 6|=PL skeptical(Vt).

We will explain the definition in the following. Consider the initial situation of
Definition 7.5 in which D is in state sD. Then, the attacker A’s information
gain after request θ in the considered situation is represented in the history
H DB
t and view Vt in its local state at time t in system R cexec

D,A . With that
additional information, A is able to rule out (by operator KA) that agent D
employs the database instance db ′t−1 if no database update is reported in
H DB
t ; or db ′t−1 •U if a database update by U is reported.5 Then, the

database instance ruled out by A must not be a model of the instance view
that is output by the control function in the considered situation. Or, to put it
into a different perspective, every information that agent A has gained about
the database instance by observing the visible output of the control function is
represented in the attacker view.
The second requirement follows the principle of Assumption 3: The security
engineer does not not suppose the attacking agent A to forget information
already disclosed to it. The next definition requires a control function to
implement this principle in the maintenance of the attacker view V .

5 The database instance is the only component of D’s local state of which agent A has
no complete knowledge by Definition 4.5 and Definition 7.1. Hence, if A gains information,
it gains information about the database instance. Further, the attacker’s reasoning about
database updates bases on Assumption 7.
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Definition 7.6 (No Loss of Information).

Let cexec be a control function of Def. 4.3 with domain StDB × ReqDB.
Then, cexec does not loose information from view V iff
for every input state s ∈ StDB with database instance db t−1 and view Vt−1,
for every request θ ∈ ReqDB with output state cexec(s, θ), including database
instance db t and view Vt, there exists a set U of literals over pairwise distinct
atoms such that

db t = db t−1 •U and skeptical(Vt−1 � U) ⊆ skeptical(Vt).

Finally, we show that the two requirements suffice for the correctness of
simulation.

Proposition 7.4 (Correctness of Simulation).

Let cexec be a control function of Def. 4.3 with domain StDB × ReqDB under
Assumption 7. Further, let R cexec

D,A be the system of defender D and attacker A

defined by cexec. If cexec satisfies (Soundness of Attacker View) of
Def. 7.5 and (No Loss of Information) of Def. 7.6, then cexec correctly
simulates operator KA in the sense of Def. 7.4.

Lemma 7.3 (Soundness of Attacker View).

The control functions Proc. 1 and Proc. 2 maintain a sound attacker view.

Lemma 7.4 (No Loss of Information).

The control functions Proc. 1 and Proc. 2 do not loose information from the
view in the sense of Def. 7.6.

The last lemma holds by design of the procedures.
The following lemma is an immediate consequence of Proposition 7.4 and
Lemma 7.3 and Lemma 7.4. We state it for the reader’s convenience.

Lemma 7.5 (Correctness of Simulation by Procedures).

The control functions Proc. 1 and Proc. 2 correctly simulate operator KA in the
sense of Def. 7.4.
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Theorem 7.1 (Confidentiality Preservation).

The control functions Proc. 1 and Proc. 2 preserve continuous/temporary
confidentiality towards agent A in the sense of Def. 4.6.

7.5 Cooperative Information Sharing

Usually, beside confidentiality, agent D is interested in sharing information
with agent A as cooperatively as possible. Similar, in database security, the
database should provide each user with information the user is authorized to
access which serves the users’ interest in the availability of information. To
emphasize the fact that D is both interested in the provision and acquisition of
information we will speak of cooperative information sharing.
In this section, we analyze the performance of the control function for view
update transaction execution in Procedure 2 under D’s interest of cooperative
information sharing. The control functions of Section 7.4 respect this interest
by a policy of last-minute intervention. Roughly, this policy says that a control
function only refuses a request from agent A if otherwise there is a potential of
a confidentiality policy violation. Further, the policy of last-minute
intervention lets the requesting agent A choose during an interaction which
information should be shared as needed by A. The next example illustrates
the principle behind last-minute intervention to share information as needed
by A by the processing of controlled query execution of Procedure 1:

Example 7.3 (Information Sharing Under a Policy of Last-Minute
Intervention).

Let C = {medB → (cancer ∨ flu)} be an instance view on the database
instance db = {cancer,medB}. Agent D’s confidentiality policy comprises the
sets conf (TCP) = ∅ and conf (CCP) = {cancer}. Since the interaction
between the agents has just started, it holds ∆Up = 〈〉 and, hence,
ccp(cancer,∆Up) ≡ cancer holds. The query sequence
Q1 = 〈que(flu), que(medB)〉 is answered with 〈¬flu, refuse〉, whereas
Q2 = 〈que(medB), que(flu)〉 is answered with 〈medB, refuse〉. Thus, by the
order of its queries agent A chooses whether it is informed about either medB
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or ¬flu if it could not be informed about the two pieces of information due to
confidentiality.

Imagine another control function cexec′ that answers the query sequence Q1

with 〈refuse,medB〉. Clearly, this control function follows another policy for
cooperative information sharing and does not let agent A choose the
information to be shared by the order of its requests. In this situation, the
policy for cooperative information sharing followed by cexec′ and the policy of
last-minute intervention obviously do not agree in their assumptions about
agent A’s information needs. Certainly, control functions designed under
different assumptions about agent A’s information needs cannot be compared
with respect to information sharing, but only those assumptions might be
argued. We do so in Subsection 7.6.2.
Under a policy of last-minute intervention, agent D is interested to satisfy
agent A’s information needs according to the requests received from A. The
decision of a control function for a request depends on the information
previously shared among the agents. For this reason, we will compare control
functions on the same input for a single request, especially, on the same input
view provided to A. In particular, in the analysis of cooperative information
sharing we do not consider sequences of requests.
Further, our analysis focuses on controlled view update transaction execution.
Thus, within this section we restrict valid request messages to the set

ReqDB
up

= {up({L1, . . . , Ln}) | (7.5)

L1, . . . , Ln ∈ LPL literals over pairwise distinct atoms}.

Further, for simplicity in the remainder of this section, we assume that, before
a view update transaction request up(L), agent A has been informed for each
literal L ∈ L whether agent D believes L or not – if permitted by D’s
confidentiality policy.6 Otherwise, we will not consider the request up(L) in
the analysis. The information should be contained in the instance view C ,
formally,

(L \U) ∪ ¬(U) ⊆ C with U = L \ BelDBD (〈IC , db〉). (7.6)
6 Note that every control function basing on Assumption 7 will eventually reveal this

information to A if confidentiality will not be violated.
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The main challenge now is to define cooperativeness of control functions under
a policy of last-minute intervention or, in more general terms, the desired
processing of requests by control functions under this policy. Under this policy,
a request expresses the requesting agent A’s need of sharing information. In
particular, requesting a view update transaction by up(L) agent A is interested
to share information as follows. First, it offers the information that the literals
up(L) are true in the agents’ environment. Second, it demands to be informed
about whether the database update has succeeded or failed. Third, in case of
failure it demands to be informed about the cause of the failure in order to
take appropriate action. In particular, if a potential violation of confidentiality
is the cause of the failure, A does not need to be informed that integrity would
be violated if the update was executed. It is important to note that agent A by
request up(L) does not need to share information apart from that (although as
an attacker it might intend to obtain more information through the request).
Any control function of Definition 4.3 shares information with agent A via the
components H DB and V in agent D’s local state. In our analysis, we focus on
the attacker view V since it has a formal semantics with respect to database
instances. The requirement of (Soundness of Attacker View) of
Definition 7.5 ensures that actually A has not gained information about the
database instance beyond what is represented in the attacker view. In the
following definition, we list requirements on control functions under a policy of
last-minute intervention.

Definition 7.7 (Proper Control Functions for Controlled View Update
Execution).

Let cexec be a control function of Def. 4.3 with domain StDB ×ReqDB
up

fulfilling
Asmp 7. Then, the control function is called proper if it is deterministic,
follows the atomicity and consistency (here, integrity) preservation requirement
(ACID) and has the following properties for each input request and input state

sD = (IC , db t−1, conf ,H DB
t−1 ,Vt−1) ∈ StDBof Def. 7.1.7

1. No Loss of Information: (Def. 7.6)
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2. Cooperativeness:

If the updated database view Vt−1 � U contains confidential information
as defined in line 12 of Proc. 2, then

skeptical(Vt) ⊆ skeptical(Vt−1),

else if the update by U of (7.6) is not effective, then

skeptical(Vt) ⊆ skeptical(〈IC ,Ct−1 ∪ {neg(¬
∧

(IC ),U)}〉),

else

skeptical(Vt) ⊆ skeptical(Vt−1 � U).

3. Soundness of Attacker View (Def. 7.5)

4. Confidentiality (Def. 4.6).

These properties meet the following objectives:
The domain/co-domain of control function ensures by Definition 7.1 that the
function has to maintain the attacker view Vt as a database view. Therefore,
every formula in the instance view Ct is true in the database instance and A is
not misled by the information revealed to it. Further, Assumption 7 in
particular ensures that A is truthfully notified of the success/failure of the
update which is recorded in the history.
The property cooperativeness defines which information the control function
should provide to A according to the agent’s request up(L) and requires the
control function to provide no other information. The definition accounts for
A’s information needs that have been intuitively described above as follows.
Without a successful update agent A may not obtain any additional
information if updating the database view violates confidentiality. Lemma 7.6
below shows that in such a case a successful update necessarily violates the
confidentiality requirement of Definition 4.6. Otherwise, without a successful
update A may only be informed about a failed integrity check while Ct−1 is its

7Here, the history is only defined on the set ReqDB
up

of valid view update requests, not on
ReqDB as in the definition.
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instance view before the request. With a successful update, agent A may only
be informed about the success of the operation and the set U ⊆ L defined by
the property db t−1 •U = db t by Assumption 7. Given all that information,
agent A can determine the updated instance view Ct−1 � U itself.
The properties no loss of information, soundness of attacker view and
confidentiality have been motivated in the context of the respective definitions.

Proposition 7.5 (Proper View Update Transactions).

The control function Proc. 2 is proper in the sense of Def. 7.7.

Atomicity, no loss of information and cooperativeness are ensured by design of
Procedure 2. The other properties are shown in Proposition 7.3, Lemma 7.3
and Theorem 7.1.
The following property of local optimality must be viewed in the light of
Definition 7.7 which requires a proper control function not to reveal more
information than requested by A by the property of cooperativeness.

Definition 7.8 (Local Optimality).

A proper control function cexec is said to be locally optimal8 iff for every other
proper control function cexec′ the following properties hold.

• ∆cexec′ ⊂ ∆cexec: cexec′ performs strictly less updates than cexec,or

• ∆cexec′ = ∆cexec and skeptical(V cexec′) ⊆ skeptical(V cexec): cexec′

performs the same updates as cexec, but offers at most the information
provided by cexec.

Here, ∆cexec ⊆ At(U) denotes the atoms updated by procedure cexec and V cexec

the view output by cexec.

The following lemma helps to prove local optimality of the control function
cexec implemented by Procedure 2. It essentially states that the conditions
checked by cexec are necessary for guaranteeing confidentiality for any control
function on StDB of Definition 7.1 under Assumption 7.

8We speak of local optimality instead of optimality to emphasize that we consider only
single requests instead of sequences due to a policy of last-minute intervention.
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Lemma 7.6 (Revelation of Confidential Belief through the Database View).

Let cexec be a control function of Def. 4.3 with domain StDB × ReqDB
up

fulfilling Asmp. 7. Let the view Vt in the output state st contain confidential
information, that is there exists S ∈ LPL such that

(S ∈ skeptical(Vt) and S ∈ conf (TCP))

or (ccp(S,∆Up[st]) ∈ skeptical(Vt) and S ∈ conf (CCP)).

Then, cexec violates the confidentiality requirements of Def. 4.6.

Theorem 7.2 (Local Optimality of Procedure 2).

Procedure 2 for controlled view update execution is locally optimal.

7.6 Conclusion

7.6.1 Summary

We presented two control functions for iterated query and view update
transaction requests and proved their effectiveness in preserving confidentiality.
The control functions achieve confidentiality by two activities which we
discussed in this chapter. The first activity is the preservation of the invariant
that the attacker view does not imply any propositional information that is
relevant for the protection of confidential belief. To this end, we showed that
continuous confidential belief S ∈ LPL can be protected by a propositional
formula that is the result of a transformation of formula S. The second activity
is the maintenance of the attacker view. We introduced two requirements on
this activity that in combination ensure that the control function correctly
simulates A’s reasoning. Finally, the invariant and the correctness of
simulation imply confidentiality preservation which we proved in Theorem 7.1.
Beyond confidentiality, we studied agent D’s cooperativeness in sharing
information. The dynamic enforcement of confidentiality by simulating the
attacker A at runtime usually is complemented by a policy of last-minute
intervention (within the research of Controlled Interaction Execution [18]). In
this chapter, we made the objective of this policy precise mainly by two
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definitions. First, cooperativeness defines agent A’s information needs
expressed by the agent through a view update transaction request. Second,
local optimality defines optimal control functions under a policy of last-minute
intervention. Finally, we proved that the control function for view update
transaction achieves local optimality.

7.6.2 Discussion

Notification About Effective Updates Rather than deciding to let the
control function for view update transaction execution exit in Case 1, we could
try to find an alternative way to let the function hide (parts of) the set U of
effective updates (Assumption 7) from agent A. Doing so, we might at best
weaken Assumption 7 to the assumption that agent A is just reported the
failure or success of the transaction or, in formal terms, that A is able to
determine whether db(r,m) |=PL L holds. However, then, we would face the
following problem. The control function uses the set U in the integrity check
and for the view update V � U. Thus, for example, being informed about the
result of the integrity check, agent A might implicitly acquire information
about whether or not an input literal L ∈ L is contained in the set U.
Preventing such disclosures presumably would lead to significantly more
complicated inference checks in Case 2 and Case 3 of the control function in
Procedure 2.

Preprocessing Approaches A drawback of the dynamic approach of
simulating the attacker is the high computational cost of the employed
propositional entailment operator combined with the increasing size of the
view as well as the increasing length of the history for computing the sequence
of effective updates. Alternatively, the defender D may create a precomputed
inference-proof database view for agent A, but then is recommended to define
an availability policy that estimates A’s information needs [36, 35]. As another
solution with preprocessing, but on the schema rather than on the data level,
the authors of [40] split a relation into vertical views (fragments, i.e., several
columns of the original relation) in order to break sensitive associations among
the attributes, but inference based on integrity constraints is not considered in
the seminal works on fragmentation. In [26], the reader may find a first
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investigation of the inference problem for fragmentation in the presence of
integrity constraints. Yet, the control of the attacker’s inference upon
updating the preprocessed view or the data in a fragment is not treated by the
respective work.

Availability Policies Throughout this chapter, we mentioned other
approaches treating the aspect of cooperative information sharing. Several
approaches do not give an estimate of the requesting agent’s information
needs, but follow the principle of minimal loss of information such as a
minimal distortion of database entries in [36] or maximized data utility as
surveyed in [51, 2]. These approaches have the disadvantage that a measure
for the loss of information must be found that is appropriate for the later
usage of the data such as a particular data-mining task. Other approaches
define the requester’s information needs by an explicit policy such as pieces of
information that should not be distorted in [36, 35] or lower bounds on the
classification of data in [44]. The disadvantage here is that the requester’s
information needs must be specified at the configuration time of the database.
The policy of last-minute intervention does not have these disadvantages at
configuration time. Rather it faces the problem of high computational costs at
runtime due to the dynamic control of inferences.

7.6.3 Future Work

Local optimality should be analyzed for control functions for query execution.
To this end, the information needs that agent A’s expresses by request que(A)

with formula A ∈ LPL should be defined similar to (Cooperativeness) of
Definition 7.7. This should simply be the requirement

skeptical(Vt) ⊆ skeptical(〈IC ,Ct−1 ∪ {A}〉) or

skeptical(Vt) ⊆ skeptical(〈IC ,Ct−1 ∪ {¬A}〉).

A control function might have the option to weaken a query answer A or ¬A,
for example, weaken a ∧ b with a, b ∈ At to a. This is a more cooperative way
to answer queries in the sense of local optimality of Definition 7.8 under the
latter requirement.
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In our analysis of local optimality, Definition 7.7 lists requirements of control
functions for view update transaction execution and in particular stipulates
the use of deterministic control functions. In future work, we might consider
control functions that are non deterministic. We may argue that a potential
conflict between confidentiality and integrity in a transaction must not force a
protocol to refuse this transaction if the protocol can randomly choose to
refuse this transaction. But then we need to augment the representation of
agent A’s information with probabilities.
Another open aspect is a comparison of local optimality of the presented
control functions with control functions applying data distortion, that is lying
such as [22] or cover stories such as [52]. At first sight, our approach seems to
pay the rather high price of forcefully refusing a transaction with a potential
conflict between integrity and confidentiality. Yet, lying or polyinstantiation
provide misinformation, which obviously reduces the availability of correct or
reliable information, so that a more thorough comparison is needed. For such a
comparison, we would have to modify Definition 7.7 and Definition 7.8 in order
to account for pretended success of an update or misinformation in the view.



Chapter 8

Revising Belief

by Nonmonotonic Reasoning

without Revealing Secrets

In this chapter, we study the defending agent D’s controlled processing of
iterated query and revision requests from the attacking agent A, cf.
Section 6.2. In contrast to Chapter 7, agent D is not able to gather complete
information about its environment. Rather, agent D holds incomplete
information, its set as of current assertions. From these assertions D derives
its belief in the process of nonmonotonic reasoning with its consequence
relation Z∼D. To protect its confidential belief, agent D might hide parts of its
assertions as and its consequence relation Z∼D from the attacking agent A.

The main goal of this chapter is the construction of a confidentiality preserving
agent D as outlined in Figure 8.1. The following example illustrates the main
challenges faced in the construction.

Example 8.1 (A Inquiring D’s Belief Through Interactions).

Based on the running example of Sect. 6.2.2, we consider that manufacturer
D’s confidentiality interest is to hide from supplier A whether D currently
believes either of the two following propositions: first, a positive result of the
feasibility study and, second, the agreement of deployment with supplier #2.
Altogether, D’s policy is conf (TCP) = {r, d12, d22, d32, d42}1. D initially has

1 Note that D’s policy declaration should not include just the agreements actually settled
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the assertions as = {d12, s12} according to its agreement with supplier #2, but
has hidden from A the assertion d12 due to its confidentiality policy.
Consider now two scenarios in which A tries to find out whether D currently
believes a formula in conf (TCP). In the first scenario, A is interested in the
realizability of the manufacturer’s proposal. In this scenario the history of the
interaction is

H NMR
1 = 〈(que(s21), undef ), (que(s21⇒ r), true), (rev(s21), success)〉.

In the second scenario, A is interested in the manufacturer’s agreement with
supplier #2 and, thus, interacts with D as follows:

H NMR
2 =

〈(rev(¬s11∨¬s21), success), (que(¬s11⇒ d12), true), (rev(¬s21), failure)〉.

Intuitively, in the first scenario after the successful revision, with the query
answers A should be able to reason that D finally believes r. In the second
scenario, the success and the failure notification helps A to conclude that D
believes ¬s11 ∧ s21 as D’s conclusion from D’s hidden unquestionable belief
and D’s hidden assertions. Together with the query result, A might conclude
that D believes d12. The main challenge is now to compute A’s reasoning. To
this end, we investigate the following questions

1. What has A learned about the hidden consequence relation Z∼D, in
particular, D’s unquestionable belief, and the hidden parts of the
assertions as from the history of an interaction?

2. For which classes of D’s fixed nonmonotonic reasoning may we compute
A’s reasoning about D’s belief?

3. How is A able to handle the fact that D might have hidden some
assertions from A?

In the following, we will survey our contributions to the construction of agent
D in Figure 8.1. The first and main contribution is the computation of A’s

but rather any possible agreement with supplier #2. Otherwise, the agreement would be
revealed to A because A knows the declaration of the policy by Assumption 2. Here, we
assume that d12, d22, d32 and d42 are all possible agreements with supplier #2.
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postulated skeptical reasoning in the presence of hidden assertions. This
contribution also presents solutions to the previous questions.
In this chapter, we do not consider continuous confidential belief (formally, we
assume conf (CCP ) = ∅). Thus, D’s control procedures simulate agent A’s
postulated reasoning with KA about D’s current belief to protect temporary
confidential belief. The simulation is based on the attacker view V . As part of
this simulation, the control procedures incorporate what A has learned from
outgoing notifications into the view by invoking respective view maintenance
procedures (question 1).
We consider classes C for D’s reasoning with an axiomatization satisfying
dedicated “allowance properties” (question 2). Several important
axiomatizations from the literature on nonmonotonic reasoning have these
properties.
The simulation of A’s postulated skeptical reasoning is by deduction with such
an axiomatization Ax of the class of D’s reasoning and a translation of the
view into formulas of a conditional language. The ”allowance properties” of the
axiomatization enable A to reason about D’s belief in the situation of hidden
situation as if D had not hidden any assertion at all (question 3).

The second contribution is the design of the control functions for iterated
query and revision requests and a proof of their effectiveness. During
simulation, the control procedures ensure that B 6∈ skepticalC(V ) for every
B ∈ conf (TCP) lest confidendiality is immediately breached. Like previously
in Chapter 7, the main challenge to designing the control functions of the
censor is the prevention of harmful meta-inferences from refusal notifications.
Controlled revision execution and controlled view update transaction
execution both base success/failure notifications on a check whether the
information received through the request from A conflicts with D’s
background knowledge2. For this reason, the control function for revision
execution can follow a similar strategy against meta-inferences like that of the
control function for view update transaction execution.

Finally we remark that in this chapter we will not provide a formal analysis of
the control functions’ performance under information sharing. Instead we will

2In Section 6.4, we outlined the similarity in the processing of a database update and the
processing of a revision in more detail.
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discuss information sharing in Section 8.6 as an outlook to future work.

The organization of this chapter is as follows. Section 8.1 to Section 8.4
present the first contribution. First, Section 8.1 studies how A might
approximate D’s hidden consequence relation Z∼D and the partially hidden
assertions as by observing the history of an interaction (question 1). Based on
these approximations, the section elaborates on the simulation of agent A’s
postulated reasoning in the situation that D has hidden assertions from A.

Afterwards, Section 8.2 specifies A’s awareness about D’s implementation
(Activity 2 of the security engineering task of implementation & verification).
This way, we make precise how A might exploit the details of D’s
implementation in the postulated reasoning about D’s belief in Chapter 4.

Section 8.3 characterizes the class C of D’s fixed reasoning by axiomatizations
that capture its characteristic properties and satisfy dedicated “allowance
properties” (question 2). These “allowance properties” are syntactic restrictions
for such axiomatizations and give a basis for the results on the computation of
skeptical entailment and the effectiveness of the censor in the subsequent
sections.

In Section 8.4, we present results for the computation of the simulation of A’s
postulated reasoning as outlined in Figure 8.1 (question 3).

Finally, Section 8.5 presents the second contribution, the control functions of
the censor and a formal proof of confidentiality preservation by means of these
functions (Activity 3 of the security engineering task of implementation &
verification). In Section 8.6, we will further discuss our contributions of this
chapter and further open issues for future work.

8.1 Modeling A’s Postulated

Skeptical Reasoning For Simulation

8.1.1 Skeptical Entailment with Visible Assertions

As D’s essential means to enforcing confidentiality, we now elaborate the
attacking agent A’s postulated reasoning of Chapter 4 for the simulation by D.
There, A is postulated to be a skeptical reasoner about D’s belief opposing
D’s confidentiality aim expressed by D’s confidentiality policy. In this chapter,
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Figure 8.1: Design of a confidentiality preserving agent D as defender against
a requesting agent A as attacker

the policy is limited to temporary confidential belief. Agent A’s starting point
for reasoning about D’s belief are the requests sent by A and the reactions
observed subsequently, cf. Example 8.1. A’s observations during an interaction
are recorded in the history of Definition 4.1.

To protect its confidential belief, agent D generally hides parts of its current
assertions as and its fixed reasoning Z∼D. Yet, for reasoning about D’s belief,
agent A (is assumed) to try to approximate these two components on the basis
of the history of the agents’ interaction:

• A approximates D’s fixed reasoning Z∼D

(1) by a set B+ of pairs (A,B) ∈ LPL × LPL with the meaning that A
considers that A Z∼D B holds, describing D’s observed behavior to draw
conclusions;3

(2) by a set B− of pairs (A,B) ∈ LPL × LPL with the meaning that A
considers that A Z�DB holds, describing D’s observed behavior not to
draw conclusions.3

• A approximates D’s current assertions as by a set C ⊂fin LPL that
describes which of the assertions propositionally entailed by as are
visible to A.3

3B refers to background knowledge ( Z∼D) and C refers to contextual knowledge (as , also
called evidential knowledge).
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We abbreviate B = B+ ∪ B−. The next assumption simplifies our
considerations in the remainder of the chapter.

Assumption 8 (Attacker’s Ignorance of Fixed Reasoning).

Agent A is initially ignorant about D’s fixed reasoning: B0 = ∅.4

But C0 is not assumed to be empty. For example, both the manufacturer D
and A on behalf of supplier #1 might know that supplier #2 can supply part 1

(thus, s12 ∈ C0) because it is a publicly known fact.
For the time being, in this subsection we consider that agent A approximates
D’s components from its observations in the situation that the assertions as
are visible to A. In this situation, due to the open design (Assumption 2),
during an uncontrolled interaction agent A is aware that D replies to a query
que(A) with A ∈ LPL with answer true iff

∧
(as) Z∼D A holds by

Definition 6.8 and (6.4). The same argument applies when A is notified by D

that a revision rev(A) with A ∈ LPL has failed which is the case iff
∧

(as) ∧ A Z∼D ⊥ holds by Definition 6.9. Similarly, A may construct
approximations from the visible assertions as and other reactions from D.

Example 8.2 (Approximations).

Consider the interaction of the first scenario from Ex. 8.1 with history H NMR
1 ,

but with D’s initial assertions as = {s12}. Assume that as is visible to A so
that C0 = {s12}. Then, A finds out the following from H NMR

1 :

Answer undef to que(s21): B− := {(s12, s21), (s12,¬s21)}.
Answer true to que(s21⇒ r): B+ := {(s12, s21⇒ r)}.

Success notification after rev(s21): B− := B− ∪ {(s12 ∧ s21,⊥)},
C := C0 ∪ {s21}.

During an interaction, under the current assumption of visible assertions,
C = as , agent A may refine its approximations on each observed reaction by
the procedures in Table 8.1. In this situation, B− approximates Z∼D from
above (B− ⊆ Z�D) and B+ approximates Z∼D from below (B+ ⊆ Z∼D). The

4 As a consequence, agent D’s unquestionable belief is not a priori known to A whereas
in Chapter 7 we assumed that A knows the integrity constraints IC by Definition 4.2.



159

Procedure 3 app_by_que

Input: query A, query answer ans, approximations 〈B+,B−,C 〉
Output: refined approximations

1: if ans= true then return 〈B+ ∪ {(∧(C ), A)}, B−,C 〉
2: else if ans= false then return 〈B+ ∪ {(∧(C ),¬A)}, B−,C 〉
3: else if ans= undef then return 〈B+, B− ∪ {(∧(C ), A), (

∧
(C ),¬A)}, C 〉

Procedure 4 app_by_rev

Input: revision A, notification note, approximations 〈B+,B−,C 〉
Output: refined approximations

1: if note= success then return 〈B+, B− ∪ {(∧(C ) ∧A,⊥)}, C ∪ {A}〉
2: else if note= failure then return 〈B+ ∪ {(∧(C ) ∧A,⊥)}, B−, C 〉

Table 8.1: Procedures for refining approximations by observations

correct approximation in the situation of visible assertions is shown in
Lemma 8.3 of the appendix.

With its approximations and the class C characterizing D’s reasoning Z∼D,
agent A may skeptically conclude parts of D’s belief as follows. Above all, due
to the open design by Assumption 2, A is aware that D’s fixed reasoning is a
consequence relation within the class C. Moreover, A can rule out all
consequence relations by which D would reason differently from the already
observed reasoning behavior (described in B+ and B−). Finally, A is aware
that D never considers its current assertions contradictory so that A rules out
all consequence relations that infer ⊥ from C . Then, A determines which
beliefs D can derive in all the remaining consequence relations from (the
visible part C of) its current assertions. The remaining consequence relations
are referred to as possible consequence relations.

Definition 8.1 (Possible Consequence Relation).

Let 〈B+,B−,C 〉 be approximations and C a class of consequence relations.
Then, a consequence relation Z∼′⊆ LPL × LPL is possible under 〈B+,B−,C 〉
and C iff the following holds:
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(C Defined) Z∼′∈ C.
(B Compatible) B+ ⊆ Z∼′ and B− ⊆ Z�′.
(C Consistent)

∧
(C ) Z�′⊥.

Surely, A expects that there is at least one consequence relation within class C
that, together with the visible assertions C , explains D’s reactions described
by B , or in terms of the previous definition, that there exists a possible
consequence relation under 〈B+,B−,C 〉 and class C.

Definition 8.2 (Skeptical Entailment).

Let 〈B+,B−,C 〉 be approximations and C a class of consequence relations.
Then, skeptical entailment from 〈B+,B−,C 〉 with respect to C is defined by

skepticalC(〈B+,B−,C 〉) =

{B ∈ LPL | for each Z∼′ possible under 〈B+,B−,C 〉 and C:
∧

(C ) Z∼′ B}.

In this subsection, we elaborated A’s reasoning as an attacker as postulated in
Chapter 4 in the situation that D has not hidden any assertion from A. But,
in general, D might need to hide parts of its assertions like in Example 8.1
where the assertion d12 is confidential itself. In the next subsection, we will
elaborate A’s skeptical entailment in the situation of hidden assertions. A key
result will be that A may skeptically reason in the situation of hidden
assertions as if not any assertion was hidden at all (that is as if as was C ).

8.1.2 Skeptical Entailment under Hidden Assertions

Usually, agent D may have acquired parts of its current assertions from other
sources than agent A, for example, other agents or sensors, before interacting
with A. Moreover, D may not want to reveal all of its current assertions in as
to agent A to conceal some confidential beliefs (cf. Section 6.2.1: D’s belief
contains all propositional consequences of the current assertions). For example,
in Example 8.1, the current assertion d12 of the deployment of part #1 from
supplier #2 is part of the manufacturer’s confidentiality policy. Thus, in the
remainder of this chapter, we drop the assumption that as is visible to A, and
instead consider that D intentionally leaves A uncertain about some of its
initial assertions during their interaction. This means that agent A considers
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possible that other sources contributed further hidden assertions E ⊂fin LPL

to the visible part C of D’s current assertions before the interaction:

Definition 8.3 (Possible Extension).

Let 〈B+,B−,C 〉 be approximations, C a class of consequence relations and
E ⊂fin LPL be a finite set of assertions.
Then, E is a possible extension (of C ) under 〈B+,B−,C 〉 and class C iff there
exists a consequence relation Z∼′ possible under 〈B+,B−,C 〉 and class C such
that

∧
(C ∪ E) Z�′⊥.

In this situation, under its initial approximations 〈B+
0 ,B−0 ,C0〉 agent A may

choose some possible extension E , assume that actually as = C0 ∪ E initially
and, under this assumption, construct its approximations during an
uncontrolled interaction with D as if that as was visible.

Example 8.3 (Possible Extension).

Consider the initial approximations 〈∅, ∅, {s12}〉 in the context of the first
scenario of Ex. 8.1. In that scenario, agent A may simply assume the
extension E = {s22}. Then, with answer undef to que(s21) agent A sets
B− = {(s12 ∧ s22, s21), (s12 ∧ s22,¬s21)}.

Next, we change perspective and consider D’s simulation of A’s
approximations and of A’s skeptical entailment. The end of that simulation is
D’s simulation of A’s postulated reasoning KA of Chapter 4 for enforcing its
confidentiality aims. Following that chapter, agent D is well aware of all of A’s
information about D’s state on which A might base its reasoning KA about D.
Especially, D is aware of A’s initial approximations 〈B+

0 ,B−0 ,C0〉 here with
B+

0 = B−0 = ∅ by Assumption 8.

As indicated by Figure 8.1, agent D may simulate A’s behavior as follows,
employing the procedures in Table 8.1. The simulation uses the attacker view
defined as follows.

Definition 8.4 (Attacker View).

The attacker view V (view for short) is a triple 〈B+,B−,C 〉 with B+,
B− ⊂fin LPL × LPL and C ⊂fin LPL.
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The attacker view stores one of A’s approximations considered by D. Before
the interaction, D sets its initial view V0 to A’s initial approximations and
then extends this view to the view V = 〈∅, ∅,C0 ∪ E〉 with a possible
extension E of the initially visible assertions C0. During the interaction, D’s
simulation subsequently refines the approximations in view V by means of the
two procedures and the interaction request together with the respective
reaction. We denote the view computed in the simulation by V (V0,E ,H NMR)

referring to the initial view V0, to the chosen extension E and to the history
H NMR of the interaction.

Postulating A to be a skeptical reasoner, D considers A to be interested in all
of D’s beliefs that A can skeptically conclude independently from the possible
extension that A might choose initially. We define A’s skeptical entailment
operator in the way that it is simulated by D by computing views from the
history and possible extensions.

Definition 8.5 (Skeptical Entailment with Hidden Assertions).

Let V0 be an initial view, C a class of consequence relations and H NMR the
history of an interaction. Then, skeptical entailment from H NMR under V0

with respect to C is defined by

skepticalC(V0,H NMR) := {B ∈ LPL | B ∈ skepticalC(V (V0,E ,H NMR))

for all possible extensions E ⊂fin LPL under V0 and C}.

Skeptical entailment is used in D’s simulation of A’s postulated reasoning of
Chapter 4 as shown in Figure 8.1. Section 8.3 and Section 8.4 yield a
procedure to decide skeptical entailment by deduction. This procedure is a
major step in the construction of a confidentiality preserving agent D.

8.2 Implementation of Defender D

as Seen by Attacker A

As a part of the security engineering task, we make precise which details of
D’s implementation A is aware of. Complementary, the model R cexec

D,A of
Chapter 4 describes A’s awareness about D’s abstract functionality. In that
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model, the set StNMR describes possible implementations of D’s state from
A’s perspective.

Definition 8.6 (State of Defender D with Nonmonotonic Reasoning).
Cf. Definition 4.2

The set StNMR of agent D’s local states consists of tuples with the following
components:

1. Background knowledge:
agent D’s fixed reasoning Z∼D as an instance of the class C of
consequence relations.

2. Evidential knowledge:
agent D’s set as of current assertions such that 〈 Z∼D, as〉 forms an
epistemic state of Def. 6.7.

3. Belief operator:
the operator BelNMR

D defined in (6.4) as the result of reasoning from as
by Z∼D.

4. Confidentiality policy:
the set conf (TCP) of temporary confidential belief,
whereas we set conf (CCP) = ∅.

5. History:
a sequence H NMR of pairs of request θ ∈ ReqNMR and respective
reaction react ∈ Rea.

6. Attacker view:
a triple 〈B+,B−,C 〉 of Def. 8.4 with 〈B+,B−,C 〉 = V (V0, ∅,H NMR)

being one of the attacker A’s approximations considered by D.

The set StNMR is a priori knowledge of the attacker A because the set is part
of the interface of the control function which is open to A by Assumption 2.
Knowing the set StNMR, agent A is aware that D’s fixed reasoning Z∼D is an
instance of the class C of consequence relations. This awareness is a worst case
for the defender D since it enables A to more easily follow D’s process of
forming belief with D’s consequence relation. The worst case is reasonable
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because, for example, in the application there might be a common agreement
between (the designers of) D and A that the agents’ fixed reasoning is
implemented by ordinal conditional functions (or another plausibility
structure) so that the class C is known to both agents.
Knowing the set StNMR, agent A is further aware that the components Z∼D

and as form an epistemic state of Definition 6.7. From another perspective,
the set StNMR may be further seen as defining invariants of the control
function which A is a aware of.

Following Assumption 2, we may define A’s awareness of D’s initial state in
the implementation, using the set StNMR

Init ⊆ StNMR. We define this set by a
predicate pre over StNMR

pre( Z∼D, as , conf (TCP),H NMR, 〈B+,B−,C 〉) is true iff

H NMR = 〈〉
and B+ = B− = ∅
and B 6∈ skepticalC(〈B+,B−,C 〉) for all B ∈ conf (TCP)

and as `pl F for all F ∈ C hold.

(8.1)

The predicate reflects Assumption 8 that agent A is initially ignorant about
D’s fixed reasoning.

8.3 Representing A’s Awareness

about D’s Fixed Reasoning

Skeptical entailment (Definition 8.5 based on Definition 8.2) involves reasoning
about instances of the class C of consequence relations. In this section, we
require that the class C may be characterized by an appropriate
axiomatization so that reasoning about its instances reduces to deduction with
respect to its axiomatization. To this end, we introduce dedicated “allowance
properties” of axiomatizations which we need in order to establish our results
on deciding skeptical entailment. We illustrate that these properties are
satisfied by axiomatizations from the literature on nonmonotonic reasoning for
some common classes of consequence relations.

These “allowance properties” are syntactical restrictions motivated by the
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following general idea. In the process of skeptical entailment of Definition 8.5,
agent A might consider infinitely many different sets of assertions that D
might have hidden. In order to simplify the simulation of that process, for two
sets E1 and E2 of hidden assertions we want to transform the computed views
V (.,E1, .) and V (.,E2, .) into one another by simple syntactic manipulations.

8.3.1 Allowance Properties of Classes

of Consequence Relations

An appropriate language to describe properties of consequence relations is the
language of conditional logic, cf. for example [50]. The relation A Z∼ B on the
semantic level is represented by the conditional expression A→ B on the
syntactic level. Here, → is the conditional operator whereas ⇒ is material
implication in propositional logic. In this thesis, we only use the restricted
language of Def. 8.7 below which suffices to describe properties of a fixed
consequence relation, cf. [50]. In the full conditional language, conditional
expressions may be nested.

Definition 8.7 (Conditional Language L∗CL).

The conditional language L∗CL is inductively defined as follows:

Basic Formulas A→ B ∈ L∗CL for all A,B ∈ LPL.
Compound Formulas L∗CL is closed under the propositional connec-

tives ∧,∨,¬ and ⇒.

A satisfaction relation, denoted by the model-of operator |=CL, between a
consequence relation Z∼ and a basic formula A→ B ∈ L∗CL is defined as
follows:

Z∼|=CL A→ B iff (A,B) ∈ Z∼ . (8.2)

The operator is inductively extended to the propositional connectives as usual.
For example, Z∼|=CL ¬(A→ B) means that (A,B) 6∈ Z∼ holds or, using a
different notation, that A Z�B holds. The conjunction (A→ B) ∧ (C → D) is
true for Z∼ iff (A,B) ∈ Z∼ and (C,D) ∈ Z∼ hold.
The objects Z∼⊆ LPL × LPL defining the semantics are of very simple
structure because, for the time being, we consider just consequence relations
Z∼D but not the structures implementing them. Complementary, in
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Section 8.4.2, following our running example, we will discuss the case that D’s
reasoning is implemented by an ordinal conditional function.

To describe classes of consequence relations, we consider schema formulas
defining the interactions between premises and conclusions in consequence
relations. In an axiomatization of a class of consequence relations, we allow
only certain schema formulas as axiom schemes where the interaction between
premises and conclusions is limited. Roughly, some marked schema variables
may not change their sign when used both in premises and conclusions of
conditional expressions. The limitation is sufficient for Theorem 8.1 of
Section 8.4 and allows many of the well-known axiomatizations from the
literature, for example in [74, 77, 14, 50, 81].

Let XPL be a set of schema variables as placeholders for propositional formulas.
The languages LPL(XPL) and L∗CL(LPL(XPL)) define schema formulas,
replacing the alphabet At underlying LPL by XPL and replacing LPL by
LPL(XPL) in Definition 8.7, respectively.

Definition 8.8 (Allowed Schema Formulas in L∗CL(LPL(XPL))).

A schema formula Λ ∈ L∗CL(LPL(XPL)) is allowed if there exists a marking of
schema variables represented by disjoint sets X Pos

PL ⊆ XPL (marked as positive)
and XNeg

PL ⊆ XPL (marked as negative) such that the following requirements are
met. For every basic formula Φ→ Γ of Λ with Φ,Γ ∈ LPL(XPL) we assume
that Φ and Γ are in conjunctive normal form (CNF)5 and, moreover, that Λ is
in CNF6.7 For every basic formula Φ→ Γ of Λ, the premise Φ and the
conclusion Γ comply with the marking X Pos

PL ,X
Neg
PL as follows:

1. Φ: there exists at least one conjunct (¬)λ1 ∨ . . . ∨ (¬)λl, λi ∈ XPL, such
that
for all schema variables λi with i = 1, . . . , l,
either λi occurs positive and λi ∈ X Pos

PL (λi is marked as positive);

5 That is, a conjunction of disjunctions where each disjunction uses literals over distinct
atoms. Here, the atoms are schema variables of XPL as placeholders for propositional
formulas.

6Here, in the CNF the basic formulas of L∗CL are treated as atoms.
7 The restriction to CNF actually does not impose any restriction on axiom schemes,

because the rule schemes (LLE) and (RW) in Def. 8.9 permit equivalence transformations
within premises and conclusions of conditional expressions.
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or λi occurs negative and λi ∈ XNeg
PL (λi is marked as negative).

2. Γ: for every schema variable λ ∈ XPL in Γ:
If λ ∈ X Pos

PL , then each occurrence of λ is under an even number of
negations in Λ.8

Else if λ ∈ XNeg
PL , then every occurrence of λ is under an odd number of

negations in Λ.
Otherwise λ ∈ XPL \ (X Pos

PL ∪ XNeg
PL ) and the use of λ in Γ is unrestricted.

Here, (¬) denotes that the sign of the following expression is arbitrary.

Example 8.4 (Allowed Schema Formulas).

Rational monotony (RM) [77] (φ→ ψ) ∧ ¬(φ→ ¬ξ)⇒ (φ ∧ ξ → ψ) with
XPL = {φ, ψ, ξ} is an allowed schema formula. Def. 8.8 requires that for each
conditional expression we mark all schema variables in at least one conjunct of
its premise, here we do so by X Pos

PL = {φ} and XNeg
PL = ∅. Because the marked

schema variable φ does not appear in any conclusion, (RM) complies with our
marking. A negative example is rational contraposition (RC) [14]
(α→ β) ∧ ¬(¬β → α)⇒ (¬β → ¬α) with CNF
¬(α→ β) ∨ (¬β → α) ∨ (¬β → ¬α). Def. 8.8 forces the marking X Pos

PL = {α}
and XNeg

PL = {β} but, as for the third disjunct, α occurs under an odd number
of negations in (RC).

Finally, we illustrate how agent A may reason about possible consequence
relations in the situation of hidden assertions as being enabled by the marking
of an allowed schema formula of Definition 8.8.

Example 8.5 (Reasoning with Hidden Assertions).

Consider that agent A is aware that D’s fixed reasoning Z∼κ1D of Sect. 6.2.2 is
implemented by an OCF. Thus, A knows that Z∼κ1D shows the property of
rational monotony (RM) of Ex. 8.4, cf. [50]. With that property and the visible
initial assertion s12 agent A may reason that from s12→ (s21⇒ r) and
¬(s12→ ¬s21) follows s12 ∧ s21→ r (where s12 substitutes the marked
conjunct φ in the schema formula of (RM) of Ex. 8.4). With this reasoning, A

8 Note that both Γ and Λ are in CNF so that negations are not implicit in material
implications.
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assumes that D has not hidden any assertion. Differently, agent A may
assume that D has hidden the initial assertion s22 like in Ex. 8.3. Under this
assumption, A may want to do the same reasoning, but from the premise
s12 ∧ s22. To this end, A replaces the marked conjunct φ with s12 ∧ s22.
Since the schema formula (RM) is allowed, the presumable hidden assertion
s22 does not interact with the conclusions in the conditional expressions in a
way that precludes A from doing the same reasoning as with visible assertions.

8.3.2 Axiomatizing Classes of Consequence Relations

As Figure 8.1 shows, agent D’s simulation of agent A’s postulated reasoning
uses an axiomatization of the class C of consequence relations. This
axiomatization should be a set of axiom and rule schemes that follow some
restrictions needed in the proof of Theorem 8.1 on skeptical entailment. To
make clear the different aspects that A considers about D’s fixed reasoning,
that is, propositional consequence, unquestionable belief, nonmonotonic
consequence and classes of consequence relations, we present a set of axiom
and rule schemes in four corresponding layers. In the first three layers, schema
variables are placeholders for propositional formulas whereas in the fourth
layer they are placeholders for conditional formulas.

Let XCL be a set of schema variables as placeholders for conditional formulas
(disjoint with XPL). The language LPL(XCL) defines schema formulas,
replacing the alphabet At by XCL.

Definition 8.9 (Allowed Set Ax of Axiom and Rule Schemes).

An allowed set Ax of axiom and rule schemes is finite and consists of the
following schemes.
First layer, with α, β, λ ∈ XPL:

(REF) (reflexivity) λ→ λ

(LLE) (left logical equivalence) If `pl α⇔ β then (β → λ)⇔ (α→ λ)

(RW) (right weakening) If `pl β ⇒ λ then (α→ β)⇒ (α→ λ)
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Second layer, with α, β ∈ XPL and Λ ∈ L∗CL(LPL(XPL)):

(IMP) (implausibility) (α→ ⊥)⇒(α ∧ β → ⊥)

(CON) (consistency) ¬(> → ⊥)

Axiom schemes Λ, where Λ is allowed (Def. 8.8),
for properties of unquestionable belief defined by the consequence relation.
Third layer, with Λ ∈ L∗CL(LPL(XPL)):
axiom schemes Λ, where Λ is allowed (Def. 8.8), for other properties
such as nonmonotonic properties.
Fourth layer, with Λ,Λi ∈ LPL(XCL):
axiom Λ and rule schemes of the form If Λ1, . . . ,Λn then Λn+1

of any sound and complete propositional calculus.

In the first layer, axiom and rule schemes relate consequence relations and
propositional entailment `pl, cf. [77, 50].

(a) The rule scheme right weakening (RW) and the axiom scheme reflexivity
(REF) ensure that a consequence relation extends propositional
consequence `pl from the assertions as . They guarantee property (6.6) of
belief in Section 6.2.1.

(b) The rule scheme left logical equivalence (LLE) ensures that consequences
do not depend on the syntactical representation of premises. It
guarantees property (6.7) of belief.

In the second layer, axiom schemes9 define properties of unquestionable belief:

(a) The axiom scheme implausibility (IMP) says that if A is contradictory
under Z∼ then it is also contradictory in the presence of additional
information B. Especially, it implies together with (LLE) that
unquestionable belief is monotonic, that is, never given up. More
precisely, if D unquestionably believes F ∈ LPL in the presence of the
current assertions as , formally,

∧
(as) ∧ ¬F Z∼D ⊥, then it does so in the

presence of additional information A by (IMP) and (LLE), formally
∧

(as ∪ {A}) ∧ ¬F Z∼D ⊥.
9 Cf. [50] for the relation between these axioms and epistemic logic S5 of knowledge. In

particular, (CON) corresponds to the axiom consistency and (IMP) follows from a scheme in
L∗CL(LPL(XPL)) corresponding to the axiom scheme of distributivity.
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(b) The axiom consistency (CON) ensures in the presence of (IMP) and
(RW) that the relation LPL × LPL saying that “every formula may be
inferred from any assertion” is not in the axiomatized class of
consequence relations because it cannot be used in an epistemic state
(Definition 6.7).

(c) Further axiom schemes may define further properties of unquestionable
belief. Their basic formulas should have the form of Φ→ ⊥ with
Φ ∈ LPL(XPL) so that these axiom schemes define what assertions agent
D considers contradictory. These schemes are restricted to allowed
schema formulas (Definition 8.8).

In the third layer, axiom schemes define the interaction between premises and
conclusions in a consequence relation. They are restricted to allowed schema
formulas (Definition 8.8). These axiom schemes reflect the characteristics of
D’s fixed reasoning that agent A is aware of. In contrast to the second layer,
they may define nonmonotonic properties like those of Example 8.4.
In the fourth and last layer, axioms and rules schemes of any sound and
complete propositional calculus define propositional reasoning about classes of
consequence relations.

In the following, we define axiomatizations of a class C of consequence
relations in the usual way. An axiomatization of C is a set Ax of axiom and
rules schemes that should capture the characteristics of C in the following
sense. There may be properties F ∈ L∗CL that every consequence relation of
the class C has, formally, Z∼|=CL F for all Z∼∈ C. These properties characterize
the class C and, thus, these properties and only these should follow from
deduction with an axiomatization Ax of C. More formally, first, deduction is
defined as applying finitely many substitution instances of axiom and of rule
schemes in the usual way:

Definition 8.10 (Deduction Ax).

Given an allowed set Ax of axiom and rule schemes, a set M ⊆ L∗CL and a
formula F ∈ L∗CL, we write M Ax F iff there exists a sequence F1, . . . , Fn of
formulas Fi ∈ L∗CL such that Fn = F and
for all i = 1, . . . , n
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• Fi ∈M ,

• or applying rule scheme (LLE) with a substitution sub : XPL → LPL

extended to sub : L∗CL(LPL(XPL))→ L∗CL as usual such that
Fi = sub((α→ λ)⇔ (β → λ)) and `pl sub(α)⇔ sub(β),

• or applying rule scheme (RW) with a substitution sub : XPL → LPL

extended to sub : L∗CL(LPL(XPL))→ L∗CL as usual such that
Fi = sub((α→ β)⇒ (α→ λ)) and `pl sub(β)⇒ sub(λ),

• or there exists an axiom scheme Λ where Λ ∈ Ax ∩ L∗CL(LPL(XPL)) is
allowed (Def. 8.8) and a substitution sub : XPL → LPL extended to
sub : L∗CL(LPL(XPL))→ L∗CL as usual such that Fi = sub(Λ),

• or there exists an axiom scheme Λ ∈ Ax ∩ LPL(XCL) and a substitution
sub : XCL → L∗CL extended to sub : LPL(XCL)→ L∗CL as usual such that
Fi = sub(Λ),

• or there exists a rule scheme If Λ1, . . . ,Λm then Λm+1 ∈ Ax with
Λj ∈ LPL(XCL) and a substitution sub : XCL → L∗CL extended to
sub : LPL(XCL)→ L∗CL as usual such that Fi = sub(Λm+1) and for all
j = 1, . . . ,m there exists k < i with Fk = sub(Λj).

The sequence F1, . . . , Fn is called a valid proof of F from M

with respect to Ax.

Next, a class C of consequence relations is identified with the common
properties of its instances, that is, the set of all conditional formulas that are
C-entailed from ∅. Given a class C of consequence relations, a set M ⊆ L∗CL
and a formula F ∈ L∗CL, we write M `C F , reading M C-entails F , iff for all
Z∼∈ C it holds that, if Z∼|=CL P holds for all P ∈M , then Z∼|=CL F holds.
Finally, a class C of consequence relations is characterized via the common
properties of its instances by a corresponding set of axiom and rule schemes,
called an axiomatization of C.
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Definition 8.11 (Soundness and Completeness, Axiomatizations).
Cf. Chapter 7.2.3 of [60]

Let C be a class of of consequence relations and Ax an allowed set of axiom
and rule schemes. Then, Ax is sound for C iff for all F ∈ L∗CL from ∅ Ax F

it follows that ∅ `C F holds. Further, Ax is complete for C iff for all F ∈ L∗CL
from ∅ `C F it follows that ∅ Ax F holds. An axiomatization of C is a sound
and complete set of axiom and rule schemes for C.

In this article, we consider only allowed sets of axiom and rules schemes for
axiomatizations in the design of agent D (Figure 8.1):

Assumption 9 (Characterization of Class C).

The class C can be axiomatized by an allowed set Ax of axiom and rule
schemes.

8.4 Computing A’s Postulated

Skeptical Reasoning For Simulation

8.4.1 Reduction to Deduction

with Allowed Axiomatizations

In this subsection, we give means to decide skeptical entailment of confidential
belief as needed to simulate the postulated behavior of the attacking agent A,
cf. Figure 8.1. In brief, the procedure for deciding B ∈ skepticalC(V0,H NMR)

works as follows. Initially, provide an allowed axiomatization Ax of class C.
During the interaction compute V (V0, ∅,H NMR) by the procedures in
Table 8.1, as described in Section 8.1.2. Then, decide
B ∈ skepticalC(V (V0, ∅,H NMR)) with a solver for deduction with Ax.
First, we will outline the computation of skepticalC(V ) with a view V by
deduction and straightforwardly prove its correctness. Then, as the main
contribution of this section, we provide the correctness result of the procedure
for deciding B ∈ skepticalC(V0,H NMR) sketched in the beginning of this
section. The proof of this result is much more involved and bases on the
allowance properties for the axiomatization Ax of class C from Section 8.3.
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To start with, we characterize the operator skepticalC(V ) by deduction with
respect to the axiomatization Ax. Since this operator formalizes the reasoning
about possible consequence relations under view V and the class C, we
translate the view V = 〈B+,B−,C 〉 to the following set CL(V ) ⊂fin L∗CL of
conditional expressions describing the related properties of a possible
consequence relation (Definition 8.1):

CL(V ) :=

{A→ B | (A,B) ∈ B+} ∪ {¬(A→ B) | (A,B) ∈ B−} (B Compatible)

∪ {¬(
∧

(C )→ ⊥)} (C Consistent)

(8.3)

Now, the following proposition gives a means to compute the operator
skepticalC(V ) by deduction with respect to the axiomatization Ax of class C.

Proposition 8.1 (Characterization of Possible Consequence Relations).

Let V be a view and C a class of consequence relations axiomatized by an
allowed set Ax of axiom and rules schemes (Asmp. 9). Then, there exists a
possible consequence relation under V and C iff CL(V ) 1Ax (> → ⊥).

The only-if part needs the presence of the axiom (CON) ¬(> → ⊥) in Ax

given by Definition 8.9.

Corollary 8.1 (Computation of skepticalC(V )).

Let V = 〈B+,B−,C 〉 be a view and C a class of consequence relations
axiomatized by Ax as in Asmp. 9. Then, for every B ∈ LPL it holds
B ∈ skepticalC(V ) iff CL(VB) Ax (> → ⊥) where
VB := 〈B+,B− ∪ {(∧(C ), B)},C 〉.

The corollary follows right from Proposition 8.1 and Definition 8.2.

Next, we will prove in Theorem 8.1 that for deciding
B ∈ skepticalC(V0,H NMR) of Def. 8.5 we may assume that D has not hidden
any assertion, that is, E = ∅. Or in other words, deciding
B ∈ skepticalC(V0,H NMR) is equivalent to deciding
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B ∈ skepticalC(V (V0, ∅,H NMR)), the skeptical entailment of B with visible
assertions of Definition 8.2.
For a better understanding of that claim, we recall that skeptical entailment
B ∈ skepticalC(V0,H NMR) may be described as the failure of the following
process of finding an alternative situation in which D does not believe
B ∈ LPL (Definition 8.5 based on Definition 8.2).
In the first step of that process, assume initially that D has hidden the
assertions E (Definition 8.3). Then, throughout the interaction, approximate
D’s fixed reasoning Z∼D by the observations recorded in history H NMR in the
components B+(V0,E ,H NMR) and B−(V0,E ,H NMR) of the view
V (V0,E ,H NMR) where V0 denotes the initial view.
In the second step, try to find a possible consequence relation Z∼′ under the
view V (V0,E ,H NMR) computed in the first step and the class C known a
priori such that B is not a defeasible conclusion from the tracked visible and
the assumed hidden assertions given Z∼′. Or equivalently, try to verify that
B 6∈ skepticalC(V (V0,E ,H NMR)) (Definition 8.2).
In this context, Theorem 8.1 says that the first step of the process may be
skipped by setting E = ∅.
Theorem 8.1 (Skeptical Entailment under Hidden Assertions).

Let V0 = 〈∅, ∅,C0〉 be the initial view as in Asmp. 8, C a class of consequence
relations axiomatized by Ax as in Asmp. 9 and H NMR a history. Then,

skepticalC(V (V0, ∅,H NMR)) = skepticalC(V0,H NMR).

Sketch of proof. We briefly outline the proof of the appendix. By
Definition 8.5 and Corollary 8.1, we may decide B ∈ skepticalC(V0,H NMR) by
verifying that for all possible extensions E under V0 and C, yielding a
respective view V (V0,E ,H NMR), we find a valid proof of
CL(V (V0,E ,H NMR)B) Ax (> → ⊥) where V (V0,E ,H NMR)B is defined as
in Corollary 8.1.
Now, the key to the proof of Theorem 8.1 is that we may translate a valid proof

F1, . . . , Fn of CL(V (V0, ∅,H NMR)B) Ax (> → ⊥)

to a valid proof

G1, . . . , Gm, m ≥ n of CL(V (V0,E ,H NMR)B) Ax (> → ⊥)
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for any set E ⊂fin LPL.
To justify that our translation is indeed a valid proof, we essentially need that
Ax is an allowed set of axiom and rule schemes (Definition 8.9). The
justification roughly proceeds as follows. Above all, we translate the valid
proof F1,. . . ,Fn by a transformation function t and show by induction that
t(Fn) = Gm indeed may be deduced from CL(V (V0,E ,H NMR)B). The
transformation function adds the hidden assertions E to premises in
conditional expressions. In the special case that Fn is a substitution instance
of an allowed formula Λ ∈ Ax (Def. 8.8) we find another appropriate
substitution sub′ such that from sub′(Λ) and possibly further steps we may
deduce t(Fn). The substitution sub′ adds the hidden assertions when
substituting the marked conjunct of Definition 8.8, cf. Example 8.5. Then, in
further steps, with the rules (LLE) and (RW) of Definition 8.9 we may bring
the substitution instance sub′(Λ) into the form of the transformed formula
t(Fn). In those steps, the application of (RW) bases on the compliance of
conclusions in conditional expressions with the marking of Def. 8.8. Finally,
with the translation we obtain CL(V (V0,E ,H NMR)B) Ax (

∧
(E)→ ⊥),

that is, the hidden assertions E are considered contradictory. But with the
axiom scheme (IMP) of Definition 8.9 the latter implies that the assertions
C (V0,E ,H NMR) ⊇ E are also considered contradictory which leads to a
propositional contradiction with the hypothesis CL(V (V0,E ,H NMR)B)

by (8.3) and, hence, to the deduction of the formula (> → ⊥).

�

Note that Definition 8.9 of allowed sets of axiom and rules schemes and the
underlying Definition 8.8 are tailored to the proof of this theorem.

Theorem 8.1 immediately gives the following result for computing the operator
skepticalC(V0,H NMR).

Corollary 8.2 (Computation of skepticalC(V0,H NMR)).

Let C be axiomatized by an allowed set Ax of axioms and rule schemes
(Asmp. 9). Then, for all B ∈ LPL it holds that B ∈ skepticalC(V0,H NMR)

iff CL(V (V0, ∅,H NMR)) Ax

∧
(C )→ B.
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Example 8.6 (Skeptical Entailment from a Successful Revision).

Consider agent D’s components κ1 from Sect. 6.2.2 and its assertions
as = {d12, s12} with agent A’s initial approximations 〈∅, ∅, {s12}〉. We follow
A’s skeptical reasoning about whether D believes r in the first scenario of
Ex. 8.1. In that example, to find out about a positive result r of the
manufacturer D’s feasibility study, agent A interacts with D as follows

H NMR
1 = 〈(que(s21), undef ), (que(s21⇒ r), true), (rev(s21), success)〉.

Assuming E = ∅ (there are no hidden assertions), A’s final approximations
from H NMR

1 are tracked in the view V3 in which elements are labeled l for
later reference, cf. Ex. 8.2:

V3 = 〈{(s12, s21⇒ r) l1 }, {(s12, s21),

(s12, ¬s21) l2 , (s12 ∧ s21,⊥)}, {s12, s21}〉.

Skeptical entailment r ∈ skepticalCκ(V0,H NMR) is decided by computing
CL(V3) Ax s12 ∧ s21→ r where we choose Ax as the axiomatization of the
class Cκ of consequence relations definable by OCFs from [50]. The
computation is illustrated by the following proof tree where each label stands for
the respective formula in CL(V3):

`pl ((s21⇒ r) ∧ s21)⇒ r

l1 l2
(RM) cf. Ex. 8.4

s12 ∧ s21→ s21⇒ r

(REF)+(RW)

s12 ∧ s21→ s21
(AND)10

s12 ∧ s21→ (s21⇒ r) ∧ s21
(RW)

s12 ∧ s21→ r

In the proof tree, applying modus ponens to an axiom A⇒ B and a formula A
is abbreviated by “(axiom name)A

B
”. Regarding the rule scheme (RW)

(Def. 8.9), we write `plB⇒C A→B
A→C .

Example 8.7 (Skeptical Entailment from a Failed Revision).

Consider the second scenario of Ex. 8.1 where A reasons about a possible
agreement d12 of D with supplier #2. To this end, agent A interacts with D

as follows H NMR
2 =

〈(rev(¬s11∨¬s21), success), (que(¬s11⇒ d12), true), (rev(¬s21), failure)〉.
10 The axiom scheme (AND) is (φ→ α) ∧ (φ→ β)⇒ (φ→ α ∧ β), cf. [50].
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Again, A knows that D’s fixed reasoning is implemented with an OCF so that
skeptical entailment can be decided with the axiomatization from [50]. With
history H NMR

2 and assuming E = ∅ the final view is

V3 = 〈{(s12 ∧ (¬s11 ∨ ¬s21), ¬s11⇒ d12) l1 ,

(s12 ∧ (¬s11 ∨ ¬s21) ∧ ¬s21, ⊥) l2 }, . . . , {s12,¬s11 ∨ ¬s21}〉.

Then, A can skeptically conclude that D believes s21 as follows where we
abbreviate s12 ∧ (¬s11 ∨ ¬s21) by C:

`pl (C ∧ ¬21) ∨ (C ∧ s21)⇔ C

l2 `pl ⊥ ⇒ s21

(RW)
C ∧ ¬s21→ s21

(REF)+(RW)

C ∧ s21→ s21
(OR)11

(C ∧ ¬21) ∨ (C ∧ s21)→ s21
(LLE)

C → s21

Now, A may do propositional reasoning from the visible assertions C and the
revealed belief of s21 and ¬s11⇒ d12, applying (REF), (AND) and (RW) like
in Ex. 8.6. With this way of reasoning, from C → s21 agent A can further
deduce C → ¬s11. Finally, in the same way, with the last result and l1 A can
obtain C → d12.

8.4.2 Discussion

Here, we outline the computation of skeptical entailment and its complexity
with the results from Section 8.4.1 in the context of our previous work [30].
There, we assumed that the defending agent D’s fixed reasoning is
implemented by an ordinal conditional function and that the attacking agent
A is aware of this fact. The latter assumption follows the open design
assumption of Assumption 2 and says that agent A knows that D’s fixed
reasoning is an instance of the class

Cκ := { Z∼∈ LPL × LPL | exists OCF κ over Ω such that Z∼= Z∼κ}.

To actually decide A’s skeptical entailment under this class with the
computational results from Section 8.4.1, by Assumption 9 we first must
provide an allowed set of axiom and rule schemes that axiomatizes class Cκ.

11 The axiom scheme (OR) is (φ→ α) ∧ (ψ → α)⇒ (φ ∨ ψ → α), cf. [50].
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System C + {C5, C6} from [50] presents such an axiomatization.12 The system
C generalizes the well-known system P [74], which axiomatizes the class of
consequence relations stemming from preference orderings, to the language
L∗CL. Beside axiom and rule schemes of a propositional calculus for the outer
propositional connectives of the language L∗CL, system C comprises the rule
schemes (LLE) and (RW ) and the axiom scheme (REF ) (all in
Definition 8.9), the further axiom schemes (AND) and (OR) (in Example 8.6
and Example 8.7 respectively) and finally the axiom scheme (CM) of cautious
monotonicity13.
By Corollary 8.2 skeptical entailment under class Cκ can be decided by
deduction with respect to C + {C5, C6}. The deduction may implemented, for
example, by the solver KLMLean [55] which decides non-deduction in
nondeterministic polynomial time [54] (in the size of the set (8.3) translated
from the view). In comparison, deciding

∧
(as) Z∼κD B needs a logarithmic

number of SAT solver calls if we use a compact representation of the OCF κ

like in [47].14

Following the above, we see that Proposition 3 on skeptical entailment with
respect to the single class Cκ from our previous work [30] is covered by the
more general Theorem 8.1 on skeptical entailment with respect to axiomatized
classes. Likewise, we may use system C + {C5, C6} if agent D’s fixed
reasoning was implemented by a possibility measure and agent A was aware of
that fact [50].

8.5 Control Functions for Iterated Query and

Revision Requests

This section presents the control function of D’s censor for query requests and
view update transaction requests. The control function is abstractly introduced
by Definition 4.3 and its domain StNMR × ReqNMR in Section 6.2. For

12 The names C5 and C6, respectively, are other names for axiom scheme (RM) from
Ex. 8.4 and axiom (CON) from Def. 8.9, respectively. We can easily see with the results
from [50] that system C + {C5, C6} is an allowed axiomatization of class Cκ.

13 The axiom scheme (CM) is defined as (φ→ ψ) ∧ (φ→ ζ)⇒ (φ ∧ ψ → ζ).
14 More precisely, we use z-entailment of the conditional

∧
(as) → B from a set of

conditionals representing the OCF κ through rational closure.
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conciseness of the presentation, we present the implementation of the control
function by two separate implementations for each type of request. Further,
we illustrate the execution of each implementation with our running example.

8.5.1 Query Requests

For controlled query-answering, we equip agent D with Procedure 5 as
illustrated by Figure 8.1. By Theorem 8.1, it suffices that this procedure only
maintains the view V = V (V0, ∅,H NMR). More specifically, the procedure for
controlled query evaluation of the censor cexec proceeds as follows.

1. First (line 1-2), the censor determines whether a return value
ans ∈ {true, false,
undef } is a possible answer to the query request que(A), that is, an
answer that A does not rule out given its approximations in V and
being aware that Z∼D∈ C:
The censor temporarily refines V by the answer ans (app_by_que,
Section 8.1.1). Then, the censor checks, whether the refinement still can
approximate D’s fixed reasoning, by evaluating the following predicate
on the refined view:

poss(V ,C) : there exists Z∼′ possible under V and C. (8.4)

2. Next (line 1-2), the censor checks whether returning a possible answer
ans enables agent A to skeptically conclude a confidential belief.

3. In case of such a conclusion (line 3), the censor refuses the query.

4. Otherwise (line 6-7), the censor maintains the view, evaluates the query
and sends the correct answer to A.

Procedure 5 is adopted from [19] but here the answer reveals belief or
non-belief, and the derivation or non-derivation of belief from agent D’s
current assertions is described by subsets of LPL × LPL (Section 8.1.1).
Meta-inference is prevented as shown by Theorem 8.2 below. The reason is
that a query is refused depending on V and conf (TCP) only (line 1-5), but
not on the epistemic state (used in line 6-7). Note that Procedure 5 does not
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refine the view after a refusal since by the above considerations about
meta-inference a refusal does not provide information about D’s epistemic
state. Therefore, A’s approximations and skeptical entailment based
thereupon, simulated by the censor during a controlled interaction, do not
differ from those during uncontrolled interactions in Section 8.1.

Example 8.8 (Controlled Query-Answering).

Consider the policy conf (TCP) and the first scenario of Ex. 8.1 until the
answer undef to A’s query que(s21). In this situation, the view is

V1 = 〈∅, {(s12, s21), (s12, ¬s21)}, {s12}〉.

This situation satisfies the preconditions (8.1) of the censor. Now, agent A
initiates the query request que(s21⇒ r).
Next, the censor checks whether the answer true is possible which means
whether there exists possible consequence relation Z∼′ under the refined view

V ′ = 〈{(s12, s21⇒ r)}, {(s12, s21), (s12, ¬s21)}, {s12}〉

and Cκ. By Prop. 8.1, this is equivalent to checking CL(V ′) 1Ax > → ⊥.
Here, the value true is a possible answer and also the actual answer which
further does not reveal whether D believes r, because r 6∈ Bel( Z∼κ1D , {d12, s12}),
cf. Sect. 6.2.2. After a check of values false and undef with the same result,
the answer true is returned to A and the view is updated accordingly.

8.5.2 Revision Requests

In a controlled revision processing, if it is successful, agent D adds information
A ∈ LPL received from agent A by the request rev(A) to its current assertions.
Here, a notification of success/failure implicitly informs agent A whether D
considers the information A together with its assertions as contradictory or
not (Section 6.2.3). Sometimes the notification must be suppressed if it
enables A to skeptically conclude some confidential belief. But checking
whether such a suppression is needed must be independent from D considering
as ∪ {A} contradictory or not. Otherwise, suppressing a notification may leak
information about the epistemic state. Such a leakage would be caused by
agent A’s meta-inference (about the suppression).
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Procedure 5 cexec for controlled query execution
Input: axiomatization Ax, epistemic state 〈 Z∼D, as〉,policy conf (TCP),

view V , request que(A)

Output: notification to A

1: for ans ∈ {true, false, undef } do
2: if poss(app_by_que(A, ans ,V ),C) and there exists

B ∈ skepticalC(app_by_que(A, ans ,V )) with B ∈ conf (TCP)
then

3: Notify A: refuse. Exit procedure
4: end if

5: end for

6: V := app_by_que(A, eval(A)( Z∼, as),V )

7: Notify A: eval(A)( Z∼, as)

The procedure for controlled revision execution of the censor cexec
implemented by Procedure 6 proceeds in three steps:

1. First (line 1-3), the censor checks whether through a success notification
agent A is able to skeptically conclude a confidential belief
B ∈ conf (TCP) and whether success of the belief revision is possible
from agent A’s point of view15. In this case, the revision is refused.

2. Otherwise (line 4-6), the censor checks a failure notification analogously.

3. Otherwise (line 7-11), the censor processes the revision, maintains the
view and sends a success/failure notification to A.

Example 8.9 (Controlled Revision Execution).

We continue Ex. 8.8 to illustrate the censor for controlled revision processing.
Processing agent A’s request rev(s21), the censor exits in line 2 because
otherwise A would skeptically entail that D believes r ∈ conf (TCP), cf.
Ex. 8.6. The notification is specific for line 2 and therefore reveals to agent A
that the censor exits in this line and, thus, without a revision. Apart from this,

15 Otherwise, agent A already knows that the revision will fail and should be notified
accordingly.
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Procedure 6 cexec for controlled revision execution
Input: axiomatization Ax, epistemic state 〈 Z∼D, as〉, policy conf (TCP),

view V , request rev(A)

Output: notification to A

1: if poss(app_by_rev(A, success ,V ),C) and there exists
B ∈ skepticalC(app_by_rev(A, success ,V )) with B ∈ conf (TCP)

then

2: Notify A: “Revision would breach confidentiality”.
Exit procedure

3: end if

4: if poss(app_by_rev(A, failure,V ),C) and there exists
B ∈ skepticalC(app_by_rev(A, failure,V )) with B ∈ conf (TCP)

then

5: Notify A: “Failure notification would breach confidentiality”.
Exit procedure

6: end if

Process revision

7: if notify(A)( Z∼, as) = success then

8: as := as ∪ {A}
9: end if

10: V := app_by_rev(A, notify(A)( Z∼, as),V )

11: Notify A: notify(A)( Z∼, as).

the notification has no further informational value since, by Asmp. 2, agent A
can freely access all arguments used in the computations up to line 2.

Theorem 8.2 (Confidentiality Preservation).

Agent D preserves temporary confidentiality towards A according to Def. 4.6 by
means of the two procedures of the censor cexec under Asmp. 8 and Asmp. 9.

Sketch of proof. We briefly outline the proof in the appendix. Starting with
any initial situation of agent D, after any finite sequence Int of requests by
agent A, we construct an alternative initial epistemic state 〈 Z∼′, as ′〉. In the
following we outline the construction and its properties:
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(1) Invariant. We prove that the censor cexec preserves the following
invariant:

B 6∈ skepticalC(V k) for each B ∈ conf (TCP), (8.5)

where V k denotes the view computed by the censor in the k-th request. The
main argument is that the precondition (8.1) and both procedures explicitly
ensure the invariant, but the procedures only guarantee the invariant if the
predicate poss(V k,C) holds. We will exemplify this argument for the
procedure of controlled query execution with a request que(A). Previously, the
view might have been modified only by either a correct answer in case of a
previous query request (see line 6) or a correct notification in case of a
previous revision request (see line 11). Therefore, we intuitively see that D’s
fixed reasoning Z∼D D is possible under the view V (., as0, .)

k and class C
where V (., as0, .)

k corresponds to agent A’s approximations in the k-th request
when D’s initial assertions as0 were visible (Section 8.1). This intuitive
argument is formalized in Lemma 8.3 in the appendix which requires class C to
be axiomatized by a set Ax containing rule scheme (LLE), cf. Assumption 9
and Definition 8.9. Consequently, together with Proposition 8.3 of the
appendix, we see that there must exist a possible consequence relation under
V k and C so that the predicate poss(V k,C) holds. We remark that
Assumption 9 and, thus, Definition 8.9, are essential for the proof of
Proposition 8.3. Finally, line 2 of Procedure 5 enforces the invariant (8.5) with
V k = app_by_que(A, eval(A)( Z∼D D, as),V k−1).

(2) Safe Final Situation. The invariant (8.5) guarantees the existence of a
possible consequence relation Z∼D

′ under the final view VInt after the
interaction and class C such that D does not defeasibly conclude B from the
visible assertions CInt after the interaction:

∧
(CInt ) Z�′B. Thus, in the final

alternative situation, D does not believe B: B 6∈ Bel Z∼D
′,CInt

(Requirement 2(b)16 of Definition 4.6). The chosen alternative initial epistemic
state is 〈 Z∼D

′,C0〉. The state s′ = ( Z∼D
′,C0, conf (TCP), 〈〉,V0) with initial

view V0 = 〈∅, ∅,C0〉 is a possible initial state of D from A’s perspective, that is
s′ ∈ StNMR

Init which is defined by the predicate pre in (8.1).

16Recall that in this chapter we set conf (CCP) = ∅.
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(3) Indistinguishable by Observations We can prove that agent A
cannot distinguish the alternative and D’s actual initial state after the
sequence Int of requests by the observed reactions from agent D
(Requirement 1 of Definition 4.6). The main argument is that D’s reactions
with the alternative epistemic state are entirely determined by the view VInt

that the censor has computed according to D’s reactions.

�

8.6 Conclusion

8.6.1 Summary

In this chapter, we constructed a confidentiality preserving agent D and proved
that D’s censor of Section 8.5 effectively enforces D’s confidentiality interests
towards agent A. The crucial task of the censor is to simulate A’s postulated
skeptical entailment of D’s belief while D has hidden some part of its current
assertions from A. To this end, we assumed that D’s fixed reasoning is an
instance of a class of consequence relations that has an allowed axiomatization.
The definition of allowed sets of axiom and rule schemes for axiomatizing D’s
reasoning class is sufficient to establish our results for the simulation of A, yet
general enough to use classes of reasoning well-known from the literature. In
Section 8.4, we showed that such an allowed axiomatization provides a means
for computing skeptical entailment via deduction. In Section 8.4.2, we
discussed how the results presented here extend our preliminary work in [30]
where D’s consequence relation is defined by an ordinal conditional function.

8.6.2 Discussion and Future Work

Information Sharing

Beside confidentiality, agent D is also interested in sharing information with A

to achieve its own goals or joint goals with A. To this aim, D’s censor should
not be too restrictive. Generally, D’s censor follows a policy of last-minute
intervention like in Chapter 7: Requests should only be refused if the correct
notification might harm confidentiality. In future work, we might study and
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improve upon the optimality of the censor’s procedures under this policy as we
partly did in Chapter 7.

First, we may study the cooperativeness of the presented censor under
information sharing by reviewing the simulation of A under that aspect since
the simulation is a crucial task of the censor. Considering this, agent D might
unnecessarily withhold information if its simulation of A mistakenly detected a
skeptical entailment of confidential belief. A detection is made by D deducing
CL(V (V0, ∅,H NMR)) Ax

∧
(C )→ B for some confidential belief

B ∈ conf (TCP) (Section 8.4). It is an erroneous detection if A was not able
to skeptically conclude B at all, that is, B 6∈ skepticalC(V0,H NMR) held.
Corollary 8.2 verifies that such an erroneous detection may not happen. The
result of the corollary relies on the choice of Ax as an axiomatization of the
class C. In particular, the completeness property ensures that the above
deduction implies the skeptical entailment of B from the view
V (V0, ∅,H NMR). Complementary, Theorem 8.1 completes the result of the
corollary. It says that skeptical entailment of B from the view
V (V0, ∅,H NMR) indeed implies the skeptical entailment
B ∈ skepticalC(V0,H NMR) that models A’s postulated skeptical reasoning.

In the following, we review two results from the literature which indicate how
to improve D’s censor under the information sharing aspect.

First, Biskup and Weibert in [34] study confidentiality preserving
query-answering for incomplete propositional databases but there the censor is
not as restrictive as Procedure 5. In our context, D’s current assertions as
may be viewed as an incomplete propositional database and queries to that
database are evaluated by propositional entailment `pl (in terms of our
definitions, agent D has belief BelNMR

D (`pl, as)). The idea of a less restrictive
censor in [34] is as follows. If for example only returning true to query que(B)

was harmful, it would suffice to refuse the answers true and, say, false. The
answer undef could be returned safely in contrast to our approach. In this
example, a refusal reveals to agent A that agent D believes B or believes ¬B.
This fact can be expressed in propositional modal logic in the special case
of [34]. In general ( Z∼D 6=`pl), the fact that D defeasibly concludes B from as
or defeasibly concludes ¬B from as cannot be expressed using the relations B+

and B−: (
∧

(C ), B) is neither definitely in B+ nor in B−. Instead, this fact
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may be represented by the formula (
∧

(C )→ B) ∨ (
∧

(C )→ ¬B) ∈ L∗CL so
that Procedure 5 may be enhanced following [34].
Second, we may augment D’s belief BelNMR

D ( Z∼D D, as) with weights where a
higher weight expresses more confidence in a belief. Weighted belief can be
used to specify a finer grained confidentiality policy as we mentioned in
Section 6.3. Wiese in [93] uses such policies for query-answering to a
possibilistic knowledge base. Confidentiality is preserved by weakening answers
which “is a more cooperative way of communication than denying access
altogether”.

Merging Evidence

Our approach is closely related to the work of Booth and Nittka [37], cf. the
paragraph of Section 6.3 on knowledge and reasoning about other agents.
However, in their proposal, agent A gives a ‘rational explanation for its
observations of D’s reactions that is different from skeptical entailment. A
more significant difference to our contributions is that the revision process
in [37] uses linear merging (Section 6.4) of all assertions that D gathered so far
giving precedence to new information if inconsistency must be repaired. For
example, agent D as a manufacturer (Section 6.2.2) may merge the list of the
assertions 〈s11, s21,¬s11 ∨ ¬s21〉 ordered by recency. The merging yields
s21 ∧ (¬s11 ∨ ¬s21) =: A with the linear merging operator in [37]. Now
in [37], D’s belief are all propositional consequences of the formula A, that is,
BelNMR

D (`pl, A) in terms of our definitions. Altogether, because of the
differences in processing a revision request and in the observer’s reasoning, we
had to adapt their approach to our scenario and to an observer A as a
skeptical reasoner.
In future work, we may extend agent D’s functionality with the operator of
linear merging as we sketched in Section 6.4. For this work, Booth and Nittka’s
results on the observer’s reasoning about the process of linear merging might
be useful, especially, for D’s simulation of A’s reasoning about that process.
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Summary

The leading research question investigated in this thesis was how to enable an
epistemic agent D to enforce its confidentiality interests regarding its belief
when it shares information with another epistemic agent A. In our
investigation, we focused on agent D’s controlled processing of information
received from A by dedicated belief change operators, here, update and
revision, beside D’s controlled processing of queries. Figure A.1 shows the
main contributions, setting them into the context of the security engineer’s
tasks and agent D’s tasks. In the following, we will highlight several
contributions shown in the figure and make clear their relationships. Then, we
will discuss why and in how far our overall contributions are of relevance to
the perspective of confidentiality preserving intelligent agents in multiagent
environments as outlined in Section 1.1.

Before the construction of a confidentiality preserving agent D, the security
engineer provides the agent with means to declare its interests in a
specification language with a formal semantics. To this end, in Chapter 3 of
Part I, we first introduced possibility policies and their semantics of
policy-based secrecy based on our proposed model R cexec

D,A of the agent system
in the Runs & Systems framework, following the work [58] by Halpern and
O’Neill on secrecy in multiagent systems. Then, we defined the syntax of
confidentiality policies which enables agent D to declare its interests in the
confidentiality of current or previous belief. The semantics of confidentiality
policies follows the usual confidentiality requirements in the line of research of
Controlled Interaction Execution [16, 18]. Finally, we showed how to translate
confidentiality policies to possibility policies while preserving the semantics.
This translation shows the equivalence of confidentiality preservation and
policy-based secrecy in the considered system of agents. Moreover, with this
translation, we related the specification of confidentiality to research in
information flow control via policy-based secrecy.

A mandatory part of the specification of confidentiality requirements was
postulating the capabilities of the attacker A. The security engineer’s
postulates (Chapter 4) are formalized in the model R cexec

D,A of the agent system
in Runs & Systems, comprising postulates about A’s knowledge of D’s data
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Figure A.1: Summary of approach and contributions in this thesis
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components, A’s reasoning about D’s state and about further capabilities of A.
Chapter 7 and Chapter 8 detailed the postulates of A’s knowledge about the
implementation of D’s data components.

In Part II, we presented the construction of agent D and its tasks for enforcing
confidentiality in two exemplary implementations of D’s belief with different
belief change operators: a complete propositional database with view update
transactions on the one hand (Chapter 7) and nonmonotonic reasoning on
current assertions with belief revision on the other hand (Chapter 7). The
defender D’s most involved task for enforcing confidentiality is to simulate the
postulated attacker A. The postulated attacker A is a skeptical reasoner with
operator KA about points of the system R cexec

D,A . Consequently, the simulation
of A needs a representation view of A’s information rA(m) about the system
in the logic used for simulation; an associated operator skeptical for reasoning
in the logic; and finally an account for the further postulates about A as
formalized in system R cexec

D,A .
The simulation has to fulfill additional requirements so that by means of
simulation D is enabled to effectively enforce confidentiality. In the following,
we will recapitulate the requirements made in this thesis and their importance
for effectively enforcing the agent’s confidentiality aims. In general, the
requirements should ensure the following principle: Every information that A
has gained about D’s epistemic state by its observations and reasoning about
system R cexec

D,A must be represented in the attacker view view when applying
operator skeptical. The idea is that, following this principle in the simulation,
D is enabled to enforce confidentiality by preserving an invariant on the
attacker view by means of simulation. Possibly, D needs to transform parts of
its confidentiality policy to do so. In Chapter 7 and Chapter 8, we elaborated
on this principle in different ways. In Chapter 7, we defined the correctness of
the simulation of A which makes precise this principle and is achieved by D

ensuring no loss information and the soundness of the attacker view during
attacker view maintenance. In Chapter 8, the simulation of A involved the
simulation of A’s skeptical reasoning about D’s nonmonotonic reasoning in the
situation that D has hidden parts of its assertions and its consequence relation
from A. As a solution, we first introduced the operator skeptical used for
simulation as a model of A’s reasoning about D’s uncontrolled processing of
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requests in the system. However, we did not explicitly relate the simulation to
A’s postulated reasoning KA. Then, we proposed to compute the reasoning
with operator skeptical from the initial approximations and the current history
by deduction with an allowed axiomatization Ax of D’s reasoning class. The
deduction starts with conditional formulas defined from the attacker view that
assumes no hidden assertions. Finally, we showed that the deduction is
equivalent to reasoning by the operator skeptical and thus follows the above
principle – except that the postulated reasoning KA involves reasoning about
the execution of the control procedures whereas skeptical does not.

As a further contribution, as part of the security engineer’s task, we proved the
effectiveness of D’s control procedures to enforcing confidentiality during its
interaction with A. On the one hand, in Chapter 7, in the proof we verified
that policy-based secrecy holds in the constructed agent system for the
translated confidentiality policy and then we used the equivalence of the
verification to the proof of the confidentiality requirement. This way we could
base the proof on our study of the correctness of the simulation in the same
chapter. Then, in Chapter 8, the control procedures were explicitly shown to
fulfill the confidentiality requirement. The proof bases on the results for the
simulation of A by deduction with an allowed axiomatization.

As a closing remark, we want to point out that the effectiveness of the control
procedures must be viewed in the light of the security engineer’s postulate of
D’s complete knowledge of A, in particular, of A’s initial approximations. The
justification of this postulate needs an appropriate initial attacker view
postulated by D as A’s initial approximations.

Future Work

Finally, we will evaluate the contributions of this thesis under the perspective
of designing intelligent agents with confidentiality interests in multiagent
environments as anticipated in Section 1.1. In this perspective, we consider the
design of an intelligent agent according to the BDI-agent model (Beliefs,
Desires, Intentions) as outlined in Figure A.2. Guided by the figure, we will
point to open problems and the impact of our contributions to these problems
along three aspects: the internals of the BDI-agent, its interface to the
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environment and the environment itself. A forth aspect is the applicability of
our approach in realistic agent scenarios.

Internals Our contributions focus on belief change and belief representation,
abstracting away other internal components of a BDI-agent related to the
activities of deliberation and planning which enable the agent to decide on its
actions in a goal-directed way (see the discussion in Section 5.2). The figure
outlines the information flow between the internal components of the
BDI-agent D. Information flow control during the processing of belief change is
a major contribution of this thesis as summarized in the previous section. The
major principle to handle information flow control in face of the complexity of
the agent’s functionality was the clear separation of tasks, mainly, belief
change by agent D, simulation by D of the attacker on basis of the attacker
view, release of information to the attacker view by D in compliance with its
confidentiality policy and the prevention of any information flow otherwise by
design of D’s control procedures by the security engineer.

In future work, we need to manage information flow control in the even more
complex internals of a BDI-agent. To this end, we may first apply our solution
for the belief change component and the belief representation of Chapter 8
which allows to choose the class of D’s reasoning flexibly given that the class
has an allowed axiomatization. Then, we may try to control the information
flow in the other components by the above separation of tasks and, in
particular, to use the same approach for other belief change operators (see the
overview in Section 6.3 to Section 6.4 and a discussion in Section 8.6.2).
Notably, in research on information flow control we so far found no results that
are apt to significantly contribute to achieve information flow control for a
BDI-agent (see the discussion in Section 5.2).

Beside confidentiality, the agent aims at cooperative information sharing with
other agents. This aim might be expressed by desires of the BDI-agent and
might further require the agent’s estimate of the information need of other
agents, for example, to achieve joint goals (see the discussion in Section 7.6.2
on availability policies). Our contributions include a first analysis of one of the
proposed control functions under the aspect of cooperative information sharing
in Section 7.5. We further discussed the improvement of the control functions
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of Chapter 8 under this aspect in Section 8.6.2.

Interface In this thesis, we chose types of interaction for information sharing
in general, namely, query, update and revision requests. These types and the
processing of the requests might be fundamental to other types of interaction
such as negotiation as anticipated in Section 6.3. Thus, our contributions
present a first essential step towards an extended interaction interface starting
with the extension sketched in Section 6.4. In particular, in that sketch we
considered the processing of update and revision requests by prioritized
merging, the control of which may be based on the results of Chapter 8.

Further, Section 6.3 gave an overview on other communication languages and
the impact of choosing a language on the agent’s aim of confidentiality
preservation.

Environment Agent D’s environment in this thesis includes only one other
agent A to interact with and the world in general about which D has belief.
On the one hand, we considered agent D to reason about an inaccessible and
dynamic world (according to the terminology in [94]). Thus, D’s information
about the world might be incomplete and not up-to-date (or not reliable
because of the lack of credibility of the sources of information, cf. Section 6.4)
and the world might change beyond D’s control. On the other hand, we
considered that the state of A is accessible to D by Assumption 1 and that
A’s perception of D’s belief is totally under D’s control. In Section 5.2, we
briefly discussed a different situation in systems with many agents. Especially,
agent D might be uncertain about A’s state and thus about A’s conclusions
about D’s belief in that state. Moreover, due to lack of control over the
dissemination of information in the multiagent system agent D might be
confronted with a violation of its confidentiality interests. Under these
additional challenges, agent D might not be able to enforce its confidentiality
policy by maintaining the invariant S 6∈ skeptical(view) for pieces S of
information relevant for protecting confidential belief. Instead, the agent must
be able to reason about possible violations of its confidentiality policy under
uncertainty about the states of the other agents. Being autonomous, the agent
will utilize this reasoning ability to plan its actions in compliance with its
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confidentiality policy while during planning the agent reasonably deals with
conflicting desires such as cooperative information sharing.

Applicability In [31], we started to model an application scenario of
negotiating agents for supply contracts which we took up as a running
example in this thesis. In our ongoing work, we are extending this scenario to
negotiating BDI-agents in e-marketplaces.
Moreover, we tested the proposed control procedures in prototypical
implementations. First, agent D’s functionality as presented in Chapter 7 has
been implemented as part of a prototype for Controlled Interaction
Execution [18]. The prototype is a front-end to the Oracle database
management system for which additionally the interface of query and view
update transaction requests of Chapter 7 has been implemented together with
the control functions for processing these requests. Several example scenarios
have been successfully tested in that prototype.
Second, agent D’s functionality of Chapter 8 has been integrated into the
Angerona multiagent platform [75] as a plug-in. The Angerona platform
implements a BDI-agent model as outlined in Figure A.2. Implementing the
plug-in, the agent’s design of Chapter 8 had to be adapted to the Angerona
agent model. The plug-in uses the solver KLMLean [55] for the simulation of
A’s reasoning while D’s nonmonotonic reasoning is implemented by an ordinal
conditional function using the Tweety library. Several experiments were
successfully run with the supply chain scenario of Section 6.2.2.
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Figure A.2: Outline of a BDI-agent following the design of Angerona agents [75]
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Part I

Proposition 3.1

Let f be a D-information function and policyf the resulting policy given by
Equation (3.1). Then, agent D maintains total f -secrecy with respect to agent
A in R iff D maintains policyf -based secrecy with respect to A in R .

Proof Consider an abstract information value v ∈ V . We rewrite the
pre-image of f in the value v ∈ V as follows:

f−1(v) = {(r′,m′) ∈ PT (R ) | f(r′,m′) = v}
=

⋃

(r′,m′):f(r′,m′)=v

KD(r′,m′)

= Iv by (3.1) on p. 41.

The second equality holds because by Definition 2.2 f only depends on D’s
state. Formally, from (r,m) ∈ KD(r′,m′) follows the equality rD(m) = r′D(m′)

which implies f(r,m) = f(r′,m′) by Definition 2.2.

Altogether, we immediately see that for all points (r,m) ∈ PT (R ) and values
v ∈ V holds

KA(r,m)∩f−1(v) 6= ∅ iff KA(r,m) ∩ Iv 6= ∅.

This shows the equivalence of the requirements in Definition 2.3 and
Definition 3.3.

�(proof Prop. 3.1)

199



200

Proposition 3.3

Let R be a system and policyR an R -possibility policy defined over R .
Based on this policy, we define a possibility policy policy of Def. 3.2 by

policy(r,m) = {PT (R) | R ∈ policyR (r,m)}.

Then, agent D maintains policy-based secrecy towards agent A iff agent D
maintains policyR -based run-based secrecy towards agent A.

Only-If Part:

Policy-based Secrecy Implies Policy-based Run-based Secrecy

Consider a point (r,m) ∈ PT (R ) and a property of runs R ∈ policyR (r,m).
Since agent D enforces policy-based secrecy towards A with respect to the
possibility policy policy as defined from policyR in the claim of the
proposition, there exists a point

(r′,m′) ∈ KA(r,m) ∩ PT (R).

In the following, we argue that r′ is also an alternative run that proves the
enforcement of policy-based run-based secrecy, that is r′ ∈ R (KA(r,m)) ∩R.
First, by the definition of operator R in (2.4) on p. 29 it holds
r′ ∈ R (KA(r,m)) since (r′,m′) ∈ KA(r,m) holds.
Second, r′ ∈ R since (r′,m′) ∈ PT (R) = {(r′′,m′′) | r′′ ∈ R,m′′ ∈ N0}.

If Part:

Policy-based Run-based Secrecy implies Policy-based Secrecy

Again, consider a point (r,m) ∈ PT (R ) and a property I ∈ policy(r,m) with
I = PT (R) for some R ∈ policyR (r,m) by definition of policy. As agent D
enforces policy-based run-based secrecy towards A, there exists a run

r′ ∈ R (KA(r,m)) ∩R.

Next, we claim and prove that there exists a time m′ ∈ N0 such that
(r′,m′) ∈ KA(r,m) ∩ I.
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First, according to (2.4) on p. 29 the fact r′ ∈ R (KA(r,m)) means that there
exists a time m′ ∈ N0 such that (r′,m′) ∈ KA(r,m).
Second, r′ ∈ R implies that
(r′,m′) ∈ PT (R) = {(r′′,m′′) | r′′ ∈ R,m′′ ∈ N0} = I.

�(proof Prop. 3.3)

Theorem 4.1

Let R cexec
D,A be a system of defender D and attacker A. Then, agent D maintains

policyR cexec
D,A

-based secrecy with respect to agent A according to Def. 3.3 iff
cexec preserves continuous/temporary confidentiality according to Def. 4.6.

Only-If Part:

Policy-based Secrecy Implies Confidentiality Preservation

Following Definition 4.6 we assume any initial abstract state sD ∈ St Init and a
sequence Int ∈ Reqn of requests with length n as input to the control function
cexec of agent D.
For later reference we write sD = (bknowl0, eknowl0, conf 0, hist0, view 0).
For each potential secret S ∈ conf 0(CCP) ∪ conf 0(TCP) we now specify
alternative initial background knowledge bknowl ′0 and evidential knowledge
eknowl ′0 that verify confidentiality preservation of S according to
Definition 4.6.
Consider run rInt ,sD . We recall that bknowl(rInt ,sD ,m) for example denotes
D’s background knowledge in run rInt ,sD at time m and D’s other components
in the run are denoted likewise. Especially, bknowl(rInt ,sD , 0) denotes bknowl0.
Since in the system agent D maintains policy-based secrecy (Definition 3.3)
with possibility policy policyR cexec

D,A
(Definition 4.7) we obtain that

if S ∈ conf 0(CCP) ∪ conf 0(TCP)

then by Asmp. 5 S ∈ conf (CCP)(rInt ,sD , n) ∪ conf (TCP)(rInt ,sD , n)

and there exists IS ∈ policyR cexec
D,A

(rInt ,sD , n)

such that

there exists (r′,m′) ∈ KA(rInt ,sD , n) ∩ IS. (6)
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At this place, it is important to note that the confidentiality policy conf which
defines policyR cexec

D,A
is constant during the run by Assumption 5.

We define the initial alternative belief components bknowl ′0 and eknowl ′0 as the
respective components in agent D’s local state r′D(0).

Now we study the execution of cexec on state r′D(0) with interaction Int and
show both the indistinguishability property and the confidentiality property
from Definition 4.6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Indistinguishability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the possible point (r′,m′) ∈ KA(rInt ,sD , n) of (6) agent A is in the same
local state as in the considered point (rInt ,sD , n) by Equation 2.3 on page 24.
Therefore, since agent A has perfect recall (Assumption 3), the sequences of
agent A’s local state in run r′ up to time m′ and in run rInt ,sD up to time n
agree when ignoring subsequent duplicate states. Immediately, perfect recall
together with (6) ensures

conf (r′, 0) = conf (rInt ,sD , 0) hist(r′, 0) = hist(rInt ,sD , 0)

view(r′, 0) = view(rInt ,sD , 0).

The complete line of argumentation is similar. Since the control function
tracks each request in the history (Definition 4.3), there are no duplicate states
of agent A up to time m′ or up to time n respectively (the system is
synchronous [58]) and, thus, by perfect recall it holds for all 0 ≤ k ≤ n

m′ = n conf (r′, k) = conf (rInt ,sD , k) hist(r′, k) = hist(rInt ,sD , k) (7)

view(r′, k) = view(rInt ,sD , k).

Hence, both runs must be defined over the same interaction sequence up to
time n, since requests are recorded in the history, that is

θ′k = θk for all 1 ≤ k ≤ n. (8)

Finally, we use that the system R cexec
D,A simulates the control function
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(Definition 4.5), that is for all 1 ≤ k ≤ n we obtain

(bknowl ′k, eknowl
′
k, conf

′
k, hist

′
k, view

′
k) = r′D(k) (9)

= cexec(r′D(k − 1), θ′k) by Def. 4.5

= cexec(r′D(k − 1), θk) by (8)

= cexec((bknowl ′k−1, eknowl
′
k−1, conf k−1, histk−1, viewk−1), θk) by (7)

and

(bknowlk, eknowlk, conf k, histk, viewk) = rInt ,sD
D (k)

= cexec(rInt ,sD
D (k − 1), θk) by Def. 4.5

= cexec((bknowlk−1, eknowlk−1, conf k−1, histk−1, viewk−1), θk).

Together with (7), these equalities show the indistinguishability property of
Definition 4.6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Confidentiality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Case 1 S ∈ conf 0(TCP)

By (6) it holds (r′,m′) ∈ IS where m′ = n by (7). In this case, the set IS
defined by the possibility policy in Definition 4.7 ensures by (4.1) on p. 69 that
S 6∈ BelD(bknowl(r′, n), eknowl(r′, n)) holds where bknowl(r′, n) = bknowl ′n

and eknowl(r′, n) = eknowl ′n are in the output state of the control function at
time n as in (9).

Case 2 S ∈ conf 0(CCP)

In this case, the fact that (r′, n) ∈ IS holds implies that r′ ∈ RCCP
S,n of

Equation 4.2 on p. 70 holds. Following that equation and (9), we obtain
S 6∈ BelD(bknowl ′k, eknowl

′
k) for all 0 ≤ k ≤ n.

If Part: Confidentiality Preservation Implies Policy-based Secrecy

Let (r,m) ∈ PT (R cexec
D,A ). Consider a property I ∈ policyR cexec

D,A
(r,m). To show

policy-based secrecy of Definition 3.3, we have to find a point in

KA(r,m) ∩ I. (10)
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As previously explained, we can retrieve the sequence of requests from a run
because it is recorded in the agents’ history components. Let Int ∈ Reqm be
the sequence of requests in run r up to time m. To find the required point, we
consider the execution of the control function cexec on agent D’s initial state
rD(0) with the sequence Int .
We write rD(0) = sD = (bknowl0, eknowl0, conf 0, hist0, view 0) for later
reference.
By Definition 4.7 the property I ∈ policyR cexec

D,A
(r,m) is either of the form

PT (RCCP
S,m ) in (4.2) on p. 70 with S ∈ conf (CCP)(r,m) or of the form ITCPS

in (4.1) on p. 69 with S ∈ conf (TCP)(r,m). Since the confidentiality policy is
constant over the run r by Assumption 5, the confidential belief S defining I is
from the initial confidentiality policy conf 0 in run r.
By presupposition, cexec preserves confidentiality (Definition 4.6) for each
confidential belief in conf 0, in particular, for the confidential belief S defining
property I. Confidentiality preservation for S is guaranteed by alternative
initial background knowledge bknowl ′0 and evidential knowledge eknowl ′0 with
properties we recall and use in the sequel.
We write s′D = (bknowl ′0, eknowl

′
0, conf 0, hist0, view 0) for later reference.

First, the execution of cexec on the initial state s′D with interaction Int is
indistinguishable from that on state sD with interaction Int . In particular,
this means that at time m, considered in (10), it holds

conf ′m = conf m hist ′m = histm view ′m = viewm, (11)

meaning that the outputs of cexec after the m-th request are equal by
Definition 4.6. Since by Definition 4.5 the runs of R cexec

D,A are defined by cexec,
we obtain

rA(m) = rInt ,sD
A (m) by choice of Int and sD

= (conf m, histm, viewm) by Def. 4.5

= (conf ′m, hist
′
m, view

′
m) by (11)

= r
Int ,s′

D

A (m) by Def. 4.5.

and, thus, (rInt ,s′
D ,m) ∈ KA(r,m) by Equation 2.3 on page 24. This shows

that the point (rInt ,s′
D ,m) is a possible point from agent A’s perspective at

(r,m) as required in (10).
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Finally, we consider the protection of the secret S.

Case 1 S ∈ conf 0(TCP)

By Definition 4.6 we know that in the alternative situation after the m-th
requests it holds S 6∈ BelD(bknowl ′m, eknowl

′
m). This means that

(rInt ,s′
D ,m) ∈ I by (4.1) on p. 69.

Case 2 S ∈ conf 0(CCP)

In this case, by Definition 4.6 we obtain that in the alternative situation until
the m-th request it holds S 6∈ Bel(bknowl ′k, eknowl

′
k) for all 0 ≤ k ≤ m. It

follows that rInt ,s′
D ∈ RCCP

S,m holds by Equation 4.2 on page 70. This means
that (rInt ,s′

D ,m) ∈ I = PT (RCCP
S,m ).

�(proof Thm. 4.1)
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Part II

Lemma 6.1

Let U be a set of literals over pairwise distinct atoms. Further let db be a
database instance such that db 6|=PL L for all L ∈ U. Then, it holds that
db = (db •U) • ¬(U).

Inclusion ⊆

Let a ∈ db . By presupposition there are only the following two cases.

Case 1 ¬a ∈ U
Then a ∈ ¬(U) by (6.3) and it follows by Definition 6.4 of the database
update • that

(db •U) • ¬(U) ⊇ ¬(U) ∩ At 3 a.

Case 2 a 6∈ ¬(U) and a 6∈ U
In this case, by (6.3) it holds ¬a 6∈ ¬(U) and ¬a 6∈ U. Thus,
a ∈ {b ∈ db | ¬b 6∈ U} = db \ {b | ¬b ∈ U} ⊆ db •U. Thus, it holds
a ∈ {b ∈ db •U | ¬b 6∈ ¬(U)} ⊆ (db •U) • ¬(U).

Inclusion ⊇

Let a 6∈ db . By presupposition there are only the following two cases.

Case 1 a ∈ U
In this case, by (6.3) it follows that ¬a ∈ ¬(U) holds, but a 6∈ ¬(U). Thus,
we obtain that

a 6∈ (At ∩ ¬(U)) ∪ {b ∈ db •U | ¬b 6∈ ¬(U)} = (db •U) • ¬(U).

207
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Case 2 a 6∈ ¬(U) and a 6∈ U
Then, Definition 6.4 of the database update • implies a 6∈ db •U and thus
a 6∈ (db •U) • ¬(U) .

�(proof Lem. 6.1)

Proposition 6.1

Let 〈IC , db〉 be a database over a finite alphabet At and •db the database
update1 of Def. 6.4. Further, we define a transformation t of a database into
an epistemic state of Def. 6.7 as follows:

t(〈IC , db〉) = 〈t(IC ), t(db)〉
with (A,B) ∈ t(IC ) iff {A} ∪ IC `pl B
and t(db) = db ∪ {¬a | a ∈ At \ db}.

Let L be a literal over At . Then, it holds

1. t(〈IC , db〉) is an epistemic state according to Def. 6.7,

2. BelDBD (〈IC , db〉) = BelNMR
D (t(〈IC , db〉)),

3. t(〈IC , db〉 •db {L}) = t(〈IC , db〉) •simp L.

Before the proof of the proposition, we introduce and prove four claims:

Claim 1 Idb |=PL t(db)

The claim follows right from the definitions of the transformation t in
Proposition 6.1 and the propositional interpretation Idb . We recall that the
interpretation is inductively defined by db with the base case of atoms a ∈ At
being Idb |=PL a iff a ∈ db .2

1In the scope of this proposition and its proof, we use the notation •db for the operator of
Def. 6.4 for clarity of notation.

2 The interpretation Idb has been defined right before Definition 6.1.
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Claim 2 If I |=PL t(db) then I = Idb

The claim also follows right from the definition of the transformation t and the
interpretation Idb , recalling the finiteness of the alphabet At in the scope of
Proposition 6.1.

Claim 3 t(db •db {L}) = t(db) \ ¬({L}) ∪ {L}

First, we observe that the two sets of literals may only differ in the literal L
and its complement literal3. The observation is immediate from the definition
of the transformation function t in Proposition 6.1 and the database update
•db of Definition 6.4.

With the latter observation, we must only compare the two sets with respect
to the literal L and its complement literal. The literal L is contained in
t(db) \ ¬({L}) ∪ {L}, but not its complement literal which is removed by
¬({L}). We show the same property for the set t(db •db {L}), formally

a ∈ t(db •db {a}) and ¬a 6∈ t(db •db {a}) if L = a ∈ At , (12)

¬a ∈ t(db •db {¬a}) and a 6∈ t(db •db {¬a}) if L = ¬a, a ∈ At . (13)

Case 1 L = a ∈ At .
Then, by Definition 6.4 it follows that a ∈ db •db {a} holds and thus
a ∈ t(db •db {a}) and ¬a 6∈ t(db •db {a}) follow. This shows (12).

Case 2 L = ¬a, a ∈ At .
Then, by Definition 6.4 it follows that a 6∈ db •db {¬a} holds and thus
¬a ∈ t(db •db {¬a}) and a 6∈ t(db •db {¬a}) follow. This shows (13).

Claim 4 db •db {L} |=PL IC iff (
∧

(t(db) \ ¬({L}) ∪ {L}),⊥) 6∈ t(IC )

For the only-if part we argue as follows. Recall that the notation
db |=PL F ∈ LPL abbreviates Idb |=PL F with the interpretation Idb defined

3 The complement literal of the literal ¬a, a ∈ At is a and vice versa.
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by db (cf. Claim 1).

By presupposition Idb•db{L} |=PL IC (14)

and by Claim 1 Idb•db{L} |=PL t(db •db {L})
hence, by Claim 3 Idb•db{L} |=PL t(db) \ ¬({L}) ∪ {L}. (15)

Then, by (14) and (15) it follows {∧(t(db) \ ¬({L}) ∪ {L})} ∪ IC 6`pl ⊥ which
shows the only-if part by the definition of t(IC ) in Proposition 6.1.
For the if part, the presupposition yields a propositional interpretation I over
At such that

I |=PL {
∧

(t(db) \ ¬({L}) ∪ {L})} ∪ IC (16)

hence I |=PL t(db) \ ¬({L}) ∪ {L}
hence, by Claim 3 I |=PL db •db {L}

and finally by Claim 1 I = Idb•db{L}.

The latter equality together with (16) shows that db •db {L} |=PL IC holds.

Property 1 of Proposition 6.1

According to Definition 6.7, we must show that (
∧

(t(db)),⊥) 6∈ t(IC ). This
follows right from consistency of the database 〈IC , db〉 by Definition 6.1 by
applying Claim 4 and choosing the literal L in that claim such that
db •db {L} = db .

Property 2 of Proposition 6.1

The property states the equality of the two sets of belief in (17) and in (18):

BelDBD (〈IC , db〉) = {B ∈ LPL | db |=PL B}, (17)

BelNMR
D (t(〈IC , db〉)) = {B ∈ LPL | (

∧
(t(db)), B) ∈ t(IC )} (18)

= {B ∈ LPL | t(db) ∪ IC `pl B}.

Thus, we must show the equivalence db |=PL B iff t(db) ∪ IC `pl B for all
B ∈ LPL.
Considering the only-if part, presuppose that Idb |=PL B holds. Further,
consider a propositional interpretation I such that I |=PL t(db) ∪ IC . By
Claim 2 we know that I = Idb and, hence, I |=PL B immediately follows.
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Considering the if-part, Claim 2 yields Idb |=PL t(db). Moreover, the
consistency of the database by Definition 6.1 says that Idb |=PL IC holds. By
presupposition of the if-part, altogether it follows Idb |=PL B.

Property 3 of Proposition 6.1

To show the equality of the two epistemic states, we consider their components
separately.

First, the epistemic state t(〈IC , db〉 •db {L}) has the following two components:

• the consequence relation t(IC ) since by Definition 6.4 the set IC is not
changed by the update •db,

• the assertions

as1 =




t(db •db {L}) if db •db {L} |=PL IC ,

t(db) otherwise, by Def. 6.4.

Second, the epistemic state t(〈IC , db〉) •simp L has the following two
components:

• the consequence relation t(IC ) since by (6.11) the operator •simp does
not change the consequence relation t(IC ),

• the assertions

as2 = ∗simp(t(IC ), L, t(db))

=




t(db) \ ¬({L}) ∪ {L} if (

∧
(t(db) \ ¬({L}) ∪ {L}),⊥) 6∈ t(IC )

t(db) otherwise, by (6.11).

The sets of assertions as1 and as2 are equal, using Claim 4 and then Claim 3.
This shows Property 3 of Proposition 6.1.

�(proof Prop. 6.1)
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Lemma 7.1

Let Seq = 〈U1, . . . ,Uk−1〉 be a sequence of sets of literals with each set Ui

being defined over distinct atoms. Further, let 〈db1, . . . , dbk〉 be a sequence of
database instances such that for all i = 1, . . . , k − 1 it holds

db i 6|=PL L for all L ∈ Ui and db i+1 = db i •Ui.

Then, for all formulas A ∈ LPL it holds for all i = 1, . . . , k

db i |=PL A iff dbk |=PL neg(A,∆Up[Seq ][i]).

Proof We prove this lemma by induction on k.
Base case: k = 1

Nothing is to show.
Inductive case: k − 1→ k

We apply the induction hypothesis unto the sequence 〈db2, . . . , dbk〉 of
database instances with updates U2 to Uk−1 defining ∆Up[〈U2, . . . ,Uk−1〉] by
Definition 7.2. This definition immediately implies that
∆Up[〈U2, . . . ,Uk−1〉] = 〈∆Up[Seq ][2], . . . ,∆Up[Seq ][k]〉 holds. Hence, we
obtain that for all formulas A and for all i = 2, . . . , k it holds

db i |=PL A iff dbk |=PL neg(A,∆Up[Seq ][i]). (19)

By presupposition we generated db2 by db2 = db1 •U1 where db1 6|=PL L for
all L ∈ U1. Knowing this, we argue that for all formulas A it holds

db1 |=PL A

iff db2 |=PL neg(A,U1) by Lem. 6.3

iff dbk |=PL neg(neg(A,U1),∆Up[Seq ][2]) by (19)

iff dbk |=PL neg(neg(A,At(U1)),∆Up[Seq ][2]) by Lem. 6.2

iff dbk |=PL neg(A, (∆Up[Seq ][2] \ At(U1)) ∪ (At(U1) \∆Up[Seq ][2])) by Lem. 6.2

iff dbk |=PL neg(A,∆Up[Seq ][1]) by Def. 7.2.

�(proof Lem. 7.1)
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Proposition 7.1

Let cexec be a control function of Def. 4.3 with domain StDB × ReqDB.
Further, let R cexec

D,A be the system of defender D and attacker A defined by
cexec. Then, for all points (r,m) ∈ PT (R cexec

D,A ) and for all S ∈ LPL

db(r,m) 6|=PL ccp(S,∆Up[r,m]) of Def. 7.3 holds

iff

r ∈ RCCP
S,m of (4.2) holds.

Proof We rewrite the definition of RCCP
S,m in (4.2) for control functions with

domain StDB × ReqDB where S ∈ LPL and m ∈ N0:

RCCP
S,m = {r′ ∈ R cexec

D,A | for all n ≤ m : S 6∈ BelDBD (IC (r′, n), db(r′, n))}.
(20)

Next, writing ui, we refer to the time before the request with the i-th effective
update Ui in run r before time m, that is the ui + 1-th request up(L) such
that Ui ⊆ L and

db(r, ui) 6|=PL L for all L ∈ Ui and db(r, ui + 1) = db(r, ui) •Ui. (21)

We set uk = uk−1 + 1, that is the time of the request of the last effective
update. Moreover, for all times j ≤ m we have that

db(r, j) = db(r, ui) for some i ∈ {1, . . . k}. (22)

and, in particular, db(r,m) = db(r, uk).

Only-If Part

We presuppose that db(r, uk) = db(r,m) 6|=PL ccp(S,∆Up[r,m]) holds which
implies

db(r, uk) |=PL ¬neg(S,∆Up[r,m][1]) ∧ . . . ∧ ¬neg(S,∆Up[r,m][k]) (23)

= neg(¬S,∆Up[r,m][1]) ∧ . . . ∧ neg(¬S,∆Up[r,m][k]) by Def. 6.5.

Finally, we use Lemma 7.1 with (21) and (23) and, this way, obtain
db(r, ui) |=PL ¬S for i = 1, . . . , k. Thus, we conclude together with (22) that
r ∈ RCCP

S,m of (20) holds.
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If-Part

Now, we presuppose that r ∈ RCCP
S,m of (20) holds which implies

db(r, ui) |=PL ¬S for all i = 1, . . . , k

and hence with Lemma 7.1

db(r, uk) |=PL neg(¬S, ,∆Up[r,m][i]) for all i = 1, . . . , k.

As we have seen in the only-if part, this means that
db(r,m) 6|=PL ccp(S,∆Up[r,m]).

�(proof Prop. 7.1)

Proposition 7.3

Procedure 2 outputs a state of Def. 7.1.

Proof We have to show that the output 〈IC , db t〉 is database according to
Definition 6.1 and that the output Vt is a database view according to
Definition 6.2.
First, the integrity constraints are ensured by Procedure 2 in line 26 before the
database update in line 34. There is no other way the database instance may
be updated by the procedure. Therefore, 〈IC , db t〉 is a database.
Finally, we argue that Ct is an instance view of database instance db t and to
this aim distinguish the following cases.

Case 1 The request triggered a successful update U ⊆ LPL with
db t−1 6|=PL L for all L ∈ U.
Procedure 2 updates the database instance db t−1 to db t = db t−1 •U.

Because Vt−1 is a database view of the database 〈IC , db t−1〉 by Definition 7.1,
we obtain

db t−1 |=PL skeptical(Vt−1) `pl Ct−1.

By Lemma 6.3 the satisfaction relation db t−1 |=PL Ct−1 is equivalent to

db t |=PL Ct−1 � U = Ct.
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Case 2 There has not been a successful update.
Then db t = db t−1 holds. Like in the previous case, by Definition 7.1 we know
that db t−1 |=PL skeptical(Vt−1) `pl Ct−1 holds. Let U denote the outstanding
updates of the request. Procedure 2 may only add the formula
neg(¬∧(IC ),U) to the instance view Ct−1 in line 28. Before that, in line 26
the procedure has checked that db t−1 •U |=PL ¬

∧
(IC ) holds and, hence, we

conclude with Lemma 6.3 that db t = db t−1 |=PL neg(¬∧(IC ),U) holds. The
lemma may be applied because U contains the outstanding updates so that
db t−1 6|=PL L for all L ∈ U. Altogether, it follows db t |=PL Ct.

�(proof Prop. 7.3)

Lemma 7.2

Proc. 1 and Proc. 2 maintain the following two invariants:

ccp(S,∆Up[s]) 6∈ skeptical(V ) if S ∈ conf (CCP), and

S 6∈ skeptical(V ) if S ∈ conf (TCP).

Proof

Case 1 The request θ is que(A).
Then, Procedure 1 explicitly ensures the invariants in line 5.

Case 2 The request θ is up(L).

Case 2–a Procedure 2 terminates until line 25.
Then the procedure only updates the view when invoking Procedure 1 and we
can use the same argument as in Case 1.

Case 2–b Procedure 2 terminates in line 30.
Then the invariants are enforced via the conditions checked in line 22.

Case 2–c Procedure 2 terminates after line 30.
Then the invariants are enforced via the conditions checked in line 12.

�(proof Lem. 7.2)
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Proposition 7.4

Let cexec be a control function of Def. 4.3 with domain StDB × ReqDB under
Assumption 7. Further, let R cexec

D,A be the system of defender D and attacker A

defined by cexec. If cexec satisfies (Soundness of Attacker View) of
Def. 7.5 and (No Loss of Information) of Def. 7.6, then cexec correctly
simulates operator KA in the sense of Def. 7.4.

Proof Let (r,m) ∈ PT (R cexec
D,A ) be a point of the system of defender D and

attacker A defined by the control function cexec. We will show the equivalence
required for the correctness of simulation according to Definition 7.4.

If-Part of Correctness Requirement

The proof of the if part does not need that control function satisfies
(Soundness of Attacker View) and (No Loss of Information).
According to Definition 7.4 of the correctness of simulation, we presuppose
that there exists run r′ ∈ R cexec

D,A with (r′,m) ∈ KA(r,m) and denote
db = db(r′,m). Then, we show that db |=PL skeptical(V (r,m)) follows.
Recall the definition of the operator KA in (2.3) which models the attacking
agent A’s reasoning about system R cexec

D,A of Definition 4.5. By those
definitions, the presupposition implies that V (r′,m) = V (r,m) holds. We
write V (r′,m) = V (r,m) = 〈IC ,C 〉. By Definition 7.1, the pair 〈IC ,C 〉 is a
database view of the database 〈IC , db〉 in point (r′,m). In particular, this
implies that db(r′,m) = db |=PL C ∪ IC `pl skeptical(V (r,m)) holds.

Only-If-Part of Correctness Requirement

Consider a run r at time m in system R cexec
D,A . We show the only-if part by

induction on time m.

Base case: m = 0

According to Definition 7.4 of the correctness of simulation, we presuppose a
database instance db satisfying db |=PL skeptical(V (r, 0)). Then, we show that
there exists a run r′ ∈ R cexec

D,A such that db = db(r′, 0) and (r′, 0) ∈ KA(r, 0).
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The presupposition implies that the state

stD = 〈IC (r, 0), db , conf (r, 0), 〈〉, V (r, 0)〉

is a state of Definition 7.1 satisfying pre of (7.1). Thus, we may define the
required run r′ starting in state stD with any sequence of requests following
Definition 4.5 of system R cexec

D,A .
Inductive case: m→ m+ 1

Since the considered control function has domain StDB × ReqDB of
Definition 7.1, we may write

db(r,m+ 1) = db(r,m) •U and db(r,m) 6|=PL L for all L ∈ U (24)

where U might be empty.
First, showing the only-if part, we presuppose a database instance db that
satisfies db |=PL skeptical(V (r,m+ 1)) and then by (No Loss of

Information) of Definition 7.6 we argue as follows

db |=PL skeptical(V (r,m+ 1))

⊇ skeptical(V (r,m) � U) by Def. 7.6

⊇





U by Def. 6.6,

(C (r,m) ∪ IC ) � U by Def. 6.6.
(25)

For constructing the required run r′, we will apply the induction hypothesis on
the database instance db • ¬(U) reversing the effective updates U.4 To this
end, we show that this instance is a model of skeptical(V (r,m)) in the
following.
First, from (25) it follows that db 6|=PL L for all L ∈ ¬(U) so that we may
apply Lemma 6.1 and, hence, obtain

db = (db • ¬(U)) •U. (26)

With this equation, we rewrite parts of (25) to

(db • ¬(U)) •U |=PL (C (r,m) ∪ IC ) � U.

4 Note that, if U is empty, then the considerations, which prepare the application of the
induction hypothesis in the following, are trivial.
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Applying Lemma 6.3 on the latter result, it follows

db • ¬(U) |=PL C (r,m) ∪ IC `pl skeptical(V (r,m)). (27)

After these considerations, by (27) we may apply the induction hypothesis on
db • ¬(U). The hypothesis yields that there exists a run r′ such that

db • ¬(U) = db(r′,m) and (r′,m) ∈ KA(r,m). (28)

Thus, (r′,m) is a possible point at point (r,m) as defined by (2.3) so that that
the following two local states of D fulfill the requirements of Definition 7.5 of
(Soundness of Attacker View)

rD(m) = 〈 IC (r,m), db(r,m), conf (r,m), H DB(r,m), V (r,m)〉
r′D(m) = 〈 IC (r,m), db • ¬(U), conf (r,m), H DB(r,m), V (r,m)〉.

Note that the sets of integrity constraints are the same in the points (r,m)

and (r′,m) because by Definition 7.1 each set is contained in the respective
attacker view. Let us assume that runs r and r′ process the same request at
time m+ 1.5 Proposition 7.4 to be proven presupposes that the control
function maintains a sound attacker view in the sense of Definition 7.5. Hence,
we use the contraposition of that property saying here that for all sets U of
literals over pairwise distinct atoms it holds,

if db(r,m+ 1) = db(r,m) •U implies

db(r′,m) •U |=PL skeptical(V (r,m+ 1)),

then H DB(r′,m+ 1) = H DB(r,m+ 1) and

V (r′,m+ 1) = V (r,m+ 1).

The implication in the premise holds by (28), (26) and (25) for the set U being
the effective updates in run r at time m+ 1 according to (24). Altogether, it
follows that H DB(r′,m+ 1) = H DB(r,m+ 1) and V (r′,m+ 1) = V (r,m+ 1).
This shows (r′,m+ 1) ∈ KA(r,m+ 1) by (2.3) and Definition 4.5 of system
R cexec

D,A and Definition 7.1 of the states in the implemented system R cexec
D,A .

5 Otherwise, we may redefine r′ such that the (m+ 1)-th request in run r′ is the request
in the history of run r at time m+ 1 without loosing the validity of (28).
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Finally, since the history H DB(r′,m+ 1) records the effective updates on
database instance db(r′,m) = db • ¬(U) by Assumption 7, which are U by
H DB(r′,m+ 1) = H DB(r,m+ 1), we have db(r′,m+ 1) = db(r′,m) •U = db
by (26).

�(proof Prop. 7.4)

Lemma 7.3

The control functions Proc. 1 and Proc. 2 maintain a sound attacker view.

Proof We will prove the lemma by contraposition in the following cases.

Case 1 The request θ is que(A).
In this case, there is no update so that db t = db t−1 holds. Hence, for proving
the contraposition of the lemma, we presuppose

db ′t−1 |=PL skeptical(Vt) ⊇ Ct. (29)

Next, we consider the execution of Procedure 1 on D’s state sD with database
instance db t−1 after the request que(A), comparing it with the execution on
state sD′ with database instance db ′t−1. The evaluation of all conditions until
line 6 does not depend on the database instance. If the procedure terminates
after line 6, then the notification note is the evaluation of the query in db t−1

and included into the instance view Ct in line 9 or line 13 respectively. Hence,
by (29) the query results in the same evaluation on database instance db ′t−1.
Altogether, the procedure outputs the same history and view when executed
on state s′D.

Case 2 The request θ is up(L) but there is no successful update on sD
and request θ.
In this case, db t = db t−1 holds so that, for proving the contraposition of the
lemma, we presuppose

db ′t−1 |=PL skeptical(Vt) ⊇ Ct. (30)

Next, we compare the execution of Procedure 2 on both states. First, when
executed on sD, the procedure computes the set U ⊆ L . This computation
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uses Procedure 1 so that we may reuse the arguments of Case 1 to show that
the histories and views are equal until line 10 of Procedure 2 and that the
same set U ⊆ L is computed on both input states.

After line 10 the procedure does not use the database instance until line 26.
As there is no successful update on sD and θ, it must hold that
IC 6⊆ BelDBD (〈IC , db t−1 •U〉). Thus, the procedure in line 28 ensures that
neg(¬∧(IC ),U) ∈ Ct holds. Together with (30), we obtain
db ′t−1 |=PL neg(¬∧(IC ),U). We apply Lemma 6.3 on the latter result. The
application of the lemma is possible because it holds db ′t−1 6|= L for all L ∈ U
by (30) since ¬(U) ⊆ Ct is ensured by the procedure. The lemma yields
db ′t−1 •U |=PL ¬

∧
(IC ) which implies IC 6⊆ BelDBD (〈IC , db ′t−1 •U〉). The rest

of the computation does not depend on the database instance so that finally
we have H DB

t
′
= H DB

t and V ′t = Vt.

Case 3 The request θ is up(L) and there is a successful update U ⊆ L
on sD and request θ.
In this case, we know that db t = db t−1 •U holds. For showing the
contraposition, we thus presuppose

db ′t−1 •U |=PL skeptical(Vt). (31)

We argue like in Case 2 until line 26. As there is a successful update on sD
and θ, it must hold that IC ⊆ BelDBD (〈IC , db t−1 •U〉). By (31), we further
know that IC ⊆ BelDBD (〈IC , db ′t−1 •U〉) because skeptical(Vt) contains IC .
Thus, we conclude like in Case 2.

�(proof Lem. 7.3)

Theorem 7.1

The control functions Proc. 1 and Proc. 2 preserve continuous/temporary
confidentiality towards agent A in the sense of Def. 4.6.

Proof The proof uses Theorem 4.1: Confidentiality policies are translated to
a single possibility policy in system R cexec

D,A and temporary/continuous
confidentiality is enforced through policy-based secrecy of Definition 3.3. The
translation is found in Definition 4.7.
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Let thus (r,m) be a point in system R cexec
D,A of Definition 4.5 and

I ∈ policyR cexec
D,A

(r,m) a piece of information for the protection of some
confidential belief S ∈ conf (r,m). Policy-based secrecy requires

KA(r,m) ∩ I 6= ∅. (32)

We distinguish between the cases whether S is a temporary or a continuous
confidential belief.

Case 1 S ∈ conf (TCP)(r,m).
In this case, by Definition 4.7 the set I is the set of points

ITCPS = {(r′,m′) | S 6∈ BelDBD (IC (r′,m′), db(r′,m′))}. (33)

The invariant of Lemma 7.2 ensures that S 6∈ skeptical(V (r,m)) holds where
we need that conf (TCP)(r,m) = conf (TCP)(r, 0) holds by Assumption 5.
Let db be a witness of the latter fact; formally, db satisfies

db |=PL skeptical(V (r,m)) db |=PL ¬S. (34)

By Lemma 7.5, Procedure 1 and Procedure 2 correctly simulate operator KA

by means of the view V in the sense of Def. 7.4. Hence, there exists a run
r′ ∈ R cexec

D,A such that

db = db(r′,m) and (r′,m) ∈ KA(r,m). (35)

Recalling (33), we further observe that (r′,m) ∈ ITCPS because by (35) it holds
db(r′,m) = db and by (34) it holds db |=PL ¬S. Together with (35), this
shows (32).

Case 2 S ∈ conf (CCP)(r,m).
The line of argumentation is similar to that of Case 1. First, in this case, by
Definition 4.7 the set I is the set of points

PT (RCCP
S,m ) with the property RCCP

S,m ⊆ R cexec
D,A of runs of (4.2). (36)

The invariant of Lemma 7.2 ensures that
ccp(S,∆Up[r,m]) 6∈ skeptical(V (r,m)) holds where we need that
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conf (TCP)(r,m) = conf (TCP)(r, 0) holds by Assumption 5. Let db be a
witness of the negative set membership; formally, db satisfies

db |=PL skeptical(V (r,m)) db 6|=PL ccp(S,∆Up[r,m]). (37)

Like in Case 1, the correctness of the simulation of operator KA of Lemma 7.5
with (37) guarantees that there exists a run r′ ∈ R cexec

D,A satisfying (35). In
particular, if we recall the definition of the operator KA in (2.3) in the context
of system R cexec

D,A , we immediately see that run r′ outputs the same history as
run r until time m. Hence, it holds ∆Up[r′,m] = ∆Up[r,m] since those
sequences are obtained from the histories in the runs until time m. With these
considerations, we apply Lemma 7.1 to run r′ at time m, using (37) and
db(r′,m) = db of (35), and obtain r′ ∈ RCCP

S,m which together with (35)
proves (32).

�(proof Thm. 7.1)

Lemma 7.6

Let cexec be a control function of Def. 4.3 with domain StDB × ReqDB
up

fulfilling Asmp. 7. Let the view Vt in the output state st contain confidential
information, that is there exists S ∈ LPL such that

(S ∈ skeptical(Vt) and S ∈ conf (TCP))

or (ccp(S,∆Up[st]) ∈ skeptical(Vt) and S ∈ conf (CCP)).

Then, cexec violates the confidentiality requirements of Def. 4.6.

Proof We prove this lemma by contraposition. Assume that cexec preserves
confidentiality according to Definition 4.6 so that after the t-th request in the
sequence Int with initial state sD there exists an alternative initial state
s′D ∈ StDB with the properties required by the definition. Since this state is
indistinguishable from the actual state sD, after the t-th request the views V ′t
and Vt are equal and so are the histories H DB

t
′ and H DB

t . Further, by
Definition 7.1 cexec ensures that V ′t is a database view of the database
〈IC , db ′t〉 so that it holds

db ′t |=PL skeptical(V ′t ) = skeptical(Vt) (38)
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Case 1 S ∈ conf (TCP).
In the alternative situation D’s current belief is safe, that is
S 6∈ BelDBD (IC , db ′t). This means by definition that db ′t |=PL ¬S holds.
Together with (38) it follows that skeptical(Vt) 6`pl S holds so that
S 6∈ skeptical(Vt) also holds.

Case 2 S ∈ conf (CCP).
In the alternative situation D’s belief throughout the interaction is safe, that
is for all 0 ≤ j ≤ t it holds S 6∈ BelDBD (IC , db ′j). Thus, the run rInt ,s′

D is an
alternative run for the protection of S. Formally, we obtain rInt ,s′

D ∈ RCCP
S,t

by (4.2). Proposition 7.1 now implies that db ′t 6|=PL ccp(S,∆Up[s′t]) where A

may determine the formula ccp(S,∆Up[s′t]) on the basis of Assumption 7.
Hence, together with (38) it follows ccp(S,∆Up[s′t]) 6∈ skeptical(Vt). Moreover,
we know that ∆Up[s′t] = ∆Up[st] since the histories after the t-th request are
equal.

�(proof Lem. 7.6)

Theorem 7.2

Procedure 2 for controlled view update execution is locally optimal.

Proof We proceed with a proof by cases, under which condition Procedure 2
terminates. In Section 7.5, we assume that the procedure does not terminate
in Case 1, but that A knows the set U of outstanding updates without a
confidentiality violation, cf. (7.6).

Case 1 Procedure 2 terminates in Case 2.
In this case, Procedure 2 outputs the view Vt = Vt−1 and ∆cexec = ∅ holds.

Case 1–a cexec′ successfully updates db t−1 by U.
The control function cexec′ satisfies (No Loss of Information) of
Definition 7.6 and hence ensures

skeptical(Vt−1 � U) ⊆ skeptical(V cexec′
t ).
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But Case 2 of Procedure 2 detected that the updated view Vt−1 � U contains
confidential information and hence the view V cexec′

t . Lemma 7.6 shows that
cexec′ violates the confidentiality requirements of Definition 4.6.

Case 1–b cexec′ does not update db t−1.
Then by (Cooperativeness) it follows
skeptical(V cexec′

t ) ⊆ skeptical(Vt−1) = skeptical(V cexec
t ) because the condition in

line 12 of Procedure 2 holds for the input in the considered case of termination
of Procedure 2.

Case 2 Procedure 2 terminates in Case 4 after the if-statement in
line 17 of Case 3 did not apply.
In this case, control function cexec updates the database instance so that
∆cexec′ ⊆ U = ∆cexec. If equality holds, then by (Cooperativeness) of cexec′

we obtain the following, knowing that cexec computes V cexec
t = Vt−1 � U:

skeptical(V cexec′
t ) ⊆ skeptical(Vt−1 � U) = skeptical(V cexec

t ).

Case 3 Procedure 2 terminates after the if-statement in line 18 applied.
Then cexec does not update the database instance so that ∆cexec = ∅. The
condition of the if-statement in line 18 implies that
neg(¬∧(IC ),U) ∈ skeptical(Vt−1) is true. By Definition 7.1, the input to
cexec′ satisfies db t−1 |=PL skeptical(Vt−1) because Vt−1 is a database view of
the database 〈IC , db t−1〉. From this it follows that
db t−1 |=PL neg(¬∧(IC ),U) holds. Hence, by Lemma 6.3 we obtain that
db t−1 •U |=PL ¬

∧
(IC ) holds. Since cexec′ preserves atomicity and

consistency, we know that ∆cexec′ = ∅ must hold.

Finally, we have to compare the computed views. Procedure cexec computes
V cexec
t = Vt−1 and, further, (Cooperativeness) of cexec′ ensures

skeptical(V cexec′
t ) ⊆ skeptical(〈IC ,Ct−1 ∪ {neg(¬

∧
(IC ),U)}〉) = skeptical(Vt−1)

= skeptical(V cexec
t ).

Case 4 Procedure 2 terminates after the if-statement in line 22 applied.
Thus, the procedure exits in Case 3 because a notification of integrity violation
harms confidentiality. In this situation, there is a possible conflict between
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integrity and confidentiality and

∆cexec = ∅ and Vt = Vt−1. (39)

In the following we look closer at the execution of cexec′. By Definition 7.1,
agent A is aware that cexec′ requires and maintains V to be a database view
and further ensures the validity of the integrity constraints in the database
instance. Thus, from agent A’s point of view there are the following three sets
of input database instances

DB1 = {db ′t−1 |=PL Ct−1 ∪ IC | db ′t−1 •U 6|=PL IC}

Integrity check will fail on db ′t−1.

DB2 = {db ′t−1 |=PL Ct−1 ∪ IC | db ′t−1 •U |=PL IC and

cexec′(IC , db ′t−1, conf ,H DB
t−1 ,Vt−1) = (IC , db ′t−1, . . .)}

Integrity check will pass on db ′t−1, but cexec′ will not perform the update.

DB3 = {db ′t−1 |=PL Ct−1 ∪ IC | db ′t−1 •U |=PL IC and

cexec′(IC , db ′t−1, conf ,H DB
t−1 ,Vt−1) = (IC , db ′t−1 •U, . . .)}

Integrity check will pass on db ′t−1 and cexec′ will perform the update.

There are no further sets, since cexec′ ensures atomicity and consistency of the
ACID requirements. Further, we remark that due to consistency it holds that

if db t−1 ∈ DB1 then cexec′(IC , db t−1, . . .) = (IC , db t−1, . . .). (40)

Because the execution of cexec′ is deterministic, it holds that

Mod(Ct−1 ∪ IC ) = DB1 ]DB2 ]DB3 with disjoint union ] . (41)

Here, we use the notation Mod(M ) for the set of models of a set M ⊆ LPL of
formulas. Using Lemma 6.3, we obtain

DB1 = Mod(Ct−1 ∪ IC ∪ {neg(¬
∧

(IC ),U)}) (42)

DB2 ∪DB3 = Mod(Ct−1 ∪ IC ∪ neg(IC ,U)) (43)



226

Figure A.3: Possible execution steps of cexec′ at time t − 1 considered by A

when it reasons about system R cexec′
D,A , defined by control function cexec′, at

time t− 1 on basis of the database view 〈IC ,Ct−1〉

cexec′

fails

cexec′

succeeds

DB1

DB2

DB3

database instances
to database view 〈IC ,Ct−1〉:
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(IC ),U)
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Further, because agent A knows the input, except the database instance, and
the implementation of cexec′, it can determine for each possible input db ′t−1 to
which set DBi it belongs. The overall situation is shown in Figure A.3.

Claim 1 DB2 6= ∅

Assume DB2 = ∅. Let us consider that the input instance db t−1 to procedures
cexec and cexec′ is in DB1 so that the integrity check will fail on this instance.
This is possible because in the considered case of termination of procedure
cexec (Procedure 2) the if-statement in line 17 did not apply. Because of the
remark in (40), procedure cexec′ does not update the database instance db t−1

whereas for all db ′t−1 ∈ DB3 the procedure succeeds with the update. Note
that for the last conclusion we need implicitly that DB3 ∩ (DB1 ∪DB2) = ∅.
By Assumption 7, procedure cexec′ truthfully records the effective updates in
the history so that

H DB
t

′ 6= H DB
t

′′ with

cexec′(IC , db t−1, . . .) = (. . . ,H DB
t

′
, conf ,V ′t ), db t−1 ∈ DB1 and

cexec′(IC , db ′t−1, . . .) = (. . . ,H DB
t

′′
, conf ,V ′′t ), db ′t−1 ∈ DB3

Hence, by (Soundness of Attacker View) it follows that

db ′t−1 6|=PL skeptical(V ′t ) for all db ′t−1 ∈ DB3. (44)
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To conclude, we argue in the following that the execution of cexec′ on input
instance db t−1 reveals to agent A that the instance has failed the integrity
check, that is, it reveals that db t−1 ∈ DB1 holds:
It holds by (No Loss of Information) that skeptical(Vt−1) ⊆ skeptical(V ′t ).
This means together with assumption DB2 = ∅ that

Mod(skeptical(V ′t )) ⊆ Mod(skeptical(Vt−1)) = Mod(Ct−1 ∪ IC ) = DB1 ∪DB3.

Now by (44) and by (42), it follows that

Mod(skeptical(V ′t )) ⊆ DB1 = Mod(Ct−1 ∪ IC ∪ {neg(¬
∧

(IC ),U)}).

We rewrite this equation to

skeptical(〈IC ,Ct−1 ∪ {neg(¬
∧

(IC ),U)}〉) ⊆ skeptical(V ′t ).

Finally, because the if-statement in line 22 of Procedure 2 applied to the input
instance view Ct−1, the last equation contradicts (Confidentiality) of
procedure cexec′ because of Lemma 7.6.

�(proof claim 1)

Claim 2 DB3 = ∅

Assume the contrary and, now, let us consider that the input instance db t−1 to
procedures cexec and cexec′ is in DB3. Next, we compare the execution of
procedure cexec′ on db t−1 to its execution on an instance db ′t−1 ∈ DB2, which
is possible according to Claim 1. Since cexec′ is deterministic, it successfully
updates db t−1, but not db ′t−1. By Assumption 7, it truthfully records the
effective updates in the history so that it follows that

H DB
t

′ 6= H DB
t

′′ with

cexec′(IC , db t−1, . . .) = (IC , db t−1 •U, conf ,H DB
t

′
, conf ,V ′t ) and

cexec′(IC , db ′t−1, . . .) = (IC , db ′t−1, conf ,H DB
t

′′
, conf ,V ′′t ).

Hence, by (Soundness of Attacker View) we obtain

db ′t−1 •U 6|=PL skeptical(V ′t ). (45)
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Next, we argue that agent A gains more information than it requested through
meta-inference, which may not happen by (Cooperativeness). Because
db ′t−1 is in DB2, by (43) and Lemma 6.3 it follows

db ′t−1 •U ∈ Mod(neg(Ct−1 ∪ IC ,U) ∪ IC ).

Since we assumed by (7.6) that ¬(U) ⊆ Ct−1 it further holds that

Mod(neg(Ct−1 ∪ IC ,U) ∪ IC ) = Mod(neg(Ct−1 ∪ ¬(U) ∪ IC ,U) ∪ IC ) =

Mod(IC ∪ neg(Ct−1 ∪ IC ,U) ∪U) = Mod(skeptical(Vt−1 � U)).

Hence, together with (45) we have

Mod(skeptical(Vt−1 � U)) 6⊆ Mod(skeptical(V ′t )).

Finally, we rewrite the latter equation to

skeptical(V ′t ) 6⊆ skeptical(Vt−1 � U)

which contradicts (Cooperativeness).

�(proof claim 2)

By Claim 2 and the definition of DBj j = 1, 2 and (39) it follows that

∆cexec = ∅ = ∆cexec′ . (46)

Still, we have to show

skeptical(V ′t ) ⊆ skeptical(Vt−1), (47)

where Vt−1 = Vt is the view output by cexec according to (39) and V ′t the
view output by cexec′ on input instance db t−1 and input view Vt−1. We
distinguish between the cases whether updating the input instance db t−1

satisfies the integrity constraints or not.

Case 4–a db t−1 ∈ DB1.
Assume now that the inclusion in (47) does not hold, which is, equivalently,

Mod(skeptical(Vt−1)) 6⊆ Mod(skeptical(V ′t )).
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Then, there exists a db ′t−1 ∈ Mod(skeptical(Vt−1)) \Mod(skeptical(V ′t )). This
could not be db t−1, that is db ′t−1 6= db t−1, because V ′t is a database view of the
database 〈IC , db t−1〉 by Definition 7.1 of the in- and output state of cexec′ so
that it holds db t−1 |=PL skeptical(V ′t ).
Let V ′′t denote the view output by cexec′ on input instance db ′t−1. This view is
different from V ′t for the following reason. By Definition 7.1 V ′′t is a database
view of the database 〈IC , db ′t〉 and hence it holds db ′t |=PL skeptical(V ′′t ).
Further, by (46) we know that db ′t−1 = db ′t holds and thus
db ′t−1 |=PL skeptical(V ′′t ) holds, but db ′t−1 6|=PL skeptical(V ′t ) by the choice of
db ′t−1.

Because the views are different and visible to agent A (Definition 4.5), the
agent rules out db t−1 as a possible input instance after cexec′ has executed on
input instance db ′t−1. Further, that execution did not update db ′t−1 successfully
by (46). Therefore, by (Soundness of Attacker View) it follows that

db t−1 6|=PL skeptical(V ′′t ). (48)

Finally, we will see that V ′′t reveals other information than the integrity
violation because it rules out db t−1 and
db t−1 ∈ DB1 = Mod(Ct−1 ∪ IC ∪ {neg(¬∧(IC),U)}) by Case 4–a and (42).
The revelation of this additional information is not allowed by
(Cooperativeness). The technical argument is as follows:

Mod(skeptical(〈IC ,Ct−1 ∪ {neg(¬
∧

(IC ),U)}〉))

= Mod(Ct−1 ∪ IC ∪ {neg(¬
∧

(IC),U)}) = DB1

6⊆ Mod(skeptical(V ′′t )) by (48).

But this contradicts (Cooperativeness).

Case 4–b db t−1 ∈ DB2.
Again, assume Mod(skeptical(Vt−1)) 6⊆ Mod(skeptical(V ′t )). There exist
db ′t−1 ∈ DB1 because in the considered case of termination of procedure cexec

(Procedure 2) the if-statement in line 17 did not apply. Let V ′′t denote the view
output by cexec′ on this instance. If it holds that V ′′t = V ′t we can follow the
line of argumentation of Case 4–a with db ′t−1 which leads to a contradiction.

Therefore, let V ′′t 6= V ′t . Then, similar to Case 4–a, the procedure cexec′ does
not update db ′t−1 successfully, but updates db t−1, so that (Soundness of
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Attacker View) yields db t−1 6|=PL skeptical(V ′′t ). Finally, since
db t−1 |= skeptical(Vt−1) it holds that
Mod(skeptical(Vt−1)) 6⊆ Mod(skeptical(V ′′t )) so that now we can conclude
following the line of argumentation of Case 4–a with db ′t−1 ∈ DB1.

By Claim 2 there are no other input instances to the database view Vt−1 than
considered in Case 4–a and Case 4–b.

Case 5 Procedure 2 cexec terminates after the if-statement in line 26
applied.
Then, the procedure terminates with a notification of integrity violation and
thus ∆cexec = ∅. Since the procedure cexec′ fulfills atomicity and consistency
and the integrity check failed, cexec′ cannot perform the update successfully
and thus ∆cexec′ = ∅.

Procedure cexec computes Vt = 〈IC ,Ct−1 ∪ {neg(¬∧(IC ),U)}〉. Since cexec′

ensures (Cooperativeness), it outputs a view V ′t such that

skeptical(V ′t ) ⊆ skeptical(〈IC ,Ct−1 ∪ {neg(¬
∧

(IC ),U)}〉)

which proves skeptical(V ′t ) ⊆ skeptical(Vt).

Case 6 Procedure 2 terminates after line 33.
Then, the procedures passes the integrity check and updates the instance
successfully which can be treated by Case 2.

�(proof Thm. 7.2)

Preliminaries to the Proof of Theorem 8.1

In this section, we will introduce and verify lemmata and propositions to
prepare the proof of Thm. 8.1 in the way that we sketched on page 174.
First, we show in Prop. 8.1 that the existence of possible consequence relations
under a class C axiomatized by Ax may be tested by deduction with Ax. To
simplify the proofs, we will make use of the following deduction theorem.
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Proposition 8.2 (Deduction Theorem).
Cf. [82]

Let Ax be an allowed set of axiom and rule schemes (Def. 8.9) and M ⊂ L∗CL
and F,G ∈ L∗CL. Then, if M ∪ {F} Ax G holds then also M Ax F ⇒ G

holds.

The proof from [82] can be transfered to the deduction system of Def. 8.10
with only slight modifications.

Proposition 8.1

Let V be a view and C a class of consequence relations axiomatized by an
allowed set Ax of axiom and rules schemes (Asmp. 9). Then, there exists a
possible consequence relation under V and C iff CL(V ) 1Ax (> → ⊥).

Only-If Part

By contradiction.
Assume: there exists a possible consequence relation Z∼ under V and C

(Def. 8.1).
Assume: CL(V ) Ax (> → ⊥).

∅ Ax

∧
(CL(V ))⇒ (> → ⊥) deduction thm. (49)

∅ `C
∧

(CL(V ))⇒ (> → ⊥) (49) and C axiomatized by Ax (50)

Z∼ |=CL

∧
(CL(V ))⇒ (> → ⊥) (50), Def. 8.1 (C Defined) (51)

Z∼ |=CL

∧
(CL(V )) Def. 8.1 (B Compatible, C Consistent)

(52)

Z∼ |=CL (> → ⊥) (51), (52) (53)

Similarly, since ¬(> → ⊥) ∈ Ax (Def. 8.9), since the class C is axiomatized by
Ax and since Z∼∈ C (Def. 8.1, C Defined), we obtain Z∼|=CL ¬(> → ⊥) which
contradicts (53).
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If Part

Assume: there does not exist a possible consequence relation under V
and C. (Def. 8.1)

Show: CL(V ) Ax (> → ⊥).
By assumption, there does not exist a consequence relation Z∼ such that Z∼∈ C

(Def. 8.1, C Defined) and Z∼|=CL CL(V ) (Def. 8.1, B Compatible and C
Consistent). By definition of C-entailment, it holds that CL(V ) `C (> → ⊥).
Because C is axiomatized by Ax, it holds that CL(V ) Ax (> → ⊥).

�(proof Prop. 8.1)

Lemmata

The key to the proof of Theorem 8.1 will be Proposition 8.3 saying that the
following two problems are equivalent: (1) assume the visible part C0 as D’s
initial assertions, and after the interaction with history H NMR, find a possible
consequence relation under V (V0, ∅,H NMR); (2) find a set E ⊂fin LPL,
assume C0 ∪ E as D’s initial assertions, and then find a possible consequence
relation under V (V0,E ,H NMR).
The proof of Proposition 8.3 builds on Proposition 8.1. The essential step in
that proof is to translate a valid proof of V (V0, ∅,H NMR) Ax (> → ⊥) (non
existence of a possible consequence relation under V (V0, ∅,H NMR) by
Proposition 8.1) to a valid proof of V (V0,E ,H NMR) Ax (> → ⊥) for any
E ⊂fin LPL.
Our approach is as follows. First, we will define a transformation from
formulas in V (V0, ∅,H NMR) to formulas in V (V0,E ,H NMR). Then, two
lemmata give the desired translation of valid proofs. As the final preparation
for the proof of Theorem 8.1, we will present and prove Proposition 8.3.
Given E ⊂fin LPL we introduce transformations between conditional
expressions of the form A→ B and of the form A∧∧(E)→ B in the following
Definition 8.12. Let L∗CL(E) denote the conditional language where in
Definition 8.7 basic formulas are replaced by A ∧∧

(E)→ B with A,B ∈ LPL.
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Definition 8.12 (Transformation from L∗CL to L∗CL(E)).

The transformation tE is a function tE : L∗CL → L∗CL(E) inductively defined on
the structure of L∗CL starting with tE (A→ B) = A ∧∧

(E)→ B.

For the translation of a valid proof in the deduction system, we start with the
translation of substitution instances of axiom schemes in Ax which are allowed
schema formulas.

Lemma 8.1 (Translation of Axiom Schemes).

Let Λ ∈ L∗CL(LPL(XPL)) be an allowed schema formula (Def. 8.8) and
sub : XPL → LPL a substitution. Let X Pos

PL ,X
Neg
PL ⊆ XPL be a marking of Λ as

required by Def. 8.8.

Define subE : λ 7→





sub(λ) ∧∧
(E) λ ∈ X Pos

PL ,

sub(λ) ∨ ¬∧(E) λ ∈ XNeg
PL ,

sub(λ) otherwise.
Then, it holds that ∅ Ax subE (Λ)⇒ tE (sub(Λ)).

Proof We give a valid proof G1, . . . , Gm of subE (Λ)⇒ tE (sub(Λ)) from ∅ by
induction on the structure of Λ. Note that Λ is in conjunctive normal form.
For the special case that Λ is of the form (¬)(Φ→ Γ) we will present three
essential results before we do the induction. For these results, the following
tautologies of propositional logic will be useful:

((A⇒ B) ∧ (C ⇒ D))⇒ (A ∨ C ⇒ B ∨D), (54)

((A⇒ B) ∧ (C ⇒ D))⇒ (A ∧ C ⇒ B ∧D). (55)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim (56). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
First, the following equivalence holds for Λ = (¬)(Φ→ Γ)

`pl subE (Φ)⇔ (sub(Φ) ∧
∧

(E)). (56)

Proof of (56).
In (56), we consider allowed schema formulas of the form (¬)(Φ→ Γ) with
Φ,Γ ∈ LPL(XPL) in conjunctive normal form. There must exist at least one
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conjunct Θd of Φ that meets the requirements of Def. 8.8 with the above
marking X Pos

PL and XNeg
PL . We proceed by induction on the number l of literals

of Θd and show

`pl subE (Θd)⇔ sub(Θd) ∧
∧

(E). (57)

Case 1 l = 1

Case 1–a Θd = λ1.
Then, subE (Θd) = subE (λ1) = sub(λ1) ∧∧

(E) = sub(Θd) ∧
∧

(E).

Case 1–b Θd = ¬λ1.
Then, subE (Θd) = ¬subE (λ1) = ¬(sub(λ1) ∨ ¬∧(E)) and
¬(sub(λ1) ∨ ¬∧(E))⇔ ¬sub(λ1) ∧∧

(E). Finally,
¬sub(λ1) ∧∧

(E) = sub(Θd) ∧
∧

(E)

Case 2 l→ l + 1.

subE (Θd)

= subE ((¬)λ1 ∨ . . . ∨ (¬)λl) ∨ (¬)subE (λl+1)

and subE ((¬)λ1 ∨ . . . ∨ (¬)λl) ∨ (¬)subE (λl+1)

⇔ (sub((¬)λ1 ∨ . . . ∨ (¬)λl) ∧
∧

(E)) ∨ (¬)subE (λl+1) induct. hyp.

⇔ (sub((¬)λ1 ∨ . . . ∨ (¬)λl) ∧
∧

(E)) ∨ ((¬)sub(λl+1) ∧
∧

(E)) case l = 1

⇔ sub(Θd) ∧
∧

(E)

For the other conjuncts Θo = (¬)λ1 ∨ . . . ∨ (¬)λl in Φ, o 6= d, by definition of
subE and induction on l we show

subE (Θo) ∧
∧

(E)⇔ sub(Θo) ∧
∧

(E) : (58)

Case 1 l = 1, Θo = (¬)λ1.
The cases of λ1 ∈ X Pos

PL ∪ XNeg
PL are analogous to Θd above. Consider

λ1 ∈ XPL \ (X Pos
PL ∪ XNeg

PL ). Then,
subE (Θ0)∧∧(E) = (¬)subE (λ1)∧∧(E) = (¬)sub(λ1)∧∧(E) = sub(Θo)∧

∧
(E).



235

Case 2 l→ l + 1.
Analogous to the inductive case of Θd above.

Finally, we finish the proof of (56) as follows.

subE (Φ) =
∧

j

subE (Θj)

and
∧

j

subE (Θj)

⇔
∧

j 6=d
subE (Θj) ∧ sub(Θd) ∧

∧
(E) by (57)

⇔
∧

j 6=d
(subE (Θj) ∧

∧
(E)) ∧ sub(Θd) ∧

∧
(E)

⇔
∧

j 6=d
(sub(Θj) ∧

∧
(E)) ∧ sub(Θd) ∧

∧
(E) by (58)

⇔ sub(Φ) ∧
∧

(E)

�(proof (56))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim (59). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The second result for the proof of Lem. 56 is the following implication for the
case of Λ = (Φ→ Γ)

`pl subE (Γ)⇒ sub(Γ). (59)

Proof of (59).
In (59), we consider allowed schema formulas of the form Φ→ Γ with
Φ,Γ ∈ LPL(XPL) in conjunctive normal form. We proceed by induction on the
structure of Γ and show
`pl subE (Γ)⇒ sub(Γ).
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Literals.

Case 1 Γ = λ ∈ XPL.
In this case, λ occurs under an even number of negations so that either
λ ∈ XPL \ (X Pos

PL ∪ XNeg
PL ) or λ ∈ X Pos

PL because Λ complies with the marking.

Case 1–a λ ∈ XPL \ (X Pos
PL ∪ XNeg

PL ).
By definition, subE (λ) = sub(λ).

Case 1–b λ ∈ X Pos
PL .

By definition, subE (λ) = sub(λ) ∧∧
(E) and sub(λ) ∧∧

(E)⇒ sub(λ).

Case 2 Γ = ¬λ.
In this case, λ occurs under an odd number of negations so that either
λ ∈ XPL \ (X Pos

PL ∪ XNeg
PL ) or λ ∈ XNeg

PL because Λ complies with the marking.

Case 2–a λ ∈ XPL \ (X Pos
PL ∪ XNeg

PL ).
By definition, subE (λ) = sub(λ).

Case 2–b λ ∈ XNeg
PL .

By definition, subE (¬λ) = ¬(sub(λ) ∨ ¬∧(E)) and
¬(sub(λ) ∨ ¬∧(E))⇒ sub(¬λ).

Compound Formulas.

Case 1 Γ = Γ1 ∨ Γ2.
We apply (54) to the induction hypothesis `pl subE (Γi)⇒ sub(Γi)

for i = 1, 2.

Case 2 Γ = Γ1 ∧ Γ2.
We apply (55) to the induction hypothesis `pl subE (Γi)⇒ sub(Γi)

for i = 1, 2.

�(proof (59))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim (60). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The second result for the proof of Lem. 56 is the following implication for the
case of Λ = ¬(Φ→ Γ)

`pl sub(Γ)⇒ subE (Γ). (60)
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Proof of (60).
In (60), we consider allowed schema formulas of the form ¬(Φ→ Γ) with
Φ,Γ ∈ LPL(XPL) in conjunctive normal form. We proceed by induction on the
structure of Γ and show
`pl sub(Γ)⇒ subE (Γ).
Literals.

Case 1 Γ = λ ∈ XPL.
In this case, λ occurs under an odd number of negations so that either
λ ∈ XPL \ (X Pos

PL ∪ XNeg
PL ) or λ ∈ XNeg

PL because Λ complies with the marking.

Case 1–a λ ∈ XPL \ (X Pos
PL ∪ XNeg

PL ).
By definition, subE (λ) = sub(λ).

Case 1–b λ ∈ XNeg
PL .

By definition, subE (λ) = sub(λ) ∨ ¬∧(E) and sub(λ) ∨ ¬∧(E)⇐ sub(λ).

Case 2 Γ = ¬λ.
In this case, λ occurs under an even number of negations so that either
λ ∈ XPL \ (X Pos

PL ∪ XNeg
PL ) or λ ∈ X Pos

PL because Λ complies with the marking.

Case 2–a λ ∈ XPL \ (X Pos
PL ∪ XNeg

PL ).
By definition, subE (λ) = sub(λ).

Case 2–b λ ∈ X Pos
PL .

By definition, subE (¬λ) = ¬(sub(λ) ∧∧
(E)) and

¬(sub(λ) ∧∧
(E))⇔ ¬sub(λ) ∨ ¬∧(E)⇐ sub(¬λ).

Compound Formulas.

Case 1 Γ = Γ1 ∨ Γ2.
We apply (54) to the induction hypothesis `pl sub(Γi)⇒ subE (Γi).

Case 2 Γ = Γ1 ∧ Γ2.
We apply (55) to the induction hypothesis `pl sub(Γi)⇒ subE (Γi).

�(proof (60))
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof of Lemma 8.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Next, we prove Lem. 8.1 by induction on the structure of Λ. In the proof, PL
abbreviates the application of possibly several axiom and rule schemes of the
outer propositional calculus.

Literals (¬)(Φ→ Γ), Φ,Γ ∈ LPL(XPL).

Case 1 Λ = Φ→ Γ.
We construct a valid proof of tE (sub(Φ→ Γ)) from {subE (Φ→ Γ)}:

(i) subE (Φ→ Γ)

(ii) subE (Φ→ Γ)⇔ (sub(Φ) ∧
∧

(E)→ subE(Γ)) (56), (LLE)

(iii) (sub(Φ) ∧
∧

(E)→ subE (Γ)) (i), (ii),PL

(iv) (sub(Φ) ∧
∧

(E)→ subE (Γ))⇒ (sub(Φ) ∧
∧

(E)→ sub(Γ)) (59), (RW)

(v) sub(Φ) ∧
∧

(E)→ sub(Γ) = tE (sub(Φ→ Γ)) (iii), (iv),

(MP)

We conclude this case with the deduction theorem in Prop. 8.2.

Case 2 Λ = ¬(Φ→ Γ).
We give a valid proof of tE (sub(¬(Φ→ Γ))) from {subE (¬(Φ→ Γ))}:

(i) subE (¬(Φ→ Γ))

(ii) subE(Φ→ Γ)⇔ (sub(Φ) ∧
∧

(E)→ subE (Γ)) (56), (LLE)

(iii) ¬(sub(Φ) ∧
∧

(E)→ subE (Γ)) (i), (ii),PL

(iv) (sub(Φ) ∧
∧

(E)→ sub(Γ))⇒ (sub(Φ) ∧
∧

(E)→ subE (Γ)) (60), (RW)

(v) ¬(sub(Φ) ∧
∧

(E)→ subE (Γ))⇒ ¬(sub(Φ) ∧
∧

(E)→ sub(Γ)) PL

(vi) ¬(sub(Φ) ∧
∧

(E)→ sub(Γ)) = tE (sub(¬(Φ→ Γ))) (iii), (v),

(MP)

Again, we finish the case with Prop. 8.2.
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Compound Formulas. Λ = Λ1 ∨Λ2 (∧ respectively).

(i) subE (Λ1)⇒ tE (sub(Λ1)) induction hypothesis

(ii) subE (Λ2)⇒ tE (sub(Λ2)) induction hypothesis

(iii) subE(Λ)⇒ tE (sub(Λ)) (i), (ii), (54) ((55) resp.)

�(proof Lem. 8.1)

Lemma 8.2 (Translation of Proofs).

Let M ⊂fin L∗CL and Fi, F ∈ L∗CL such that the sequence F1, . . . , Fn is a valid
proof of F from M with respect to an allowed set Ax of axioms and rules
schemes, Def. 8.9. Further, let E ⊂fin LPL. Then, there exists a valid proof
G1, . . . , Gm, m ≥ n, of tE (F ) from tE (M) ∪ {¬(

∧
(E)→ ⊥)} with respect to

Ax with subsequence tE (F1), . . . , tE (Fn) = Gm.

Proof We proceed by induction on the length n of proof F1, . . . , Fn.
Base case. We consider all deductions of F1 in Def. 8.10.

Case 1 F1 ∈M .
Then, tE (F1) ∈ tE (M).

Case 2 F1 = sub((α→ λ)⇔ (β → λ)) with sub : XPL → LPL and
`pl sub(α)⇔ sub(β).

Define subE : γ 7→




sub(γ) ∧∧

(E) γ = α or γ = β

sub(γ) otherwise
Then, tE (F1) = subE ((α→ λ)⇔ (β → λ)) following the inductive definitions
of sub, tE and subE . tE (F1) is a valid proof because `pl subE (α)⇔ subE (β)

follows from `pl sub(α)⇔ sub(β).

Case 3 F1 = sub((α→ β)⇒ (α→ λ)) with sub : XPL → LPL and
`pl sub(β)⇒ sub(λ).

Define subE : γ 7→




sub(γ) ∧∧

(E) γ = α

sub(γ) otherwise
Then, tE (F1) = subE ((α→ β)⇒ (α→ λ)). tE (F1) is a valid proof because
`pl subE (β)⇒ subE (λ) follows from `pl sub(β)⇒ sub(λ).
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Case 4 F1 = sub(Λ) where Λ ∈ Ax ∩ L∗CL(LPL(XPL)) is allowed
(Def. 8.8) and sub : XPL → LPL.
Then, Lem. 8.1 provides us with a substitution subE : XPL → LPL such that
Ax subE (Λ)⇒ tE (sub(Λ)) holds. With the result of this lemma, we finish
the case with a valid proof of tE (F1) from ∅ in Ax:

(i) subE (Λ) axiom Λ

. . .

(ii) subE (Λ)⇒ tE (sub(Λ)) Lem. 8.1

(iii) tE (sub(Λ)) = tE (F1) (i), (ii), (MP)

Case 5 F1 = ¬(> → ⊥).

(i) ¬(
∧

(E)→ ⊥)

(ii) (> ∧
∧

(E)→ ⊥)⇔ (
∧

(E)→ ⊥) (LLE)

¬(> ∧
∧

(E)→ ⊥) = tE (F1) (i), (ii),PL

Case 6 F1 = sub(Λ) where Λ ∈ LPL(XCL) and sub : XCL → L∗CL.
Then, define subE : XCL → L∗CL by subE : λ 7→ tE (sub(λ)). By the inductive
definition of subE , tE and sub, it holds that subE (Λ) = tE (sub(Λ)) = tE (F1).

Inductive case:

We consider all deductions of Fn based on at least one predecessor Fj, j < n.
In the cases, where the last deduction step does not depend on any predecessor
in the proof sequence, we can argue as we did in the base case.
By the induction hypothesis, there exists a valid proof G1, . . . , Gm of tE (Fn−1)

from tE (M) ∪ {¬(
∧

(E)→ ⊥)} with subsequence tE (F1), . . . , tE (Fn−1) and
m ≥ n− 1.
Fn = sub(Λp+1) and there exists a rule scheme If Λ1, . . . ,Λp then Λp+1 ∈ Ax

with Λi ∈ LPL(XCL) and a substitution sub : XCL → L∗CL such that

for all j = 1, . . . , p there exists kj < n with Fkj = sub(Λj).

Define subE : XCL → L∗CL by subE : λ 7→ tE (sub(λ)).
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By the inductive definition of subE , tE and sub, it holds that

subE (Λp+1) = tE (sub(Λp+1)) = tE (Fn)

and subE (Λj) = tE (Fkj) for all j = 1, . . . , p.

By the induction hypothesis, for all j = 1, . . . , p there exists k′j ≤ m such that
subE (Λj) = tE (Fkj) = Gk′j . Hence, G1, . . . , Gm, tE (Fn) is a valid proof with
subsequence tE (F1), . . . , tE (Fn).

�(proof Lem. 8.2)

Proposition 8.3

Proposition 8.3 (Possible Consequence Relations under Hidden Assertions).

Let V = 〈B+, B−,C 〉 be a view. Further, let C be a class of consequence
relations axiomatized by an allowed set Ax of axiom and rule schemes as in
Asmp. 9. Then, there exists a possible consequence relation under V and C iff
there exist a set E ⊂fin LPL (not necessarily a possible extension) such that
there exists a possible consequence relation under VE = 〈B+

E ,B
−
E ,CE〉 and C

where

1. for all P,C ∈ LPL and s ∈ {+,−} :

(P,C) ∈ Bs iff (P ∧∧
(E), C) ∈ Bs

E ,

2. CE = C ∪ E .

Proof We may rewrite the equivalence to the two contrapositives. Then, the
non-existence of possible consequence relation can be expressed by deduction
with Ax by Prop. 8.1 yielding the following claim:

CL(V ) Ax (> → ⊥)

iff (61)

for all E ⊂fin LPL, CL(VE ) Ax (> → ⊥)
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If-Part of (61)

The if-part of the claim (61) immediately follows when choosing E = ∅. By
definition in (6.4) and (8.3), every F ∈ CL(V∅) is of the form
F = (¬)(Φ ∧ > → Γ). In a valid proof F1, . . . , Fn of > → ⊥ from CL(V∅), we
just replace every formula Fi ∈ CL(V∅) by the following sequence.

Gi1 t−1
∅ (Fi) = (¬)(Φ→ Γ) CL(V )

Gi2 Φ→ Γ⇔ (Φ ∧ > → Γ) (LLE)

Gi3 , . . . , Gik := Fi Fi Gi1 , Gi2 , PL

Here, PL abbreviates the application of possibly several axiom and rule
schemes of the outer propositional calculus. The sequence
〈G1, . . . , Gn | Gi = Fi if Fi 6∈ CL(V∅) else Gi = Gi1 , . . . , Gik〉 is a valid proof
of > → ⊥ from t−1

∅ (CL(V∅)) = CL(V ).

Only-If Part of (61)

The only-if-part of the claim (61) is almost immediate from Lem. 8.2 that
translates a valid proof of the left-hand side of (61) to a valid proof of the
right-hand side for any E ⊂fin LPL. Using Lem. 8.2, we construct a valid proof
from CL(VE) for arbitrary E ⊂fin LPL.

(i)
∧

(E)→ ⊥ hypothesis

(ii)
∧

(C ) ∧
∧

(E)→ ⊥ (IMP),(LLE)

(iii) (
∧

(E)→ ⊥)⇒ (
∧

(C ) ∧
∧

(E)→ ⊥) (i), (ii),Prop. 8.2

(iv) ¬(
∧

(C ) ∧
∧

(E)→ ⊥)⇒ ¬(
∧

(E)→ ⊥) (iii),PL

(v) ¬(
∧

(C ) ∧
∧

(E)→ ⊥) CL(VE )

(vi) ¬(
∧

(E)→ ⊥) (iv), (v), (MP)

. . .

(vii) tE (> → ⊥) = > ∧
∧

(E)→ ⊥ CL(VE), (vi),

Lem. 8.2

(viii)
∧

(E)→ ⊥ (vii), (LLE),PL

(ix) > → ⊥ (vi), (viii),PL

�(proof Prop. 8.3)
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Theorem 8.1

Let V0 = 〈∅, ∅,C0〉 be the initial view as in Asmp. 8, C a class of consequence
relations axiomatized by Ax as in Asmp. 9 and H NMR a history. Then,

skepticalC(V (V0, ∅,H NMR)) = skepticalC(V0,H NMR).

Inclusion ⊆
By contraposition.
Assume: B 6∈ skepticalC(V0,H NMR).
Show: B 6∈ skepticalC(V (V0, ∅,H NMR)).

By assumption and Def. 8.5, there exists a possible extension E ⊂fin LPL

under V0 and C such that B 6∈ skepticalC(V (V0,E ,H NMR)). Recall that
V (V0,E ,H NMR) denotes the view computed in an interaction with history
H NMR assuming that the assertions E are hidden.
It follows that there exists a possible extension E under V0 and C and, by
Def. 8.2, that there exists a possible consequence relation Z∼ under
V (V0,E ,H NMR) and C such that

∧
(C (V0,E ,H NMR)) Z�B.

Hence, there exists a set E ⊂fin LPL and a possible consequence relation under
VE and C where

VE := 〈B+(V0,E ,H NMR),

B−(V0,E ,H NMR) ∪ {(
∧

(C (V0,E ,H NMR)), B)},C (V0,E ,H NMR)〉.

By Prop. 8.3, there exists a possible consequence relation under V and C where

V := 〈B+(V0, ∅,H NMR),

B−(V0, ∅,H NMR) ∪ {(
∧

(C (V0, ∅,H NMR)), B)},C (V0, ∅,H NMR)〉.

Inclusion ⊇

Assume: B ∈ skepticalC(V0,H NMR).
Show: B ∈ skepticalC(V (V0, ∅,H NMR)).
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Case 1 ∅ is a possible extension under V0 and C.
Then, by Def. 8.2 it holds that skepticalC(V (V0, ∅,H NMR)) ⊇
skepticalC(V0,H NMR).

Case 2 ∅ is not a possible extension under V0 and C.
Then, by Def. 8.3 there does not exist a possible consequence relation under
V0 and C. Hence, following Def. 8.1 and Asmp. 8, there does not exist Z∼∈ C

such that
∧

(C0) Z�⊥. By definition, this means that ∅ `C
∧

(C0)→ ⊥. By
Asmp. 9, Ax is complete for C so that ∅ Ax

∧
(C0)→ ⊥. We continue with a

valid proof of
∧

(C (V0, ∅,H NMR))→ ⊥ from ∅ in Ax:

(i)
∧

(C0)→ ⊥

(ii)
∧

(C0) ∧
∧

(C (V0, ∅,H NMR))→ ⊥

by (i),(IMP),(MP)

(iii)
∧

(C0) ∧
∧

(C (V0, ∅,H NMR))→ ⊥⇔
∧

(C (V0, ∅,H NMR))→ ⊥

by (LLE), C (V0, ∅,H NMR) ⊇ C0

(iv)
∧

(C (V0, ∅,H NMR))→ ⊥

by (ii),(iii), PL

Since Ax is sound for C, there does not exist Z∼∈ C such that
∧

(C (V0, ∅,H NMR)) Z�⊥. Hence by Def. 8.1, there does not exist a possible
consequence relation under V (V0, ∅,H NMR) and C so that by Def. 8.2 it holds
that skepticalC(V (V0, ∅,H NMR)) = LPL ⊇ skepticalC(V0,H NMR).

�(proof Thm. 8.1)

Corollary 8.2

Let C be axiomatized by an allowed set Ax of axioms and rule schemes
(Asmp. 9). Then, for all B ∈ LPL it holds that B ∈ skepticalC(V0,H NMR)
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iff CL(V (V0, ∅,H NMR)) Ax

∧
(C )→ B.

Proof Theorem 8.1 shows that B ∈ skepticalC(V0,H NMR) iff
B ∈ skepticalC(V (V0, ∅,H NMR)). The claim now follows right from the
definitions as follows. By Def. 8.2, the skeptical entailment
B ∈ skepticalC(V (V0, ∅,H NMR)) is equivalent to the fact that all possible
consequence relations Z∼ under V (V0, ∅,H NMR) and C yield
∧

(C (V0, ∅,H NMR)) Z∼ B. By Def. 8.1 and (8.3), the latter is equivalent to
the fact that all consequence relations Z∼∈ C that satisfy
Z∼|=CL CL(V (V0, ∅,H NMR)) also satisfy Z∼|=CL

∧
(C (V0, ∅,H NMR))→ B

and, hence, CL(V (V0, ∅,H NMR)) `C
∧

(C (V0, ∅,H NMR))→ B. By Asmp. 9,
the set Ax of axiom and rule schemes is an axiomatization of C and, hence, the
latter is equivalent to CL(V (V0, ∅,H NMR)) Ax

∧
(C (V0, ∅,H NMR))→ B.

�(proof Cor. 8.2)

Lemma for the Proof of Theorem 8.2

As we indicated in the proof sketch of Thm. 8.2, the proof of this theorem uses
the following lemma. This lemma states that, if agent A assumes D’s initial
assertions as correctly (that is, chooses E = as), then, by applying Proc. 3
and Proc. 4, it approximates D’s fixed reasoning Z∼D correctly, that is,
B+(V0, as ,H NMR) ⊆ Z∼D and B−(V0, as ,H NMR) ⊆ Z�D.

Lemma 8.3 (Correct Approximation).

Let H NMR be the history of an interaction Int with D’s fixed reasoning Z∼D

and initial assertions as ⊂fin LPL. Further, let C be a class of consequence
relations as in Asmp. 9 and V0 = 〈∅, ∅,C0〉 an initial view such that the
precondition pre (8.1) on page 164 is satisfied. Then,

1. Z∼D is a possible consequence relation under V (V0, as ,H NMR) and C,
and

2. the set of formulas C (V0, as ,H NMR) is logically equivalent to as Int

where as Int are the assertions after the last request in Int .
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Proof For clarity of the presentation, we denote the initial assertions by as0.
We prove the lemma by induction on the length k of H NMR.
Base case: k = 0

Here, the history is empty and V (V0, as0,H NMR) = 〈∅, ∅,C0 ∪ as0〉. The
precondition as0 `pl F for all F ∈ C0 in the predicate pre ensures the second
claim, that is,

∧
(as0)⇔

∧
(C0 ∪ as0) and

∧
(C0 ∪ as0) =

∧
(C (V0, as0,H NMR)). (62)

The first claim follows from the following properties of Z∼D by Def. 8.1:
Property (C Defined) holds by pre.
Property (B Compatible) immediately follows from B+ = ∅ ⊆ Z∼D and
B− = ∅ Z�D.
Property (C Consistent) is justified as follows. By Def. 6.7, the assertions as0

are not contradictory under Z∼D:
∧

(as0) Z�D⊥ and, hence, by definition

Z∼D|=CL ¬(
∧

(as0)→ ⊥). (63)

We apply the rule scheme (LLE) from Ax (Def. 8.9), using (62), and obtain
∅ Ax (

∧
(C (V0, as0,H NMR))→ ⊥)⇔ (

∧
(as0)→ ⊥).

Since C is axiomatized by Ax, it follows that
∅ `C (

∧
(C (V0, as0,H NMR))→ ⊥)⇔ (

∧
(as0)→ ⊥),

and, hence, Z∼D|=CL ¬(
∧

(C (V0, as0,H NMR))→ ⊥) by (63) and by Z∼D∈ C

(Property C Defined). This means by definition, that
∧

(C (V0, as0,H NMR)) Z�D⊥.

Inductive case: k → k + 1

Without loss of generality, we consider that the (k + 1)-th request is a query
que(A) answered with true. All the other cases can be treated with the same
arguments. The second claim follows from the induction hypothesis doing the
following transformations:

ask+1 = ask and ask ⇔ C (V0, as0,H NMR
k )

and C (V0, as0,H NMR
k ) = C (V0, as0,H NMR

k+1 ). (64)

Procedure 3 just adds the tuple (
∧

(C (V0, as0,H NMR
k )), A) to the preceding
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view V (V0, as0,H NMR
k ) which results in the view

V (V0, as0,H NMR
k+1 ) =

〈B+(V0, as0,H NMR
k ) ∪ {(

∧
(C (V0, as0,H NMR

k )), A)},

B−(V0, as0,H NMR
k ),C (V0, as0,H NMR

k )〉. (65)

Answering que(A) with true after the k-th request requires A ∈ Bel Z∼D, ask
which in turn by (6.4) requires

∧
(ask) Z∼D A. Therefore, following the same

arguments used in the base case, by (64) and (LLE) it holds that

∧
(C (V0, as0,H NMR

k )) Z∼D A. (66)

Applying the induction hypothesis, (65) and (66), we conclude that Z∼D is a
possible consequence relation under V (V0, as0,H NMR

k+1 ) and C.

�(proof Lem. 8.3)

Theorem 8.2

Agent D preserves temporary confidentiality towards A according to Def. 4.6 by
means of the two procedures of the censor cexec under Asmp. 8 and Asmp. 9.

Invariant (8.5) on page 183

We show that Proc. 5 and Proc. 6 enforce the invariant

B 6∈ skepticalC(V ) for each B ∈ conf (TCP)

by induction on the number k of requests.
Base case: k = 0

The invariant is guaranteed by pre in (8.1) on page 164.

Inductive case: k → k + 1

Case 1 Proc. 5 (Controlled Query Execution).
Proc. 5 ensures the invariant in line 2 for each possible answer ans , that is,
passing line 5 the procedure has ensured by line 2 that the following assertion
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holds

For each ans such that poss(app_by_que(A, ans ,V ),C) holds,

for each B ∈ conf (TCP) : B 6∈ skepticalC(app_by_que(A, ans ,V )).

The view is only modified in line 6 by the correct answer eval(A)( Z∼D, as) so
that the invariant follows from the next claim which we will immediately
verify:

If the censor notifies eval(A)( Z∼D, as) = ans in line 7,
then poss(app_by_que(A, ans ,V ),C) is satisfied. (67)

Since neither Proc. 5 nor Proc. 6 refine the view after a refusal, we define a
history H NMR

k+1 of the controlled interaction considered up to the (k + 1)-th
request simply by omitting all refused requests. Doing so, we see that the
censor computes the view

V (V0, ∅,Hk+1) = app_by_que(A, ans ,V ). (68)

Lem. 8.3 implies that Z∼D is a possible consequence relation under
V (V0, as ,H NMR

k+1 ) and C. Now, by Prop. 8.3, there exists a possible
consequence relation under the computed view (68) and C so that this view
and C satisfy the predicate poss. � (67)

Case 2 Proc. 6 (Controlled Revision Execution).
In Proc. 6, the view V is only modified in line 10 according to the notification
notify. Line 1 guarantees that notification success preserves the invariant but
only if the predicate poss(app_by_rev(A, success ,V ),C) holds. Likewise,
line 7 ensures the invariant for notification failure given that
poss(app_by_rev(A, failure,V ),C) holds. The predicates state that a
revision by formula A may be successful or possibly fail, respectively, given the
view V . Formally, the procedure ensures that the following assertion holds:

If the censor notifies notify(A)( Z∼D, as) = note in line 11,
then poss(app_by_rev(A, note,V ),C) is satisfied.

We can verify this claim analogously to (67), here with the view
V (V0, ∅,H NMR

k+1 ) = app_by_rev(A, note,V ).

�(proof invariant (8.5))
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Safe Final Situation

Let VInt = 〈B+
Int ,B−Int ,CInt 〉 denote the view finally computed by the censor

after the sequence Int of requests. By the invariant of (8.5), there exists a
possible consequence relation Z∼′ under VInt and C such that

∧
(CInt ) Z�′B. We

take 〈 Z∼′,C0〉 as the initial alternative epistemic state. By construction
and (6.4), it holds B 6∈ BelNMR

D ( Z∼′,CInt ).

Indistinguishability

Let
θi be the i-th request from agent A,
react i D’s subsequent reaction to A,

when the interaction Int was started with D’s initial state
s = ( Z∼D, as0, conf (TCP), 〈〉,V0〉 with V0 = 〈∅, ∅,C0〉

Vi the subsequent view computed by the censor,
as i D’s assertions thereafter,
react ′i,
V ′i , as ′i analogously with initial state s′ = ( Z∼′,C0, conf (TCP), 〈〉,V0〉.

We show by induction on the number i of requests, that

react ′i = react i and V ′i = Vi and as ′i = Ci.

Base case: i = 0

Obviously, the alternative initial state s′ satisfies pre of (8.1).
Inductive case: (i− 1→ i)

Case 1 θi is a query request que(A).
By the induction hypothesis (equal views), for both initial epistemic states the
meta-inference check in line 1-5 of Proc. 5 gives the same result because the
check does not depend on the epistemic state. For the query evaluation (line 6
to end of Proc. 5), consider, without loss of generality, that

eval(A)( Z∼D, as i−1) = true = react i. (69)

Then, Proc. 3 adds the tuple (
∧

(Ci−1), A) to B+
i−1 so that this tuple is also

contained in the final view VInt . Because Z∼′ defines a possible consequence
relation under VInt , it holds that

∧
(Ci−1) Z∼′ A so that A ∈ Bel Z∼D

′,Ci−1
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by (6.4). Applying the induction hypothesis as ′i−1 = Ci−1, yields

eval(A)( Z∼D
′, as ′i−1) = true = react ′i.

Together with (69) it follows that react ′i = react i and, thus, by the induction
hypothesis V ′i = Vi and C ′i = Ci.

Case 2 θi is a revision request rev(A).
The checks for disclosure of a confidential belief in line 1-6 of Proc. 6 are
independent of the epistemic state. Hence, by the induction hypothesis, these
checks give the same results for both epistemic states. The rest of the
procedure depends on the result of notify(A)( Z∼D, as i−1) and
notify(A)( Z∼D

′, as ′i−1), respectively. Without loss of generality, we consider
that

notify(A)( Z∼D, as i−1) = success = react i. (70)

Then, Proc. 4 adds the tuple (
∧

(Ci−1) ∧ A,⊥) to B−i−1 so that, with the same
arguments as in Case 1,

∧
(Ci−1) ∧ A Z�′⊥. Applying the induction hypothesis

(as ′i−1 = Ci−1), it follows that
∧

(as ′i−1) ∧ A Z�′⊥ so that

notify(A)( Z∼D
′, as ′i−1) = success = react ′i.

Together with (70) it follows that react ′i = react i and, moreover, by the
induction hypothesis and as ′i = as ′i−1 ∪ {A} = Ci−1 ∪ {A} = Ci as well as
V ′i = Vi.

�(proof Thm. 8.2)
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