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Abstract

Strongly correlated electron systems are one of the most fascinating problems in current physics.
The strong electron-electron interaction in these materials leads to the emergence of nontrivial
elementary excitations (quasiparticles, QPs) above the ground state ranging from fractional spins in
quasi-one-dimensional materials to magnetic monopole in the pyrochlore lattice. The condensation
of these quasiparticles upon changing some external parameters may stabilize new exotic states of
matter. Experimental measurements such as inelastic neutron scattering provide us with valuable
information about the excitation spectrum of such systems which require microscopic models to be
described. This thesis is devoted to a detailed analysis of the excitation spectrum and of the quantum
phase transitions in the one-dimensional (1D) ionic Hubbard model (IHM). The IHM consists of a
nearest-neighbor (n.n.) hopping, onsite Hubbard interaction, and an ionic (staggered) potential
separating the odd and even sites energetically.

The model exhibits two continuous phase transitions on increasing the Hubbard interaction iden-
tified by a low-energy effective field theory and confirmed by a rigorous density matrix renormaliza-
tion group (DMRG) analysis after several attempts. The first transition occurs from band insulator
(BI) phase to the 2-fold degenerate spontaneously dimerized insulator (SDI) phase. The transition is
in the Ising universality class as is plausible from symmetry considerations. The SDI phase becomes
unstable towards a quasi-long-range order Mott insulator (MI) phase at a second transition point
resembling the Kosterlitz-Thouless (KT) transition in the frustrated Heisenberg chain.

We employ continuous unitary transformations (CUT) to systematically map the IHM to effective
Hamiltonians (almost) conserving the number of QPs in the system. Using an analysis in the BI
regime where electrons and holes define QPs, the low-energy excitation spectrum of the model is
quantitatively determined in the BI phase almost up to the first transition point. The transition from
the BI to the SDI phase is signaled by the vanishing of an S = 0 exciton mode at the total momentum
K = π. The condensation of these excitons beyond the first transition point is described by a BCS-
type-theory showing the stabilization of the SDI phase. The mean-field solution indicates no second
phase transition to the quasi-long-range order MI phase. This is interpreted as the effect of strong
quantum fluctuations in one dimension.

We consider the IHM in the dimer limit where the uniform chain is separated into independent
dimers. The different phases of the IHM are studied by increasing the interdimer hopping and
reaching the uniform limit. This dimer limit satisfactorily produces the excitation spectrum of the
BI phase confirming the vanishing of an S = 0 exciton mode at the first transition point. It is found
that the SDI-to-MI transition takes place by softening of a magnetic S = 1 excitation, i.e., a triplon.
We report rigorous results for the gapless triplon dispersion in the MI phase and discuss the binding
effects in the 2-triplon sector.
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Chapter 1

Introduction

1.1 Two Insulators

In independent-electron approximations such as Hartree-Fock theory the electron-electron
interactions and the electron-ion interactions are regarded as an effective static potential.
In crystalline materials, such an independent-particle description leads to energy bands that
each single electron is allowed to occupy.1 Consequently, the ground state of the system is
obtained by putting all the electrons in the lowest band eigenstates with up and down spins
each. The energy level between the highest filled band and the lowest empty band defines
the Fermi energy. If the Fermi energy lies between two bands where the density of states
is zero, there is a gap to the excited states and the substance is recognized as insulator.
This kind of insulator predicted by the band theory is known as “band insulator” (BI). If the
Fermi energy lies inside an energy band, there is no gap in the system and the substance is
a metal [AM76, GP00].

The band theory was formulated in the late 1920s and in the years following its formu-
lation it successfully classified a large class of solids into insulators and metals. In 1937,
however, it was found by Boer and Verwey that many transition metal oxides with a par-
tially filled band are insulators contrary to band theory prediction [Mot90]. A famous
example is CoO. This compound has an odd number of electrons per unit cell and the band
theory immediately identifies it to be a metal. Contrarily, CoO is in fact a strong insula-
tor. We want to point out that due to spontaneously symmetry breaking and enlarging the
size of the unit cell, the band theory has some way to escape from this contradiction. But
it remains highly questionable how satisfactorily the band theory can describe insulators
such as CoO [Faz99]. The compound La2CuO4 is another example which contains an odd
number of electrons per unit cell but shows an insulating behavior at low temperatures.
La2CuO4 is an important material in the context of high temperature superconductivity.

1We like to emphasize the difference between the energy bands that each single electron in the
independent-electron approximations is allowed to occupy and the energy excitation spectrum of a solid
as a whole.
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The importance of electron-electron interaction in the insulating behavior of transition
metal oxides was first proposed by Mott. He argued that strong interaction between the two
electrons occupying the same atomic orbital might be the major reason which makes the
electrons localized in these compounds. Such an insulating state which stems from strong
electron-electron correlations is called “Mott insulator” (MI). Magnetically, Mott insulators
can be divided into two broad classes: with or without magnetic order. Mott insulators with
magnetic order are usually antiferromagnet [Mot90, IFT98]. Since the discovery of high-
temperature superconductivity, much more attention has been paid to the understanding of
Mott insulators and to the effect of strong electron-electron correlations in these materials.
This originates from the fact that the high-temperature superconductors are mainly Mott
insulators doped with electrons and holes [LNW06].

1.2 The Hubbard Model

The Hubbard model is one of the simplest model which describes the effect of electron-
electron interactions in quantum many-particle systems. The model was proposed in 1963
simultaneously by Gutzwiller [Gut63], Hubbard [Hub63], and Kanamori [Kan63] to ex-
plain the origin of ferromagnetism in transition metal oxides. The Hubbard model is given
by

H = −t
∑

<i, j>,σ

�
c

†
i,σc j,σ + h.c.

�
+ U

∑

i

n
i,↑ni,↓ (1.1)

where c
†
i,σ and ci,σ create and annihilate an electron at site i with spin σ, respectively. The

operator ni,σ = c
†
i,σci,σ counts the number of electrons at site i with spin σ. The notation

<i, j> on the first summation means that sites i and j are always nearest neighbors. The
kinetic and the interaction terms in the Hamiltonian (1.1) have opposite tendencies. The
first term describes the hopping process of electrons which is in favor of a metallic behavior.
The second term contributes when two electrons with opposite spins occupy the same site.
This interaction term makes the electrons localized leading to an insulating behavior.

The Hubbard model (1.1) in one dimension at zero temperature is exactly solvable
by Bethe Ansatz [LW68, EFG+05]. At half-filling, the model shows no phase transition
in the whole parameter region. The ground state of the system is a Mott insulator (MI)
without any order parameter known as “spin liquid”. Regarding the gaps, there is no spin
gap while there is a finite charge gap which is called “Mott gap”. For small values of the

Hubbard interaction U , the charge gap is proportional to
p

tUe−
2πt

U . This indicates that in
one dimension the metallic phase for U = 0 is unstable versus the Hubbard interaction. An
infinitesimal value for the interaction U makes the system gapped. In the large-U limit, the
charge gap is proportional to the Hubbard interaction U . This is natural because adding
an electron to the half-filled ground state leads to the creation of double occupancy. Such
a double occupancy costs an energy proportional to U which is the dominant term in the
system. The charge excitation spectrum of the MI phase can be interpreted in terms of the
quasiparticles “holon” and “doublon”. The quasiparticle relevant for the low-energy spin
spectrum is called “spinon” which carries total spin half. The spinon dispersion is gapless
with a linear momentum dependence near the edge of the Brillouin Zone (BZ).
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The Hubbard model away from half-filling and at higher dimensions has no exact solu-
tion and it is a difficult problem to be treated. However, it can be simplified to other ef-
fective Hamiltonians in some special limits. The interesting physics of the Hubbard model
happens at large values of the Hubbard interaction U . In this case, all the states with a
finite number of double occupancies are very high in energy and the states with no double
occupancy determine the low energy physics of the system. The off-diagonal elements con-
necting these two parts of the Hilbert space are also small and proportional to the hopping
parameter t. By a unitary transformation, it is possible to eliminate the off-diagonal terms
up to second order in t [Hir85]. The resulting low-energy effective Hamiltonian ignoring
all the three and higher particle interactions is given by

Ht−J = −t
∑

<i, j>

∑

σ

�
c

†
i,σc j,σ + h.c.

�
+ J

∑

<i, j>

 
Si ·S j −

ni n j

4

!
, (1.2)

where J = 4t2

U
, ni =

∑
σ ni,σ, and Si is the spin operator at site i. We stress that the

Hamiltonian (1.2) is a low-energy Hamiltonian defined in the sector with no double occu-
pancy. To release this constraint, the fermion operators have to be replaced by hardcore
operators. The Hamiltonian (1.2) is known as t − J model with a long historical back-
ground [HL67, CSO77, Hir85]. The attractive electron-electron interaction which has ap-
peared in the second term is quite remarkable [Hir85]. It displays the tendency of holes for
being on the nearest-neighbor (n.n.) sites and forming bound states, i.e., Cooper pairs. The
t − J model plays an important role in the context of high-temperature superconductivity.
The model is considered not only as an effective Hamiltonian derived from the Hubbard
model but also as an original Hamiltonian with independent parameters t and J . The t− J

model (1.2) at the half-filling condition reduces to the Heisenberg model

H = J
∑

<i, j>

Si ·S j (1.3)

with the antiferromagnetic prefactor J = 4t2

U
. Therefore, we have found an initial fermion

Hamiltonian which reduces to the (antiferromagnetic) Heisenberg model for large U .

1.3 Spinon Versus Triplon

The concept of elementary excitations or quasiparticles (QPs) is commonly used in low tem-
perature condensed matter physics to calculate the excitation spectrum of a given system.
The type of QP, of course, changes from one phase to another. However, there might be dif-
ferent possible QPs to describe a specific phase. Which QP is more suitable for understand-
ing the properties of a specific phase remains an important issue. In a MI phase, elementary
excitations are fundamentally different from a band insulator where electrons and holes are
the appropriate QPs. The excitation spectrum of the one-dimensional Heisenberg model is
usually discussed in terms of the spin-1/2 quasiparticle spinon [dCP62, FT81]. In addi-
tion to the spinon, the magnetic excitations in a MI phase are addressed in terms of spin-1
QPs called “triplon” or “magnon”. The magnons are well-defined spin excitations when
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Figure 1.1: Relative spectral weights In,rel of the one-dimensional dimerized Heisenberg
model plotted versus the interdimer interaction λ. I1,rel, I2,rel, and I3,rel correspond to
the contribution of 1-, 2-, and 3-triplon sectors, respectively. The figure is taken from
Ref. [SU03].

the ground state is a magnetized MI as in the Neel-ordered phase in the two-dimensional
Heisenberg model. The triplon language, on the other hand, is widely used to analyze
dimerized MI phases where the ground state is composed of singlet pairs of spins in strong
and weak orders [KU00, SKU04] or to describe ladder structures [SU05, USG04]. Since
spinon is a spin-1/2 particle, triplon and magnon can be seen as a bound state between
two spinons [KSGU01].

The properties of the 1D dimerized Heisenberg model for large enough dimerization
can be well understood in terms of triplons [SKU04]. In the limit of zero dimerization,
however, it is an interesting question to see whether the triplon picture can be still valid
or not. If it is, we are provided with an alternative beside the spinons to investigate the
spin liquid MI phase in 1D. The fact that which language is more suitable to study a specific
phase depends on the distribution of total spectral weight into different QP sectors [SU03].
In an appropriate description, the major part of the spectral weight lies in the first few QP
sectors. The picture is inappropriate if sectors with a large number of QPs have to be taken
into account which is hard to realize. The analysis of the 1D dimerized Heisenberg model
indicates that even in the limit of vanishing dimerization, 0.99% of the total spectral wight
lies in the 2-triplon sector. Fig. 1.1 taken from Ref. [SU03] displays the relative spectral
weights versus the interdimer interaction λ, see Ref. [SU03] for details. The results are
obtained using the perturbative continuous unitary transformation method starting from
the dimer limit. The contribution of the 2-triplon sector to the spectral weight is even
larger than the contribution of 2-spinon sector which is 72.89% [KMB+97]. This brings us
to the conclusion that the triplon language can also be used indeed to understand the 1D
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spin liquid MI phase.

1.4 Outlines

In this thesis, we explore the one-dimensional (1D) ionic Hubbard model (IHM) using the
continuous unitary transformation (CUT) technique. The phase diagram of the model and
the position of the transition points are known at present although there has been some
controversial results reported in the past. We discuss not only the phase transitions of the
model but also its low-lying excitation spectrum in different phases.

The IHM is introduced in the next chapter. The chapter starts with the experimental
motivation behind the IHM. Then, the Hamiltonian of the model is presented and some
special limits are analyzed. We also review some of the previous results for the phase
transitions and the excitation spectrum which are obtained by applying different methods
to the IHM.

Chapter 3 is devoted to the methodological aspects. Mainly, we have used the CUT
method combined with an exact diagonalization technique which is valid in the thermody-
namic limit. This exact diagonalization enables us to solve few-particle problems. At first,
the general concept of the CUT method is illustrated with special attention to the renormal-
ization approach directly evaluated enhanced perturbative CUT (deepCUT). The subsequent
solution of few-particle problems is required to analyze the effective Hamiltonians derived
from the deepCUT.

The IHM is investigated in chapter 4 by the deepCUT method starting from the BI limit.
The BI limit is defined by writing the initial Hamiltonian in terms of excitation operators of
the BI phase. We use the deepCUT in two subsequent steps to obtain effective Hamiltoni-
ans. At first, we derive an effective Hamiltonian describing the low-energy physics of the
system. In this way, we reduce the size of the local Hilbert space from four to three. The ef-
fective low-energy Hamiltonian is mapped by a second application of the deepCUT method
to various effective Hamiltonians using different generators. Finally, it remains a few parti-
cle problem to solve providing us with accurate results for the low-energy spectrum of the
model in the BI phase. It is found that a singlet exciton mode becomes soft at the critical
value of the Hubbard interaction. Beyond this critical interaction, excitons condense and
the quasiparticle picture that we started with breaks down. The low-energy physics of the
system can no longer be captured by solving a few-particle problem. Instead, we evaluated
the effective Hamiltonian extracted from the deepCUT by a BCS-type-theory to go beyond
the transition point. Our calculations indicate the stabilization of a spontaneously dimer-
ized insulator (SDI) phase. No second transition to the MI phase in this mean-field level
could be observed.

In chapter 5, we start from the dimer limit where the system is composed of isolated
dimers and consider the effect of interdimer hopping based on the renormalization scheme
of the deepCUT method. The advantage of the dimer limit, compared to the BI limit, is
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that it allows us to have access to different phases of the IHM when the deepCUT method
is employed. We address the transition points of the model by analyzing both the ground
state energy and different gaps. In addition, we discuss the low-energy excitation spectrum
of the model in the BI, in the SDI, and in the MI phases. In the BI phase, it is revealed that
the dimer limit can satisfactorily reproduce the deepCUT results obtained from the BI limit
in chapter 4. In the MI phase, it is found that the low-energy physics of the IHM for large
enough Hubbard interaction can be described by an effective Hamiltonian purely in terms
of triplon operators. The analysis of this effective triplon Hamiltonian leads to quantitative
results for the gapless triplon dispersion of the IHM in the MI phase.

We conclude this thesis by giving a summary and outlook.
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Chapter 2

The Ionic Hubbard Model

The ionic Hubbard model (IHM) is introduced in this chapter. In the first section, we
briefly present some experimental observations which represent the fundamental motiva-
tion behind the IHM. The model Hamiltonian is given in section 2.2. We discuss previous
investigations on the ionic Hubbard model in section 2.3 and conclude this chapter with a
summary.

2.1 Experimental Observations

2.1.1 Neutral-Ionic Transition

Organic charge transfer compounds are classified into two major categories. In one cate-
gory, the donor and the acceptor molecules make their own stack, separately. This class of
organic compounds has attracted much interest because of exhibiting a large conductivity.
The other category includes the mixed-stack compounds where the donor and the acceptor
molecules change alternatively along the stack. These compounds are always insulators
due to the double periodicity of the lattice. The donor and the acceptor molecules in the
mixed-stack compounds appear either as nominally ionic or nominally neutral [TVML81].

It was discovered by Torrance et al. in 1981 that some of the mixed-stack organic com-
pounds, which are near the neutral-ionic boundary, undergo a reversible phase transition
between the nominally ionic and the nominally neutral phases [TVML81]. This neutral-
ionic transition occurs upon changing pressure [TVML81] or temperature [TGM+81]. TTF-
chloranil (TTF-CA) is a concrete example which shows such a phase transition. This com-
pound is nominally neutral above ≈84K under atmospheric pressure. But below this tem-
perature, there is a broad temperature range of about 30K where both neutral and ionic
molecules coexist. By decreasing the temperature even further, it is found that all the neu-
tral molecules are gone and the compound is nominally ionic. This neutral-ionic transition
is accompanied with a color change in the sample [TGM+81].
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tricity in a conventional ferroelectric like BaTiO3 and in a mixed-stack organic compound
such as TTF-CA. Panel (a) in the right figure of Fig. 2.1 shows the perovskite structure of
BaTiO3 with the barium ions at the corners, oxygens at the faces, and the titanium ion at
the center. Panel (b) on the right-side of Fig. 2.1 indicates how the titanium ion moves off
the center of the cube by cooling the system below 120◦K leading to the electronic Pele and
the ionic Pion polarization. The ferroelectric process in TTF-CA is depicted in panels (c) and
(d). The charge transfer between the donor TTF and the acceptor CA molecules induced
by the neutral-ionic transition gives rise to a large electronic polarization which is directed
antiparallel to the ionic displacement.

2.2 Hamiltonian and Solvable Limits

2.2.1 The Model Hamiltonian

The IHM was first proposed by Soos and his coworkers to study charge transfer in donor-
acceptor crystals [SS70, SM78]. Nagaosa and Takimoto in 1986 [NT86] considered the
model as a prototype to describe the neutral-ionic transition which was observed in the
mixed-stack organic compounds [TVML81, TGM+81]. Egami, Ishihara, and Tachiki in 1993
also suggested that the model has the potential to illustrate the ferroelectricity in transition
metal oxides such as BaTiO3 [EIT93]. Giovannetti et al. in 2009 added the electron-lattice
interaction to the IHM in order to confirm the presence of multiferroicity state in TTF-CA
predicted throw ab initio calculations [GKS+09].

The IHM consists of a n.n. hopping term, the onsite Hubbard interaction, and an ionic
(staggered) potential which stands for the energy difference between the highest occupied
orbital of the donor and the lowest unoccupied orbital of the acceptor molecules. The
Hamiltonian of the model in the electron-hole symmetric form is given by

H =
δ

2

∑

i,σ

(−1)ini,σ + t
∑

i,σ

�
c

†
i,σci+1,σ + h.c.

�
+ U

∑

i

�
n

i,↑−
1

2

��
n

i,↓−
1

2

�
, (2.1)

where c
†
i,σ and ci,σ are the usual creation and annihilation fermion operators at site i and

spin σ, respectively. The operator ni,σ := c
†
i,σci,σ counts the number of electrons with spin σ

at site i. The ionic potential in the Hamiltonian (2.1) breaks the full translational symmetry
of the model and enlarges the size of the unit cell from one site to two sites. The IHM (2.1)
is invariant under site-parity but not under bond-parity for any finite value of δ. The three
different terms present in the IHM (2.1) are schematically depicted in Fig. 2.2.

2.2.2 Gaps and Order Parameters

It is useful to define three different gaps which measure the excitation energies in the IHM.
The charge gap ∆c is defined as the energy that we need to add an electron to the system
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δ U

t

Figure 2.2: Schematic representation of the one-dimensional ionic Hubbard model (2.1).
The parameter t shows the nearest-neighbor hopping, the Hubbard interaction is denoted
by U , and δ indicates the energy separation between odd and even sites.

plus the energy to take an electron from the system. The charge gap is given by

∆c ≡ E0(N + 1) + E0(N − 1)− 2E0(N), (2.2)

where E0(N) stands for the ground state energy of the system with N particles. The exciton
(singlet) gap ∆e and the spin gap ∆s are defined as the excitation energy to the states with
the same particle number as the ground state but with total spin zero and one, respectively.
The exciton and spin gaps read

∆e ≡ E1(N , S = 0)− E0(N , S = 0), (2.3)

∆s ≡ E1(N , S = 1)− E0(N , S = 0), (2.4)

where E1(N , S) denotes the first excited state with N particle and total spin S. Because we
are interested in half-filling, we put N = L where L is the lattice size.

We define the ionicity I as the difference between the density of particle on the odd sites
and the density of particles on the even sites. The ionicity is given by

I ≡ −
1

L

∑

i,σ

(−1)i〈ni,σ〉. (2.5)

where 〈· · · 〉 is the expectation value with respect to the ground state. This quantity can
be used as measure of the degree of charge transfer between the donor and the acceptor
molecules. The ionicity is unity if all the odd sites are occupied and all the even sites are
empty. It is zero on the other limit where each site is occupied with one electron. The
ionicity can be calculated from the ground state energy of the IHM (2.1) via the Hellmann-
Feynman theorem

I = −
2

L

�
∂ H

∂ δ

�
= −

2

L

∂ 〈H〉
∂ δ

= −2
∂ ε0

∂ δ
, (2.6)
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where ε0 denotes the ground state energy per site.

The translational symmetry in the model can be spontaneously broken leading to a bond
order or spontaneously dimerized insulator (SDI) phase. The relevant order parameter to
detect such a dimerized phase is the spontaneous dimerization D given by

D≡
1

L

∑

i,σ

(−1)i〈c†
i,σci+1,σ + h.c.〉. (2.7)

This quantity is zero if all bonds in a chain are equivalent and becomes finite if the site-
parity is broken and a bond order appears in the system.

2.2.3 Special Limits

Let us consider the IHM in some special limits in order to obtain a general idea about the
phase diagram of the model. The simplest case is without hopping in the system, t = 0.
In this limit, we have a classical Hamiltonian to deal with. For U < δ, the ground state is
unique with all odd sites occupied and all even sites empty. For U > δ, each site is occupied
with one electron which is free to choose up or down spin. This leads to the degeneracy 2L

of the ground state. These BI and MI phases are separated by a first order transition point
at U = δ. The ionicity (2.5) changes discontinuously from one to zero at this first order
transition point.

The Hamiltonian (2.1) in the non-interacting limit U = 0 is also easily solvable by a
Bogoliubov transformation in momentum space. One finds two energy bands given by

E±(k) = ±

È�
δ

2

�2

+ 4t2 cos2(k), (2.8)

where the momentum k is defined in the reduced BZ, −π
2
< k ≤ +π

2
. The lower band E−(k)

and the upper band E+(k) are separated by an energy gap δ which occurs at momentum
k = π

2
. At half-filling, the lower band E−(k) is completely filled with up and down spins. The

charge gap (2.2), the exciton gap (2.3), and the spin gap (2.4) are all identical and equal
to δ. This is natural because with no interaction in the system, electron and hole pairs
can never form bound states and therefore the exciton gap and the spin gap are always
identical to the charge gap. The ionicity can be obtained from the ground state energy via
equation (2.6). One finds

I (0) =
2

π

∫ π
2

0

dk
È

1+

�
4t

δ

�2

cos2(k)

=
2

π

È
1+

�
4t

δ

�2
K

 r
16t2

δ2+ 16t2

!
, (2.9)

where K(· · · ) is the complete elliptic integral of the first kind. In the limit t � δ, we can
expand the square root expression to obtain

I (0) = 1−
�

2t

δ

�2

+O

�
t4

δ4

�
. (2.10)
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Figure 2.3: The exact result of ionicity (2.9) compared with the result of second order in
t/δ.
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upon introducing the hopping parameter

in the system. The exact result of ionicity is compared with the second order result in
Fig. 2.3.

We expect that in the presence of the Hubbard interaction, the ionicity will reduce due
to the onsite interaction between the electrons on the odd sites. The effect of the Hubbard
interaction U on the ionicity up to first order in U can be taken into account using first
order perturbation theory. The ground state energy per site up to first order in U is given
by

ε
(1)
0 = ε

(0)
0 +

U

2

�
〈ne,σ〉2+ no,σ〉2

�
(2.11)

where 〈ne,σ〉 and 〈no,σ〉 are the density of particles with spin σ =↑,↓ on even and odd sites,
respectively. The expectation values are with respect to the non-interacting ground state.
The right-side of Eq. (2.11) can be written in terms of ionicity I (0) using the relations

I (0) = 〈no,σ〉 − 〈ne,σ〉, (2.12a)

1= 〈no,σ〉+ 〈ne,σ〉. (2.12b)

Finally, one finds the ionicity up to first order in U using Eq. (2.6)

I (1) = I (0)

�
1− U

∂ I (0)

∂ δ

�
, (2.13)

where I (0) is given in Eq. (2.9). The ionicity reduces linearly in the Hubbard interaction.



The Ionic Hubbard Model 23

In the limit that doubly occupied sites are very high in energy, the IHM (2.1) at half-
filling can be mapped to an effective low-energy spin Hamiltonian. The procedure is similar
to the derivation of the Heisenberg model from the Hubbard model. However, we should
notice that such a mapping is valid if U −δ� t and not for U � t as in the usual Hubbard
model. This stems from the fact that in the IHM (2.1) the electrons on the odd sites gain
a negative energy of order δ. The effective spin Hamiltonian up to fourth order in the
hopping parameter t is given by [NT86]

H = J1

∑

i

Si ·Si+1+ J2

∑

i

Si ·Si+2 (2.14)

where the prefactors J1 and J2 are defined as

J1 ≡
4t2

U

1

1− x2
−

16t4

U3

1+ 4x2− x4

�
1− x2

�3
, (2.15a)

J2 ≡
4t4

U3

1+ 4x2− x4

�
1− x2

�3
, (2.15b)

with x ≡ δ/U . We notice that the spin Hamiltonian (2.14) has the full translational sym-
metry although the original IHM (2.1) has two sites per unit cell. It can be shown that
the effective spin Hamiltonian up to infinite order in the hopping parameter t is invariant
under the full translational symmetry [NT86].

The Hamiltonian (2.14) is the Heisenberg model with a frustrated next nearest-neighbor
(n.n.n.) interaction J2 and it is known as J1 − J2 Heisenberg model. This Hamiltonian has
been investigated by several methods such as exact diagonalization [TH87], field theory
[ON92, Egg96], density matrix renormalization group [CPK+95, WA96], series expansion
[Hon99, SW99], and perturbative CUT [KU00]. In the limit J2 = 0, the Hamiltonian sim-
plifies to the n.n. Heisenberg model which is exactly solvable [Bet31]: The ground state is
a spin liquid phase and the excitations are spinons with the dispersion

ωspinon(k) = J1

π

2
sin(k). (2.16)

The system is stable versus the n.n.n. interaction and remains gapless up to J2/J1 =

0.241167 [Egg96]. At this point, a second order phase transition from the gapless spin
liquid phase to the dimerized MI phase occurs. The transition is identified as Kosterlitz-
Thouless (KT) transition where the opening of the gap is exponentially slow. In the dimer-
ized phase, the doubly degenerate ground state is characterized by strong and weak bonds
which alternate along the chain. The value J2 = J1/2 corresponds to the Majumdar-Gosch
point [MG69] where the system is fully dimerized: The 2-fold degenerate ground state is
given by the direct product of singlets on independent dimers with S1 ·S2 = −3/4.

Nevertheless, as far as the spin Hamiltonian (2.14) is derived from the IHM in the limit
U −δ� t and the interactions J1 and J2 are given by equations (2.15), we are deep inside
the gapless spin liquid phase of J1 − J2 Heisenberg model. This is because U − δ � t

implies J1 � J2, see Eqs. (2.15). Therefore we expect the IHM to be in large-U limit
a MI with gapless spinons. While the spin gap (2.4) is zero in this phase, the charge
gap (2.2) increases linearly in the interaction U like in the usual Hubbard model for large
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U . The Hamiltonian (2.14) up to second order in the hopping parameter t reduces to the
Heisenberg model with the exact ground state energy per site

ε0 =

�
1

4
− ln(2)

�
J , (2.17)

where J := 4t2U/(U2 − δ2) is the prefactor of the n.n. interaction. Hence, the leading
order in t of the ionicity in the limit U −δ� t is given by

I = +
16t2Uδ
�
U2−δ2

�2
ln(2). (2.18)

This relation indicates that in the large-U limit, the ionicity decreases as power law (∼
1/U3) upon increasing Hubbard interaction. Therefore, it remains finite for any finite value
of the interaction U .

The general behavior of the IHM at half-filling can be deduced from the above special
limits. The ground state of the IHM (2.1) at small values of the Hubbard interaction U is a
BI and at the large-U limit it is a gapless MI phase. The natural question appears: What is
between these two BI and MI phases? Are they separated by a transition point or is there
an intermediate phase? In the latter case, what is the nature of this intermediate state?
What is the excitation spectrum of the system in the different phases?

In the next section, we review some of the previous investigations on the phase diagram
of the IHM as well as on its excitation spectrum.

2.3 Some Previous Results

In this section, we try to follow the historical order especially for the results which concern
the phase diagram of the 1D IHM. There have been several attempts to determine the phase
diagram of the IHM using different approaches. In the following, however, we will focus
only on methods such as QMC and DMRG as well as bosonization. The results obtained by
approximate techniques like (slave-particle) mean-field theory [RS95, OOMC96, CAN00]
and renormalization group methods [GSB01, HJA09] are not discussed. The mean-field
analyses ignore quantum fluctuations which expect to be essential in one dimension. We
also do not address the exact diagonalization calculations performed on finite size clus-
ters [Anu01, GST00]. There are some difficulties in exact diagonalization results to be
extrapolated to the thermodynamic limit, cf. [GST00].

2.3.1 Phase Diagram

Nagaosa and Takimoto using Quantum Monte Carlo (QMC) simulations investigated the
phase diagram of the 1D IHM in 1986 [NT86]. Different integrated correlation functions
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Figure 2.4: The results of quantum Monte Carlo simulations for the spin gap (left panel)
and the charge gap (right panel) plotted versus the ionic potential. The parameters ∆ and
T in this figure correspond to the ionic potential δ and the hopping parameter t of the ionic
Hubbard model (2.1). The parameter U stands for the Hubbard interaction. The results are
for t = 1.0 and U = 3.0. The figure is taken from Ref. [NT86].

corresponding the charge density wave, spin density wave, and bond order wave are eval-
uated. We focus here only on their results for the spin gap and the charge gap. The exciton
gap (2.3) is not considered in the analysis by Nagaosa and Takimoto. The spin gap (called
magnetic gap) and the charge gap (denoted by ECT) are plotted in the left panel and in the
right panel of Fig. 2.4, respectively. The parameter ∆ stands for the ionic potential δ and
T equals the hopping parameter t. The hopping parameter and the Hubbard interaction
in these figures are fixed to t = 1.0 and U = 3.0. From the left panel of Fig. 2.4, it is
concluded that the spin gap remains zero up to δ ' 1.4 and rises continuously beyond this
point suggesting a phase transition. There have been more problems to extrapolate the
charge gap from finite temperature to zero temperature compared to the spin gap. The
error due to the finiteness of temperature (Temp.=0.2t) in the right panel of Fig. 2.4 is
estimated based on two facts: First, the charge gap at δ = 0 should be identical to the
Hubbard gap but it is about 0.15 higher than this exact value. Second, the spin gap should
be equal or less than the charge gap. This is because two free fermions can always form
a singlet or triplet state. The exciton gap (2.3) and/or the spin gap (2.4) may get a value
less than the charge gap (2.2) if the two fermions form a bound state. This can occur due
to some effective attractive interactions in the system. Thus, comparing the results of the
spin gap and the charge gap at δ = 2.0 gives us another estimate for the error present in
the charge gap. The right panel of Fig. 2.4 shows that the charge gap has a minimum near
the transition point δ = 1.4. Within the accuracy of the results the authors do not exclude
the appearance of a metallic state at the transition point from the MI to the BI.

Fabrizio, Gogolin, and Nersesyan in 1999 employed the bosonization technique to in-
vestigate the phase diagram of the 1D IHM (2.1) [FGN99]. They claim that the BI and MI
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Figure 2.5: The phase diagram of the ionic Hubbard model (2.1) obtained by bosonization
technique. There is a spontaneously dimerized insulator (SDI) phase between the band
insulator (BI) and the Mott insulator (MI) phases. The dimer operator has a non-zero
expectation value in this intermediate phase. The figure is taken from Ref. [FGN99].

phases are separated by an intermediate phase. The nature of this middle phase is identified
as a SDI where the dimer operator (2.7) defines the order parameter and acquires a finite
expectation value. Upon increasing the Hubbard interaction U for fixed values of t and δ,
the exciton gap vanishes at the first transition point Uc1 from BI to SDI. This transition is
recognized to be of Ising type. Hence, the first phase transition is a charge transition at
which no qualitative effect occurs in the spin sector. The second transition point Uc2 from
the SDI to the MI phase takes place by softening of the spin gap. It is asserted to be of
Kosterlitz-Thouless (KT) type. This resembles the 1D J1 − J2 Heisenberg model where the
system undergoes a KT transition from the dimerized MI phase to the gapless spin liquid
phase by reducing the n.n.n. interaction.

The position of the second transition point in the limit t � (δ, U) estimated by Fab-
rizio et. al. [FGN99] is given by

Uc2 =
2πt

ln(2t/δ)

�
1+O

�
ln ln(2t/δ)

ln(2t/δ)

��
. (2.19)

The finite width of the SDI phase is also determined by the relation

Uc2

Uc1

− 1=
const.

ln(2t/δ)
, (2.20)

where the positive constant on the right hand side is a number of order 1. Fig. 2.5 sum-
marizes the phase diagram of the IHM obtained by the low-energy effective field the-
ory [FGN99].

We now discuss the DMRG results presented by Takada and Kido in 2001 [TK01]. The
charge gap and the spin gap are calculated for chains up to 400 sites and the thermo-
dynamic limit is approached by a finite-size scaling. No attention has been paid to the
exciton gap (2.3). In addition to the charge and spin gaps, the authors consider the local-
ization length to identify the transition point(s), see Ref. [TK01]. Fig. 2.6 extracted from
Ref. [TK01] shows the charge gap ∆c and the spin gap ∆s (left panel) and the localization
length DL (right panel) plotted versus the Hubbard interaction. In this figure, the Hubbard
interaction U is denoted by u and t stands for the hopping parameter. The parameter v is
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Figure 2.6: The charge gap ∆c and the spin gap ∆s (left panel) and the localization length
DL (right panel) obtained by Takada and Kido using density matrix renormalization group
method [TK01]. The parameters t and u in this figure stand for the hopping parameter and
the Hubbard interaction. The parameter v corresponds to δ/2 in our notation of the ionic
Hubbard model (2.1). These figures are extracted from Ref. [TK01].

equivalent to δ/2 in our representation of the IHM (2.1). Therefore v = 0.5t corresponds
to δ = t. Let us focus on the left panel of Fig. 2.6 which clarifies the behavior of the spin
gap (dotted-dashed line) and the charge gap (solid line) near the critical points. For fixed
values of t and δ, three characteristic points are distinguished upon increasing the Hubbard
interaction U . The spin gap and the charge gap are equal up to the first point called Uc0.
Beyond this point, the authors find a spin gap larger than the charge gap. Both the spin
and charge gaps decrease up to the second critical point Uc1 where the charge gap takes its
finite minimum. Beyond this minimum, the charge gap starts to increase while the spin gap
continues to decrease. The third critical point Uc2 is characterized as the point where the
spin gap vanishes. The authors identify a transition at Uc1 by observing a divergency in the
localization length DL although they never find a gap vanishing at this point. The non-zero
minimum of the charge gap at Uc1 is interpreted as the error due to the open boundary
condition which tends to overestimate the charge gap. They think that in a more reliable
calculations the gap would vanish. From the behavior of the charge gap and the localiza-
tion parameter, Takada and Kido suggest a Luttinger-liquid-type quasi-metallic phase with
the order parameter (∆s−∆c) for the region Uc0 < U < Uc1 and an insulating phase for the
range Uc1 < U < Uc2. It is concluded that the insulating phase for Uc1 < U < Uc2 is most
likely a SDI as proposed by Fabrizio, Gogolin, and Nersesyan [FGN99].

In 2001 Wilkens and Martin performed a variational QMC study of the phase diagram
of the 1D IHM [WM01]. Their main focus is the bond order parameter (2.7) and the polar-
ization. By increasing the Hubbard interaction, it is found that the dimerization becomes
finite at a critical interaction indicating a phase transition from the BI to the SDI phase.
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Figure 2.7: The bond order parameter and polarization of the ionic Hubbard model ob-
tained from quantum Monte Carlo (QMC) calculations. The dashed lines indicate a fit func-
tion of the form A

�
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to the QMC results. For the bond order parameter ξ= 0.39(4)

and for the polarization ξ= 0.60(10). The figure is taken from Ref. [WM01].

Surprisingly, no second transition from the SDI phase to the MI phase is identified. The
dimerization parameter remains finite even for very large values of the Hubbard interac-
tion. Fig. 2.7 shows the behavior of the bond order parameter and polarization versus the
Hubbard interaction U near the transition point from the BI phase to the SDI phase. The
QMC results are fitted by a function of the form A

�
U − Uc

�ξ
where ξ is the critical expo-

nent. The critical exponent for the bond order parameter and polarization are found to be
0.39(4) and 0.60(10), respectively. These numbers are close to 1/2, the mean-field critical
exponent, and differs significantly from 1/8 which was suggested by Fabrizio, Gogolin, and
Nersesyan [FGN99]. For the phase diagram of the IHM, Wilkens and Martin conclude that
the MI phase is unstable versus the ionic potential δ and appears only for δ ≡ 0 [WM01].

Another DMRG analysis of the IHM was implemented by Lou et al. in 2003 [LQX+03].
The exciton gap (2.3), the charge gap (2.2), and the spin gap (2.4) are all investigated. The
finite size results are carefully extrapolated to the thermodynamic limit. For fixed values
of t and δ, two transition points are identified upon increasing the Hubbard interaction U .
One from the BI phase to the SDI at Uc1 and the other from the SDI to the MI at Uc2 > Uc1.
Fig. 2.8 taken from Ref. [LQX+03] denotes the extrapolated results obtained for the charge
gap (solid circles), the spin gap (empty circles), and the exciton gap (empty squares) at
δ = 0.6t (panels a and b) and δ = 2.0t (panels c and d). It is found that a charge-neutral
spin-singlet mode develops in the BI phase which closes at the first transition point beyond
which the SDI phase stabilizes. The charge gap and the spin gap remain equal up to the
second transition point Uc2 where they both vanish. Beyond this point, the charge gap rises
linearly while the spin gap remains zero. The equality of the spin gap and the charge gap
in the SDI phase reported in this paper contradicts the findings by Fabrizio [FGN99] and
Takada [TK01] discussed above.
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Figure 2.8: The extrapolated DMRG results obtained by Lou et al. for the charge gap (solid
circles), the spin gap (empty circles), and the exciton gap (empty squares) at δ = 0.6t

(panels a and b) and δ = 2.0t (panels c and d). This figure is taken from Ref. [LQX+03].
The first transition point from BI to SDI is shown by Uc = Uc1 and the second transition point
from the SDI to the MI is displayed by Us = Uc2. Ue is the position where the charge-neutral
spin-singlet mode appears.

In the same year 2003, Kampf et al. [KSJB03] come to a rather different conclusion
than Lou et al. [LQX+03] using the DMRG method. One phase transition from the BI phase
to the SDI phase is recognized where the exciton gap vanishes. The authors mention that
within the accuracy of the DMRG results and the accessible chain lengths, it is not possible
to judge whether the spin gap is zero or not for large U . The charge gap ∆c and the spin
gap ∆s derived by Kampf et al. are plotted in Fig. 2.9 versus the Hubbard interaction.
The parameter δ is fixed to 0.5t in this figure. The authors emphasize the role of the
extrapolation of the results for large enough chain lengths. The main plot indicates the
extrapolated results for the chain lengths L = {30, 40,50, 60} and the inset is obtained
after increasing the lattice size to L = 512. From the main plot, it is seen that the spin gap
and the charge gap become different before the transition to the SDI phase and the spin
gap vanishes at large Hubbard interaction. The more rigorous results in the inset, however,
indicate a considerably different picture. The spin gap and the charge gap are identical up
to the BI-to-SDI transition point where the sharp finite minimum of the charge gap takes
place. Beyond this minimum, the spin gap decreases and becomes unresolvably small above
U ∼ 2.5t within the achievable numerical accuracy, the authors state. The results in the
inset of Fig. 2.9 challenge both previous DMRG findings by Takada and Lou sketched in
Figs. 2.6 and 2.8.
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Figure 2.9: The spin gap ∆s and the charge gap ∆c for δ = 0.5t obtained by Kampf
et al. using the DMRG method [KSJB03]. The main plot shows the extrapolated results
obtained from the lattice sizes L = {30, 40,50, 60}. The inset is derived after the lattice size
is increased to L = 512. The figure is taken from Ref. [KSJB03].

By employing again the DMRG method and by a careful finite-size scaling, Manmana et

al. [MMNS04] in 2004 confirm the phase diagram of Fig. 2.5 that was initially proposed by
Fabrizio, Gogolin, and Nersesyan. The extrapolated DMRG results obtained by Manmana
et. al. are sketched in Fig. 2.10. The left panel of this figure shows the charge gap (empty
circle), the exciton gap (empty square), and the spin gap (asterisk) near the critical region
for δ = 20 and t = 1. For the same set of parameters, the right panel of Fig. 2.10 denotes
the dimerization versus the Hubbard interaction near the transition points. It is found that
the spin gap and the charge gap remain equal up to the first transition point where the
exciton gap closes. The minimum of the charge gap, within the accuracy of the results,
coincides with the first transition point. Beyond this point, the charge gap increases while
the spin gap continues to decrease and becomes soft at the second transition point to the
MI phase. The extrapolated values for the dimerization parameter indicates that the middle
phase is a SDI with a finite dimerization. The dimerization is zero in both the BI and MI
phases.

There are other DMRG-based investigations ofthe phase diagram of the 1D IHM by
Otsuka and Nakamura in 2005 [ON05], Legeza et al. in 2006 [LBS06], and Tincani et al.

in 2009 [TNB09] which confirm the qualitative picture sketched in Fig. 2.5. In the next
chapters, we will compare our findings for the charge, spin, and exciton gaps to the DMRG
results obtained by Manmana et al. [MMNS04] as the most advanced one in our view.

In two dimensions, the phase diagram of the IHM is still highly disputed. Because this
thesis is devoted to the 1D IHM, we just mention the outcomes of recent investigations on
the 2D IHM. Although the presence of the band and Mott insulators for the small and large
values of the Hubbard interaction are established [GKR06, PBH+07, BPH+07, CLH+08,
KD07, CZLW10], the existance and the nature of the intermediate phase is not clear yet.
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Figure 2.10: The extrapolated DMRG results for the gaps (left panel) and the dimerization
parameter |〈B〉| (right panel) near the critical region obtained by Manmana et al.. The
charge gap, the exciton gap, and the spin gap in the left panel are denoted by empty circle,
empty square, and asterisk, respectively. The results are for δ = 20 and t = 1. The figures
are taken from Ref. [MMNS04].

A single-site dynamic mean-field theory (DMFT) indicates an intermediate metallic phase
between BI and MI [GKR06] which is confirmed by determinant QMC method [PBH+07,
BPH+07]. In another single-site DMFT study [CLH+08], in addition to a metallic phase,
coexistence of MI with metallic and coexistence of MI with BI are found, see Ref. [CLH+08].
However, an investigation based on cluster-DMFT shows that the middle phase is a SDI
similar to the 1D case [KD07]. In the variational cluster approach, it is a bond-located
spin density wave with a magnetic order which has the lowest energy in the intermediate
region [CZLW10]. We want to emphasize that our analysis of the 1D IHM in chapter 4
is conceptually not restricted to one dimension and can in principle be applied to the 2D
lattices as well.

2.3.2 Excitation Spectrum

The excitation spectrum and the spectral properties of the IHM in spite of its phase dia-
gram have attracted less attention. These physical quantities provide valuable information
relevant to experimental measurements such inelastic neutron scattering experiments and
electron-energy loss spectroscopy. To our knowledge, the only known results for the ex-
citation spectrum [HJ10] and the spectral properties [HA11] of the IHM are obtained by
perturbative CUT method in the BI phase. Due to the perturbative nature of the method,
the authors have not been able to approach the BI-to-SDI transition point for the 2-particle
excitations. The results are presented deep in the BI phase. The left panel of Fig. 2.11
shows the excitation spectrum of the 1D IHM in the reduced BZ for δ = 1.0, t = 0.125, and
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Figure 2.11: Left panel: The excitation spectrum of the one-dimensional ionic Hubbard
model in the band insulator phase for δ = 1, t = 0.125, and U = 0.5 [HJ10]. Right
panel: The charge-charge N(K ,ω) and the spin-spin S(K ,ω) correlation functions of the
ionic Hubbard model for δ = 2.0, t = 0.25, and U = 1.0 [HA11].

U = 0.5 [HJ10]. The right panel of this figure indicates the charge-charge N(K ,ω) and
the spin-spin S(K ,ω) dynamical correlation functions for δ = 2.0, t = 0.25, and U = 1.0.
The right panel is extracted from Ref. [HA11]. Because the IHM has two sites per unit cell,
the excitation spectrum should be considered in the reduced BZ, −π/2 < K ≤ π/2. In the
singlet channel of the 2-fermion sector, two anti-bound states and one bound state is found.
The singlet bound state S3 at the total momentum K = 0 is the mode which condenses at
the transition point to the SDI phase. There are also two triplet bound states which are
degenerate at the edge of the BZ, K = ±π

2
. We notice the large exciton gap ∆e ≈ 0.54δ in

Fig. 2.11 indicating that we are still far away from the transition point to the SDI phase.

2.4 Chapter Summary

This chapter is devoted to a general understanding of the 1D IHM. Starting with the ex-
perimental motivation behind the IHM. The model is used as a prototype to describe the
neutral-ionic transition observed in the mixed-stack charge-transfer organic compounds
such as TTF-chloranil [NT86] and the ferroelectricity in perovskite transition metal oxides
such as BaTiO3 [EIT93]. Next we present the model Hamiltonian which consists of the
usual Hubbard model plus an ionic potential. This ionic potential separates the odd and
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even sites by an energy shift enlarging the size of the unit cell from one to two lattice sites.
The charge gap, the spin gap, and the exciton gap are defined to measure different exci-
tation energies in the system. These gaps help us to identify the phase transitions which
occur in the IHM. Some other relevant quantities such as the ionicity and the spontaneous
dimerization (bond order parameter) are also introduced. In some special limits the IHM
is analyzed to give us a general view of the phase diagram of the model. We review some
of the previous investigations of the IHM with a main focus on one dimension. The large
discrepancy between the results of different analyses is discussed and the likely phase dia-
gram of the model in one dimension is sketched. Finally, it is pointed out that there is much
less known about the excitation spectrum of the model, especially near the critical region.
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Chapter 3

Method

This chapter is devoted to the methodological aspects of the present thesis. We have mostly
used the recently formulated method called directly evaluated enhanced perturbative con-

tinuous unitary transformation (deepCUT) [KDU12] to obtained effective Hamiltonians.
The deepCUT is a renormalization approach based on continuous unitary transformation
(CUT) [Weg94, GW93]. The basic idea in the deepCUT is to map a given many-particle
Hamiltonian to a few-particle problem by working in a suitable quasiparticle (QP) picture.
We evaluate the final few-particle problem by an exact diagonalization (ED) technique
which is valid in the thermodynamic limit.

This chapter is divided to three sections: In the first section 3.1 the basic concept of
CUT is introduced. Then, the deepCUT is briefly illustrated in section 3.2. Finally, the ED
method, which works in the thermodynamic limit, is explained in the last section 3.3.

3.1 The CUT method

3.1.1 The Basic Concept

The CUT or flow equation approach was proposed by Wegner [Weg94] and independently
by Głazek and Wilson [GW93]. In this method a given Hamiltonian H is mapped, by a
unitary transformation, to a diagonal or block diagonal effective Hamiltonian in a system-
atic fashion [Keh06]. The unitary transformation U(`) depends on an auxiliary continuous
parameter ` which defines the flow under which the Hamiltonian transforms from its initial
form H = H(`)

��
`=0

to its final effective form Heff = H(`)
��
`=∞. The transformed Hamiltonian

is given by

H(`) = U†(`)HU(`). (3.1)



36 3.1 The CUT method

The Hamiltinian H(`) is determined from the following differential equation called flow
equation

∂`H(`) = [η(`), H(`)], (3.2)

where the anti-hermitian operator

η(`) = −U†(`)∂`U(`) (3.3)

is the generator of the flow. It is seen from Eq. (3.2) that we can directly deal with the
generator instead of the unitary transformation U(`). What is needed is the the gener-
ator η(`) as function of the Hamiltonian operator. Then, the Hamiltonian H(`) can be
determined from the differential equation (3.2) and the initial condition H(`)

��
`=0
= H. The

unitary transformation U(`), if it is needed, can be determined from Eq. (3.3) in an iterative
way [LW96].

The aim is to choose the generator η(`) such that the off-diagonal elements become
zero in the limit `→∞. Which term is diagonal and which is not, of course, depends on
the effective Hamiltonian that we want to derive at ` → ∞. It is an arbitrary decision,
but it should not affect the physics going on in the system. For instance, if the purpose is
to replace the electron-phonon interaction with an effective electron-electron interaction,
then all the terms which change the number of phonon in the system will consider as off-
diagonal elements [LW96]. One may reach an effective Hamiltonian which conserves the
number of double occupancies, in the Hubbard model for example, by properly separating
the operators into diagonal and off-diagonal parts [Ste97, RMHU04, HDU10]. In a gapped
phase, one may think of integrating out the terms which change the number of QPs in the
system [KU00, DU04]. In this last case, the low-energy part of a many-particle Hamiltonian
can be calculated by solving a few-particle problem [KSU03b]. Below we discuss some
common choices of generators.

3.1.2 Wegner’s Generator

We start with the simple observation that the trace of an operator does not change under a
unitary transformation. Therefore, one can write

∂`Tr
�

H2(`)
�
= ∂`Tr

�
H2
�
= 0. (3.4)

This relation leads to the differential equation for the summation of the norm of the off-
diagonal elements

∂`

∑

i 6= j

��hi, j(`)
��2 = −∂`

∑

i

��hi,i(`)
��2

= −2
∑

i

hi,i(`)∂`hi,i(`), (3.5)

where we have defined hi, j(`) := 〈i|H(`) | j〉. {|i〉} stands for a complete basis. The matrix
representation of the flow equation (3.2) is given by

∂`hi, j(`) =
∑

k

�
ηi,k(`)hk, j(`)− hi,k(`)ηk, j(`)

�
. (3.6)
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This relation can be used to substitute the quantity ∂`hi,i(`) on the right-hand side of
Eq. (3.5). We obtain

∂`

∑

i 6= j

��hi, j(`)
��2 = −2

∑

i, j

hi,i(`)
�
ηi, j(`)h j,i(`)− hi, j(`)η j,i(`)

�

= −2
∑

i, j

h j,i(`)
�

hi,i(`)− h j, j(`)
�
ηi, j(`). (3.7)

Wegner suggested to take the generator as [Weg94]

ηi, j(`) =
�

hi,i(`)− h j, j(`)
�

hi, j(`). (3.8)

In the operator form this reads

ηW (`) = [H
d(`), H(`)], (3.9)

where Hd(`) is the diagonal part of the Hamiltonian H(`). Clearly, this choice makes each
term on the right-hand side of Eq. (3.7) non-positive. Because the norm of the off-diagonal
elements ∑

i 6= j

��hi, j(`)
��2 ≥ 0, (3.10)

is limited from below, the right-hand side of Eq. (3.7) must vanish for `→∞. Hence, we
obtain �

hi,i(∞)− h j, j(∞)
�

hi, j(∞) = 0. (3.11)

This relation shows that the off-diagonal elements are zero at `→∞ except for degenerate
states hi,i(∞) = h j, j(∞).

The disadvantage of Wegner’s generator is that if the matrix of the initial Hamiltonian
has a band-diagonal structure, i.e.,

hi, j(0) = 0 For
��i − j

��> M , (3.12)

this property is lost during the flow. This point can be seen from the shape of the flow
equation (3.6) for Wegner’s choice of generator.

3.1.3 Particle-Conserving Generator

Mielke introduced a modified generator that was especially useful for band diagonal ma-
trices [Mie98]. In the many-particle context, Stein [Ste97] and Knetter and Uhrig [UN98,
KU00] introduced an analogous generator to derive an effective block-diagonal Hamilto-
nian which preserves the number of quasiparticles (QPs) in the system. This generator,
called particle-conserving (pc) generator, is widely used to simplify many-particle Hamilto-
nians. To be concrete, we work in QP representation where each state |i〉 includes a definite
number of QP labelled as qi. We suppose without loss of generality that i ≥ 1 and q j ≥ qi if
j > i. The matrix elements of the pc generator is given by

ηi, j(`) = sign(qi − q j)hi, j(`), (3.13)
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with sign(0) := 0. Only the elements which link different QP sectors contribute to the
generator. The flow equation (3.6) for the pc generator takes the form

∂`hi, j(`) = − sign(qi − q j)
�

hi,i(`)− h j, j(`)
�

hi, j(`)

+
∑

k 6=i, j

�
sign(qi − qk) + sign(q j − qk)

�
hi,k(`)hk, j(`). (3.14)

The two sign functions appearing in the second term cancel each other for qi < qk < q j
1.

This garantees that no off-diagonal element outside the band is linked to the matrix ele-
ments inside the band. Therefore the Hamiltonian remains band-diagonal even during the
flow,

If hi, j(0) = 0 for
��qi − q j

��> M =⇒ hi, j(`) = 0 for
��qi − q j

��> M . (3.15)

We have not yet proved that the pc generator makes all off-diagnoal elements zero in the
limit ` → ∞. The derivative of the first r diagonal elements of the Hamiltonian H(`) is
given by

∂`

r∑

i=1

hi,i(`) = −2
r∑

i=1

∑

j>r

��hi, j(`)
��2 sign(q j − qi)< 0. (3.16)

If we suppose the Hamiltonian H is bounded from below, the quantity
∑r

i=1 hi,i(`) will be
bounded as well. Therefore, the right-hand side of Eq. (3.16) must vanish in the limit
`→∞ leading to

sign(q j − qi)
��hi, j(∞)

��2 = 0. (3.17)

This relation means that hi, j(∞) = 0 if i and j belong to different QP sectors. Thus, the final
effective Hamiltonian conserves the number of QPs in the system. Because the off-diagonal
elements tend to zero at large values of `, Eq. (3.14) implies that [Mie98, KU00]

sign(qi − q j)
�

hi,i(∞)− h j, j(∞)
�
> 0. (3.18)

The pc generator sort the eigen values according to the number of QPs.

The pc generator (3.13) in the operator representation reads

ηpc(`) =
∑

i, j=0

sign(i − j)Hi: j(`) (3.19)

where i and j now run over different QP blocks and Hi: j is the part of Hamiltonian which
creates i QPs and annihilates j QPs.

3.1.4 Reduced Generator

The pc generator makes the Hamiltonian block diagonal in the sense that the final effective
Hamiltonian conserves the number of QPs. If we are working in QP picture, the sectors with
a small number of QPs describe the low-lying excitation spectrum of the system. Therefore,

1We have assumed i < j.
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it is sufficient to decouple only the first few QP sectors from higher sectors in order to
describe the low-lying excitation spectrum. The reduced generator, which allows us to
decouple the first n quasiparticle sectors, reads [FDU10]

ηp:n(`) =

n∑

i=0

∑

j>n

�
H j:i(`)− Hi: j(`)

�
. (3.20)

In comparison to Eq. (3.19), it is clear that only terms acting on the first n QP sectors
contribute to the reduced generator (3.20). This generator is especially useful to describe
QP decay in the framework of CUT [FDU10]. While the pc generator sorts the eigen values
according to the number of QPs, the reduced generator allows, for example, the 1-QP
dispersion to decay into the 2-QP continuum [FDU10]. The band-diagonality will not be
preserved by the generator (3.20). However, it has the potential not only to avoid some
divergences that occur in the flow, but also to increase the speed of calculations because
less terms need to be considered as generator. The proof that the generator (3.20) vanishes
in the limit `→∞, and the details about its properties can be found in Ref. [FDU10].

3.2 The deepCUT method

In order to illustrate the deepCUT method, we assume that the initial Hamiltonian can be
decomposed into a local part (H0) and a nonlocal part (V )1

H = H0+ xV, (3.21)

where x is an expansion parameter. In the following, we derive the general shape of the
flow equations in the deepCUT framework. Next, we briefly discuss how to truncate these
flow equations based on powers of the expansion parameter x if the first few QP sectors are
targeted. With “targeted” sectors we mean the sectors which we are interested to calculate
their coefficients up to order n. Such a truncation scheme allows us to use simplification
rules which accelerate the speed of calculations. For the details about the truncation scheme
and the simplification rules, we refer to the original paper in Ref. [KDU12].

3.2.1 Flow Equations

To switch to the QP representation, the Hamiltonian (3.21) is written in terms of creation
and annihilation operators of H0 in second quantization formalism. In this representation,

1We assume these conditions to describe the deepCUT method in simple terms. However, the method
may work even if these conditions are not satisfied. See, for example, the application of the deepCUT to the
transverse field Ising model in Ref. [FU13]. Another example is the Hubbard model with a n.n. interaction.
In this case, both the Hubbard interaction and the n.n. interaction define the nonperturbative part and the
hopping term defines the perturbation. The possible application of the deepCUT method in momentum space
is also discussed, but this is beyond the scope of the present thesis.
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H0 counts the number of excitations present in the system1. For x = 0, these excitations are
the true QPs of the system and vacuum is the ground state. However, for any finite values
of x these QPs become dressed and the Hamiltonian (3.21) does not necessarily conserve
the number of these excitations.

The Hamiltonian (3.21) in QP representation is given as a sum of monomials {Ai} of
creation and annihilation operators. Each monomial describes a specific interaction in real
space and creates and annihilates a definite number of QPs. The transformed Hamiltonian
H(`) can then be expressed as

H(`) =
∑

i

hi(`)Ai, (3.22)

where the coefficients hi(`) carry the `-dependence of the Hamiltonian. Similarly, the pc
generator (3.19) and the reduced generator (3.20) can be written as

η(`) =
∑

i

ηi(`)Ai =:
∑

i

hi(`)η̂[Ai], (3.23)

where the superoperator η̂ defines how a given monomial enters the generator. By the
above representations (3.22) and (3.23) for the Hamiltonian and the generator, the flow
equations (3.2) read

∂`hi(`) =
∑

jk

Di jkh j(`)hk(`), (3.24)

where the contributions Di jk result from the expansion of the commutator in terms of the
monomials

[η̂[A j], Ak] =
∑

i

Di jkAi. (3.25)

The contributions Di jk are fractional numbers and depend on the algebra of the operators
and the structure of the lattice.

The solution of the flow equation (3.2) requires two major steps:

• Finding the contributions Di jk from Eq. (3.25).

• Solving the set of ordinary differential Eq. (3.24).

The first step is pure algebraic work which is already implemented in the framework of
self-similar CUT (sCUT) [Rei06, Duf10, Fis11]. When the contributions Di jk are calculated,
the integration in the second part allows us to obtain the coefficients {hi(∞)}. In principle,
however, the summation in Eq. (3.23) will contain an infinite number of monomials. Hence,
the number of monomials has to be restricted in practice by defining a systematic truncation
scheme for the flow equations.

1In the case that H0 is composed of two or more terms, such as the IHM (2.1), this nonperturbative part
of the Hamiltonian measures the local energy of the system.
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Figure 3.1: The generic algorithm for calculating the commutators between different gen-
erator η(m) and Hamiltonian H(m) blocks at order 4. The part H(m) (η(m)) is defined to
contain all the Hamiltonian (generator) monomials with minimal order m. The figure is
taken from Ref. [KDU12] where the reader can find further details.

3.2.2 Truncation Scheme

Let us at first illustrate how to truncate the flow equations in order to obtain the final
effective Hamiltonian as a series expansion in x up to order n. We append a minimal
order to each monomial. This is defined to be the order in which the monomial appears
for the first time during the calculations. Consequently, the Hamiltonian (3.22) and the
generator (3.23) can be classified into different blocks

H(`) =

n∑

m=0

H(m), (3.26a)

η(`) =

n∑

m=0

η(m), (3.26b)

where H(m) and η(m) involve all the monomials with the minimal order m. The calculations
of the commutators

�
η(p), H(q)

�
with p + q ≤ n provide the contributions Di jk which are

necessary for a perturbative analysis up to order n. The evaluation of the commutators
begins from the lowest orders and the newly generated monomials are added to the Hamil-
tonian (3.22). The procedure for n = 4 is sketched schematically in Fig. 3.1. This figure
is taken from Ref. [KDU12] where the reader can find the details of the generic algorithm.
With the contributions Di jk in hand, one can expand the prefactor hi(`) in powers of x and
integrate the flow equations (3.24) perturbatively, see Ref. [KDU12]. In the limit `→∞,
this leads to a series expansion up to order n for the prefactors of all the monomials present
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in the effective Hamiltonian (3.22).

Usually, we are not interested in calculating all the prefactors of the final effective
Hamiltonian up to order n. This is especially the case if we are working in QP repre-
sentations. The prefactors of identity and bilinear operators, for instance, are sufficient to
know the ground state energy and the 1-particle dispersion. This means that we need to
obtain just the prefactors of some targeted monomials up to order n. The other monomials
are relevant as far as they contribute to the targeted quantities in the hierarchy of flow
equations. In this way, depending on the generator, some monomials can be completely
neglected and some others need to be calculated only up to orders ≤ n.

The maximal order Omax(A) is defined as the maximal order in which we have to calcu-
late the monomial A in order to find the targeted quantities up to order n. The maximal
orders of monomials can be determined from their minimal orders and the set of flow
equations in an iterative way starting from the condition [KDU12]

Omax(Ai) =

(
n if Ai is targeted,

0 otherwise.
(3.27)

For further details of the notion of the maximal order and how to determine it we refer to
Ref. [KDU12] where concrete examples are provided. When the maximal orders are found,
the monomials Ai with

Omax(Ai)< Omin(Ai) (3.28)

can be completely discarded causing no effect on the targeted quantities up to order n. The
contributions Di jk with

Omax(Ai)< Omin(A j) +Omin(Ak) (3.29)

are also irrelevant and can be ignored [KDU12]. In this ways, the flow equations (3.24) re-
duces to a unique set of differential equations which are necessary and sufficient to describe
the targeted quantities up to order n.

The perturbative integration of the reduced flow equations in the limit `→∞ leads to a
series expansion in x up to order n for the targeted quantities. This introduces a perturba-
tive method that, in contrast to the pCUT [KU00, KSU03a], can work also for Hamiltonians
whose non-perturbative part has a non-equidistant spectrum. This method, which is a gen-
eralization of the pCUT method, is called enhanced perturbative CUT (epCUT) [KDU12].

The numerical integration of the reduced flow equations, however, will lead to renor-

malized values for targeted quantities. This renormalization approach is called directly

evaluated epCUT (deepCUT). Whenever the deepCUT results are presented, two facts have
to be specified: (i) The order of calculations and (ii) the targeted quantities. In this way,
we define a unique scheme for truncating the flow equations1. The deepCUT method has

1We estimate the minimal orders of monomials during the algebraic part of calculations. The real minimal
orders are specified at the end of calculations when the flow equations are integrated. In some situations,
it is possible that the minimal order of a monomial is estimated lower than its real value. This can happen
due to some symmetries between different prefactors which cancel each other in the flow equations. This
enlarges the set of flow equations, but will not have any effect on perturbative results. It affects, however, the
deepCUT results, but within the range of accuracy of the method.
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been successfully applied to the transverse field Ising model leading to reliable results for
multiparticle excitation spectra and dynamical correlation functions [FU13].

3.2.3 Simplification Rules

The possibility to reduce the flow equations shows that not all the monomials appearing in
the algebraic calculations have to be tracked. The terms which satisfy the condition (3.28)
can safely be ignored leading to a substantive acceleration of the algorithm. Such an elimi-
nation, however, is not possible because the maximal orders are unknown during the alge-
braic step [KDU12].

The simplification rules (SRs) help us to find an upper bound for maximal orders of
monomials during the algebraic part of the calculations [KDU12]. Such an estimate is
based on the shape of the generator and on the structure of the monomials. Two kinds of
SRs are introduced: A-posteriori and a-priori [KDU12]. The a-posteriori SRs are applied
after calculating a commutator to the newly appeared monomials. It checks whether a
monomial needs to be tracked or not by considering the criterion (3.28). The a-priori
SRs are applied before a commutator is calculated. This kind of SR evaluates whether a
commutator will result in any monomial which may pass the condition (3.28). The a-priori
SRs prevent unnecessary commutators to be computed increasing the speed of algorithm.
In practice, the a-posteriori and a-priori SRs are used together in order to reach the highest
efficiency [KDU12]. In this thesis, we will just describe the SRs that we have implemented
for the model under consideration. For the general aspects of SRs, we refer the reader to
Ref. [KDU12].

3.2.4 Residual Off-Diagonality

In any CUT approach, there can occur some divergency in the flow equations. For the
pc generator, this especially happens if the states with higher QP number lie energetically
lower than the states with lower number of QPs.

The residual off-diagonality (ROD) is defined to measure the convergence of the flow
equations. It reads

ROD(`) =
r∑

i

|ηi(`)|2, (3.30)

where the sum runs over all the monomials that appear in the generator. The coefficient
ηi(`) is the prefactor of the monomial Ai as is defined in Eq. (3.23). In the deepCUT
analysis, the ROD can diverge due to the energetic overlap of different QP continua. In this
case, decoupling sectors with lower number of QPs only may lead to convergence of the
flow as it will be seen in the following chapters.
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3.3 Few-Particle Problems

The idea in the CUT-based methods is to map a many-particle Hamiltonian to a few-particle
problem by working in a suitable QP representation. At least the ground state in the final
effective Hamiltonian is decoupled from higher QP sectors. Hence, the ground state coin-
cides with the vacuum of QPs and we need to analyze the first few-QP sectors in order to
calculate the low-energy excitation spectrum. We treat both fermionic and bosonic systems
which contain at most four QPs. In this way, we have generalized the approach introduced
in Ref. [FDU10] for bosonic problems with at most three particles.

Let us consider a general Hamiltonian of the form

H = H0:0+ H1:1+ H2:2+ H3:3+ H4:4

+(H2:1+ h.c.) + (H3:1+ h.c.) + (H4:1+ h.c.)

+(H3:2+ h.c.) + (H4:2+ h.c.) + (H4:3+ h.c.), (3.31)

where Hn:m creates n and annihilates m number of QPs. We suppose that the ground state is
already decoupled: There is no off-diagonal interaction linking the ground state to higher-
QP states. If some additional interactions exist which act on higher QP sectors, they will be
irrelevant in our analysis. Because we are going to consider a Hilbert space with at most
four QPs.

3.3.1 Basis States

Because the ground state is already decoupled, it is possible to work directly in the thermo-
dynamic limit. The excitations above the vacuum are spanned by the states with specific
total momentum K , total spin S, and total magnetic number M

|K〉S,M
=

1
p

L

∑

r

eiK r |r〉S,M , (3.32a)

|K; d〉S,M
=

1
p

L

∑

r

eiK(r+ d

2 ) |r; r+d〉S,M , (3.32b)

|K; d1; d2〉S,M
α
=

1
p

L

∑

r

e
iK
�

r+
2d1+d2

3

�

|r; r+d1; r+d12〉S,M
α

, (3.32c)

|K; d1; d2; d3〉S,M
α
=

1
p

L

∑

r

e
iK
�

r+
3d1+2d2+d3

4

�

|r; r+d1; r+d12; r+d123〉S,M
α

, (3.32d)

where d1, d2, and d3 are the distances between the QPs, L is the lattice size, and the
summation r runs over the lattice sites. We define d12 := d1 + d2 and d123 := d12 + d3.
The parameter α is an additional quantum number that specifies the spin configuration.
It appears because there can be more than one spin configuration with specific total spin
and total magnetic numbers. For instance, if all QPs are spin-1/2 fermions, there are two
different spin configurations for the 3-QP states with total spin S = 1

2
. For the 4-QP states
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with total spin S = 0 and S = 1, there are 2 and 3 different choices for the quantum number
α, respectively.

In general, QPs in Eqs.(3.32) can be either fermionic or bosonic. We always deal with
hardcore particles, i.e. d 6= 0.

3.3.2 Hamiltonian Matrix

The Hamiltonian matrix is constructed using the basis states (3.32) for fixed values of K ,
S, and M . Each element of the matrix will be labeled by the number of QPs1, the distances
between the QPs2, and some additional quantum numbers such as α. The major step is to
calculate the action of different parts of the Hamiltonian (3.31) on the 1-, 2-, 3-, and 4-QP
states analytically.

The effect of H1:1 on the 1-QP state (3.32a) is given by

H1:1 |K ,σ〉=
∑

n

∑

β

eiKn
β

σ

h
C

1
1

in

|K ,β〉 (3.33)

with the definition
β

σ

h
C

1
1

in

= 〈r−n,β |H1:1 |r,σ〉 . (3.34)

If the 1-particle sector is decoupled from the remaining Hilbert space, the 1-particle disper-
sion ω(k) is given by

ω(k) = c0+

dmax∑

n>0

cn cos(nk), (3.35)

where we have assumed
β

σ

h
C

1
1

in

= δσβ cn and cn = c−n. One can see immediately that a

linear dispersion can never be captured by the relation (3.35) for dmax <∞.3

Applying H1:1 to the 2-QP states, we obtain

H1:1 |K ,σ1; d,σ2〉= +
∑

n>−d

∑

β1

eiK n

2

β1

σ1

h
C

1
1

in

|K ,β1;+d + n,σ2〉

−
∑

n<−d

∑

β1

eiK n

2

β1

σ1

h
C

1
1

in

|K ,σ2;−d − n,β1〉

+
∑

n<d

∑

β2

eiK n

2

β2

σ2

h
C

1
1

in

|K ,σ1;+d − n,β2〉

1In the special case that there is no off-diagonal interaction between different QP sectors, the number of
QPs will also be a constant of motion.

2The distances between the QPs have to be restricted in order to limit the size of the Hilbert space to be
studied numerically.

3A simple example is the gapless spinon dispersion of the 1D Heisenberg model ω(k) = π

2
sin(k) which

behaves linearly near the edge of BZ.
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Figure 3.2: Schematic representation of the application of H1:1 ≡
∑

i, j g
†
j gi on the 3-QP

state |K; d1; d2〉 defined in (3.32c). There are three different possibilities for the operator
gi to annihilate a QP and the operator g

†
j can create a QP in three distinct positions: To

the left, between, and to the right of the two QPs already present. This leads to 9 different
contributions.

−
∑

n>d

∑

β2

eiK n

2

β2

σ2

h
C

1
1

in

|K ,β2;−d + n,σ1〉 , (3.36)

where the minus signs in front of the prefactors stem from the assumption that both QPs
are fermions. These minus signs have to be omitted if the QPs are bosons. Similarly, for
H2:2 acting on the 2-QP states we have

H2:2 |K ,σ1; d,σ2〉= −
∑

n

∑

d ′>0

∑

β1β2

e
iK
�

n+ d−d′
2

�
β1β2

σ1σ2

h
C

2
2

ind ′

d
|K ,β1; d ′,β2〉 , (3.37)

with the definition

β1β2

σ1σ2

h
C

2
2

ind ′

d
= 〈r−n,β1; r−n+d ′,β2|H2:2 |r,σ1; r + d,σ2〉 . (3.38)

In order to fix the fermionic sign in the definition (3.38) it is assumed that in each monomial
of H2:2 the creation operators are placed in front of the annihilation operators and the
creation and the annihilation parts are separately site-ordered1. Eqs. (3.36) and (3.37) are
enough to describe the 2-QP sector in the absence of off-diagonal interactions. One just
needs to include the appropriate Clebsch-Gordan coefficients and to set up the Hamiltonian
matrix by varying the distance between QPs.

1With “site-ordered” we mean the operators are sorted according to their positions in the lattice.
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The effect of H1:1 and H2:2 on the 2-QP state is evaluated in Eqs. (3.36) and (3.37). The
effect of H1:1 on the 2-QP state has 4 contributions, while it has 9 and 16 contributions for
the 3- and the 4-QP states, respectively. The application of H2:2 on the 3- and the 4-QP states
leads to 9 and 36 different contributions. The numbers of contributions can be understood
easily. For instance, H1:1 has three different possibilities to annihilate a QP when it acts on
a 3-QP state and it can also create a QP in three distinct positions (to the left, between,
and to the right of the two QPs already present) leading to 9 contributions. The process is
schematically shown in Fig. 3.2.

The full expressions for the action of different parts of the Hamiltonian (3.31) on the
states (3.32) are calculated and reported in Appendix A. These expressions are general and
can be used for all hardcore fermionic or bosonic problems. However, one has to omit all
the fermionic minus signs in front of the prefactors for bosonic systems. In the next two
chapters, we use these relations to analyze the effective Hamiltonians derived by various
generators applying the deepCUT method.

3.4 Chapter Summary

This chapter reviews some methodological aspects of the present thesis. We begin with
some basic concepts of the continuous unitary transformation (CUT) approach and dis-
cuss some generators of the flow such as the Wegner generator, the particle-conserving
generator, and the reduced generator. The directly evaluated enhanced perturbative CUT
(deepCUT) method is considered as a renormalization technique to derive effective Hamil-
tonians [KDU12]. The deepCUT method introduces a systematic way of truncating the flow
equations based on the powers of an expansion parameter. The final effective Hamiltonians
obtained from the deepCUT are analyzed by an exact diagonalization (ED) technique which
is valid in the thermodynamic limit [FDU10]. This ED is illustrated in the last section 3.3
of this chapter and it is employed in different parts of this thesis to calculate the excitation
spectrum of the ionic Hubbard model.
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Chapter 4

Band Insulator Limit

In this chapter, the phase transitions of the 1D IHM and its excitation spectrum in the BI
phase are investigated in the vicinity of the transition point Uc1 where the transition from
BI phase to SDI phase occurs. We use the deepCUT method [KDU12] in two consecutive
steps to derive simpler effective Hamiltonians which facilitate a quantitative analysis of the
dynamics of the excitations.

In the first step, we employ the deepCUT method to obtain an effective Hamiltonian
describing the low-energy physics of the system for δ ≈ U � t. This corresponds to elimi-
nating doubly occupied states on even sites and empty states on odd sites. This reduces the
relevant energy scale from U to t. The dimension of the local Hilbert space is also reduced
from four to three.

In the next step, the resulting low-energy Hamiltonian is mapped to various effective
Hamiltonians using various generators in the deepCUT method. In this step, the processes
creating particle-hole pairs from the vacuum or in addition to existing fermionic excitations
are eliminated. The 1-particle dispersion and the dispersion of 2-particle bound states are
obtained by the deepCUT in the BI phase. In addition, we aim at improving the accuracy
of the results by analyzing the effective Hamiltonians obtained from the deepCUT by using
the ED techniques which is valid in the thermodynamic limit and described in the previous
chapter. For the charge gap, the exciton gap, and the spin gap, we compare our results to
the extrapolated DMRG results of Ref. [MMNS04].

Finally, we use a BCS-type mean-field theory to describe the phase beyond the transition
point Uc1 which is signaled by vanishing the exciton gap. We can show that the SDI phase
is indeed stable for U > Uc1.

The chapter is organized as follows: In the next section 4.1, we present the results of
the application of deepCUT alone. In Sect. 4.2, the results obtained by a combination of
deepCUT and ED are presented. The last-but-one section 4.3 is devoted to the analysis of
the effective Hamiltonian on the mean-field level. Finally, the chapter is concluded in the
last section.
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4.1 A Pure deepCUT Analysis

In this section, the low-lying excitation spectrum of the IHM including the 1-QP dispersion,
the 2-QP continuum, and possible singlet and triplet bound states in the 2-QP channel are
discussed using the deepCUT. The results for the charge gap, the exciton gap, and the spin
gap are compared to the DMRG results obtained by Manmana et. al. [MMNS04].

4.1.1 Preliminary Considerations

To apply the deepCUT method in the BI phase of the IHM, we put the local staggered
potential and the Hubbard interaction in the IHM (2.1) into the local Hamiltonian H0 and
consider the hopping term as perturbation V . The unperturbed Hamiltonian H0 has a
unique ground state only for U < δ. The energy gap for inserting a single fermion takes
the value δ − U so that the dimensionless expansion parameter t/(δ − U) appears in the
series expansion. In the limit U → δ, any purely perturbative analysis breaks down. Below,
however, we will show that in the deepCUT approach the on-site energy is renormalized to
larger values so that the BI phase is stabilized beyond U = δ and one can obtain Heff for
U > δ as well.

In the ground state of H0 all odd sites are occupied and all even sites are empty. An elec-
tron hop from an odd site to an even site excites the system, see Fig. 4.1. In order to make
the fermionic vacuum the ground state of H0, we apply an electron-hole transformation to
the odd sites. To be specific, we define

ci,σ = h
†
i,σ. (4.1)

Due to this transformation the spin operators on odd sites change

Sz
i
=
∑

σ

σc
†
i,σci,σ = −

∑

σ

σh
†
i,σhi,σ := −S̃z

i
, (4.2a)

S+
i
= c

†
i,↑ci,↓ = −h

†
i,↓hi,↑ := −S̃−

i
, (4.2b)

S−
i
= c

†
i,↓ci,↑ = −h

†
i,↑hi,↓ := −S̃+

i
, (4.2c)

and the spin operators on even sites remain unchanged. Hence the spin states that include
a mixture of electrons and holes are different from the usual definitions. For instance, the
singlet state of an electron-hole pair on adjacent sites reads

|e− h〉S=0 =
1
p

2
(| ↑↑〉+ | ↓↓〉) , (4.3)

where on an even site the arrow refers to the spin of an electron and on an odd site it refers
to the spin of a hole. This point must be kept in mind in the considerations of this chapter.
Although the electron-hole transformation (4.1) causes some inadequacies, it allows us
to make our simplification rules spin-dependent increasing the efficiency of the deepCUT
algorithm.
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Figure 4.1: Schematic representation of excitations of the ionic Hubbard model in the
band insulator phase. In the absence of hopping terms, the ground state for U < δ is
characterized by occupied odd sites and empty even sites. A pair of excitations appears
when an electron hops from an odd to an even site.

In order to unify all electron and hole operators, we define the fermionic operator

fi,σ =

(
ci,σ for i ∈ even

hi,σ for i ∈ odd
. (4.4)

According to these definitions the Hamiltonian (2.1) reads

H =
U−2δ

4

∑

i

1 +
δ− U

2

∑

i,σ

f
†

i,σ fi,σ

+ U
∑

i

f
†

i,↑ f
†

i,↓ fi,↓ fi,↑

+ t
∑

i,σ

(−1)i( f †
i,σ f

†
i+1,σ + h.c.), (4.5)

it still has two sites per unit cell as the original Hamiltonian (2.1).

It is possible to restore full translational symmetry by applying a suitable local transfor-
mation on the fermionic operators

f
†
j,σ −→ e−i π

4 ei π
2

j f
†
j,σ. (4.6)

This transformation leaves the first three terms in Eq. (4.5) unchanged and eliminates the
prefactor (−1)i from the last term. Thereby, we reach

H =
U−2δ

4

∑

i

1 +
δ− U

2

∑

i,σ

f
†

i,σ fi,σ

+ U
∑

i

f
†

i,↑ f
†

i,↓ fi,↓ fi,↑

+ t
∑

i,σ

( f
†

i,σ f
†

i+1,σ + h.c.). (4.7)

The last term of this Hamiltonian is a Bogoliubov term which creates and annihilates a pair
of QPs (originally an electron and a hole) with total spin zero on neighboring sites. In the
rest of this chapter, the deepCUT method will be applied to this Hamiltonian.
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The conservation of the original electron number in the representation (4.7) is not man-
ifest. Thus we write down the operator of the total electron number bN in terms of f -
operators

bN :=
∑

i,σ

c
†
i,σci,σ = L +

∑

i,σ

(−1)i f †
i,σ fi,σ, (4.8)

where L is the number of sites in the chain. The difference between the number of QPs
on even sites and on odd sites is a constant of motion. Thus the QPs are always created or
annihilated in pairs with an odd distance between them.

4.1.2 Low-Energy Effective Hamiltonian

The interesting physics of the IHM happens at large values of the Hubbard interaction U

approaching the first transition at Uc1. We focus on the case U ,δ� t where the states with
finite number of double occupancies (DOs) in the Hamiltonian (4.7) lie very high in energy.
Thus the low-energy physics of the Hamiltonian (4.7) is governed by the Hilbert subspace
without DOs. But the subspaces with and without DOs are linked by the Bogoliubov term.

In a first step, we decouple the low- and the high-energy parts of the Hilbert space. The
same idea was first realized by Stein perturbatively for the Hubbard model on the square
lattice [Ste97]. Extended calculations using self-similar CUTs (sCUT) were carried out at
and away from half-filling [RMHU04, HDU10] to investigate the range of validity of the
mapping from the Hubbard model to the t-J model. High-order perturbative calculations
for the Hubbard model on the triangular lattice at half-filling have been performed by Yang
and co-workers [YLMS10].

In the fermionic representation (4.7) of the IHM it is not evident how many DOs are
created or annihilated by a term because this depends on the state to which the term is
applied. Thus, we introduce a representation (Hubbard operators [Hub64]) of hard-core
particles defined by

g
†
i,σ := |σ〉i i

〈0|= (1− ni,σ̄) f
†

i,σ (4.9a)

g
†
i,d := |↑↓〉i i

〈0|= f
†

i,↑ f
†

i,↓ (4.9b)

where σ̄ = −σ. The fermionic hard-core operator g
†
i,σ creates a fermion with spin σ at site

i from the vacuum and the bosonic operator g
†
i,d creates a DO at site i from the vacuum.

They obey the hard-core (anti-)commutation relation

h
gi,α, g

†
j,β

i
±
= δi, j


δα,β ± g

†
i,β gi,α−δα,β

∑

γ=↑,↓,d
g

†
i,γg j,γ


 (4.10)

where the anticommutation [ , ]+ is to be used if both operators are fermionic, otherwise
the commutation [ , ]− is to be used. The above representation can be reversed to express
the f -operators in terms of the g-operators

f
†

i,σ = g
†
i,σ + sign(σ)g†

i,d gi,σ̄. (4.11)
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Figure 4.2: Schematic representation of the application of the generator D :0 to the initial
Hamiltonian (4.12). Each part Hi: j of the Hamiltonian is depicted by a block; the notation
i : j stands for the number of DOs which is first annihilated ( j) and then created (i). The
blank blocks indicate the absence of the correspond interaction in the Hamiltonian. In
the final effective Hamiltonian the sector with zero number of DOs is decoupled and the
coefficients in other blocks are renormalized as indicated by the change of color.

The IHM (4.7) in terms of the g-operators can be split into different parts which create
and annihilate a specific number of DOs. Explicitly one has

H = H0:0+ H1:1+ H1:0+ H0:1+ H2:0+ H0:2, (4.12)

where Hi: j creates i and annihilates j DOs. These parts are given by

H0:0 =
U−2δ

4

∑

i

1+
δ−U

2

∑

i,σ

g
†
i,σgi,σ + t

∑

i,σ

(g
†
i,σg

†
i+1,σ + h.c.), (4.13a)

H1:1 = δ
∑

i

g
†
i,d g

i,d , (4.13b)

H1:0 = t
∑

i,σ

sign(σ)(g†
i,d gi,σ̄g

†
i+1,σ + g

†
i,σg

†
i+1,d gi+1,σ̄) = (H0:1)

†, (4.13c)

H2:0 = t
∑

i,σ

g
†
i,d gi,σg

†
i+1,d gi+1,σ = (H0:2)

†. (4.13d)

These expressions indicate that for U ≈ δ � t, the low-energy physics takes place in the
subspace without DOs. The reduced generator ηD:0 is applied to (4.12) to disentangle the
subspace without any DOs from the remaining Hilbert space. The process is schematically
shown in Fig. 4.2. The final low-energy effective Hamiltonian acts on a 3-dimensional local
Hilbert space (no fermion present or an ↑ or ↓ fermion is present). The fermionic hard-core
QPs can hop and they interact with one another. In Table 4.1, the relevant monomials A j up
to the minimal order Omin ≤ 2 are given. Together with the prefactors h j(∞) the monomials
define the low-energy effective Hamiltonian after the first CUT

Heff
0:0 =

∑

j=0

h j(∞)A j. (4.14)
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j A j Omin

0
∑

i

1 0

1
∑
i,σ

g
†
i,σgi,σ 0

2
∑
i,σ

�
g

†
i,σg

†
i+1,σ + h.c.

�
1

3
∑
i,σ

g
†
i,σgi,σg

†
i+1,σgi+1,σ 2

4
∑
i,σ

g
†
i,σgi,σg

†
i+1,σ̄gi+1,σ̄ 2

5
∑
i,σ

g
†
i,σgi,σ̄g

†
i+1,σgi+1,σ̄ 2

6
∑
i,σ

�
g

†
i,σg

†
i+1,σ̄gi+1,σ̄gi+2,σ + h.c.

�
2

7
∑
i,σ

�
g

†
i,σg

†
i+1,σgi+1,σ̄gi+2,σ̄ + h.c.

�
2

Table 4.1: The operators A j up to the minimal order Omin = 2 present in the low-energy
effective Hamiltonian (4.14). Note that we combined certain monomials which must have
the same prefactor due to symmetries or hermitian conjugation.

In order to verify the convergence of the results, the prefactors of the monomials A1,
A2, and A3 are plotted versus U in panels (a), (b), and (c) of Fig. 4.3, respectively. In each
panel, the results for the hopping parameters t = 0.05δ (solid line), t = 0.10δ (dashed
line), and t = 0.20δ (dotted-dashed line) in three different orders 2 (green), 4 (blue), and
6 (red) are depicted. For t = 0.05δ the results in the different orders agree nicely for all the
three prefactors. Fig. 4.3 also shows that for t = 0.10δ, order 4 and 6 still coincide. But for
t = 0.20δ we need to go to higher orders to obtain the effective Hamiltonian quantitatively.
In the rest of this chapter, we fix the order of deepCUT in this first step to 4 in the hopping
parameter t. This appears to be sufficient as long as we focus on low values of t.

The underlying idea to eliminate processes changing the number of DOs is similar to
the one used in the well-known derivation of the t-J model from the Hubbard model
[HL67, CSO77, Hir85, Faz99]. We stress that the obtained effective Hamiltonian here is
a renormalized one and that it can be systematically improved by including higher orders in
t/δ, see also Refs. [RMHU04, HDU10, YLMS10].

In Ref. [TNB09], Tincani et al. investigated the IHM by restricting the local Hilbert space
to the three states without DOs. They deal directly with the Hamiltonian (4.13a) omitting
the other processes completely. Their findings for the transition points tend towards the
results of the IHM in the limit U ,δ� t [TNB09]. In chapter 5, we will restrict the Hilbert
space in the same way and use the dimer limit as the starting point in the deepCUT to study
the excitation spectrum of the IHM in different phases.
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Figure 4.3: The coefficiens h1(∞)/δ (a), h2(∞)/δ (b), and h3(∞)/δ (c) defined in
Eq. (4.14) plotted versus the Hubbard interaction U/δ. The results are obtained by ap-
plying the D : 0 generator to the Hamiltonian (4.13). Each panel includes the results for
the hopping parameters t = 0.05δ (solid line), t = 0.10δ (dashed line), and t = 0.20δ
(dotted-dashed line) in three diferent orders 2 (green), 4 (blue), and 6 (red).

4.1.3 The 1-Quasiparticle Sector

The effective Hamiltonian derived in the previous subsection is still complicated. It includes
various interactions between different QP sectors. These QPs are created and annihilated by
the g-operators of spin ↑ and ↓. To determine the dispersion of a single quasiparticle (1QP),
we need to decouple at least the zero- and 1-QP sectors from the sectors with more QPs. The
reduced generator ηg:1 is required for this goal. Various symmetries and simplification rules
are used in order to decrease the runtime and the memory requirement in the deepCUT
algorithm so that the high orders can be reached.

We use the symmetries of reflection, spin flip, and the self-adjointness of the Hamil-
tonian to reduce the number of representative terms by about a factor 8. The various
simplification rules we use are analogous to those introduced in the first paper on deepCUT
[KDU12]. In addition, we exploit the fact that the Bogoliubov term in the low-energy effec-
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Figure 4.4: The 1-QP dispersion of the IHM for t = 0.05δ and U = 1.02δ (left panel) and
U = 1.06δ (right panel). The 1-QP dispersion is obtained by a successive application of
the generators D : 0 and g : 1, denoted by D : 0+ g : 1. The order in D : 0 step is fixed to
4 and the step g : 1 is realized in order 12 (dotted-dashed line), 16 (solid line), and 20
(dashed line). The deviations between different orders are maximum close to K = π

2
. In

addition, the dispersion resulting from the combination of the deepCUT with ED, denoted
D : 0+ g : 0+ED, see section 4.2, is depicted. The largest deviation between the two
approaches occurs around K = π

2
, i.e., at the maximum value of the dispersion.

tive Hamiltonian (4.14) creates and annihilates two QPs with the same spin. This allows us
to make the simplification rules spin-dependent. For details about the implementation of
the simplification rules we refer the reader to the Appendix B.1. In this way, we were able
to reach order 20 in the hopping parameter t in the calculations for the 1QP dispersion. Up
to this order no divergence in the numeric evaluation of the flow equations occurred in the
investigated parameter regime.

The final effective Hamiltonian is translationally invariant so that the 1-QP sector is
diagonalized by a Fourier transformation. The resulting 1-QP dispersion reads

ω(k) = h0+ 2
n∑

d=1

h2n cos(2nk) (4.15)

where the prefactors hd is the hopping element from site i to i± d. Only hopping elements
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over even distances occur because odd hops would violate the conservation of the total par-
ticle number of original particles, see Eq. (4.8). All bilinear terms acting on odd distances
are of Bogoliubov type.

The 1-QP dispersion (4.15) resulting from the consecutive application of the generators
D : 0 and g : 1, denoted by D : 0+ g : 1, is depicted in Fig. 4.4. The shorthand D : 0+ g : 1
stands for a first application by applying the generator ηD:0. Then, the resulting effective
Hamiltonian is block-diagonalized by applying the generator ηg:1. The left panel of Fig. 4.4
is for U = 1.02δ and the right panel is for U = 1.06δ. The hopping prefactor t in Eq. (4.7)
is fixed to 0.05δ. The 1-QP dispersion is presented for order 12 (dotted-dashed line), 16
(solid line), and 20 (dashed line) in the hopping prefactor t.

The left panel in Fig. 4.4 shows that the results of different orders 12, 16, and 20
coincide accurately in the whole range of momenta 0 ≤ K < π demonstrating a good
convergence of the deepCUT method. The largest deviation occurs around the momentum
K = π

2
where the dispersion is maximum as shown in the inset.

The convergence for increasing order is worse at U = 1.06δ because we approach the
transition point, Uc1 ≈ 1.07δ. Again, the largest deviation between different orders occurs
near the total momentum K = π

2
. The 1-QP dispersion ω(k) shows a tendency to decrease

on increasing order of calculations.

The charge gap∆c is defined as the energy necessary to add an electron plus the energy
for taking an electron from the system, see Eq. (2.2). For our electron-hole symmetric
Hamiltonian (2.1), it is twice the minimum of the 1-QP dispersion ∆c = 2ωmin.

The charge gap for different orders of the hopping prefactor t is plotted in the left panel
of Fig. 4.5 as function of the Hubbard interaction U . The deepCUT results extrapolated by
a linear fit in 1/order to infinite order are also depicted. The DMRG results, rescaled to the
present units, are shown for comparison [MMNS04]. Data is given up to U = 1.08δ because
around this point the phase transition to the SDI takes place (see next subsection) and the
QP picture breaks down. Fig. 4.5 shows that the results of the deepCUT at high orders
coincide very well for U < 1.00δ. For U > 1.00δ, especially close to the transition point,
the different orders deviate indicating a poorer convergence. The difference between the
extrapolated deepCUT results and the DMRG results is about 0.002δ. We draw the reader’s
attention to the accuracy of such data. The energy scale of the initial model before the
renormalizing unitary transformations is U + δ ≈ 2δ so that the transformations are still
precise on energy scales reduced by three orders of magnitude.

In the right panel of Fig. 4.5, the charge gap versus the inverse order is displayed for
various values of U . The charge gap decreases on increasing order. The deepCUT results
are extrapolated to infinite order by a linear fit to the last four points. This plot illustrates
how the deepCUT calculations converge as function of the order in the hopping t. The
deepCUT method as used in the present work is a renormalizing approach based on a
truncation in real space. This means that processes are tracked only up to a certain range
in real space. This range is determined by the order of the calculations interpreted as the
maximum number of hops on the lattice. Thus it is clear that the approach as presented
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Figure 4.5: The charge gap of the ionic Hubbard model for the hopping parameter
t = 0.05δ. Left panel: The charge gap as a function of U/δ in various orders. The
deepCUT results extrapolated to infinite order are also depicted. The extrapolated DMRG
results [MMNS04] are shown for comparison. The deviation in our analysis at finite orders
becomes large close to the transition point, Uc1 = 1.07δ. The difference between extrap-
olated deepCUT results and the extrapolated DMRG results is about 0.002δ. Right panel:
The charge gap versus the inverse order for various values of the Hubbard interaction U .
The deepCUT results are extrapolated to infinite order by a linear fit to the last four points
in 1/order.

here runs into difficulties upon approaching continuous phase transitions where long-range
processes become essential due to diverging correlation length.

4.1.4 The 2-Quasiparticle Sector

In the framework of CUTs, the treatment of sectors with higher number of QPs is also
possible [KU00, WGN+01, KSGU01, KSU03b, SU05, FDU10, KDU12]. The 2-QP sector
can be decoupled by using the reduced generator ηg:2. This generator yields an effective
Hamiltonian that can be diagonalized for each combination of the total momentum K , total
spin S, and total magnetic quantum number M . The 2-QP states with fixed K , S, and M is
given in Eq. (3.32b). The distance d between the two QPs takes only positive values because
the two constituting fermions are indistinguishable after the particle-hole transformation.
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The Hamiltonian matrix in the 2-QP sector is composed of three different submatrices
referring to different total charge. Both QPs can be original electrons, or holes, or one is
an electron and the other a hole. Here we refer to the fermions before the particle-hole
transformations. If the 2-QP state (3.32b) contains only odd distances d it consists of an
electron and a hole. If the 2-QP state is made of two original electrons or two holes, the
distances between them are even, cf. Eq. (4.8). Here we focus on the case of 2-QP states
with one electron and one hole and discuss the possible triplet and singlet bound states.

The sector with two holes (or two electrons) is also very interesting in the context of
superconductivity. A recent investigation of the IHM including NNN hopping terms on the
honeycomb lattice found evidence for superconducting behavior upon hole doping [WI13].
A dynamic mean-field theory study of the model also indicates an interesting half-metallic
behavior upon doping away from half-filling [GKR14]. But these issues are beyond the
scope of the present thesis.

The Hamiltonian matrix can be constructed by applying the Hamiltonian parts H1:1

and H2:2 to the state |K ,σ1; d,σ2〉. These actions are already computed and reported in
Eqs. (3.36) and (3.37). The diagonalization of the Hamiltonian matrix in the singlet and
the triplet channels provides information of the eigenvalues in the 2-QP sector.

The low-lying excitation spectra for U = 1.02δ and U = 1.06δ are depicted in the left
and in the right panel of Fig. 4.6, respectively. The hopping t is fixed to 0.05δ. The order of
the second CUT is 12. We cannot go beyond this order because the flow equations for the
2-QP sector do not converge in higher orders. As can be seen in the right panel, the 2-QP
continuum lies within the 3-QP continuum. The lower edge of the 4-QP continuum (not
shown) lies also close in energy to the lower edge of 2-QP continuum. This large overlap
between continua of different number of QPs is the major reason of divergence of the flow
equations [FDU10].

For both values of U in Fig. 4.6 there are two singlet and one triplet bound states.
The singlet bound modes occur only near the total momentum K = π and around K = π

2
.

The triplet bound mode becomes more and more symmetric about K = π

2
as the Hubbard

interaction U is increased and approaches the transition point Uc1 ≈ 1.07δ. We attribute
the wiggling of the singlet mode for U = 1.06δ around the total momentum K = π

2
to the

truncation of the flow equations. For U = 1.06δ, the lowest excited state is the singlet
bound state that appears at the total momentum K = π. This mode becomes soft, i.e, its
energy vanishes, upon increasing the Hubbard interaction further indicating the first phase
transition at Uc1 from the BI to the SDI phase.

In our formalism, the exciton gap (2.3) is given by the lowest eigenvalue of the singlet
channel of the 2-QP sector. The exciton gap is plotted versus the interaction U in Fig. 4.7
for different orders. Due to the divergence of the flow equations no values are reported in
order 10 for U > 1.04δ. For the same reason, orders higher than 12 were not accessible.
The extrapolated DMRG results extracted from Ref. [MMNS04] and rescaled to the present
units are also shown. The deepCUT results at high orders are very close to the DMRG
results. The DMRG prediction of the transition point is 1.069δ. In our analysis in order
12 the exciton gap vanishes at Uc = 1.072δ. The deepCUT results for the exciton gap
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Figure 4.6: Low-lying excitation spectrum including 1-quasiparticle dispersion (solid line),
2-quasiparticle and 3-quasiparticle continuum (colored regions), singlet (dashed line) and
triplet (dotted-dashed line) bound states. The results are obtained by consecutive applica-
tion of the generators D : 0 and g : 2. The order of the transformation for D : 0 is 4 and for
g :2 it is 12 which is the highest converging order. The hopping element is t = 0.05δ. The
Hubbard interaction U is fixed to 1.02δ for the left panel and to U = 1.06δ for the right
panel. There are two singlet bound states near the total momentum K = π and around
K = π

2
. The triplet bound state is almost symmetric around K = π

2
and exists in the whole

BZ. For U = 1.06δ, the 2-quasiparticle continuum lies completely within the 3-quasiparticle
continuum.

∆e converge better upon increasing order than the deepCUT results for the charge gap ∆c

shown in Fig. 4.5. We attribute this to the larger separation in energy from the closest
continuum.

We studied the energy difference between the spin gap and the charge gap. This equals
the binding energy of the triplet bound state at total momentum K = π, see Fig. 4.6. While
this binding energy is finite in any finite order, it shows a tendency to vanish for U ≤ Uc1

upon increasing the order of calculations. The difference between the charge gap and the
spin gap is plotted in Fig. 4.8 versus the Hubbard interaction U . The hopping is fixed to
t = 0.05δ in this figure. These findings are to be compared to previous DMRG data. Takada
and Kido extrapolated the DMRG results to infinite system size and deduced that the spin
gap and charge gap become different before the first transition point Uc1 [TK01]. But,
the equality of spin and charge gaps up to the first transition point is supported by other
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orders. The hopping is fixed to t = 0.05δ. The exciton gap becomes soft at Uc1 = 1.072δ
in order 12. For comparison, the DMRG prediction of the first transition is Uc1 = 1.069δ
[MMNS04].

extrapolated DMRG calculations [MMNS04, LQX+03, KSJB03].

In the deepCUT approach realized in real space, the range of processes taken into ac-
count is proportional to the order of the calculation. Thus we expect the deepCUT method
to provide accurate results as long as the order is larger than the correlation length ξ
in units of the lattice spacing of the system. The correlation length can be estimated as
[SA93, OAAY01]

ξ≈
v

∆
, (4.16)

where v is the velocity for vanishing gap and ∆ is the gap present in the system. The
relation (4.16) stems from the assumption that the low-energy physics of the model fulfills
an (approximate) Lorentzian symmetry.

In the IHM, the exciton gap is the smallest gap and hence we set ∆ = ∆e. The
fermionic velocity can be obtained by fitting ω(k) = v sin(k) to the 1-QP dispersion. We
find ξ = 0.09

0.038
≈ 2.4 for U = 1.02δ, ξ = 0.07

0.008
≈ 8.8 for U = 1.06δ, and ξ = 0.07

0.0015
≈ 47

for U = 1.07δ. The rapid increase of ξ on approaching the transition point Uc1 reflects the
vanishing exciton gap ∆e. This implies that the deepCUT approach parametrized in real
space naturally becomes inaccurate on approaching Uc1.
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the Hubbard interaction U in various orders. The hopping parameter is fixed to t = 0.05δ.

4.2 Thermodynamic Exact Diagonalization

The deepCUT results close to the transition point are not quantitative, especially for the
charge gap for reasons given above. In this section, we aim at improving the results by
following the route used previously in Ref. [FDU10]. The goal of the deepCUT is chosen
less ambitious, i.e., less terms are rotated away. This makes the deepCUT step less prone to
inaccuracies and convergence can be achieved more easily. But the disadvantage is that the
resulting effective Hamiltonian is not yet diagonal or block-diagonal so that the subsequent
analysis becomes more demanding. Here we will employ exact diagonalization in restricted
subspaces for this purpose.

4.2.1 Construction of the Hamiltonian Matrix

In order to take into account processes of longer range for the important excited states,
we only decouple the ground state from the subspaces with finite number of QPs. This is
achieved by applying the reduced generator g : 0. This generator keeps interactions and
transitions between different excited states. Because the system under study is fermionic,
there are only terms in the Hamiltonian with even number of fermionic operators. Thus
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there is no process linking one QP and two QPs: H2:1 = 0. Therefore, the major off-diagonal
interaction for 1-QP states is H3:1+ H1:3 and for 2-QP states H4:2+ H2:4 in addition.

After applying the generator g :0, the effective Hamiltonian has the following structure

Heff = H0:0+ H1:1+ H2:2+ H3:3+ H4:4

+(H3:1+ h.c.) + (H4:2+ h.c.)

+less important terms, (4.17)

where the less important terms include the parts which involve states with more than four
QPs. These interactions have much less effect than H3:1 and H4:2 on the low-energy spec-
trum given by the eigenvalues in the 1-QP and in the two QP sectors.

The effect of off-diagonal interactions between 1- and 3-QP states and between 2- and
4-QP states can be considered by restricting the Hilbert space to 4-QP states and performing
an ED within this restricted Hilbert space. The effect of the Hamiltonian is stored in two
separate matrices, one for the states that are built from one and three QPs and the other
for the states built from two and four QPs. We stress that also states with four QPs have to
be considered to be able to address modifications in the 2-QP spectrum.

Because the ground state is decoupled in the deepCUT step, we can work directly in
the thermodynamic limit by introducing the states (3.32). The Hamiltonian matrix is con-
structed for each fixed set of total momentum K , total spin S, and total magnetic number
M by restricting the distances between QPs as discussed in the previous chapter. The 2-, 3-,
and 4-QP states with total spin S = 0 and S = 1, total magnetic number M = 0 and M = 1,
and the additional label α are given in the Appendix C.1.

The idea that we have applied here is similar to what had been introduced in Ref.
[FDU10] to describe QP decay with CUT. The main difference is that we have to take care
of the fermionic minus sign and to consider also the states with four QPs. Including the 4-
QP states not only leads to large analytic expressions, but also limits the maximum relative
distances that can be treated numerically. For the following results, the Hamiltonian matrix
has been constructed with maximum distances dmax

1 = dmax
2 = dmax

3 = 24.

4.2.2 Low-lying Excitation Spectrum

The charge and exciton gaps obtained by the combination of deepCUT and ED are depicted
in Fig. 4.9. We denote this approach by D : 0+ g : 0+ ED which means that the effective
Hamiltonian is derived by the consecutive application of the generators ηD:0 and ηg:0. Then
this effective Hamiltonian is analyzed by ED method as described above. Due to the restric-
tion of the Hilbert space in the ED, its results overestimate the eigen values of the effective

Hamiltonian, i.e., they provide upper bounds to them. But note that the effective Hamil-
tonian has only a limited accuracy due to the truncations in the course of the deepCUT
D :0+ g :0 so that the ED results cannot be taken as rigorous upper bounds. If we, however,
assume that the inaccuracies introduced in the derivation of the effective Hamiltonian are
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Figure 4.9: The charge gap (left panel) and the exciton gap (right panel) vs. U obtained
by D :0+g :0+ED, see main text. The order of the D :0 step is 4 and g :0 is carried out in
various orders, given in the legend. The data for the charge gap appears to be more robust
in D :0+g :0+ED than in the pure deepCUT analysis D :0+g :2.

of minor importance, the ED results can be taken as an upper bound for the true excitation
energies.

The left panel of Fig. 4.9 shows that the difference between the data obtained by D :
0+ g : 0+ED and the DMRG results is smaller than the difference of the data of the pure
application of the deepCUT to the DMRG results, cf. Fig. 4.5. For the charge gap close to
the phase transition, the deviation between our results and the DMRG data is decreased
from about 1% for the pure deepCUT to about 0.5% for the combination of deepCUT and
ED.

In the right panel of Fig. 4.9, the exciton gap is plotted vs. the Hubbard interaction U .
The results agree nicely with the DMRG results for all orders higher than 4. Inspecting the
trend of the results for increasing order they appear to converge to values slightly higher
than the DMRG results. We attribute this fact to the restriction of the Hilbert space in the
ED treatment making it an upper bound.

The 1-QP dispersion obtained by the combination D :0+g :0+ED is plotted in Fig. 4.4 for
the two different values of the Hubbard interaction U = 1.02δ (left panel) and U = 1.06δ
(right panel). In this figure, we compare the results of pure deepCUT with the results of
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Figure 4.10: The low-energy spectrum of the IHM including 1-quasiparticle dispersion
(solid line), 2- and 3-quasiparticle continuum (solid region), and singlet (dashed line) and
triplet (dotted-dashed line) bound states. The results are obtained by D :0+g :0+ED. The
deepCUT steps D : 0 and g : 0 are performed in orders 4 and 16, respectively. For the ED,
the Hamiltonian matrix is constructed for maximum relative distances of 24. The hopping
is fixed to t = 0.05δ for both panels; U = 1.02δ in the left panel and U = 1.06δ in the
right panel. For U = 1.06δ, the lower edge of 2- and 3-quasiparticle continuum are very
close to each other. No singlet bound state is found near the total momentum K = π/2 in
contrast to the pure deepCUT D :0+g :2, see Fig. 4.6.

the combination of deepCUT and ED. For U = 1.02δ, both methods coincide nicely except
very close to K = π

2
where the maximum deviation occurs. Around K = π

2
the results of

deepCUT plus ED lie a bit higher in energy than those by pure deepCUT, see also inset. It
is not clear whether the small difference is due to the restriction of the Hilbert space in ED
implying a certain overestimation or whether it is due to the effect of long-range processes
that are less well captured by the pure deepCUT.

Next, we focus on the right panel of Fig. 4.4 where U = 1.06δ close to the transition
point. Here the difference between the two methods is larger. For the momenta near 0 and
π the combination D : 0+ g : 0+ ED yields a dispersion with lower energies while for the
momenta around π

2
the result from D : 0 + g : 2 is the lower one. From the comparison

with the extrapolated DMRG results for the charge gap we deduce that the dispersion of
D :0+ g :0+ED is more accurate near K = 0 and K = π. Thus we presume that also around
K = π

2
the D : 0+ g : 0+ ED data is more accurate, but there is no data from alternative
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approaches available to corroborate this conclusion.

Let us turn to Fig. 4.10 which shows the low-energy spectrum of the IHM obtained by
D :0+ g :0+ED with the orders 4 and 16 for the deepCUT steps D :0 and g :0, respectively.
The left and right panels are again for U = 1.02δ and U = 1.06δ. The lower edge of the
3-QP continuum for U = 1.06δ lies close to the lower edge of the 2-QP continuum. The
major difference between this figure and the pure deepCUT results plotted in Fig. 4.6 is the
absence of the singlet bound state around the total momentum K = π/2. This difference
may arise from the restricted relative distances of QPs in the ED treatment. The singlet
bound state mode near K = π/2 has a very small binding energy indicating that it is
weakly bound and thus extending over large distances. Its extension is restricted due to
computational limitations and the binding may be suppressed spuriously in the ED.

4.3 Beyond the Transition Point: A Mean Field Study

The deepCUT approach realized in the previous sections is based on the QPs of the BI, i.e.,
the more complicated, dressed excitations close to the transition to the SDI are continuously
mapped to the simple QPs of the BI. The same quantum numbers are used in analogy to
Fermi liquid theory which uses the same quantum numbers as the Fermi gas. As long as
the system is located on the BI side of the phase transition, only a few-particle problem
remains to be solved in a subsequent step to find the low-lying excitation spectrum. But
this QP picture breaks down when a phase transition occurs. Beyond the transition point,
a macroscopic number of QPs of the BI condenses forming the new phase. This new phase
displays other types of elementary excitations.

Our analysis of the BI of the IHM in the previous sections showed that the exciton gap
decreases on increasing the Hubbard interaction and vanishes at a critical value Uc1. This
critical interaction was found to be Uc1 = 1.072δ for D : 0+ g : 2 in order 12, see Fig. 4.7.
How can we proceed beyond the transition and still profit from the effective Hamiltonians
obtained by deepCUT? The most systematic way would be to set up a CUT with respect to
the ground state and the elementary excitations for U > Uc1. But there are two obstacles to
this route. The first one is that one has to know and to characterize the SDI ground state
sufficiently well to be able to set up a CUT. The second one is that this approach would
require to implement another, completely different CUT which we postpone to the next
chapter.

Thus we choose a slightly modified approach and continue to use the implemented CUT
to derive an effective Hamiltonian by applying D : 0 + g : 2 and to analyze this effective
Hamiltonian subsequently by a mean-field approach. The guiding idea is that the terms
driving the phase transition are small and can be treated perturbatively as long as the
system is considered close to the phase transition. In this way, one continues to profit
from the deepCUT implemented to obtain the effective Hamiltonians. We use the deepCUT
D :0+ g :2 in order 12 to derive the effective Hamiltonian.



Band Insulator Limit 67

For simplicity, we choose here a mean-field approximation as a first step of a perturba-
tive treatment. Although this approach is not able to capture the correct critical behavior in
low dimensions and underestimates the role of fluctuations, it provides us with an estimate
which phases are lower in energy. Since the S = 0 exciton at K = π becomes soft at Uc1

the SDI can be seen as a condensate of S = 0 excitons. The electron-hole transformation
(4.1) that we performed maps the original exciton into a bound state of two fermions, i.e.,
the exciton appears as Cooper pair. Thus we expect a BCS-type theory to describe the SDI
phase transition.

The effective Hamiltonian is represented in terms of hardcore fermions {gi,σ} and it
includes various interactions within and between sectors of different numbers of QPs. In
the following, we consider this effective Hamiltonian up to quadrilinear interactions and
ignore interaction terms acting on higher numbers of QPs. Hence the effective Hamiltonian
takes the general form

Heff = H0:0+ H1:1+ H2:2, (4.18a)

where

H0:0 = E01, (4.18b)

H1:1 =
∑

i j

Γ j;i g
†
j gi , (4.18c)

H2:2 =
∑

i jkl

Γkl;i j g
†
k
g

†
l
gi g j . (4.18d)

The prefactors Γ j;i and Γkl;i j are nonzero up to an interaction range proportional to the
order of the deepCUT calculation. The processes of longer range do not occur. Because
the effective Hamiltonian (4.18a) is obtained by applying the reduced generator g : 2 no
off-diagonal interactions such as H3:1 appear.

In order to apply Wick’s theorem, we neglect the hardcore property of the operators and
treat them like usual fermions. Due to this approximation two fermions with different spin
are allowed to occupy the same site. It is also possible to deal with the hardcore property by
the slave-particle techniques, see Ref. [Vae11] and references therein, or by the Brueckner
approach [KSWO98]. But such analyses are beyond the scope of present investigation.

For a self-consistent mean-field approximation the symmetries of the ground state are
essential. In order to describe the SDI phase of the IHM, we take the possibility of a spon-
taneous symmetry breaking into account with nonzero anomalous expectation values (see
below). The broken symmetry is the parity with respect to reflection about a site. Thus ad-
jacent bonds may become different even though in the original Hamiltonian the (directed)
bond from site 0 to 1 was identical to the one from 0 to -1. This is characteristic of the
SDI as found in previous studies based on variational quantum Monte Carlo [WM01] and
DMRG [LQX+03, KSJB03, MMNS04, LBS06, TNB09]. Thus, we assume for the expectation
values

〈g†
i,σg

†
i+m,σ〉 6= 〈g

†
i+1,σg

†
i+m+1,σ〉 6= 0, (4.19a)

〈g†
i,σgi+n,σ〉 = 〈g

†
i+1,σgi+n+1,σ〉 6= 0, (4.19b)
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where m and n stand for odd and even distances, respectively. The maximum values of m

and n depend on the order in which the deepCUT was performed. All the above expectation
values are zero in the BI phase where the ground state is the vacuum of “g-particles”, but
they become finite as soon as the exciton begins to condense and the phase transition
occurs.

For a transparent notation, we express the g-operators acting on even and odd sites by
a- and b-operators, respectively. The resulting mean-field Hamiltonian takes the BCS-form

HBCS =
L

2
(εA

0+ ε
B
0)

+
∑

r∈even,σ

 
tA

0 : a†
r,σa

r,σ :+
∑

n=2,4,···
tA

n
: a†

r,σa
r+n,σ + h.c. :

!

+
∑

r∈odd,σ

 
tB

0 : b†
r,σb

r,σ :+
∑

n=2,4,···
tB

n
: b†

r,σb
r+n,σ + h.c. :

!

+
∑

r∈even,σ

∑

m=1,3,···
∆A

m
: a†

r,σb†
r+m,σ :+h.c.

+
∑

r∈odd,σ

∑

m=1,3,···
∆B

m
: b†

r,σa†
r+m,σ :+h.c. (4.20)

where we have divided the lattice into the two sublattices A and B of even sites and odd
sites, respectively. The prefactors εA

0, εB
0 , tA

d
, tB

d
, ∆A

d
, and ∆B

d
depend on the coefficients

of the effective Hamiltonian, which stem from the flow equations, see Eq. (3.22), and on
the expectation values introduced in Eq. (4.19). Due to the identity (4.19b), the hopping
prefactors of the two sublattices are identical. So we unify them omitting the sublattice
index tA

d
= tB

d
=: td .

The BCS Hamiltonian (4.20) is diagonalized by a Bogoliubov transformation in momen-
tum space. The self-consistency equations to be solved are found after some lengthy, but
standard calculations

〈a†
r,σa

r+n,σ〉 = 〈b
†
r,σb

r+n,σ〉=
1

π

∫ π
2

0

dk
λ(k)− t(k)

λ(k)
cos(nk), (4.21a)

〈a†
r,σb†

r+m,σ〉 =
1

π

∫ π
2

0

dk
Im(∆(k)) sin(mk)−Re(∆(k)) cos(mk)

λ(k)
, (4.21b)

〈b†
r,σa†

r+m,σ〉 =
1

π

∫ π
2

0

dk
Im(∆(k)) sin(mk) +Re(∆(k)) cos(mk)

λ(k)
, (4.21c)

where n and m take even and odd values, respectively. The functions t(k), ∆(k), and λ(k)
are defined by

t(k) = t0+ 2
∑

n=2,4,···
tn cos(nk), (4.22a)

∆(k) =
∑

m=1,3,···

�
(∆A

m
−∆B

m
) cos(mk)− i(∆A

m
+∆B

m
) sin(mk)

�
, (4.22b)
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Figure 4.11: Analysis of the effective Hamiltonian obtained by D : 0 + g : 2 in order
12 within the BCS-type approximation. The hopping prefactor t is 0.05δ. Left panel:
Expectation values of the local density, the nearest-neighbor (NN) Bogoliubov term, and
the next-nearest-neighbor (NNN) hopping term vs. the Hubbard interaction U . At the phase
transition at Uc = 1.072δ the expectation values become finite. The Bogoliubov term shows
a square root behavior near the transition point. Right panel: The condensation energy per
site ∆ε0 (upper panel) and the charge gap ∆c (lower panel) vs. Hubbard interaction U .
The charge gap starts to increase beyond the transition point U > Uc1.

λ(k) =
p

t2(k) + |∆(k)|2. (4.22c)

Once the parameters t and U are specified, the mean-field equations (4.21) have to
be solved self-consistently for the expectation values (4.19). The results are shown in
Fig. 4.11. The left panel displays the expectation values of the local density operator, of the
NN Bogoliubov term, and of the NNN hopping term. For U ≤ 1.072δ, all the expectation
values are zero; they continuously increase starting from zero for U ≥ 1.072δ. This critical
Hubbard interaction Uc = 1.072δ is precisely the value we found in our study of the BI
phase in the previous sections based on the deepCUT D : 0+ g : 2 in order 12, see Fig. 4.7.
This demonstrates the global consistency of the approach used.

The two NN Bogoliubov terms in the unit cell are related to each other by a minus sign

〈a†
r,σb

†
r+1,σ〉= −〈b

†
r+1,σa

†
r+2,σ〉; r ∈ even. (4.23)

Two equivalent solutions are possible corresponding to the two ground states. In one of
them 〈a†

r,σb
†
r+1,σ〉 > 0 holds and in the other 〈a†

r,σb
†
r+1,σ〉 < 0. It is seen from the left panel
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of Fig. 4.11 that the expectation values of the local density and of the NNN hopping term
are close to each other and behave linearly in the vicinity of the transition point. The NN
Bogoliubov term displays a square root behavior around the transition point. This square
root behavior of the order parameter near the transition point is what one expects from a
mean-field theory without spatial fluctuations, i.e., Landau theory, for transitions from a
unique ground state to a state with spontaneously broken symmetry.

We define the condensation energy as the energy difference between the vacuum of
“g-particles” and the mean-field ground state of the system. In the right panel of Fig. 4.11
the condensation energy per site ∆ε0 and the charge gap are plotted vs. U . Of course,
the condensation energy is zero in the BI phase and becomes finite when the condensation
starts.

The mean-field analysis shows that the charge gap starts to increase as soon as the
transition has taken place. The behavior of the charge gap beyond the first transition point
Uc1 has been discussed controversially in previous studies. Lou et al. [LQX+03] concluded
by extrapolating DMRG results to infinite chain length that the charge gap continues to
decrease beyond Uc1 up to the second transition point Uc2, see Fig. 2.8. At this second
transition point both charge and spin gaps vanish and for U > Uc2 the charge gap starts
to increase while the spin gap remains zero [LQX+03]. The DMRG method employed by
other groups show that the charge gap starts to increase just from the first transition point
on [TK01, KSJB03, MMNS04], see Figs. 2.6, 2.9 and 2.10. Our findings clearly support the
latter scenario.

Because the IHM can be mapped to the Heisenberg model in the limit U −∆� t, we
expect a MI phase in the large U limit with a vanishing spin gap. However, the effective
Hamiltonian analysed on the mean-field level shows no evidence for a second transition
to the MI phase. But, as we discussed in chapter 2, there is strong evidence for a second
transition to the MI phase obtained by field theoretical approach [FGN99, TAC01] and by
DMRG [TK01, LQX+03, ZWL03, MMNS04, LBS06, TNB09] even though it appears to be
difficult to determine it unambiguously [WM01, KSJB03].

The question arises why we do not see any evidence for the transition from SDI to MI.
From the employed approach two sources are conceivable. The first source consists in errors
in the mapping of the IHM to the effective Hamiltonian using D :0+ g :2. We have already
seen that this effective Hamiltonian includes some inaccuracies. This is seen, for instance,
in the charge gap calculated from the effective Hamiltonian and compared to DMRG results
in the left panel of Fig. 4.5. But this is only a quantitative discrepancy which can explain
quantitative deviations and it is unlikely that the qualitative aspect of a mechanism driving
the system from the SDI to the MI is completely missed.

The second source arises from the analysis of the effective Hamiltonian. The mean-field
analysis can capture the essential aspects of the gaps of single fermionic excitations, but it
is not powerful enough to provide information about binding phenomena. The physics of
the MI is characterized by the massless excitations of a generalized Heisenberg model. In
higher dimensions it would display magnetic long-range order. In 1D this order is reduced
by quantum fluctuations to a quasi-long-range order with power law decay. Still we expect



Band Insulator Limit 71

that the transition SDI to MI is driven by the softening of a magnetic S = 1 excitation,
i.e., a triplon. The condensation of such a triplon would indicate the transition to a phase
dominated by magnetic fluctuations or with magnetic long-range order [SB90].

In terms of fermions, the triplon is an exciton with S = 1, in contrast to the exciton with
S = 0 which signalled the BI to SDI transition. Thus we conclude that the second transition
Uc2 can only be found if the binding of S = 1 excitons formed by two fermionic excitations
above the SDI ground state is analyzed. This issue will be addressed in the next chapter 5
where the dimer limit is used as the starting point in the deepCUT method.

4.4 Chapter Summary

In this chapter, we studied the ionic Hubbard model (IHM) at half-filling in one dimension
in detail in order to understand the nature of its three phases: The band insulator (BI), the
spontaneously dimerized insulator (SDI), and the Mott insulator (MI). We employed the
deepCUT approach [KDU12] to derive effective Hamiltonians in a systematically controlled
fashion. The deepCUT is applied in two consecutive steps. In the first step, a low-energy
effective Hamiltonian is obtained in the limit δ � t. This corresponds to eliminating the
doubly occupied states from even sites and the empty states from odd sites. This reduces
the energy scale in the system from δ ≈ U to t. The obtained low-energy Hamiltonian in
quasiparticle (QP) representation of the BI contains non-particle conserving interactions.
These off-diagnoal interactions are rotated away by a second application of the deepCUT
method using various generators. In the final effective Hamiltonian, the vacuum of QPs
corresponds to the ground state of the IHM in the BI phase. The analysis of the derived
effective Hamiltonian in the first few QP sectors provides the low-lying excitation spectrum
of the system.

We quantitatively determined the dispersion of single fermionic excitation in the BI
phase almost up to the first transition point Uc1. The convergence of the finite order calcu-
lations illustrates the accuracy of the results. The deepCUT outcomes become less accurate
as we approach the tranistion point indicating the role of long-range processes which are
neglected in our treatment. The dispersion at the total momentum K = 0 (or equivalently
π) takes its minimum; this defines the charge gap. This is the only point of the BZ where
DMRG results are available and we can compare our results. The deepCUT results for the
charge gap at finite order are extrapolated to infinite order by a linear fit in the inverse
order. We find a nice agreement between the extrapolated deepCUT results and the DMRG
results obtained by Manmana et. al. [MMNS04].

In addition to the 1-QP dispersion, we have discussed the binding phenomena occuring
in the singlet and in the triplet channels of the 2-QP sector. The dispersion of singlet and
triplet bound states as well as 2- and 3-QP continua are computed in the whole BZ even
close to the transition to the SDI phase. It is found that the transition from the BI to the
SDI is signaled by vanishing a S = 0 exciton at Uc1 ' 1.07δ for t = 0.05δ. We emphasize
that any bare perturbative series contains powers of t/(δ−U) and finally fails to reach the
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point U = δ from below. We have been able to go near the transition point Uc1 ' 1.07δ
and beyond because of the renormalizing nature of the deepCUT method.

The electron-hole bound states in the BI phase appear as a Cooper pair in our QP rep-
resentation of the IHM. The condensation of the S = 0 exciton beyond the first transition
point Uc1 is described by a mean-field BCS-type-theory. The dimerization parameter be-
comes finite in the new phase which indicates the stabilization of the SDI phase. This SDI
phase remains stable upon increasing the Hubbard interaction and the mean-field solution
shows no evidence for a second transition to the MI phase. We expect the transition from
the SDI to the MI to be signaled by softening a S = 1 excitation known as triplon. This
point will be addressed in the next chapter.

We mention that the phase diagram of the IHM in two dimensions is disputed [GKR06,
PBH+07, KD07, CZLW10]. The strategy introduced in this chapter has no conceptual prob-
lem to be applied in two dimensions. The mean-field analysis is expected to work better in
higher dimensions. We want to emphasize that our approach correctly identifies the nature
of the middle SDI phase even in the leading order.

The IHM doped with holes is another interesting problem [GKR14, WI13] which can
be analyzed by the combination of deepCUT and mean-field theory. The deepCUT with the
BI limit as starting point can be employed to investigate other Hamiltonians as well. An
example would be the Hubbard model with the n.n. intercation which shows a competition
between charge density wave and spin density wave phases [Nak00, EN07].
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Chapter 5

Dimer Limit Analysis

In the previous chapter, the deepCUT method was applied in the BI phase of the IHM
yielding reliable results for the excitation spectrum of the model even close to the transition
point to the SDI phase. A mean-field BCS-type-theory was employed to describe the system
beyond the BI-to-SDI transition point. The mean-field theory, however, can capture only
the physics of 1-particle excitation above the ground state and in the previous chapter no
second transition to the MI phase was found upon increasing the Hubbard interaction.

In this chapter, we explore the excitation spectrum and quantum phase transitions of
the 1D IHM by using the dimer limit as starting point of the deepCUT method. In the
dimer limit, the system is assumed to be composed of isolated dimers [OHZ06, DU11] and
the effect of interdimer hopping is considered using the deepCUT method [KDU12]. The
advantage of the dimer limit, compared to the BI limit considered in the previous chapter,
is that it allows us to have access to all phases of the IHM.

In the first step, we restrict the size of the local Hilbert space in order to reduce the
number of possible excitations on each local dimer. This restriction corresponds to elimi-
nating the doubly occupied states from even sites and empty states from odd sites in the
IHM in Eq. (2.1). In other words, we ignore to apply the D : 0 step introduced in the
previous chapter. A DMRG analysis by Tincani shows that the positions of the phase tran-
sitions for the restricted IHM matches the results of the full Hamiltonian fairly in the limit
δ� t [TNB09]. We want to mention that the treatment of the full Hamiltonian within the
deepCUT approach is also possible.

We address the phase transitions of the model by analyzing both the ground state energy
and various gaps. The obtained positions for the transition points are compared with the
DMRG results obtained by Tincani et. al. [TNB09]. In addition, we discuss the low-energy
excitation spectrum of the model in the BI, in the SDI, and in the MI phases. In the BI
phase, it is revealed that the dimer limit can satisfactorily reproduce the deepCUT results
of the BI limit. In the MI phase, it is found that the low-energy physics of the IHM for large
enough Hubbard interaction can be described by an effective Hamiltonian purely in terms
of triplon operators. The analysis of this effective triplon Hamiltonian leads to quantitative
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results for the gapless triplon dispersion of the IHM in the MI phase.

5.1 Preliminary Considerations

5.1.1 Restricted IHM

The IHM (2.1) has a four dimensional Hilbert space at each site: empty state, spin up and
down states, and doubly occupied state. But, the empty states on odd sites and the doubly
occupied states on even sites are very high in energy for U ,δ � t. In the following, we
limit our analysis of the IHM to the case where U ,δ� t and restrict the Hilbert space such
that there is no empty state on odd sites and no doubly occupied state on even sites. We
stress that such a restriction has no qualitative effect on the phase diagram of the IHM.
In addition, a DMRG study shows that the position of the transition points of the IHM
restricted in this way match the results of the full IHM in the limit U ,δ� t [TNB09]. For
t = 0.05δ, for example, the position of the first transition point changes from Uc1 = 1.069δ
for the full IHM [MMNS04] to Uc1 = 1.065δ for the restricted Hamiltonian [TNB09]. We
studied the full IHM in the previous chapter and the BI limit predicted the first transition
point to occur at Uc1 = 1.072δ.

In order to treat the odd and even sites in the same way, we apply an electron-hole
transformation on the odd sites. The transformation reads1

c
†
i,σ→ ησhi,σ̄, (5.1)

where η↑ = 1, η↓ = −1, and σ̄ shows the opposite direction of σ. Unifying all the electron
and hole operators by a new fermion operator

fi,σ :=

(
ci,σ for i ∈ even,

hi,σ for i ∈ odd,
(5.2)

brings the Hamiltonian (2.1) to the form

H =
U−2δ

4

∑

i

1 +
δ− U

2

∑

i,σ

f
†

i,σ fi,σ

+ U
∑

i

f
†

i,↑ f
†

i,↓ fi,↓ fi,↑

+ t
∑

i,σ

η
σ
( f

†
i,σ f

†
i+1,σ̄ + h.c.) (5.3)

In this new operator representation, ignoring all the doubly occupied states is equivalent to
throwing away the empty states from odd sites and doubly occupied states from even sites

1Here we use a slightly different electron-hole transformation rather than (4.1) in order to have the usual
definitions for the triplet and singlet excitations on a dimer, see Table 5.1.
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λt λtt t t

Figure 5.1: Schematic representation of the dimer limit expansion. The intradimer hopping
parameter is shown by t. For λ = 0 the system is made of isolated dimers and for λ = 1 the
uniform lattice is recovered.

in the original picture as we intended to do. The Hubbard operators are used to decompose
the Hamiltonian (5.3) into the terms which create and annihilate specific numbers of double
occupancies. The Hubbard operators are defined as

g
†
i,σ := |σ〉i i

〈e|, (5.4a)

g
†
i,d := |d〉i i

〈e|, (5.4b)

where d and e stand for doubly occupied state and empty state, respectively. The f -operator
in terms of Hubbard operators is given by

f
†

i,σ = g
†
i,σ +ησ g

†
i,d gi,σ̄. (5.5)

Finally, substituting Eq. (5.5) and its hermitian conjugate in the Hamiltonian (5.3) and
considering only the sector with zero number of double occupancy leads to

H =
U−2δ

4

∑

i

1 +
δ− U

2

∑

i,σ

g
†
i,σgi,σ

+ t
∑

i,σ

η
σ
(g

†
i,σg

†
i+1,σ̄ + h.c.). (5.6)

In the previous chapter we used the deepCUT step called D : 0 to derive a low-energy
effective Hamiltonian in the limit δ, U � t. Here, however, we do not apply this first
deepCUT and deal directly with the Hamiltonian (5.6). The IHM restricted in this way is
studied by Tincani et. al. [TNB09] giving us the possibility to compare our findings with
their DMRG results.

5.1.2 Dimer limit

We modify the Hamiltonian (5.6) so that it is suitable for the dimer limit expansion

H =
U−2δ

4

∑

i

1 +
δ− U

2

∑

i,σ

g
†
i,σgi,σ

+ t
∑

i∈even,σ

η
σ
(g

†
i,σg

†
i+1,σ̄ +λg

†
i+1,σg

†
i+2,σ̄ + h.c.), (5.7)

where λ is the perturbative parameter on which we truncate the flow equations in the
deepCUT method [KDU12]. For λ = 0 the Hamiltonian is composed of isolated dimers and



76 5.1 Preliminary Considerations

# Dimer Eigenstates Eigenvalues
1 |0〉= −β |e, e〉+ αp

2
(|↑,↓〉 − |↓,↑〉) ε0

2 |t〉+1 = |↑,↑〉 ε0 + εt

3 |t〉0 = 1p
2
(|↑,↓〉+ |↓,↑〉) ε0 + εt

4 |t〉−1 = |↓,↓〉 ε0 + εt

5 | f 〉l,↑ = |↑, e〉 ε0 + ε f

6 | f 〉l,↓ = |↓, e〉 ε0 + ε f

7 | f 〉r,↑ = |e,↑〉 ε0 + ε f

8 | f 〉r,↓ = |e,↓〉 ε0 + ε f

9 |s〉= +α |e, e〉+ βp
2
(|↑,↓〉 − |↓,↑〉) ε0 + εs

Table 5.1: Eigenstates and eigenvalues of a single dimer of Hamiltonian (5.7) for λ = 0.
There are three different possible states on each site: empty state e, spin up state ↑, and spin
down ↓ state. This leads to nine eigenstates on each dimer. The ground state has total spin
zero and is shown by the vacuum |0〉. There are four fermionic and four bosonic excited
states. The expressions ε0, εt , ε f , and εs are defined in Eq. (5.8) and the coefficients α and
β are given in Eq. (5.9).

for λ = 1 the IHM (5.6) is retrieved. The dimer limit expansion is schematically shown
in Fig. 5.1. The Hamiltonian (5.7) defines the starting point to analyze the IHM from the
dimer limit.

For applying the deepCUT method, the Hamiltonian (5.7) needs to be expressed in
terms of dimer excitation operators. In the absence of interdimer hopping, the system
is made of independent dimers with a nine dimensional local Hilbert space. The nine
eigenstates and eigenvalues of a single dimer are summarized in Table 5.1. The ground
state energy ε0, the triplon energy εt , the fermion energy ε f , and the singlon energy εs are
given by

ε0 = −
1

2

�
δ+

p
(U −δ)2+ 8t2

�
, (5.8a)

εt = +
1

2

�
δ− U +

p
(U −δ)2+ 8t2

�
, (5.8b)

εs = 2ε f =
p
(U −δ)2+ 8t2. (5.8c)

The coefficients α and β are given by

α=

È
1

2
+

U −δ
4ε f

, (5.9a)

β =

È
1

2
−

U −δ
4ε f

. (5.9b)

For all values of the model parameters t, U , and δ, the state with lowest energy has total
spin zero and is denoted as vacuum |0〉. There are four degenerate fermionic excited states
corresponding to the fermion being on the left-site | f 〉l,σ or on the right-site | f 〉r,σ, each
one with two different spin states σ =↑,↓. Among the four bosonic excited states, there
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is one state with total spin zero |s〉, called singlon henceforth, and three degenerate states
with total spin one and different magnetic numbers |t〉±1,0. It is seen from Eqs. (5.8b) and
(5.8c) that the singlon energy εs is twice the fermion energy ε f . The triplon energy εt and
the fermion energy ε f are also close to each other for U ≈ δ. This makes it difficult in the
deepCUT method to decouple the 2-fermion sector, the 2-triplon sector, and the 1-singlon
sector from one another.

The local hardcore dimer excitation operators at the dimer position j are defined as

f †
j;p,σ := | f 〉 j;p,σ j

〈0| ; p = l, r (5.10a)

t
†
j;m := |t〉 j;m j

〈0| ; m= ±1, 0 (5.10b)

s
†
j := |s〉 j j

〈0|. (5.10c)

The interpretation of these operators is clear from the definition of the dimer states. The
fermion operator f

†
j;p,σ creates one fermionic excitation at dimer j with spin σ and internal

position p = l, r from the vacuum. Similarly, the triplon operator t
†
j;m and the singlon

operator s
†
j create a triplon with magnetic number m or a singlon at the dimer position j,

respectively. The g-operators in terms of dimer excitation operators are given by

g
†
j;l,σ =− β f

†
j;l,σ + t

†
j;ησ

f j;r,σ +α f
†
j;l,σs j +

1
p

2

�
η
σ
α+ t

†
j;0+ησβs

†
j

�
f j;r,σ̄, (5.11a)

g
†
j;r,σ =− β f

†
j;r,σ − t

†
j;ησ

f
j;l,σ +α f

†
j;r,σs j +

1
p

2

�
η
σ
α− t

†
j;0+ησβs

†
j

�
f

j;l,σ̄, (5.11b)

where g
†
j;l,σ and g

†
j;r,σ act on the left-site and on the right-site of dimer j. Finally, the

Hamiltonian (5.7) in terms of dimer excitation operators reads

H = ε0

∑

j

1 +
∑

j

ε
s

s
†
j s j

+
∑

j

∑

m=±1,0

ε
t

t
†
j;m t j;m

+
∑

j

∑

σ

∑

p=l,r

ε
f

f
†
j;p,σ f j;p,σ

+ λt
∑

j,σ

η
σ

�
g

†
j;r,σg

†
j+1;l,σ̄ + h.c.

�
, (5.12)

where the summation j is now over dimers instead of sites. In the last term, the g-operators
have to be replaced according to Eq. (5.11). Until there is no interdimer hopping, the dimer
excitations are the true quasiparticles of the system. For any finite value of interdimer
hopping λ, however, the dimer excitations start to propagate in the lattice and become
dressed quasiparticles. In the next sections 5.2 and 5.3, the Hamiltonian (5.12) is mapped
to effective Hamiltonians such that the dimer excitations can still be used as quasiparticles
of the system even for λ 6= 0.
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5.1.3 Technical Points

The general aspects of the deepCUT method were reviewed in chapter 3. Here we present
just some points about the generator that we have employed to study the IHM from the
dimer limit. Because the nonperturbative part of the Hamiltonian (5.12) has a non-equidistant
spectrum, the change in local energy is used as criterion to decide about the sign of a term
appearing in the generator.

Assume H
ct ,c f ,cs

at ,a f ,as
stands for the part of the Hamiltonian which creates ct triplons, c f

fermions, and cs singlons and annihilates at triplons, a f fermions, and as singlons. Then
this part contributes to the generator according to

η̂
�

H
ct ,c f ,cs

at ,a f ,as
(`)
�
= sign (ε(`))H

ct ,c f ,cs

at ,a f ,as
(`), (5.13)

where the local energy change ε(`) is defined by

ε(`) = (ct − at)εt(`) + (c f − a f )ε f (`) + (cs − as)εs(`). (5.14)

The functions εt(`), ε f (`), and εs(`) are the onsite energies of triplon, fermion, and singlon
excitations during the flow `. The initial values are given in Eq. (5.8).

The symmetry group which is used in the dimer limit analysis comprises reflection, spin-
flip, and self-adjointness saving a factor of about 8 in the number of representatives. In
addition, we implemented simplification rules in order to increase the order of calculations
in the deepCUT. The simplification rules employed in the dimer limit analysis are illustrated
in Appendix B.2.

5.2 Ground Energy and Energy Gaps

5.2.1 Ground State Energy

To find the ground state energy (GSE), the sector with no singlon, no fermion, and no
triplon has to be decoupled from the rest. We extended the definition of the reduced gen-
erator introduced in Eq. (3.20) to the case where different kind of excitations are present
in the system. The ground state generator η

t:0; f :0;s:0 is given by

η
t:0; f :0;s:0(`) =

∑

i jk

�
η̂
�

H
i, j,k
0,0,0(`)

�
− h.c.

�
, (5.15)

where the superoperator η̂ is defined in Eq. (5.13). The generator (5.15) is used to decou-
ple the sector with zero number of triplon, fermion, and singlon from higher quasiparticle
sectors. We have been able to reach order 12 in the interdimer hopping for the dimer limit
analysis of the GSE. The restricted IHM (4.13a) is also analyzed using the BI limit described
in the previous chapter. We stress that the D : 0 step is no longer required because the IHM
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Figure 5.2: Ground state energy per site ε0 of the restricted ionic Hubbard model (5.6)
for t = 0.05δ. The results obtained from both dimer limit and band insulator (BI) limit
are displayed. In the left panel (a) the ground state energy per site extrapolated to infinite
order is plotted versus the Hubbard interaction U/δ. For U > Uc1 = 1.075δ, the dimer limit
produces a lower ground state energy compared to the band insulator limit. In the right
panel (b), the ground state energy is depicted versus the inverse order for different values
of the Hubbard interaction U . The finite order results are extrapolated to infinite order by
performing a linear fit.

is already restricted to the sector with no double occupancy. We apply the g : 0 generator
directly to the Hamiltonian (4.13a). For the BI limit, the GSE is obtained up to order 20 in
the hopping parameter t.

The left panel of Fig. 5.2 indicates the GSE per site extrapolated to infinite order versus
the Hubbard interaction U/δ for t = 0.05δ. The right panel of Fig. 5.2 shows the extrapo-
lation process where the GSE per site and the performed linear fit are depicted versus the
inverse order. In the right panel, the model parameter t = 0.05δ and the Hubbard inter-
action U = 1.06δ, 1.07δ, 1.08δ, 1.09δ, and 1.10δ from top to bottom for both the dimer
limit (solid circles) and the BI limit (asterisks). The dimer limit results exhibit a faster
convergence compared to the results of BI limit. It is seen from Fig. 5.2 that the ground
energy obtained from the dimer limit produces a lower energy for U > Uc1 = 1.075δ. We
recognize this point as the critical point where the transition from the BI phase to the SDI
phase occurs. In principle, the results of GSE obtained from both the dimer limit and the
BI limit must be identical in the BI phase, U < 1.075δ. However, due to the approximative
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nature of our treatment the dimer limit in the BI phase leads to a GSE which is slightly
higher than the result of BI limit.

A DMRG study identified the first transition point of the restricted IHM (5.6) at U =

1.065δ [TNB09] indicating about 1% deviation in our analysis in the determination of the
BI-to-SDI transition point. We remind the reader that the position of the first transition
point for the full IHM (2.1) obtained by Manmana et. al using DMRG method was U =

1.069δ [MMNS04]. Thus the difference between the restricted IHM (5.6) and the full
Hamiltonian is still less important than the truncation error in our approach.

5.2.2 Gaps to Excited States

The charge gap∆c, the exciton gap∆e, and the spin gap∆s are defined in order to measure
the excitation energies to the charge and spin channels in the IHM. We refer the reader to
Eqs. (2.2), (2.3), and (2.4) where explicit definitions of the gaps are given.

In our formalism, the charge gap is accessible by decoupling the ground state and, at
least, the 1-fermion sector from the other quasiparticle sectors. The 1-fermion generator
η

t:0; f :1;s:0, which separates the ground state and the 1-fermion sector from the rest, is given
by

η
t:0; f :1;s:0(`) = ηt:0; f :0;s:0(`) +η

p

t:0; f :1;s:0(`), (5.16)

where we have defined

η
p

t:0; f :1;s:0(`)≡
∑

i jk

�
η̂
�

H
i, j,k
0,1,0(`)

�
− h.c.

�
X

i, j,k
0,0,0, (5.17)

with
X

i, j,k
i′, j′,k′ ≡ 1−δi,i′δ j, j′δk,k′ . (5.18)

One needs to include the term X
i, j,k
0,0,0 in Eq. (5.17) in order to prevent the interaction H

0,0,0
0,1,0

to appear twice in the generator (5.16). In a similar way, the 1-triplon channel can be
decoupled using the 1-triplon generator

η
t:1; f :0;s:0(`) = ηt:0; f :0;s:0(`) +η

p

t:1; f :0;s:0(`), (5.19)

with the definition

η
p

t:1; f :0;s:0(`) =
∑

i jk

�
η̂
�

H
i, j,k
1,0,0(`)

�
− h.c.

�
X

i, j,k
0,0,0. (5.20)

The generator (5.19) provides an effective Hamiltonian whose 1-triplon sector can be di-
agonalized by a Fourier transformation yielding the triplon dispersion. Subsequently, the
triplon gap can be found as the minimum of the triplon dispersion. The triplon gap is a
spin-1 excitation. One must be cautious to call this excitation the spin gap. In the 2-fermion
sector, there is a channel with total spin one and the spin gap (2.4) should be considered
as the minimum of the spin-1 2-fermion excitation and the triplon gap. Of course, one can
also imagine other possibilities for the spin gap but these two cases are the most probable
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Figure 5.3: The general structure of the effective Hamiltonian derived by applying the
generator ηt:2; f :2;s:1 to the initial Hamiltonian (5.12). The generator ηt:2; f :2;s:1 is defined in
Eq. (5.21). It is seen that the ground state, 1-fermion, and 1-triplon sectors are completely
decoupled from the rest. However, the interactions between 1-singlon and 2-fermion, 1-
singlon and 2-triplon, and 2-triplon and 2-fermion sectors are still present in the final ef-
fective Hamiltonian.

ones. Because they involve only a small number of excitations. Our results show that the
triplon gap is always identical or smaller than the spin-1 2-fermion excitation and hence
the triplon gap is indeed the spin gap.

There are two similar possibilities for the S = 0 exciton gap. Because the singlon quasi-
particle has total spin zero, the exciton gap can be either the singlon gap or the gap to
the spin-0 2-fermion channel. It is found that there is a bound state in the singlet channel
of 2-fermion sector which is indeed lower in energy than the singlon gap. Therefore the
singlet bound state defines the S = 0 exciton gap.

It is not possible to decouple the 2-fermion sector from all other sectors. The exciton
gap as well as the low-energy spectrum of the BI phase (see the next section) are calcu-
lated using the generator called η

t:2; f :2;s:1. This generator decouples the 2-fermion sector,
the 2-triplon sector, and the 1-singlon sector as a whole from other quasiparticle sectors.
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The off-diagonal interactions between these three sectors are present in the final effective
Hamiltonian. This is due to the fact that the on-site energies of two fermions, two triplons,
and one singlon are close to each other, see Eqs. (5.8b) and (5.8c). The structure of the
final effective Hamiltonian is schematically shown in Fig. 5.3. The generator η

t:2; f :2;s:1 can
be written down explicitly in the rather complicated form below

η
t:2; f :2;s:1(`) = η

t:0; f :0;s:0(`) +η
p

t:1; f :0;s:0(`) +η
p

t:0; f :1;s:0(`)

+
∑

i+ j+k≥2

�
η̂
�

H
i, j,k
0,0,1(`)

�
− h.c.

�
X

i, j,k
2,0,0X

i, j,k
0,2,0

+
∑

i+ j+k≥2

�
η̂
�

H
i, j,k
2,0,0(`)

�
− h.c.

�
X

i, j,k
0,2,0

+
∑

i+ j+k≥2

�
η̂
�

H
i, j,k
0,2,0(`)

�
− h.c.

�
X

i, j,k
2,0,0, (5.21)

where the definitions (5.17) and (5.20) are used in the first line. It is seen that the off-
diagonal interactions H

0,0,1
2,0,0 , H

0,0,1
0,2,0 , and H

2,0,0
0,2,0 are excluded from the generator (5.21) due

to the definition (5.18).

The application of the generator (5.21) to the Hamiltonian (5.12) leads to an effective
Hamiltonian with the general structure displayed in Fig. 5.3. The exciton gap is calculated
by performing an exact diagonalization in the singlet channel of the Hilbert space com-
posed of two fermions, two triplons, and one singlon. The employed exact diagonalization
technique is valid in the thermodynamic limit and is described in Section 3.3. The basis
states to construct the Hamiltonian matrix are given by

|K〉
s

:=
1
p

L

∑

r

eiK r |r〉
s

, (5.22a)

|K , d〉S=0
t t

:=
1
p

L

∑

r

eiK(r+ d

2 ) |r, r + d〉S=0
t t

, (5.22b)

|K , d〉S=0
fl fr

:=
1
p

L

∑

r

eiK(r+ d

2 ) |r, r + d〉S=0
fl fr

, (5.22c)

|K , d〉S=0
fr fl

:=
1
p

L

∑

r

eiK(r+ d

2 ) |r, r + d〉S=0
fr fl

, (5.22d)

where the lower index specifies that the state contains one singlon (s), two triplons (t t), or
two fermions ( fl fr or fr fl). The upper index S = 0 specifies that the total spin of the state
is zero. The distinguishability of the fermions fl and fr is taken into account in Eqs. (5.22c)
and (5.22d). The spin states with total spin S = 0 constructed from two fermions (2F) or
two triplons (2T) are given by

|2F〉S=0
=

1
p

2

�
| f↑, f↓〉 − | f↓, f↑〉

�
, (5.23a)

|2T 〉S=0
=

1
p

3

�
|t+1, t−1〉+ |t−1, t+1〉 − |t0, t0〉

�
, (5.23b)

where | fσ=↑,↓〉 and |tm=0,±1〉 define the spin state of a single fermion and a single triplon,
respectively. To construct the Hamiltonian matrix, one can again use the complete relations
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reported in Appendix A paying attention to the fermionic minus sign. The Hamiltonian
matrix is set up for the total momentum K = 0 where the minimum of the S = 0 exciton
mode occurs (see Fig. 5.5).

Fig. 5.4 shows the behavior of the different gaps as functions of the Hubbard interaction
U/δ for t = 0.05δ. The results obtained from the BI limit are also included for comparison.1

The results of BI limit are valid only up to the first transition point where the exciton gap
closes. The charge gap ∆c is calculated up to order 12 in the interdimer hopping from the
dimerized limit and up to order 20 in the hopping parameter from the BI limit. Order 12
in the dimer limit corrsponds to a lattice spacing of 24 sites. The lattice spacing in the BI
limit at order 20 is 20 sites. The finite order results are extrapolated to infinite order by
performing a linear fit to the last four points similar to the right panel of Fig. 5.2 for the
GSE per site. It is seen from Fig. 5.4 that the charge gap obtained from the dimer and BI
limits are satisfactorily close to each other up to U = 1.06δ where the minimum of the
charge gap of the dimer limit occurs. We take this minimum as an indication for the first
transition point from BI phase to SDI phase [MMNS04].

Next, we focus on the exciton gap presented in Fig. 5.4. In the dimer limit analysis, order
6 is the maximum order that we can reach for this quantity. Higher orders are not accessible
due to a divergence of the flow equations which arises from overlapping continua. The
same problem appears for U > 1.04δ. The results of the BI limit in order 12 in the hopping
parameter are also shown for comparison. Again, the divergence of the flow equations
prevents us to reach higher orders. The deviation between the two limits is expected to
be mostly due to the low order calculations in the dimer limit. In both limits, the exciton
gap is smaller than the charge gap indicating a singlet electron-hole bound state in the
BI phase. The exciton gap obtained from BI limit vanishes at the critical interaction U =

1.067δ which is very close to the DMRG prediction of the first transition point 1.065δ
[TNB09]. We expect, however, that the exciton gap of the dimer limit will just give us a
non zero minimum near the transition point. This minimum will approach zero for high
order calculations.

The spin gap (triplon gap) is obtained up to order 10 in the interdimer hopping param-
eter λt and plotted versus the interaction U in Fig. 5.4 for t = 0.05δ. The results of order
8 almost coincide with the results of order 10 especially inside the BI phase. We have not
extrapolated the spin gap because there is no clear linear behavior versus the inverse order
up to order 10 for this quantity. Higher orders are necessary for an accurate extrapolation
to infinite order.

It is seen from Fig. 5.4 that the spin gap and the charge gaps are very close up to U =

1.05δ. The BI limit analysis identifies equal spin and charge gaps up to the transition point
U = 1.067δ. This allows us to estimate the error present in the finite order calculations
of the spin gap. In fact, the spin gap at the transition point U = 1.067δ should be about
0.007δ smaller to match the BI limit results. If this amount of error for the spin gap is taken
into account, one finds that the spin gap becomes soft at U ' 1.10δ which is close to the
DMRG prediction of the second transition point, Uc2 ' 1.085δ [TNB09].

1In the restricted IHM (4.13a), the sectors with finite number of double occupancies are already neglected
and hence the BI limit analysis no longer requires the D : 0 step.



84 5.2 Ground Energy and Energy Gaps

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

1.01 1.03 1.05 1.07 1.09 1.11 1.13 1.15

U/δ

extrapolated charge gap (dimer)
exciton gap order 6 (dimer)

spin gap order 10 (dimer)
extrapolated charge gap (BI)

exciton gap order 12 (BI)

Figure 5.4: The charge gap, the exciton gap, and the spin (triplon) gap of the Hamil-
tonian (5.6) plotted versus the Hubbard interaction U/δ for the hopping parameter
t = 0.05δ. The results obtained from both band insulator (BI) limit (dashed lines) and
the dimer limit (solid lines) are depicted for comparison.

Nevertheless, the spin gap in order 10 remains finite even for large values of the Hub-
bard interaction. This seems to contradict the fact that the MI phase stabilizes at the large-U
limit [TNB09, MMNS04]. There is a manifest explanation for this finite spin gap that we
find in the dimer limit analysis. The gapless MI phase in one dimension is unstable versus
dimerization [Sch86]. Any finite dimerization will introduce a finite spin gap in the sys-
tem [CF79]. The dimer limit analysis breaks the full translational symmetry of the initial
Hamiltonian (5.6). This broken symmetry can never be restored in finite order calculations
and consequently leads to a finite spin gap in the system. In the next section, we derive
a low-energy effective Hamiltonian solely in terms of triplon operators for large values of
the Hubbard interaction, U ¦ 1.15δ. This low-energy Hamiltonian is analyzed using a sec-
ond application of the deepCUT method. In this second deepCUT, we are able to calculate
the spin gap up to orders much higher than 10. The finite order results plotted versus the
inverse order show an obvious tendency towards zero.
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5.3 Excitation Spectrum

The excitation spectrum of the IHM in the BI phase was discussed in the previous chapter
from the BI limit. The BI limit, however, prevents us to have access to the SDI and to the MI
phases of the model. In this section, using the dimer limit, we investigate the low-energy
excitation spectrum of the restricted IHM (5.6) in the BI, in the SDI, and in the MI phases.

5.3.1 Band Insulator Phase

In the BI phase of the IHM, electrons and holes define the elementary excitations of the
system. These fermionic quasiparticles can form singlet or triplet bound states. By starting
from the dimer limit we have introduced three different kind of quasiparticles in the system:
fermions, triplons, and singlons. It is interesting to see how well the deepCUT method
starting from the dimer limit can reproduce the excitation spectrum of the BI phase.

The excitation spectrum of the restricted IHM (5.6) in the BI phase is obtained by us-
ing the generator (5.21) in the deepCUT method. As discussed in the previous section for
the exciton gap, the generator η

t:2; f :2;s:1 maps the initial Hamiltonian (5.7) to an effective
Hamiltonian with the general structure shown in Fig. 5.3. Because the 1-fermion and the 1-
triplon sectors are decoupled from the remaining Hilbert space, the fermion and the triplon
dispersions can be obtained by a simple Fourier transformation, see Eq. (3.35). In the de-
rived effective Hamiltonian the 1-singlon, 2-fermion, and 2-triplon sectors as a whole are
separated from all other sectors. But there are still off-diagonal interactions linking these
three sectors to one another, see Fig. 5.3. The eigenvalues of the Hilbert space composed of
the 1-singlon, 2-fermion, and 2-triplon subspaces are calculated by constructing the Hamil-
tonian matrix for each specific total momentum, total spin, and total magnetic number and
performing an ED as explained in Section 3.3. For the channel with the total spin S = 0
this was described in the previous section in order to calculate the S = 0 exciton gap. The
Hamiltonian matrix for the total spin S = 1 and the total magnetic numbers M = 0,±1 is
constructed from the 2-triplon state (5.22b) and the 2-fermion states (5.22c) and (5.22d).
Clearly, the 1-singlon state (5.22a) is not needed for the triplet channel. The necessary
2-triplon spin states are given in Appendix C.2.

In Fig. 5.5, the low-energy excitation spectrum of the restricted IHM (5.6) for the pa-
rameters U = 1.02δ and t = 0.05δ is plotted versus the total momentum K . In this figure,
the distance between two dimers, which is twice the distance between two sites, is con-
sidered as unit of length. The left panel of Fig. 5.5 shows the results obtained from the
dimer limit. The BI limit results are depicted in the right panel for comparison1. We ex-
pect the BI limit results to be more accurate judging based on the convergence of different
orders. We emphasize that in Fig. 4.6 the distance between two sites is considered as the
unit of length. Therefore one needs to fold the excitation spectrum of the BI limit to the

1The BI limit results presented in the right panel of Fig. 5.5 are for the restricted IHM (4.13a) and therefore
differ slightly from the left panel of Fig. 4.6 which is for the full IHM (4.12).
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Figure 5.5: The low-energy excitation spectrum of Hamiltonian (5.6) for the hopping pa-
rameter t = 0.05δ and the Hubbard interaction U = 1.02δ. For these values of the param-
eters, the system is in the band insulator phase. The green area indicates the 2-fermion
(2F) continuum. The left panel shows the results calculated from the dimer limit analysis
in order 6. In the right panel, the results of band insulator (BI) limit in order 12 is plotted
for comparison. Two singlet bound states are found in both dimer limit and BI limit calcu-
lations. The two triplet modes I and II of the right panel are reproduced in the left panel as
a triplet bound state and 1-triplon dispersion.

reduced BZ in order to make the comparison with the dimer limit results. Orders 12 and 6
are the maximum orders that we can reach in the BI limit and in the dimer limit analyses,
respectively. The both analyses at these orders involve the same lattice extension. Because
the range of processes taken into account in the BI limit is proportional to the order of
calculations while it is twice the order in the dimer limit.

It is seen from the right panel of Fig. 5.5 that there are two singlet and two triplet
bound states in the excitation spectrum obtained from the BI limit. The singlet mode II
exists in the momentum range π/2 ® K ≤ π and coincides with the singlet mode I. The
two triplet bound states are on top of each other and exist almost in the whole range of
momenta. The dimer limit yields also two singlet I and II bound states shown in the left
panel of Fig. 5.5. The agreement of the BI limit and the dimer limit results is not perfect but
remarkably good. The two singlet modes are not degenerate as in the BI limit findings. The
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two triplet bound states I and II of the right panel are also reconstructed in the left panel.
One of them has appeared as a triplet bound state between two fermions and the other is
the triplon dispersion. The triplet bound state and the triplon dispersion are close to each
other and the accuracy between the two limits is impressive in view of the very different
starting points.

Because the Hamiltonian (5.6) has the full translational symmetry, the singlet modes I
and II in the left panel of Fig. 5.5 must join in principle at the edge of BZ, K = π. The
same statement is valid for the triplet bound state and the triplon dispersion in this panel.
The energy differences which appear between the two triplet and between the two singlet
modes at the total momentum K = π in the left panel of Fig. 5.5 are a direct consequence
of the broken translational symmetry at the starting point. The dimer limit breaks the
translational symmetry which can never be recovered by an approximate treatment.

5.3.2 Spontaneously Dimerized Phase

The low-energy excitation spectrum of BI phase can be well-understood in terms of electron-
hole pairs and their binding phenomena. In the MI phase, on the other hand, the charge de-
gree of freedom is frozen and low-energy excitations are discussed in terms of spinons [FT81,
dCP62] or triplons [SU03]. The competition between charge and spin degrees of freedom
in the 1D IHM leads to the middle SDI phase. In this phase, both charge and spin excita-
tions contribute to the low-energy spectrum of the system making it difficult to describe.
The dimer limit that we consider in this chapter is especially suitable to investigate the
SDI phase of the IHM. This is because the dimer limit takes the dimerization explicitly into
account.

We present the results obtained by the deepCUT method for the fermion dispersion
ω f (K) and the triplon dispersion ωt(K) in the SDI of the IHM. The fermion dispersion is
obtained by use of the generator (5.16) targeting the ground state and the 1-fermion sector.
Similarly, the triplon dispersion is calculated by the generator (5.19) targeting the ground
state and the 1-triplon sector. The order of calculations is 12 for the fermion dispersion and
it is 10 for the triplon dispersion in the interdimer hopping. The fermion dispersion (1F)
and the triplon dispersion (1T) are plotted in Fig. 5.6. The 2-triplon (2T) continuum and
the 2-fermion (2F) continuum are also shown. The hopping parameter and the Hubbard
interaction in this figure are fixed to t = 0.05δ and U = 1.08δ. The rescaled DMRG
data presented in Ref. [TNB09] indicates that for t = 0.05δ the SDI phase exists from
Uc1 = 1.065δ to Uc2 ' 1.085δ. Therefore, for U = 1.080δ we expect to be inside the SDI
phase of the IHM (5.6).

Fig. 5.6 shows that both the spin and the charge excitations contribute to the low-lying
excitation spectrum of the system. In addition to the lowerω2T,−(K) and the upperω2T,+(K)

bands of the 2-triplon continuum we have also specified the lower band ω2F,−(K) of the 2-
fermion continuum which is inside the 2-triplon continuum. The fermion dispersion takes
its minimum at the total momentum K = π. The fermion dispersion enters the 2-triplon
continuum at K ' 0.6π and it enters the 2-fermion continuum at K ' 0.35π. The triplon
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Figure 5.6: The low-energy spectrum of Hamiltonian (5.6) for the hopping parameter
t = 0.05δ and the Hubbard interaction U = 1.08δ. The order of calculations for the
fermion (1F) dispersion is 12 and for the triplon (1T) dispersion it is 10. The 2-fermion
(2F) continuum and the 2-triplon (2T) continuum are shown as solid region. We have also
specified the lower ω2T,−(K) and the upper band ω2T,+(K) of the 2-triplon continuum as
well as the lower band ω2F,−(K) of the 2-fermion continuum.

dispersion is maximum at K = π and stands always lower in energy than the 2-triplon
continuum. Hence no quasiparticle decay occurs.

The contribution of the charge excitation to the low-energy spectrum in Fig. 5.6 indi-
cates that the SDI phase is indeed very difficult to be described by a purely effective spin
Hamiltonian either in terms of spinons or triplons. The electron-hole picture is also not suit-
able to explain the energy spectrum shown in Fig. 5.6. In the electron-hole language, the
triplon dispersion has to appear as a S = 1 exciton bound state. One can see from Fig. 5.6
that this exciton mode has a large binding energy defined as the energy difference between
the triplon dispersion and the lower band of the 2-fermion continuum ω2F,−(K). This large
binding energy indicates a strong electron-hole interaction, at least, in the S = 1 channel.
In addition to the triplon dispersion, there are also some parts of the 2-triplon continuum
in Fig. 5.6 lying below the 2-fermion continuum. This continuous region has also to be
reproduced as S = 0 and S = 1 bound states between electrons and holes. All these points
clarify the difficulties to describe the SDI phase of the IHM in terms of electrons and holes
as elementary excitations of the system.
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In the previous chapter we derived an effective Hamiltonian using the deepCUT method
and described the SDI phase by a mean-field theory. In this approach we introduced
fermionic QPs above the mean-field ground state. We focused on the 1-fermion sector
to calculate the charge gap. It would be very interesting to analyze also the 2-fermion sec-
tor and see how these fermionic excitations can reproduce the results of Fig. 5.6. However,
such an analysis is not considered the present thesis.

Beside the dimer representation, the SDI phase of the IHM can also be conveniently
described in terms of spinons and holons. Spinons are spin-1/2 QPs and charge neutral.
In contrast, holons carry total charge e but no spin. In this QP representation, the fermion
dispersion in Fig. 5.6 appears as a bound state between a spinon and a holon. It is expected
that 2-spinon will form a S = 1 bound state leading to the triplon dispersion in Fig. 5.6.
This is an investigation which requires attention in the future.

5.3.3 Mott Insulator Phase

The excitation spectrum of the gapless MI phase in 1D is usually described in terms of spin-
1/2 quasiparticles called spinons. But the triplon language is an alternative to investigate
the MI phase [SU03]. Evidence is provided by the fact that about 99% of the spectral weight
is concentrated in the sector with only two triplons [SU03], see Fig. 1.1. This contribution
is even larger than the contribution of 2-spinon state to the spectral weight which is about
73% [KMB+97]. Hence, we proceed with the dimer limit to discuss the MI phase of the
IHM as well.

It is seen from Fig. 5.4 that the energy difference between the charge gap and the spin
gap increases upon increasing the Hubbard interaction beyond the first transition point.
This suggests that at large values of the Hubbard interaction in the MI phase the charge
fluctuations lie very high in energy and that the triplon fluctuations determine the low-
energy physics of the system. Therefore, in a first step, it is convenient to derive an effective
low-energy Hamiltonian describing the MI phase of the IHM. To this end, the generator
η

f :0;s:0(`) is defined to separate the sector with zero number of fermions and singlons from
the sectors which contain a finite number of fermions and singlons. One should notice that
the sector without singlon and fermion still includes triplon fluctuations. The generator
η

f :0;s:0(`) is given by

η
f :0;s:0(`)≡

∑

j,k

�
H

j,k
0,0(`)− H

0,0
j,k (`)

�
, (5.24)

where H
j,k
0,0(`) stands for the part of the Hamiltonian which annihilates zero number of

fermions and singlons and creates j fermions and k singlons without caring about the
change in the number of triplons. The application of the generator (5.24) to the initial
Hamiltonian (5.12) leads to an effective Hamiltonian whose low-energy part is decoupled
from the high-energy sectors. The charge degree of freedom in the final effective Hamilto-
nian is separated from the low-energy physics of the IHM which is determined by a Hamil-
tonian only in terms of triplon operators.
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Figure 5.7: The residual off-diagonality (ROD) for the generator η f :0;s:0 depicted versus the
flow parameter ` for various values of the Hubbard interaction U . The hopping parameter
t = 0.05δ and the expansion parameter λ = 1.0. The order of calculations is 6. It is seen
that for larger values of the interaction U , a faster convergence in the flow equations is
achieved.

In order to check the convergence of the flow equations for the generator (5.24), the
residual off-diagonality (ROD) (3.30) is plotted in Fig. 5.7 versus the flow parameter ` for
various values of the Hubbard interaction U . The hopping parameter in this figure is fixed
to 0.05δ. The order of the calculations is 6 and we target all the monomials composed of
triplon operators only. Fig. 5.7 shows that the convergence of the flow equations becomes
faster by increasing the Hubbard interaction. This is due to the larger energy separation be-
tween the sector without singlons and fermions and the sectors containing a finite number
of them. We expect the effective triplon Hamiltonian to be reliable for U ¦ 1.15δ where
a very fast and robust convergence of ROD is found. For a more accurate statement, how-
ever, we need to reach high orders and check the convergence of the coefficients of the final
effective Hamiltonian. The transition from the SDI to the MI phase is predicted by DMRG
to take place at U ' 1.085δ [TNB09]. Therefore, the low-energy triplon Hamiltonian may
fail to describe the system near the MI-to-SDI transition and remains valid only inside the
MI phase.
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# Monomial Order
0

∑
j

1 0

1
∑

j

t
†
j,0 t j,0 0

2
∑
j,m

t
†
j,m t j,m 0

3
∑

j

�
t

†
j,0 t j+1,0+ h.c.

�
2

4
∑
j,m

�
t

†
j,m t j+1,m+ h.c.

�
2

5
∑

j

�
t

†
j,0 t

†
j+1,0+ h.c.

�
2

6
∑
j,m

�
t

†
j,m t

†
j+1,m̄+ h.c.

�
2

7
∑
j,m

�
t j,m t

†
j+1,m t j+1,0− t j+1,m t

†
j,m t j,0+ h.c.

�
2

8
∑
j,m

�
t j,0 t

†
j+1,m t j+1,m− t j+1,0 t

†
j,m t j,m+ h.c.

�
2

9
∑
j,m

�
t j,m t

†
j+1,0 t j+1,m̄− t j+1,m t

†
j,0 t j,m̄+ h.c.

�
2

10
∑
j,m

t
†
j,m t j,m t

†
j+1,m t j+1,m 2

11
∑

j

t
†
j,0 t j,0 t

†
j+1,0 t j+1,0 2

12
∑
j,m

t
†
j,m t j,m t

†
j+1,m̄ t j+1,m̄ 2

13
∑
j,m

�
t

†
j,m t j,0 t

†
j+1,m̄ t j+1,0+ h.c.

�
2

14
∑
j,m

�
t

†
j,m t j,0 t

†
j+1,0 t j+1,m+ h.c.

�
2

15
∑
j,m

�
t

†
j,m t j,m t

†
j+1,0 t j+1,0+ t

†
j+1,m t j+1,m t

†
j,0 t j,0

�
2

Table 5.2: All the monomials which appear in the effective triplon Hamiltonian up to
minimal order 2 in the perturbative parameter λ. The summation j runs over dimers and
the summation over m takes the two values +1 and −1. We define m̄= −m. It is seen that
in order 2 each monomial can affect at most two nearest-neighbor dimers.

We fix the order of calculations in the first step η f :0;s:0 to 6 in the perturbative parameter
λ. All the monomials appearing in the derived low-energy triplon Hamiltonian are of even
order. In Table 5.2 they are listed up to order 2. The lattice extension of each monomial is
equal or less than half of its minimal order. This means that, for example, all monomials
with minimal order 2 can at most act on two nearest-neighbor dimers. This feature helps
us to use the simplification rules implemented in Ref. [KDU12] in the subsequent deepCUT
analysis of the effective triplon Hamiltonian. From now on, we switch the perturbative
parameter from λ to J := λ2 and present all results in orders of J .

The effective triplon Hamiltonian is mapped to a final effective Hamiltonian by a second
application of the deepCUT method. In the final Hamiltonian the ground state and the 1-
triplon sector are separated from higher triplon sectors. The triplon dispersionωt(K) is easy
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Figure 5.8: Left panel: The spin gap ∆s versus the inverse order of J := λ2 for differ-
ent values of the Hubbard interaction U . Right panel: The triplon dispersion ωt(K) for
fixed values of the total momentum K versus the inverse order for the Hubbard interaction
U = 1.3δ. In both panels the hopping parameter is set to t = 0.05δ and the expansion
parameter is λ = 1.0. The finite order results are extrapolated to infinite order by a linear
fit to the last 6 points.

to read off. The minimum of the triplon dispersion occurs at the total momentum K = 0
and subsequently we find the spin (triplon) gap ∆s = ωt(0). In this second step of the
deepCUT, one needs to deal only with the triplon operators. This allows us to reach much
higher orders compared to the case where all the dimer operators (5.10) were present. We
have been able to reach order 12 in the expansion parameter J or equivalently 24 in λ. This
maximum order is much higher than the order of calculations for the spin gap in Fig. 5.4.

In the left panel of Fig. 5.8, the spin gap ∆s is plotted versus the inverse order in J for
various values of the Hubbard interaction U . The hopping parameter is fixed to t = 0.05δ
and λ = 1.0. The finite order results are extrapolated to infinite order by a linear fit. The
extrapolated spin gap is lower than 10−4δ for the Hubbard interaction U = 1.25δ and
lower than 10−5δ for the interactions U = 1.35δ, and U = 1.45δ. For U = 1.15δ, however,
the linear fit leads to a negative value for the spin gap. This inadequacy may stem from two
origins. The first one is the linear extrapolation. As we decrease the Hubbard interaction
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Figure 5.9: The triplon dispersion ωt(K) plotted versus the total momentum K in the
Brillouin zone. The hopping parameter is fixed to t = 0.05δ and the expansion parameter
λ = 1.0. The left panel is for the Hubbard interaction U = 1.3δ and the right panel is for
U = 1.5δ. The largest deviation between different orders occurs at K = 0 and 2π. A gapless
triplon dispersion is obtained by extrapolating the finite order results to infinite order.

and approach the MI-to-SDI transition point, the correlation length of the system becomes
large. Hence near the transition point, one needs to reach orders high enough to obtain the
linear behavior of the spin gap versus the inverse order. The maximum order 12 probably
is not high enough to identify this linear behavior.

The error in the derivation of the low-energy triplon Hamiltonian is the second reason
for finding the negative spin gap at U = 1.15δ. We targeted a large number of monomials
in the deepCUT method to derive the effective triplon Hamiltonian. A small error in this
first application of the deepCUT may lead to a considerable error in the final spin gap. We
believe that the latter effect is indeed dominating.

The triplon dispersion ωt(K) for fixed values of the total momentum K is plotted versus
the inverse order in the right panel of Fig. 5.8. The total momenta are chosen to be near
K = 0 where the largest deviation between the results of different orders happens. The
Hubbard interaction U is fixed to 1.3δ and the hopping parameter t is 0.05δ. Again a
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Figure 5.10: The low-energy spectrum of the restricted ionic Hubbard model (5.6) for
t = 0.05δ and U = 1.3δ. There is one singlet and one triplet bound state with very
small binding energy. However, these bound states lie inside the 2-triplon continuum if it is
constructed from the extrapolated triplon dispersion which is gapless at the total momentum
K = 0, see Fig. 5.9.

linear fit is performed to extrapolate the triplon dispersion at fixed total momenta to infinite
order. This extrapolation leads to a triplon dispersion which is gapless within the accuracy
of the approach.

The triplon dispersion versus the total momentum K in the whole BZ is depicted in
Fig. 5.9. The hopping parameter in this figure is t = 0.05δ. The Hubbard interaction in the
left panel and in the right panel is set to U = 1.3δ and U = 1.5δ, respectively. In each panel,
various finite order results and the extrapolated result are shown for comparison. The
triplon dispersions at high orders are on top of each other except near the total momentum
K = 0 and the equivalent point K = 2π. For these two total momenta, the finite order
results always lead to a finite spin gap while the extrapolated result indicates a gapless
mode. This gapless dispersion is what we expect in a MI phase. It is also interesting to
notice the change in the bandwidth of the triplon dispersion in Fig. 5.9. As the Hubbard
interaction decreases from U = 1.5δ in the right panel to U = 1.3δ in the left panel, the
bandwidth of the triplon dispersion increases. This resembles the fact that the characteristic
magnetic energy scale in the IHM is ∝ t2/(U −δ).
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We analyzed the 2-triplon sector of the low-energy triplon Hamiltonian looking for pos-
sible bound states. We have not been able to decouple the 2-triplon sector completely due
to a divergence in the flow equations. Instead, the 1-triplon sector is decoupled and the
remaining off-diagonal interactions are taken into account by an exact diagonalization for
the 2- and the 3-triplon states. The necessary spin states made from triplons with specific
magnetic quantum numbers (5.10b) can be found in Appendix C.2. The low-energy spec-
trum including triplon dispersion, 2-triplon continuum, and singlet and triplet bound states
are depicted in Fig. 5.10. The hopping parameter is fixed to t = 0.05δ and the Hubbard
interaction U = 1.3δ. The order of deepCUT is 8 in the perturbative parameter J . We
have targeted diagonal interactions up to the 3-QP sector plus the off-diagonal interaction
linking the 2- and 3-QP sectors. One singlet and one triplet bound state with very small
binding energy is found. However, these bound states lie inside the 2-triplon continuum
constructed from extrapolated triplon dispersion which is gapless at K = 0, see Fig. 5.9. The
singlet and the triplet bound modes might appear as resonance states in a study of spectral
densities.

The vanishing of the spin gap and the stabilization of the MI phase in the 1D IHM has
been discussed somewhat ambiguously using Quantum Monte Carlo [WM01] and DMRG
[KSJB03] methods, see Figs. 2.7 and 2.9 and the descriptions therein. Although the posi-
tion of the second transition point from the SDI to the MI phase is not determined accurately
in our investigation, it is found that the MI phase does stabilize in the large-U limit. In ad-
dition, we have obtained quantitative results for the excitation spectrum of the IHM in the
MI phase. Our results suggest that the dimer limit can be used as a suitable starting point
for CUT-based methods such as the deepCUT [KDU12], the perturbative CUT [KU00], and
the graph-based CUT [YS11] to analyze the gapless MI phase in one dimension.

5.4 Chapter Summary

The ionic Hubbard model (IHM) is investigated by use of the deepCUT method starting
from the dimer limit. The advantage of the dimer limit compared to the band insulator
(BI) limit introduced in the previous chapter is that it enables us to describe all the three
phases of the IHM. The IHM contains both spin and charge fluctuations which leads to a
16-dimensional Hilbert space on each dimer. For the range of model parameters t � δ, U ,
the size of the local Hilbert space is reduced to 9 by ignoring the doubly occupied states
on even sites and the empty states on odd sites. The restricted IHM involves eight local
excitations above the vacuum: Four fermions, three triplons, and one singlon.

In a first step, we analyse the ground state energy of the system by decoupling the
vacuum from all higher quasiparticle sectors. The comparison between the dimer limit and
the BI limit results for the ground state energy suggests Uc1 = 1.075δ for the transition
point from the BI phase to the spontaneously dimerized insulator (SDI) phase. This is to
be compared with the DMRG results Uc1 = 1.065δ for the position of the first transition
point [TNB09]. In the next step, we investigate the charge gap, the exciton gap, and the
spin gap. The charge gap is obtained by decoupling the vacuum and the 1-fermion sector



96 5.4 Chapter Summary

from the remaining Hilbert space. The spin gap is found to be identical with the triplon
gap accessible by decoupling the ground state and the 1-triplon sector from other sectors.
It turns out that the exciton gap is given by a S = 0 bound state in the 2-fermion sector and
not simply by the singlon gap. This requires to determine the eigenvalues in the 2-fermion
subspace which are obtained by a combination of deepCUT and exact diagonalization.

The different gaps calculated from the dimer limit agree nicely with the BI limit results
in the BI phase. Moreover, the dimer limit results are valid beyond the first transition
point in the SDI and in the Mott insulator (MI) phases. The minimum of the charge gap,
which indicates the first transition point, occurs at U = 1.06δ and the charge gap starts
to increase beyond this point. The spin gap, on the other hand, continues to decrease and
becomes very small for large values of the Hubbard interaction U . However, the finite order
deepCUT results always yield a finite spin gap even in the large-U limit. This is interpreted
as a consequence of the broken translational symmetry in the dimer limit analysis.

In addition to the ground state energy and energy gaps, the momentum-dependent
excitation spectrum of the IHM in the BI, in the SDI, and in the MI phases are addressed
in this chapter using the dimer limit analysis. In the BI phase, we are able to satisfactorily
reproduce the excitation spectrum found from the BI limit. For instance, two triplet bound
states found in the BI limit analysis are reproduced in the dimer limit. One of them appears
as the triplon dispersion and the other as a 2-fermion bound state. In the SDI phase,
both spin and charge excitations contribute to the low-energy spectrum. We present the
results for the 1-fermion and for the 1-triplon dispersions in the SDI phase. For large
values of the Hubbard interaction where the IHM is in the MI phase, we derive a low-
energy effective Hamiltonian purely in terms of triplon operators. This effective triplon
Hamiltonian is analyzed by a second step deepCUT. High order results extrapolated to
infinite order indicate that the spin gap vanishes and that the MI phase stabilizes. We
obtain reliable results for the gapless triplon dispersion in the MI phase.
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Summary and Outlook

The description of strongly correlated materials is among the most difficult problems of
physics today. The strong electron-electron interaction present in these systems hampers
any perturbative analysis around the non-interacting limit. This calls for the development
and application of new perturbative and renormalizing techniques. The continuous unitary
transformations (CUT) method allows us to map a given initial Hamiltonian to final effec-
tive Hamiltonians in a systematic fashion [Weg94]. The CUT idea defines the cornerstone
of various perturbative [KU00] and renormalizing [HU02, YS11] approaches in and out of
equilibrium [HK09, TK11].

We use the recently developed directly evaluated enhanced perturbative CUT (deepCUT)
method [KDU12] to study the excitation spectrum and quantum phase transitions in the
one-dimensional (1D) ionic Hubbard model (IHM). The model is suggested as a mini-
mal model to describe the neutral-ionic transition observed in mixed-stack organic charge-
transfer compounds [NT86] as well as the ferroelectricity in transition metal oxides [EIT93].
The IHM consists of three terms: A nearest-neighbor (n.n.) hopping, the Hubbard inter-
action, and an ionic (staggered) potential separating the odd and even sites energetically.
In one dimension, the model experiences two continuous phase transitions upon increas-
ing the Hubbard interaction [FGN99, MMNS04]. The first transition occurs from the band
insulator (BI) phase to the spontaneously dimerized insulator (SDI) phase. This transition
lies in the Ising universality class where the gap behaves linearly up on approaching the
transition point. The second transition takes place from the SDI to the quasi-long-range
Mott insulator (MI) phase. The relevant gap vanishes exponentially slowly as in a the
Kosterlitz-Thouless transition.

We study the IHM starting from two different limits by the deepCUT method. First,
we consider the BI limit where electrons and holes are the relevant elementary excitations
(quasiparticles, QPs). This BI limit is suitable to investigate the properties of the model in
the BI phase. We obtain quantitative results for the fermion dispersion, 2- and 3-fermion
continua, and singlet and triplet bound states almost up to the first transition point. We
compare our results for the charge gap, the exciton gap, and the spin gap with DMRG results
finding a nice agreement between the two approaches. The transition to the SDI phase is
signaled by the softening of a S = 0 exciton mode. Beyond the transition point, the excitons
begin to condense and the QP picture we started with breaks down. We analyze the effective
Hamiltonian derived from the deepCUT by a BCS-type-theory to show the stabilization of
the SDI phase. Unfortunately, this mean-field solution exhibits no second phase transition
to the MI phase. We interpret this deficiency as the effect of strong quantum fluctuations
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in one dimension which are neglected in mean-field analysis. In the mean-field treatment,
we also ignore the hardcore property of the fermionic operators. This hardcore constraint
can be satisfied either on average by a slave-particle mean-field theory [Vae11] or strictly
by Brückner approach [KSWO98]. As an alternative to the mean-field theory, one can
implement a new CUT step to describe the middle phase and its transition to the MI phase.
This requires to identify the elementary excitations in the SDI phase. One possibility is to
write the hardcore fermionic operators appearing in the effective Hamiltonian in terms of
holons and spinons. Still the application of the CUT method in real space leads to difficulties
due to the large correlation length of the system. A momentum space implementation is
much more sophisticated. Treating spinons as QPs in the CUT method and the application
of CUT in momentum space are both interesting projects which need attention in the future.

We emphasize that by the combination of deepCUT and mean-field approximation even
in the leading order of the deepCUT we can correctly identify the nature of the middle
phase in the IHM. This is remarkable because finite-size exact diagonalization requires at
least 50 lattice sites to identify the SDI phase in the IHM as is pointed out in a quantum
Monte Carlo (QMC) analysis [WM01]. Our strategy can be employed to investigate the
nature of the intermediate phase of the IHM in two dimensions which is currently disputed
[GKR06, PBH+07, KD07, CZLW10]. It would be very interesting to see which excitation
becomes soft in transition from the BI phase to the middle phase and at which momentum
this happens. The mean-field part is expected to work even better in higher dimensions.
The BI limit introduced in chapter 4 can also be used to study other Hamiltonians such as
Hubbard models with n.n. interaction, 2-band Hubbard models, and so on.

We introduce the dimer limit analysis in order to describe the SDI and MI phases. This
dimer limit allows us to access different phases in the IHM. We calculate the ground state
energy and different gaps and discuss the phase transitions of the model. Moreover, we
address the excitation spectrum of the IHM in the BI, in the SDI, and in the MI phases. We
show that the dimer limit can reproduce the BI limit results of the BI phase. Quantitative
results for the gapless triplon dispersion in the MI phase is reported. The high energy
parts of the triplon dispersion converge quickly by increasing the order of calculations in
the deepCUT. In contrast, the low-energy part of the dispersion becomes gapless only after
extrapolating the finite order results to infinite order. We interpret the finite spin gap found
in finite order calculations as a consequence of the instability of the quasi-long-range MI
phase in one dimension versus dimerization.

The dimer limit as starting point of the deepCUT method can be used to investigate
some other important problems as well. This dimer limit is especially useful to study the
ladder structures. An example would be the t − J model defined on 2-leg ladder which
is an interesting issue in the context of superconductivity [Dag94, DR96]. The 1-hole dis-
persion of the model is already studied using the self-similar CUT (sCUT) method [DU11].
However, the evaluation of 2-hole sector is necessary in order to investigate the Cooper pair
formation. The deepCUT method defines a much more systematic truncation scheme of the
flow equations compared to the sCUT method especially if different kinds of excitations are
present in the system. The deepCUT method by decoupling the 2-hole sector will yield ef-
fective Hamiltonians useful to describe the superconductivity in the t−J model. In the next
step, one can use these effective Hamiltonians to study the stripe-ordered superconductors
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by linking 2-leg ladders via an additional interladder coupling [USG04].
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Appendix A

Analysis of Effective Hamiltonians

In this section, the action of the different parts of the Hamiltonian (3.31) on the states (3.32)
is presented. The results are obtained for a purely fermionic problem. However, they are in
principle applicable to either bosonic or fermionic algebra or even to an algebra composed
of both fermionic and bosonic operators. The user has to take care only about the fermionic
signs which appear in front of the prefactors.

A.1 H1:1

The action of the operator H1:1 on the 1-QP state |K〉 is given by

H1:1 |K ,σ〉=
∑

n

∑

β

eiKn
β

σ

h
C

1
1

in

|K ,β〉 (A.1)

with the definition
β

σ

h
C

1
1

in

= 〈r−n,β |H1:1 |r,σ〉 . (A.2)

For the action of H1:1 on the 2-QP state |K ,σ1; d,σ2〉, we find

H1:1 |K ,σ1; d,σ2〉= +
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∑
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The action of H1:1 on the 3-QP state |K ,σ1; d1,σ2; d2,σ3〉 leads to 9 contributions given
below
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∑
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Finally, the application of H1:1 on the 4-QP state |K ,σ1; d1,σ2; d2,σ3; d3,σ4〉 reads
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where di j := di + d j and di jk := di + d j + dk.

A.2 H2:2

The action of H2:2 on the 2-QP state is given by

H2:2 |K ,σ1; d,σ2〉= −
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In order to fix the fermionic sign in Eqs. (A.6) and (A.7) we assume here and from now on
that in H2:2 all the annihilation operators are put to the right of the creation operators and
annihilation and creation parts are site-ordered1, separately.

For the action of H2:2 on 3-QP state, we obtain

H2:2 |K ,σ1; d1,σ2; d2,σ3〉=
∑

d ′>0

n

1With “site-ordered” we mean that the operators are sorted according to their positions in the lattice.
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The result of the application of H2:2 to the 4-QP state is given by
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+
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A.3 H3:3

The effect of H3:3 on the 3-QP state is given by

H3:3 |K ,σ1; d1,σ2; d2,σ3〉=

−
∑
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β1β2β3
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where d ′1 and d ′2 are positive integer values. We have also defined
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:= 〈r−n,β1; r−n+d ′1,β2; r−n+d ′12,β3|H3:3 |r,σ1; r+d1,σ2; r+d12,σ3〉 ,
(A.11)

where d ′
i j
= d ′

i
+ d ′

j
.

The action of H3:3 on the 4-QP state reads

H3:3 |K ,σ1; d1,σ2; d2,σ3; d3,σ4〉=
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d ′1d ′2>0

n

−
∑
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+
∑
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|K ,σ2;−n−d1,β1; d ′1,β3; d ′2,β4〉

+
∑

n>d1+d ′12

e
iK
�

D33+d23−2d1
4

�∑

β2β3β4

β2β3β4

σ2σ3σ4

h
C

3
3

ind ′1d
′
2

d2d3

|K ,β2; d ′1,β3; d ′2,β4;n−d1−d ′12,σ1〉
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o

, (A.12)

where D33 := 2d1+ 2d ′1+ d2+ d ′2.

A.4 H4:4

The action of H4:4 on the 4-QP state is given by

H4:4 |K ,σ1; d1,σ2; d2,σ3; d3,σ4〉=

+
∑

d ′1d ′2d ′3>0
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where D44 = 3(d1− d ′1) + 2(d2− d ′2) + (d3− d ′3). We have also defined

β1β2β3β4

σ1σ2σ3σ4

h
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4
4
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′
2d
′
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d1d2d3

:=

〈r ′,β1; r ′+d ′1,β2; r ′+d ′12,β3; r ′+d ′123,β4|H3:3 |r,σ1; r+d1,σ2; r+d12,σ3; r+d123,σ4〉 ,
(A.14)

where r ′ := r−n and d ′
i jk

:= d ′
i
+ d ′

j
+ d ′

k
.

A.5 H2:1

The action of the off-diagonal interaction H2:1 on the 1-QP state is given by

H2:1 |K ,σ〉= +
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where
β1β2

σ

h
C

2
1

ind ′

:= 〈r−n,β1; r−n+d ′,β2|H2:1 |r,σ〉 . (A.16)

The action of H2:1 on the 2-QP state leads to 6 contributions given here

H2:1 |K ,σ1; d1,σ2〉=
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d ′1−d1<n

∑

β1β3

e
iK

�
4n+d1−2d′1

6

�
β1β3

σ1

h
C

2
1

ind ′1 |K ,β1; d ′1,β3; n+d1−d ′1,σ2〉
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o

. (A.17)

The application of H2:1 on the 3-QP state is given by

H2:1 |K ,σ1; d1,σ2; d2,σ3〉=
∑

d ′1>0

n
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+
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+
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, (A.18)

with D21 := 6n+ 2d1+ d2− 3d ′1.

A.6 H3:1

The action of H3:1 on the 1-QP state is given by

H3:1 |K ,σ〉= +
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d ′1d ′2

∑

n

∑

β1β2β3

e
iK

�
n−

2d′1+d′2
3

�
β1β2β3

σ

h
C

3
1

ind ′1d ′2 |K ,β1; d ′1,β2; d ′2,β3〉 , (A.19)

where
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:= 〈r−n,β1; r−n+d ′1,β2; r−n+d ′12,β3|H3:1 |r,σ〉 . (A.20)

The action of H3:1 on the 2-QP state is given by
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, (A.21)

where D31 := 3n+ d1− 2d ′1− d ′2.

A.7 H4:1

The action of H4:1 on the 1-QP state is given by

H4:1 |K ,σ〉= +
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(A.22)

where
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(A.23)

A.8 H3:2

The action of H3:2 on the 2-QP state is given by
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(A.24)

where
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:= 〈r−n,β1; r−n+d ′1,β2; r−n+d ′12,β3|H3:1 |r,σ1; r+d1,σ2〉 . (A.25)
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For the application of H3:2 on the 3-QP state, we find
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, (A.26)

with D32 := 9n+ 5d1+ d2− 6d ′1− 3d ′2.
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A.9 H4:2

The action of H4:2 on the 2-QP state is given by
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where we have defined
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(A.28)

with r ′ := r−n.

A.10 H4:3

The action of H4:3 on the 3-QP state is given by

H4:3 |K ,σ1; d1,σ2; d2,σ3〉=
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where we have defined
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with r ′ := r−n.
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Appendix B

Simplification Rules

The algebraic part of the deepCUT method requires to keep track of many monomials and to
calculate their commutators. The number of monomials to be tracked can be substantially
reduced if we are interested in sectors with only a few QPs and in processes up to a specific
order n in the formal expansion parameter. For the bookkeeping [KDU12], we define two
different orders for each monomial Ai. The first is the minimal order Omin(Ai) which is the
order in which the monomial Ai appears for the first time.

The second is the maximal order Omax(Ai) which gives the order up to which the prefac-
tor of the monomial Ai is needed to describe the targeted sector up to order n. By the term
“targeted” we simply express that it is this sector that we want to know and to compute
finally. The maximal orders of monomials can be determined from the minimal orders and
the flow equations in an iterative way, see Ref. [KDU12] for details and examples. Finally,
if Omax(Ai) < Omin(Ai) holds the monomial Ai has no effect on the targeted quantities up to
order n and we can discard it.

This omission of unnecessary monomials is possible only after determining the flow
equations. The idea of simplification rules (SRs) is to find an upper bound eOmax for the max-
imal order of each monomial Ai during the algebraic part of the calculations. Then this
bound eOmax is used to discard at least some of the unnecessary monomials in the algebraic
calculations leading to an acceleration of the algorithm and to reduce memory require-
ments.

B.1 Simplification Rules for BI Limit

Here, we present the a-posteriori and a-priori SRs which are employed in our BI limit anal-
ysis of the IHM in Chapter 4. They are used in the second application of the deepCUT
analysis where effective Hamiltonians are drived which preserve the number of fermionic
QPs.
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B.1.1 The A-Posteriori Simplification Rules

The a-posteriori SRs are applied after the calculation of each commutator. They check
whether a monomial can be discarded or not. In the sequel, it is assumed that the order of
calculations is n. First, we discuss the simplifications if the sector with zero QPs is targeted,
i.e., the ground state, because this is the simplest case. But we also discuss what is necessary
to target sectors with a finite number of QPs.

For an upper bound to the maximal order of the monomial A, let us assume that cσ and
aσ are the number of creation and annihilation operators with spin σ which occur in A. We
explain the idea for the creation operators. The annihilation operators can be treated in the
same way.

The ground state energy is just a number so that its corresponding operator is the iden-
tity 1. For the monomial A to influence the ground state energy, all creation operators have
to be cancelled in the commutation process. The generator η comprises the monomials

η
(1)
eff =

∑

i,σ

�
g

†
i,σg

†
i+1,σ + h.c.

�
(B.1)

in first order. In the process of commutation, this generator term can compensate two
creation or two annihilation operators with the same spin. This is the key observation for
the SR. We point out that the higher order terms in the generator may be able to compensate
more than two operators, but the ratio between the number of compensated operators and
the minimal order of the generator term is always equal or less than 2. Thus it is sufficient
to consider just the first order term of the generator in our analysis [KDU12]. The minimal
number of commutations needed to cancel all the creation operators reads

K c
0 =
∑

σ

l cσ

2

m
(B.2)

where the ceiling brackets stand for the smallest integer larger than the argument. A lower
number of commutations is necessary if sectors with more QPs are targeted. If we want to
target q QPs we denote the required minimal number of commutations by K c

q
. The number

of commutations is minimized if these operators are chosen from spin channels with an
odd number of operators. In this way, one can reach the sector with q quasiparticles by a
minimum of

K c
q
=max

�
K c

0 − dc −
�

q− dc

2

�
, 0

�
(B.3)

commutations with dc :=min(q,αc). The floor brackets stand for the largest integer smaller
than the argument. The parameter αc is zero if both the numbers of creation operators with
spin up and with spin down are even; it is one if one of them is even and the other odd; it
is two if both of them are odd. Analogously, Ka

q
for the annihilation part is defined.

Because each commutation with the generator (B.1) increases the order by one, we
deduce from the above considerations the upper bound

eOmax(A) = n− K c
q
− Ka

q
(B.4)
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for the maximal order of the monomial A. The monomial A is safely omitted if eOmax(A) <

Omin(A). We refer to the described analysis for the maximal order as basic a-posteriori SR.

The above upper bound of the maximal order can be reduced further by considering
the structure of the generator terms on the lattice. The term (B.1) contains two creation
or annihilation operators with the same spin only on adjacent sites. This means that the
compensation of two operators which do not act on neighboring sites needs at least two
commutations leading to an increase by two in the maximal order.

We point out that there are also other terms in the generator with extended structure
in real space, but they occur in higher minimal orders [KDU12] so that it is sufficient to
focus on the first order term (B.1). To exploit structural aspects on the lattice, the clusters of
creation and annihilation operators with spinσ are divided into different linked subclusters,
see Ref. [KDU12]. We denote the number of creation and annihilation operators with spin
σ in the subcluster labelled by i by k

c,σ
i and k

a,σ
i , respectively [KDU12]. The number of

commutations with (B.1) needed to compensate all the creation operators reads

K c
0 =
∑

i,σ

¢
k

c,σ
i

2

¥
. (B.5)

This equation extends (B.2) by considering the real space structure of the monomials. In
analogy to the basic a-posteriori SR, the relation (B.5) can be generalized to K c

q
if the

sectors with q QPs are targeted. In order to minimize K c
q
, the q operators are taken first

from subclusters with odd number of sites saving one commutation for each operator. Then
the remaining operators are taken from even subclusters which needs at least two operators
to save one commutation. Eventually, we obtain

K c
q
=max

�
K c

0 − dc −
�

q− dc

2

�
, 0

�
(B.6)

where dc :=min(q,αc) and αc is the number of odd-size linked subclusters present in both

spin up and spin down creation clusters. Similarly, one can find the corresponding relation
for annihilation yielding Ka

q
. Replacing them for K c

q
and Ka

q
in Eq. (B.4) leads to a maximal

order which is lower than the estimate of the basic a-posteriori SR. This improved analysis
for the maximal order which takes into account the real space structure of the monomials
is called extended a-posteriori SR.

B.1.2 The A-Priori Simplification Rules

The a-priori SRs are applied before commutators are computed explicitly. Thus they make an
additional speed-up possible. This type of SRs checks whether the result of the commutator
[T, D] = T D−DT leads to any monomial which can pass the a-posteriori SRs or not. Here T

stands for any monomial from the generator and D for any monomial from the Hamiltonian.
If all the monomials which may ensue from the studied commutator are unnecessary, one
can ignore this commutator improving the computational speed. Two different basic and
extended a-priori SRs can be defined corresponding to the basic and extended a-posteriori
SRs.
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In the basic a-priori SR, the minimal number of creation and annihilation operators with
spin σ resulting from the products T D and DT are estimated separately. Then the basic
a-posteriori SR is employed to obtain an upper bound for the maximal orders of T D and
DT . We explain the method for T D; the product DT can be analyzed in the same way.

Let aσ
T

and cσ
T

be the numbers of creation and annihilation operators with spin σ in
the monomial T . Similarly, we define aσ

D
and cσ

D
for the monomial D. Next, the prod-

uct T D is normal-ordered, the creation operators are sorted left to the annihilation op-
erators by appropriate commuations. In the course of this normal-ordering, the number
sσ

T D
:=min(aσ

T
, cσ

D
) from the creation and annihilation operators with spin σ may cancel at

maximum. Therefore, the minimal number of creation and annihilation operators of the
normal-ordered product T D is given by

cσ
T D
= cσ

T
+ cσ

D
− sσ

T D
, (B.7)

aσ
T D
= aσ

D
+ aσ

T
− sσ

T D
. (B.8)

Using these estimates, one can find the upper bound for the maximal order of the normal-
ordered product T D. Eventually, we conclude that the commutator [T, D] can be ignored
if

max
�eOmax(T D), eOmax(DT )

�
< Omin(T ) +Omin(D). (B.9)

In the extended a-priori SR, similar to the extended a-posteriori SR, the lattice structure
of monomials is considered as well. Using this property, one can manage to identify more
unnecessary commutators before computing them. Again, we describe the method for T D;
DT is treated in the same fashion. All we have to do is to evaluate the clusters of creation
and annihilation operators of the normal-ordered product T D for up and down spins. Then,
the method uses the extended a-posteriori SR to find the maximal order of T D based on
the estimated clusters.

Because the operator algebra is local, only operators acting on the same sites can cancel
in the normal-ordering. This means that the spin-σ creation operators of T and the spin-σ
annihilation operators of D which are elements of the set

Sσ
T D

:= Aσ
T
∩Cσ

D
(B.10)

may cancel in the normal-ordering. The sets Aσ
X

and Cσ
X

denote the spin-σ creation and
annihilation clusters of operator X . Hence, the creation and annihilation clusters of T D are
given by

Cσ
T D
= Cσ

T
∪
�

Cσ
D
\ Sσ

T D

�
, (B.11a)

Aσ
T D
= Aσ

D
∪
�

Aσ
T
\ Sσ

T D

�
. (B.11b)

Similar results can be obtained for the product DT . Using the extended a-posteriori SR,
one obtains an upper bound for the maximal orders of T D and DT . The commutator [T, D]

is ignored finally if (B.9) is fulfilled.

Although the extended a-priori SR can cancel more commutators compared to the basic
a-priori SR, it has a caveat. In contrast to the basic a-priori SR, the extended version has
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to be applied individually to each element of the translation symmetry group, which is
computationally expensive. Therefore, in order to reach the highest efficiency we use a
combination of these a-priori SRs in practice [KDU12].

B.2 Simplification Rules for Dimer Limit

In this section, we discuss the simplification rules (SRs) that we employed in the dimer
limit analysis of the IHM (5.12). We classify the dimer excitation operators (5.10) into
boson and fermion groups. The boson group contains the singlon (5.10c) and the three
triplon operators (5.10b). The fermion group includes the four fermion operators (5.10a)
which act on the left site fl and on the right site fr of a dimer with two different spins. The
off-diagonal elements in the Hamiltonian (5.12) contain various kinds of annihilation and
creation processes between and among fermions and bosons. This makes it difficult to write
efficient and flexible SRs especially when sectors with finite numbers of fermions and/or
bosons are targeted. In the following, two kinds of simplification rules are introduced. The
first one is a basic SR which is not very efficient but flexible. It works if sectors with any
specific number of bosons and fermions are targeted. In the basic SR, only the number
of creation and annihilation operators of each monomial is considered. In the second one
called extended SR the lattice structure of the monomials is also taken into account. This
extended SR can work efficiently for the ground state and to some extent for the 1-fermion
sector. However, the present scheme needs to be generalized if higher quasiparticle sectors
are targeted.

Before describing the basic and the extended SRs, let us consider the general structure of
off-diagonal terms in the Hamiltonian (5.12). We emphasize that the first order generator
terms are enough for writing the SRs although higher order terms with other structures
also appear during the flow [KDU12]. Among the various kinds of the first order generator
terms, only the three structures given below play a major role in the estimate of maximal
orders

η(a) ∼
∑

j

f
†
j;l f

†
j+1;r + h.c., (B.12a)

η(b) ∼
∑

j

b
†
j f j;p f

†
j+1;p + h.c. ; p = l, r, (B.12b)

η(c) ∼
∑

j

b
†
j b

†
j+1 f

j;l f j+1;r + h.c., (B.12c)

where the boson operator b† stands either for a singlon or a triplon operator and we omit-
ted the spin indices of the fermion operators because they play no role in the following
considerations.



120 B.2 Simplification Rules for Dimer Limit

B.2.1 The Basic Simplification Rule

In order to elucidate the basic SR, we focus first on the number of annihilation and creation
operators which can be canceled via commutations with generator structures (B.12). The
first term η(a) can cancel two fermion creation or annihilation operators only if they act on
different internal positions. This internal position of a single dimer can be either left p = l

or right p = r. This is natural due to the conservation of the total charge in the system. Two
creation or annihilation operators of the same type need at least two commutations with
the generator η(a) to be canceled. This property allows us to make the SRs dependent on
the fermion types “left” and “right”. The net effect of the second term η(b) is to eliminate
one boson operator. The third term η(c) transforms two boson operators into two fermion
operators but with different types.

We try to find an upper bound for the maximal order of the monomial A if sectors up to
qb bosons and q f fermions are targeted up to order n. We suppose that the creation part of
monomial A includes cb boson and c f fermion operators. We will only examine the creation
part of the monomial A. The annihilation part can be treated in the same way. It is more
convenient to first discuss the situation where no fermion (but still qb boson) operator is
targeted. Then, we will keep q f fermion operators of the monomial A such that the maximal
order is overestimated. The number of boson operators which have to be canceled reads

c′
b
≡max(cb − qb, 0). (B.13)

If c′
b

is even, then we transform all of these boson operators into fermion operators using
η(c). If c′

b
is odd, the even number c′

b
− 1 boson operators are transformed into fermion

operators and the final boson operator is canceled via η(b). This procedure requires
l

c′
b

2

m

commutations and produces 2
j

c′
b

2

k
additional fermion operators. Half of these additional

fermion operators are of type f
l

and half of them are of type f
r
. Therefore the total number

of fermion operators of type “left” and “right” which should be canceled read

c′
fl
= c fl

+

�
c′

b

2

�
, (B.14a)

c′
fr
= c fr

+

�
c′

b

2

�
, (B.14b)

where c fl
and c fr

are the initial number of fermion operators of type “left” and “right”
present in the monomial A. The fermion operators can be canceled by commutations with
the term η(a). This term always cancels two fermions of different types. Fermion opera-
tors of the same type need one commutation each. Hence, the number of commutations
necessary to eliminate all the boson (B.13) and the fermion (B.14) operators is given by

K c
0,qb
=

¢
c′

b

2

¥
+max(c′

fl
, c′

fr
). (B.15)

This equation can be generalized to K c
q f ,qb

if sectors with up to qb bosons and q f fermions

are targeted. In this case, one needs to keep q f fermion operators of monomial A such
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that the number of commutations K c
q f ,qb

is minimized. We divide the fermion operators into

pairs. Each pair contains one “left” fermion and one “right” fermion. There will be some
single fermions left if the number of fermions of type “left” and “right” are not equal. First
we keep the single fermion operators. In this way, one can save one commutation for each
fermion operator. The remaining fermion operators have to be kept from paired fermions
saving one commutation for each two operators. Therefore, we obtain

K c
q f ,qb
= K c

0,qb
− d c

1 −
�

d c
2

2

�
, (B.16)

where d c
1 and d c

2 are defined as

d c
1 ≡min

�
q f ,
���c′fl
− c′

fr

���
�

, (B.17a)

d c
2 ≡min

�
q f − d c

1, c′
fl
+ c′

fr
− d c

1

�
. (B.17b)

The annihilation part of monomial A can be analyzed in the same way and leads to Ka
q f ,qb

.

Finally, the upper bound for the maximal order of the monomial A is given by [KDU12]

eOmax(A) = n− K c
q f ,qb
− Ka

q f ,qb
, (B.18)

where n is the order of calculations. This basic a-posteriori SR prevents unnecessary mono-
mials to be tracked.

As pointed out in the previous section, the a-priori SRs prevent unnesseccary commuta-
tors to be evaluated. We explain the basic a-priori SR for the commutator [T, D] = T D−DT .
We focus on the product T D. The product DT can be treated in the same way. All we need
to do is to estimate the minimum number of creation and annihilation operators which
remain after normal-ordering. Suppose c i

T
and ai

T
are the numbers of creation and an-

nihilation operators, respectively, of type i in the monomial T . The index i refers to the
eight possible operators (singlon, triplons, and fermions) that can appear on a dimer. Sim-
ilarly for the monomial D we assume c i

D
creation operators and ai

D
annihilation operators

of type i. Only operators of the same type can cancel each other in the normal-ordering.
Therefore, the minimum number of creation and annihilation operators of type i of the
product T D can be estimated as

c i
T D
≥ c̃ i

T D
:= c i

T
+ c i

D
− si

T D
, (B.19a)

ai
T D
≥ ãi

T D
:= ai

D
+ ai

T
− si

T D
, (B.19b)

where si
T D

:=min
�

ai
T
, c i

D

�
. Subsequently, for the number of boson operators and the num-

ber of left and right fermion operators we find

cb
T D
≥ c̃b

T D
:=
∑

i∈b

c̃ i
T D

, (B.20a)

c
fr

T D ≥ c̃
fr

T D :=
∑

i∈ fr

c̃ i
T D

, (B.20b)

c
fl

T D ≥ c̃
fl

T D :=
∑

i∈ fl

c̃ i
T D

, (B.20c)
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where b stands for bosons and fr and fl stand for the right-type and the left-type fermions.
Similar relations as (B.20) are valid for the annihilation parts of T D.

By having the numbers cb
T D

, c
fr

T D, c
fl

T D, ab
T D

, a
fr

T D, and a
fl

T D in hand, we can estimate the
maximal order of the product T D using the relation (B.18). Finally, the commutator [T, D]

has no effect on the targeted quantities up to order n and can be ignored if [KDU12]

max
�eOmax(T D), eOmax(DT )

�
< Omin(T ) +Omin(D). (B.21)

The basic a-priori SR is used, in addition to the a-posteriori SRs, in order to increase the
speed of the deepCUT algorithm.

B.2.2 The Extended Simplification Rule

The upper bound (B.18) for the maximal order of the monomial A can be reduced by taking
into account the lattice structure of the generator terms (B.12). The first term η(a) cancels
two fermions of different types but only on nearest-neighbor (n.n.) dimers. The third term
η(c) transforms two n.n. bosons into two n.n. fermions of different types. Special attention
has to be paid to the second term η(b). This term can cancel one boson accompanied by
a n.n. hopping process of a fermion. This additional hopping process makes it difficult to
write an efficient extended SR like in the previous section B.1. In the following, we estimate
the minimum number of commutations that we need to compensate all the fermion and
boson creation operators of monomial A. The annihilation part of monomial A can be
treated in the same way.

Similar to the previous section, we divide the creation cluster of monomial A into dif-
ferent linked subclusters. Assume K [C] denotes the number of commutations needed to
cancel all operators of the linked subcluster C. One requires a lower bound for this number
of commutations in order to find an upper bound for the maximal order of monomial A.
Hence, the size of each linked subcluster can be reduced based on the inequalities

K
�
⊗−⊕−C

′�≥ K[⊗−⊕] + K
�
C
′�≥ 1+ K

�
C
′� , (B.22a)

K
�
 − −C

′�≥ K[ − ] + K
�
C
′�≥ 2+ K

�
C
′� , (B.22b)

K
�
 −⊗−C

′�≥ K[ −⊗] + K
�
C
′�≥ 2+ K

�
C
′� , (B.22c)

K
�
⊗− −C

′�≥ 1+ K
�
⊗−C

′� , (B.22d)

K
�
⊗−⊗−C

′�≥ 1+ K
�
⊗−C

′� , (B.22e)

where the symbols ⊗ and ⊕ denote the two possible fermion operators on a dimer, the
symbol  stands for a boson operator on a dimer, and C

′ shows the remaining part of the
initial subcluster. In the left-hand side of the first equation (B.22a), for instance, the two
n.n. fermion operators of different types ⊗−⊕ are linked to the remaining part C′. The
validity of Eqs. (B.22) can be realized based on the structure of the generator terms (B.12).

As an example, let us check why we can not cancel the linked fermion and boson oper-
ators ⊗− in Eq. (B.22d). Consider a linked cluster of the form

C=⊗− − − · · · − − 
︸ ︷︷ ︸

n

−⊕, (B.23)
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where two different fermion operators on the two outermost dimers of the cluster C are
linked via n boson operators. After n applications of the generator term (B.12b), one can
cancel all the boson operators and bring the two fermion operators to n.n. dimers. This
pair of n.n. fermion operators can also be canceled via one commutation with the generator
term (B.12a). Hence, the total number of commutations that one needs to cancel operators
in this cluster (B.23) is n+ 1.

The scheme introduced in Eqs. (B.22) reduces a linked subcluster of operators to at
most one individual fermion or boson operator. A single individual boson operator needs
two commutations and a single individual fermion operator needs one commutation to be
canceled. In this manner, we can find the minimum number of commutations to remove all
operators of a linked subcluster. Finally, the minimum number of commutations necessary
to cancel all the creation operators of monomial A is given by

K c
0,0 =

∑

C

K[C] , (B.24)

where the summation runs over all creation linked subcluster of the monomial A. Simi-
larly, we can analyze the annihilation part of the monomial A. The maximal order can be
calculated via Eq. (B.18) if just the ground state is targeted.

The extended SR saves a factor of about 8 in the number of representatives compared to
the basic SR if the ground state is targeted. We also used this extended SR to describe the 1-
fermion sector making the simple estimate K1,0 = K0,0−1 for both creation and annihilation
parts. This relation can always be used in Eq. (B.18) because a fermion operator costs at
most one commutation to be canceled. For higher quasiparticle sectors, however, such a
simple estimate can not work efficiently and it requires to be modified.
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Appendix C

Spin States

In the first section C.1 of this Appendix the spin states which are used in the BI limits
analysis in Chapter 4 to construct the Hamiltonian matrix, are presented. The spin states
made from triplons with specific magnetic numbers are reported in the second section C.2.

C.1 Fermions

The electron-hole transformation (4.1) on the odd sites of the IHM affects the spin eigen
states and makes them deviate from their standard form. For instance, the two-QP state
|K; d〉 with total spin zero reads

|K; d〉S=0,M=0
=

(
1p
2

�
|K ,+; d,+〉+ |K ,−; d,−〉

�
for d ∈ odd

1p
2

�
|K ,+; d,−〉− |K ,−; d,+〉

�
for d ∈ even

(C.1)

where d is the distance between the two QPs. For constructing the Hamiltonian matrix in
the ED, it is more suitable to apply the transformation g

†
i,σ→ g

†
i,σ̄ to the odd sites of the ef-

fective Hamiltonian derived from the deepCUT calculations. The aim of this transformation
is to make the spin eigen states independent of relative distances up to a sign factor.

The 1-, 2-, 3-, and 4-QP states with total spins S = 0, 1
2
, 1 and corresponding total

magnetic numbers M = 0, 1
2
, 1 are presented in Table C.1. These relations are used for the

construction of the Hamiltonian matrix in the ED treatment in Chapter 4.

C.2 Triplons

The spin states with the total spin S = 0, 1 and the corresponding total magnetic number
M = 0, 1 which can be constructed from 1-triplon (1T), 2-triplon (2T), and 3-triplon (3T)
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|K〉S=1/2,M=1/2 |K+〉

|K; d1〉S=1,M=1 |K+; d+〉

|K; d1〉S=0,M=0 1p
2

�
|K+; d1−〉− (−1)d1 |K−; d1+〉

�

|K; d1; d2〉S=1/2,M=1/2
a

1p
2

�
|K+; d1−; d2+〉 − (−1)d1 |K−; d1+; d2+〉

�

|K; d1; d2〉S=1/2,M=1/2
b

1p
6

�
|K−; d1+; d2+〉 + (−1)d1 |K+; d1−; d2+〉

− 2(−1)d1+d2 |K+; d1+; d2−〉
�

|K; d1; d2; d3〉S=1,M=1
a

1p
2

�
|K+; d1+; d2+; d3−〉− (−1)d3 |K+; d1+; d2−; d3+〉

�

|K; d1; d2; d3〉S=1,M=1
b

1p
2

�
|K+; d1−; d2+; d3+〉 − (−1)d1 |K−; d1+; d2+; d3+〉

�

|K; d1; d2; d3〉S=1,M=1
c

1
2

�
|K+; d1+; d2+; d3−〉 + (−1)d3 |K+; d1+; d2−; d3+〉

− (−1)d2 |K−; d1+; d2+; d3+〉
− (−1)d1+d2 |K+; d1−; d2+; d3+〉

�

|K; d1; d2; d3〉S=0,M=0
a

1
2

�
|K+; d1−; d2+; d3−〉 + (−1)d1+d3 |K−; d1+; d2−; d3+〉

− (−1)d3 |K+; d1−; d2−; d3+〉
− (−1)d1 |K−; d1+; d2+; d3−〉

�

|K; d1; d2; d3〉S=0,M=0
b

1
2
p

3

�
|K−; d1+; d2+; d3−〉 − 2(−1)d2 |K+; d1+; d2−; d3−〉

− 2(−1)d2 |K−; d1−; d2+; d3+〉
+ (−1)d1 |K+; d1−; d2+; d3−〉
+ (−1)d3 |K−; d1+; d2−; d3+〉
+ (−1)d1+d3 |K+; d1−; d2−; d3+〉

�

Table C.1: One-, two-, three-, and four-QP states with total spin S and total magnetic
number M employed in the ED analysis for constructing the Hamiltonian matrix in different
sectors of total S and M .

states are expressed in Table C.2.
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|1T 〉S=1,M=1 |t+1〉

|1T 〉S=1,M=0 |t0〉

|2T 〉S=1,M=1 1p
2

�
|t+1, t0〉 − |t0, t+1〉

�

|2T 〉S=1,M=0 1p
2

�
|t+1, t−1〉 − |t−1, t+1〉

�

|2T 〉S=0,M=0 1p
3

�
|t+1, t−1〉+ |t−1, t+1〉 − |t0, t0〉

�

|3T 〉S=1,M=1
a

1p
3

�
|t+1, t−1, t+1〉+ |t−1, t+1, t+1〉 − |t0, t0, t+1〉

�

|3T 〉S=1,M=1
b

1
2

�
|t+1, t0, t0〉+ |t−1, t+1, t+1〉 − |t0, t+1, t0〉 − |t+1, t−1, t+1〉

�

|3T 〉S=1,M=1
c

Æ
1
60

�
2 |t0, t0, t+1〉+ 6 |t+1, t+1, t−1〉 + |t+1, t−1, t+1〉+ |t−1, t+1, t+1〉

− 3 |t+1, t0, t0〉 − 3 |t0, t+1, t0〉
�

|3T 〉S=1,M=0
a

1p
3

�
|t+1, t−1, t0〉+ |t−1, t+1, t0〉 − |t0, t0, t0〉

�

|3T 〉S=1,M=0
b

1
2

�
|t+1, t0, t−1〉+ |t−1, t0, t+1〉 − |t0, t+1, t−1〉 − |t0, t−1, t+1〉

�

|3T 〉S=1,M=0
c

Æ
1
60

�
3 |t0, t−1, t+1〉 + 3 |t−1, t0, t+1〉+ 3 |t+1, t0, t−1〉+ 3 |t0, t+1, t−1〉

− 4 |t0, t0, t0〉 − 2 |t+1, t−1, t0〉 − 2 |t−1, t+1, t0〉
�

|3T 〉S=0,M=0
1p
6

�
|t+1, t0, t−1〉+ |t0, t−1, t+1〉 + |t−1, t+1, t0〉 − |t0, t+1, t−1〉

− |t−1, t0, t+1〉 − |t+1, t−1, t0〉
�

Table C.2: 1-triplon (1T), 2-triplon (2T), and 3-triplon (3T) states with total spin S and
total magnetic number M constructed from the single triplon states |tm〉 with specific mag-
netic number m= 0,±1.
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