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AXEL BÜCHER, FELIX IRRESBERGER, AND GREGOR N.F. WEISS

Abstract. A new measure of asymmetry in dependence is proposed which is based on
taking the difference between the margin-free coskewness parameters of the underlying
copula. The new measure and a related test are applied to both a hydrological and
a financial market data sample and we show that both samples exhibit systematic
asymmetric dependence.

Keywords: asymmetry, coskewness, exchangeability, copula, diversification.
JEL codes: C00, C12, C58.

1. Introduction

The past two decades have seen a steady increase in research on dependence modeling in
general, and on copulas in particular. Possibly the main reason for the interest in copulas
is the fact that in contrast to correlation-based models copulas allow for the modeling of
different behaviours in the tail of a distribution.1 For example, while the Gaussian copula
is tail-independent and the Student’s t copula is symmetrically tail dependent, other
copulas like the Clayton or Gumbel–Hougaard copula are characterized by asymmetric
tail dependence in the sense that the distribution’s behaviour in the upper tail does
not need to equal the behaviour in the lower tail. Despite the extensive work done on
asymmetry in the tail dependence, however, asymmetry in the copula itself (also called
exchangeability) and its importance in applied settings have so far received much less
attention.

A copula is said to be asymmetric (or non-exchangeable) if C(u, v) 6= C(v, u) holds
for at least one pair u, v,∈ [0, 1], i.e., if the distribution exhibits different behaviours in
the upper left and the lower right triangle of the unit square. In applications, such a
case can easily occur if, for example, there exists a causal relation between the two ran-
dom variables. Surprisingly, asymmetry in dependence is seldomly studied in economics
and financial econometrics despite its obvious usefulness.2 This is perhaps even more
surprising given the fact that the asymmetry of a copula is closely connected with the
coskewness of a bivariate random vector, a concept widely used in the context of asset
pricing theory (see, e.g., Kraus and Litzenberger, 1976; Harvey and Siddique, 2000; Ang
et al., 2006).

Date: May 3, 2016.
1Modeling the tail of a distribution is also relevant for various applications in both risk management and
actuarial science, (see, e.g., Peng, 2008; Jong, 2012; Hua and Xia, 2014).
2This is in contrast to asymmetry in tail dependence, which has been extensively studied by, e.g.,
Demarta and McNeil (2004); Patton (2006); Christoffersen et al. (2012).
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In this paper, we exploit the relation between the asymmetry of a copula and the
coskewness of a random vector and propose a new measure of asymmetry in dependence
that is based on the difference between two coskewness parameters. Consequently, our
new measure is easy to interpret and allows for an analysis of the question into which
direction the copula is skewed. Just like Spearman’s correlation coefficient is related to
Pearson’s correlation coefficient, our proxy for the asymmetry of a copula is related to
coskewness. In particular, no moment conditions are necessary for its definition and it
is invariant with respect to strictly monotone transformations of the marginals.

In our empirical study, we illustrate the usefulness of our test for both the modeling of
flooding events and losses in asset management by applying our test to two data samples
from hydrology and finance. Our results, which should be of particular interest to non-
life insurers, show that both samples exhibit strong asymmetry in their dependence that
should be taken into account when modeling claims and losses.

The remaining part of the paper is structured as follows. In Section 2, we define our
new measure of the asymmetry of a copula and discuss its properties. In Section 3, we
illustrate our new measure by applying it to a hydrological and a financial market data
sample. Section 4 concludes. All proofs are deferred to an appendix.

2. A new measure of the asymmetry of a copula

Let (X,Y ) be a random vector with joint cumulative distribution function (cdf) F and
continuous marginal cdfs FX and FY and copula C. We recall Sklar’s theorem which
establishes the following relation between the joint distribution’s cdf and its marginal
cdfs:

F (x, y) = C{FX(x), FY (y)} for all x, y ∈ R,
where C is uniquely determined and given by the cdf of the random vector (U, V ),
with U = FX(X), V = FY (Y ). A copula C is called symmetric or exchangeable if the
following holds true:

C(u, v) = C(v, u) for all u, v ∈ [0, 1].3

While many of the most common copula models allow for radial asymmetry (in partic-
ular, the lower and upper tail dependence may be different), they often do not allow for
asymmetry in the copula itself.4 To detect such asymmetry, one could simply look at
the difference of the two functions (u, v) 7→ C(u, v) and (u, v) 7→ C(v, u), which is zero
for symmetric copulas, and define the following measure of asymmetry:

d∞(C) = 3 sup
(u,v)∈[0,1]2

|C(u, v)− C(u, v)|.

In fact, any distance between the two function (u, v) 7→ C(u, v) and (u, v) 7→ C(v, u)
may be used to measure asymmetry. It can be shown that d∞(C) takes values in [0, 1]
(whence the constant 3), and it is equal to zero if and only if C is symmetric (see Nelsen,
2007). Replacing C by the empirical copula allows to define a test that may detect

3This is not to be confused with the related concept of radial symmetry, C(u, v) = C(u, v), where C
denotes the survival copula associated with C.
4An extensive overview of methods how to construct asymmetric copulas from given symmetric ones can
be found in Liebscher (2008).
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departures from symmetry, which was proposed by Genest et al. (2011) with a recent
application in Siburg et al. (2016).

Obviously, a positive coefficient d∞(C) is hard to interpret when one is interested in
the direction of the asymmetry. However, in many applications it is important to know
for which points (u, v) or for which regions of the unit square the symmetry relation
does not hold, and in which direction it points. Hence, we propose a simpler coefficient
that allows for an easy interpretation and relates to the concept of coskewness: co-
coskewness (copula-coskewness). Our co-coskewness measure is related to coskewness in
a similar way the Spearman correlation is related to Pearson correlation. In particular,
no moment conditions are necessary for its definition and it is invariant with respect to
strictly monotone transformations of the marginals.5

We recall the definition of the two coskewness parameters (see, e.g., Miller, 2012):

s̄X,Y =
E[(X − µX)2(Y − µY )]

σ2XσY
, s̄Y,X =

E[(X − µX)(Y − µY )2]

σXσ2Y
,

where µX , µY and σX , σY are the mean and standard deviation of X and Y , respectively.
The coefficients are defined for any (X,Y ) whose third moments exist.
s̄X,Y is positive, when large values of Y tend to occur jointly with either small or large

values of X and vice versa for s̄Y,X . We define the co-coskewness parameter (copula
coskewness) as6

sX,Y := s̄U,V = 123/2 × E[(U − 1/2)2(V − 1/2)]

sY,X := s̄V,U = 123/2 × E[(U − 1/2)(V − 1/2)2].

Using simple algebra yields the following result:

E[(U − 1/2)2(V − 1/2)] =

∫
(u− 1

2)2(v − 1
2) dC(u, v)

=

∫
u2v − uv + 1

4v −
1
2u

2 + 1
2u−

1
8 dC(u, v)

=

∫
u2v − uv dC(u, v) + 1

12 .

Here, and throughout, integration is over [0, 1]2 if not otherwise mentioned. The latter
formula shows that the co-coskewness parameters are simple functionals of the copula C.
Further note that if D is an arbitrary continuous cdf on [0, 1]2 (not necessarily a copula),
then

∫
D(u, v) dC(u, v) =

∫
C(u, v) dD(u, v) (see, e.g., Lemma 1 in Remillard, 2010).

Applying this twice to the last display, we also have

E[(U − 1/2)2(V − 1/2)] =

∫
(2u− 1)C(u, v) d(u, v) + 1

12 .

This second formula expresses the co-coskewness parameters through the copula, but
this time the copula appears in the integrand (which is convenient for proofs).

5One disadvantage of the co-coskewness measure is that a value of zero does not necessarily imply
symmetry in the copula. This, however, also holds for the common skewness parameter of a real-valued
distribution. In the same way, independence of two random variables is not implied by a Spearman’s
rho that equals zero.
6Note that µU = µV = 1/2 and σ2

U = σ2
V = 1/12
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The co-coskewness parameter sU,V attains values larger than zero when the distribu-
tion associated with the copula puts much of its mass to regions close to the points (0, 1)
or (1, 1) of the unit square. Similarly, positive values of sV,U occur whenever much mass
is concentrated near the points (1, 0) or (1, 1). The (possibly scaled) difference between
the two parameters, aX,Y , is hence an obvious choice for measuring the asymmetry of C:

aX,Y ∝ sU,V − sV,U .

A positive value of aX,Y indicates that large values of Y occurring simultaneously with
small values of X is more likely than large values of X occurring simultaneously with
small values of Y , and vice versa for negative values. Clearly, it would be desirable to
choose the constant in front of the difference in such a way that aX,Y ∈ [−1, 1], with
aX,Y = 0 whenever the copula is symmetric. The choice of the constant is the topic of
the subsequent Lemma 2.1.

After some simple algebra we obtain

sU,V − sV,U ∝ E[(U − 1/2)2(V − 1/2)− (U − 1/2)(V − 1/2)2]

= E[(U − 1
2)(V − 1

2)(U − V )]

= E[U2V − V 2U ]

= 1
3 E[(V − U)3].

The co-coskewness-based parameter of asymmetry aX,Y is hence a multiple of the third
(central) moment of V −U . The following Lemma establishes the range of possible values
of E[(V − U)3].

Lemma 2.1. Let C denote the set of all copulas. Then

max
{∫

(v − u)3 dC(u, v) : C ∈ C
}

=
33

44
.

The maximum is attained for the (shuffle of min(u, v)) copula C+ whose support is the
union of the lines {(u, v) ∈ (0, 0.25) × (0.75, 1) : v = 1 − u} and {(u, v) ∈ (0.25, 1) ×
(0, 0.75) : v = u− 0.25}. Figure 1 provides a picture of the support. Similarly,

min
{∫

(v − u)3 dC(u, v) : C ∈ C
}

= −33

44
.

The minimum is attained for the (shuffle of min(u, v)) copula C− whose support is
the union of the lines {(u, v) ∈ (0, 0.75) × (0.25, 1) : v = u + 0.25} and {(u, v) ∈
(0.75, 1)× (0, 0.25) : v = 1− u}. Figure 1 shows a picture of the support.

A proof of Lemma 2.1, relying on the theory of mass transportation problems, can
be found in Appendix A. Lemma 2.1 suggests to scale the asymmetry parameter with
44/33. Hence, from now on, let

aX,Y :=
44

33
E[(V − U)3] =

256

27
E[(V − U)3], (2.1)
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Figure 1. Support of the copula C+ (left) and C− (right). These are
the maximal asymmetric elements with respect to the measure aX,Y .

which attains values in [−1, 1] and which is equal to 0 whenever the copula is symmetric.
By the preceding calculations, we have:

aX,Y =
44

33
· 3 · 12−3/2(sX,Y − sY,X) =

32

27
√

3
(sX,Y − sY,X)

≈ 0.6842(sX,Y − sY,X).

Estimation of aX,Y can be based on using an empirical analogue of the expression
in (2.1). More precisely, we define

âX,Y =
256

27
× 1

n(n+ 1)3

n∑
i=1

{rank(Yi)− rank(Xi)}3, (2.2)

where rank(Xi) denotes the rank of Xi among X1, . . . , Xn; and similarly for rank(Yi).

Noe that in terms of the empirical copula Ĉn(u, v) = 1
n

∑n
i=1 1(Ûi ≤ u, V̂i ≤ v), where

Ûi = rank(Xi)/(n+ 1) and V̂i = rank(Vi)/(n+ 1), we can rewrite (2.2) in the following
way:

âX,Y =
256

27
× 1

n

n∑
i=1

(V̂i − Ûi)3 =
256

27
×
∫

(v − u)3 dĈn(u, v). (2.3)

Due to the fact that the sample of pseudo-observations is not independent over i,
asymptotic normality of âX,Y cannot be deduced from a simple application of the central
limit theorem. In fact, the asymptotic variance is quite complicated.

Proposition 2.2. Let (X1, X2), . . . , (Xn, Yn) be independent and identically distributed
with continuous margins and copula C. Then, with (Ui, Vi) = (F (Xi), G(Yi)), we have
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the asymptotic expansion

√
n(âX,Y − aX,Y ) =

1√
n

n∑
i=1

{h(Ui, Vi)− E[h(Ui, Vi)]}+ oP(1),

where h(u, v) = (256/27) · {g0(u, v)− 3g1(u) + 3g2(v)} with g0(u, v) = (v − u)3 and

g1(u) =

∫
(x− y)2 1(u ≤ x) dC(x, y) = E[(U − V )2 1(U ≥ u)],

g2(v) =

∫
(x− y)2 1(v ≤ y) dC(x, y) = E[(U − V )2 1(V ≥ v)],

and where expectation on the right-hand side is with respect to (U, V ) ∼ C. As a conse-
quence, √

n(âX,Y − aX,Y ) N (0, σ2),

where σ2 = (256/27)2 ·Var
{

(V − U)3 − 3g1(U) + 3g2(V )
}
.

A proof of the proposition can be found in Appendix A. Note that the result does
not require any smoothness assumptions on the copula at all. This is in contrast to, for
instance, the test for symmetry of Genest et al. (2011) which relys on the assumption of
existing continuous first order partial derivatives of the copula C. The formal test that
we are going to derive below can hence be used under far broader conditions than the
test of Genest et al. (2011).

Making inference (confidence bands or testing) on basis of Proposition 2.2 requires
estimation of the asymptotic variance. Motivated by the asymptotic expansion, we
propose to estimate σ2 by σ̂2, defined as the empirical variance of the (observable)

sample Ẑ1, . . . Ẑn, where

Ẑi = (256/27) · {g0(Ûi, V̂i)− 3ĝ1(Ûi) + 3ĝ2(V̂i)}, i = 1, . . . , n,

and

ĝ1(Ûi) =
1

n− 1

n∑
j=1,j 6=i

(Ûj − V̂j)2 1(Ûj ≥ Ûi),

ĝ2(V̂i) =
1

n− 1

n∑
j=1,j 6=i

(Ûj − V̂j)2 1(V̂j ≥ V̂i).

It can be shown that σ̂2 is consistent for σ2. As a consequence, we can derive asymptotic
one- or two-sided confidence bands for aX,Y and can formally test the hypothesis of
symmetry by rejecting symmetry whenever nâ2X,Y /σ̂

2 > χ2
1−α, the 1− α-quantile of the

χ2-distribution. The test asymptotically holds its level and is consistent against any
alternative with aX,Y 6= 0.

3. Applications

In this section, we illustrate our new proxy for asymmetry in dependence by apply-
ing the concept of copula-coskewness in two major fields of research in which copulas
have become one of the mainstays of dependence models: hydrology and finance. Both
applications should yield interesting insights for non-life insurers. In our first study
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Figure 2. Left: Maximal summer flows in m3/s measured at gauges in
Pockau and Borstendorf, Germany. Right: Corresponding pseudo-
observations.

on hydrological data, we show how asymmetric dependence structures naturally appear
in river systems making our new test of asymmetric a valuable tool for modeling and
forecasting floods (and consequently claims). In our second empirical study, we show
that portfolios of financial assets are frequently characterized by asymmetric dependence
structures. Our new test can thus help asset managers to detect these asymmetries and
chose a suiting asymmetric copula model for forecasting losses.

3.1. Hydrology. Consider a simple river system consisting of a main river and a trib-
utary. We are interested in the bivariate dependence between flood events on the main
river occurring upstream (X) and downstream (Y ) of the confluence of the two rivers.
A flood at station X necessarily yields a flood at station Y , whereas a flood at station Y
may also well be caused by a flood stemming from the tributary, with a comparably low
water level at station X. As a consequence, one would expect asymmetry in the copula
between the two variables: mass may be attained to subsets of the unit cube close to the
point (0, 1), but not to subsets close to the point (1, 0), resulting in a positive value for
the co-coskewness parameter aX,Y . The strength of the asymmetry of course depends
on the precise location of the gauges and the local climatic conditions.

We consider a data set which reveals that the above heuristic is in fact statistically
significant. The data set consists of n = 84 bivariate maximal summer water flows
(i.e., of flood events, measured in m3/s) measured between 1929 and 2012 at the river
Flöha in Saxony, Germany. The river station Pockau (X) lies approximately 20 km
upstream of the river station Borstendorf (Y ) and, in between, two smaller rivers join
the river Flöha. The observations are illustrated in Figure 2. Note in particular that
the marginal distributions are heavy tailed (ML-estimators of the tail index γ under a
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GEV-assumption are 0.52 and 0.54 with standard errors of 0.12 and 0.14, respectively)
whence regular (second and) third moments and coskewness parameters do not exist; it
is really mandatory to switch to (some) standard scale for the margins. From the plot of
the pseudo-observations we can in fact observe that, from the subsample of observations
far from the main diagonal (say, at distance larger than 0.1), a slightly higher proportion
lies above than below the diagonal.

Applying the methodology developed in this paper, the null hypothesis of symmetry
gets rejected with a p-value of 0.020. The estimated parameter value is âX,Y = 0.012,
which is positive as expected by the above heuristics. The 95%-two-sided confidence
interval based on the normal approximation in Proposition 2.2 is given by [0.002, 0.024].
The estimated value may appear rather low on first sight, which, however, is not too
surprising, given that the two joining rivers are quite small (not longer than 30km),
resulting in very similar climatic conditions at the entire river system. Floods will
hence quite often occur simultaneously, as can also be seen from the plot of the pseudo-
observations and an estimated value of Spearman’s rho of 0.92. Finally, note that the
Cramér-von-Mises test for symmetry of the copula by Genest et al. (2011) also rejects
the null hypothesis, with a p-value of 0.005 based on N = 50, 000 multiplier bootstrap
repetitions. The latter test, however, does not give any insight into the direction of
asymmetry.

3.2. Finance. Recall the interpretation of coskewness s̄X,Y and s̄Y,X of two assets X
and Y . Whenever s̄X,Y has positive and high values, large values of Y tend to occur
jointly with small and large values of X (which translates into more copula-mass around
the points (0, 1) and (1, 1) of the unit cube). Assume for example that X and Y are
daily returns of two financial assets (e.g., stocks or indices). The co-coskewness-based
asymmetry parameter aX,Y is defined as the difference of the two co-coskewness param-
eters and thus, measures which joint movements of the returns are more likely. When
aX,Y is zero, high returns of Y tend to occur jointly with higher returns of X in the
same way high returns of X tend to occur jointly with lower returns of Y . When aX,Y
is unequal to zero, we observe a diversification benefit for investors. When coskewness
of the two assets X and Y is high, we expect higher returns of asset Y to be associated
with small and large values of X. On the other hand, mediocre returns on asset X do
not necessarily occur jointly with high returns of asset Y . In this way, Y provides an
opportunity to hedge extreme (negative) returns of asset X while normal returns of X
are associated with mediocre returns of Y .

This kind of asymmetry could be found in returns of different markets, e.g., a thriv-
ing oil market may induce an increase in profits for industrial companies that provide
respective equipment. In contrast, however, a successful industrial firm may not affect
the oil market in the same way. Further, one might find asymmetry in the dependence of
returns on stocks in a sub-sector and returns on a diversified market index (e.g., financial
firms’ stocks as part of the S&P 500 equity index) (see also Siburg et al., 2016, for a
related interpretation of asymmetry in bivariate financial data).

We apply our co-coskewness-based asymmetry measure to a variety of financial mar-
ket indices covering returns/yields on equity (e.g., S&P 500 Composite, MSCI World),
commodities (e.g., TOPIX Oil & Coal, Gold Bullion LBM, Raw Sugar, Cotton), and
U.S. treasury bonds. In total, we compile 21 financial time series from Thomson Reuters
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Financial Datastream that cover the time period from January 4, 1990 to December
31, 2015 (6,780 observations). We employ AR(3)- and GJR-GARCH(1,1)-processes and
filter all univariate time series before computing rank-transformed pseudo-observations.
These are then used to estimate our asymmetry measure for all bivariate pairs of the
indexes in our sample. In Figure 3, we plot a histogram of the asymmetry parameters
of all pairs of indexes. We can observe that the distribution of the asymmetry measure
is slightly skewed towards negative values among the full sample. However, most of the
values lie between zero and 0.02, with an average of about 0.002 across all pairs.

In total, we test our null hypothesis of symmetry for all 190 bivariate combinations
of the 21 indices covering several markets using the co-coskewness-based test and the
asymmetry-test proposed in Genest et al. (2011). Using co-coskewness, for 23 out of 190
pairs the null hypothesis of symmetric dependence is rejected at the 5% level. Thus,
our test suggests asymmetry in dependence for about 12.1% of all combinations in our
sample. In comparison, testing exchangeability using the test of Genest et al. (2011)
yields 26 out of 190 pairs (13.7%) for which the null hypothesis is rejected at the 5% level.
In Figure 4, we plot the resulting p-values of both tests against the asymmetry measure
calculated for all pairs. Both pictures reveal that most of the p-values below the 5% level
correspond with a positive value of the asymmetry measure aX,Y . This is even more
pronounced for our new test. As to be expected, higher p-values for the co-coskewness-
based test are associated with lower absolute values of aX,Y , whereas the other test
does not reveal an obvious pattern of test results being associated with asymmetry in
dependence. Further, using the test of Genest et al. (2011), there are significantly more
data points associated with a p-value below 10% than for our approach, which shows
that our test is somewhat stricter when identifying asymmetry in dependence. Finally,
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Figure 4. Left: Asymmetry parameters and p-values of the test of Gen-
est et al. (2011) tests. Right: Asymmetry parameters and corresponding
p-values of co-coskewness-based test.

unreported results on the computational time needed by both tests shows that our test
based on co-coskewness is significantly faster than the alternative test of Genest et al.
(2011) which requires about 34 times more computation time (with 1,000 multiplier
iterations) than our test.

Table 1 provides an overview of the 23 pairs of assets that exhibit asymmetry in depen-
dence at a 5% significance level. First, we notice that our measure of asymmetry is large
and positive for five equity indexes paired with the LMEX (London Metal Exchange)
index. Referring to our interpretations above, the equity indexes provide a diversifica-
tion strategy for commodity markets. The combination of a broad equity index and
smaller (bank) stock indexes exhibits positive and significant asymmetric dependence.
This pattern is consistent across all combinations of a larger and smaller equity index in
our sample.

Our measure of asymmetry in dependence is positive and statistically significant for
oil or a general commodity index and an aluminum price-index. We also find some
negative values of aX,Y when comparing U.S. treasury bonds and an index for cotton
price and comparing a gold price index with oil and the treasury bond yields. These
results suggest that extreme values of the gold price index can be hedged by owning oil
or government bonds.

4. Conclusion

In this paper, we have proposed to measure asymmetry in dependence by looking
at differences in the coskewness of standardized bivariate random vectors. Our proxy
for a data sample’s degree of asymmetry of the copula is easy to interpret, signals
the direction into which the probability mass of the copula is skewed, and the related
test allows for a fast testing of the null hypothesis of symmetric dependence. In our
two application studies, we have shown that both hydrological and financial market
data may exhibit asymmetry in the underlying copulas. Both the interpretations of
asymmetry in dependence being due to a causal relation between two random variables
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Co-coskewness Index i Index j

0.0634 S&P 500 COMPOSITE LMEX Index
0.0588 S&P 500 BANKS LMEX Index

0.0442 G7-DS Banks LMEX Index
0.0400 RUSSELL 2000 LMEX Index

0.0378 G12-DS Banks LMEX Index

0.0353 MSCI WORLD EX US Gold Bullion LBM
0.0281 MSCI WORLD EX US LME-Aluminium

0.0256 Crude Oil-Brent Cur. Month LME-Aluminium

0.0238 Moody’s Commodities Index LME-Aluminium
0.0232 US T-Bill 10 Year LME-Aluminium

0.0230 EU-DS Banks Gold Bullion LBM

0.0175 MSCI WORLD EX US TOPIX OIL & COAL PRDS.
0.0159 S&P 500 COMPOSITE EU-DS Banks

0.0140 S&P 500 COMPOSITE G12-DS Banks

0.0137 S&P 500 COMPOSITE G7-DS Banks
0.0092 Moody’s Commodities Index Cotton

0.0078 S&P 500 COMPOSITE RUSSELL 2000
0.0004 G12-DS Banks G7-DS Banks

-0.0083 G7-DS Banks MSCI WORLD EX US

-0.0222 Crude Oil-Brent Cur. Month Cotton
-0.0237 Gold Bullion LBM Crude Oil-Brent Cur. Month

-0.0239 US T-Bill 10 Year Cotton

-0.0240 Gold Bullion LBM US T-Bill 10 Year

Table 1. Asymmetry parameters for pairs with significant asymmetry
in dependence (5% level)

X and Y as well as asymmetry signaling diversification benefits during bearish market
phases underline the importance of accounting for asymmetric dependence structures in
financial applications. Thus, our test should constitute a helpful tool for non-life insurers
for both the modeling of insurance claims and portfolio losses.

Future research could try to investigate the systematic nature of the found asymmetric
dependence structures in more detail.

Appendix A. Proofs

Proof of Lemma 2.1. We only consider the claim for the maximum, the one for the
minimum follows from symmetry. A simple calculation shows that

∫
(v − u)3 dC+ =

33/44, whence it remains to be shown that C+ is a maximizer of the map C 7→
∫

(v −
u)3 dC(u, v).

Let B([0, 1]) denote the set of bounded Borel-measurable functions on [0, 1]. Propo-
sition 2 in Gaffke and Rüschendorf (1981) shows that the maximum in Lemma 2.1 is
attained, and Corollary 3 in the same reference characterizes that maximum: C∗ is a
maximizer of C 7→

∫
(v − u)3 dC(u, v) if and only if there exist functions f, g ∈ B([0, 1])

such that f(u) +g(v) ≥ (v−u)3 and such that f(u) +g(v) = (v−u)3 almost surely with
respect to the measure induced by C∗.
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An argumentation similar to the one in Example 1(a) of Gaffke and Rüschendorf
(1981) suggests to define

f(u) =

{
− 6

64 −
1
2(2u− 1)3, u < 1

4
1
64 −

3
16u, u ≥ 1

4

and

g(v) =

{
1
64 + 3

16v, v ≤ 3
4

6
64 + 1

2(2v − 1)3, v > 3
4 .

The proof of Lemma 2.1 is finished once we have shown that f(u) + g(v) = (v − u)3

whenever (u, v) ∈ supp(C+), and that f(u) + g(v) ≥ (v − u)3 for all (u, v) ∈ [0, 1]2.
First, let (u, v) ∈ supp(C+) = A1 ∪A2, where A1 = {(u, v) ∈ (0, 0.25)× (0.75, 1) : v =

1− u} and where A2 = {(u, v) ∈ (0.25, 1)× (0, 0.75) : v = u− 0.25}. If (u, v) ∈ A1, then

f(u) + g(v) = f(u) + g(1− u) = − 6
64 −

1
2(2u− 1)3 + 6

64 + 1
2(1− 2u)3 = (1− 2u)3

= (v − u)3.

Similarly, if (u, v) ∈ A2, then

f(u) + g(v) = f(u) + g(u− 1
4) = 1

64 −
3
16u+ 1

64 + 3
16(u− 1

4) = − 1
64

= (v − u)3

It remains to be shown that h(u, v) := f(u) + g(v) − (v − u)3 is nonnegative for all
(u, v) ∈ [0, 1]2. Four cases need to be distinguished, we begin by u ≥ 1/4 and v ≤ 3/4.
Let x = (v − u), a number in [−1, 1/2]. Then

h(u, v) = 1
64 −

3
16u+ 1

64 + 3
16v − x

3 = 1
32 + 3

16x− x
3.

The polynomial on the right-hand side can be easily seen to be nonnegative on [−1, 1/2]
(with two zeros at x = −1/4 and x = 1/2).

Now, consider u < 1/4 and v > 3/4. Let x = 2v−1 ∈ (1/2, 1] and y = 1−2u ∈ (1/2, 1],
such that v−u = (2v−1+1−2u)/2 = (x+y)/2. By convexity of t 7→ t3 on the nonnegative
numbers, we have

(v − u)3 =
{
1
2(x+ y)

}3 ≤ 1
2x

3 + 1
2y

3 = f(u) + g(v),

whence h(u, v) ≥ 0.
Third, let u < 1/4 and v ≤ 3/4, then

h(u, v) = − 5
64 −

1
2(2u− 1)3 + 3

16v − (v − u)3.

Since ∂
∂uh(u, v) = 3{(v − u)2 − (1− 2u)2} = 3(v + 1− 3u)(v + u− 1) is nonpositive on

[0, 1/4]× [0, 3/4], the function u 7→ h(u, v) is nonincreasing for any v, whence

h(u, v) ≥ h(14 , v) = − 1
64 + 3

16 − (v − 1
4)3.

The polynomial on the right-hand side can be easily seen to be nonnegative on [0, 3/4]
(with two zeros at v = 0 and v = 3/4).

Finally, let u ≥ 1/4 and v > 3/4, then

h(u, v) = 7
64 −

3
16u+ 1

2(2v − 1)3 − (v − u)3.



TESTING ASYMMETRY IN DEPENDENCE WITH COPULA-COSKEWNESS 13

Since ∂
∂vh(u, v) = 3{(2v − 1)2 − (v − u)2} = 3(2v − u+ 2)(3v + u− 1) is nonnegative on

[1/4, 1]× [3/4, 1], the function v 7→ h(u, v) is nondecreasing for any v, whence

h(u, v) ≥ h(u, 34) = 11
64 −

3
16 − (34 − u)3.

The polynomial on the right-hand side can be easily seen to be nonnegative on [1/4, 1]
(with two zeros at u = 1/4 and u = 1). The proof is finished. �

Proof of Proposition 2.2. Let Cn(u, v) =
√
n(Ĉn(u, v) − C(u, v)} denote the empirical

copula process. As a consequence of (2.3), we can write
√
n(âX,Y − aX,Y ) = (256/27) ·∫

(v − u)3 dCn(u, v). Random variables of the form
∫
g(u, v) dCn(u, v) are considered in

Theorem 6 in Radulovic et al. (2014). For g(u, v) = g0(u, v) = (v − u)3, the functions
T1(g) and T2(g) defined in formula (21) of that reference are given by

T1(g) = −3g1, T2(g) = 3g2.

It now follows from the proof of Theorem 6 in Radulovic et al. (2014) (in their notation:

from the asymptotic equivalence of Z̄n and Z̃n) that∫
(v − u)3 dCn(u, v) =

∫
{g0(u, v)− 3g1(u, v) + 3g2(u, v)} dαn(u, v) + oP(1),

where αn(u, v) = n−1/2
∑n

i=1{1(Ui ≤ u, Vi ≤ v) − C(u, v)}. The integral on the right-
hand side of this display can be written as

n−1/2
n∑
i=1

(27/256) · {h(Ui, Vi)− E[h(Ui, Vi)]},

which implies the assertion. �
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Gaffke, N. and L. Rüschendorf (1981). On a class of extremal problems in statistics.
Math. Operationsforsch. Statist. Ser. Optim. 12 (1), 123–135.
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E-mail address: axel.buecher@rub.de

Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
E-mail address: felix.irresberger@tu-dortmund.de

Universität Leipzig, Grimmaische Str. 12, 04107 Leipzig, Germany. Corresponding au-
thor.

E-mail address: weiss@wifa.uni-leipzig.de



 



 


	1. Introduction
	2. A new measure of the asymmetry of a copula
	3. Applications
	3.1. Hydrology
	3.2. Finance

	4. Conclusion
	Appendix A. Proofs
	Acknowledgments
	References

