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Abstract

Count time series are found in many different applications, e.g. from medicine, finance
or industry, and have received increasing attention in the last two decades. The class of
count time series following generalized linear models is very flexible and can describe
serial correlation in a parsimonious way. The conditional mean of the observed process is
linked to its past values, to past observations and to potential covariate effects. In this
thesis we give a comprehensive formulation of this model class. We consider models with
the identity and with the logarithmic link function. The conditional distribution can be
Poisson or Negative Binomial. An important special case of this class is the so-called
INGARCH model and its log-linear extension.

A key contribution of this thesis is the R package tscount which provides likelihood-based
estimation methods for analysis and modeling of count time series based on generalized
linear models. The package includes methods for model fitting and assessment, prediction
and intervention analysis. This thesis summarizes the theoretical background of these
methods. It gives details on the implementation of the package and provides simulation
results for models which have not been studied theoretically before. The usage of the
package is illustrated by two data examples. Additionally, we provide a review of R
packages which can be used for count time series analysis. A detailed comparison of
tscount to those packages demonstrates that tscount is an important contribution which
extends and complements existing software.

A thematic focus of this thesis is the treatment of all kinds of unusual effects influencing
the ordinary pattern of the data. This includes structural changes and different forms of
outliers one is faced with in many time series. Our first study on this topic is concerned
with retrospective detection of such changes. We analyze different approaches for modeling
such intervention effects in count time series based on INGARCH models. Other authors
treated a model where an intervention affects the non-observable underlying mean process
at the time point of its occurrence and additionally the whole process thereafter via its
dynamics. As an alternative, we consider a model where an intervention directly affects
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the observation at its occurrence, but not the underlying mean, and then also enters the
dynamics of the process. While the former definition describes an internal change of the
system, the latter can be understood as an external effect on the observations due to e.g.
immigration. For our alternative model we develop conditional likelihood estimation and,
based on this, develop tests and detection procedures for intervention effects. Both models
are compared analytically and using simulated and real data examples. The procedures
for our new model work reliably and we find some robustness against misspecification of
the intervention model.

The aforementioned methods are applied after the complete time series has been observed.
In another study we investigate the prospective detection of structural changes, i.e. in real
time. For example in public health, surveillance of infectious diseases aims at recognizing
outbreaks of epidemics with only short time delays in order to take adequate action
promptly. We point out that serial dependence is present in many infectious disease time
series. Nevertheless it is still ignored by many procedures used for infectious disease
surveillance. Using historical data, we design a prediction-based monitoring procedure
for count time series following generalized linear models. We illustrate benefits but also
pitfalls of using dependence models for monitoring.

Moreover, we briefly review the literature on model selection, robust estimation and
robust prediction for count time series. We also make a first study on robust model
identification using robust estimators of the (partial) autocorrelation.

Keywords: Count time series, generalized linear models, serial correlation, temporal
dependence, autoregressive models, regression models, likelihood, mixed Poisson, model
selection, prediction, forecasting, statistical software, R, intervention analysis, level shifts,
outliers, statistical process control, online monitoring, change point detection, aberration
detection, outbreak detection, infectious disease surveillance, epidemiology, public health.
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Chapter 1

Introduction

1.1 Motivation

Count time series appear naturally in various areas whenever a number of events per time
period is observed over time. Examples for the wide range of applications in medicine are
the weekly number of patients recruited for a clinical trial, the daily number of hospital
admissions or the weekly number of epileptic seizures of a patient. An important example
from epidemiology is the weekly number of registered infections by certain pathogens,
which is routinely collected by public health authorities. Important objectives of such
data analysis are the prediction of future values for adequate planning of resources, the
detection of unusual values pointing at some epidemics or the proper description of
e.g. seasonal patterns for better understanding and interpretation of data generating
mechanisms. Examples from other fields are the number of stock market transactions
per minute, from finance, or the hourly number of defect items, from industrial quality
control.

Models for count time series should take into account that the observations are nonnegative
integers and they should capture suitably the dependence among observations. A
convenient and flexible approach is to employ the generalized linear model (GLM)
methodology (Nelder and Wedderburn, 1972) for modeling the observations conditionally
on the past information. This methodology is implemented by choosing a suitable
distribution for count data and an appropriate link function. Such an approach is
pursued by Fahrmeir and Tutz (2001, Chapter 6) and Kedem and Fokianos (2002,
Chapters 1–4), among others. Another important class of models for time series of
counts is based on the thinning operator, like the integer autoregressive moving average
(INARMA) models, which, in a way, imitate the structure of the common autoregressive
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moving average (ARMA) models (see the review article by Weiß, 2008). A different type
of count time series models are the so-called state space models. We refer to the reviews
of Fokianos (2011), Jung and Tremayne (2011), Fokianos (2012), Tjøstheim (2012) and
Fokianos (2015) for an in-depth overview of models for count time series. Advantages of
GLM-based models compared to the models which are based on the thinning operator
are the following:

(a) They can describe covariate effects and negative correlations in a straightforward
way.

(b) There is a rich toolkit available for this class of models.

State space models allow to describe even more flexible data generating processes than
GLM models but at the cost of a more complicated model specification. On the other
hand, GLM-based models yield predictions in a convenient manner due to their explicit
formulation.

This thesis is concerned with methods for count time series based on generalized linear
models. In the following section we give a comprehensive formulation of this model class.

1.2 Models

Denote a count time series by {Yt : t ∈ N}. We will denote by {X t : t ∈ N} a time-varying
r-dimensional covariate vector, say X t = (Xt,1, . . . , Xt,r)

>. We model the conditional
mean E (Yt|Ft−1) of the count time series by a process, say {λt : t ∈ N}, such that
E (Yt|Ft−1) = λt. Denote by Ft0 the history of the joint process {Yt, λt,X t+1 : t ∈ N}
up to time t0 including the covariate information at time t0 + 1. The distributional
assumption for Yt given Ft−1 is discussed later. We are interested in models of the general
form

g(λt) = β0 +

p∑
k=1

βk g̃(Yt−ik) +

q∑
`=1

α`g(λt−j`) + η>X t, (1.1)

where g : R+ → R is a link function and g̃ : N0 → R is a transformation function.
The parameter vector η = (η1, . . . , ηr)

> corresponds to the effects of covariates. In the
terminology of GLMs we call νt = g(λt) the linear predictor. To allow for regression
on arbitrary past observations of the response, define a set P = {i1, i2, . . . , ip} and
integers 0 < i1 < i2 . . . < ip < ∞, with p ∈ N0. This enables us to regress on the
lagged observations Yt−i1 , Yt−i2 , . . . , Yt−ip . Analogously, define a set Q = {j1, j2, . . . , jq},
q ∈ N0 and integers 0 < j1 < j2 . . . < jq <∞, for regression on lagged conditional means
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λt−j1 , λt−j2 , . . . , λt−jq . This case is covered by the theory for models with P = {1, . . . , p}
and Q = {1, . . . , q} by choosing p and q suitably and setting some model parameters
to zero. Our formulation is useful particularly when dealing with modeling stochastic
seasonality (see Section 2.6.1, for an example). Specification of the model order, i.e., of
the sets P and Q, are guided by considering the empirical autocorrelation functions of the
observed data. This approach is described for ARMA models in many time series analysis
textbooks and transfers to the above model by employing its ARMA representation (see
(A.4) in Appendix A.3). Parameter constraints which ensure stationarity and ergodicity
of two important special cases of (1.1) are given in Section 2.2.1.

We give several examples of model (1.1). Consider the situation where g and g̃ equal
the identity, i.e., g(x) = g̃(x) = x. Furthermore, let P = {1, . . . , p}, Q = {1, . . . , q} and
η = 0. Then model (1.1) becomes

λt = β0 +

p∑
k=1

βk Yt−k +

q∑
`=1

α`λt−`. (1.2)

Assuming further that Yt given the past is Poisson distributed, then we obtain an integer-
valued GARCH model of order p and q, abbreviated as INGARCH(p,q). These models
are also known as autoregressive conditional Poisson (ACP) models. They have been
discussed by Heinen (2003), Ferland, Latour, and Oraichi (2006) and Fokianos, Rahbek,
and Tjøstheim (2009), among others. An example of an INGARCH model with covariates
is given in Section 2.5, where we fit a count time series model which includes intervention
effects.

Consider again model (1.1) but now with the logarithmic link function g(x) = log(x),
g̃(x) = log(x+ 1) and P , Q as before. Then, we obtain a log-linear model of order p and
q for the analysis of count time series. Indeed, set νt = log(λt) to obtain from (1.1) that

νt = β0 +

p∑
k=1

βk log(Yt−k + 1) +

q∑
`=1

α`νt−`. (1.3)

This log-linear model is studied by Fokianos and Tjøstheim (2011), Woodard, Matteson,
and Henderson (2011) and Douc, Doukhan, and Moulines (2013). We follow Fokianos
and Tjøstheim (2011) in transforming past observations by employing the function
g̃(x) = log(x+ 1), such that they are on the same scale as the linear predictor νt. These
authors show that the addition of a constant c to each observation for avoiding zero
values does not affect inference; in addition they argue that a reasonable choice for c is 1.
Note that model (1.3) allows modeling of negative serial correlation, whereas model (1.2)
accommodates positive serial correlation only. Additionally, (1.3) accommodates covari-
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ates easier than (1.2) since the log-linear model implies positivity of the conditional mean
process {λt}. The linear model (1.2) with covariates should be fitted with some care
because it is limited to positive effects on {λt}. This is so because we need to ensure
that the resulting mean process is positive. The effects of covariates on the response are
multiplicative for model (1.3); they are additive though for model (1.2). For a discussion
on the inclusion of time-dependent covariates see Fokianos and Tjøstheim (2011, Section
4.3).

In model (1.1) the effect of a covariate fully enters the dynamics of the process and
propagates to future observations both by the regression on past observations and by
the regression on past conditional means. The effect of such covariates can be seen as
an internal influence on the data-generating process, which is why we refer to it as an
internal covariate effect. We also allow to include covariates in a way that their effect
only propagates to future observations by the regression on past observations but not
directly by the regression on past conditional means. Following Liboschik, Kerschke,
Fokianos, and Fried (2016), who make this distinction for the case of intervention effects
described by deterministic covariates, we refer to the effect of such covariates as an
external covariate effect. Let e = (e1, . . . , er)

> be a vector specified by the user with
ei = 1 if the i-th component of the covariate vector has an external effect and ei = 0

otherwise, i = 1, . . . , r. Denote by diag(e) a diagonal matrix with diagonal elements
given by e. The generalization of (1.1) allowing for both internal and external covariate
effects is given by

g(λt) = β0 +

p∑
k=1

βk g̃(Yt−ik) +

q∑
`=1

α`
(
g(λt−j`)− η>diag(e)X t−j`

)
+ η>X t. (1.4)

Basically, the effect of all covariates with an external effect is subtracted in the feedback
terms such that their effect enters the dynamics of the process only via the observations.
We refer to Chapter 3 (based on Liboschik et al., 2016) for an extensive discussion and
comparison of internal and external effects. It is our experience with these models that
on the one hand an empirical discrimination between internal and external covariate
effects is difficult but on the other hand there is some robustness against misspecification
of the type of covariate effect.

So far we have only specified the mean of Yt|Ft−1 but not its distribution. Model (1.1)
together with the Poisson assumption, i.e., Yt|Ft−1 ∼ Poisson(λt), implies

P (Yt = y|Ft−1) =
λyt exp(−λt)

y!
, y ∈ N0. (1.5)
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It holds VAR (Yt|Ft−1) = E (Yt|Ft−1) = λt. Hence in the case of a conditional Poisson
response model the conditional mean is identical to the conditional variance of the
observed process.

The Negative Binomial distribution allows for a conditional variance to be larger than the
mean λt, which is often referred to as overdispersion and observed in many time series.
Following Christou and Fokianos (2014), it is assumed that Yt|Ft−1 ∼ NegBin(λt, φ),
where the Negative Binomial distribution is parametrized in terms of its mean with an
additional dispersion parameter φ ∈ (0,∞) (Hilbe, 2011), i.e.,

P (Yt = y|Ft−1) =
Γ(φ+ y)

Γ(y + 1)Γ(φ)

(
φ

φ+ λt

)φ(
λt

φ+ λt

)y
, y ∈ N0. (1.6)

In this case it again holds E (Yt|Ft−1) = λt but VAR (Yt|Ft−1) = λt + λ2
t/φ, i.e., the

conditional variance increases quadratically with λt. The Poisson distribution is a
limiting case of the Negative Binomial when φ→∞.

Note that the Negative Binomial distribution belongs to the class of mixed Poisson
processes. A mixed Poisson process is specified by setting Yt = Nt(0, Ztλt], where {Nt}
are i.i.d. Poisson processes with unit intensity and {Zt} are i.i.d. random variables with
mean 1 and variance σ2, independent of {Yt}. When {Zt} is an i.i.d. process of Gamma
random variables, then we obtain the Negative Binomial process with σ2 = 1/φ. We
refer to σ2 as the overdispersion coefficient because it is proportional to the extent of
overdispersion of the conditional distribution. The limiting case of σ2 = 0 corresponds
to the Poisson distribution, i.e., no overdispersion. The estimation procedure we study
is not confined to the Negative Binomial case but to any mixed Poisson distribution.
However, the Negative Binomial assumption is required for prediction intervals and model
assessment; these topics are discussed in Sections 2.3 and 2.4.

1.3 Outline

Chapter 2 introduces the R package tscount which implements methods for the class of
count time series following GLMs. This package includes methods for model fitting and
assessment, prediction and intervention analysis. The chapter summarizes the theoretical
background of these methods. It gives details on the implementation of the package and
provides simulation results for models which have not been studied theoretically before.
The usage of the package is illustrated by two data examples. Additionally, we provide a
review of R packages which can be used for count time series analysis. This includes a
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detailed comparison of tscount to those packages. The chapter is based on a manuscript
entitled “tscount: An R package for Analysis of Count Time Series Following Generalized
Linear Models” which is currently under revision for Journal of Statistical Software. A
previous version of that manuscript has been published as a discussion paper (Liboschik,
Fokianos, and Fried, 2015) and the most recent version is available as a vignette of the
package.

In many applications, unusual external effects or measurement errors can lead to either
sudden or gradual changes in the structure of the data, so-called intervention effects.
A goal of an intervention analysis is to examine the effect of known interventions, for
example to judge whether a policy change had the intended impact, or to search for
unknown intervention effects and to find explanations for them. Chapter 3 studies
different approaches for modeling intervention effects by deterministic covariates, focusing
on INGARCH models from the class of GLM-based count time series models. Fokianos
and Fried (2010) treated a model where an intervention has an internal effect according
to the definition in the previous section, which describes an internal change of the system.
We consider an alternative model where an intervention has an external effect on the
observations due to e.g. immigration. For our alternative model we develop conditional
likelihood estimation and, based on this, tests and detection procedures for intervention
effects. We compare both models analytically and using simulated and real data examples.
Our simulations confirm that the procedures for our new model perform well. It turns
out that there is some robustness against misspecification of the intervention model.
The chapter is based on the article “Modelling interventions in INGARCH processes”
published in the International Journal of Computer Mathematics (Liboschik et al., 2016,
accepted for publication in July 2014).

The aforementioned methods are applied after the complete time series has been observed.
Chapter 4 investigates the prospective detection of structural changes, i.e. in real time.
For example in public health, surveillance of infectious diseases aims at recognizing
outbreaks of epidemics with only short time delays in order to take adequate action
promptly. We point out that serial dependence is present in many infectious disease time
series. Nevertheless it is still ignored by many procedures used for infectious disease
surveillance. This chapter studies how accommodating temporal dependence can improve
monitoring procedures. Using historical data, we design a prediction-based monitoring
procedure for count time series following GLMS. Our simulations and a data example
demonstrate that such a procedure can substantially improve the immediate detection of
outbreaks but that its dependence on previous observations may also yield undesired
effects in some situations. We discuss some ideas how to utilize the promising features of
dependent models for monitoring and at the same time to overcome their weakness.
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Chapter 5 discusses three further topics, all of particular interest in the context of
infectious disease surveillance, and points to directions where further research is needed.
Section 5.1 reviews some further tools for model selection. The other two sections
are concerned with robust methods which work reliably in the presence of outliers or
intervention effects. Section 5.2 is a first study on robust identification of the model order
for count time series with the robustly estimated (partial) autocorrelation function. This
Section is based on Section 4 of the article “On Outliers and Interventions in Count Time
Series following GLMs” published in the Austrian Journal of Statistics (Fried, Liboschik,
Elsaied, Kitromilidou, and Fokianos, 2014, Sections 4 and 5 are written by the author of
this thesis). Section 5.3 reviews robust methods for parameter estimation and prediction.
Chapter 6 concludes this thesis with a brief summary of its most important results.

7





Chapter 2

Basic methods and implementation

2.1 Introduction

Recently, there has been an increasing interest in regression models for time series of
counts and a considerable number of publications on this subject has appeared in the
literature. However, many of the proposed methods are not yet available in a statistical
software package and hence they cannot be applied easily. We aim at filling this gap
and publish a package named tscount for the popular free and open source software
environment R (R Core Team, 2016). In fact, our main goal is to develop software
for models whose conditional mean depends on previous observations and on its own
previous values. These models are quite analogous to the generalized autoregressive
conditional heteroscedasticity (GARCH) models (Bollerslev, 1986) which were proposed
for describing the conditional variance.

In the first version of the package tscount we provide likelihood-based methods for the
framework of count time series following GLMs. Some simple autoregressive models can
be fitted with standard software by treating the observations as if they were independent
(see Section 2.7 and Appendix A.3), for example, using the R function glm. However, these
procedures are in general not tailored for dependent data and may yield invalid model fits.
The implementation in the package tscount allows for a more general dependence structure
which is specified conveniently by the user. We consider general time series models whose
conditional mean may depend on time-varying covariates, previous observations and,
similar to the conditional variance of a GARCH model, on its own previous values. The
usage and output of our functions is in parts inspired by the R functions arima and glm

in order to provide a familiar user experience. Furthermore tscount is object-oriented and
provides many standard S3 methods for well-known generic functions. There are several
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other R functions available which can be employed for analyzing count time series. Many
of those are related to GLMs and have been developed for independent observations but
are, with some limitations, also capable to describe simple forms of serial dependence.
There are also some functions available for extending such models to time series. Another
group of functions handles state space models for count time series. We briefly review
these functions and the corresponding model classes in Section 2.7 and compare them
to tscount. As it turns out, there are special cases for which our model corresponds to
existing ones. In these cases we obtain quite similar results with functions from some
other packages, thus confirming the reliability of our package. However, many features of
tscount, like the flexible dependence structure, outreach the capability of other packages.
Admittedly, some packages provide features like zero-inflation or more general forms of
the linear predictor which cannot be accommodated yet by tscount but could possibly
be included in future versions. As a conclusion, this package is a valuable addition to the
R environment which fills some significant gaps associated with time series fitting.

The functionality of tscount partly goes beyond the theory available in the literature
since theoretical investigation of these models is still an ongoing research theme. For
instance the problem of accommodating covariates in such GLM-type count time series
models or fitting a mixed Poisson log-linear model have not been studied theoretically.
We have checked their appropriateness by simulations reported in Appendix B. However,
some care should be taken when applying the package’s programs to situations which are
not covered by existing theory.

This chapter is organized as follows. At first the theoretical background of the methods
included in the package is briefly summarized with references to the literature for more
details. Section 2.2 describes quasi maximum likelihood estimation of the unknown
model parameters and gives some details regarding its implementation. Section 2.3 treats
prediction with such models. Section 2.4 sums up tools for model assessment. Section 2.5
discusses procedures for the detection of interventions. Section 2.6 demonstrates the
usage of the package with two data examples. Section 2.7 reviews other R packages
which are capable to model count time series and compares them with our package.
Finally, Section 2.8 gives an outlook on possible future extensions of our package. In the
Appendix we give further details and we confirm empirically some of the new methods
that we discuss but which have not been studied, as of yet.
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2.2 Estimation and inference

2.2.1 Estimation

The tscount package fits models of the form (1.1) by quasi conditional maximum likelihood
(ML) estimation (function tsglm). If the Poisson assumption holds true, then we obtain
an ordinary ML estimator. However, under the mixed Poisson assumption we obtain a
quasi-ML estimator. Denote by θ = (β0, β1, . . . , βp, α1, . . . , αq, η1, . . . , ηr)

> the vector of
regression parameters. Regardless of the distributional assumption, the parameter space
for the INGARCH model (1.2) with covariates is given by

Θ =

{
θ ∈ Rp+q+r+1 : β0 > 0, β1, . . . , βp, α1, . . . , αq, η1, . . . , ηr ≥ 0,

p∑
k=1

βk +

q∑
`=1

α` < 1

}
.

The intercept β0 must be positive and all other parameters must be nonnegative to
ensure positivity of the conditional mean λt. The other condition ensures that the fitted
model has a stationary and ergodic solution with moments of any order (Ferland et al.,
2006; Fokianos et al., 2009; Doukhan, Fokianos, and Tjøstheim, 2012); see also Tjøstheim
(2015) for a recent review. For the log-linear model (1.3) with covariates the parameter
space is taken to be

Θ =

{
θ ∈ Rp+q+r+1 : |β1|, . . . , |βp|, |α1|, . . . , |αq| < 1,

∣∣∣∣∣
p∑

k=1

βk +

q∑
`=1

α`

∣∣∣∣∣ < 1

}
,

see Appendix A.1 for a discussion. Christou and Fokianos (2014) point out that with
the parametrization (1.6) of the Negative Binomial distribution the estimation of the
regression parameters θ does not depend on the additional dispersion parameter φ. This
allows to employ a quasi maximum likelihood approach based on the Poisson likelihood to
estimate the regression parameters θ, which is described below. The nuisance parameter
φ is then estimated separately in a second step. This approach is different from a full
maximum likelihood estimation based on the Negative Binomial distribution, which for
example has been implemented in the function glm.nb in the R package MASS (Venables
and Ripley, 2002). In that algorithm, maximization of the Negative Binomial likelihood
for an estimated dispersion parameter φ and estimation of φ given the estimated regression
parameters θ are iterated until convergence. The quasi negative binomial approach has
been chosen for simplicity and its usefulness on deriving consistent estimators when the
model for λt has been correctly specified (see also Ahmad and Francq, 2016).
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The log-likelihood, score vector and information matrix are derived conditionally on
pre-sample values of the time series and the conditional mean process {λt}, precisely on
F0. An appropriate initialization is needed for their evaluation, which is discussed in the
next subsection. For a vector of observations y = (y1, . . . , yn)>, the conditional quasi
log-likelihood function, up to a constant, is given by

`(θ) =
n∑
t=1

log pt(yt;θ) =
n∑
t=1

(
yt ln(λt(θ))− λt(θ)

)
, (2.1)

where pt(y;θ) = P(Yt = y|Ft−1) is the probability density function of a Poisson distribu-
tion as defined in (1.5). The conditional mean is regarded as a function λt : Θ→ R+ and
thus it is denoted by λt(θ) for all t. The conditional score function is the (p+ q + r + 1)-
dimensional vector given by

Sn(θ) =
∂`(θ)

∂θ
=

n∑
t=1

(
yt

λt(θ)
− 1

)
∂λt(θ)

∂θ
. (2.2)

The vector of partial derivatives ∂λt(θ)/∂θ can be computed recursively by the recursions
given in Appendix A.2. Finally, the conditional information matrix is given by

Gn(θ;σ2) =
n∑
t=1

COV

(
∂`(θ;Yt)

∂θ

∣∣∣∣Ft−1

)
=

n∑
t=1

(
1

λt(θ)
+ σ2

)(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)>
. (2.3)

In the case of the Poisson assumption it holds σ2 = 0 and in the case of the Negative
Binomial assumption σ2 = 1/φ. For the ease of notation let G∗n(θ) = Gn(θ; 0), which is
the conditional information matrix in case of a Poisson distribution.

The quasi maximum likelihood estimator (QMLE) θ̂n of θ, assuming that it exists, is
the solution of the non-linear constrained optimization problem

θ̂ := θ̂n = arg max
θ∈Θ

`(θ). (2.4)

Denote the fitted values by λ̂t = λt(θ̂). Following Christou and Fokianos (2014), the
dispersion parameter φ of the Negative Binomial distribution is estimated by solving the
equation

n∑
t=1

(Yt − λ̂t)2

λ̂t + λ̂2
t/φ̂)

= n− (p+ q + r + 1), (2.5)
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which is based on Pearson’s χ2 statistic. The variance parameter σ2 is estimated by
σ̂2 = 1/φ̂. For the Poisson distribution we set σ̂2 = 0. Strictly speaking, the log-linear
model (1.3) does not fall into the class of models considered by Christou and Fokianos
(2014). However, results obtained by Douc et al. (2013) (for p = q = 1) and Sim (2016)
(for p = q) allow us to use this estimator also for the log-linear model. This issue is
addressed by simulations in Appendix B.2, which support that the estimator obtained
by (2.5) provides good results also for models with the logarithmic link function.

2.2.2 Inference

Inference for the regression parameters is based on the asymptotic normality of the
QMLE, which has been studied by Fokianos et al. (2009) and Christou and Fokianos
(2014) for models without covariates. For a well behaved covariate process {X t} we
conjecture that

√
n
(
θ̂n − θ0

)
d−→ Np+q+r+1

(
0, G−1

n (θ̂n; σ̂2)G∗n(θ̂n)G−1
n (θ̂n; σ̂2)

)
, (2.6)

as n→∞, where θ0 denotes the true parameter value and σ̂2 is a consistent estimator
of σ2. We suppose that this applies under the same assumptions usually made for the
ordinary linear regression model (see for example Demidenko, 2013, p. 140 ff.). For
deterministic covariates these assumptions are ||X t|| < c, where || · || denotes the usual
Euclidean norm, i.e., the covariate process is bounded, and limn→∞ n

−1
∑n

t=1X tX
>
t = A,

where c is a constant and A is a nonsingular matrix. For stochastic covariates it is assumed
that the expectations E (X t) and E

(
X tX

>
t

)
exist and that E

(
X tX

>
t

)
is nonsingular.

The assumptions imply that the information on each covariate grows linearly with the
sample size and that the covariates are not linearly dependent. Fuller (1996, Theorem
9.1.1) shows asymptotic normality of the least squares estimator for a regression model
with time series errors under even more general conditions which allow the presence of
certain types of trends in the covariates. For the special case of a Poisson model with
the identity link, Agosto, Cavaliere, Kristensen, and Rahbek (2015) show asymptotic
normality of the MLE for a model with covariates that are functions of Markov processes
with finite second moments and that are not collinearly related to the response. The
asymptotic normality of the QMLE in our context is supported by the simulations
presented in Appendix B.1. A formal proof requires further research. To avoid numerical
instabilities when inverting Gn(θ̂n; σ̂2) we apply an algorithm which makes use of the
fact that it is a real symmetric and positive definite matrix; see Appendix A.4.
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As an alternative method to the normal approximation (2.6) for obtaining standard
errors and confidence intervals (function se) we include a parametric bootstrap procedure
(argument B), for which computation time is many times higher. Accordingly, B time
series are simulated from the model fitted to the original data. The empirical standard
errors of the parameter estimates for these B time series are the bootstrap standard
errors. Confidence intervals are based on quantiles of the bootstrap sample, see Efron
and Tibshirani (1993, Chapter 13). This procedure can compute standard errors and
confidence intervals both for θ̂ and σ̂2. In our experience B = 500 yields stable results.

2.2.3 Implementation

This section and Appendix A provide some details on the implementation of the function
tsglm and explain its technical arguments. The default settings of this arguments are
chosen wisely based on plenty of experiments and should be sufficient for most situations
though.

The parameter restrictions which are imposed by the condition θ ∈ Θ can be formulated as
d linear inequalities. This means that there exists a matrixU of dimension d×(p+q+r+1)

and a vector c of length d, such that Θ = {θ | Uθ ≥ c}. For the linear model (1.2) one
needs d = p+ q + r + 2 constraints to ensure nonnegativity of the conditional mean λt
and stationarity of the resulting process. For the log-linear model (1.3) there are not any
constraints on the intercept term and on the covariate coefficients; hence d = 2(p+ q+ 1).
In order to enforce strict inequalities the respective constraints are tightened by an
arbitrarily small constant ξ > 0; this constant is set to ξ = 10−6 by default (argument
slackvar).

For solving numerically the maximization problem (2.4) we employ by default the function
constrOptim. This function applies an algorithm described by Lange (1999, Chapter
14), which essentially enforces the constraints by adding a barrier value to the objective
function and then employs an algorithm for unconstrained optimization of this new
objective function, iterating these two steps if necessary. By default the quasi-Newton
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is employed for the latter task
of unconstrained optimization, which additionally makes use of the score vector (2.2).
It is possible to tune the optimization algorithm and even to employ an unconstrained
optimization (argument final.control).

Note that the log-likelihood (2.1) and the score (2.2) are given conditional on unobserved
pre-sample values. They depend on the linear predictor and its partial derivatives, which
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can be computed recursively using any initialization. We give the recursions and present
several strategies for their initialization in Appendix A.2 (arguments init.method and
init.drop). Christou and Fokianos (2014, Remark 3.1) show that the effect of the
initialization vanishes asymptotically. Nevertheless, from a practical point of view the
initialization of the recursions is crucial. Especially in the presence of strong serial
dependence, the resulting estimates can differ substantially even for long time series with
1000 observations; see the simulated example in Table A.1 in Appendix A.2.

Solving the non-linear optimization problem (2.4) requires a starting value for the
parameter vector θ. This starting value can be obtained from fitting a simpler model for
which an estimation procedure is readily available. We consider either to fit a GLM or to
fit an ARMA model. A third possibility is to fit a naive i.i.d. model without covariates.
Furthermore, the user can assign fixed values. All these possibilities are available by the
argument start.control. It turns out that the optimization algorithm converges very
reliably even if the starting values are not close to the global optimum of the likelihood.
A starting value which is closer to the global optimum usually requires fewer iterations
until convergence. However, we have encountered some examples where starting values
close to a local optimum, obtained by one of the first two aforementioned methods, do
not yield the global optimum. Consequently, we recommend fitting the naive i.i.d. model
without covariates to obtain starting values. More details on these approaches are given
in Appendix A.3.

2.3 Prediction

In terms of the mean square error, the optimal 1-step-ahead predictor Ŷn+1 for Yn+1,
given Fn, i.e., the past of the process up to time n and potential covariates at time n+ 1,
is the conditional expectation λn+1 given in (1.1) (S3 method of function predict). By
construction of the model the conditional distribution of Ŷn+1 is a Poisson (1.5) respec-
tively Negative Binomial (1.6) distribution with mean λn+1. An h-step-ahead prediction
Ŷn+h for Yn+h is obtained by recursive 1-step-ahead predictions, where unobserved values
Yn+1, . . . , Yn+h−1 are replaced by their respective 1-step-ahead prediction, h ∈ N. The
distribution of this h-step-ahead prediction Ŷn+h is not known analytically but can be
approximated numerically by a parametric bootstrap procedure, which is described below.

In applications, λn+1 is substituted by its estimator λ̂n+1 = λn+1(θ̂), which depends on
the estimated regression parameters θ̂. The dispersion parameter φ of the Negative
Binomial distribution is replaced by its estimator φ̂. Note that plugging in the estimated
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parameters induces additional uncertainty to the predictive distribution. This estimation
uncertainty is not taken into account for the construction of prediction intervals described
in the following paragraphs.

Prediction intervals for Yn+h with a given coverage rate 1 − α (argument level) are
designed to cover the true observation Yn+h with a probability of 1− α. Simultaneous
prediction intervals achieving a global coverage rate for Yn+1, . . . , Yn+h can be obtained
by a Bonferroni adjustment of the individual coverage rates to 1− α/h each (argument
global = TRUE).

There are two different principles for constructing predictions intervals available which in
practice often yield identical intervals. Firstly, the limits can be the (α/2)- and (1−α/2)-
quantile of the (approximated) predictive distribution (argument type = "quantiles").
Secondly, the limits can be chosen such that the interval has minimal length given that,
according to the (approximated) predictive distribution, the probability that a value falls
into this interval is at least as large as the desired coverage rate 1− α (argument type =

"shortest").

One-step-ahead prediction intervals can be straightforwardly obtained from the condi-
tional distribution (argument method = "conddistr"). Prediction intervals obtained
by a parametric bootstrap procedure (argument method = "bootstrap") are based on
B simulations of realizations y(b)

n+1, . . . , y
(b)
n+h from the fitted model, b = 1, . . . , B (argu-

ment B). To obtain an approximative prediction interval for Yn+h one can either use the
empirical (α/2)- and (1− α/2)-quantile of y(1)

n+h, . . . , y
(B)
n+h (if type = "quantiles") or

find the shortest interval which contains at least d(1− α) ·Be of these observations (if
type = "shortest"). This bootstrap procedure can be accelerated by distributing it
to multiple cores simultaneously (argument parallel = TRUE), which requires a com-
puting cluster registered by the R package parallel (see the help page of the function
setDefaultCluster).

2.4 Model assessment

Tools originally developed for generalized linear models as well as for time series can be
utilized to asses the model fit and its predictive performance. Within the class of count
time series following generalized linear models it is desirable to asses the specification
of the linear predictor as well as the choice of the link function and of the conditional
distribution. The tools presented in this section facilitate the selection of an adequate
model for a given data set. Note that all tools are introduced as in-sample versions,
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meaning that the observations y1 . . . , yn are used for fitting the model as well as for
assessing the obtained fit. However, it is straightforward to apply such tools as out-of-
sample criteria.

Recall that the fitted values are denoted by λ̂t = λt(θ̂). Note that these do not depend
on the chosen distribution, because the mean is the same regardless of the response
distribution. There are various types of residuals available (S3 method of function
residuals). Response (or raw) residuals (argument type = "response") are given by

rt = yt − λ̂t, (2.7)

whereas a standardized alternative are Pearson residuals (argument type = "pearson")

rPt = (yt − λ̂t)/
√
λ̂t + λ̂2

t σ̂
2, (2.8)

or the more symmetrically distributed standardized Anscombe residuals (argument type
= "anscombe")

rAt =
3/σ̂2

((
1 + ytσ̂

2
)2/3 −

(
1 + λ̂tσ̂

2
)2/3)

+ 3
(
y

2/3
t − λ̂

2/3
t

)
2
(
λ̂t + λ̂2

t σ̂
2
)1/6

, (2.9)

for t = 1, . . . , n (see for example Hilbe, 2011, Section 5.1). The empirical autocorrelation
function of these residuals is useful for diagnosing serial dependence which has not been
explained by the fitted model. A plot of the residuals against time can reveal changes
of the data generating process over time. Furthermore, a plot of squared residuals r2

t

against the corresponding fitted values λ̂t exhibits the relation of mean and variance and
might point to the Poisson distribution if the points scatter around the identity function
or to the Negative Binomial distribution if there exists a quadratic relation (see Ver Hoef
and Boveng, 2007).

Christou and Fokianos (2015b) and Jung and Tremayne (2011) extend tools for assessing
the predictive performance to count time series, which were originally proposed by
Gneiting, Balabdaoui, and Raftery (2007) and others for continuous data and trans-
ferred to independent but not identically distributed count data by Czado, Gneiting,
and Held (2009). These tools follow the prequential principle formulated by Dawid
(1984), depending only on the realized observations and their respective forecast dis-
tributions. Denote by Pt(y) = P

(
Yt ≤ y|Ft−1

)
the cumulative distribution function

(c.d.f.), by pt(y) = P
(
Yt = y|Ft−1

)
the probability density function, y ∈ N0, and by

υt =
√

VAR (Yt|Ft−1) the standard deviation of the predictive distribution, which is either
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a Poisson distribution with mean λ̂t or a Negative Binomial distribution with mean λ̂t
and overdispersion coefficient σ̂2 (recall Section 2.3 on 1-step-ahead prediction).

A tool for assessing the probabilistic calibration of the predictive distribution (see
Gneiting et al., 2007) is the probability integral transform (PIT), which will follow a
uniform distribution if the predictive distribution is correct. For count data Czado et al.
(2009) define a non-randomized PIT value for the observed value yt and the predictive
distribution Pt(y) by

Ft(u|y) =


0, u ≤ Pt(y − 1)

u− Pt(y − 1)

Pt(y)− Pt(y − 1)
, Pt(y − 1) < u < Pt(y)

1, u ≥ Pt(y)

.

The mean PIT is then given by

F (u) =
1

n

n∑
t=1

Ft(u|yt), 0 ≤ u ≤ 1.

To check whether F (u) is the c.d.f. of a uniform distribution Czado et al. (2009) propose
plotting a histogram withH bins, where bin h has the height fj = F (h/H)−F ((h−1)/H),
h = 1, . . . , H (function pit). By default H is chosen to be 10. A U-shape indicates
underdispersion of the predictive distribution, whereas an upside down U-shape indicates
overdispersion. Gneiting et al. (2007) point out that the empirical coverage of central,
e.g., 90% prediction intervals can be read off the PIT histogram as the area under the
90% central bins.

Marginal calibration is defined as the difference of the average predictive c.d.f. and the
empirical c.d.f. of the observations, i.e.,

1

n

n∑
t=1

Pt(y)− 1

n

n∑
t=1

1(yt ≤ y) (2.10)

for all y ∈ R. In practice we plot the marginal calibration for values y in the range
of the original observations (Christou and Fokianos, 2015b) (function marcal). If the
predictions from a model are appropriate the marginal distribution of the predictions
resembles the marginal distribution of the observations and (2.10) should be close to
zero. Major deviations from zero point to model deficiencies.

Gneiting et al. (2007) show that the calibration assessed by a PIT histogram or a marginal
calibration plot is a necessary but not sufficient condition for a forecaster to be ideal.
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Scoring rule Abbreviation Definition

squared error score sqerror (yt − λt)2

normalized squared error score normsq (yt − λt)2/υ2
t

Dawid-Sebastiani score dawseb (yt − λt)2/υ2
t + 2 log(υt)

logarithmic score logarithmic − log(pt(yt))

quadratic (or Brier) score quadratic −2pt(yt) + ‖pt‖2

spherical score spherical −pt(yt)/ ‖pt‖
ranked probability score rankprob

∑∞
y=0 (Pt(y)− 1(yt ≤ y))2

Table 2.1: Definitions of proper scoring rules s(Pt, yt) (cf. Czado et al., 2009) and their
abbreviations in the package; ‖pt‖2 =

∑∞
y=0 p

2
t (y).

They advocate to favor the model with the maximal sharpness among all sufficiently
calibrated models. Sharpness is the concentration of the predictive distribution and
can be measured by the width of prediction intervals. A simultaneous assessment of
calibration and sharpness summarized in a single numerical score can be accomplished by
proper scoring rules (Gneiting et al., 2007). Denote a score for the predictive distribution
Pt and the observation yt by s(Pt, yt). A number of possible proper scoring rules is given
in Table 2.1. The mean score for each corresponding model is given by

∑n
t=1 s(Pt, yt)/n.

Each of the different proper scoring rules captures different characteristics of the predictive
distribution and its distance to the observed data (function scoring). Except for the
normalized error score, the model with the lowest score is preferable. The mean squared
error score is the only one which does not depend on the distribution and is also known
as mean squared prediction error. The mean normalized squared error score measures
the variance of the Pearson residuals and is close to one if the model is adequate. The
Dawid-Sebastini score is a variant of this with an extra term to penalize overerstimation
of the standard deviation.

Other popular tools are model selection criteria like Akaike’s information criterion (AIC)
and the Bayesian information criterion (BIC) (functions AIC and BIC). The model with
the lowest value of the respective information criterion is preferable. Denote the log-
likelihood by ˜̀(θ̂, σ̂2) =

∑n
t=1 log (pt(yt)). Note that this is the true and not the quasi

log-likelihood given in (2.1). Furthermore, ˜̀(θ̂, σ̂2) includes all constant terms which
have been omitted on the right hand side of (2.1). The AIC and BIC are given by
AIC = −2˜̀(θ̂, σ̂2) + 2df and BIC = −2˜̀(θ̂, σ̂2) + log(neff)df , respectively. Here df is the
total number of parameters (including the dispersion coefficient) and neff the number
of effective observations (excluding those only used for initialization when argument
init.drop = TRUE). The BIC generally yields more parsimonious models than the AIC.
Note that for other distributions than the Poisson, θ̂ maximizes the quasi log-likelihood
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(2.1) but not ˜̀(θ, σ2). In such cases the quasi information criterion (QIC), proposed by
Pan (2001) for regression analysis based on the generalized estimating equations, is a
properly adjusted alternative to the AIC (function QIC). We have verified by a simulation
reported in Appendix B.3 that in case of a Poisson distribution the QIC approximates
the AIC quite satisfactory.

2.5 Intervention analysis

In many applications sudden changes or extraordinary events occur. Box and Tiao (1975)
refer to such special events as interventions. This could be for example the outbreak of
an epidemic in a time series which counts the weekly number of patients infected with
a particular disease. It is of interest to examine the effect of known interventions, for
example to judge whether a policy change had the intended impact, or to search for
unknown intervention effects and find explanations for them a posteriori.

Fokianos and Fried (2010, 2012) model interventions affecting the location by including
a deterministic covariate of the form δt−τ1(t ≥ τ), where τ is the time of occurrence and
the decay rate δ is a known constant (function interv_covariate). This covers various
types of interventions for different choices of the constant δ: a singular effect for δ = 0

(spiky outlier), an exponentially decaying change in location for δ ∈ (0, 1) (transient
shift) and a permanent change of location for δ = 1 (level shift). Similar to the case of
covariates, the effect of an intervention is essentially additive for the linear model and
multiplicative for the log-linear model. However, the intervention enters the dynamics of
the process and therefore its effect on the linear predictor is not purely additive. Our
package includes methods to test for such intervention effects developed by Fokianos
and Fried (2010, 2012), suitably adapted to the more general model class described in
Section 1.2. The linear predictor of a model with s types of interventions according to
parameters δ1, . . . , δs occurring at time points τ1, . . . , τs reads

g(λt) = β0 +

p∑
k=1

βk g̃(Yt−ik) +

q∑
`=1

α`g(λt−j`) + η>X t +
s∑

m=1

ωmδ
t−τm
m 1(t ≥ τm), (2.11)

where ωm, m = 1, . . . , s are the intervention sizes. At the time of its occurrence an
intervention changes the level of the time series by adding the magnitude ωm, for a
linear model like (1.2), or by multiplying the factor exp(ωm), for a log-linear model like
(1.3). In the following paragraphs we briefly outline the proposed intervention detection
procedures and refer to Chapter 3 and to the original articles for details.

20



Our package allows to test whether s interventions of certain types occurring at given
time points, according to model (2.11), have an effect on the observed time series, i.e.,
to test the hypothesis H0 : ω1 = . . . = ωs = 0 against the alternative H1 : ω` 6= 0

for some ` ∈ {1, . . . , s}. This is accomplished by employing an approximate score test
(function interv_test). Under the null hypothesis the score test statistic Tn(τ1, . . . , τs)

has asymptotically a χ2-distribution with s degrees of freedom, assuming some regularity
conditions (Fokianos and Fried, 2010, Lemma 1).

For testing whether a single intervention of a certain type occurring at an unknown time
point τ has an effect, the package employs the maximum of the score test statistics Tn(τ)

and determines a p value by a parametric bootstrap procedure (function interv_detect).
If we consider a set D of time points at which the intervention might occur, e.g.,
D = {2, . . . , n}, this test statistic is given by T̃n = maxτ∈D Tn(τ). The bootstrap
procedure can be computed on multiple cores simultaneously (argument parallel =

TRUE). The time point of the intervention is estimated to be the value τ which maximizes
this test statistic. Our empirical observation is that such an estimator usually has a large
variability. It is possible to speed up the computation of the bootstrap test statistics
by using the model parameters used for generation of the bootstrap samples instead
of estimating them for each bootstrap sample (argument final.control_bootstrap =

NULL). This results in a conservative procedure, as noted by Fokianos and Fried (2012).

If more than one intervention is suspected in the data, but neither their types nor the time
points of its occurrences are known, an iterative detection procedure is used (function
interv_multiple). Consider the set of possible intervention times D as before and a
set of possible intervention types ∆, e.g., ∆ = {0, 0.8, 1}. In a first step the time series is
tested for an intervention of each type δ ∈ ∆ as described in the previous paragraph and
the p values are corrected to account for the multiple testing by the Bonferroni method.
If none of the p values is below a previously specified significance level, the procedure
stops and does not identify an intervention effect. Otherwise the procedure detects an
intervention of the type corresponding to the lowest p value. In case of equal p values
preference is given to interventions with δ = 1, that is level shifts, and then to those
with the largest test statistic. In a second step, the effect of the detected intervention
is eliminated from the time series and the procedures starts anew and continues until
no further intervention effects are detected. Finally, model (2.11) with all detected
intervention effects can be fitted to the data to estimate the intervention sizes and the
other parameters jointly (which are in general different than when estimated in separate
steps). Note that statistical inference for this final model fit has to be done with care.
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In practical applications, the decay rate δ of a particular intervention effect is often
unknown and needs to be estimated. Since the parameter δ is not identifiable when the
corresponding intervention size ω is zero, its estimation is nonstandard. As suggested
by a reviewer of the Journal of Statistical Software, estimation could be carried out by
profiling the likelihood over this parameter. For a single intervention effect this could be
done by computing the (quasi) ML estimator of all other parameters for a given decay
rate δ. This is repeated for all δ ∈ ∆, where ∆ is a set of possible decay rates, and
the value which results in the maximum value of the log-likelihood is chosen (apply the
function tsglm repeatedly). Note that this approach affects the validity of the usual
statistical inference for the other parameters.

Chapter 3 (based on Liboschik et al., 2016) studies a model for external intervention
effects (modeled by external covariate effects, recall (1.4) and the related discussion) and
compare it to internal intervention effects studied in the two aforementioned publications
(argument external).

2.6 Usage of the package

The most recent stable version of the tscount package is distributed via the Compre-
hensive R Archive Network (CRAN). A current development version is available from
the project’s website http://tscount.r-forge.r-project.org on the development
platform R-Forge. After installation of the package it can be loaded in R by typing
library("tscount").

The central function for fitting a GLM for count time series is tsglm, whose help page
(accessible by ?tsglm) is a good starting point to become familiar with the usage of the
package. The most relevant functions of the package are summarized in Table 2.2. There
are many standard S3 methods available for well-known generic functions. A detailed
description of the functions’ usage including examples can be found on the accompanying
help pages. There is also a number of auxiliary functions which are not intended to be
called by the average user. In total the package currently consists of about 1600 lines
of code and a manual of more than forty pages. The package provides some data sets
which are also listed in Table 2.2.

In the following sections we demonstrate typical applications of the package by two data
examples.
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Name Description

Functions tsglm Fitting a model to given data (class "tsglm")
tsglm.sim Simulating from the model

Generic functions with methods for class "tsglm":
plot Diagnostic plots
se Standard errors and confidence intervals
summary Summary of the fitted model
fitted Fitted values
residuals Residuals
AIC Akaike’s information criterion
BIC Bayesian information criterion
QIC Quasi information criterion
pit Probability integral transform histogram
marcal Marginal calibration plot
scoring Proper scoring rules
predict Prediction
interv_test Test for intervention effects
interv_detect Detection of single intervention effects
interv_multiple Iterative detection of multiple intervention effects

Data sets campy Campylobacter infections in Québec
ecoli E. coli infections in North Rhine-Westphalia (NRW)
ehec EHEC/HUS infections in NRW
influenza Influenza infections in NRW
measles Measles infections in NRW

Table 2.2: Most important functions of the R package tscount and the included data sets.

23



Time

N
um

be
r 

of
 c

as
es

1990 1992 1994 1996 1998 2000

0
10

20
30

40
50

Figure 2.1: Number of campylobacterosis cases (reported every 28 days) in the North of
Québec in Canada.

2.6.1 Campylobacter infections in Canada

We first analyze the number of campylobacterosis cases (reported every 28 days) in
the North of Québec in Canada. The data are shown in Figure 2.1 and were first
reported by Ferland et al. (2006). These data are made available in the package (object
campy). We fit a model to this time series using the function tsglm. Following the
analysis of Ferland et al. (2006) we fit model (1.2) with the identity link function,
defined by the argument link. For taking into account serial dependence we include a
regression on the previous observation. Seasonality is captured by regressing on λt−13,
the unobserved conditional mean 13 time units (which is about one year) back in time.
The aforementioned specification of the model for the linear predictor is assigned by the
argument model, which has to be a list. We also include the two intervention effects
detected by Fokianos and Fried (2010) in the model by suitably chosen covariates provided
by the argument xreg, see also Section 3.5. We compare a fit of a Poisson with that of a
Negative Binomial conditional distribution, specified by the argument distr. The call
for both model fits is then given by:

R> interventions <- interv_covariate(n = length(campy), tau = c(84, 100),
+ delta = c(1, 0))
R> campyfit_pois <- tsglm(campy, model = list(past_obs = 1, past_mean = 13),
+ xreg = interventions, distr = "poisson")
R> campyfit_nbin <- tsglm(campy, model = list(past_obs = 1, past_mean = 13),
+ xreg = interventions, distr = "nbinom")

The resulting fitted models campyfit_pois and campyfit_nbin have class "tsglm", for
which a number of methods is provided (see help page), including summary for a detailed
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model summary and plot for diagnostic plots. The diagnostic plots like in Figure 2.2
can be produced by:

R> acf(residuals(campyfit_pois), main = "ACF of response residuals")
R> marcal(campyfit_pois, ylim = c(-0.03, 0.03), main = "Marginal calibration")
R> lines(marcal(campyfit_nbin, plot = FALSE), lty = "dashed")
R> legend("bottomright", legend = c("Pois", "NegBin"), lwd = 1,
+ lty = c("solid", "dashed"))
R> pit(campyfit_pois, ylim = c(0, 1.5), main = "PIT Poisson")
R> pit(campyfit_nbin, ylim = c(0, 1.5), main = "PIT Negative Binomial")
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Figure 2.2: Diagnostic plots after model fitting to the campylobacterosis data.

The response residuals are identical for the two conditional distributions. Their empirical
autocorrelation function, shown in Figure 2.2 (top left), does not exhibit any serial
correlation or seasonality which has not been taken into account by the models. Figure 2.2
(bottom left) points to an approximately U-shaped PIT histogram indicating that the
Poisson distribution is not adequate for model fitting. As opposed to this, the PIT
histogram which corresponds to the Negative Binomial distribution appears to approach
uniformity better. Hence the probabilistic calibration of the Negative Binomial model is
satisfactory. The marginal calibration plot, shown in Figure 2.2 (top right), is inconclusive.
As a last tool we consider the scoring rules for the two distributions:
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R> rbind(Poisson = scoring(campyfit_pois), NegBin = scoring(campyfit_nbin))
logarithmic quadratic spherical rankprob dawseb normsq sqerror

Poisson 2.750 -0.07669 -0.2751 2.200 3.662 1.3081 16.51
NegBin 2.722 -0.07800 -0.2766 2.185 3.606 0.9643 16.51

All considered scoring rules are in favor of the Negative Binomial distribution. Based
on the PIT histograms and the results obtained by the scoring rules, we decide for
the Negative Binomial model. The degree of overdispersion seems to be small, as the
estimated overdispersion coefficient sigmasq of 0.0297 given in the output below is close
to zero.

R> summary(campyfit_nbin)

Call:
tsglm(ts = campy, model = list(past_obs = 1, past_mean = 13),

xreg = interventions, distr = "nbinom")

Coefficients:
Estimate Std.Error CI(lower) CI(upper)

(Intercept) 3.3184 0.7851 1.7797 4.857
beta_1 0.3690 0.0696 0.2326 0.505
alpha_13 0.2198 0.0942 0.0352 0.404
interv_1 3.0810 0.8560 1.4032 4.759
interv_2 41.9541 12.0914 18.2554 65.653
sigmasq 0.0297 NA NA NA
Standard errors and confidence intervals (level = 95 %) obtained
by normal approximation.

Link function: identity
Distribution family: nbinom (with overdispersion coefficient 'sigmasq')
Number of coefficients: 6
Log-likelihood: -381.1
AIC: 774.2
BIC: 791.8
QIC: 787.6

The coefficient beta_1 corresponds to regression on the previous observation, alpha_13
corresponds to regression on values of the conditional mean thirteen units back in
time. The output reports the estimation of the overdispersion coefficient σ2, which is
related to the dispersion parameter φ of the Negative Binomial distribution by φ = 1/σ2.
Accordingly, the fitted model for the number of new infections Yt in time period t is given
by Yt|Ft−1 ∼ NegBin(λt, 33.61) with

λt = 3.32 + 0.37Yt−1 + 0.22λt−13 + 3.081(t = 84) + 41.951(t ≥ 100), t = 1, . . . , 140.
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The standard errors of the estimated regression parameters and the corresponding
confidence intervals in the summary above are based on the normal approximation
given in (2.6). For the additional overdispersion coefficient sigmasq of the Negative
Binomial distribution there is no analytical approximation available for its standard error.
Alternatively, standard errors (and confidence intervals, not shown here) of the regression
parameters and the overdispersion coefficient can be obtained by a parametric bootstrap
(which takes about 15 minutes computation time on a single 3.2 GHz processor for 500
replications):

R> se(campyfit_nbin, B = 500)$se

(Intercept) beta_1 alpha_13 interv_1 interv_2 sigmasq
0.89850 0.06941 0.10136 0.93836 11.16856 0.01460

Warning message:
In se.tsglm(campyfit_nbin, B = 500) :

The overdispersion coefficient 'sigmasq' could not be estimated
in 5 of the 500 replications. It is set to zero for these
replications. This might to some extent result in a biased estimation
of its true variability.

Estimation problems for the dispersion parameter (see warning message) occur occasion-
ally for models where the true overdispersion coefficient σ2 is small, i.e., which are close
to a Poisson model; see Appendix B.2. The bootstrap standard errors of the regression
parameters are slightly larger than those based on the normal approximation. Note
that neither of the approaches reflects the additional uncertainty induced by the model
selection.

2.6.2 Road casualties in Great Britain

Next we study the monthly number of killed drivers of light goods vehicles in Great
Britain between January 1969 and December 1984 shown in Figure 2.3. This time series
is part of a dataset which was first considered by Harvey and Durbin (1986) for studying
the effect of compulsory wearing of seatbelts introduced on 31 January 1983. The dataset,
including additional covariates, is available in R in the object Seatbelts. In their paper
Harvey and Durbin (1986) analyze the numbers of casualties for drivers and passengers
of cars, which are so large that they can be treated with methods for continuous-valued
data. The monthly number of killed drivers of vans analyzed here is much smaller (its
minimum is 2 and its maximum 17) and therefore methods for count data are to be
preferred.
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Figure 2.3: Monthly number of killed van drivers in Great Britain. The introduction of
compulsory wearing of seatbelts on 31 January 1983 is marked by a vertical line.

For model selection we only use the data until December 1981. We choose the log-linear
model with the logarithmic link because it allows for negative covariate effects. We
aim at capturing the short range serial dependence by a first order autoregressive term
and the yearly seasonality by a 12th order autoregressive term. Both of these terms
are declared by the list element named past_obs of the argument model. Following
Harvey and Durbin (1986) we use the real price of petrol as an explanatory variable.
We also include a deterministic covariate describing a linear trend. Both covariates are
provided by the argument xreg. Based on PIT histograms, a marginal calibration plot
and the scoring rules (not shown here) we find that the Poisson distribution is sufficient
for modeling. The model is fitted by the call:

R> timeseries <- Seatbelts[, "VanKilled"]
R> regressors <- cbind(PetrolPrice = Seatbelts[, c("PetrolPrice")],
+ linearTrend = seq(along = timeseries)/12)
R> timeseries_until1981 <- window(timeseries, end = 1981 + 11/12)
R> regressors_until1981 <- window(regressors, end = 1981 + 11/12)
R> seatbeltsfit <- tsglm(timeseries_until1981,
+ model = list(past_obs = c(1, 12)), link = "log", distr = "poisson",
+ xreg = regressors_until1981)

R> summary(seatbeltsfit, B = 500)

Call:
tsglm(ts = timeseries_until1981, model = list(past_obs = c(1,

12)), xreg = regressors_until1981, link = "log", distr = "pois")
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Coefficients:
Estimate Std.Error CI(lower) CI(upper)

(Intercept) 1.7872 0.39925 1.1927 2.727
beta_1 0.0854 0.08515 -0.1055 0.209
beta_12 0.1581 0.10082 -0.0334 0.314
PetrolPrice 1.1893 2.76888 -4.0278 6.427
linearTrend -0.0306 0.00885 -0.0489 -0.016
Standard errors and confidence intervals (level = 95 %) obtained
by parametric bootstrap with 500 replications.

Link function: log
Distribution family: poisson
Number of coefficients: 5
Log-likelihood: -396.1
AIC: 802.2
BIC: 817.5
QIC: 802.2

Accordingly, the fitted model for the number of van drivers Yt killed in month t is given
by Yt|Ft−1 ∼ Poisson(λt) with

log(λt) = 1.9 + 0.09Yt−1 + 0.15Yt−12 + 0.08Xt − 0.03t/12, t = 1, . . . , 156,

where Xt denotes the real price of petrol at time t. The estimated coefficient beta_1
corresponding to the first order autocorrelation is very small and even slightly below the
size of its approximative standard error, indicating that there is no notable dependence on
the number of killed van drivers of the preceding week. We find a seasonal effect captured
by the twelfth order autocorrelation coefficient beta_12. Unlike in the model for the car
drivers by Harvey and Durbin (1986), the petrol price does not seem to influence the
number of killed van drivers. An explanation might be that vans are much more often
used for commercial purposes than cars and that commercial traffic is less influenced by
the price of fuel. The linear trend can be interpreted as a yearly reduction of the number
of casualties by a factor of 0.97 (obtained by exponentiating the corresponding estimated
coefficient), i.e., on average we expect 2.9% fewer killed van drivers per year (which is
below one in absolute numbers).

Based on the model fitted to the training data until December 1981, we can predict
the number of road casualties in 1982 given the respective petrol price. Coherent, i.e.
integer-valued forecasts could be obtained by rounding the predictions. A graphical
representation of the following predictions is given in Figure 2.4.

R> timeseries_1982 <- window(timeseries, start = 1982, end = 1982 + 11/12)
R> regressors_1982 <- window(regressors, start = 1982, end = 1982 + 11/12)
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Figure 2.4: Fitted values (dashed line) and predicted values (solid line) according to the
model with the Poisson distribution. Prediction intervals (grey bars) are designed to
ensure a global coverage rate of 90%. They are chosen to have minimal length and are
based on a simulation with 2000 replications.

R> predict(seatbeltsfit, n.ahead = 12, level = 0.9, global = TRUE,
+ B = 2000, newxreg = regressors_1982)$pred

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1982 7.71 7.45 7.57 7.41 7.21 6.99 7.15 7.83 7.49 7.82 8.02 7.45

Finally, we test whether there was an abrupt shift in the number of casualties occurring
when the compulsory wearing of seatbelts is introduced on 31 January 1983. The
approximative score test described in Section 2.5 is applied:

R> seatbeltsfit_alldata <- tsglm(timeseries, link = "log",
+ model = list(past_obs = c(1, 12)),
+ xreg = regressors, distr = "poisson")

R> interv_test(seatbeltsfit_alldata, tau = 170, delta = 1, est_interv = TRUE)

Score test on intervention(s) of given type at given time

Chisq-Statistic: 1.153 on 1 degree(s) of freedom, p-value: 0.2829

Fitted model with the specified intervention:

Call:
tsglm(ts = fit$ts, model = model_extended, xreg = xreg_extended,

link = fit$link, distr = fit$distr)
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Coefficients:
(Intercept) beta_1 beta_12 PetrolPrice linearTrend

0.19508 0.08819 0.80446 3.17408 -0.04788
interv_1
0.24570

With a p value of 0.28 the null hypothesis of no intervention cannot be rejected at a 5%
significance level. Note that this result does not rule out that there is an effect of the
seatbelts law which is either too small for being significant or of a different type than it
is tested for. For illustration we fit the model under the alternative of a level shift after
the introduction of the seatbelts law (see the output above). The multiplicative effect
size of the intervention is found to be 1.279. This indicates that according to this model
fit 27.9% less van drivers are killed after the law enforcement. For comparison, Harvey
and Durbin (1986) estimate a reduction of 18% for the number of killed car drivers.

2.7 Comparison with other software packages

In this section we review functions (and the corresponding models) from other R packages
which can be employed for count time series analysis. Many of them have been published
only very recently, a fact that demonstrates the raising interest in count time series
analysis. We discuss how these packages differ from our package tscount. For illustration
we use the time series of Campylobacter infections analyzed in Section 2.6.1 ignoring the
intervention effects. For the presentation of other models we use a notation parallel to
the one used in the previous sections to highlight similarities. Interpretation of the final
model should be done carefully, though.

We consider a large number of somehow related packages which makes this comparison
quite extensive yet interesting for those readers who want guidance on choosing the
most appropriate package for their data. In the first subsection we present packages for
independent data and in the second subsection we discuss packages for dependent data.

2.7.1 Packages for independent data

We start reviewing functions which have been introduced for independent observations
but can, with certain limitations, be employed for time series whose temporal dependence
is rather simple. This is exemplarily discussed in the following paragraph.
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The function glm in the package stats and, for the Negative Binomial distribution, the
function glm.nb in the package MASS (Venables and Ripley, 2002) can fit standard GLMs
to count time series with the iteratively reweighted least squares (IRLS) algorithm. Just
like with our tsglm function, one can choose the identity or logarithmic link in combination
with a Poisson or Negative Binomial conditional distribution. Standard GLMs have
been introduced to model independent but not identically distributed observations. In
principle, one could also fit simple models for time series by including lagged values
of the time series, i.e., Yt−i1 , . . . , Yt−ip , as covariates. However, the glm function has
several limitations; the most important being that it does not allow for regression on
past values of the conditional mean. For example, the glm function cannot be used to
fit the model which included stochastic seasonality; recall Section 2.6.1. Furthermore,
the glm function does not induce the constraints on the vector of parameters given in
Section 2.2.1, which are necessary to ensure stationarity of the fitted process. Models
which are violating these parameter constraints are generally not suitable for prediction.
We have also experienced that glm occasionally does not find good starting values for its
optimization procedure such that it returns an error and requests the user to provide
starting values. At least for the very simple case of a Poisson INGARCH(1,0) model
fitted to the Campylobacterosis data the glm function performs well and we obtain very
similar parameter estimates like with the tsglm function:

R> campydata <- data.frame(ts = campy[-1], lag1 = campy[-length(campy)])
R> coef(glm(ts ~ lag1, family = poisson(link = "identity"), data = campydata))
(Intercept) lag1

4.0322 0.6556
R> coef(tsglm(campy, model = list(past_obs = 1), link = "identity"))
(Intercept) beta_1

4.0083 0.6501

As described in more detail in Section A.3, a fit by the glm function can be used as a
starting value to the function tsglm.

The class of generalized additive models for location, scale and shape (GAMLSS) has
been introduced by Rigby and Stasinopoulos (2005) as an extension of a GLM and
a generalized additive model (GAM). In addition to the location parameter further
parameters of the conditional distribution can be modeled as functions of the explanatory
variables. In the following example we use the package gamlss (authored by Rigby and
Stasinopoulos, 2005) to fit an INGARCH(1,0) model to the Campylobacterosis data. The
overdispersion coefficient σ2

t of the Negative Binomial distribution is not constant but
changes with time according to the equation

σ2
t = exp (β∗0 + β∗1 log(Yt−1 + 1)) .
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R> library("gamlss")
R> gamlss(ts ~ lag1, sigma.formula = ~ log(lag1+1), data = campydata,
+ family = NBI(mu.link = "identity", sigma.link = "log"))[c(25, 43)]
GAMLSS-RS iteration 1: Global Deviance = 803.7
GAMLSS-RS iteration 2: Global Deviance = 803.7
GAMLSS-RS iteration 3: Global Deviance = 803.7
$mu.coefficients
(Intercept) lag1

3.8409 0.6768

$sigma.coefficients
(Intercept) log(lag1 + 1)

-4.2986 0.7167

GAMLSS-RS iteration 1: Global Deviance = 803.7
GAMLSS-RS iteration 2: Global Deviance = 803.7
GAMLSS-RS iteration 3: Global Deviance = 803.7
GAMLSS-RS iteration 1: Global Deviance = 805.6
GAMLSS-RS iteration 2: Global Deviance = 805.6
GAMLSS-RS iteration 3: Global Deviance = 805.6

The possibility of a time dependent dispersion coefficient does not improve the fit for this
data example (according to the AIC, which is 811.72 compared to 811.64 for a model with
constant overdispersion coefficient) but might be quite useful for other data examples.
However, it is clear that such a complex model yields more uncertainty of the parameter
estimations (i.e., larger standard errors, which are not shown here).

The package ZIM (Yang, Zamba, and Cavanaugh, 2014) fits zero-inflated models (ZIM)
for count time series with excess zeros. These models are suitable for data where the
value zero occurs more frequently than it would be expected when assuming other count
time series models. The main idea of these models is to replace the ordinary Poisson or
Negative Binomial distribution by its respective zero-inflated version, which is a mixture
of a singular distribution in zero (with probability ωt) and a Poisson or Negative Binomial
distribution (with probability 1−ωt), respectively. The model proposed by Yang, Zamba,
and Cavanaugh (2013) allows both, the probability ωt and the conditional mean λt of
the ordinary count data distribution, to vary over time. The conditional mean λt is
modeled by using a logistic regression model. The probability ωt is modeled by a GLM
with the logistic link. Other methods for count data with excess zeros, which also have
these limitations, are provided by the well-established functions zeroinfl and hurdle

from the package pscl (Zeileis, Kleiber, and Jackman, 2008). However, the package ZIM
includes an extension of ZIM to state space models, which is treated in the next section.
The parameters of a ZIM are fitted by the function zim employing an EM algorithm.
Zero-inflation models are definitely appealing for count time series which occasionally
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exhibit excess zeros. For our data example of Campylobacter infections, which does not
include any zero observations, ZIM are not applicable.

The current version of the tscount package considered in this chapter is limited to
modeling univariate data. A possible extension to models for vectors of counts is provided
by the package VGAM (Yee, 2016) introduced by Yee (2015). The function vglm in this
package fits a vector GLM (VGLM) (see Yee and Wild, 1996) where the conditional
density function of a d-dimensional response vector Y t given an r-dimensional covariate
vector X t is assumed to be of the form

f(Y t|X t;H) = h(Y t, ν1, . . . , νs),

where νj = η>j X t, j = 1, . . . , s and h(·) is a suitably defined function. The model
parameters are given by the (r × s)-dimensional parameter matrix H = (η>1 , . . . ,η

>
s )>.

Choosing d = s = 1 results in the special case of an ordinary, univariate GLM. We
demonstrate a fit of an INGARCH(1,0) model to the Campylobacterosis data by the
following code:

R> library("VGAM")
R> coef(vglm(ts ~ lag1, family = poissonff(link = "identitylink"),
+ data = campydata))
(Intercept) lag1

4.0322 0.6556

We note that the function vglm produces exactly the same output as the function glm

for this special case. The function vgam from the same package would allow to fit an
even more general vector generalized additive model (VGAM), which is a multivariate
generalization of a generalized additive model (GAM), see Yee (2015) for more details.

Due to the aforementioned limitations of the procedures developed for independent data
we would generally suggest the use of the function tsglm for modeling count time series.
However, in certain situations, where features of the data are currently not supported
by tsglm, the aforementioned packages can be employed with care; recall the second
paragraph of this section. For count time series with many zeros one might want to
consider using, for example, the package ZIM. If there are reasons to assume a time-
varying overdispersion coefficient, the package gamlss is a good choice. Multivariate
count time series could be analyzed with the package VGAM.
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2.7.2 Packages for time series data

In this section we present R packages developed for count time series data.

The package acp (Siakoulis, 2015) has been published recently and provides maximum
likelihood fitting of autoregressive conditional Poisson (ACP) regression models. These
are the INGARCH models given by (1.2); see Section 1.2. The acp package also allows to
include covariate effects. In its latest version 2.1, which has been published in December
2015, the package has been extended to fit models of general order p and q. The tsglm
function of our package includes these models as special cases and is more general in the
following aspects:

• The acp package is different in many technical details. Notably, it does not allow
to incorporate the parameter constraints given in Section 2.2.1.

• Quasi maximum likelihood fitting allows to choose a more flexible Negative Binomial
model instead of a Poisson model (argument distr = "nbinom").

• The tsglm function additionally comprises a log-linear model (argument link =

"log"), which is more adequate for many count time series.
• The tsglm function allows for more flexible dependence modeling by allowing

arbitrary specification of dynamics. This flexibility is missing by the acp function
for model fitting because it requires all variables up to a given order to be included
(e.g. λt−1, . . . , λt−12 and not just λt−12). For instance, tsglm allows for stochastic
seasonality (see Section 2.6.1).

• The tsglm function differentiates between covariates with so-called external and
internal effect (see Equation (1.4) and the accompanying discussion).

In the following example, an INGARCH(1,1) model (ignoring the seasonal effect) is fitted
to the Campylobacterosis data analyzed in Section 2.6.1:

R> library("acp")
R> coef(acp(campy ~ -1, p = 1, q = 1))
[1] 2.5320 0.5562 0.2295
R> coef(tsglm(campy, model = list(past_obs = 1, past_mean = 1)))
(Intercept) beta_1 alpha_1

2.3890 0.5183 0.2693

The parameter estimations obtained by the acp function are very similar to those obtained
by the tsglm function when fitting the same model.

The class of generalized linear autoregressive moving average (GLARMA) models com-
bines GLM with ARMA processes. A software implementation is available in the package
glarma (Dunsmuir and Scott, 2015). The GLARMA model assumes the conditional
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distribution of Yt given the past Ft−1 to be Poisson or Negative Binomial with mean λt
and density f(Yt|λt), with λt given by

g(λt) = η>X t +Ot + Zt,

where Ot is an offset term. An intercept is included by choosing the first column of
the time-varying covariate matrix X t to be the vector (1, . . . , 1)>. Serial correlation is
induced by an autoregressive moving average (ARMA) structure of Zt, which is given by

Zt =

p∑
k=1

φk(Zt−ik + et−ik) +

q∑
`=1

ψ`et−j` .

Hereby the process {Zt : t ∈ N} is defined by means of residuals et which can be possibly
rescaled, see (2.7) and (2.8). In the example below we choose Pearson residuals. For
the link function g(·), the glarma package currently supports only the logarithm but not
the identity, which is available in our function tsglm. Like in our package, the user can
specify the model order by considering the sets P = {i1, . . . , ip} and Q = {j1, . . . , jq}.
The formulation of the GLARMA model we consider describes the modeling possibilities
provided by the glarma package. In fact, this formulation is more general than the
accompanying article by Dunsmuir and Scott (2015), where the authors consider the
case Q = {1, . . . , q} and P = {1, . . . , p}. Choosing P and Q, in the context of GLARMA
modeling, should be done cautiously (see Dunsmuir and Scott, 2015, Seection 3.4). Our
limited experience shows that the minimum element of the set Q should be chosen in
such a way that it is larger than the maximum element of P for avoiding errors. Unlike
ordinary ARMA models, GLARMA models are not driven by random innovations but
by residuals et. Note that the model fitted by the function tsglm is also related to
ARMA processes, see (A.4) in the Appendix. The function glarma implements maximum
likelihood fitting of a GLARMA model. We compare the following model fitted to the
Campylobacterosis data by the function glarma with a fit by tsglm (see Section 2.6.1,
but without the intervention effects):

R> library("glarma")
R> glarmaModelEstimates(glarma(campy, phiLags = 1:3, thetaLags = 13,
+ residuals = "Pearson", X = cbind(intercept=rep(1, length(campy))),
+ type = "NegBin"))[c("Estimate", "Std.Error")]

Estimate Std.Error
intercept 2.34110 0.10757
phi_1 0.22101 0.03940
phi_2 0.05978 0.04555
phi_3 0.09784 0.04298
theta_13 0.08602 0.03736
alpha 10.50823 1.91232
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With the notation introduced above the fitted model for the number of new infections Yt
in time period t is given by Yt|Ft−1 ∼ NegBin(λt, 10.51) with log(λt) = 2.34 + Zt and

Zt = 0.22(Zt−1 + et−1) + 0.06(Zt−2 + et−2) + 0.1(Zt−3 + et−3) + 0.09et−13.

We focus on the models’ capability to explain the serial correlation which is present in the
data. Considering the GLARMA model, a choice of P = {1, 2, 3} and Q = {13} leaves
approximately uncorrelated residuals (see the autocorrelation function in Figure 2.5
(top right)). For the model class fitted by our function tsglm we have chosen the more
parsimonious model with P = {1} and Q = {13} to obtain a fit with approximately
uncorrelated residuals. Figure 2.6 shows that both models seem to provide an adequate
fit to given data. The package glarma provides a collection of functions which can be
applied to a fitted GLARMA model. For example it provides a function for testing
whether there exists serial dependence and it offers tools for model diagnostics. To
conclude, both models are able to explain quite general forms of serial correlation but the
role of the dependence parameters is quite different and any results should be interpreted
carefully. A more detailed comparison would be interesting but is beyond the scope of
this thesis.

Another class of models, which is closely related to the GLARMA models, are the so-called
generalized autoregressive moving average (GARMA) models developed by Benjamin,
Rigby, and Stasinopoulos (2003). Dunsmuir and Scott (2015, Section 3) remark that both
model classes are similar in their structure but they have some important differences.
The GARMA model is formulated by

g(λt) = η>X t +

p∑
k=1

φk
(
g(Yt−k)− η>X t−k

)
+

q∑
`=1

ψ` (g(Yt−k)− g(λt−`)) ,

where the notation follows the GLARMA notation. Compared to the GLARMA model,
the GARMA model does not include an offset and the ARMA structure applies to values
which are transformed by the link function g, i.e., on the scale of the linear predictor. In
case of a logarithmic link, the observations Yt are replaced by max(Yt, c) for a threshold
c ∈ (0, 1), such that g(Yt) is well-defined. In our package this problem is handled replacing
Yt by Yt + 1. The package gamlss.util (Stasinopoulos, Rigby, and Eilers, 2015) contains
the function garmaFit for fitting such GLARMA models. Like ordinary GLMs, these
models are fitted by maximum likelihood employing the IRLS algorithm. As pointed out
on the accompanying help page, the function garmaFit does not guarantee stationarity
of the fitted model. Additionally, the function garmaFit does not allow to specify serial
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dependence of higher order without including all lower orders, which would be necessary
for parsimoniously describing stochastic seasonality. The following example shows a fit
of a Negative Binomial GARMA model of order p = 1 and q = 1 with link g(·) = log(·)
to the Campybacterosis data:

R> library("gamlss.util")
R> coef(garmaFit(campy ~ 1, order = c(1, 1), family = NBI(mu.link = "log")))
deviance of linear model= 891.1
deviance of garma model= 803.3
beta.(Intercept) phi theta

2.6216 0.7763 -0.2917

In the above output the AR coefficient φ1 is named phi and the MA coefficient ψ1

theta. The function garma from the package VGAM (Yee, 2016) is an alternative
implementation for fitting GARMA models. However, the accompanying help page
warns that this function is still in premature stage and points to potential problems
with the initialization (in version 1.0-1 of the package). In addition, garma allows only
for autoregressive modeling (i.e. q = 0) and the Negative Binomial distribution is not
supported. Hence our example can only show a fit of a Poisson GARMA model of order
p = 1 and q = 0 to the Campylobacterosis data:

R> coef(vglm(campy ~ 1, family = garma(link="loge", p.ar.lag = 1, q.ma.lag = 0,
+ coefstart = c(0.1, 0.1))))
(Intercept) (lag1)

1.948 1.123

In this example the estimated coefficient for the autoregressive term is larger than one,
which suggests that the fitted process is not stationary. We could not find settings for
which the functions garmaFit and garma fit the same model and give identical or at
least similar results. Due to the close relationship of GARMA and GLARMA models we
refrain from presenting a comparison to a fit with our package and refer to the comparison
in the previous paragraph made for GLARMA models.

The models presented so far are determined by a single source of randomness, i.e., given
all past observations, uncertainty is only induced by the Poisson or Negative Binomial
distribution from which the observations are assumed to be drawn. These models belong
to the class of observation-driven models according to the classification of Cox (1981).
In the following paragraphs we present parameter-driven models. These models are
determined by multiple sources of randomness introduced by one or more innovation
processes. Helske (2016a) comment on the merits of both approaches. He argues that
parameter-driven models are appealing because they allow to introduce even multiple
latent structures in a flexible way. On the other hand, he observes that observation-driven
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models like the ones we consider are of advantage for prediction because of their explicit
dependence on past observations and covariates.

The package surveillance (Salmon, Schumacher, and Höhle, 2016b) includes methods for
online change point detection in count time series. One of the models used here is a
hierarchical time series (HTS) model proposed by Manitz and Höhle (2013) based on the
work by Heisterkamp, Dekkers, and Heijne (2006). This particular state space model
accounts for serial dependence by a time-varying intercept. More precisely, it is assumed
that Yt ∼ NegBin(λt, φ), where the conditional mean λt is given by

λt = exp
(
β0,t + δt+ γt + η>X t

)
.

The time-varying intercept β0,t is assumed to depend on its previous values according to

∆dβ0,t|β0,t−1, . . . , β0,t−d ∼ N(0, κ−1
β0

),

where ∆d is the difference operator of order d ∈ {0, 1, 2} and κβ0 a precision parameter.
Explicitly, it holds β0,t ∼ N(0, κ−1

β0
), β0,t|β0,t−1 ∼ N(β0,t−1, κ

−1
β0

) and

β0,t|β0,t−1, β0,t−2 ∼ N(2β0,t−1 − β0,t−2, κ
−1
β0

)

for d = 1, 2, 3, respectively. For d > 0 this induces dependence between successive
observations. The other parameters, δ for the linear trend, γt for a seasonal effect, and
the vector η for the effect of a covariate vector X t, are also assumed to be normally
distributed with certain priors. Inference is done in a Bayesian framework and utilizes an
efficient integrated nested Laplace approximation (INLA) provided by the package INLA
(Lindgren and Rue, 2015) (available from http://www.r-inla.org). In the following
example we fit a Negative Binomial model without trend, seasonality or covariate effects
but with a time-varying intercept of order d = 1 to the Campylobacterosis data:

R> library("INLA")
R> campyfit_INLA <- inla(ts ~ f(time, model = "rw1", cyclic = FALSE),
+ data = data.frame(time = seq(along = campy), ts = campy),
+ family = "nbinomial", E = mean(campy),
+ control.predictor = list(compute = TRUE, link = 1),
+ control.compute = list(cpo = FALSE, config = TRUE),
+ control.inla = list(int.strategy = "grid", dz = 1,
+ diff.logdens = 10))
R> posterior <- inla.posterior.sample(1000, campyfit_INLA)
R> rowMeans(sapply(posterior, function(x) (unname(x$hyperpar))))

[1] 9.314 169.208
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The estimates for the parameters φ (the former) and κβ0 (the latter) in the output above
are based on means of a sample of size 1000 from the posterior distribution. Fitted values
λ̂1, . . . , λ̂140 are obtained in the same way (not shown in the above code). With the
Bayesian approach it is very natural to obtain prediction intervals for future observations
from the posterior distribution which account for the estimation and observation uncer-
tainties. This is a clear advantage over the classical likelihood-based approach pursued
in our package (cf. Section 2.3). A disadvantage of the Bayesian approach is its much
higher computational effort which could be an obstacle for real-time applications and
simultaneous analysis of several time series. The above example runs more than eight
seconds on a standard office computer (Intel Xeon CPU with 2.83 GHz); this is seven
times longer than tsglm takes to fit the model. An additional difference between our
approach and that taken by INLA is the specification of temporal dependence. The
comparison of the final fitted values, shown in Figure 2.6, illustrates that the model
with a time-varying intercept fitted by inla possess a much smoother line through the
observed values when compared to the model fitted by tsglm. For this example, the
empirical autocorrelation function of the response residuals in Figure 2.5 (bottom left)
is significantly different from zero at lag one; hence short term temporal correlation is
not explained sufficiently by the hierarchical model. It also becomes clear by this plot
that we should have included seasonality by employing the term γt. The residuals of the
GLM-based fit by the function tsglm do not exhibit any serial correlation which has not
been explained by the model (see Figure 2.5 (top left)). In general, the GLM-based model
is expected to provide more accurate 1-step-ahead predictions whilst the hierarchical
model prediction obtained by inla is more stable. Either of these two features could
be preferable depending upon the specific application. It would be interesting to study
these two ways of modeling temporal dependence in a future work.

The package KFAS (Helske, 2016b) treats state space models for multivariate time series
where the distribution of the observations belongs to the exponential family (and also
includes the Negative Binomial distribution). Its name refers to Kalman filtering and
smoothing, which are the two key algorithms employed by the package. This package is
able to cope with very general state space models at the cost of a rather big effort for its
correct specification. However, some auxiliary functions and the use of symbolic model
description reduces this effort. In contrast to the package INLA, which is also capable
of fitting state space models, KFAS implements maximum likelihood estimation (for a
comparison of these two packages see Helske, 2016a). One possible univariate model
for the Campylobacterosis data could be the state space model Yt|Ft−1 ∼ NegBin(λt, φ)

where λt = exp(νt) and the state equation is
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Figure 2.5: Empirical autocorrelation function of the response residuals for a model fit of
the campylobacterosis data by our function tsglm (see Section 2.6.1, but without the
intervention effects) and the packages glarma, INLA and KFAS (see Section 2.7).

νt = νt−1 + εt.

The initialization ν1 is specified by assuming ν1 ∼ N(λ, σ2
ν). The degree of serial

dependence is induced by independently distributed innovations εt for which it is assumed
that εt ∼ N(0, σ2

ε). This model has unknown parameters λ ∈ R, and φ, σ2
ν1
, σ2

ε ∈ [0,∞)

and can be fitted as follows:

R> library("KFAS")
R> model <- SSModel(campy ~ SSMcustom(Z = 1, T = 1, R = 1, Q = 0,
+ a1 = NA, P1 = NA) - 1,
+ distribution = "negative binomial", u = NA)
R> updatefn <- function(pars, model, ...){
+ model$a1[1, 1] <- pars[1]
+ model$u[, 1] <- exp(pars[2])
+ model$P1[1, 1] <- exp(pars[3])
+ model$Q[1,1,1] <- exp(pars[4])
+ return(model)
+ }
R> campyfit_KFAS <- fitSSM(model = model, inits = c(mean(campy), 0, 0, 0),
+ updatefn = updatefn)
R> exp(campyfit_KFAS$optim.out$par)
[1] 3.427e+00 9.148e+01 2.775e-16 4.334e-02
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Figure 2.6: Comparison of a model fit of the campylobacterosis data by our function
tsglm (see Section 2.6.1, but without the intervention effects) and the packages glarma,
INLA and KFAS (see Section 2.7).

The output above corresponds to the estimated parameters λ, φ, σ2
ν1

and σ2
ε , respectively.

We observe that the estimation procedure is quite sensitive to given starting values; this
fact has been pointed out by Helske (2016a). As shown by the empirical autocorrelation
function of the residuals in Figure 2.5 (bottom right), the fitted model explains the
temporal dependence of the data quite adequately. The values fitted by this model
(see Figure 2.6) do not show any delay when compared to the fit obtained by tsglm.
The algorithm used by tsglm yields fitted values by 1-step-ahead forecasts based on
previous observations; note that only the model parameters are fitted using all available
observations. The algorithm of the KFAS package for obtaining fitted values includes
future observations which naturally lead to a more accurate fit. However, this methodology
does not guarantee better out-of-sample forecasting performance since future observations
will not be available in general. Further empirical comparison between KFAS and tscount
is required to compare the accuracy of predictions obtained by both models.

Another state space model which could be used to describe count time series is a partially
observed Markov process (POMP). The package pomp (King, Nguyen, and Ionides, 2016)
provides a general and abstract representation of such models. One example by King
et al. (2016, Sections 4.5 and 4.6) is the so-called Ricker model for describing the size Nt

of a population which is assumed to fulfill

Nt+1 = rNt exp(−Nt + εt)

with innovations εt ∼ N(0, σ2
ε). The actual observations Yt are noisy measurements of the

population size Nt and it is assumed to hold Yt ∼ Poisson(φNt), where φ is an unknown
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dispersion parameter. Specification and fitting of this rather simple model with the
package pomp requires more than thirty lines of code. This complexity is an obstacle
for using the package in standard situations but might prove beneficial in very special
scenarios.

The package gcmr provides methodology for Gaussian copula marginal regression (Masarotto
and Varin, 2012), a framework which is also capable to model count time series. The
marginal distribution of a time series Yt given a covariate vector X t can be modeled by
a Poisson or Negative Binomial distribution with mean λt using that g(λt) = β0 + η>X t.
This is similar to model (1.1) but it does not include the terms for regression on past values
of Yt and λt. Furthermore, randomness is introduced through an unobserved error process
{εt : t ∈ N} by assuming that Yt = F−1

t (Φ(εt)), where Ft is the cumulative distribution
function of the Poisson or Negative Binomial distribution with mean λt and Φ is the
cumulative distribution function of the standard normal distribution. Hence the actual
value of Yt is the Φ(εt)-quantile of the Poisson or Negative Binomial distribution with
mean λt. As pointed out by Masarotto and Varin (2012), copulas with discrete marginals
might not be unique (see also Genest and Nešlehová, 2007). Temporal dependence of
{Yt} is modeled through the error process {εt} by assuming an autoregressive moving
average (ARMA) model of order p and q. Note that although this model accounts for
serial dependence it does not model the conditional distribution of Yt given the past but
only its time-varying marginal distribution. The mean λt of this marginal distribution is
not influenced by the actual (unobserved) value of the error εt. Hence this model is not
suitable for accurate 1-step-ahead predictions but rather for quantifying the additional
uncertainty induced by the serial dependence. The following example presents a fit of a
Negative Binomial model with an ARMA error process of order p = 1 and q = 1:

R> library("gcmr")
R> gcmr(ts ~ 1, marginal = negbin.marg(link = "identity"),
+ cormat = arma.cormat(p=1, q=1), data = data.frame(ts = campy))

Call:
gcmr(formula = ts ~ 1, data = data.frame(ts = campy),

marginal = negbin.marg(link = "identity"),
cormat = arma.cormat(p = 1, q = 1))

Marginal model parameters:
(Intercept) dispersion

11.320 0.255

Gaussian copula parameters:
ar1 ma1

0.823 -0.269
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The estimated ARMA parameters of the error process indicate that there is a considerable
amount of serial correlation in the data. Some of the observed variability is explained
by this serial dependence. As discussed above, the fitted values are based solely on
the estimated marginal distribution and are therefore constant over time (equal to the
estimated intercept in the above output).

An extension of the zero-inflated models of the package ZIM, which was presented in the
previous section, are the so-called dynamic zero-inflated models (DZIM) as proposed by
Yang, Cavanaugh, and Zamba (2015). These fall within the framework of state space
models and introduce serial dependence by an unobserved autoregressive process of order
p. Fitting is based on the EM algorithm and MCMC simulation.

The package tsintermittent (Kourentzes and Petropoulos, 2016) provides methods for
so-called intermittent demand time series (see for example Kourentzes, 2014). These are
time series giving the number of requested items of a particular product (e.g., rarely
needed spare parts) which is demanded in a sporadic fashion with periods of zero demand.
Reliable forecasts of such time series are important for companies to efficiently plan
stocking the respective items. In principle, these are count time series which could be
analyzed with the methods in our package. However, it is known that classical forecasting
methods perform unsatisfactorily for this kind of data (Kourentzes, 2014). More successful
approaches, which are included in the tsintermittent package, are based on the idea of
separately modeling the non-zero demand size and the inter-demand intervals. These
methods do not take into account that the observations are integers and do not include
covariate effects, as the methods in our package do. Temporal dependence is considered
implicitly, by assuming that there are periods where subsequent observations are zero.
Our functions consider explicit time dependence. The methods in the tsintermittent
package are possibly more appropriate for the specific context they are tailored for (which
would need further examination), but not suitable for count time series in general. They
compete with other types of models for zero excess time series data, for example with
DZIM.

2.8 Discussion

We are the first to provide such a general formulation and comprehensive treatment of
count time series following generalized linear models. In its current version, the R package
tscount allows for the analysis of count time series with this quite broad class of models.
Our comparison with other packages shows that tscount is an important contribution
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which extends and complements existing software. It will hopefully prove to be useful for
a wide range of applications.

There are a number of desirable extensions of the package which could be included in
future releases. The most important ideas for extending tscount are described in the
following paragraphs. We invite other researchers and developers to contribute to this
package.

As an alternative to the Negative Binomial distribution, one could consider the so-called
Quasi-Poisson model. It allows for a conditional variance of φλt (instead of λt + φλ2

t , as
for the Negative Binomial distribution), which is linearly and not quadratically increasing
in the conditional mean λt (for the case of independent data see Ver Hoef and Boveng,
2007). A scatterplot of the squared residuals against the fitted values could reveal whether
a linear relation between conditional mean and variance is more adequate for a given
time series. A generalization of the test for overdispersion in INGARCH(1,0) processes
proposed by Weiß and Schweer (2015) could provide guidance for choosing an appropriate
conditional distribution.

The common regression models for count data are often not capable to describe an
exceptionally large number of observations with the value zero. In the literature so-called
zero-inflated and hurdle regression models have become popular for zero excess count
data (for an introduction and comparison see Loeys, Moerkerke, De Smet, and Buysse,
2012). A first attempt to utilize zero-inflation for INGARCH time series models is made
by Zhu (2012).

In some applications the variable of interest is not the number of events but the rate,
which expresses the number of events per unit. For example the number of infected
people per 10 000 inhabitants, where the population size is a so-called exposure variable
which varies over time. For models with a logarithmic link function such a rate could
be described by a model where the number of events is the response variable and the
logarithm of the exposure variable is a so-called offset. An offset is supported by many
standard functions for GLMs and could be part of a future release of our package.

Alternative nonlinear models are for example the threshold model suggested by Woodard
et al. (2011) or the models studied by Fokianos and Tjøstheim (2012). Fokianos and
Neumann (2013) propose a class of goodness-of-fit tests for the specification of the
linear predictor, which are based on the smoothed empirical process of Pearson residuals.
Christou and Fokianos (2015a) develop suitably adjusted score tests for parameters which
are identifiable as well as non-identifiable under the null hypothesis. These tests can be
employed to test for linearity of an assumed model.
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In practical applications one is often faced with outliers. Elsaied and Fried (2014)
and Kitromilidou and Fokianos (2016) develop M-estimators for the linear and the log-
linear model, respectively. Fried et al. (2014) compare robust estimators of the (partial)
autocorrelation (see also Dürre, Fried, and Liboschik, 2015a) for time series of counts,
which can be useful for identifying the correct model order.

In the long term, related models for binary or categorical time series (Moysiadis and
Fokianos, 2014) or potential multivariate extensions of count time series following GLMs
could be included as well.

The models which are so far included in the package or mentioned above fall into the class
of time series following GLMs. There is also quite a lot of literature on thinning-based
time series models but we are not aware of any publicly available software implementations.
To name just a few of many publications, Weiß (2008) reviews univariate time series
models based on the thinning operation, Pedeli and Karlis (2013) study a multivariate
extension and Scotto, Weiß, Silva, and Pereira (2014) consider models for time series
with a finite range of counts. For the wide class of state space models there are the R
packages INLA, KFAS and pomp available, although it is quite complex to apply these
to count time series. A future version of our package could provide simple interfaces to
such packages specifically for fitting certain count time series models.
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Chapter 3

Retrospective intervention detection

3.1 Introduction

In many applications, unusual external effects or measurement errors can lead to either
sudden or gradual changes in the structure of the data. Furthermore such effects can result
in several singular observations of a distinct nature than the rest. Following Box and
Tiao (1975) we use the term intervention for all kinds of unusual effects influencing the
ordinary pattern of the data, including structural changes and different forms of outliers.
Considering for example the monthly number infections with a certain disease, where
a disease outbreak would be a possible intervention effects. A goal of an intervention
analysis is to examine the effect of known interventions, for example to judge whether a
policy change had the intended impact (for practical applications see for example Box
and Tiao, 1975). Another possible goal is to search for unknown intervention effects and
to find explanations for them a posteriori. Such sudden events are often included in the
model by deterministic covariates (e.g., Box and Tiao, 1975; Abraham and Box, 1979).
These goals are fundamentally different from the goal of a robust estimation approach,
where methods are expected to ignore the effect of aberrant observations.

The main focus of this chapter is to model various types of interventions in so-called
INGARCH (or ACP) processes which are defined by (1.2). An extension to the count time
series based on generalized linear models as defined in Section 1.2 is briefly discussed in
Section 2.5. This includes log-linear models, models with a Negative Binomial conditional
distribution, models with additional covariates as well as those with more than one
intervention effect.
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We introduce a new model to describe intervention effects within the class of INGARCH
processes and compare it to an existing intervention model proposed by Fokianos and
Fried (2010). Our proposal is able to describe interventions which enter the dynamics
of the process in a different way when compared to the existing model. It allows to
describe an external effect on the observed value rather than an internal change of the
underlying state of the process. Such a model can be more realistic for some applications,
as discussed in the last paragraph of Section 3.2.

Section 3.2 defines both intervention models and compares them analytically. Section 3.3
presents joint maximum likelihood estimation of the ordinary model parameters and
the intervention effects and studies its properties by simulations. Section 3.4 presents
asymptotic procedures to test for single interventions at a given time, or to detect one or
multiple interventions at unknown positions. We verify these procedures by simulations.
Furthermore, we discuss the problem of misspecification of the intervention model and
shed some light on the question of discriminating between the two intervention models.
Section 3.5 applies some of the methods to the weekly number of campylobacterosis
infections. Section 3.6 concludes this chapter with a short discussion on related issues.

3.2 Intervention models

As a first intervention model in the framework of INGARCH(p,q) processes, Fokianos
and Fried (2010) define a contaminated observed process {Zt}t∈N with an intervention at
time τ by

Zt|FZ,κt−1 ∼ Poisson(κt), κt = β0 +

p∑
k=1

βkZt−k +

q∑
`=1

α`κt−` + νXt, (i)

where Xt = δt−τI[τ,∞)(t) is a deterministic process describing the intervention effect,
ν ≥ 0 denotes the intervention size, the predefined constant δ ∈ [0, 1] specifies the type
of intervention and all other model parameters are as before. The information about
the past of the process is denoted by FZ,κt0−1 = σ(Z1−p, . . . , Zt0−1, κ1−q, . . . , κ0). Model (i)
covers three types of interventions with different choices of δ: a spiky outlier (SO) for
δ = 0, a transient shift (TS) for δ ∈ (0, 1) and a level shift (LS) for δ = 1. Singular effects
are modeled by a SO, exponentially decaying effects by a TS and a permanent change of
location by a LS.

The intervention effect is added to the underlying conditional mean process {κt} and
not to the observations itself. Through the regression on past observations and on
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past conditional means the intervention effect enters the dynamics of the process. The
parameter δ has both a direct and an indirect impact on the observations. Its value
directly influences the impact of the intervention on the conditional mean and hence
its impact on the future values of the process. In addition, the value of δ affects future
values of the process because of the dependence in (i) on past values of {κt} and {Zt}.
Small values of δ yield less impact than larger ones.

We study an alternative intervention model for INGARCH(p,q) processes {Zt} following
the definition

Zt|FZ,κt−1 ∼ Poisson(κt), κt = λt + νXt, λt = β0 +

p∑
k=1

βkZt−k +

q∑
`=1

α`λt−`, (ii)

where the intervention process {Xt}, the regular INGARCH parameters and the additional
intervention parameters are as before. Models (i) and (ii) look somewhat similar but
their difference becomes more obvious, if we rewrite the equation for the conditional
mean κt of intervention model (ii) as

κt = β0 +

p∑
k=1

βkZt−k +

q∑
`=1

α`(κt−` −νXt−`︸ ︷︷ ︸
not for model (i)

) + νXt. (3.1)

Apart from the labelled term, it is identical to the conditional mean equation of in-
tervention model (i). For the alternative specification (ii) the intervention effect is
not propagated via the feedback mechanism of the conditional mean but only via the
contaminated observations. From (3.1) we see that both intervention models can be
written in a unified way and are fully specified by their observable process {Zt} and their
unobservable conditional mean process {κt}, in addition to the deterministic intervention
process {Xt}.

One could gain more insight about the difference between the intervention models by
considering another representation, which turns out to be useful for cleaning the processes
from any intervention effects (see Section 3.4). For intervention model (i) Fokianos and
Fried (2010) show that it is possible to decompose {Zt} into an intervention-free process
{Yt} and a contamination process {Ct}, which are mutually independent conditionally on
the past, such that Zt = Yt +Ct. The intervention-free process {Yt} is an INGARCH(p,q)
process with conditional mean process {λt} and the same parameters as {Zt}. The
contamination process {Ct} underlies the same structure as {Zt} and can be described
by
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Figure 3.1: Comparison of the intervention models for a simulated INGARCH(1,1)
processes with parameters β0 = 3, β1 = 0.4 and α1 = 0.3 with a transient shift (δ = 0.8)
of size ν = 20 at time τ = 5 (vertical line).

Ct|FC,υt−1 ∼ Poisson(υt), υt =

p∑
k=1

βkCt−k +

q∑
`=1

α`υt−j`︸ ︷︷ ︸
not for model (ii)

+νXt, (3.2)

with {υt} the conditional mean process of {Ct} and κt = λt + υt. It is straightforward to
show that a similar decomposition holds for intervention model (ii) without the labelled
summand. Naturally, {υt} and thus also {Ct} are zero for t < τ .

In both models the intervention affects the conditional mean from time τ inwards.
However, for model (ii) its effect does not enter the dynamics of the process directly but
only via the observations. This can be seen more clearly in (3.2): only for intervention
model (i) the intervention effect propagates directly via the conditional mean υt. The
difference can also be seen from (3.1), where for model (ii) the feedback mechanism
is adjusted by the intervention effect. The larger the feedback parameters αi are, the
greater is the difference between both models. For α1 = · · · = αq = 0 both models are
equivalent.

The simulated example of a transient shift, see Figure 3.1, illustrates the difference
between the intervention models. After the intervention occurred, the conditional mean
returns faster to its previous level before the intervention for model (ii) rather than for
model (i).

An intervention following model (ii) can be interpreted as a sudden external effect, whilst
an intervention following model (i) can be rather seen as an internal change of the data
generating process. We will therefore refer to model (ii) as the external and to model (i)
as the internal intervention model. This nomenclature corresponds to external and
internal covariate effects as they are defined at the end of Section 1.2.
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For illustration consider the weekly number of registered cases of a disease spreading
human to human and by contaminated nutrition. A level shift could for instance be
caused by a change of the reporting requirements, an enhanced detection method or just
a new and more aggressive type of pathogen. A spiky outlier in the external intervention
model could be caused by the return of a large number of infected persons from another
area, which will affect the future number of cases only by human to human spread. In
contrast, a spiky outlier from the internal intervention model could be caused by a large
quantity of contaminated food resulting in many more infections than usual. This will
affect the future number of cases not only by human to human spread of the additionally
infected patients, but also by a larger number of pathogens circulating for example in
food processing establishments.

3.3 Estimation and inference

Estimation of model (ii) proceeds along the lines of Fokianos and Fried (2010) after some
modifications, treating the intervention as a time-dependent covariate process {Xt} and
estimating the vector of unknown model parameters θ = (β0, β1, . . . , βp, α1, . . . , αq, ν)>

jointly by maximum likelihood. Note that this falls within the more general framework
of model (1.1); recall the maximum likelihood estimation procedure in Section 2.2. Note
that for the contaminated process we denote observations by zt and the conditional mean
by κt unlike for the clean process with yt and λt, respectively. We present estimation
formulas valid for both intervention models and point out where these differ from each
other. Note that the time τ when the intervention occurs, as well as the parameter δ
specifying the type of intervention, are treated as known for estimation. We assume that
θ ∈ Θ, with

Θ =

{
θ ∈ Rp+q+2

∣∣∣∣∣β0 > 0, β1, . . . , βp, α1, . . . , αq ≥ 0,

p∑
k=1

βk +

q∑
`=1

α` < 1, ν ≥ 0

}
.

The following equations are conditional on the unobserved past FZ,κ0 of the process;
recall the notation of (i). For an observed time series z = (z1, . . . , zn)> the conditional
log-likelihood function is up to a constant given by

`(θ; z) =
n∑
t=1

(
zt ln(κt(θ))− κt(θ)

)
,
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where the conditional mean is regarded as a function κt : Θ→ R+ and thus denoted by
κt(θ) for all t. The conditional score function is the (p+ q + 2)-dimensional vector

Snτ (θ; z) =
∂`(θ; z)

∂θ
=

n∑
t=1

(
zt

κt(θ)
− 1

)
∂κt(θ)

∂θ
.

Finally, the conditional information matrix is given by

Gnτ (θ) =
n∑
t=1

1

κt(θ)

(
∂κt(θ)

∂θ

)(
∂κt(θ)

∂θ

)>
.

The additional index τ indicates that Snτ and Gnτ depend on the time of the intervention
effect. The conditional maximum likelihood (CML) estimator θ̂n of θ is the solution of
the non-linear constrained optimization problem

θ̂n = arg max
θ∈Θ

`(θ; z), (3.3)

assuming that it exists. As discussed in Section 2.2.3 and Appendix A.2, the evaluation
of log-likelihood function, score vector and information matrix is carried out recursively
with an appropriate initialization.

3.3.1 Starting value for optimization

To solve the non-linear optimization problem (3.3) subject to the induced constraints, we
need to give a starting value for the parameter vector θ. We obtain this starting value
from a fit of an ARMA model with the same second order properties as the considered
INGARCH model (cf. Appendix A.3). We compare a method of moments (MM) and a
conditional least squares (CLS) estimator with respect to their efficiency, computation
time and robustness against interventions in a simulation study.

For the simulations in this study we consider an INGARCH(1,1) process with true
parameters β0 = 3, β1 = 0.4 and α1 = 0.3, unless stated otherwise. Without an
intervention, such process has a marginal mean of 10 and a marginal variance of 13.14
and thus exhibits moderate overdispersion. The autocorrelation function is 0.47 for lag 1
and decays to a value below 0.01 after 12 lags. Following Fokianos and Fried (2010), the
parameter δ of a transient shift is set to 0.8 for simulation as well as for estimation. In
the simulations we choose different sizes ν for different types of interventions, because a
spiky outlier needs to be of much larger size to be noticeable than a transient shift or
even more a level shift (see discussion in Section 3.4.1). Moreover, in applications outlier
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Figure 3.2: Root mean square error (RMSE) and computation time of different start
estimators for a simulated intervention-free INGARCH(1,1) process averaged over 5000
repetitions.

effects are particularly relevant if they are large whereas level shifts are of interest even
if they are only of moderate size. In the case that the simulation setup is modified it will
be stated explicitly.

The results of the simulations in Figure 3.2 suggest that both start estimators are mean
square consistent, although several thousand observations are needed to reduce the root
mean square error (RMSE) for each parameter to less than 10% of its respective parameter
value. Particularly for smaller sample sizes of up to about thousand observations the CLS
estimator has a considerably lower RMSE than the MM estimator. The computation
time grows linearly in the sample size for both estimators. It is much faster and increases
slower with the sample size for the MM estimator than for the CLS estimator (see
Figure 3.2 bottom right). However, even though the MM estimator is more than ten
times faster for time series with 200 or more observations, the computation times of both
start estimators are negligible compared to the computation time required to obtain the
final CML estimation.

In this work we are particularly interested in the behavior of the estimators in the
presence of interventions. The simulation presented in Figure 3.3 shows that with a TS
or LS type of intervention both estimators become heavily biased, whilst the singular
event of a SO does not really affect them. If the time of possible interventions is known,
the start estimation could be done using only an intervention-free part of the time series.
This approach is certainly not always possible, because in many applications the times of
possible interventions are not known or the intervention-free part of the time series is too
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Figure 3.3: Start estimates of a simulated INGARCH(1,1) process with n = 200 observa-
tions and an intervention in the middle (Clean without intervention, SO with intervention
of size ν = 24, TS with ν = 18, LS with ν = 3). The true value is marked by a grey line,
the sample mean by a cross. Simulation results are based on 5000 repetitions.

short for a sensible start estimation. However, our simulations presented in Figures 3.4
and 3.5 indicate that the CML estimation of β0, β1 and α1 works well, although the start
estimation is biased by an intervention. With respect to its behavior in the presence of
an intervention, none of the two initial estimation methods seems to be superior.

Overall we suggest conditional least squares estimation for obtaining starting values
because it possesses better properties in small and moderately large samples. This
estimator will therefore be used to obtain starting values in all subsequent simulations.
Note that we come to a different conclusion when considering start estimation for models
with arbitrary covariates; see Appendix A.3.

3.3.2 Properties of the maximum likelihood estimator

Fokianos and Fried (2010) conjecture asymptotic normality of the CML estimator for
their intervention model (i) and verify this by simulations. We assume that the same
also holds for the alternative intervention model (ii). In other words,

√
n
(
θ̂n − θ0

)
d−→ Np+q+2

(
0, Gnτ (θ̂n)−1

)
, (3.4)

as n→∞, where θ0 denotes the true parameter value, which has to be in the interior of
the parameter space Θ. Note that (3.4) is a special case of (2.6). Simulations reported
below suggest that (3.4) holds for τ = bρnc with 0 < ρ < 1. However, a formal proof
requires further research. Assuming that the bivariate process {(Zt, κt)} is ergodic and
has moments of at least fourth order, we could in fact show that the score vector forms a
square integrable martingale. The main obstacle on proving the asymptotic normality
is the convergence of the information matrix because of the non-stationarity of the
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Figure 3.4: Normal QQ-plots of the CML estimation of an INGARCH(1,1) process
according to model (ii) with a transient shift of size ν = 9 in the center of n = 200
observations. Simulation results are based on 1000 repetitions.

intervention process {Xt}. However, from our extensive experience with these models
the information matrix converges to a non-random limit. In Section 2.2.2 asymptotic
normality of the maximum likelihood estimator is discussed for a model with arbitrarily
covariates; see also the simulation study in Appendix B.1.

Figure 3.4 and our simulations for several other parameter settings and sample sizes
support our conjecture of asymptotic normality, but also show that the convergence is
rather slow if the true parameter is close to the boundary of the parameter space. In
this case the estimator is skewed for moderate sample sizes. In the example shown in
Figure 3.4 there are many estimations of α1 very close to its lower parameter constraint
zero, which is an artifact of the constrained optimization. This problem disappears if
the true value of α1 is further away from the boundary of the parameter space Θ or the
sample size n becomes larger and thus the variance of the estimations decreases. For this
example with a true value of α1 = 0.3 estimation based on n = 500 observations turns
out to be sufficient for adequate normal approximation. In contrast, the case of a true
value of α1 = 0.1 requires several thousands of observations for achieving approximate
normality. The same problem occurs when estimating the constant term β0, see Fokianos
et al. (2009), or the intervention size ν. This problem is not inherent in the external
intervention model (ii), but arises in the same way for intervention model (i) and also
for the intervention-free model (1.2), as we have confirmed by simulations which are
not shown here. The practical implication is that if the estimated parameter is close to
the boundary of the parameter space, then a larger sample size is needed for reliable
inference.
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Figure 3.5: Root mean square error (RMSE) for the CML estimator with different
initial estimations (see legend) for a simulated INGARCH(1,1) process with TS of size
ν = 9. Here the time of intervention is τ = n/2 for a varying length n of the time series.
Simulation results are averaged over 1000 repetitions.

Another issue showed up during the simulation experiments for situations with δ < 1

only. In the case of a level shift (i.e. δ = 1) all observations after time τ carry roughly the
same amount of information about the unknown intervention size ν, whereas for δ < 1

this amount decreases for observations which are far apart from the time of intervention
τ . Hence, estimation of the parameter ν becomes quite challenging in these situations
because the log-likelihood function is very flat in the direction of the parameter ν. In our
empirical works we observed, for a considerable number of cases, that the algorithm used
for optimization had not moved away from its starting value, although the log-likelihood
function was not even close to its maximum there. This happens especially when the
sample size is large. In most cases, we can overcome this burden by choosing a very
strict stopping rule for the optimization algorithm, which leads to a considerably longer
computation time but on the other hand also to reasonable results.

The CML estimation of the INGARCH parameters β0, β1 and α1 turns out to be mean
square consistent in our simulations under intervention model (ii), as illustrated in
Figure 3.5 for the case of a TS. Regarding the parameter ν, with growing sample size the
RMSE decays very slowly except if δ = 1, and it does not get close to zero even for a
sample size of 10 000 observations. This is in accordance with the above remarks and is
also the case in simulations for intervention model (i) which are not shown here.

Based on the asymptotic distribution in (3.4) we can obtain approximative standard errors
for the estimated parameters. Another approach is based on a parametric bootstrap, i.e
simulate B time series from the fitted model, fit the model to each of this B artificial
time series and compute the empirical standard deviation of the parameter estimators
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β0 β1 α1 ν

n = 200 Norm. approx. 0.94 (0.227) 0.07 (0.004) 0.13 (0.018) 3.00 (0.359)
Bootstrap 1.06 (0.220) 0.07 (0.003) 0.14 (0.023) 2.95 (0.273)

500 Norm. approx. 0.62 (0.100) 0.04 (0.002) 0.08 (0.008) 2.80 (0.315)
Bootstrap 0.67 (0.098) 0.04 (0.001) 0.09 (0.009) 2.77 (0.257)

Table 3.1: Standard errors of the parameters of an INGARCH(1,1) process with a
transient shift of size ν = 9 in the center according to model (ii). Bootstrap standard
errors are based on B = 1000 random samples. Simulation results are averaged over 150
replications with standard deviations given in parentheses.

(see Section 2.2.2). We compare both approaches in a simulation study, see Table 3.3.2.
Standard errors for β0 and α1 based on the approximate normality are on average
slightly lower than those based on the parametric bootstrap method. For the other
parameters the average standard errors are pretty close to each other. The normal
approximation standard errors suffer from the issue discussed before. To be on the safe
side we recommend to rely on bootstrap standard errors whenever the substantially
longer computation time is acceptable.

3.4 Testing for intervention effects

In this section we modify the procedures proposed by Fokianos and Fried (2010) for
the internal intervention model (i) for the case of the external intervention model (ii),
using the conditional score function and information matrix presented in Section 3.3. We
extend the simulations presented by Fokianos and Fried (2010) in the new context, verify
that these procedures are also valid for the external intervention model (ii) and include
further comparisons.

3.4.1 Intervention of known type at known time

The presence of an intervention effect of a given type (i.e. δ known and fixed) occurring
at a known time τ can be checked by a score test, which only requires fitting a model
under the null hypothesis of no intervention unlike likelihood ratio or Wald tests which
are based on the alternative hypotheses. The null hypothesis H0 : ν = 0 is tested against
the alternative H1 : ν 6= 0. Let θ̃ = (η̃>, 0)>, with η̃ = (β̃0, β̃1, . . . , β̃p, α̃1, . . . , α̃q)

> be
the CML estimator under the null model, which is the intervention-free model (1.2). The
score test statistic is given by
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τ = 0.25n 0.5n 0.75n

Significance level
1.0 5.0 10.0 1.0 5.0 10.0 1.0 5.0 10.0 Type

n = 200 1.3 4.9 10.3 0.8 4.0 8.8 1.3 4.8 9.7 spiky
500 0.3 5.4 10.9 0.7 4.4 9.0 1.2 4.1 9.2 outlier
1000 0.7 3.3 8.1 1.5 6.4 11.1 0.7 4.4 8.2
5000 1.9 5.3 9.6 0.9 5.7 10.2 0.8 5.0 10.3
200 1.4 5.2 10.4 0.9 5.0 10.1 1.5 5.7 11.5 transient
500 0.6 4.2 9.2 1.3 4.9 10.3 1.5 6.8 12.1 shift
1000 0.5 4.5 10.1 0.7 6.0 10.0 0.9 4.9 10.8
5000 1.2 5.4 10.2 0.9 5.3 10.9 1.2 4.6 9.8
200 1.6 5.6 11.3 0.8 6.4 12.9 1.3 6.5 12.2 level
500 1.5 6.0 10.6 1.2 5.0 10.6 1.8 5.7 11.0 shift
1000 0.7 4.5 9.1 0.8 5.1 8.7 0.9 5.6 10.1
5000 0.8 3.3 7.4 0.5 4.3 10.2 1.0 5.5 10.8

Table 3.2: Size (in percent) of the test for an intervention of a given type occurring at
known time from model (ii) under the null hypothesis of no intervention averaged over
1000 replications. We varied the type of intervention we tested for, the position of the
outlier τ and the sample size n.

T (τ) = [Snτ (θ̃;Z)]> G−1
nτ (θ̃) [Snτ (θ̃;Z)].

Note that the score vector Snτ (θ;Z) and the information matrix Gnτ (θ) depend on
δ and τ . Under the null hypothesis H0 : ν = 0 the test statistic T (τ) converges in
distribution to a chi-square distribution with one degree of freedom, as n→∞, provided
that certain regularity conditions hold (Fokianos and Fried, 2010, Lemma 1). This yields
an asymptotic test for this hypothesis, rejecting for large values of the test statistic.

We examine the finite sample behavior of this test procedure for intervention model (ii)
by simulation. Table 3.4.1 gives the averaged observed significance levels under the null
hypothesis. These results do not reveal any large deviations between the achieved and the
nominal significance levels 1%, 5% and 10% for various sample sizes, types and positions
of interventions. This supports that the chi-square approximation of the test statistic is
adequate also for intervention model (ii).

The bold lines in Figure 3.6 give the average simulated power of the test for an intervention
following model (ii). From the left column we see that naturally interventions of larger
size are detected better than interventions of smaller size. We also see that a level shift
(even of a much lower size) is easier to detect than a transient shift, which is in turn
easier to detect than a spiky outlier. The reason for this is that larger values of δ yield
more information about the intervention to the subsequent observations. In a situation
with a certain type of intervention the corresponding test for this type of intervention has
the highest power, among all other test statistics. This will be important for classifying

58



0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0
SO in the centre

Size ν

P
ow

er

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0
TS in the centre

Size ν

P
ow

er

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0
LS in the centre

Size ν

P
ow

er

 SO
 TS
 LS

test for:       
intervention model
(i)                   (ii)    

50 100 150

0.0

0.2

0.4

0.6

0.8

1.0
SO of size 10

Time τ
P

ow
er

50 100 150

0.0

0.2

0.4

0.6

0.8

1.0
TS of size 10

Time τ

P
ow

er

50 100 150

0.0

0.2

0.4

0.6

0.8

1.0
LS of size 3

Time τ

P
ow

er

Figure 3.6: Power of the test for an intervention of a given type at known time from a
given intervention model (see legend at the bottom) averaged over 1000 replications. The
data are simulated under the alternative of an intervention of type spiky outlier (top),
transient shift (middle) and level shift (bottom) from model (ii). In the left column the
position of the intervention is fixed in the center of the time series and the size ν of the
intervention varies. In the right column the time τ of the intervention varies and the size
of the intervention is fixed. The time series are of length n = 200.
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the type of an intervention when it is not known, as it is done in Section 3.4.3. The right
column shows that for interventions at the end of a time series, it is more challenging
to distinguish a level shift from a transient shift or spiky outlier, since we have little
information on the evolution of the time series after the time of intervention.

For further insight, we run simulations based on intervention model (i) with our standard
parameter setting as before. The results for both models are quite similar, but as a
general observation, it is easier to detect interventions from model (i), since interventions
from this model have stronger effects. Model (i) and (ii) represent different forms of
intervention effects. We will examine the consequences of misspecifying an intervention
model in Section 3.4.4.

3.4.2 Intervention of known type at unknown time

An intervention of a given type occurring at unknown time can be detected using the
test statistic

T ∗ = max
τ∈D

T (τ),

i.e. the maximum of the test statistics for an intervention at each possible time. Denote
the time of a possible intervention by τ ∗ = arg maxτ∈D T (τ). A priori knowledge
about the time where an intervention might occur could be included by restricting
the maximization to a predefined smaller set D of values for τ , which is chosen to be
D = {2, . . . , n} by default. The p value of a test for the hypothesis H0 : ν = 0 ∀τ ∈ D is
approximated by a parametric bootstrap procedure as proposed by Fokianos and Fried
(2010):

1. Generate B bootstrap replicates from an intervention-free INGARCH model with
parameter vector θ̃, the estimate under H0 defined in the previous section.

2. Compute the test statistic T ∗b for each bootstrap replicate b = 1, . . . , B.
3. The p value is given by the number of bootstrapped test statistics at least as large

as the original test statistic, divided by B + 1.

We choose B = 500 for our study. Our simulations presented in Figure 3.7 (a) support
that this testing procedure behaves well also for intervention model (ii). Under the null
hypothesis the p values show a reasonable approximation to the uniform distribution and
the achieved significance levels do not deviate from the respective nominal significance
levels much. The positions of the erroneously detected interventions in Figure 3.7 (b) show
no peculiarities for the test for SO and TS. The test on a LS detects more interventions

60



●●●●●
●●●●●●●●●●

●●
●●●●●●●

●●●
●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●
●●●●●

●●●●●●●●●●
●●●
●●●●●

●●●●●●●
●●●●●●

●●●
●●●●
●●●●●●●●●●●●

●●●●
●●●
●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●
●●
●●●●
●●●●●●●●●

●●●●
●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●
●●●
●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●

●●●●
●●●●●

●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●
●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●
●●●●●

●●●●●●
●●●●●

●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●
●●●●●

●●●
●●●
●●●
●●●●●●

●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●
●●●
●●●●
●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●
●●●●
●●●●●●●●●

●●●●●●●
●●●●●

●●●
●●●●
●●●
●●●●●●●●

●●
●●●●
●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●
●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●●

●●●●●
●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●
●●●●●●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●

●●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Expected p−value

O
bs

er
ve

d 
p−

va
lu

e

●●●●●
●●●●●●●●●●

●●
●●●●●●●

●●●
●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●
●●●●●

●●●●●●●●●●
●●●
●●●●●

●●●●●●●
●●●●●●

●●●
●●●●
●●●●●●●●●●●●

●●●●
●●●
●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●
●●
●●●●
●●●●●●●●●

●●●●
●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●
●●●
●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●

●●●●
●●●●●

●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●
●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●
●●●●●

●●●●●●
●●●●●

●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●
●●●●●

●●●
●●●
●●●
●●●●●●

●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●
●●●
●●●●
●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●
●●●●
●●●●●●●●●

●●●●●●●
●●●●●

●●●
●●●●
●●●
●●●●●●●●

●●
●●●●
●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●
●●●
●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●●

●●●●●
●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●
●●●●●●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●

●●
●

SO

 1.5%   4.8%  9.5%
●●●
●●●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●●●●●●●

●●●●●●
●●●●
●●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●

●
●●●●●●●●●

●●●●●●●●
●●●●
●●●●●

●●
●●●●●●●

●●●●●●●●
●●●●
●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●
●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●
●●●
●●●●●●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●
●●●●●●

●●●●●●
●●●●●

●●●
●●●●●●

●●●●●
●●●
●●●●
●●●●●●●●●

●●●●●
●●
●●●●●

●●●●●●●
●●●●
●●●●●●●●

●●●●●●
●●●●●●●

●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●
●●●
●●
●●●●●●●

●●●●●●●
●●●●
●●●
●●●●●●

●●●●●●
●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●
●●●●
●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●
●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●
●●●●●●

●●
●●●●●

●●
●●●
●●●●●●●●

●●●●●●
●●●●
●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●

●●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●
●●●●●●

●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●
●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Expected p−value

●●●
●●●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●●●●●●●

●●●●●●
●●●●
●●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●

●
●●●●●●●●●

●●●●●●●●
●●●●
●●●●●

●●
●●●●●●●

●●●●●●●●
●●●●
●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●
●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●
●●●
●●●●●●●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●
●●●●●●

●●●●●●
●●●●●

●●●
●●●●●●

●●●●●
●●●
●●●●
●●●●●●●●●

●●●●●
●●
●●●●●

●●●●●●●
●●●●
●●●●●●●●

●●●●●●
●●●●●●●

●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●
●●●
●●
●●●●●●●

●●●●●●●
●●●●
●●●
●●●●●●

●●●●●●
●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●
●●●●
●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●
●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●
●●●●●●

●●
●●●●●

●●
●●●
●●●●●●●●

●●●●●●
●●●●
●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●

●●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●
●●●●●●

●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●
●●●●●

TS

  1.1%    5.6%  11.9%
●●●●●

●●●●●●●
●●●●●

●●
●●●●
●
●●●●
●●
●●●●●

●●
●●●●●●●●

●●●●●●●
●●●●
●●●●
●●●●●●

●●
●●●●
●●●●●●●

●●●●●●●●
●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●●
●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●
●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●
●●●
●●●●●

●●●●●●
●●●
●●●●●●●●

●●●●●●●●●●
●●●
●●●●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●
●●●●
●●●●●●●

●●●●●
●●●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●●
●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●
●●●●●●

●●●●●
●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●●
●●●
●●●●●●●●●●

●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●
●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●
●●●●●

●●
●●●●●●

●●●●●●●●●
●●●●●●●●

●●
●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●
●●●●
●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●

●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●
●●●●●●●●●●●●

●●●●●
●●●●●

●●●●
●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●●●●

●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Expected p−value

●●●●●
●●●●●●●

●●●●●
●●
●●●●
●
●●●●
●●
●●●●●

●●
●●●●●●●●

●●●●●●●
●●●●
●●●●
●●●●●●

●●
●●●●
●●●●●●●

●●●●●●●●
●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●●
●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●
●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●
●●●
●●●●●

●●●●●●
●●●
●●●●●●●●

●●●●●●●●●●
●●●
●●●●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●
●●●●
●●●●●●●

●●●●●
●●●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●●
●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●
●●●●●●

●●●●●
●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●●
●●●
●●●●●●●●●●

●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●
●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●
●●●●●

●●
●●●●●●

●●●●●●●●●
●●●●●●●●

●●
●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●
●●●●
●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●

●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●
●●●●●●●●●●●●

●●●●●
●●●●●

●●●●
●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●●●●

●●●●●

LS

 1.2%   3.3%  7.2%

(a)

Time τ

F
re

qu
en

cy

0 50 100 150 200

0

2

4

6

8

10

12
SO

Time τ
0 50 100 150 200

0

2

4

6

8

10

12
TS

Time τ
0 50 100 150 200

0

2

4

6

8

10

12
LS

(b)

Figure 3.7: (a) Size of the test for an intervention of given type (see title) at unknown time
from intervention model (ii) using B = 500 bootstrap samples. The data are simulated
under the null hypothesis of no intervention. Simulation results are averaged over 1000
repetitions. A point above the bisecting line indicates that the test is conservative for
this particular size. The percentages given at the bottom of each panel are the achieved
significance levels for a nominal level of 1%, 5% and 10%, respectively. The time series
are of length n = 200.
(b) Detected times of intervention τ ∗ for tests with a p value below 10% in the simulations
above.
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Figure 3.8: (a) Power of the test for an intervention of given type (see segments within
each plot) at unknown time from intervention model (ii) using B = 500 bootstrap samples.
The data are simulated under the alternative of an intervention of given type (see title)
from model (ii) in the center of a time series of length n = 200. We vary the size of the
intervention (see horizontal axis). Simulation results are averaged over 1000 repetitions.
(b) Detected times of intervention τ ∗ for tests with a p value below 10% in the simulations
above. The simulated intervention is of the same type which is also tested for (see title)
and is of size 20 for SO and TS and of size 5 for LS.

at the beginning and at the end of the time series. For level shifts at these positions
there are only very few observations available for estimating the level before and after
the shift, respectively. Therefore randomly occurring extreme observations can hardly be
distinguished from a LS.

To investigate the power of the test we consider the simulations shown in Figure 3.8 (a).
A test for a SO requires an intervention size of about ν = 15 to detect it right in more
than 50% of the cases (see left segment in the left plot). For a test regarding a LS, a
size of ν = 2 of a LS is needed to attain a detection above 50% (see right segment in
the right plot). Note that a LS of size ν does imply a shift in the marginal mean by
ν/(1 − β1 − α1), i.e. by about 6.6 in this simulation with ν = 2. The timing of the
intervention shown in Figure 3.8 (b) is very accurate for SO and TS (over 85% of the
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Figure 3.9: Times of interventions found by the iterative detection procedure for model (ii)
using B = 500 bootstrap samples. The data are simulated with two transient shifts from
model (ii) at time 50 (δ = 0.7, size ν = 12) and at time 151 (δ = 0.9, size ν = 9). The
time series are of length n = 200. Simulation results are based on 1000 repetitions.

cases are detected correctly) and somewhat less accurate for the LS (about 40% detected
correctly, the other cases are up to ten observations away from the true value).

3.4.3 Multiple interventions of unknown type at unknown time

A common situation in several applications is that both the position and the type of
intervention are unknown. From Figure 3.8 (a) we get an idea that it is possible to
classify the type of an intervention by the minimum p value of all (three) tests. On
average the p values of the tests for the matching type are lower than the p values of the
tests on the other types. To overcome the problem of multiple testing we use a Bonferroni
correction, i.e. multiply the p values by the number of intervention types considered.
The intervention type is classified according to the lowest p value, if below the chosen
significance level. In case of equal p values we prefer a LS with δ = 1 (since its effect
is usually more dominant) and then opt for the intervention type with the highest test
statistic, as in Fokianos and Fried (2010).

Furthermore, there might be more than one intervention in a time series. Fokianos and
Fried (2010) propose a stepwise procedure to detect, classify and eliminate multiple
intervention effects in a time series. The elimination of intervention effects is based
on (3.2). We adopt their iterative procedure for the alternative intervention model (ii)
by using the modified equations from Section 3.2. We refer to their paper for details and
show some simulation results for the alternative intervention model (ii).

We apply the iterative detection procedure to simulated time series with two transient
shifts at time 50 with size ν = 12 and δ = 0.7, and at time 151 with ν = 9 and δ = 0.9.
In 27% of the 1000 repetitions we find both interventions exactly at the time of their
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occurrence, and no others. Each of the interventions is found in around 50% of the cases,
at least one of them in about 72%. Notably, only in about 20% of the repetitions we
detect an intervention at a wrong time and this happens quite often close to the actual
times of interventions, see Figure 3.9. Although we test for interventions with δ = 0.8 and
thus slightly misspecify their type, our results are satisfactory. There are no systematic
simulations of Fokianos and Fried (2010) for intervention model (i), but their examples
point into the same direction.

3.4.4 Misspecification of the intervention model

An important question is the effect of model misspecification on the detection procedure.
Consider the situation with an intervention of a given type occurring at a given time.
We look at the thin lines in Figure 3.6 for the test on an intervention of model (i) and
compare them with the bold ones of the same kind, which stand for the test based
on model (ii) from which the data are in fact simulated. We note that both tests are
comparable and misspecification of the data generating process does not affect the power
a lot. This also applies when model (ii) is the true data generating process, as we have
confirmed by simulations not reported here. Hence, there is some robustness against
misspecification of the intervention model.

Another interesting finding from Figures 3.6 is that for example a transient shift from
model (ii) is somewhat similar to a spiky outlier from model (i). In general, an intervention
effect from model (ii) resembles somewhat one from model (i) with a slightly lower value
of δ and vice versa. This is in line with the explanations given in Section 3.2.

We also study the effect of misspecification of the intervention model on the iterative
procedure for detection of multiple interventions. Applying the detection procedure
for internal interventions to 1000 time series from the external intervention model (ii),
identical to those used in Section 3.4.3, yields almost the same rates of truly and falsely
detected interventions as for the correctly specified situation. For the converse situation,
i.e. data generation according to the internal model (i) and detection assuming the
external model (ii), we detect both interventions correctly in 40% of the cases, which
is more than a third higher than for data generation from the external model. On the
other hand we find interventions at wrong times in another 40% of the cases, compared
to 20% when simulating from the external model. In a nutshell, the above empirical
results suggest that a successful identification procedure for interventions is based on
the amount of information that the data carry. The choice of the model is of secondary
importance.
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Figure 3.10: Number of campylobacterosis infections (reported every 28 days) in the
north of Québec in Canada. The original time series is displayed in grey, the modified
time series cleaned by the procedure from Section 3.4.3 in black.

A related question is whether we can deduce from the data which intervention model is
more suitable for describing a certain data pattern. Some experiments with classification
based on the out-of-sample prediction error, as suggested by a reviewer, did not provide
good results.

3.5 Real data application

We again study the time series of campylobacterosis cases considered in Section 2.6.1.
The original time series with n = 140 observations is shown in grey in Figure 3.10. An
infection with the bacterium Campylobacter may be caused mainly by contaminated
food but also by contact with infected animals. Human to human spread is possible
particularly for infants. The incubation period is typically 2-5 days. Infected patients
often do not show any symptoms and are potentially infectious via their excrements for
2-4 weeks on average. The number of cases is higher in warm seasons. More details on
modeling Campylobacter infections for epidemiological surveillance (applied to data from
Germany) are given by Manitz and Höhle (2013).

Following Ferland et al. (2006) we fit an INGARCH(1,13) model to the data with
α1 = · · · = α12 = 0 and the regression on the conditional mean for lag 13 accounting for
seasonal variation.

Since we do not have any prior information on the occurrence of possible interventions,
we apply the iterative detection procedure from Section 3.4.3 to the data. We first

65



search for interventions following our new intervention model (ii). In the first step, the
bootstrapped p values for all considered types (SO, TS with δ = 0.8 and LS) are zero,
using B = 500 bootstrap replicates. The procedure decides in favor of the LS with
an estimated size of 4.27 found at time 84, following the classification rule given in
Section 3.4.3. The detected intervention effect is removed from the time series according
to the decomposition presented in Section 3.2, applying the procedure proposed by
Fokianos and Fried (2010). In a second step, both the test on a SO and on a TS give a
p value of zero at time 100, the same position already found in the first step for these types
of interventions. We decide in favor of the SO with an estimated size of 14.99, because
it has a higher value of the test statistic than the TS. Again, the time series is cleaned
from the detected intervention effect. In a third step, no further interventions with a
p value lower than 5% are detected and the procedure stops with two intervention effects
found. The estimated parameters for the cleaned time series are β̂0 = 2.28, β̂1 = 0.36

and α̂13 = 0.35. The cleaned time series and both interventions are shown in Figure 3.10
(bottom).

Finally we fit the full model with both detected interventions to the original time series
and obtain

Zt|FZ,κt−1 ∼ Poisson(κt),

κt = λt + 3.52(0.80) I[84,∞)(t) + 36.67(7.31) I{100}(t), (3.5)

λt = 2.25(0.58) + 0.36(0.06)Zt−1 + 0.35(0.08)λt−13.

The jointly estimated parameters in (3.5) clearly differ from those by the iterative
detection procedure reported before. The standard errors of the regression coefficients
based on the normal approximation (3.4) are given in parentheses. Standard errors
obtained by a parametric bootstrap based on 1000 replications are 1.27 (β̂0), 0.07 (β̂1),
0.17 (α̂13), 0.98 (LS at time 84) and 7.65 (SO at time 100). Note that these standard errors
do not reflect the additional model uncertainty induced by the intervention detection
procedure for either of the two approaches. The bootstrapped standard errors largely
agree with the normal approximation ones, but are much higher for β̂0 and α̂13. Because
of the long delay of 13 time points the estimation of α13 can make less use of the data
and is, as a regression coefficient of an unobserved variable, more difficult to estimate
anyway. Estimation of the intercept β0 and α13 strongly interfere. In this challenging
situation with a small sample size the normal approximation standard errors do not
express this uncertainty adequately. However, for a simpler INGARCH(1,1) process their
performance was quite good in case of 200 or more observations (see Section 3.3.2).
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Figure 3.11: Cumulative periodogram of the Pearson residuals of model (3.5) for the
campylobacterosis infections time series (right). For intervention model (i) the same
detection procedure has found the same two intervention effects and a full model including
both interventions is fitted to the data (left). The dashed lines give approximative 95%
confidence limits of a Kolmororov-Smirnov test on a constant spectral density (cf. Venables
and Ripley, 2002, p. 396), which are used as a visual check for uncorrelated residuals.

We also apply this procedure for intervention model (i) and find the same types of
interventions at the same times with only slightly different estimated intervention sizes.
These results are presented in Figure 3.10 (top). The average of the squared Pearson
residuals for the fitted models with both interventions is 18.8 for model (i), compared
to 19.3 for our new intervention model (ii). An INGARCH model without intervention
effects has a much higher value of 30.9. Hence the internal intervention model (i) fits
in this sense a little better to the data than the external one and both intervention
models clearly outperform a model without intervention effects. Note that the cumulative
periodograms in Figure 3.11 show that there is less structure left in the residuals of our
new intervention model (ii) than for intervention model (i). However, both models might
suffer from lacking covariates. Manitz and Höhle (2013) list some studies which suggest
an association of campylobacterosis cases with certain weather conditions like absolute
humidity, on which we do not have information for our data example.

3.6 Discussion

In this chapter we study a new variant of an intervention model for INGARCH processes
and adopt a maximum likelihood approach for detection and estimation of intervention
effects proposed by Fokianos and Fried (2010) to this new model. With the obtained
procedures one can test for intervention effects at given times but also search for inter-
vention effects at unknown times. Simulations support that the presented procedures
work quite reliably. In comparison to the intervention effects studied by Fokianos and
Fried (2010), those in the new model have less influence on subsequent observations after
the occurrence of an intervention. The new model describes an external effect which
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propagates only via the observations, whereas an intervention effect from the old model
can be seen as an internal change of the underlying mean. Our application to the weekly
number of campylobacterosis cases illustrates the usefulness of our new model.

We find some robustness against misspecification of the intervention model. Thus one
can expect a reasonable performance for this kind of intervention effects applying either
of the two models. On the other hand this finding suggests that a test to discriminate
the intervention models might have low power.

One undesirable feature of the procedures for detection of interventions are the high
computational costs. For the example in Section 3.5 with B = 500 bootstrap samples and
n = 140 observations each step of the iterative detection procedure runs about 72 minutes
for intervention model (i) and about 75 minutes for model (ii) on a single processor
unit (Intel Xeon CPU with 2.83 GHz). The reason for the long computation time is the
implementation of the parametric bootstrap. Fokianos and Fried (2012) reduced the
computation time of the bootstrap considerably by not estimating the parameter vector
for each bootstrap replicate but using the true value used for its generation instead. This
modification results in quite conservative procedures. With parallelized computation of
the bootstrap we have greatly shortened its duration using multiple processors.

This chapter has shown that there are capable tools available for modeling and retrospec-
tive detection of intervention effects in count time series based on INGARCH models.
These methods have been generalized to the framework of count time series following
generalized linear models and are included in the R package tscount; see Section 2.5.
In many applications it is not sufficient to detect intervention effects retrospectively,
i.e. once the complete time series has been observed. Instead, the goal is to detect
intervention effects in real-time. This problem of prospective intervention detection is
the topic of the next chapter.
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Chapter 4

Online monitoring in the context of
infectious disease surveillance

4.1 Introduction

Prospective detection of aberrations in count time series is of interest in various appli-
cations. For example in public health, surveillance of infectious diseases aims at timely
recognizing outbreaks of epidemics for taking proper actions promptly. Other possible ap-
plications are industrial quality control, where an unusually large number of faulty pieces
may indicate a flawed production process (Weiß, 2015), or finance, where exceptionally
large numbers of transactions may point to anomalies at the stock market. Monitoring
procedures need to be applicable in an online manner such that the decision that an
aberration has occurred is made in real-time with only short time delays. The statistical
methods employed in this context have their roots in the literature on statistical process
control (SPC), time series analysis, sequential testing and change point detection.

The focus of this chapter is on the application of these statistical methods to the problem
of infectious disease surveillance. However, most of the considerations in this study
are meant to be of general relevance and do also apply to many data problems beyond
public health. Recent introduction to the topic of infectious disease surveillance are
given by Unkel, Farrington, Garthwaite, Robertson, and Andrews (2012) and Held and
Paul (2013). Salmon, Schumacher, Burmann, Frank, Claus, and Höhle (2016a) describe
a system for automated outbreak detection which employs the R package surveillance
(Salmon et al., 2016b). We summarize the crucial aspects of infectious disease surveillance.
Its principal aim is to timely recognize disease outbreaks which manifest by an unusually
large number of infections. As a data basis one constantly observes the number of patients
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per day, week or month which have been infected by a certain pathogen. These time
series are typically collected by public health authorities and they are available for a
number of different pathogens. For each pathogen, the data is subdivided into different
geographical units and sometimes further into age groups. Consequently, there may be
thousands of time series under surveillance, requiring the use of automatic procedures for
outbreak detection which not require manual (and thus subjective) decisions. Monitoring
procedures are also referred to as control charts because they were originally employed
as graphical tools.

The general goal of a monitoring procedure is to timely detect potential aberrations in a
time series whilst not giving too many false alarms. An aberration is a sudden or gradual
change of the data generating process (DGP) occurring at an unknown time point, when
the process is said to be out-of-control. This change can basically be of any form. The
outbreak of a disease for instance is expected to result in an increase of the location and
possibly also of the strength of temporal dependence (Höhle and Paul, 2008, Section 4).
Notably, control charts based on the likelihood ratio are designed to optimally detect
specific out-of-control scenarios (Höhle and Paul, 2008; Weiß and Testik, 2012). In this
study we focus on methods which particularly aim at detecting location increases but
are not designed for a specific out-of control scenario.

In order to assess whether the DGP has changed one needs to learn about its characteristics
before the aberration, when the process is assumed to be in-control. This can be done
by assuming a parametric model for the time series before a potential change. In the
applications we are aiming at, the model parameters are in fact unknown and need to
be estimated using historical data. The setting for our study is to have observed a time
series up to time n and to start monitoring future observations at time n+ 1. The time
period of the first n observations used for learning about the DGP is referred to as the
set-up phase (phase I). The time period thereafter, in which the actual monitoring takes
place, is referred to as the operational phase (phase II).

The characteristics of infectious disease time series may vary with the respective pathogen,
geographical unit or age group. Typical features of this kind of data are seasonal variation
(caused by environmental effects, varying severity of pathogens and other factors like public
holidays), trends, temporal dependence (possibly resulting from the disease transmission
mechanism) and the occurrence of irregularities (such as disease outbreaks). The number
of infected persons is also driven by the size and structure of the population at risk.
Note that the number of reported cases is generally lower than the actual incidence. The
extent of this under-reporting is not constant over time but follows a seasonal pattern
itself and also reacts to singular events (e.g., increased media coverage on an infectious
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disease). This may cause seasonal effects as well as irregular artifacts in the observed
number of cases. The various aspects of modeling seasonality are studied by Held and
Paul (2012).

Classical control charts for count data are based on the assumption of independent and
identically distributed observations from a distribution which is fully specified (Gan,
1990). Such procedures do not account for the typical characteristics of infectious
disease time series which are described in the previous paragraph. In the context of
infectious disease surveillance, monitoring procedures for non-identically distributed
observations based on GLMs have been proposed; so-called regression charts which are
able to consider trends and seasonal effects (Farrington, Andrews, Beale, and Catchpole,
1996; Rossi, Lampugnani, and Marchi, 1999; Höhle and Paul, 2008; Noufaily, Enki,
Farrington, Garthwaite, Andrews, and Charlett, 2013). However, these procedures still
assume independent observations. In the recent literature on control charts for count
data the case of dependent observations has received more attention (Weiß and Testik,
2012; Manitz and Höhle, 2013). These methods do neither require the observations to be
identically distributed nor to be independent. Most research has been on methods based
on the marginal distribution of an observation.

In this study we investigate how accommodating temporal dependence can enhance
monitoring procedures. We introduce a monitoring procedure which is based on one-step
ahead predictions, i.e. the conditional distribution of an observation given the past.
Our main finding is that such a procedure can substantially improve the immediate
detection of outbreaks (compared to procedures based on the marginal distribution) but
that its dependence on previous observations may also yield undesired effects in some
situations. Our monitoring procedure assumes that the DGP is from the class of count
time series following GLMs as it is presented in Section 1.2. Models from this appealing
and flexible class are able to capture typical characteristics of infectious disease data like
serial dependence and seasonality. These models are formulated recursively, describing
the underlying mean of the time series conditionally on the past. Serial dependence
is included by regression on past observations and on past values of the conditional
mean. The latter is called feedback mechanism and helps to model serial dependence
parsimoniously.

Notwithstanding the model which is assumed for the DGP, there are different types of
test statistics which are used to built control charts for count time series: the observations
themselves (Manitz and Höhle, 2013), transformed residuals (Rossi et al., 1999; Noufaily
et al., 2013), (generalized) likelihood ratios (Höhle and Paul, 2008; Weiß and Testik, 2012)
or an estimator of the model parameters. Moreover it is important to distinguish between

71



different construction principles for control charts. A Shewhart-type control chart bases
its decision on the information of the current time point only, whilst a CUSUM-type
control chart accumulates information of successive time points. The former type has
more power than the latter type to detect large aberrations without delay. Conversely,
CUSUM-type charts have more power than Shewhart-type charts to detect moderate
aberrations, albeit with some delay. Our simulations show that monitoring based on
models with temporal dependence is particularly good for immediate detection, but,
at least in our current implementation, not so good for delayed detection of outbreaks.
We therefore decide to build a Shewhart-type monitoring procedure, which is also the
state of the art at the German infectious disease surveillance system at the Robert Koch
institute (see for example Salmon et al., 2016a).

This chapter is organised as follows. Section 4.2 very briefly describes the GLM-based
count time series models for the in-control process and compares them to other proposals
from the literature. We discuss in some more detail how to model seasonality. Section 4.3
introduces a monitoring procedure based on one-step-ahead predictions. Section 4.4
studies the performance of the monitoring procedure by simulations. We compare the
results of the procedure for models with and without temporal dependence in different
data situations. We discuss benefits but also pitfalls of using models with temporal
dependence for monitoring. In Section 4.5 we present a comprehensive case study using
a data example from infectious disease surveillance, again considering models with and
without temporal dependence. We demonstrate that these data in fact exhibit temporal
dependence. We illustrate the process of model selection and fitting in the set-up phase
and apply the monitoring procedure in the operational phase. Section 4.6 summarizes
our results and gives an outlook on further directions of research.

4.2 Models for the in-control process

For low counts, standard models based on the assumption of normality, or at least
continuously and symmetrically distributed data, are often inappropriate even after
suitable transformation (cf. Held and Paul, 2013). Models which have been particularly
tailored for count data are usually more appropriate. In the context of infectious disease
data, several count data models have been proposed. Many of those assume that the
observations are independently but not identically distributed (e.g. Noufaily et al., 2013).
However, such models are not adequate if there is a considerable amount of serial
dependence among data, as it is usually observed in practice. A comprehensive review
of models for count time series which are able to describe serial dependence is given in
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Section 2.7. In this section we review models which have been proposed particularly for
modeling infectious disease time series. All these models originate from the idea of a
generalized linear model (GLM).

We first introduce some notation. Let {yt : t ∈ N} be a univariate count time series to
be monitored, where yt is e.g. the number of registered infections in week t. We assume
this observed count time series to be a realization of the stochastic process {Yt : t ∈ N}.
In some cases there is additional covariate information available, for instance on weather
conditions. Let {X t : t ∈ N} be a corresponding time-varying r-dimensional covariate
vector, i.e., X t = (Xt,1, . . . , Xt,r)

>. Denote by Ft0 the information on past observations
up to time t0 as well as on covariates up to time t0 + 1. All presented models assume
that Yt|Ft−1 has a Negative Binomial or Poisson distribution but differ in the way they
specify the conditional mean E (Yt|Ft−1) = λt.

In the model proposed by Held, Höhle, and Hofmann (2005) the conditional mean is a
sum of a deterministic (endemic) component and a first order autoregressive (epidemic)
component and is given by

λt = exp

(
β0 + δt+

S∑
s=1

(γ1,s sin(ωst) + γ2,s cos(ωst))

)
+ β1Yt−1,

where β0, δ, γ1,1, . . . , γ1,S, γ2,1, . . . , γ2,S, β1 are unknown parameters but S is fixed. The
endemic component includes a linear trend and a deterministic seasonal figure with
frequency ωs. The exponential function is applied to the covariate effects but not to the
autoregressive component such that this model is not a GLM (since the linear predictor
is not linear in the parameters) but could instead be regarded as a generalized additive
model (GAM). Wei, Schüpbach, and Held (2015) additionally include the effect of time-
varying covariates either to the endemic or to the epidemic component. Inference is based
on the likelihood approach.

Another proposal by Manitz and Höhle (2013) based on Heisterkamp et al. (2006) is a
hierarchical time series (HTS) model (see Section 2.7.2). This model does not explicitly
have an autoregressive component but is able to account for serial dependence by a
time-varying intercept. The conditional mean λt is given by

λt = exp
(
β0,t + δt+ γt + η>X t

)
.

The time-varying intercept β0,t is assumed to depend on its previous values according to

∆dβ0,t|β0,t−1, . . . , β0,t−d ∼ N(0, κ−1
β0

),
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where ∆d is the difference operator of order d ∈ {0, 1, 2} and κβ0 a precision parameter.
For d = 0 this yields an independence model but for higher orders d this induces
dependence between successive observations. The other parameters, δ for the linear
trend, γt for a seasonal effect and the vector η for the effect of a covariate vector X t,
are also assumed to be normally distributed with certain priors. Inference is done in a
Bayesian framework and utilizes an efficient integrated nested Laplace approximation
(INLA) (Rue, Martino, and Chopin, 2009).

In our study the process {Yt : t ∈ N} is assumed to belong to the class of count time
series following generalized linear models as it has been introduced in Section 1.2. Recall
that the regression equation specifying the conditional mean λt is of the general form
given by (1.1), i.e.,

g(λt) = β0 +

p∑
k=1

βk g̃(Yt−ik) +

q∑
`=1

α`g(λt−j`) + η>X t.

Here g : R+ → R is a link function and g̃ : R+ → R is a transformation. A choice
of g(x) = g̃(x) = x yields the INGARCH model whereas choosing g(x) = log(x) and
g̃(x) = log(x+ 1) yields the log-linear model studied by Fokianos and Tjøstheim (2011),
Woodard et al. (2011) and Douc et al. (2013). Note that the INGARCH model with
the identity link function accommodates only positive temporal correlation and requires
the covariates to be nonnegative. In contrast, the log-linear model, which implies
a multiplicative effect of the regressors on the response, is able to describe negative
and positive temporal correlation and allows for covariates with negative values. The
dependence on previous values of the mean, the so-called feedback mechanism, allows
for parsimoniously modeling serial correlation. It can, to some extent, also model time-
varying means and generally yields smoother models than only with dependence on
previous observations. Denote by θ = (β0, β1, . . . , βp, α1, . . . , αq, η1, . . . , ηr)

> the vector
of all regression parameters. The conditional distribution of Yt given Ft−1 is assumed
to belong to the class of mixed Poisson processes (see Christou and Fokianos, 2015a).
An important special case is to assume a Poisson distribution, i.e. Yt|Ft−1 ∼ Poisson(λt).
Another special case studied by Christou and Fokianos (2014) is to assume a Negative
Binomial distribution parametrized in terms of its mean with an additional dispersion
parameter φ ∈ (0,∞), i.e. Yt|Ft−1 ∼ NegBin(λt, φ). This allows for more variability
of the process, which is otherwise fully specified by the mean and the degree of serial
dependence. The Poisson distribution is a limiting case for φ→∞.

Compared to the model by Held et al. (2005), the class of GLM-based count time series
used in this study allows for more general forms of serial correlation of higher order and
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with a feedback mechanism. By way of comparison to the model proposed by Manitz and
Höhle (2013) recall our findings in Section 2.7.2: An advantage of their Bayesian approach
is that prediction intervals which reflect both observation and estimation uncertainty
can be obtained in a natural way. A disadvantage is the much higher computational
effort, which is particularly a problem for a real-time application to thousands of time
series. A fit of their model turns out to be very smooth (cf. Figure 2.5) and is thus
expected to provide less accurate one-step-ahead predictions than models including
explicit dependence on past observations.

Infectious disease time series often exhibit a seasonal pattern. There are several possibili-
ties to account for seasonal effects within the class of count time series based on GLMs,
see Kedem and Fokianos (2002, Section 4) and many textbooks on regression models.
These approaches are briefly reviewed in the following paragraphs. The length of one
season T is assumed to be known. An extension of the considered approaches to several
superimposed periodicities of different lengths, say T1, . . . , Tr, would be straightforward.

One popular approach is to include deterministic periodic covariates, which implies
that the seasonal pattern does not change over time. The most common choice for
deterministic seasonality is a superposition of sinusoidal waves of the Fourier frequencies
ωs = 2πs/T , s = 1, . . . , S, where S is chosen based on a model selection criterion (see for
example Held and Paul, 2012). For each value of s, the two covariates Xt,s(1) = sin(ωst)

and Xt,s(2) = cos(ωst) with the corresponding coefficients ηs(1) and ηs(2), respectively, are
added to the model. The resulting 2S covariates are linearly independent from each
other and from a constant vector, which guarantees a unique and identifiable solution.
Another, more flexible choice of deterministic periodic covariates would be a periodic
B-splines basis for polynomial splines using the R package pbs (Wang, 2013), where a
polynomial degree of three yields good smoothness and the number of knots K can be
chosen based on a model selection criterion. The number of knots is equal to the number
of covariates and hence the number of parameters which are introduced. The resulting K
covariates Xt,1, . . . , XtK are nonnegative and not linearly independent from a constant
vector such that the corresponding parameters interfere with the intercept parameter and
there is not necessarily a unique solution. An example of periodic B splines with K = 5

knots is shown in Figure 4.1. A variant of the approach with deterministic covariates
is employed by the improved Farrington method (Noufaily et al., 2013), where dummy
variables account for seasonality. However, the division of the whole period into windows
is not fixed but depends on the week for which a prediction is needed (see also Salmon
et al., 2016b, p. 8). We do not consider this variant in our study because the time-varying
windows conflict with the idea of a global seasonal pattern and because dummy variables
usually introduce more parameters than the other types of periodic covariates. Note that
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Figure 4.1: Covariates Xt,1 (circle), Xt,2 (triangle), Xt,1 (cross), Xt,1 (diamond) and Xt,1

(asterisk) of periodic B splines with K = 5 knots for a period length of T = 52. The
covariates are periodic with Xt,k = Xt+52,k, k = 1, . . . , K.

infectious disease time series do not only show smooth seasonal patterns but sometimes
also sharp periodic effects that take place in only one or two weeks of the year (e.g. less
cases around Christmas or New Year). Such effects can be described by a single dummy
variables (see for example Salmon et al., 2016b).

A second and completely different approach for modeling seasonality accommodates
temporal dependence on observations (Yt−T ) and/or conditional means (λt−T ) which are
T time units (i.e. one period) back in time. This stochastic seasonality is employed by for
instance Ferland et al. (2006). This approach allows to describe seasonal patterns of any
shape which might possibly even change slightly over time. Stochastic seasonality is more
flexible than deterministic one but tends to be less suitable for very pronounced seasonal
patterns. A third approach pursued by Held and Paul (2012) explains seasonality by
time-varying dependence parameters. We do not consider this approach in our study
because it is quite complicated and difficult to interpret.

Fitting models of the form (1.1) can be done by quasi conditional maximum likelihood
estimation of the unknown regression parameters θ. For the dispersion parameter φ of the
Negative Binomial distribution one can use an estimator based on Pearson’s χ2 statistics
as proposed by Christou and Fokianos (2014). For a sample of n observations, these
estimators are denoted by θ̂n and φ̂n, respectively. Details on the estimation procedure
including formulas, technical considerations regarding the implementation and properties
of the estimators are given in Section 2.2.2.

One usually assumes that the process is in-control in the set-up phase. However, it might
happen that this assumption is violated. A likely scenario is the presence of outbreaks
in the set-up phase which have not been detected previously. Such outbreaks could be
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included in the above framework model by the intervention model studied by Fokianos
and Fried (2010, 2012) and Liboschik et al. (2016), which describes intervention effects
by deterministic covariates (see Section 2.5 and Chapter 3). Their approach also allows
to search for retrospective detection of intervention effects of unknown type occurring at
unknown time points. One could also consider robust approaches for model selection
and fitting in the set-up phase. In Section 5.2 we investigate robust estimators of the
(partial) autocorrelation for identifying the model order. Section 5.3 discusses some
existing approaches for robust parameter estimation.

4.3 Prediction-based monitoring

Let us assume that we have observed the time series yt, . . . , yn and possible covariates
X1, . . . ,Xn of the complete set-up phase. Based on that data we have selected and fitted
an adequate model from the class of count time series based on GLMs. This includes
that we have fully specified a model for the conditional mean λt(θ) and estimated the
regression parameters by θ̂n. To simplify notation we consider a model with a Negative
Binomial conditional distribution, i.e. Yt|Ft−1 ∼ NegBin(λt(θ), φ), of which we have
estimated the dispersion parameter by φ̂n. The case of Yt|Ft−1 ∼ Poisson(λt(θ)) is
covered as a limiting case, where φ does not need to be estimated because it approaches
infinity. Note that in our setting the model parameters are not re-estimated in each step
of the following monitoring procedure since this bears the risk of overfitting by adapting
to gradually increasing outbreaks. For this reason Noufaily et al. (2013) do not consider
the last six months for designing their monitoring procedure.

4.3.1 Monitoring procedure

Based on the model obtained from the set-up phase, we want to successively monitor
incoming observations in the operational phase. We study a monitoring procedure
which gives an alarm if the actually observed realization yt0+1 of Yt0+1 is implausible
with respect to the one-step-ahead predictive distribution for that time t0 + 1. Because
of the conditional construction of the considered model, one-step-ahead prediction is
straightforward. Recall that Ft0 is the available information before yt0+1 is observed.
If the true parameters θ and φ were known, the distribution of Yt0+1 given Ft0 is
NegBin(λt0+1(θ), φ). In practice we plug in the estimated parameters θ̂n and φ̂n to
approximate the distribution of the one-step-ahead prediction Ŷ (t0)

t0+1 of Yt0+1 by
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Ŷ
(t0)
t0+1 ∼ NegBin(λ̂t0+1, ψ̂n) with λ̂t0+1 = λ(θ̂n). (4.1)

Note that this distribution does only reflect the sampling uncertainty but neither the
estimation uncertainty nor the uncertainty induced by model selection. We will discuss
in Section 4.6 how our procedure could be extended to account for estimation uncertainty.
In the context of infectious disease surveillance one is only interested in detecting positive
deviations from the in-control model. Denote a one-sided one-step-ahead prediction
interval with a coverage rate of 1− α by

PI(t0)
t0+1(1− α) =

[
0, U

(t0)
t0+1

]
.

Its upper bound U (t0)
t0+1 is chosen to be the (1−α)-quantile of (4.1) for attaining the given

coverage rate; recall Section 2.3. An alarm is given if yt0+1 lies outside this prediction
interval, which is referred to as the stopping rule. The time since the procedures has
started until the first alarm is called run length, which is here given by

R = inf
{
s ≥ 1 : Yn+s /∈ PI(n+s−1)

n+s (1− α)
}
. (4.2)

4.3.2 Calibration and performance measures

There is a trade off between the chance to timely detect aberrations (out-of-control
performance) and the chance of a false alarm (in-control performance). On the one hand
the procedure should not produce too many false alarms since this will fatigue the users
of the system. On the other hand the procedure should not detect disease outbreaks too
late (or even not at all) since this can affect the health of many people. This conflict
of objectives is solved by maximizing the out-of-control performance subject to a given
in-control performance (chance of a false alarm). Different monitoring procedures are
then compared with respect to their out-of-control performance.

We briefly review some performance measures. All of them can be formulated in terms
of the distribution of the run length R. If the process is assumed to be in-control, then
R is the time until a false alarm. If the process is assumed to be in-control before time
t0 = n + τ (i.e. at the τ -th observation of the operational phase) and out-of-control
thereafter, then R − τ is the detection delay. One should consider R − τ + 1 instead
of R to measure the out-of-sample performance if τ > 1. Note that the support of the
run length distribution is the set of positive integers and this distribution is generally
positively skewed. In case of i.i.d. observations the run length of certain control charts
has a geometric distribution and is quite easy to handle. However, Tartakovsky (2008)
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demonstrates that this does not hold for non-i.i.d. models and argues that many principles
for designing control charts are not suitable in that case. One should bear in mind that
in case of time series models some of the performance measures may have a different
interpretation than in the classical case. In our study we approximate the distribution of
the run length R by simulation. Accordingly, we pay some attention to this approximation
in our discussion of the performance measures.

The average run length (ARL) is defined by the expectation of the run length distribution
E(R). It is a standard practice in SPC to fix the in-control ARL (often denoted by ARL0)
to a given value, say a0. This has the interpretation that we can on average expect a
false alarm once every a0 observations. Approximation of the ARL is problematic since
the expectation depends on the upper tail of the run length distribution. In practice one
needs to stop the procedure when there has not been an alarm within a certain (large)
number of time points, say M . Therefore the simulated approximation of the run length
distribution is truncated at M such that the mean of this distribution is a negatively
biased estimator of the ARL.

One could also consider quantiles of the run length distribution. Gan (1994) propose
to use the median run length (MRL) instead of the ARL to measure the performance
of a control chart. He argues that the MRL has a more meaningful interpretation (the
probability of run lengths lower (respectively greater) than the MRL is 50%). Whilst
the ARL is more convenient for analytical calculations, the MRL is easier to obtain by
simulation since one can approximate it from a truncated run length distribution (as
long as the truncation is above the MRL).

Another measure is the probability of an alarm within r0 time units, i.e., POAr0 = P (R ≤
r0). In the context of infectious disease surveillance one might want to use this as an
out-of-control performance measure to attain a large probability of detecting an outbreak
within only r0 weeks. This measure is also meaningful in an in-control situation, where
one would choose r0 sufficiently large and adjust the control chart to given (low) value of
POAr0 . For weekly data one could choose t0 = 52 to control the probability of a false
alarm within one year. Lai and Chan (2008) propose the probability of a false alarm per
unit of time, which coincides with POAr0/r0 in the case of independent in-control data.
This is identical to the false-positive rate (FPR) used by e.g. Noufaily et al. (2013) and
Manitz and Höhle (2013). When fixing the in-control FPR one might want account for
multiple testing, e.g. by a Bonferroni correction of the desired level. For out-of-control
situations Noufaily et al. (2013) and Manitz and Höhle (2013) measure the performance
of a control chart by the probability of detection (POD). It is given by POA∆, where ∆
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Scenario β0 β1 α1 η1 φ

Independent 1.570 0.0 0.0 0.4 8.5
Weak autocorrelation 1.220 0.2 0.0 0.4 14.5
Medium autocorrelation 0.880 0.4 0.0 0.3 17.0
Strong autocorrelation 0.187 0.8 0.0 0.1 1000.0
With feedback 0.266 0.4 0.4 0.1 17.0

Table 4.1: Parameter settings for model (4.3) considered in the simulation study.

is the duration of the aberration which has to be detected. It measures the probability
that an aberration is detected during its occurrence.

4.4 Simulation study

We study the performance of the monitoring procedure presented in Section 4.3.1 by a
simulation study. The scenarios used in this simulation study are chosen to imitate a
realistic application like it is presented in Section 4.5. Our study is a proof of concept
for prediction-based monitoring procedures for models with dependence and points out
some notable features. We consider a set-up phase with a length of nine years and 52
observations per year, i.e. n = 468 observations. The performance of the procedure is
assessed in an operational phase of one year, i.e. m = 52 observations.

The in-control data are randomly generated trajectories from the GLM-based count time
series model (1.1) with a Negative Binomial conditional distribution, the logarithmic
link function and dependence on the previous observation as well as on the previous
conditional mean. A seasonal effect is added by a cosine function with a period length of
one year, i.e. 52 weeks. This model is given by Yt|Ft−1 ∼ NegBin(λt, φ), t = 1, . . . , n+m,
with

log(λt) =β0 + β1 log(Yt−1 + 1) + α1 log(λt−1) + η1 cos(2πt/52). (4.3)

The considered parameter settings for that model are given in Table 4.1 and cover a variety
of scenarios. The parameters are chosen such that the resulting process approximately
has a marginal mean of 5 and a marginal variance of 10. Model (4.3) is a realistic choice
for the DGP since it is very similar to models which have been selected for a real data
example; see Section 4.5.1.

For the out-of-control data we need to decide how to model the effect of a disease outbreak.
Most proposals from the literature are modifications of the respective in-control model.
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This is based on the assumption that at least the general principles of the DGP still hold
in the presence of the outbreak. One suggestion is to consider a multiplicative shift of
the mean in case of an outbreak (Höhle and Paul, 2008, Section 2). Another possibility
is that, due to an outbreak, serial correlation is introduced to the process (Höhle and
Paul, 2008, Section 4) or, more generally, the extent of serial correlation is increased.
One could also consider changes in the mean which enter the dynamics of the process,
like spiky outliers or transient shifts (Fokianos and Fried, 2010, 2012), see also Chapter 3.
Based on knowledge about the distribution of the incubation period, the shape of a
log-normal distribution might be adequate to describe an outbreak (Lotze, Shmueli, and
Yahav, 2007). A similar approach is to first draw the total number of additional cases of
an outbreak starting at time t0 from a Poisson distribution whose mean depends on the
number of baseline cases at time t0, and then to distribute these cases in time according
to a discretized log-normal distribution (Noufaily et al., 2013; Salmon, Schumacher, Stark,
and Höhle, 2015). Another strategy to synthetically generate realistic outbreak effects is
to use data from real outbreaks (Hutwagner, Browne, Seeman, and Fleischauer, 2005)
and superimpose those on data from the in-control DGP.

In this study we consider an abrupt additive shift of the mean which does not enter
the dynamics of the process. This outbreak scenario might not be realistic. However,
this simple outbreak scenario makes it easier to interpret the simulation results and
thus to understand the properties of our monitoring procedure. We place an outbreak
with a duration of ` = 6 weeks starting at a random position τ , where all positions
τ ∈ {n+ 1, . . . , n+m− `} are equally likely. This random placement of the outbreak
will average out an undesired effect of seasonality on our results. The out-of-control data
denoted by Zt are given by Zt = Yt +Ot, t = 1, . . . , n+m. Realizations of Y1, . . . , Yn+m

are generated in the same way as the in-control data. The outbreak effects Ot are
independent realizations of Poisson distributions with mean ∆t, i.e. Ot ∼ Poisson(∆t),
and also independent from Yt, t = 1, . . . , n + m. The outbreak size at time t is given
by ∆t = ∆ · υt · 1(t ∈ {τ, . . . , τ + `}), where ∆ ∈ R is a global factor determining the
outbreak size. The size of the outbreak is proportional to the conditional standard
deviation at the respective time, i.e. υt =

√
λt + λ2

t/φ, such that an outbreak causes
more additional infections if the baseline number of infections is large. This seems to be
a realistic assumption for an outbreak. From a rather technical point of view this ensures
that outliers are more or less equally difficult to detect irrespective of the current mean
of the process.

We study the prediction-based monitoring procedure introduced in Section 4.3.1 consid-
ering two different models: the time series model
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Scenario Independence model (4.5) Time series model (4.4)

Independence 2.06 (64.5) 2.12 (64.7)
Weak autocorrelation 2.11 (65.4) 2.08 (65.0)
Medium autocorrelation 2.21 (61.2) 2.08 (64.2)
Strong autocorrelation 2.42 (52.3) 1.63 (56.3)
With feedback 2.60 (59.6) 2.03 (61.5)

Table 4.2: Average false positive rate in percent for different scenarios (procedures
calibrated to a FPR of 2.5%). The values in parantheses are the proportion of samples
with a false alarm in any of the 52 weeks of the observational period.

log(λt) =β0 + β1 log(Yt−1 + 1) + α1 log(λt−1) +
2∑
s=1

(
ηs(1) sin(ωst) + ηs(2) cos(ωst)

)
(4.4)

and the independence model

log(λt) =β0 +
2∑
s=1

(
ηs(1) sin(ωst) + ηs(2) cos(ωst)

)
, (4.5)

both with Yt|Ft−1 ∼ NegBin(λt, φ) and ωs = 2πs/52, t = 1, . . . , n+m. The time series
model (4.4) has eight and the independence model (4.5) has six unknown parameters.
Note that the time series model covers all models (4.3) of the DGP (although it is
overparametrized) whilst the independence model lacks serial dependence for all parameter
settings in Table 4.1 except the first. Following Noufaily et al. (2013), the monitoring
procedures are adjusted to a FPR of 2.5%. Hence the probability of a false alarm for any
of the 52 observations of the operational phase is at most 1− (1− 0.025)52 = 73.2%.

The simulations are carried out on a computation cluster using the R packages batchJobs
and batchExperiments (Bischl, Lang, Mersmann, Rahnenführer, and Weihs, 2015). The
reported results are averages of 1000 replications.

We first examine the behavior of the monitoring procedure in an in-control situation.
The results in Table 4.2 confirm that the procedure complies with the desired FPR of
2.5% in all scenarios and produces usually even less false alarms. This particularly holds
for time series with strong temporal correlation if the procedure is based on the time
series model (4.4). Considering the complete operational phase of 52 weeks, one can
expect at least one false alarm in at most 66% of the cases. This is far below the defined
upper bound of 73.2%. Overall, the procedure has a satisfying in-control behavior in all
considered scenarios and seems to be a bit conservative.
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Figure 4.2: Outbreak detection rates of prediction-based monitoring procedures for four
different data scenarios (each in a different panel). The plot symbol indicates whether the
monitoring procedure is based on the time series model (cross) or on the independence
model (circle). The line type indicates detection at the first time point (dotted), up to
the second time point (dashed) or up to the last time point (solid) of the outbreak.

Next, we compare the out-of-control performance of monitoring procedures based on
the time series model (4.4) and on the independence model (4.5). The dotted lines in
Figure 4.2 show the probability of detecting the outbreak in the first week of its occurrence,
i.e. POA1, for different outbreak sizes ω. Naturally, the detection rate becomes larger
for increasing outbreak size. If the data are independent, then the detection rate is
almost the same for the procedure based on the time series model and the one based
on the independence model. However, in case of dependent data the time series model
outperforms the independence model. This advantage becomes larger with the degree
of temporal dependence in the data. It is not very surprising though, that a model
accounting for temporal dependence yields a superior monitoring procedure in case of
dependent observations.

The estimated probability of detecting the outbreak with a delay of one time period, i.e.
POA2 − POA1, shown by dashed lines in Figure 4.3 reveals that if an outbreak has not
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Figure 4.3: Estimated probabilities that the prediction-based monitoring procedure
detects an outbreak with a delay of one time period for four different data scenarios (each
in a different panel). The plot symbol indicates whether the monitoring procedure is
based on the time series model (4.4) (cross) or on the independence model (4.5) (circle).
Note that the vertical axis ranges to 0.3 only.

been detected at the first time point of its occurrence, then a procedure based on the time
series model has a lower chance to detect it at the second time point than one based on
the independence model – in case of actually dependent data. Hence a procedure which
includes temporal correlation has a higher chance of immediately detecting an outbreak
but a lower chance of detecting it at a later time. The explanation for this phenomenon
is as follows: The procedure compares a new observation with the distribution of its
one-step-ahead prediction, which depends on previous observations in case of the time
series model. If the first observation of an outbreak is large (but not large enough
such that the outbreak is detected), then the one-step-ahead prediction for the second
observation of the outbreak is shifted upwards in case of positive autocorrelation. With
respect to this shifted one-step-ahead predictive distribution, the second observation
of the outbreak does not appear to be implausibly large. Hence this observation lies
within the one-step-ahead prediction interval and no alarm is given. The described effect
becomes stronger when increasing serial correlation of the fitted model. The dashed lines
in Figure 4.2 show the estimated probability of detection with a delay of at most one time
period, i.e. POA2, which is equal to the sum of the estimated probabilities of immediate
(dotted line in Figure 4.2) and of one time period delayed (Figure 4.3) detection. Overall,
the monitoring procedure based on the time series model is superior in case of strong
temporal correlation but slightly inferior in case of medium temporal correlation.

Finally, we evaluate the estimated probability of detection (POD) of an outbreak within
its total duration of ∆ = 6 time points, i.e. POA6, shown by solid lines in Figure 4.2.
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Figure 4.4: Number of registered EHEC cases per week in North Rhine-Westphalia.

The monitoring procedure based on the time series model is only superior if there is
strong temporal correlation in the data. In situations with lower correlation its lower
rate of delayed outbreak detection is not compensated by its higher rate of immediate
detection. We revisit this issue in Section 4.6.

4.5 Case study

We illustrate phases I and II of a monitoring procedure by a real-data problem from
infectious disease surveillance. Infection of humans with the bacterium enterohemorrhagic
E. coli (EHEC) is notifiable under the German Protection against Infection Act. The
weekly number of reported cases broken down to a regional level is recorded by the Robert
Koch Institute (RKI) and publicly accessible by their web application SurvStat@RKI
2.0 (Robert Koch Institut, 2015). We consider the number of reported EHEC infections
in the German state North Rhine-Westphalia from January 2006 to May 2013 (646
observations), see Figure 4.4. The first five years (n = 261 observations) until December
2010 are used as the set-up phase for selecting and fitting an appropriate in-control model.
There would be more data available before 2006 but it is quite common in the field of
infectious disease surveillance to only consider the previous few years to avoid problems
with a potentially unstable DGP (for instance because laboratories change their methods
or the number of probes sent to laboratories is varying over time). We will discuss the
stability of the DGP in Section 4.5.2.
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Figure 4.5: Number of registered EHEC cases per week in North Rhine-Westphalia (only
data of the set-up phase).

4.5.1 Model selection and fitting in the set-up phase

Building a reliable control chart requires knowledge about the in-control process. Within
a parametric approach this means selection of an adequate model and fitting this model
to the available data. We split up the set-up phase into a training sample (the first four
years until December 2009, 209 observations) and a validation sample (the remaining
year, 52 observations).

In a first step we study the characteristics of the DGP with tools not based on a specific
model. We hold back the validation sample and use only the training sample highlighted
by a dark grey background in Figure 4.5. These considerations shall give an idea which
features an adequate model for the data needs to have and allow to identify a range of
candidate models.

The empirical marginal mean of 3.83 is quite low. For low means an approximation by a
continuous-valued distribution is usually not appropriate and a distribution accounting
for the discreteness of the observations is preferable. The data is overdispersed, i.e. the
empirical marginal variance of 5.94 is substantially larger than the empirical marginal
mean. Although a Poisson model with serial dependence explains overdispersion up to a
certain degree, we also consider a more flexible Negative Binomial distribution.

A plot of the training sample against time in Figure 4.5 indicates that the number of
registered cases is larger at the beginning and drops to a lower level in 2007. A global
trend model does not seem to be adequate for this kind of change in the mean. It seems
more promising to use models which allow for a more flexible change in the mean like
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Figure 4.6: Estimated autocorrelation function (left) and partial autocorrelation function
(right) of the EHEC training sample. The (partial) autocorrelation at lag 52, correspond-
ing to a seasonality of about one year, is marked by a circle.

those with a feedback mechanism, i.e. a dependence on previous conditional means. We
will nevertheless also consider models with a linear trend to make sure that we do not
overlook this issue. In case of neglecting an upward trend the monitoring procedure
produces too many false alarms, whilst ignoring a downward trend bears the risk of
missing a relevant aberration. We also consider models with a level shift at some unknown
time point.

The empirical autocorrelation function in Figure 4.6 (left) is about 0.39 at lag one and
clearly different from zero for the first few lags. This shows that there is a considerable
amount of temporal dependence present in the data. The empirical partial autocorrelation
in Figure 4.6 (right) is clearly different from zero for the first and the third lag. This
indicates that a regression only on one previous observation is not sufficient for describing
the existing serial dependence. In such a case, regression on previous conditional means
often yields a more parsimonious model which fits the data equally well or even better
than regression on more than one previous observation. We consider models regressing
on one or more previous observations Yt−1, . . . , Yt−p and those additionally regressing on
the conditional mean one week back in time λt−1.

The time series plot in Figure 4.5 slightly indicates that there might be a yearly seasonal
fluctuation with larger values in the summer. However, the empirical autocorrelation and
empirical partial autocorrelation in Figure 4.6 are very close to zero at lags around T = 52

and hence do not confirm this periodicity. We consider the techniques for modeling
seasonality described in the previous section and also models without seasonal effects. It
is neglected that the length of a year is not exactly 52 weeks and varies slightly.
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We decide for the log-linear model which has more flexibility in including covariates since
it does not induce restrictions on covariates and on the corresponding parameters. We
indeed experience that the limitation of the identity link model to positive covariates
impede properly fitting the seasonal pattern. Furthermore, the logarithm is a commonly
used link function for that kind of data (see for example Höhle and Paul, 2008). This
choice implies that the effect of covariates is multiplicative (and not additive as for a
model with identity link function). This includes that a seasonal effect modeled by
covariates is multiplicative. Trends also have a multiplicative effect, such that a linear
trend in the linear predictor is actually an exponential trend on the original scale of the
response. For slight trends and short time series such a trend is approximately linear on
the original scale. However, this results in instabilities when extrapolating to long time
horizons. We stress that multiplicative trends should be used with care.

In a second step we use the training data to fit the candidate models which have been
identified initially. Since the conditional mean is fitted independently of the chosen
conditional distribution, we assume a Poisson distribution and reassess this at a later
stage. These fitted models are compared by the (in-sample) Akaike information criterion
(AIC) and the out-of-sample measures ranked probability score (RPS), coverage rate (CR)
of a one-sided 95% 1-step-ahead prediction interval and prediction bias (see Section 2.4
on model assessment). The out-of-sample measures are evaluated on the validation data.
The results of the model comparison are presented in Tables 4.3 and 4.4 for models with
and without serial dependence, respectively.

We have to decide on a) how to model seasonality, b) whether to include a trend and c)
the model orders for serial correlation (excluding stochastic seasonality). We expect (and
have also verified empirically) that decisions b) and c) are strongly interdependent but
that they do not interfere much with decision a). Hence we first decide which approach
for modeling seasonality is preferable while fixing the two other decisions. Regarding
the Fourier approach, the AIC would opt for the first S = 3 Fourier frequencies whilst
the out-of-sample RPS would opt for S = 2. Regarding the periodic B splines approach,
both considered criteria consistently choose K = 5 knots (corresponding to 5 additional
parameters). Stochastic seasonality seems to be described better by dependence on
the conditional mean λt−T than on the observation Yt−T observed one year ago. The
former two approaches employing deterministic covariates clearly outperform the latter
stochastic approach, which is not better than not considering seasonality at all. Overall,
the periodic B splines approach performs best. In addition to this numerical measures,
we examine the seasonal patterns resulting from the Fourier approach with S = 2 and
from B splines with K = 5 which are shown in Figure 4.7 (top). Both patterns have their
maximum in August and their minimum in November, though not in exactly the same
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Seasonality Trend Dependence DoF AIC RPS CR Bias

no no p=1, q=1 3 899.0 1.104 0.942 -0.213

Fourier (S=1) no p=1, q=1 5 901.6 1.091 0.962 -0.220
Fourier (S=2) no p=1, q=1 7 900.0 1.076 0.962 -0.224
Fourier (S=3) no p=1, q=1 9 898.4 1.097 0.942 -0.210

B splines (K=3) no p=1, q=1 6 900.9 1.070 0.923 0.204
B splines (K=4) no p=1, q=1 7 904.3 1.089 0.962 -0.252
B splines (K=5) no p=1, q=1 8 892.5 1.058 0.942 0.218
B splines (K=6) no p=1, q=1 9 893.7 1.075 0.942 0.211

stochastic (Yt−T ) no p=1, q=1 4 911.2 1.178 0.923 -0.346
stochastic (λt−T ) no p=1, q=1 4 900.3 1.102 0.942 -0.191

B splines (K=5) no p=0, q=0 6 940.8 1.109 0.962 -0.433
B splines (K=5) no p=1, q=0 7 910.7 1.116 0.962 -0.307
B splines (K=5) no p=2, q=0 8 910.5 1.101 0.962 -0.285
B splines (K=5) no p=2, q=1 9 888.1 1.106 0.904 0.637
B splines (K=5) no p=3, q=0 9 903.1 1.115 0.962 -0.254
B splines (K=5) no p=4, q=0 10 903.8 1.108 0.962 -0.248

B splines (K=5) linear p=0, q=0 7 894.3 1.300 0.846 1.259
B splines (K=5) linear p=1, q=0 8 888.1 1.222 0.885 1.062
B splines (K=5) linear p=1, q=1 9 887.2 1.283 0.865 1.165
B splines (K=5) linear p=2, q=0 9 890.0 1.225 0.885 1.067
B splines (K=5) linear p=2, q=1 10 888.0 1.243 0.885 1.070
B splines (K=5) linear p=3, q=0 10 889.5 1.196 0.885 0.964
B splines (K=5) linear p=4, q=0 11 891.4 1.192 0.885 0.957

Table 4.3: Comparison of the fitted candidate models (assuming a Poisson conditional
distribution). Degrees of freedom (DoF) indicates the number of regression parameters.
The considered measures are Akaike’s information criterion (AIC), ranked probability
score (RPS), coverage rate (CR) of a one-sided 95% 1-step-ahead prediction interval and
prediction bias. The AIC is an in-sample measure evaluated on the training data, wheras
all others are out-of-sample measures evaluated on the validation data.
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Seasonality Trend DoF AIC RPS CR Bias

no no 1 949.4 1.164 0.923 -0.429

Fourier (S=1) no 3 949.4 1.119 0.962 -0.430
Fourier (S=2) no 5 940.9 1.102 0.962 -0.432
Fourier (S=3) no 7 939.0 1.136 0.962 -0.432

B splines (K=3) no 4 942.5 1.113 0.962 -0.432
B splines (K=4) no 5 940.5 1.104 0.962 -0.433
B splines (K=5) no 6 940.8 1.109 0.962 -0.433
B splines (K=6) no 7 938.7 1.129 0.962 -0.433

Fourier (S=3) linear 6 893.9 1.302 0.846 1.267

Table 4.4: Comparison of the fitted candidate models (assuming a Poisson conditional
distribution) considering only models assuming independent observations. See Figure 4.3
for further explanation.

weeks of the year. This corresponds to more infections in the summer and less towards
the end of the year. The seasonal pattern based on the Fourier approach exhibits another
peak with a lower amplitude in February which is not present in the pattern based on
periodic B splines. This additional peak might be an artifact of the superposition of
sinusoidal waves of lengths 52 and 26. Consequently, we decide for periodic B splines
with K = 5 knots.

Given the chosen type of seasonality we consider a range of different model orders for the
serial dependence (including an independence model). We combine each of these with a
model without trend as well as with one with a global linear trend. The AIC is in favor
of models with a (negative) trend whilst the out-of-sample properties do not support the
inclusion of a linear trend. The models with a linear trend have larger values of the RPS,
do not hold a coverage rate of 95% of 1-step-ahead prediction intervals and have a large
(positive) bias. This indicates that a global trend is not adequate here.

In a last step we decide on the model order for the serial dependence. With respect to
the AIC a regression on the two previous observations and on one previous value of the
conditional mean (p = 2 and q = 1) performs best. With respect to the out-of-sample
criteria the model with p = 1 and q = 1 performs best. Since the former model has a
very poor out-of-sample performance with a large bias we decide for the latter model
with model order p = 1 and q = 1. The conditional mean λt of this model is given by

log(λt) = β0 + β1 log(Yt−1 + 1) + α1 log(λt−1)

+ η1Xt,1 + η2Xt,2 + η3Xt,3 + η4Xt,4 + η5Xt,5,
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Figure 4.7: Seasonal patterns of B splines with K knots and of a superposition of sine
and cosine functions for the first S Fourier frequencies. The seasonal effect expresses the
estimated factor by which the conditional mean is multiplied in the respective week and
is shown on a logarithmic scale. The time series model (4.4) with serial correlation of
order p = 1, q = 1 (top) and the independence model (4.5) (bottom) are fitted to the
training data.

where the covariates Xt,1, . . . , Xt,5 specify the value of the periodic B splines at time t
(see Figure 4.1). We call this best model the (best) time series model.

For comparison, we also select the best model assuming independent observations.
According to a comparison of the out-of-sample in Table 4.4 there is little difference in
the performance of models with seasonality based on the first S = 2 Fourier frequencies
and based on periodic B splines with K = 4 knots with respect to the (out-of-sample)
ranked probability score. The seasonal patterns of both approaches shown in Figure 4.7
(bottom) are of quite similar shape but displaced. Unlike for the Fourier approach, the
parameters of periodic B splines may interfere with the intercept and actually do so
in this data example. Again, a model with a linear trend has a low AIC but a very
poor out-of-sample behavior. Consequently we choose a model without a trend and with
the first S = 2 Fourier frequencies to be the best model of those assuming independent
observations. We call this model the (best) independence model. The conditional mean
λt of this model is given by
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Figure 4.8: Estimated autocorrelation function of the residuals. The time series model
with serial correlation of order p = 1, q = 1 (left) and the independence model without
serial correlation (right) are fitted to the training data.

log(λt) = β0 + η1(1) sin(2πt/52) + η1(2) cos(2πt/52)

+ η2(1) sin(2πt/26) + η2(2) cos(2πt/26).

Given the linear predictor of the model we can now decide which conditional distribution
to use. We compare a Poisson and a Negative Binomial model by (in-sample) probability
integral transform (PIT) histograms (see Section 2.4) shown in Figure 4.9. For the
time series model both PIT histograms appear to be uniform. Hence we decide for the
simpler Poisson model. For the independence model the PIT histogram is uniform for the
Negative Binomial but U-shaped for the Poisson distribution. It seems that the Negative
Binomial distribution needs to account for the variability which is otherwise explained
by temporal dependence.

We compare the fit to the training data of the selected best time series model and the best
independence model as shown in Figure 4.10. The fit of the independence model repeats
the same seasonal pattern each year and is otherwise constant over time. Consequently
this also holds for the predictions of the validation sample, which do not depend on
previous observations. The fit of the time series model also exhibits a seasonal pattern
with a peak in the summer. However, this pattern is superimposed by the effect of serial
correlation. The model reacts to the large observations in the summer of the year 2006
where its fit has an especially pronounced peak in the summer as compared to the years
2007 and 2009. As mentioned before, the mean of the data appears to vary slowly over
time. The time series model reacts to this change in location and has a larger mean
until 2007 than in the years thereafter. By contrast, the independence model tends to
underestimate the observations until 2007 and to overestimate them thereafter. The
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Figure 4.9: Probability integral transform (PIT) histograms for model with Poisson and
Negative Binomial conditional distribution. The time series model with serial correlation
of order p = 1, q = 1 (top) and the independence model without serial correlation
(bottom) are fitted to the training data.

residuals of the independence model exhibit a considerable amount of serial correlation
whilst the residuals of the time series model appear to be uncorrelated, see Figure 4.8.
This shows very clearly that the selected model for independent observations does not
capture the serial correlation which is present in the data. The purpose of the fitted
models is their use for prediction-based monitoring of future observations. This requires
that not only the predicted value but also the corresponding prediction interval is reliable.
The latter is for example assessed by the ranked probability score (RPS), which is in
favor of the time series model: the out-of-sample RPS evaluated on the validation data
is 1.148 for the time series model and 1.281 (based on the selected Negative Binomial
distribution) for the independence model. Figure 4.10 illustrates the predictions and
corresponding prediction intervals of the validation sample. In case of the independence
model, the upper limits of the one-sided one-step-ahead prediction intervals reflect the
seasonal pattern of the fitted model and are uniformly larger than those of the time
series model. Applying the monitoring procedure (calibrated to a FPR of 2.5%) to the
validation data would sound no alarm (since all observations lie in the 97.5%PI) if it is
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Figure 4.10: Fitted values and 1-step-ahead predictions (thick lines) with upper bounds
of one-sided 97.5% PI (thin lines). The time series model with serial correlation of order
p = 1, q = 1 (solid line) and the independence model without serial correlation (dashed
line) are fitted to the training data (grey background).

based on the independence model and two alarms if it is based on the time series model.
If we assume the data of the validation phase to follow the in-control DGP, these alarms
will actually be false alarms. Nevertheless, we see more evidence in favor of the time
series model.

Finally, we fit the two models on the complete data of the set-up phase. Assume the
number or registered EHEC cases in week t to be a realization of Yt, t = 1, . . . , 261. The
fit of the best time series model is given by Yt|Ft−1 ∼ Poisson(λt) with

log(λt) = 1.423 · 10−5(0.461) + 0.062(0.043) log(Yt−1 + 1) + 0.938(0.356) log(λt−1)

− 0.031(0.125)Xt,1 + 0.114(0.174)Xt,2 − 0.166(0.207)Xt,3

+ 0.059(0.107)Xt,4 − 0.046(0.187)Xt,5.

Standard errors obtained by a parametric bootstrap procedure are given in parentheses.
Remarkably, the coefficient of log(λt−1) is very close to one. This term allows the model
to describe the change in the mean over time. However, this comes along with quite
large standard errors, pointing to a possibly unstable model fit. The fit of the best
independence model is given by Yt|Ft−1 ∼ NegBin(λt, 9.280) with

log(λt) = 1.310(0.040)− 0.127(0.052) sin(2πt/52)− 0.031(0.053) cos(2πt/52)

+ 0.094(0.053) sin(2πt/26)− 0.140(0.052) cos(2πt/26).
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The estimated overdispersion coefficient is σ̂2 = 1/9.280 = 0.108 (0.035). The conditional
variance is on average roughly yσ̂2 = 40% larger under a Poisson model. These two
fitted models form the basis for the prediction-based monitoring procedure which is
demonstrated in Section 4.5.3.

4.5.2 Nonstationarity vs. serial dependence

Before using the fitted models for monitoring we discuss their reliability. Both models do
not assume the DGP to be stationary but allow the expected number of cases to change
periodically during the year. Apart from that seasonal effect, the expected number of
cases is assumed to be stable over time. For the independence model stable does actually
mean constant whilst the time series model only assumes that the process emerges in the
same way given its previous expected value and its previous observation. The decrease
in the number of infections in the year 2007 questions the assumption that the DGP is
stable over time, even if we account for the seasonal effect. Models including a global
linear trend have not proven to be appropriate, see the previous section. However, we
have not considered other forms of nonstationarity of the DGP like more general trends
or abrupt changes in location. To some extent serial correlation is able to describe such
nonstationarities. It is a challenging problem to decide whether an explicit model for
the trend or change is more appropriate than a model explaining such phenomenons by
(usually strong) serial correlation. We investigate this question in some more detail in
this section.

As mentioned before, Figure 4.5 suggests that there might be an abrupt shift in location
in the year 2007 which could possibly be modeled explicitly. We test whether there
is a level shift (LS) at an unknown time point in the training data by applying the
procedure described in Section 2.5 (and in more detail for models with the identity link in
Section 3.4.2). The overall test statistic of this test is the maximum of local test statistics
at each time which are illustrated in Figure 4.11. For the time series model this test is
not significant on a 5% level (p value 0.17, test statistic 15.2). For the independence
model the test is significant (p value 0, test statistic 23.15) and detects a level shift in
week 15 of the year 2007. The estimated size of the LS is −0.63, which corresponds to a
decrease of the expected number of cases by the factor exp(−0.63) = 0.53. Considering
this level shift for the independence model does indeed yield a model with more or less
uncorrelated residuals whose ACF looks very similar to that of the time series model in
Figure 4.8 (left). This indicates that the observed serial dependence, recall Figure 4.6, is
largely induced by this change in location.
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Figure 4.11: Test statistic for detecting a level shift in the training data. The time series
model with serial correlation of order p = 1, q = 1 (filled circle) and the independence
model without serial correlation (empty circle) are fitted to the training data. The
vertical line indicates at which time the test statistic has its maximum and the horizontal
line is the critical value of the test statistic at a 95% level for the time series model (solid
lines) and for the independence (dashed lines) model, respectively.

One might come to the conclusion that is not necessary to fit a model with temporal
dependence once we haven taken into account the level shift. However, the data of
including the years before the set-up phase in Figure 4.12 tell that there is more change
in the average location than just one abrupt downward shift in 2007. A moving average
with a window width of one year suggests that the location changes in a way which
cannot be described adequately by a global trend and/or a few abrupt changes. The
model with serial dependence is capable to model such a slowly varying trend.

4.5.3 Monitoring in the operational phase

The prediction-based monitoring procedure is illustrated in Figure 4.13. The procedure is
based on the time series respectively independence model fitted to the data of the set-up
phase. It starts in the first week of the year 2011. The available information at that time
are all previous observations, the fitted values of the set-up phase and the covariates of
that time. The alarm threshold is the upper bound of a one-sided 97.5% one-step-ahead
prediction interval. This threshold is 8 for the time series model (solid line) and 9 for
the independence model, both larger than the value of 2 EHEC cases which has been
registered for that week. For both models the procedures continues without an alarm. For
the second week of 2011 we can use the observation of the first week and the covariates
of the second week. However, monitoring based on the independence model does (by
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Figure 4.12: Number of registered EHEC cases per week in North Rhine-Westphalia
including data before the chosen set-up phase. The thick line is the moving average with
a window width of one year.

construction) not make use of the previous observation but only of the current covariates.
There have been 4 infections registered in the second week, which is again well below the
thresholds of both models. Both procedures successively continue like that. In week 20
the time series model yields a threshold of 7 and the independent one a threshold of 9.
In that week the actual observation is 11 and exceeds both thresholds. Both procedures
sound an alarm. In fact there is the beginning of an outbreak in that week.

As noted before, the procedure for the independence model is not affected by the previous
observations at all. Its threshold values do only depend on the seasonal pattern. As
opposed to this, the prediction of the time series model directly depends very little on the
previous observation (with a factor of 0.062) and very much on the previous prediction
(0.938). Due to the recursive formulation this means that the very large observation in
week 20 has a strong positive effect on the prediction and hence also on the threshold
for week 22. The following seven observations in weeks 21 to 27 also belong to the
outbreak and are even larger (they are not shown in the plot because the vertical axis is
truncated at a value of 25). The previously described effect results in a steep increase
of the one-step-ahead predictions and hence also of the corresponding thresholds. The
effect of serial correlation is desired as long as the DGP is in-control but not when it
is out-of-control. In this example the first observation of the outbreak is large enough
to detect it immediately. Even if we would not have detected the outbreak in week 20,
the gradient of the outbreak is so steep that the following observations of the outbreak
are still above the corresponding thresholds, even though these thresholds are increased
because of the outbreak. However, we know from the simulations in Section 4.4 that this
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Figure 4.13: Illustration of the prediction-based monitoring procedure in the operational
phase for the time series model (solid line) and the independence model (dashed line).
If an observation lies above the one-sided one-step-ahead 95% PI (thin lines) an alarm
is given. The first alarm (concurrently detected by both models) is marked by a filled
circle. The thick lines are the one-step-ahead predictions. Note that the vertical axis is
truncated at 25 in order to show more details and hence seven larger observations (see
Figure 4.4) are not shown but only represented by the arrow.

behavior of the time series model may also circumvent the detection of only moderate
outbreaks.

4.6 Discussion

We demonstrate by the data example of EHEC infections in this chapter and also by the
Campylobacter infections analyzed in other chapters (see Sections 2.6.1 and 3.5) that
there are infectious disease time series which exhibit serial correlation. This suggests to
employ time series models with temporal dependence for monitoring procedures. We
introduce a simple monitoring procedure for the class of count time series following
generalized linear models which is based on successive one-step-ahead predictions. We
investigate by a simulation study how using a model with temporal dependence affects
the performance of such a procedure compared to an independence model. Our most
important findings are:

• If the data are uncorrelated there is no perceivable loss in performance.
• If the data are correlated, more outbreaks can be immediately detected.
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• If an outbreak is not detected immediately, a model with dependence is influenced
by this outbreak. This impedes its detection at a later time with the prediction-
based monitoring procedure considered in this chapter.

The last result is particularly a problem when outbreaks emerge gradually, which is often
the case in practice. It can be explained as follows: Predictions by independence models
do only depend on the covariates of the respective time. If we disregard the covariates
effect for a moment, these predictions are only based on the marginal distribution. In
contrast, time series models make predictions based on the conditional distribution given
previous observations. They are using more information which makes them more efficient
in many situations. On the other hand this also makes them more vulnerable to the
effect of unusual observations.

We have several ideas to utilize the promising features of time series models for monitoring
and at the same time to overcome their weakness:

1. Simultaneously apply a control chart based on the conditional distribution (which
is good for immediate detection of large outbreaks) and another one based on
the marginal distribution (which is good for delayed detection of only moderate
outbreaks). We recommend CUSUM-type charts for the latter. Both charts need
to be combined into a single procedure by a decision rule (e.g. sound an alarm if
any of the charts exceeds its control limits). A challenge will be to calibrate this
procedure to attain a desired in-control performance.

2. Limit the influence of previous observations on the prediction. One strategy for
that is to employ ideas from robust statistics (e.g. truncate or replace implausibly
large previous observations) to obtain robust predictions. Another strategy is to
replace one-step-ahead predictions by h-step-ahead predictions (see Section 2.3)
such that the previous h− 1 observations have no influence at all on the prediction,
see also Section 5.3. The distribution of h-step-ahead predictions would need to be
approximated by simulation, which is of course computationally expensive.

3. Compare a vector of the most recent h subsequent observations to its h-dimensional
marginal distribution. Give an alarm if the observed vector is implausible with
respect to that distribution. One challenge of this approach is to find a region
which covers observed vectors from the in-control model with a probability of 1−α.
This is much more difficult for discrete count data distributions than for continuous
distributions, for which this approach has been originally proposed by Gather,
Bauer, and Fried (2002). Another challenge is how to account for covariate effects,
which are essential for modeling seasonality.
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In its current form our monitoring procedure does not account for estimation uncertainty.
A recent review on the effect of estimation uncertainty on control charts is provided by
Psarakis, Vyniou, and Castagliola (2014). Schmid (1995, Theorem 4.3) give an analytical
result for the average run length of a control chart in case of autoregressive processes
with normal errors. In the case of count time series, the Bayesian approach by Manitz
and Höhle (2013) accommodates estimation uncertainty. Our monitoring procedure
could easily be extended to accommodate estimation uncertainty by approximating the
one-step-ahead prediction intervals with the parametric bootstrap procedure described
in Section 2.3. Some first experiments with this approach yields promising results at the
cost of a several times longer computation time. One could also employ the delta method
to analytically approximate the prediction distribution by combining the conditional
distribution of the observations given the true parameter, and the approximate normal
distribution of the maximum likelihood estimator. Freeland and McCabe (2004, Theorem
2) do this for so-called INAR models of order one, which are very different from the
models considered in this work.

It has been pointed out in Section 4.5.1 that a linear trend has a multiplicative effect
on the conditional mean in case of the logarithm link function. This explosive behavior
is usually undesirable. With a generalized additive model (GAM) one could fit models
with a conditional mean of λt = η0t + νt, where νt is the linear predictor given on the
right hand side of (1.1) with g̃(x) = log(x+ 1) and g(x) = log(x). Note that the GAM
proposed by Held et al. (2005) (see Section 4.1) is different from the above suggestion
and has a multiplicative trend. Another issue which requires further investigation is the
discrimination between serial dependence and nonstationarity which has been discussed
in Section 4.5.2.

Summing up, this chapter is an important step towards efficient monitoring procedures
based on models with temporal dependence. However, this topic is still ongoing research
and we outlined some directions of further research. The discussed ideas need to be
elaborated, implemented and compared with established procedures. The following
chapter takes up the issue of model selection and deals with some further topics which
are relevant to the problem of online monitoring.
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Chapter 5

Further topics

This chapter discusses three further topics which are particularly (but of course not
exclusively) of interest for monitoring count time series in the context of infectious disease
surveillance. We do not present a conclusive treatment but rather point to directions
where further research is needed.

Section 5.1 reviews tools that have been proposed for model selection for count time
series and those which have been proposed in another context but could possibly be
extended to count time series. These tools complement and enhance the ones presented in
Section 2.4. Such methods can from the basis of comprehensive model selection strategy
which does not require manual intervention. The other two sections are concerned with
robust methods which work reliably in the presence of outliers or intervention effects.
Section 5.2 is a first study on robust identification of the model order for count time
series by means of autocorrelations. Section 5.3 reviews robust methods for parameter
estimation and prediction.

5.1 Towards a comprehensive model selection strategy

An essential step of model-assisted statistical analysis is the selection of a suitable model
among the many candidates arising from different choices of the link function, of the
model orders, of the type of seasonality (if any), or of the conditional distribution, even
when restricting to GLM-based models. Besides well-known model selection criteria
like the Akaike Information Criterion (AIC), there are several tools for model selection
available in the literature, which are briefly reviewed in the following paragraphs. Some
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of them have been developed only for a special count time series model or even only for
independent or continuous-valued data and need to be generalized.

In order to assess the predictive performance of a model in a general context, a nonpara-
metric diagnostic approach has been proposed by Gneiting et al. (2007). This comprises
probability integral transform histograms, marginal calibration plots, sharpness diagrams
and proper scoring rules. This approach is transferred to count data by Czado et al.
(2009). Christou and Fokianos (2014, 2015b) employ these tools for comparison of the
Poisson and the negative binomial conditional distribution in the context of count time
series models. These tools have been presented in 2.4 and are implemented in the package
tscount. Moreover, there are proposals for hypothesis tests based on scoring rules. For
comparison of two models, Paul and Held (2011) suggest a Monte Carlo permutation test
for paired individual scores. For independent count data, Wei and Held (2014) propose
calibration tests based on conditional exceedance probabilities and on proper scoring
rules, which could possibly be generalized to the case of dependent data.

For choosing the conditional mean function, a specification test has been proposed
by Neumann (2011) for a first order Poisson model. Fokianos and Neumann (2013)
improve this procedure, proposing a goodness-of-fit test with non-trivial power for local
alternatives. Christou and Fokianos (2015a) develop a score test which is also applicable
when parameters are non-identifiable under the null hypothesis and apply it to test for
linearity considering two non-linear specifications of the conditional mean under the
alternative.

For choosing the conditional distribution (e.g. Poisson or Negative Binomial), specification
tests based on the characteristic function have been proposed by Klar, Lindner, and
Meintanis (2012) in the context of GARCH models and by Klar and Meintanis (2012) in
the context of GLMs for independent data. These procedures could possibly be adapted
to test for the conditional distribution of count time series following GLMs. Hudecová,
Hušková, and Meintanis (2015) propose tests based on the probability generating function
and demonstrate that they have power against the alternative of a different conditional
distribution and even against the alternative of a different model class.

A test proposed by Weiß and Schweer (2015) is based on the empirical index of dispersion
for the degree of overdispersion of a Poisson INGARCH(1,0) model. They employ it
for testing against the alternative of additional conditional overdispersion and against
the alternative of a so-called integer-valued autoregressive (INAR) model, which belongs
to the class of thinning-based count time series models. This is a first approach to
discriminate between these model classes, though only for a special case.
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We have seen in Section 4.5.1 that model selection is a cumbersome task which requires
a practitioner to take many decisions. It is often not very clear how to decide such that
the whole model selection process is currently not very satisfying. All tools mentioned so
far aim at single aspects of the model selection problem only. So far there is no sound
advice for a comprehensive model selection strategy. For some applications there is a
need for an automated model selection strategy. Consider, for example, the surveillance
of infectious diseases in Germany, where several hundred thousand time series are under
surveillance. This large number of time series results from about fifty (subtypes of)
pathogens which each are observed in more than 400 regional units and further divided
by sex and age group. For now all of them are monitored using the same quite general
algorithm which works reasonably well for most time series. However, using models more
tailored to e.g. each disease could potentially improve monitoring. Such models could be
found by automated model selection strategies.

5.2 Robust model identification with the (partial) auto-

correlation function

The proper identification of the model orders gets more complicated in the presence of
outliers or intervention effects. In the following we provide a first robustness study for
the identification of the model orders in case of the INGARCH model (1.2).

Two common tools for the choice of the model orders of linear time series models are the
sample autocorrelation function (SACF) and the sample partial autocorrelation function
(SPACF). However, these are strongly affected by outlying observations so that there is a
need for robust and efficient alternatives. Dürre, Fried, and Liboschik (2015a) review
robust alternatives to the SACF and the SPACF in the context of continuous-valued data.
However, our investigation shows that some estimators which perform well in their study
are not suitable for discrete-valued count data. Implementations of robust estimators are
provided in the R package robts (Dürre, Fried, Liboschik, and Rathjens, 2015b).

Let y = (y1, . . . , yn)> be an observed time series. We consider estimation of the auto-
correlation at lag h by a robust bivariate correlation estimator applied to the vector
yht = (y1+h, . . . , yn)> and the vector of lagged observations yht−h = (y1, . . . , yn−h)

>. We
consider the rank-based correlation estimators Spearman’s ρ, Kendall’s τ and Gaussian
rank (for a comparison in the bivariate context see Boudt, Cornelissen, and Croux, 2012).
Another class of autocorrelation estimators, which is based on an idea of Gnanadesikan
and Kettenring (1972), employs any robust univariate scale estimator V̂AR(·). We use a
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variant bounded between −1 to +1 inclusive, which at lag h is given by

ÂCFGK(y;h) =
V̂AR(yht + yht−h)− V̂AR(yht − yht−h)
V̂AR(yht + yht−h) + V̂AR(yht − yht−h)

.

If V̂AR(·) is the sample variance, this is equivalent to the ordinary SACF. Ma and Genton
(2000) study this Gnanadesikan-Kettenring (GK) approach in the Gaussian framework,
using the highly robust Qn estimator of scale proposed by Croux and Rousseeuw (1992).
We additionally consider the median absolute deviation from the median (MAD), the
10% and 20% winsorized variance, the interquartile range (IQR), as well as the highly
robust Sn (Croux and Rousseeuw, 1992) and τ (Maronna and Zamar, 2002) estimators
of scale. Apart from the winsorized variance, these estimators are on the scale of the
original data and need to be squared.

We compare estimators which are corrected such that they achieve consistency at the
normal distribution. Note that the normal distribution is a limiting case of a Poisson
distribution with mean tending to infinity. However, we cannot expect this Fisher-
consistency correction to hold true, especially in the case of a clearly skewed Poisson
distribution with a small mean. Moreover, the marginal distribution of a time series
from an INGARCH model is strictly speaking only Poisson under the null hypothesis of
independence.

In our simulation study we generate time series with 100 observations from an IN-
GARCH(1,0) model. We consider scenarios with a true autocorrelation at lag h = 1 of
zero (β1 = 0) and of 0.5 (β1 = 0.5). The results are averaged over 10 000 repetitions for
each scenario and reported as a function of the marginal mean µ = β0/(1 − β1). The
shown relative efficiencies are the ratio of the mean square errors of the SACF and the
respective estimator.

The GK autocorrelation estimators based on Qn (see Figure 5.1), Sn, MAD and IQR are
unsuitable for small counts, as these estimators are unstable due to the high proportion
of ties in such data. It frequently happens that the scale estimations V̂AR(yht + yht−h)

and V̂AR(yht − yht−h) coincide, resulting in an autocorrelation estimate of zero, or that
one or both of them collapse to zero, resulting in an estimate of ±1 or a non-computable
autocorrelation estimation, respectively. Particularly for small marginal means, we get
zero estimates with high probability, causing a super-efficient performance if the true
autocorrelation is zero. Implosion, that is breakdown to zero, is a known problem of
many robust scale estimators. But not even the Qn estimator, which showed the best
performance with respect to implosion among many other alternatives in a study of
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Figure 5.1: Efficiency of autocorrelation estimators at lag h = 1 relatively to the SACF.
Time series of length 100 are simulated from an INGARCH(1,0) model with the marginal
mean given on the horizontal axis and from a N(λt, λt) model with a marginal mean of
50 (points on the very right of each plot).

Gather and Fried (2003), does perform acceptably in the case of small counts. We also
tried variants of the Qn using the 50%- and 75%-quantile of the pairwise distances, instead
of the 25%-quantile as it is usually employed. Yet, for counts with low means none of
these alternatives perform well. The τ estimator of scale as implemented by Maronna
and Zamar (2002) is based on the variance estimation of the MAD and hence also
performs poorly. We conclude that none of these popular highly robust scale estimators
seems to be appropriate for small counts. Particularly for a low winsorizing proportion,
the winsorized variance estimator results in smaller problems with stability than the
estimators mentioned before and will be considered further.

Figure 5.1 reconfirms the result that the efficiency of the estimators relatively to the
SACF tends to its value achieved under a normal distribution. The Gaussian rank
estimator has a very high relative efficiency both for uncorrelated and autocorrelated
data, which does not depend a lot on the marginal mean. Spearman’s ρ correlation
estimator behaves in a similar fashion, but has a lower relative efficiency of about 90%
on uncorrelated data. In contrast, the relative efficiency of Kendall’s τ depends very
much on the marginal mean. In case of uncorrelated data its relative efficiency is below
50% for small means and even for large means slightly below Spearman’s ρ.

To study the robustness properties of the estimators, we contaminate the time series of
independent data, that is β1 = 0, with a patch of 5% additive outliers in the center and
the autocorrelated ones with 5% of isolated additive outliers. The first outlier scenario is
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Figure 5.2: Efficiency of autocorrelation estimators at lag h = 1 for contaminated Poisson
data relatively to the SACF for uncontaminated Poisson data. We contaminated 5%
of the 100 observations with additive outliers of size five times the marginal standard
deviation. Left: Patchy outliers in the center. Right: Isolated outliers at arbitrarily
chosen positions 17, 40, 55, 72 and 92.

known to bias the estimation towards one and the latter one biases towards zero, which
is away from the true values of zero and 0.5, respectively. For autocorrelation estimation
when β1 = 0, outlier patches are the worst case, whereas for time series with β1 > 0 they
can even compensate for an existing downward bias in finite samples. The simulation
results in Figure 5.2 can be interpreted as the loss of efficiency compared to the SACF
for uncontaminated data from the same model.

The outlier patch has a strong effect on the efficiency of the autocorrelation estimators for
uncorrelated data (see Figure 5.2 left). The ordinary SACF is not robust and drops down
to a relative efficiency of around 5%. The rank-based autocorrelation estimators show
qualitatively the same pattern of increasing relative efficiency for increasing marginal
mean. The Gaussian rank correlation, which has been the most efficient rank-based
estimator for clean uncorrelated data, is the least robust one, because it gives more
influence to the largest and the smallest observations. The 10%-winsorized variance has
an efficiency of around 10% relatively to the SACF for clean data, which also increases
with the marginal mean to about 40%. The 20%-winsorized variance is in principle
slightly less efficient and shows a similar behavior but is, as for uncontaminated data,
quite unstable for low means.

The same number of isolated outliers for moderately correlated data has a weaker effect
on the efficiency of the autocorrelation estimators than the outlier patch for uncorrelated
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Figure 5.3: Estimated PACF of a simulated INGARCH(2,0) time series of length 100
with parameters β0 = 0.4, β1 = 0.5 and β2 = 0.3. Left: Clean data. Right: Contaminated
with five additive outliers of size five times the marginal standard deviation at arbitrarily
chosen positions 17, 40, 55, 72 and 92.

data (see Figure 5.2 right). Unlike in the latter situation, we observe a decreasing relative
efficiency for an increasing marginal mean for all estimators, except for the instability
of the GK estimation based on the 20%-winsorized variance, which has been discussed
before. Again, the Gaussian rank based estimator is the least efficient among the rank-
based estimators, but this time Kendall’s τ is much more efficient than Spearman’s ρ,
particularly for low marginal means.

Because of the instability of most of the other estimators we recommend to use one of
the rank-based autocorrelation estimators for count time series with small counts. When
choosing an autocorrelation estimator one should take into account both the desired
efficiency at clean data and the desired robustness properties.

We illustrate the usefulness of robust autocorrelation estimation for identification of the
model order with a simulated example. Consider a time series (Yt : t ∈ N0) from an
INGARCH(p,0) model of unknown order p ∈ N0, with Yt|FYt−1 ∼ Pois(λt) and conditional
mean equation λt = β0 +β1Yt−1 + · · ·+βpYt−p for t ≥ 1. We want to determine the model
order p. The time series (Yt : t ∈ N0) has the same second-order properties as an AR(p)
model (cf. Ferland et al., 2006). Hence, it is known that the partial autocorrelation
function (PACF) is non-zero for lags up to p and zero for larger lags. We obtain the
estimated partial autocorrelation function from the estimated autocorrelation function
by applying the Durbin-Levinson algorithm (see for example Morettin, 1984).

Looking at Figure 5.3, we see that one can correctly identify the model order of an
INGARCH(2,0) model by looking at the SPACF or at the estimated PACF derived from
the ACF estimation based on Spearman’s ρ: both estimations are clearly larger than zero
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for the first two lags and close to zero for all other lags. In case of a contamination with
isolated outliers the non-robust estimation with the SPACF is pushed towards zero, such
that one might falsely identify a model of order p = 0. As opposed to this, the robust
estimation of the PACF with Spearman’s ρ is not so strongly affected by the outliers
and would still allow a correct model specification.

5.3 Robust estimation and prediction

Atypical observations occurring in the period used for model fitting complicate any
model-based statistical analysis. For example in infectious disease time series there are
(sometimes unrecognized) disease outbreaks or singular artifacts resulting from increased
reporting due to media coverage. Estimators and predictions should thus preferably be
robust against outliers or other unusual events so that prediction is not overly influenced
by outliers in past data.

In order to reduce the effects of such extraordinary events, observations with large
residuals can be downweighted (Farrington et al., 1996, Section 3.6). This has been
implemented in currently applied procedures for disease surveillance, starting from a
nonrobust initial fit (Noufaily et al., 2013). However, it is well known in robust statistics
that this can give misleading results since such residuals are not reliable and since the
degree of uncertainty is misjudged. Moreover, in models for dependent data unusual
observations enter the estimation equations several times which complicates the design
of appropriate weighting schemes and subsequent statistical inference.

A first approach to robust estimation of INGARCH(p,0) models has been developed by
Elsaied (2012), see also Elsaied and Fried (2014, 2016). She studies robust M-estimation in
this context, employing Tukey’s bisquare function with a bias correction. The developed
methods offer good efficiency for clean data and a superior performance as compared to
maximum likelihood estimation and uncorrected M-estimation in the presence of outliers.
However, note that first attempts to generalize them to INGARCH(p,q) models have
failed because the observations lack a Markovian structure (Elsaied, 2012). Kitromilidou
(2015); Kitromilidou and Fokianos (2015, 2016) study robust estimation for a log-linear
count time series model with the conditionally unbiased bounded-influence estimator and
the Mallows quasi-likelihood estimator. Robust fitting based on divergences has been
suggested by Kang and Lee (2014). An approach by Agostinelli (2004) for robustly fitting
of ARMA models by weighted likelihood could be transferred to count time series. Elsaied
and Fried (2016) obtain promising results by applying this weighted likelihood approach
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(implemented in the R package wle by Agostinelli and SLATEC Common Mathematical
Library (2013)) to independent Poisson data. For the case of independent observations,
Aeberhard, Cantoni, and Heritier (2014) study robust estimation of the overdispersion
coefficient from a negative binomial regression model. Such robust parameter estimations
would need to be generalized to the class of count time series following GLMs and can
form the basis of a robust prediction procedure.

Multi-step ahead prediction in GLM-type models for time series of counts and the deriva-
tion of corresponding prediction intervals allows generalization of currently applied pro-
cedures for infectious disease surveillance based on independence assumptions. However,
the distribution of such multi-step-ahead predictions is not easily tractable so that Monte
Carlo algorithms are needed. Another option is usage of better accessible successive
1-step-ahead predictions for the monitoring, but these can be strongly affected after the
time of occurrence of a strongly deviating observation, so that subsequent deviating
observations are masked. Using robust parameter estimates obtained from an initial
sequence, 1-step ahead predictions can be calculated successively, truncating observations
outside an (1 − α) prediction interval by the respective upper or lower quantile when
using it in predictions of later time points.

Alternatively, one could choose an approach which is not strictly model-based. Robust
versions of exponential smoothing techniques for prediction of continuous-valued time
series in the presence of outliers have been suggested by Cipra (2006), Gelper, Fried, and
Croux (2010) and Cipra and Hanzák (2011). In a similar vein, Ruckdeschel, Spangl, and
Pupashenko (2014) robustify Kalman filtering approaches for estimation of the state of
a time series in the presence of outliers and shifts, see also Ruckdeschel (2001, 2010).
These need to be adapted to discrete-valued time series.
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Chapter 6

Summary

This thesis provides a unified formulation and comprehensive treatment of the class of
count time series following generalized linear models. Such models link the conditional
mean of the observed process to its past values, to past observations and to covariate effects.
An integral part of these models is the dependence on past values of the conditional mean,
the so-called feedback mechanism, which allows for parsimonious modelling of temporal
correlation. We present the first systematic study on incorporating covariate effects
within this framework. Models with the identity link function accommodate only positive
temporal correlation and imply additive effects of necessarily nonnegative covariates.
Models with the logarithmic link allow to accommodate negative temporal correlation
and imply multiplicative effects of covariates. Assuming a Poisson or Negative Binomial
conditional distribution facilitates model-based prediction and model assessment.

We develop likelihood-based methods for model fitting and assessment, prediction and
intervention analysis for this unified model framework. This generalizes existing theory
for popular special cases from the class of GLM-based count time series, for instance
the so-called INGARCH model. A key contribution of this thesis is the open source
implementation of these methods for the statistical software R provided by the package
tscount (available from CRAN). This package is comprehensively documented by a
vignette (the basis for Chapter 2) and detailed help pages with examples for all available
functions. It complements and extends the functionality of existing software for the
analysis of count time series.

A major part of this thesis is concerned with the treatment of unusual effects influencing
the ordinary pattern of a count time series. This has important applications in the field
of infectious diseases surveillance, which plays a prominent role in this work. In that
context one aims at detecting disease outbreaks by analyzing time series of disease counts.
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We show that such time series may exhibit temporal correlation and are not described
adequately by the commonly used models which assume independent observations. We
design procedures for the detection of unusual effects both for retrospective application
and for prospective application in real-time which are based on count time series following
GLMs. For the former case we study a new model which describes such intervention
effects by deterministic covariates which enter the dynamics in a different way than
it is the case for an existing model. We develop likelihood-based tests and detection
procedures and find some robustness against misspecification of the intervention model.
For the latter case we introduce a sequential procedure for online monitoring of count
time series based on one-step-ahead predictions. Our procedure relies on the conditional
distribution (and thus on previous observations) to decide whether a new observation
is unusual. Simulations show that in case of actually dependent data our procedure is
superior to a procedure based on an independence model. However, this applies only
for the detection at the first unusual observation. If there are many unusually large
observations in a row, e.g. due to a disease outbreak, then our procedure is influenced
by the first unusual observation and has a lower chance to detect the following ones
than under an independence model. We outline some ideas how to utilize the promising
features of models with temporal dependence for designing a monitoring procedure whilst
avoiding their undesirable shortcomings.

In the last part of this thesis we discuss some important steps on the way to an automated
monitoring procedure for count time series. We review tools which could form the basis of a
comprehensive model selection strategy for count time series that does not involve manual
intervention. There is a need to obtain reliable results even in the presence of atypical
observations. We thus present a first study on robust estimation of autocorrelation
functions, which is a useful tool for identifying the model orders and potential seasonal
effects. It turns out that many robust estimators which are highly efficient for continuous-
valued data are not suitable for discrete-valued counts. Instead, it is recommended to
use rank-based estimators of the (partial) autocorrelation function for robust model
identification. Finally, we review approaches for robust estimation and prediction which
could be employed to design a robust monitoring procedure.
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Appendix A

Implementation details

A.1 Parameter space for the log-linear model

The parameter space Θ for the log-linear model (1.3) which guarantees a stationary and
ergodic solution of the process is subject of current research. In the current implementation
of tsglm the parameters need to fulfill the condition

max

{
|β1|, . . . , |βp|, |α1|, . . . , |αq|,

∣∣∣∣∣
p∑

k=1

βk +

q∑
`=1

α`

∣∣∣∣∣
}
< 1. (A.1)

At the time we started developing tscount, (A.1) appeared as a reasonable extension of
the condition

max {|β1|, |α1|, |β1 + α1|} < 1,

which Douc et al. (2013, Lemma 14) derive for p = q = 1. However, in a recent work,
Sim (2016, Proposition 5.4.7) derives sufficient conditions for a model of order p = q. For
the first order model he obtains the weaker condition

max {|α1|, |β1 + α1|} < 1.

For p = q = 2 the required condition is

max
{
|α1|+ |α2|+ |β2| , |α1α2|+

∣∣α2α
2
1

∣∣+ |α1 + β2| , |α2|+ |α1 + β1|+ |β2| ,

|α2(α1 + β1)|+ |α2 + α1(α1 + β1)|+ |(α1 + β1)β2| , |α2|+ |α1|+ |β2| ,
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|α2(α1 + β1)|+ |α2 + α1(α1 + β1)|+ |(α1 + β1)β2| , |α2|+ |α1 + β1|+ |β2| ,

|(α1 + β1)α2|+
∣∣α2 + (α1 + β1)2 + β2

∣∣+ |(α1 + β1)β2|
}
< 1. (A.2)

There are parameters which fulfill (A.1) but not (A.2) (e.g. β1 = −0.9, β2 = 0.9, α1 = 0,
α2 = 0) and vice versa (e.g. β1 = −1.8, β2 = 0, α1 = 0.9, α2 = 0). However, there exists a
large intersection between values which fulfill (A.1) and (A.2). For the general case p = q

the condition can be obtained by considering the maximum among p elements of the norms
of matrix products with p factors, where each factor corresponds to a (2p− 1)× (2p− 1)

matrix. The implementation of this condition is a challenging problem and therefore we
have decided in favor of (A.1). Alternatively, we can obtain unconstrained estimates
(argument final.control = list(constrained = NULL)), which should be examined
carefully.

A.2 Recursions for inference and their initialization

Let h be the inverse of the link function g and let h′(x) = ∂h(x)/∂x be its derivative. In
the case of the identity link g(x) = x it holds h(x) = x and h′(x) = 1 and in the case of
the logarithmic link g(x) = log(x) it holds h(x) = h′(x) = exp(x). The partial derivative
of the conditional mean λt(θ) is given by

∂λt(θ)

∂θ
= h′ (νt(θ))

∂νt(θ)

∂θ
,

where the vector of partial derivatives of the linear predictor νt(θ),

∂νt(θ)

∂θ
=

(
∂νt(θ)

∂β0

,
∂νt(θ)

∂β1

, . . . ,
∂νt(θ)

∂βp
,
∂νt(θ)

∂α1

, . . . ,
∂νt(θ)

∂αq
,
∂νt(θ)

∂η1

, . . . ,
∂νt(θ)

∂ηr

)>
,

can be computed recursively. The recursions are given by

∂νt(θ)

∂β0

= 1 +

q∑
`=1

α`
∂νt−j`(θ)

∂β0

,

∂νt(θ)

∂βs
= g̃(Yt−is) +

q∑
`=1

α`
∂νt−j`(θ)

∂βs
, s = 1, . . . , p,

∂νt(θ)

∂αs
=

q∑
`=1

α`
∂νt−j`(θ)

∂αs
+ νt−js(θ), s = 1, . . . , q,

∂νt(θ)

∂ηs
=

q∑
`=1

α`
∂νt−j`(θ)

∂ηs
+Xt,s, s = 1, . . . , r.
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The recursions for the linear predictor νt = g(λt) and its partial derivatives depend on
past values of the linear predictor and its derivatives, which are generally not observable.
We implemented three possibilities for initialization of these values. The default and
preferable choice is to initialize by the respective marginal expectations, assuming a model
without covariate effects, such that the process is stationary (argument init.method =

"marginal"). For the linear model (1.2) it holds (Ferland et al., 2006)

E(Yt) = E(νt) =
β0

1−
∑p

k=1 βk −
∑q

`=1 α`
=: µ(θ). (A.3)

For the log-linear model (1.3) we instead consider the transformed time series Zt :=

log(Yt + 1), which has approximately the same second order properties as a time series
from the linear model (1.2). It approximately holds E(Zt) ≈ E(νt) ≈ µ(θ). Specifically,
we initialize past values of νt by µ(θ) and past values of ∂νt(θ)/∂θ by

∂µ(θ)

∂θ
=

(
∂µ(θ)

∂β0

,
∂µ(θ)

∂β1

, . . . ,
∂µ(θ)

∂βp
,
∂µ(θ)

∂α1

, . . . ,
∂µ(θ)

∂αq
,
∂µ(θ)

∂η1

, . . . ,
∂µ(θ)

∂ηr

)>
,

which is explicitly given by

∂µ(θ)

∂β0

=
1

1−
∑p

k=1 βk −
∑q

`=1 α`
,

∂µ(θ)

∂βk
=
∂µ(θ)

∂α`
=

β0(
1−

∑p
k=1 βk −

∑q
`=1 α`

)2 , k = 1, . . . , p, ` = 1, . . . , q, and

∂µ(θ)

∂ηm
= 0, m = 1, . . . , r.

Another possibility is to initialize νt by β0 and ∂νt(θ)/∂θ by zero. In this case the
model corresponds to standard i.i.d. Poisson random variables (argument init.method
= "iid"). A third possibility would be a data-dependent initialization of νt, for example
by g̃(y1). In this case, the partial derivatives of νt are initialized by zero (argument
init.method = "firstobs").

The recursions also depend on unavailable past observations of the time series, prior
to the sample which is used for the likelihood computation. The package allows to
choose between two strategies to cope with that. The default choice is to replace these
pre-sample observations by the same initializations as used for the linear predictor νt
(see above), transformed by the inverse link function h (argument init.drop = FALSE).
An alternative is to use the first ip observations for initialization and to compute the
log-likelihood on the remaining observations yip+1, . . . , yn (argument init.drop = TRUE).
Recall that ip is the highest order for regression on past observations.
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β̂0 β̂1 α̂1 `(θ̂)

init.method = "marginal", init.drop = FALSE 0.500 0.733 0.249 -3024.7
init.method = "marginal", init.drop = TRUE 0.567 0.746 0.236 -2568.0
init.method = "iid", init.drop = FALSE 0.867 0.757 0.218 -3037.2
init.method = "iid", init.drop = TRUE 0.563 0.738 0.246 -2587.8
init.method = "firstobs", init.drop = FALSE 0.559 0.739 0.246 -3018.7
init.method = "firstobs", init.drop = TRUE 0.559 0.739 0.246 -2578.1

Table A.1: Estimated parameters and log-likelihood of a time series of length 1000
simulated from model (1.2) for different initialization strategies. The true parameters
are β0 = 0.5, β1 = 0.77 and α1 = 0.22. Likelihood values are included for completeness
of the presentation. There are not comparable as they are based on a different number
of observations.

Particularly in the presence of strong serial dependence, the different methods for
initialization can affect the estimation substantially even for quite long time series with
1000 observations. We illustrate this by the simulated example presented in Table A.1.

A.3 Starting value for optimization

The numerical optimization of the log-likelihood function requires a starting value for
the parameter vector θ, which can be obtained by initial estimation based on a simpler
model. Different strategies for this (controlled by the argument start.control) are
discussed in this section. We call this start estimation (and not initial estimation) to
avoid confusion with the initialization of the recursions described in the previous section.

The start estimation by the R function glm utilizes the fact that a time series following a
GLM without feedback (as in Kedem and Fokianos, 2002) can be fitted by employing
standard software. Neglecting the feedback mechanism, the parameters of the GLM

Yt|F∗t−1 ∼ Poi(λ∗t ), with ν
∗
t = g(λ∗t ) and

ν∗t = β∗0 + β∗1 g̃(Yt−i1) + . . .+ β∗p g̃(Yt−ip) + η∗1Xt,1 + . . .+ η∗rXt,r, t = ip + 1, . . . , n,

with F∗t the history of the joint process {Yt,X t}, are estimated using the R function glm.
Denote the estimated parameters by β̂∗0 , β̂∗1 , . . . , β̂∗p , η̂∗1, . . . , η̂∗r and set α̂∗1, . . . , α̂∗q to zero
(argument start.control$method = "GLM").

Fokianos et al. (2009) suggest start estimation of θ, for the first order linear model (1.2)
without covariates, by employing its representation as an ARMA(1,1) process with
identical second-order properties, see Ferland et al. (2006). For arbitrary orders P and
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Q with s := max(P,Q) and the general model from Section 1.2 this representation, after
straightforward calculations, is given by

(g̃(Yt)− µ(θ)︸︷︷︸
=:ζ

)−
s∑
i=1

(βi + αi)︸ ︷︷ ︸
=:ϕi

(g̃(Yt−i)− µ(θ)) = εt +

q∑
i=1

(−αi)︸ ︷︷ ︸
=:ψi

εt−i, (A.4)

where βi := 0 for i /∈ P , αi := 0 for i /∈ Q and {εt} is a white noise process.
Recall that g̃ is defined by g̃(x) = x for the linear model and g̃(x) = log(x + 1)

for the log-linear model. Given the autoregressive parameters ϕi and the moving
average parameters ψi of the ARMA representation of {Yt}, the parameters of the
original process are obtained by αi = −ψi and βi = ϕi + ψi. We get β0 from
β0 = ζ

(
1 −

∑p
k=1 βk −

∑q
`=1 α`

)
using the formula for the marginal mean of {Yt}.

With these formulas estimates β̂∗0 , β̂∗i and α̂∗i are obtained from ARMA estimates ζ̂,
ϕ̂i and ψ̂i. Estimation of the ARMA parameters is implemented by conditional least
squares (argument start.control$method = "CSS"), maximum likelihood assuming
normally distributed errors (argument start.control$method = "ML"), or, for models
up to first order, the method of moments (argument start.control$method = "MM").
If covariates are included, a linear regression is fitted to g̃(Yt), whose errors follow an
ARMA model like (A.4). Consequently, the covariate effects do not enter the dynamics
of the process, as it is the case in the actual model (1.1). It would be preferable to fit an
ARMAX model, in which covariate effects are included on the right hand side of (A.4),
but this is currently not readily available in R.

We compare both approaches to obtain start estimates. The GLM approach apparently
disregards the feedback mechanism, i.e., the dependence on past values of the conditional
mean. As opposed to this, the ARMA approach does not treat covariate effects in an
appropriate way. From extensive simulations we note that the final estimation results
are almost equally good for both approaches.

However, we also found out that in some situations (especially in the presence of certain
types of covariates) both approaches occasionally provoke the likelihood optimization
algorithms to run into a local optimum. This happens more often for increasing sample
size. To overcome this problem we recommend a naive start estimation assuming an
i.i.d. model without covariates, which only estimates the intercept and sets all other
parameters to zero (argument start.control$method = "iid"). This starting value
is usually not close to any local optimum of the likelihood function. Hence we expect,
possibly, a larger number of steps for the optimization algorithm to converge. This is the
default method of start estimation as we do not guarantee a global optimum with the
other two methods, in some special cases.
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Particularly for the linear model, some of the aforementioned approaches do not yield a
starting value θ̂

∗
= (β̂∗0 , β̂

∗
1 , . . . , β̂

∗
p , α̂

∗
1, . . . , α̂

∗
q , η̂
∗
1, . . . , η̂

∗
r )
> for θ which lays in the interior

of the parameter space Θ. To overcome this problem, θ̂
∗
is suitably transformed to be

used as a starting value. For the linear model (1.2) this transformation is done according
to the following procedure (Liboschik et al., 2016):

1a. Set β̂∗k := min
{
β̂∗k , ε

}
and α̂∗` := min

{
α̂∗` , ε

}
.

1b. If c :=
∑p

k=1 β̂
∗
k +
∑q

`=1 α̂
∗
` > 1−ξ−ε, then shrink each β̂∗k and α̂∗` by multiplication

with the factor (1− ξ − ε)/c.

2a. Set β̂∗0 := β̂∗0 ·
(

1−
∑p

k=1 β̂
∗
k +

∑q
`=1 α̂

∗
`

)
/c.

2b. Set β̂∗0 := max
{
β̂∗0 , ξ + ε

}
.

3. Set η̂∗m := max
{
η̂∗m, ε

}
.

A small constant ε > 0 ensures that the initial value lies inside the parameter space Θ

and not on its boundaries. It is chosen to be ε = 10−6 by default (argument epsilon).
Another small constant ξ > 0 enforces the inequalities to be strict (i.e. < instead of ≤).
This constant is set to ξ = 10−6 by default (argument slackvar); recall Section 2.2.3.
The shrinkage factor in step 1b is chosen such that the sum of the parameters equals
1− ξ− ε after possible shrinkage in this step. The choice of β̂∗0 in step 2a ensures that the
marginal mean remains unchanged after possible shrinkage in step 1b. For the log-linear
model (1.3) it is not necessary to ensure positivity of the parameters. A valid starting
value θ̂

∗
is transformed with the following procedure:

1a. Set β̂∗k := sign
(
β̂∗k
)
·min

{∣∣β̂∗k∣∣, ε} and α̂∗` := sign
(
α̂∗`
)
·min

{∣∣α̂∗` ∣∣, ε}.
1b. If c :=

∣∣∣∑p
k=1 β̂

∗
k +

∑q
`=1 α̂

∗
`

∣∣∣ > 1−ξ−ε, then shrink each β̂∗k and α̂∗` by multiplication
with the factor (1− ξ − ε)/c.

A.4 Stable inversion of the information matrix

In order to obtain standard errors from the normal approximation (2.6) one needs to
invert the information matrix Gn(θ̂; σ̂2). To avoid numerical instabilities we make use
of the fact that an information matrix is a real symmetric and positive definite matrix.
We first compute a Choleski factorization of the information matrix. Then we apply
an efficient algorithm to invert the matrix employing the upper triangular factor of
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the Choleski decomposition (see R functions chol and chol2inv). This procedure is
implemented in the function invertinfo in our package.
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Appendix B

Additional simulations

In this section we present simulations supporting that the methods that have not yet
been treated thoroughly in the literature work reliably.

B.1 Covariates

We present some limited simulation results for the problem of including covariates, in
both linear and log-linear models. For simplicity we employ first order models with one
covariate and a conditional Poisson distribution, that is, we consider the linear model
with the identity link function

Yt|Ft−1 ∼ Poisson(λt), λt = β0 + β1 Yt−1 + α1λt−1 + η1Xt, t = 1, . . . , n,

and the log-linear model with the logarithmic link function

Yt|Ft−1 ∼ Poisson(λt), log(λt) = β0 + β1 log(Yt−1 + 1) + α1 log(λt−1) + η1Xt, t = 1, . . . , n.

The parameters are chosen to be β1 = 0.3 and α1 = 0.2. The intercept parameter is
β0 = 4 · 0.5 for the linear and β0 = log(4) · 0.5 for the log-linear model in order to obtain
a marginal mean (without the covariate effect) of about 4 in both cases. We consider the
covariates listed in Table B.1, covering a simple linear trend, seasonality, intervention
effects, i.i.d. observations from different distributions and a stochastic process. The
covariates are chosen to be nonnegative, which is necessary for the linear model but not
for the log-linear model. All covariates have a mean of about 0.5, such that their effect
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Abbreviation Definition

Linear t/n
Sine (sin(2π · 5 · t/n) + 1)/2
Spiky outlier 1(t = τ)
Transient shift 0.8t−τ1(t ≥ τ)
Level shift 1(t ≥ τ)
GARCH(1,1)

√
htεt with εt ∼ N(0.5, 1) and ht = 0.002 + 0.1X2

t−1 + 0.8ht−1

Exponential i.i.d. Exponential with mean 0.5
Normal i.i.d. Normal with mean 0.5 and variance 0.04

Table B.1: Covariates {Xt : t = 1, . . . , n} considered in the simulation study. The
interventions occur at time τ = n/2. The GARCH model is defined recursively (see
Bollerslev, 1986).

sizes are somewhat comparable. The regression coefficient is chosen to be η1 = 2 · β0 for
the linear and η1 = 1.5 · β0 for the log-linear model.

Apparently, certain types of covariates can to some extent be confused with serial
dependence. This is the case for the linear trend and the level shift, but also for the
sinusoidal term, since these lead to data patterns which resemble positive serial correlation;
see Figure B.1.

A second finding is that the effect of covariates, like a transient shift or a spiky outlier,
is hard to be estimated precisely. Note that both covariates have most of their values
values different from zero only at very few time points (especially the spiky outlier) which
explains this behavior of the estimation procedure. The estimators for the coefficients
of such covariates have a large variance which decreases only very slowly with growing
sample size; see the bottom right plots in Figures B.2 and B.3 for the linear and the
log-linear model, respectively. This does not affect the estimation of the other parameters,
see the other three plots in the same figures. For all other types of covariates the variance
of the estimator for the regression parameter decreases with growing sample size, which
indicates consistency of the estimator.

The conjectured approximative normality of the model parameters stated in (2.6) seems
to hold for most of the covariates considered here even in case of a rather moderate
sample size of 100, as indicated by the QQ plots shown in Figure B.4. The only serious
deviation from normality happens for the spiky outlier in the linear model, a case where
many estimates of the covariate coefficient η1 lie close to zero. This value is the lower
boundary of the parameter space for this model. Due to the consistency problem for this
covariate (discussed in the previous paragraph) the observed deviation from normality
is still present even for a much larger sample size of 2000 (not shown here). Note that
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Figure B.1: Scatterplots of the estimated covariate parameter η̂1 against the sum β̂1 + α̂1

of the estimated dependence parameters in a linear (left) respectively log-linear (right)
model with an additional covariate of the given type. The time series of length n = 100
are simulated from the respective model with the true values marked by grey lines. Each
dot represents one of 200 replications.
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Figure B.2: Estimated coefficients for a linear model of order p = q = 1 with an additional
covariate of the given type. The time series of length n = 100, 500, 1000, 2000 (from
top to bottom in each panel) are simulated from the respective model with the true
coefficients marked by a grey vertical line. Each boxplot is based on 200 replications.
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Figure B.3: Identical simulation results as those shown in Figure B.2 but for the log-linear
model.
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Figure B.4: Normal QQ-plots for the estimated covariate coefficient η̂1 in a linear (left)
respectively log-linear (right) model of order p = q = 1 with an additional covariate of
the given type. The time series of length n = 100 are simulated from the respective
model with the true coefficient marked by a grey horizontal line. Each plot is based on
200 replications.
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Mean Median Std.dev. MAD Failures (in %)

σ2 = 1.00 0.98 0.97 0.18 0.17 0.00
0.20 0.20 0.20 0.05 0.05 0.00
0.10 0.10 0.10 0.03 0.03 0.10
0.05 0.05 0.05 0.03 0.03 3.30
0.00 0.02 0.02 0.01 0.01 52.10

Table B.2: Summary statistics for the estimated overdispersion coefficient σ̂2 of the
Negative Binomial distribution. The time series are simulated from a log-linear model
with the true overdispersion coefficient given in the rows. Each statistic is based on 200
replications.

for the spiky outlier the conditions for asymptotic normality in linear regression models
stated in Section 2.2.2 are not fulfilled. QQ plots for the other model parameters β0, β1

and α1 look satisfactory for all types of covariates and are not shown here.

B.2 Negative Binomial distribution

As mentioned before, the model with the logarithmic link function is not covered by
the theory derived by Christou and Fokianos (2014). Consequently, we confirm by
simulations that estimating the additional dispersion parameter φ of the Negative
Binomial distribution by equation (2.5) yields good results. We consider both the
linear model with the identity link

Yt|Ft−1 ∼ NegBin(λt, φ), λt = β0 + β1 Yt−1 + α1λt−1, t = 1, . . . , n,

and the log-linear model with the logarithmic link

Yt|Ft−1 ∼ NegBin(λt, φ), log(λt) = β0 + β1 log(Yt−1 + 1) + α1 log(λt−1), t = 1, . . . , n.

The parameters β0, β1 and α1 are chosen like in Section B.1. For the dispersion parameter
φ we employ the values 1, 5, 10, 20 and ∞, which are corresponding to overdispersion
coefficients σ2 of 1, 0.2, 0.1, 0.05 and 0, respectively.

The estimator of the dispersion parameter φ has a positively skewed distribution. It is
thus preferable to consider the distribution of its inverse σ̂2 = 1/φ̂, which is only slightly
negatively skewed; see Table B.2. In certain cases it is numerically not possible to solve
(2.5) and the estimation fails. This happens when the true value of φ is large and we
are close to the limiting case of a Poisson distribution (see the proportion of failures

139



2000

1000

500

100

0.5 1.0 1.5 2.0 2.5

Linear model

σ̂
2

Le
ng

th
 o

f t
im

e 
se

rie
s

0.5 1.0 1.5 2.0 2.5

Log−linear model

σ̂
2

S
am

pl
e 

si
ze

Figure B.5: Estimated overdispersion coefficient σ̂2 of the Negative Binomial distribution
for a linear (left) respectively log-linear (right) model of order p = q = 1. The time series
are simulated from the respective model with the true overdispersion coefficient marked
by a grey vertical line. Each boxplot is based on 200 replications.

in the last column of the table). In such a case our fitting function gives an error and
recommends fitting a model with a Poisson distribution instead. These results are very
similar for the linear model and thus not shown here.

We check the consistency of the estimator by a simulation for a true value of σ2 = 1/φ = 1.
Our results shown in Figure B.5 indicate that on average the deviation of the estimation
from the true value decreases with increasing sample size for both, the linear and the
log-linear model. The boxplots also confirm our above finding that the estimator has a
clearly asymmetric distribution for sample sizes up to several hundred.

B.3 Quasi information criterion

We confirm by simulation that the quasi information criterion (QIC) approximates
Akaike’s information criterion (AIC) in case of a Poisson distribution. Like in Section B.2,
we consider both the linear model with the identity link

Yt|Ft−1 ∼ Poisson(λt), λt = β0 + β1 Yt−1 + α1λt−1, t = 1, . . . , n,

and the log-linear model with the logarithmic link

Yt|Ft−1 ∼ Poisson(λt), log(λt) = β0 + β1 log(Yt−1 + 1) + α1 log(λt−1), t = 1, . . . , n,

but now with a Poisson distribution. Again, the parameters β0, β1 and α1 are chosen
like in Section B.1.
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Figure B.6: Relationship of QIC and AIC for a linear (left) respectively log-linear (right)
model of order p = q = 1. Each of the 200 points represents the QIC and AIC of a fit to
a time series of length n = 100 simulated from the respective model. The diagonal line is
the identity, i.e. it represents values for which the QIC equals the AIC.

From each of the two models we simulate 200 time series of length n = 100 and compute
the QIC and AIC of the fitted model. Figure B.6 shows that the relationship between
QIC and AIC is very close to the identity, i.e. the QIC is approximately equal to the
AIC. There is only one out of 200 cases (for the linear model) where the QIC deviates
largely from the AIC.
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