
Efficient Fault-Injection-based Assessment of
Software-Implemented Hardware Fault Tolerance

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Horst Benjamin Schirmeier

Dortmund

2016

Tag der mündlichen Prüfung: 13. Juli 2016

Dekan: Prof. Dr.-Ing. Gernot Fink

Gutachter: Prof. Dr.-Ing. Olaf Spinczyk

Prof. Dr. Andreas Polze

A B S T R A C T

With continuously shrinking semiconductor structure sizes and lower sup-
ply voltages, the per-device susceptibility to transient and permanent hard-
ware faults is on the rise. A class of countermeasures with growing popular-
ity is Software-Implemented Hardware Fault Tolerance (SIHFT), which avoids
expensive hardware mechanisms and can be applied application-speci�cally.
However, SIHFT can, against intuition, cause more harm than good, because
its overhead in execution time and memory space also increases the �gura-
tive “attack surface” of the system – it turns out that application-speci�c
con�guration of SIHFT is in fact a necessity rather than just an advantage.

Consequently, target programs need to be analyzed for particularly crit-
ical spots to harden. SIHFT-hardened programs need to be measured and

compared throughout all development phases of the program to observe re-
liability improvements or deteriorations over time. Additionally, SIHFT im-
plementations need to be tested.

The contributions of this dissertation focus on Fault Injection (FI) as an
assessment technique satisfying all these requirements – analysis, measure-

ment and comparison, and test. I describe the design and implementation of
an FI tool, named Fail*, that overcomes several shortcomings in the state of
the art, and enables research on the general drawbacks of simulation-based
FI. As demonstrated in four case studies in the context of SIHFT research,
Fail* provides novel �ne-grained analysis techniques that exploit the newly
gained possibility to analyze FI results from complete fault-space exploration.
These analysis techniques aid SIHFT design decisions on the level of pro-
gram modules, functions, variables, source-code lines, or single machine in-
structions.

Based on the experience from the case studies, I address the problem
of large computation e�orts that accompany exhaustive fault-space explo-
ration from two di�erent angles: Firstly, I develop a heuristical fault-space
pruning technique that allows to freely trade the total FI-experiment count
for result accuracy, while still providing information on all possible fault-
space coordinates. Secondly, I speed up individual TAP-based FI experiments
by improving the fast-forwarding operation by several orders of magnitude
for most workloads. Finally, I dissect current practices in FI-based evalua-
tion of SIHFT-hardened programs, identify three widespread pitfalls in the
result interpretation, and advance the state of the art by de�ning a novel
comparison metric.

iii

P U B L I C AT I O N S

Parts of this thesis have been published in the following peer-reviewed jour-
nal, conference and international workshop papers:

Horst Schirmeier, Rüdiger Kapitza, Daniel Lohmann, and Olaf Spinczyk. DanceOS:
Towards dependability aspects in con�gurable embedded operating systems. In
Alex Orailoglu, editor, Proceedings of the 3rd HiPEAC Workshop on Design for Relia-

bility (DFR ’11), pages 21–26, Heraklion, Greece, January 2011. [SKLS11]

Horst Schirmeier, Jens Neuhalfen, Ingo Korb, Olaf Spinczyk, and Michael Engel.
RAMpage: Graceful degradation management for memory errors in commodity
Linux servers. In Proceedings of the 17th IEEE Paci�c Rim International Symposium

on Dependable Computing (PRDC ’11), pages 89–98, Pasadena, CA, USA, December
2011. IEEE Computer Society Press. doi: 10.1109/PRDC.2011.20. [SNK+11]

Horst Schirmeier, Martin Ho�mann, Rüdiger Kapitza, Daniel Lohmann, and Olaf
Spinczyk. Revisiting fault-injection experiment-platform architectures. In Proceed-

ings of the 17th IEEE Paci�c Rim International Symposium on Dependable Computing

(PRDC ’11), pages 284–285, Pasadena, CA, USA, December 2011. IEEE Computer
Society Press. Fast abstract. doi: 10.1109/PRDC.2011.46. [SHK+11]

Horst Schirmeier, Martin Ho�mann, Rüdiger Kapitza, Daniel Lohmann, and Olaf
Spinczyk. FAIL*: Towards a versatile fault-injection experiment framework. In Gero
Mühl, Jan Richling, and Andreas Herkersdorf, editors, 25th International Conference
on Architecture of Computing Systems (ARCS ’12), Workshop Proceedings, volume
200 of Lecture Notes in Informatics, pages 201–210. German Society of Informatics,
March 2012. [SHK+12]

Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Protecting the dy-
namic dispatch in C++ by dependability aspects. In Proceedings of the 1st GI Work-

shop on Software-Based Methods for Robust Embedded Systems (SOBRES ’12), Lecture
Notes in Informatics, pages 521–535. German Society of Informatics, September
2012. [BSS12]

Björn Döbel, Horst Schirmeier, and Michael Engel. Investigating the limitations
of PVF for realistic program vulnerability assessment. In Proceedings of the 5th

HiPEACWorkshop on Design for Reliability (DFR ’13), Berlin, Germany, January 2013.
[DSE13]

Horst Schirmeier, Ingo Korb, Olaf Spinczyk, and Michael Engel. E�cient online
memory error assessment and circumvention for Linux with RAMpage. Interna-

tional Journal of Critical Computer-Based Systems, 4(3):227–247, 2013. Special Is-
sue on PRDC 2011 Dependable Architecture and Analysis. doi: 10.1504/IJCCBS.2013.
058397. [SKSE13]

Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Generative software-
based memory error detection and correction for operating system data structures.

v

In Proceedings of the 43rd IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN ’13), Washington, DC, USA, June 2013. IEEE Computer Society
Press. doi: 10.1109/DSN.2013.6575308. [BSS13a]

Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Return-address protec-
tion in C/C++ code by dependability aspects. In Proceedings of the 2nd GI Work-

shop on Software-Based Methods for Robust Embedded Systems (SOBRES ’13), Lecture
Notes in Informatics. German Society of Informatics, September 2013. [BSS13b]

Martin Ho�mann, Peter Ulbrich, Christian Dietrich, Horst Schirmeier, Daniel
Lohmann, and Wolfgang Schröder-Preikschat. A practitioner’s guide to software-
based soft-error mitigation using AN-codes. In Proceedings of the 15th IEEE Inter-

national Symposium on High Assurance Systems Engineering (HASE ’14), pages 33–
40, Miami, Florida, USA, January 2014. IEEE Computer Society Press. doi: 10.1109/
HASE.2014.14. [HUD+14b]

Horst Schirmeier, Lars Rademacher, and Olaf Spinczyk. Smart-hopping: Highly
e�cient ISA-level fault injection on real hardware. In Proceedings of the 19th IEEE

European Test Symposium (ETS ’14), pages 69–74. IEEE Computer Society Press, May
2014. doi: 10.1109/ETS.2014.6847803. [SRS14]

Martin Ho�mann, Christoph Borchert, Christian Dietrich,Horst Schirmeier, Rüdi-
ger Kapitza, Olaf Spinczyk, and Daniel Lohmann. E�ectiveness of fault detection
mechanisms in static and dynamic operating system designs. In Proceedings of the

17th IEEE International Symposium on Object-Oriented Real-Time Distributed Com-

puting (ISORC ’14), pages 230–237. IEEE Computer Society Press, June 2014. doi:
10.1109/ISORC.2014.26. [HBD+14]

Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk. Rapid fault-space ex-
ploration by evolutionary pruning. In Proceedings of the 33rd International Confer-

ence on Computer Safety, Reliability and Security (SAFECOMP ’14), Lecture Notes
in Computer Science, pages 17–32. Springer-Verlag, September 2014. doi: 10.1007/
978-3-319-10506-2_2. [SBS14]

Martin Ho�mann, Peter Ulbrich, Christian Dietrich, Horst Schirmeier, Daniel
Lohmann, and Wolfgang Schröder-Preikschat. Experiences with software-based
soft-error mitigation using AN codes. Software Quality Journal, pages 1–27, Novem-
ber 2014. doi: 10.1007/s11219-014-9260-4. [HUD+14a]

Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk. Avoiding pitfalls in
fault-injection based comparison of program susceptibility to soft errors. In Pro-

ceedings of the 45th IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN ’15), pages 319–330, Washington, DC, USA, June 2015. IEEE Com-
puter Society Press. doi: 10.1109/DSN.2015.44. [SBS15]

Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Generic soft-error de-
tection and correction for concurrent data structures. IEEE Transactions on Depend-

able and Secure Computing, PP(99), 2015. Pre-print. doi: 10.1109/TDSC.2015.2427832.
[BSS15]

Horst Schirmeier, Martin Ho�mann, Christian Dietrich, Michael Lenz, Daniel
Lohmann, and Olaf Spinczyk. FAIL*: An open and versatile fault-injection frame-

vi

work for the assessment of software-implemented hardware fault tolerance. In Pro-

ceedings of the 11th European Dependable Computing Conference (EDCC ’15), pages
245–255. IEEE Computer Society Press, September 2015. doi: 10.1109/EDCC.2015.28.
[SHD+15]

Thiago Santini, Christoph Borchert, Christian Dietrich, Horst Schirmeier, Martin
Ho�mann, Olaf Spinczyk, Daniel Lohmann, Flávio Rech Wagner, and Paolo Rech.
Evaluating the radiation reliability of dependability-oriented real-time operating
systems. In Proceedings of the 12th Workshop on Silicon Errors in Logic – System

E�ects (SELSE ’16), March 2016. [SBD+16]

vii

A C K N O W L E D G M E N T S

First and foremost I want to thank my advisor Prof. Dr.-Ing. Olaf Spinczyk,
who has repeatedly encouraged me during our time in Erlangen to follow
him to Dortmund, and to start working in research. Without his continued
support, advice, and funding, this thesis would not exist. I would also like to
thank Prof. Dr. Andreas Polze for his time and commitment to review this
thesis.

Over the years of researching, teaching, publishing, and networking, I met
and collaborated with many excellent people. Jochen Streicher has been shar-
ing my o�ce since the �rst day, and I guess every single part of my work
has been in�uenced by some piece of advice or a result of a discussion with
him. Michael Engel always provided advice, and words of encouragement
when I needed them.

In the context of the SPP-1500 DanceOS project,1 I had the pleasure to
work with Daniel Lohmann and Rüdiger Kapitza, who helped focusing my
research on what �nally led to this dissertation.

Then there are, of course, all the Fail* guys. Martin Ho�mann launched
the �rst Fail* prototype together with me, and he has since continuously
contributed additional components, plugins, the T32 simulator back-end, or
manpower in person of his student assistants. Among many other details,
Christian Dietrich helped turning my assessment-cycle layer tool prototypes
into the form they are in today. Christoph Borchert was among the �rst Fail*
users, and our profound discussions on fault tolerance and fault injection
have been essential for many of the �ndings in this dissertation. Björn Döbel
provided several really challenging use cases, resulting in several years of
enjoyable collaboration and occasional late-night discussions at varying SPP
meetings. My student assistants Adrian Böckenkamp, Richard Hellwig, and
Michael Lenz also put lots of work into Fail*, just as my students Tobias
Friemel and Lars Rademacher. Without these contributors, Fail* would not
be where it is today – thank you, guys!

Additionally, I would like to thank several people for helpful – profes-
sional or personal – discussions and the occasional co�ee-machine chat-
ter, without which the LS12 respectively CS-faculty working environment
would have been a di�erent place: Alexander, Andreas, Björn, Boguslaw, Flo-
rian, Georg, Helena, Hendrik, Ingo (in particular also for his work on RAM-
page), Jan, Kuan, Matthias, Markus, Olaf, Patrick, and Thomas.

Last, but certainly not least, I would like to thank my family – especially
my parents for having supported me since day one, and my wife Ste� for
coping with the by-products of my thesis writing, for hugs when needed the
most, and for everything else.

1 This work was partly supported by the German Research Foundation (DFG) priority program
SPP 1500 under grants no. SP 968/5-1, SP 968/5-2, and SP 968/5-3.

ix

C O N T E N T S

1 introduction 1
1.1 Software-Implemented Hardware Fault Tolerance 2
1.2 Fault Injection: Tools, Techniques, and Contributions of this

Dissertation 3
1.3 Outline 12
1.4 Author’s Contribution to this Dissertation 13

2 hardware faults and fault-tolerant computing 17
2.1 Moore’s Law and the Evolution of Semiconductor Technol-

ogy 18
2.2 Dependable Systems: Attributes, Threats, and Means 19
2.3 Hardware Faults at the Transistor Level 24
2.4 Fault-Tolerant Computing 34
2.5 Summary 45

3 fault tolerance assessment and hardware fault in-
jection 47
3.1 Fault Injection 48
3.2 Fault-Injection Tools and Techniques 59
3.3 Fault-Injection Optimizations 68
3.4 Alternative Analysis Techniques 75
3.5 Summary: Observations and Gaps in the State of the Art 77

4 fail*: a versatile fault-injection framework 83
4.1 Design Goals 84
4.2 Fail* Overview 86
4.3 Plumbing Layer: Back-End Abstraction and Extension 87
4.4 Case Study: RAMpage 99
4.5 Assessment-Cycle Layer: Fault-Model Defaults, Pruning, and

Tool Support 107
4.6 Case Study: Generic Object Protection 118
4.7 Case Study: Return-Address Protection 127
4.8 Case Study: WSOS / Bare-Metal-Sort 137
4.9 Discussion 144
4.10 Summary 146

5 fault-similarity pruning: campaign speedup by experiment-
count reduction 149
5.1 The Need for Full Fault-Space Coverage 150
5.2 Generalizing Fault Equivalence 151
5.3 Implementation 158
5.4 Evaluation 161
5.5 Summary and Conclusions 167

6 smart-hopping: campaign speedup by single-experiment
acceleration 169
6.1 Fast-Forwarding: State of the Art 170

xi

xii contents

6.2 Smart-hopping: Choosing the Shortest Path 173
6.3 Implementation 175
6.4 Evaluation 177
6.5 Discussion 179
6.6 Summary and Conclusions 184

7 comparison of program susceptibility to soft errors 185
7.1 Setting the Stage: Machine, Fault, and Failure Model 186
7.2 Experiment-Count Reduction Pitfalls 187
7.3 Fooling Fault Coverage: A Gedankenexperiment 193
7.4 Constructing an Objective Comparison Metric 197
7.5 Discussion and Generalization 201
7.6 Related Work 203
7.7 Conclusions 204

8 conclusions and outlook 207
8.1 Summary 208
8.2 Ongoing and Future Work 212
8.3 Final Remarks 214

Appendix 215
List of Figures 217
List of Tables 218
Listings 219

bibliography 221

A C R O N Y M S

ABFT Algorithm-Based Fault
Tolerance

ABS Anti-lock Braking System

ACE Architecturally Correct
Execution

ALU Arithmetic Logic Unit

ANN Arti�cial Neural Network

AOP Aspect-Oriented
Programming

API Application Programming
Interface

AVF Architectural
Vulnerability Factor

AVI Application Vulnerability
Index

BB Basic Block

BEEC Block Entry Exit Checking

BER Backward Error Recovery

BSSC Block Signature Self
Checking

CCA Control-�ow Checking
using Assertions

CFE Control-Flow Error

CFG Control-Flow Graph

CFM Control-Flow Monitoring

CMOS Complementary Metal-
Oxide-Semiconductor

CMP Chip-level
Multiprocessing

COTS Commercial O�-The-Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DFT Dilution Fault Tolerance

DMR Dual-Modular
Redundancy

DRAM Dynamic Random-Access
Memory

DUE Detected Unrecoverable
Error

DUEC Def/Use Equivalence Class

ECC Error-Correcting Code

ECCA Enhanced CCA

EDC Egregious Data
Corruption

EDDI Error Detection by
Duplicated Instructions

EDM Error-Detection
Mechanism

EEA Execution-Environment
Abstraction

EF E�ective Number of
Failures

EMI Electromagnetic
Interference

ERM Error-Recovery
Mechanism

FEC Forward Error Correction

FER Forward Error Recovery

FI Fault Injection

FIT Failure In Time

FPGA Field-Programmable Gate
Array

FSC Fault-Similarity Class

FSP Fault-Similarity Pruning

FVI Function Vulnerability
Index

GOP Generic Object Protection

HCI Hot Carrier Injection

IGFET Insulated-Gate
Field-E�ect Transistor

IR Intermediate
Representation

xiii

xiv acronyms

ISA Instruction-Set
Architecture

IVI Instruction Vulnerability
Index

JIT Just-In-Time

LANSCE Los Alamos Neutron
Science CEnter

MBU Multiple-Bit Upset

MCU Multiple-Cell Upset

MISFET Metal-Insulator-
Semiconductor
Field-E�ect Transistor

MITF Mean Instructions To
Failure

MMU Memory-Management
Unit

MOSFET Metal-Oxide-
Semiconductor
Field-E�ect Transistor

MPU Memory-Protection Unit

MTBF Mean Time Between
Failures

MTTF Mean Time To Failure

MTTR Mean Time To Repair

MWBF Mean Workload Between
Failures

MWTF Mean Work To Failure

NBTI Negative Bias
Temperature Instability

NMR N-Modular Redundancy

OCD On-Chip Debugger

ODD Optimum Data
Duplication

PVF Program Vulnerability
Factor

RAP Return-Address Protection

RECCO REliable Code COmpiler

RMSE Root Mean Squared Error

RMT Redundant
MultiThreading

RTL Register-Transfer Level

SBU Single-Bit Upset

SDC Silent Data Corruption

SECDED Single-Error Correct
Double-Error Detect

SEE Single-Event E�ect

SER Soft-Error Rate

SEU Single Event Upset

SIHFT Software-Implemented
Hardware Fault Tolerance

SMP Symmetric
Multiprocessing

SMT Simultaneous
Multithreading

SOI Silicon-On-Insulator

SoR Sphere of Replication

SQL Structured Query
Language

SRAM Static Random-Access
Memory

SRT Simultaneous and
Redundantly Threaded

SWIFI Software-Implemented
Fault Injection

TAP Test-Access Port

TMR Triple-Modular
Redundancy

TOCTTOU Time-of-Check-to-Time-
of-Use

TTF Time To Failure

VM Virtual Machine

WSOS Winter School on
Operating Systems

1
I N T R O D U C T I O N

Contents
1.1 Software-Implemented Hardware Fault Tolerance 2
1.2 Fault Injection: Tools, Techniques, and Contributions of this Dis-

sertation 3
1.2.1 Fault Injection 4
1.2.2 Fault-Space Exploration and the Fault-Injection Tool Land-

scape 5
1.2.3 Fault-Injection Campaign Runtimes 8
1.2.4 Fault-Space Pruning 8
1.2.5 Reducing Experiment Runtime on Real Hardware 10
1.2.6 Measuring and Comparing Program Susceptibility to Soft

Errors 10
1.2.7 Fine-Grained Post-Injection Analysis and Result Visual-

ization 11
1.3 Outline 12
1.4 Author’s Contribution to this Dissertation 13

In the decades since the invention of semiconductor-based integrated
circuits [Kil76], computer systems have pervaded all areas of technol-
ogy. Fueled by constantly progressing miniaturization [Int13] accompa-

nied by plummeting per-transistor prizes [Sch97], and – compared to ear-
lier tube-based solutions – massively lower weight and energy consump-
tion, computers have become omnipresent even in safety domains such as
automotive, avionics, or space �ight. In these domains, computing hardware
and software not only must satisfy common nonfunctional requirements on
properties such as cost and energy e�ciency, but also timeliness and espe-
cially dependability.

As chip technology is continuously moving towards higher densities and
lower operating voltages [Int13], its sensitivity to hardware faults caused by
electromagnetic radiation, interfering impulses, aging and thermal e�ects,
and process variations also increases dramatically [Con02, SKK+02, Con03,
Con05, Bor05, Bau05b, NX06, DYdS+10, DW11]. Consequently, every new Chapter 2 sheds more

light on causes and

e�ects of hardware

faults.

generation of hardware designs for embedded systems exhibits an increasing
rate of permanent (remaining for inde�nite periods), intermittent (reappear-
ing after their �rst occurrence), and transient (appearing, and disappearing)
hardware faults [Muk08].

Today, the magnitude of these e�ects are far from purely academic but can
be observed in all areas of computing. For example, Santini et al. [SRCRW15]
estimate 175,000 user-observable errors per year on iPhone 3 devices used

1

2 introduction

aboard airplanes, caused by cosmic radiation. With much more severe out-
comes – including at least 89 casualties [CBS10], and monetary losses be-
yond one billion U.S. dollars for the car manufacturer, – several Toyota car
models were reported to rarely accelerate unintendedly in the years between
2000 to 2010. Although the exact cause could not be proven, radiation-in-
duced bit �ips – and a lack of protection against them – were assumed to be
probable culprits [Yos13, Wik13]. But even outside the world of embedded
systems, for example in data centers [HSS12] or large-scale scienti�c com-
puting [SG10], reports of hardware faults have accumulated over the years.

At the hardware-software boundary, the previously maintained illusion
of always correctly functioning hardware vanishes step by step [HBB+11].
This trend towards what has been termed the “soft-error wall” [Muk08] or
“reliability wall” [BJS07] creates new challenges for the development of re-
liable embedded systems, such as automotive control units. As a reaction
to these new threats, certi�cation authorities demand explicit measures to
cope with transient faults in their functional safety standards, such as IEC
61508 [IEC98] or ISO 26262 [ISO11]. However, for cost-sensitive mass prod-
ucts – such as cars – manufacturers cannot deploy full-�edged hardware re-
dundancy mechanisms. Examples for such hardware mechanisms are triple-
modular redundant components with an additional voter, as common in
avionic systems, or memory protected with an Error-Correcting Code (ECC)
[Muk08, RTSM11].

Before dissecting the state of the art in fault injection, and identifying
gaps therein that lead to the contributions of this dissertation in Section 1.2,
the following Section 1.1 provides the motivating context for this disserta-
tion – software-implemented hardware fault tolerance. Section 1.3 provides
an outline for this dissertation, and Section 1.4 gives an overview of my
own contributions to research results obtained in cooperation with other
researchers.

1.1 software-implemented hardware fault tolerance

A primary reason for the high cost of hardware-implemented fault tolerance
is its generality, or, in other words, its obliviousness to application demands.
For example, the redundancy necessary for the ECC protects memory cells
regardless of the criticality of their contents for the application to function
within parameters. This waste of resources cannot be avoided in Commer-

cial O�-The-Shelf (COTS) systems if fault tolerance is implemented on the
hardware level. Another argument against hardware-implemented fault tol-
erance is its severe impact on performance and energy consumption: For ex-
ample, the developers of the ARGOS satellite concluded that their radiation-
hardened hardware was simply too slow for the “data processing job intended
for it” [LWW+02].

Instead, the problem has to be dealt with – at least partially – in the soft-
ware [HBB+11]. To not diminish all gains from the aforementioned higher
chip densities and lower operating voltages, embedded-software developers

1.2 fault injection: tools, techniqes, and contributions of this dissertation 3

have to selectively place application-speci�c error detection [Hil00, HJS02a,
OSM02, NV03, RCV+05b, SHLR+09, LCP+09, HAN12] and recovery mecha-
nisms [CCK+06, PGZ08, BSS12, BSS13a, BSS13b, RMCJ13, HBD+14] (EDMs/
ERMs) in their mixed-criticality systems. Critical tasks and sensitive spots Section 2.4 explains

more in detail how

countermeasures

against hardware

faults work.

in the software stack must be hardened against hardware faults, while the
remaining – less critical – components economize resource consumption by
occasionally tolerating incorrect results.

The necessity to detect and recover from faults on the software level is
not a vague possibility for the future anymore. For example, the German
semiconductor manufacturer In�neon Technologies AG has been advocat-
ing PRO-SIL™ [Kon08] – a library of SIHFT mechanisms – as a means com-
plementary to the hardware mechanisms in their TriCore® embedded mi-
crocontroller architecture.

However, experience shows that the development and placement of EDMs/
ERMs is a di�cult task in practice. Against intuition, software-based fault-
tolerance measures often cause more harm than good [GSR05, MCR+12,
BSS13a, SRJW14, SBS15], as their overhead in time and space also increases
the �gurative “attack surface” of the system for adverse environmental ef-
fects. Besides the measures’ e�ectiveness and e�ciency, especially their place-
ment in the target system – the choice of which data structures or program
modules to protect, and which to leave unprotected – is essential for the
overall system’s resiliency. Furthermore, even small changes to the func-
tional part of the software, such as refactoring a pointer-based linked list
into an array-based algorithm, can have dramatic impact on the robustness.

Hence, analogous to common practices in iterative software development,
a developer and deployer of fault-tolerance measures must be equipped with
techniques and tools to analyze, test, measure, and compare EDM/ERM im-
plementations in their target environment. Analysis yields detailed informa-
tion on the fault sensitivity of speci�c parts of the program – for example
the most critical variables, or program sections, – a basis for the informed
placement of fault-tolerance measures. Testing allows to �nd implementa-
tion �aws once the measures are placed.Measurement in turn allows to quan-
titatively observe the improvement – or deterioration – of both e�ectiveness
and e�ciency of fault-tolerance measures, and is a direct prerequisite for
comparison of di�erent implementations.

1.2 fault injection: tools, techniqes, and contributions
of this dissertation

This dissertation focuses on analysis, testing, measurement, and compari-
son of hardware-fault resilience of software systems, in particular embedded
system software. In this context, I mainly investigate the e�ect of transient
hardware faults, also known as Single Event Upsets (SEUs) or soft errors, that
manifest on the software level as single- or multi-bit faults – also known as
bit �ips – in main memory or in CPU registers. This section describes the

4 introduction

problem statement and the chosen approach involving Fault Injection (FI) in
detail, and explicitly lists the contributions of this dissertation, including

• the design and implementation of an FI tool that eliminates several
shortcomings widespread in existing tools and the literature,

• two techniques to signi�cantly speed up FI campaigns and experi-
ments,

• a metric properly interpreting FI results for measurement and compar-
ison, and

• new �ne-grained analysis methods supporting the placement of EDMs/
ERMs.

1.2.1 Fault Injection

For at least two decades, the primary testing and measurement technique in
the �eld of SIHFT, which has to a certain degree also been used for analysis
and comparison, has been Fault Injection (FI) [AAA+90, CP95, HTI97, ES98,
BP03, ZAV04, Che10, KDN14]. Since the identi�cation of primary and sec-
ondary physical causes for soft errors in the 1970s [BSH75, MW79], several
techniques for the arti�cial injection of hardware faults have been devised.
These techniques are used to mimic the e�ects of the original causes for hard-
ware faults, but with extremely increased occurrence probability to trigger
the fault-tolerance mechanisms often enough for su�cient evidence of their
e�ectiveness.1Chapter 3 discusses

di�erent FI

techniques in detail,

and describes

existing tools

implementing them.

Nowadays, so-called simulation-based FI [BP03, KDN14] is one of the most
favored FI techniques. The approach to inject faults into purely simulated
hardware o�ers many advantages:

• The target system software does not need any modi�cations, which
induce a “probe e�ect” in other FI approaches.

• Faults can be injected with high precision regarding space – where to
inject – and time – when to inject, – and can reach any part of the
hardware that is actually simulated.

• Experiments can be repeated deterministically, which is important for
many optimization techniques.

• An FI campaign, consisting of a large number of individual FI experi-
ments, can be sped up by running many simulator instances in parallel,
for example making use of a computing cluster.

Despite these advantages, simulation-based FI also comprises a distinct set
of drawbacks:

1 Note that, besides hardware faults, FI is also used to inject other types of faults, such as
software bugs – or, “software faults” [Voa97, VG00, MCV00, DM06, NCDM13], – which is
outside the scope of this dissertation. Throughout this work, the term FI means the injection
of hardware faults unless explicitly stated otherwise.

1.2 fault injection: tools, techniqes, and contributions of this dissertation 5

• Simulators are known to be very slow compared to the real hardware
they simulate, especially in the case of detailed low-level simulations,
resulting in long FI campaign runtimes.

• A simulator is only a – sometimes very abstract – approximation of
the real hardware. Results obtained from simulations must be judged
with the simulation accuracy in mind.

Before approaching the general problem of long campaign runtimes, I will
�rst describe some basics in the context of simulation-based FI, and analyze
shortcomings in the state of the art of simulation-based FI tools.

1.2.2 Fault-Space Exploration and the Fault-Injection Tool Landscape

As mentioned above, an FI campaign consists of many individual FI experi-
ments, each running the analyzed target software – often called theworkload
– in a similar way. In each experiment run, usually one fault is injected at a
speci�c point in time after the workload start – measured, for example, in
CPU cycles, – and at a speci�c location – for example, �ipping one speci�c
bit in main memory. After injecting the fault, the workload continues run-
ning, and the FI tool observes its behavior and its reaction to the injected
fault. Depending on this observation, the FI tool categorizes the experiment
result – or outcome – according to a prede�ned failure model, for example:

no effect: The workload behaved the same way as in a run without FI,
for example because the fault was masked by a subsequent operation.

detected: An EDM detected the fault, and initiated a recovery procedure,
for example a reboot.

silent data corruption (sdc): The workload’s externalized state dif-
fered from the correct output, for example because the fault a�ected
a calculation, and was not detected by an EDM.

timeout: After injecting the fault, the workload did not �nish within a
prede�ned time limit, for example because it faultily entered an in�-
nite loop.

The di�erence between each experiment in an FI campaign is the point
in time when a fault is injected, and the location where the fault is injected.
These time and space coordinates span a so-called fault space, as depicted
in Figure 1.1: Each coordinate, shown as a black dot, represents a possible
individual FI experiment.

For detailed analyses, a complete fault-space exploration, yielding informa-
tion on each and every possible fault-space coordinate, could be promising.
Such detailed result data could be broken down to the level of single bits or
individual program instructions to inform the developer about the critical-
ity of single data objects, variables, modules, functions, source-code lines, or
any other level of granularity deemed necessary for fault-tolerance related
design decisions.

6 introduction

CPU Cycles
M

e
m

o
ry

 B
it
s

111 2 3 4 5 6 7 8 9 10 12

1

2

3

4

5

6

7

8

9

..
.

...

Figure 1.1: Single-bit �ip fault space for a run-to-completion workload. Each dot
represents a possible FI space/time coordinate. The workload proceeds
until and stops at a speci�c point in time, the corresponding memory bit
is �ipped, and the workload resumes.

In spite of the potential, the state of the art in simulator-based FI tools only
very recently started to provide complete fault-space exploration support in
Relyzer [HANR12], or SmartInjector [LT13]. Nevertheless, these tools do not
introduce detailed analysis methods that would make use of the detailed result
data, but focus on methods how to obtain them. To my knowledge, all other
FI tools in existence are only capable of randomly sampling the fault space,
lacking the result detail for advanced analysis methods.

Separate from the drawbacks mentioned in the previous section, which
are inherent to simulation-based FI in general, the existing FI tool landscape
has several speci�c problems of its own:

• As explained above, all but the most recent [DBG+09, GDJ+11, HANR12,
LT13] FI tools are incapable of complete fault-space exploration. There
exists no FI tool that provides advanced analysis capabilities based on
complete fault-space exploration down to the level of single data ob-
jects, variables, modules, functions, source-code lines, or any other
level of granularity deemed necessary for fault-tolerance related de-
sign decisions.

• The vast majority of existing FI tools aims at testing, but lacks proper
metrics for measurement and comparison. The latter is essential for
driving design decisions in SIHFT.

• Most existing simulators do not have FI capabilities of their own. Re-
searchers usually time-consumingly patch FI functionality into the
code of an existing simulator [PTAB14], resulting in low code quality
and maintainability issues. In some cases, they even write a completely
new simulator with FI in mind [PSDC07, SPS09], spending resources
on an engineering task that has already been solved by others, and

1.2 fault injection: tools, techniqes, and contributions of this dissertation 7

also resulting in scantly maintainable simulation code that is heavily
intertwined with FI code [SHK+11].

• A side e�ect of this problem is that most simulation-based FI tools are
limited to one speci�c simulator. This in�exibility becomes relevant
when the requirements, for example regarding the CPU architecture,
change during development.

• Most simulation-based tools cannot be used for FI techniques other
than simulation-based FI. This forces a costly switch to a separate
tool when in later development stages, FI experiments are supposed to
be repeated on real prototype hardware, using, for example, test-port
based FI2.

• Additionally, a practical observation is that most FI tools are not pub-
licly available to other researchers for conducting own FI campaigns,
or doing research on FI techniques. While Chapter 3 discusses possible
reasons for this phenomenon, nevertheless its existence hinders own
studies with and on FI.

The observation of these disadvantages in the tool landscape motivate the
�rst contribution of this dissertation:

Contribution 1: Design and Implementation of Fail*
The �rst contribution of this dissertation is the design and implementa-

tion of an FI tool, named Fail*, that overcomes the aforementioned prob-
lems of existing tools in the �eld, and enables research on the general
drawbacks of simulation-based FI.

• First and foremost, Fail* supports complete fault-space exploration,
and analysis methods utilizing the detail level of the resulting data.
These features will be covered by the following, separately de-
scribed contributions 2, 3, and 5.

• Fail* explicitly supports measurement and comparison, and pro-
vides an appropriate metric for this purpose. This metric is sepa-
rately described in contribution 4.

• By using minimally invasive software coupling techniques, Fail*
attaches to existing simulator software without provoking serious
maintainability issues.

• With the help of a carefully designed abstraction layer, Fail* can
be – transparently to the experiment designer – used to inject
faults in several target back ends (including both simulators and
real prototype hardware) using two di�erent FI techniques.

2 In test-port based FI, faults are injected into prototype hardware via a test access port
that is commonly available in embedded microcontrollers, such as JTAG [MT90, SZR03],
BDM [How96, RSR99], or Nexus [II99, YdAL+03, FGAF06]. See Chapter 3 for more details
on this FI technique.

8 introduction

• Additionally, Fail* is the basis for the other contributions of this
dissertation, which were achieved by using and enhancing this
tool.

Chapter 4 describes Fail*’s design and implementation in detail.

1.2.3 Fault-Injection Campaign Runtimes

Another central problem of simulation-based FI is the amount of time and
computing power that needs to be spent for FI campaigns, especially when
aiming for complete fault-space exploration.

As explained in the previous section, for detailed analyses, information on
each and every possible fault-space coordinate can be essential. In this case,
the FI campaign exhaustively explores the fault space, running experiments
for every coordinate. From Figure 1.1 it becomes clear that the fault-space
size w – equaling the number of necessary experiments – grows quadrati-
cally with the amount of memory bits ∆m it uses, and the workload’s total
runtime ∆t: The size calculates as w = ∆t ⋅ ∆m.

For a relatively small workload that runs for 1s or ∆t = 109 cycles on a
1 GHz CPU, and uses 1 MiB or ∆m = 223 bits of RAM, the fault-space has a
size of w = 109 ⋅ 223

≈ 8.4 ⋅ 1015. If the experiment runtime Texperiment for
one simulation run is known, we can calculate the campaign’s total runtime
Tcampaign = w ⋅ Texperiment. Even if a single FI experiment – involving the
simulation of 109 CPU cycles – only takes Texperiment = 1 s on the host CPU,
the complete campaign would take Tcampaign = 8.4 ⋅ 1015 ⋅ 1 s, or about 266
million CPU years. Actually running this campaign is clearly infeasible even
with large amounts of computing power at hand – a problem we call the
fault-space explosion [HUD+14b, HUD+14a, SBS15].

Clearly, Tcampaign must be reduced by many orders of magnitude to reach
feasible CPU runtimes. As the FI experiments within a campaign can be con-
ducted independently of each other, an obvious approach to cut down the
wall-clock time from start to end of the campaign is to run multiple experi-
ments in parallel on available computing hardware. Nevertheless, this solu-
tion is strongly limited by the number of available host CPUs, and therefore
cannot reduce the runtime by more than a few orders of magnitude.

The remaining options of reducing Tcampaign = w ⋅Texperiment are to either
reduce the number of FI experiments N to an N ≪ w, or to reduce the
(average) runtime Texperiment for an individual experiment [GRSRV06].

1.2.4 Fault-Space Pruning

The �rst option, reducing the number of FI experiments, is a process calledSection 3.3.1 explains

the def/use-pruning

technique –

exploiting the

equivalence of

di�erent fault-space

coordinates – in

detail.

fault-list collapsing [BRIM98, BGC+02], fault pruning [HANR12], or fault-

space pruning [SBS14]. A very e�ective and widespread fault-space pruning
technique based on additional information on memory accesses of the work-
load is called def/use pruning [SJPB95, GS95]. It reduces the number of FI ex-
periments by several orders of magnitude even without reducing precision.

1.2 fault injection: tools, techniqes, and contributions of this dissertation 9

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●
●
●●●

●

●
●● ●

●

●
●●●

●

●
●●●

●1e+04

1e+06

1e+08

1e+04 1e+06 1e+08

Benchmark length (dynamic instructions)

#
 F

I
e
x
p
e

ri
m

e
n
ts Data source

(Publication)

● BSS13

BSS15

SBS14

Figure 1.2: Workload lengths in dynamic instructions of benchmarks used in three
di�erent publications, and number of FI experiments after def/use fault-
space pruning (log-log plot): The number of FI experiments necessary for
an exhaustive fault-space exploration grows roughly linearly with the
workload length – but is also in�uenced by the nature of the workload,
explaining the outliers.

Using data from FI campaigns conducted for three of my publications
[BSS13a, SBS14, BSS15], Figure 1.2 shows for each workload the length – in
dynamic CPU instructions – and the number of FI experiments necessary for
an exhaustive fault-space exploration after def/use pruning. The data shows
that, for non-trivial workloads, the number of FI experiments is still large
– with a maximum of about 1.5 billion experiments for one speci�c bench-
mark from [SBS14], – and grows about linearly with the number of dynamic
instructions in the workload.

Contribution 2: A Heuristical Fault-Space Pruning Techniqe
The second contribution of this dissertation directly addresses the prob-
lem of exhaustive fault-space exploration and the accompanying large
number of necessary FI experiments:

• I contribute a novel, heuristical fault-space pruning technique called
Fault-Similarity Pruning.

• The heuristic allows to freely trade the FI-experiment count for
result accuracy, and – unlike prevalent sampling techniques – pro-
vides information on all possible fault-space coordinates.

Chapter 5 describes the Fault-Similarity Pruning (FSP) heuristic and its
implementation in Fail*, and evaluates it in detail.

10 introduction

1.2.5 Reducing Experiment Runtime on Real Hardware

As explained in Section 1.2.3, the second option of reducing Tcampaign =

w ⋅ Texperiment is to reduce the second multiplication factor, the average run-
time Texperiment for an individual experiment. This can be achieved by either
reducing the number of workload instructions actually executed on the tar-
get – be it a simulator, or another execution environment, – or by increasing
the target’s execution speed.Section 3.3.2 discusses

related work on

FI-experiment

speedup.

The literature describes solutions to the �rst problem, reducing the num-
ber of executed instructions in the experiment phase before [PRSRV00b,
PRSRV00a, BGC+02, HVAN14, PTAB14] and after [BGC+02, LT13, HVAN14]
the fault is injected. Approaching the second problem by increasing the ex-
ecution speed for hardware simulators is not the focus of this dissertation:
Fail* has been developed with loose coupling of exchangeable target back
ends in order not to be distracted by reinventing or improving existing sim-
ulator technology.

Contribution 3: Smart-Hopping – A Fast-Forwarding Techniqe
for Fault-Injection Experiments on Real Hardware
The third contribution of this dissertation addresses the runtime of indi-
vidual FI experiments on real prototype hardware, controlled via a Test-

Access Port (TAP):

• The fast-forwarding operation – advancing a workload to the spe-
ci�c CPU cycle in its instruction stream when the fault is injected
– is a major bottleneck in the runtime of an FI experiment running
on TAP-controlled COTS prototype hardware.

• Consequently, I contribute a novel trace-based fast-forwarding tech-
nique for TAP-based FI termed Smart-Hopping. The technique in-
creases the speed of the fast-forwarding operation by several orders

of magnitude for most workloads.

Chapter 6 describes Smart-Hopping in detail, explains how it blends into
the Fail* infrastructure, and evaluates it with a widely used benchmark
suite.

1.2.6 Measuring and Comparing Program Susceptibility to Soft Errors

The remaining two contributions of this dissertation address the state of the
art on interpreting, analyzing, and presenting the results obtained from FI
campaigns.

In the overwhelming majority of existing publications describing SIHFT
solutions (for example, [Fuc96, RSRVT01, OSM02, NSV04, RCV+05b, CRA06,
CCK+06, BSS12, HAN12]), program susceptibility to soft errors is measuredSection 3.1.2.5

discusses the

fault-coverage factor

metric more in detail.

and compared using the fault-coverage factor – or short: fault coverage –
metric [BCS69]. This metric, “de�ned as the probability of system recovery

given that a fault exists” [PMAC95], can be calculated with only a sample of

1.2 fault injection: tools, techniqes, and contributions of this dissertation 11

the fault space,3 and reduces the FI results to percentages of each outcome
de�ned in the failure model (see Section 1.2.2). For example, if F = 80 out of
N = 1000 sampled FI experiments yield a result where the fault was neither
detected nor masked – in the example of Section 1.2.2, either Silent Data
Corruption (SDC) or timeout, – the fault coverage c can be calculated as

c = 1−
F
N = 1−

80
1000

= 92 %.

Contribution 4: A Comparison Metric for Soft-Error Susceptibil-
ity of Programs
The fourth contribution of this dissertation addresses this and several
other problematic measurement practices in the �eld of SIHFT:

• After uncovering another two ill-advised practices in the interpre-
tation of FI results, I demonstrate that the fault-coverage factor met-

ric is unsound for the comparison of soft-error susceptibility of pro-
grams, and can lead to wrong design decisions.

• These �ndings are substantiated by an illustrative thought experi-
ment and results from an FI campaign conducted with Fail*.

• Based on these insights, I construct an objective metric usable for

comparison using extrapolated absolute failure counts, and intro-
duce the mathematical foundation supporting this proposition.

Chapter 7 analyzes common measurement and comparison practices in
the �eld in detail, reveals the unsoundness of the fault-coverage metric for
a widely-used purpose, and provides the mathematical foundation for the
new comparison metric.

1.2.7 Fine-Grained Post-Injection Analysis and Result Visualization

With a metric at hand to measure and compare the global susceptibility of
programs to soft errors, the �fth and �nal contribution of this dissertation
addresses �ne-grained analysis and result visualization on the local level. As
explained in Section 1.2.2, the state of the art in FI tools presents a prominent
gap by lacking advanced analysis capabilities based on complete fault-space
exploration. This dissertation takes �rst steps to gauge this dormant poten-
tial.

Several researchers already addressed the problem of locating particularly
vulnerable – or critical – spots of the program [HJS01, HJS02a, BDCDN+03,
HJS04, PKI05, PKI07, PNKI08, SK08b, SK09b, SSSF10b, PSC+11, PKI11, LJ11,
HAN12, PNKI13]. These critical spots are either logical candidates for the Section 3.4 discusses

�ne-grained

criticality-analysis

methods in detail.

placement of EDMs/ERMs, or drive other dependability-related design deci-
sions – like choosing a di�erent algorithm for a particular functional require-
ment. Most of these existing works are speci�c to certain classes of EDMs/

3 Of course, results from exploring the complete fault space can also be used, but are unneces-
sarily costly if only the fault coverage is calculated.

12 introduction

ERMs, or limited to one speci�c, sometimes very coarse level of granular-
ity – which already strongly predetermines and limits the analysis results,
and, consequently, possible placements. Almost all use the aforementioned,
problematic fault-coverage factor metric for either measuring criticality, or
for the evaluation of their approach after the placement of EDMs/ERMs in
the spots deemed most critical.

Contribution 5: Fault-Injection Result Analysis
Hence, the �fth and last contribution of this dissertation introduces anal-
ysis methods at di�erent levels of granularity, operating on the results from

complete fault-space exploration.

• By collecting data on the whole fault space, the decision on the
analysis granularity in space and time can be postponed until after
the FI campaign.

• The detail level of the result data allows to run analyses aiding de-
sign decisions on the level of variables, program phases, modules,
functions, source-code lines, or single instructions, and opens up
potential for more analysis types in the future.

The Fail* case studies in Chapter 4 take �rst steps at gauging the dormant
potential of analyses of FI results from complete fault-space exploration, and
present di�erent analysis methods.

1.3 outline

This section gives an outline of this dissertation, and assigns the �ve contri-
butions from Section 1.2 to chapters.

• Chapter 2 provides more background by shedding light on the causes
and e�ects of hardware faults, and de�nes basic terms and metrics.
The chapter also describes possible countermeasures on both the hard-
ware and software levels, with a focus on the basic principles of soft-
ware-implemented hardware fault tolerance (SIHFT) and soft errors.

• Chapter 3 surveys the state of the art in hardware FI: First, the chap-
ter discusses the possible goals of injecting hardware faults – and
which of these this dissertation focuses on, – and how faults from the
real world are mapped to arti�cial injection using fault models. Sub-
sequently, further basic terms and de�nitions in the context of FI are
introduced, and an overview on the FI tool landscape is provided. Af-
ter drawing conclusions on the capabilities and properties of existing
tools, I describe optimization techniques from the literature that help
reducing the e�orts spent in FI campaigns. The chapter ends with a
discussion of metrics used in the domain of FI, and principal limita-
tions inherent to FI.

1.4 author’s contribution to this dissertation 13

• Chapter 4 describes the �rst contribution of this dissertation: The de-
sign and implementation of the Fail* FI tool. Addressing major short-
comings in the tool landscape identi�ed in the previous section and
Chapter 3, Fail* supports complete fault-space exploration, suscepti-
bility analyses on several levels of granularity, and the comparison
of di�erent programs. I describe the design decisions making these
properties possible, and provide details on Fail*’s implementation and
extension points. Additionally, Chapter 4 presents case studies with
Fail*, highlighting analysis methods at di�erent levels of granularity
that operate on the results from complete fault-space exploration.

• Chapter 5 addresses the second contribution: A heuristical fault-space
pruning technique reducing the computing e�orts for complete fault-
space exploration by freely trading the number of FI results for result
accuracy. After explaining the basic idea of fault similarity, I give de-
tails of the pruning technique’s implementation as an extension to
Fail*, and evaluate the approach on a set of benchmarks.

• Chapter 6 provides a complementary approach to reduce FI campaign
runtimes by describing the third contribution: A technique I call Smart-

Hopping that increases the speed of the fast-forwarding operation,
which is essential for systematic, fault-space exploring FI experiments
on real prototype hardware. After discussing conventional approaches
for fast-forwarding on real hardware, the chapter describes the Smart-
Hopping technique and its implementation in Fail*. Its evaluation
with a similar set of benchmarks shows an improvement of up to sev-
eral orders of magnitude compared to the state of the art.

• Chapter 7 describes the fourth contribution: A metric for the compar-

ison of the soft-error susceptibility of programs. After analyzing ill-
advised practices in the �eld of SIHFT and uncovering the un�tness
of metrics (introduced in Chapter 3) widely used to compare the fault
susceptibility of di�erent programs, I construct a new metric usable
for this purpose, and provide the mathematical foundation support-
ing this proposition.

Chapter 8 concludes the dissertation, summarizing key results and current
limitations, and suggests opportunities for future research.

1.4 author’s contribution to this dissertation

According to §10(2) of the “Promotionsordung der Fakultät für Informatik
der Technischen Universität Dortmund vom 29. August 2011”, a doctoral
dissertation has to contain a separate list that highlights the author’s contri-
butions to research results obtained in cooperation with other researchers.
Therefore, the following overview lists the contribution of the author on the
presented results for each chapter:

14 introduction

• Chapter 3 provides an overview on FI techniques, tools, and gaps in
the state of the art. The FI-tools and techniques summaries are par-
tially adapted from publications at PRDC 2011 [SHK+11], ARCS 2012
[SHK+12], ETS 2014 [SRS14], SAFECOMP 2014 [SBS14], DSN 2015
[SBS15], and EDCC 2015 [SHD+15]. The discussion on FI-tool gener-
alists and specialists was already published at PRDC 2011 [SHK+11]
and ARCS 2012 [SHK+12]. FI optimizations were already discussed at
ETS 2014 [SRS14], SAFECOMP 2014 [SBS14], DSN 2015 [SBS15], and
EDCC 2015 [SHD+15]. In each of these publications, I was the prin-
cipal author, and contributed the related-work discussions adapted in
Chapter 3.

• Chapter 4 describes the design and implementation of the Fail* FI
tool, and demonstrates its capabilities in four case studies. Details on
Fail* were already published at ARCS 2012 [SHK+12] and EDCC 2015
[SHD+15], where I was the principal author and provided the majority
of Fail*’s concepts, design, and implementation. The RAMpage case
study was published at PRDC 2011 [SNK+11] and in IJCCBS [SKSE13],
where I was the principal author, conducted all FI-related evaluation
steps, and coordinated RAMpage’s implementation reworking and ef-
�ciency evaluation by Ingo Korb. RAMpage’s initial prototype imple-
mentation was a result of Jens Neuhalfen’s diploma thesis [Neu10].
The Generic Object Protection (GOP) case study was published at DSN
2013 [BSS13a] and in IEEE TDSC [BSS15], which I co-authored. I con-
tributed the FI setup with Fail*, and the FI-related evaluation results
and simulator-runtime measurements. The Return-Address Protection

(RAP) was published at SOBRES 2013 [BSS13b], which I co-authored.
Again, I contributed the FI setup with Fail*, and the FI-related evalu-
ation results and simulator-runtime measurements.

• Chapter 5 describes the Fault-Similarity Pruning (FSP) approach for
FI-experiment count reduction. The approach was published at SAFE-
COMP 2014 [SBS14]. I was the principal author and contributed con-
cepts, design, implementation, and evaluation of the approach.

• Chapter 6 describes the smart-hopping approach for fast-forwarding
FI workloads in a high-latency execution environment. The approach
was published at ETS 2014 [SRS14]. I was the principal author and
contributed the concepts behind the smart-hopping approach and its
checkpointing extension, the related-work dissection including the
identi�cation of the simple-hopping approach we used as the compar-
ison baseline, details of the smart-hopping algorithm, and the evalua-
tion setup. The implementation was contributed by Lars Rademacher
in his master’s thesis [Rad13].

• Chapter 7 dissects current practices in simulation-based FI, identi�es
common pitfalls regarding result interpretation, and constructs a re-
sult metric that can be used to compare hardened programs. The re-

1.4 author’s contribution to this dissertation 15

sults were published at DSN 2015 [SBS15], where I was the principal
author. I contributed the study design, the related-work dissection and
resulting pitfall identi�cation, the thought experiment, and the deriva-
tion and formalization of the absolute failure count metric. The identi-
�cation of the underlying issues with the fault-coverage factor metric,
and the foundations for the presented, new comparison metric were
developed in cooperation with Christoph Borchert.

2
H A R D WA R E FA U L T S A N D FA U L T-T O L E R A N T
C O M P U T I N G

“The cheapest, fastest, and most reliable components

are those that aren’t there.”

— Gordon Bell

Contents
2.1 Moore’s Law and the Evolution of Semiconductor Technology 18
2.2 Dependable Systems: Attributes, Threats, and Means 19

2.2.1 Dependable Systems 19
2.2.2 Dependability Threats: Faults, Errors, and Failures 20
2.2.3 Means to Achieve Dependability 21
2.2.4 Dependability Metrics 22
2.2.5 Summary 24

2.3 Hardware Faults at the Transistor Level 24
2.3.1 MOSFETs and CMOS Circuitry 25
2.3.2 Radiation-Induced Transient Faults 26
2.3.3 Permanent Faults 32
2.3.4 Summary 33

2.4 Fault-Tolerant Computing 34
2.4.1 Redundancy 34
2.4.2 Hardware-Implemented 36
2.4.3 Software-Implemented 38

2.5 Summary 45
2.5.1 Fault Tolerance 45
2.5.2 Reliability Analysis, Measurement, and Test 46

This chapter provides more background on the context of this dis-
sertation by shedding light on the causes and e�ects of hardware
faults. It subsequently de�nes basic terms and metrics in the con-

text of fault tolerance, and describes possible countermeasures to hardware
faults on both the hardware and software levels.

Throughout this chapter, I will focus on transient faults, also known as
soft errors, as they are the primary focus of this work, and only scratch the
surface on other fault types and their e�ects. Similarly, the basic principles
of software-implemented hardware fault tolerance (SIHFT) will be described
more thoroughly than their hardware-implemented pendants.

This chapter is partially based on knowledge from Shubu Mukherjee’s
book Architecture Design for Soft Errors [Muk08] and Olga Goloubeva et

17

18 hardware faults and fault-tolerant computing

al.’s Software Implemented Hardware Fault Tolerance [GRSRV06], and com-
plements the information with newer developments in many places where
appropriate.

2.1 moore’s law and the evolution of semiconductor tech-
nology

As the introduction already outlined, the continuing exponential growth in
the number of transistors per semiconductor chip – popularly known as
Moore’s Law [Sch97] – is accompanied by limits in chip-area sizes and power
consumption. The industry’s primary approach to accommodate these con-
straints is a permanent, iterative improvement process pushing lithography
– the fabrication technology used to “print” circuits onto silicon wafers – to
higher structure densities. Moore’s law, of course, is no “law” in the original
meaning. It was an observation of a trend to continuously add more transis-
tors to integrated circuits, and a – nevertheless quite accurate – estimation of
the pace of this process. Among the real intentions behind structure scaling
are lower per-transistor and chip prizes [Sch97], higher switching speeds,
and reduced power consumption.

Figure 2.1 shows the evolution of a speci�c semiconductor structure-size
metric – the so-called Dynamic Random-Access Memory (DRAM) half-pitch
size, representing half the distance between identical features in DRAM mem-
ory cells – over the last 45 years. The plot gives an impression of the steadi-
ness of this exponential evolution, in spite of ever-repeating announcements
of Moore’s law coming to an end due to emerging obstacles that were as-
sumed indomitable [Sch97].

Two examples for obstacles thought to bring Moore’s prediction to an
end are the “memory wall” and “power wall” problems [BJS07, Muk08]: The
former was the observation that o�-chip DRAM memories continuously
slowed down compared to microprocessors over the years, the latter that
the extreme rise in the power dissipation led to growing overheating prob-
lems. These obstacles were countered by architectural solutions, such as
prefetching and multi-threading, advanced process technologies, and power-
management solutions like reduced supply voltages or clock frequencies
[Muk08, Mit14].

The literature expects – and already observes – that the “soft-error wall”
[Muk08] or “reliability wall” [BJS07] is the next challenge in the line of obsta-
cles on the way following Moore’s law: The structure-size shrinking causes
a rise in hardware-fault rates a�ecting the functionality of semiconductor
devices. The “power wall” even exacerbates this problem: On the one hand,
lower supply voltages increase the susceptibility to radiation-induced faults.
On the other hand, fault-tolerance mechanisms such as Triple-Modular Re-

dundancy (TMR) of critical hardware structures (see Section 2.4.2.3) consume
additional power, and may be impossible to implement within given power
and performance constraints [CMR15].

2.2 dependable systems: attributes, threats, and means 19

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●

●

10

100

1000

10000

1970 1980 1990 2000 2010 2020 2030

Year

D
R

A
M

 H
a
lf
−

P
it
c
h
 S

iz
e
 (

n
m

)

Figure 2.1: The chip industry’s history and projection of the development of a cen-
tral structure-size metric: The DRAM half-pitch size (log scale), repre-
senting half the distance between identical features in DRAM memory
cells. [Kur05, Int08, Int10, Int11, Int13]

2.2 dependable systems: attributes, threats, and means

Before describing the cause and e�ects of hardware faults more in detail, I
will �rst introduce basic terms and de�nitions from the fault-tolerance do-
main, used in the literature and throughout this dissertation. Some of these
terms were already introduced and used intuitively in Chapter 1, but are
de�ned more precisely here.

2.2.1 Dependable Systems

As de�ned by Avižienis et al., “a system is an entity that interacts with other

entities, i.e., other systems, including hardware, software, humans, and the

physical world with its natural phenomena” [ALRL04] – its environment. A
system has a speci�ed functionality, exhibits behavior to ful�ll that func-
tional speci�cation, has a state at any point in time, and may (recursively)
be composed of subsystems or components. The service a system delivers “is
its behavior as perceived by its user [. . . which is] another system that receives

service” [ALRL04] from the provider at its interface.
Dependability integrates several attributes for dependable systems [ALRL04]:

availability is generally de�ned by the system’s “readiness for correct

service” [ALRL04]. The system is not ready during scheduled or un-
planned downtimes.

reliability is the “continuity of correct service” [ALRL04]. This means
that that the system correctly answers to requests within the speci�ed
response time – it does not fail. [ALR04]

20 hardware faults and fault-tolerant computing

Figure 2.2: The chain of dependability threats [ALR01, ALRL04]: A fault may be
activated, and turns into an error. An error can be externalized and turns
into a failure, which propagates upwards as a fault on the next layer.
Figure based on [Ulb14, Muk08, Döb14].

safety describes the “absence of catastrophic consequences” [ALRL04] on
both users and environment. This means that a passive (“fail-stop”)
behavior can still be “safe”,1 even if the system does not do anything
useful anymore [Ech90, Muk08] – it may fail, but not in a particularly
catastrophic way. [ALR04]

integrity is de�ned by the “absence of improper system [state] alterations”
[ALRL04].

maintainability is the system’s “ability to undergo modi�cations and

repairs” [ALRL04].

This dissertation focuses on the dependability attribute reliability and its
assessment. Nevertheless, reliability directly a�ects both availability and
safety, and depends on the system’s integrity. Maintainability is generally
outside the scope of this dissertation, although I will discuss the maintain-

ability of FI tools in Chapter 3 and 4.

2.2.2 Dependability Threats: Faults, Errors, and Failures

A complex hardware/software system can be understood as a stack of ab-
straction layers, each only observing the external state of the layer directly
below. In this setting, the terms fault, error, and failure – dependability im-

pairments [Lap85, LAK92] or threats [ALR04, ALRL04] – can be explained
and put into context.

Figure 2.2 shows how a defect or an interaction with the external envi-
ronment – such as the impact of energetic particles – can cause a fault in a

1 In his classic 1985 paper, Gray calls this “not doing the wrong thing” [Gra85] behavior Relia-
bility instead of Safety [ALR04], and “doing the right thing within the speci�ed response time”

[Gra85] Availability instead of Reliability [ALR04]. Since then, the community has put con-
siderable e�orts into agreeing upon a common taxonomy and clear de�nitions of the terms
used [Lap85, LAK92, ALR01, ALRL04, ALR04].

2.2 dependable systems: attributes, threats, and means 21

hardware structure or software module. An example on the circuit level is
an energetic particle hitting a transistor. A fault does not necessarily mean
that the device – as seen on abstraction layer n – has an (internal) error yet:
Unless the fault gets activated, it stays dormant or passive. [LAK92, ALR01,
ALRL04, GRSRV06]

A fault is activated and becomes an error if it a�ects the layer’s internal
state, residing in its inner scope (Figure 2.2). If, in the example, the transistor Section 2.3 describes

hardware faults at

the transistor level in

detail.

is hit “strong enough”, it may change its switching behavior.
If the layer’s internal state is modi�ed due to an error, it may not be able to

provide its service to a layer above correctly – the error escalates to the outer
scope. This externally visible deviation from the expected service is called a
failure.2 In the example, the transistor may be part of a DRAM circuit: The
state it helped holding could be inverted – a bit �ip occurs, constituting a
failure on that layer. Section 2.4 gives an

overview on

fault-tolerance

mechanisms

explicitly preventing

errors from becoming

failures.

Instead of turning into a failure, errors can also be masked – for exam-
ple, overwritten before they are read – or tolerated – for example, due to
a redundancy mechanism bringing the �ipped bit back to its correct state
before escalation.

Once a service failure on layer n occurred, the failure can propagate to the
layer n+ 1 above. From the perspective of layer n+ 1, the layer n failure is
a fault, possibly again being activated and turning into an error on layer
n+ 1. Hence, the “notion of an error [. . .] is fundamentally tied to the notion

of a scope” [Muk08]. A fault-tolerance mechanism (see Section 2.4) on layer
n can prevent a fault from propagating to layer n + 1 by preventing the
corresponding error to turn into a failure on layer n.

Faults can further be categorized by their lifetime. Transient faults – also
known as soft faults – appear and disappear again. Intermittent faults �rst
behave similarly, but then reappear: They are considered “early indicators of

impending permanent faults” [Muk08]. These faults, as their name already
indicates, remain for an inde�nite period of time, and can often only be cor-
rected by replacing – or repairing – the a�ected component.

2.2.3 Means to Achieve Dependability

The literature categorizes means to actually achieve the di�erent dependabil-
ity attributes from Section 2.2.1 into four categories [ALRL04]:

fault prevention (or fault avoidance) aims at preventing the oc-
currence of faults. This can, for example, be achieved by improving

2 Parts of the literature [Lap85, LAK92, Muk08] only call service deviations visible to the user
a failure, and use the term error for all other layers. As this can lead to confusion when and
how exactly an error is externalized to the upper abstraction layers, I use the term failure

for the externalization of errors on any of the system’s layers or subsystems (following a
majority of other works, e.g., [ALR01, ALRL04, ALR04, Döb14, Ulb14]). Prasad et al. [PMW96]
discuss similar dependability terminology disagreements in the community. Note, though,
that the literature often uses the term soft error for a failure on the hardware layer, meaning
a transient fault from the perspective of a software layer.

22 hardware faults and fault-tolerant computing

Figure 2.3: The relationship between MTTF, MTTR, and MTBF. Figure based on

[Mar11].

chip manufacturing processes towards using packaging materials emit-
ting less alpha radiation [Con03].

fault tolerance is a means to “avoid service failures in the presence
of faults” [ALRL04]. Example techniques can be found on both the
hardware and software level – for example, ECC memory respectively
duplication of important variables, – and include introducing some
sort of redundancy into the system (see Section 2.4).

fault removal reduces the number and severity of faults. Fault removal
can be applied at development time, for example by localizing insu�-
ciently fault-tolerant parts of the system, and hardening them. At run-
time, fault removal is achieved by conducting maintenance work, such
as replacing physically damaged parts, or applying patches [ALRL04].

fault forecasting estimates the present number, the future incidence,
and the expected consequences of faults. This kind of (either quali-
tative or quantitative) system evaluation can, for example, involve FI
experiments.

In this dissertation, I focus on fault forecasting – the assessment and quanti�-
cation of the reliability attribute (Section 2.2.1) – and techniques to provide
information aiding fault removal by directed application of fault tolerance
mechanisms.

2.2.4 Dependability Metrics

The literature de�nes several metrics to capture and quantify particular de-
pendability attributes. One of the most basic metrics is Time To Failure (TTF),
expressing fault or error rates. If in a speci�c device an error occurs after n
years, this is its TTF. A more practical metric is derived when the TTFs of
multiple devices – or multiple errors in the same device – are measured and
averaged, yielding the Mean Time To Failure (MTTF). [Muk08]

Directly related to MTTF areMean Time To Repair (MTTR) andMean Time

Between Failures (MTBF), as illustrated in Figure 2.3. MTTR measures the

2.2 dependable systems: attributes, threats, and means 23

mean time to repair the device after the error was detected. MTBF accounts
for the mean total time between one error and the next error, including the
repair time: MTBF = MTTF+MTTR.

A metric related to MTTF is Failure In Time (FIT) [JED01], where 1 FIT
“represents an error in a billion (109

) hours” [Muk08]. A device’s error rate
is often referred to as its FIT rate. An advantage over MTTF is the fact that
FIT rates are additive when composing a device from multiple components
under speci�c assumptions3 [Muk08, Mar11]:

FITdevice =

n

∑
i=0

FITcomponent i

FIT rate and MTTF4 are reciprocally related [KK07, Muk08, Sor09, Mar11]
(again, under the aforementioned assumptions):

MTTF =
109h

FIT rate

The dependability attribute availability (see Section 2.2.1) is directly associ-
ated with a metric quantifying it as “the probability that a system is function-

ing correctly at a particular instant of time” [Muk08]. It can be calculated as a
fraction of the device’s uptime and its total lifetime, or by using MTTF and
MTBF:

Availability =
system uptime

system uptime+ system downtime
=

=
MTTF

MTTF+MTTR
=

MTTF
MTBF

In this context, the term “�ve nines” – or any other number of “nines” – is
often used to refer to an availability of 0.99999, or 99.999 percent.

Similarly, the reliability R(t) of a system is de�ned as “the probability

that the system does not experience a user-visible error [i.e., a failure] in the

time interval (0, t]” [Muk08], or, in other words, the probability of it still
functioning at time t. Considering a population sized N of similar devices,
of which at time t exactly F(t) have failed, the reliability can be calculated
as

R(t) = 1− P(Failure) = 1−
F(t)

N .

For devices with a constant and known error rate λ, R(t) is an exponential
function [Muk08]:

R(t) = e−λt

3 Notably, the errors must occur independently and at a constant rate – a valid approximation
“during the normal operating life” between the high-failure-rate infant mortality and wearout
phases of the “bathtub” curve [Mar11].

4 The literature is actually ambiguous on whether MTTF [KK07, Muk08, Sor09, Mar11] or
MTBF [Fec09, Nic10, Döb14] is the inverse of FIT. Mukherjee even contradicts himself
[MER05, Muk08] throughout his publications [MEFR04]. As the de�nition from Marwedel
[Mar11] seems more stringent, I present it here. Nevertheless, typically MTTR is much
smaller than MTTF, or device repair is simply not considered at all [Muk08, Mar11]; hence
MTBF ≈MTTF, explaining the mixup in the literature [Mar11], and rendering the di�erence
negligible in practice.

24 hardware faults and fault-tolerant computing

Dependability

Attributes

Availability
Reliability

Safety
Integrity

Maintainability

Threats
Faults
Errors

Failures

Means

Fault Prevention
Fault Tolerance
Fault Removal

Fault Forecasting

Figure 2.4: The dependability tree. Figure based on [ALRL04].

Evidently, the longer a device runs with a constant error rate, the less prob-
able it becomes that it has not experienced an error. The longer a �eet of
similar devices runs, the lesser fraction of devices still functions correctly –
assuming that all errors invariably turn into failures.

2.2.5 Summary

To summarize, the community has agreed on several attributes accompa-
nying dependable systems, reliability being only one of them. The depend-
ability threats fault, error, and failure are de�ned as an escalating “sequence

of events that lead to unwanted state of a�airs” [PMW96], where the three
terms can be distinguished by their level of visibility to the system or its
surroundings. Additionally, the means to achieve dependability are catego-
rized into four categories, with a focus of this dissertation on fault forecasting.
Figure 2.4 summarizes dependability attributes, threats, and means in the de-
pendability tree [ALRL04]. Several metrics quantify dependability attributes,
and are widely in use in the literature.

Having de�ned these basic terms and metrics, the next section will look
into concrete instances of hardware faults at the transistor level.

2.3 hardware faults at the transistor level

Modern integrated circuits are clearly dominated by transistors, and con-
sequently, semiconductor structure shrinking primarily a�ects the dimen-
sions and physics of transistors. To better understand the causes for hard-
ware faults on the transistor level, I will �rst give an overview on how the
nowadays most widely used Metal-Oxide-Semiconductor Field-E�ect Transis-

tor (MOSFET) works, and then describe environmental e�ects causing it to
malfunction.

2.3 hardware faults at the transistor level 25

(a) MOSFET in open (non-conducting) state. (b) MOSFET in conducting state.

Figure 2.5: Model of an n-channel enhancement-mode MOSFET with source (S),
drain (D), gate (G), and body (B) terminals, in open (non-conducting)
and conducting states. Figures based on [WH11, Döb14].

2.3.1 MOSFETs and CMOS Circuitry

The MOSFET5 has four terminals – source (S), drain (D), gate (G), and body (B).
Usually, body and source are connected, forming a three-terminal device. Fig-
ure 2.5a shows the model of an n-channel enhancement mode MOSFET, or
nMOS: Source and drain are connected to semiconductor material altered
in the production process to hold more charge carriers – in this case neg-
ative charges, or electrons – than without the alteration. This production
process is called doping, introducing impurities into the silicon semiconduc-
tor, and in this case resulting in n-type (“negative”) semiconductor material.
[CH02, WH11]

The two n-type source and drain areas are separated by p-type bulk sub-
strate, which is in contrast positively charged, and therefore deprived of elec-
trons. The boundaries between n- and p-type semiconductors act as diodes,
and in e�ect prevent electrons �owing6 from source to drain – or, inversely,
a current �owing from drain to source – if a voltage is applied between these
terminals. [WH11]

To get the MOSFET into conducting state, the gate electrode comes into
play. It is located above the bulk substrate, and electrically insulated from it
by a thin isolation layer – usually made from silicon dioxide, SiO2. When a
positive voltage between gate and body – the latter usually being connected
to the source – is applied, electrons in the bulk substrate are attracted to-
wards the gate insulator (Figure 2.5b). When the voltage crosses a thresh-
old, the number of electrons below the oxide layer su�ces to create a con-
ducting channel between source and drain. This e�ect is called the �eld

e�ect, the charge at the insulation layer is termed the critical charge Qcrit
[WH11, Döb14]. The negatively charged channel is called the n-channel,
hence the name n-channel MOSFET. In contrast, a p-channel MOSFET forms
a positively charged p-channel below the oxide layer if a negative voltage is
applied between gate and source [CH02, WH11].

5 A special case of Metal-Insulator-Semiconductor Field-E�ect Transistor (MISFET) or
Insulated-Gate Field-E�ect Transistor (IGFET).

6 In depletion mode, in contrast to the described enhancement mode, the behavior defaults to
conductibility instead.

26 hardware faults and fault-tolerant computing

Figure 2.6: MOSFET struck by an alpha particle or a neutron, creating a trail of
electron–hole pairs in the bulk substrate.

In ComplementaryMetal-Oxide-Semiconductor (CMOS) technology, which
is widely in use for producing microprocessors or Static Random-AccessMem-

ory (SRAM), a “complementary symmetry” is achieved by symmetrically
pairing up n-type and p-type MOSFETs with the e�ect of high noise im-
munity and low static power consumption. For example, one six-transistor
SRAM cell – holding a single bit of data – consists of two nMOS and two
pMOS transistors, forming two cross-coupled inverter gates storing the bit,
and two additional nMOS transistors controlling read and write accesses.
Similarly, pairs of MOSFETs are the building blocks of microprocessor logic
[WH11]. In DRAM cells, in contrast to SRAM, the information is stored
in a (semiconductor-based) capacitor, accessed by a single nMOS transistor
[JNW08, WH11].

To summarize, being the central building block for both memory bits and
CPU logic, the MOSFET’s correct functioning is vital for correct operation
of a computer. For example, the malfunction of a transistor that is part of a
memory cell can lead to the stored bit being �ipped from 0 to 1, or vice versa.
Unfortunately, as the “reliability wall” approaches, MOSFETs exhibit grow-
ing probabilities to malfunction. In the following subsections, I will summa-
rize the physical causes for both transient and permanent faults that can lead
to a MOSFET failure.

2.3.2 Radiation-Induced Transient Faults

This section reports on both historic and contemporary evidence for radia-
tion-induced transient faults in semiconductor hardware, and subsequently
analyzes the root causes and e�ects of these faults in detail.

2.3.2.1 Evidence of Transient Faults

Among the �rst reports of transistor anomalies in the literature is a 1975
study by Binder, Smith and Holman [BSH75] who describe malfunctions
aboard a communication satellite in orbit, and �nd a likely cause in high-
energy cosmic rays – especially iron nuclei. They observe a Soft-Error Rate
(SER) of 1.5×10−3 per transistor per year, or about 171 FIT (see Section 2.2.4).
Soon thereafter, Ziegler and Lanford [ZL79] predicted the occurrence of soft
errors originating from cosmic radiation also on the ground – calculating a

2.3 hardware faults at the transistor level 27

SER of about 7000 FIT for a 64 kbit DRAM chip, or about 0.11 FIT per bit
– and at aircraft altitudes. Their results were treated with skepticism, until
their prediction of an error increase with altitude was con�rmed by data
gathered in IBM’s computer repair logs [ORT+96, ZCM+96, Muk08]. In the
same year, Intel researchers May and Woods [MW79] traced transient errors
in their 2107-series 16-kb DRAM chips back to a di�erent source of ioniz-
ing radiation: uranium contamination in the ceramic packaging surround-
ing the chip and radiating alpha particles [MW79, Muk08]. Similarly, IBM
observed radioactive contamination in an acid used for chip manufacturing
[ZCM+96, Muk08].

After the �rst observations and predictions in the 1970s and 1980s [BSH75,
ZL79], many more anecdotes and systematic studies of radiation-induced
soft errors have appeared in the literature. In 1995, Baumann et al. [BHS+95]
identi�ed boron-10 isotopes from the manufacturing process, activated by
low-energy atmospheric neutrons, as another source of ionizing radiation.
Soon thereafter, Normand [Nor96] reported incidents of cosmic-ray strikes
by studying error logs of several large computer systems. By the end of the
millennium, Sun Microsystems observed soft errors in the insu�ciently pro-
tected cache SRAMs of their UltraSPARC-II CPUs [Eva03, CCA05, Muk08].

After around the year 2000, the literature gradually moved from anecdotic,
qualitative reports towards systematic, quantitative, and large-scale analyses
of di�erent technology generations. Constantinescu et al. [Con03] studied
ECC errors on 193 servers, and concluded that the failure probability rises as
chip densities and frequencies increase. Soon thereafter, Cypress Semicon-
ductor reported a number of incidents arising due to soft errors [Muk08],
and Michalak and colleagues [MHH+05] found that some of the Hewlett-
Packard many-core machines in Los Alamos National Laboratory – located
at about 2200 m above sea level – crashed frequently because of cosmic ray
strikes to its parity-protected cache-tag array. Li et al. [LSHC07, LHSC10]
observed errors in DRAM memories in 300 machines of a web search engine
and a university over a period of several months. They concluded that the
observed SER of about 0.56 [LSHC07] and 0.061 FIT per Mbit [LHSC10] was
lower than expected from earlier studies, which had reported between 200
and 5000 FIT per Mbit. Panzer-Steindel [Pan07] conducted a similar anal-
ysis with CERN’s computers, showing that the probability of SDC errors
is several orders of magnitude higher than expected by component failure
statistics.

At a much larger scale, Schroeder et al. collected data sets on DRAM
failures from Los Alamos National Laboratory [SG06, SG10] and Google’s
[SPW09, SPW11] server farms. They observed much higher error rates –
on average 25 000 to 75 000 FIT per Mibit – than previously reported, and
a dominance of permanent errors over transient ones. Analyzing data col-
lected from about one million consumer-grade computers, Nightingale et al.
[NDO11] reported DRAM errors to be far more likely than expected from an
analysis of radiation e�ects. In the same year, Slayman [Sla11] summarized
device FIT rate trends over several technology generations. He reported 10−4

28 hardware faults and fault-tolerant computing

to 10−3 FIT per bit (equaling 100 to 1000 FIT per Mbit) for SRAM, 10−6 FIT
per bit (1 FIT per Mbit) for Flash memory, 10−9 to 10−8 FIT per bit (0.001
to 0.01 FIT per Mbit) for DRAM, and estimated soft-error rates in logic “per
bit or per gate” to be “about 10 times lower than SRAM” [Sla11]. More re-
cently, Sridharan and colleagues conducted several studies on DRAM and
SRAM cells in several large supercomputers [SL12, SSD+13, SDB+15]. They
reported SERs between 0.066 FIT [SL12] and 0.044 FIT per Mbit [SSD+13]
for DRAM devices. Con�rming Schroeder et al. [SG06, SPW09, SG10, SPW11]
to a certain extent, they also found that permanent faults dominate over tran-
sient ones [SL12] but that this dominance diminishes with increasing device
age [SSD+13], and that multi-bit faults are becoming an increasing problem
[SL12]. Maiz et al. [MHZA03], Radaelli et al. [RPWD05], and Georgakos et al.
[GHO+07] investigate the multi-bit fault patterns in SRAMs. Sridharan et al.
[SL12, SDB+15], as well as Hwang et al. [HSS12], also con�rm that speci�c
ECC memory protection schemes still signi�cantly reduce the SER, while
others do not su�ce for contemporary DRAM technology [SDB+15].7

2.3.2.2 High-Energy Alpha Particles and Neutrons

While some of the studies also mention other causes for soft errors, such
as transistor variability originating from imperfect manufacturing processes,
or device aging, radiation stands out as a basic cause throughout all semicon-
ductor generations until today. Despite several direct and indirect origins,
within the earth’s atmosphere there are two primary sources of radiation-
induced transient faults in transistors: alpha particles from radioactive decay
in the close surroundings of the chip, and neutrons from the atmosphere.The excursus on

cosmic rays on

page 29 provides

more details on the

origin of neutrons in

the atmosphere.

Alpha particles are radiated from radioactive nuclei (such as uranium, ra-
dium or thorium) in a process called alpha decay, and consist of two protons
and two neutrons (essentially a helium nucleus, 4

2He2+). An alpha particle
can a�ect a transistor by depositing a dense track of charge, and creating
electron–hole pairs in the bulk substrate (Figure 2.6) in a quantity depend-
ing on the particle’s initial kinetic energy [Muk08]. A delayed recombination
of these electron–hole pairs can cause a current to �ow, depositing a charge
in the transistor. If this charge exceeds Qcrit, the transistor switches faultily,
causing, e.g., the bit stored in a �ip-�op to invert, or CPU logic to malfunc-
tion – a transient or soft fault occurs. Although epoxy or nonradioactive lead
can be used to mostly shield a chip from alpha radiation, still small amounts
of alpha particles can reach the chip. [Muk08]

Neutrons, on the other hand, only indirectly produce electron–hole pairs
by colliding with atoms in the silicon. These collisions can produce a mul-
titude of fragments, “such as pions, protons, neutrons, deuterons, tritons, al-

pha particles, and other heavy nuclei, such as magnesium, oxygen and carbon”

7 Additionally, Sridharan et al. [SDB+15] criticize the metrics used in earlier studies, speci�-
cally mentioning Hwang et al. [HSS12] and Schroeder et al. [SPW11] as examples. The crit-
icism suggests that previously measured memory-cell failure rates are o� by several magni-
tudes.

2.3 hardware faults at the transistor level 29

Excursus: Cosmic Rays
The high-energy neutrons themselves, which the main text refers to as
a possible indirect source for transistor failures within the earth’s atmo-
sphere, are descendants of a phenomenon termed cosmic rays. Having
initially been a term for “unknown energetic particles that interfered with

studies of radioactive materials” [Zie96], cosmic rays are nowadays com-
monly subdivided into four categories:

primary cosmic rays are galactic particles that are believed to orig-
inate from supernovae, stellar �ares, pulsars, and other cosmic ac-
tivities. They primarily consist of protons – and lower quantities
of alpha particles and heavier atomic nuclei – with energies above
1 GeV [Muk08]. Besides being an indirect source of terrestrial cos-
mic rays, primary and solar cosmic rays can also directly a�ect tran-
sistors aboard spacecraft, such as communication satellites.

solar cosmic rays have a similar particle-type composition as pri-
mary cosmic rays, but originate from our solar system’s own sun,
and have “signi�cantly less energy than galactic particles” [Muk08].
(Some sources de�ne solar cosmic rays as a subset of primary cos-
mic rays [Zie96].)

secondary cosmic rays are particles produced when primary and
solar cosmic rays collide with atoms within the earth’s atmosphere
– primarily oxygen and nitrogen. The emanating shower of cascade
particles – primarily pions, muons, neutrons, protons, electrons,
and photons – is recursively involved in further collisions produc-
ing more cascades – this is mostly the case with particles with
strong interaction, such as pions, neutrons, and protons. Secondary
particles with a charge – protons and electrons – additionally lose
energy by interacting with electrons in the atmosphere. A side ef-
fect of this process is less and less particles reach altitudes closer to
sea level, with a peak at the “Pfotzer point” at around 15 km above
sea level [Pfo36, Zie96]. The relative neutron-�ux increase I(H) for
elevations above sea level can be approximated using the following
equation, using an altitude H in kilometers [Muk08]:

I(H) = e(
119.685H−4.585H2

136)

Figure 2.7 plots I(H) up to an altitude of 30 km. In New York City,
the reference value of 1.0 at sea level has been measured in 2004
to be around 48 neutrons per hour and cm2 [GGR+04]. It varies
slightly for di�erent locations around the globe, and additionally
depends on the current solar activity level [Muk08, JED01]. At a
solar modulation level of 50 percent, the neutron �ux is 9 percent
above the New York value for Dortmund, Germany, according to
the Neutron Flux Calculator [Wil06].

terrestrial cosmic rays are particles that �nally reach the earth’s
surface. Fewer than 1 percent are primary or solar particles, and
they are “mostly third- to seventh-generation cascade particles”

[Zie96].

30 hardware faults and fault-tolerant computing

●
●

●

●

D
o

rt
m

u
n
d

,
O

tt
o
−

H
a

h
n
−

S
tr

.
1
6

Z
u

g
s
p

it
z
e

C
o

m
m

e
rc

ia
l
a
ir

p
la

n
e
s

P
fo

tz
e
r

p
o
in

t

0

100

200

300

0 10 20 30

Height Above Sea Level (km)

R
e
la

ti
ve

 N
e

u
tr

o
n

−
F

lu
x
 I

n
c
re

a
s
e

Figure 2.7: The relative neutron-�ux increase I(H) for elevations above sea level
(see the excursus on cosmic rays on page 29): An airplane �ying at a
height of 11 kilometers receives 271 times more neutrons than at sea
level.

[Muk08]. Subsequently, these fragments can cause ionization tracks as de-
scribed for alpha particles above, and as shown in Figure 2.6.

As transistors shrink (see Section 2.1), Qcrit decreases, also allowing par-
ticles with less kinetic energy to a�ect the switching behavior. Although
this might seem to increase the vulnerability of a single transistor to ioniz-
ing radiation, at the same time its area on the chip – and, hence, the prob-
ability of being hit at all – decreases [Con03]. Due to additional e�ects re-
garding manufacturing technology and the particle energy spectrum, the
overall vulnerability of SRAM cells was observed to drop between 250 nm
and 65 nm feature sizes, but started increasing again when moving to 40 nm
[DW11, Döb14, Con05]. Earlier measurements indicate that the reduction
of supply voltages in parallel to structure shrinking are another factor con-
tributing to this trend change [HMA+01, Con03]. As a result, the SRAM per-
bit SER roughly stayed in the same ballpark across di�erent technology gen-
erations [Bau05a, Bau05b, YE09, Sla11], but recently started to increase after
years of improvement. In contrast, the DRAM per-bit SER has continuously
dropped [Bau05a, Bau05b, Sla11].

Nevertheless, as the total number of transistors per chip – regardless of
them being used for memory or logic – continuously grows [Sch97], the
chip vulnerability also rises. In consequence, the susceptibility to soft errors

is dominated by the number of transistors used, and increases with each chip
generation. Due to the steady growth in memory density (bits per system),
even DRAM can only barely hold its per-system SER throughout technology
generations [Bau05a, Bau05b, Sla11].

2.3 hardware faults at the transistor level 31

Faulty bit is read?

!

Bit has error protection?

detection only detection &
correction

Program output
a�ected?

benign false DUE corrected
! (impossible) SDC true DUE corrected

Table 2.1: Classi�cation of possible outcomes from a SBU. Table adapted from

[WEMR04, MER05, Muk08].

2.3.2.3 Other Sources for Transient Faults

Although alpha and neutron radiation is assumed to be responsible for the
majority of soft errors, the literature also mentions other causes, such as
crosstalk of adjacent interconnects [Con03, CMV02, RCE02] resulting in line
noise or signal delays. In this context, DRAM disturbance or “row-hammer”
faults [KDK+14] recently caught media attention, as under speci�c circum-
stances they can be triggered by software and cause security issues.

These other sources for soft errors are, however, outside the scope of this
dissertation.

2.3.2.4 E�ects of Soft Errors

Soft errors are a special case of so-called Single-Event E�ect (SEE), which can
be subdivided into further categories, describing their e�ect on the device
they hit [Nic10, Alt13].

The classical Single-Bit Upset (SBU) is a radiation-induced event causing a
bit to �ip (“upset”) in a memory cell or latch. The memory cell can be part of
internal CPU state, Instruction-Set Architecture (ISA)-visible CPU registers,
or any other part of the memory hierarchy, including CPU cache SRAM
or main memory DRAM. Similar to SBUs, in a Multiple-Cell Upset (MCU)
a single event upsets multiple bits, with the special case of a Multiple-Bit
Upset (MBU) meaning bits in the same machine-word neighborhood. The
term Single Event Upset (SEU) subsumes SBUs, MCUs, and MBUs, and can
mean either of them. [Nic10, Alt13]

Depending on the point in time an SEE strikes, and the importance of the
data bits to the device or the software that runs on it, bit-�ips can result in
di�erent e�ects on the system level. The classi�cation scheme in Table 2.1
distinguishes possible outcomes after a particle strike, depending on how
the system copes with the bit-�ip:

• If a bit �ipped by an SBU is never read after the event – either because
the software does not use the a�ected location at all, or the bit is over-
written – the system is not a�ected any further: The result is benign
[WEMR04], the SBU has no e�ect.

32 hardware faults and fault-tolerant computing

• If the �ipped bit is read, but it is protected by a hardware or software-
implemented hardware fault tolerance mechanism (see Section 2.4), it
is possible to either correct or at least detect the problem [WEMR04]:

– If a mechanism capable of correcting the fault is in place, the out-
come is benign. [WEMR04]

– The case that the fault-tolerance mechanism can only detect the
fault, but not correct it, results in a Detected Unrecoverable Er-

ror (DUE). Usually, the system reacts with a fail-stop behavior
to remain in safe operation (see Section 2.2.1). The literature fur-
ther distinguishes between errors that would have a�ected the
program’s output if not detected (resulting in a SDC, see below),
and those that would have been masked afterwards (with a be-

nign outcome, see below): These cases are termed true and false

DUE. [WEMR04]

• If no protection scheme is in place, the �ipped bit cannot be detected,
let alone corrected:

– Depending on the program, the bit-�ip may be masked during
further processing. This can be the case, for example, if a sub-
sequent bit operation on the data overwrites the faulty bit, or
the underlying algorithm tolerates the faulty data and still pro-
duces the correct program output. The outcome is, again, benign.
[WEMR04]

– The most unfavorable outcome sets in when the �ipped bit prop-
agates through the program until it a�ects the output. Avoiding
such a Silent Data Corruption (SDC) is the foremost goal of fault-
tolerance mechanisms (see Section 2.4). [WEMR04]

In the context of “soft computing” applications, such as JPEG or MPEG de-
coders, Thomas and Pattabiraman [TP13] further subclassify SDCs into Egre-
gious Data Corruptions (EDCs) and non-EDCs. EDCs are SDCs resulting in an
output that exceeds a de�ned �delity threshold – for example, measured in
terms of signal-to-noise ratio when compared to the correct output, – while
a non-EDC output deviates in a way acceptable to the user.

To summarize, SEEs can result in outcomes with a varying degree of sever-
ity, with the SDC being the most unfavorable. Section 2.4 discusses both
hardware and software mechanisms to avoid this case.

2.3.3 Permanent Faults

Additionally to transient – or soft – faults, which vanish after the directly
or indirectly a�ected �ip-�ops or bits are re-written, integrated circuits also
su�er from faults that permanently let the device malfunction.

Mukherjee [Muk08] distinguishes extrinsic and intrinsic permanent faults.
Extrinsic faults originate in the manufacturing process and are usually de-
tected by burn-in tests before shipment. One example is variability in the

2.3 hardware faults at the transistor level 33

bulk dopant atom distribution that can lead to very low or very high thresh-
old voltages in particular transistors, which e�ectively prevents them from
switching [Döb14]. Extrinsic faults are an accepted part of semiconductor
engineering and scaling processes, and per de�nition not to be expected to
occur in the �eld.

Intrinsic permanent faults, however, are a result of material wearout due
to aging and temperature stress during a semiconductor device’s regular op-
eration [Muk08]. On a chip in the �eld, a wearout of either the metal lines
connecting transistors and capacitors, or the gate-oxide layer in transistors,
can cause these faults.

One prominent metal-line failure mode is electromigration. In essence,
electrons moving through these lines can push metal atoms forward in the
electron-�ow direction, and create void (depleted from atoms) and extrusion

(accumulation) regions. If a void grows too big, the electron �ow can be dis-
rupted; an extrusion in the wrong place can create a new connection, and
possibly a short-circuit. [Muk08, Fec09, Döb14]

The – nowadays only a few atom layers thin – gate-oxide insulation (see
Section 2.3.1) can fail due to several di�erent mechanisms. A generic wearout
e�ect is caused by energetic particles, breaking up inter-molecule bonds in
the oxide. This gradually a�ects the transistor’s switching threshold, and
hence its switching capability, up to the point of being stuck in either open or
conducting state. On the other hand, Hot Carrier Injection (HCI) degradation
and the Negative Bias Temperature Instability (NBTI) reduce the maximum
switching frequency.

HCI occurs when electrons in the conducting channel of the transistor
hit silicon atoms near the drain-substrate interface, producing electron–hole
pairs in the drain. Some of these electrons enter the substrate, and at a suf-
�cient energy (therefore called “hot” carriers) may damage the oxide layer.
In consequence, the threshold voltage of n-type MOSFETs is increased, de-
creasing its switching speed. In contrast, NBTI a�ects p-type transistors:
Under the stress of high temperatures, “highly energetic holes bombard the

channel–oxide interface” [Muk08]. Chemical reactions along this interface
permanently reduce the mobility of holes, also shifting the threshold volt-
age and reducing the switching speed [Muk08].8

2.3.4 Summary

To summarize, as a side e�ect of semiconductor device shrinking, hardware
fault rates on the transistor level are on the rise. One observation is that tran-
sient – or soft – faults are way more frequent than intermittent or permanent
faults:

8 Unfortunately, Karimi et al. [KKW+15] recently showed that a malicious attacker can use
specially crafted instruction sequences to even explicitly trigger NBTI, and to thereby dras-
tically accelerate a chip’s aging process.

34 hardware faults and fault-tolerant computing

“Soft errors have become a huge concern in advanced computer

chips because, uncorrected, they produce a failure rate that is higher

than all the other reliability mechanisms combined!” [Bau05a]

A soft error can manifest as one or more bit-�ips in the internal CPU state,
in registers, in the cache hierarchy, or in main memory. These bit-�ips can
result in e�ects of di�erent levels of graveness on the system level, from not
being activated at all, to causing an undetected corruption of the program’s
output, known as an SDC.

As a consequence from observational studies on soft errors, and projec-
tions on their growing in�uence in the future, both the research community
and the industry call for countermeasures that are capable of either prevent-
ing or tolerating them. The following section discusses such fault-tolerance

techniques on both the hardware and the software level.

2.4 fault-tolerant computing

As hardware faults on the transistor level may propagate upwards until they
become a – potentially catastrophic – system failure, various fault-tolerance
techniques can be applied to prevent the escalation from error to failure (cf.
Section 2.2.2). These techniques can be di�erentiated by the hardware or
software layer they are usually implemented on, by which kind of errors
they address, whether they are capable of correcting or only detecting errors,
and their redundancy scope.

This section sheds some more light on the notion of redundancy, and pro-
vides an overview on fault-tolerance techniques with a focus on software-
implemented mechanisms.

2.4.1 Redundancy

Figure 2.8: Rock-
climbing
belay
anchor.

A fundamental principle in fault-tolerant systems is redundancy9 – “the prop-

erty of having more of a resource than is minimally necessary to do the job at

hand” [KK07]. Once an error shows up, it can be detected – and probably
corrected or masked – using redundant information, program code, time, or
hardware.

Echtle [Ech90] di�erentiates structural, functional, information, and tem-

poral redundancy. At the same time, he acknowledges that fault-tolerance
mechanisms ostensibly relying on one speci�c type of redundancy also –
emergent from the mechanism’s implementation – exhibit the other three
types to a certain degree.

9 Actually, fault tolerance by redundancy clearly existed before fault-tolerant computers did:
Cars have spare wheels, bridges are supported by more pylons than necessary for the ex-
pected load, and the human body has two instances of some vital organs [Ech90]. In rock
climbing, belay anchors are usually constructed from two redundantly bolted anchor points,
often connected with a steel chain, as shown in Figure 2.8. Klingons are known to have eight-
chambered hearts, supposedly allowing them to survive severe injuries even to this essential
organ [Mem13].

2.4 fault-tolerant computing 35

structural redundancy extends the system by additional components

that are not necessary for regular operations [Ech90]. This includes
adding redundant copies of existing components, such as redundant
CPUs, and new components, such as a majority voter in a TMR setup.

functional redundancy adds redundant functionality that speci�cally
addresses fault tolerance. Redundant functionality, such as the capa-
bility to calculate and check a parity bit, may be implemented using
components that are also used for regular operations. Nevertheless,
usually new components – and, hence, structural redundancy – are
introduced [Ech90].

information redundancy means storing additional information that
exceeds the information necessary for regular operations [Ech90]. The
aforementioned parity bit is an example of redundant information, as
well as a simple copy of a program variable.

temporal redundancy denotes the additional time available to – or
needed by – a fault-tolerant system for providing its service [Ech90].
For example, if parity-bit calculation is implemented in software, the
fault-tolerant program needs a few more CPU cycles than without the
parity calculations and checks.

The parity-bit example makes clear that all four redundancy types are in-
volved in a concrete fault-tolerance mechanism. The redundant parity bit
is a classic example for information redundancy, but its implementation re-
quires additional functionality (functional redundancy, in the form of parity
calculation) possibly necessitating new components (structural redundancy)
and additional runtime (temporal redundancy).

Also note that the sole existence of redundancy does not imply fault tol-
erance: If an additional CPU is not actually used for tolerating faults, the
system is not more fault-tolerant than without the redundant component. If
a parity bit is not checked before using the associated data value, a bit �ip
goes unnoticed.

The unfortunate side-e�ect is the association of redundancy with cost:
Additional hardware components cost money, require space, add weight to
the system, and potentially need energy at runtime. Additional program
code costs runtime performance, memory, and, again, more energy. Simi-
larly, storing information redundantly ramps up the memory requirements
of programs. Consequently, redundancy costs and fault-tolerance gains must
be carefully weighed.

In the following sections I give an overview on fault-tolerance techniques
on di�erent implementation layers from the literature, and summarize the
redundancy costs and fault-tolerance gains where possible.

36 hardware faults and fault-tolerant computing

2.4.2 Hardware-Implemented

The classic approach to fault tolerance has been to enhance devices on dif-
ferent hardware levels to mitigate soft errors. Ideally, fault tolerance on this
layer provides complete fault transparency to the software, providing the
illusion of fault-free operation.

2.4.2.1 Transistor- and Circuit-Level Device Enhancements

On the semiconductor manufacturing-process level, the industry has adopted
techniques over the years that reduce the SER and also improve transis-
tor performance. Mukherjee [Muk08] speci�cally mentions triple-wells, with
which some of the electrons deposited by a particle strike are swept away
and do not contribute to a faulty switching behavior anymore, and Silicon-

On-Insulator (SOI), which reduces the deposited charge in the �rst place, in
this context. Due to their positive e�ect on both SER and transistor perfor-
mance, triple-wells and SOI are nowadays widely in use in the semiconduc-
tor industry, despite of the increased production costs [Muk08].

On the circuit level, the soft-error vulnerability can, for example, be de-
creased by “radiation-hardened” cells [Muk08]. This technique adds redun-
dant transistors speci�cally to storage cells (SRAM cells or latches) while
approximately doubling the chip area, increasing the energy consumption
by 40 percent, and decreasing the SER 10- to 100-fold. Consequently, circuit-
level techniques cannot be deployed device-wide but only for particularly
critical spots.

2.4.2.2 Memory-Protection Schemes

One abstraction level higher, the logical and spatial relationship between
multiple single-bit storage units, such as SRAM and DRAM cells, can be ex-
ploited to create cheaper soft-error tolerance under the assumption of rare
and localized SEUs. The basic idea behind the �eld of error-coding techniques
is to provide the minimum amount of information redundancy necessary for
detecting – or correcting – an expected, localized number of bit �ips while
maintaining satisfactory runtime, area, and energy overhead.

A simple example of error coding implemented in hardware has already
been introduced in Section 2.4.1: A parity bit [Ham50] holds redundant infor-
mation on a set of n data bits by storing a zero if the number of 1-bits in the
data bits is even, or a one if it is odd. By recalculating the parity and compar-
ing the result with the stored parity bit – for example, just before using the
associated data –, single-bit errors due to a previously occurred SBU can be
detected, turning a potential SDC into a DUE (see Section 2.3.2.4). [Muk08]

A more sophisticated technology widely in use in high-end computing
servers is ECC memory. In an ECC DRAM module, and similarly in ECC-
protected CPU-cache SRAM, a fraction of the memory cells are reserved
for parity information that is organized in a way enabling not only detec-
tion, but also correction of some error types. Usually, ECC memory imple-

2.4 fault-tolerant computing 37

ments a Single-Error Correct Double-Error Detect (SECDED) scheme, allow-
ing to detect double-bit errors, and detect and correct10 single-bit errors
in a stored machine word. SECDED over 64-bit machine words incurs an
overhead of eight additional check bits per word to achieve a Hamming dis-

tance of four [Ham50], increasing the total memory size by 12.5 percent.
Additionally, both energy consumption and memory-access delays increase
[Muk08, RTSM11]. Some memory-protection schemes can also correct multi-
bit errors, and ramp up the overhead even further [Del97, YE10, RTSM11].

To summarize, ECC memory can detect or even correct bit-�ips, but –
especially for the multi-bit case, which seems to be on the rise [HSS12, SL12,
SSD+13] – entails signi�cant cost in terms of chip area, performance, and
energy consumption – a price paid regardless how important the stored data
actually is for safe and reliable operation.

2.4.2.3 N-Modular Redundancy

In contrast to errors in the memory hierarchy, hardware-implemented de-
tection or correction of control-�ow errors – or more in general, errors in the
CPU logic – is usually implemented on a more coarse-grained (also termed
“macro-redundancy” [RCV+05a]) level.

The classic structural redundancy solution, known especially from highly
dependable systems in airplanes, is N-Modular Redundancy (NMR) of impor-
tant components. For example, in a Dual-Modular Redundancy (DMR) setup
with two CPUs that synchronously (in Lockstepping mode) execute the same
code, a functionally redundant voter component can continuously compare
the internal state or external behavior of the CPUs, and detect a deviation
[HHJ90, SAIC+99]. In a TMR setup, a third component can be used to even
correct one faulty instance without having to repeat previous work (Forward
Error Recovery or FER).

The main disadvantages of hardware NMR setups include signi�cantly re-
duced performance, the high cost for multiple copies of the replicated compo-
nent and the additional voter, and the added complexity, weight, and energy
consumption [Muk08]. As a consequence, TMR setups are limited to highly
critical systems in avionics, such as the Boeing 777 primary �ight computer
[Yeh96], or aboard spacecraft, as for example the FPGAs responsible for the
descent and landing phases of the Mars rovers Discovery and Spirit [Rat04].

2.4.2.4 Hardware Multithreading and the Sphere of Replication

On a more �ne-grained level, some hardware-implemented fault-tolerance
solutions make use of the redundancy available in modern CPUs for per-

10 As the corrective action repairs the �ipped bit and allows the system to continue normal
operation, it is often referred to as a Forward Error Recovery (FER) or Forward Error Cor-
rection (FEC) method. In contrast, Backward Error Recovery (BER) resolves the situation by
restoring and restarting the system from an earlier recorded state, a checkpoint [Muk08]. For
example, the ReStore architecture [WP05] implements BER by restoring a CPU-state check-
point when an error is detected; SafetyNet [SMHW02] solves this problem in a lightweight
but coarse-grained manner for the multiprocessor case.

38 hardware faults and fault-tolerant computing

formance improvements, such as pipelining, Simultaneous Multithreading

(SMT) [TEL95], or Chip-level Multiprocessing (CMP). For example, Roten-
berg’s AR-SMT [Rot99] executes the instruction stream a second time with
a small delay, using SMT resources of a single CPU core and additional
hardware checker mechanisms, and reports a performance penalty of 10
to 30 percent. Reinhardt and Mukherjee’s Simultaneous and Redundantly
Threaded (SRT) processor [RM00] achieves better performance [RCV+05c]
by comparing the streams only when memory accesses occur, with the SRTR
variant also providing recovery [VPC02].

In this context [RM00], Reinhardt and Mukherjee also introduce the con-
cept of the Sphere of Replication (SoR):

“Components inside the sphere of replication enjoy fault coverage

due to redundant execution, while components outside the sphere

do not [. . .]. Values that enter and exit the sphere are the inputs

and outputs that require replication and comparison, respectively.”

[RM00]

In the use case of the SRT processor, the SoR is exited when memory accesses
occur. Consequently, hardware-thread synchronization and error detection
take place during memory accesses. [RM00]

2.4.3 Software-Implemented

Besides the widely deployed manufacturing-process level measures, most
hardware-implemented fault tolerance methods tend to be costly, and en-
tail increased energy consumption and in many cases a performance degra-
dation. Naturally, the redundancy necessary for fault tolerance comes at a
price, but it currently only tends to be paid for expensive server systems
– for example, ECC memory, or CPU Lockstepping [HHJ90, SAIC+99] – or
particularly vulnerable and critical devices aboard airplanes [BT93, Yeh96]
or spacecraft [Rat04].

In contrast, Software-Implemented Hardware Fault Tolerance (SIHFT) aims
at improving fault tolerance without relying on speci�c hardware features.
The envisioned cost reduction – in comparison to the hardware-implemented
counterpart – stems not only from the ability to use COTS hardware, but
also from the potential to take advantage of application knowledge. For ex-
ample, only “critical” data structures of an application need to be enhanced
with information redundancy – for example, a parity bit – and functional
redundancy – such as a parity-bit calculation and check routine, – unlike
ECC memory, which protects every data bit in memory regardless of its im-
portance. Similarly, only the most error-prone parts of a program can be
run multiple times for TMR voting, instead of triplicating the whole CPU
(structural redundancy) and adding a hardware-voter component.

Additionally to the cost reduction – and, assuming an elaborate appli-
cation-speci�c fault tolerance setup, potentially an acceptable performance
and energy consumption – SIHFT also bene�ts from other software-speci�c

2.4 fault-tolerant computing 39

advantages. The development cycles of software are usually much shorter
than those of hardware, allowing the incremental development of fault-toler-
ance techniques and their application-speci�c tailoring. Additionally, SIHFT-
protected devices can easily be updated in the �eld to accommodate changed
fault-tolerance requirements or adapt the device to a new environment.

The disadvantages of SIHFT include the fact that implementing the same

fault-tolerance scheme in software – ignoring the potential for application-
speci�c tailoring – can cost orders of magnitude in performance and energy
consumption when directly compared to hardware implementations. Addi-
tionally, SIHFT cannot reach architectural state that is not visible on the ISA
level, such as, for example, shadow registers, or cache-line tags, and conse-
quently cannot protect it.

In the following, I give an overview on existing SIHFT solutions includ-
ing the costs they involve, and derive resulting requirements on reliability
analysis.

2.4.3.1 Inherent Fault Tolerance

Instead of constructing explicit SIHFT solutions, a part of the literature an-
alyzes, classi�es, and improves algorithms targeting their inherent fault-tol-
erance properties. An intuitive example for inherent fault tolerance is New-
ton’s iterative method for approximating the roots of a real-valued function:
If, due to a soft error, the CPU miscalculates one approximation step, or
the current approximation value is corrupted in memory, the subsequent
iterations gradually correct the error without any need for explicit fault tol-
erance. Other examples from the literature are Arti�cial Neural Networks

(ANNs), which have been shown to be intrinsically tolerant to soft errors
on board of a research satellite [VCT+99], or works from the algorithms
community on fault-tolerant variants of sorting and searching algorithms
[FI04, FGI05, FFI06, FGI07, FI08, FFI09, FGI09]. In this context, even an own
research �eld called Algorithm-Based Fault Tolerance (ABFT) has developed,
producing fault-tolerant variations of classic numerical algorithms such as
matrix multiplication [HA84, Tyr96] or number factorization [LCWV13].

2.4.3.2 Leveraging Hardware Detectors

A more generic, straightforward and widespread approach for detecting hard-
ware errors – or their indirect e�ects – is to leverage existing detectors in
modern microprocessors. These mechanisms usually issue a CPU trap or ex-
ception when they detect a division by zero, the execution of a malformed
op-code, or a memory access not permitted by a Memory-Management Unit

(MMU) or Memory-Protection Unit (MPU). Although the primary use of CPU
exceptions, and memory isolation in general, is the detection – and esca-
lation prevention – of programming errors and the enforcement of a secu-
rity model, these concepts as well can help detect hardware errors. Conse-
quently, many SIHFT techniques include hardware detectors in their solu-
tions [MKGT92, AN97, ANKA99, RCV+05c, HLDL15]. For example, Mire-

40 hardware faults and fault-tolerant computing

madi et al. [MKGT92] and Ho�mann et al. [HLDL15] �ll unused memory
with a trap-causing instruction to detect erroneous jumps to these areas.

Additionally, most developers of SIHFT solutions that do not explicitly rely
on hardware detectors implicitly use them in their evaluation: In many cases,
test runs in faulty environments – or under FI (see Chapter 3) – that end up
with a CPU exception are allotted to the detected (or DUE, see Section 2.3.2.4)
category even if the solution does not explicitly mention an exception han-
dler.

2.4.3.3 Executable Assertions for Data Error Detection

Executable assertions are statements or code sequences that check statically
known state invariants, preconditions, or postconditions, in speci�cally cho-
sen points of a program at runtime [Sai77, MAM84, RBQ96]. As Saib states,
they “can detect errors in input data and prevent error propagation” [Sai77].
The type of assertions described in this section achieve detection without

adding more state (information redundancy) to the program.
Primarily known for their use as detectors for software bugs11 – and,

hence, as an aid in software testing [MAM84] and debugging, – assertions
are also widely used to detect data-�ow errors caused by hardware faults
[GRSRV06].

Both the assertion placement and the check conditions themselves are
highly application speci�c, and require intimate knowledge about the tar-
get program. For example, Rabéjac et al. [RBQ96] informally de�ne a design
process with instructions on how to manually devise invariants, and pre-
and postconditions on functional blocks. Hiller [Hil99, Hil00] approaches
this problem more systematically by classifying internal variables into be-
havioral categories, and de�ning generic assertions detecting behavioral vi-
olations. The placement problem is not considered.

Due to the high application speci�city, the reported e�ectiveness achieved
by the di�erent solutions varies wildly – from a tiny 0.23 percent aver-
age coverage improvement [CRA06] up to 100 percent SDC coverage for
Hari’s maximum con�guration [HAN12]. Similarly, the static code (5.2 per-
cent [SK08a] up to 15 percent [GŁM+09]) and dynamic runtime (almost zero
[CRA06] up to 35 percent [LJ11]) overheads strongly depend on the concrete
solution and the modi�ed benchmarks.

In essence, data-error detecting executable assertions necessitate program
analysis techniques that provide promising locations for placing assertions in
the target program.

2.4.3.4 Information Redundancy

Although classic executable assertions can be used to detect data errors (see
Section 2.4.3.3), they can only detect deviations from the set of possible – and,

11 For example, the C standard library assert macro is documented as a means “to help the

programmer �nd bugs in his program” [Koe93], and “generates no code” [Koe93] in release
builds of the program.

2.4 fault-tolerant computing 41

hence, self-consistent – system states. With additional information redun-
dancy (see Section 2.4.1), they can also detect deviations that are re�ected in
consistent but wrong state. Consequently, some techniques cope with hard-
ware faults, such as single-bit �ips, that directly a�ect values stored in vari-
ables.

The simplest approach to implement information redundancy is the dupli-
cation of variables. When a value is written to a duplicated variable, it must
also be written to its redundant copy; when a value is read, the duplicate
is read as well, and the values can be checked for identity to detect a cor-
ruption. For example, the REliable Code COmpiler (RECCO) by Benso et al.
[BCPT00, BDCDN+01b] implements a source-to-source transformation that
duplicates a subset of the variables used in a C/C++ program, and inserts
code to regularly update and check the consistency between original and
shadow variable. Similarly, Xu et al. [XTS08] describe the Optimum Data

Duplication (ODD) approach selecting variables based on a custom error-
propagation metric [XST08].

Besides duplication, also more memory-e�cient error coding techniques
[Muk08] have been implemented in software. Although many of these tech-
niques were originally devised to be implemented in hardware (see Sec-
tion 2.4.2.2), they naturally can also be carried out in software. For example,
Shirvani et al. [SSM00] analyze four software ECC implementations with dif-
ferent memory-scrubbing intervals, and deploy the mechanism on the AR-
GOS satellite [SM98, SOM+00, LWW+02]. Nicolescu et al. [NVSR01] calcu-
late a Cyclic Redundancy Check (CRC) code [PB61] of machine-code sections
before executing them, and compare the result with correct values calculated
at compile time. Additionally, they manually transform the target program
to encode variables with a Hamming code, and to detect and possibly correct
errors on each variable use.

Another information-redundancy technique initially implemented in hard-
ware – for example, in the STAR computer [AGM+71] – are arithmetic er-

ror codes, described by Avižienis as “the class of error-detecting and error-

correcting codes which are preserved during arithmetic operations” [Avi71].
Arithmetic coding allows speci�c calculations directly on code words with-
out decoding them �rst, and thereby maintains the data protection through-
out the whole program. A widespread example are AN codes [Bro60] and
their improved ANB and ANBD variants [For89]. The code’s name “AN” di-
rectly describes the encoding operation: The program-wide constant A is
multiplied to the number N – the data word – to obtain the code word. A
code word is valid if the remainder after dividing by A is zero; otherwise,
an error occurred. AN codes stay valid during several arithmetic operations,
for example – due to distributivity – addition or subtraction:

AN1 + AN2 = A(N1 + N2)
Besides addition and subtraction, there exist AN-preserving equivalents to
multiplication, division, and logical operators [Ulb14]. Software implemen-
tations of AN codes – and their ANB and ANBD variants – have been suc-
cessfully used by, for example, Schi�el, Fetzer et al. [WF07, FSS09, SSSF10a,

42 hardware faults and fault-tolerant computing

Sch11]. Ho�mann et al. [HUD+14b, HUD+14a] (work I also contributed to)
thoroughly analyze practical implementation issues of AN encoding, and
give concrete advice which values for A are particularly advantageous.

Depending on the choice which subset of program data to protect, infor-
mation-redundancy techniques can come with a considerable runtime and
data-memory overhead. The simpler data-duplication approaches range be-
tween 6 [BCPT00] and up to 173 percent [PGZ08] runtime overhead, require
from 18 [BCPT00] up to 177 percent additional memory for the data copies,
and are reported to achieve up to 99.7 percent fault coverage [XTS08]. On
the other hand, arithmetic error codes entail magnitudes more runtime over-
head, but also very good fault coverage: For example, the ANBDmem encod-
ing by Schi�el et al. [SSSF10a] slows down the encoded application by up to
a factor of 385 – or, by 38 400 percent, – but reportedly has a fault coverage
of up to 99.97 percent.

Not least owed to the partially extreme costs regarding space and run-
time overhead, all information-redundancy techniques require analysis tech-
niques that provide information on the most critical data structures in the
target program.

2.4.3.5 Control-Flow Monitoring

Unlike the type of executable assertions described in the previous sections,
which are intended to application-speci�cally (Section 2.4.3.3) or -unspecif-
ically (Section 2.4.3.4) detect state inconsistencies, executable assertions are
also a common technical means to implementControl-FlowMonitoring (CFM).
CFM aims at detecting Control-Flow Errors (CFEs) – errors that cause the
CPU “to fetch and execute an instruction di�erent than expected” [GRSRV06].
This can happen, for example, through a directly or indirectly corrupted
instruction-pointer register – the latter, for example, caused by a bit-�ip in
a function pointer or return address, or a wrong jump-target calculation in
the ALU, – or an inverted branch decision.

Most CFM techniques are based on the partitioning of programs into Basic

Blocks (BBs) [All70, GRSRV06]. A program’s Control-Flow Graph (CFG) is
composed of BB nodes and branch edges denoting statically valid control-
�ow transitions [GRSRV06]. At runtime, each time reaching the end of a
speci�c basic-block node, only one of the statically valid edges emanating
from this node is the right edge – depending on the branch condition’s actual
parameters. From these basic terms, Goloubeva et al. [GRSRV06] de�ne �ve
types of CFEs:

1. A fault causes an illegal (not in the CFG’s edge set) branch “from the

end of a BB to the beginning of another BB.” [GRSRV06]

2. A fault causes a legal but wrong branch (according to the branch con-
dition, a di�erent legal branch should have been taken) “from the end

of a BB to the beginning of another BB.” [GRSRV06]

3. A fault causes a branch from the end of a BB to an arbitrary program
instruction that is not a BB start. [GRSRV06]

2.4 fault-tolerant computing 43

CFE types 4 and 5 address two �avors of spontaneous jumps or instruction-
pointer changes where the originating instruction is not a branch instruction
at all [GRSRV06].

In general, CFM aims at detecting a subset of these CFE types, and achieves
this by introducing additional global state that records at runtime which BBs
or control-�ow edges were visited recently, and by inserting recording and
checking code into the beginning or end of the BBs themselves. For example,
Miremadi et al. [MKGT92] describe the Block Signature Self Checking (BSSC)
scheme – and an improved Block Entry Exit Checking (BEEC) variant [MT95],
– which protects the control �ow by a block-speci�c signature that is initial-
ized at the beginning and checked at the end of each BB, and a constant
inter-BB state. Benso et al. [BDCDN+01a] model the valid control �ow with
regular expressions in a separate checker process, and transform the pro-
gram with a source-to-source-compiler to transmit control strings via IPC.
Kanawati et al. [KNKA96] and Alkhalifa et al. [AN97, ANKA99] describe
Control-�ow Checking using Assertions (CCA) and, respectively, Enhanced
CCA (ECCA).

Depending on the CFE-type detection capability and achieved CFE cover-
age, existing CFM techniques implicate program-size overheads of 5 [RBQ96]
to 175 percent [YC80], and a “negligible” [SS94] up to 140 percent [YC80]
additional runtime.

In consequence, depending on their overhead, CFM techniques must be
deployed in the target program with care, and the reliability of the resulting,
hardened program variants must be iteratively monitored and measured.

2.4.3.6 Redundant Multithreading

Another fault-tolerance technique adapted from hardware to software is Re-
dundant MultiThreading (RMT) – temporal (or structural) redundancy by re-
peated execution of the same code, and detection by comparison or correc-
tion by voting. Solutions di�er mainly by the replication granularity, replica
comparison frequency – and, consequently, detection latency, – the coverage
of their SoR (see Section 2.4.2.4), and detection versus correction capabilities
[Pig05, GRSRV06].

On instruction-level granularity, one of the most-cited RMT solutions is
Error Detection by Duplicated Instructions (EDDI) by Oh, Shirvani and Mc-
Cluskey [OSM02]. EDDI duplicates every instruction using di�erent regis-
ters and copies of variables in the duplicates, and inserts consistency checks
before every memory-store and conditional-branch instruction. Thereby, the
technique automatically generates a hardened variant of the program with
more than twice the number of static and dynamic instructions. Although
such compiler-supported instruction-level RMT solutions tend to hide some
of their runtime overhead in the instruction-level parallelism of modern
super-scalar CPUs, the overhead of the non-selectively applied solutions can
reach up to 113 percent [OSM02]. Nevertheless, the achieved fault coverages
come close to 100 percent [OSM02, RCV+05b, CRA06].

44 hardware faults and fault-tolerant computing

Although the literature is dominated by instruction-level RMT, some ap-
proaches target other granularity levels. For example, Li and Hong [LH07b]
implement RMT – and function-parameter duplication – on the statement
level of the C programming language, but do not mention tool support to au-
tomate this task. Ulbrich, Ho�mann et al. [UHK+12, HUD+14b, HUD+14a]
describe CoRed, a task-level RMT setup with a hardened voter for a con-
trol application. Döbel et al. [DHE12, DH12, DMH14, Döb14] extend the
L4/Fiasco.OC microkernel by Romain, an approach for transparent, appli-
cation-level RMT, and later also cover the case of applications that are mul-
tithreaded themselves [DH14, Döb14].

As coarse-grained RMT solutions cannot hide their redundant execution
with instruction-level parallelism, their runtime overhead usually exceeds
100 percent. As a hardware-resource remedy, many solutions assume un-
used CPUs in a multi-core setup that can be used to run replica without the
additional wallclock-time penalty, but still require more runtime for input
replication and output comparison [SMR+07, SBM+09].

In essence, �ne- or coarse-grained RMT solutions must be applied to tar-
get programs in a dosed manner, and the reliability of the resulting, hardened
program variants must be iteratively monitored and measured.

2.4.3.7 Hybrid Hardware/Software Techniques

Some SIHFT approaches require additional hardware support to improve
performance, or to cover errors that are particularly hard or even impossi-
ble to detect with a pure software mechanism. The classic example is the
watchdog timer that resets the monitored CPU if it does not receive a spe-
ci�c command from the software part of the fault-tolerance implementation
for a prede�ned time period. For example, Olsson and Rimén [OR95] com-
plement their CFM approach by a watchdog timer that detects the absence
of block signatures.

2.4.3.8 Language Support

Orthogonally to the development of SIHFT techniques, some research ex-
plicitly concentrates on software-engineering aspects of fault tolerance – its
encapsulation in software modules, and language support for its implemen-
tation.

For example, Gawkowski et al. [GRS10] choose classic modularization
with their AppHard library, which provides functionality for checkpointing
and instruction-level RMT, and formulate the goal of usage simplicity for
the application programmer. Similarly, Huang and Kintala’s libft [HK93] en-
capsulates checkpointing and recovery, and provides facilities for N-version
programming [CA78].

As most fault-tolerance mechanisms – besides coarse-grained RMT – re-
quire large parts of the application to be modi�ed on the machine- or source-
code level, they cannot easily be encapsulated in ordinary libraries. Some ap-
proaches provide their own compilers or compiler modi�cations, but at the

2.5 summary 45

cost of little portability and a dependency on additional tools. To ameliorate
these problems, some research approaches harness re�ection [Smi82] mech-
anisms of speci�c programming languages, or alternatively Aspect-Oriented

Programming (AOP) [KLM+97] languages, to modularize fault-tolerance im-
plementations that would otherwise crosscut the program.

For example, Alexandersson et al. [AÖI05, AÖ07, AÖK10, AÖ10, AK11]
implement various SIHFT techniques using AspectC++ [SL07], an AOP ex-
tension to C++, which they extend by means to detect and control data ac-
cesses. Similarly, Afonso et al. [ASB+08, Afo09] implement task-level triple-
modular RMT with AspectC++ in the distributed BOSS operating system,
and report a good separation of concerns, code reusability, and the advantage
of fault-tolerance con�gurability. Being AspectC++ users as well, Hameed et
al. [HWS10] apply di�erent fault-tolerance mechanisms to a robot-control
application, and analyze several metrics quantifying the separation of con-

cerns. Borchert et al. [BSS12, BSS13a, BSS13b, BSS15] (work I also contributed
to) implement classic data-duplication and error-coding techniques in As-
pectC++, and partially specialize them for particular eCos OS components.
They extend the AspectC++ language by compile-time introspection capa-
bilities, allowing template meta-programs to statically generate e�cient in-
formation-redundancy code for a con�gurable set of C++ classes.

All fault-tolerance techniques supported by speci�c language features or
constructs share the requirements of the previously mentioned SIHFT tech-
niques: They need to be deployed on the most critical modules or data struc-

tures of the target program, require placement or con�guration guided by a
previous analysis step, and the result must be measured and compared with
the original version of the program.

2.5 summary

As semiconductor devices – and particularly transistors as their dominating
component – move towards the “reliability wall” by continuous shrinking,
microprocessors and memory devices are more and more threatened by ra-
diation and aging e�ects. These dependability threats can cause – predomi-
nantly transient – bit-�ips in the device state, possibly resulting in DUEs or
SDCs that a�ect system attributes such as reliability, safety, and integrity.

2.5.1 Fault Tolerance

As countermeasures, both industry and the research community devised
hardware- and software-implemented hardware-fault tolerance techniques.
These techniques are invariably based on di�erent types of redundancy to
avoid or tolerate soft errors and their propagated e�ects.

Hardware-level techniques – besides manufacturing-process level tech-
niques such as triple-wells and SOI – are relatively expensive, tend to sig-
ni�cantly increase power consumption, and in some cases decrease perfor-
mance. Especially for memory-protection schemes that equally provide re-

46 hardware faults and fault-tolerant computing

dundancy for all bits in memory, the obliviousness to application demands
creates more costs than necessary in many cases, as most parts of the mem-
ory store uncritical information. Not surprisingly, the most expensive hard-
ware-implemented fault-tolerance techniques, particularly N-modular redun-
dancy in its coarse-grained TMR variant, are only used in the most critical
systems in avionics and space�ight.

SIHFT techniques, on the other hand, have the potential to take advantage
of application knowledge by only applying them to the most critical spots
in the target system. Nevertheless, SIHFT can entail enormous overheads
of up to several orders of magnitude if it is deployed system-wide without
exploiting this potential. Moreover, most SIHFT techniques aim at detecting
or correcting one speci�c type of error – data, control-�ow, or computation
errors, – which led to the development of hybrid techniques combining the
error-type coverage of di�erent software- and also hardware-implemented
techniques.

2.5.2 Reliability Analysis, Measurement, and Test

A direct consequence of the high overhead in space and time of most SIHFT
solutions is the necessity to analyze target systems: This reliability analysis

step must yield the most critical spots in the program – for example, the most
important variables to protect with an information-redundancy solution – to
avoid a too costly system-wide hardening. Or, as Taylor et al. [TMB80] put
it in their 1980 paper:

“A little redundancy, thoughtfully deployed and exploited, can yield

signi�cant bene�ts for fault tolerance; however, excessive or inap-

propriately applied redundancy is pointless.” [TMB80]

After analyzing the software for its most critical spots, and hardening those
with the chosen SIHFT solution, the resulting system needs to be measured

to determine the protection’s e�ectiveness and e�ciency, and to possibly
compare the hardening with other SIHFT variants. Additionally, SIHFT im-
plementations must be tested during their development to avoid fault prop-
agation through a system hardened with a partially dysfunctional fault-tol-
erance mechanism.

Consequently, in the next chapter I discuss fault-tolerance assessment
methods for analysis, measurement, and test from the literature. The dis-
cussion will focus on FI-based techniques and tools directly related to this
dissertation, but also provide an overview on alternative methods.

3
FA U L T T O L E R A N C E A S S E S S M E N T A N D H A R D WA R E
FA U L T I N J E C T I O N

“Failure free operations require experience with failure.”

— Richard I. Cook, How Complex Systems Fail [Coo98]

Contents
3.1 Fault Injection 48

3.1.1 Purposes of Fault Injection 49
3.1.2 The FARM Model 49
3.1.3 Fault Models 54

3.2 Fault-Injection Tools and Techniques 59
3.2.1 Characterization 59
3.2.2 Hardware-Based Fault Injection 60
3.2.3 Software-Implemented Fault Injection 63
3.2.4 Simulation- and VM-Based Fault Injection 66
3.2.5 Symbolic Fault Injection 67
3.2.6 Summary 68

3.3 Fault-Injection Optimizations 68
3.3.1 Experiment-Count Reduction 68
3.3.2 Experiment Speedup 72
3.3.3 Summary 74

3.4 Alternative Analysis Techniques 75
3.4.1 Fine-Grained Analysis with Fault Injection 75
3.4.2 Analysis Methods without Fault Injection 76

3.5 Summary: Observations and Gaps in the State of the Art 77
3.5.1 Fault-Space Coverage 77
3.5.2 Measurement and Comparison 77
3.5.3 FI-Tool Maintainability 78
3.5.4 Back-end and FI-Technique Flexibility 79
3.5.5 Public Availability 81

As Software-Implemented Hardware Fault Tolerance (SIHFT) increases
in popularity, demand grows for methods to test its implementa-
tion, to measure and compare its e�ectiveness, and to �nd cost-

e�ective mechanism placements in a concrete target-software environment
that do not diminish all gains from semiconductor-device shrinking. This
chapter discusses the widespread use of Fault Injection (FI) for these pur-
poses, and reviews existing techniques, tools, and optimizations for FI. In

47

48 fault tolerance assessment and hardware fault injection

this context, I focus on simulation-based FI, and identify gaps and problems
in the state of the art. Additionally, I give an overview on alternative anal-
ysis techniques and heuristics for SIHFT placement – the identi�cation of
critical spots –, which partially but not necessarily also rely on FI results.
Finally, I summarize observations and gaps in the state of the art, which will
form the basis of the requirements for the Fail* FI tool in the next chapter.

Parts of this chapter were originally published on PRDC 2011 [SHK+11],
ARCS 2012 [SHK+12], ETS 2014 [SRS14], SAFECOMP 2014 [SBS14], DSN
2015 [SBS15], and EDCC 2015 [SHD+15].

3.1 fault injection

Unlike testing functional software properties, testing whether a SIHFT mech-
anism works correctly, assessing whether the system exhibits only expected
failure modes, and measuring failure rates – and, hence, reliability, – usu-
ally cannot be achieved under normal operating conditions [BF93]. Within
the earth’s atmosphere, FIT rates of contemporary semiconductor hardware
(memories, CPUs, etc.) are so low that the software is extremely rarely ex-
posed to faults – which even more rarely propagate and escalate to observ-
able, system-wide failures. As Marwedel aptly puts it:

“It is frequently not possible to experimentally verify failure rates

of complete systems. Requested failure rates are too small and fail-

ures may be unacceptable. We cannot �y 105
airplanes 104

hours

each in an attempt to check if we reach a failure rate of less than

10−9
!” [Mar11]

Usually – for the sake of testing and measuring SIHFT – only speci�c sub-
systems are examined, and consequently, failures do not mean to sacri�ce
whole planes. Nevertheless, too low fault and failure rates prohibit simply
waiting for natural causes to trigger hardware faults1, unless a testbed on
board a satellite – with much higher failure rates in space – can be used
to examine a fault-tolerance implementation [SOM+00, LWW+02]. And –
even if soft errors occur, this approach does not yield statistically author-
itative observation numbers that can be used for testing, measurement, or
comparison.

The classic approach to solve the low fault-rate problem is the arti�cial
acceleration of fault occurrences by Fault Injection (FI). FI is used to mimic
the e�ects of the original radiation-related causes for soft errors – or, as well,
permanent faults – to a certain degree, but with extremely increased occur-
rence probability to trigger SIHFT mechanisms often enough for su�cient
evidence of their e�ectiveness.

1 For example, the MTTF of a 8 GiB DRAM device with 0.044 FIT per Mbit [SSD+13] – i.e.,
the average time until any one of the 233 stored bits �ips due to a natural cause – is about
40 years. Similarly, an 8 MiB SRAM device with 10−3 FIT per bit [Sla11] sees its �rst bit �ip
after an average of eight months.

3.1 fault injection 49

3.1.1 Purposes of Fault Injection

FI – and related analysis techniques discussed in this chapter – can be used
for di�erent but super�cially very similar purposes in the context of SIHFT
evaluation. As their di�erences play a role in the requirements on FI tools
and techniques, in the context of this dissertation the following purposes
must be clearly distinguished:
testing aims at empirically answering questions in the context whether a

developed fault-tolerance mechanism – for example, an EDM or ERM
– works correctly. Does the mechanism get triggered when a hardware

fault propagates as an error in a protected data structure? Does the re-

covery allow the system to continue normal operations? Are all failure

modes of the system expected? Testing – with varying fault models (see
Section 3.1.3) – is the dominant purpose for FI in the recent litera-
ture [Giu14], and provides mostly qualitative insights on a system’s
behavior under error conditions. In the terminology introduced in Sec-
tion 2.2.3, testing falls under the fault removal category [BP03].

measurement adds quantitative evaluation to the testing process, such
as the application of metrics like MTTF, reliability (see Section 2.2.4),
or the fault-coverage factor (see Section 1.2.6 and Section 3.1.2.5) to
the system. Although the used FI techniques may be similar or the
same as for testing, much more care must be taken when deciding on
the fault types and distribution. Measurement results can be used to
determine whether the system meets speci�c standards, or for com-

parison against other systems or system con�gurations. In classical
dependability terms (see Section 2.2.3), measurement belongs to fault

forecasting [BP03].

analysis extends beyond system-wide measurement by providing �ne-

grained quantitative results on the system – for example, on a mod-
ule, function, variable, or source-code line level. This information aids
in localizing critical spots of the system that should be protected by
SIHFT techniques. FI is only rarely used for �ne-grained analysis.

The literature sometimes does not explicitly distinguish between these pur-
poses; especially testing and measurement tend to get confused when SIHFT
mechanisms are tested, but fault-coverage measurements are presented.

Before surveying actual FI techniques and tool implementations in Sec-
tion 3.2, the following sections give a generic overview of the basic compo-
nents involved in most FI tools, and introduce necessary terms and de�ni-
tions.

3.1.2 The FARM Model

In their classic FI paper, Arlat et al. [AAA+90] introduce the FARM model,
which subsumes FI with the attributes faults, activations, readouts, and mea-

sures. Goloubeva et al. [GRSRV06] concretize the relatively abstract original

50 fault tolerance assessment and hardware fault injection

CPU Cycles
M

e
m

o
ry

 B
it
s

111 2 3 4 5 6 7 8 9 10 12

1

2

3

4

5

6

7

8

9

..
.

...

Figure 3.1: Single-bit �ip fault space for a run-to-completion workload. Each dot
represents a possible FI time and location coordinate. The workload pro-
ceeds until and stops at a speci�c point in time, the corresponding mem-
ory bit is �ipped, and the workload resumes.

de�nitions and improve their comprehensibility, which is why I summarize
their interpretation in this section.

3.1.2.1 Fault Set, Fault Space, Campaign, and Experiment

In the FARM model, F is “the set of faults to be injected” [GRSRV06] during
a so-called FI campaign. Each fault is characterized by its coordinate in the
fault space, which is spanned by the FI time and the fault location.2 The FI
time denotes the point in time after starting the target workload when the
fault is injected, and is, for example, expressed in clock cycles. The fault lo-
cation decides where the fault is injected, for example at a speci�c memory
address and bit position. Figure 3.1 shows the two-dimensional fault space
with all possible time/location pairs depicted as dots. In each single FI exper-
iment of the campaign, one fault from the fault set is actually injected.

3.1.2.2 A Fault-Injection Environment

In their 1997 FI techniques and tools survey, Hsueh et al. [HTI97] describe
the generic structure of an FI environment, which allows to outline the steps
involved in an FI experiment. As outlined in Figure 3.2, many FI tools aug-
ment a preexisting target system – the execution environment running the
actual workload – with an FI system.

In order to run the FI experiment for one fault from the fault-set F, the
following steps – orchestrated by the controller component (Figure 3.2) –
are necessary:

2 Benso and Prinetto [BP03] use the fault model (see Section 3.1.3) as a third fault-space dimen-
sion. Under the assumption that a speci�c fault model – for example, uniformly distributed
single-bit �ips in main memory – is selected beforehand, a two-dimensional fault space suf-
�ces to characterize faults.

3.1 fault injection 51

Controller

Fault Injector
Workload
Generator

Monitor
Data Collector

Data Analyzer

Fault-Injection System

Fault
Library

Workload
Library

Target System

Figure 3.2: Basic components of an FI environment. Adapted from [HTI97].

• The workload generator supplies a workload – for example, a bench-
mark program with a prede�ned input – from its workload library to
the target system. [HTI97]

• The fault injector starts the workload, runs the workload until the
exact injection time is reached – an operation called fast-forwarding

[PTAB14], – and injects a fault from its fault library at the speci�ed
fault location.

• The monitor component observes the workload execution on the tar-
get system, and instructs the data collector to record readouts (see Sec-
tion 3.1.2.4) from the system, such as speci�c CPU states, serial output,
or actuator activations. [HTI97]

• Usually after �nishing an FI campaign, the data analyzer re�nes the
readouts and distills measures, such as the fault-coverage factor metric
(see Section 3.1.2.5). [HTI97]

Section 3.3.1.1

provides details on

this so-called def/use
pruning process.

In practice, the fault set F is often generated using a reference run of the
target workload: the so-called golden run, in which no faults are injected.

3.1.2.3 Activation Trajectories and Workloads

The second component of the FARM model is the set of activation trajec-
tories A that “specify the domain used to functionally exercise the system”

[GRSRV06]. In other words, this means the input of the system in terms of
communication messages, sensor inputs, or any other kind of input data cho-
sen as a “representative” code-activation stimulus. Similarly, the workload
itself – from a workload set W, which Goloubeva et al. [GRSRV06] propose
to complement the FARM model – is supposed to be “representative” for the
system’s usage in the �eld.

Choosing a representative workload – often classic benchmark suites, such
as MiBench [GRE+01] or SPEC CPU, are used as workloads for FI campaigns
– and input is a research topic of its own, and already well-known in the
domain of functional software testing [MSB11]. In the context of FI, for ex-

52 fault tolerance assessment and hardware fault injection

ample Sridharan et al. [SK09a], Benso and Di Carlo [BDC11], and Di Leo et
al. [DLAS+12, DL13] analyze the problem of representative activation sets.

On a side note, the restriction to a speci�c set of workloads and inputs
is a general limitation of FI. In this context, FI can be seen as a special case
of program testing, which Dijkstra denoted “a very e�ective way to show

the presence of bugs, but [. . .] hopelessly inadequate for showing their absence”

[Dij72]. Consequently, FI results always – especially when they indicate “per-
fect” fault tolerance of the analyzed subject – must be taken with a grain of
salt, as the validity of the conclusions drawn heavily depends on the real-
world representativeness of the chosen workloads and inputs.

Throughout this dissertation, I will not address the intricacies surround-
ing workload and input selection. I assume a given, expertly chosen and
representative workload and input.

3.1.2.4 Readouts and Measures

As the third FARM component, the set R of readouts from the system is de-
�ned as the raw information that is obtained from an observation of the
system during each FI experiment in the campaign. This includes especially
the system’s output via communication channels, but potentially also rele-
vant parts of the machine state, such as the recording of CPU exceptions.
During the fault-less golden run (see above), the readout gets conserved as
a reference to compare against.

3.1.2.5 The Fault-Coverage Factor

At the end of the FI campaign, all readouts can be compared against the
golden-run reference. This leads to determining the set M of measures by
classifying all experiment outcomes in a failure model, such as described in
Section 2.3.2.4. Counting the number F of “failed” experiments – for example,
with an SDC outcome – out of a total of N experiments, this also allows to
statistically estimate the fault-coverage factor [BCS69] as already introduced
in Section 1.2.6:

cest = 1−
F
N .

The fault-coverage c estimates the probability that the system recovers
after a fault occurred [BP03] – or, inversely, one minus the probability that
a failure is observed under the condition that a fault occurred:

cest ≈ P(Recovery∣Fault) = 1− P(Failure∣Fault)

Unless N corresponds to the complete fault space, or in other words, the
fault set was sampled, the fault-coverage factor estimation entails a statisti-
cal error that can be quanti�ed as well. Assuming . . .

• a total fault-space size w = ∆t ⋅ ∆m, with ∆t corresponding to the
total number of possible injection times, and ∆m meaning the total
count of all possible injection locations,

3.1 fault injection 53

confidence level cut-off point ζ

80 % 1.28

90 % 1.64

95 % 1.96

98 % 2.33

99 % 2.58

99.5 % 2.81

99.8 % 3.09

99.9 % 3.29

99.99 % 3.89

Table 3.1: Con�dence levels and corresponding cut-o� points. Adapted from [Tri02].

• an estimate ctrue for the “true” coverage,

• and a cut-o� point ζ corresponding to a speci�ed con�dence level (see
Table 3.1),

the margin of error calculates as [LCMV09]:

e = ζ

√
ctrue(1− ctrue)

N
w− N
w− 1

.

The con�dence level and margin of error is interpreted as such that if
the sampling process is repeated with the same sample count, the true fault-
coverage ctrue lies within the con�dence interval cest ± e with a probability
corresponding to the con�dence level – for example, 95 percent for ζ = 1.96,
(cf. Table 3.1). [LCMV09]

Similarly, for a given error margin e, the number of necessary samples N
can be calculated [LCMV09]:

N =
w

1+ e2 w−1
ζ2ctrue(1−ctrue)

.

If ctrue is unknown a priori – because the fault-injection campaign is in-
tended to yield the �rst estimate cest for it, – N can be conservatively maxi-
mized for the worst-case ctrue = 0.5 [LCMV09].

For more details on sampling, coverage estimation, and statistical error, I
refer the reader to the literature [PMAC95, Tri02, RKK+08, LCMV09].

3.1.2.6 Other Measures

Another metric very closely related to the fault-coverage factor is the Archi-
tectural Vulnerability Factor (AVF) introduced by Mukherjee et al. [MWE+03b,

54 fault tolerance assessment and hardware fault injection

MWE+03a]. The AVF measures the “vulnerability” of hardware structures in
a microprocessor, and is de�ned “as the probability that a fault in that particu-
lar structure will result in an error” [MWE+03b]. Assuming FI on the microar-
chitecture level (see Section 3.1.3), this corresponds to the complementary
probability measured by the fault-coverage factor:

AVF = 1− c =
F
N

Similarly, Sridharan et al. [SK08b, SK09b] de�ne the Program Vulnerability

Factor (PVF) for “any architecturally-visible resource” [SK09b], such as CPU
registers or memory. Consequently, ISA-level FI results can be used to cal-
culate the PVF analogously to the AVF.

Besides the fault-coverage factor – and the related AVF and PVF metrics, –
FI can also help measure other dependability metrics. One widespread metric
is latency, particularly fault latency, the propagation delay between injection
of the fault, and its activation as an error [BP03] (see Section 2.2.2), and
detection latency, the delay between injection of the fault, and its detection
by an EDM/ERM.

Other dependability metrics, such as the MTTF, availability, or reliabil-
ity (see Section 2.2.4), are not widely used in the context of FI experiments,
because the radically increased fault probability impedes their direct mea-
surement.

3.1.3 Fault Models

As described in Section 2.2.2, a hardware fault – for example, indirectly
caused by cosmic rays (see Section 2.3.2) – can turn into an error on one
layer of abstraction, escalate to a failure on that layer, and propagate to the
next layer. A failure on layer n is a fault from the perspective of layer n+ 1.

In the context of an x86 microprocessor, a concrete example for such a
propagation chain would be the following:

• On the transistor layer, a transistor faultily switches – for example, due
to ionization e�ects caused by a neutron impact.

• The failing transistor is part of a logic OR gate on the gate layer. Both
gate inputs are zero at this moment, so the transistor failure is not
masked: it escalates as a gate failure to the gate’s output as a logical
one, instead of the correct zero value.

• The failing OR gate is part of the ALU on the microarchitecture layer.
The ALU is in the progress of adding two integer numbers, and the
failing gate �ips a single bit in the output of the calculation.

• On the Instruction-Set Architecture (ISA) layer, an ADD %eax, %ebx in-
struction is in progress. The corrupted calculation result from the mi-
croarchitecture ends up in the CPU register EAX, e�ectively �ipping a
single bit in this register – compared to the correct result.

3.1 fault injection 55

• Seen from the high-level language layer perspective of a C program
controlling the Anti-lock Braking System (ABS) of a car, the integer
variable accumulating the wheel-rotation angle over a period of time
is temporarily located in the EAX register. The failing ISA register EAX
– and, hence, the bit-�ip in the angle-accumulating variable – leads
the program to the wrong conclusion that a front wheel of the car is
blocking, and releases the brake.

• In consequence, a fault on the transistor layer recursively escalates to
a failure on the ABS system layer as a whole.

Unfortunately, modeling a computing system at a level of detail that allows
to trace faults from the transistor up to the system layer is normally unfea-
sible for the purpose of SIHFT test, measurement, or analysis.3 One reason
is the complexity involved, resulting in immense computation e�orts nec-
essary for low-level simulations, entailing extremely long simulation times
[CMC+13]; another is the prevalent unavailability of low-level models for
most microprocessors and memory technologies on the market.

Consequently, FI normally uses higher-level system models, and injects
high-level faults that emulate lower-level propagation, for example on the
ISA layer. This abstraction process from low- to high-level faults forms a
fault model, and in�uences the FARM model’s fault space: The fault distri-
bution regarding both injection time and location changes depending on
the modeled low-level faults. If, following the above example, faults are as-
sumed to originate (only) from transistors in the ALU, a simple ISA-level
fault model would restrict the fault space to single-bit �ip injections in the
output registers (location dimension) of instructions that exercise the ALU
(time dimension).

In the case of SIHFT evaluation, FI on the ISA layer is relatively common.
The primary reasons are:

1. Hardware prototypes are accessible – and, hence, injectable – on the
ISA level, but usually not below when using debugging hardware (see
Section 3.2.2.3).

2. Software running on the device itself can also only access state reach-
able from the ISA level. Hence, FI implemented in software that runs
on the same device as the target workload – known as Software-Im-

plemented Fault Injection (SWIFI) (see Section 3.2.3) – is per de�nition
also limited to ISA-level FI.

3. ISA-level device models – though, not necessarily timing-accurate –
exist for most if not all microprocessors, and their simulation is rela-
tively fast [CMC+13] (see Section 3.2.4).

Additionally, SIHFT – just as SWIFI – can only detect and correct errors on
the ISA level. Consequently, the injection of faults on lower levels is dispens-
able – if su�ciently accurate ISA-level fault models exist.

3 Hardware-based FI is an exception to this, as the real system is used and does not need to be
modeled (see Section 3.2.2).

56 fault tolerance assessment and hardware fault injection

3.1.3.1 ISA-Level Memory Fault Models

As e�ects of cosmic radiation are uniformly distributed in space and time,
regular low-level device structures in memory chips such as DRAM and
SRAM fortunately allow to create relatively simple high-level fault models.
To emulate direct hits in memory structures resulting in transient faults, the
literature relatively consistently4 uses a fault space with uniform distribu-
tion of FI times and locations, and focuses on single-bit faults.

The validity of this fault model has repeatedly been con�rmed by �eld
studies in the last few years, for example Sridharan et al. [SSD+13] report
a uniform fault distribution in DRAM devices, a predominance of transient
over permanent faults, and more single-bit than multi-bit faults. Dixit and
Wood [DW11] also observe a dominance of single-bit faults, but – as many
other studies – see multi-bit faults on the rise. Additionally, Henkel et al.
[HBD+13] come to the conclusion that SRAM memory errors are more likely
than errors in CPU logic:

“In general, SRAMs are more vulnerable to soft errors than logic,

sincememory cells lack transientmaskingmechanisms [...]” [HBD+13]

Similarly, Dixit and Wood note that “the total number of logic cell errors is

relatively small compared to the total number of memory cell errors” [DW11].
To summarize, memory faults are still relatively common [MWKM15] –

and, according to some sources, even dominate CPU faults [DW11]. As rel-
atively simple, realistic fault models exist to emulate them, I will focus on
uniformly distributed, single-bit transient faults in memory in this thesis.
Additionally, in some cases I will approximate multi-bit faults by eight-bit
burst faults, in which all eight bits at one memory address are �ipped at
once; for example, the observation of Li et al. that “word-wise multi-bit fail-

ures are quite common” [LHSC10] can serve as a justi�cation for this fault
model. The RAMpage case study in Chapter 4 also investigates permanent

memory faults, modeled as single “stuck-at” bits in memory [NTA78] (see
Section 4.4).

3.1.3.2 Independent Faults and the Single-Fault Assumption

In both Chapter 1 and the previous sections within this chapter, I silently
assumed that in one FI experiment, only one fault is injected. But, in theory,
with the aforementioned fault model of uniformly distributed, independent
and transient single-bit �ips in main memory, a single run of a simple run-to-
completion workload can theoretically be hit by any number of independent
faults. Multiple faults can occur at arbitrary points in time, and a�ect di�er-
ent bits in memory. The following considerations serve as justi�cation that
the single-fault assumption is nevertheless valid.

4 With the exception of tools that implement the def/use pruning optimization, and do not
apply equivalence-class weights afterwards; see Section 3.3 and Chapter 7 for details on this
issue.

3.1 fault injection 57

In Figure 3.1 on page 50, each black dot denotes a possible time5 (CPU cy-
cle) and location (memory bit) coordinate where a fault can hit the workload
run and �ip a bit in memory, a�ecting the stored value throughout the sub-
sequent cycles until it gets eventually overwritten. Assuming an arbitrary
number of faults per run creates a fault space with one FI experiment for ev-
ery subset of these hit coordinates – with a cardinality growing exponentially

with both time and location axes.
In reality, though, the probability for a single-bit �ip occurring at one bit

in main memory within the time span of one CPU cycle – e.g., the proba-
bility for �ipping bit #3 exactly in the time frame between cycle 4 and 5 in
Figure 3.1 – is extremely low. Using the mean g = 0.057 FIT/Mbit out of
three per-Mbit SERs from recent large-scale DRAM studies (0.061 FIT/Mbit
[LHSC10], 0.066 FIT/Mbit [SL12], and 0.044 FIT/Mbit [SSD+13]), for a sin-
gle bit, the soft-error rate per nanosecond – assuming a CPU clock rate of
1 GHz, or one cycle per ns – can be calculated as

g = 0.057
FIT

Mbit =
0.057

109 h ⋅ 106 bit

=
0.057

109 ⋅ 3600 ⋅ 109 ns ⋅ 106 bit
≈ 1.6 ⋅ 10−29 1

ns ⋅ bit

The probability of one benchmark run being hit by k = 0, 1, 2, or more
independent faults can be calculated using the binomial distribution. Never-
theless, for such an extremely low fault probability, it can be well approxi-
mated using the Poisson distribution (assuming the occurrence of faults is a
Poisson process [MW79, Nor96, LSHC07]) [Tri02]:

Pλ(k) = λ
k

k!
e−λ (3.1)

The Poisson parameter λ = gw is calculated using the aforementioned
soft-error rate g, and the fault-space size w = ∆t ⋅ ∆m characterizing the
benchmark by its runtime in CPU cycles ∆t, and the amount of main mem-
ory in bits ∆m it uses. Using concrete values for the benchmark runtime and
memory usage, e.g., ∆t = 1 s – corresponding to 109 cycles for the assumed
1 GHz CPU – and ∆m = 1 MiB = 223bit, yields the probabilities for k faults
hitting one benchmark run listed in Table 3.2.

Unsurprisingly, for the magnitude of the parameter values, the probability
that a workload run is not hit at all is extremely high. This zero-fault case
naturally does not require any FI experiments. But, even more noteworthy,
the probability for two or more hits is so much lower than for one fault
hitting the benchmark’s used memory ∆m that these cases can be considered
negligible.6 Hence, at current – and tomorrow’s – fault rates, and for short
workload runtimes, it su�ces to inject one fault per FI experiment.

5 Note that time is quantized in granules of CPU cycles, a common assumption for higher-level
fault models.

6 Even at a hypothetical fault rate of g = 10−20, nine orders of magnitude higher than in the
example, the distance between Pλ(1 Fault) and Pλ(2 Faults) is still more than 104.

58 fault tolerance assessment and hardware fault injection

k Pλ(k Faults) k Pλ(k Faults)

0 0.999 999 999 999 867 3 3.905×10−40

1 1.328×10−13 4 1.297×10−53

2 8.821×10−27

Table 3.2: Poisson probabilities for k = 0, 1, 2, or more independent faults hitting
one benchmark run.

3.1.3.3 ISA-Level CPU Fault Models

In contrast to memory fault models (see Section 3.1.3.1), accurate ISA-level
fault models for transient hardware faults within CPU structures are hard
to come by, and are still subject to active research [CS90, KKA93, YS96,
RLX+98, KIR+99, KMJM08, LRK+09, MKT+09, MKT+11, Kor12, CMC+13].
Faults within the sequential logic of the CPU can – as in the example at the
beginning of Section 3.1.3 – manifest as single-bit �ips in CPU registers or
memory, but can also cause much more complex e�ects, for example multi-
bit �ips [CMC+13] or spurious interrupts [Kor12], or bring the CPU to an
unrecoverable deadlock [Kor12].

As a simple approximation, many FI tools emulate CPU faults by single-bit
�ips in CPU registers [HRS95, TI95b, BPRSR98b, CCDM+09, SBK10, DBG+11,
LT13, TP13], although recent research [CMC+13] criticizes this fault model
for its inaccuracy. Early approaches assume a uniform distribution in both
time and location (register bits) [HRS95, PRSR98]. More recent tools restrict
the injection times to points in time when a register is about to be read
by an instruction (“inject-on-read”) [BVFK05b, SBK10, DBG+11, SAJK15],
or has just been written (“inject-on-write”) [SSSF10b, DBG+11, LT13, TP13,
SAJK15]. Some approaches also consider FI in memory – as well “on read”
or “on write” – as a valid approximation for CPU faults [SAJK15].

As mentioned in Section 3.1.3.1, I focus on memory faults in this disser-
tation. Nevertheless, the Fail* tool in Chapter 4 is also capable of injecting
CPU faults, emulated by bit �ips in CPU registers, as demonstrated in some
of the publications referenced in Table 4.12 on page 145.

3.1.3.4 Other Fault Models

Besides hardware faults in memories and CPUs, the literature also describes
fault models for other types of hardware, for example hard-disk controllers,
or network interface adapters [PSDC07]. Some models speci�cally and more
abstractly deal with communication faults in distributed systems [HRS95,
DJM96, DJMT96, LMX04, LX07, GDJ+11]. Many approaches speci�cally deal
with software faults (bugs), and how to emulate and inject them [MCV00,
DM06, JSM07, Joh08, NCDM13, GKT13, Giu14, WPS+15, HRP15, PWSF15].

These fault models – especially software faults – are outside the scope of
this dissertation.

3.2 fault-injection tools and techniqes 59

3.2 fault-injection tools and techniqes

FI tools can be categorized by the FI technique they implement, by the pur-
pose they serve, or by the fault models they support. In the following, I pro-
vide a FI-tool characterization scheme, and then discuss di�erent FI tech-
niques with a focus on hardware faults. Each technique – on the top level
divided into hardware-based, software-implemented, simulation-based, and
symbolic FI – is accompanied by a survey of FI tools implementing it.

3.2.1 Characterization

FI tools and techniques are characterized by the degree they exhibit the fol-
lowing attributes [SBK10]:

repeatability is an FI technique’s ability to inject a speci�c fault and
obtain the same result when repeated.

controllability designates the capability to control exactly when and
where to inject a fault, and is a prerequisite to repeatability.

intrusiveness means the measurement alteration caused by the FI tech-
nique on the target system, sometimes also termed the “probe e�ect”

[CRS99, RAA02]. FI is intrusive when, for example, the target system’s
code, data-structure layout and positioning in memory, or timing must
be changed for injecting faults.

observability denotes the degree of making the e�ects of an injection
observable and measurable.

reachability addresses an FI technique’s capability to reach fault loca-
tions within the system. In other words, it denotes how much of the
CPU and periphery state is accessible for injections.

For comparison, I add the following properties:

scalability describes the technique’s ability to easily scale up to large
quantities of FI experiments, if the workload complexity or analysis
type demands it.

realism means the closeness to reality of both the target-device model,
and possible fault models.

cost includes the expenses for prototype hardware, and the FI setup.

In the following sections – describing di�erent FI techniques and tools from
the literature – I will mention these attributes where applicable.

60 fault tolerance assessment and hardware fault injection

3.2.2 Hardware-Based Fault Injection

Hardware-based FI techniques rely on dedicated injection hardware – hence
their name, – but also inject into real hardware – for example, development
prototype boards. As both CPU(s) and memory devices are available as real
hardware, no device model – in the sense of Section 3.1.3 – is required.

Surveying the literature, hardware-based FI techniques can be divided
into techniques without contact between the injection hardware and the tar-
get device, and those with contact. FI without contact uses di�erent types of
radiation to a�ect the target, while contact-based approaches are directed to-
wards a microprocessor’s power-supply or data pins, or inject faults through
an existing debugger interface, also known as a Test-Access Port (TAP).

3.2.2.1 Radiation-based Fault Injection

Due to closeness to the root causes of soft errors in reality, early hardware-
based FI solutions emulating hardware faults were based on experiments
with radiation sources, and are partially still state of the art. The general
idea is to expose an existing target-system prototype – possibly including
hardware- or software-implemented fault-tolerance implementations – to a
radiation source that resembles or emulates natural causes for soft errors,
but at a fault rate orders of magnitude higher than in reality.

For example, Gunne�o et al. [GKT89], Karlsson et al. [KGLT91, KLD+94,
KFA+94, KFA+95a, KFA+95b], Miremadi and Torin [MT95], or Arlat et al.
[ACK+03] expose prototype hardware to heavy-ion radiation – in most cases
originating from a decaying Californium-252 source. The goal of these stud-
ies was either to test SIHFT techniques, for example the fault-tolerance mech-
anisms implemented in the MARS operating system [KDK+89], or to com-
pare radiation-based FI with other FI techniques. Similarly, Karlsson et al.
[KFA+94, KFA+95b, KFA+95a] and Arlat et al. [ACK+03] use Electromag-

netic Interference (EMI) to arti�cially cause soft errors. Newer studies rely
on neutron-beam facilities [BGGO03], such as available at Los Alamos Neu-

tron Science CEnter (LANSCE), that are capable of emulating the energy spec-
trum of atmospheric neutrons, but at a rate increased by a factor of about
108 [CMR15]. Using neutron beams, Granlund et al. [BGGO03, GGO03b,
GGO03a, GGO04, GO05, GO06] and Dixit et al. [DW11] study SERs of dif-
ferent generations of SRAM devices. Rech and Carro [RC13], Oliveira et al.
[ORQ+14], and Santini et al. [SRN+14, SRCRW15] measure SIHFT e�ective-
ness under neutron in�uence.

Although triggering realistic fault scenarios, the main disadvantage of
these radiation-based approaches is that FI experiments have a very low
controllability: Neither the time when faults are injected, nor the location
where state alterations occur, can be de�ned before – or even only deter-
mined after – the injection by the experimenting user. As a consequence,
they are not deterministically repeatable [ZAV04]. These properties – con-
trollability and repeatability – are especially important for reproducing bugs
in the implementation of SIHFT, for collecting �ne-grained analysis results,

3.2 fault-injection tools and techniqes 61

and for systematic so-called “pruning” techniques to reduce the amount of
experiments to conduct (see Section 3.3). Additionally, experiments with ra-
diation sources are extremely expensive regarding both money7 and time,
and handling of radioactive materials like Californium-252 is relatively deli-
cate [KLD+94]. Nevertheless, radiation-based techniques share a negligible
intrusiveness and good reachability, as radiation can trigger faults in any
part of the target device.

Another radiation-based technique is laser FI, in which short pulses of fo-
cused laser light are sent onto exposed chip surfaces. Buchner et al. [BWK+87]
use a pulsed picosecond laser to cause SEUs in a logic circuit and a CMOS
SRAM device. Samson et al. [SMF97, SMF98] and Moreno et al. [MFS98] use
lasers to test hardware-implemented fault-tolerance schemes. Walters et al.
[WZF13] test application-level control-�ow assertions (see Section 2.4.3.5)
and watchdog timers on the NASA SpaceCube platform.

Laser FI shares the low intrusiveness and good reachability of other radi-
ation-based techniques, but o�ers strongly improved controllability and re-
peatability: “[L]aser-induced faults can be �nely controlled in space and time;

single laser pulses can be injected into a system in order to test single event ef-

fects, and a laser can be readily focused on a circuit of interest with a spot size

on the order of a micron” [WZF13]. Nevertheless, the setup costs for laser FI
are high, and require intimate knowledge on the exact on-chip location of
the hardware structures to inject in. Additionally, especially the precision in
the space dimension – “with a spot size on the order of a micron” [WZF13]
– is clearly insu�cient for contemporary circuits produced with structure
sizes of a magnitude of nanometers.

Unlike described in Section 3.1.2 and Section 3.1.3, radiation-based FI tech-
niques – especially neutron or heavy-ion radiation – do not explicitly de�ne
a fault list or a fault model: These techniques provoke faults in the semicon-
ductor hardware that are very close – or identical – to those occurring in
reality (see Section 2.3). Due to this realism, radiation-based FI – including
laser FI – is still considered “the gold standard for assessing radiation-hardness
assurance” [QBRB13]. On the downside, these techniques cannot determine
whether no faults, or one or more faults were injected during a workload run
– although readouts are collected as usual. This eliminates the possibility to
calculate the fault-coverage factor cest = 1 − P(Failure∣Fault) = 1 − F

N
(see Section 3.1.2.5), which is calculated under the condition that one fault
occurred.

Instead, the reliability Rrad(∆t) under increased radiation conditions can
be directly calculated, using the number of workload runs N, and the number
of failed runs F(∆t) (see Section 2.2.4):

Rrad(∆t) = 1− P(Failure) = 1−
F(∆t)

N .

7 For example, neutron-beam experiments at LANSCE cost about 10,000 USD per day [Rec15],
and require special training for the person responsible for experiment setup and execution.

62 fault tolerance assessment and hardware fault injection

If the exact radiation intensity is known, this value can be corrected to
yield R(t) under real-world conditions. This can be achieved by reducing
P(Failure) by a linear factor [Muk08, NIS].

3.2.2.2 Power-Supply Disturbance and Pin-Level Fault Injection

In contrast to radiation-based methods, contact-based FI techniques inject
faults by attaching an injection device directly to the system under test. The
injection itself is executed by disturbing the power supply, or by altering the
data transferred at the input and output pins of the microprocessor.

Karlsson et al. [KGLT91] introduce short voltage drops at the power-supply
pin of the target microprocessor, and primarily observe control-�ow errors
in the system. Similarly, Miremadi et al. [MT95] test a control-�ow SIHFT
technique [MKGT92]. Rajabzadeh et al. [RMM04] and Tummeltshammer et
al. [TS09] test dual-core lockstepping solutions under the in�uence of power-
supply disturbances.

While power-supply disturbance only a�ect the power-supply pin of a
microprocessor, generic pin-level FI techniques target all (digital) processor
pins. There exist two approaches to pin-level FI: forcing – the application
of faults using probes, – and insertion, in which the processor is inserted
in a special circuit isolating the chip from the system. For example, MES-
SALINE by Arlat et al. [ACL89, AAA+90, ACC+93] supports both forcing
and insertion, and can inject stuck-at faults, inversion, bridging, and open-
contact faults. RIFLE by Madeira et al. [MRMS94] supports a similar set of
injectable faults (using the insertion variant), and claims to support deter-
ministic – and, hence, repeatable – FI experiments. Martínez et al. describe
AFIT [MGM+99], which uses forcing for transient, intermittent, and perma-
nent stuck-at faults at the pin level.

Power-supply disturbance, and especially pin-level FI, have much better
controllability and repeatability than the mentioned radiation-based tech-
niques – for example, RIFLE explicitly claims these properties [MRMS94],
– but at the cost of reachability: Faults cannot be injected into the internal
state of the system, but only at the interface between the microcontroller
and the remaining system, which strongly restricts possible fault models.
Not only for these reasons, Santos and Rela describe pin-level FI as being
“obsolete due to the increasing complexity and greater miniaturization of digi-

tal circuits” [SZR03].

3.2.2.3 Test-Access Port Fault Injection

Another contact-based FI technique uses the Test-Access Port (TAP) – a micro-
processor interface usually found in embedded systems – to inject faults. Al-
though a TAP is intended for debugging, �rmware uploads, and device-hard-
ware testing, its capability to control the CPU’s execution and to access regis-
ter and memory contents also facilitates ISA-level FI [SZR03].8 Widespread

8 TAPs also allow the injection of pin-level faults [SZR03]. I will not discuss this capability
further, as this dissertation focuses on faults in memory (see Section 3.1.3).

3.2 fault-injection tools and techniqes 63

TAP standards are JTAG [MT90], Nexus [II99], and the Freescale-speci�c
BDM [How96].

A classic example for FI via the JTAG TAP is FIMBUL [FSK98], which was
later renamed to GOOFI [AVFK01, VAS+05]. Triggered by breakpoints on
static instructions or memory accesses to speci�c addresses, FIMBUL and
GOOFI inject single-bit �ips into the memory and scan registers of the Thor
CPU. Similarly, Benso et al. [PRSR98, BRSR99, RSR99] inject bit-�ips in main
memory and CPU registers via BDM in their FlexFi tool. Later versions of
Xception [MHCM02, MHB+05] are also reported to support an unnamed
TAP standard for FI.

Newer FI tools, such as Yuste et al.’s INERTE [YdAL+03, YRLG03], Fidalgo
et al. [FGAF06], and Skarin et al.’s GOOFI-2 [SBK10, Ska10], support the
Nexus debugging interface for injection. Yuste et al. and Fidalgo et al. inject
bit-�ips in the memory without halting the target system – a Nexus specialty
that allows the workload to meet real-time conditions, presumably at the
price of FI-timing accuracy. Skarin et al. (GOOFI-2) instead halt the CPU
before injecting into registers or memory [SBK10], similar to BDM- or JTAG-
based FI tools.

FI via a TAP o�ers very good controllability and repeatability, and a low in-
trusiveness – especially regarding workload timing in program phases with-
out FI. It combines these advantages with a reachability su�cing for the
ISA-level fault models described in Section 3.1.3. Disadvantages are the ad-
ditional cost for debugger interfaces and target-device prototype hardware,
and consequently a low scalability. Additionally, a notable slowdown of the
target device is incurred with TAP-based FI when compared to fault-free
runs – for example, Rebaudengo et al. [RSR99] report runtimes up to 97
times slower. Rebaudengo et al. [RSR99] identify the setup phase including
workload download and initialization, and especially the fast-forwarding op-
eration (see Section 3.1.2.2 and Section 3.3.2.1), as the primary bottlenecks.

3.2.3 Software-Implemented Fault Injection

To counter the high cost, and low repeatability, controllability and scala-
bility of hardware-based FI techniques, Software-Implemented Fault Injec-

tion (SWIFI) was introduced in the 1990s and is still quite popular until today.
SWIFI techniques can be distinguished in pre-runtime and runtime SWIFI.

3.2.3.1 Pre-Runtime SWIFI

Pre-runtime SWIFI techniques inject faults in the workload’s data or code
– usually by modifying the workload image – before it starts to run on
the target system. For example, Kanawati et al.’s FERRARI tool [KKA95] in-
jects single-bit �ips into machine instructions (but is also capable of runtime
SWIFI, see below), and was, for example, used to evaluate Alkhalifa et al.’s
ECCA CFM approach [ANKA99] (see Section 2.4.3.5). Similarly, Fuchs et al.
[Fuc96] use a nameless SWIFI tool to inject up to ten single-bit �ips into
code and data segments of the MARS [KDK+89] operating system. GOOFI

64 fault tolerance assessment and hardware fault injection

and GOOFI-2 [AVFK01, VAS+05, SBK10, Ska10] are, among other FI tech-
niques, also capable of pre-runtime SWIFI.

More recently, Schi�el et al.’s EIS [SSSF10b, Sch11] and LLFI by Thomas,
Wei, Lu et al. [TP13, WTLP14, LFW+15] apply pre-runtime SWIFI on the
LLVM [LA04] IR level. The primary advantage is independence from a par-
ticular target machine, and Wei et al. [WTLP14] claim a good match with
machine-code level pre-runtime SWIFI – at least regarding SDC-causing
faults.

With the aforementioned advantages regarding cost, repeatability, con-
trollability, and scalability, pre-runtime SWIFI also o�ers a low intrusiveness:
As the fault is injected before starting the target device, the workload execu-
tion does not need to be interrupted at runtime. An obvious disadvantage is
a low reachability – only machine instruction op-codes and static data can
be injected into, – and consequently, a debatable fault-model realism.

3.2.3.2 Runtime SWIFI

In contrast to pre-runtime SWIFI, runtime SWIFI is based on additional soft-
ware running on the target device alongside the actual workload. This soft-
ware injects a fault at runtime when a speci�c trigger condition – for exam-
ple a speci�c point in time – is reached.

One of the �rst tools regularly cited to be implementing runtime SWIFI
[VAS+05, Ska10] is FIAT by Barton et al. [BCSS90] and Segall et al. [SVS+95].
The tool injects single- and multi-bit faults into code and data of the target
workload, but the original paper stays rather vague on how the injection
is actually triggered at runtime.9 Around the same time frame, Kao et al.’s
FINE [KIT93] and its distributed-system variant DEFINE [KI94] implement
a system call to inject bit �ips into code and memory of the UNIX kernel at
runtime, with the goal of studying the fault’s propagation throughout the
kernel. Similarly, Hiller et al.’s PROPANE [HJS02b, Hil02] aims at studying
the error propagation in embedded software. By means of source-code trans-
formations, PROPANE injects several types of variable errors: bit-�ips, but
also variable-speci�c �xed values, and o�sets. Hiller et al. subsequently dis-
till several di�erent module-level metrics from the results – among others,
the module’s exposure to errors, its permeability, its impact on the remaining
modules, and its criticality, – and use them for EDM placement in an aircraft
arresting system10 [HJS01, HJS02a, HJS04]. Dasilva et al.’s commercial Ex-
haustif tool [DML+07, DGCM+09] also targets (heterogeneous) embedded
systems, and injects into CPU registers and memory.

Han et al.’s DOCTOR [HRS95] injects transient, intermittent and perma-
nent single- and multi-bit �ips in CPU registers and memory, but also spe-
ci�c communication-related faults, for example lost or duplicated messages.

9 In fact, Section III in the original paper [BCSS90] can be read in a way that FIAT really uses
pre-runtime SWIFI to emulate runtime e�ects.

10 “The target system is a medium sized embedded control system used for arresting aircraft on

short runways and aircraft carriers. The system aids incoming aircraft to reduce their velocity,

eventually bringing them to a complete stop.” [HJS01]

3.2 fault-injection tools and techniqes 65

Tsai et al.’s FTAPE [TI95b, TI95a] uses di�erent fault distributions over time,
and injects single- and multi-bit faults in CPU registers, memory, and I/O op-
erations to compare di�erent fault-tolerant systems. Stott et al.’s distributed
NFTAPE variant [SFKI00] was subsequently used by Gu et al. [GKI04] to
analyze the error sensitivity of Linux. Rodríguez, Arlat et al.’s MAFALDA
[RSFA99, AFRS02, RAA02] was speci�cally designed to assess the robust-
ness of a microkernel OS, and injects bit �ips in code and data memory, but
also in a selective way in the system-call interface. MAFALDA was, for ex-
ample, used to measure and compare executable assertions in the Chorus
microkernel [SRFA99] (see Section 2.4.3.3).

Some runtime SWIFI approaches only aim at speci�c software interfaces,
further abstracting from actual hardware – or software – faults behind these
interfaces. Koopman et al. [KSD+97] target the system-call interface and
thereby compare the robustness of several commercial operating systems.
Broadwell et al.’s FIG [BST02] and Marinescu et al.’s LFI [MC09, MBC10] in-
ject into the application/library interface, and Winter et al.’s simFI [WTSS13]
and GRINDER [WPS+15, Win15] address di�erent OS-kernel internal inter-
faces.

Only a few all-rounder FI tools stand out as they must be mentioned in
multiple technique categories. For example, FERRARI [KKA95], already men-
tioned for its pre-runtime SWIFI capabilities, also injects bit �ips at runtime
in the workload’s code triggered by software traps – either reaching a spe-
ci�c point in time, or a static instruction. Similarly, Xception by Madeira, Car-
reira, Maia et al. [MCS95, CMS95, CMS98, MHCM02] – already mentioned in
Section 3.2.2.3 for its TAP-based FI capabilities – emulates transient and per-
manent hardware faults by bit �ips, stuck-at-zero, and stuck-at-one faults
in CPU registers or memory. Xception’s FI routines on the target system
are triggered by hardware exceptions available on the supported PowerPC
MPC601 CPU: accesses to speci�c memory addresses, the execution of spe-
ci�c static instructions, or timeouts measured in dynamic instructions or
wall-clock time. Another all-rounder, EXFI [BPRSR98b, BPRSR98a] and its
successor FlexFi [BRSR99] – the latter also listed among TAP-based FI tools
– relies on trace-mode execution capabilities of modern CPUs11 to inject
transient single-bit �ips in CPU registers and memory at speci�c dynamic
instruction counts. The GOOFI tool series, already cited for its TAP-based
FI and pre-runtime SWIFI capabilities, also supports runtime SWIFI since
the GOOFI-2 version [SBK10, Ska10]. Among other details regarding FI op-
timizations (see Section 3.3), GOOFI-2 adds multi-bit �ips in CPU registers
and memory at runtime to GOOFI. Giu�rida et al.’s EDFI [GKT13, Giu14]
combines pre-runtime and runtime SWIFI, but speci�cally targets software
faults.

Compared to pre-runtime SWIFI, runtime SWIFI trades low intrusiveness
for reachability and realism. The modi�ed workload, including additional
instructions running on the target system, are intrusive in both space and

11 In this case, Benso et al. used the Motorola M68040’s capability to trap after the execution of
every machine instruction [BPRSR98a].

66 fault tolerance assessment and hardware fault injection

time: The workload’s behavior and – especially when the SWIFI approach
uses the processor’s tracing mode – its timing changes compared to the orig-
inal workload. Nevertheless, runtime SWIFI is one of the most popular FI
techniques until today, not least due to its low cost and its machine-state
reachability.

3.2.4 Simulation- and VM-Based Fault Injection

All mentioned hardware-based FI techniques (see Section 3.2.2) as well as
SWIFI (see Section 3.2.3) assume an existing prototype of the target device
that can run the workload. In early development phases, a prototype may
often not yet exist, or access to it is congested by developers dealing with
other, functional properties of the target workload. In simulation-based and
VirtualMachine (VM)-based FI, the prototype is replaced by virtual, software-
simulated hardware, in which faults are injected. I will not address the dif-
ferences between simulation-based and VM-based FI within this section, as
the technical details how the workload’s machine instructions are executed
on the host machine are of little relevance for the points made here.12

Some simulation-based FI tools operate on machine-detail levels below
ISA level. For example, Jenn et al.’s MEFISTO [JAR+94], extended by Boue et
al.’s MEFISTO-L [BPC98] to facilitate testing of hardware-implemented fault-
tolerance mechanisms, inject faults into an Register-Transfer Level (RTL)-
level and a VHDL model of a 32-bit CPU. They insert mutants – structural
modi�cations – into the model, but also inject transient, intermittent, and
permanent faults into VHDL signals and variables by using speci�c simula-
tor commands. Sieh et al. [STB97] also work on the VHDL level with their
VERIFY tool, but extend VHDL itself to describe the hardware behavior un-
der faults. To counter the extremely low speeds of low-level simulators, tools
like Pellegrini et al.’s CrashTest [PCZ+08] or the nameless tool by Daveau et
al. [DBG+09] emulate gate-level machine models on FPGAs, and parallelize
FI experiments.

Nevertheless, the glacial performance of low-level simulators – and, not
least, the prevalent unavailability of low-level device models (see Section 3.1.3)
– leads to SIHFT usually being evaluated at higher machine-abstraction lev-
els, commonly using a behavioral ISA-level model. For example, FAUma-
chine [PSDC07, SPS09] is an ISA-level x86 simulator built speci�cally for FI
into CPU registers and memory, but also into other PC components, such as
network-interface controllers or hard disks. FAUmachine also provides elab-
orate scripting capabilities to automate interactions with the target work-
load, for example to repeatedly test the installation of an operating system.

Unlike FAUmachine, most other simulation-based high-level FI tools – at
least partially – rely on existing simulator software, and extend it by FI ca-

12 Some sources also distinguish between CPU simulation and emulation, ostensibly di�erentiat-
ing between detailed and less detailed, behavior-level simulations. Without a strict de�nition
which is which, I will use the term simulation, even if, for example, Bellard calls his QEMU
simulator a “machine emulator” [Bel05].

3.2 fault-injection tools and techniqes 67

pabilities. Presumably owing to its popularity, many FI tools are based on
the open-source QEMU [Bel05] simulator, for example David et al.’s Qinject
[DCCC08], DeBardeleben et al.’s SEFI [DBG+11] and its successor F-SEFI
[GDBF14], Chylek et al. with QEFI [CG12, Chy14], Xu and Xu’s [XX12], Di
Guglielmo et al.’s [DGFFP13], and de Aguiar Geissler et al.’s [dAGLKPS14]
nameless tools, Wanner et al.’s VarEMU [WEL+13], or Höller et al. with FIES
[HSK+14, HMR+15, Sch15a].

Besides QEMU, many other simulators are used for FI purposes. Xu et al.’s
CriticalFault [XL12] and Hari et al.’s Relyzer [HANR11, HANR12, HANR13]
inject faults into the commercial Simics simulator. Li et al.’s SmartInjector
[LT13] enhances the SimpleScalar simulator with FI capabilities, Parasyris et
al. extend Gem5 [BBB+11] in their GemFI tool [PTAB14], and Winter et al.’s
simFI [WTSS13] injects into Xen [BDF+03] virtual machines. Terasa et al.’s
and Heing et al.’s FITIn [TS13, HBKS14] extends Valgrind’s CPU simulator
by FI primitives.

The primary disadvantage of simulation-based – and likewise, VM-based
– FI is its reduced workload-execution speed, compared to the previous FI
techniques using real prototype hardware. Especially low-level simulators
tend to be many orders of magnitude slower than the hardware they model.
The device-model realism of simulation-based FI naturally depends on the
detail level of the simulator, which also in�uences the FI technique’s reach-
ability: While FI in gate-level simulations can reach arbitrary gates and �ip-
�ops within any simulated component of the CPU, FI in a behavioral, high-
level simulation often only reaches ISA-visible CPU registers and memory
cells.

On the positive side, simulation-based FI has several advantages over other
FI techniques. Particularly, it avoids the intrusiveness of runtime SWIFI, and
o�ers high controllability and repeatability. Simulation-speci�c capabilities
like checkpointing open up optimization potential impossible to achieve
with other FI approaches: Checkpoints can, for example, be used to speed up
experiments (see Section 3.3). Additionally, and despite the reduced execu-
tion speed, the scalability of simulation-based FI excels other FI techniques:
Experiments can be run on any available hardware – for example, a comput-
ing cluster – instead of costly device prototypes.

3.2.5 Symbolic Fault Injection

Symbolic FI is a rather exotic category of FI tools. It descends from the model-
checking domain, and combines the idea of symbolic execution with FI. Sym-
bolic FI requires an accurate model of the software system, which can be hard
to come by in pointer-a�icted programming languages like C or C++ that
are normally used in the embedded-systems domain.

A recent example is Pattabiraman et al.’s SymPLFIED [PNKI08, PNKI13],
a symbolic-FI framework for verifying error detectors in programs using
symbolic execution and model-checking. Although an impressive feat, the
approach is described to yield false positives, and its scalability is extremely

68 fault tolerance assessment and hardware fault injection

limited: Nearly half of the analysis tasks did not run to completion due to
the analysis complexity, even though Pattabiraman et al. only analyzed pro-
gram input in the magnitude of merely hundreds of lines of C code. Hähnle
and Larsson’s KeY tool [HL06, LH07a] is, similarly, evaluated with only very
small code examples. Alvaro et al.’s MOLLY [ARH15], reasoning backwards
from correct system outcomes to look for �aws in the fault-tolerance im-
plementation of a data-management system, is demonstrated on protocol
implementations sized 5 to 41 lines of code.

Symbolic FI is quite tempting for the evaluation of SIHFT, as it can “eval-

uate the consequences of all possible faults [...] for all possible system inputs”

[LH07a] and allows “to formally prove properties of fault tolerance mecha-

nisms” [LH07a]. Nevertheless, its limitations regarding problem sizes and
model inputs make the technique hard to use in practice. Additionally, sym-
bolic FI only helps �nding �aws in a fault-tolerance implementation, compa-
rable to the “testing” purpose described in Section 3.1.1, but does not provide
quantitative measurements for workload-variant comparison.

3.2.6 Summary

To summarize, the existing FI technique and tool landscape is quite diverse
regarding the characterizing properties repeatability, controllability, intru-
siveness, observability, reachability, scalability, machine and fault-model re-
alism, and cost (see Section 3.2.1). Table 3.3 provides an overview which tech-
niques excel at the di�erent properties. Radiation-based FI is the only tech-
nique providing perfect fault- and machine-model realism, while TAP-based
FI still uses real hardware and, hence, provides a realistic machine model.
Among the techniques not requiring a hardware prototype, simulation-based
FI provides the best mixture of positive characteristics, only having the dis-
advantage of slow simulation speeds.

3.3 fault-injection optimizations

As already outlined in Section 1.2.3, FI campaigns can be optimized by re-
ducing the total campaign runtime Tcampaign = N ⋅ Texperiment, the prod-
uct of the FI experiment count N and the (average) per-experiment run-
time Texperiment. A campaign-runtime reduction can either be achieved by
decreasing either N or Texperiment [GRSRV06]. The following subsections
discuss existing approaches for both methods.

3.3.1 Experiment-Count Reduction

Many studies leveraging FI for testing, measurement, and comparison pur-
poses resort to statistically sampling fault locations [RKK+08, LCMV09]: A
randomized selection of fault locations – usually in the thousands – is used
to drive the FI campaign, until statistics predict a “good enough” probability
for the overall result distribution to lie within the desired con�dence interval

3.3 fault-injection optimizations 69

HW-based SWIFI

Property Ra
di

at
io

n

Pi
n/

Po
w

er
-S

up
pl

y

TA
P

pr
e-

ru
nt

im
e

ru
nt

im
e

Si
m

ul
at

io
n-

ba
se

d

Sy
m

bo
lic

Repeatability # G#

Controllability # G#

Non-Intrusiveness G# # #

Observability G# G# G#

Reachability # G# # G# G#/ #

Scalability # # # #

Realism # G# # G# G# #

Low Cost # # #

Table 3.3: Adding scalability, realism and cost to the categories described by
Skarin et al. [SBK10] (see Section 3.2.1), the di�erent FI techniques de-
scribed in Section 3.2 exhibit di�erent advantages and disadvantages
when used for the injection of hardware faults. Legend: The property is
= not present,G# =moderately present, or = strongly present in the
respective FI technique.

(Section 3.1.2.5 already discussed this). By sampling, the experiment count
N can be reduced arbitrarily, trading experimentation e�orts for lower error
margins.

Nevertheless, for �ne-grained analysis purposes (see Section 3.1.1), re-
sults on the complete fault space are desirable. As already discussed in Sec-
tion 1.2.3, this is generally infeasible even for small applications, as – for
the example of single-bit �ips in memory – both space and time dimensions
grow quickly, resulting in a large fault-space size w.

3.3.1.1 Def/Use Pruning

Recent FI techniques proceed with more sophistication than randomly sam-
pling locations in the fault space, and are based on instruction and memory-
access traces. These traces are created during the “golden run”, which ex-
ercises the target workload without injecting faults, and, thus, serves as a
reference for the expected program behavior (see Section 3.1.2.2).

Figure 3.3 exemplarily shows the memory-access information recorded
during the golden run, extending the “raw” fault space from Figure 3.1 with
these accesses. The dynamic instruction starting in CPU cycle 4, a store,

70 fault tolerance assessment and hardware fault injection

CPU Cycles
M

e
m

o
ry

 B
it
s

111 2 3 4 5 6 7 8 9 10 12

1

2

3

4

5

6

7

8

9

One Byte
Write

One Byte
Read

R

R

R

R

R

R

R

R

Equivalence
Classes

W

W

W

W

W

W

W

W

Figure 3.3: Single-bit �ip fault space and def/use equivalence classes extracted from
a program trace, reducing the FI experiments (dots) that need to be con-
ducted. Fault injections at white coordinates (non-�lled circles) can be
omitted, as a fault there is overwritten or never read (dormant faults). A
black dot represents a class of equivalent faults (light-gray coordinates)
between the write and subsequent read instruction.

writes (“W”) eight bits to main memory. The data is read (“R”) back into
the CPU in cycle 11, executing a load instruction.

Based on this kind of memory-access trace information, Smith and col-
leagues [SJPB95] and Gütho� and Sieh [GS95] are among the �rst concisely
describing the classical def/use analysis for experiment reduction (termed
“operational-pro�le-based fault injection” in the latter paper). It is so fun-
damental that it was subsequently reinvented several times, for example by
Benso et al. [BRIM98, BP03], Berrojo et al. [BGC+02] (“Workload Dependent
Fault Collapsing”), Barbosa et al. [BVFK05b, BVFK05a] (“inject-on-read”),
and recently by Grinschgl et al. [GKS+12] and Hari et al. [HANR11, HANR12,
HANR13].

The basic insight is that all fault locations between a def (a write or store,
“W” in Figure 3.3) or use (a read or load, “R” in the �gure) of data in memory13,
and a subsequent use, are equivalent: regardless of when exactly in this time
frame a fault is injected there, the earliest point where it will be activated is
when the corrupted data is read. Instead of conducting one experiment for
every point within this time frame, it su�ces to conduct a single experiment
– for example at the latest possible time directly before the load, the black
dots in Figure 3.3, – and assume the same outcome for all remaining coordi-
nates within that def/use equivalence class (light-gray frames in Figure 3.3).

Similarly, all points in time between a load or store and a subsequent store
without a load in between – the light-gray dots in the remaining fault-space
coordinates left, right and above the marked equivalence classes in Figure 3.3

13 This technique also works for any other level in the memory hierarchy, such as CPU registers
or cache memory.

3.3 fault-injection optimizations 71

– are known to result in “No E�ect” without having to run experiments at
all: Injected faults will be overwritten by the next store in all cases.

The result of the def/use pruning process is a partitioning of the fault
space into equivalence classes. For some of these equivalence classes – those
ending with a load (“R” in Figure 3.3), – a single experiment needs to be con-
ducted each, while the remaining classes have an a priori known experiment
outcome. From the 12 ⋅ 9 = 108 experiments in the illustrative example of
Figure 3.3, only 8 remain after def/use pruning. A noteworthy side e�ect
of def/use pruning is that it restricts FI to memory areas used at all by the
workload, which alone can contribute signi�cantly to experiment-count re-
duction.

In real-world examples, def/use pruning – especially when applied to faults
in memory – is extremely e�ective. As an example, Barbosa et al. [BVFK05b,
BVFK05a] report two orders of magnitude experiment-count reduction (5.0×
108 down to 7.7×106) for FI in registers for their jet-engine controller bench-
mark, and between four and �ve orders of magnitude (1.9 × 1011 down to
3.3×106) for faults in memory. Thus, for smaller workloads a full fault-space
scan becomes feasible within a reasonable time frame, without any loss of
precision regarding the result information on any point in the fault space.

3.3.1.2 Fault-Equivalence Heuristics

Although def/use pruning signi�cantly reduces the number of experiments,
the computational e�orts for complete fault-space coverage are still far too
heavy for most workloads. Only recently, more advanced fault-equivalence
pruning techniques appear in the literature, leaving the realm of conserva-
tive, accuracy-neutral methods, in favor of heuristic approximations.

For example, Hari et al. [HANR11, HANR12, HANR13] describe the Re-

lyzer tool, providing several heuristics that combine multiple def/use equiva-
lence classes into larger groups. From each group, only one representing def/
use equivalence class – the pilot – gets picked, and the experiment result is
assumed to be identical for the remaining group members. Although rather
e�ective, a major de�ciency of this approach is the in�exibility regarding
the result accuracy – the authors report an average accuracy of 96 percent
for pilots representing their group – and experiment-count trade-o�: If the
result accuracy turns out too low, no alternative is o�ered; if the experiment
count is still too high, the authors suggest sampling from the set of pilots.
The latter, again, has the problem of not providing information on the com-
plete fault space. Additionally, the grouping heuristics are based on complex
control and data-�ow analyses, SPARC platform speci�cs, and assumptions
on the experiment result interpretation: Relyzer only di�erentiates between
benign and SDC outcomes, while in many use cases more outcome types, or
even quality thresholds on the output [DSE13, TP13], become relevant.

Li and Tan [LT13] describe similar pruning heuristics in their SmartIn-

jector tool. They provide a slightly better experiment count reduction than
Relyzer, but otherwise share the aforementioned drawbacks, including the

72 fault tolerance assessment and hardware fault injection

Time

❶ ❸❷

0

Fast-Forwarding Monitoring

❹

(a) FI-experiment phases under the single-fault assumption: Fast-forwarding,
followed by fault injection ·, and post-injection monitoring.

Time

❶ ❸❷

0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

Checkpoints

❹

(b) FI-experiment speedup using checkpoints: By loading the closest check-
point C3 before the injection time ·, the fast-forwarding execution time
from the workload startup ¶ until C3 can be saved.

Time

❶ ❸❷

0

Early
Experiment
Termination

❹

(c) FI-experiment speedup by early experiment termination: By predicting
the experiment outcome, the monitoring execution time until the regular
workload termination can be saved.

Figure 3.4: Unoptimized FI-experiment phases, and speedup using checkpoints or
early experiment termination. Legend: ¶ Workload startup, · FI, ¸ reg-
ular workload termination, and ¹ actual code-execution time span on
the target device.

single focus on SDCs, and a �xed trade-o� between accuracy – reportedly
94 percent on average – and pruning e�ectiveness.

To address these issues, including the �xed result accuracy, the restriction
to only SDC outcomes, and the necessary complicated analysis steps, Chap-
ter 5 describes my novel heuristical fault-space pruning technique. It reducesChapter 5:

Heuristical

fault-space pruning

technique.

the computing e�orts for complete fault-space exploration by freely trading

the number of FI experiments for result accuracy, providing results for any
number of di�erent outcome types, and is based on the relatively simple idea
of fault similarity.

3.3.2 Experiment Speedup

Besides reducing the number of experiments, an FI campaign can also be ac-
celerated by speeding up each single experiment. The easiest way to achieveHardware-

implemented FI

(Section 3.2.2) and

SWIFI (Section 3.2.3)

run the workload on

real hardware.

experiment speedup is to simply choose an FI technique with a high work-
load-execution speed, such as the techniques running the workload on pro-
totype hardware – or in a fast simulation environment, such as an FPGA-

3.3 fault-injection optimizations 73

accelerated simulator [BGC+02, PCZ+08]. Depending on the availability of
a hardware prototype or a fast simulator, and the requirements regarding
fault-model realism and state reachability, this option may or may not be
available.

In case FI techniques with high controllability and repeatability are used
– regardless if for testing, measurement, or �ne-grained analysis – more pos-
sibilities regarding experiment speedup arise. Recapitulating the FI-experi-
ment steps from Section 3.1.2.2, an FI experiment can be divided into three
phases (see Figure 3.4a):

• A fast-forwarding phase, advancing the workload until the exact injec-
tion time is reached,

• the fault injection itself, and

• a post-injection monitoring phase, collecting readouts while the work-
load �nishes its run (or terminates abnormally).

The literature provides experiment-speedup approaches for both fast-for-
warding and monitoring phases.

3.3.2.1 Pre-Injection Speedup: Fast-Forwarding and Checkpointing

With a high controllability, the fast-forwarding phase can demand a large
time fraction of the FI experiment – even on real hardware with a high native
workload-execution speed. In its simplest implementation, fast-forwarding
can be implemented by single-stepping the target device. In the example Section 4.3.3

describes the

ARM/JTAG setup

that was used for this

round-trip time

measurement in

detail.

of TAP-based FI via JTAG into contemporary ARM Cortex A9 development
hardware, by far the most time is spent in the round-trip between the host
PC and the development board: In this setup, this round-trip takes about
70 ms, and has to be taken for every single step – or, dynamic instruction
– the workload is forwarded. For example, fast-forwarding the workload to
the 400th dynamic instruction takes about 28 s with single-stepping [SBS14].
Fast-forwarding an ISA-level simulator is several orders of magnitude faster,
but the basic problem stays the same.

A fast-forwarding speedup approach described by several authors is check-
pointing [PRSRV00b, PRSRV00a, BGC+02, HVAN14, PTAB14]. Checkpoints
represent loadable intermediate states at a priori chosen – and usually equidis-
tant – dynamic instructions N1, N2, . . . (Figure 3.4b). They allow fast-for-
warding to speci�c points in the execution trace, skipping all dynamic in-
structions up to Ni; from there, a �ne-grained fast-forwarding technique
like the aforementioned single-stepping forwards the �nal instructions to
the target instruction.

Nevertheless, a checkpoint load costs a non-negligible amount of time,
and consequently only pays o� if this time does not exceed the time required
for a simpler fast-forwarding technique. More importantly, creating and stor-
ing checkpoints consumes both time and storage space [BGC+02]. Therefore,

74 fault tolerance assessment and hardware fault injection

the total number of checkpoints in use is limited, making this technique or-
thogonal to �ne-grained fast-forwarding techniques such as the aforemen-
tioned single-stepping to navigate to the desired target instruction after the
checkpoint load.

Chapter 6 discusses more sophisticated fast-forwarding alternatives to
single-stepping, and presents my novel fast-forwarding technique that out-Chapter 6: A novel

fast-forwarding

technique.

performs the state of the art by several orders of magnitude.

3.3.2.2 Post-Injection Speedup: Outcome Prediction

Independently of speeding up workload execution until a fault is injected, ac-
celerating the monitoring phase afterwards equally can reduce the total time
for an FI experiment. The basic idea behind several approaches achieving
this goal is to selectively terminate experiments before they �nish regularly,
saving the remaining execution time (Figure 3.4c). This can be done if the
experiment result is predictable based on the machine state, or observations
from previous experiments.

For example, Berrojo et al. [BGC+02] describe dynamic fault collapsing,
speeding up FI experiments on the �ip-�op level. After injecting a single-bit
�ip, their optimization approach repeatedly – with quadratically increasing
time distances to the injection time – compares the machine state to the
golden run. This comparison step discovers states that di�er from the golden
run by a single bit, rendering the original fault equivalent to a fault in the
single, di�ering bit. If the result of the experiment with the equivalent fault
has already been determined, the original experiment can be aborted and
predicted to yield the same result; if the result is not known yet, the original
experiment is �nished, and its result is also valid for the equivalent fault,
making an experiment unnecessary.

Similarly, Li and Tan’s SmartInjector [LT13] predicts the outcomes of FI
experiments on the ISA level, focusing on SDCs and benign outcomes. In-
stead of comparing the complete simulator state, SmartInjector’s outcome-
prediction heuristic compares the output or behavior of statically determined
masking, output, or branching instructions with the golden run. Li and Tan
report a simulation-time reduction of 19 percent throughout their bench-
marks. Following the same basic idea, Hari et al.’s GangES [HVAN14] groups
FI experiments into “gangs” that result in the same intermediate machine
state, and only completes one of the simulations. GangES “leverages pro-

gram structure to carefully select when to compare simulations and what state

to compare” [HVAN14], and the authors report a 57.7 percent reduction in
simulation time.

3.3.3 Summary

To summarize, FI campaigns – and, hence, the time or the required comput-
ing power to achieve test, measurement, or �ne-grained analysis results –
can be accelerated by either reducing the total experiment count, or by de-
creasing the time spent in each single FI experiment. For experiment-count

3.4 alternative analysis techniqes 75

reduction, several approaches from the literature leverage information from
the golden run. They group equivalent experiments, and execute only a sin-
gle pilot experiment from each group. The time spent in each experiment
can be reduced by approaches aiming at the fast-forwarding phase before
the FI step, or at the monitoring phase afterwards.

3.4 alternative analysis techniqes

As the literature has not scrutinized the potential of complete fault-space
coverage for �ne-grained analysis yet – not least because most FI tools do
not yield information on the complete fault space, – the SIHFT community
has invented other approaches aiding the con�guration of SIHFT solutions.
These approaches guide the placement of EDMs/ERMs either by speci�cally
targeted FI experiments – and the application of di�erent metrics to the re-
sults, – or by analyses completely independent of FI.

3.4.1 Fine-Grained Analysis with Fault Injection

Despite not having access to FI results from the complete – for example, ISA-
level – fault space, parts of the literature addressed the problem of locating
particularly vulnerable spots of the program by using speci�cally targeted
FI experiments.

Hiller et al. use the PROPANE FI and error-propagation analysis frame-
work [HJS02b] to speci�cally inject faults into variables grouped by their
a�liation to program modules. They subsequently distill several di�erent
module-level metrics from the results – among others, the module’s expo-

sure to errors, its permeability, its impact on the remaining modules, and
its criticality, – and use them for EDM placement in an aircraft arresting
system [HJS01, HJS02a, HJS04]. The metrics are complicated, lack a direct
relationship to the failure probability of the whole system, and are limited
to module-level granularity. Similarly, Johansson et al. [JS05, Joh08] inject at
the interface between an operating system and its drivers to characterize the
system’s capability to cope with driver failures, and de�ne metrics like ser-

vice error permeability and exposure, or driver error di�usion. Like PROPANE,
Johansson et al.’s granularity is limited to a �xed driver-module granular-
ity level. Leeke et al. [LJ10, LJ11] de�ne an importance variable ranking for
each module of the application, estimated by using FI experiments involv-
ing manual instrumentation of the target software. The approach is limited
to variable-level granularity, depends on a strict modularization of the soft-
ware, and only yields module-local variable importance rankings.

The �xation of these �ne-grained analysis approaches to a speci�c granu-
larity level – usually either a module- or variable-level granularity – already
strongly predetermines and limits the analysis results, and, consequently,
possible placements of EDMs/ERMs. Additionally, all mentioned approaches
seem to be closely tied to a speci�c software structure, and partially require
access to the target-software source code [HJS01, HJS02a, HJS04].

76 fault tolerance assessment and hardware fault injection

3.4.2 Analysis Methods without Fault Injection

To avoid the computational e�orts of FI altogether, some approaches derive
information on critical components of the target program by static or dy-
namic analyses without injecting faults. This allows to retain analysis results
much faster, in some cases even enabling their use in compiler optimizations.

For example, the AVF [MWE+03a, MWE+03b] and PVF [SK09b] metrics
(see Section 3.1.2.5) can be calculated using FI experiments – and are closely
related to the fault-coverage factor. In a computationally cheaper approach,
both Mukherjee et al. [MWE+03a, MWE+03b] and Sridharan et al. [SK09b]
use a technique called Architecturally Correct Execution (ACE) analysis to
approximate them without FI. Based on a single golden run of the target
workload, ACE analysis pessimistically assumes all machine-state bits that
are subsequently used (i.e., read) for computations to lead to failures. Al-
though this approximation provides a safe upper bound for a component’s
failure rate – after all, only activated faults can propagate to system failures
(see Section 2.2.2), – this approach has several disadvantages:

• ACE analysis cannot di�erentiate between di�erent failure types, such
as SDC, timeout, or reduced output quality.

• The pessimistic assumption of all live data corruption leading to sys-
tem failures is countered by the fact that, even in not speci�cally hard-
ened systems, by far not all errors propagate as failures to the next
system layer, or even outside the system, but are masked. This has
been shown to overestimate the AVF by a factor of 2 to 3 [WMP07] or
even up to 7 [GEJL10]. Döbel et al. [DSE13] (work I also contributed
to) show that for the PVF, similar overestimations can occur.

• Assuming the overestimation is reasonably equally distributed and
ACE analysis results are nevertheless usable for EDM/ERM placement,
the analysis is inherently incapable to assess a system after hardening
it with SIHFT measures. SIHFT explicitly and by de�nition introduces
error masking by one or more of the redundancy types listed in Sec-
tion 2.4.1, and even simple error masking cannot be measured by ACE
analysis.

Nevertheless, due to the low computational cost compared to FI, ACE anal-
ysis is popular in the �eld for assessing hardware (AVF) or software (PVF)
components. In this context, Rehman et al. [RSKH11] propose the Applica-

tion Vulnerability Index (AVI), composed of values from their Function Vul-

nerability Index (FVI), and recursively their Instruction Vulnerability Index

(IVI), which in turn is derived in a way comparable to Mukherjee’s AVF
[MWE+03a, MWE+03b]. Based on these derived metrics, Rehman et al. con-
trol reliability-optimization passes in a compiler [RSKH11].

In a di�erent approach on the source-code level, Benso et al. [BDCDN+03]
de�ne a criticality function CF(v) for each variable in the target program.
The metric is calculated by observing each variable’s usage during a golden

3.5 summary: observations and gaps in the state of the art 77

program run: Events like variable creation and destruction, and read and
write accesses, are recorded and weighted. Benso et al. tune the weights
using FI campaigns by �tting the resulting variable criticality to the FI-de-
termined SDC rate for each workload. The most critical variables are subse-
quently duplicated. This computationally cheap approach only works at a
�xed-size variable granularity, and the authors do not provide insights on
its scalability or applicability to types of applications other than those the
weights were tuned for.

3.5 summary: observations and gaps in the state of the art

This section summarizes several observations on the state of the art in FI
tools and techniques, and identi�es gaps this dissertation intends to �ll.

3.5.1 Fault-Space Coverage

The �rst observation is that all but the most recent FI tools [DBG+09, GDJ+11,
HANR12, LT13] are incapable of complete fault-space exploration. The few
tools that o�er this capability – partially through advanced fault-space prun-
ing techniques [HANR12, LT13] (see Section 3.3) – advertise this as a means
for full testing coverage on the particular machine-abstraction level they op-
erate on. There exists no FI tool that provides advanced analysis capabilities
based on complete fault-space exploration down to the level of single data
objects, variables, modules, functions, source-code lines, or any other level
of granularity potentially aiding fault-tolerance related design decisions. Chapter 4: Fail* tool,

and case studies

leveraging full

ISA-level fault-space

coverage for

�ne-grained analysis

purposes.

To �ll this gap, with the design and implementation of Fail*, Chapter 4
provides an FI tool with full ISA-level fault-space coverage (contribution 1,
cf. Section 1.2.2). The case studies in Chapter 4 take �rst steps in gauging
the potential of full fault-space result data for �ne-grained analysis purposes
(contribution 5, cf. Section 1.2.7).

3.5.2 Measurement and Comparison

Another observation in the FI-tool landscape is that most existing tools pri-
marily aim at testing – not only those capable of full fault-space coverage
(see above). Those that provide metrics for measurement only measure the
fault-coverage factor (see Section 3.1.2.5). Chapter 7: Dissection

of current practices

in FI-result

interpretation, and

introduction of a

novel comparison

metric.

To �ll this gap, Chapter 7 will show that the fault-coverage factor is un-
suitable for comparison purposes, a property essential for driving design de-
cisions for SIHFT. Subsequently, I will introduce an alternative metric usable
for comparison purposes (contribution 4, cf. Section 1.2.6).

78 fault tolerance assessment and hardware fault injection

3.5.3 FI-Tool Maintainability

Most existing hardware devices or simulators do not have FI capabilities of
their own. The literature provides two distinct approaches to add this capa-
bility to such execution environments. In consequence, besides the classi�-
cation chosen in Section 3.2 – a breakup along the FI technique dimension, –
FI tools can roughly be partitioned into what I call generalists and specialists:
The former aim at high �exibility regarding FI target back-end – the target
hardware device or simulator – and portable experiment code, the latter spe-
cialize on a single target and o�er deep system-state access combined with
variable fault models.

3.5.3.1 Generalists

The generalists claim a certain level of �exibility regarding the target-platform
back-end. Among the bene�ts of this approach is that experiments can more
easily be reused on a di�erent platform – for example for gaining evidence
the tested fault-tolerance measure is not platform-speci�c, or to move from
a simulator back-end to a real hardware prototype in later development
phases.

With GOOFI and GOOFI-2 [AVFK01, VAS+05, SBK10], Aidemark, Vinter,
Skarin et al. describe such a generic FI framework, abstracting away target
systems in a plugin-based architecture. Fidalgo et al. [FGAF06] describe a
generic tool addressing FI via the Nexus on-chip debugger interface. Another
example is Qinject by David et al. [DCCC08], injecting faults into a target
back-end utilizing the GDB debugger interface.

These approaches have the common disadvantage that the chosen inter-
face between experiment engine and target back-end heavily limits access
to target-system state, and narrows the possibilities for FI – for example
obstructing the possibility to inject networking-device–speci�c faults into
QEMU in the latter example.

3.5.3.2 Specialists

In contrast, the specialist tools are highly speci�c to a single target. An ex-
ample is FAUmachine [PSDC07, SPS09], an x86 simulator designed from the
ground up with FI in mind. FAUmachine provides access to a large part of
its x86 simulator’s state, and enables various FI methods, including, for ex-
ample, hard-disk faults. Instead of developing an own simulator, David and
Campbell [DC07] fork QEMU [Bel05] and modify its source-code to provide
FI capabilities. Similarly, Parasyris et al. [PTAB14] patch the gem5 simulator
[BBB+11] to create their GemFI tool.

One advantage of specialists is their provision of access to the back-end’s
full capabilities; another one, primarily making sense in the context of hard-
ware simulators, spending little runtime overhead for context-switching be-
tween FI and the execution environment. Unfortunately, specialist FI tools
are also characterized by severe maintainability issues: Deep state-access

3.5 summary: observations and gaps in the state of the art 79

usually results in deep intrusion into the back-end’s code base. Unfortu-
nately, enhancing a simulator with FI code implemented in a traditional
imperative language such as C or C++ often leads to intermixing the im-
plementation of di�erent concerns – in this case particularly the simulation

and fault-injection concerns.
Listing 3.1 illustrates this so-called tangling e�ect [KLM+97] on a code

example taken from FAUmachine, where di�erent concerns – sanity checks,
normal simulator operation, and FI – are implemented in a single module
dealing with IDE hard-disk simulation. A related problem, the distribution of
a concern implementation across multiple implementation artifacts, is called
scattering. The resulting tight coupling between simulator and FI code often
makes it di�cult or even impossible to exchange the tool’s target back-end
later on. In the case of tools that were forked from an existing hardware sim-
ulator, such as QEMU14, even keeping in sync with the simulator’s mainline
evolution is often too arduous.

3.5.3.3 Separation of Concerns

To �ll this gap, Fail*’s implementation aims at achieving the advantages of Chapter 4: Separation

of concerns in Fail*

using AOP

techniques.

specialists – deep device-state access, and little context-switching overhead
– without paying for them with the aforementioned maintainability disad-
vantages. Chapter 4 will describe how Fail* achieves this by using AOP tech-
niques [KLM+97] in its implementation.

3.5.4 Back-end and FI-Technique Flexibility

A side e�ect of the aforementioned maintainability problem is that most
FI tools are limited to one speci�c simulator or hardware-device back-end.
This in�exibility becomes relevant when the requirements, for example re-
garding the CPU architecture, change during development. In these cases,
the developer most of the time must switch to a di�erent FI tool, and start
over de�ning the experiment procedures for the new tool.

Additionally, the FI technique is predetermined in most tools: For exam-
ple, simulation-based FI tools cannot be used for FI techniques other than
simulation-based FI. This forces a costly switch to a separate tool when in
later development stages, FI experiments are supposed to be repeated on real
prototype hardware, using, for example, TAP-based FI (see Section 3.2.2.3).
The only exceptions to this general FI-technique in�exibility are GOOFI
[AVFK01, VAS+05, SBK10], which supports TAP-based FI and pre-runtime
and runtime SWIFI, and Xception [MCS95, CMS95, CMS98, MHCM02] and
FlexFI [PRSR98, BRSR99], which both support TAP-based FI and runtime
SWIFI. Chapter 4: Execution-

environment and

FI-technique

�exibility in Fail*.

To �ll this gap, Fail* (Chapter 4) provides execution-environment abstrac-
tions that allow the reuse of experiment-procedure descriptions, and imple-

14 For example, David and Campbell’s QEMU fork [DC07] was later seemingly given up in favor
of a generalist [DCCC08].

80 fault tolerance assessment and hardware fault injection

1 static int

2 ide_gen_disk_read_raw(struct cpssp *cpssp, uint8_t *buffer, uint32_t blkno)

3 {

4 unsigned int i;

5 unsigned int defect;

6
7 assert(blkno < cpssp->phys_linear + RESERVED_SECTORS);

8
9 for (i = 0; ; i++) {

10 if (i == sizeof(cpssp->fault) / sizeof(cpssp->fault[0])) {

11 defect = 0;

12 break;

13 }

14 if (cpssp->fault[i].type == BLOCK

15 && cpssp->fault[i].blkno == blkno) {

16 defect = cpssp->fault[i].val;

17 break;

18 }

19 }

20
21 switch (defect) {

22 case 0:

23 /* No read error. */

24 storage_read(cpssp->media, buffer, 512, blkno * 512ULL);

25 return 1;

26 case 1:

27 /* ECC corrected read error. */

28 storage_read(cpssp->media, buffer, 512, blkno * 512ULL);

29 return 0;

30 case 2:

31 /* un-correctable read error. */

32 memset(buffer, 0, 512);

33 return -1;

34 default:

35 assert(0); /* Mustn’t happen. */

36 }

37 } �
Listing 3.1: Code excerpt of FAUmachine’s hard-disk simulation code (raw-block

read): The implementation of sanity check (gray, lines 7 and 34–35),
normal simulator operation (green, lines 23–25), and fault injection

(white, remaining lines) concerns is heavily tangled throughout the
whole code base.

3.5 summary: observations and gaps in the state of the art 81

ments concrete back-end connectors for several target devices and simula-
tors, and di�erent FI techniques.

3.5.5 Public Availability

A �nal – and in practice quite research thwarting – observation in the FI-
tool landscape is that, despite the myriad of tools described in the literature,
they only very rarely are publicly available. Exceptions to this general un-
availability are only:

• FAUmachine [PSDC07, SPS09] – with the aforementioned maintain-
ability and back-end �xation issues,

• the commercial, closed-source Xception tool [MCS95, CMS95, CMS98,
MHCM02] – which cannot be used for research on FI itself, as its
source code is not available,

• and very recent tools, such as LLFI [TP13, LFW+15], GemFI [PTAB14],
or GRINDER [WPS+15, Win15] – which could not be used and en-
hanced in this thesis due to their very recent publication.

Schi�el et al. [SSSF10b] make similar observations on the low availability of
FI tools – but ironically do not publish their own tool described in the very
same paper [SSSF10b].

This tool scarcity in itself may be the primary reason for the existence of
so many FI tools in the literature. Nevertheless, also a certain degree of “not
invented here syndrome”15 may contribute to the creation of quick in-house
FI-tool hacks. To complete the circle, these quick hacks are then classi�ed
by their creators to be too speci�c for the target device or fault-tolerance
solution they work on, or to be of too low feature completeness or source-
code quality, that they are, again, not made available to the public.

To �ll this gap, I made Fail*’s source code publicly available16 in 2014.
Since then, Fail* has been used by other researchers for research on FI itself,
for the assessment of SIHFT solutions, or in teaching.

In the next chapter, I will describe the design and implementation of Fail*,
and demonstrate its measurement, comparison, and �ne-grained analysis
capabilities by means of several case studies.

15 In the sense of Richard Feynman’s quote: “What I cannot create, I do not understand.”

16 Online git repository: https://github.com/danceos/fail

https://github.com/danceos/fail

4
FA I L * : A V E R S AT I L E FA U L T- I N J E C T I O N F R A M E W O R K

“Handling errors is just attention to detail.

Injecting errors is rocket science.”

— Steve Chessin, Injecting Errors for Fun and Pro�t [Che10]

Contents
4.1 Design Goals 84

4.1.1 Fault-Space Coverage 85
4.1.2 Measurement and Comparison 85
4.1.3 Maintainable Back-End Extension 85
4.1.4 Back-end and FI-Technique Flexibility 85

4.2 Fail* Overview 86
4.3 Plumbing Layer: Back-End Abstraction and Extension 87

4.3.1 Architecture 87
4.3.2 Implementation 91
4.3.3 FailPanda: OpenOCD TAP/SWIFI Back-End 96
4.3.4 Summary 99

4.4 Case Study: RAMpage 99
4.4.1 Workload: An Online Memory Tester for Linux 99
4.4.2 Fail* Experiment Setup 101
4.4.3 Evaluation 105
4.4.4 Reality Check: Tests on Real Hardware 106
4.4.5 Summary 107

4.5 Assessment-Cycle Layer: Fault-Model Defaults, Pruning, and Tool
Support 107
4.5.1 The Fault-Tolerance Assessment Cycle 108
4.5.2 Experiment De�nition 109
4.5.3 Pre-Injection Analysis 111
4.5.4 Fault-Injection Campaign 115
4.5.5 Post-Injection Analysis 115
4.5.6 Summary 117

4.6 Case Study: Generic Object Protection 118
4.6.1 Fault and Failure Model 118
4.6.2 Workload and Experiment Setup 120
4.6.3 Baseline Assessment 120
4.6.4 Generic Object Protection 122
4.6.5 Evaluation: Finding an Optimal GOP Con�guration 123

83

84 fail*: a versatile fault-injection framework

4.6.6 Evaluation: Variant Comparison 125
4.6.7 Conclusions on Fail* Tooling 126

4.7 Case Study: Return-Address Protection 127
4.7.1 Baseline Assessment 128
4.7.2 Return-Address Protection 130
4.7.3 Evaluation: Detection and Correction E�ectiveness 133
4.7.4 Conclusions on Fail* Tooling 137

4.8 Case Study: WSOS / Bare-Metal-Sort 137
4.8.1 Hands-On Setup 137
4.8.2 Fault and Failure Model 138
4.8.3 Baseline Assessment and Analysis Methods 138
4.8.4 Competition Results 143
4.8.5 Conclusions on Fail* Tooling 143

4.9 Discussion 144
4.9.1 Fault-Space Coverage 144
4.9.2 Measurement and Comparison 144
4.9.3 Maintainable Back-End Extension 144
4.9.4 Back-End and FI-Technique Flexibility 146

4.10 Summary 146

This chapter describes the design and implementation of Fail*, a
�exible and versatile architecture-level FI tool and framework for
developers designing and deploying SIHFT measures. Fail*– short

for Fault Injection Leveraged1, with the asterisk highlighting its variability
regarding target back-ends – aims at �lling the gaps identi�ed in Section 3.5,
and additionally provides the foundation for the remaining contributions of
this dissertation in the next chapters.

After recapitulating the design goals for Fail* in Section 4.1, Section 4.2
gives an overview of the two layers Fail* is built from: the plumbing layer
with low-level primitives and a high degree of freedom for the FI-experiment
developer, and the assessment-cycle layer providing good defaults for widely-
used ISA-level fault models, fault-space pruning, database storage, tool sup-
port, and �ne-grained analyses. Sections 4.3 and 4.5 describe each layer in
detail, and Sections 4.4, 4.6, 4.7, and 4.8 demonstrate their functionality in
four case studies. Section 4.9 discusses the results and revisits the design
goals from Section 4.1, and Section 4.10 summarizes the chapter.

Parts of this chapter were originally published on PRDC 2011 [SNK+11],
ARCS 2012 [SHK+12], DSN 2013 [BSS13a], SOBRES 2013 [BSS13b], EDCC
2015 [SHD+15], and in IJCCBS [SKSE13] and IEEE TDSC [BSS15].

4.1 design goals

This section recapitulates the design goals for Fail*, distilled from gaps in
the state of the art that were identi�ed in Section 3.5.

1 I only discovered long after naming Fail* that the Hoarau et al.’s FAIL-FCI [HTV07] and
Joshi et al.’s PreFail [JGS11] share a quite similar name.

4.1 design goals 85

4.1.1 Fault-Space Coverage

The �rst design goal of Fail* is to provide the capability for full ISA-level
fault-space coverage. First of all, this allows testing a fault-tolerance mecha-
nism very thoroughly, catching even rare corner cases where the mechanism
fails. Additionally, FI results for the complete fault-space renders novel �ne-
grained analysis methods possible that are out of reach for traditional sam-
pling methods.

Fail* achieves complete fault-space coverage by applying advanced fault-
space pruning techniques – both classic def/use pruning, as described in Sec-
tion 3.3.1.1, but also a novel, heuristic pruning method described in Chapter 5 See Chapter 5 for

details on the

Fault-Similarity

Pruning (FSP)

heuristic.

– and massive parallelization, allowing to fully exploit the power of com-
puting clusters. The �ne-grained analyses, demonstrated in the case studies
throughout this chapter, go down to the level of single variables, CPU in-
structions, or high-level program code lines.

4.1.2 Measurement and Comparison

The second goal is to make Fail* not only usable for testing and �ne-grained
analysis, but also and explicitly for measurement and comparison. Therefore, See Chapter 7 for

details on the

extrapolated
absolute failure
count metric and its

derivation.

the tools described in Section 4.5 not only allow measuring the classic fault-
coverage factor metric (see Section 3.1.2.5), but also (extrapolated) absolute

failure counts as a metric more adequate for comparison in the context of
SIHFT.

4.1.3 Maintainable Back-End Extension

As the third goal, Fail* aims at achieving the advantages of specialist FI tools
(see Section 3.5.3) without inheriting the maintainability issues observed in
other tools in the �eld. The aspired advantages are primarily the ability for
deep device-state access, and little context-switching overhead between the
workload execution environment and the FI extensions.

Manually patching FI capabilities into an existing simulator, like in GemFI
[PTAB14], or even writing an own simulator with FI enhancements, like in
FAUmachine [PSDC07, SPS09], can lead to unmaintainable code with scat-
tered and tangled concern implementations (see Section 3.5.3). Therefore,
Fail* aims at separating the concerns simulation and FI by modularizing
their implementation with the help of AOP techniques [KLM+97].

4.1.4 Back-end and FI-Technique Flexibility

Another, central design goal of Fail* is to allow developers to pro�t from its
testing, measurement, and �ne-grained analysis capabilities without having
to decide for a speci�c FI technique – with its advantages and disadvantages.
Consequently, Fail* currently supports two of the FI techniques mentioned

86 fail*: a versatile fault-injection framework

in Section 3.2 that provide the level of repeatability and controllability nec-
essary for detailed post-injection analysis (see Table 3.3):

• Simulation-based FI (see Section 3.2.4) with currently three di�erent
simulator target back-ends (Lawton’s Bochs [Law96], Binkert et al.’s
gem5 [BBB+11], and Bellard’s QEMU [Bel05]) and two target architec-
tures (x86-32 and ARM).

• A hybrid technique between TAP-based FI (see Section 3.2.2.3) and
runtime SWIFI (see Section 3.2.3). Concretely, Fail* injects into JTAG-
controlled ARM Cortex-A9 development boards, such as the Panda-
Board [Pan], and improves the observability by additional SWIFI com-
ponents on the target device.

Integrating these techniques in one tool allows the developer to switch back
and forth from simulators to hardware during the development of a growing
software system, and even to a di�erent target architecture if the require-
ments change.

4.2 fail* overview

In general, Fail*’s design can be divided into the plumbing and assessment-

cycle layers, where the latter builds upon and abstracts from the former.
The basic plumbing layer provides a client/server infrastructure for paral-

lel experiments, and abstracts from a concrete execution environment, such
as a hardware simulator, or actual development hardware connected via a
TAP. On the server, a user-de�ned campaign generates experiment parame-
ters – the FARM model’s fault set F (see Section 3.1.2) – and collects results
from the clients. A client is essentially a hardware simulator – or a TAP-
controlling program, – extended by an execution-environment abstraction
layer, which in turn is controlled by a user-de�ned experiment procedure.

Using only the plumbing layer, the developer has complete freedom re-
garding campaign and experiment procedures. This allows the developer to
work with arbitrary ISA-level fault models and workload readouts, but has
the disadvantage that every detail of both campaign and experiment pro-
cedures must be implemented. Consequently, this layer is primarily aimed
at researchers working on FI techniques and optimizations themselves. Sec-
tion 4.3 describes the plumbing layer, and Section 4.4 demonstrates its ca-
pabilities in a case study on permanent faults in main memory and their
detection by an online memory tester for Linux.

Building on the APIs provided by the plumbing layer, the assessment-cy-

cle layer restricts the degrees of freedom to its users, trading them for sim-
pler use and tool support for the complete fault-tolerance assessment cycle.
This cycle spans all activities from the initial experiment de�nition and pre-
injection/fault-space pruning steps, followed by the FI campaign itself, and
ending with post-injection analyses. These analyses distill useful informa-
tion from the FI results in a central database, before the assessment cycle
enters its next iteration. The primary restriction deliberately introduced by

4.3 plumbing layer: back-end abstraction and extension 87

the assessment-cycle layer is its focus on two widely used ISA-level fault
models, namely uniformly distributed single-bit �ips in main memory and
CPU registers.

In contrast to the plumbing layer, the assessment-cycle layer primarily
aims at the developers and users of SIHFT mechanisms. Using the features
introduced by the assessment-cycle layer, this target audience can pick from
ready-to-use campaign and experiment procedures, which maintain stan-
dardized fault lists and experiment outcomes in a database server. Addi-
tionally, a fault-space pruning tool helps with def/use pruning, sampling,
and also a novel pruning heuristic described separately in Chapter 5. Sec-
tion 4.5 describes the assessment-cycle layer, and Sections 4.6, 4.7, and 4.8
demonstrate its capabilities – also regarding �ne-grained analysis possibili-
ties emerging from the collected data – in three case studies. Two of these
case studies deal with an embedded operating system protected by SIHFT
methods, and the third describes a postgraduate-student level lecture at an
international winter school.

4.3 plumbing layer: back-end abstraction and extension

As already outlined in the overview, the plumbing layer provides basic ser-
vices for FI experiments:

• First of all, it provides services necessary for experiment paralleliza-
tion in a client/server infrastructure, including job queues – �lled by
a user-de�ned campaign, – and messaging primitives tailored to the
requirements of the experiment at hand.

• Secondly, it abstracts from a concrete execution environment, such
as a hardware simulator, or actual development hardware connected
via a TAP. The client is essentially a hardware simulator (or a TAP-
controlling program), extended by an Execution-Environment Abstrac-

tion (EEA) layer, which in turn is controlled by a user-de�ned experi-

ment procedure.

The following sections describe Fail*’s architecture on this layer, provide
details on the implementation with a focus on the Bochs [Law96, MS08]
back-end, and demonstrate its capabilities on a case study with an online
memory tester for Linux [SNK+11, SKSE13].

4.3.1 Architecture

The plumbing layer is primarily organized in a server and a client side, as
depicted in Figure 4.1.

4.3.1.1 Server Side: Campaign and JobServer

On the server side, the CampaignController manages a user-de�ned Cam-

paign, which generates the FARM model’s fault set F (see Section 3.1.2) in

88 fail*: a versatile fault-injection framework

Bochs Simulator

Experiment

Tracing Plugin

Execution-Environment Abstraction

CPU RAM NIC ...

Set State / Inject

Register Listeners

Get State / Result

Trigger Listeners

FAIL* Instance / Client

Hook Aspects

Campaign

JobServer

Distribute Jobs Receive Results

OpenOCD

Hooks

gem5

Hooks User-defined Code

FAIL* Component

Existing Simulator / Debugger

Figure 4.1: Fail* plumbing-layer architecture overview: The JobServer distributes
parameter sets from a user-de�ned Campaign throughout the Fail* in-
stances. Each FI experiment consumes a parameter set, and controls its
target back-end through the Execution-Environment Abstraction (EEA)
layer. Actual target back-ends (simulators, or real prototype hardware)
can be exchanged by providing an interfacing module to this abstraction.
Adapted from [SHD

+
15].

the form of experiment-speci�cally typed job parameters, encapsulated in
a user-de�ned derivation of ExperimentData. These job parameters are fed
into an outgoing job queue in the JobServer, which distributes them to clients
with a JobClient counterpart. The JobServer also accepts and collects results,
and hands them back to the user-de�ned Campaign to store or directly post-
process them.

4.3.1.2 Client Side

A Fail* client instance is, in principle, an extended existing simulator or de-
bugger. Its control �ow is primarily determined by a central, user-de�ned
class derived from ExperimentFlow, as shown in the class diagram in Fig-
ure 4.2. This user-de�ned experiment procedure is started as a coroutine in
parallel to the simulator’s2 workload execution. This means that either the
user-de�ned experiment is running, or – after it has explicitly given back
control – the simulator part. In this context, I chose coroutines over full-

2 The process works similarly with a debugger such as OpenOCD [Rat05], but I will focus on
the extension of simulator software for the remainder of this section.

4.3 plumbing layer: back-end abstraction and extension 89

..

.

B
o
c
h

s
C

o
n

tr
o
ll
e
r

S
im

u
la
to
r
C
o
n
tr
o
ll
e
r

G
e
m

5
C

o
n

tr
o
ll
e
r

<
<
m
o
d
i
f
i
e
d
>
>

G
e
m

5

B
a
c
k
-E

n
d

E
x
e
c
u

ti
o
n

-E
n

v
ir

o
n

m
e
n

t
A

b
s
tr

a
c
ti

o
n

 (
E
E
A

)
E
x
p

e
r
im

e
n

t

E
x
p

e
r
im

e
n

tF
lo

w

<
<
H
o
o
k
A
s
p
e
c
t
s
>
>

B
o
c
h

s

M
e
m
o
r
y
M
a
n
a
g
e
r

..

.

B
o
c
h

s
M

e
m

o
r
y
M

a
n

a
g

e
r

G
e
m

5
M

e
m

o
r
y
M

a
n

a
g

e
r

L
is

te
n

e
r
M

a
n

a
g

e
r

C
P
UA

r
c
h
it
e
c
tu
r
e

C
P
U
S
ta
te

R
e
g

is
te

r
A

r
m

A
r
c
h

x
8
6
A

r
c
h

B
o
c
h

s
C

P
U

G
e
m

5
C

P
U

1
..
.*

Jo
b

C
li
e
n

t

..

.

p
lu

g
in

B

e
x
p

e
r
im

e
n

tA

Fi
gu

re
4.2

:C
lo

se
-u

p
of

th
em

os
ti

m
po

rta
nt

cl
as

se
so

n
th

ep
lu

m
bi

ng
la

ye
r’s

cl
ie

nt
sid

e:
A

us
er

-d
e�

ne
d

ex
pe

rim
en

td
er

iv
ed

fro
m
E
x
p
e
r
i
m
e
n
t
F
l
o
w

co
nt

ro
ls

th
eb

ac
k-

en
d

th
ro

ug
h

a
S
i
m
u
l
a
t
o
r
C
o
n
t
r
o
l
l
e
r

sp
ec

ia
liz

at
io

n,
su

pp
or

te
d

by
st

at
e

an
d

m
et

a-
in

fo
rm

at
io

n
m

an
ag

in
g,

ar
ch

ite
ct

ur
e

an
d

ba
ck

-e
nd

sp
ec

i�
ch

el
pe

rc
la

ss
es

.

90 fail*: a versatile fault-injection framework

�edged threads because they are lightweight, require no explicit synchro-
nization, and because real concurrency between experiment and simulator
execution is not needed at all.

The SimulatorController
3 in the central part of Figure 4.2 is the entry point

to Fail*’s key component, the Execution-Environment Abstraction (EEA). This
component consists of additional helper classes, such as the RegisterManager,
theMemoryManager, or the ListenerManager. It provides a common interface
for the di�erent target back-ends to the user-de�ned experiment procedure.
Its API o�ers access to both target back-end meta-information and the cur-
rent state, and allows registering Listeners for several types of events, mod-
eled as a hierarchy of Listener subclasses. The Fail* API currently provides
abstractions for:

• Meta-information on the target back-end: Number of CPUs, number of
registers, platform-independent naming of special registers (program
counter, stack pointer), bit widths and byte order, and memory size.

• Fine and coarse-grained state access: Read/write access to CPU regis-
ters and memory, injection of external interrupts, access to the back
end’s time; save/restore of the back-end state, and reboot.

• Listeners registrable for events in the back end: Reaching speci�c pro-
gram instructions (similar to breakpoints), access to speci�c memory
addresses, CPU exceptions, external interrupts, serial I/O, passing of
speci�c amounts of back-end time.

• Execution control: The experiment can, usually after registering one or
more Listeners, pass control back to the simulator coroutine, resuming
workload execution.

Each target back-end primarily provides specializations to the aforemen-
tioned classes, especially the SimulatorController and the di�erent manager
classes. Additionally, for each machine architecture adequate meta-informa-
tion classes exist.

Additionally, a target back-end may introduce interfaces to target-speci�c
state, such as a means to manipulate a network device. Naturally, experi-
ments using such an interface cease being portable to a di�erent target, un-
less an adequate abstraction is added to the generic API.

The sequence diagram in Figure 4.3 shows a typical control �ow between
the user-de�ned experiment procedure, the SimulatorController, and the sim-
ulator back-end. Initially, the SimulatorController passes control to the user-
de�ned experiment inheriting from the ExperimentFlow class. The experi-
ment begins by restoring a previously recorded back-end state, and registers
several Listeners with the SimulatorController. Once the experiment has reg-
istered a Listener for each event type it wants to be noti�ed of, it tells the
SimulatorController to resume execution of the workload in the back-end.

3 As Fail*’s development was started with extending simulators in mind, the SimulatorCon-

troller class gained its name. It nevertheless abstracts TAP-accessed prototype hardware as
well.

4.3 plumbing layer: back-end abstraction and extension 91

Figure 4.3: Sequence diagram of a typical control �ow between the user-de�ned
experiment procedure, the SimulatorController, and the simulator back-
end: Controlled by the experiment, either the experiment or the simula-
tor back-end coroutine runs exclusively.

Subsequently, the SimulatorController resumes the simulator by switching
to its coroutine. Each time an event in the simulator matches a registered
Listener, control is passed back to the ExperimentFlow.

Note that the EEA can in fact be used by more than one experiment corou-
tine at once. The assessment-cycle layer (Section 4.5) will use this feature by
introducing reusable plug-ins, for example implementing tracing.

4.3.2 Implementation

Fail*’s plumbing layer is implemented in about 17 300 lines of C++ code4 in
the src/core/ directory tree, although a certain assessment-cycle layer over-
lap with helper libraries in src/core/util/ exists. The following sections
provide details on the implementation of experiment-speci�cally typed job
messages, and how Bochs and other back-ends are tapped into.

4.3.2.1 Static Con�guration

By means of the CMake build system, several aspects of Fail* are con�g-
urable at compile-time (Figure 4.4). Primarily, the user must decide for one
speci�c target back-end and architecture. Additionally, several details are
con�gurable as well, for example which Listener types or event sources to
enable, and, hence, which simulator hooks to activate; or which assessment-

4 E�ective lines of code (excluding empty lines and comments), obtained with the cloc utility:
http://cloc.sourceforge.net

http://cloc.sourceforge.net

92 fail*: a versatile fault-injection framework

Figure 4.4: Fail*’sCMake-based static con�guration: The user can decide at compile
time which target back-end and architecture, which Listener types or
event sources, and which helper tools to compile.

cycle layer tools and plug-ins to compile, and whether to build those parts
requiring speci�c external libraries, such as LLVM.

The con�guration partially directly a�ects the build process, and for exam-
ple compiles only the chosen simulator back-end, and partially propagates
into the C++ preprocessing steps by means of generated #define directives.

4.3.2.2 Communication

As the plumbing layer is meant to provide complete freedom to the FI-ex-
periment developer, the structure of the experiment-parameter messages ex-
changed between JobServer and JobClient must – like the experiment pro-
cedure itself – be de�ned by the developer. For this purpose, Fail* uses the
Google Protocol Bu�er tools and libraries [Goo08]. They allow to de�ne mes-
sages in a simple description language, and to generate message-type spe-
ci�c, lightweight [GDK11] code for serialization and de-serialization when
sending messages over the network. Listing 4.4 on page 103 shows an ex-
ample message type from the RAMpage case study, which is described in
Section 4.4.

The communication itself is implemented as a client-initiated TCP con-
nection, over which JobServer and JobClient exchange control messages and
experiment-parameter data. The control messages themselves are also imple-
mented using protocol bu�ers (Listing 4.1):

• A Fail* client can request pilots – for performance reasons usually
more than one to keep busy for a con�gurable amount of time – with a

4.3 plumbing layer: back-end abstraction and extension 93

1 message FailControlMessage {

2 enum Command {

3 // Client commands:

4 NEED_WORK = 0; // request [job_size] jobs

5 RESULT_FOLLOWS = 1; // followed by [job_size] results

6 // JobServer commands:

7 WORK_FOLLOWS = 6; // followed by [job_size] jobs

8 COME_AGAIN = 7; // "come back later"

9 DIE = 8; // "campaign over, terminate"

10 }

11 required Command command = 1;

12 // ... [details omitted]

13 optional uint32 job_size = 5;

14 } �
Listing 4.1: Control-message type for communication between JobClient and

JobServer : A Fail* client can request several jobs at once to reduce the
client-server communication overhead.

FailControlMessage with NEED_WORK in the command�eld. The job_size
determines the number of requested pilots.

• Depending on the progress of the campaign, the JobServer replies with
either WORK_FOLLOWS and a series of experiment-speci�c job-parameter
messages, with COME_AGAIN if the job queue is currently empty but ex-
pected to �ll up again, or with DIE if the campaign is over and the
Fail* client may terminate.

• After having obtained results from FI experiments, the client returns
results with a RESULT_FOLLOWS message and, again, a series of exper-
iment-speci�c job-parameter messages – only this time with a �lled
results part.

This procedure is repeated until the FI campaign is complete, and all Fail*
clients have terminated.

4.3.2.3 Back-End Extension: Bochs

To avoid the scattering and tangling e�ects described in Section 3.5.3, the
Bochs [Law96, MS08] simulator back-end is extended with the help of AOP
[KLM+97], concretely an AOP extension to C++ called AspectC++ [SL07].
The primary idea of AOP is to allow strict separation of concerns even if the
underlying program structure otherwise would not allow this. So-called as-

pects – de�ning where (“pointcut”) FI-speci�c code (what: “advice”) should
be applied – allow for compact, well-encapsulated realizations of FI concerns.
An “aspect weaver” automatically takes care of compile-time intermixing of
simulator and extension code.

Listing 4.2 exempli�es the approach, showing an AspectC++ implemen-
tation of an aspect diverting control �ow from the memory module of the
Bochs simulator to the SimulatorController class, completely eliminating the

94 fail*: a versatile fault-injection framework

1 aspect MemAccess {

2 // ...

3 pointcut mem_write() =

4 "void ...::bx_cpu_c::write_virtual_%(...)";

5
6 advice execution (mem_write()) : after () {

7 fail::ConcreteCPU& triggerCPU =

8 fail::simulator.detectCPU(getCPU(tjp->that()));

9 unsigned s = *(tjp->arg<0>()); // segment selector

10 uint32_t offset = *(tjp->arg<1>());

11 uint32_t laddr = tjp->that()->get_laddr32(s, offset);

12
13 // divert control flow to FI module

14 fail::simulator.onMemoryAccess(&triggerCPU,

15 laddr, sizeof(*(tjp->arg<2>())), true,

16 getCPU(tjp->that())->prev_rip);

17 }

18 // ...

19 } �
Listing 4.2: Excerpt of an AspectC++ implementation of a memory-access hook

diverting control �ow from the Bochs simulator into the FI extension.
Where the aspect hooks is speci�ed in the pointcut expression (green),
and what is executed in the advice (gray).

need to invade the simulator’s code manually. The pointcut expression, spec-
ifyingwhere the aspect takes e�ect, uses wildcard expressions (“...” and “%”)
to match twelve di�erent Bochs functions that implement memory writes for
several address and data-operand sizes. The advice, denoting what is done
“after” (line 6) each matched joinpoint, uses the join point API (see [SL07] for
details) to retrieve the actual parameters of the function call within Bochs. It
then collects contextual information, such as the linear address of the mem-
ory access and the CPU that triggered it, and passes it on to Fail*’s Simula-

torController – concretely, its onMemoryAccess method.
A pointcut is described in a pattern-matching language independent of the

target code the advice is supposed to modify. Ideally, the target code itself –
in this case, the simulator implementation – does not have to be prepared for
being woven into. Additionally, one aspect – such as the MemAccess example
in Listing 4.2 – can and often is supposed to a�ect more than one location
of the target code. In the literature, these AOP properties are usually termed
obliviousness and quanti�cation [FF00, FECA04].

Figure 4.5 visualizes the quanti�cation of 15 Bochs-speci�c hook aspects
(among other functionality, hooking into Bochs’ initialization code, mem-
ory accesses, interrupt and trap handling, I/O operations, branch instruc-
tions, and the instruction-executing CPU loop) in the Bochs simulator code.
Each colored line represents a joinpoint where a pointcut in one of the hook
aspects matches (totaling 122 source-code locations), and the weaver in-
serted the advice code. For example, the full version of the aforementioned
MemAccess aspect alone – with a much longer list of pointcut expressions – is

4.3 plumbing layer: back-end abstraction and extension 95

Si
m

ul
at

or
C

on
tro

lle
r.c

c

cp
u.

cc

ac
ce

ss
.c

c

ac
ce

ss
32

.c
c

ct
rl_

xf
er

32
.c

c

ct
rl_

xf
er

16
.c

c

ex
ce

pt
io

n.
cc

io
.c

c

ac
ce

ss
64

.c
c

ct
rl_

xf
er

64
.c

c

si
m

in
te

rfa
ce

.c
c

lo
gi

o.
cc

m
ai

n.
cc

0

200

400

600

800

1000

1200

1400

C
od

e
lin

es

Figure 4.5: Quanti�cation of 15 Bochs-speci�c hook aspects (variously colored): In
total, the AspectC++ weaver modi�es 122 code locations (config.cc
with 3915 lines of code and �ve matching code locations omitted) in
the Bochs source code.

responsible for a total of 49 code insertions in access.cc, access32.cc, and
access64.cc, all colored blue. In consequence, the use of AOP strongly re-
duces concern scattering and tangling in the Bochs back-end, making Fail*’s
FI extension to this simulator more maintainable than a manual implemen-
tation.

Nevertheless, not all Bochs extensions were made with aspects. In total,
23 code locations in Bochs were modi�ed manually, in most cases to add or
repair functionality necessary for FI experiments. For example, the save and
restore capabilities of Bochs already existed in the original code, but restore
was not implemented to be triggered at runtime. Other changes add code to
cope with extreme hardware-interface misuses the simulator could not deal
with before – for example, sending incomprehensible command codes to the
�oppy-disk controller, – but can arise in rare occasions when a fault-injected
target workload goes mental. Finally, one change breaks the idealized obliv-
iousness of AOP by manually adding a “dummy” function call to the main
CPU loop for aspects to hook into.

4.3.2.4 Back-End Extension: gem5 and QEMU

Besides Bochs, all other Fail* back-end extensions were not implemented
with AOP, for practical reasons regarding AspectC++.

In the case of the gem5 simulator, AspectC++ could not be used as gem5
makes extensive use of C++ templates. Currently, AspectC++ cannot weave
into C++ template instances. Consequently, gem5 was manually patched,

96 fail*: a versatile fault-injection framework

FAIL* Instance

Host PC

Experiment

EEA

OpenOCD

J
T
A

G

OCD Debug
Interface

(Flyswatter2)

J
T
A

G

Embedded Development HW
(PandaBoard)

On-Chip
Debugger

OMAP4460

Figure 4.6: FailPanda architecture: Fail*’s EEA layer links into OpenOCD, which
controls the On-Chip Debugger (OCD) on the PandaBoard development
hardware via latency-a�icted USB and JTAG connections.

with a focus on minimal intrusion to maintain a bearable level of code main-
tainability.

The QEMU extension was also implemented manually: QEMU is imple-
mented in ANSI C, which AspectC++ cannot weave into either. Also, from
Fail*’s back-end abstractions, only memory-state access and memory-access
listeners were implemented for QEMU5, as this su�ced for the injection
of permanent memory errors in the RAMpage case study (see Section 4.4).
In fact, the QEMU back-end is currently not planned to become feature-
complete: QEMU’s JIT-compilation CPU provides a high simulation speed,
but strongly exacerbates the implementation of the extension hooks neces-
sary for Fail*.

4.3.3 FailPanda: OpenOCD TAP/SWIFI Back-End

Fail*’s OpenOCD back-end, connecting Fail* to real prototype hardware via
the JTAG TAP, has a more complex architecture than the one outlined in Sec-
tion 4.3.1. This section describes the architectural di�erences, and provides
details on the SWIFI component required for workload-behavior observabil-
ity.

4.3.3.1 Overview

To exemplify the provision of FI capabilities to typical low-priced embedded
development hardware, we chose the PandaBoard ES6 with a widespread,
ARM-based smartphone processor, the Texas Instruments OMAP4460. To
realize TAP-based FI with this hardware, FailPanda uses the OpenOCD 7.0
[Rat05] library and a USB debugger interface – concretely, the Tin Can Tools
Flyswatter2 JTAG in-circuit debugger – to access the PandaBoard’s JTAG in-
terface. Figure 4.6 gives an overview on the device chain that extends Fail*’s
in�uence to the development hardware.

5 This feature incompleteness also is the reason that the QEMU back-end currently resides in
a separate repository, and is not part of the public Fail* release.

6 http://pandaboard.org/

http://pandaboard.org/

4.3 plumbing layer: back-end abstraction and extension 97

4.3.3.2 Mapping the Plumbing API to OpenOCD Primitives

On-Chip Debuggers (OCDs) usually provide a basic set of primitives to fa-
cilitate debugging of programs running on embedded hardware. Typically,
the target CPU can be stopped, single-stepped, resumed, or rebooted, and
memory and ISA-visible CPU registers can be read and written [FGAF06].
Additionally, most OCDs provide a limited number of hardware breakpoints
and watchpoints: Breakpoints automatically stop the CPU when a speci�c
instruction address has been reached, and watchpoints do the same when
the memory address they are con�gured to watch is – depending on the
con�guration – read, written, or generally accessed.

The OpenOCD [Rat05] library provides a target-device independent ab-
straction for these primitives, which can easily be mapped to a subset of
Fail*’s plumbing API (see Section 4.3.1):

• Fine-grained state access to the device’s memory and CPU registers, as
well as back-end reboots, can be directly passed through to OpenOCD’s
state-access primitives.

• Listeners for reaching speci�c program instructions or accessing mem-
ory addresses can be implemented with OpenOCD’s breakpoints and
watchpoints – limited by the number of available hardware break-
points and watchpoints.

• As the coroutine separation between experiment and OpenOCD back-
end does not guarantee the workload to be in a halted state when the
experiment runs – as it is executed on a distant hardware device, – an
event loop wrapping OpenOCD calls and callbacks to Fail*’s Simula-

torController must make sure only one of the two runs at once.

From the remaining plumbing-API primitives, the implementation of save
and restore can be omitted by rebooting the device before each FI experiment.
The TimerListener, activating after passing of a speci�ed amount of back-
end runtime, and often used for detecting timeouts in an experiment, can be
implemented by using timers on the host PC.

4.3.3.3 SWIFI Components for Workload Monitoring

The Fail* plumbing API primitives not directly mappable to OpenOCD func-
tionality are several Listener types necessary for observing workload behav-
ior in the monitoring phase after FI. The TrapListener – which is activated
when the executing CPU issues a trap caused by, for example, division by
zero, or the execution of an illegal op-code – does not have a counterpart
in the OpenOCD API. Similarly, using the MemAccessListener to observe ac-
cesses to larger memory areas – often con�gured to activate at any access
outside the workload’s DATA or BSS sections, – cannot be mapped to hard-
ware watchpoints, which are in the case of the OMAP4460 not only limited
to four watchpoints in total, but also can only observe memory areas with a
width of four bytes.

98 fail*: a versatile fault-injection framework

runtime (ms)

operation avg σ

Reboot 1032 3.43

Read CPU Register 5.980 0.0122

Write CPU Register 25.98 0.0297

Read Memory (4 B) 11.90 0.161

Write Memory (4 B) 11.93 0.0984

Single-Step 69.99 2.17

Table 4.1: Runtimes averaged over 100 measurements for some of FailPanda’s
plumbing-layer primitives (with standard deviation σ).

As software on the target device itself can observe these events, the con-
sequent approach is to implement them as SWIFI components loaded by the
workload’s startup code itself. Although FI itself can be done via OpenOCD,
modifying the workload for purposes in the context of FI quali�es this ap-
proach as SWIFI, also implying the “probe e�ect” disadvantages described
in Section 3.2.3.

In FailPanda, the observation of traps is implemented by installing a trap
handler in the modi�ed workload startup code, and creating a breakpoint
on the �rst instruction of this trap handler. The observation of memory ac-
cesses within larger ranges of memory are implemented by enabling the
OMAP4460’s MMU at startup, by recon�guring its page tables at runtime
when a big-ranged MemAccessListener is added or removed, and by appro-
priately handling – and passing on to Fail*– memory-access violation traps
caused by accesses to the corresponding areas.

4.3.3.4 Performance Measurements

Before running complete FI campaigns with FailPanda, we conducted tim-
ing measurements on several of the basic operations described in the pre-
vious section. The results – each averaged over 100 measurements – are
summarized in Table 4.1.

The �rst observation is that �ne-grained state accesses on CPU registers
and memory words are relatively fast, in the order of 5 to 30 ms. Neverthe-
less, these accesses are needed relatively infrequently during an FI campaign.
On the other hand, a reboot – needed once at the beginning of every exper-
iment – takes more than one second, which already limits the experiment
throughput to below one experiment per second.

Still, the measurement with most impact on the experiment throughput
is the time a single-step operation requires. As described in Section 3.3.2.1,
fast-forwarding to a speci�c dynamic instruction N can in its simplest form

4.4 case study: rampage 99

be implemented by single-stepping. In this case, the time required for fast-
forwarding grows linearly with N:

tff = N × tsinglestep

With the measured single-step time of 69.99 ms, fast-forwarding the Pan-
daBoard only to dynamic instruction N = 400 takes almost 28.0 seconds.
For workloads with dynamic-instruction counts in the order of 105 to 109,
the resulting fast-forwarding runtime clearly grows beyond feasible single-
experiment runtimes.

Hence, before running actual FI campaigns with FailPanda, we had to
invent a smarter fast-forwarding technique. As already announced in Sec-
tion 1.2.3 and Section 3.3.2.1, Chapter 6 will �ll this gap.

4.3.4 Summary

To summarize, Fail*’s plumbing layer provides facilities for parallelizing FI
experiments through a client/server model, and abstracts from a concrete
execution environment. The user-de�ned experiment controls and observes
the workload running in the back-end by a device-independent set of primi-
tives, which is already su�cient to implement the FI campaign for the RAM-
page online memory tester in the next section.

4.4 case study: rampage

The RAMpage
7 case study on permanent faults in main memory and their

detection by an online memory tester for Linux directly uses Fail*’s plumb-
ing layer. First I will outline the case study’s background by describing the
workload, then provide details on how the user-de�ned experiment and cam-
paign implementations use Fail*’s API, and conclude with a summary of the
FI-related results.

Note that in the original papers on RAMpage [SNK+11, SKSE13], we8

also evaluated several other non-functional properties, such as memory-test
speed, impact on performance and latency, and energy-consumption increase.
As these contributions do not directly relate to the contributions of this dis-
sertation, I refer the reader to the original PRDC 2011 and IJCCBS 2013 pa-
pers [SNK+11, SKSE13].

4.4.1 Workload: An Online Memory Tester for Linux

As described in Section 2.3, several physical phenomena can lead to perma-
nently damaged memory cells in contemporary computing hardware. While

7 Online git repository: https://github.com/danceos/rampage
8 As described in Section 1.4, RAMpage itself, its detailed evaluation, and the resulting publi-

cations [SNK+11, SKSE13], were a collaborative e�ort. Whenever in this dissertation I refer
to results obtained together with other researchers, I switch from the �rst person singular to
plural.

https://github.com/danceos/rampage

100 fail*: a versatile fault-injection framework

User space memory tester

Physmem claimer kernel module

Memory
testing
plugins

Page
requests

1 Release/
taint pages

3Allocated
pages

a. Obtain page frames

b. Run
 memory
 tests

c. Obtain
 results
 from tester

Linux kernel

U
s

e
r

s
p

a
c

e

K
e

rn
e

l
s

p
a

c
e

2

Figure 4.7: Overview on RAMpage’s architecture and basic operation: A user-space
memory tester obtains physical page frames from the Physmem-claimer

kernel module, and runs memory tests on them. Depending on the test
result, the page frames are returned to the kernel for normal use, or
�agged/tainted to contain faulty bits.

high-end systems usually employ ECC or other hardware-based error cor-
rection methods (see Section 2.4.2), these are prohibitively expensive for
small-scale, cost-sensitive systems. However, reducing the probability of un-
detected permanent memory errors is also a worthwhile goal for these sys-
tems. Systematic memory tests are a useful tool to detect errors: If these
tests are performed with a su�ciently high frequency, most errors should
be discoverable.

However, shutting down a server system in order to perform tests, for
example using software like Memtest86+ [Dem11], is in many cases unac-
ceptable. As a consequence, we developed RAMpage, an approach to run a
memory tester as a system service during normal operation. Compared to
existing memory-test mechanisms, RAMpage requires no downtime and al-
lows for �exible selection of memory test frequency and test methods, and
works mostly as a user-space process.

Figure 4.7 gives an overview on RAMpage’s architecture and basic opera-
tion. A user-space memory tester obtains physical page frames by request-
ing them from the second RAMpage component, the Physmem-claimer ker-
nel module. The module tries – depending on the claimer con�guration –
several methods to claim the requested frames from the kernel, and maps
those it succeeded claiming into the user-space tester’s address space. The
user-space program in turn runs plugin-provided memory tests – here we
ported many of the testing algorithms Memtest86+ [Dem11] o�ers – on the
returned page frames. Depending on the test result, the page frames are re-
turned to the kernel for normal use, or �agged to contain faulty bits and
removed from the kernel’s page-frame allocation pool.

4.4 case study: rampage 101

4.4.2 Fail* Experiment Setup

The main purpose of conducting FI experiments with Fail* was to test RAM-
page’s e�ectiveness – or, in other words, to prove that the online test can in
fact detect permanent memory errors.

As QEMU’s workload-execution speed outperforms that of Bochs, and
RAMpage needs to be run as part of a full-�edged Linux environment, we
chose FailQEMU – a Fail* con�guration with the QEMU back-end enabled –
as the evaluation vehicle. The workload includes a Debian Linux 6.0 installa-
tion with a 64-bit x86-64 SMP-enabled Linux 3.5 kernel, with RAMpage con-
�gured to start claiming page frames and testing memory right after Linux
has completed the boot process. RAMpage’s diagnostic output – including
messages indicating the detection of a memory error – was con�gured to
be output on a serial interface in order to be observable by the experiment.
Note that for the FI experiments, we set up RAMpage to run in an other-
wise idle system, in contrast to the setup with additionally running bench-
mark programs for the e�ciency measurements in the original publications
[SNK+11, SKSE13].

The FI experiments are supposed to systematically inject permanent single-
bit faults in the simulated machine’s main memory, and to observe whether
RAMpage correctly detects the fault. In terms of dividing this procedure into
campaign and experiment,

• the campaign produces the fault-set F, each fault being represented by
its memory address and bit position, and fault type9, and

• the experiment implements the procedure of injecting one fault, and is
parametrized by one f ∈ F.

The code excerpt in Listing 4.3 illustrates the campaign implementation
for RAMpage. The loop starting at line 5 systematically walks the single-bit
permanent-fault space in a “top-down” fashion: By bit-reversing the iter-
ation variable n, the resulting addresses start out spanning large parts of
the 2047 MiB simulated memory – represented in the address_bits vari-
able containing the number of bits a valid memory address can have, – and
successively �ll the spaces in-between the already visited addresses.10 The
loop body then instantiates a RAMpageExperimentData container for each
address, �lls it with concrete job parameters (lines 8 to 11), and pushes it into
the outgoing job queue (line 13). Notice that in this campaign, only stuck-
at-one faults (line 11) were tested. Finally, the campaign collects incoming
result data, and writes them to a �le for subsequent analysis (lines 17 to 22).

9 Permanent memory faults can manifest, for example, in the form of bits stuck at zero or one,
or more complex patterns, such as direct or inverse coupling with other bits [DBT90].

10 Concretely, �rst the addresses 0 and 1024 MiB are visited, then 512 MiB and 1536 MiB, fol-
lowed by 256/1280/768/1792 MiB, and so on. This pattern makes sure that the complete
memory is visited in a more and more �ne-grained raster, allowing to terminate the cam-
paign early if the planned experimentation time runs out. If the campaign is allowed to run
to completion, the �nal raster width is 8192 bytes, or two 4 KiB pages.

102 fail*: a versatile fault-injection framework

1 bool RAMpageCampaign::run() {

2 // ... [initialization omitted]

3
4 // systematically march through the fault space

5 for (uint64_t n = 0; n < 1024*256; ++n) {

6 uint64_t addr = reverse_bits(n) >> (64 - address_bits);

7
8 RAMpageExperimentData *d = new RAMpageExperimentData;

9 d->msg.set_mem_addr(addr);

10 d->msg.set_mem_bit(4);

11 d->msg.set_errortype(d->msg.ERROR_STUCK_AT_1);

12 // ... [more parameter details omitted]

13 campaignmanager.addParam(d);

14 }

15 campaignmanager.noMoreParameters();

16
17 // collect results

18 RAMpageExperimentData *res;

19 while ((res = static_cast<RAMpageExperimentData *>

20 (campaignmanager.getDone()))) {

21 // ... [output to CSV table omitted]

22 }

23
24 // ... [cleanup omitted]

25 } �
Listing 4.3: Excerpt of the campaign implementation for testing the RAMpage

online memory tester: The code systematically walks the address
space down to a granularity of two 4 KiB page frames, generates and
distributes job parameters, and collects incoming results.

Listing 4.4 shows the description of the Google Protocol-Bu�ers job-mes-
sage type, which is encapsulated in RAMpageExperimentData containers in
both campaign and experiment. The message is reused for both distributing
jobs and returning experiment outcomes, and is consequently divided into
an input part (green in Listing 4.4) the experiment is parametrized with, and
an output part (gray) returned to the campaign. Among other details, the in-
put comprises the injection address and bit number (mem_addr and mem_bit),
and the fault type to inject (errortype). Besides omitted details, the output is
one of several possible ResultTypes specifying RAMpage’s successful error
detection, or one of several possible failures.

The general experiment procedure behind injecting permanent faults into
memory via Fail*’s plumbing API is the following:

1. Register a MemWriteListener for the faulty memory address, which
will activate when the workload writes data to this address.

2. Resume the simulator and wait for the listener to activate.

3. Each time this happens, read the newly written data byte from the
speci�ed memory address with the MemoryManager, modify the af-
fected bit or bits, and write the byte back to memory.

4.4 case study: rampage 103

1 message RAMpageProtoMsg {

2 // Input: experiment parameters

3 // memory error address, and failing bit at that address

4 required uint64 mem_addr = 1; required uint32 mem_bit = 2;

5 // coupled bit at that address (only for ERROR_COUPLING)

6 optional uint32 mem_coupled_bit = 3;

7 // error type

8 enum ErrorType { ERROR_NONE = 1;

9 ERROR_STUCK_AT_0 = 2; ERROR_STUCK_AT_1 = 3;

10 ERROR_COUPLING = 4; ERROR_INVERSE_COUPLING = 5;

11 }

12 required ErrorType errortype = 4;

13 // ...

14
15 // Output: experiment results

16 enum ResultType {

17 RIGHT_PFN_DETECTED = 1; // successful detection

18 WRONG_PFN_DETECTED = 2; // detected in wrong page frame

19 PFN_WAS_LISTED = 3; // not detected although PF was tested

20 NO_PFNS_TESTED = 4; // no PFs tested over longer periods

21 LOCAL_TIMEOUT = 5; GLOBAL_TIMEOUT = 6; UNKNOWN = 7;

22 }

23 optional ResultType resulttype = 9;

24 // ...

25 } �
Listing 4.4: Protocol-bu�ers message description for the RAMpage FI campaign: Job

parameters, primarily the address of the faulty bit and the error type to
inject (green), and �elds for storing each experiment’s outcome (gray).

From the workload’s point of view, this fault re-writing procedure is indistin-
guishable from “real” permanent faults: The next read to the memory address
will yield corrupted data.

Listing 4.5 shows an excerpt of the corresponding experiment implemen-
tation using Fail*’s plumbing API. Fail* starts an experiment as a separate
coroutine with its own control �ow in “parallel” to the simulator (see Sec-
tion 4.3.1) by running its run() function (line 1) – which every experiment
inheriting from ExperimentFlow must implement.

The �rst action is to ask the JobServer – which was fed with RAMpageEx-

perimentData jobs by the campaign (see above) – for work, which is stored in
the m_param variable (lines 2 to 5). Subsequently, several Listeners are instan-
tiated (lines 8 to 11) and registered with the SimulatorController (lines 12
to 15): Besides the aforementionend MemWriteListener (line 8) that is re-
quired for injecting the permanent fault, an IOPortListener – triggering when-
ever the workload prints something on the serial port – helps capturing the
diagnostic output of RAMpage’s user-space component. Additionally, two
TimerListeners (lines 10 and 11) allow to monitor di�erent timeouts regard-
ing passed simulation time, which is necessary for aborting the experiment
when no progress has been made for too long.

104 fail*: a versatile fault-injection framework

1 bool RAMpageExperiment::run() {

2 m_param = new RAMpageExperimentData;

3 if (!m_jobclient.getParam(*m_param)) { // ask server for work

4 simulator.terminate(1);

5 }

6
7 // instantiate and register listeners

8 MemWriteListener l_mem1(m_param->msg.mem_addr());

9 IOPortListener l_io(0x2f8, true); // ttyS1 aka COM2

10 TimerListener l_timeout_local(m_param->msg.local_timeout());

11 TimerListener l_timeout_global(m_param->msg.global_timeout());

12 simulator.addListener(&l_mem1);

13 simulator.addListener(&l_io);

14 simulator.addListener(&l_timeout_local);

15 simulator.addListener(&l_timeout_global);

16
17 while (true) {

18 BaseListener *l = simulator.resume(); // resume simulation

19 if (l == &l_mem1) { // memory write -> re-write faulty bits

20 simulator.addListener(&l_mem1);

21 handleMemWrite(l_mem1.getTriggerAddress());

22 } else if (l == &l_io) { // serial I/O

23 simulator.addListener(&l_io);

24 // check for memory-tester status output

25 handleIO(l_io.getData());

26 } else if (...) // ... [timeout handling omitted]

27 }

28 }

29
30 void RAMpageExperiment::handleMemWrite(address_t addr) {

31 unsigned bit1 = m_param->msg.mem_bit();

32 unsigned bit2 = m_param->msg.mem_coupled_bit();

33 // read byte at addr from memory via MemoryManager

34 unsigned char data = m_mm.getByte(addr);

35 // inject error depending on job-message’s errortype

36 switch (m_param->msg.errortype()) {

37 case RAMpageProtoMsg::ERROR_NONE: break;

38 case RAMpageProtoMsg::ERROR_STUCK_AT_0:

39 data &= ~(1 << bit1); break; // stuck-at-0

40 case RAMpageProtoMsg::ERROR_STUCK_AT_1:

41 data |= 1 << bit1; break; // stuck-at-1

42 case RAMpageProtoMsg::ERROR_COUPLING:

43 data &= ~(1 << bit2); // coupling bit2 := bit1

44 data |= ((data & (1 << bit1)) != 0) << bit2; break;

45 case RAMpageProtoMsg::ERROR_INVERSE_COUPLING:

46 data &= ~(1 << bit2); // coupling bit2 := !bit1

47 data |= ((data & (1 << bit1)) == 0) << bit2; break;

48 }

49 m_mm.setByte(addr, data); // write back byte via MemoryManager

50 } �
Listing 4.5: Excerpt of the experiment implementation for the RAMpage campaign:

The RAMpageExperiment::run() function registers several Listeners for
observing the workload’s behavior, and reacts on their activation in the
main event loop.

4.4 case study: rampage 105

BIOS reserved memory, 640kiB hole
Linux kernel text & data MMU page tables

0 0.5 GiB 1.0 GiB 1.5 GiB 2.0 GiB

Figure 4.8: Single-bit stuck-at memory errors detected by RAMpage in FI experi-
ments conducted with FailQEMU: Only 5.3 percent of the faults injected
at every second 4 KiB page boundary were not located (black areas) due
to unsuccessful page claiming within the allotted timeouts.

In the main event loop (spanning lines 17 to 27), the experiment primar-
ily passes control back to the simulator, resuming the workload’s execution
(line 18), which is in a halted state anytime the experiment code runs. The
simulator.resume() call returns once a registered Listener has been acti-
vated, and returns a pointer to the Listener in question to the caller. The
if cascade in lines 19 to 26 subsequently checks which of the previously
registered Listeners was activated and caused the interruption. Each of the
branches re-registers the – instantly unregistered – Listener, and passes ac-
tivation details – such as the memory address that was written in case of
the MemWriteListener, or the data that was sent to the I/O port in case of the
IOPortListener – to a subfunction of the RAMpage experiment.

If the MemWriteListener was activated, the handleMemWrite() function
follows the procedure outlined above: The new contents of the faulty byte
in memory are read using the MemoryManager in m_mm – a previously ini-
tialized member of the RAMpageExperiment class – in line 34, modi�ed ac-
cording to the error type speci�ed in the job parameters (lines 36 to 48), and
written back (line 49).

The omitted handleIO() function maintains a bu�er with recent work-
load output, and scans it for RAMpage’s diagnostic messages. If the diagnos-
tics in fact indicate that RAMpage has detected the injected fault, it records
the time since experiment start, returns the job message with an adequate
resulttype (see Listing 4.4) to the JobServer, and terminates FailQEMU.

4.4.3 Evaluation

For a thorough test of RAMpage, and to obtain a broad data basis on which
memory areas it can claim and test in a running Linux environment, we de-
ployed an armada of FailQEMU clients on TU Dortmund’s LiDOng cluster,
and ran the RAMpage campaign to completion.

In 94.7 percent of the 262 016 experiments, RAMpage succeeded in claim-
ing the faulty page frame, testing the memory and detecting the fault. In
4.5 percent of the experiments, the injected fault was not detected because
the corresponding page frame could not be claimed by RAMpage’s kernel
module: These memory areas, plotted in Figure 4.8, primarily host the ker-
nel image or its data structures, most prominently the MMU page tables,
or x86 legacy such as the “640 KiB hole”. In 0.2 percent of the experiments,
RAMpage’s diagnostic output did not show any progress after injecting the
fault – possibly a symptom of the faulty memory address being vital for the

106 fail*: a versatile fault-injection framework

0

2000

4000

6000

8000

0 1000 2000 3000 4000 5000

Detection Latency (s)

#
E

x
p

e
ri

m
e

n
ts

Figure 4.9: Distribution of RAMpage’s fault-detection latencies (bin size: one
minute), measured from the point in time the permanent-fault injection
starts: In 96.5 percent of experiments with a successful detection, RAM-
page detects the permanent fault in under 50 minutes.

correct operation of Linux or RAMpage itself. In the remaining 0.6 percent
of the experiments, the timeout condition aborted the experiment after not
having detected the fault for 120 minutes of simulator time.

Digging deeper in the result data collected by the RAMpage campaign,
Figure 4.9 plots the fault-detection latency distribution, measured from the
point in time the permanent-fault injection started. The results show that in
96.5 percent of experiments with a successful detection, RAMpage detected
the permanent fault in under 50 minutes.11

As a general conclusion from the Fail* FI tests, RAMpage’s fault-detection
mechanism has a fault coverage close to 100 percent, and detection latencies
su�cient to be an alternative to and outperforming o�ine tests in many con-
cerns. RAMpage is only impeded by Linux’s memory management not allow-
ing to claim certain areas of physical memory, which may only be possible
to improve by overhauling the Linux’s memory-management code itself.

A conclusion for Fail*’s plumbing API is that the provided primitives al-
low to e�ectively implement permanent memory faults, to observe all work-
load readouts relevant for the presented RAMpage use case, and to paral-
lelize large amounts of experiments to provide results timely.

4.4.4 Reality Check: Tests on Real Hardware

Additionally to the systematic FI-based tests with Fail*, we wanted to prove
RAMpage’s usability with real broken memory hardware. We conducted ex-

11 We did not further investigate the root cause for the four discrete peaks in the histogram at
200 s, 1000 s, 1800 s, and 2400 s.

4.5 assessment-cycle layer: fault-model defaults, pruning, and tool support 107

periments on a two-way AMD Opteron 250 server with eight 1 GiB DDR1-
400 modules (Apacer ECC Registered DDR-400, with ECC disabled in the
BIOS), one of which was known defective. Memtest86+ runs con�rmed a
vast amount of single- and multi-bit errors throughout the module’s com-
plete address range.

RAMpage successfully detected all defective page frames from the faulty
DIMM, and removed them from further use. After o�ining the problematic
address range, the machine continued running smoothly with the remaining
7 GiB of memory. Placing the defective DIMM in the “wrong” memory slot
on the mainboard led to Linux failing to boot – an e�ect expected when
essential kernel data structures or machine instructions are placed in the
a�ected address range.

In essence, RAMpage also works correctly on real defective hardware, pro-
viding evidence that FailQEMU tested the right properties.

4.4.5 Summary

To summarize, Fail*’s plumbing-layer facilities su�ced to implement the
FI-campaign and experiment procedures for the RAMpage memory tester.
The campaign systematically walks the single-bit permanent-fault space, dis-
tributes FI jobs – encapsulated in an experiment-speci�c message type – via
the CampaignManager, and collects and stores incoming results. Using the
back-end independent EEA primitives, the experiment observes the work-
load running in the QEMU back-end, and injects permanent faults by re-
writing the job-speci�c memory address after it has changed.

However, for Fail* users it can quickly become tedious to repeatedly im-
plement the same wide-spread fault model, and to cope with multiple dif-
ferent benchmarks in one campaign and orders of magnitude more exper-
iment results than in the RAMpage example. Consequently, the next sec-
tion describes Fail*’s assessment-cycle layer, which builds on the primitives
provided by the plumbing layer. It simpli�es many common tasks by provid-
ing libraries and a reusable campaign, modularizes often-needed experiment
components, uses a database for job and result data, and provides tools ac-
companying the complete assessment cycle.

4.5 assessment-cycle layer: fault-model defaults, pruning,
and tool support

Fail*’s plumbing layer already provides all functionality to construct com-
plex, target back-end independent FI campaigns, and to execute large num-
bers of experiments in parallel. Nevertheless, for a SIHFT developer the of-
fered degrees of freedom induce repeated manual e�ort, and require expert
knowledge on fault models, subtle details of the plumbing API, and result
evaluation.

This disadvantage is addressed by Fail*’s assessment-cycle layer. From the
perspective of a SIHFT developer, FI is usually – analogous to common prac-

108 fail*: a versatile fault-injection framework

Step B: Pre-injection Analysis Step C: Fault Injection

Step D: Post-injection Analysis

Step A: Initial Experiment Definition

Database

Golden
Run

shl %0x10,%ecx
or %eax,%ecx
mov
%ecx,0x20e0

.a
sm

Pruning FI Jobs

Campaign
Server

shl %0x10,%ecx
or %eax,%ecx
mov
%ecx,0x20e0

Map failure to code

tRA
M

Neuralgic
spot

analysis

CSV export

Figure 4.10: The fault-tolerance assessment cycle: After an initial experiment def-

inition step, the SIHFT developer enters one or multiple iterations of
the fault-tolerance assessment cycle, improving the system’s fault re-
silience in each iteration. Adapted from [SHD

+
15].

tices in iterative software development – part of a development cycle: The
soft-error analysis and hardening process is iterative, and supported by a
continuous fault-tolerance assessment process. This process keeps develop-
ers informed about the robustness of their software, and repeatedly tests or
measures the e�ectiveness and e�ciency of their hardening measures.

Consequently, Fail*’s assessment-cycle layer reduces the degrees of free-
dom o�ered by the plumbing layer by restricting the user to the classic ISA-
level fault models described in Section 3.1.3: Single-bit �ips in main memory
or CPU registers, uniformly distributed over time. For these fault models, the
layer provides ready-to-use campaign and experiment procedures, and tools
supporting all steps in the fault-tolerance assessment cycle. These compo-
nents and tools are implemented in about 15 400 lines of C++, Python, PHP,
and shell-script code.

The following sections describe the fault-tolerance assessment cycle, and
how Fail*’s di�erent assessment-cycle layer components support each step.
After this abstract description, Sections 4.6 to 4.8 present three case studies
demonstrating the assessment-cycle layer’s capabilities in practical exam-
ples.

4.5.1 The Fault-Tolerance Assessment Cycle

Figure 4.10 shows the four principal steps in the fault-tolerance assessment
process. Before entering the assessment cycle, the SIHFT developer speci-
�es the FI-experiment procedure – tailored to the actual workloads – in the
initial experiment de�nition (step A in Figure 4.10). This step is not funda-
mentally di�erent from experiment de�nition on the plumbing layer (see
Section 4.3.1.2 and Section 4.4.2), but supported and simpli�ed by a set of
pre-de�ned components.

4.5 assessment-cycle layer: fault-model defaults, pruning, and tool support 109

1 message Trace_Event {

2 required uint64 ip = 1; // instruction pointer

3 optional int64 time_delta = 6; // sim. time since previous event

4 optional uint64 memaddr = 2;// memory access: address

5 optional uint32 width = 3; // memory access: width in bytes

6 enum AccessType { // memory access: read/write

7 READ = 1;

8 WRITE = 2;

9 }

10 optional AccessType accesstype = 4;

11 // ... [optional extensions omitted]

12 } �
Listing 4.6: Excerpt of the protocol-bu�ers message description for recording

instruction and memory-access trace events.

Then, the developer enters one or multiple iterations of the assessment
cycle, improving the system’s fault resilience in each iteration:

• The pre-injection analysis (step B in Figure 4.10) primarily executes
the golden run – a workload run without injecting faults – and records
the reference readouts and a memory-access and instruction trace (see
Section 3.1.2.2). The traces are subsequently used for fault-space prun-
ing (see Section 3.3.1), resulting in the fault list F – or, in other words,
a set of FI jobs that is stored in a database.

• The fault-injection campaign (step C) distributes the jobs to Fail* client
instances, and collects results in the database.

• The post-injection analysis (step D) distills useful information from the
collected results. It helps the SIHFT developer by combining test, mea-
surement/comparison, or �ne-grained analysis results with details of
the workload, aiding SIHFT placement and design decisions.

The following sections provide details on steps A–D, and how Fail*’s assess-
ment-cycle layer supports and implements them.

4.5.2 Experiment De�nition

Similar to a developer using the plumbing layer, a SIHFT developer must pro-
vide a user-de�ned campaign and experiment implementation. Nevertheless,
several pre-de�ned components simplify this procedure signi�cantly on the
assessment-cycle layer.

4.5.2.1 Golden-Run Mode, Experiment Plugins, and Generic-Tracing

First of all, many experiment implementations provide a golden run mode in
which the Fail* client does not request job parameters from the JobServer,
and does not inject a fault. In this mode, the experiment only creates a load-
able machine state every FI experiment can load to skip the boot process, and

110 fail*: a versatile fault-injection framework

records the reference output and an instruction and memory-access trace of
the workload. The assessment-cycle layer provides two plugins that modu-
larize this functionality:

• The Tracing plugin records the workload’s instruction and memory-
access trace in a �le. While the plugin is activated, it uses Listeners to
be noti�ed of instruction executions or memory accesses by the Sim-

ulatorController (see Section 4.3.1.2). For each of these events, it seri-
alizes a Fail*-wide standardized, parametrized Trace_Event protocol-
bu�er message (Listing 4.6) into a compressed trace �le, which can be
used later to construct the fault list.

• Similarly, the SerialOutput plugin can be used to record workload out-
put: Listening to data-output events on a speci�ed output port of the
target device, it records all data bytes written while the plugin is ac-
tive.

As described in Section 4.3.1.2, plugins use the same EEA API as experiments,
with the sole di�erence that the SimulatorController does not automatically
run plugins at startup. Instead, the experiment instantiates and activates a
plugin, which then runs as another coroutine on par with the experiment.

In many cases, the developer does not need any additional functionality in
golden-run mode besides booting the target device, saving the machine state,
and recording the reference output and a trace. This functionality is bundled
in the Generic-Tracing experiment, which uses the Tracing and SerialOutput

plugins and is ready-to-use for the pre-injection analysis step.

4.5.2.2 Experiment De�nition, Database-Experiment, andGeneric-Experiment

The de�nition of the FI-experiment procedure itself is also simpli�ed by plu-
gins. For example, instead of manually adding output-recording code to the
experiment’s main event loop – as in the RAMpage experiment (Listing 4.5,
lines 22 �.), – the SerialOutput plugin helps modularizing this functionality.

Simplifying the experiment-de�nition step even further, the Database-Ex-
periment – belonging to and inheriting its name from the Database-Cam-

paign, which is described in the next section – imposes a pre-de�ned struc-
ture on the experiment. The developer derives the user-de�ned experiment
from the DatabaseExperiment class and only implements a few workload-
speci�c call-back functions, while the Database-Experiment executes the re-
maining, regularly needed steps:

1. Retrieve job parameters from the JobServer.

2. Load the initial workload state, which was previously saved in the
golden-run phase.

3. Fast-forward the target workload to the injection time speci�ed in the
job parameters.

4.5 assessment-cycle layer: fault-model defaults, pruning, and tool support 111

4. Inject a single-bit �ip at the memory location speci�ed in the job pa-
rameters.

5. Resume and monitor the workload until it �nishes regularly, or termi-
nates abnormally.

6. Return outcome to the JobServer.

Between each of these steps, a user-de�ned callback can introduce additional
functionality, like adding a workload-speci�c Listener that observes the be-
havior of an important global variable in the monitoring phase.

In case only a minimal, standard set of readouts is needed, the devel-
oper can instead decide to use the Generic-Experiment, which concretizes the
Database-Experiment by monitoring timeouts, CPU exceptions/traps, mem-
ory writes to the workload’s text segment or other areas not belonging to
the workload’s memory image, and reaching a set of instruction addresses
that denote the workload’s termination.

4.5.2.3 Database-Campaign

As the Database-Experiment’s counterpart on the server side, the Database-

Campaign provides a generic implementation for the user-de�ned campaign.
Although it plays well with both the Database-Experiment and the Generic-
Experiment, it can as well be used together with a compatible user-de�ned
experiment on the client side.

Like with the Database-Experiment, the DatabaseCampaign class must be
derived from and concretized for a particular user-de�ned campaign. The
provided base-class functionality distributes jobs from the database (see next
section), collects results from the clients, and again stores them in a result ta-
ble in the central database. The primary restriction for the developer is that
the experiment-parameter part of the protocol-bu�ers message used for com-
municating job parameters – the green “input” half of RAMpage’s example
message in Listing 4.4 – is prede�ned in a separate DatabaseCampaignMes-

sage de�nition. This de�nition must be imported into the message de�ni-
tion of the user’s derived campaign with the still user-de�ned experiment-
result part. In essence, this user-de�ned outcome message part is the only
customization the developer must make.

4.5.3 Pre-Injection Analysis

Once the campaign and experiment procedure, and the protocol-bu�er mes-
sage type used for communication between the two, are de�ned, the SIHFT
developer enters the fault-tolerance assessment cycle starting with the pre-

injection analysis step (see Figure 4.10). This step comprises all preparations
for the FI campaign: The golden run, and the synthesis of the list of FI jobs
(the fault list F, see Section 3.1.2).

112 fail*: a versatile fault-injection framework

Figure 4.11: Fail*’s basic database schema, holding information on the user’s di�er-
ent workload variants, the trace recorded during the golden run, the FI
jobs and their mapping to the workload’s fault space (fsppilot, fspgroup,
fspmethod), and the results obtained during the FI campaign.
Legend:
⬩ = Primary-key column (additionally denoted in boldface),
• = non-nullable column (value mandatory),
◦ = nullable column (value optional),
slanted = Fail* component creating/�lling these tables.

4.5.3.1 Golden Run

As described in the previous section, an experiment’s golden-run mode – or,
alternatively, Fail*’s Generic-Tracing experiment – records a loadable start-
ing point at the beginning of the target workload, a reference output for
comparison during the FI campaign, and an instruction and memory-access
trace. During pre-injection analysis, the developer executes the golden run
for each of a possibly larger set of di�erent workloads or workload variants,
for example a baseline and a SIHFT-protected variant.

While the resulting loadable machine states and reference-output �les are
needed later during every experiment run of the FI campaign, the recorded
trace is directly used as a basis for de�ning the list of FI jobs by means of
fault-space pruning techniques such as def/use pruning (see Section 3.3.1.1),
or sampling.

4.5.3.2 Interjection: Database Support

In order to keep the amounts of data manageable that accumulate during the
fault-tolerance assessment cycle, Fail*’s assessment-cycle layer uses a rela-
tional database for data handling. Additionally, this approach will simplify
data analysis in the post-injection steps (see Section 4.5.5). Figure 4.11 shows
Fail*’s basic database schema, omitting extensions for �ne-grained post-
injection analyses (Section 4.5.5) and the fault-similarity pruning heuristic
presented in Chapter 5. The schema consists of the following tables:

4.5 assessment-cycle layer: fault-model defaults, pruning, and tool support 113

variant: Holds user-speci�able names for workloads, for example bench-
marks in di�erent protection variants.

trace: Holds information the def/use equivalence classes directly derived
from the memory-access – or, alternatively, CPU-register access – trace
recorded during the golden run for each variant. The set of all equiv-
alence classes for a variant represents its complete single-bit fault
space.

fspmethod: Holds information which fault-space pruning (“fsp”) method
was used for generating the fault list.

fsppilot: Holds the list of pilots – the job parameters for the FI experi-
ments that e�ectively will be executed. The term “pilot” stems from
terminology used in other fault-space pruning tools (see Section 3.3.1.2).

fspgroup: Holds a mapping which pilot represents what parts of the fault
space in the trace table.

result: Holds the results obtained from each FI-experiment run during
the campaign.

Where applicable, the following sections will provide more context and de-
tails on each table. Currently, Fail*’s database back-end is implemented us-
ing Oracle’s MySQL database, respectively its community-developed Maria-

DB fork.

4.5.3.3 Trace Import

After the golden run, each recorded trace is imported into the trace database
table, referring to the corresponding workload’s name and variant in the
variant table. As Fail* uses def/use pruning as its primary experiment-count
reduction method, the recorded trace is represented by its def/use equiva-
lence classes (see Section 3.3.1.1) in the trace table: Each equivalence class is
de�ned by its start and end time (time1 and time2 columns in the trace table
in Figure 4.11), its memory address (data_address) and the width in bytes
of the memory access it ends with, and the type of the access (read or write,
accesstype). The remaining columns denote the dynamic-instruction count
at the beginning and end of the equivalence class (instr1, instr2), and for
internal sanity checks the static instruction address at these points in time
(instr1_absolute, instr2_absolute).

If the SIHFT developer intends to inject memory faults corresponding to
the uniform model discussed in Section 3.1.3.1, the recorded memory-access
trace from the golden run can be imported directly into the trace table. In
this case, each memory-access event in the trace maps to one12 record in the
trace table.

12 In fact, a multiple-byte access is split into multiple single-byte accesses in the current imple-
mentation to simplify further processing.

114 fail*: a versatile fault-injection framework

In case of a CPU-register FI campaign – with uniformly distributed single-
bit �ips in the CPU’s ISA-visible registers, as described in Section 3.1.3.3, –
the trace must be preprocessed �rst. Taking the instruction-trace portion of
the recorded trace and the ELF binary of the corresponding workload, Fail*’s
trace-import facility decodes each static instruction that was executed dur-
ing the golden run, and statically determines the input and output registers it
uses. An internal mapping then translates register numbers into pseudo ad-
dresses that �t into the data_address column of the trace table, generating
def/use equivalence classes similar to those used in the memory fault-model
case.

In Fail*’s assessment-cycle layer, the trace import is implemented in the
import-trace tool using the --importer MemoryImporter and --importer

RegisterImporter parameters, respectively. The instruction decoding nec-
essary for the RegisterImporter is implemented using the LLVM [LA04]
libraries.

4.5.3.4 Fault-Space Pruning and Sampling

In the �nal step of the pre-injection analysis, the SIHFT developer generates
the list of pilots – the FI experiments that are stored in the fsppilot table
and e�ectively executed during the following campaign. Additionally, the
fspgroup table is �lled with a mapping from each pilot to a subset of the
fault space in the trace table: Depending on the chosen fault-space pruning
method, a pilot may represent multiple def/use equivalence classes.

If the developer intends to cover the complete single-bit fault space, the
pilot-list generation is straightforward. For each def/use equivalence ending
with a read access to memory – or a CPU register, – one pilot is added to
the fsppilot table, and noted with a one-to-one mapping in the fspgroup table.
Additionally, for each workload variant one equivalence class ending with
a write gets picked and added as a pilot: Although the result for all eight
single-bit experiments is in principle known in advance to be “No E�ect”
(see Section 3.3.1.1), actually injecting one pilot simpli�es the problem of
generically �nding appropriate values for the experiment-speci�c result ta-
ble columns. As a side e�ect, these experiments also serve as a sanity check
that the experiment correctly detects the workload’s benign outcome. In the
fspgroup table, this single “No E�ect” pilot maps to all write def/use equiva-
lence classes belonging to this workload variant.

If the developer only needs a global measurement estimate, sampling the
fault space su�ces. In order not to bias the sample, Fail* does not randomly
pick from the set of def/use equivalence classes in the trace table: As theyChapter 7 – more

speci�cally, Pitfall 2

in Section 7.2.5, –

sheds more light on

biased sampling from

a def/use-pruned

fault space.

can vary dramatically in size, their probability of being hit by a single-bit �ip
is also quite di�erent. Instead, in each sampling step Fail* randomly selects
a fault-space coordinate from the basic, not yet pruned fault space. Then,
it adds the def/use equivalence class that contains this coordinate to both
fsppilot and fspgroup tables, unless it has been selected earlier already. The
weight column in fspgroup counts how often the particular equivalence class

4.5 assessment-cycle layer: fault-model defaults, pruning, and tool support 115

has been selected, which becomes relevant in the calculation of the estimate
later.

In Fail*’s assessment-cycle layer, pruning and sampling is implemented in
the prune-trace tool using the --prune-method BasicPruner repectively
--prune-method SamplingPruner parameters.

4.5.4 Fault-Injection Campaign

After the pre-injection analysis step has prepared a loadable state, preserv-
ing the back-end’s state right at the beginning of the workload’s execution,
the correct golden-run readout of the workload, and the fault list represented
by pilots in the fsppilot table, the FI campaign can commence. The Database-
Campaign, parametrized with a user-de�ned and campaign-speci�c protocol-
bu�er message type (see Section 4.5.2.3), instantiates a JobServer and feeds it
with the pilots from the fsppilot database table. The JobServer subsequently
distributes pilots to clients and collects returning results using the mecha-
nism described in Section 4.3.2.2.

The structure of the result table in the database – primarily, its column
names and types – is directly determined by the user-de�ned outcome part
of the protocol-bu�er message. Using a helper library named DatabaseProto-

bufAdapter, the Database-Campaign consequently generates this table struc-
ture from the protocol-bu�er message description itself. This ensures that
experiment results �t into the database upon returning from the clients.

4.5.5 Post-Injection Analysis

After collecting FI results for every pilot in the result table, Fail*’s post-

injection analysis step helps the developer by pointing to test cases the SIHFT
solution missed, bymeasuring the software fault-tolerance e�ectiveness, and
by aiding the process of system hardening and the placement of SIHFT mech-
anisms by �ne-grained analysis.

The basis for any of Fail*’s post-injection analyses is the raw result data
collected in the result table. Assuming the decision for complete fault-space
coverage in the pre-injection phase (Section 4.5.3.4), the fspgroup table pro-
vides a mapping for every def/use equivalence class in the trace table, and
consequently for every single fault-space coordinate. Based on this raw re-
sult projection to the fault space, Fail* can derive several metrics, analyses,
and visualizations.

4.5.5.1 Global Metrics

One extreme is to calculate a single aggregation over the complete result set
of each workload variant – a global metric condensing the results to a single
value (or a small number of values).

As described in Section 3.1.2.5, the primary global metric calculated by
any FI tool is the fault-coverage factor. After deciding which experiment out-

116 fail*: a versatile fault-injection framework

comes – usually stored in the result table’s resulttype column – are to be
interpreted as “covered” faults, Fail*’s assessment-cycle layer allows to re-
trieve the fault coverage with a simple SQL statement joining the trace, fsp-
group, and result tables. In the simplest case, an SDC outcome is considered
“uncovered”, and all remaining results “covered”. Alternatively, Fail* can cal-
culate the frequency percentages for every existing outcome in relation to
the complete fault-space size.

Nevertheless, as Chapter 7 will show that the fault-coverage factor is of
little use for comparing di�erent workload variants, Fail* also generates ab-Chapter 7 explains in

detail why the

fault-coverage factor

metric is problematic

when comparing

workload variants.

solute failure counts as a global metric. In principle, this metric corresponds
to the fault-coverage factor, but without the division by the fault-space size.

Both metrics – the fault-coverage factor as well as the absolute failure-
count metric – can as well be derived from sampling results. In this case,
Fail* provides SQL statements that also quantify the margin of error corre-
sponding to a speci�ed con�dence level (see Section 3.1.2.5).

All three case studies in Section 4.6, Section 4.7, and Section 4.8 provide ex-
amples for using Fail*’s assessment-cycle layer to measure absolute failure
counts.

4.5.5.2 Symbol-Level Analyses

The primary advantage arising from detailed results in every corner of the
fault space – instead of a few hundred or thousand randomly distributed,
punctual samples – is that result aggregation becomes possible in much
smaller granules, which can be explored and de�ned after the campaign has
already �nished. The table of global symbols in an ELF binary provides a
�rst and relatively simple means for aggregating FI results on a granularity
that helps a SIHFT developer pinpoint particularly critical components in
the workload.

An ELF symbol table contains memory addresses, sizes, and names of
global variables, including larger areas such as thread stacks or the BSS or
data segments themselves, but also of functions in the code segment. As
Fail*’s assessment-cycle layer holds all result data in a relational database,
importing the ELF symbols into an additional symbol table allows to retrieve
per-symbol statistics by an additional SQL join: A trivial modi�cation to the
SQL statements for the global metrics from Section 4.5.5.1 aggregates results
along the time axis for each symbol.

All three case studies in Section 4.6, Section 4.7, and Section 4.8 provide
examples for symbol-level analyses.

4.5.5.3 Leveraging Debug Information

Beyond the ELF symbol table, Fail* can also use additional information from
the workload’s compilation process for detailed analyses. Running a mod-
ern compiler such as GCC or clang with the -g command-line parameter
embeds additional information intended for simplifying debugging in the
resulting ELF binary. This debug information – usually encoded according

4.5 assessment-cycle layer: fault-model defaults, pruning, and tool support 117

to the DWARF standard [DWA10] – provides structural information on the
program, such as compilation units, functions, source-code lines, complex
data structures, global and local variables, and a mapping to their represen-
tation in the generated machine code.

Similar to the symbol-table case above, Fail*’s import-trace tool is also
capable of importing a subset of the DWARF debug information in an ELF
binary into the database, adding several tables to the schema introduced in
Section 4.5.3.2:

dbg_filename: Holds names of compilation units that were linked into
the ELF binary.

dbg_source: Holds high-level source-code lines.

dbg_mapping: Provides a mapping between static instruction addresses
and high-level source-code lines, allowing the attribution of failures
to lines of code.

Additionally, as this is required for some of the �ne-grained analyses pre-
sented in the following case studies, the tool also imports the recorded in-
struction trace (fulltrace table), and the disassembled mnemonics of the tar-
get program’s code sections in the objdump table.

The debug information, along with function symbols, the instruction trace,
and the program’s disassembly, enables several �ne-grained FI-result analy-
ses. Among others, the following case studies demonstrate FI-result aggre-
gates and criticality rankings per static machine-code instruction, per high-
level source-code line, per function, or per translation unit.13

The WSOS case study (see Section 4.8) provides several examples for �ne-
grained analyses leveraging debug information.

4.5.6 Summary

To summarize, Fail*’s assessment-cycle layer strongly increases ease of use
compared to the plumbing layer, trading it for a restricted set of basic fault
models. The developer bene�ts from ready-to-use campaign and experiment
procedures, database support, and tools supporting all steps in the fault-
tolerance assessment cycle – including novel, �ne-grained analysis methods
in the post-injection step.

The following sections will demonstrate these analysis methods, and the
remaining assessment-cycle layer features, in three case studies.

13 As a result of Richard Hellwig’s master’s thesis [Hel14], even more �ne-grained analyses
on the level of temporary data structures – local variables, and architecture-speci�c return
addresses and frame pointers – stored on the program stack(s) are possible. However, in the
current state these analyses are too fragile under compiler optimizations to be presented as
usable Fail* features.

118 fail*: a versatile fault-injection framework

4.6 case study: generic object protection

The Generic Object Protection (GOP) is a memory-error detection and recov-
ery SIHFT approach developed by Christoph Borchert [BSS13a, BSS15] in the
context of the DanceOS project [SKLS11]. It exploits application knowledge
about memory accesses, which are analyzed at compile time, and hardens
the accessed data structures by information redundancy (see Section 2.4.3.4)
and strategically placed, compiler-generated runtime checks. In this case
study, I empirically investigated the GOP’s e�ectiveness by running large-
scale FI campaigns on a set of GOP-hardened benchmarks running on eCos
[Mas02], an embedded operating system written in object-oriented C++. I
used Fail*’s assessment-cycle layer for large-scale FI campaigns, and both
global and symbol-level post-injection analyses.

The following sections provide details on the �rst assessment-cycle iter-
ation with a baseline assessment, and brie�y outline the basic approach be-
hind the GOP. After a �rst evaluation round seeking out a good GOP con-
�guration for each benchmark, the second round provides FI measurements
for the e�ectiveness of di�erent GOP variants.

Note that the original papers on the GOP [BSS13a, BSS15] provide many
additional details regarding the GOP’s design and implementation, neces-
sary extensions to AspectC++, a wait-free synchronization approach dealing
with concurrency in the eCos kernel, and e�ciency measurements. As these
contributions are not my own, and are not necessary to demonstrate Fail*’s
capabilities, I omit them here and refer the reader to the original publications
[BSS13a, BSS15].

4.6.1 Fault and Failure Model

For the GOP case study, I assumed uniformly distributed, single-bit faults in
main memory (see Section 3.1.3.1). I also assumed that read-only data and
code (text) is stored in far more reliable EEPROM or Flash, or is covered by
other EDMs/ERMs, such as software-implemented ECC [SSM00] (see Sec-
tion 2.4.3.4).

Regarding the failure model, in this case study I distinguish between “No
E�ect” outcomes, SDC failures, timeouts, and CPU exceptions. I consider
timeouts to be malign, as they are comparable to SDCs when no hardware
watchdog timer is present. Even with a watchdog timer, a timeout condition
incurs long detection latencies that, depending on the scenario, may be un-
desirable. Similarly, CPU exceptions are considered malign because they are
sometimes hard to distinguish from regular workload behavior. CPU excep-
tions are not always suitable as error detectors, and do not help with error
correction.

4.6 case study: generic object protection 119

benchmark description thr. sys. calls

bin_sem1 Binary semaphore functionality 2 28

bin_sem2 Dining philosophers 15 659

bin_sem3 Binary semaphore timeout 2 28

cnt_sem1 Counting semaphore functionality 2 35

except1 Exception functionality 1 52

flag1 Flag functionality 3 78

kill Thread kill() and reinitialize() 3 23

mbox1 Message box functionality 2 94

mqeue1 Message queues 2 73

mutex1 Basic mutex functionality 3 40

mutex2 Mutex release functionality 4 46

mutex3 Mutex priority inheritance 7 55 308 146

release Thread release() 2 117

sched1 Basic scheduler functions 2 18

sync2 Di�erent locking mechanisms 4 2425

sync3 Priorities and priority inheritance 3 39

thread0 Thread constructors/destructors 1 4

thread1 Basic thread functions 2 17

thread2 Scheduler and thread priorities 3 41

Table 4.2: eCos kernel-test benchmarks, each testing a di�erent subset of the kernel
functionality: The last two columns show the number of threads (thr.)
the benchmark runs, and the number of system calls (sys. calls) in-
voked at runtime.

120 fail*: a versatile fault-injection framework

4.6.2 Workload and Experiment Setup

The GOP focuses on hardening operating-system kernel state, as data cor-
ruption within the kernel data structures can a�ect all running applications.
Assuming a special-purpose embedded-systems context, the GOP conceptu-
ally exploits knowledge on the application’s behavior – especially its oper-
ating-system usage pro�le. The working hypothesis behind the GOP is that
only a small, application-speci�c subset of the kernel state is critical and
needs protection.

As a diverse set of applications that thoroughly exercise various di�er-
ent functionality areas of the eCos kernel, the GOP’s developer applied the
mechanism to kernel-test programs bundled with eCos itself. Table 4.2 lists
the 19 di�erent benchmarks with a short description which kernel function-
ality they test, the number of threads they spawn, and the number of system
calls they invoke at runtime. As an input for the FI-based e�ectiveness eval-
uation, the GOP developer compiled all benchmarks for IA-32 with the GNU
C++ compiler (GCC Debian 4.7.2-5), and set up eCos 3.0 with its default con-
�guration, including GCC optimization level -O2, and GRUB startup.

In the experiment-de�nition step of Fail*’s assessment cycle (see Sec-
tion 4.5.2.3), I used the pre-de�ned Database-Campaign on the server side.
On the client side, I used FailBochs with a custom experiment procedure
that injects one transient single-bit �ip per run, and afterwards records sev-
eral di�erent readouts, including traps, timeouts, test-program outputs, and
special GOP signals indicating the detection or correction of an error.

4.6.3 Baseline Assessment

As a �rst assessment step, I ran the pre-injection analysis and FI-campaign
steps for the unmodi�ed baseline variant of the workloads listed in Table 4.2,
provided by the GOP’s developer in the form of ELF binaries. To get an
overview of the – application-speci�cally – most critical eCos components,
I then imported the ELF symbol tables of each binary, and generated per-
symbol aggregations (see Section 4.5.5).

Table 4.3 exemplarily lists the top ten symbols that caused the thread1
and mutex1 benchmarks to fail – either with an SDC, a CPU exception, or a
timeout, which are subsumed in the #failures column. For the thread1
benchmark, the top ten symbols amount to 97.8 % of all observed abnor-
mal program terminations, with the global thread variable – an array of
Cyg_Thread data structures – being the most critical. The mutex1 results
display similar data-structure names on the top end of the symbol ranking,
yet with a di�erent ordering: Its focus on a di�erent area of kernel function-
ality puts the stack data structure, containing all thread stacks, in front of
thread_obj, as it exhibits a di�erent operating-system usage pro�le.

In general, the baseline assessment revealed that in the chosen set of work-
loads, the stacks and the global kernel data structures are the most suscep-

4.6 case study: generic object protection 121

symbol size #failures %

th
re

ad
1

thread 264 9.20×109 39.5 %

Cyg_RealTimeClock::rtc 52 4.29×109 18.4 %

stack 5088 3.31×109 14.2 %

Cyg_Scheduler::scheduler 132 8.53×108 3.7 %

comm_channels 96 8.53×108 3.7 %

pt1 4 8.53×108 3.7 %

Cyg_Interrupt::dsr_list_tail 4 8.53×108 3.7 %

hal_interrupt_objects 896 8.53×108 3.7 %

hal_interrupt_handlers 896 8.53×108 3.7 %

Cyg_Scheduler_SchedLock::sched_lock 4 8.53×108 3.7 %

mu
te

x1

stack 7632 1.69×106 31.8 %

thread_obj 416 1.49×106 28.0 %

cvar2 12 2.88×105 5.4 %

cvar1 8 2.26×105 4.6 %

m0 20 2.08×105 3.9 %

comm_channels 96 1.95×105 3.7 %

m1 20 1.84×105 3.5 %

cvar0 8 1.78×105 3.3 %

Cyg_Interrupt::dsr_list 4 1.56×105 2.9 %

Cyg_Scheduler::scheduler 132 1.49×105 2.8 %

Table 4.3: FI results from the GOP baseline assessment: Top ten fault-susceptible
symbols (or, contiguous memory areas) for the unmodi�ed thread1 and
mutex1 benchmarks. “Failure” counts subsume SDC, CPU exception, and
timeout results.

122 fail*: a versatile fault-injection framework

gop variant description

Baseline Unmodi�ed benchmark, GOP disabled (no redundancy).

CRC A CRC-32 implementation (EDM).

TMR Triple-modular information redundancy, using two
copies of each data member and majority voting
(EDM/ERM).

CRC+DMR CRC (EDM, see above), plus one copy of each data
member for additional error correction (ERM).

SUM+DMR A simple 32-bit checksum (EDM), plus one copy of each
data member (ERM).

Hamming Hamming code (EDM/ERM).

Table 4.4: GOP variants and a short description which information-redundancy
method they implement.

tible. This analysis motivated the GOP developer to primarily target those
“critical spots”.

4.6.4 Generic Object Protection

As already mentioned in the beginning of this case study, the GOP exploits
static application knowledge about memory accesses. This knowledge is ex-
tracted from the target application assuming an object-oriented program-
ming model: The GOP introduces information redundancy on a granularity
of C++ classes. The remaining problem is when to check – and potentially re-
pair – consistency between the data and its redundancy, and when to update

the redundancy after the data was written to.
In case of the GOP, the developer solved this problem by exploiting the

object-oriented program structure of the target software, which associates
sequences of data reads and writes with method calls: Without direct data-
member accesses, methods are the only pieces of code reading and writing
data members of a class. Consequently, the GOP places redundancy checks
and updates around method-function calls:

• Before a method of a critical object is executed, the mechanism checks
whether the object su�ered from a memory fault.

• After the execution of the method, redundancy for the object’s state
is stored.

Similar to the way Fail* taps into the C++ code of the Bochs simula-
tor back-end (see Section 4.3.2.3), the GOP’s developer used AspectC++ to
modularize the check and update functionality, and to extend a con�gurable

4.6 case study: generic object protection 123

list of target-software classes with data members holding the necessary re-
dundancy. Concretely, he implemented several GOP variants reimplement-
ing di�erent classic information-redundancy techniques. Table 4.4 lists each
variant with a short description.

4.6.5 Evaluation: Finding an Optimal GOP Con�guration

Besides the decision whether error detection (EDM) su�ces or correction is
required (ERM), and the selection of a concrete variant from Table 4.4, the
GOP’s primary degree of freedom is the con�guration which target-software
classes to protect, and which to leave unprotected.

Although enabling the protection for all target-system classes may seem
to be the optimal con�guration, each inserted redundancy check and update
increases the workload’s execution runtime – and, hence, its “attack surface”
to transient faults. Consequently, the GOP developer decided to explore the
trade-o� between the subset of selected classes and the runtime overhead
caused by the EDMs/ERMs. In a �rst step, he provided a set of benchmark
variants with increasingly more classes being hardened with the CRC variant
of the GOP.

Figure 4.12 shows the results of an extensive FI campaign with the Fail*
setup described in Section 4.6.2, totaling 87 million single FI experiments.
The absolute failure counts – extrapolated from sampling estimates for the
bin_sem2, flag1, kill and sync2 benchmarks – are broken down into SDCs,
timeouts, and CPU exceptions. The results indicate that the benchmarks can
be di�erentiated into three classes:

• The �rst benchmark class exhibits lower failure counts the more eCos-
kernel classes are CRC-protected with the GOP, for example bin_sem2
or thread1.

• The second class of benchmarks increases in failure-count numbers
for any GOP con�guration, for example bin_sem1 or sync2. The fault
susceptibility of these programs actuallyworsens by applying the GOP,
because the additional attack surface from the runtime and memory
overhead outweighs all gains from being protected.

• The third class of benchmarks – for example except1 – lies some-
where in-between the other two classes: The failure count decreases
for the �rst few but then increases with more CRC-protected classes.

The second benchmark class simply cannot be protected by the GOP: The
SIHFT-induced additional runtime and memory-usage increases the chance
of being hit by uniformly-distributed memory bit �ips beyond the point
where the increased attack surface is not compensated by the fault-tolerance
gains anymore. For the remaining benchmarks, the GOP developer picked
the optimally-protected con�guration, and also devised a heuristic that helps
choosing a near-optimal con�guration even without FI experiments [BSS15].

124 fail*: a versatile fault-injection framework

bin_sem1 bin_sem2 bin_sem3 cnt_sem1

except1 flag1 kill mbox1

mqueue1 mutex1 mutex2 release

sched1 sync2 sync3 thread0

thread1

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0e+00

1e+12

2e+12

3e+12

4e+12

0e+00

1e+11

2e+11

3e+11

4e+11

0e+00

1e+07

2e+07

3e+07

4e+07

0e+00

1e+06

2e+06

3e+06

4e+06

0.0e+00

2.5e+11

5.0e+11

7.5e+11

0e+00

1e+11

2e+11

0e+00

1e+11

2e+11

3e+11

4e+11

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

0.0e+00

2.5e+07

5.0e+07

7.5e+07

0.0e+00

4.0e+07

8.0e+07

1.2e+08

0e+00

5e+07

1e+08

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

0e+00

2e+09

4e+09

6e+09

8e+09

0e+00

1e+07

2e+07

3e+07

4e+07

0e+00

1e+06

2e+06

3e+06

0.0e+00

5.0e+09

1.0e+10

1.5e+10

2.0e+10

0 2 4 6 8 0 2 4 6 81012 0 2 4 6 8 10 0 2 4 6 8

0 2 4 6 8 0 2 4 6 8 10 0 5 10 15 0 2 4 6 8 10

0 2 4 6 81012 0 2 4 6 8 10 0 2 4 6 81012 0 2 4 6 8 10

0 2 4 6 8 0 2 4 6 81012 0 2 4 6 8 10 0 2 4 6

0 2 4 6 8

Protected classes

F
a
u
lt
−

in
je

c
ti
o

n
 r

e
s
u

lt
−

ty
p
e

 c
o
u

n
t

Experiment result

SDC

Timeout

CPU Exception

Figure 4.12: FI results for increasingly more GOP-protected classes (actual class
names omitted, baseline corresponds to zero protected classes): Some
benchmarks improve in all GOP con�gurations (e.g., bin_sem2 or
thread1), some worsen in all variants (e.g., bin_sem1 or sync2), and
some have a failure-count minimum with a small set of protected
classes (e.g., except1). Results for bin_sem2, flag1, kill and sync2 are
sampling estimates with a maximum relative standard error of 3.55 %.
Due to their long runtime, I only measured three con�gurations for
kill, and omitted the mutex3 and thread2 benchmarks.

4.6 case study: generic object protection 125

bin_sem2 bin_sem3 except1 flag1

kill mbox1 mqueue1 mutex2

release sched1 sync2 thread0

thread1

0e+00

1e+12

2e+12

3e+12

4e+12

0e+00

1e+11

2e+11

3e+11

4e+11

0

500000

1000000

1500000

2000000

0.0e+00

2.5e+11

5.0e+11

7.5e+11

0e+00

1e+11

2e+11

0e+00

1e+11

2e+11

3e+11

4e+11

0e+00

1e+07

2e+07

3e+07

4e+07

0e+00

1e+07

2e+07

3e+07

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

0e+00

1e+05

2e+05

3e+05

0e+00

1e+08

2e+08

3e+08

4e+08

0e+00

1e+05

2e+05

0.0e+00

5.0e+09

1.0e+10

1.5e+10

2.0e+10

B
a
s
e
lin

e
C

R
C

C
R

C
+

D
M

R
S

U
M

+
D

M
R

T
M

R
H

a
m

m
in

g

F
a
u

lt
−

in
je

c
ti
o
n
 r

e
s
u
lt
−

ty
p

e
 c

o
u

n
t

Experiment result

SDC

Timeout

CPU Exception

Figure 4.13: Protection e�ectiveness for di�erent EDM/ERM variants. Benchmarks
bin_sem1, cnt_sem1, mutex1, and sync3 are missing, as the analysis
in Section 4.6.5 showed that the GOP does improve the baseline in any
con�guration. Results for bin_sem2, flag1, kill and sync2 are sam-
pling estimates with a maximum relative standard error of 4.24 %.

4.6.6 Evaluation: Variant Comparison

Using the same optimized con�gurations as for the CRC variant from the pre-
vious section, the GOP developer provided benchmark binaries protected by
the remaining GOP EDMs/ERMs variants described in Table 4.4. Figure 4.13
shows the FI results that compare the di�erent mechanisms among each
other, obtained in an FI campaign amounting to additional 46 million exper-
iments. The results indicate that the �ve EDMs/ERMs are similarly e�ective
in reducing failure counts, and – in the case of mbox1 and thread1, pro-
tected with CRC – reduce the failure probability by up to 79 percent com-
pared to the baseline. The benchmarks with little improvement in the opti-
mal case in Figure 4.12 do not signi�cantly improve with the other ERMs,
either. The total number of system failures – compared to the baseline with-
out GOP – is reduced by 69.14 percent in the CRC variant, and, for example,
by 68.75 percent in the CRC+DMR error-correction variant.

126 fail*: a versatile fault-injection framework

For the FI experiments without sampling – all benchmarks except for
bin_sem2, flag1, kill and sync2, – even 74.11 percent of the baseline’s
failures are prevented by the Hamming variant. Only 1.54 percent of the
failures are not covered by the GOP and still originate from protected ker-
nel data structures, whereas most remaining failures (24.35 percent) stem
from unprotected data, such as the stacks of the application and the kernel.

4.6.7 Conclusions on Fail* Tooling

In GOP case study, I successfully applied a wide range of Fail*’s assessment-
cycle layer features and capabilities, as summarized in the following sec-
tions.

4.6.7.1 Experiment De�nition

In the experiment-de�nition step (see Section 4.5.2), I used the pre-de�ned
Database-Campaign on the server side, and a custom experiment procedure
controlling the Bochs simulator via the Fail* plumbing layer’s EEA API (see
Section 4.3.1.2). Additionally to the capability of injecting single-bit �ips –
that would as well have been provided by the Generic-Experiment, – the cus-
tom implementation allowed to record several GOP-speci�c readouts.14

4.6.7.2 Importing and Pruning

Fail*’s import-trace and prune-trace tools helped importing all required
data to a local MariaDB 10.1 server, as described in Section 4.5.3.3 and Sec-
tion 4.5.3.4. I primarily used def/use pruning for experiment-count reduction
to enable �ne-grained analyses in the post-injection phase, but resorted to
sampling for the overly large bin_sem2, flag1, kill, and sync2 benchmarks.
In total, def/use pruning respectively sampling reduced the raw fault-space
size15 from 2.13×1015 (respectively 1.16×1013 if cycles spent in CPU wait-
states are not counted) to 1.33×108.

4.6.7.3 Fault-Injection Campaign

For the CRC-focused GOP-con�guration optimization (see Section 4.6.5) and
the �nal evaluation of the di�erent EDM/ERM variants (see Section 4.6.6),
I ran the resulting 133 million single experiments in parallel on TU Dort-
mund’s LiDOng cluster. The parallelization reduced the total simulation run-
time of 2.5 CPU years to a few days of shared cluster usage.

Figure 4.14 plots a histogram of FI-experiment wall-clock runtimes: On
average, each experiment ran for 0.58 s, but a long outlier trail reaches up to

14 In fact, the �rst versions of the GOP-speci�c custom experiment-procedure de�nition pre-
date the Generic-Experiment by about two years. With marginal additions, the Generic-

Experiment would be equally usable for the GOP case study if it were repeated with the
latest Fail* release, entirely eliminating the need for a custom experiment implementation.

15 Used memory bits × CPU cycles from start to end.

4.7 case study: return-address protection 127

0e+00

2e+06

4e+06

6e+06

8e+06

0.0 0.5 1.0 1.5

Experiment Runtime (s)

#
E

x
p

e
ri

m
e

n
ts

Experiment result

No effect

Det. & corrected

Detected, fail−stop

SDC

Timeout

CPU Exception

Figure 4.14: Wall-clock FI-experiment runtime histogram for the GOP campaign: At
an average runtime of 0.58 s, the two data-point accumulations around
0.2 s and 0.5 s are primarily owed to the host-CPU speed diversity in
the LiDOng cluster. The outlier trail extends up to 1179 s for individual
experiments.

1179 s for individual experiments that ran into a timeout with active simula-
tor CPU usage. The spreading of runtimes in two distinct heaps between 0
and 1.0 s is in part owed to di�erent simulator runtimes of the eCos bench-
marks, but primarily the host-CPU speed diversity in the LiDOng cluster.

4.6.7.4 Post-Injection Analysis

In the baseline assessment (Section 4.6.3), Fail*’s symbol-level analyses (see
Section 4.5.5.2) guided the GOP’s initial development direction towards a
con�gurable, generic hardening method. In the optimization and �nal eval-
uation phases, I used the global metrics described in Section 4.5.5.1.

4.7 case study: return-address protection

The second case study on a SIHFT mechanism called Return-Address Protec-

tion (RAP) shares many commonalities with the GOP case study (see Sec-
tion 4.6). The main commonalities and di�erences are the following:

• Instead of the GOP, in this case study I examined the e�ectiveness
and e�ciency of a SIHFT mechanism protecting the return address
and the frame pointer that are stored on the stack on the x86 architec-
ture. This mechanism was designed and implemented by Christoph
Borchert [BSS13b].

• I used a simpli�ed fault model of byte-aligned eight-bit burst faults
in memory, which invert all eight bits at a memory address at once,

128 fail*: a versatile fault-injection framework

instead of the single-bit �ip fault model used in Section 4.6. For infor-
mation-redundancy based SIHFT mechanisms that tolerate this kind
of multi-bit error, the evaluation results turn out similar to single-bit
�ips [BSS13a], but require eight times less FI experiments for full fault-
space coverage.

• Additionally to SDCs, timeouts, and CPU exceptions, I considered mem-
ory accesses of the workload to addresses outside the areas touched
in the golden run as failures. In a real-world embedded-system setting
without memory protection, these accesses could potentially have ar-
bitrary types of adverse e�ects.

• The RAP case study focuses on the eCos kernel and the same set of
kernel-test programs as the GOP case study (see Section 4.6.2 respec-
tively Table 4.2), and uses the same campaign and experiment de�ni-
tions. The latter is only enhanced by the capability to inject eight-bit
burst faults, and to observe irregular memory accesses.

Due to this overlapping with the GOP case study, I omit the “Fault and Fail-
ure Model” and “Workload and Experiment Setup” sections in this case study,
an refer the reader to Section 4.6.1 and Section 4.6.2.

Note that the original paper on the return-address protection [BSS13b]
contains much more details on the AspectC++ implementation of the RAP
aspect, and e�ciency measurements. As these contributions are not my own,
and are not relevant for demonstrating Fail*’s capabilities, I omit them here
and refer the reader to the original paper [BSS13b].

4.7.1 Baseline Assessment

Similar to the GOP case study, as a starting-point assessment I ran a pre-
injection analysis and FI campaigns for the unmodi�ed baseline variants of
the workloads listed in Table 4.2 – only this time with eight-bit burst faults.
Just as in the GOP case study, the RAP developer provided ELF binaries for
these baseline benchmarks.

I imported the symbol tables of each binary, and generated per-symbol
aggregations (see Section 4.5.5.2). Table 4.5 exemplarily lists the top ten sym-
bols that caused the mutex1 benchmark to fail with an SDC, a CPU excep-
tion, a timeout, or an irregular memory access, which are subsumed in the
#failures column. Just as in the single-bit results shown in Table 4.3, the
global stack tops the failure-count ranking in Table 4.5, but even with a
more distinctive distance to the second-ranking thread_obj data structure
for the eight-bit burst-fault results.

A �rst explanation for the stack being the most critical data structure for
this workload is evident: Its size of 10 224 bytes o�ers a large attack surface
compared to the next-ranking symbols – although only 69.0 percent of the
stack are used during the golden run. But a closer look at an excerpt of the
stack area of the mutex1 FI results in Figure 4.15 – a diagram type I call
a fault-space plot – reveals more details. The larger diagram covers the the

4.7 case study: return-address protection 129

Figure 4.15: Fault-space plot showing results from the FI campaign with the unmod-
i�ed mutex1 benchmark: Each point denotes the outcome of an inde-
pendent run after injecting a burst bit-�ip at a speci�c time and data-
memory coordinate. Injections in white areas have no observable e�ect.
Blue marks illegal memory accesses and jumps. CPU exceptions are col-
ored red and timeouts yellow respectively. Magenta data points show
benchmark runs that �nish, but yield wrong output (SDC). Adapted
from [BSS13b].

130 fail*: a versatile fault-injection framework

symbol address size #failures %

stack 0x10E7E0 10 224 2 377 760 42.2 %

thread_obj 0x10E680 352 984 232 17.5 %

Cyg_Scheduler::scheduler 0x111800 132 445 920 7.9 %

cvar1 0x10E650 8 221 888 3.9 %

m1 0x10E63C 12 176 448 3.1 %

cyg_interrupt_stack_base 0x10E410 512 175 424 3.1 %

m1d 0x110FE0 4 170 784 3.0 %

Cyg_Interrupt::dsr_list 0x1117EC 4 170 208 3.0 %

m0 0x10E630 12 169 248 3.0 %

cvar2 0x10E658 8 162 048 2.0 %

Table 4.5: 8-bit burst FI results for the RAP case study: Top ten fault-susceptible
symbols for the unmodi�ed mutex1 benchmark.

complete benchmark runtime in its horizontal dimension (5986 simulated
CPU cycles), and all of data memory (20 111 bytes) in its vertical dimension.
Each point in this diagram denotes the outcome of an independent FI run
after injecting a burst bit-�ip at the speci�c time and data-memory coordi-
nate of the point. Injections in white areas have no observable e�ect, blue
marks illegal memory accesses and jumps, CPU exceptions are colored red,
and timeouts yellow respectively.Magenta data points show benchmark runs
that �nish, but yield wrong output (SDC).

The zoomed-in section reveals a primary reason the stack is so susceptible
to faults: Memory corruptions in return addresses and frame pointers leadThe excursus on the

next page provides

more details on the

IA-32 stack-frame

layout.

to a crash with certainty when the function returns to its caller after the FI.
A more thorough manual analysis exposes that this is by far not the only,
but the most homogeneous and widespread reason for crashes after faults
in the stack memory.

4.7.2 Return-Address Protection

To address this problem, the RAP developer chose a compiler-based approach
that stores redundant copies of return address and frame pointer directly
after entering any function, and compares and restores them right before
returning to the caller. However, the mutex1 call-stack histogram in Fig-
ure 4.16 suggests that it may be too naïve to protect all functions: Some
are called very few times and execute for a long time (darker colors), oth-
ers are called very often or run very shortly (brighter). Intuitively, the latter

4.7 case study: return-address protection 131

Excursus: IA-32 Stack Frames
As virtually all high-level programming languages support the nested
invocation of reusable code fragments – such as functions, methods, or
procedures – modern CPUs have a built-in awareness of a call stack and
special instructions for its manipulation. For instance, IA-32 CPUs – as
used in all case studies in this chapter – have a call and a ret instruction
as well as a stack-pointer register ESP:

• Whenever a function is called, the call instruction decrements the
stack pointer, saves the current instruction pointer (EIP) – the re-

turn address – on the stack, and loads the address of the target func-
tion into the instruction pointer register.

• Typically being the last instruction of a called function, the ret

instruction reads the return address from the stack, increments the
stack pointer, and loads the address into the instruction pointer.

Besides saving return addresses, in
the widely used cdecl calling conven-
tion the stack on x86 is also used for
function-call parameters and local vari-
ables. This leads to a stack-memory
layout that consists of so-called stack
frames – one for each active function.
On x86, the register EBP is used to
reference parameters and variables in
the stack frame of the current func-
tion. EBP – also called base pointer or
frame pointer – contains a copy of
the ESP register created at the begin-
ning of a function execution. To be
able to restore the previous EBP regis-
ter value directly before returning with
ret, it is saved on the stack as well.
Thereby, all stack frames are linked.
Being a dynamic, pointer-linked data
structure that stores code addresses, it
is no surprise that memory corruptions
can cause program misbehavior or even
crashes.

Parameter 2 for Routine 1

Parameter 1 for Routine 1

Return Address → Routine 0

Saved EBP for Routine 0

Local Data

Local Data

Parameter 1 for Routine 2

Return Address → Routine 1

Saved EBP for Routine 1

ESP

EBP

Local Data

R
o

u
tin

e
 1

's

S
ta

c
k
 F

ra
m

e

R
o
u

tin
e
 2

's

S
ta

c
k
 F

ra
m

e

S
ta

c
k
 A

d
d
re

s
s
e
s

Other CPU types than IA-32, especially RISC CPUs, have dedicated CPU
registers for saving the return address, and also for passing parameters
and holding local variables. However, these registers only help the leaf
functions in the function call tree. Other functions need to use an in-
memory stack, just as on x86. Therefore, these architectures can be ex-
pected to be less susceptible to memory errors, but failures caused by
memory corruptions on the stack still exist.

132 fail*: a versatile fault-injection framework

hal_idt_init

finishentry1

Cy..

Cyg_Thr..

Cyg_Con.. new_thread

entry2entry0

C.. C.. cyg_t..

Cyg_HardwareThread::thread_entry

mutex1_main

dia..Cy..

Cy..

S
ta

c
k
 d

e
p
th

Sample population

Figure 4.16: Mutex1 benchmark call-stack histogram in form of a �ame graph: Each
bar represents a function’s stack frame, and the x-axis denotes the func-
tion’s runtime in the same stack context (but does not show the pass-
ing of time from left to right – it is actually ordered alphabetically).
Lighter colors show a higher number of calls per runtime: Dark-red
functions are long-running and only called once, orange to yellow ones
run shorter and/or are called multiple times. Adapted from [BSS13b].

sort should be considered to be run without additional protective code, as
it would quickly worsen the runtime and static code-size overhead – even
beyond the break-even point where the additional exposure to faults out-
weighs all gains from being protected, as observed in the GOP case study
(see Section 4.6).

For the eCos kernel-test benchmarks used in this case study, the RAP de-
veloper chose to protect those functions that had a runtime accounting for at
least 0.1 percent of the runtime sum of all functions of the particular bench-
mark. Additionally, he added the constraint that a function must execute for
at least 50 clock cycles on average to be added to the list of protected func-
tions. Over all benchmarks, the length of this list amounts to an average of
nine protected functions.

Like in the GOP case study, the developer used AspectC++ to modularize
the RAP, and make it con�gurable with the benchmark-speci�c list of func-
tions to protect. In essence, immediately after a function’s entry the aspect
stores redundant information on the return address and the frame pointer
on the stack. Right before the function leaves, the implementation checks
whether the redundancy still matches the originals, and – depending on the
RAP variant – signals an error detection or repairs the error. Using this basic
scheme, the RAP developer implemented two variants:

detection: This variant uses a simple checksum to detect errors in both
the return address and the saved frame pointer. On checksum mis-
match, the running thread is aborted (fail-stop behavior).

correction: In this variant, the RAP aspect creates two copies of the re-
turn address and the saved frame pointer, yielding TMR with majority
voting. Errors are transparently repaired if a majority can be estab-
lished.

4.7 case study: return-address protection 133

symbol address size #failures %

stack 0x10EE60 10 224 1 805 912 29.4 %

thread_obj 0x10ED00 352 1 347 976 22.0 %

Cyg_Scheduler::scheduler 0x111E80 132 629 024 10.2 %

cvar1 0x10ECD0 8 307 360 5.0 %

m1 0x10ECBC 12 243 464 4.0 %

m1d 0x111660 4 237 504 3.9 %

Cyg_Interrupt::dsr_list 0x111E6C 4 236 416 3.8 %

m0 0x10ECB0 12 232 896 3.8 %

cvar2 0x10ECD8 8 224 832 3.7 %

cvar0 0x10ECC8 8 199 328 3.2 %

Table 4.6: mutex1 top ten susceptible symbols in the Correction variant: The num-
ber of crashes resulting from faults on the main stack are reduced by
24.0 % in comparison to the baseline variant (cf. Table 4.5) for this partic-
ular benchmark. Note the increase in failures for thread_obj by 37.0 %,
resulting from longer exposure by the pathologically high runtime over-
head for this tiny benchmark.

The RAP developer compiled the eCos kernel-test benchmarks in a Base-
line, a Detection, and a Correction variant for IA-32 with the GNU C++ com-
piler (GCC, eCosCentric GNU tools 4.3.2-sw, optimization level -O2), and
provided ELF binaries for the evaluation. eCos 3.0 was con�gured just as in
the GOP case study (see Section 4.6.2).

4.7.3 Evaluation: Detection and Correction E�ectiveness

The FI campaign covering the full memory-fault space for all 21 benchmarks
– each in its Baseline, Detection, and Correction variants – consisted of about
3.1 million single experiment runs and amounted to 1673 simulation hours.
Running more than 100 Fail* clients in parallel on the faculty’s student-pool
machines reduced the wall-clock campaign runtime to below one day.

The fault-space plots in Figure 4.17 give a qualitative impression of the
FI campaign results: The Detection variant (Figure 4.17a) detects almost all
faults in return addresses and frame pointers that led to crashes before (cf.
Figure 4.15), and then fail-stops. The Correction variant (Figure 4.17b) addi-
tionally transparently corrects these faults. Only very short susceptible time
frames between function call and information-redundancy creation, and be-
tween check/repair and function return remain – a phenomenon known as
Time-of-Check-to-Time-of-Use (TOCTTOU) in the context of system security

134 fail*: a versatile fault-injection framework

(a) Detection variant: Green results denote experiments where the fault was success-
fully detected (fail-stop). In the baseline variant (cf. Figure 4.15), all of these led to
crashes.

(b) Correction variant: Almost all return address and frame-pointer related crashes are
masked; only very short susceptible time frames between call and replica creation,
and between check/repair and function return remain (TOCTTOU phenomenon).

Figure 4.17: mutex1 benchmark, close-up of the same stack area as shown in Fig-
ure 4.15, for both Detection and Correction variants. Adapted from

[BSS13b].

4.7 case study: return-address protection 135

bin_sem1 bin_sem3 clock1 cnt_sem1

except1 flag1 mqueue1 mutex1

mutex2 release sched1 sync3

thread0 thread1 thread2

0e+00

5e+05

1e+06

0e+00

5e+10

1e+11

2e+11

2e+11

0e+00

1e+12

2e+12

3e+12

0e+00

5e+05

1e+06

2e+06

0e+00

5e+05

1e+06

0e+00

1e+11

2e+11

3e+11

4e+11

5e+11

0e+00

5e+06

1e+07

2e+07

2e+07

0e+00

1e+06

2e+06

3e+06

4e+06

0e+00

5e+06

1e+07

2e+07

0e+00

5e+05

1e+06

0e+00

1e+05

2e+05

3e+05

0e+00

5e+05

1e+06

2e+06

0e+00

1e+05

2e+05

3e+05

4e+05

0e+00

2e+09

4e+09

6e+09

8e+09

0e+00

1e+06

2e+06

3e+06

B
a
s
e
lin

e

D
e

te
c
ti
o
n

C
o
rr

e
c
ti
o
n

B
a
s
e
lin

e

D
e

te
c
ti
o
n

C
o
rr

e
c
ti
o
n

B
a
s
e
lin

e

D
e

te
c
ti
o
n

C
o
rr

e
c
ti
o
n

F
I

re
s
u

lt
−

ty
p
e

 c
o

u
n
t

Experiment result

Detected, fail−stop

Timeout

Bad mem access

JMP outside code

CPU Exception

SDC

Figure 4.18: Stack-only, absolute failure type (and detection) counts from the RAP FI
campaign (bin_sem2, clockcnv, clocktruth, kill, mutex3 and sync2
benchmarks omitted due to their extremely long runtime): Both EDM/
ERM variants improve resiliency to faults on the stack(s) substantially.

and race conditions [McP74]. The top ten susceptible-symbols list for the
mutex1 benchmark in the Correction variant (Table 4.6) still ranks the main
application stack �rst, but with a 24.0 percent reduction in the failure count.

The FI-campaign results for the remaining benchmarks, �ltered to only
include injections in the di�erent stacks, and di�erentiated into the observed
experiment outcomes, are shown in Figure 4.18. On average, the Detection
variant reduces stack failures by 53.8 percent: Especially the long-running
benchmarks pro�t from the EDM. Notably, the green “detected” bars exceed
the baseline in all cases – by 46.4 percent on average. Besides an increased
attack surface due to the additionally executed instructions, I assume false
DUEs (see Section 2.3.2.4) to be the primary reason for this phenomenon: The The excursus on

page 131 provides

more details on the

IA-32 stack-frame

layout.

caller function’s saved frame pointer may not be used after it is restored. In
this case, an error in the saved frame pointer has no e�ect in the Baseline
variant, but triggers an error detection in the Detection variant.

The Correction variant is similarly e�ective: On the average, it masks
45.5 percent of all stack failures, and detects another 3.2 percent. The in-

136 fail*: a versatile fault-injection framework

bin_sem1 bin_sem3 clock1 cnt_sem1

except1 flag1 mqueue1 mutex1

mutex2 release sched1 sync3

thread0 thread1 thread2

0e+00

5e+05

1e+06

2e+06

2e+06

2e+06

0e+00

1e+11

2e+11

3e+11

4e+11

5e+11

0e+00

2e+12

4e+12

6e+12

8e+12

0e+00

1e+06

2e+06

3e+06

0e+00

5e+05

1e+06

2e+06

2e+06

0e+00

3e+11

6e+11

9e+11

1e+12

0e+00

1e+07

2e+07

3e+07

0e+00

2e+06

4e+06

6e+06

0e+00

1e+07

2e+07

0e+00

1e+06

2e+06

0e+00

2e+05

4e+05

6e+05

0e+00

1e+06

2e+06

3e+06

0e+00

1e+05

2e+05

3e+05

4e+05

0e+00

1e+10

2e+10

3e+10

0e+00

2e+06

4e+06

6e+06

B
a
s
e
lin

e

D
e

te
c
ti
o
n

C
o
rr

e
c
ti
o
n

B
a
s
e
lin

e

D
e

te
c
ti
o
n

C
o
rr

e
c
ti
o
n

B
a
s
e
lin

e

D
e

te
c
ti
o
n

C
o
rr

e
c
ti
o
n

F
I

re
s
u

lt
−

ty
p
e

 c
o

u
n
t

Experiment result

Detected, fail−stop

Timeout

Bad mem access

JMP outside code

CPU Exception

SDC

Figure 4.19: RAP FI results as in Figure 4.18, but covering the complete fault space in-
cluding data structures outside the stack: Without additional protection,
the life-time increase for data structures other than return addresses
and frame pointers exceeds all gains from the RAP in some cases.

creased attack surface pays o� even for the shortest-running benchmarks,
and the aforementioned false DUEs become rather improbable.

However, the FI results from the complete fault space in Figure 4.19 re-
veal that the total failure-count reduction is not as signi�cant as for the
stack-only results (Figure 4.18). In case of bin_sem1, cnt_sem1, mutex1,
sync3, and thread2, the Correction variant even shows slightly more fail-
ures than the Baseline. The reason is that the additionally executed TMR
code increases the life time – and, hence, the attack surface – of data struc-
tures outside the stack. For the aforementioned �ve benchmarks, this life-
time increase reaches an extent that failures originating from these data
structures exceed the gains from reducing the failure count within the stack.
For example, the failure count relating to the thread_obj data structure
grows by 37.0 percent from the Baseline (Table 4.5) to the Correction variant
(Table 4.6).

Nonetheless, this does not mean that the RAP is generally not applicable
to these benchmarks, but that a separate protection mechanism – such as

4.8 case study: wsos / bare-metal-sort 137

the GOP (see Section 4.6) – is needed for data structures outside the stack to
achieve an overall improvement.

4.7.4 Conclusions on Fail* Tooling

From the perspective of the Fail* evaluation infrastructure – besides the
analyses already demonstrated in the GOP case study, – the primary �ne-
grained analysis method I additionally applied was the fault-space plot fea-
ture, as shown in Figure 4.15 and Figure 4.17. Fault-space plots allow to vi-
sually inspect large amounts of FI results, and to gain insights about par-
ticularly vulnerable data structures and program phases, or phenomenons
like TOCTTOU. Additionally, �ltering the FI results for addresses within
the stack areas of the target workloads allowed to contrast the failure-count
reductions of the RAP aspect on the stack (Figure 4.18), and the failure-count
increases in the remaining memory areas due to the additional runtime (Fig-
ure 4.19).

4.8 case study: wsos / bare-metal-sort

The third case study conducted with the Fail* FI infrastructure is from a
purely educational context. In February 2016, I contributed a practical “hands-
on” session on “Fault-Injection based Assessment of Software-Implemented
Hardware Fault Tolerance” to theWinter School onOperating Systems (WSOS)
in Graz/Austria.16 The goal of this hands-on session was to introduce the
postgraduate-student participants to FI by iteratively improving a given bare-
metal sorting program, embedded in a small competition for the lowest SDC
and total-failure counts.

The following sections describe the setup and teaching material we used
in the hands-on session, present the coarse- and �ne-grained baseline-as-
sessment techniques used by the participants, and discuss conclusions on
using Fail* in an educational context.

4.8.1 Hands-On Setup

After some introductory words on FI in general and Fail* in particular, we
provided the participants with VirtualBox VM images and handouts with
basic instructions. The Debian-based VM image contained all ingredients
needed for developing a small, fault-tolerant bare-metal program, injecting
faults into it with Fail*, and analyzing the results on di�erent levels of gran-
ularity:

• The bare-metal sort program, including sources and small wrapper
scripts for building, tracing, importing, and FI.

16 My colleagues Michael Lenz and Christian Dietrich helped creating supplemental materials
for the hands-on tutorial.

138 fail*: a versatile fault-injection framework

• A complete Fail* repository clone, with pre-built, FailBochs-based
Generic-Tracing andGeneric-Experiment binaries (see Section 4.5.2) and
ready-to-use post-injection analysis scripts.

• A MariaDB installation for FI job and result data.

The given bare-metal sort workload was a simple, bare-metal IA-32 imple-
mentation of a sorting program, taking a statically linked array as an in-
put, sorting the data in place with the bubble-sort algorithm, and writing
the sorted data to an I/O port observable by the Generic-Tracing experiment.
The participants were instructed to conduct an FI-based baseline assessment
using di�erent coarse- and �ne-grained analysis methods, and to then itera-
tively improve bare-metal sort.

4.8.2 Fault and Failure Model

As the participants were supposed to run complete FI on their resource-
limited laptops, we decided to use a similar fault model as in the RAP case
study – uniformly-distributed 8-bit burst faults in main memory. Compared
to single-bit �ip faults, the factor of eight lower number of FI experiments
helped keeping the development-iteration frequency high enough during
the hands-on session.

The chosen failure model included SDCs, timeouts, CPU exceptions, and
as an additional category “detected” faults. We set two separate goals for the
session’s fault-tolerance competition: minimization of the SDC count, and
minimization of the sum of all failure categories, including “detected”. While
the former goal aims at safety, the latter additionally incorporates reliability
(see Section 2.2.1).

4.8.3 Baseline Assessment and Analysis Methods

By directly using pre-built binaries for Generic-Tracing and the Generic-Ex-

periment, the hands-on participants were spared de�ning an own experi-
ment procedure, and could start with a baseline assessment right away. They
compiled the bare-metal-sort baseline with Debian GCC 4.9.2-10, ran the
usual pre-injection steps – golden run with Generic-Tracing, trace import,
and def/use pruning, – and conducted the FI campaign with 2879 experi-
ments on their laptops in a time frame of a few minutes.

After the FI campaign, the participants could freely choose from Fail*’s
palette of post-injection analysis methods, including:

• The global aggregation for the di�erent experiment-outcome types
(see Section 4.5.5.1). Table 4.7 shows the result-count numbers for the
bare-metal-sort baseline – these numbers were the basis for the com-
petition, and meant to be beaten by the participants’ modi�cations to
the program. The participants were also given the possibility to cal-
culate the fault-coverage metric, but advised not to use the resulting
numbers as a basis for workload-variant comparison.

4.8 case study: wsos / bare-metal-sort 139

Figure 4.20: Fault-space plot excerpt for the bare-metal-sort baseline: SDC failures
in the input_data array stand out most prominently. The slope towards
the benchmark’s end stems from the output loop, after which each array
member is not used anymore. Red data points show SDC results, yellow
means timeout, turquoise marks CPU exceptions.

Figure 4.21: VisualFail* highlights bare-metal sort source-code lines and associated
assembler instructions: The highlighted code indicates that the bubble-
sort implementation’s inner loop activates many faults that lead to
SDCs.

140 fail*: a versatile fault-injection framework

outcome result count

No E�ect 215 973

Timeout 11 277

CPU Exception 15 336

SDC 109 766

Table 4.7: Global result counts for the bare-metal-sort baseline.

outcome symbol size result count

No E�ect
os_stack 4096 213 337

input_data 24 2096

input_data_length 4 540

Timeout input_data_length 4 7746

os_stack 4096 3531

CPU Exception os_stack 4096 15 336

SDC
input_data 24 94 000

os_stack 4096 8036

input_data_length 4 7730

Table 4.8: Per-symbol result counts for the bare-metal-sort baseline.

• Per-symbol aggregations for the di�erent experiment-outcome types
(see Section 4.5.5.2). The baseline results shown in Table 4.8 quickly
pointed out to the participants that faults in the input_data array are
those primarily responsible for SDCs, and CPU exceptions originate
only from the os_stack.

• Fault-space plot with symbol annotations. The fault-space excerpt in
Figure 4.20 con�rmed the criticality of the input_data and os_stack

variables/data structures, and also indicated the partitioning of the
workload into two phases: sorting (until approximately cycle #3870),
and output of the input_data array. Faults in the array elements have
no e�ect after they have been printed to the output channel, explain-
ing the slope in the fault-space plot throughout the output loop.

• Per translation-unit aggregations (see Section 4.5.5.3). Matching the re-
sults from the per-symbol aggregation and the fault-space plot, the
per translation-unit aggregation in Table 4.9 directed the participants’
attention towards the bubble-sort implementation in bubblesort.cc,
and the output loop in output.cc, which activate most of the faults
that lead to SDCs.

4.8 case study: wsos / bare-metal-sort 141

outcome translation unit result count

No E�ect

bubblesort.cc 82 192

main.cc 46 976

fail.cc 11 332

sort.cc 1769

output.cc 600

Timeout
main.cc 7746

sort.cc 3521

output.cc 10

CPU Exception
bubblesort.cc 11 571

sort.cc 3375

output.cc 390

SDC

bubblesort.cc 69 215

output.cc 26 294

main.cc 7730

fail.cc 4000

sort.cc 2527

Table 4.9: Per translation-unit result counts for the bare-metal-sort baseline.

outcome function result count

No E�ect

sort(char*, unsigned int) 82 336

main 47 040

swap(char*, char*) 12 957

print_data(char*, unsigned int) 536

Timeout

main 7746

swap(char*, char*) 3500

sort(char*, unsigned int) 21

print_data(char*, unsigned int) 10

CPU Exception
sort(char*, unsigned int) 11 571

swap(char*, char*) 3375

print_data(char*, unsigned int) 390

SDC

sort(char*, unsigned int) 69 242

print_data(char*, unsigned int) 26 294

main 7730

swap(char*, char*) 6500

Table 4.10: Per-function result counts for the bare-metal-sort baseline.

142 fail*: a versatile fault-injection framework

team bare-metal-sort changes sdc count

Baseline — 109 766

“Kuan” inline swap() 65 089

“AT” inline swap(), selection-sort 60 556

“Kuan” shellsort, optimization -O3 4462

“Jana” shellsort, inl. swap(), checksum after output 2276

“Jana” + checksum (four bytes at once) 0

team bare-metal-sort changes non-ok count

Baseline — 136 379

“Kuan” inline swap() 77 314

“AT” inline swap(), selection-sort 75 496

“Kuan” shellsort, optimization -O3 61 271

“Björn” inline swap(), optimization -O3 49 294

“Björn” + MSB check / inversion 32 457

“AT” inl. swap(), selection-sort, TMR 28 335

Table 4.11: The two WSOS FI hands-on competition leaderboards: One for the SDC-
minimization goal, and one for the goal of minimizing all non-“No E�ect”
results.

• Per-function aggregations. As to be expected from the per translation-
unit aggregation, sort() and print_data() activate the most SDC-
prone faults (Table 4.10).

• Instruction-level and source-code level aggregations in the web-browser
based VisualFail* tool. The result detail in Figure 4.21 indicated –
with little surprise for a sorting benchmark – that the machine in-
structions for element comparison, respectively the high-level C++
language construct if (data[j] > data[j+1]), activate many SDC-
causing faults.

Based on these analysis results, the hands-on participants began to itera-
tively improve bare-metal-sort.

4.8 case study: wsos / bare-metal-sort 143

4.8.4 Competition Results

Although each participating team worked on their own bare-metal-sort vari-
ant, due to the scenario’s simplicity – and the initial, open discussion on
possible SIHFT solutions – several teams chose similar approaches in di�er-
ent variants and combinations.

• Some teams switched to more e�cient sorting algorithms, such as
shellsort or selection-sort. The reduced execution time directly reduces
the time component of the “attack surface”, and thus, the SDC count.

• Another widely-used technique was to inline the swap() function. As
this function is called very frequently by the sorting algorithm to ex-
change two array elements, this, again, signi�cantly reduces execution
time and SDCs, but also avoids repeatedly storing a return address
on the os_stack. The removal of this instruction-address indirection
measurably reduces the CPU-exception count.

• Choosing a higher optimization level (GCC’s -O3 switch) has a similar
e�ect: It reduces execution time, and potentially eliminates some of
the state-based indirections.

• Some teams approached the problem with classic redundancy tech-
niques, such as TMR and voting, or checksumming.

Besides these generally applicable techniques, some teams also discovered
loopholes in the scenario setup and the competition rules. For example, one
team �gured out that eight-bit burst faults can easily be detected and re-
verted if the input_data array is known to contain only values up to 127.
Another group exploited the fact that the workload could signal “detected”
even after all data was already printed to the output channel, allowing to
even reduce the SDC count to zero.

Table 4.11 shows the two �nal WSOS hands-on leaderboards as they de-
veloped throughout three hours of the competition.

4.8.5 Conclusions on Fail* Tooling

The Fail* tooling – especially the assessment-cycle layer amenities, like the
ready-to-use Generic-Tracing and Generic-Experiment tools, and the various
sophisticated analysis scripts – proved to be well-suited for the context of a
practical hands-on lecture:

• Not least due to Fail*’s pruning techniques, the tooling is su�ciently
e�cient for running even complete fault-space scans for a small ex-
ample workload on contemporary laptop-class computers.

• The assessment-cycle layer tools and abstractions allow for a learning
curve adequate for a time-constrained lecture with non-experts.

144 fail*: a versatile fault-injection framework

• Fail*’s coarse- and �ne-grained analysis methods provide all neces-
sary input for purposeful and targeted SIHFT hardening. Although
the bare-metal-sort workload would certainly have been manageable
without the more sophisticated analyses, this approach would have
been slower and would have involved guesswork.

On a didactic side note, the competition character of the hands-on session
proved extremely motivating to the participants.

4.9 discussion

The design and implementation of Fail*, as presented in this chapter, achieves
most of the goals I set in Section 4.1.

4.9.1 Fault-Space Coverage

Fail* is capable of covering the complete ISA-level fault-space of a given
workload. This goal was achieved by integrating parallelization as a core
feature into Fail*’s plumbing layer (see Section 4.3), and by adding fault-See Chapter 5 for

details on the

Fault-Similarity

Pruning (FSP)

heuristic, which

further reduces the FI

e�orts for complete

fault-space coverage.

space pruning as an integral step to the assessment-cycle layer tooling (see
Section 4.5).

As a result, Fail*’s post-injection analyses (see Section 4.5.5) can provide
�ne-grained analyses down to the level of program modules, functions, vari-
ables, source-code lines, or machine instructions. The case studies in Sec-
tions 4.6 to 4.8 demonstrated the utility of these analyses for iteratively de-
veloping, improving, and placing/con�guring SIHFT mechanisms.

4.9.2 Measurement and Comparison

See Chapter 7 for

details on the

extrapolated
absolute failure

count metric and its

derivation.

The case studies also demonstrated that Fail* can be used for comparing
di�erent workload variants – and deciding whether a SIHFT-protected pro-
gram reduces the failure probability compared to the unhardened program,
– as it implements the extrapolated absolute failure count metric.

4.9.3 Maintainable Back-End Extension

The goal of extending existing simulator back-ends in a maintainable way
using AOP was achieved partially.

As described in Section 4.3.2.3, the control-�ow transfers from the Bochs
x86 simulator to Fail* were implemented using AspectC++, successfully
achieving separation of simulation and FI concerns, and aspect quanti�ca-
tion – especially for capturing the various di�erent types of memory ac-
cesses within Bochs. Thereby, the scattering and tangling e�ects mentioned
in Section 3.5.3 could be avoided. However, in one instance Bochs had to be
extended by an explicit “hook function” call, as the exact location within the

4.9 discussion 145

fault model preparation experiment im-
plementation publications

Transient
single-bit �ips in
data memory,
uniform

Golden-run
memory-access
trace analysis
(using Tracing

plugin and
import-trace

tool) Fault trigger: N
CPU cycles passed
Fault injection:

Memory or CPU
abstraction in EEA
layer

e.g., [BSS13a,
HBD+14, BSS15,
HLDL15, SBS15,
DHL15, BS15]

Transient
single-bit �ips in
data memory, on
access
(“inject-on-read”)

[SBS15]

Transient
multi-bit �ips in
data memory,
uniform

e.g.,
[BSS13a, SBS14]

Transient
single-bit �ips in
instruction

op-codes

Golden-run
instruction trace
analysis (Tracing
plugin &
import-trace

tool)

[HUD+14a,
HUD+14b]

Transient
single-bit �ips in
register �le,
uniform

Golden-run
instruction trace
analysis &
disassembly
(Tracing plugin &
import-trace

tool)

[HLDL15, DHL15]

Transient
single-bit �ips in
register �le, on
access
(“inject-on-read”)

[HUD+14a,
HUD+14b]

Transient
multi-bit �ips in
register �le, on
access
(“inject-on-read”)

Permanent

single-bit �ips in
memory

—

Fault trigger:

Memory write at
faulty location
Fault injection:

Memory
abstraction in EEA
layer (re-write
faulty bit)

[SKSE13]

Table 4.12: Fault-model examples implemented using Fail*, necessary campaign
preparation steps, and EEA-layer primitives used in the respective ex-
periment implementation.

146 fail*: a versatile fault-injection framework

main CPU loop where the control �ow had to be diverted was not directly
capturable by AspectC++’s pointcut language.

Nevertheless, I was not able to completely address one “specialist”-speci�c
issue mentioned in Section 3.5.3: keeping in sync with the simulator’s main-
line evolution. It seems that the Bochs developers started an extensive over-
haul of the simulator’s core components soon after the 2.4.6 version that
is currently part of the Fail* tree, for example the central main CPU loop
was changed for performance reasons in a way that the current extension as-
pects do not work as expected anymore. Moving to a newer Bochs version is
certainly possible, but will require more e�orts than just importing a newer
version of its source-code tree.

As described in Section 4.3.2.4, gem5 and QEMU could not be extended us-
ing AspectC++, as the compiler currently cannot weave into C code (QEMU)
or C++ templates (heavily used in gem5). Nevertheless, the simulator source-
code modi�cations were kept to a minimum.

4.9.4 Back-End and FI-Technique Flexibility

The Execution-Environment Abstraction (EEA) – as part of Fail*’s plumbing
layer (see Section 4.3) – allows Fail* users to �exibly switch between dif-
ferent back-ends and FI techniques, including simulation-based FI in three
di�erent simulators, and a TAP-based/SWIFI hybrid FI method targeting an
ARM development board (see Section 4.3.3).

Beyond this �exibility regarding back-end and FI-technique choice, Fail*’s
plumbing layer also allows to implement a wide range of ISA-level fault mod-
els, including both CPU and memory fault models. Table 4.12 lists examples
for fault models that have already been implemented using Fail*, the neces-
sary preparation steps before running the campaign (see Section 4.5.3), the
EEA respectively plumbing-layer primitives used in the experiment imple-
mentation, and the publications the results were published in.

4.10 summary

To summarize, this chapter described the design, implementation, and case-
study based evaluation of Fail*, a �exible and versatile architecture-level
FI tool and framework for developers designing and deploying SIHFT mea-
sures. Fail*’s basic plumbing layer provides a client/server infrastructure for
parallel experiments, and abstracts from a concrete execution environment,
such as a hardware simulator, or actual development hardware connected
via a TAP. Building on the APIs provided by the plumbing layer, the assess-

ment-cycle layer restricts the degrees of freedom to its users, trading them
for simpler use and tool support for the complete fault-tolerance assessment
cycle.

Fail* achieves complete fault-space coverage through parallelization and
pruning techniques, and enables a multitude of novel �ne-grained analy-
sis techniques, as demonstrated by several case studies. The provided abso-

4.10 summary 147

lute failure count metric allows to compare di�erent workload variants. At
least in the case of Fail*’s Bochs back-end, the FI-implementation maintain-
ability improves signi�cantly over the state of the art. Additionally, Fail*’s
plumbing-layer abstractions allow a high degree of �exibility regarding tar-
get back-ends, FI techniques, and ISA-level fault models.

5
FA U L T- S I M I L A R I T Y P R U N I N G : C A M PA I G N S P E E D U P B Y
E X P E R I M E N T- C O U N T R E D U C T I O N

“Insanity is doing the same thing over and over again,

but expecting di�erent results.”

— �ctional character Jane Fulton in Rita Mae Brown, Sudden Death [Bro83]

Contents
5.1 The Need for Full Fault-Space Coverage 150

5.1.1 Fine-Grained Analyses 150
5.1.2 Chapter Outline 150

5.2 Generalizing Fault Equivalence 151
5.2.1 Def/Use Pruning and Fault Equivalence 151
5.2.2 Fault Similarity and a Generalization of Fault Equiva-

lence 153
5.2.3 A Flexible Fault-Similarity Heuristic 155
5.2.4 Applying the Similarity Heuristic 158

5.3 Implementation 158
5.3.1 Encoding Machine State and Projection Function 158
5.3.2 A Genetic Algorithm for Searching Optimal Projections 159

5.4 Evaluation 161
5.4.1 Evaluation Setup and Ground Truth 161
5.4.2 Heuristic Training and Test 162
5.4.3 Experiment-Outcome Breakup and Comparison with Sam-

pling 165
5.5 Summary and Conclusions 167

As the previous chapter showed, some of Fail*’s novel result-anal-
ysis techniques – such as fault-space plots, symbol-level analyses,
or mapping of FI results to high-level language constructs down

to the level of single source-code lines – require complete fault-space cov-
erage instead of sampling results. Unfortunately, FI campaigns exhaustively
covering all possible ISA-level fault locations can cost enormous computing
power – sometimes measured in quantities of CPU years, such as in the GOP
case study (see Section 4.6), – and become infeasible for larger workloads.

As a remedy to this problem, this chapter describes a novel heuristical
fault-space pruning method that massively reduces the FI-campaign runtime
and keeps information on all possible fault locations in the workload. The fol-
lowing section points to required background on FI and fault-space pruning
principles in previous chapters. Sections 5.2 and 5.3 describe the design and

149

150 fault-similarity pruning: campaign speedup by experiment-count reduction

implementation of the fault-space pruning heuristic, and provide details on
the necessary modi�cations and additions to Fail*. Section 5.4 presents and
discusses evaluation results with the eCos benchmarks already introduced
in the GOP case study (see Section 4.6.2) and the automotive category of the
MiBench [GRE+01] benchmark suite. Section 5.5 concludes and summarizes
this chapter.

Parts of this chapter were originally published on SAFECOMP 2014 [SBS14].

5.1 the need for full fault-space coverage

As already described in Section 1.2.3, there exist two fundamental approaches
to reduce an FI campaign’s total runtime: One aims at reducing the runtime
of individual experiment runs, the other at reducing the total count of ex-
periments to conduct. Most studies leveraging FI for test or measurement
purposes resort to statistically sampling fault locations [LCMV09, RKK+08]:
A randomized selection of fault locations – usually in the thousands – is used
to drive the FI campaign, until statistics predict a “good enough” probability
for the overall result distribution to lie within the desired con�dence interval
(see Section 3.1.2.5). The result is an estimate on the aggregated campaign
outcome, for example a probability breakup that an experiment �nishes with
the expected output (“No E�ect”), with an SDC, a CPU exception, or a time-
out.

5.1.1 Fine-Grained Analyses

While an estimate on the aggregated results su�ces for measuring the re-
siliency improvement between a benchmark’s baseline and a SIHFT-pro-
tected variant, it gives no authoritative insights on critical spots and local
phenomena, such as the vulnerability of speci�c data structures or program
phases.

In contrast, the �ne-grained analyses presented and demonstrated in Chap-
ter 4 – fault-space plots, symbol-level analyses, or mapping of FI results to
high-level language constructs down to the level of single source-code lines –
are based on the injection of faults into all possible fault locations of the par-
ticular workload. Depending on the workload size, these FI campaigns can
take several CPU years of simulation time with Fail*, although the accom-
panying prune-trace tool implements the highly e�ective def/use pruning
technique (see Sections 3.3.1.1 and 4.5.3.4).

5.1.2 Chapter Outline

To �ll this gap, in this chapter I describe a fault-space pruning heuristic that
– based on def/use pruning – reduces the FI-experiment count further and
keeps information on all possible fault locations in the program. The basic
idea stems from a simple insight: If in two FI experiments the machine state

is similar (or identical) at the point in time when the fault is injected, the ex-

5.2 generalizing fault eqivalence 151

periment result will be similar (or identical), too. Alluding to this underlying
idea, I named the heuristic Fault-Similarity Pruning (FSP).

The following sections describe the FSP method in detail. Its most promi-
nent properties are:

• FSP prunes the fault space application-speci�cally, and preserves lo-

cal features of the fault space as needed by Fail*’s �ne-grained post-
injection analyses.

• FSP allows the developer to freely trade accuracy for experimentation

runtime without su�ering the primary drawback of randomized sam-
pling – its lack of result details.

As in the RAP case study (see Section 4.7), the remainder of this chapter
focuses on uniformly distributed, byte-aligned eight-bit burst faults in mem-
ory, which invert all eight bits at a memory address at once. This fault model
can be seen as a simpli�cation of multi-bit �ips induced by single-event up-
sets (see Section 2.3.2.4), which are commonly caused by particle strikes. De-
spite the simple fault model I nevertheless believe that the FSP technique
can be generalized to other fault models, such as single-bit �ips or transient
faults in CPU registers or caches.

5.2 generalizing fault eqivalence

The following section �rst brie�y recapitulates def/use pruning and the fault-
space pruning heuristics presented in Hari et al.’s Relyzer [HANR11, HANR12,
HANR13] and Li and Tan’s SmartInjector [LT13], which were already dis-
cussed in Sections 3.3.1.1 respectively 3.3.1.2. Then, I outline a generalization
– and simpli�cation – of the fault equivalence notion coined in these works.
Subsequently, I derive a generic heuristic that ameliorates the in�exibilities
regarding accuracy and experiment-count trade-o�, the need for complex
control and data-�ow analyses, platform speci�cs, and a �xation on a single
failure model (see Section 3.3.1.2).

5.2.1 Def/Use Pruning and Fault Equivalence

As described in Section 3.3.1.1, def/use pruning exploits knowledge from a
memory-access trace that was recorded during the golden run, and conserva-
tively reduces the number of FI experiments for a complete fault-space scan
without losing result accuracy. Figure 5.1a illustrates this procedure for the
eight-bit burst fault model used throughout this chapter: Fault-space coordi-
nates between a def or use (write or read), and a subsequent use (read) can
be considered equivalent – the outcome for each injection is a priori known
to be identical. Consequently, only one FI experiment is conducted for each
Def/Use Equivalence Class (DUEC).

Building on this conservative approach, Hari et al. [HANR11, HANR12,
HANR13] describe the Relyzer tool, providing several heuristics that combine

152 fault-similarity pruning: campaign speedup by experiment-count reduction

CPU Cycles

M
e

m
o
ry

 B
y
te

s

111 2 3 4 5 6 7 8 9 10 12

1

2

3

4

5

6

7

8

9

W

DUEC

R

W R RR

W R

RR

(a) Eight-bit burst bit-�ip fault space and def/use equiva-

lence classes (DUECs) extracted from a program trace,
reducing the FI experiments (dots) that need to be con-
ducted. Fault injections at white coordinates (non-�lled
circles) can be omitted, as a fault there is overwritten or
never read. A black dot represents a class of equivalent
faults (light-gray coordinates) between a write/read and
subsequent read instruction.

CPU Cycles

M
e

m
o
ry

 B
y
te

s

111 2 3 4 5 6 7 8 9 10 12

1

2

3

4

5

6

7

8

9

W

FEC / FSC

R

W R RR

W R

RR

(b) Fault-equivalence classes (FECs), or – for this chapter –
fault-similarity classes (FSCs) group several DUECs the
heuristic assumes to have the same outcome.

Figure 5.1: Def/use and fault-equivalence/fault-similarity pruning: A Def/Use Equiv-

alence Class (DUEC) groups fault-space coordinates with a known identi-
cal outcome. Based on DUECs, a fault-equivalence class (FEC, Hari et al.
[HANR11, HANR12, HANR13]) respectively fault-similarity class (FSC,
my approach) groups DUECs it heuristically assumes to have the same
outcome.

5.2 generalizing fault eqivalence 153

multiple DUECs into larger groups called fault-equivalence classes (FECs),
as illustrated in Figure 5.1b. The goal of the grouping heuristics is to com-
bine DUECs that have the same experiment outcome, as anticipated through
static or dynamic analyses. In the FI campaign, from each FEC only one repre-
senting DUEC – the pilot – gets picked, and the experiment result is assumed
to be identical for the remaining group members. Li and Tan [LT13] describe
a similar pruning heuristic in their SmartInjector tool. Both approaches share
a set of de�ciencies:

• The approaches are in�exible regarding the result-accuracy and exper-
iment-count trade-o�: Hari et al. report an average accuracy of 96 per-
cent, Li and Tan 94 percent. The user cannot increase the accuracy by
running more FI experiments (using FECs with less DUEC members),
or save FI-experiment e�orts by accepting a lower accuracy (using
FECs with more DUEC members).

• The grouping heuristics are based on complicated control and data-
�ow analyses, SPARC platform speci�cs, and assumptions on the ex-
periment result interpretation: Both Relyzer and SmartInjector only
di�erentiate between benign and SDC outcomes, while in many use
cases – for example, the GOP case study (see Section 4.6) – more out-
come types are necessary.

5.2.2 Fault Similarity and a Generalization of Fault Equivalence

Instead of using the term “fault-equivalence class” from Hari and Li to denote
groupings of multiple DUECs, I will use the term Fault-Similarity Class (FSC)
in this chapter to avoid confusion with DUECs (see Section 3.3.1.1), and to
capture the following facts:

mispredictions may occur: One DUEC – the pilot – represents all the
other DUEC members of a FSC. Due to the approximative nature of
heuristics, one or more non-pilot members of a FSC can have a di�er-
ent experiment outcome than the pilot, making the word “equivalence”
unwarranted.

eqivalence is in the eye of the beholder: The “equivalence” of
two FI-experiment outcomes purely depends on the experimenter’s
de�nition. While for one type of FI campaign, any deviation from the
golden run is a failure, for others a detailed di�erentiation into sev-
eral outcome types (see, for example, Section 4.6) is important. Hence,
multiple DUECs are similar only under the chosen failure model.

Although both approaches [HANR11, HANR12, HANR13, LT13] invent vari-
ous complicated analysis techniques to combine multiple DUECs into larger
groups, the general notion of fault similarity can be reduced to a simple in-
sight:

154 fault-similarity pruning: campaign speedup by experiment-count reduction

Figure 5.2: Short IA-32 assembler snippet (top) adding up the contents of an array:
All memory reads in the dynamic execution (bottom) share a similar
machine state, and FI will lead to similar results in all cases – a wrong
sum. (For simplicity, registers carry dummy 16-bit values.) Adapted from
[SBS14].

Assume that at one point in time t1 during the workload run, the

machine state is completely identical to the machine state at an-

other point in time t2. We conduct two FI experiments, one inject-

ing a fault at time t1 in memory address m, the other one at time

t2 injecting in the same memory address m. Clearly, both experi-

ments will yield the same result.

For example, if one FI experiment results in an SDC, the very same thing
will happen in the other experiment.

Of course, in reality the machine state is never completely identical at
two points in time t1 and t2 during a program run; even if the benchmark
would enter an in�nite loop, some parts of the machine – for example, a wall-
clock timer – would be in a di�erent state. Nevertheless, over the program’s
runtime, a relevant part of the machine state may be identical at several
points in time.

To gain a better intuition on what is meant by a “relevant part” of the
machine state, observe the IA-32 assembler code snippet in Figure 5.2 (upper
half): In a loop, the integer elements of an array are added up in the EAX

register, keeping the array index – also used for the loop-abort condition – in
the EDX register. When considering faults in memory only, and applying the
def/use pruning method described in Section 5.2.1, the only memory-reading

5.2 generalizing fault eqivalence 155

(use) instruction is the one in line 2, marked with the comment “READ!”.
Injecting a fault into the memory location being read from directly before
the read will lead to a similar result in all loop iterations: The resulting sum
will be calculated faultily. Thus, it would su�ce to do a single experiment
instead of 1000, and predict the same result outcome for the others.

Now consider the machine state right before each memory read in the dy-
namic execution (lower half of Figure 5.2, highlighted lines): Among others,
the EIP (instruction pointer), ESP and EBP registers are the same in all cases,
EDX only di�ers by its lower-order bits in most consecutive loop iterations,
and EAX may – depending on the magnitude of the values in the array – not
change too much from one iteration to the next either. A geometric projec-

tion function of the machine-state vector – preserving only the components
EIP, ESP, EBP, and the higher-order bits of EDX and EAX – therefore serves
very well as a criterion to combine all these DUECs into a single FSC, and
to conduct a single experiment instead of one per loop iteration.

5.2.3 A Flexible Fault-Similarity Heuristic

The working hypothesis is that a projection of the machine-state vector can
successfully be used to combine multiple DUECs to a FSC with high result
accuracy, meaning that – depending on the user’s requirements – the out-
comes of most of the grouped DUECs are similar. I assume that this projec-
tion highly depends on several factors:

• Analyzed workload, including the underlying operating system, and
its chosen input.

• Compiler, and chosen compiler optimizations.

• Machine model, including CPU architecture, and time discretization.

• Fault and failure model.

A generic fault-similarity heuristic therefore has to adapt to these factors
without having to specialize the approach, for example, for one CPU archi-
tecture, like Hari et al.’s Relyzer [HANR11, HANR12, HANR13].

The basic idea behind the FSP heuristic is to �nd a suitable machine-state

projection that can be used to accurately combine DUECs with “mostly” equiv-
alent FI results. The search for this projection function is divided into a prepa-
ration step that records the machine-state vectors during the golden run, a
sampling step that collects FI results as the training set, and the projection-
function search step itself.

5.2.3.1 Preparation: Record Machine-State Vectors

First, the approach records a machine-state vector for each def and use when
recording the golden-run trace (see Section 3.1.2). For e�ciency reasons, I
do not record the complete machine state, but only the values listed in Ta-
ble 5.1. Among other information, FSP records the current contents of all

156 fault-similarity pruning: campaign speedup by experiment-count reduction

Time

M
em
o
ry
 A
d
d
re
ss
 (
R
A
M
)

(a) Sampling: In the �rst step of the FSP approach, we run FI experiments for a randomly-chosen,
feasible subset of all DUECs.

Time

M
em
o
ry
 A
d
d
re
ss
 (
R
A
M
)

(b) Partitioning: Each possible state-vector projection-function partitions the fault space into
FSCs. In the example, the partitioning is not perfectly accurate, as the top-right yellow “time-
out” FI result for one DUEC is grouped together with three red “SDC” results. For the white
FSC in the top right, no FI experiment has been conducted yet.

Time

M
em
o
ry
 A
d
d
re
ss
 (
R
A
M
)

(c) Prediction: After conducting one experiment for the top-right FSC (outcome: “No E�ect”),
the outcomes for the remaining DUECs can be predicted from the already obtained results.

Figure 5.3: FSP steps: Sampling, fault-space partitioning, and result prediction. Note
that in this simpli�ed illustration, each colored circle is meant to repre-
sent one DUEC, and each black-bordered polygon one FSC combining
multiple DUECs.
Legend: green = No E�ect, yellow = Timeout, red = SDC.

5.2 generalizing fault eqivalence 157

machine registers, the contents of the memory word each of them points at
when interpreting their content as a memory address, the current machine-
instruction’s opcode, and the actual value the CPU reads from or writes to
memory.

5.2.3.2 Step 1: Sampling

Then, FSP determines FI results by running actual experiments for a feasi-
ble, randomly chosen subset of all DUECs, as shown in Figure 5.3a. In the
next step, these results will serve as the training set for searching a state-
vector projection that accurately groups DUECs with mostly equivalent ex-
periment outcomes to FSCs.

5.2.3.3 Step 2: Projection-Function Search

Based on the training set, an optimization algorithm then searches for a pro-
jection function that is (near-)optimal regarding a speci�ed result accuracy,
or a limit on the number of FI experiments – which refers to the number
of FSCs, as the approach runs one FI experiment for each pilot DUEC. To-
gether with the machine-state information for each def and use from the
golden run, each possible projection function – for example, the one out-
lined in Section 5.2.2 – partitions the fault space into a set of FSCs, as shown
in Figure 5.3b. DUECs that have the same projected machine-state vector are
grouped into the same FSC. Speaking in the example from Section 5.2.2, all
DUECs with the same values in EIP, ESP, EBP, and the higher-order bits of
EDX and EAX, are assigned to the same FSC.

For some of these DUECs, the FSP heuristic already has determined an
FI result in step 1 (see above).1 The result accuracy measures how well the
partitioning and the sampling FI results match. In fact, the two optimization
criteria – maximum accuracy and minimal number of FSCs – are contradic-
tory and can be traded for each other. The extremal points at each end of the
solution space help understanding the trade-o�:

• The extremal point in favor of accuracy uses the identity function as
the state-vector projection. It de�nes all available machine state as
relevant for grouping – and combines no DUEC with another: It pro-
duces FSCs with one DUEC member each. As the approach needs at
least one real FI result per FSC, this solution requires an FI experiment
for every DUEC, and achieves maximum accuracy.

• The other extremal point combines all DUECs to a single FSC and only
conducts one single experiment. It results in minimal experimentation
e�ort and maximal result error.

Between these extremal points exists a large solution continuum with all pos-
sible machine-state vector projections. Some of these solutions are Pareto-

1 For those FSCs we do not have at least one real FI result for yet, we will conduct an FI
experiment in Section 5.2.4.

158 fault-similarity pruning: campaign speedup by experiment-count reduction

optimal [Deb01], which means they optimally trade experiment e�ort for
accuracy.

5.2.4 Applying the Similarity Heuristic

After �nding a projection function – and, hence, one speci�c fault-space par-
titioning scheme, – that satis�es the user’s requirements regarding accuracy
and FI-campaign e�orts within the training set, the user can apply it to the
remaining DUECs with yet unknown outcome.

Some FSCs do not yet contain at least one DUEC member with a known
outcome, for example the white FSC in the top-right corner of Figure 5.3b.
Because no FI experiment was run for these FSCs in the sampling step, the
approach now picks one pilot DUEC for each of them, and runs the FI exper-
iment for it.

After this step is completed, all DUECs, and, thus, every coordinate in
the fault space either directly or indirectly can be assigned an experiment
outcome: Directly, by running an FI experiment for them, or indirectly, by
looking at the pilot in the FSC they belong to. Figure 5.3c illustrates this
result-prediction step, after which the complete fault space can be “colored”
with FI-result outcomes.

5.3 implementation

I implemented the outlined FSP approach as an extension to Fail* (see Chap-
ter 4). I extended the Tracing plugin and the associated Trace_Event protocol-
bu�er message (see Section 4.5.2) with the capability to record the additional
machine state listed in Table 5.1 alongside the usual instruction and memory-
access trace. The import-trace (see Section 4.5.3.3) tool’s new --importer

AdvancedMemoryImporter and --extended-trace switches import the data
into additional columns of the trace database table.

5.3.1 Encoding Machine State and Projection Function

The FSP approach itself is implemented in the fail-eq-search tool in about
2000 lines of code.2 I encode the recorded machine-state listed in Table 5.1
into a single, long bit vector with all state variables concatenated. This state
vector exists once for each dynamic instruction in the golden run that reads
memory. The projection function the FSP heuristic want to search for is also
encoded as a bit vector, which has the same length as the state vector, and
is called the projection vector. Its bits indicate whether the corresponding bit
position in the machine state is used (1) or not used (0) for comparing the ma-
chine state of DUECs, deciding whether or not to group them into a common
FSC. The bitwise AND of an – initially randomly chosen – projection vector

2 When leaving its prototype status, the FSP implementation will become part of the
prune-trace tool (see Section 4.5.3.4).

5.3 implementation 159

recorded item description

data_address Memory address the def/use writes/reads

data_value Actual value that is written/read

EIP Instruction pointer of the def/use instruction

dyn_instr Dynamic instruction count since workload start

opcode Instruction’s opcode

EAX, EBX, ECX, EDX,
ESI, EDI, ESP, EBP,

EFLAGS

Contents of general-purpose registers, stack
pointer, CPU �ags

*EAX, *EBX, *ECX,
*EDX, *ESI, *EDI,

*ESP, *EBP

Contents of the machine word the respective
register points to (if interpretable as a mapped
memory address)

jumphistory Relyzer [HANR11, HANR12, HANR13] style
control-equivalence bit list indicating whether each
of the last 16 and next 16 conditional branches
were taken

duration Temporal duration of the def/use equivalence class
(in CPU cycles)

benchmark_id An ID uniquely identifying each benchmark

Table 5.1: Information recorded for every dynamic def or use instruction executed
during the golden run of each workload.

and each state vector yields a comparison vector uniquely identifying the FSC
each DUEC belongs to. The example projection function from Section 5.2.2
– preserving only the components EIP, ESP, EBP, and the higher-order bits
of EDX and EAX – can directly be encoded by setting the corresponding bits
in this vector, as demonstrated in Figure 5.4.

5.3.2 A Genetic Algorithm for Searching Optimal Projections

In order to �nd an good or near-optimal projection vector, I model the search
problem on the training data using the SPEA2 multi-objective evolutionary
algorithm [ZLT02] as implemented in the PISA library [BLTZ03] with the
projection vector as the genome, and simple multi-bit mutation and single-
point crossover operators [Mit98]. Initially I run a �xed number of 100 000
FI experiments3 per benchmark to gain training data. Then the genetic algo-

3 This number was arbitrarily chosen, but may be selected application-speci�cally or depend-
ing on the available computing resources.

160 fault-similarity pruning: campaign speedup by experiment-count reduction

 EIP ESP EBP EDX EAX

 0x4711 0xffc0 0xffe4 0x0000 0x8403

& 0xffff 0xffff 0xffff 0xfff0 0xf000

 0x4711 0xffc0 0xffe4 0x0000 0x8000

 0x4711 0xffc0 0xffe4 0x0001 0x84d4

& 0xffff 0xffff 0xffff 0xfff0 0xf000

 0x4711 0xffc0 0xffe4 0x0000 0x8000

 0x4711 0xffc0 0xffe4 0x0002 0x8591

& 0xffff 0xffff 0xffff 0xfff0 0xf000

 0x4711 0xffc0 0xffe4 0x0000 0x8000

❶

❷

❸

❹

❺

Figure 5.4: Calculation of the comparison vector (on the example from Figure 5.2): A
bitwise AND of each machine-state vector ¶ and the projection vector ·

yields the comparison vector ¸. DUECs with the same value for the com-
parison vector (¸, ¹, and º are identical) are grouped in the same FSC,
and only a single FI experiment – the pilot – represents all other DUEC
members of the FSC.

rithm is initialized with a population of randomized projection vectors. In
every generation of the search algorithm, each individual’s – or, each projec-
tion bit vector’s – �tness is evaluated by . . .

1. performing the aforementioned grouping of DUECs from the training
set into FSCs,

2. picking the largest4 DUEC in each FSC as the pilot and pretending it
properly represents the remaining DUEC members of the FSC, and

3. measuring the two �tness criteria accuracy and the emerging number

of FSCs within the training set.

The accuracy measures how accurately the pilots actually represent the re-
maining DUEC members within their FSCs. As a misprediction of a large –
many clock-cycles wide – DUEC has a greater impact on the outcome qual-
ity than a small one, the correctly predicted area in the fault space is used
for this metric, taking the weights of the DUECs into account:

Accuracy =
Correctly predicted fault-space area

Total fault-space area

The second �tness criterion is the number of di�erent FSCs emerging from
the DUEC grouping step. These two criteria – the number of correctly repre-
sented faults, and the number of FSCs that directly translates into the num-
ber of pilots – are used as the optimization objectives for the SPEA2 algo-
rithm.

4 Currently the def/use class spanning the most CPU cycles is chosen as each similarity class’s
pilot to minimize error when mispredictions occur.

5.4 evaluation 161

benchmark dyn. instr. cpu cycles #exp. after
def/use
pruning

fi sim.
runtime

eCos/
baseline

1.08×107 9.7 ×109 1.48×107 4946 h
(33.4 h

eCos/
CRC

2.73×107 9.7 ×109 4.15×107 15 035 h
(36.1 h)

MiBench/
qsort

4.20×107 4.20×107 1.48×107

(of 5.49×107)
44 139 h
(297.6 h)

MiBench/
basicmath

1.47×108 1.47×108 1.24×107

(of 1.84×108)
95 068 h
(767.8 h)

MiBench/
bitcount

4.08×107 4.08×107 2.89×106

(of 9.15×106)
3621 h

(124.9 h)

MiBench/
susan

2.95×107 2.95×107 1.25×107

(of 3.68×107)
23 526 h
(186.9 h)

Table 5.2: Dynamic instruction counts, simulated CPU cycles, number of eight-bit
burst FI experiments necessary after def/use pruning (see Section 3.3.1.1),
and FI simulation runtime for all experiments (and the 100 000 exper-
iment training set in parentheses). For the eCos benchmarks, the total
CPU cycles di�er from the dynamic instructions due to idle phases; for
MiBench, we limited FI to the �rst 1×107 dynamic instructions.

5.4 evaluation

This section elaborates on the evaluation setup, and subsequently analyzes
the e�ectiveness and e�ciency of the FSP heuristic.

5.4.1 Evaluation Setup and Ground Truth

As a test workload, I chose the eCos kernel-test programs I already used
in the GOP case study (see Section 4.6.2). The eCos/baseline programs are
relatively small, and also reasonably similar to each other regarding their
fault-propagation patterns, which allows this evaluation to consider them
as a single, combined benchmark. A second variant of the test programs –
eCos/CRC – is hardened against memory faults with the CRC variant of the
GOP (see Section 4.6.4) and an additional protection for the stacks of pre-
empted threads [HBD+14]. eCos/CRC executes about three times more dy-
namic instructions than eCos/baseline (cf. Table 5.2). Additionally, I picked
MiBench’s [GRE+01] automotive benchmark category as a set of real-world
application benchmarks. The four benchmarks – qsort, basicmath, bit-
count, susan, using the small input data set – each execute more dynamic

162 fault-similarity pruning: campaign speedup by experiment-count reduction

●

●

●

●

●

●

●

●

●

●● ●● ●●

●

● ●

●

●

●

●

●

●●

●

● ●

●
●

●●

●

●

●

●

●

●
●

●

●

●●●
●

●
●

●
●●●● ●●

●

●

●

●

●

●●●● ●
●

●

●●

●

● ●

●

●
●● ●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●● ●● ●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●

●

●

●

●

●●● ●●●●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●
● ●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●●

●●● ●

●

●

●

●
●

●● ●●●

●

●

●

●

●

●● ● ●●●

● ●

● ●●

●

●●●

●

● ●●●

●

●●●

●

●

●

●

●●

●●
●

●

● ●●● ● ●●

●

● ●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●

●

●

●

●
●

●

● ●●● ●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

● ●
●

●

●

●●
●

●

●

●●

●

●

●
●

● ●● ●

●

●

●

●

●●

● ●●● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●●

● ●

●●●
●

● ●●●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●●● ●●●

●

●

●
●

●

● ●

●
●

● ●●

●

●

●● ●●

● ●

●

●

●

●

●●●●

●

● ●
●

●

●●

●

●●

●

●

●
●●●

●

●

● ●

●

● ●

●

●● ● ●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●●●●

●

●

●

●●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●
●

●

●

●

● ● ●●

●
●

●

●

●

●

●

●●● ●
●●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●●●

●

●

●

●●●● ●

●

●● ● ●● ●

●

● ●

●

●

●

●

●

● ●●● ●●

●

●

●

●

●

● ●● ●●

●

● ●

●

●●●● ● ●● ●

●

●

●

● ●● ●●●
●

●

●
●

●● ●●

●

●

●

●

●

●

●
●

●

●
●

●●●
●

●

●

●● ●●● ●● ●●●●●●●

●

●

●

●

●

●

●
●

● ●●
●

●

●●
●

●

●

●

●

●

●

● ● ●

●

●●●●

●

●

●

●

●

●

●
●

●●● ● ●●●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

● ● ●●

●

●

●

●●●

●
●

●●

●

●●● ●●●

●

●● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

● ●●

●

●

●

● ●

●

●

●●

●

●● ●
● ●

●

●

●

●●

●

●

●●

●

●● ●● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●●● ● ●

●

●
●●

● ●● ●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●
●

●●

●

●● ●● ●

●

●●
●

●
● ●●

●

●

●

●

● ●● ●

●

● ●

●

●●●● ●

●

●

●

●

● ●

●

●

●

●●

●

● ●●

●

●

●

●●
●

●

●

● ●●● ●

●
●

●

●

●●●● ●

●

●
● ●

●

●

●

●

●

●

●
●●

● ●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●● ● ●●● ● ●● ●●●●●● ●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

● ●

●● ●

●

●

●

●●●

●

●

● ●●●●●

●

●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

● ●

●

● ●● ●●●●
●

●

●

●●

●

●

●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

● ●

●

● ●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●●●

●

●

●● ● ●●●●

●

●

●

●

● ●●●● ●● ●●● ●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●● ●

●

●●

●

● ●●●

●

●

●

●

●

●●
●

●

●●●●

●

●

●

●
●

●

●● ●

●
●●

●

●

●

●●
●●●●

●

● ● ●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●
●●● ●●

●

●

●● ● ●● ●● ●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●● ●● ●●●●●

●

●

●

●

●

●

●● ●●

●

● ●

●

●

●● ●●●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

● ●●

●

●
●

●

●

●

●●

●●

●

● ●

●

●
●

●

●

●●● ●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●

●

●
●

●

●

●

● ●●

●

● ●●

●

●

●

● ●●

●

●

●●

●

●

●

●● ●

●

●●●

●

●● ●

●

●● ●●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

● ●
●

●

● ● ●●● ●
●

●

● ●● ● ●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●●

●

●●●
●

●

●

●●
●

●

● ●

●

● ● ●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ●● ●
●

●

●

●● ●●●

●

●● ●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●●●● ●●● ●●● ●●

●

●

●

●●

●

●

● ● ●● ●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●● ●●

●

●
●

●

●

●

●

●
●

●

●●● ●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●● ●●●

●

●● ●●

●

●● ●

●
●

●

●

● ● ●●●

●

●●●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●● ● ●

●

●

●

● ●

●

● ●●●

●

●●

●

●●

●

● ● ●

●

●
●●

●

●
●● ●●● ●●●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●●

●

● ●

●

●● ●

●

●● ●●● ●

● ●

●

●

●●

●●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●● ●●

●

●

●

●

●

●

●

●

●●●● ●

●

● ●

●

●●●
●
● ●

●●

●●● ●

●

●

●

●

●

●
●

●●
●
●

●

●

●● ●
●

●

●

●

● ●

●

●

●●●●

●

●●
●

●

●

●

● ●

●

●● ●

●

● ●

●

● ●

●●

●
●

●

●

●

●

●

●

●

● ●●

●

●
●●●●● ●●●●

●

● ●

●

●
●

●●● ●●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●● ●●

●

●●●●

●
●

●●

●

●

●

● ●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●● ●●● ●● ●

●

● ●

●

●●
●

● ●●
●

●
●

●●

●

●

●●●● ● ● ●●

●

●

●

●

●● ●
●

● ●

●

● ●● ●

●

●

●

● ●

●

●

●

● ●●●

●

●

●●

●
●

●

●

●

●● ●●●

●

●● ●●
●

●

●

●

●●● ● ●

●

●
●

●

●

●●● ● ●

●

● ● ●●

●

●●●
●

●

●

●

●

●
●

●
●

●

●

●

●
● ●● ● ●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●
●

●

●

● ●●●

●

● ●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●●●

●

●●

●

●

●●●

●

●
● ● ●

●

●

●

●

●

●
●

● ●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●● ●

●● ● ●●
●

●

●

●

●

● ●

●

●● ●● ●

●

●

●

● ● ●●

●

●

●

●●

●
●

●

●●
●

●
●●

●●

●

●

●

●● ●●●

●

●
●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●● ●
●

●

●

●●

●

●

●

●

●

● ●●●

●

●
●● ●●●●

●

●●

●

●

●
●

●
● ●

●

●

●

●●

●

● ●●

●

●●

●

● ●●●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●●

●●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●
●

● ●●

●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●

● ●

●

● ●

●
●

●

●

●●●
●

● ●

●
●

●

●

●

●

● ●●●

●

●

●

●●●● ● ●●●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●
●

●

●●● ●

●

● ●●

●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●

●●

●
●

●● ●

●

●

●

●

●

● ●●●● ●●● ● ●●
●

●●●●

●●

●

●

●●●●

●●

●

● ●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●●● ● ●● ●●●

●

●
●

●

●

●

●
●

●● ●●●

●

●●●●●

●

●

●

●

● ●

●● ●●●

●

●

●

● ●● ●

●

●

●●

●

●●●
●

●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●● ●●●●
●

●

●

●● ●●
●

●

●

● ●●

●

●●

●

●

●

●

●
●

●

●● ●●

●

●● ● ●

●
●

●●

●

● ● ●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●● ●

●

●

●● ● ●

●

● ●

●

●● ●●
●

●

●●

●

●●● ●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●●
●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●●● ● ●●

●

●

●

●
●

●

●

●

●

●

●●

●

● ● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

● ●● ●●

●

● ●●●●● ●●
●

●● ●●

●

●● ●

●

● ●

●

●

●

●

●●●● ● ●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●
●

●

●

●● ●

●

●

●●

●

●

●

●

●● ●

●

● ●●

●

●● ●●●● ●●
●

●

●

● ●●

●

●

●

●

●
●

●

●● ●● ●

●

●

●

●

● ●

●

●

●

● ●● ●●●

●
●

●● ●

●

●●

●

●

●

● ●●●

●

●

●

●

●●●
●●●● ●●

●

●

●

●● ●● ●●

●

●●●

●

●

●

●
●

●

●

●

●●

●

●● ●● ●

●

●

●

●● ●

●

●

●

● ● ●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●●

●

●

●● ●

●

●●

●

●●

●

●

●

●● ● ●●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●● ● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

● ●●

●

●●

●

●

●

●

●

● ● ●●●●●

●

●●

●
●

●

●●

●● ●

●

●

●

●●

●

●●●

●

● ●

●

●

●

●

●

● ●

●

●● ●
●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●●

●

●●

●●
●

●

●
●

●●

●

●

● ●●●

●

●● ●

●

●

●

●●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●●
●

●
●

●●● ●●●

●

●

●● ●
●

●●●●

●

●

●

●●●

●

●● ●
●● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●●●

●

●● ●

●●

●

●

●

●

●●●●
●

●● ●

●

●

●● ●● ●●● ●

●

●● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●●●

●

●
●●

●

●

●

●●

●

●●

●
●

●● ●

●

●

●

●

●●

●

●●

●

●● ●

●

●●
●

●

● ●●●● ●

●

●●
●
●●●

●

●

●

●

●● ●●●●● ● ●●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●● ●

●

●●

● ●

●

●● ●● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●●

●
●

●

●●

●

●●●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●● ●●●●

●

●

●

●●
●●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●
●

●
● ●●

●

●●
●●●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●

●

●●● ●●● ● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●●

●
●

●

●●

●

●

● ●● ●●●

●

●

●●

●

●

●● ●● ●●

●

●
● ●●●

●

●●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●● ●

●

● ● ● ●●
●

●● ●

●

●

●

● ●● ●

●

●
●

●

●

●

●

●●●

●

●

●●● ●

●

●● ●

●

●

●

●

●●

●

●● ●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

● ●● ●●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●● ●●●

●

● ●●● ●

●

●

●

●

●● ●● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●●●

●

● ●● ●●●

●

●

●● ●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●●●

●

●
●

●● ●●● ●●

●

●● ●●●● ●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●● ●

●
●

●

● ● ●● ● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●
●

●

● ●

●

●●● ●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●●

●● ●●

●

●

●

●

●

●

●

● ●

●●●
●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ● ●●●

●

● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●● ●●●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

● ●

● ●● ●● ●●
●

●

●●

● ●● ●●
●

●

●

●

●

●● ●●●

●

●● ●

●

● ●

●

●

●

●●

●

●

●●
●

●

●

●
●
●

●●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●● ● ●●●

●

● ●●●
●

●●●●

●

●●

●

●
●
●

●

●

● ●

●
●

●

●

●

●

●

● ● ●

●

●●● ●●

●

●

●●

●

●
●

●

●

● ●●● ●

●

● ● ●

●

●

●

● ●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

● ●

●

● ●●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●●● ●

●

●● ● ●

●

● ●

●

●●● ●●●
●

● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●●● ●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

● ●
● ●

● ●●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●● ● ●●

●

● ●●● ●●●● ●●

●

●

●

●

●

●●

●

●

●●

●
●

●
●●●

●

●● ●● ●●●
●

●

●

● ●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●●

●
●● ●● ●●●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●●

●

●● ●

●

● ●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●●● ●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●

●

●● ●● ●● ●

●

●

●●

●
●

●

●●

●

●

● ●●

●●

●
●

●

●● ●

●

●● ●● ●

●
●

●●●

●

●

●

●●●

●

●● ●●● ●
●

●

●

●

●

●

●
●

●

●

● ● ●●

●

●●

●

●

●

●
●●●●

●

●

●

●

●

●●

●

●

●●● ●● ●●

●●

●

●●●●

●

●

●

●

●●

●

●●●●

●

●●●● ●●

●

●
●

●

●

●

●

●

●

● ● ●

●

●●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●● ● ● ●

●

●● ●

●

●
● ●●●

●
●

●
●

● ● ●●●● ●

●

●

●

● ● ●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●●

●
●

●●

●

●

●

●

●

●

●● ●

●

●

● ●● ● ●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

● ●● ●

●

●

●

● ●●●●●●●
●

●

●
●

●

●

●

●● ●●● ●●●

●

●

●

●
●● ●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●●● ●

●

●●

●

●

●

●

●

●

●

●●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

● ●

●

●

●

● ●●●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●● ●

●

●● ●●

●

●

●

●

●● ● ●●

●

●

●

●

●●●● ●●

●

●

● ●

●●

●

●

● ●●

●

●●

●

●
●

●

●

●

● ●●

●

●

●

●● ●

●

●

●

● ●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●

●

●

●

●

● ●

● ●●

●

●

●●

●

●

●

●

● ●● ●● ●

●

●

●
●

●

●

●●●●●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●

●

● ●

●

●● ●

●

●
●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●●

●●

●●

●

●
●
●

●

●

●
●

● ●

●

●●
●

●

●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●● ●

●●

●●●●

●

●

●

● ●●●

●

● ●

●

●●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ●● ●

●

●

●

●

●

●

●

●

●

● ●●●● ●● ●
● ● ●● ●

●

● ●●

●

● ●● ●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●●● ●

●

●

●

●

●●

●

●

●●
●● ● ●●●●●

●

● ●

●

●●

●●

●
●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

● ●●●

●

●●

●

●●● ●● ●●●

●

●

●●

●

●

●

● ●● ●

●

● ●

●

●●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

● ●

●

●

●● ●●

●

● ●●
●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
● ●●

●

●

●

●

● ●●

●

●

●
●

●● ●● ● ●●●●●

●

●

●

●

●

●

●

●

● ●

●

●●● ●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●● ●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●●● ●

●
●

●

●

●

●● ●●
●

●●●

●

●●●

●

●

●●

●

● ●

●

● ●
●

●

●

●●●

●

●

●

●

●●

●

●●●●●●● ●

●

● ●●●●

●

● ●●

●

●●●

●

●●●● ●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●● ●●

●
●

●

●

●

●

●
●

●

●

● ● ● ●

●

●●●●

●

●●●

●

● ●● ●●

●

●

●

●

●

● ●

●

●
●● ●

●

●●

●

●

●● ●
●●

●

●●●● ● ●● ●●

●

●

●

● ●● ●●

●

●

●●● ●●

●

●● ●●●● ● ●

●

●

●

●
●

●

● ●●●●

●

●●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●
●

●●
●

●

●●

●

●

● ●●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●

●

● ●● ●

●

●●● ●
●

●

● ●
●

●●● ●● ●●

●

●

●

●

●●

●

●

●

●

● ● ●●

●

●● ●●

●

●

●

●

●

●

●

●●

●

● ● ●

●

●

●●● ●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●
●

● ●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●● ●●●● ●

●

●

● ●● ●

●

● ●

●

●
●●● ●●

●

●●● ●

●

●

●

●

●

●
●

●

●

●

●●●●

●

● ●●

●

●●● ●

●

● ●

●

●

● ●●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●
●

●

● ● ●●●●●

●

●

●● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ● ●●

●

●●●
●

●

● ●
●
●

●

●● ● ●

●

●

● ●● ●●

●

●
●● ●●

●

●● ●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

● ●●●

●

● ●●

●

●

●
●

● ●●
●

●

● ●

●

●● ●●
●●
●

● ●●

●

●

● ●

●

●● ●●●●

●

●

● ●

●

●

●

●

● ●● ●●● ●● ●● ●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

● ●● ●●●●

●

●

●
●● ● ●

●

●● ●●

●

●

●

●●

●

●●● ●●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

● ●

●

●

●

● ●●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●●● ●●

●

● ●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●● ●

●

●●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●●● ●●

●

●●

●

●

●

●
●

●

●
●

●●● ●●

●

●●●

●

●●

●

● ●●●● ●
●

●

●

●

●●

● ● ●

●

●
●

●

● ●

●

●●● ●●
●
●● ●● ●

●

●● ● ●

●

● ●●

●

●

●

●●

●

●

●

●
●

●

●●● ● ●

●

●

●

●

● ●

●

●
●

●

●

●

● ●●

●

●

●

●

●●

●

● ●●

●

●

●

●●● ●

●

● ●

●

●●

●
●

● ●●

●

●●●●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●● ●●● ●●

●

● ●

●

●●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●●● ●●
●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●● ●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●
●●

●

●

●
●●

●●

●
●

●

●

●

●

●●●
●

●

●

● ●● ●●

●

●

●

●●● ●● ●●

●
●

●

● ●● ●●●● ● ●

●

●

●

● ●●

●

● ●● ●●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●● ●

●

●
●●● ●● ● ●

●

●
●

● ●●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●

●

● ●

●

●

●●

●

●

●●

●

●

●

●
●

●

● ●●

●

●● ●●

●

● ● ●●●

●

●

●

●●

●

●

●

●●

●

●● ●

●

●
●

●

●● ●● ●● ●● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●● ● ●●

●

● ●

●

●

●
●

●●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●●

●

● ●

●

● ●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●●●●

●

● ●

●

●●

●

● ●●

●

●

●

●

●

●
●

● ●● ●●

●
●

●

●
●

●●

●●

●

●

●
●

●● ●

●

●

●

●

●

● ●● ●

●

●
●●● ●● ●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●●

●

●●●●●● ●

●

● ●

●

●●●●●

●

● ●●●

●

●

●

●●

●

● ●

●

●

●

●
●

●●

●

●●● ●● ●

●

●

●● ●●

●

●● ●● ●

●

● ●

●

●

●●

●

●

●
●

●●

●

● ●●● ●●●● ●

●

●

●

●●●
●

●

● ● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●●

●● ●● ●

●

●●

●

●

●

●

●

●

●
●

●

● ●●● ●●●

●

●

●

●

●

●● ●● ● ●

●
●

●● ●●● ●

●
●

●●● ●●

●
●

●●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●● ●● ●● ●●●
●

● ●● ●

●

●●●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

● ●●
●

●●

●

●

●

● ●●

●●

●●
●

● ●●
●

●

●●● ●
●

●●

●

●

●●

●

●●

●

● ●

●●

●

●

●

●●

●

●● ●

●

● ●●

●

● ●

●

●

●●

●

●
●

●

●

●

●●● ●● ●

●
●

●

●

●

●

●●

●

● ● ●●

●

●● ●

●

● ●

● ●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●● ●●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

● ● ●●●● ●

●

●

●

●

●

●

●

●

●
●

●●●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●● ●

●

●●

●

● ● ● ●●
●

●

●● ●●

●

● ●● ● ●

●

●●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

● ●

●●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●● ●●

●

●
●

●

● ●

●

●

●●● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●

● ●● ●● ● ●●●● ●

●

●

●

● ●

●

●●

●
●

●

●

●

●● ●

●

●
●

●●

●

●●●

●
●

● ●
●

● ●●

●

●●

●

●●
●

●

●●

●

●

●

●●

●

●●

●

● ●● ●● ●
●

● ●●●●●●● ●

●

●●●

●

●

●

●

●

●●

●

●● ● ●
●

●

●

●●

● ●● ●● ●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●●
●

●●

●

●
● ●●

●
●

●

●

● ●
●

●

●●

●

●

●

●●

●

● ●● ●●●●

●

●

●

● ●

●

●

● ●● ●● ●● ●●

●

● ●

●

●● ●●●

●

●

●

●

● ●● ●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●
●

●
●

●

●●

●

●
●●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

● ●●●

●

●●

●

● ●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●●

●

●● ●

●

●●

●

●

●

●

● ●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●● ●

●

● ●●

●

●
●

●

●
●

●

●

●

●●●

● ●

●

●

●
● ● ●● ●

●

●
●

●

●

●

●

●

●●●

●

●

●

● ●●
●● ● ●●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●●

●

●

●

●●

● ●●●

●

●● ●●
●

●

●

●

● ●●●

●

●● ●● ●

●

●

●
●

●● ●●● ●

●

●●

●

●
●

●

●

●

● ●●

●

● ●●

●

●

●

●

●●●
●

●

●

●

●● ●●●

●

●

●

●

●

●

● ●

●

●● ●● ● ●●●

●
●

●●● ●● ●

●

●●

●
●

●

●

●●
●

●

●

●
●

●

●
● ●●

●

● ●

●

●

●

●
●

●

●

●●●●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●●

●

●

●
●

●●●
●

●

●●●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

● ● ●●

●

●

● ●● ●

●

●

●

●
●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●

●

●

●

●

●

● ●
● ●●

●

●

●

●●

●

●

●●

●●●● ●● ●●●

●

●
● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●● ●●

●

● ●●●●●

●

●

●
●

●

●● ●

●

●●●

●

●

●

●●●●

●
● ●

●● ●●●

●

●

●

●●

●
●

●●●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●

●
●●●

●

●● ●●
●

●

●●
●

●●

●

●

●
●

●

●

●

● ●

●

●

●● ●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●●

●

●●●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●● ●
●

●

● ●
●

●

●

●

●
●

●
● ●

●

●●

●

●

●

●

●● ●

●

●

●

● ●

●

●
●

●
●

●●

●

●

● ●●● ●

●

●

●

●●●●

●

●

●

●● ●

●

●

●

●

●●

●

●
●●

●
●

●

●
●

●● ●

●

●
●

●● ●

●

●

●

● ●

●

●
●

● ●

●

●●●

●

●

●● ●●

●

●

●● ●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

● ● ●

●

●
●

●

● ●●●
●

●
●

●
●

●●● ●

●

●●

●

●

●

●

●

●
●

● ●●●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

● ●● ●
●

●●
●

●

●

●

●

●●

●

●

● ●

●

●

●

● ●

●●●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

● ●● ●●● ●

●●

●●● ●●

●

●
●

●

●

●

●

●

●

●●● ●● ●

●

●

●

●●●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●
●

●
●

●

●

●● ●●

●●

●
●

●

●

●●
●

●●

●

●

●

● ●● ●

●

● ●
●
●●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●●● ●●

●
●

●

●

●
●

●

●

● ●●

●●

●

●

●

●

●● ●●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●● ●

●

●●●

●

●

●● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●●● ●

●

●

●● ●

●

●●

●

●●
●

●●

●

●
●

●
●

●

●

●

● ●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●
●
●

●

● ●
●

●● ●

●

●

● ●●● ●●●

●

● ●

●

●
●

● ●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

● ●●●

●

●

●

●

●

●●●
●

●●●

●

●●

●

●●●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●●

●

● ●● ●

● ●

●●●

●

●●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

● ●●●

●

● ●

●

●●● ●●

●

●

●

● ●●

●

●●

●

● ●

●

●●●

●

●

●

●

●
●

●●●

●
●

●

● ●

●

●● ●●

●

●
●

●

●●● ●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

● ●●●●

●

●

●

●●● ●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●

●

●

●

●

● ●
●

●● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●
●

●
●
●

●

●

●

● ●●●

●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●

● ●●● ●●●

●

●

●●

●

●●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ● ●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

● ●●● ●● ●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●
●●

●
●● ●●●● ● ●

●

●

●●

●●● ●

●

●

●

●
●

●

●

●

●

● ●● ●

●

●●● ●

●

● ●●●●●

●

●●

●

● ●
●

●
●●

●

●

●

●

●

●●●
●

●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●●●
●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●●

●

●

●

●●

●
●
●

●

●

●

● ●●

●
●

● ●● ●

●

●

● ●● ● ●

●
●

●

●

●

●

●

●
● ● ●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

● ●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●

●

●

●

●●● ●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●●● ●

●

●●●●●●
●

● ●●● ●●

●

●●

●

●
●

● ●

●

●●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

● ●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●●

●

● ●●● ●● ●

●

●

●

●

●

●
●

●●● ●
●

● ● ●

●
●

●

●

●

●●● ●●

●

●

●

●●● ● ●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●
●●●

●

●

●

●
●

●

●● ●●

●

●

●

●● ●

●

●

●

●

●

●● ●●● ●

●

●●
●

●

●

●●

●

●● ●

●

●

●

●

● ●

●

● ●●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

● ●●

●

●

●

●●● ●●●

●

●

● ●

●

●●●●●

●

●

●

●●● ●●

●

● ●● ●●

●

●●●●

●

●
●

●

●

●●

●
●

●●

●

●
●

●●
●

● ●●●●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●● ●

●

●

●●●●●●

●

● ●

●

●

●●

●

● ●

●●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●● ● ●●●
●●

●

●

●●●

●

● ●

●

●

●

●● ●●●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●● ●

●
●

●

●

●

● ●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●● ●●●

●

●
●

●

●● ●●

● ●

● ●● ●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ● ●
●

●

●

● ●●

●

●

● ● ●●

●●

●●

●

● ● ●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●●

●

●● ●

●

●●

●

●

●

●

●●● ●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●●

●

●

●

●● ●

●

● ●● ●●

●

●● ● ●

●

●

●

●●

●

● ●●●

●

●●

●

●

●

● ●●

●

●

●

●

● ●●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

● ●

●

● ●

●

●

●

●

●●●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●●
●

● ●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●

●

●● ●● ●

●

●

●
●

●

●● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●●●

●
●

●

●●
●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

● ●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

● ●●● ●
●

●

●●

●

●

●

●

●● ●
●
●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

●

● ● ●

●

●● ●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●●●

●●

●

●

●
●

● ● ●● ●

●

●●

●
●

●
●

●

●

●●
●

●

● ●

●

● ●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●

● ●●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●
●

●
●

●

●

●

●

● ●●

●

●●

●

●●● ●●
●

●

●● ●●

●●

●

●●●

●

●

●

●

●●

●

●●

●

●
●●

●

● ●

●

● ●●

●

●
●●

●●

● ●
●

●

●

●

●
●

●●

●

●
●

●

● ●

●

●

●●

●

●
●●

●

●

●

●

●

●● ●

●

●

●

●

●●●

●

●

●

●

●● ●● ●

●

●●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●● ● ●

●

●● ●
●

●

●●

●

●

●

●
●

●●●

●

●

●● ●

●

●

●

●●
●

●

●● ● ●●●

●

●

●

●

●
● ●● ●

●

●

●
●

● ●●

●

●

●

●
●

●

●

●●●

●

●● ●

●
●

●

●

●●

●

●● ●
●

●

● ●

●

● ●
●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●
●

●

●

●●

●

●

●

●

● ●

●

●●● ●

●

● ●

●

●

●

●

●

●

● ● ●●● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●● ●

●

●

●

●●

●

●●●● ● ●●

●

● ●●

●

●

●
●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

● ●

●

●
●●

●

●●

●

●

● ●

●

●●●●

●

● ●●

●

●●

●

●

●

●

● ●● ●● ●●● ●

●

●

●
● ●● ●

●

●

● ●●

●

●

●●

● ●
●

●

●

●●

●

●●

●

●

●

●

●

●

●● ●●● ●

●
●

●●

●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●

● ●●●

●

●● ● ●

●

● ● ●

●

●
● ●

●

●●

●

●

●

●

●●

●

●

●● ● ●

●

●

●

●

●●

●

●

●
●

●

●● ●●●●●●
●

● ● ●●

●

●

●

●● ●
●

● ● ●●●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●●●

●

●

●

● ●●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●●

●
●

●
●

●

●

●

●

●

●
● ●● ● ●

●

● ● ●● ●● ●● ●

●
●

●

●

●
●●●

●

●

●

●●●

●

●●

●

●

●

● ●● ●

●

●
●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●●● ●●●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

● ●●●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●

● ●● ●●

●

●

● ●●●

●

●

●

● ● ●●

●

●

●

●

● ●● ●

●

● ●●

●

●

●
●

●

● ●● ●

●

●

●● ●●

●

●● ●

●

●●

●
●

●

●

●●

●

●

●

●● ● ●●

●
●

●

●

●● ● ●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

● ●

●

●

●

●

●

●

●●●● ●●

●

●

● ●

●

●● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●● ●●●

●

●

●

●

●

●

●●● ●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●● ●

●

●

●

●
●

●

●● ●

●

●
● ●● ●

●

●

●●●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●●
●

●
●

●

●

●

● ● ●

●
●

●

●

●● ●●● ●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●
●

●

●

●●

●

● ●●

●

●

●

●● ●●● ●

●

●

●

●

●

●

● ●
●● ●

●

●

●

●●

●

●

●

●

●●

●

●●

●

● ●●
●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

● ●●● ●

●

●

●

●
●

● ●●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●
●

●●

●

●

●

●●

●

● ●
●

●●●

●

● ●
●

●●

●

●●

●● ●

●

●

●● ●

●
●

●

●●● ● ●

● ●

●

●

●

●

●●●

●

● ●●
●
●●

●

● ● ●

●

●

●

●

●●

●

● ●● ●●● ●●

●

●●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●●●●●●● ● ●● ●

●

●● ●●

●
●

●

●

●
●

●

●● ●●●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●●●● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

● ●●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●●●

●

●
●●

●

●●● ●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●● ● ●●●●● ●

●

●● ●●● ●

●

●

●

●

●●

● ●
●

●

●●

●

●
●

●●

●
●

●● ●

●●

●

●

●

●

●

●

●

●●

●

●

● ●●● ●● ●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●●●● ●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●

● ●

●

●●●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●●● ●●

●

●●●

●

●

●

●

●

●●●

●●

●

●

● ●●

●

● ●●

●

●

●

● ●
●

● ●●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●●●

●

●

●●

●

● ●● ●●●

●

●

●

●● ●

●
●

●●●● ●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●●● ●●●

●

●●

●

●

●

●

●

●
● ●●● ●●

●

●

●

●

●

●

●

●●

●

● ●●

●

●● ●
●

●●

●

●

●

●

● ●
●

● ●●●

●

●

●

●●

●

●●

●

●●●● ● ●

●

●●

●
●
●

●

●

●

●● ●●

●

●●

●

● ●

●

●

●

●●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●●● ●●●

●

●

●

●

●
●

● ●● ●

● ●

●
●

●● ●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●●

●
●

● ●●
●

●

●

●
●

●

●●

●

●

●

● ●●● ● ●●

●

●
●

●

●

●

● ●

●

●

●

● ●● ●●●●●

●

●

●

●

● ●●●

●

●

●

●

●

●● ●●● ●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

● ●●
●

●

●

●

●

●●● ●●●
●

●

●

●

●●

●

●●
●

●

●●

● ●●●
●

●

●

●

●

●

● ●● ●●
●

●

●

●

●

●

● ●●

●
●

●

●

●

● ● ● ●●●

●

●

●●

●●

●

● ●●

●

●●
●

●

●

●● ●● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

● ●●

●

●●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●● ●● ●●

● ●

●

●

●

●

●

●

●

●

●

● ●● ● ●●

●

●●

●

●

●
●

●●

●

●●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●●● ● ●●●

●

●● ●

●

● ●●

●

●

●●●● ●

●

●●

●

●● ● ●●
●

●

●

● ●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●●
●● ● ●

●

●

●

●

●

●

●

● ●●●

●

●

●● ●● ●●● ●●●● ●●

●

● ●●

●

● ●●

●

●●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●● ●●
●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●●

●

●● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

● ●

●

● ●●

●

●

●

● ●●●●

●

●
●

●●● ●

●

●
●●

●

●

● ●

●

●●●●● ●

●

●

●

● ● ●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●● ●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●●
●

●

●

●
●

●

● ●● ●● ●

●

● ●

●

●

●

●

●

●●● ●

●

●

● ● ●

●

●● ●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

● ●● ●●

●

● ●

●●●

●

●●●● ●

●

●

●●

●●

●

●● ●●

●

●

●

●

●

●

●

● ●● ●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●● ●●

●

●●●
● ● ●●●

●
●●● ●●● ● ● ●

●

●●●

●

●

●

●●●● ● ●

●

● ●●●

●

●

●● ●●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●● ●●●● ●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●● ●

●

●

● ●

●

●

●

●●● ●●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●●●●●

●

● ●

●

●
●

●

●●●●

●
●

●

●

●

● ●

●

● ●●●

●
●

●

●

●

●

●●● ●● ●●

●

●

●
●

●

●

●

●●●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●●
●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●
●

●●

●

●●● ●●
●● ●● ●●● ●●

●

● ● ●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

● ●
● ●

●● ●● ●
●

●●●

●

● ●
●●

●

●

●

●

● ●

●
●

● ● ●

●

●

●
●

●● ●●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

● ●●
●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●●●
●

●
●

● ●●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●● ●●●●

●

● ●● ●

●

●

●

●●
●

●

●

●●
●

●

●

●
●●

●

●

●●● ● ●●● ● ●●

●

● ●●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

● ●

● ●

●

●
● ● ●●

●

● ●

●

●

●
●●

●

●

●
●●

●

●

● ●● ●●●●

●
●

●

● ●●

●

● ●

●
●

●

●
●

●

●●
●

●

●

●●

●

●

●

●●● ●●

●

●

●
●

● ●●●● ● ●●●●● ●

●

●● ●

●

● ●●

●

●

● ●

● ●

●

●

●

●

●

● ● ●●●● ●

●

● ● ●● ●●

●

●

●● ●
●

●

●

●

●

●●

●

●●

●

●

●●

●

●

● ●●

●

●● ●

●
●

●●

●
●

●

●

●

●●

●

●●

●

●

●●●

●

●
●

●
●●●●

●

●● ●

●

●● ●

●

● ●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●●
●

●●

●

●

●

●

●●●

●

●●

●

●●●

●

●●●

●
●

●

●●

●

●

●

●

●●●● ●

●

●●●● ●● ●

●

●●

●

●
●

●

●●● ● ●●

●

●●

●

●

●

●

●

●

●
●

● ●● ●

●
●

●

●

●

●

● ●● ●●

●

●

● ●●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●●●

●● ●●

●

●

● ●

●

●●

●

●

●

●
●

● ●● ● ●

●

●● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●●● ●●

●

●

●●● ● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●● ● ●●
●

●

●●● ●●

●

●●●

●

●

●

●

●

●●● ●● ●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●●

●

● ●● ●●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●●● ●

●

●

●

● ●

●

●●●

●

●● ●● ●

●

●●

●

●
●

● ●● ●

●

●
●

●

● ●● ●●● ●●

●

●● ●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●●● ●

●

●●●● ●●●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●
●

●

●

●●

●

●●● ●

●

●

●

● ●
●

●

●

● ●

●

●

●●

●

●

●

●

●●● ●●● ●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●● ●● ●●

●
● ●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●

●

●●

●

●

●

● ●

●

●●●

●

●

●

●

●●● ● ● ●●

●

●

●

●●

●●
●

●●●● ●

●

● ●●● ●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
● ●

●

●
●●

●

●

●● ●
●

●

●● ●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

● ●● ●

●

●

●

●

●

●

●

●
●●●● ●

●

●

● ●

●

●●● ● ●

●

● ●

● ●
●

●

●

● ●

●

● ●

●

●

●

●● ●●● ●

●

●●

●

●

●

●● ● ●
●

●

●

●

●

●

● ●● ●

●

●●

●

●

●

●
● ●● ●●●

●

●
●● ●

●

●●● ●

●

●● ●●
●●

●

●

●●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●
●

●●

●
●●●●

●

●●

●

●

● ●

●

●●

●

●

●
●

●

●

● ●●

●

● ●● ●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●● ●●

●

●● ●
● ●●

●

●

●

●

● ●

●
●

●

●●

●●

●

●● ●

●

●

● ●●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●●● ●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

● ●
●

●

●

●●

● ●

●
●

●

● ●

●

●

●

● ●●
●

●● ●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●
●

●

●●●

●

●

●

● ●

●

●

●
●

●●
●

●

●●●●

●

●●●●●● ●

●

●●

●

●

●●
●

●●
●
●● ●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

● ●●

●

●● ●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●●●

●
●

●

●
●

●

●●

●● ● ●●

●●

●●

●

●

●

●

●

● ●●●

●

●● ●

●

●

●

●

●●● ● ●● ●

●

●

●

●

●

●

●

●● ●

●

●● ●

●

●● ●

●

●●

●

●
●

●

●

●

●●●●

●

● ●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

● ●●
●

●●

●

●● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●● ●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

● ●●●
●

● ●●● ●

●

●● ●

●

●

●●● ●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●●● ●●●

●

●
●●

●

●● ●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

● ●● ●

●

●● ●●●● ●● ●
●

●

●● ● ●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●●●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●●● ●●●●● ● ●

●

● ●
●

●
●

●

● ●●

●
●

●

●

●

●
●●

●

●

●

●

●●●

●

●●

●

●● ●● ●●

●

● ●

●●

●

● ●

●●

●

● ●●●●

●

●

●

●●●

●

●

●

●

● ● ●● ● ●

●

●●

●

●

●

●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●●
●

●●

●

●● ●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●● ●

●
●

●
●

● ●●

●

● ●

●

●

●●

●

●●●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●●

●

●●●

●
●

● ●

●

●
●

●

●

●● ●

●

●

●

●
●

●
●

●

●

●

● ●●

●

●● ●

●

●

●
●

●

● ●●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●● ●

●

●●

●

●

●

●

●●
●

● ●●

● ●

●●● ● ●●●● ●●● ●

●

●
●

●

●

●

●

●

●

● ● ●●

●

●●

●

●

●

● ●●●
●

●●● ●

●

●

●

●

●

●

●
●

●● ●● ●●

●

●

●

●●● ●

●

●●●

●

●
●

●

● ●●

●

● ●

●

●

●
●

● ●

●

●

●

● ●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●● ●

●

● ●●●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●● ●●●

●

●

●

●
●

●

●

●●● ●
●

●

● ●

●

● ●●

●

●
●

●●●●● ● ● ●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●●

●

●● ●●

●

●

●●

●

●

●

●

●
●

● ●●●● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●● ●● ● ●● ●● ●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

● ●● ●●● ●●

●

● ●

●

●

●●

●

● ●● ●●
●● ●●●●●

●

● ●●● ●

●
●

●

●● ●

●

●

●
●

●

●

●

● ●●

●

●●

●

●

●

●

●
● ●

●

●●● ●●

●
●

● ● ●

●

● ●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●● ● ●●

●

●

●

●●

●

●
●

●

●●
●

●

●●

●●

●

●●
●

●

●

● ●●

●

● ● ●●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●●

●

●

● ●

●

●

●

● ●● ●
●

●● ●

●

●

●

●

●●●● ●●

●●

●
●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

● ●

●

●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●●
●

●●
●

●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●

●

● ●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●● ●●● ●

●

●

●

●● ●

●

●●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●● ● ●●● ●●

●

●

●
●

●●

●

●●

●

●●●

●
●

●● ●

●

●

●

●

●

●

●

● ●

●●

●● ●●●

●

●

●

●

●

●● ●

●

● ●●

●

●

●

● ●●●

●

● ● ●●●●●

●

●●●

●

●
●

●

●

●

●

●

● ● ●

●

●

●
● ●● ●

●

●

●

●

●

●

●●

●

● ●●●
●

●

●

●

● ●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●● ●

●
●

●●● ●●● ●

●

●●

●

● ●
●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●●

●

●●

●

●● ●

●

●

●●
●

●

●
●

● ●

●

●●

●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●● ●● ●

● ●

●●●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●●● ●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●● ●●● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●●

●●●●

●

●●

●

●

●

●● ● ●

●●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

● ●

●

●●

●

●
●

●

●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

● ●● ●
●

●

●

●

●

● ●

●

● ● ●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

● ●● ●●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●● ●●

●

●

●

●

● ● ●

●

●
●

●●

●

● ●
●

●
●

●

● ●
●

●

●●

●

●

●●

●

●

● ●●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●●●

●

●

●

●

●●●

●

● ●●●●

●

●

●

● ●● ●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

● ●●

●

● ●

●

●

●
●

● ●●● ●●●

●

●

●

●
●

●

●

●●

●

●●●●

●

●

●

●

●

● ●●

●

●

●

●●
●

●● ●

●

●● ●

●

●
●

●●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

●

● ●

●

●●●

●

●
●

● ●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

● ●●●●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●●● ● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●●●●● ●●● ●
●

● ●

●

●

●

●●

●

●
●● ●

●

●
●

● ●●●

●

●● ●●●●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●● ●
●

●

●● ●

●

●●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●●● ●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

● ●● ●●● ● ● ●●

●

●

●

●

●●● ●●

●

●●●

●

●●

●

●●

● ●

●
●

●

●

●

●

●●●

●

● ●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●●

●

● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●● ●● ●●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
● ● ●●●

●

●
●● ●

● ●

●

●

●
●

●● ●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●
●

● ●● ●●

●

● ●● ●●

●
●

● ●

●

● ●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●● ●● ●●

●

●●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●● ●●●

●

●●

●

●

●

●
● ●

● ● ●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ● ●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

● ●

● ●●

●

●●●
●

●

●●●

●

●

●

●

●

●● ●● ●

●

●

●

●

●

●

●

●●

●

● ●●● ●●

●

●
●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●● ●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●●● ● ●

●●

●

● ●● ●

●

●●●

●
●●

●

●● ●

●

● ●●

●

● ●

●

●●

●

●
●

●
●

●

●●

●

● ●

●

●

● ●

●

● ●

●

●

●● ●

●

●

●

●●●● ●

●

●

●

● ●

●

●

● ●●●●
●

●

●

●

●●●● ●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

● ●●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●●● ●

●

●

●

●

●● ●●

●

●

●●

● ●
●●●●●

●
●●
●●

●●●●
●●●●

●●●●●
●●

●●●
●●●●●
●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●

60%

70%

80%

90%

100%

1 10 100 1000 10000

#Fault−Similarity Classes
A

c
c
u
ra

c
y

(a) eCos/baseline (training)

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●● ● ●

●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

● ●

●

●

●

●

●●

●

●
●

●
●
●

●●●

●

●● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

● ●●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

60%

70%

80%

90%

100%

100000 150000 200000 250000 300000

#FI Experiments (incl. training)

A
c
c
u
ra

c
y

(b) eCos/baseline (total)

●

●

●

●

●

● ●● ●

●

●

●●
●●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●● ●

●

●

● ●●●

●

●● ●

●

●●●● ●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●● ●● ● ●●●●

●
●

●

●

●

●
●

●

●
●

● ●●
●

●

●

●

●

●

●●●

●

● ●● ●●●

●

●●

●

●

●

●

●

●● ●●

●

● ●●● ●

●

●●

●

● ●●●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●
●

●● ● ●

●

●●

●

●

●

● ●●●

●

●

●●●

●

●

● ●

●

●

●

● ●

●

●●

●

●● ●

●

●

●

●

●

●

● ●

● ●●

●

● ●

●

●

●

●

●

●
● ●

●

●● ● ●

●

●

●●

●

● ●●● ●

●

●

●

●
●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●●●● ●

●

● ●

●

●

●

●●

●

●

●
●

● ●

●

●

●
●

●

● ●

●

●● ●●●

●

● ●
●

●

●

●

●

●

●

● ●

●●● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

● ●

●

●

●

●
●

●
●

●
●●●

●

●

●

●
●

●●

●

●● ● ●● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

● ●●●● ●●
●

●●●

●

● ●

●

●

●●● ● ●

●

●

●●●

● ●

●

●

●

●
●

● ●● ●● ●

●

●●

●

●
●

●

●●

●

● ●

●

● ●● ● ●●

●

● ●

●

●

●

●●

●

●

● ●

●●

● ●● ●●●

●

●

●

● ●

●

●● ●● ●●● ●●●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●●●

●

●
●

●●●

●

●

●

● ●● ●● ●

●● ●●

●

●

●

●●

●
●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●● ●●● ●

●

●● ●●●●

●
●

●

●

●●

●
●

●● ●●

●●

●
●

●

●

●
●

● ●

●

●● ●●● ●●

●

●● ●●●●●

●

● ●●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●● ●

●

●

●

● ●

●

●●

●

●

●

●

●● ● ●●

●

● ●

●

●

●●

●

●
●

●

● ●

●●●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●● ●

●

●●●●

●

●● ●● ●

●

●● ● ●●●● ●●

●

●

●

●● ● ●
●●● ●

●

●

●

● ●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●● ●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●●● ●●●

●

●

●

●●

●

● ●

●

●●●●●

●

●

●

●

● ●●●

●

●

●

●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●
●

● ● ●

●

●●

●

●●● ●

●

●

●

●●●

●

●●● ●●●

●

●

●

● ●● ●
●

●
●●

●

●● ●

●

●
●

● ●●●

●

●

●

● ●

●

●●

●

●
●

●

● ●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●●
●

●

● ●● ●

●

● ●●

●

●●●

●

●
●● ●●

●

●

●

● ●●●

●

●

●

●

●●

●

●

●●

●
●

● ●● ●●●● ●●● ●

●

●●●

●

●

●
●●

●

●

●

●

●

● ●● ● ●● ● ●●●●● ●●

●

●●●

●

●

●● ●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●●
●●

●

●●● ●● ●

●

●

●

●
●
●

●

●●●● ●●

●

●
●

●

● ●

● ●

●

●

●

●
●

●

●

●

●● ● ●

●

●

●

●

● ●

●

●●

●

● ●
●

● ●●●

●

●

●

● ●● ●

●

●● ●●●

●

● ●●●

●

● ●

● ●

●

● ●

●●

●

●

●

●

●●●● ●

●

●

●●●● ●

●

●●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

● ●●

●

●

●

●
● ●

●
●● ●

●

●
●

●●●●

●

●● ●●

●

● ●

●
●

●

●

●

●● ●● ●●
●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●●●●● ●●● ●

●

●

●

●

● ●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●● ● ●

●

●

●

●

●

● ● ●

●

●

● ●●
●

●

●

●●●

●

● ●

●

● ● ●● ●
●

● ●

●

●●● ●●● ●●

●

●

●

●●

●

●●

●

●
●

●

●● ●

●

● ●

●

●

●

● ●

●

●●●●

●
●

●●

●

●

●●

●

●

●

●

● ● ●●●● ● ●

●

●● ●

●

●

●●
●●

● ● ●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●●

●

●

●

●

●

●
●

●●● ●● ●●●

●
●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●● ●●● ●

●

●●

●

● ●

●●

●

●

●

●

●

●

●●● ●● ●

●

●

●●

● ●

●

●●

●●

●

●

●

● ●

●
●

●●●●

●

●● ●● ● ●●

●

●●

●

●

●

●●

●●

●

● ●●

●

●

●

●
●

●

●
●●●●

●

●
●

●●

●

●

●

●●

●

● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●● ●●

●

●

●

●

●

●●

●

●

●●● ●●

●

●● ●

●

●

●

●

●

● ●
●

●● ●● ●●

●

●
●

● ● ●

●

●

●

●

●

●

●● ●●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●●● ●●●

●

●

●

●

●

●

●●● ●●●
●

●● ●● ●
●● ●

●

●

●

● ●
●
● ●

●
●●

●

●

●

●

●

●●●● ●●

●

●
●● ●●

●

●● ●
●

●
●

●

●●
●

●●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●● ●●●● ●●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●● ●●●

●
●●

●

●●●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●

● ●●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●●

● ●●
●

●●

● ●

●

● ● ●

●

●

● ●

●

●●

●
●

● ●

●
●

● ●

●

●

●●● ●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
● ● ●●

●

●

●

●

●

●

●

●●● ● ●●

●

●

●

●● ●●● ●

●
● ●●

●

●

●
●●

●

● ●

●

●

●● ●●

●

●

● ●●

●
●

●
●●

●

●

●

●●●
●

● ●

●
●

●● ●

●

●
●

● ●● ●●

●
●

●

●●
●

●

●

●
●

●

● ●●

●

● ●●●

●

●

●

●●● ●●

●

●● ●●●●
●

● ●

●

●

●

●

●●● ●
●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●●
●

●
●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

● ●●● ●●● ● ● ●●

●

● ● ●

●

●● ●

●

●●
●

●

●● ●●● ●●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

● ●
●

● ●●●● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●● ●●●●
●●

●

●

●

●●
●

●

●

●
●

●●

●

●

●●●
● ●

●

●

●●● ●

●

● ●●
●

●

●

●

●

●

●
●

●●● ● ●●

●

●

●●

●

● ●●●● ●
●●

●

● ●●●● ●

●

●

●

●
●

●
●

●● ●●● ●

●

●
●●●

●

●

●

●

●

●● ●● ●●●

●

●

●●●

●

●●

●

●

●●●

●● ●

●
●

●

●

●●●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●●●●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●●● ● ●

●

●●

●●●

●

●

● ●●

●

●

●
●

●● ●●●

●
●

●

●

●

●
●

●

●
● ●

●

●

●
●

●● ●● ●
●

●●●●●

●

●

●
●● ●● ●

●

●● ●● ●●

●

● ●

●

●

●

●●

●

●
●

●●●
●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●
●●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●●

●

●

●●●

●

●●

●
●

●

●
●

●

●

●

●
●

● ●● ●

●

●
●● ●

●

●

●● ●

●

●● ●●

●

●

●

●●●● ●●● ●

●

●

●●

●●●

●

●

●●● ● ●●

●

●

●

●

●

●●● ● ●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ● ●● ● ●

●

●
●

●●

●

●
●

● ●●
●

●
●

●

●●● ●

●

● ●●

●

●● ●●

●

●
●

●

●

●

●

●●

●

●

●

● ●● ●●

●

●
●

●

●

●

●
●

●

●● ●● ●●

●

●
●

●

●

●

●

●

● ●●●

● ●

●

●
●● ●

●

●

●

●
●

●●

●

●

●●● ● ●●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●● ●●

●

●●●

●●

●●●● ●

●

●

●●

●

●

●

●

●
●

●

●

●●● ●●

●

●●

●

●

●

●

●

●

●

●●● ●

●

●

● ●● ●●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●
●

●●
●

●●●

●

●
●
●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●● ●●

●

● ●●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

● ●

●

● ●

●

●●●●

●

●

●

●

●●

●

●

●● ●

●

●

●

●
●

●

●●●

●

●

●

●● ●●● ●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

● ● ●

●

● ●●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●● ●

●
●

●

●
●

●

●

● ●●● ●

●

●

●

●●●

●

●

● ●

●
●

●
●

●●● ●●●●

●

●

●
●

●

●

●● ● ●●●●

●

●

●
●

●●●

●

●

●

● ●
●

●

● ● ●● ●●●●●

●

● ●

●

●

●

●

●

●● ●●● ●●●

●

● ●

●

●

●

●● ● ●●
●

●

●

●●●
●

●●

●
●

● ●●●●●●●

●

● ●

●
● ●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●●● ●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●●●

●

●● ●

●

●

●
●

●

●

●

●

● ●

●

●
● ●

●
●

●● ●● ● ●●

●

●
●●

●

●●●

●

●●●●

●

●

● ● ●●

●

●● ●●

●

●

●

●● ●● ●●●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●●

●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

● ●

●

●● ●

●
●

●

●

●

●

●

●●

●

●●● ●●
●

●

●●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ● ●● ●●

●

●

●

●
●

●

● ●●

●

●

●

●●

●

● ●

●

●●
●●●● ●●

●

●

●

●

● ●

●

● ●●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●●

●

●
●

●

●
●

●
●

●●●

●
●

● ● ●●●●

● ●

●

●●

●

● ● ●●

●

●

●●

●● ●●

●

●

●
●

●

●●●●

●
●

●●

●

●● ●● ●●●

●

●

●
●

●

●

●
● ●

●

●

●

●● ●

●

●●

●

●

●

●

●●

●●

●
●

●
●

●

● ●●

●

● ●●

●

●

●

●●●●●

●

●●●● ●●● ●●●●

●
●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●● ●●●

●

●●●●

●

●
●
●

●

●

●

●
● ●●●

●

●

●

●●

●

●

● ●● ●● ●●
●

●●

●

● ●

●

●

●

●

● ●●

●

● ●● ●

●

●●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●● ●●● ●● ●●●● ●●●

●●

●

●

●

●●

●● ●●●●●●

●

●

●

●
●

●

●

● ● ●

●

●●●

●

● ●

●

●● ● ●● ●●

●

●● ●● ●●

●

● ●

●

●

●●

●

●
●

● ●● ●● ●●

●

●

●

●

● ●●●● ●●

●

●●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●● ●● ●●

●

●● ●

●

●

●

●

● ●

●

●● ●●
●

●

●

●

● ●●●

●●

●●

●

●

●●

●

●

●

●● ●

●

●

●

●●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●
●

●●● ●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●●● ●●●●
●

●

●

●
● ●● ●●●●●●● ●● ●

●
●●

●

● ●●

●

●

●

●

●

●●● ●●● ●

●

●●

●

●

●

●● ●●

●

●●
●

●●●

●

● ●● ●● ●

●
●

●●

●

● ●● ●

●

●

●
●●

●

●

●

●

●
● ● ●

●

●●

●

●

●

●

● ●●

●

●

● ●●●

●

●

●

●●

●

●

●● ●

●●

●

●

● ●●●●●

●

●●

●

●

●

●

●● ●●●●● ● ●

●

●●

●●

●

●

●

●

●●

●

●● ●

●

●●
●

●

●●
●●

● ●●

●

●

●

●●

●

●● ●● ●●

●

●

●

●

●●●●

●

● ●

●

●

●
● ●● ●

●
● ●

●

●

●

●●

●

●●

●

● ●●●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●●

●

●●●
●● ●

●

●●

●

● ●● ●
●

● ●●●

●

●

●

●

●

●

●

●●●

●

●● ●●

●

●

●
●

●

●

● ● ●●● ●●●●

●

●

●● ●●

●
●

●● ● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●● ●

●
●

●

●

●

●

●●●

●

●●

●

●●

●

● ●

●

● ●

●

● ●● ●

●

● ●●●●●

●

●

●● ●●●

●

●●● ●
●

●

●

●●●●

●

●●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●●

●
●

●

●

●●●
●

● ●●

●

●

●

● ● ● ●
●

●

●

● ●●
●

●

●

●

●

●

● ●● ●●●● ●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●
●●●

●●

●

●

●

●●

●●

●

●

●●
●

●

●
●

●

● ●

●

●● ●●

● ●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●●

●

●●

●

●
●

● ●● ●●●

●

●

● ●

●

●

●

● ●●●

●
●

●
●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●
●

● ●

●

●

●

●

●
● ● ●

●

● ●●● ●●●●●

●

● ●●
●

● ●

●

●

●

● ●

●

● ●●
●

●

●

●

●●●

●

●

●

● ●●

●

●

●●

●

●

●

●●●

●

●
●●

●
●

●

●

●●●

●●
●
●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●●●

●

●

●● ●●●

●

●

●

●

●● ●

●

●

●
●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●

●

● ●●●

●

● ●

●

● ●●

●

●
●

●

●
●

●

●

●● ●●● ●● ●

●●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●● ●● ●● ●

●

●

● ●

●●● ●

●

●●

●●

●

●

●

●

●
●

●

●

● ● ●●

●

●● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●●● ●●●●●● ●●

●

● ●

●

●●●

●

●●

●
●

●● ●●●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●● ●●

●

●●●
● ●

●
●

●
●

●●● ●●

●

●

●

●

●●● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●●● ●

●

●

● ●

●

● ●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●●

●

●
●●●

●

●●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●
●●

●●

●

●● ●● ●

●

●

●

●● ●●

●

●

●●

●

●●● ●

●
●

●

●
●

●
●

●

●

●

●

●● ●●●

●

●

●
●

●●

● ●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●● ●●●●●●
●

● ●●●

●

●

●

●

●

●

●

●●●●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●● ●

●

●

●●●● ●● ●●

●

●
●

●
●

●●

● ●●●●
●

●

●

●
●●●

●

●
●●

●

● ●

●

●

●

●

●

●●●

●

●● ●

●

● ●●●

●

●

●

●

●●
●

●
●

●

●●●● ● ●●● ●

●

● ●●●
●

●● ●

●

●

●●

●

●●●●

●

●

●●

●

●

●●
●

●

● ●
●

●

●

●●●●●●● ●● ●

●

●●

●

●

● ● ●●

●

●
●●

● ●

●

● ●

●

●

●

●

●● ●

●

● ●
●

●● ●
●

●●

●

●

●●● ●●
●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●● ●●●

●

●●
●

● ●●●● ●●

●

●● ● ●

●

●

●

●

● ●

●

●●

●

●●●

●

●● ●●●

●

●

●

●

●●●●

●

●

●

●

●

●● ●

●

●

●●●●

●

●

●

● ●●● ●

●

●●●● ●●

●

●●

● ●

●

●●

●

●

●

●

●

● ● ●

●

●

●●●
● ●

●● ●

●

●●● ●

●

●
●

●

●

●●

●

●

●●●●● ●
●

●●● ●●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●● ●

●

●
●

● ●

●

●

●●
●

●

●

●●● ●

●

●●

●

●

●

●●● ●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●●

●
●

●
●

●

●

●●●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●● ●● ●

●

● ● ●● ●●

●

● ●● ●●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●● ●●

●

●

●●

●

●

● ● ● ●

●

●

●

●

●

●●●●
●● ●●●●●

●

●

●

●●

●

●

●

●

●● ●● ●●

●

●

●

●

●●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●●

●

●●●●
●

●

●

●
●

●

●

●
●

●
●

●●
●

●

●● ●● ●
●

●

●

●

●

● ●● ●●

●

●●

●

●

●

●

●●

●

●●●

●

●● ●

●

●

●

●●

●

● ●
●

●●● ●

●

● ●

●

●●

●

●

●

●●

●

●● ●
●

●

●●●

●

● ●● ● ●

●

●●●

●

●● ●

●

●

●● ● ●
● ●● ●●●

●
● ● ●

●

●

●

●

●

●●

● ●●● ●

●

●

●● ●●●

●
●

●● ●●●

●

● ●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●
●

●●● ●● ●●●

●
●

●

● ●●●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

● ●

●

●●●

●

●

●

●

● ●●
●

●●

●

●● ● ●

●

●

●

●
● ●

●

●

●●

●

●● ●●

●

●●

●● ●

●

●●●●● ●● ●●●

●
●

●● ●●

●

●

●

●

●

●

●

●●●●

●

● ●

●

●
●

●●● ●● ●●● ●
●

●●● ●●● ●● ●

●

●

●
●

●●

●

●●

●

● ●

●

●

●

●

●
●

●

●● ●

●

●●●

●

●●

●

● ●●● ●

●●
●

●

●

●

●

●

●

● ●●● ●● ●
●

●● ● ●● ●
●

●

●

● ●

●

●●

●

●

● ●

●

●
●

●

● ●● ●●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●● ●●

●

●
●
● ●

●
●

●

●

●●● ●
●

●

●

●

●●

●

●

●● ●●●●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●●●

●

● ● ●

●

●

●

●

●

● ●●●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●●●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●●
● ●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●
●

● ●●

●

●

●

●

●

●●

●

●● ●● ●●●●

●

●
●●

●

●

●
●

●

●●●
●

●

●●●●
●

●

● ●●●

●

●

●

●

●

● ●

●

●

●● ●●●

●
●

●
●

● ●●

●
●

●

●

●

● ●

●

● ●●●●

●

● ●● ●

●

●

● ● ●

●● ●●●●● ●●●

●

● ●

●
●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●●●
●●● ●●●

●

●

●● ●●●● ●

●

●
●●

●
●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●
● ●

●

●
●

●

●● ●

●

●

●

●

●●
●

●●

●

●

●

● ●●●
●

●

●

●
●●●

●

●

●

●

● ●

●

●

●

●

●
●

●●
●●

● ●●●

●

● ●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●● ●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●●● ●
●

●

● ●

●

● ●

●

●

●●● ●●●●

●

● ●

●

●

●

●
● ●

●

● ●

●●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●● ●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●●●● ●

●●

●●

●
●

● ● ●

●

●● ●

●
●

●

●●

●

●●

●

●

● ●
●

●

●●

●

●● ●

●

●

●

●

● ●●

●

●

●

●●● ●●

●

●

●

●●

●

●

●

●

●

●● ●●

●

●●

●

●● ●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●

●●

●

● ●● ●● ●● ●

●●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●●●●

●
●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●●

●

●

●

●● ● ●● ●●●●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

● ●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●● ● ●●● ● ●●●

●

●
● ●

●

● ●

●

●

●●

●

●
● ●

● ●

●

●
●●●

●

●

●

●●● ●
●

●

●●

●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●●●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●● ●●

●
●

●
●

●

●● ●●●●●●

●

●

●

●●● ●
●

●
●

●● ●

●

●

●

●●●

●●

●
● ●●

●

●

●

●

● ●

●

● ●●●
●● ●

●●

●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●●

● ●●● ●

●

●●● ●

●

● ●●

●

●●

●

●

●

● ●●●

●

●
●

●

●
●

●●

●● ●● ●●
●

●
●

●

●
●

●●●

●

●
●

●●

●

●●

●

●

●

●
● ●●●●

●

●

●

●

●

●

●

● ●●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●

●

●●

●

●

●

● ●●●
●

● ●

●

●

●●● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●
●●

●

● ●

●

●●

●

●●

●

●

●

●●

●

●●

●
●●

● ●

●

●

●●

●●

●

●●

●
●

●

●● ●

●●●

●

●

●●

●

●

●●

●●

●

●●●

●

●

●
●

●●● ●●

●

●

● ●● ● ●

●●

●

●

●

●

●●● ●● ●● ●

●

●
●●

●

● ●

●

●

●

●

●●
●

●● ● ●●

●●

● ●
●

●

●

●

●

●

●

●

●

● ●● ●●

●

●●●●●●

●

●● ●

●
●

●

●

●●

●

●●

●

● ●

●

●

●

●
●

●●● ●●●

●

●

●

●●● ●
●

●

●

●

●

●

●

● ●● ●●

●

●●
●

●

●

●

● ●

●●

●

●● ●

●

●

● ●●

●

●●●

●

●

●

●

●
●

●

●●●●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●
●

●

●●
●

●

●

●

● ●●

●

●
●

●

●

●

●●●● ●●

●

●●

●

●

●●
●

●● ●

●

●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

● ●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●
●● ●

●

●

●
●

●

●

● ●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

● ●●

●

●
●●

●

●
●

●

●

●●●●●
●
●●

●

●

●●

●

●

●

●

●●

●

●●

●

● ●●
●

●●

●

●

●

●● ●
●

●●

●
●

●

● ●● ●●●

●

●● ●● ●
●

●

●

●●
●

●

●● ●●●

●

●

●
●

●● ●●●●●●

●

●

●●●● ●●●● ●●●

●

●

●

● ●

●

●

●● ●

●

●

●

● ●

●

●

●●● ●

●

●

●

●●

●

● ●●

●

●

●●●●

●

●

●

●

●

●●●

●●

●●●● ●●● ●

●

●

●

●
●●

●

●

●
●

● ●

●

●● ●

●

●

●

●

●

● ●

● ●

●

●●

●

●●

●

●● ●●●

●

●

●

●

●

●

●

●● ●●

●

●

● ●●● ●●●●

●

●● ●●

● ●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

● ● ●●

●

●
●

●

●
●

●

● ●●● ●

●

●

●

●● ●

● ●
●

●

●
●

●● ●

●

●●

●

●● ●●●●

●

●●●●

●

●

●

●

● ●
●

●●

●

●

●
●

●

●

●●

●

● ●

●

●

● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●●●● ●

●

●

●

●●

●

●

●

●●
●
●

●

●

●

● ●●
●

●●

●

● ●

●

●

●
●

●

●
● ●
●

●

●
●

●

● ● ●●●

●

●●

●

●

●

●

●

● ●●● ● ●●

●

●

●

●●

●● ●
●

●

●

●●●● ●●●●

●

●

●

●

●

●

●

●●●
●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●● ●

●

●●
●●●

●

● ●

●

●●

●

●●

●

●

●
●

●

●

●● ●●●

●

●

●

● ●
●

●●● ●●

●

●

●●

●

●

●

●

●

●

●●

●

● ●● ●

●

●● ●●

●

●

●

●

●

●

●
●

●●

●

● ●●●

●

●

●●●

●

●● ●●

● ●

●

●●

●

●

●

●

●

●●

● ●●● ●● ●

●

●
●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●● ●● ●

●

●●●● ●●
●

●

●

●

●●

● ●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●● ●●● ●●●●
●

●
●

●
●

●

●●●

●

●

●

●● ●● ●

●

●

●
●

●

●

●

●

●

●● ● ●

●

●●

●
●

●

●● ●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●● ●●

●
●

●●

●

●

●
●

●●

●

●

●

●
●

●

●●
●

●●●
● ●

●

●
●

●●

●

●● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●● ●

●

●

●

●

●
●

● ●●●
●

●
●

●

●

● ●● ●●●

●

●

●

●

● ●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●
● ●

●

●●●

●

● ●

●

●●●

●

●●

●
●

●

●

●

●

●

● ●

●
●

●●

●

●

●

● ●

●
●

●

●
●

●

●

●

●● ●

●

●● ●
●

●●●● ●●

●

●
●●●

●
●

●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

● ●●

●

●

●

● ●●●●●

●

●●

●

●

●

●●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●●

●

●●

●

● ● ●●●

●

● ●●
●

●●

●

●

● ●●● ●● ●

●

●●●●●

●

●

●

●

●

●●●

●●

● ●●●●

●

●● ● ●

●
●● ●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●●

●

● ●●

●

●

●

● ●● ●

●

●●●
●

●

●

●
●

●

●●

●

●●● ●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

● ●●● ●●

●

●
●

●●●
●

●

●

●

●● ●

●

●

●

●
●● ●● ●

●

●

●

●

●

●● ●● ●

●

● ●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●
● ●●● ●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●●●●●● ●

●

●

●

●

●

●
●
●

●
●

●

●

●● ●

●

●
●

●
●

●

●

●

●●

●●

●●● ●

●

●●● ●●
●

● ●

●

●●

●

● ●●●●●●

●
●

●

●

● ●

●

●
●

●

●
●

●
●

● ●●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●● ●●

●

●●

●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●● ●●●●

●

●●● ● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

●

●

● ●●●

●

●

●

●●●●

●
●

●● ●
●

●●

●

●

●

●●● ●

●

●

●

●

●

● ●

●

●●

●●

●●●

●

●●

●

● ●

●

●

●

●

●

●
●
●

●

●

●

● ●● ●

●

●●

●

●

●

●

●●
● ●
●

●

●

●●

●

●

●● ●●●● ●●

●

● ●

●

●

●●

●

●

●● ●●●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●● ●● ●● ● ●●●●● ●●● ●

●

●

● ●●●●
●

●

●

●

●

●●

●

●● ●●

●

●

●

●● ●

● ●●
●

●

● ●● ●●● ●

●

●

● ●

●● ●●● ●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●●● ●●

●

●

●

●

●

●

●

●●● ●

●

●● ●

●

●● ●

●

● ●

●

●

●

● ●●●●

●

●●● ●●

●

●

●

●

●●

●●●

●●

●

● ●

●

●

●

●●
●

●
●●

●

●

●

●● ●●●●
●

●●●

●

●●

●

●●● ●●

●

●●●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

● ●●

●
●

●●● ●

●

●

●

● ●●

●

● ●

● ●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

● ●●

●

●●

●

●

●● ●

●

●

●

●

●●● ●

●
●

●● ●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●

●

●

● ●●●● ●●● ●

●

●

●

●●

●

●

●

●● ●

●

●

●

● ●

●

● ●

●

●●

●

●
●

●

●

●

●● ● ●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●●

●●●

●

●

●

●

●●
●●●

●

●

●

●

● ●●●

●

●●

●
●●

●

●

●

● ●

●

●

●
●

●

●

●

● ●● ● ●●●● ●●●● ●● ●

●

●●●

●
●

●

●●●

●

●

●

● ●●

●

●

●
●

●

●

●● ●●●●●●
●

● ●

●

●
●

●

● ● ●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

● ● ●
●

●●

●

●

● ●● ●●● ●●●

●

●● ●●●

●
●●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●
●●

●

●

● ●● ●

●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

● ●● ●●● ●● ●

●

●● ●
●

● ●●●● ●●●

●

●

●

● ●●
●

●

● ●

●

● ●●●
●

●

●●

●

●●

●

● ●● ●

●

●●

●

●● ● ●

●

● ●●
●

●

●●●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●●

●

● ●

●

●

●
●

●

●

●
●

●
●
●●

●
●●●

●
●

●

●

●

● ●●

●

●

●

●

●● ●●

●

●

●

●

●

●

● ●●● ●

●

●

●

●

●

●

●● ●

●

●
● ●

●

●

●

●

●●
●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●● ● ●●●●

●

●●

●

●●●

●

●

●● ●●

●

●
●

● ●
●

●●

●
●

●●●● ●

●

●

● ● ●

●

●

●

● ●●● ●●●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●● ●● ●

●

● ●

●

●●

●

●●

●

● ●● ● ●●

●

●

●

●●

●
●

● ●● ●

●
●

● ●●

●
●

●

●

●● ●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●●●● ●

●

●●
●

●

●

●

●

●

● ● ●●●● ●
●

●

●

●

●● ●● ●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●●●●

●

● ●
●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

● ●

●●● ●●●

●●

●●● ● ● ●●

●

●●
●● ●●●

●

●

●

●

●

●●

●

●● ●●●●
●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●●● ●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●●

●

●

● ●●
●

●

●
●

●

●●● ●●
● ●

●
●

●

●
●

●
● ●●●●

●

● ●● ●

●

● ●●●

●

●

●

●●●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

● ● ●●

●

●● ●●

●

●● ● ●● ●

●

●

●

●●●●●●

●

●

●
●

●

●

●

●

● ●●●● ●●

●

●● ●

●

●●

●

●

●

● ●●

●

●

●

● ●
●

●
● ●

●

●

●

● ●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●● ● ●●●●

●

●
●

●

●

● ●●●●●● ●

●

●● ● ●●

●

●

●

●
●

●

●

● ●

●

●●
●

●●●

●

●

● ● ●● ●●
●

●● ●●●●

●

●

●● ●

●

●
●

●

●

●

●

●●● ●

●

● ●●

●

●●●

●

●● ●

●

● ●

● ●

●

●

●

●

●

●● ●● ●●●●

●

●●

●

●

●
●

●

●
●

●●

●
●

● ●●

●

●

●

●

●

●

●●

●
●

●●

●

● ●●●

●

● ●

●

●● ●

●

●●

●

●

●●

●

●

●●●
●

●
●

●

●

●

●

●

●

●● ●●● ●●● ● ●

●

●●● ●

●

● ●

●

●

●

●

●● ●●

●

●

●●

●

●

● ●

●

●

●●●●

●

●

●

●

●

●

●●● ●●●

●

●

●

●●

●
●

● ●

●

●●● ●

●

●

●

● ●● ●

●
●

●
●

●
●

●

●

●

●●
●

● ●

●
●

●●

●

●

●● ●

●

●

●●
●

● ●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●● ●

●

●● ●

●

●
●●●

●

●

●
●

●

●●●●

●

●● ●●● ●

●

●● ●●
●

● ●

●

●●

●

●

●

●

●

●

●

● ● ●

●

● ●● ● ●●

●

● ●● ●●●●●

●

● ●

●

●●

●

●

●

●●●●

●
●

●● ●●

●

●

●

●

● ●●

●

● ●●●●

●

●●

●

●●

●

●

●

●●

●

● ●
●

●

●●●

●

●

●

●● ●●

●
●

●

●

●
●

●

●

●● ●

●

● ●●●● ●●
●

●

●

● ●●

●●

●

●

●

●●

●

●

● ● ●

●
●

● ●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●●

●

●

●

●

● ●●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●

●

●●●● ●

●

●

●

●

●

●
●

●●●

●

●

●

● ●

●

●

●

● ●●

●

●

●

● ●

●

●

●●●

●

●● ●●● ●

●

●

●

●

●
●● ●

●

●

●

● ●● ●

●

●

●

●

●
●

● ●

●

●●

●

●

●●
●

●● ●●●

●

●

●●

●●●●

● ●●

● ●●●●●

●

●
●

●●●
●

●●●

●

●

●

● ●●

●

●●●

●

● ●●● ●

●

●

●●●●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●●
●

●● ●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●● ●

●
●

●●

●

● ●

●

●

●

●

●●

●●

●
●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●●● ● ●
● ●

●

●

●
●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

● ●

●

● ●

●

●
● ●

●

●

●●

●

●● ●●

●

● ●●

●

●
●●●

●

●●

●

●

●●

●●

●

● ●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

●●● ●●
●

●

●

●●
● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●
● ●●●●

●

●●●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●●

●

●●
●

●

●●● ●●● ●●

●

●● ●

●

●

●

● ●●

●
●

●● ●●●●●

●

●
●

●

●

●

●

●

●

●● ●●●●●● ●

●
●

●

●

● ● ●●

●

● ●

●

●

●

●

● ●

●

● ●●

●

●

●

●●● ●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

● ●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●● ●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

● ●●●●

●

●●

●

●●● ●● ●●

●

● ●●●

●

●

● ●

●

● ●
●

●

●●

●

●● ●●

●

●
●

●

●
●

● ●

●

●

●●

●

●

●●
●

●

●

● ●● ●●

●

●
●

●

●●● ●● ●●

●

●●

●●

●

●

●●
●

●●

●

●

●

● ●

●
●

●

●
●

●

●● ●●● ●

●

●

●

●

●

●

● ●● ● ● ●●

●

●● ● ● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●● ●● ●●●●● ●●

●

● ●●●

●

●

●

●
●

● ●● ●

● ●

●

●

●

●
●●

●●● ●●

●
●

● ●

●

●

●

●

●●

●

●

●

●● ●●

● ●
●

●● ●● ●●●●

●
●

● ●●●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●
●

●

●
● ●● ●●

●
●●

●

● ● ●
●

●

●● ● ●●●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●●●● ● ●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●● ●●● ● ●●● ● ●

●

●

●

●

●

●

●

●

●●● ●● ●

●

●●

●
●

●

●

●

●

●

●

● ●●● ●

●

● ●●●● ●

●

●

● ●

●

●

● ●

●

● ●●● ●●● ●

●●●

●● ● ●●

●

●

●●●

●

●

●● ●●

●

●

●

●

●

●

●●●

●●

●

●
● ●●●

●

●●

●

●

●

●

●
●

●

●●● ●

●

● ●● ● ●

● ●

●

●

●

● ●●●

●

●●●● ●

● ●

●

●

●

●

●

●

●● ●●●● ● ●●

●

●

●

●●

●

●●● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●●●
●

●

●

●●●●●
●●●● ●

●●

● ●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●● ●●

●

●

●

●

●● ●● ●● ●

●

●

●

●

●●

●

●

●●● ●●

●
●

●●●● ●●●

●

●●●

●

● ●●
●

●●●●● ●

●

●
●

●●● ●●●

●

●●●●

●

●

●

●
● ●●●

● ●

●

●
●

●●

●

●

●●● ●●● ●

●

●

●

●

●

●
●

●

●● ●●

●

● ●
● ● ●● ●

●

●

●●

●

●

●

●●●

●

● ●●

●

●
●

●

●●●●●

●

●

●

●

●

●●

●

● ●●
●

●●

●

●

●

● ●

●

●●●

●
●

● ●●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

● ●● ●

●

●
●● ● ●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

●
●

●●● ●

●

●

●

●

●

●

●● ●

●

●

● ●● ●

●

● ●●
●

●●● ●

●

●
●●

●

●
●

● ●

●● ●●● ●

●

●

●

●● ●●
●

●● ●●●

●

●

●

●

●

●

●
●● ● ●

●

● ●

● ●

●●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

● ●●

●

●

●●

●●●

●

●

●

●

●

●● ●●

●

●

●

● ●●
●

●●

●●

●●

●

●
●

●●●● ●●●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●●●● ●

●

●

●● ●

●

●●

●

●●

●

●

●●●

●

●●

●

● ●● ●

●

●

●

●●●

●

●
● ●●

●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●●
●

●

●

●

●

●

●

●

●

● ●●● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●● ●●

●

● ●● ●●●●●● ●

●
●
●

●

●
●

●

●

●
●
●●●

●
●

●●●●●●

●

● ●●●●

●

●●

●

● ●

●
●

●
●

● ● ●● ●● ●● ●

●

●

●

●

●

●

●● ●

●

●●

●

●●●

●

●

●
●●●
●
●

●●
●

●

●

●

●

● ●●

●

● ●

●

●●

●

●

● ●●

●

●

●

●

●

●
●●
●

●

●●

●

●●● ●

●

●

●

●●

●

●●● ●●●

●

●

● ● ●

●

●● ●
●

●

● ●

●

●

●

●

●●

●

●

●●

●

●●●
●

●

●

●

● ●●

●

●

●●●

●

●● ●● ●●● ●
●

●

●●

●

●

●

●

●

●

● ●●

●

●●
●

●●●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●● ●

●

●

●

● ●

●

●

●

●●

●

● ●●● ●●●

●

● ● ●● ●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●●

●

●●

●

● ●●

●

●

●● ●

●

●● ●●●
●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●● ●

●

●●

●●
●

●●

●●

●

●

●

●

●

● ●●

●

●●
●

●

●

●●

●

● ●●

●

●●

●

●●● ●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●●

●

● ●●●

●

●

●●●●

● ●

●
●

●

●●●

●

●

●●

●

●

●●
●

● ●

●

●

● ●

●

● ●●●●

●

● ●●●

●
●

●●●

●

●

●

●●

●

● ●●

●

●

●

●

●

●●●● ●● ●● ●●

●

●

●

●

●

●

●● ●●●

●●

●●

●
●

●

●●

●

●

●

● ●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●● ●●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●●● ●● ●

●

●

●

●●●●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●

● ●●

●

●●● ●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●●
●

●
● ●●●

●

● ●

●

●● ●●

●

●

●
●

●

●
●

●

● ●

●

●

●

● ●●

●
●

●

●

●

●●

●

● ●●●● ●●● ● ●● ●●●
●

●●●

●

●● ●

●

● ●●●

●

●

●● ●●

●

●

●● ●

●

●
●● ●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●●

●

● ●

●

●

●

●

● ●

●

●●●

●

●●

●

●

●

●

●

●

●

● ● ●● ●●

●

● ●●

●

●●

●

●

● ●

●

●●●●

●●

●●● ●● ●● ● ●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●
●

● ●● ●●●●

●

●●

●●

●

●●

●

●
●

● ●

●

●

●●●●

●

● ●●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●●

●

●

● ●● ●●●
●

●

●

●

●

●

●
● ●

●● ●

● ●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●● ●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●● ●

●
●●

● ●● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●● ●

●

●●

●
●

●

●

●
●

●
● ●●

●

●

●

●●

●

●●●

●

● ●

●

●

●

●●● ●●●●

●

●

●

●

●●

●

●

●

●
●●

●
●●●

●● ● ●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

90.0%

92.5%

95.0%

97.5%

100.0%

1 10 100 1000 10000

#Fault−Similarity Classes

A
c
c
u
ra

c
y

(c) eCos/CRC (training)

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●●●
●

●●●

●

●

●
●

●●
●

●●

●

●●
●

●
●

●

● ●
●●

●
●

● ●

●
●

●
● ●

●

●

●

●

●
●

●
●

●

●

●
●●

●●

●

●

●

● ●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
● ●

●

●
●●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●
●●●●●●

● ●

●●
● ●

●

●

●
●●

●

●●
● ● ●●●

●

●

●●●
●

●●●

●●

●

●

●

●●
●●●

●

●●
●

●

●

●

●●
●●

●

●

●

●●

●●● ●

60%

70%

80%

90%

100%

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

#FI Experiments (incl. training)

A
c
c
u
ra

c
y

(d) eCos/CRC (total, w/ and w/o training)

Figure 5.5: Accuracy in the training set (left) and in the complete fault space (right)
for eCos/baseline and eCos/CRC.

instructions than all eCos benchmarks combined, and represent a more heavy-
weight workload for our tooling.

To determine the “ground truth” for the pruning experiments, I ran FI
experiments for all DUECs of these benchmarks, resulting in the total sim-
ulation time shown in the last column of Table 5.2.5 In the following, I will
use this data as a basis of comparison to rate the quality of the FSP method’s
results.

As described in Section 5.3.2, the fail-eq-search tool randomly6 picks
100 000 DUECs for each benchmark in Table 5.2 as the training set. The ge-
netic algorithm was parametrized with a population size of 100 individuals,
400 optimization generations, and a mutation probability of 10 percent. I
picked the values for these parameters from experiences in early evaluation
rounds.

5.4.2 Heuristic Training and Test

Figure 5.5a shows the training results and �tness values for eCos/baseline
after 3:40 minutes of optimization on a 32-core Intel Xeon E5-4650: Each
point represents an individual in terms of the genetic algorithm – each with
a speci�c machine-state projection vector (see Section 5.2.3), which partitions

5 I limited FI to the �rst 107 dynamic instructions for the MiBench benchmarks to keep the
computing time budgets reasonable.

6 Uniform sampling without taking the DUEC size into account.

5.4 evaluation 163

the training set into a number of FSCs as shown on the log-scale X-axis with
possible values from 1 to 100 000. As described in Section 5.3, the accuracy
of such a partitioning – plotted on the Y-axis – is de�ned as the percentage
of correctly represented fault-space area.

The optimization yields a set of Pareto-optimal solutions (black) the user
can choose from to partition each workload’s complete fault space in the next
step (see Section 5.2.4). Figure 5.5b shows the test results when applying all
previously determined, Pareto-optimal projection vectors to the complete
fault space while reusing all results from the 100 000 training FI experiments:
Depending on the partitioning the FSP heuristic creates in the complete fault
space, more experiments than the initial training experiments need to be con-
ducted to get a representing pilot for all new FSCs. For a chosen projection,
the accuracy drops by a nonlinear factor – in the order of 0.1 percent for
highly-accurate, up to 20 percent for the low-quality solutions – from train-
ing to test. For example, a solution with 99.9986 percent accuracy in the
training set (9012 FSCs) requires the user to conduct 99 308 additional FI ex-
periments, totaling in 199 308 including the training set, from a total of 14.8
million (see Table 5.2). This solution reconstructs the complete fault space
with 99.2512 percent accuracy; a solution with 99.9903 percent training-set
accuracy and 2100 FSCs yields 90.4036 percent accuracy with 8243 addi-
tional experiments (108 243 total).

In Figure 5.6, I apply the latter example solution to the complete eCos/
baseline fault space, illustrating the advertised local fault-space feature pre-
servation of the FSP heuristic: A close-up of a small area of the fault-space
plot of the eCos/baseline mutex1 benchmark even remains largely intact
when after training only 8243 additional FI experiments are conducted –
totaling 108 243 experiments including the training set, a mere 0.73 percent
of all 14.8 million eCos/baseline experiments.

Subsequently I investigated how well previously trained solutions apply
to a new and unknown, yet not completely di�erent workload. As described
in the previous section, the eCos/CRC benchmark comprises the same kernel-
test programs as eCos/baseline, yet they are hardened against memory
faults, and execute substantially more dynamic instructions. Probably most
notably they introduce a new FI-experiment outcome type “detected” that
signals a successful error detection by the CRC-based EDM: This outcome
type does not exist in eCos/baseline, and, thus, cannot have been observed
by the training process from Figure 5.5a. The black points in Figure 5.5d
show how well these projection vectors perform for eCos/CRC without any
eCos/CRC-speci�c training. Note that without this training phase, there
is no initial 100 000 FI-experiment penalty for the training set. One inter-
esting observation is that the solutions requiring up to 300 000 FI experi-
ments are partially in the 90 to 97 percent accuracy range, but by far not
as close to 100 percent as in the eCos/baseline plot (Figure 5.5b). Never-
theless, previously trained projection vectors seem to be reusable even for
unknown benchmarks: As the training process only learns how to group def/
use classes into fault-similarity classes, but does not try to completely predict

164 fault-similarity pruning: campaign speedup by experiment-count reduction

G
ro
u
n
d
 t
ru
th

S
am
p
li
n
g

R
ec
o
n
st
ru
ct
ed
 w
it
h

F
au
lt
-s
im
il
ar
it
y
 h
eu
ri
st
ic

Figure 5.6: A tiny fault-space plot excerpt from a stack memory area of the mutex1
benchmark (from top to bottom; color coding: white = no e�ect, blue =
timeout, red = CPU exception, black = SDC): Ground-truth results (100 %
FI experiments), results from sampling 0.73 % of all DUECs (gray areas
are unknown results, i.e., DUECs that were not sampled or known a pri-
ori), and reconstructed results with also a total of 0.73 % (including train-
ing set) of all experiments for the eCos/baseline benchmarks. Adapted
from [SBS14].

5.4 evaluation 165

experiment outcomes without carrying out new FI experiments, it can even
deal with previously unseen experiment outcomes, such as “detected” in this
case. Figure 5.5c and the green points in Figure 5.5d show the accuracy re-
sults after training speci�cally for eCos/CRC:7 The accuracy, and especially
the accuracy mapping from training to test, is signi�cantly better than with-
out training – the low-quality left margin vanishes. This, of course, comes
at the cost of an initial training phase and more FI experiments depending
on the desired accuracy.

Among the remaining Figure 5.7a–5.7h, MiBench/qsort displays an ex-
tremely high accuracy even for minimal numbers of additional experiments:
With 100 012 FI experiments – results from training, plus 12 new FSCs in
the complete fault space – it achieves an accuracy of 99.9902 percent. The
primary reason for this is that the vast majority of experiment outcomes
– 99.9892 percent – for this benchmark are SDCs,8 which allows to create
extremely large FSCs that yield the same outcome.

5.4.3 Experiment-Outcome Breakup and Comparison with Sampling

As the user is, apart from fault-space details, also interested in the usual
experiment outcome breakup, this aggregate should not turn out to be in-
accurate either. For example, in the basicmath benchmark, 34.18 percent
of all faults result in no e�ect, 19.34 percent in an SDC, 31.80 percent in
a CPU exception, and 14.68 percent in a timeout. Figure 5.8 shows the Root

Mean Squared Error (RMSE) of experiment outcome breakups for a selection
of benchmarks with the Pareto-optimal heuristics from Figure 5.5 applied
to their complete fault space (black points and green points with the same
meaning as in the previous section): As expected, the fault-space reconstruc-
tion accuracy and the outcome breakup RMSE correlate quite well – good
local accuracy also yields a good global accuracy.

The plots in Figure 5.8 also include the outcome-breakup RMSE for FI sam-
pling (with fault expansion [SJAP97]; red lines in the �gure), a technique
commonly used to only estimate the breakup without gaining any informa-
tion on local fault-space details. Interestingly, in some cases sampling yields
inferior results – especially for the un-trained heuristic con�gurations in the
eCos/CRC case (Figure 5.8b, black points) as it does not have the experiment-
count penalty of a training set. This means the FSP heuristic can compete
with sampling, although it yields much more detailed information on the
fault space.

7 . . . and reusing some of the eCos/baseline projection vectors as the initial population for
the optimization algorithm.

8 This failure behavior is in fact not very astonishing for a benchmark sorting a long list of
text strings.

166 fault-similarity pruning: campaign speedup by experiment-count reduction

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

● ●●

●

●

●

●●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●●●●

●

●

● ●●

●

●●
●●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●

●

● ●●

●
●

● ●
●

●

●

●

●●● ●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●●

● ●●● ● ●

●

●

●●

●● ●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●●

●

●●● ●●

●●

●

●

●
●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●●

●

●

●

●● ●●●
●
●

●
●

●

● ●

●
●

●

●

●

●● ●
●

●

●●

●

●

●
● ●●

●

● ●● ●

●

●●●

●

●

●

● ●

●

●
●

●●

●

●

●

●●●

●

● ●

●

●
●

●
●● ●●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●●

●●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●●

●

●

●●

● ●

●

●

●
●●●●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

● ●●●

●

●●●● ●●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

● ●

●

●

●

●● ●●

●

●
●

●

●
●

●

● ●●● ●

●

●

●

●

●

●

●

●●

●

●
●

●● ●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●

●●● ●●

●
●

●●

●●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

● ●

●

●●
●

●

●●

●

●● ●

●

●

● ●●

●●
●

●●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●●● ●

●

●

● ●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●
●

●

●

●

●

● ● ●

●

●● ●●
●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●● ●● ●

●

●
●●

●

●●●●●

●

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
● ●●

●

● ●

●

●

●

●●●●●

●

●
●

● ●●●
●●

●

●

●

●●● ●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●● ● ●●

●

●●●●
●

●

● ●●

●

●●●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

● ●●

●

●

●

● ●

●

●

●
●

●

●

●●●

●

●

●

● ●

●

● ●

●

●
●

●

●●
● ●●●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●●
●

● ●

●

●

●

●

●
●

●●●
●

●● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●● ●

●

●

●

●

●●

● ●

● ●

●

●

●

●●

●

● ●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

● ●●●●●

●

●

●

● ●

●●●

●
●
●

●
●

●

●

●

● ●●

●

●

●●

●

●

●

●

● ●●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●●●

●

● ● ●●

●
●

●

●●● ●●

●

●

●

●

●

●

● ● ●●

●

●

●●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●
●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●●

● ●●●

●

●

●

●

●

●●●

●

●●

●

●●●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●
●● ●●

●

●
●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●●

●

●

●

●

●● ●●●

●

●
● ●

●

●

●● ●● ●

●

●
●

●

●

●

●

● ●●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●

●●●●
●

●●

●●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●
●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●●●●●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●● ●

●

●
●

●●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●●●●

●

●

●● ●

●

●●

●

●

●● ●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●● ● ●● ●●

●
●●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●●

●

● ●●●

●

●●●

●

●●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

● ●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●
●

●●

●

●

●

● ●

●

●
● ●●

●

●

●

●

●
●●

● ●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●● ●● ●

●

●
●

●

●

●

●

●

●●

●●● ●●●● ●● ●●●

●

●

●

●

●●

●

●

●● ●●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ● ●●
● ●

●●●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

● ● ●

●

●

● ●

●

●

●

●
●

●●

● ●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

● ●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●●

●●

●

●
●

●

●

●●
● ●

●
●●●●●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

● ●

●●

●●
●●

●
●

●●

●
●

●

●●

●
●

●

● ●●

●

●●

●

●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

●●
●

●
●

●●●

●

● ●
●

●

● ●

●

● ●● ●

●

●

●

●

●

●●

●

●

●

●● ● ● ●

●●

●●●●

●●

●

●●

●
●●

●● ●●● ●●●

●

●●

●

● ●●●●

●

●

●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●● ●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●●● ●●●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

●●

●
●

●
●

● ●●

●

● ●

●

●

●

●

●
●

●

●● ● ●●

●

●

●●

●

●

● ●

●

●

●
●

●
●

● ●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●● ●●●

●

●

● ●●●● ●● ●

●
●

●
●

●●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●●●●● ● ●● ●●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

● ●● ●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●● ●●● ●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●● ●
●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●●●
●

●

●

●●●

●

●

● ●

●

●

●●●

●

●● ●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●●●●

●

●

●

● ● ●●

●

●

●●

●●
●

●

●● ●

●

●

●●

●

● ●●

●

●

●

●●

●

● ●

●

●●

●

●● ●

●

●●

●

●● ● ●● ●

●

●●●●●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●● ●●

●

● ●●

●

●

●●● ●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●●
●

●

●

●
●

●

●●

●

●●

●

●● ●

●

●
●

●
● ●● ●●

●

●
● ●●

●

●

●

●
●●

●

●

●●

●

● ●● ●●

●

●●

●

●●
●

●

●

●●● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

● ●●●

●

●

●

●●●

●

●
●

●● ●

●

●●● ●●● ● ●

●●

●●

●

●● ●

●

●

●

●●

● ●

●
●

●

●

●

●

●●

●

●● ●

●

●
●●

●

●

●

●●

●

● ●●

●

●

●
●

●

●

● ●

●

●

●
●●

●

●

●●●

●
●

●

●
●

●

●

●

● ●●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●● ●

●

●

●

● ●●

●

●

●
● ●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●
●●●●

●

●

●

●

●

●

●●

●

● ●●

●

● ●

●

●

●

●

●
●

●

●●

●

● ●●● ●●● ●
●

●

●

●

● ●

●

●

● ●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●●●●
●

●

●
●

●●

● ●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●●●● ●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●● ●

●

● ●●● ●●● ●

●

●

●

●●●●●
●

● ●●●

●

●

●

●

●

● ●●

●
●

●

●

●●● ●
●

●● ●●● ●●

●

● ●

●
●

●

●

● ●

●

●●
●

●

●

●

●
●

●

●●

●

●● ●●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●● ●● ● ●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●
● ●●● ●●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●● ●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●● ●

●
●● ●

●●●

●

●
●

●●● ●

●

●●

●

●

●

●

●●

●●

●

●

●
●

● ●

●

●●●

●

●

●

●

●
● ●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

● ●● ●

●

●●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●
● ●

●

●●

●

● ●●

●

●

●

●

●

●

● ●

●

●
●●

●

●● ●● ●

●

●

●

●

●● ●

●

●

●

●
● ●

●

●

●●

●
●

●
●

●

● ●● ●

●

●

●

●
●●

●

● ●● ●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●

●●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●● ●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●● ●●

●

●● ●●

●

●
●●●
●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●● ●●

●

●

●

● ●

●
●

●

●

●●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●●● ●●●●

●

● ●

●

● ●

●

●
●

●

●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●● ●● ●

●

●● ●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●
●

●

● ●

●
●

●
●

●

●

●●

●

●

● ●

●

● ●

●

●●● ●

● ●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●● ●

●

●

●

● ●● ●
●

●

● ●●

●

●

●

●

●
●

●●●●

●

● ●

●

●

●

●●

●

●

●

●

●

● ●

●

●●●● ● ●● ●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

● ●● ●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

● ● ●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●● ●●

●

●

● ●●

●

●

●

●

●
●

●

●

●

● ●●

●

●●

●

●

●

●

●●●●●
●●

●

●
●

●
●

●● ●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●● ●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●● ●

●
●

●

●

●
● ●●

●

●

●
● ●

●

●

●

●
● ●

●

●

● ● ● ●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●●●

●●

● ●●

●

●●

●

●

●

●

●

● ●● ●
● ●

●

●●●
●●

●

●

●

●●

●

● ●

●

● ●●

●

●

●

●

●
●

●●

●

● ●●

●
●

●

●

●

●

●

●

●

●●●● ●●

●

● ● ●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

● ●

●
●

●
●

●●

●

● ●●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●●● ●

●
●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●
●

●●

●

●

●●

●

●

●

● ●●●

●

●

●●

●

● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●● ●

●

●●●●

●

●

● ●

●
●●●

● ●

●

●

●

●

●

●●●●●●

●

●

●●

●

●●●●

●

●

●

●

●● ●●

●●●

●

●

●

●

●

●

●●

●●●●
●

● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●●●● ●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●● ● ●

●

●●

●

●●
●

●

●

●●● ●

●

● ●

●

●●

●

●

●●● ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●● ●

●●

●

●

●

●

●●● ●

●
●

●

●

●●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●
●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●●●●

● ●

● ●● ●●

●

●● ●

●

●●●
●●●

●

●

●

●

● ● ●

●

●●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●

●

● ●

●●

●

●●

●●

●

●

●
●

● ● ●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●●● ●

●

● ●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●
●●

●
●

●

●

●●

●

● ● ●
●

●

●

●●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●● ●

●

●

●

●●●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●●
●

●● ●
●

●
●

●●●●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●● ●

●
●

●

● ● ●● ●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●● ●

●

●

●

●

● ●

●
●

●

●● ●●

●●

●

●●●
●●●

●

●

●

●

●

●

● ● ●●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●●

●

●

●

●

●

●● ● ●●

●

●●

● ●

●
●

●

●

●
●●

●

●

●

●

● ●

●
●

●●

●

●
●

●

●●

●

●●

●

●

● ●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●●

●

●●

●

●●

●

●

●

●● ●

●

●

●
●● ● ●●

●

●●

●

●

●

●●

●

●●●●
●●●●

●
●

● ●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●● ●●
● ● ●

●

●●

●

●●●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●

●

● ●● ●

●

●

●

●

●

●● ●●●

●

● ●

●

●

●

●

●

●●

●

●●
●

●

● ●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●●

●

●●

●
●

● ● ●

●

●

●

●●●

●

●

●

●

●●

●

●

● ●●

●

●

●

●●

●

●

●
● ●

●

●

● ●●● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

● ●●●

●

●

●

●

●

●

● ●

●

●
●

●

●●●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

● ●●● ● ●

●

● ● ●

●

●

● ●●

●

●
●

●●●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●●

●

● ●
●

● ●●●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

● ●●● ● ●

●

●

●
●● ●●●●

●

●● ●

●●

●●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●●●●

●

●
●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
● ●

●●

●●

●

●
●● ●●

●

●●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

● ● ●● ●

●

●

●

●

●●

●●● ●●

●

●● ●
●

●

●
●

●

●

●
●

●
●

●

●

●●●● ● ●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●
●

●● ●

●

●●●

●

●

●

● ●●

●

●● ●

●

●

●

●

● ●●●

●

●

●●

●

● ●

●

● ●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

● ●●●

●

●●

●

●

●

●

●● ● ●

●

●

●

● ●

●●

● ●

●●

●

●

●

●
●

●

●

●

● ● ●●●

●

●

●
●

●●

●

●

●

●
●

●●

●

● ●● ●●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●● ●

●

●

●

●

● ● ●●●●

●

●

●

●●

●
●

●

●

●

●

● ●●
●

●
●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●
●

●●
●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●●● ●

●

●

●

●
●

●

●

●

● ●

●

● ●●

●

●

●

●

●

● ●●
● ●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●●
●

● ●● ●

●

●

●

●

●
●

●
● ●

●●
●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●●●

●

● ●

●

●

●

●

●

●
●

●

● ●●● ●●

●

●

●

●

●●

● ●

● ●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

●

● ●● ●●

●

●

●

●●● ●

●
●

●

●●

●

● ●

●

●●● ●

●

●

●

● ●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●
●

● ●

●

● ●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●● ●

●

● ●

● ●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●● ●●●●

●

●

●

●

●

●

● ●

●

●

●

●

● ●● ●

●

●

●●●

●

●

●

● ● ●
●

●

●

●
●

●● ●

●

●●●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●● ●

●

●● ●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
● ● ●● ●●

●●

●

●

●

●

●

●

●

●

● ●● ● ●

●

●●

●

● ●

●

●
●

●●
●

●

●●

●

●●●

●
●

●

●

●

●

●

●

● ● ●

●

●

●●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

● ●●

●

●

●

●● ●

●

●●

●

● ●●

●

●

●

● ●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

● ●
●

●

● ●

●

● ●●●

●

●

●

●

● ●

●●

● ●

● ●
● ●

●

●

● ●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●
● ●

●●

●●
●●

●

●

●

● ●●

●

●

●●

●
●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●● ●● ●

●

●●
●

●

●● ●

●

●

●
●

●

●

●

● ●

●

●●

●

●

● ●

●

●

● ●

●
●

●●●

●

●●

●

●

●
●

●● ●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ● ●●
●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●● ●

●

●●

●

●●●●

●

●

● ●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

● ●●● ●●

●

●

●

●● ●●

●

●
●

●

●

●●

●

●●
●

●

● ●
●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●

● ●●

●
●

●●
●

●

●● ●●●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●●●●

●

●●

●

●

●

●

●

● ●●● ●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●●
●

●

●●

●●

●

●

●

●

●●

●

●

●

●●
● ● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●●

●

● ●●

●

●

● ●●

●

●

●

●

●

●
●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●

●

●●● ●

●●

●

●

●

●
●

● ● ●● ●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●● ●●●●

●

●

●
●●

●

●

●

●

●
● ●

●

●●

●

●

●

●●

●

●●●

●

● ●

●

●●

●

●
●

●●

●

●

●

●

●●●●

● ●

●

● ●

●

●

●

●

● ●●

●●●

●

●

●

●

●

●

●●● ●

●

●● ●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●
●

●●●

● ●

●

●

●
●●

●

● ●

●

●

● ●

● ●●

●
● ●

●●

●
●

●

●

●
●

●●

●

●● ●

●

●

●

●

●

●

●●

●

●●
●

●● ●

●

●

●
●

●
●

●
●

●●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●●

●

● ●

●

●●● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●● ●●●●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●●

●

●

●● ●●

●

●

● ●●●●
●

●●

●

●●●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
● ●● ●●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●● ● ●● ●

●

●●

●

●
●

●

●

●●

● ●●

●

●●●

●●

●

●

●

●● ●

●

●●●●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●● ●

●
●

●●

●●

●

●

●

●●

●●

●●

●

●

●●
●

●

●

●

●●●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●●●

●

●

● ●● ●

●

●

●
● ●

●

●●

●●

●

●

●● ●

●

●

●

●

●

●

●

●
●●

●

●● ●●●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●●

●●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

● ●●●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●
● ● ● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

● ●●
●

●

●● ●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●● ●● ● ●

●

●

●

● ●

●

● ●

●●

●

● ●●

●
● ●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●●

●

●

●

● ●

●

●
●●

●

●
●

●

●

●

●

● ●

●●

●

●

● ●

●

●●● ●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●●

●

●

●●

● ●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●
●

●

●

●
● ● ●

●

●●● ● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●● ●● ●● ●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●● ●

●

●

●

●

●●
●

●●

●

●

●●●● ●●

●

●● ●

●

● ●● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●●● ●● ●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●●●

●

●

●

●●

●

● ●
● ●

●

● ●● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

● ●●

●

●●●

●

●

●

●● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●●

●

●● ●

●

●●●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●●

● ●

●●

●

●
●

●

●

●

●●
●

●●●●

●

●

●

●●● ● ●●

●

●

●

● ●●●

●

● ●

●

●

●

●

● ●

●

●

●
●●●

●

●

●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●●● ●

●

●

●

●

●
●

●

●

●

●
●● ●

●

● ●

●
●

● ●● ●

●

●●

●

●
●

● ●

●

●

●

●

●
●

● ●●

●

●

●●●●

●

●

● ●●

●

●

●

●●●●
●● ●● ●● ●●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●● ●●●

●

●● ●
●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●● ●●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●●

●

● ● ●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●
●●

●

●

●

●
●

●●●● ●

●

●●

●

●

●●●

●
●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ● ●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●●

●
●

●

●

● ●

● ●●

● ●●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

● ●● ● ●● ●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●●● ●

●

●●

●

●●●

● ●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●
●

●●

●
●

●●●

●
●

●
●

●●

●

●●
●

●

●

●
● ●

●●
●

●
●

●

●

●

●●

●
●●

●●

●

●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●●● ●●

●
●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●● ●●

●

●●● ●

●

●

●

●● ●● ●
●

●

●

●

●

●●●

●

●

●

●●

●

●● ●

●

●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

● ●

●

● ●
●

●

●

●

●

●
● ● ●

●

●●

●

●

●●

●●

●

●

●●●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●●● ●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●
●●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

● ●●●

●

●

●

●

●

●

●
●

● ●● ●●

●

●●●●● ●

●

●

●

●●

●

●

●

●

●● ●
●

●●

●

●● ●

●

●

●

●
●

●

●

●

●● ●● ●●
●

●

●
●

● ●●●●

●

●●●

●
●

●●●

●

● ●●

●

● ●

●

●

● ● ●●

●

●

● ●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●● ● ●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●● ●

●

●
●

●

●

●

●●

●

● ●●

●

●●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●●

●

● ●● ●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

● ●●

●

●

●●

●

●

●

●●

●

●
●

●● ●●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●●● ●

●

●●●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
● ●●● ●●

●
●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●●

●

●

●●

●
●

●●

●
●

●

●

●

●
●

● ●
●

●

●●

●

●●

●

●

●
●

●

●●●●● ●
●

●●

●
●

●

●●

●●
●

●

●

● ●

●

● ●

●

●

●

●●●
●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

● ●

●

●

● ●●

●

●

●

●
●

●●
●●

●

●

●
●

●

●●

●●

●

●
●

●●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

● ●

●●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●● ●●

●

●●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●
●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●●●● ●

●

●

●

●●

●

●

●

●

●

●●

●

●● ●● ●●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●●● ●●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●● ●●●● ●

●

●●

●

●
●●●●

●

●

●● ●
●

●

●

●
●
●

●

● ●●●●●●

●
●

●

●

●●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●●

●

● ●●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

● ●
●

●●

●
●

●

●

●

●

●●

●

● ●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●● ●

●

●

●

●

●● ●●

●

●
●

●

●

●● ●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

● ●●

●

●

●

●

●
● ●●

●
●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

● ●●

●
●

● ●● ●●●

●

●● ●●

●

●

●

●

●

●

●

● ●

● ●

●

●●

●

●

● ●● ●

●

●

●

●●

●

●

●●●

●

●

●●

●

●●

●

● ●● ●●

●

●

●

●

●

● ●●

●

●● ●

●

●

●●

●●

●

● ●●
●

●

●●

●

●●

●

● ● ●●●●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●● ●

●

●

●●

●

●●● ●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●●

●

●
●

●

●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●●

● ●

●

●●

●
●

●
●

●

●

● ●●●●

●

●● ●●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●

●

● ●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●● ●

●

● ●●

●
●

● ●● ● ●●●●●

●

●●● ●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

● ●

●

●●●

●

●

●

● ● ●

●
●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

●
●

● ●

●

●

●

●

●

●

●● ●

●
●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●● ●●●

●

●

●

●
●

●● ●●

●

●

●

●

●

●

● ● ●●●

●

●●

●●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

● ●● ●

●

●

●

●● ●
●

●●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●●●●

●
●

●

●

●● ●●●●
●

● ●●● ● ●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●● ●●

●

●● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

● ●● ●

●

●

●

● ●● ●●●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●● ●●●

●

●

●

●
● ●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●

●

●

● ●

●

●●

●

●

●●

●

●

●
● ●●

●

●

●

●

●●

●
●

●

●●

●

●

●●
●

● ●●

●

●

●

●

●

●
●

●

●

●

●●●● ●

●

●

●

●

●

●●

●

●●

●

●
●

●

● ●●

●
●

●

●

●

●●

●

● ●

●

● ●●

●

●

●

● ●●

●

●●
●

● ●
●

●

●

●

●

●

●

●

●●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●●● ●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●●

●

●

●

●
●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●● ●●●

●

●
●

● ● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●●●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●● ● ●

●

● ●●

●

●

●

●●

●

● ●

●

●

●

●● ●●● ●

●

●●●

●
●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●●

●●

●

●●

●●●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●● ●● ●● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●
●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●●● ● ●●

●

● ●

●

● ●●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

● ●●

●

● ●
●

●

●
●●●

●●

●

● ●●

●

●

●
●

●

●

●

● ●●● ●●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●●●
●

●● ●

●

●

●

●

●●

●

●

●●● ●● ● ●●● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●●● ●

●

●
●●●

●

●

●

●

●

●

●

●

●●● ●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

● ●●●●●
●

●

●
● ●●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●●●

●

●●

●

●

●

●●
●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●● ●●●

●

●

●●● ●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●● ●

●
●

●

●

●

●●
●

●

●
●

●

● ●●

●

● ●●●●

●
●

●

●

● ●

●● ●●

●

●
●

● ●

●

●

● ●●

●● ●●

●
●

●

●
●

●●

●
●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●●● ● ●

●

●●

●

●

●●

● ●

●

●

●● ●

●

●●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●● ● ●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●

●

● ●

●

● ●●●

●

●●●

●

●

●

●

●

●
●

●

●● ●

●

●●

●

●

● ●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●
●

●

●

●

● ●●

●

●●●●

●

●

● ●●

●

●● ●

●

●
●

● ●●

●

●

●

●●

●

●
●

●●●

●

●●●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●● ●

●

● ●●●●●

●

●

●

●

●

●

●
●● ●●● ●● ●

●

●

●●

●

●

●

●

●●●●
●

●

●
●

●

●

● ●●●●●●● ●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●●●
●

●

●

●

●

●

●

●

● ●●

●●

●

●●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●
●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●●●

●
●

●

●

●●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
● ●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

● ●●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●

●● ●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●●●
●

●

●●● ●●●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

● ●●●● ●

●

●
●

●●●

●

●

●● ●●

●

●

●

●
●

●●

●● ●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

● ●●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●●●

●

●

●

●

● ●

●●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●
●

●● ●
●

●●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

● ● ●●

●

●

● ●● ●● ●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●● ●●

●

●
●

●

●

●
●

●

●● ●●● ●

●

●

●●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

● ●●

●

●●●●

●

●●

●● ●

●

●

●●

●●
● ●

●

●
●

●

●

●

●

●

●●●● ●

●

●

●

● ●●

●

●● ●

●

●● ●●

●

●

● ●

●
●

●

●●

●

●●● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ● ●●●

●

●

●

●●● ● ●●

●

●●●●●
●

●

●

●

●

●

●

●

●

● ●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●●

●

●

●● ●●●● ●

●

●

●

●

● ●●

●

●
●

●
●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●
● ●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●● ●

●

●● ●
●

●

●

●

●● ●● ●●

●

●● ●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

● ●● ●●

●

●

●

●

●●

●

●● ●●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●
●

●

●● ●

●

●●●

●

●

●

●
●

●

● ●

●

●●

●

● ●

●●

●

●

●
●

●

●

●

● ● ●
●

●

●

●

●

● ●

●

●

● ●

●

●● ●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ● ●●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●●

● ●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●●●

●

●●●

●

●

●

●

●

● ●●● ●●

●

●

● ●
●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

● ●

●
●●●

●

●

●

●
●

●●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●
●

●
●

●

●
●

●

●
●●● ● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●●● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●

●● ●●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●

●

●●

●

●

●●
● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●● ●●● ●●

●

●●

●

●

●

●

●

● ●

●

●
●●

●

● ●

●

●●●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●
●

●

●
●

● ●
●

●

●● ●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●●● ●
●

●

●●● ●●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●● ●
●

●

● ●●

●

●

●

●

●●●● ●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●● ●●

●

●● ●●●
●

●

●●
●

●●

●
●

●

●

●● ●
●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

● ● ●

●●

● ● ●●● ●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

● ●

●

● ●
●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●●

●

●

●●
●

●

●●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●●●

●

●

●

● ●

●

●

●● ●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●●

●

●●● ●

●

●

●

●

●

●

●

●

●

●●
●●● ●

●

●●

●

●

●

●●
●

●

●

●

●

●
●●

●●●●

●

●

●

●

● ●●● ● ●

●●●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●
●

●●● ●
●

●

●●●

●

●

● ●

● ●

●

● ● ●●

●

●

●● ● ●●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

● ●

●

●

●
●●●

●

●

●●
●● ●

●

● ●●
●

●●

●

●

●

●

●

● ●
●

●●

●

●●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●●●

●

● ●

●

●

●

●● ●● ●●●● ● ●●

●

● ● ●●●

●

●

●
●

●

●●

●

●

●

●●●● ●

●

●
●

●● ● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●
● ●

●

● ● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●

●

●

●●

●

●

●

●●●

●

●●●●

●

●

●

●

●
●

●●

●●●●
●
●●●

●●●●
●●●
●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●●
●●
●●
●●●●●●●
●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●

25%

50%

75%

100%

1 10 100 1000 10000

#Fault−Similarity Classes

A
c
c
u
ra

c
y

(a) MiBench/basicmath (training)

●
● ●

●

●

●
●

● ●

●

●
● ●● ●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●
●

●

● ●
●

●

●

●

● ● ●●● ●●
●

● ●●

●

●

● ●●

●

●●
●

●

●

● ●●
●

●

● ●
●

●

●●● ●●

●

●
●● ●● ●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

60%

70%

80%

90%

100%

0 50000 100000150000200000250000

#FI Experiments (incl. training)

A
c
c
u
ra

c
y

(b) MiBench/basicmath (total)

● ●

●

●● ●

●

●

●

●
●●

●
●●

●

●●●●

●

●● ●● ●

●

●●
●

●

●●● ●

●

●● ●● ●
●

●

●

● ●●● ● ●● ●● ●
●

●

●

●●● ●● ●●● ●● ●●● ●●●● ● ●●●●

●

●●

●

●●●●● ●●
●

●● ● ●

●

●
●●

●
●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●●
●

●● ● ●

●

●

●

● ●

●

●
●● ● ●

●

●
●

●●

●

●● ● ●● ●●

●

●●
●

●

●●
●

●●● ●

●

●
●● ●● ●

●

●● ●
●

●

●●● ● ●●

●

●

●

●● ●
●● ●●

●

●● ●●● ●●

●

●

●

●

●● ●● ●●●● ●●● ●

●

●
●

●

●●

●

●●●● ●

●

● ● ●●● ●
●

● ●

●

●● ●● ●●●●●

●

● ●●●● ●●●● ●

●

●●

●

● ●●

●

●● ●●●●
●

●

●

●

●
●● ●●

●

● ●●●
●

●●●●

●

●● ●● ●●
●

● ●●● ●●
●

●●●

●

●●

●

●●● ●●● ●●● ● ●●

●

●

●

●

●●
●

● ●●●●● ●●●

●

●●

●

●● ●
●

● ●●●

●

●●

●

●●
●

●

●

● ●● ●●● ●●● ●●●
●

●● ●

●

●

●

●●
●

●

●

● ● ●
● ●

●
● ●●

●● ● ●● ●●● ●● ●● ● ●● ●●

●

●● ●●●● ●● ●●●
●

●●● ● ●● ●●●●●●

●

●●●
●

●●
●

● ●●● ●

●

● ● ●

●

●

● ●● ●

●

●● ●● ●●● ●● ●●
●

●
●

●

●

● ● ●● ●● ●

●

●

●

●

● ●●● ●● ●●

●●

●● ●●
● ●

●

●

● ●

●

●

●

●●●

●

●

●●●
●

●

● ● ●●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●● ●

●

● ●●● ●●● ●●

●

● ●● ●● ●
●●●

●

●●● ●● ●●●
●●●● ●

●
●● ●● ●● ●●● ●

●
●

●

● ●

●

● ●●●
●

●

●● ●●

●

●● ●
●

●● ●●● ●●●

●

●● ●● ●● ●

●

● ●

●

● ● ●●●●●●● ●●

●

●● ●●

●

● ●●●
●

●●● ●● ●●
●

●

● ● ●●

●

● ● ●●
●

● ●● ● ●●●●●

●

● ●● ●●
●

●●● ●
●

●● ●● ●
●

● ●● ●●
●

● ●● ●● ●● ●● ● ● ●●● ●●● ●●●● ●●●● ●
●

●

●● ●
●

●●
●
● ● ●●●●

●● ●●
●

● ● ●●●

●

● ● ●●
●●

●
●●● ● ●●

●

●●●●
●

●● ●● ●●● ●● ●●● ●● ●●● ● ● ●

●

●●●

●

●● ●

●

●●●● ●

●

●●●●

●

●● ●●● ●●●● ●● ● ●●
●●●

● ● ●● ●
●

●

●

●

● ●●● ●
●

●

●●

●

●
●● ●●●

●

●

●●● ●● ●●● ●● ●● ●● ●●
●

●●

●

●
● ●

●

●●

●

●● ●●
●

●

●●●

●

●

● ●

●

●● ●

●

● ●●
●

●●● ●● ● ●●●● ● ● ● ●● ●●●● ●● ●●● ●

●

● ● ●
● ● ●● ●●●●● ●●

●

● ●

●

●● ●

●

● ●● ● ●● ●● ●●
●

●●●●● ●● ●●

●

●● ●● ●●● ● ●●

●
●

● ● ●● ●● ●● ●●●●

●

● ●●● ●● ●●● ●

●

●●●●● ● ●

●

●●● ● ●● ●● ●●●● ●● ● ●●
●
● ●●●●● ● ●

●

●

●

● ●● ●

●

●
●

●
●●

●

● ● ●

●

●●
●

● ●● ●● ●●● ●● ●

●

● ●●● ●●● ●●●●●
●

●●

●

●

● ●●●

●

● ● ●

●

● ●

●

●

●● ●●●
●

●

● ●●

●

●

●

● ●● ●●● ●● ●●●● ●

●

●

●

●●● ●

●

●
●●

● ● ●●

●

●

●

● ●●

●

●●

●

● ●

●

●

●

●

●

●● ●● ●●

●

●

●

●●●

●

●

●

●
●

●● ● ●●

●

● ●● ●● ●● ● ●● ●●● ● ●● ●● ●

●

● ●●●● ●●

●

● ● ●●

●
●

●

●●● ●
●

●

●●

●

●● ●● ●●●
●

●

●●

●

● ●●● ●●

●

● ●●● ●● ● ●

●

●●● ●

●

●

● ●●● ●●● ●●●

●

●

●

● ●

●

●● ●●●● ● ●●● ● ●● ●

●
●

●● ● ●

●

● ● ●

●

●

●

● ●● ●
●

●

●

● ●●

●

●●● ●●● ●●

●

●

●

● ●●●

●

● ●●● ●
● ● ●

● ●
●

●

● ● ●

●

● ●●● ●●
●

●● ●● ● ● ●●
●● ●

●

●

●

●

●
●● ●

●

●● ●●●
●

●

●● ●

●

● ●●●● ●● ●
●

●

●

●

●● ●● ●● ●● ●●●● ●

●

● ● ●

●

● ●● ●●

●

● ●

●

●● ● ●
●●

●

●

●

●

●

●

●

● ●● ●
●

●

●● ● ●●●

●

●●

●

●●● ●● ●● ● ●●● ●● ●● ●
●● ●

●

●●● ●● ● ●●●

●

●

● ●● ●● ●

●

●

●

●

●

●

●●● ●● ● ●● ●●● ● ●●

●

●

●

●

●

●

●

● ● ●●●●●

●

● ● ●●●● ●

●

●

●

● ●●●● ●● ●● ●

●

●

●

● ●●●● ●

●

●●● ●

●

● ●● ●●●
●

●●

●

●●●

●

●●● ● ●●● ●●●● ●●● ●
●

● ● ●●● ●● ● ● ●

●

● ●● ●

●

●
●

● ●

●

●● ●●● ● ● ●● ● ●● ●●● ●●
●

●

●
●

●
● ●● ●

●

● ●● ●●
●

● ●●●
●●● ● ●●●● ●●●●●
●●● ● ●●●●●● ●

●

●●● ●●

●

● ●●● ● ●●

●

●●

●

● ● ●● ● ●● ● ●●● ●

●

● ●●●

●

●
●

●● ●● ●● ●●

●

● ●
●

●● ●

●

●
●

●

● ●● ●● ●● ●

●

●
●

● ●● ●●●●

●

●
●

●●●●
●

●
●

●

●●● ●
●● ● ● ●●

●

● ● ●●
● ●●●

●

●● ● ● ●●●● ●● ●●●
●

● ●● ●

●

●
●

●

● ●

●

● ●●● ●●●● ●●

●

●

●

●

●

● ● ●
●●

●

●
● ●●

●

●●
●●●●● ●

●
●● ●●

●● ●●●

●

●
●●● ● ● ●●

●
●● ●●

●

●

● ●●●●

●

●●

●

● ●● ●● ●

●

● ●● ●●

●

●

●

●

●

●●●●
●

●●●● ●

●

●●●● ●●●

●

● ●●●● ●●● ● ●●

●

●
●

●
● ●

●

●
●

● ●

●

●● ●● ●● ● ●● ●

●

●

● ●

●

●

●

●●
●

● ●● ●● ●●● ●●

●

●●● ●●
●

●

● ●

●

● ● ●●● ●● ●●

●

●
●

●

●●

●

●● ●●●
●

●●

●

● ●● ●●●
●

●●

●

●●

●

●●● ●
●

●

● ●● ●●● ●●●

●

● ● ●● ● ●●● ●●●
●

●● ●●

●

●● ●●● ●●●●
●

●

●

● ●●● ●
●
●

●

● ●

●

●●● ● ●●● ●

●

●● ●●

●

● ●● ●● ●● ●● ●
●

●● ● ●●●
●

●

●●●

●

●

●●
● ●●

●

●

●

● ●●●●

●

●

● ●●● ●●

●

● ●

●

● ●●● ●●● ●●● ●

●

● ●●●

●

●
●● ●

●

●

●

●●● ●●● ●●

●

●●
●

●

● ●
●● ●●● ●

●
●●

●

●● ●●

●

●

● ● ●●●●

●

●● ●● ●
●

●● ●●

●

●
●●

●●● ●● ● ●●

●

●● ●● ●

●

●
●●●●● ● ●●●● ●●●● ●●●● ●●

●

●●●●
●

● ●●●●●● ●● ●

●

●●●

●

●

● ●●

●

●
● ●

●

●●●● ●● ●●● ●

●

●●

●● ●●●

●

●●●●

●

●

●

●

●

● ●

●

●
●●

●● ● ●●

●

●

● ●

●

● ●● ●●
●

●
●

● ●●● ● ●●● ●

●
●●

● ●
● ●●● ● ●●● ●● ● ●●● ●●

●

● ●
●

●● ● ●● ●●

●

●

●

●● ●●● ● ●● ●●● ● ●● ●

●

●

●●●

●

●

●

●

●

● ●● ● ●●● ●
●● ●● ●●●● ●●●●

●

● ●● ●● ●●●● ●● ●● ●●●● ● ●● ●●●●●

●

●● ● ●● ● ● ●● ●
●●●● ● ●

●

●● ● ●● ●● ●
●

●●●●

●

● ●●● ● ●● ●

●

●●●
● ●● ●●● ●

●

● ●●● ●●

●

●● ● ●● ●

●

●
●● ●● ● ●●

●

●

●●●

●
● ●

●

●

●
● ●●

●

●

● ●

●

●

● ● ●●● ● ●●● ●●●● ●● ●●● ● ●●●
●

●

●

●●● ●● ●●

●

●●●
●
● ● ●● ●●●

●

● ● ● ●● ● ●●●●● ●● ●●● ●● ●●

●
●

●

●

●

●
●

●● ●●

●

●● ● ●●

●

●● ●● ● ●●
● ● ●

● ●
●● ● ●

●

●
●●● ●

●
●

●
●

●
●

● ●●●●
●

●●●●

●

●●●

●

●●●●● ●
●

● ●

●

●
●

●● ● ●● ●●
●

●●●●● ● ●●●● ● ●

●

●

●● ●

●

● ●●● ●● ●

●

● ●● ●●●●●

●

● ●

●

●

● ● ●●●

●

●●● ●●

●

●
●

●●
●
● ●● ●●●

●

●

●

● ●● ● ● ●● ●●● ●

●

●

●

●

● ●

●

●● ●●●
●● ● ●

●
●

●

●●

●

●

●

●

●●

●

●● ●●● ● ●●● ●● ●● ●● ●

●

● ●

●

●●●

●

●● ●● ●● ●●

●

●● ●●●
● ● ●●● ●

●
● ●● ●

●
●● ●●●

●

●

●
●

●

●
●

●

●

●

● ●
●●

● ●●
● ●● ●

●

● ●● ●●

●

● ●● ●

●

● ●● ●● ● ●●
●

●●● ●

●

●●● ●●
●

●
●● ●●

●
●●

●

● ● ●

●

●

● ●
●●

●

●

● ● ● ●● ●●● ●● ●

●

● ●

●

● ●● ●● ●●●● ●●● ●

●

●●

●

●●● ● ●● ●● ● ●● ●●
●

● ● ●● ●●● ●● ●●● ●● ●●

●

●●● ●●●●
● ● ●

●
● ●●● ● ●●

●

● ● ●●●●

●

●●
●

●● ●●●
● ●●● ●●●● ● ●●

●

●

●

● ●

●

● ●●● ● ●●●● ●●
●

● ●● ●●

●

●●

●

●●● ●● ●

●
●

●● ● ● ●● ●● ●●● ●● ● ●●●● ●
●●

●

●●
●

●

● ●● ●

●

● ●● ●

●

●●●●● ●● ●

●

●●● ●

●

● ●●●

●

● ●● ●●● ●● ●●● ●●● ●
●

●● ●●

●

● ●●●●

●

● ● ●

●

● ●●●●

●

●
●

● ●● ●●

●

●

●

● ●●● ●●●

●

●

●

● ● ●●● ●● ●● ●● ●

●

● ●● ●●●●● ● ●● ●

●

● ●●
●

●

● ●● ●● ●

●

●● ●

●

●●

●

●
●

●●

●

●●

●

●

●

●

●
●●● ● ●

●

●
●

●

● ●●

●

●● ●●● ●● ● ●● ● ●●● ● ●
● ●●● ●

●

● ●●● ●● ●● ● ●● ●●●● ●●● ●●●
●

● ●●● ● ●
●●

● ● ●●●● ●
●

● ● ●●

●

● ●● ●●●

●

●● ●
●

●●

●

●●
●

●● ●●● ● ●● ● ● ●●●

●

● ● ●
●

●

●● ● ●●● ●●● ●●● ●●●●

●

●●● ●●●● ●●

●

● ●
●● ● ●

●
●

●

●●● ●●● ●● ●●● ●●●●● ● ●● ● ●● ●●●
●

●● ●●●

●

●

●●●

●

●

●● ●
●

●● ●●
●

●●● ●●
●●● ●● ●●●

●

●● ● ●●●●● ●●●

●

●●

●

● ●● ● ●

●

●●
●

●

●

● ●●● ●●●

●

●

●

●●● ●
●

●● ●●

●

●●

●

● ●

●

●
●● ● ● ●

●
●●

●

●

●● ●●● ●●● ●

●

●
● ●●●

●
●

●●● ●●●●● ● ●●● ●●

●

●

●
●

●●● ●●● ● ● ●● ●● ●

●

●
●●

●
●● ●●

● ●
●

● ●●

●

●●●
●

● ●●● ●

●

●

● ●

●

●

●

●

●●

●

●
●

●

● ●● ●●

●

●● ●●● ●●● ●● ●● ●● ●●●● ●

●

●● ●●● ●●● ●● ●

●

●

●

● ●●●●● ● ●● ● ●●●● ●●● ● ●

●

●

●

●
●●● ●●

●
●

● ●●● ●

●

●●● ● ●● ●● ●● ●● ● ●● ●●● ●●●

●

●●●
●

●● ● ●●

●

●● ●● ●●● ●●●●● ●● ● ●
●

●

● ●●

●

● ● ●●

●

●
●● ● ●● ●●●

●

●

●
●

●● ●● ● ●●

●

●

●

●● ● ●●● ● ●●●●

●

● ●●●● ● ●● ● ●● ●●●● ●● ●●● ●

●

● ●● ●

●

●

●

●

●

●

● ●

●

●● ●●● ●●
●

●

● ●●● ●

●

●●●● ●

●

●●●● ●● ●

●

●
●

●

●

●● ● ● ●●●

●

●●●●● ●●● ●● ●● ●●

●

●● ●●

●

●●
●

●●●

●

●● ●●●

●

● ● ● ●●● ●●●●
●

●

●

● ●●● ●● ● ●● ●●● ● ●●●●●● ●●● ●● ● ● ●●● ●● ●●● ●
●

●●● ●● ● ●●
●

● ● ●● ●● ●●
●

● ●●

●

●

●

●●●● ●

●

●● ●● ●● ● ●●

●

●●
● ●● ●● ●

●
● ●●●● ●●●●

●

● ●●● ● ●●●● ●
●

● ●● ●●●● ●●● ●●●● ●●●● ●●●●●
●

●●● ●●●● ● ●●●● ●● ●●● ●●●● ●● ● ● ●●
●

●●

●

● ●●● ● ●●● ●
●

●
●

● ●

●

●

●

●●●

●

● ●

●

● ●
●

●

●

● ●

●

●

●

●● ● ●●●● ●● ●●● ●●

●

●

● ● ●● ● ●●● ●●●
●●

●

●

●

●

● ●● ●● ●●●● ●

●

●

●

● ●

●

●

●

●●● ●●

●●

●

●

●●
●

● ●●●

●

●● ●●● ●

●

●●

●

●●

●

●● ●●

●
● ● ●●

●
●

●
●

●●
● ●● ●● ●● ●●

●

●●●●● ●●● ●
●●

●

●
●

●

●● ●● ● ●

●

●

●
●●

●

●

●
●

●
● ● ●● ●● ●

● ●● ●●●

●

● ●● ● ● ●

●

●

●

●

● ●●●

●

●●● ●●● ●● ●● ●● ●
●

● ●

●

● ● ●●● ●●●●

●

●● ●●●● ●

●

● ●● ●

●

●● ●

●

●●
●

●●● ● ●●● ●●●●●● ●●● ●●●

●

●

●

●● ● ●●● ●

●

● ●● ●● ● ● ●● ● ●● ●●
●

● ●●●

●

● ●

●

●●

●

●

●

●

●
● ● ●

●

● ●

●

●

● ●●●● ●● ●●● ● ●● ●● ●●●●

●

●● ●

●

●

●

●

●

● ● ●●● ● ●

●

● ●●●

●

●●

●

●● ●●
●

●●● ●
●

● ●●●●●● ●●●●
● ●

●

●

●

●● ●●

●

●

●

●●● ●● ●

●

● ●●
●

●●●● ● ●

●

●●

●
●

● ●

●

● ●● ●●● ●

●

● ●
●

● ●● ●● ●●●● ●●● ● ●● ●● ●

●

●

●

●●● ●●
●

●

●

●●●●●●●
●

●

●

●●●

●

● ●●
●

●●● ●●●● ● ●●●● ●

●

●●

●

●
●●●

●

●● ●● ●●

●

●

● ●●

●

●
●
● ●

●

● ● ●● ●● ●

●

● ●
●

●● ●●●●●
●

●● ●

●

● ●●

●

●● ●●● ●● ●● ●
●

●● ●●

●

● ●●
●

●

● ●

●

●

●
● ●● ●●● ●●

●

● ●

●

●
●

●

●

● ●● ● ●●● ●●●

●

●● ●

●

● ●

●

●

●●

●

● ●● ● ●

●

●

●

●● ●● ●

●

● ●● ●

●

● ●● ●●

●

●
●

●
●●

●
●

●

●● ● ●

●

● ●● ●●● ●●

●

● ● ●●● ●● ● ●●● ●●●● ●●●

●

●

●

●●

●

●

●● ● ●● ●●

●

● ●●●● ●● ●●●
●

●
●●● ●●● ●● ● ●● ●●● ●

●

●● ●● ●● ●●● ●●●

●

● ●

●

●
●

●
●●

●

●●● ●

●

● ● ●●● ●
● ●●● ●

●

● ●●●● ●●

●

● ●

●

●●

●

●●

●

●

●

●● ●●● ●● ●
●

●

●

●

● ●●● ●
●

●

● ●● ●
●

● ●●● ●●●● ●
●

● ● ●●●●●

●

● ●

●

●● ●●● ●

●
● ●●

●

●

●

●

●●● ● ●●

●

● ●●●● ●

●

●● ●● ●● ●●●●●● ●● ●● ●●●● ●●● ● ●● ● ●● ●●● ●●
●

●

●

●

● ●● ●●●

●

●● ● ●

●

●

●

●● ●●

●

● ●●●●

●

● ● ●● ● ●●●● ● ●

●

●●● ● ●●

●

●●

●

●

●

● ●●●●● ●●● ●● ●

●

●●

●

●

● ● ●
●

● ●● ●

●

● ●● ●

●

●

●

●●

●

●●

●

●● ●
●

●
●

●

●

● ●● ● ●

●

●● ● ●● ●●●

●

●

● ● ●●

●

●

●●●● ●●● ●●●

●

●●●
●

● ●

●●
●

●●● ●● ● ●●●

●

●

●

●

●● ●

●

● ●● ●●

●

●● ●●● ●
●

●● ● ●●●● ● ●● ●●

●

●● ●● ●● ●

●

●

●

●● ●●● ●● ● ●

●

●
●

●

●●●

●

●●
●

●●

●

● ●●

●

●●●●●

●

●●
●

●
●●

●

●
●

●

●

●●● ● ●● ●●● ●●●● ●● ●● ●●

●

●

●

● ● ● ● ●●●

●

● ● ●●● ● ●●● ●

●

●●● ● ●●● ● ●● ●●
●

● ●●●

●
●

● ●● ●

●

●●●● ●●

●

●●●● ●● ●

●

●● ●●● ●●

●
●

●
●

●

●

●●● ●
●●

●

●

●

●

● ●● ●●●

●

●●●●

●

●
●● ● ●●● ●●

●

●● ●●● ● ●● ●

●

●

●
●

● ●● ●● ●● ●●●● ●●● ● ●●●● ●● ●● ●●●

●

●
●●● ● ●

●

●

●

●

●●● ●

●

●●●●● ●

●

● ● ●
●

●

●

● ●
●

●● ● ●

●

●● ● ●● ●●●●

●

● ●●●● ● ● ●

●

●● ●●● ● ●●

●

●

●

●

● ●●● ●●● ●● ● ●● ●● ● ●● ●● ●●●●

●

●

●

●

●

●

●
●

● ●●
●

●● ●

●

●●● ● ●

●

● ●●

●

●● ●●
●

●● ●● ●

●

●● ●●●●

●

●●●

●

●

●

●● ● ● ●● ●● ●●●●
● ●

●

●
●

●●

●

● ●●● ●●●

●

●
● ●● ● ●●● ●●● ●● ●●●●● ● ●

●
●

●●● ●
●

● ●● ●●● ● ●●●

●

●

●

●●●

●

●● ●●● ● ●
●●●

● ●● ●● ● ●

●

● ●
●

●●● ●
●

●

●● ●●●●
●●

●●● ●● ●●● ●● ●
●

●●●●
●●

●
● ●●

●

●

●● ●● ● ●●
●

●

●

●

● ●●●
●

● ●● ●●
●

●● ●●●● ● ●
●

●●

●

●●● ●●

●

● ●● ●● ● ●●● ●
●

●
●

●

●

●●● ●● ●

●

● ● ●● ●● ●●

●

● ●● ●● ●

●

● ●
●●

●

●●●● ●●●●
●●

●
● ●●●

●
●●● ●●

●

●●●
●

● ● ●

●

● ●●

●

● ●●

●

●●

●

●●● ● ●● ●●●

●

●●● ●●

●

● ● ●●●● ● ●● ●●●
●

●
●● ●

●

● ●
● ●● ●●●● ●● ● ●●● ●

●

●

●

●

● ●●● ●●● ●● ●●●●● ●● ●●
●
●● ●

●
● ●●●

●

●
●● ●● ●●

●

●● ●●●● ●

●

● ●● ●

●●

● ●●●● ● ●● ●●● ●● ●● ●●● ●
●

●●●● ●

●

●

●

●●
●

●●● ● ●●● ●● ●● ●●●●●
●

●
● ●●

●
●

●●● ●●●

●

●

●

●●● ● ●●●

●

●

●

●

●● ●●

●

●

●

●● ●● ●

●

●● ●●●
●

●
●● ●●●● ●● ●● ●● ●● ● ●● ●●

●
●●

●
●

●

●● ●●● ●● ● ●●

●

●
●

●
●

●

●● ●● ● ●

●

● ●●

●

●●

●

●

●

●

● ●● ● ●● ●● ●●● ● ●
●

●●●

●

●

●●● ● ● ●●●

●
●

●

●

●

●

● ● ●●

●

●
●

●●●●●●● ●●

●

●●● ●● ●●

●

●

●

●● ●●● ●
●

●● ●● ●●●● ●
●● ●● ●● ●●●●

●

●● ●●● ●● ● ●

●

●● ● ●●●● ●●●●● ●●● ●

●

●

●

●●● ●● ●●●

●

●● ●●●

●

● ●

●

●●

●
●●

●

●

● ●●● ●● ● ●●●

●

● ●●●

●

● ● ● ●●●●●
●

●
● ●● ●●

●

● ●●●●

●

●
●

●●● ●●●●

●

●

●

● ●●●●
●

● ● ●
●

●●

●

●

●● ●●●

●

●●● ●●
●

● ●●● ●●●●
●

●● ●●●● ●

●

●●

●

● ●● ●●● ●●

●

●

●

●● ●●

● ●

●● ●●● ●●●● ● ●

●

●● ●●●●

●

●● ●
●

●● ● ● ●

●

● ●●

●

●● ●

●

● ●●●● ●● ● ●●●

●

●

●

● ●●

●

● ● ●
● ● ●●● ●●●●●●●● ●●

●

●

● ●● ●● ●● ● ●●
●

●

●

●
●

●

●

●●● ●●●

●

●● ● ●

●

● ●

●

● ●●

●

● ●●●

●

●● ● ●● ●●●●
●● ●

●●

● ●●

●

● ●●● ●

●

●● ●●● ●● ●● ● ●● ●●

●

●
●● ●● ●●

●

●
●

●● ●

●

● ●●●● ●

●

●

●

●
●● ●●● ● ●●● ●

●

●●● ●●

●

●●

●

●● ● ●

●

●● ●

●
●

●●

●

●●
●

●● ●● ● ●

●

●● ● ●●
●● ●

●

●

●● ●●

●

●●●●

●

●

●

●●

●

●● ●● ●

●

●●● ●● ●● ●
●

●

●

●
●

●●

●

● ● ●●

●

●

●

● ●● ●●●● ● ●● ●●● ●● ●● ●
●

●●●●

●

●

●

●● ●●●

●

●
● ●●

●

●

●

● ●● ●●● ●●●● ● ●● ●

●●

●● ●● ●● ●

●

●

●●

●

●
● ● ●●

●

● ●

●

●● ●●●●●●●● ●● ●●● ● ● ●● ●●
●●

●●

●

●
●

● ●
●● ●● ●● ●● ●

●

●
●●

●

●

●

●

●● ●●

●

●
● ●●

●
●● ●● ●● ●●

●

●●
●

●●●●

●
●

●● ● ● ●● ●● ● ●●● ●● ● ●● ● ●●● ●● ●● ●● ●●●

●

●●● ●
●

●● ●● ●●

●

● ●● ●

●

●
●● ●

●

●● ●●● ●

●

● ●● ●●● ●● ●

●

●● ● ●●●● ● ●●●●

●

●● ●
●

● ●● ●● ●●●●
●

● ● ●●

●

●●
●

●

●

●●● ●●● ● ●●● ● ●● ●●● ●
●

● ●● ●●

●

●●●● ●●●

●

●

● ● ●●● ●● ●● ● ●●●● ●● ●

●

●

● ●●●● ●

●

● ●

●

● ●● ●●●●● ●●

●

●● ●● ●●

●

●
●

●

●● ●●●●●●

●

● ●

●

● ●● ●

●

●●● ●●● ●●

●

● ●● ●●●

●

●

● ●●

●

●

●●● ●●●● ●

●

●●●● ●● ●● ● ●

●

●

●●● ● ●● ●

●

● ●

●

●

●

●● ●●● ●●

●

●
●

●● ● ●● ● ●● ●● ●●● ●

●

●

●● ●●● ●●●
●●●

●
●

●

●
●

●
●

●● ●

●

●●

●

●

●

●

●● ●● ●●

●

●

●

●●●
●● ●● ●● ●

●

●
●

● ●● ● ●●● ●●● ●●●●●
●

●●●● ●● ●● ● ● ●

●

●●

●

●

● ●
● ● ●●

●
●●

●

●

●

●● ●●●
●

●●● ●●● ● ●●
●

●● ● ●●●● ● ●●

●

●●● ●
● ●● ●●● ●●● ●●● ●●● ●● ●

●

● ●●●
●

●●●●

●

●

●
●

●

●● ●● ●●

●

●

●

●

● ● ●
●

●

●

●

●●●

●

● ●●● ●● ● ●●

●

● ●●
● ●●

●

●

●

●●● ● ● ●

●

●
● ●● ●●●●

●

●

●

●● ●

●

● ●●

●

●
● ● ●● ●●●● ●● ●●

●

●● ●●
●

●● ●●● ● ●●

●
●

●● ●

●

●
●

●

●

●● ●● ●
●

●●

●

●

●

●

●● ●● ●●●● ●●

●

● ●●

●
●

●

●
●●●

●
● ●● ●

●

● ●●● ●● ● ● ●
●

●

●

●
●●●● ● ●

●
●●● ● ●● ●●● ●● ●●●● ●●

●

● ●
● ●● ●● ● ●● ●●●●

●

●● ●● ●

●

●● ●●

●

● ●● ● ●●● ●

●

●

●

● ●●

●

●●●●● ●●●●● ● ●● ● ●●● ●●● ●

●

● ●

●

●● ●●●● ● ●● ●

●

● ●●● ● ● ●●● ●
●

● ●
●

●●

●

●●● ●● ●● ●● ●● ●● ●● ●●

●

●●● ●● ●●●● ●●● ● ●

●

●

●

●●

●

● ●

●

●● ●● ●● ●●

●

●● ●●● ●●●

●

●●●

●

●● ●●

●

●

●●
● ● ● ●

●●● ●● ●●● ●● ●●●

●

●

● ●

●

●● ●●

●

●●

●●

●

●●

●

● ●
●

●

●

●

●●

●

●
●● ●●● ●

●
●

● ● ●●● ●●● ● ●

●

●

●

●●● ●● ●●●●
●

●

● ●●●

●

●
● ●●● ●● ●●

●
●● ●● ●● ●

●
●●● ●●● ●●

●

● ●● ●●● ●●

●

●

●●●● ●● ●●● ●
●

●●●● ●●

●

●

●

● ●●●

●

●●● ● ●●●
●● ●●●●

●

●● ●

●

●●

●

●
●

● ●

●

● ●●

●

●●● ● ●●●
●

●

●

●●●
●● ●● ●●

●
●●●●

●

● ●
●

●● ●
●●

●

●
●
●

●

●

●●●

●
●● ●● ●● ●●

●

●

●

●

●

●

●

●● ●● ●●● ●● ●●

●

● ●

●

● ● ●●● ●
● ●

●

●

●

●● ● ●
●

● ●●● ●

●

●● ●● ● ●● ●●

●

●●● ● ●

●

● ●●

●

●

●

●●
● ●●● ●

●

●
● ●

●

●

●

●● ●● ● ●●●

●

●●●● ●

●

●●

●

●

●● ●

●

●●
●● ●

●

●

●

●
●●●

●

●

●

●● ●●

●

●● ●
●

●●

●

● ●

●

●

●

●●● ●●● ● ●● ●●● ●● ●●
●

●●

●

● ● ●● ●● ●●● ● ●●
●●

●●
● ●● ●● ●●●●

●
●

● ●

●

● ●
●

● ● ●●●● ●
●

●

●

● ●
● ●

●
● ●● ●● ●● ●

●

●●●●●
●

● ● ●
●

● ●

●
●

●● ●● ●● ●

●

● ●

●

●●●●●● ●● ●●●● ● ●●●● ●●● ●● ●
●

● ● ● ●●●

●

●●● ●●● ●● ●

●

●● ●

●

●

● ●

●

●

● ●●● ●

●

●
●

●
●● ● ● ●● ●● ●● ●

●

●● ●●

●

●
●

●

●
●● ●● ●●●●●

●
● ● ●●●● ● ●

●
●●● ●●

● ● ●●

●

● ●

●

● ●● ● ●●●● ●

●

● ●● ● ●● ● ●●● ●●●● ●●● ● ●●●●●

●

●●● ●● ●●● ●● ●● ●● ●
●

●
●

●● ●●●●●●

●

●
●

●

●● ● ●●● ●● ●●
●

● ●● ●

●

●

●

●●● ●●

●

●●●● ●●●● ● ●●

●

● ●● ●●● ● ● ●● ● ●● ●●

●

●
●● ●●

●

● ●

●

●● ●

●

●● ● ●

●

●●●

●

●

●

●
● ●● ●

●
●●● ●

●

●●
●

●●● ●● ●

●

●●● ●● ● ●

●

●●

●

●●●● ●●

●

●● ●●●● ●●●●● ●●

●

●●●● ●
●

●
●

● ●

●

●

●

● ●

●

●

●

● ●

●

●● ●●● ●● ● ● ● ●●

●

●● ●● ●●

●

● ● ●

●

●●● ●

●
●

●

●

●

●
●

● ●●

●

● ● ●●
●

●
●

●

● ●● ● ●
●

●

●

●

●●● ●● ●
●●

●
●

● ●● ●●● ●●

●
●

●

●●● ●●●● ● ● ●● ●
●●

●●

●

●●

●●

● ●●

●

●● ●● ●●●● ●●● ●● ●●
● ●

●
●

●

●●●

●

●●●● ● ● ●● ●●

●
●

● ●● ●●●●
●

●

● ●●

●

●●

●

●● ● ●●

●

●●
●
●

●●● ●● ●●
●
●

●

●
●● ● ●

●
●● ● ●● ●●

● ●● ●

●

●

●

●

●

●

●●●● ●●

●

●● ●
●

●● ●●●

●

● ●

●

●● ● ●
●

●
● ●●● ●

●

●●●●

●

●● ●● ● ●

●

●

● ●● ●●● ●●● ●●●●●● ●● ●

●

●●● ● ●● ●
● ● ●● ● ●

●
●● ●●

●

●

● ●

●

●

●●
●● ●

●

● ●

●

●

●●● ●● ●● ● ●● ●●●● ●● ● ●●● ●

●

●

●

●● ●

●

●
●

●●●
●

●

●

●
●

●
● ●

●
●

●
●

●● ● ●●●

●●

●
●

●●● ●●●

●

●● ● ●●

●

● ●●●●●

●

●●

●

● ●●
●

● ●●● ●●

●

● ● ●●● ● ●●

●

●

● ●
●

●

●●

●

●●●● ●●

●
●
●

● ●

●

●● ●● ●●●● ●

●

●

●

●

●

● ●
●

● ●

●

●●● ●●●

●

● ●●●

●

● ● ●●● ●

●●

●●
●

●● ●●
●

●● ●●●● ●●

●

●●
● ●

●●

●

● ●●● ●●●● ●● ●

●

● ●●● ●●

●

●●●●● ●● ●●● ●●●●● ●●●

●

● ●
●

● ●

●

●● ● ●● ●●

●

●

● ● ●● ● ●●
●

●

●● ●●● ●●
● ●●●

●
●● ●●

●

● ●●

●

●● ● ●

●

●●● ●
●

●●● ● ●● ●●
●

● ●●
●●

●

●

● ●●

●

●● ● ●● ●●●
●●

●● ● ●

●

●●
●

●●

●

●●
●

●

●

●●● ● ●●
●

● ●●●● ●●
●● ● ●●

●

● ●● ●

●

●● ●●●●● ●●
●

●
●

●
● ●● ●● ●●●●● ●●●●

●●
●

●

●
●
●● ●● ● ●

●

●●●
●

●●

●

● ● ●

●

●● ● ●● ●

●

●●●● ●●●●●
●

●●●●● ●●●● ●●● ● ●● ●●●● ●● ●●

●
●

● ●●

●

●●● ●●●●● ●
●

●

●
●

●●

●

●● ●●

●

● ●●● ●

●
● ●●●● ●

●

● ●● ●● ●● ● ●●

●

●●
●

● ●
● ●

●

●

●●

● ●●● ● ●●

●

●●● ●● ●

●

●● ●● ●● ● ●●●●
●

● ●● ● ●●●●
●

●

●●
●● ●●● ●● ●

●

●●

●

●

●

●

●

●

●

●●
●

●
● ●

●●

●

●●

●

● ●●●●

●

●
●

● ● ●●●● ●●● ●●

●

●●●● ●●●

●

●● ●●●● ●●
●

●

●●

●

●●
●

●● ●● ●●

●

●
●

●

● ●
●

● ●● ●● ●●● ●
●

●●● ●●
●

● ●●

●

●● ●● ●●
●●

●●

●

● ●●

●

●●●● ●● ●●

●

●●

●

●

●

●

●

●

●
●

●●●● ● ●●● ●●●● ●● ●● ●●●● ● ●● ●

●

● ●● ● ●

●

●

●
●

●● ● ● ●● ●● ●●● ● ● ●●
●

●● ●● ● ●

●

●●
●

●●

●

●

●

●

●●●

●

●● ●● ●● ●● ●●

●

●

●
●

●● ● ●

●

● ●

●

●

●

●

● ●● ●● ●●
●●

●● ●

●

●

●

● ●

●

●● ●

●

●

●

● ●

●

●●● ●●● ●●● ●●

●

●
●

●

●

● ●●●●

●
●

●
●

●● ●

●

● ●● ●● ●●● ●● ●● ● ●●●

●●

●

●

● ●●● ● ●●

●

●

●

●
●●●● ●● ●

●

●

●

●

●● ●●
●

●●● ●● ● ●● ● ●●●●

●

●

●

●● ●●●

●

●●● ●● ● ●● ●
●

● ●●● ●● ●

●

●● ● ●●● ● ●●● ●
●●

●

● ●●

●
●

●

● ● ● ●●● ●●●● ●●● ●
● ●

●

●

●

●

● ●● ●

●

●● ●●● ●●●●

●

●
●

●● ●●●● ●
● ●

●

●
●

●
●

● ●● ●
●

●● ●●

●

●● ● ●● ●●
●

●●● ● ●

●

●

●

●● ●● ●● ●

●

●

●

●● ● ● ●● ●
●

●

●

●●

●

●● ●

●

●●

●

●●
●

●
●

●

●
●

● ●● ●

●

●

● ●●

●

● ●●● ●● ●

●

● ●

●

● ●

●

●

● ●●

●

●● ●● ●

●

●
● ●● ●● ●

●

●●● ●
●●● ●

●
●● ●● ● ●●

● ●

●

●
●● ●

●

●●●
●● ●●●● ● ●●●● ●

●● ● ●● ● ●

●

●●● ●●●●● ●● ●●● ●●● ●● ●

●

●
● ●

●
●

● ●●

●

●

●

● ●● ●
●●

● ●●● ●●
●

●

●

●

● ●● ●

●

● ●
●

● ●● ●●● ●●●

●

●●

●

●

●

● ●●●● ● ●●● ●●

●

●●● ●● ●● ●●●● ●● ●

●

●

●

●

●●● ● ●●●●●

●

●

●

●

●● ●●

●

●●● ●●
●

●● ●

●

●● ● ●

●

●

●

● ●●●

●

●● ●

●

●
●

●●●●
●● ●●● ●●●● ● ●●●●●● ● ● ●● ●●●● ● ●●●

●● ●

●

●
● ● ●● ●●●● ●

●

● ●●●● ●

●

●

●

● ● ●● ●●

●

●

●

●●● ●

● ●

●

●●

●

●

●

●

●
●●●●

●
●● ●●● ●●●● ●●

● ● ●●

●

●●● ● ●● ●●

●

●● ●●●

●

●

● ● ●●● ●●●● ● ●●● ●
●

●● ●

●

●●● ●●● ●● ●● ● ●●● ●● ●● ●●● ●

●

● ●● ● ●● ●● ●

●

● ●●●
●●●●●●● ●● ●●● ●● ●●● ●●● ●

●

● ● ●●●● ● ●●● ●● ● ●

●

● ●
●

●

●

● ●●● ●●● ●●

●

●● ●

●

●● ● ●●
●

●● ●
●

●
●● ● ●● ●●● ●●● ●●

●

● ●

●

●
●●●● ●

●

●●
● ●●

●
● ●● ●

●

●
●

●●●●
●

●● ● ●●●● ●● ●●

●

● ● ● ●● ●●●●

●

● ●●

●

●● ●●● ●●●● ●●●● ●

●

●● ● ●● ● ●●● ●● ● ●● ● ●● ●● ● ●●●
●

●●●
●

●●●●● ● ●●●● ●
●

●●● ●●

●

●

● ●●●●● ●● ●

●

●

●

●● ●●●● ●●● ●●

●

●
●

●

●

●

●●●
● ●●● ●●●●● ●● ●●● ●●●●● ●●● ●● ●

●

● ●●● ●●●● ● ●● ● ● ●● ●● ● ●●●● ●

●

● ●

●

● ● ●
●

●●
●● ● ●● ● ● ●

●

●● ●●● ●
●

●

●

●● ●● ● ●●● ●● ● ●●●● ●

●

●●● ● ● ●● ●●●●● ●● ●

●●

●

●

●
●

● ●●●●
●

●

●

●●●

●

●

●

●
●

●● ● ●

●

●● ●●●

●

●● ●● ● ●● ●●
●

● ●●
●

●

● ●●
●

●●

●

●

●

●

●● ●

●

● ●●●● ●● ● ●●● ●

●

●

●

●●●● ●●

●

● ●● ● ● ●●

●

● ●

●

● ●●

●

●

●

●

● ●● ●● ●●● ● ●

●

●
● ● ●● ●● ● ●●●●● ●●●●● ●

●
●●

●

●●●

●

●● ● ●●●●
●

●
● ●

●●● ● ●●● ●●●● ●●●●
●

●
●

● ● ●

●

●

●

●●●● ●●● ●

●

●●●

●

●

● ●● ●●●●
●●● ●

● ●

●

●
● ●● ●● ●● ●●

●

● ● ●● ●● ● ●●● ●●

●

● ●●●● ●

●

●●● ●● ● ●●● ●● ●●
● ● ●●

●

●● ●
● ●●● ●● ●●●

●
●●●●

●

●

●
●

●

●
●●

●

● ●●● ●● ●

●

●

●●● ●●● ● ●●●
●

●

●●● ●
●

●

●

●
●

● ●● ●●●

●

●

●● ●●●● ●

●

●

●

● ●● ●●●● ●●●

●

● ●●●●●● ●● ● ●

●

● ●● ● ● ●● ● ●

●

●●●● ●●● ●
●

●
●

● ● ●● ●●●● ●●●

●

●
●

● ●●●● ●

●

● ●●

●

●
● ●● ●● ●

●
●● ●

●

● ●● ●● ● ●● ●●●●

●

●

●

●● ●

●

●● ●

●

●● ●●

●

●●●●

●

●

●
●

●
●

●

●

●
●●

●

●

● ●● ● ●●●
● ●

●

●

●

●

●

● ●●●●
●

●

●●

●

●●

●

●●● ●●

●

●

●●●● ● ●●●

●

●
● ●● ●

●

● ●
●

●●●●

●

●

●

● ●
●

●●

●

●

●

●

●

●●

●

●● ●●●

●

●

● ●●

●

●
●

●

● ●

●

●
●● ● ●●● ● ●

●

● ●

●

● ●

●

●

●

● ● ●● ●

●

●● ●●● ● ●

●

●

●●
● ● ●

●
●

●

●●●● ●●● ●

●

● ●●● ●
●

● ●●●

●

●●●●
●●

●

● ● ●●● ● ● ●●●● ●●

●

●● ● ●

●

●● ●● ●●● ●

●

● ●●●●

●

●● ●● ● ●●● ●● ●

●

●●

●

●

●

●

● ●● ●

●

●● ●●

●

●● ●●●

●

●●●●● ●●●●● ●● ●
●

●● ● ●●●

●

●

●

●●

●

● ●● ●

●

●● ●●

●

●● ●●● ●
●

●

● ●●● ●●

●

●
●●● ●●● ● ●● ●●●● ●●●● ●●

●
●

●

●● ●● ●●●

●

●●

●

●
●

●

●

●

●● ●●

●

●●

●

● ●● ●
●

●● ● ●● ● ● ●

●

●● ●
●

● ●

●

●
●

●

●

● ●●

●

● ●● ●●●●

●

●

●

●

●

●
●

●

●●●● ●●●●●●● ●

●

●●● ●● ● ●●●

●

●

●

●●●
●

●● ●● ●

●
● ● ●●

●

● ●●● ● ● ● ●
●

● ●●
●●

●

●● ●● ● ●●
● ●●● ●●●● ●● ●●
●

●●
●

●●●●

●

●
●●●●● ●● ●●●● ●

●

●

●

● ● ●●
●

●
●●

●

●●●● ●
●

●●
●

●●● ●

●

● ● ●●

●

●●

●

●

●

●●●

●

●●● ●●●●

●

●

●

●

●●●●

●

● ●●●● ●
●

●

●●●
● ●

●

●●●● ●●●● ●● ● ●●● ● ●●
●

● ●● ●●

●

● ● ●● ●

●

●

● ●●● ●●● ● ●

●

●●●● ●● ● ●● ●●

●

●
●●

●● ●●●●

●

●● ● ●●●

●

●●● ●●

●

●
●

●

●

●●
●

●●●● ●

●

●

●

●

●

●

●

●●
●● ●●● ●

●

● ●●

●

●

●

●●● ● ●●●●●
●
● ● ● ●●●● ● ●● ●●

●

●●
●

●

●

●

●●●

●

●

●

●● ●● ●

●

● ● ●●●●●●● ●● ●●● ●● ●●
●

●●

●

●
●

●

●● ● ● ●
●

●

●

● ●● ●● ●● ●

●

●● ● ●

●

● ● ●●●● ●

●

●

●

●

●

●●● ● ● ● ●

●

●●

●

●●● ●

●

●● ●●● ●
● ●● ●●●● ●●●●

● ● ●
●

● ●●●● ●●

●

● ●
●

●

●

● ●● ●● ●● ●●

●

● ●● ●●

●

● ●●● ●

●

●
●

●

●

●●●● ●

●

●

●

● ●

●

●●
●

●●

●

● ●● ●

●

●● ●

●

●

●

●
●● ●●● ●● ●●● ●● ●● ●

●
●

●

●● ●

●

● ●●●●●
●

●

●
●

● ● ●● ●● ●●

●

● ●●

●

●● ● ●●

●

● ●
●

●●
● ●●

●

●

●

● ●●

●

●●●
●

●

●

●

● ●●

●

●● ● ●●● ● ● ●● ● ●● ● ●● ●●● ●●

●

● ●

●

●

●

● ●● ●
●

●
●

● ●●●●●●●● ●●

●

●●●● ●●

●

●●●●●
●●● ●

●

●●● ● ●● ●●●●

●

● ●

●

●

●

●
●

●

●
●● ● ●

●

● ●● ●●●

●

●●

●

● ●●●●

●

●
●

●● ● ●
● ●● ● ● ●● ● ●●●● ● ●●

●

●

●

●●●●●● ●● ●
●

● ●● ● ●● ●●● ●
●● ●

●

●● ● ●●●

●

●
●●

●

●

●

●

●

●

● ●●

●

●●● ●
● ●

●● ●●●

●

● ● ●●
●

●●

●

● ●● ●●

●

●●●
●

●●● ●● ●
●

●●●●

●

●

●

●● ●● ●● ●● ● ●● ●● ●●● ●
●

● ●●

●

●

●

● ●
●

● ● ●●● ●● ●●● ●●
●

● ●●● ●● ●
● ● ●● ●●● ●●● ●●

●●

●

●

● ●● ●

●

●

●

●●

●

● ●
●●

●●●● ●● ●●● ●●● ●● ●●● ●

●

● ●●●● ●●
●

● ● ●●

●

●●● ●●● ●● ● ●● ●●● ● ●
●●● ● ●●

●
●

●

● ●

●

●● ●●● ●●

●

●

●

●● ●

●

●

●●● ●● ●

●

●

●● ●●●

●

●● ●●●
●

● ●● ● ●● ●● ●●

●

●●● ●●●

●

●
●●

●

●●
●

●● ●● ● ●●● ● ●●
●

●● ●●●●

●

● ● ●●● ●
●

●
●

● ●

●

●●● ●

●

● ●

●

● ●

●

●

●

●

● ●
●●

●

●●
●●● ●●

●
●● ● ●

●

●

●● ●● ● ●●● ●● ●
●

●

● ● ●

●

● ●●● ● ●●●● ●● ●

●

● ●●●

●

●
●●

●

●

●●●● ●

●

●● ●●●● ●

●

●

●

●

●

●

● ●●●● ●● ●

●

● ●●● ●

●

● ●●
●

●●● ●● ●●

●

●

●

●

●● ●●

●

●●● ● ●● ● ● ● ●●● ●●●

●

●● ●●●● ● ●● ●●

●

●● ●● ● ●●●● ●

●

●● ●●●●●●●●
● ●● ● ●●● ●

●

●● ●● ●●

●

●

●

● ●● ●●
●●

●

●

●
●●

●

● ●

●

● ●

●

●●● ●●

●

●●●● ●● ●●● ● ●● ● ●●●●
●

●●●
●

●

●

● ●●● ●● ●●

●

●● ●●
●

● ●● ●

●

●●
●

● ●● ●●

●

●
●

●●●

●
●

●● ● ●● ●● ●●● ●

●

●●● ● ●●●

●

●●●

●

●

● ●●● ● ●●●●●● ●● ● ●● ●●● ●●●●●
● ●● ●

●
●

●

●●●● ●●●● ● ●● ● ●

●

●
●

●● ● ●●●

●

●● ●

●

● ●●

●

●

●

●

●
●●

● ●●

●

●● ●● ● ● ●● ● ●

●

●

●● ●

●

● ●● ●● ●●

●

● ●●● ●●●

●

● ●●● ●
●●

●

● ●●

●

●●● ●●

●

●● ●●● ●

●
●

● ●
●

●

●

●

● ●● ●●● ● ●●●● ●●
●

●●
●

● ●●●● ●● ●
●

●● ●●● ●●● ●●
●

●● ● ●● ●●● ● ●
●● ●● ●●● ●

●

●

●●●
●

●

●

● ●
●

●●● ●

●

● ●
●

●

●

●● ●●

●

●● ●

●

●
●

●

● ●● ●●● ●● ●●

●

● ●
●● ● ●●●

●

●● ●●●
●●

●●● ●● ●●●● ●● ●● ●● ●
●● ● ●

●
● ●

●
● ● ●● ●●

●

●● ●

●

●●

● ●●

●● ●

●

●

●

●

●

● ●● ●● ●●●● ●●

●

● ●

●

●
●

● ●●

●

●

●

●

● ● ●●● ●●●● ● ●●●● ●●

●

●

●

●
●●●● ● ●●●● ● ●●● ● ●●●● ●●● ●

●

●●● ● ●●●● ●

●

● ●

●

●

●

●

●● ● ●

●

●

●● ●

●

●●

●

● ● ●●●●● ●

●

●
●● ●● ●● ●●● ●

●
●●

●

●

●

●● ●● ●●●● ● ●

●

●●

●

● ●● ●● ●●●

●

●●●●●

●

● ●●● ● ●●●● ●●

●

● ●●● ●●●

●

●●

●

●●●

●

●

●

● ●●

●

●●●● ● ●● ●●●●

●

●

●

●●
●

●
●

●

●

●● ●

●

● ●●

●

● ●●● ● ●● ●●

●

● ●● ●●●●

●

●

●

●

● ●
●

●

●

● ●● ●

●

●● ● ● ●●●
●

●

●

●

●

●●
●● ●

●

●● ● ●●● ●
●

●

●
●

●
● ● ●● ●● ●

●
● ●● ●●●●●● ●

●

●● ● ●● ●● ● ● ●●

●

●

● ●●

●

●●

●

● ●● ●

●

● ● ● ●● ●

●

●●●●● ●●●● ●●●

●

●

●
●●●

●

●

●

●●● ●●● ● ●●● ●●●●

●

● ●●
●

● ●●●● ● ●●●
●

● ●

●

●● ●

●

● ● ●●●

●

●
●●●

●

●● ●

●

● ● ●

●

●

●

●●●
●

●

●

●● ●● ● ●

●

●● ●●● ●

●

●● ●● ●●

●

●● ●
●

●

●

● ●● ●●●

●

● ●● ●●●●

●
●

● ●● ●●●● ● ●
●

●

●●
●

●

●

●

●●●
●●

●

● ● ●
● ● ● ●●● ●●

●

●

●●●● ● ●●

●

●

●●● ● ●● ●● ●
●●●

●●
●● ●

●●● ● ●●● ● ●●●● ●●

●

●

●

● ●●●

●

● ●● ● ●●● ●●●●

●

● ●

●

●● ●

●

●●●●

●

●

●●

●

●

●
● ●

●

●

●
●● ● ●●

●

●
●

●●●● ●

●

●

●

●● ●

●

●

●

● ●

●

● ●●

●

●

●

●
●

● ●● ●● ●●●● ● ●● ●● ●●

●

● ●●● ●

●

●●

●

●●

●

●

● ●● ● ●●● ● ●

●

●● ●
●

●●● ●●

●

● ●●

●

●

●

●●
●

● ●● ●● ●● ●●● ●●
●

●● ● ●

●

●

●

● ●● ●

●

●● ●

●

●

●

●●

●

● ●● ●●●● ●●
●●

●

●

●

● ●● ●● ●●
●

●

●
● ●●● ●
●
●●● ●●●●●●

●
●

●
● ●●

●
● ●● ●●● ●● ●●

●

●
●

●● ●●●● ●● ●●●
●

●

● ●●

●

●●●

●

●●
●

● ●●● ● ●●
●

●● ●●●●● ● ●●● ●● ●●●● ●

●

●● ● ●
●

●

●

●● ●●●●● ●
●

●● ●●

●

●● ●

●

●

●

●

●

● ●●● ● ●●●● ●

●

●●● ●● ●● ●● ●

●

● ● ●
●

● ●

●

● ●● ●

●

●●
●

●
●● ● ●●

●

●●

●

●

●

●

●

● ●
●

●

●
●

●●● ● ●

●

● ●●●●
●

●

●

●
●● ●●

●

●

●

●● ●● ●

●
●

●
● ●●

●

● ●●

●

●●●
●

●●

●

●

●

●● ●●●
●

●
●● ●

●

●● ● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●●

● ●

● ●● ●●●● ●
●

●

●

● ●●●

●

●
●

● ●● ●●● ●● ●●●● ●●

●

●

●●●● ●● ●● ●●●● ●

●

●

●
● ●● ● ●●● ●

●

●

●● ●● ●● ●●● ●●● ●● ●

●

● ●● ●● ●●●

●

●●● ●● ● ●● ●
●

● ●● ●●●● ●●● ●●
●

●●● ●

●

●

●● ● ●

●
● ●

●

● ●
●

●

●
●

● ●●● ● ●●
● ● ●● ●●● ●●●

●

● ● ●●●
●

●● ●

● ●

●

●● ●●●

●

●● ● ●●

●

●●●●●● ● ●●●● ●●

●

●●

●

●

●

●● ●●● ●● ● ● ●
●
●●● ●●

●

●●

● ●●● ●

●

●

●

● ●

●
●

●
●

● ●● ●
● ●●●

●

●
● ●

●

●● ●●●
●

●

●

●

●

●

●

●

● ●●● ● ●

●

●●●● ●

●

●

●● ● ●●●● ●●
● ● ●● ●●● ● ●● ●●●● ●●●

●

●●●● ●
●

●

● ●●● ● ●●

●

●●● ● ●●

●

● ●
●● ●

●

● ●●● ●● ●● ●● ● ●● ●● ●●●● ●●●● ●●●●●●
●●

●
●

● ● ●●

●

●

●

●

●

●● ●● ●●
● ● ●●●

●
● ●● ● ● ●

●

●

●●

●
●

●

●

●

●● ●

●

●●

●

●●

●

●

●

●

●

●●● ●●●

●

●

●

● ●●●

●

●
●

●●● ● ● ●

●

●

●

●● ● ●

●

● ● ●●

●

●● ●●●●
●

● ●●

●

● ●● ●● ●●●

●

●●● ●●●●● ●●●●● ● ●● ●●

●

● ●

●
●

● ●● ●● ●●
●

●

●

●●●●●

●

● ●● ●● ●

●

●

●

●●

●

●● ●

●

●● ●●

●

●●●●

●

●● ●● ●● ●●● ●

●

●
●

●

●● ●●
●● ● ●● ●● ●

●

● ●
●

●

●

●

● ●

●

●●

●

● ● ●

●

●●

●

●

●

●

●●●● ●
●

● ●●●●●
●

●

● ●● ●●●● ●● ●●● ●●

●

●● ●●●● ●●●● ●● ●●● ●●●● ● ●● ●
●

● ●●● ● ●

●

● ● ●

●

●● ●

●

●● ●●●
●

●●

●

●

● ●● ●●● ●● ●●● ●● ●● ●
●

●

●

●●
●

●●● ●●●

●

●● ●●● ●● ●

●

● ●● ●
●

●● ●

●

●
● ●● ●●● ●

●

● ●● ●●●●

●

●● ●●● ●
●

●● ● ●●●●● ●● ●● ●●●● ● ●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

● ●●●

●

●●●
●●

●

● ●
● ●

●

●

●

● ●●●

●

●●

●

● ●● ●●● ●●● ● ●● ●

●

● ●●● ●
●

●●●● ●● ●●●● ●●
●

●

●●
●

●

●

● ●

●

●● ●

●●

●

●

●

●

● ● ● ●● ● ●
●

●● ●●
●●●●● ●● ●●● ●●● ●●

●

● ● ● ●●● ●●

●

● ●● ●●● ● ●●●●

●

●

●

● ●● ● ●● ●● ●●●
● ●● ●●

●
● ●● ● ●●● ●

●

● ●● ●

●

● ●● ● ●●

●

● ● ●●● ● ●●● ●●●
●● ●● ●● ●●●● ●

● ● ●● ● ●●●●●

●

●●●●●● ● ●●● ●
● ● ●

●

●

●

● ● ●

●

●
● ● ● ●

●

● ●● ● ● ●● ●● ●● ●
●

●

●
●●●

● ●●●● ●●● ●

●

●● ●
●

●●●

●

●●

●

● ●●

●

●

●

●

●

● ●

●

●●●● ●●● ●●●● ● ●● ●●● ●

●

● ●

●

● ●●●

●

●

●

●

● ●● ●●
●

●

●

● ● ●
●

●
●
●● ● ● ●● ●●

●

● ●● ●

●

●● ●● ●●●

●

●● ●● ●● ●● ●●

●

● ●● ●● ●●● ● ●● ●
●

● ●●●●● ●

●

●

●

●●
● ● ●●●●● ●

●

●
●

●

● ●

●

● ●●
●

● ●● ● ●● ●●● ●●●● ●
●

●
●

●● ●

●

●●● ●● ● ●● ● ● ●●●●
●

●●

●

● ●●●

●

●

●

●

● ● ●● ●

●

●●

●

● ●

●

●

●

● ●●●● ●●● ●● ●● ●●

●

● ●● ●

●

● ● ● ●

●

●● ●● ●● ●
●

●●

●

●● ●● ● ● ●●

●

● ●● ●● ●●● ●●●●● ●● ●● ●●●● ● ● ●●● ●● ●●

●

●● ● ●●● ●●
●

●●●
●

●

●
● ●●● ●

●

●● ●●●● ●● ●

●

● ● ●●● ● ●●●● ●

●

●● ●

●

●●● ●●

●

● ● ● ●●●●

●

●● ●●● ● ●●●● ● ●● ●
●

● ●● ●●● ●● ●●
●

●● ● ●●●

●

●
●

●●●

●

●●●

●

●●● ● ●

●

●

●

●

●
● ●●●● ●● ●●●●● ●

●

●●
●

●● ●●

●

● ●●

●
●●● ●

●

● ●

●

●●
●

●●
●

●

●

● ●●● ●● ●● ● ●●●
●

●●●
●

●● ● ● ● ●●●
●● ● ●● ●

●

●●● ●●●● ●● ●●●● ● ●● ●●

●

●

●

● ●● ●●

●

●●●

●

●● ●● ●● ●●●●
●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

●● ●● ●●●
●

●

●

●

●

●
● ●● ●● ●● ●●● ● ● ●● ●●

●

●●●●

●

● ●● ●● ●

●

● ●● ●● ●●
●

●

●

●
● ● ●

●

●

●●●

●

●

●

●

●

●● ●● ●● ●●●
● ●

●

●●
●

● ● ●●●● ●● ●●●
●

●●
●

●

● ●● ● ●●● ● ●●

●

●

●

● ●
●● ●● ●● ●●● ●

●

●

●● ●● ●●● ●●

●

●

●

●● ●

●

●

●
●

●

● ●
●

●●●● ●● ● ●●●

●

●● ●● ●● ●
●

●●
● ●●

●

●

●

●● ●●●●

●

● ●●●●● ●● ●●● ●●

●

●●● ●

●

●

●● ●●● ●●●● ●●● ●● ●●

●

● ● ●●●
●●●

● ●●
●

●● ●● ●● ●●

●

●●

●

●

●

●

●

●● ●●

●

● ●● ●●●● ●

●

●●

●

●

●●

●

●●● ●

●

●● ●●●

●

●

●

● ●

●

●

●

● ●●●● ●● ●● ● ●●
●

● ●
●

●● ●●
●

●

●●

●

●

●●●
●

● ●

●

●●

●

●● ● ●

●

●

●●● ●●
●

● ●●● ●

●

●

●

●●

●

●

●

●●

●

● ●●●
●

●● ●●
●

●●

●

● ●●

●

●

●

●
●

● ●
●

●

●●
●

● ●

●

●

●

● ●
●

●

●
●
●● ●●

●

● ●● ●● ●
●

● ●●●● ● ● ●●
●● ●● ●

● ●
●

●
●

● ● ●

●

●

●
●●●● ●

●

● ●
●

●

●

●
●

● ●

●

●

●

● ●●● ● ●●●● ●●
●

●● ●● ● ●●

●

●●
● ●●

●
●● ●● ●● ● ●

●

● ●

●

●● ●●● ●

●

●

●

●

● ● ●● ● ● ●
● ●●

●

● ●

●

●

● ●●

●

●

●

●● ●● ●●● ●● ● ●

●

● ● ●●● ●● ●● ● ●
●● ●

●

●
●

●● ●● ●
● ● ●●● ●●● ●●
● ● ● ●

●
● ●

●●

●

● ●●

●

●●
●
● ●●● ● ●●●●● ●

●
●●●●

●

● ● ●
●

●●
●

● ●● ●●

●

●

●

●●
●

●
●●● ●●●● ● ●●

●

●

●● ●●● ●●●

●

●●
●
● ●● ●●●

●

●●

●

●

● ●●
●● ●●● ●●● ● ●● ●● ●● ● ● ●● ●●

●● ● ●● ● ●

●

●

●
●● ●●● ●● ●●

●●
●● ●●

●

●

●●

●

● ● ●●
●

●● ● ●● ●●● ●● ●●●●● ●

●

●●● ●●● ●● ●● ● ●● ● ●●
●

●

●●●● ● ●●● ● ●●

●

●● ● ●●● ●●

●

●● ● ●
●

●

● ●● ●
●

●●●●

●

●●●●

●

●

●● ●

●

●●●● ●

●

●

●●

●

● ●●●

●

● ●● ●● ● ●●

●

●●●

●

●●
●

● ●●●●●
●●

●

●●● ●● ●

●

● ●●●● ● ●

●

●●●
● ●●

●

● ●
●

● ● ●● ●●

●

● ●●● ● ●●●

●

●●
●

● ●●

●

●●

●

●

●● ●

●

●●
● ●● ● ●●●●

●●●● ●● ●●● ● ●● ● ●●●
●

● ●● ●

●

●
●

●

●

●
●

●●

●

● ●● ●

●

● ●●● ●●●●
●

●●

●● ●●
● ● ●● ●●● ●●

●

●● ●
●

●

●

●

● ●●●

●

● ●●●● ●●

●

●● ●●● ●●
●

●●●●

●

●

●
●● ●● ●

●

●● ●●● ● ● ● ●● ●●●● ●●●●● ●
●

●

● ●●● ●● ●●●

●

●●● ●● ● ● ●

●
● ●

●

●

●
●

●

●●● ● ●● ●●
●● ●●

●
● ●● ● ●●

●

● ●●● ●● ●●●● ●●● ● ●●●●●●●● ●● ● ●● ●●●●● ● ●●● ● ●●

●

●● ●
●● ●● ●●

●

● ●●●

●

●

●

●●

●

● ●● ●

●

● ● ●●●●● ●●●

●

●
●

●

●

●

● ●

●

●● ●● ●

●

●● ● ●

●

● ●● ● ●●● ●

●

●●

●

●

●●●●● ●●● ● ●● ●●

●●

●
●

●●●

●

●●●
● ●●

●

● ● ●●
●

● ● ●● ●● ●

●

●

●

●

●

●● ●●

●

●● ●●

●

●●
●

● ● ●●
● ●●●

●

●●

●

●● ●

●

●●● ●
●●

●

●

●

● ●● ●●● ●●● ● ●●●● ●●

●

●

●●● ● ●

●

●●

●

●

●●●● ●●
●● ●

●

● ●●

●

●●

●

●

●● ●

●

●● ●●● ●●● ●●● ●●● ● ●● ● ●● ●● ●●
●

●

●
●

●● ● ●● ●●● ●

●

● ●● ●
●●●● ●●●●● ●●● ●

●
● ●●

●

●

●

●

●

● ●●● ●●● ●●●●● ● ●

●

●

●

●●● ●● ● ●

●

●● ●● ● ●●●●
●

●● ● ●● ●●●●●
●

●

●●●
●●

●

●

● ● ●● ●●●

●

●● ● ●●

●

●● ●● ●●

●

●● ●● ●●● ●● ●● ●

●

●●● ● ●● ●

●

●

●●●

●

●
●

●
●

●

●● ●● ●● ●●

●

● ●●●
●

● ●●●●●
●

●● ●●● ●●●

●

●

●

● ●●
●

●

●
● ●

●
●● ● ●

●

●

●

● ●
●

●

●

● ●

●
●●●●● ● ●

● ●

●

●

●

● ●● ● ●● ●●●● ●●

●

●

●●● ●●●●● ●

●

● ●● ●●● ●
●

● ●

●

●●

●

●● ● ●●● ● ● ●●●● ●●
●

● ●● ●● ● ●●

●

●

● ● ●● ●● ●

●

● ● ●●● ●● ●● ●● ●
●●

●

●

● ● ●

●

●
●

●●● ●●●

●

●● ●●

●

●

●

●

●

●

●●

●

●
● ●●●● ●● ●

●

● ●●● ●●●●● ●● ●

●

● ●● ●
●

●● ●
●

●●
●

● ● ●●
●

●

●●● ●●● ● ●●●● ●● ●●●●

●

● ●●●● ●● ● ● ●
●

●
● ●● ● ●● ●●

● ●

●

●

● ●

●

●

●

●

●

●

●
● ● ●● ●● ●

●

●

●

●●
●●

●

●

●

●●● ● ●●● ●● ●

●

● ● ●● ●● ●●● ●●●●

● ● ●

●● ●
● ● ●●● ●● ● ● ●

●
●

●
●●● ●● ●● ●● ●● ●

●
●●●● ● ●● ●

●●● ●

●

●● ● ●●●●

●

● ●●●●●●●
● ●

●
●●● ● ●

●
●●●● ●● ●

●
●● ●● ● ●●●●

●● ●●●● ●● ●● ●
●

● ●● ●● ●

●

●

●

●

●● ●●● ●●● ●

●

●●●

●

●● ● ●

●

●● ●● ●●●● ●
●

●●●●

●

●●

●

● ● ●●

●

●
●

● ●●● ●

●

●

●

●●●●● ●●

●

●

● ●●●● ● ●● ●

●

●
●

●●● ●● ● ●●● ●● ●●●● ●●●● ●●
●

●

● ●●●
●

● ●●● ●● ●
●

●● ● ●●
●

●● ●●●
●●

●●● ●● ●● ●●●●● ●●●

●

●●● ●●●● ●● ●●● ● ●

●

● ●●● ●●

●

●● ●●● ●● ●● ●● ●
●

●●●●● ● ●●● ●●●
●

●●●

●
●

●

●
●

●● ●
●● ● ●

●

●

●

●

●

●● ●●
●
●

●
●

●●● ●●● ● ●● ●

●

●

●

●●

●

●

●

●● ● ●●● ● ●

●

●● ●

●

●

●●● ●● ●● ●● ● ●●● ●● ●●● ●●●
● ●● ●

●

●●● ● ●● ●● ●●●●

●

●●

●

●
●

●

●
●

● ●●●●

●

● ●●●

●
●

● ●

●

●●

●

●

●

●

●

● ●●● ● ●● ●
●

●

●

●
● ●●● ●

●

● ●

●

●

●●
●

●●
●
●

●

●●●

●

●

●

●

●

● ●●● ●●● ●●

●

●●
● ●

●●●●●
●●●●

●
●●

●
●●

●

●

●

●● ●● ●

●

●
●

● ●●●● ●

●

●●
●

●
●

●

●

●
●●

●

●

● ●● ●●

●

● ●

●

●
●● ●●●

●●● ●● ●

●

● ●●●● ●● ●● ●●● ●● ●
●

●●

●

●

●

● ●● ● ●●●

●

● ●● ●●●●● ● ●●●●● ●●

●

● ● ●● ●●

●

● ●● ●● ●●

●

●

●●● ● ● ●●●● ● ● ●●

●

●
● ●● ●● ●●●● ●● ●

● ●● ●● ●●● ●● ●

●

● ●● ●●● ● ● ●●

●

●●
●

●

●

●●

●

●

●●●● ●

●

● ●●●●
● ●

●

●

●

●
●
●●

● ●●●

●

●●● ●●● ●●●●

●

●
●●

● ●●● ●
●● ●● ●●● ●● ●

●
● ●●●● ● ●● ●● ●● ●

●

●●●● ●●● ●● ●●

●

●

●

●● ●● ●

●

●●●●

●

●

●

● ● ●●●

●

●●

●

● ●● ●●● ●

●

●●

●

●● ●●●

●

● ●

●

●

● ●

●
● ●● ●●

●

●● ●●●

●

●

●

●●● ●●●

●

● ●●●●
● ●●●●●

●

●●

●

●

●

●● ● ●●● ●●●●● ●●●

●

●
●

●

● ●
● ●●● ●●

●

●

● ●
●

●●● ●●

●

●

●● ●●

●

●●
●

● ●●● ●●

●

●

●●●

●

● ●●● ●

●

●

●

●

● ●● ●
●

● ●

●

● ●● ●●●
●

● ●● ● ●● ● ●●

●

●

●

●● ●

●

● ●●

●

●● ●

●

●● ●

●

● ●

●

●●● ●● ●● ●●

●

●● ●

●

●● ●

●

●● ●●
●

●● ●

●

●●●●

●

●●●● ●●●● ● ●● ●●● ● ● ●● ●●

●

● ●●● ●● ● ●● ● ●

●

●

●

● ●

●
●

●
● ●●●

●
● ●●●

●
●●● ●●● ●● ●● ●

●

●

●

● ●●

●

●
●●

●
●●● ●

●

●
●

●
●

●

●

●●
●● ●

●

● ●

●

● ●● ●●

●
●

●
●

●

●● ●●
●

●● ● ●● ●●●●

●

●

● ●●
●●● ●

●
●● ●●

●

● ●●●

●

●

● ●●● ●●● ●

●

●●●● ●●●
●

●

●

●●

●

●● ● ●

●

●●●●●● ●● ●●
●

●●● ●

●

●●

●

●●● ●●

●

●

●

●

●
● ● ●●●

●

●●● ●●●●● ●
●

● ● ● ● ●

●

●●
●

●● ●● ●● ●● ●

●

● ●●

●

●

●● ●

●

●
● ●

●

●

●

● ● ●

●

●● ●

●

●
●

●

●● ●● ●

●

● ●● ●● ●

●

● ●

●

●● ●●● ●●●● ●● ●●● ●

●

●
● ●●● ● ●●● ●●● ●

●
●

●

●● ●
●

●●
●

●
●

●

●

●

●

●

●●● ●

●

●●
●

●●
●

● ●● ●●

●

● ● ●
●

●

●

●

●

●

●

●●
●

●

●
● ● ●● ●

●
● ●

●
● ●

●
●● ●●

●

●●● ● ● ●

●

●●● ●●●

●

●●

●

●● ●● ●● ●●
● ● ●●● ●

●

● ● ●

●

●

●●●

●

● ●● ●●● ●

●

●

●

●● ●

●

● ●

●

●●● ● ● ●

●

●

● ●●● ● ●●●
●●

●● ●● ● ●

●

●● ●●● ●●●

●

●● ●

●

● ●●●

●

●●

●

●

●

●

● ●● ● ●●

●

●●● ● ●● ●●
●

●

●

●● ●

●

●

●

● ●●● ●●

●

●●● ●● ●● ● ●● ●●
●

●

●

● ●
● ●●●

●

● ●● ●

●

●● ●● ●

●

●● ●● ●●●●
●

● ● ●● ●● ●

●

●●●●

●

●

●

●

●

●● ●● ● ●● ● ●●● ●●●

●

●
● ●●● ●

●

● ● ●
● ●● ●●

●●● ●
●

●

●●

●

● ●●●● ●

●

●●● ●●● ● ●●

●

● ●● ●●

●

●●●●
● ●

●

●● ●● ●

●

●

●

● ●●● ● ●● ●

●

●

●

●●●● ●●● ●● ●● ●●●●●
●● ●●

●
●

●
● ●●● ●

●

● ● ●●●

●

●

●

●
●

● ●● ● ●
●●

● ●●● ●●●
● ●

●

●

●● ●● ●● ●●● ●● ● ●● ●●●●● ●●●● ● ●

●

●●● ●●●● ● ●●

●

●● ●

●

●● ●
●

● ● ●●●●● ●
●

●

●

●● ●●●

●

●●●●
● ●

●
● ●● ●●

●

●●

●

●

●

●

●
●

●

●
●

● ●●●●●● ● ●●●●● ●
●●

●
●

●
●

●●● ●

●

●● ●●● ●●●

●

●● ●

●

●● ● ●● ●●

●

●●
●

●

● ●●

●

● ●●● ●● ●
● ●●● ●● ●
●

● ● ●
●

● ●● ● ●●● ●

● ●

●
●

●●●●●
●

●●●●

●●

●●

●●● ●●

50%

60%

70%

80%

90%

100%

1 10 100 1000 10000

#Fault−Similarity Classes

A
c
c
u

ra
c
y

(c) MiBench/bitcount (training)

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

● ●●

●

●●

●●
●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●●●●

●

●

●

●

● ●

●

●

●

●

●● ●● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

60%

70%

80%

90%

100%

0 50000 100000 150000

#FI Experiments (incl. training)

A
c
c
u

ra
c
y

(d) MiBench/bitcount (total)

●
●●●

●

●
●

●

●

●● ●●

●

● ●
●

●●●
●

●●

●

●

●

●●

●●

●●

●
●●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
● ●

●●●

●

●●

●

●●●
●

●

●

●
●

●

●

● ●●●●
●

●

●

●

●●●
●

●
●●

●●●

●

● ●●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●●●●●
●

●

●
●
● ●

●

●

● ●

● ●

●

●
●

●

●● ●●

●
●●

●

●●

●

●

●●●●
●

●
●
●
●

● ●

●

●● ●

●

●●

●

●●
●

●

●
●

●

●

●

●

●●

●

●●

●

●●●
●

●●●●
●

●

●
● ●

●

●

●

●

●

●

●● ●●●

●
●

●
●

●

●
●

●

●
●

●

●

●
●
●

●

●●

●●

●●
●

●

●

●

●●
●

●

●
●●

●
●

●●

●

● ●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

● ●

●

●●

●

●
●

●
● ●

●
●●

●

●

●

●

●●

●

● ●●● ●● ●

●

●

●

●●
●●

●●●
●

● ●●

●

●

●●
●●

●
●

●

●●●● ●● ●

●

●

●

●●

●

●

●●

●

●

●
●●●

●
●

●●
●● ●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●● ●● ●●●●

●

●
●●

●
●●

●
●

●

●●●●●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●●
●●●

●

●
● ●

●

● ●

●

●

●
●
●
●●

●

●

●

●

●

●

●
●●●

● ●●
●●

●●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●●
●

●

●●

●

●
●

●
●●●●

●
●

●
●

●

●●●●

●

●

●

●

●

●
●

●●
●

●

●
●●● ●●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●
●

●

●●●

●

●

●
●

●

●

● ● ●● ●
●

●

● ●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●● ●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

● ●

●●

●

●
●

●

●●●
●

●
●

●
●●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●

● ●●

●●

●

●●
●●● ●

●
●●
●

●

●

●
●

●
●

●●●

●

●
●

●

● ●

●●

●

●●
●●

●

●●●●
●●

●
●

●●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●●
●

●

●

● ●

●●●

●

●
●

●

●
●

●

●

●●
●

●

●
●●●●

●

●

●

●
●

●

●●

●

● ●●●●●●●●
●

●●

●●
●

●●●

●
●

●

●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●●●

●

●●● ●
●●

●

●●● ●●

●

●

●●

●●
●

●
●

●

●●●
●

●

●

● ●●●
●● ●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●●

● ●
●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●●●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●● ●●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●●●

●
●

●
●

●

●
●

●

●●●
●

●

●

●● ●●

●
●

●

●

● ●●●● ●●

●

●

●

●

●●

●

●
●● ●●

●

●

●
●

●
●●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●
●● ●

●

●● ●●●
●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●● ●

●

●●●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●●●

●

●●●

●

●

●
●

●

●

●
●●

●
●

● ●●

●

●
●

●

●
●

●

●

●●
●●

●
●

●

●

●

●
● ●

●

●

●●
●

● ●●●●●

●

●
●

●●●
●

●
●●●

●

●

●

●●

●

●

●●● ●● ●●●
●

●

●

●

●●●●
●●

●

●●

●

●

●

●

●

●

●● ●

●

● ●●●● ●

●

●

●

● ●

●

●

●

●
●

●

●●●●●
●● ●

●

●

●

●
●

●●

●

●

● ●●

●●●●●

●

●

●

●●
●

●
●● ● ●●● ●●

●
●

●

●

●

●

●

●●●

●

●● ●
●

●●●●

●

●

●
●
●

●

●

●●●●
●

●

●

●

●● ●● ●

● ●

●

●●

●

●●

●

●●●●
●

●●
●●●

●
●

●●
●●

●

●●

●

●●●● ●
● ● ●

●

●
●

●● ●●●

●
●

●●●

●

●
●

●

●●●

●

●●●●

●

●●●
●

●

●

●●●

●
●●●

●

●

●
●

●

●● ●● ●● ●●●

●

● ●

●
●

●●
●

●●

●

●●
●● ●

●

●
●●●

●

●

●
●

●

●

●
●

●

● ●
●●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

● ●

●

●

●●
●

●

●● ●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●●
●●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

● ●

● ●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●
●●●

●

●

●

●
●

●

● ● ●

●

●
●●●●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●●●●●

● ●
●●● ●

● ● ●
●

●●

●●

●

●

●

●

●
●● ●●

●

●
●

●●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

● ●
●

●

● ●● ●

●

●●●

●

●

●●

●

●

●

●●●●
●●

●

●
●●

●

●
● ●●●●●●●

●

●

●

●●● ●●
●

●●

●●
●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

● ●

●●

●

●

●

●
●●

●

● ●●●
●

●●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

● ●●●●●●
●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

● ●● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

● ●
●

●
●

●●
●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●●

●

●●

●

●
●

●

●

● ●●●●

●

●

●

●
●

●

●●●

●

●● ●●

●

●

●
●

●

●

●●

●
●● ●●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●●●

●

●●●●● ●

●

●

●

●

●
● ●●

●

●

●●●●●

●

●●

●

● ●

●●

●
● ●

●

●

●

● ●●
●

●

●

● ●
●

●

● ●
●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●
●

● ●●
●●

●

●

●
●

●
●

●●●

●

●●
●●

●

●●

●

●
●●

●
●●●

● ●

●

●●
●●

●
●

●●●

●

●

●

●

●

●●
● ●

●
●●●

●

● ●
●●

●

●
●

● ●

●

●●●

●
●

●

●
●

●●

●
●

●

●

●

● ●●

●
●

●
●●

●

●●

●

●● ●● ●●
●

●

●●

●

●

●

●

●● ●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
● ●

●

●●
● ● ●

●

●
●

●

●●

●
●

●●

●

●

●
●

●

●
●

●●
● ●●●●●
●

● ●●
●

●

●●

●

●
●●

●●● ●

●

●●●● ●

●
●

●

●●●

●

●●●
●●

●

●

●● ●

●

●
●●

●● ●●

●

●●

●

●

●

●

●
●

●

●●
●

●
●

●●
●●

● ●

●

●

●
●

●●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●●
●

●
●●

●

●

●
●●

●●
●

●

●

●

●
●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●●● ●
●●● ●●●

●

●

●

●
●●

●
●

●

●

●

●●●

●
●

●
●●

●●●

●●

●
●●

●●

● ●

●

●

●

●
●● ●

●
●●

●

●

●●●●● ●

●

● ●

●

●
●

●

● ●
●

●

●

●
●

●●

●
●

●

●

● ●

●

●

●
●

●
●●●●

● ●
●● ●

●●

●● ●●

●●

●●●● ●●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●●
●

●●

●

●●

●●● ●●●

●

●

●

●
●

●
●

● ●●● ●

●
●

●
●

●●●

●

●

●

●
●

●
●●

●

●
●

●

●
●●

● ●

●

●
●

●

●

●●●

●

● ●

●

●
●

●●

●

●
●

●

●●

●

●
●

●
●

●
●●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●
●

●

● ●●●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●
● ●●●

●

●

●●●●

●

●

●
●

●●
●●

●

●●●
●

●●● ●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●

●

●

●

●
●

●

●
● ●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●●
●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●
●

●

●
●

●●

●

●

●●
●

●● ●●● ●
●●

●● ●

●
●

●

●●

●

●

●

●
●

●●●

●

●

●

● ●
●

●
●●●

●

●●

●

●
●●●●

●
●

●●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●● ●●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●
●

●

●

●●●●
●

●

●

●
●●

●

●

●

●●

●

●

●

●●●●●
●

●

●
●●

●

●●

●
●

●

●

●

●

●

●●

●

●●●

●

●
●

●●●

●
● ●

●

●

●
●

●●

●

● ●

●● ●

●

●

●

●

●

●

●

● ●●

●

●●
●

●
●

●

●

●

●
●

●●●

●

●

●
●

●

●

● ●● ●

●

●

●

●

●

●●●●●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

● ●●●
●

●
●●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●●

●

● ●

●

●

●
● ●

●

●

● ●●●

●

●

●●
●

●●

●
●

●

●●
●

●●

●●●

●

●

● ●

●

●
●● ●

●
●

●
●●● ●●

●

●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●●
●●●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●●● ●

●

●

●

●
●

●●

●
●

●●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●●
● ●●

●

●

●

●

●
●

●●

●●●●●●●

●

●
●●

●

●

●●●●●●

●
●

●
●

●●●●

●
●

●

●

●

● ●
●

●●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●
●

●

●●●●●●●
●

●

●
●

●●

●
●

●●●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●●● ●●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●● ●●
●

●●●

●

● ●●●●
●●●

●

●

●

●

●

●
●●

●

●●● ●●●
●

●
●

●
●

●
●

●●●
●●

●
●

●●●●●
●●

●
●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●● ●

●

● ●● ●●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●● ●●

●

●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●●

●
●

● ●●

●

●
●

●

●
●●

●
●

●●
●●

●
●●

●●
●

●
●

●

●

● ●●●

● ●
●

●

●●
●●

●

●

●

●●●● ●●●●

●

●

●● ●●

● ●

●

●

●●
●

●●

●

●

●●

●

●

●●
●

●

●●

●
●

●●

● ●

●

●●

●

●●

●

●●●
●

●

●●

●

●

●

●

●
●

●

●

●●●●

●

●
●

●

●

●
●

●
●

●

●● ●
●

● ●●
●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●● ●
●

●

●●

●

●●

●

●●

●●
●

●
●

●

●●

●

●● ●

●

● ●●●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

● ●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●● ●●●●

●

●

●●●

● ●

●●●

●

●

●● ●

●
●

●●

●

●

●
● ●

●

●
●●

●
●

●

●

●
● ●

●
● ●

●

●

●●●

●●● ●●●

●

●

●

●

●

●

●

●
●

●

●

●●● ●

●

●●
●

●

● ●

●

●●● ●●

●

●●●

●

●
●

●
●

● ●● ●

●

●●●
●

●

●●●●●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●
●

●● ●●●●
● ●●●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●●

●
●

●

●

●
● ●

●

●

●

●

●

●●
●

●
●

●●

●

●
●

●

●

●

●●

●

●●● ●
●

●●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●
●

●
● ●

●

●●●

●

●●
●

●
●
●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●●

●

●

●●

●

●●
●

●●●

●

●

●

●●

●

●●

●

●

●

●

● ●

●
●●

●

●●●●● ●
● ●

●

●

●
●

● ●

●●

●

●

●
●

●

●

●
●

●

● ●●●

●

●

●
●● ●●

●

●
●

●●
●

●
●

●

●

●● ●●●

●

●

●

●
●●

●
●●●

●

●

●

●
●●

●

●

●●●●

●
●

●

●

● ●

●

●
●●●

●

●

●

●●

●

●

●

●

● ●●● ●● ●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●●

●

●●●

●

●
●

●

●

●●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●
●

●●
●

● ●●

●

●

● ●●●

●

●
●

●

●●

●

●

●

●

● ●●

●
●

●●●●●
●

●
●

● ●
●

●●
●●●

●

●
●

●

●●●
●●●●

●

●

●
●

●●

●

●

●

●
●

●●
●

● ●●
●●

●●
●●

●

●●

●

●

●

●●●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●
●

●

●
●

●●●●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●● ●
●

●●●

● ●

●
●

● ●

●

●

●

●

●

●

●

● ●
● ●●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
● ●

● ●●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●
●●●

●
●

●

●

●

●

●

●● ●

●

●●
●● ●

●
●

●●
●

●
●●

●

●●● ●●●●

●

●●●

●

●

● ● ●●●● ●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●● ●
●

●

●
●

●

●

●

●●●●
●

●

●

●
●

● ●
●●

●

●● ●

●

● ●●●
●●

●
●

●●

● ●●●

●

●

●

●
●

●●●

●

●●
●
●●

●

●

●

●
● ●

●

●

●

●

●

●●●

●

●●
●

●

● ●

●

●

●●

●

●
●

●

●

●

●
●

●

● ●
●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●●●
●

●
●●

●
● ●● ●

●

●●

●●

●

●

●●●● ●

●

●
●

●

●

●

●

●●
●●

●● ●
●●●

●●●

●

●

● ●

●●●

●
●

●●●
●

●

●

●

●

●
●●

●●●●● ●●

●

●●●
●

●

●

●

●

● ●

●

●
●

● ● ●

●

●

●

●

●

●

●

● ●

●

● ●●●●
●●

●
●

●

●

●

●

●

●
●●●

●

●

●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●●
●

●

●●

●

●

●●●

●

● ●

●

●

●
●●●

●

●

●
●

●

●

●

●●

●
●

●● ●●

●

●

●
●●

●●
●

●● ●● ●●●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●

●

●

●

●
●●●●
●

● ●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●●●●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●●
●

●

●

●
●●● ●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
● ●●

●
●

●

●
●

●●

●

●●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●●●●
●

●

●●

●

●
● ●

●

●

●

●

●●●

●

●

●

●
●●●●●

●

●

●

●● ●●
●

●●●

●

●

●

● ●●● ●●● ●
●
●●●

●
●

●
●

●

●●●
●●

●

●

●

●●
●●

●
●

●●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●
●

●●●

●
●

●

●

●
●

●

●

●
●● ●

●
●

●●

●
●

●●

● ●

●
●

●● ●

●●

●

●

●

●●●

●

●

●

●● ●
●

●
●

●

●

●

● ●
●

●

●

●

●
●

●
●

●●● ●●●
●●● ●●

●

●

●● ●

● ●

●

●
●●

●

●

● ●● ● ●●

●

●
●●

●

●

●

●

●
● ●

●

●
●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●
● ●

●

●

● ● ●

●

●

●
●●

●●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●●
●●●●

●
●●●

●
● ●●●●

●

●

● ●
●

●
●

●
●

●

●●

●

●●●●● ●
●

●●

●

●
●

●●●

●

●

●

●

●

●●
●●●

●

●
●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●● ● ●

●

●●●

●

●● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●●
● ●

●

●●● ●●

●

● ●●

●

●

●

●●

●●

●

●

●

●●●
●
●●●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●●
●

●

●●●● ●● ●

●

●

●
●

●

●

●

●●
●

●

●●

●

● ●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●●● ●● ●●

●

●
●

●●
●

●
●

●

●●●●
●

●

●
●

●

● ●
●

●
●

●
●

●

●●●●● ●●

●

●

●
●

●

●●
●

●

●● ●

●

●

●

●
●

●

●

● ●
●

●●

●

●●●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●●

●

●
●

●●●●
●

●

●
● ●

●

●
●

●

●●● ●●●

●

●

●●

●● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●● ●●

●

●

●

●

●

●

●●
●

●

● ●
●

●

●●
●

●●●●
●●●● ●●●

●

●

●

●● ●

●

●

● ●

●

●

●●● ●●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●●
●

●●

● ●●●●

●

●●●

●
●●

●
●

●
●

●
●

●
●●

●●

●

●

●

●

●● ●
●

●

●

●

● ●

●

●

●● ●

●

●

●●●
● ●●

●●
●

●

●

●
●

●

●
●

●
●●

●

●

● ●
●

●

● ●

●

●●
●

●

●

●
●

●● ●
●●

●

●

●

●

●
●

●

●●● ●●●

●

●

●

● ●

●

●

●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●
●

● ●●●●

●

●

●

●

●

●

●●
●

●● ● ●
●

●

● ●
● ●● ●●

●

●

●

●●

●

●
●

●●

●

●

● ●● ● ●

● ●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●●●●
●

●

●

●

●●
●

●●

●

●

●●
●

●

●

●

●
●

●●
●

●

●

●

●
● ●

● ●●
●

●

●●●
●

● ●

●
●
●

●●

●

●

●

●
●●

●●

●
●●● ●

●

●●

●●●●
●●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●●
●●

●●●
●

●

●● ●● ●

● ●

●

●● ●
●

●●

●

●
●

●

●
●

●

●
● ●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●
●● ●

●

●
● ●

●

●
●

●

●
●●● ●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●●●

●

●●●

●●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●● ●●
●
●

● ● ●●●● ●

●
●

●

●

●●●

●
●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●● ●●●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●● ●● ●●●

●

●
●

●

●

●●● ●●

●

●
●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●●
●

●

●

●

●● ●●
● ●●

●
●

●

● ●●●
●

●●

●

●●●

●

●

●
●

●●

●

●

●

●● ●

●

●

●

●●

●

●

●

● ●

●●●
●

●

●●●

●

●
●

●

●

●●
●

●

●

●
●●●

● ●
●

●● ● ●
●

●●

●

●

●●

●●

● ●● ●●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●●●●●
●

●●
●

●

●

●
●●
●●●●

●
● ●

●

●

●

●●●●
●

●

●

●
●

●

●
●

●

●● ●●●
●

●
●

●

●

●

●●●

●

●
●

●
●

●
●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●●● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●● ●● ●

●

●●●
●

● ●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●
●

● ●
●

●
●

●●
●

●●●

●

● ●

●

●●
●

●

●●

●

●
●

●

●

●●● ●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●●
●● ●

●
●●

●

●●

●

●

● ●●●●

●
● ●

●

●
●●● ●●● ●●●

●

●

●

●

●●

●●

●

●●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●
●

●

●●

●

● ●

●

●●●●
●

● ●●●● ●●●●●

●

●
● ●●

●

●

●

● ●●

●

●

●

●●

●

● ●

●

●

●
●

●
●

●●●

●

●●

●

● ●

●

●
●

●●
● ● ●

●

●

●

●

●

●

●

●
●●

● ●
●●●●

●

●

●●●

●

●

●●

●

●●●
●

●

●●

●
●

●

●
●

●●●

●

●●

●

●●●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●
●●

●
●

●

●

●

●

●●●

●

●●
●

●●

●

●
●

●

● ●
●

●●

●
●

●
●

●

●

●

●

●

●●
●

●

●
●

●● ●

●
●

●

●

●●●

●

●●

●

●

●●● ●

●
●

●

●● ●

●●

●

●

●

●

●●●●●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●
●

●●● ●
●● ●●●

●
●●● ●

●●

●

●

●
●

●●●●●

●

●

●

●

●

●●●
●

●

●

●●

●

●
●●● ●

●

●●

●●●● ●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●●●●●

●
●

●●●
●

●

●

●●

●

● ●●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●

●

●

●

●

●

●

●

●●

●

●●●

●
●

●●●

●

●●●
●●

●

●●

●

●
●●

●

●●●

●
●

●

●
● ●

●●

●

●

●

●●● ●●●●

●

●●
●

●

●

●

●●
● ● ●

●

●

●

●

●●
●●

●
●

●

●

●●

●

●

●

●
●

●●● ●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●● ●● ●

●
● ●●

●

● ● ●
●

●

●
●

● ●

●

●
●

●

●● ●● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●● ●
●

●

●

●

●
●●

●
●

●

● ●
●

●●●●●●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

● ●

●
●

●

●

●●●

●

● ●

●●
●

●
●

●

●

●● ●

●

●

●

●●
●

●
●● ●● ●●

●

● ●
●

●

●

●

●● ●●

●

●

●●
●

●
●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●●
●

●

●● ●
●

●

● ●
●

●

●

●●●● ●●
●

●

●
●

●●●●
●

●

●
●●

●

●

●
●
●

●

●

●

●●● ●● ●

●

●
●

●
● ●

●

●●
●

●

●
●

●

●
●

●

●

●

●● ●●●

●●

●●●

●

●
●●●

●

●

●
●●

●

●

●●

●●●

●

●●

●

●

●
●

● ●●
●● ●●●●

●

●
●

●

●
●

●

●

●

● ●●● ●●
●

●

●●●

●

●

●

●

●●

●

●
●
●●●

●

● ●●
●● ●

●

●
● ●●

●

●

●

●
●● ●●

●

●●
●

●●●
●

●●●●●●●
●

●
●

●

●

●

●

●●●●
● ●

●●●●●●●

●

●

●●●
●

●

●●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●
●

●
●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●●

●
●

●●
●

●

●

●

● ●
●

●●

●
●

●●

●

●●

●

●

●
●

●

●
●

● ●●

●

●●

●

●

●

● ●●●

●

●●●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●
●●

● ●
●●

●

●

●
●

●

●●

● ●
●

●

●●
●

●

●●
●●

●
●

●
● ●●●●

●

●

●
●

●

●● ●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●●
● ●

●
●

●
●

●
●

●

●
●

● ●●●● ●●●●

●●

●
●
●

●
●

●●●
●●

● ●
● ● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●●
● ●●

●
●●

●

● ●

●
● ●

●●●

●

●

●●
●

●

●

●
●● ●●●●

●

●

● ●●

●

● ●

●

●●

●

●

●

●

●●
● ● ● ●

●
●●

●●● ●

●

●

●

●
●

●

●● ● ●●

●

●●●
●

●●

●

●

●

●

●

●● ●
●●

●

●

●

●

●

● ●
●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●●

● ●● ●●● ●●

●
●●

●●
● ●●

●●
●●
●

●
● ●●

●

●

●●
●●● ●●

●

●

●

●

●

●●●●
●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●● ●●●

●

● ●●
●

●

●●

●

●
●

●
● ●●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
● ●● ●●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●●

●
●

●●
●

●●

●
●

●

●

●

●●●● ●

●

●

●●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●●
●

●●●●

●

● ●●●

●

●
●

●

●

●

●●

●●

●

●●

●● ●●●
●●● ●●●

●
●

●

●●

●●
●

●●

●
●●●●●
●

●

●

●● ●●

●

●●●
●

●

●

●●●
●●●

●

●

●

●

●

●●●

●
●● ●

●
●

●
●●

●

●

●

●●

●●●

●

● ●

●

●

● ●
●

●

●

●
●

●●

●

●

● ●

●
●●

●●

●

●

●

● ●
●●●

●

●● ●

●

●●
●●

●● ●
●

●

●

●● ●● ●●●

●

●
●●

●

●

●
●

●

●

●

●● ●

●

●●

●

●●
●

●
●●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●●
●●●●

●

●● ●
●

●
●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

● ●

●

●●
●

●●●

●

●●● ●

●

● ●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●● ●

●

●●
●

●● ●
●●

●
●

●

●

●●● ●●●●

●

●●

●

●●
● ●●●

●

●

●

●
●

●

●
●

●

●

●●●
●●

●●

●

●●●
●

● ●●
●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●
●●

●
●

●
●●

●●●
●

●

●
●

● ●

●●

●

●

●●

●

●

●

●●● ●●
●

●●
●●

●●●

●

●●

●

●

●

●●●● ●●●●●

●

●

● ●
●

●

● ●●

●

●
●●

●●
●

●

●

●

●
●

●●
●

●

●

●●

●
●

●●● ●

●

●●

●

●

●
●

●

●

●
●

●

●●●●

●

●
●

●

●●●
●

●

●

● ●●●
●

● ●●
●

●
●

●●●

●

●

●

●

●

●●●

●

●●

●

●●●

● ●

●

●

●

●

●●● ●
● ●
●

●

●
●

●

●

●

●●●

●

●

●●●●
●●

●

●●●

●

●●●

●

●

●

●

●●

●

●●●● ● ●●

●

●●
●

●●

●

●

●

●
● ●●●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●●●● ●
●

●●
●

●

●●●●
●

●

●

●

●

●

●
●●

●

●● ●
●

● ●

●

●●●

●

●

● ●●

●

●
●

●

●
●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●
●

●●●●● ●● ●●
●

●●
●

●

●●● ●
●

●

●

●

●

●●●●

●

●●● ●

●

●

●● ●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●

●
●●●

●

●
●

●

●

●●
●

●●●
●●

●

●

●● ●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

● ●●●

●

●

●
● ●

●

●

●

● ●●
●

●

●

●

●●●●

●
●

●

●

●
●●

●
●

●

●

●●
●●

●
●

●

●

●
●

●

●●

●

● ●●

●

● ●

●

●
●

●●●●
●

●●●●●●

●

●

●

●

●

●
●

●●
●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●●
●●

●

●●
●

●

●
●

●

●
●●

●

●
●

●●
●

●

●

●
●

●●●●●●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

● ●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●●
●●

●

●
●

●

● ●

●

●● ●●

●

●

●●

●

●
●

●

●

●●●
●

● ●●

●

●
●●●●
●

●

●●

●

●

●

●

●

●● ● ●

●

●●●
●

●
●

●

●

●
●

●●●
●

●

●

●●●
●●

●
●

●●
●

●●●

●

●

●

●●●●
●

●

● ●

●
●●

●

●

●

●

●●●●

●
●

●●●●●

●

● ●● ●

●

● ●●

●
●

●

●●●
●

●

●

●●●
●

●
●●

●

●

●

●●
●●● ●

●

●
●

●

●

●● ●

●
●●

●
●●●

●

●

● ●
●

●

●● ●●●
●●

●

●

●

●

● ● ●

●

●
●

● ●
●

●

●
● ●

●

●

● ●

●

● ●
●●

●

●

●

●

●

● ●

●
●

●
●●●

●
●

●

● ●●●
●

● ●

●

●

●

●

●● ●
●

●

●

●

●● ●
●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●●●● ●●●
● ●

●

●●
●

●

●
●

●●
●●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●●
●

●●●●
● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●●

●

●●●
●

●

●

●

●

●● ●●
●

●●●●

●●

●

●
●

●
●

●
●●

●

●
●

●

●

● ●
●

●

●
●

●●

●●●

●●

●
●

●●

●●●●●●

●

●

●

●

●

●

●

●● ● ●●

●

●●

●

●
●●

●

●

●

●

●

●

●● ●●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●● ●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●
●●

●

●●●● ●●
●
●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●●●●

●

●

●

●●
●

●●
●

●

●

●
●

●

●
●●●

●

●
●

●

●● ●

●●

●

●

●●●●● ●

●

●

●
●●●

●
● ●

●

●

●
●●

●
●●

●

●

●● ●

●
●

●
●●●●

●
●●●

●

●

●
●

●●●

●

●

●
●

●● ●

●

●

●

● ● ●●●

●
●

●●
●

●●

●

●
●●

●

●●

●
●●

●●●

●

●

●

●

● ●●● ●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●●●
●

●●
●●●

●

●

●

●
●

● ●

●
●

●

●

● ●●
● ●● ●

●● ● ●

●
●

●

● ●●●●● ●

●

●

● ●
●●●● ●

●

●
●

●
●

●
●●●

●
● ●●

●

●
●●●

●

●

●

●

●●

●

●
● ●

●

●

●

●●

●

●

● ●

●
●●

●
●

●

●
●

●

●

●
● ●

●

●

●

●● ●

●

●
●●

●
●

● ●●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

● ●
●●●●

●
●

● ●

●

●●●

●

● ●

●●

●

●

●

●

● ●●●●● ●

●

●●● ●●

●

●

●

●

●
●

●

●● ●
●

●

●

●●● ●

● ●

●

●

●

● ●●

●

●●

●

●

●

●●

●

●●●●●●
●

●

●
●●

●

● ●

●
●

●

●●●●
●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

● ●

●

●● ●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●
● ●●●

●
● ●●●●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●●

●

●

●●
●

●

● ●

●

● ●●
●

●●

●

●●
●● ●

●

●●
●●

●

●
●●●● ●

●
●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●
●
●●

● ●●●●
●●

●

●

● ● ●●●
●

●

●

●
●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

● ●●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
● ●●

●
●

●

●

●
●●●●● ●●

●
● ● ●

●

● ●

●

●● ●●●

●
●

●

●

●

●●

●

●●●●●
●

●
● ●

●
●

●
●●●●●

●

●
●

●
●●

●
●

●

●
●●●●

●

● ●●

●

●
●●

●
●

●

●●
●

●● ●● ●●●
●

●● ●

●

●●●

●

●●

●

● ●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●● ●●

●

●

●●●
●● ●

●●● ●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●●
● ●

●
●

●

●

●

●

● ●

●
●●●●

●

●●● ●●●

●

●

●

● ●● ●

● ●●

●●●

● ●

●●

●

● ●●
●

●
●

●

●● ●
● ●●

●

●●●

●

●
●

●
●

●

●
●

●

●●●
●

●

●

●

●

●
●

●

● ●

●

●

●

●●●
●

●●● ●

●

●

●

●

●●●●

●

●

●

●
●●

●

●
●

●
●

● ●

●

●●

●

●

●

●

●

●

●●● ●

●●

●

●●

●●

●
●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●

● ●
●

●
●

●●●

●
●

●

●
●

●● ●●●
●●

●●●●●●●●
●

●

●
●●●
●●●

●●
●

●
●

●●●
●

●●●●

●

●●●

●

●

●

●

●● ●

●

● ●● ●●

●

●●

●

●●

●●●

●

●●

●

●
●

●

●●●●
●

●

●

●●

●
● ●

●●

●●

● ●

●

●●●●●
●

●

●

●
●● ●●●

●

●
●

●

●

●
●

●●
●

●
●

●●●

●

●

●

●

●

●

●
●● ●●

●

●

●

● ●●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●● ●●● ●●
●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●● ●●

●

●●
●

●

●

●

●●● ●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●●●

●

●

●●
●

●
●

●

●

●●●●●

●

●

●●
●●

●
●

●
●●

●
● ●

●

●●●

●

●
●

●
●●●

●

●●●●

●
●

●

●

●
● ●●● ●●

●●
● ●

●

●●
●

●
●●●●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●
● ● ●

●
●

● ●
●

●

●●●●●

●●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●●

●

●
●

●

●
●●●

●●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●● ●
●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●●

●

●

●●

●●

●●

●

● ●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●● ●

●

● ●●

●●

●●● ●

●

●●●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●● ●●●
●●●

● ●

●

●

●

●●

●

●
●●●●●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●●
●

●
●●●●

●

●

●

●

●
●●

●●
●

●

●●

●

●

●

●
●● ●

●

●

● ●●

●

●
●

●● ●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●●

●

●

●●

●

●
●

●

●

●● ●●●

●

●

●

●●

●●● ●●●●●●

●

●

●

●

●

●

●

● ●●●●● ●

●

●●
● ●●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●●

●●
●●

●
●

●
● ●

●

●

●
●

●

●

●

●

●●●
●

●
●

●

●

●

●
● ●

●

●
● ●●●

●

●

●
●

●●

●

●
●

●● ●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●●

●● ●

●

●

●

●●
●

●● ●●

●

●

●●●●
●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●

●

●●●
●

●

●

●

● ●
●●

●

●
●●

●●●

●
●

●●●●

●

●

●

●

●

●● ●
●

●●●●●
●

●

●

●●●● ●●
●●

●

●

●
●

●

●

●

●●
●

●
●

●

●●
●

●

●● ●●●●
●

●
●

●

●

●●●

●●
●●

●
●

●

●
●

●●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

● ●●

●
●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●

●

●
●

●●●
●

●
●

●

●

●

●

● ● ●●

●
●

●

●

●●●
●

●●

●

●●

●

●

● ●

●

●
●● ●

●

●●

●

●●●

●

●
●

●
●●●●

●

●
●●

●●

●

●

●

●

●

●

●

●●●

●

●●● ●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

● ●
●

●● ●●

●
●

● ●

●

●

●●
●

●●
●

●

●

●
●

●●●● ●●● ●

●
● ●

●

●

●
●●

●

●

●

●

●●● ●●

●

●

●

● ●
●

●

●
●●● ●

●●●

●

●●
●

●●

●

●

●

●
●

●●
●

●

●

●●●
●●

●

●●

●

●●
●

●

●● ●

●
●

●

●

●

●

●
● ●●

●

●

●● ● ●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●
●●●

●

●

●●

● ●

●●●
●●●

●

●●●

●

●
●

●

●

●●
●●

●

●

●

● ●

●

●● ●●●●●

●

●●●

●

●

●
●

●●
●

●●●

●

●●
●

●
●●●

●

●

●

●
●

●●
●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●
● ●● ●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
● ●

●

●●●
●

●

●

●●

●

●

●

●
●●●●

●

●

●

●

●

●●●●

●

●
● ●

●
●

●

●

●

● ●

●

●

●

●
●

●

●●●●
●

●

●

●

●

●

●● ●
●

●
●●

●

●

●

●●
●

●

●

●●

●

●

●●●

●

●

●

●●● ●

●

●●●
●

●

●

●●

●

●●●●

●

● ●●
●

●
●

●

●

●●●●
●

●

●

●●

●

●

●

●●
●

●
●

● ●

●

●

●

●●

●

●

●

●

●●

●
●

●●● ●

●

●

●

●
●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●●
●

●

●

●
●

●
●●

●●

●

●

●

●● ●
●

●

●

●●● ●●
●

●
●

●

●

●

●
●●

●
●

●
●

●

●

● ●●

●
●● ●

●
●●●●

●
●● ●

●●

●

●

●

●

●
●●

●

●

●
●
●

●

●●
● ●

●●●
●●

●

●

●

●● ●
●● ●●

●

●
●

●
●

●●●● ●

●●

●●●

●
●

● ●
●

●●

●

●
●

●

●●

●
● ●●●

●●
● ●●

●●● ●

●

●●
●

●

●

● ●

●●

●
●

●
●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●●
●

●●● ●●

●●

●
●

●

●
●●●

●

●

●

●●

●

●
●

●● ●

●

●

●
●

●●

●

●
●

●●●● ●

●

●

●
● ●●●●●

●

●

●

●

●●

●

●

●

●●● ●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●●

●

●

●● ●

●

●

●
●

●

●

●

● ●●● ●
●

●

●
●●

●

●

●●●●
●

●

●

●

●

●

●●
●

●
● ●

●

●
●

●

●

● ●

●

● ●
●●

●

●●

●

●● ●●●●

●

●●

●

●●

●
● ●

●

●

●
●●
●

●

●
●

●

●●● ●

●

●●

●

●●●●

●

●
●

●

●

●●
●

●

● ●

●●

●●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●●

●●
●

●● ●●

●

●
●

●

●

●● ●

●

●
●

●●

●

●

●● ●●

●

●

●

●

●
●

● ●

●

● ●

●
●

●
●

●●●●

●

●
●

●● ●

●

●●●
●●●●

●
●●

●
● ●

●

●

●

●

●●

●

●
●

●●●

●
● ●

●
●●●

●

●

●

●● ●●
●

●●
●

●

●
●

●●●
●

● ●●● ●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●●

●●●●●● ●
● ● ●●

●
●

●

●

●

●
●

●

●
●●

●

● ●●●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●● ●

●●

●

●
●

●
●
●

●

● ●

●

●●

● ●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●● ●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●●●

●

●
●● ●●●●

●

● ●●

●

●●

●

● ●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●
● ●

●

●● ●●●
●●

●

●

●

●●

●●
●

●

●

●●●
●

●

●

●

●

● ●

●

●●

●

●
●

●● ●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

● ●●

●

●
●

●

●

●
●
●●

●

●

● ●
●●

● ●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●● ●●

● ●

●
●

●

●● ●●
● ●●● ●
●●

●
●

●

●

●

●

●
●

●

●

●●●● ●●
●

●

●
●

● ●
●

●

●
●

●●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●
●

●

●

●●●
●

● ●

●●
●

●●

●

●

● ●

●

●

●

●

●

●●●●
●●

●

● ●●

●
● ●●●●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●

●●●

●

●

●

●●

●

●●
●

●
●

●

●

●
●●

●

●●
●

●

●

●●
● ●

●●● ●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●
●

●

●

●●●

●

●●●● ●●●●

●

●
●

●

●

●●
●

●●●●

●

●●
●●

●

●●

●

●●

●

●●

●

● ●●

●

● ●

●

●

●

●

●●●

●

● ●●●● ●●

●

●
●

● ●

●
●●

●●

●

●

●

●
●●●●●

●

● ●

●

●
●●

●

●●●

●

●
●●●●

●

●

●

●

●

●

●

●●●●
●●

●

●
●

●

●

●
●

●

●

●●●●●
●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●● ●

●

●

●

●

●
●●

●

●●

●

●
●

●●●

●

●
●

●
●

●

●●

●

● ●

●

●●
●

●
●●

●

●●●
● ●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●●
●

●

●

●

●

●●●

●

●
●

●●

●●

●

●

●

●

●
●

●
●

● ●

●●●●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●●

●

●

●

●
●

●

● ● ●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●●●
●

●●

●●

● ●●

●●

●
●

●

●

●
●●●

●

●
●

●●

●

●

●

●●
●

●●●

●

●
●

●
● ●●

●

●●●
●

●

●
●

●

●

●

●●

●
●●

●
●

●

●

●●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●

●●

●

●

●

●●
●

●
●

●

●●●
● ●

●●

●

●

● ●●●
●● ●

●

● ●

● ●●

●

●

●●

●

●●
●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●●●
●

●●●
●●

●●●

●

● ●

●

●

●

●
●

●

●
●●

●
●

●

●●
●

●

●
●

●
●●

●● ●
●

●
●

●

●
●

●● ●

●

●●

●

●

●

●
●●

●

● ●

●

●●●

●

●

●

●

●

●

●

●
●●●

●
●●

●

●

●

●●●

●

●●
●●●

●

● ●●
●

●

●●●●
●

●

●

●●●●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
●

● ●

●

●●●

●

●●

●

● ●
●

●

●
●

●

●●
●

●

●

●

●

●● ●

● ●
●

●

●

●
●

● ●●

●
●

●
●
●●

●

●
●●

●
●

●

●●

●

●●● ● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●
●● ●●

● ●

●

●

● ●●

●

● ●●

●
●

●

●

●

●
●

●
●●

●● ●
●

●

●●
●

●

●

●

●

●●●
●

●●
●

●
●

●
●

●

●
●

●
●

●●●●● ●
●

●●

●●

●

●

●●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●●● ●● ●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●
●● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●
●

●
●

●

●
●

● ●

●● ●

●

●

●

●
●

●

●

●●●

●
●

●

●●

●

●

●●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●

●
●●

●
●

●●
●

●
●

●

●●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●

● ●
●●

●

●

●●●
●

●
●● ● ●●●

●

●●

●

●●
●● ●

●●●

●

●

●
●

●
●

●
●

●

●

●

●

● ●
●

●

●●
●

●

●

●
●

●● ●●

● ●

●

●
●
●

●

● ●

●

●

●

●●●
●

●

●

●

●

●●

●

●●

●

● ●●●●●
●

●

●
●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●●

●

●●●
●

●●●
●

●

●●
●

●
●

●
●

●● ●●

●

●

●

●

●

●
●●

● ●
●● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●●●

●

● ●
●

●●

●

●

●

●
●●

●
● ●

●

●●● ●
●●

●
●

●
●

●
●●

●

● ● ●●●●

●

●●●● ●

●

●
●

●

●

●

●

●
●

●●

●

●
● ●

●

●
●

●

●●
● ●●

●

●
●

●

●
●

●
● ●

●●

●

●●●

●
●

●

●●● ●
●

●
●

●

●●
●

●

●●
●

●

●●
●●

●
●

●

●

●

●● ●

●

●●● ●
●

●

●

●●●●

●

● ●

●

●●●

●

●

●

●

●

●
●

● ●

● ●

●

●
●●

●

●

●

●●●●
●

●●
●●

● ●

●●
●

●

●

●

●

●

●●

●

●
●

●
● ●●●●

●

●

● ●

●

● ●● ●●
●

●
●

●●● ●●●
●

●
●●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●
●●

●
●●

●

●● ●●

●

●

●
●●●● ●

●

●
●●● ●●●

●

●

●

●●
●

●
●

●● ●
●●

●

● ●●●●

●

●

●

●●

●

●

●●● ●● ●

●
●

●● ●●
●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●
●

●● ●
●● ●●●●●●●

●

●●● ●● ●● ●●●

●

●

●●
●●

●

●

●

●●●

●

● ●●●

●
●

●

●

●

●

●
●

●

●●
●

●●
●●●

●

● ●●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●
●●

●

●

●

● ●

●

●●

●
●

●

●●
●

●

●●● ●

●

●

●

●

●●

● ●

●●

●

●●
●●●●

● ●
●

● ●

●

●

●●

●

●● ●●

●
●

●●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●●●

●
●

●●●

●

●
●

●

●●

●

●
●

●

●
●

●●●●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●●

●

●

●
●

● ●●●●● ●

●
●

● ●●●

● ●

●

●

●

●

●● ●●●●
●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●
●●

●●
●

●

●●
●● ● ●

●

● ●

●

●

●

● ●

●●

●

●

●

●

●

● ●
●

●●
●

●
● ●

●
●●●

●
●●

●

●
●

●

●●●●
●

●
●●

●
●

●

●●

●
●

●
●

●

●
●●

●

●

●●
●

●

●
●

●

●

●

● ●●

●

●
●●

●
●

●
●

●●

●

● ●●●

●

●

●

●

●

●

●
●●

●
●

●● ●
●●● ●●●●●●●●

●

●
●

●● ●

●
●

●● ●

●

●●

●
●

●●●

●

●●

●

●●

●

●

●

●

●

● ●●●
●

●
●

●
●

●

●
●●● ●

●
●

●●

●

●

●
●

●
●●

●●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●
●

●
●

●● ●

●

●

●

●
●●●●

●●
●● ●●

●●

●

●

●

●●●●
●

●

●

●

●

●
●

● ● ●

●

●●●
●

●

●●●
●

●

●

●

●

●●●●
●

●●●

●

●

●●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●●
●

●
●

●●

●

●

●

●
●

●
●
●● ● ●●

●
●

●

●

●
●

●
●

●●●●

●

●●●●●

●

●

●
●

●●

●

●

●

● ●● ●
●

●

●

●

●●
●●

●

●

●●

●
●●

●●● ●●

●

●

●

●

●

●
●

●●● ●

●
●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●
●

●●
●●

●
●●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●●●●●●

●

● ●●

●

● ●
●

●●●● ●

●

●
●

●

●

●
●●● ●

●

●

●
●

●●

●

●

●

●

●●
●

●

●●●

●

●
●

●● ●
●

● ●●
●

●

●

●

●

●
●

●

●
● ●●●

●
●

●

●
●●

●

●●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●●● ●

●

●

●

●

●

●
● ●

●

●

●

●
●●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●●

●

●
● ●●●● ●

●
●●●●

●●

●

●●●
●

●

●

●
●●

● ●

●

●
●

●
●

●●●●
●

●●

●●

●

●

●●
●

●

●

●

●●

●●

●
●
●●●● ●●●● ●●●●●

●

●

●●
●

●●●

●

●

●

●
●

●●

●

●●
●

●

●
● ●

●

●●

●

●
●

●●

●●

●

●

●●

●
●

● ●

●

●

●●●
●

●●●●●

●

●
●

●●

●

●

●●

●

● ●
●● ● ●●●

●
●●

●
●●

●
●●●

●●

● ●
●

●
●

●

●●●●

●

● ● ●●

●

●

●

●●
●

●

●

●●
●●

●
●

●●

●

●

●

●
●

●
● ●

●
●●

●

●●●

●

●

●

●

●
●●●

●

●

●●●●

●

●

●
●

●

●

●

●
●

●

●●●
●

●●

●
●

●●

●

●

●●

●
●

●
●●●

●
● ●● ●

●

●

●

●●● ●●●

●

●

● ●

●

●●

●●

●●

●●●
●

●●

●

●

●

●● ●

●

●

●

●
●● ●●●

●●

●

●

●

●●

●

●
●

●● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●●

●

●
●

●●

●
●

●

●

●

●

●●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●●●

●●●
●

●

●

●

●

●

●

●

●

●
● ●

●
●

●●●●

●

●

●●

●

● ●●
●●●●

●

●
●

● ●

●

●

●●●
●

●

●

●

●

● ●
● ●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

● ●

●

●
●●

●

●

●

●
●●

●

●●
●

●

●
●●●

●

●●● ●●
●

●

●

●

●

● ● ●

●

●
●

●

●●●
●

●

●

●

●

●

●
●

●
●●●

●
●●

●
●

●
●

● ●
●●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●●●●
●

●

●

●

●
●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●● ●●●
●

●

●●●

●

●● ●●

●

●● ●●●

●

●

●
●●●●●

●

●

●

●
●

●
●

●

●●●

●

●●●
●●● ●

●

●

●●
●

●
●

●

●●●

●
●

●●●

●

●

●●
●

●

●

●

●

●●● ●

●

●

●●

●

●●

●
●

●

●

●●●●

●

●

●

●
●

●●● ●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

● ●

●

●
●●

●

●
●

●

●

●

●

●

●

●●●●

●

●● ●
●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●
● ●

●

●●

●

●

●

●

● ● ●●
●

●

●●

●
●

●

●

●

●

●

● ●●●● ●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●● ●●●

●

●●

●●

●
●●

●

●

● ●
●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●●
●

●
●

●

●

●●
●

●●
●●

●

●

●
●● ●●

●

●
●

●●

●

●●

●

●
●

●

●
●

●

●

●

●●● ●●

●

●●●

●

●
●

●●
●

●● ● ●
●●

●
●●

●●

●
●

●●

●

●

●

●
●

● ●●

●

●
●●●

●

●

●
●

●●● ●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●●
●●

●

●

●●●●●

●
●

●

●

●

●●●
●

●

● ●

●
●

●●
●

●●

●●

●

●
● ●●

●
●●

●●
●●

●

●

●

●●

●

●

●

● ●● ●●

●

●

●●

●
●

●●●

●●

●
●

●

●
●●

●

●●
●●

●

●

●
●

●●

●

●●
●

●
●

●●●●●●

●

●●

●

●

●

●

●

●
● ●
●

● ●

●
●

●

●

●
●

●

● ●

●
●

●

●

●
●●

●
●

●

●

●

●
●●

●●

●●●●
●●

●

●

●

●
●

●

●

●●●

●

●●
● ●●●●●●

● ●

● ●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

● ●
●

●

●

●

● ●
●●●●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●●●
●●●

●●

●●

●

●●●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●
●

●

●

●
● ●

●● ●●

●

● ●●
●

●

●
●

●

●
●

●

●

●

●

●●●●

●

● ●●

●
●

●

●

●●

●

●●● ●

●

●
●

●

●
●●

●
●

● ●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●●●● ● ●

●

●

●

●●●
●

●

●●●

●

●●● ●
● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●●●●● ●●
●

●●
●

●

●●
●

●

●

●
●

●● ●

●

●

●
●

●

●●●

●●

●
●●

●

●

●
●

●

●
●

●

●

●●

●
●

●● ●●●
●

●

●●
●

●
●

●

●

●

●

●

●

●●●●
●

● ●

●

●
●

●●
●

●●
●●●●
●

●

●

●

●
●

●
●

●

●
●●

●
●

●● ●

●●

●
●●

● ●
● ●

●

●

●

●

●
●

●● ●
●

●

●●●●
●

●●●

● ●

●

●

● ●
●

●

●
●

●
● ●

●

●
●

●

● ●

●

●●●

●

●●

●

● ●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●●

●
●

●

●●

●

●●●
●
●●

●●●
●●

●●
●●●●●●●

●●●●●●●●
●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●

99.9900%

99.9925%

99.9950%

99.9975%

100.0000%

1 10 100 1000 10000

#Fault−Similarity Classes

A
c
c
u
ra

c
y

(e) MiBench/qsort (training)

● ●●●
●

●●●●● ●
●

●
●

●●●●● ●●●

●

●

●

●●●●● ●
● ●

●
●●

●

●●● ●●
●
●●
●
●● ●●● ●●●●●

●

●

●

●
●● ●●●●●● ●●● ●● ●●

●● ●●●●●
●

●●
●

●●●● ●
●●●●●●●●●● ●●
●

●●●●●
●

●●●●●●●●
● ●● ●

●

●●●●

●

●●●●●●●

●

●●●●●●
●
●

●
●●●●●● ●●●●●●●●●●

●●●●
●●●●

●
● ●●
●
●●●●● ●●●●

●

●

●

●●●● ●
●●●●

●
●●●●●● ●

●

●●● ●●

●
●

●●●●●●●
●
●●●● ●●● ●●● ●●●●●●

●

● ●●●

●

●● ●●●●●●● ●
●

●

●●●●● ●●●
● ●●●●●●

●
●●●●●

●

●
●●●●●●●●

●

● ●
●●●

●

●●●●

●

● ●●●● ●●●●●

99.00%

99.25%

99.50%

99.75%

100.00%

0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07

#FI Experiments (incl. training)

A
c
c
u
ra

c
y

(f) MiBench/qsort (total)

●●

●

●

●●

●

●●
●

●

●
●

●

●

●

●
●

●
● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●●
● ●

●

●
●

●●

●

●●●

●

● ●

●

●

●●

●
●

●
●●

●

●

●

●
●

●●●●
●

●
●●●

●
●

●
●

●●
●

●●

●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●●
●

●●
●

●

●●●●
●

● ●●

●

●

●
●

●
●●●

●

● ●●●
●●●

●●
●

●
●●●

●

●

●

●

●
●●

● ●

●●● ●●
●

●
●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●●●
●

●

●
●●

●

●

● ●●

●

●●●
●●

●

●

●●

●
●
●

●
●

●●●
●

●
●

●

●●●●
●●●

●

●

●

●●●
●●

●

●
●

●●●
●●●

●

●

●●●
●

●
●

●●
●

●
●

●
●●

●●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

● ●
●●● ●
●●

●

● ●
●

●

●●●●
●●

●

●

●

●

●●●
●

●●
●

●

●
●

●

●●●

●

●● ●

●

●

●

●

●
●●

●●
●

●
●

●●

●

●

●

●●●
●

●●

●

●●●

●

●
● ●

●

●
●

●
●

●

●●

● ●

●

●
●

●
● ●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●● ●

●
●

●
●

●●●

●

●

●
● ●

●●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●
●●

●

●●

●

●●
●

●

●

●●●●●

●

●

●

●
●

●●●

●

●

●

●

●● ● ●
●

●●
●

●
●

●
●

●

●

●
● ●

●

●

●●
●

●

●

●

●●

●
●

●

●

●● ●

●

●
●

●
● ●

●

●●●
●

●

●
●●●●●

●

●

●

●●●

●

● ● ●

●

●

●

●

●

●●●●

●●

●

●● ●●●●

●

●

●

●

●

●
●

●●

●
●

● ●
●●●●●

●
●

●

●●
● ●

●
●●●

●

●●
●

●

●

●

●

●

●
●

●

●●
●

●●●

●
●●

●

●
●●

●●

●
●

●

●●
●●

●

●●
●

●

●●

●

●●

●

● ●
● ●

●●
●

●

●

●●●

●

●

●

●

●
●●●

●
●●●
●●●

● ●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●●●
●

●
●●●

●

●
●

●●

●

●●

●●
●●

●

●

●

●
●

●

●●

●
●

●

●
●

●●

●

●●

●

●●
●

●
●

●●

●

●●●

●

●
●

●●●

●
●

●

●

●

●

●
●●●●●●●
●●

●
●

●
●

●

●●●
●●●

●

●

●

●
●

●

●●

●
●

●●
●

●
●

●
●

●
●●●

●

●

●
●

●

●

●●

●

●

●

● ●
●●

●●
●●

●

●
●

●
●

●
●

●
●●
●

●●●

●

●
●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●●

●

●●

●●●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●

● ●

●

●
●

●●●
●

● ●
●

●●
●●●

●

●

●

●

●●
●

●

●●

●

●●●

● ●

●●

● ●

●

●

●●
●

●●

●

●●●●

●

●●●
●

●

●
●●

●

●

●

●●

●●

●
● ●●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●●●

●

● ●●
●

●

●
●●●

●
●
●

●●

●

●

●●
●

●
●

●
●

●●

●

●

●

●

●●
● ●

●

●

●
●

●●
●●

●●

●

●

●●
●

●●

●

●
●

●

●

●
●●●

●

●
●

●
● ●

●
●

●

●●

●

●
●

●

●

● ●●

●

●●
●

●●
●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●
●

●●
●

●● ●
●●

●

●
●

●●●

●●

●●

●
●

●

●

●●
●●●●

●

●●

●

●

●●
●● ●●●

●●● ●
●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●●

●

●●

●●●

●●

●

● ●●●
●

●

●●
●

●

●

● ●

●

●●●
●

●

●
●●●●

●
●●●●

● ●

●

●
●

●●●●

●
●

●●●
●

●

● ●
●●●●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●●
●●●● ●

●●
●

●

●●

●

●
●

●●

●

●
●●

●

●
●

●

●

●

●

●●●●●●
●●

●
●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●

●●
●

●

●● ●

●

● ●●
●

●

●
●●●

●

●●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●●●●
●

●
●●
●

●

●
●●

●

●
●

●●

●
●

●
●●●
●●

●
●●

●

●
●

●●●
●

●
●● ●●●●

●

●

●

●
●●●

● ●

●
●

●
●

●●●●
●

●

●●

●

●●●●●
●●●

●

●●●
●

● ●●

●

●

●

●

●

●

● ●●
●

●

●
●

●●●●

●

●

●

●

●

●●●
●

●
●

●
●

●

●

●

●

●●
●●

●●●
●●

●

●
●

●
●

●

●

●

●

●●

●

●●●
●

●

●●

●

●

●
●

●●

●

●
●

●●●

●
●●

●
●

●

●

●●
●●●

●
●

●

●
●

● ●●
●

●●

●

●
●●●●●

●

●

●

●
●

●
●●

●

●

● ●●
● ●

●
●

●

●

●●

●

●
●

●

●
●●●●

●

●● ●

● ●
●

●

●

●

●

●

●
● ●

●
●●●

●●
●

●●

●● ●●
●

●

●
●

●
● ●

●●●●
●●

●
●

● ●

●

●

●
●●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●●●●

●●●●●●●

●●

●●●
●

●
●

●●●

● ●●

●
●

●

●

●●●
●●

● ●

●
●

●
● ●●●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●●●

●

●

●●

●●
●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●●●

●

●

●
●●

●●●

●

●
●●●

●●●●

●

●●

●

●●
●

●

●
●

●

●●●

●

●●●
●● ●●

●
●

●
●

●

●● ●●
●

●
●● ●

●

●●

●

●

●

●●
●●

●

●●
●

●●●●

●

●
●

●

●●●●
●●

●

●●●

●
●

●

●●

●

●

●●
●

●●
●

●

●
●

●

●

●
●●

●
●●●●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●●
●

●
●●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●●●

●
●

●
●

●●●

●
●

●

●
●

●

●● ●●● ●

●

●●
●

●

●

●
●

●
●

● ●

●

●●

●

●●

●

●

● ●

●

●

●

●
●●

●●●

●●●

●

●●●●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●

●

●

● ● ●●
●

● ●

●

●

●

●
●

●

● ●●

●

●
●

●●

●

●
●

●

●
●

●●

●

●●
●

●
●●●

●

●
●

●

●
●

●
●●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●●
●

●●●
●●

●
●●●●

●

●

●●

●

●
●

●●
●●

●
●

● ●
●●

●
●

●

●

●●
●

●
●

●●
●

●●
●

●●●

●

●

●

●

●

●
●●
●

●

●●
●

●
●

● ●

●

● ● ●
●●●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●
●

●

●

●●●

●

●
●

●
●●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●
●

●

●

●●
●

●

●●
●

●●●
●●

●
●

●

●●

●

●●

●

●●● ●
●●

●●
●

●
●

●

●

●
●

●

● ●●●
●●●●

●●
●

●●●
●

●

●

●●

●
●●

●
●

●

●

● ●
●●

●

●●
●

●

●
●●●●

●

●●

●●
●● ●

●
●●● ●

●
●

●
●

●
●

●
●

●

●

●●●●●●

●

●
●●

●●●

●

●

●

●

●

●●
●●

●
●

●●
●

●

● ● ●
●

● ●●

●

●

●
●

●
●

●

●

●●
●●

●●

●

●●
●●

●

●

●●
●●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●●●●

● ●
●●

●

●
●

●

●

●
●

● ●

●

●
●●●

●
●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●●●
●

●●

● ●

●

●

●●●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●
●

●

●
●●

●●●● ●●
●●

●
●

● ●
●●●
●

●

●

●

●
●●

●●●●●
●●●
●●●

●

●

●
●●

●

●

●

●● ●

●

●
●

●

●

●

●
●

●●

● ●

●●●

●● ●●
●●

●

●
●

●

● ●●

●

● ●

●●

● ●
●●

●

●
●

●●●
●

●●●

●
●

●●
● ●

●

●

●●

●

●

●

● ●

●
● ●

●
●

●●●

●

●

●

●
●●

●

●

●

●

●
●

●●●
●

●

●●●
●●

●

●

●

●
●

●●
●

●●

●

●
●

●

●
●●

●
● ●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●
●●●

● ●
●

●

●

● ●
●

●●
●

●●
● ●

●

●
●

●
●

●●

●

●
●

●

●

●

●●●●
●●●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●

●

●

● ●

●
●

●
●

●
●●

●

●

●

●
●

● ●●●

●
●●●

●

●
●

●
●●
● ●

●

●
●

●

●● ●
●●

●

●

●●
●

●

●

●

●

●● ●

●

● ●

●

●

● ●
● ●●

●

●

●

●●●●●
●

●
●

● ●
●

●

●

●
● ●

●

●●
●●

●
●●●

●●

●

●●

●

●
●●

●
●

●

●

●
●

●●

●

●● ●

●

●●

●

●●●

●

●

●
●●●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●
●●

●●

● ●

●
●

●
●

●
●

●
●

●

●

● ●
●

●

●●●●
●

●
●

●

●●●

●

● ●
●

● ●●

●
●

●

●

●●●●

●

●●
●

●

●

●

●●

●

●
●●

●
●

●
●

●
●

●

●

●●
●●

● ●
●

●

●

●●

●
●

●
●●●

●
●

●●●

●

●
●

●● ●●

●

●
●

●

● ●●
●●●●

●

●●
●

●
●

●

●

● ●
●

●

● ●

●●
●

●●

●

●● ●●

●

●

●

●
● ●

●

●
●

●

●●●●
●●●●

●

●
●●

●

●
●

●

●
●

●

●

●●

●

●●
●

● ●
●

●●●
● ●

● ●

●

●● ●●●●●●

●

●

●●●

●

●●
●

●

●

●
●

●

●

●●
●

●●

●

●
●

●
● ●●

●
●●

●●●
●●

●
●

●●
●

●

●
●●●

●

●

●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●●●
●

●●
●

●

●

●
●

●
●

●

●●

●

●●●●●
●

●●

●
●

●

●

●●

●

●

●

●
●

●●

●

●●●

●

●●

●

●● ●

● ●

●●●

●

●

●

●

●●●●

● ●
●● ●

●
●

● ●●
●

●●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●
●●

●
●

●
●

●

●
●

●
● ●

●

●
●●●

●●●
●

●
●

●
●●

●

●

●
●●

●●
●●●

●

●

●●

●
●

●●●
●●●

●

●
●

●

●
●●

●●●●

●
●

●●
●●

●

●

●
●

●●●●
●●●

●

●●

●

●

●

●

●
●

●

●

●●

●

● ●●

●●

●

●

●
●

● ●

●●

●

●
●●

●

●

●
● ●

●●●●● ●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●
●

● ●●
●●●

●

●

●

●

●
●

●

●●
●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●●●

●
●

●

●
●●●

● ●

●

● ●●

●

●

●●

●

●

●●

●

● ●

●

●

●●

●

●
●

●

●
●

●●
●

●●●●
●

●

●

●

●

● ● ●●
●

●
●●

●
●

●
●

●●●
●●●

●
●

●
●

●
●

●

●●

●●

●

●

●●
●

●●

●

●●●

●

●

●

●● ●

●●

●

●
●

●

●
●

●

●

●

●
●

●●●
●

●●
●

●

●
●

●●
●

●

●

●

●
●

● ●

●

●

●●●
●●

●
●●

●

●
●

●
● ●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●
●

●

●●●
●●●

●

●

●●

●

●
●

●

●
●

●
●

●
●

●●●
●

●●

●

●●
●

●

●
●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●●●

●
●

●
●●

●
●

● ●
●

●●●●●●
●

● ●●●●
●●

●
●

●●
●

●
●

●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●
●●●●

●●
●

●
●

●

●

●

●

●●
●

●

●●

●

●

●●●

●
●

●
●

●

●●
●●

●

●

●

● ●
●

●

●

●
●

●● ●
●

●

●
●

●

●
●

●●● ●●●

●

●

●

●
●

●
●

●
●

●●●●●●
● ●●

●

●

●

●

●
●●●

●

● ●●●●

●

●

●
●●●●

●

●
●●●

●

●

●●
●

●
●

●
●

● ●
●●●●
●

●

●●
●

●
●

●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●●
●

●

●●
●

●

●●●●

●

●
●

●

●
●

●
●

●
●

●

●●●●●

●

●
●

●

●●
●●

●●●

●
●

●

●●
●

●

●
●

●●●

●

●

●
●●

●

●

●

●

●
●●

●● ●
●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●
●●

●
●●●●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●
●●●

●

●

●

●

●
●

●

●
●●

●

●

●

● ●

●

●

●

●

●●

● ●

●

●

●

●

●●
●●

●
●

●
●

●
●●

●

●

●

●●

●
●●●

●

●

●

● ●
●

●

●

●

●
●

●
●● ●●●

●
●

●

●●●

●

●

●●

●
●

●●
●

●
●

●

●●

●
●

●

●●
●

●
●

● ●
●●

●

●
● ●

●

●

● ●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●●

●

●

● ●●●

●

●● ●
●●

●
●

●

●

●
●

●●

●

●
● ●

●
●●●●

●
●●

●●
●

●●

●●
●●

●●
●

● ●●

●

●

●

●

●●

●

●

●●●

●

●●
●

●

●
●

●●●
●

●●
●

●

●
●

●●

●
●

●

●
●● ●●●●●

●

●
●

●●

● ●

●

●●●●
●●

●●●
●

● ●
●

●●●● ●
●●

●

●

●●
●

●
●

●

●●●●

●

●

●

●

●

●●●●

●
●

● ●

●
●● ●

●

●

●

●

●
●●●
●

●

●

●

●

● ●
●

●

●
●●●

●

● ●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●●●●

●

●

●

●

●●●
●

●

●
●

●

●

●●

●
●

●

●
●●

●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●●
●●

●●

●

●

●
●

●
●●●
●

●●

●
●

●
●●

●
●●

●
●● ●
●

●●
●●

●

●

● ●●

●

●
●

●

● ●

●

●

●

●
●

●

●
●●

●

● ●

●
●

●●
●

●
●●
●

●

●

●

● ●●●●●
●

●
●

●

●
●

● ●
●●

●
●●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●

●
●●

●

●
●

●

●
●

●● ●
●

●
●

●

●

●

●●●

● ●

●
●●

●

●

●●●
●

● ●
●

●

●●

●

●

●
●

●●
●●●●● ●

●
●

●●●●

●

●●

●●

●
●

●
●●●

●
●

●
●●

●●
●●●

●

●●
●●

●

●

●
●●●●

●
●●●●●

●●●
●●

●

●

●●

●

●●
●

●●

●
●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

● ●
●●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●●●●

●

●

●●

●

●

●
●●

●

●
●●

●
●●

●

●

●
●

●

●●

●

●

●
●●

●●
●●

●
●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●●●
●

●

●●

●

●
●

●

●●

●

●
●

●
●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●● ●
●●●
●●

●

●

●

●

● ●

●●●●
●

●
●

●
●

●

●

●

●
●

●
●●● ●

●

●

●
●

●
●●

●●

●

●●
●

●
●

●
●●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●
●

●●
●

●

●
●●

●

●●

●

●

●
●

●

●

●
●

●

●●
● ●

●
●

●

●

●
●

●●

●

●
●●●●●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●●●●
●●

●
●

●●
●

●
●

●
●●●

●

●●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●●●●

●

●

●

●
●●

●
●

●●●●

●

●

●●

●

●

●

●
●●

●
●

●
●●

●
●●

●
●

●
●

●

●●●
●

●●

●
● ●●●

●
●

●

●

●

●
●

●

●

●

●

●
●●●

●
●

●

●

●

●
●●

●●●●
●

●

●
●

●

●
● ●

●

●
●●●

●

●

●

●

●
●●

●●
●

●
●●

●●
●

●

●●●
●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●●

●

●●
●●●

●

●
●●

●
●

●

●
●

●

●

●

●●
●●

●
●

●
●

●

●

●●●●●●
●

●●
●

●
●
●●

●

●

● ●
●

●

●

●

●●●
●

●●

●

●
●

●●
●

●

●
● ●

●
●

●●
●●

●

●
●

●

●
●●

●●

●●

●
●

●

●

●

●
●

●
●●

●●
●

●

●

●

●
● ●●

●

●

●

● ●

●●
●

●
●

●

●●
●

●

●

●

●
●●●

●
●

●

● ●
●

●

●●
●

●

●

●

●
●●

●

●

●●●
●

●●

●

●

●

●
●

●
●

●●

●●

●
●●

●
●

●

●
●

●
●

●
●

● ●
●

●

●

●●●●
●

●●●
●

●
●

●
●

●

●

●
●

●●●
●

●

●

●

●●
●

●●

●
●

● ●●

●

● ●

●

●●
●

●
●●

●

●

●

●
●

●

●●

● ●
●

●

●
●

●●

●● ●

●

●

●

●
●

●
●●

●●
●

●
●

●

●

● ●

●

●
●

● ●

●
●●

●●
●

●●●

●

●

●
●●

●

●●

●●

●

●

●
●●

●

●

●

●
●

●

●●

●
● ●

●●
●

●

●
●

●
●

●●

●

●

●
●●●

●

●
●●

●

●

●●
●

●●

●

●
●

●●● ●
●●

●●●●

●

●

●● ●

●

● ●
●

●
●

●●
●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●

● ●
●●

●

●
●

●
●

●

●●

●

●●

●
●

●
●

●
●●●●

●

●
●

●●
●●●

●
●

●

●

●●
●

●
●

●●
●

●

●
●● ●

●●●
●●

●

●
●

●

●
●

●
●

●
●●

●

●●●●●

●

●●
●●

●

●

●

●

●●
●

●
●●

●

●

●●

●

●

●

● ●●
●

●●
●

●

●

●

●●●
●●

●

●
●

●

●

●
●

●●●
●

●
●●

●
●●

●

●●

●

●
●●

●●
●

●

●
●

●
●

●
●●

●●

●●
●

●
●

● ●●
●

●

●

●●
●

●

●

●

●

●
●● ●●

●

●
●

●

●
●

●

●●●●
●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●●
●

●

●●
●

●

●●
●

●●●
●

●
●●

●

●

●
●

●

●
● ●

●
●●

●

●

●
●

●

●●●●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●●

●

●
●●

●

●

●

●
●●

●●
●

●

●
●

●
●

●
●

●

●

●

●
●●

●
●

●
● ●● ●●●

●
●●●

●

●

●

●

●

● ●●

●
●

●
●

● ●

●

●●

●
●●

● ●

●
●

●

●●●●
●

●

●
●

●●●

●

●●
●

●

●
●●

●
●
●●

●

●●●●
●

●
●

●●
●

●●
●

●
●

●●

●

●

●●

●

●
●

●●● ●● ●●●●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●●●
●

●
●

●

●

●●●●●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●●

●

●

●
●●

●●
●

●
●

●

●

●

●
●

●●

●
●

●

● ●

●
●

●

●

●●

●
●

●
●●● ●●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●●

●●
●●

●

●
● ●●●

●
●●●●●

●● ●
●●●

●

●
●

●
●

●

●

●
● ●

●

●● ●

●
●

●

●

●

●

●●
●●●

●
● ●

●●

●

●
●

●

●
●

●●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●●
●

●

●●

●●●
●●●

●

●
● ●●

●

●
●

●

●
●●

●●●●●●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●
●●

●
●

●●

●

●

●

●●
●●

●

●

●

●

●●●
●

●●

●

●●●
●

●

●

● ●

●

●

● ●
●

●

●

●●

●

●

●
●

● ●●

●

●●

●

●

●
●

●

●
●

●
●

● ●●●●●

●

●

●

●
●●● ●

●

●
●

●

●●●●

●

●●●

●

●●

●

●
●

● ●

●

●
●●

●●

●

●●

●
●

●
●●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●
●●

●
●●●●

● ●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●●

●

●●

●●
●

●

●

● ●●
●

●
●

●
●

●

●●
●

●

●

●●●
●

●

●

●
●

●

●●
●

●

●●
●●

●

●

●●

●
●

●

●●
●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●●

●●
●

●

●

●

●
●●●●

●

●

●●●
●

●
●

●●
●

●

●

●
●

●●

●

●
●●●●

●

●●
●●

●● ●
●

●●
●●●

●

●
●

●
●

●

●

●

●
●●●●

●
●

● ●

●

●

●
●

●

●

●●
●●●●

●● ●●

●

●

●

●●

●

●

●
●●

●
●

●

●

●
●

●●
●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●●●
● ●●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●●
●

●
●

●

●●

●

●
●●●

●

●●●
●●

●

●●
●

● ●

●
●●●● ●●● ●

●

●
●

●●
●

●

●

●
●

●
●●

●

●●●●
●

●

●●●

●

●

●●
●●●

●
● ●

●●

●

●

●

●
●

●
●

● ● ●

●●

●
●

●

●●

●●

●●

●

● ●

●●●●
●●●

●
●

●

●
●●

●

●
●

●●●

●

●
●

●

●
●

●
●

●

●●●
●●●●

●

●

●

●

●

●

●
● ●●

●
●

●

●

●

●

●
●●●●

●
● ●

●

● ●
●

●

●

●●
●●

●

●●●

●

●

●●
●

●
●

●

●
●

●●●

●

●
●

●

●
●●

●

●

●●●

●

● ●
●

●●
●

●

●●●●
●

●
●

●

●

●

●●
●

●●
●

●

●●●
●●

●
●●

●●
●

●

●
●●

●

●
●

● ●

●
●

●

●●●
●

●
●

●●
●

●
●

●

●
●● ●

●

●
●

●

●

●
●

●●

● ●●

●●

●

●●
●

●

●

●

● ●

●●

●

●

●

●●
●

● ●●

●
●

●
●

●

●

●

●

●
●●

●
●●

●●●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●●●●

●

●
●

●

●●
●

●●
●●

●
●

●

●●●
●

●

● ●●
●

● ●

●

●

●●

●

●
●

●
●

●
●●●

● ●●
●●

●
●

●

●
●

● ●

●

●
●

●

●●

●

●
●●

●

●

●●

●

●●●●

●

●

●●●●
●●●●●●

●
●

●●
●

●
●●

●●●●
●

●●
●

●●
●●●

●

●

●

●●●
●

●

●
●● ●

●

●

●●
●

●

●

●

● ●

●

●

●

●
●

●●
●●

●

●
●

●

●

●

●●●

●

●

●
●●

●

●
●

●●

●

●
●

●●●●

●●
●●

●●
●

●

●

●●
●●●●

●

●

●

●
●●●

●●●●●●
●

● ●
●

●
●

●

●
●

●●

● ●

●

●

●
●●

●
●

●

●●●
●

●●●●●
●●●

●
●●

●

●●
●

●●●
●●

●

●

●

●

●

●

●●
●

●●

●
● ●●●

●●●
●

●

●
●

●

●
●

●

●●
●

●● ●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●●●

●

●

●

●●●
● ●

●●

●

●

●

●

● ● ●

●

●

●

●

●
●

●●●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●
●

●
●

●
●●

●
●

●

●
●

●

●
●●

●
●

●

●●
●

●
●●
●● ●●

●

●
●●

●

●●
●●

●●

●

●
●●●

●
●

●
●

●●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●●●
●●●
● ●●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●●

●
●●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●●

●● ●●

●●●●

●

●
●●●

●●●

●

●●

●

●●●
●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●●

●

●●
● ●●

●
●●

●
●●

●
● ●
●

●
●●

● ●

●●●
●●● ●

●

●

●●
●

●
●

●

●

●
●

●●
●●●

●●

●

●
●

●

●

●

●●
●●●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●●
●●

●

●
●

●

●●●●●

●●● ●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●
●

●● ●●

●

●
●●

●●
●●

●

●

●

●
●●●

●●

●

●

●
●

●

●

●●

●

●

● ●
●●

●

●●●
●

●
●

●
●

●
●●●

●
●

●

●

●

●

●
●●

●

●●
●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●●
● ●●●●

●

●●
●

●●
●

●

●
●●●

●
●●

●

●

●
●

●
●

●
●

●
● ●

●

●
●●●

●
●●

●

●
●●

●
●

●

●
●

●●
●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●

●●
●●
●

● ●

●
●

●

●

●●

● ●
●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●●

●

●
●

●●
●●

●

●
●●

●
●●●

●

●

●
●

●

●

●
●

●

●●
●

● ●
●

●●

●
●●●

●
●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●●

●

●

●

●
●

●
●

●
●●

●
●●

●
● ●

●

●
●

●
● ●

●

●

●
●

●

●

●
●

● ●
●●

●●

●
●

● ●●

●

●
●

●●
●●

●
●

●
●●

●●●
● ●
●●

●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●●●●●

●
●

●

●

●

●

●

●

●●●
●

●

● ●●
●●●●

●

●
●●

●

●
●

●
●

●
●

● ●●●
●

●●●
●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●●

●

● ●
●●

●●
●●●

●

●

●
●

●

●●

●●

●

●
●

●
●●

●●●
●

●

●
●● ●●

●
●●

●●
●●●●●

●
●

●●

●

● ●

●
●

●

●

●

●

●

●●

●●

●

●
● ● ●●●

●

●

●
●●

●

●
● ●

●
●

●

●

●●●
●

●●
●●●

●

●

●●

●
●

●

●

●

●
●●
●●

●
●●

●

●

●
●

●

●
●

● ●●
●

●

●

●

●

●●
●
●

●

●

●

●

●●
●●●

●
●●●

●
●

●●●●●
●●

●

●

●
●●●

●
●

●●●

●

●●
●

●●

●

● ●
●●

●●●
●

●●

●

●

●
●

●
●

●●

●
●

●
●

●●●

●

●

●
●

●
●

●

●●●

●●
●

●

●

●●●
●●●

●●●●
●

●

●

●

● ●

●

● ●
●

●
●●●

●●
●

●●

●

●
●

●●

●

●

●

●
●

●
●

●●
●

●●●
●●●

●

●

●

●

●●

●

●
●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●●

●

●

●
●

●
●

●
● ●

●●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●●●●

●

●
●●

●
●●

●
●

●

●
●

●
●●

●●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●●●●
●

●

●

●

●

●

●

●●
●

●

● ●
●
●

●
●

●
●

●

● ●●
●●

●
● ●

●●

●●● ●●
●

●

●
●

●

●

●

●● ●

●

●

●

●

●
● ●

●
●

●●●●
●●●

●

●

●●
● ●

● ●●
●

●

●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●
●●●●

●●
●

●

●

●

●

●
●

●
●

●

●● ●

●

●
●

●

●

●

●

●

●●

●
●●●
●●●

●
●

●●

●

●

●
●●

●

●
●

●
●

●●●
●●

●

●

●

●●

●
● ●

●

●
● ●

● ●●

●●●●●

● ● ●
●

●
●●

●

●

●
●

●● ●
●

●● ●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●
●●

●●

●

●
●

●

●●

●

●
●●

●
●●●

●●

●

●

●

●

●
●●●

●

●

●
●●

●

●

●●●
●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●
●●●

●●
●●

●

●

●

●

●

●●●

●
●

●● ●

●

●

●

●
●

●

●●

●

●

●

●●
●●

●

●
●● ●

●●

●

●

●

●●

●

●

●

●
● ●

●
●●

●●

●
●

●●

●

●

●

●

●
●

●
●

●
●●

●

●●●

●
●●

●
●

●

●●●
●

●

●

●
●

●

●
● ●

●
●

●

●
●● ●●●

●

●
●

●
●

●

●

●
●●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●●

●
●

●

●

●
●●●

●
● ●

●●
●●

●

●

●

●

●

●
●●●

●
●● ●●

●●●

●●
●

●●
●

●

●●
●

●

●

●

●

●
●
●

● ●
●

●

●
●

●

●

●●●
●●●●

●

● ●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●●

●

●
●

●
●

●●
●

●

●

●
●

●●

●

●●
●

●●●●●
●

●

●
●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●● ●●●

●
●

●

●

●

●●

●

●●

●

●
●●

●

●●●●

●
●

●
●

●
●

●
●●●

●●

●●●●
●

●

●●

●●● ●

● ●●

●

●●●
●●●●

●
●

●

●

●●

●

●
●●

●

●

●
●

●
●●●

●
●

●

●
●

●●●
●

●
●

●●●●

●

●●

●
●

●
●

●●

●
●

●

●

●

●
●

●●
●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●

● ●●
●

●

●
●●●

●

● ●
●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●●
●

●

●
●●

●

● ●
●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●●●
● ●

●

●

●
●●●●

●

● ● ●●

●●●
●

●
●

●●●

●
●

●●●
●●●●

●
●

●

●
●

●
●

●
●

●
●

●
●●●●●

●

●

●

●
●

●● ●

●
●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●●

●●

●

●
●

●
● ●●

●
●

●

●
●●

●

●●

●

●

●●

●

●●
●

●
●

● ●

●

●
●

●

● ●
●

●

●

●

●
●

●● ●

● ●●●

●

●

●

●

●
●●

●
●●●

●
●

●

●

●

●
●

●●●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●
●

●
●●

●●
●

●●
●●

●

●
●●

●
●

●
●●

●

●

●

●

●●●

● ●

●

●
●●

●

●

●
●

●
●

●
●●●●

●●
●

●

●

●

●
●●

●
●●

●●●●
●

●
●

●

●●
●

●
●

●

●

●

●

● ●●●

● ●

●

●

●

●

●

●

● ●

●●

●

●●

● ●

●

●●●

● ●●●
●

●

●

●
●

●

●
●●

●

●●
●

●●
●●

●
●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

● ●
●●

●

●

●

●●●
●

●

●
●

●

●●

●

●
●●●●●

●

●

●

●

●
●●

●●

●

● ●
●

●
●

●
●

●
●

●● ●
●

●
●●
●

●● ●●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●●
●

●●●

●

●●

●

●
●

●●●

●

●
●

●

●

●
●●●

●
●

●●●

●

●

●

●●
●

●
●

●
● ●

●●

● ●●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●●

●

●●●

●
●●

● ●
●●

●

●●
●

●●
●

●

●

●
●

●

●●

●●
●

●●

●

●

●●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●●●

●
●●●

●

●
●

●
● ●

●
●

●●
●

●●●

●
●

●

●

●

●●

●

●●●●

●

●

●●
●

●

●

●
●

●

●
●

●
●●

●●
●

●
●

●

●
●

●●●
●●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●●●

●
●

●

●
●

●
●

●

●●●

●

●

●

●
●●

●

●

●
● ●

●
●

●

●●●
●

●

●

●
●

●●

●

●

●
●●●

●
●

●

●

●●

●

●
●

●

●

●●

● ●
●

●
●

●
●● ●
●

●

●●●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●●
●●

●●
●●●●
●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●

●●●
●

●

●

● ●

●

●

●
●●

●●●●

●●

●

●

●

●

●
●

●●●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

●● ●●●●
●

●●●
●

●
●●

●
●

●
● ●

●
●

●

●●
●

●

●

● ●

●
●

●

●
●

●
●

●

●

●
●

●
●

● ●

●

●
●

●
●●

●● ●

●

●
●

●
●●

●●●
●● ●●●

●

●

●

●

●

●

●
●

●●
●●

●
●●

●●

●

●

●

●●
●

●
●●●
●

●

●●●●
●

●●

●

●
●

●

●
● ●●

●
●

●

●●●●●●●
●

●

●

●

●
●

●●
●

●

●
●

●●
●●●

●

●

●

●

●

●
●

●

●
● ●●

●
●

●
●

●
●

●

●

●●
●

●
●

●● ●●●

●
●

●●

●
●●●

●
●

●● ●●●●●

●

●

●
●

●●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●●
●

●
●

●●●
●

●

●

●

●
●●

●●●●

●

●●●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●●

●

●
●● ●●●●●

●

●● ●●

●

●●
●●

●●
●

●
●

●

●
●

●
●

●●
●●

●

●

● ●
●

●

●●
●●●●
●●

● ●
●

●●
●●

●●

●●

●●

●●●●●●
●●●●●●

●
●●

● ●●
●

● ●
●

●

●
●●●●●

●
●●

●

●

●●●

●

●● ●

●

●

●
●

●

●
●●●
●

●

●●

●
●●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●● ●

●

●●

●
●

●
●

●

●

●●

●

●

●●
●

●

●
●●●

●

●
●

●

●

●
●

●
●●●

●

●
●

●

●

●

●
●

● ●
●

●●

●

●
● ●●

●

●
●●

●
●

●

●
●

●
●

●
●

●●
●●●

●●●●

●

●

●

●
●

●
●

●

●
●●●

●

●●
●

●
●●●

●

●

●

● ●●●

●

●●●

● ●
●

●
●

●

●
●

●
●

●

●● ●
●

●

●

●
●

●

●

●●
●●

●

●

●

●
●

●

●

●

●●

●
●

●

●
● ●●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●●
●

●
●

●●
●

●

●

●

●●
●

●

●

●

●●
●●●

●
●

●●

●

●
●

●

●

●
●●

●
●

●

●

●

●●●

●

● ●
●

●

●

●
●●

●
●●●

● ●●
●●

●

●
●●●

●
●

● ● ●
●

●

●

●
●

●
●

●
●

●●●
●

●
●

●

●

●

●
●●●●●

●●●●
●

●
● ●

●
●●

●

●
●

●

●
●

●●
●

●●

●

●

●
●●

●
●●●●●●

●

●● ●

●●
●

●●

●

●●
●●

●

●

●
●

●
●

●

●

●

●

●●●
●

● ●●
●●●●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●●●●●●●●
●

●●

●
●●●

●
●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

● ●●●
●●

●

●
●●●

●●

●

●
●

●

●

● ●●●
● ●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●●

●
●

●●

●

●

●
●

●

●

●●●●●

●

●
●

●●

●

●
●●●●●●●

●
●●●

●●●

●
●●

●●

●

●

●
●●
●●

●●●

●

●●●

●

●●●

●

●
●●

● ●

●
●

●

●

●

●
●●

●

●

●

●
●●●

●●
●●

●●
●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●
●

●

● ●●
●

●

●

●

●

●
●●●

● ●
●

●

●●●

●

●

●

●

● ●
●

●
●

●●

●
●

●
●

●●●●
●

●

●

●●●●●●
●●

●

●

●

●

●

●●
●

●●●●

●●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
● ●●

●

●

●

●

●

●●
●

●
●●●

●

●

●
●●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●
●●

●
●

●

●●

●

●

●
●

●
●●●

●
●

●

●●●

●

●●● ●

●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●●●
●●

●
●

●
●●●
●

●●●
●

●
●●

●

●
●

●
●

●●
●

●●
●

●
●● ●●●

●

●
●

●
●

●

●

●

●

●●
●

●●●

●
●

●
●

●
●

●

●

●

●●●

●
●

●
●

●

●
●●●●

●
●●

●
●

●

●

●●
●

●

● ●

●
●

●
●●

●
●

●●●●

●

●

●

●
●●

●

● ●
● ●

●

●
●●

●

●
●

●●●

●

●●

●

●●● ●

●

●●●

●

●

●

●●

●
●

●●●●
●

●

●

●●

●
●

●

●

●

●
●

● ●

●

●
●

●
●

●●●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●
●

●●●● ●●

●

●●●

●
●

●
●

●●● ●●●●●

●

●
●●●

●

●

●

●

●●
●●

●●●

●

●
●

●
●

●

●●

●
●●

●

●

●●

●

●
●

●●●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●
●●

●●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●● ●

●●●
●●

● ●
●●

●

●

● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●
●

●
●●

●

●
●●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●
● ●

●
●●●

●

●

●
●●

●

●
●

●

●

●
● ●

●●
●

●
●●

●

●
●

●

●
●

●
●●

●
●

●●
●

●
●

●

●
●

●

●

●

●●●

●

●●●●

●
●

●

●

●

●
●

●●
●

●

●

●

●
● ●

●

●

●

●

●●●●●
●●

●
●

●

● ●●

●

●●
●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

● ●●●

●

●

●

●●
●

●

●

●
● ●●

●

●●● ●

●

●●

●

●●

●

●

●
●

●
●

●●

●

●

●

●●●●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●
●

●●●

●
●

●●●

●●

●

●

●

●
●

●

●●

●
●●●

●
●

●●

●

●
●

●

●●●
●

●
●●

●

●
●

●
● ●

●

●

●
●

●

●
●

●
●

●●
●

●
●

●
●●

●

●
●

●
● ●

●
●●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●●●

●

●

●

●

●●●
●

●●●
●

●

●
●

●
●

●

●
●●

●

●

●●●
●

●

●
●

●

●●
●

●
●

●
●

●
●

●

●●

●

●

● ●
●

●●

●

●
●

●

●

● ●
●●

●

●●

●

●

●

●●●●
●

●

●

●

●

●●●
●

●

●●
●

●
●

●●●●
●

●

●

●
●

●● ●
●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

● ●●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●
●

●
●

●

●●
●

●
●

●
●

●●
●

●●●
●

●

● ●
●●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●
●●●●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●● ●●

●
●

●

●
●

●● ●

●
●

●●●
● ●

●
●

●
●

●

●

●
●

● ●

●
●●●●

●●

● ●

●●●
●●

●

●

●
●

●
●●

●●●●

●

●●
●

●

●

●
●

●●●

● ●

●
●

●

●●●

●

●

●

● ●
●●

●

● ●
●

●
●

●
●●

●
●●

●

●
●

●
●

●

●

●●
●

●●

●

●

●

●
●●●

●

●

●
● ●●●●

●

●●

●

●

●

●
●●●

●
●●● ●

●

●●●
●●

●●

●

●

●● ●●

●

●●
●●

●

●●

●

●

●●
●●

●
●●

●

●
●

●

●

●● ●●●
● ●

●

●●

●
●●

●

●

●

●

●●●
●

●
●

●
●

●●●●
●●

●

●

●

●●
●●

●
●

●

●

●
●

●
●●●

●
●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●●●●
●

●
●

●

● ●
●●

●●
●

●
●

●

●●

●

●
●

●

●

● ●●●
●

●
●

●

●

●●
●

●●

●

●●●
●

●

●

●●

●
●

●
●

●
●

●
●

●●
●●

● ●

●
●

●●
●●

●

●

●

●

●
● ●

●●●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●
●

●

●●●●
●●●

●
●

●● ●

●

●

●
●

●

●

●●
●●

●

●
●

●
●●

●●
●

●●
●●

●
●

●
●

●
●●●

●
●

●
●

●●
●●

●●

●

●
●

●
●

●
●

●
●

●
●

●

●●

●

●

●

●●

●

● ●● ●
●

●

●●
●

●

●
●●

●

●●●●
●● ●●

●●●
● ●●●

●

●

●

●

●

●
●

●●
●●●●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●● ●
●

●●
●●●●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●
●●

●
●

●●

● ●

●

●

●
●

●●
●

●

●

● ●●
●

●
●

●

●

●●
●●●

●●
●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●●●●

●

●●●
●

●
●

●●
●

●
●●

●● ●
●

●
●

● ●
●

●
●

●

●

●
●●

●

●●●
●●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●●●

●
●

● ●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●
●●

●●
●

●

●●●●
●

●

●

●

●

●●
●

●

●

●

●
●

● ●
●

●
●

●

●

●
● ●

●
●

●●

●

●●●●●●●
●●●●●

● ●
●

●●

●

●●

●

●

●
●

●●●●

●

●
●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●
●

●
●

●●
●

● ●
●●

●

●
●

●

●
●

●●

●

●
●

● ●
●●

●

●
●

●
●

●

●

●

●

● ●

●
●

●
●●

●●

●

●

●●

●

●

●

●●
●● ●

●
●●

●
●

●●
●

●

●

●●●●

●
● ●

●●●
●●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●●

●
●●
●

●
● ●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

● ●

●

●

●
●

●●●●
●

●
●

●
●●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●●●●

●●
●

●

●

●

●

●

●
●

●
●

●●
●●

●
●

●

●

●

●●

●

●
●

●

●

●●
●●

●
●●●

●

●
●

●
●

●
●●

●

●
●●

●

●
●

●

●

●● ●

●

●
●●

●
●

●
●●●●

●
●●

●

●●

●

●●●●

●

●
●●

●
●

●

●

●●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

● ●

●
●

●

●
●

●●
●

●
●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●
● ●●

●
●

●

●

●
●

●

● ●●

●●●●
●

●

●

●

●

●
●

●
●

●●
●

●

●●●●●●●
●

●
●●

●

●

●

●●
●

●
●

●●●●
●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●●
●●●●

●
●●●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●●

●

● ●

●●●●●

●

●

●
●

● ●
●●●

●
●

●

●●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

● ●
●●

●

●
●●● ●

●

●

●

●

●

●

●●
●

●
●

● ●
●

●
●●●●

●
●

●

●

●
●

●
●●

● ●
●

●
●

●
●

●

●

●

●●

●

●●

●

●
●●

●

●●

●

● ●●

●

●●

●

●●●

●

●●
●

●

●
● ●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●●●●
●

●

●
●●

●
●●

●

●

●●●
●●●
●●●●

● ●

●

●

●

●

●

●●●

●

●
●

●
●

●

● ●
●

●

●●●
●●

●

●

●●●●
●

●

●
●

●
●

●
●●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●
●●●

●
●

●
●

●●
●

●
●

●
●

●
●●

●●

●

●

●

●●
● ●●

●

●

●

●●
●

●

●

●

●●
● ●●●

●
● ●●

●

●
●●●

●

●

●

●
●

●●
●

●●●
●

● ●
●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●
●●

●

●●

●

● ●
●●●

●

●
●●●

●
●

●

●

● ●
●●

●

●
●

●●

●

●●

●●●

● ●

●

●●

●

●
●

●●●

●
●

●

●●●
●

●

● ●

●

●
●●

●
●

●
●●

●●
●

●

●
●●●

●●
●

●●
●●

●● ●

●

●●

●

●

●

●

●

●
●●

●

●
●

●
●●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●●●

●●●●

●

●
●●

●
●

●

●

●
●

●

●●
●

●

●

●
●●

●●

●
●

●●●

●

●
●●

●

●
●●

●●
●

●●

●

●●

●
●●

●

● ●
●●

●●
●

●

●
●

●

●●

●●
●

●

●●
●

●
●

●

●●●
●●●

●
●

●

●

●

●

●●

●

●
●

●●
●

●●

●

●
●

●
●●●

●●
●

●
●

●●
●●

●

●●
●

●

●

●●● ●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●●

●

●●●

●

●●●
●●●

●●

●

●

●
●●

●
●●

●

●
●●

●

●

●
●●

●●●
●

●
●

●●●
●●

●

●

●
●

●
●

●
●

●

●● ●
●●

●●
●

●

●

●●

●

●

●●
●

●

●
●●●

●

●

● ●
●

●

●

●

●

●●
● ●●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●●
●●●

●
●

●

● ●

●

●● ●

●
●

●

●

●

●●

●

●●●
●

●

●
●

●●
●

●
●●

●
●

●●

● ● ●
●

●● ●

●●●●
●

● ● ●●
●

●

●

●

●

●
●

●

●●
●

●●●

●

●
●

●
●

●

●

●●●●●
●●● ●

●

●

●
●

●
●

●
●

● ●

●

●●
●●

●
●

●

●

●

●● ●

●

●
●

●

●

●●●

●

●

●

●
●●

●●

●

●
●

●

●

●●

●

●

●●
● ●

●

●
●●●

●
●●

●

●
●●●

●
●

●
●

●
●

●

●●●

●

●● ●●

●
●

●●
●●

● ●

●

●

●
●

●●●●
●

●

●
●●●●

●●●

●

●● ●

●

●●●

●
●

●
●

●

●

●

●

●● ●● ●

●
●

●●

●

●

●

●

●● ●

●

●
●●

●

●

●

●

●

●●
●

●
●

●
●

● ●

●

●
●

●

●●
●

●

●●

●

●
●

●

●●
●

●
●

●

●
●●

●

●

●

●
●

●

●

●●
●●

●●
●

●

●●

●

●

●

●●

●●

●

●●
●

●
●

●
●

●
●

●●
●●

●

●● ●
●

●●●
●●

●

● ●

●
●

●●

●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●●●●●

●

●
●

●●●

●●●●●●●

●
●●

●

● ●

●
●●●

●

● ●
●●●● ●

●

●

●

●
●●●

●

●
● ●

●

●
●

●
●

●●

●
●●●

●●
●

●
● ●

●
●

●
●

● ●

●

●

●
●

●
●

●
●●

●●
●

●

●
●

●
●

●
●

●

●

●●●

●

● ●●
●

●

●●

●

●
●●

●●
●

●
●●

●●

●

●

●

●
●

●

●

●

●

●●
●●

●

●
●●● ●

●●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●● ●
●●

●

●●●
●

● ●
● ●●

●

●

●

●

●

●
●

●●

●

●●●●

●

●

● ●●●

●

●

●

● ●
●

●
●●

●

●

●

●●

●
●

●

●

●
●●

●
●

●● ●
●

●

●●
●●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●●
●

●

●
● ●

●● ●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●
●● ●●
●●●

●
●●●

●●
●●

● ●

●●
●●

●●●

●

●

● ●
●

●
●

●
●

●●
●

●
●●

●

●

●
●

●

●

●

●●
●●

●●●●●
●

●
●

●

●

●
●

●

●

●●

●
●

●●
●●

●

●●●●●●
●

●
●●

●

●
●●●

●
●

●
●

●●●

●

●●●

●

●
●

●●

●

●●●
●

●
●●●●

●
●

●

●●●●

● ●●
●

●●● ●● ●

● ●
●

●

●
●●

●

●

●●
●●●
●●

●

●

●
● ●●●

●

●

●
●

●

●

●

●

●●
●

● ●
●●

●

●

● ●

●

●

●
●● ●

●●

●
●

●

●
●

●
●

●
●●●

●

●

●

●

●●

●●
●●●

●

●
●●

●
●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●●
●

●

●●

●●

● ●
●●

●

●

●

●

●

● ●

●

●●● ●●● ●

●

●●●

●
●

●●●

●

●● ●
●

●
●

●
●

●● ●

●

●●

●
●

●●
●●

●
●

●●●
●

●

●●

●
●

●

●●●
●●

●
●●●

●

●

●
●

●

●●
●●●●

●

●●●
●

●●
● ●●●

●

●
●●

●

●

●
●

●

●

●

●●●
●

●
●

●
●

●●

● ●

●● ●

●

●
●●

●
●●● ●

●

●
●●●

●

●
●

●●

●

●
● ●

●
●

●
●

●

●

●
●

●

●
● ●

●

●
●
●

●
●

●
●

●●●

●

●

●

●
●

●

●

●

●

●●●● ●
●

●

●
●

●
●●

●

●

●

●

●
●●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●●
●

●●●

●●●
●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●●

●●

●●
●

●

●

● ●

●

●

●●

●

●

●●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●●

●
●● ●●●

●
●

●

●

●

●
●●

●

●●●

●

●●

●
●●

●

●

●

●
●●

●

●●

●
●

●
●

●●●

●

●

●

●●

●

●

●●●●

●

●

●
●●●●

●
●

●
●●
● ●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●
●

●●●

●

● ●●●

●

●●●●
●

●
●

●
●●

●

●●

● ● ●

●
●

●●
●●

●

●

●

●

●●●

●●●

●

●
●

●
●

●
●

●

●
●●

●
●

●

●

●●

●
●

●●
●●●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

● ●

●
●

●

●
●●●

●
● ●●●●●

●

●

●

●

●
●

●●

●

●●

●

●

●
●●

●●
●●●●

●

●

●
● ●

●
●

●●

●
●●●

●

●
●

●●

●

●

●

●

●
● ●

●
●

●●

●

●

●

●

●
●

●

●●
●

●●
●

●

●

●●

●

●

●
●●●●

●

● ●
●●

●●
●

●

●●

●

●

●
●

●

●

●●
●●

●

●
●

●
●

●
●

●●●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●
●

●●

●

●●
●

●●●

●
●

●

●●

●

●

●

●
●

●
●●

●

●

●●●

●

●
●

●

●

●

●

●
●

●●●

●

● ●
●

●●●
●

●
●●

●

●
●●

●●●
●●

●

● ●

●

●
●

●● ●

●

●
●●

●

●
●

●
●

●

●
●

● ●●

●

●●
●●

●

●●
●

● ●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●
●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●●●

●

●
●

●
●

●

●

●
●●

●●
●

●
●

●

●

● ●●● ●

●

●

●

●

●

●

●●
●●

●

●
●

●
●

●

●

●● ●
●●

●
●●

●
●

●
●●

●
●

● ●●
●

●●

●

●

●

●

●●●

●
●

●●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●
●●●

●●
●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●
●

●

●●

●

●
●

●

●●

●
●●

●

● ●

●
●

●

●

●

●

● ●
●●

●●

●●●● ●
●●●

●

●

●●
●●

●●
●

●
●●

●

●

●
●

●●
●

●
●

●
●●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●●●
●●●●

●

●

●

●

●

●
●●●●
●●●

●● ●

●

●

●●●●●
●

●●
●●

●

●
●

●●●
●

●
●

●●

● ●
●

●

●●

●

●

●

●●●●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●●●

●

●●

●
●

●●

●

●● ●
●●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●●

●

●

● ●

●

● ● ●
●

●●●●●

●

●

●

●

●
●

●●●

●

●

●

●

●●●
●●

●
●●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●●● ●

●
●● ●●

●

●

●
●●

●
●

●
●●

●

●●
●

●
●

●

●

●
●

●
●

●

● ●
● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●●

●
●

●
●●

●
●

●

●
●

●

●
●

● ●

●●

●

● ●
●●

●
●

●
●●

●●
●

●

●

●

●

●

●●

●

●
●

●●

●

●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●
●●
●

●

●

●

●

●

●●

●

●
●

●●

●●●
●

●
●

●

●

●●

●

●
●

●● ●

●●
●

●

●●●
●

●

●
●●

●

●

●

●

●●
●

●

●
●

●●
●

●●●

●
●●●

●●

● ●●
● ●●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

● ●

●

●

● ●

●
●

●●●●
●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●
●●

● ●

●●●●

● ●●
●

●

●

●
●

●

●●

●

●
● ●
●

●●
●●● ●

●

●
●●●

●
●

●
●●

●

●

●

●

●●
●

●
●●

●
●●

●

●

●
●

●●
●●

●●●●

●

●●●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●

●●
●●

● ●●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●●
●

●●

●
●●

●

●●

●

●

●●
●

●
●

● ●
●●

●
●

●

●

● ●●●

●●
●

● ●

●●●●●
●

●
●

●●
●

●●●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

● ●●

●

●
●

●
●

●
●●●

●●

●

●

●

●
●●

●

●
●

●

●
●

●

●●

●

●
● ●

●
●●●

●●●

●

●

●

●●
●●

●

●

●

●
●

●
●

●●
●

●

●
●●●●

●
●

●

●

●

●●

●

●
●

●●●

● ●

●
●

●

●

●

●

●

●●
●

●
●

● ●
●

●

●

●
●●

●

●
●●●

●

●●●
●●●

●

●●

●
●●●

●●

●
●●

●

●
●

● ●●●

●
●

●● ●●
●●

●●●
●

●●●●●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●
●●●●

●

●●

●

●

●
●●●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●●●●
●●

●

●

●

●

●
●

●
●

●
●

●●
●

●
●

●

●

●●
●

●

●
●

●

●
●●

●●●
●

●

●
●

●

●

● ●

●

●

●
●

●
●●●

●

●

●●
●

●● ●
●●

●

●
●

●●●

●

●
●

●●●
●

●

●

●
●●●●●

●
●

●●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●●

●

●

●

●

●●
●●

●

● ●
●

●

●●

●

●●●●●
●

●●
●

●

●

●

●

●

●
● ●●

●

●

●

●●

●

●●
●

●●●

● ●

●

●

●

●
●

●
●

●
●

●
●●●

●●
●

●

●●

●

●
●●

● ●

●
●

●
●

●●●
●●

●●

●

●●
● ●

●

●

●●
●

●
● ●

●
●

●

●

●
●●●●

●

●●
●

●

●

●
●● ●

●
●

●

●

●

● ●
●●●●

●●

●

●●

●

●

●

● ●●
●

●

●
●●

●●●

●

●

●

●

●●●
●

●

●
●

●

●
●

●

●●

●

●

●●
●

●●●

●

●

●
●

●

●

●●
●

● ●

●

●

●

●
●●●●

●

●
●

●
●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●●●●

●

●

●
●

●

●

●

● ●●
●

●

●

●
●

●
●●

●●

●
●

●
●

●

●
●●●

●
●

●
●

●
● ● ●●●

●●●
●●

●
●

●
●

●

●
●

● ●

●
●●

●

●●
●●●
●

●
●

●

●
●

●

●
●●

●
●

●

●

●●
●

● ●●
●

●

●

●

●

●●

●
●●

●●●●

●
●

● ●

●●
●

●

●
●

●

●
●●●

●●
●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●
●

●

●

●●
●●

●

●
●

●●
●

●

●● ●●
●●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●

●●

●
●

●
●●●
●●

●●
●

●

●

●

●

● ●●
●●●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●
●●

●

●

●
●

●
●

●
●●

●
●●

●

●

●●

●
●

●

●●

●

●●●

●● ●
●●

●
●

●● ●● ●●
●●

● ●

●

●●
●

●
●

●

●
●●

●
●●●

●

●

●

●

●
●●

●

●

●●

●

●

●●●●
●●

●

●

●

●

●

●
●

●
●

●●●

●

●
●

●

●●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

● ●

●

●

●

●● ●●●
●●●●

●
●

●

●

●

●
●

●●●
●

●

●

●

●

●●●

●

●●

●

●●●●

●
●● ●

●

●

●●●●
●

●●

●

●
●

●●
●

●
● ●●●

●

●

● ●●●●●
●

●

●

●

●

●

●
●●●●●

●
●●

●

●

●●
●●

●
●

●
●●

●●
●●●

●
●

●
●●●●

●●
●

●

●
●

●
●

●

● ●
●

●

●●

●

●●

●
●

●

●

●
●

●●

●

●

●
●

●
●●

●
●●●

●

●● ●●

●
●●●

●

● ●

●
●●

●

●
●●

●
●

●
●

●

●

●

● ●
●

●●

●

●
●●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●

●●●●●●●●●
●

●

●

●●
●

● ●

●

●
●

●

●

●
●

●
●

●

●

●●
●●●

●
●

●
●●

●
● ●●●●

●

● ●●

●

●
●

●
●● ●●

●

●
● ●

●

● ●●
● ●

●

●● ●●

●

●

●

●

●
●

●●

● ●
●

●
●

●
●●

●

●

●●
●●

●

●
●

●
●

●

●
●●

● ●
●●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●●
●

●

●
●●

●

●

●

●●
●

●

●
●

●
● ●
●

●

●

●
●

●

●●

●

●

●
●●
●

●
●

●
●

●
●

●
●●

●
●●●●
●●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●●●●

●

●●
●

●●

●

●●
●●

●

●

●

●
●●●

●●

●● ●

●●●●●

●
●

●●
●

●●●●
●

●

●●
●

●

●
●

●
●

●

●●

●●
●

●

●

●●●
●

●
●

●●
●

●

●

●
●

●

●

●

●●
●

● ●

●

●

●●
●●

●

●

●

●●
●●

●

●
●

●

●
●

●

●●

● ●●

●
●●

●
●

●

●●

●

●

●
●

●
●●●

●

●

●

●

●
●●

●

●

●
● ●●

●

●
●

●

●
●

●

●
●

●

●

●

●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●
●●●●

● ●●

●

●
●●

●

●
● ●

●

●●

●

●● ●
●

●

●

●●●

●●

●●
●●●

●
●

● ●

●

●

●

●
● ●

●●●
●●

●

●

●
●

●

●

●

●
● ●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●● ●
●

● ●●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●●●●●
●

●

●
●

●●

●
●

●
●●

●
●

●●● ●
●

●

●

●

● ●
●

●

●
●

●
●●

●

● ●●●
●

●

●

●●

●

●

●
●●

●

●
●

●
●

●

●

●●
●

●●
●

●
●

●

●●

●

●

●
●

●
●●

●
●

●●

●

●●

●
●

●●

●

●

●

●

●
●

●
●

●

●●
●

●

●
●●●

●

●
●●

●
●●

●

●

●
●

●

●

●●●

●

●
●

●

●●

●

●

●●
●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

● ●

●●
●

●
●●●●●

●●●

●

●
●

●●

●

●●

●

●

●
●

●

●

●●●

●

● ●

●●

●

●●
●●

●●● ●●
●

●
●

●

●

●●●●
● ● ●●

●
●●
●

●
●

●
●●● ●
●

●
●

●●
●●

●
●

●●
●●

●
●●

●●

●

●

●
●

●

●

● ●
● ●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

● ●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

● ●
● ●

●
●

●

●

●
●

●
●

● ●●

●●
●●

●

●
●●●●●

●
●●

●
●

●
●●

●

●●●
●

●
●●●

●●●

●

● ●●

●

●

●●

●

●

●
●

●●

●
●

●

●●
●●●

●
●

●

●●
●

●●●
●●●

●
●

●

●●

●

●

●

●
●

●●
●

●

●
●

●

●●
●

●

●

●

●

●●● ●
●

●

●

●
●

●
●

●
● ●

●
●

●

●

●

●
●

●
●●

●

●
●

●

●

●●
●●

●
●

●
●

●
●

●

●
●●●

●
●

●

●

●
●

●
●● ●

●

●
●

●●

●

●

●

●●
● ●

●

●●
●●

● ●
●

●

●
●

●
●

●

●

● ●

●

●
●●● ●

●

●●
●●●●●

●

●
●

●

●

● ●●●

●●
●

●●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

● ●●●●●
●●

●

●●

●

●●

●
●

●●
●

●

●
●●

● ●
●

●

●
●

●

●

●
●

●
●

●●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●
●●●

●
●●●

●

●
●

●●

●

●
●●

●

●

●

●

●
●

●●

●

●
●● ●●

●
●

●

●
● ●●●●●

●●
●●

●

●●

●

●

●

●●
●

●

●●
●

●●
●

●●
●

●
●

●

●

●●

●
● ●

●

●●
●●

●

●

●

●

●
●

●
●

●

●
●●

●
●●

●

●●●

●

●●
●●

●

●●●●● ●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●●●
●

● ●
●

●●● ●
●●

●●

●

●
●

●
●●

●

●
●

●●●●●
●●●●

●

●

●

●
●

●●●●●●
●

●●

●

●

●
●

●

●

●●

●●
●

●

●●
●● ●

●
●●

●
●●

●

●
●

●

●●

●

●

●●

●

●

●●●●
●

●

●

●●●●
●

●

●
●

●●
●

●

●●
●

●
●

●●

●

●●

●

●
●

●
●

●

●●●●
●

●

●
●

●
●●●

●

●

●

●

●

●

●●

●
●

●
●●● ●

●
●

●●●
●●●●

●●

●●●●
●

●

●
●

●

●
●●

●● ●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●●●

●●
●●

●
●● ●

●

●
● ●

●
●

●
●

●●●●
●

●
●

●

●● ●●
●

●

●

●
●●●●

●

●

●
●●

●
●

●

●

●

●
●

●
●

●●
●

●
●●

●

●●
●

●●
● ●●

●●●●●●
● ●

●

●●●●●
●

●
●●

●
●

●●●
●● ●●●

●

●

●●●●
●

●

●
●

●
●●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

● ●
●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●●●

●
●●●

●

●●
●●

●●●
●

●

●
●

●
●

●
●

●

●●
●

●
●●●●

●

●

●
●

●
●

● ●
●●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●●
●●●

●

●
●

●
●

●●

●

●
●

●
●

●●
●

●

●

●●●●●

●

●●

●
●

●
●

●

● ●
●

●●

●

●

●
●

●

●●●
●

●
● ●

●
●

●

●

●
●

●●

●

●

●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
● ●

●
●

●

●
●

●
●

●

●
●●●

●

●

●
●●

●

●
●

●

●
●

●● ●●
●

●

●
●

●●

● ●

●

●

●

● ●●●
●

●

●
●

●
●

●

●
●●●●

●

●

●
●

●
●

●

●
●

●

●●

●

● ●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●●
●●

●●

●

●
●

●●
●●

●

●

●
●●

●
●

●●●

●

●
●●●

●

●

●●
●

●

●● ●

●

●
●

●

●
●

●
●

●●●

●

●
● ●

●

●
●

●●●
●

●
●●●

●

●

●

●
●●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●
●

●

●
●

●

●
●

●●●●●
●●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●●●●●●

● ●
●

● ●
●

●

●
●●

●●

●
●

●

●● ●●●
●●

●

●

●

●
●●● ●

●
●

●

●

●●

●

●

● ●
●●
●●

●●
●●●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●●●●

●

● ●
●

●

●
●●●●

● ● ●●●●●

●

●

●

●

●

●

●

●●

●

●

●●●
●●

●

●

●
●

●

●
●●●●

●
●●●

●●

●
●

● ●
●●●●

●

●
●●

●
●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●
● ●●

●
●

● ●●
●

●●●

●

●

●

●
● ●

●
●

●

●
●●

●
●

●●

●

●

●

●
●

●

●

●
●●
●

●

●

●●●

●
●

●

●

●●
●●

●
●

●

●
●●●●

●●
●●●

●
●

●
●

●

●●

●

●

●

●
●●
●

●

●●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●
●●

●
●●

●●

●

●

●
●●●●

●

●

●
●●
●●

●

●

●
●

●

●
●

●

●●● ●

●

●●

●

●
●●

●

●●●
●

●
●

●

●
●●●

●
●●

●●

●

●
●

●
●●

●
● ●
●

●
●

●

●
●

●
●

●
●

● ●
●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

● ●

●●●
●

●
●

●
●● ●●

●

●●
●●

●
●

●

●
●

●●

●

●
●

●●●●

●

●●●●
●● ●

●
●

●

●
●

●

●

●
●

●●●
●

●

●

●●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●
●●

●

●

●

● ●
●

●

●
●●

●
●

●
●●●●●

●

●

●
●●

●

●●
●●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●
●

●●●
●

●
●●●

●

●

●

●

●●

●
●●

●●●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●
●

●

●

●

●

●●●

●
●

●
●

●
●

●

●

●

● ●●

●
●

●

●●●●● ●

●

●

●
●
●

●

●●

●
●

●
●●

●

●

●●●

●●

●

●

●

●●
●

●
●●●

●
●●

●

●

●

● ●

●

●

●
●

●
●

●●

●

● ●●

●

●●
●

●
●●

●
●

●
●

●●

●●●
●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●
●●

●●●●

●

●

●

●
●

●

●●

●

●

●
●●●

●

● ●

●
●

●
●●●

●

●
●●

●
●

●

●

●●
●

●
●

●
●

●

●
●

●

● ●
●●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●●●
●

●
●●

●

●

●

●

●●●●
●

●●
●

●
● ●●

●
●

●●●
●

●
●

●

●

●
●
●

●

●

●

●
●

●
●

●
●●● ●●●●

●

●

● ●●
●●

●●

●

●
● ●●●

●
●●

●●

●

●

●

●

●●
●

●
● ●

●
●

●

●
●

●

●

●

●
●

●

●●
●
●

●●

●

● ●

●

●
●●

●

●●
●

●

●●●
●●

●●● ●●

●●
●●

●●●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●●●

●

●

●

● ●●

●
●

●●

●

●
●

●●
●

●●

●

●

●●
●

●

●

●
●

●●●●

●

●

●

●

●●●●

●
●

●

●

●

●●●
● ●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●●
●

●

●●●

●●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●

●

● ●●
●●●

●●
●

●

●
●

●

●

●

●

●

●● ●●

● ●●
●●●

●
●

●●
●●

● ●

●

●

●

●

●
●

●

●
●

●●●
●

●

●

●

●

●

●●

●

●●● ●
●

●

●

●●
●

●

●

●
●

●
●

●
●●●●

●

●
●

●

●
●

●●

●

●●

●
●

●

●
●

●

●
●

●
●●●

● ●●
●●

●
●

●

●

●
●

●
●

●
●

●●
●

●
●

●
●

●

●

●●● ●

●

●
●

●

●●

●

●

● ●●

●

●

●

●●
●●●

●
●

●

●
●

●
●●●

●

●●●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●●

●
●

●

● ● ● ●
●

● ●
●

●●

●

●

●
●

●●●

●

●
●●

●

●

●
●

●

●

● ●●

●

●
●

●● ●
●●

●

●
●

●

●

●●

●
●●●●●●

●

●●●

●

●

●

●

●●
●

●

● ●

●

●●●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●
●

●●
●●

●
●

●
●●● ●

● ●

●
● ●
●

●

●

●
●

●●

●

●●
●

●
●

● ●●●●● ●●
●

●

●●
●● ●

●●
●●

● ●

●

●

● ●

●

●

●
●

●
●

●●
●

●●

●

●

●

●

●●
●

●

●●
●

●

●
●●●●●●

●

●●
●

●●●

●

●
●●●●

●●
●●

●●

●●

●

●

●●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●●●

●
●

●

●
●●

●
●●

●
●

●

●

●

●

●
●● ●●

●

●

●

●

●

●●
● ●●●●
●

●

●

●

●

●

●

●

●●

● ● ●

●

●●●

●

●

●

●

●
●

●
●

●

●● ●

●
●

●●
●
●

●

●
●

●●

●
●

●
●

●●

●

●●
●

●
●

●●
●● ●●●

●
●

●

●
●

●●
●●

●

●

●

●●

●

●
●●

●
●

●●
●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●
●●

●●●●●
●

●

●
●

●
●

●
●

●
●● ●

●
●

●

●

●

●
●●●

●●●●
●

●

●

●●
●

●
●

●

●

●

●
●

●

●● ●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●
●

●

●●
●

●●●●●●●
●

●

●

●

●

●●

●●
●

●

●
●● ●●

●●

●

●
●

●

●

●●●
●

●
● ●● ●

●●●

●

●

●●●

●
●

●● ●

●

●

●●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●●

●
●

●
●

●

●●●●
● ●

●●●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●●●●

●●
●

●

●● ●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●●
●●

●
●

●

●

●●●●

●

●

●

● ●
●

●
●

●

●●●●
●

●
●

●

●

●

●
●

●
●●

●

●
●●

●

●
●●●

●
●

●
●

●
●

●
●●●●

●
●●

●

●●●●
●●

●

●●
●

●●
●

●

●●

●

●

●
●●

●

●

●

●

●

●●●
●

●
●●● ●

●

●● ●

●

●

●

●

●
●

●

●

●●

●

●
●

●
● ●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●
●

●●●
●●●

●
●●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●
● ●●●

●●●
●●

●

●

●

●

● ●

●●

●

●

●

●
●●

●

●
●●

●●

●

●

●●
●●

●

●
●

●
●

●

●

●
●

●●
●

●

●
●●

●

●●●
●

●

●

●

●

●

●
●

●
●●

●●
●●

● ●

●
●

●

●
●●●

●
●

●
●

●

●
●●

●
●●

●

●
●

● ●

●
●●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●●●●●
●

●

●

●
●

●●
●● ●●

●
●

●

●●●
●●●

●●
●

●●
●

●

●

●●●

●
●

●
●

●●

●

●●●●●

●

●
●

●
●

●●●

●
●

●●

●●
●

●

●

●
●

●
●

●

●
●

●
●

●● ●●

● ●
●

●

●

●●●

●
●●

●

●

●

●
● ●

●●
●●

●

●
●●●
●●●

● ●
●

●
●

●●●
●●

●

●

● ●

●
●
●

●●
●

●
●

●
●
●

●
●

●

●
●●●●●●

●

●

●
●

●
●

●
●●● ●

●

●

●
●●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

● ●
●

●

●

●

●

●
●●●

●

●

●
●

●●
●

●●●
●●

●●

●

●

●●

●

●

●
●

●

●
● ●

●
●

●
●

●●●
●

●

●

●●
●

●

●●
●

●

●

●

●
●●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●●

●
●●●

●

●

●

●

●●
●●●

●●●●●●
●

●

●
●

●

●

●●●
●

●
●

●●
●

●
● ●●

●
●

●

●

●

●

●

●
●

●

●●
●●●

●

●

●
●

●●

●●

●

●
●●

●
●

●

●

●

●
●

●●

●

●

●●

●

●●

●

● ●●●●

●
●●

●

●

●

●●●

●

●●
●●

●●
●

●

●●
●

●● ●●
●

●
●

●
●

●

●

● ●

●

●
●●●●

●
●

●●●●

●

●

●●

● ●
●

●

●

●
●

●

●
●

●●
●

●
●

●●
● ●

● ●
●●

●●
●

●

●

●●

●

●

●

●
●

●

●
●

●
●●
● ●

●
●

●●

●

●●
●●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●●
●

● ●

●

●
●

●

●

● ●

●

●●
●

●

●

●

●

●●●
●

●

●

●

●●
●●●

●
● ●●

● ●●
●

●

●●● ●●●
●

●●

● ● ●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●

●
●●

●

●

●
●

●

●

●●●
●●

● ●

●

●

● ●

●

●
●●● ●

●

●

●

●

●

●

● ●
●●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●●●●●

●●●

●
●●

●

● ●●

●

●

●

●

●

●●●

●●
●

●●
●

●●
●● ● ●●

●

●●●●● ●
●

●

●

●●
●

●

●

●●

●●

●
●● ●

● ●

●
●

●
●

●
●

●

●●●●

●

●●
●

●

●

●●●

●
●

●

●

●

●●●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●
●●

●

●
●

●● ●

● ● ●
●

●● ●●

●

●
●

●

●

●

●●

●
●●●
●

●
●

●●●

●

● ●
●

● ●

●
●

●
●●

●●● ●
●●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●●

●

● ●
●

●
●

●●
●

●
●

●

●

●●
●●

●
●●●

●●
●●●

●
●

●
●●

●

●●●●

●● ●

●●●●●

●

●
●

●
●

●
●

●

●●●

●

●
●●●

●

●
●

●●
●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●●
●

● ●

●
●

●

●●●

●

●

●

●

●

●●
●●

●●
●●

●●
●

●

●

●●

●

●
●●

●
●

● ●

● ●
●

●●●●●

●

●

●

●

●
●

●●
●●

●

●
●

●
●

●

●

●
●●

●
●

●

●● ●

●

●
●

●

●
●

●

●●
●●

●
●●

●
●

●

●
●●

●●

●

●
●

●
●

●

●

●●

●

●
● ●●

●

●● ●

●

●

●
●

●

●●
●

●

●●
●

●●●
●●

●

●●●
●

●

●
●●●●●

●
●●●

●●
●●

●

●●

●
●●

●

●

●●
●

●●
●●●●

●
●

●

●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●●
●

●
●

●●●
●

●

●

●

●

●
●

●
●
●

●

●●
●

●

●●

●

●

●

●
●

●●

●

●

●
●●

●
●●

●

●

●

●
●●●

●
●

●●

●

●●●

●
●●

●●
●

●●●●●●

●

●●
●● ●●

●●●

●

●

●

●
●

●
●

●
●●
●

●
●

●

●
●

●

●●●

●
●●●●

●

●●
●●

●●

●●●

●

●●
●●

●

●

●●●

●

●

●●

●
●●

●

●●
●

●

●
●●●●●●●

●●●

●

●●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●● ●

●

●
●

●

●
●●●

●

● ●

●

●

●

●

●

●
●●●● ●

●

●●
●●

●

●●
●

● ●

●
●

●

●

●

●

●●●
●●●

●

●

●
●

●

●

●

●

●

●
●●●●
●

●

●

●

● ●
●

● ●

●

●

●

●
●

●
●

●●●●
●

●●

●
●

●●
●

●●
●

●

●●
●●

● ●

● ●●
● ●

●

●●●●
●●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

● ●●

●
●●

●
●

●
●

●
●

●
●

●

●

●

●
●●●

●
●

●●●
●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●●●

●

●

●●●
●

●●●●
●

●

●

●

●
●

●
●●

●● ●

●

●
●● ●

●● ●● ●

●●

●●

●

●
●

●

●●●●●

●

●●●●

●
●

●

●●
●

●

●●●●

●
●

● ●

●

●
●●●

●●●●

●

●

●
●

●●●

● ●
●●

●

● ●
●

●

●

●● ●
● ●●

●
●●

●●
●●●

●

●
●

●
●

●
●

●

●

●●●
●

●

●●●

●

●●
●

●

●
●

●
●

●

●●
●

● ●

● ●
●

●

●

●●

● ●
●

●

●

●

●
●

●
●●

●

●
●●

●

●
●●●●

●
●

●
●

●

●

●

●●
●●● ●

●

●●

●●

●

●

●

●

●

●●

●

●

●
●●●
●●

● ●
●

●

●●●●

●

●●●

●

●
●

●●●
●

●

●

●
●●

●
●

●

●●

●
●

●●●
●

●

●
●

●

●

●

●

●●
●

●

●

● ●
●

●

●
●●

●
●

●

●

●●

●
●●

● ●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●
●

●●
●

●

●
●

●
●●

●●●●
●●

●●●●

●

●
●●

●

●
●

●
●●●●●●●

●
●●

●●●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●●
●

●

●●
●

●

●

●●
●

●

●●

●
●●

●

●

●
●

●

●
●

●
●● ●

●●● ●

●

●

●

●

●
●

●
●

●
●●●●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●●●●
●

●

●
●

● ●●

●
●

●

●

●
●

●
●

●

●

●

●

●●●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●●●●
●

●
●

●

●●

●
●

●
●

●

●

●
●

●
●

●
●●●

●
●

● ●

●

●

●
●●

●

●●●
●

●●●
●

●

●
●●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●
●

●

●
●

●

●
●●

●

● ●
●

●
●

●
●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

● ●

●

●●
●

●
●

●

● ●● ●●

●
●

●

●

●

●

●

●
●

●
●●

●

●●
●● ●●

●

●
●

●

●●

●

●

●●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●●
●

●
●●

●

●

●
●

● ●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●
● ●

● ●
●

●●●●
●●

●

● ●
●

●●

●●

●

●
●●

●
●●●

●●
●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●●

●

●

●●
●

●

●

● ●●

●

●
●

●

●

●
●

●
●

●

●●●●●●●● ●●●

●

●
●

●

●●

●
●● ●

●

●

●

●●●
●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●
●

●●
●

●
●

●

●

●

●

●
●●

●
●

●● ●●
●●

●
●

●

●●●

●

●
●

●●●●

●●

● ●

●
●

●

●●

●

●
●

●
●

●
●●●●●

●●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●● ●

●
●

● ●

●
●●

●

●

●
●●

●
●

●

●

●●

● ●
●●

●

●●●● ●

●

●

●●
●

●
●

●

●
●● ●● ●

●

●

●●●●●
●●

●

● ●

●

●
●

●
●

●●●●●
●

●

●

●

●●

●

●●
●

●

●

●●●●
●

●
●●●

●
●

●●

●

●

●
●

●●●

●
●●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●●
●

●●

●

●
●

●
●

●

●
●

●
●

● ●●●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●
●●

●
●

●●
●

●

●

●

●

●●

●

●

● ●
● ●●

●●
●

●

●●
●

●

●

●●●

●

●
● ●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●●

●
●●

●●●●●

●

●

●

●●

●

● ●●

●

●

●

●
●

●
●

● ●●●

●● ●●

●

●●
●

●

●

●

●●
●

●●

●
●●

●

●

●

●
●

●●

●

●
●

●
●●● ●

●

● ●●
●

●

●● ●
●

●
●

●

● ●
●

●●
●

●

●●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●●
● ●

●●

●●
●

●
●●●●● ●

●

●

●
●

●

●

●
●●

●●

●
●

●

●
●

●

●●●

●

●
●

●●●

●

●●●
●

●

●●●● ●
●●●●

●

●
●

●
●●● ●

●
●

●
●

●

●

●

●

●

●●● ●
●

●

●

●
●

●
●

●
●

●

●●

●
●●

●

●

●

●●

●

●●
●

●

●

●

●
●

●
●●●●

●
●

●
●

●
●●
●

●●
●

●

●
●●

●

●●● ●●
●●

●
●

●
●

●

●

●

●
●

●●
●●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●●●

●

●

●

●
●

●
●
●●

●
●

●●

●

●
●

●

●●

●

●

●
●

●●

●

●
●

●
●● ●

●

●

● ●

●
●

●

●

●
●●

●

●

●

●●

●
●

●

● ●
●●

●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

● ●

●

●

●

●
●●

●● ●
●

●●
●

●

●
●

●
●

●

●●
●

●●

●

●●●
●●

●

●
●

●

●
●●

●●●

●

●

●

●

●

●

●
●●

●

●●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●●●

●

●

●
●●●●●

●

●●●

●
●
●

●

●

●
●

●

●

●●●
●

●●
●

●●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●●

●
●

●●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●
●

●
●●●●

●●

●●
●●

●
●

●
●

●
●

●
●●

●

●

●

●

●●

● ● ●
●

●

●

●

●

●
●●

●●

● ●

●
●

●●

●

●
●

●

● ●

●

●●
●

●
●●

●●●●
●●

●
●

●
●

●

●

●●●●
●

●●●
●

●
●●●

●
●●

●
●

●

●

●
●

●

●
●●

●

●

●●●

●

●

●

●
●

●

●
●

●

●
●

●●●●
●

●

●●

●
● ●

●

●

●●
●

●

● ●

●

●

●

●●

●

●●●●
●

●

●
●

●

●

●● ●
●

●
●

●●●●
●

● ●

●

●●
●

●

●

●● ●
●

●

●

●

●
●

●

●
●

●●

●●

●
●

●●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

● ●
●

●

●

●

●

●●●●

●●●●

●●
●

●

●

●
●

●

●

●●●
●

●

●
●●●●●

●

●
●●

●

● ●
●●
●

●

●●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●●●●
●

●

●

● ●

●

●

●●

●

●●
●

●
●

●

●●●

●

●

●

●●

● ●●
●

●

●●

●

●

●

●

●
●

●
●●

●
●

●●
●

●
●

●● ●●

●
●

●●●●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●
●●

●

●
●

●●
●

●

● ●
●

●
●●

●
●

●
●●

●
●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

● ●
●●

●●
●●●

●●●

●

●

●

●

●

●
●●

●

●

●●

●

●●

● ●
●

●

● ●

●

●
●

●

●●●
●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●

●●●

●

●

●●●
●

●

●

●
●

●●

●

●

●●

●●

●

●●

●
●

●

●
●

●

●

●● ●●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●●●
● ●

●

●
●

●

●

●

●

●●

●

●●

●●●

●

● ●
●●

●●

●●
●●

●

●
●

●

●● ●● ●●
●● ●●

●

●

●

●

●●●

●●
●

●

●

●

●

●
●

●

●
●

●

●●●
●

●
●

●

●

●

●

●
●●●

● ●●●
●

●

●●●

●●

●
●

●

●
●●●

●●

●

●

●
●●

●

●●
●●●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●

●
●●

●

●
●●

●

●

●

●

●
●

●
● ●●

●

●
●

●
●

●
●

●●●

●

●●

●●

●
●

●●●
●● ●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●
●

●
●

●
●●●

●

●● ●●
●

●

●

●

●

● ●●

●
●

●

●

●●
●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●●
●

●

●●
●

●●●
●

●

●

●
●

●
●●●

●
●

●●
●

●●
●●
●●

●●

●

●●●●●

●

●
●

●
●

●
●●
●●

●

●●
●

●
●

●

●

●
● ●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●●

●

●
●●

●

●
●

●

●
●

●

●

●

●●●
●●

●

●

●
●

●●●●
●

●
●

●

●
●

●
●

●

●
● ●

●
●●

●

●

●
●● ●

●

●
●●

●

●
●

●●
●

●●

●

●

●

●●
●●●

●

●

●
●

●

●
●
●● ●

●
●

●
●

●●

●

●●

●

●

●

●●
● ●●●

●●
●

●●
●

●●

●

●

●

●●

●

●

●
●

●
●●

●●

●

●

●
●

● ●●●
●

●
●

●

● ●

●

●

●

●●
●●

●

●

●
●●

●

●

●
●

●
●

●●
●

●●● ●●

●

●

●

●

●

●
●● ●

●

●

●●● ●

●●
●

●

●

●

●●
●

●

●
●●●●

●

●

●

●
● ●

●●

●

● ●

●
●

●●
●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●
●●●●

●

●

●

●

●
●●●
●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

● ●
●

●

●
●●

●

●

●●●●● ●
●●

●

●

●●
●●●

●

●●●●

●

●

●

●●
●

●●

●●

●

●

●

●

●

●
● ●

●

●●●●
●

● ●

●

●●
●

●●●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●●

●
●

●
●

●●

●

●●●

●

●●●●●
●

●

●●

●

●

●

●●●●
●

●

●

●●
●

●
●●●

●●
●●

●

●
●●

●●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●
●

●

●

●● ●

● ●

●
●

●
●

●
●●

●

●

●

●

●●
●

●

●
●

●

●●
●●●●●●●

●
●

●●

●
●

●
●●

●
●

●
●

●

●● ●●●●●●●
●●

● ●
●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●●

●

●
●

●
●●

●
●

●●
●

●
●

●

●
●

●
●●●●

●

●●●

●

●●●

● ●●

●

●●●
●

●●
●

●●●●
●

●

●●

●

●

●
●

●
●

●

●●●

●
● ●

●
●

●

●

●

●

●
●●

●

●

●●●
●●●

●

●
●

●

●
●

●●

●

●

●

●
●

●●●●
●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●
●●●●●

●
●● ●

●

●

●

●

●
●

●
●●●

●

●

●

●

●
●

●

● ●
●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●
●

●
●●

●
●

●

●

●
●

● ●

● ●

●

●

●●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
●●

●
● ●

●
●

●

● ●
●●

●
●

●●
●

●

●● ●●
● ●

●●
●

●●●
●●●

●

●

●

●

●
● ●●

●●
●

●●●
●●●
●

●
●

●

●

●

●

●●
●

●

● ●

●

●

●

●●●
●

●

●

●

●
●●

●

●●
●●●

●

●

●

●
●●

●

●

●

●

●

● ●●●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●●●
●

●

●

●
●

●●●●●●

●

●

●
●

●
●●

● ●

●●
●

●

●

●
●

●

●
●●

●●
●

●

●

●

● ●
●●

●●

●

●● ●

● ●

●

●

●●
●

●●●

●

●

●

●●

●

●●●● ●

●

●●
●●
●●●

●
●

●
●

●

●

●

●
●●

●

●

●
●● ●

●●

●

●●●●
●●●●

●

● ●●
●●

●
●●●

●●
●●● ●

●

●●

●

●
● ●●●

●
●

●

●

●

●

●

●

●

●●
●●

●●●

●
●

●

●●●

●
●

●

● ●

●

●●

●

●

● ●●

●●●
●

●●●
●

●●●●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●
●

● ●●
●

●
●

●

● ●
●

●
●

●●●●●

●

●●

●

●●●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●●
●

●
●

●
●

●●
●

●

●

●

●●
●●●

●
●

●●●

●

●
●

●●
●

●●●●
●●

●

●

●

●●
●●

●●
●

●

●
●●

●● ● ●

●

●

●

●
●

●●
●●

●
●

●

●

● ●●
● ●

●●●

●

●●●
●

●

●

●

●
●●

●

●
●●

●●

●

●●●

●

● ●●

●

●
●●

●

●●●
●

●
●

●

●●
● ●

●

●

●

●

●
● ● ●

●

●

●

●
●

●

●

●

●

●
●●

●●
●●●●

● ●

●

●●
●

●
●

●

●●●
●●

●
●

●
●●●●

●

●
●

●

●

●●●

●

●
●●●

●●

●

●

●

●

●

●
● ●

●
●

●
●●

●

●●
●●●

●

●

●

●●●●

●

●

●
●

●

●

●
●

●

●●
●

●

●●●

●

●

●

●

●
● ●

●

●
●

●●

●

●
●

●

●

●●

● ●●
●●●

●
●

●

●

●

●

●
●●

●

●

●●
●

●● ● ●●

●●

●

●

●
●●

●

●●●

●

●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

● ●
●

●●●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●
● ●

●

●

●●●●●

●

●●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●●

●
●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●
●●

●

●

●
●

●

●●

●

● ●

●

●

●●

●

●

●
● ●

●

●

●
●●●●

●

●

●

●

●
●●●

●●

●

●●
●

●●●
●

●
●●

●

●

●

●

●
●

●

●

●

●●
●

●●
●●●

●

●

●

●●
●

●

●
●

●

●
●●

●●

●●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●
●●

●●

● ●
●●●●

● ●●

● ●●

●

●●
●●

●

●

●

●

●

●

● ●

●

●

●
●

●
●●●●

●

●●
●●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●● ● ●

●

●
●

●
●●

●
●

●
●

●

●

●●

●

●

●●●

●

●●●

●

●
●

●●●
●

●
●

●

●

●●●●

●●
●

●

●●
● ●●●

●

●

●

●●●
●

●
●

●
●

●●
●

●

●
●

●

●

●

●
●

●
●

●

●
●●●●

●

●

●
● ●

●
●

●
●

●

●●
●

●

●
●

●

●

●
●●●

●
●

●●
●●●

●

●

●

●

●

●●

●

●

●●
●

●●

●●
●●●●●

●

●

●

●

●
●

●●●●

●

●●●

●
●

●●

●●
●

●●
●

● ●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●
●●

●
●●

●

●

●

●
●●

●

●

●

●

●● ●

●

●

●

●
●

●●●●
●●

●

●

● ●

●

●

●
●

●
●●

●
●

●

●

●

●●

●

● ●
●●

● ●

●
●●

●

●

●
●

●●

●

●●

●
●

●●●

●
●

●

● ●
●●●

●●

●

●

●
●

●●
●● ●●

●
●●

●●●

●

●

●

●●●

●●
●

●
●●●

●

●

●
● ●

●●●

●

●

●
● ●

●●

●
●

●

●

●

●
●

●

●●
●●

●

●

●

●●●●●● ●
●

●
●

●●●●

●

●
●●

●

●

●●

●●
●●●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●●
●

●●●
●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●
●
●

●●
●●

●

●
●

●
●

●

●

●●●●

●

●
●

●
●

●

●

●

●
●

●
●●●

●

●

●

●
●

●●
●

●

●

● ●
●
●

●

●●
●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●●

● ●

●

●
●

●●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●
●

●

●
●

●
●●

●

●

●

●
●

●●●

●●●

●

●

●
●

●
●

●
●

●●

●●●

●

●

● ●
●

●

●

●
●

● ●
●

●
●●●

●

●

●●●●

●

●
●

●
●

●

●
●

●●
●

●

●
●

●

● ●●
●

●

●●

●

●

●
●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

● ●
●

●● ●

●

●
●

●
●●

●● ●●

●

●
●●●

●

●

●
●●

●● ●●●

●

●●
●

●
●

●●

●

●●
●●

●

●

●
●●

●

●●
●

● ●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●

● ●

●

●

●

●●
●

●
●

●●●
●

●●
●

●

●

●

●

●●
●●●

●

●●

●●●
●

●

●

●

●

●

●
●●
●●●● ●

● ●
●

●●●
●

●

●

●
●●●

●

●●●
●

● ●
● ●

●

●

●●
●●

●●

●

●

●

●
●●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●●
●

●

●

●
●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●●●●

●
●

●●●

●

●
●

●

●

●
●

●

●
●● ●●

●
●● ●

●

●

●●

●

●

●
●

●

●

●
●●

●●
●

●

●
●

●

●

●
●

● ●
●●

●

●●●

●

●

●●●●●●●

●
●

●

●
●

●
●●

●

●

●●●
●●●●

●
● ●●

●
●

● ● ●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●● ●●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●●

●

●●●
●

●

●

● ●
● ●

●

●
●

●
●

●

●
●

●

●

●
●●●

●

● ●●

●

●

●

●

●●

●
●●

●●●

●

●●

●
●●

●

● ●

●
●

●

●
●

●

●

● ●

●

●●●
●

●

●●
●●●

● ●
●

●
●●
●●

●
●

●
●

●●●●●
●

●

●●
●

●

●

●

●

●

●
●

●
●●

●

●
●●

●
●

●●
●

●
●●

●
●

●
●

●●
●

●

●

●●●●

●
●●

●

●

●
●

●

●
●

●●●●
●●

●●

●

●
●

●

●●

●
●

●

●

● ●

●

●

●
●

●

●

●●●
●

●●●
●

●
●

●●

●
●

●●●

●

●●●

●

●●

●

●
●

●
●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●●

●

● ●
●

●
●

●●●

●●●●
●

●

●

●●●

●

●
●

●
●

● ●

●
●●

●
●

●

●
●

●

●

●●●
●

●

●
●

●●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●

●
●

●

●

●●

●
●

●● ●
●

●
●● ●

●
●●●

●●●

●
●●

●
●

●
●

●

●

●

●

●
●

●●
●

●
●●

● ●●

●●

●
●

●

●

●

●

●

●

●●

● ●
●

●

●

●●
●

●
●●

●

●
●●

●
●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●●●

●
●●●●

●●

●

●

●
●●

●

●
●

●

●
●

●

●
●

●

●
●

● ●
●

●

●

● ●

●
●●

●
●

●

●
●

●

●●

● ●●

●

●●●

●

●
●

●
●●●

● ●●

●
●

●
●
●
●●●

●●●●●●●
●●

●●●
●●●

●●●
●●

40%

60%

80%

100%

1 10 100 1000 10000

#Fault−Similarity Classes

A
c
c
u
ra

c
y

(g) MiBench/susan (training)

●
●

●
●●
●

●
●●
●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●●
●

●

●
●●●

●●●
●

●● ● ●●●● ●
●

●● ●●
●
●

●

●●
●
●

●
● ●●

●
●

●●
●

●

●

●●
●●

●

●
●● ●

●

●

●●●
●

●●●

●

●

●

● ●

●

●

●
●●

●●●●
●

●
●

●
●

●

● ●

●
●

●

●●
●●
●

● ●

●

●

●
●●●

●●

●

●
●

●● ●
●●
●

●

●
●

●

●●
●●

●●
●

●●
● ●●●

●

●●

●●

● ●
●

●● ●
●

●
●● ●
●●

●
●

●

●

●
●

●

●

●
●

●● ●
●

●

●
●

●

● ●●●
●

●●●

●

●

●●

●
●

●

●

● ●

●

●

●●●

●

●

●●
● ●● ●
●

●●
●●

●

● ●

●
●

● ●●● ● ●
●

●

●●●● ●
●
●
●
●●●

●●

●

●●● ●●

●

● ●
●●●
●● ●●

●
●

●
●●

●

●
●

●●

●● ●
●

●●●●
●
●
●

●

●
●

●

●
●

●

● ●●
●

●

●

●
●●●

●

●
●

●●

●

●

●●●
●●
●●

60%

70%

80%

90%

100%

0e+00 2e+06 4e+06 6e+06

#FI Experiments (incl. training)

A
c
c
u
ra

c
y

(h) MiBench/susan (total)

Figure 5.7: Accuracy in the training set (left) and in the complete fault space (right)
for the four MiBench automotive benchmarks.

5.5 summary and conclusions 167

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●●●●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ● ●

●

●
●

● ●
●

●●

●●●

●

●

●

●

●

●

●

●● ●● ● ●

●

●

●
●

●

●
●● ●

●

●
●●

●

●

●

●● ●●

●

●●0%

1%

2%

3%

4%

5%

0e+00 1e+05 2e+05 3e+05 4e+05

#FI Experiments (incl. training)

R
M

S
E

(a) eCos/baseline

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●● ●●
●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●
●

●

●● ●

●
●

● ●●
●● ●● ●●

●

● ●

●

●● ●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●● ●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●

●
●

●●

●

0%

1%

2%

3%

4%

5%

0e+00 1e+05 2e+05 3e+05 4e+05

#FI Experiments (incl. training)

R
M

S
E

(b) eCos/CRC

●

●

●
●
● ●

●

●

●

●

●

●
●●

●

●

●●
●

●

●
●●

●

●●
● ●●

●

●●●●
●

●

●
●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●●
●

●
●

●
● ●

●

●
●

●

●

●

●
●
● ●●

●
●

●

●

●

●

●

●

●

●

●● ●●●

●
●

●●●
●

●

●

●●
●●

●

●

●●●

●
●

●

●

●●
●

● ●

●

●
●
●●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●
●
●

●

●

●

●●
●

●

●

● ●
●
●

●
●
●

●●
●

●●● ●

●

●

●●
●

●

●
●

●

● ●

0%

1%

2%

3%

4%

5%

0e+00 1e+05 2e+05 3e+05 4e+05

#FI Experiments (incl. training)

R
M

S
E

(c) MiBench/basicmath

●

●

●

●

●

●

●●

●●

●●
●

● ●

●

●●

● ●
●
●
●●

●

●

●

●●●

●

●
●

●●

●

●

●

●●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●
●

● ●

●●
●

●

●

●
●

●

●●
●

●

●●

●●●●

●

●●

●

●●

●
●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●●

●●●●

●

●
●

●
●

●

●
●

●
●

●

●●●●

●

●

●

●

●

●
●● ●

●

●●●●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●● ●

●
●

●●
●●●

●

●●●
●

●

●

●

●
●

●
●
●●●

●

●

●

●
●

●●
●

●

●●
●

●●

●

●

●

●0.000%

0.025%

0.050%

0.075%

0.100%

0e+00 1e+05 2e+05 3e+05 4e+05

#FI Experiments (incl. training)

R
M

S
E

(d) MiBench/qsort

Figure 5.8: Comparison to sampling (red line): RMSE of the outcome probability
breakup is comparable to, and many cases better than, the common
sampling approach – which completely lacks information on local fault-
space details.

5.5 summary and conclusions

To summarize, in this chapter I presented an adaptive, application-speci�c
fault-space pruning technique that preserves local features of the fault space
for detailed susceptibility analyses. The Fault-Similarity Pruning (FSP) ap-
proach – an extension to Fail*– allows the user to freely trade accuracy for
experimentation runtime, choosing a Pareto-optimal heuristic con�guration
that was trained with a feasible FI-experiment subset. The evaluation results
con�rm the assumption that a machine-state subset can be successfully used
to partition the fault space into FSCs, allowing to gain insights on local phe-
nomena for EDM/ERM placement with massively reduced experimentation
e�orts: For example, when the user chooses to run 1.5 percent of all FI ex-
periments, the average9 result accuracy is 99.84 percent.10 In many cases
the FSP technique even outperforms classic sampling techniques, although
they do not preserve any fault-space details.

9 The average weighted by the total number of faults in each benchmark.
10 Except for MiBench/bitcount, where training yields no solution that only needs 1.5 per-

cent of all experiments. Here, the user can achieve, for example, 99.84 percent accuracy for
4 percent of all experiments.

6
S M A R T- H O P P I N G : C A M PA I G N S P E E D U P B Y
S I N G L E - E X P E R I M E N T A C C E L E R AT I O N

“We can chart our future clearly and wisely

only when we know the path which has led to the present.”

— Adlai Ewing Stevenson II, US politician, 1952

Contents
6.1 Fast-Forwarding: State of the Art 170

6.1.1 Single-Stepping 170
6.1.2 Simple-Hopping with Hardware Breakpoints 171
6.1.3 Checkpointing 173

6.2 Smart-hopping: Choosing the Shortest Path 173
6.2.1 Embracing Memory Watchpoints 173
6.2.2 Optimality 175

6.3 Implementation 175
6.3.1 Hop-Chain Calculator 176
6.3.2 Database-Campaign Extension 176

6.4 Evaluation 177
6.4.1 Benchmark Setup 177
6.4.2 Hop-Chain Calculation E�ciency 177
6.4.3 Smart-Hopping E�ectiveness 177

6.5 Discussion 179
6.5.1 Extending the Approach: Checkpointing 181
6.5.2 Alternative and Complementary Improvements 182
6.5.3 Def/Use Equivalence-Class Aware Fast-Forwarding 183

6.6 Summary and Conclusions 184

The primary performance bottleneck of test-access port based FI,
as used in the JTAG-based FailPanda back end for Fail* (see Sec-
tion 4.3.3), is the fast-forwarding operation that deterministically ex-

ecutes the target machine code without FI until a speci�c dynamic instruc-
tion is reached. At this point in the instruction stream – which is also present
in the previously recorded “golden run” trace and identi�ed by its position
in that trace, – the execution must be stopped to inject the next fault (see
Section 3.1.2).

Unfortunately, most embedded CPUs do not support this operation e�-
ciently: Without further information, the target platform must single-step
instructions until the speci�ed instruction is reached. The widely used JTAG
debugging interface [MT90], especially when controlled through low-cost

169

170 smart-hopping: campaign speedup by single-experiment acceleration

USB debugger hardware, incurs signi�cant round-trip times between each
step, as already demonstrated in Section 4.3.3.4. This results in extremely
long experiment runtimes – dominated by the fast-forwarding operation, –
and consequently a low FI experiment throughput endangering su�cient
fault-space coverage.

After recapitulating existing solutions for fast-forwarding (Section 6.1),
I present an approach that signi�cantly speeds up this operation for most
workloads with minimal requirements on hardware support (Section 6.2).
Exploiting the information from a previously recorded instruction trace –
which is needed anyways for systematic FI experiment planning and fault-
space pruning (see Section 3.3 and Chapter 5), – the approach uses standard
debugging hardware (breakpoints, memory watchpoints) to advance to a
chosen point in the program execution with a minimal number of steps. The
approach was implemented as an extension to Fail* respectively FailPanda
(Section 6.3). The evaluation with MiBench’s [GRE+01] automotive and net-

work benchmark categories shows an improvement in experiment through-
put by up to several magnitudes compared to similar FI tools in the �eld
(Section 6.4). I discuss the evaluation results extensions to the approach in
Section 6.5, and conclude in Section 6.6.

Parts of this chapter were originally published on ETS 2014 [SRS14].

6.1 fast-forwarding: state of the art

The problem of fast-forwarding to a speci�c dynamic instruction of a de-
terministically executing program has been studied not only in the FI do-
main, but is known especially in the context of debugging under the con-
cept of “deterministic replay”. For example, King et al. [KDC05] leverage
checkpoints and Intel’s hardware performance counters to deterministically
re-execute parts of the target to create an illusion of “time travel” backwards
and forwards through the execution of a program. More recently, Patil et al.
[PPS+10] extended a similar approach to multi-core replay without any spe-
ci�c hardware support requirements, but at the expense of slow execution in
a virtual-machine environment with JIT compilation. In his Jockey [Sai05]
tool, Saito uses binary patching techniques and user-de�ned program anno-
tations that are impossible to use for advancing to arbitrary instructions.

The existing approaches are too slow to run on embedded hardware, mod-
ify the target software to a point where the observer e�ect becomes relevant,
or depend on special hardware features such as cycle-accurate performance
counters. The following sections outline the fast-forwarding approaches cur-
rently predominant in the FI domain.

6.1.1 Single-Stepping

The most straightforward approach to advance to the Nth dynamic instruc-
tion is single-stepping N times. Benso et al. use single-stepping in their EXFI
SWIFI tool [BPRSR98a, BPRSR98b], based on the Trace Exception Mode of

6.1 fast-forwarding: state of the art 171

1 for (i = 0; i < 64; ++i) {

2 for (j = 0; j < 64; ++j) {

3 sum += array[i+j];

4 } } �
1 8: b 30 <func+0x30> ; (outer loop entry)

2 c: add r12, r0, r3 ; i+j

3 10: ldrb r12, [r12, r2] ; array[...]

4 14: add r2, r2, #1 ; ++j

5 18: cmp r2, #64 ; j < 64

6 1c: add r1, r1, r12 ; sum += ...

7 20: bne c <func+0xc> ; (inner loop back edge)

8 24: add r3, r3, #1 ; ++i

9 28: cmp r3, #64 ; i < 64

10 2c: beq 38 <func+0x38> ; (outer loop exit)

11 30: mov r2, #0 ; j = 0

12 34: b c <func+0xc> ; (outer loop back edge) �
Figure 6.1: Example ARM machine code (initialization omitted) and the C-code snip-

pet it was compiled from: The highlighted static instruction at address
0x10 appears 642

= 4096 times in the dynamic instruction stream.
Adapted from [SRS14].

the Motorola processor in their prototype implementation. Due to the SWIFI
technique (see Section 3.2.3), no host-PC/debugger/target-device round trip
was involved. In contrast, in a TAP-based setting like FailPanda (see Sec-
tion 4.3.3), this approach is feasible only for very short target programs: It
cannot be used for reasonably sized workloads, as fast-forwarding to the
dynamic instruction N grows linearly:

tff = N × tsinglestep + texec

In this formula, texec is a negligible amount of time to actually execute the
stepped instructions. For example, with tsinglestep = 70 ms, fast-forwarding
to the highlighted instruction in the second iteration of the inner and the
second iteration of the outer loop in Figure 6.1 (i = 1, j = 1; N = 400) takes
about 28.0 s – for a single experiment out of potentially thousands – on the
PandaBoard, connected through a USB JTAG debugger (see Section 4.3.3.4).
In this scenario, the actual – and indeed negligible – instruction-execution
time can be approximated to

texec =
N

fCPU
=

400
1.2 GHz ≈ 333 ns,

assuming the PandaBoard’s fCPU = 1.2 GHz RISC CPU to execute without
memory wait-states.

6.1.2 Simple-Hopping with Hardware Breakpoints

A more sophisticated approach is to use hardware breakpoints to go forward
in the instruction stream by multiple dynamic instructions at once. Fidalgo

172 smart-hopping: campaign speedup by single-experiment acceleration

R

R

8

c

14

18

1c

20

24

28

2c

30

34

R

 Dynamic Instruction

 M
em
o
ry
 A
d
d
re
ss

1000

1001

103f

10 ...

...

...

123456789 382 384 386

...

R1002

390388 392
...

❷

❶

❸

❹

Figure 6.2: Pre-recorded “golden run” program trace with dynamic instructions
(X= eXecuted memory addresses), memory accesses (R=memory read),
and di�erent fast-forwarding methods: ¶ Single-stepping, · simple-

hopping, and ¸/¹ smart-hopping without/with memory watchpoint us-
age. Adapted from [SRS14].

et al. [FGAF06] set a breakpoint to advance to the �rst instance of a static
instruction – this would correspond to the instruction 0x10 in Figure 6.1
(line 3), for the �rst time executed at position #5 in Figure 6.2 – but do not
discuss the general case of reaching an arbitrary dynamic instance. A dy-
namic instruction with the property that it represents the �rst occurrence
of a static instruction can therefore be reached with a single breakpoint hop.
Unfortunately, this property only holds for a in�nitesimal fraction of the
dynamic instructions in real-world programs with loops and branches.

Prinetto et al. [PRSR98], Rebaudengo and Sonza Reorda [RSR99], Benso et
al. [BRSR99], Folkesson et al. [FSK98], Barbosa and Skarin et al. [BVFK05b,
SBK10], Cinque et al. [CCDM+09], Skarin et al. [SBK10, Ska10], and Hannius
and Karlsson [HK12] also break on the static target instruction, but continue
running the program after each breakpoint trigger repeatedly until the dy-
namic target instruction is reached. Figure 6.2 illustrates this simple-hopping

procedure with the jump chain labeled with ·: A breakpoint on the static
instruction at address 0x10 triggers N = 66 times until the dynamic instruc-
tion #400 is reached. The fast-forwarding time can be calculated as

tff = texec +O× tBP,

with O being the number of breakpoint triggers.
Assuming that a breakpoint trigger and a subsequent continue takes about

the same time as a single-step, and texec is negligible, the time needed for fast-
forwarding of this example is reduced by a factor of 6 compared to single-
stepping. This reduces the actual time overhead to about 4.6 s on the Panda-
Board ARM platform. However, Rebaudengo and Sonza Reorda note that in

6.2 smart-hopping: choosing the shortest path 173

their BDM-based FI setup, the approach is still 71 to 97 times slower than
the fault-free run, highly depending on the workload characteristics:

“Moreover, the required time is proportional to the number of acti-

vated breakpoints, because each activation involves the exchange

of some information between the target microcontroller and the

host PC through the slow serial interface.” [RSR99]

6.1.3 Checkpointing

The usage of checkpoints (see Section 3.3.2.1), which represent loadable in-
termediate states at a priori chosen – and usually equidistant – dynamic in-
structions N1, N2, . . ., allows fast-forwarding to speci�c points in the execu-
tion trace. A checkpoint load costs a non-negligible amount of time, but more
importantly creating and storing checkpoints consumes both time and stor-
age space. Therefore, the total number of checkpoints in use is limited, mak-
ing this technique orthogonal to �ne-grained fast-forwarding techniques
such as the aforementioned single-stepping or simple-hopping to navigate
to the desired target instruction after the checkpoint load.

6.2 smart-hopping: choosing the shortest path

Unlike deterministic replay (see Section 6.1), deterministic fault injection
has the advantage of a complete instruction and memory access trace that
is usually recorded for experiment planning purposes. Extending on the
simple-hopping approach explained in the previous section, I propose a fast-
forwarding method that exploits more trace knowledge and forwards to a
speci�ed dynamic instruction with a minimal number of breakpoint hops.

Instead of (simple-)hopping from one dynamic instance of the target in-
struction to the next, the basic idea of the smart-hopping approach is to itera-
tively set a breakpoint on the static instruction that will trigger farthest in the
future in the instruction trace. In the example in Figure 6.1 and Figure 6.2,
this reduces the number of breakpoint hops and debugger round-trips to
three (variant ¸ in Figure 6.2): One at static instruction 0x2c (dynamic in-
struction #390), completely skipping the �rst iteration of the outer loop con-
struct, one at 0x20 (#398), and one at the target instruction 0x10 (#400). On
the PandaBoard ARM hardware, fast-forwarding time is reduced to about
0.21 s.

6.2.1 Embracing Memory Watchpoints

Although choosing an optimal breakpoint path signi�cantly improves the
example of reaching target instruction #400, this method degenerates when
a late iteration of an instruction-wise homogeneous loop – with no variation
regarding branch decisions in the loop body – contains the dynamic target
instruction. For example, in a scenario trying to reach instruction 0x10 in

174 smart-hopping: campaign speedup by single-experiment acceleration

Algorithm 6.1 The smart-hopping algorithm generates the optimal jump
sequence for all possible trace positions, reusing the solution sequence for
the previous position. Adapted from [SRS14].

Possible memory access types in the trace:

type : enum Accesstype { execute, read, write }
Multiple Accesses may occur at one trace pos. (point in time):

type : class Access { Int address, Accesstype type }
Always holds the optimal hop sequence to current pos. in trace:

var cur_solution : list of tuples (Int trace_pos, Access a)
Remember most recent occurrence of speci�c Access in trace:

var access_last_seen : map Access → Int trace_pos
All memory Accesses at current trace position:

var cur_trace_events : list of type Access

cur_trace_pos ← 0
while not at trace end do

read trace events at cur_trace_pos into cur_trace_events
if any Access a ∈ cur_trace_events not in access_last_seen then

clear cur_solution, add (cur_trace_pos, a) to it
else

new_hop ←

{x∣x ∈ cur_trace_events∧ access_last_seen[x] minimal }
last_seen ← access_last_seen[new_hop]
while length of cur_solution is > 1 do

(posa, a) ← rightmost entry in cur_solution
(posa−1, a− 1) ← 2nd to rightmost entry in cur_solution
if last_seen ≤ posa−1 then

remove (posa, a) from cur_solution
else

break
end if

end while
add (cur_trace_pos, new_hop) to cur_solution

end if
print cur_solution
for all Access x ∈ cur_trace_events do

access_last_seen[x] ← cur_trace_pos
end for
cur_trace_pos ← cur_trace_pos+ 1

end while

6.3 implementation 175

the last iteration of the inner loop (i = 0, j = 63 in Figure 6.1), the optimal
breakpoint path contains 64 hops – yielding a fast-forwarding time identical
to using simple-hopping.

Fortunately, standard OCD hardware o�ers another feature exploitable
for fast-forwarding purposes: memory-access watchpoints. Similar to break-
points, watchpoints trigger when an instruction accesses memory, and can
usually even di�erentiate between read and write accesses. In the aforemen-
tioned pathologic example of the last iteration of the inner loop, the memory
load instruction 0x10 accesses array element 63 exactly at the dynamic target
instruction #400. This access can therefore be used as a watchpoint hop to
directly forward to the desired target instruction, reducing the path length
to one even for this scenario. Scenario ¹ in Figure 6.2 is further reduced to
two hops.

Algorithm 6.1 outlines the smart-hopping heuristic that generates the op-
timal breakpoint/watchpoint hop sequence for all possible trace positions. It
iteratively consumes dynamic instructions – including the memory accesses
they perform – from a sequentially read instruction and memory-access
trace, and reuses the – initially empty – solution hop sequence for the pre-
vious position. Although a solution sequence can grow to arbitrary lengths
for input traces with adverse event patterns – such as homogeneous loops
with extremely many iterations and no memory accesses (see Section 6.4), –
the algorithm can be implemented with modest memory footprint even for
very large input traces.

6.2.2 Optimality

For homogeneous hop costs – identical timing properties for breakpoints
and watchpoints at arbitrary addresses, – the greedy smart-hopping heuris-
tic is optimal due to an intuitive argument: Not picking the farthest-possible
hop from the set of all reachable destinations cannot be better than picking
the farthest, because the set of new potential hops reachable from a closer
hop is always a subset of those reachable from the farthest-possible one. Con-
sequently, choosing farthest hop target is always at least as good as choosing
a closer target.

In case the hop costs are inhomogeneous – for example with di�erent
timings for breakpoints and watchpoints, or for breakpoints at the same in-
struction address as the current instruction pointer, – the generic solution
would involve a path search. In fact, the evaluation in this chapter initially
compared the smart-hopping heuristic to solutions generated by Dijkstra’s
path-search algorithm [Dij59], until I realized that smart-hopping was al-
ready optimal for homogeneous edge costs.

6.3 implementation

The approach is implemented in two separate instances: as a separate eval-
uation tool for measuring the advantages of smart-hopping over simple-

176 smart-hopping: campaign speedup by single-experiment acceleration

hopping and single-stepping, and as an extension to the Database-Campaign

in Fail*’s assessment-cycle layer (see Section 4.5.2.3) for speeding up con-
crete FI campaigns with FailPanda (see Section 4.3.3).

6.3.1 Hop-Chain Calculator

For the purpose of evaluation and comparison in this chapter, the simple-
hopping and smart-hopping heuristics were implemented in Fail*’s compute-
hops tool in about 700 lines of code. It takes an instruction and memory-
access trace as an input, and calculates fast-forwarding breakpoint – and
watchpoint, if enabled – hop chains for every dynamic instruction in the
trace. Additionally, the forwarding costs are calculated.

Note that an actual FI campaign would not run an experiment for every
dynamic instruction but carefully select a subset; nevertheless the calculated
maximum and average costs are a good indication on how much faster the
campaign gets with the di�erent heuristics.

6.3.2 Database-Campaign Extension

To perform actual FI campaigns with the PandaBoard, Fail*’sDatabase-Cam-

paign and the accompanying DatabaseCampaignMessage de�nition were ex-
tended with the components from the compute-hops tool necessary for smart-
hopping. Con�gurable at compile-time1, the Database-Campaign optionally
calculates the smart-hopping hop chain for each FI job it distributes, and
embeds it into an extended version of the protocol-bu�er message.

However, the smart-hopping algorithm required a small modi�cation for
the FailPanda setup. Beyond the basic-operation measurements of the Pan-
daBoard presented in Section 4.3.3.4, the JTAG-based TAP setup exhibited
one subtlety that voids the algorithm’s assumption of a single tBP and tWP

value for the breakpoint respectively watchpoint timing: While a single-step
and a normal hop between breakpoints and watchpoints take about 70 ms,
hopping from a breakpoint to another breakpoint on the same static instruc-

tion – similarly with watchpoints – takes about twice that time (135 ms). The
reason is that the debugger implements this case by deleting the breakpoint,
stepping a single instruction, and setting the breakpoint again. Without the
breakpoint deletion, the ARM processor would not continue execution but
trap instantaneously – deletion and the single-step are not necessary if the
new breakpoint is at a di�erent address.

Subsequently, Algorithm 6.1 was slightly modi�ed, avoiding the expen-
sive hops by taking the second-to-farthest hop in these cases if possible, while
still yielding optimal results when assuming a cost-di�erence factor of ex-
actly 2. This change was also incorporated into the compute-hops tool, so
that the evaluation in the next section re�ects this detail.

1 Smart-hopping is enabled through the CONFIG_INJECTIONPOINT_HOPS CMake con�guration
switch, see Section 4.3.2.1.

6.4 evaluation 177

6.4 evaluation

This section �rst presents the benchmark setup, and summarizes basic e�-
ciency measurements of the compute-hops hop-chain calculation tool. The
e�ectiveness evaluation of the smart-hopping approach in Section 6.4.3 ap-
plies the technique to real-world benchmarks, and compares it with the most
advanced approach from the related-work section – simple-hopping (see Sec-
tion 6.1.2).

6.4.1 Benchmark Setup

In order to evaluate the e�ectiveness of the fast-forwarding approach, I chose
MiBench’s [GRE+01] automotive and network benchmarks as a source for in-
struction and memory access traces. I compiled them with ARM-GCC 4.6.1
(-march=armv5te) and ran them in the gem5 simulator [BBB+11] in ARM
system-call emulation mode to generate the traces for both the “small” and
“large” parameter sets. The left quarter of Table 6.1 shows the benchmarks
and their dynamic instruction and memory-access counts for the two param-
eter sets.

Note that for the purpose of this evaluation, the benchmarks were not
actually run on the PandaBoard hardware itself, because only the fast-for-
warding overhead – which can be calculated from the heuristic’s output and
the measured basic costs for the platform – is relevant for this chapter.2

6.4.2 Hop-Chain Calculation E�ciency

The compute-hops tool with enabled watchpoints processes about 1.5–2.3
million dynamic instructions per second – depending on the particular trace
– on an Intel Xeon X5470 machine at 3.33 GHz, and its memory consumption
peaks at 11.3 MiB when analyzing the “large” bitcount trace. In essence, the
hop-chain calculation is e�cient enough even for large workloads, and can
be used “online” – for example, as part of the Database-Campaign server –
to generate hop chains for a running FI campaign.

6.4.3 Smart-Hopping E�ectiveness

The table in Table 6.1 shows the maximum and average fast-forwarding
costs3) for the chosen MiBench benchmarks. The results can be summarized
as follows:

2 An actual FI campaign with FailPanda and a reduced variant of the dijkstra benchmark
showed that the real fast-forwarding costs slightly exceed the theoretical values from this
section. The reason is that texec is not negligible (see Section 6.1.1) when dijkstra prints
output to the serial port at runtime. This phenomenon, however, is in fact independent from
the fast-forwarding operation itself.

3 Multiply by 70 ms for the actual fast-forwarding time (see Section 4.3.3.4).

178 smart-hopping: campaign speedup by single-experiment acceleration

m
ibench

benchm
ark

properties
on

arm
v5

sim
ple-h

opping
sm

art-hopping
(bp

only)
sm

art-hopping
(bp+w

p)

benchm
ark

input
dyn.instr.

m
em

.accesses
m

ax
avg

σ
m

ax
avg

σ
m

ax
avg

σ

automotive

basicma th
large

3.37
×

10
9

1.05
×

10
9

1.76
×

10
7

3.62
×

10
6

4.00
×

10
6

12
889

215.2
1246.2

8367
114.5

702.9

sm
all

2.66
×

10
8

5.00
×

10
7

2.92
×

10
6

7.21
×

10
5

7.55
×

10
5

267
10.5

12.3
177

4.7
7.3

bitcount
large

6.26
×

10
8

4.28
×

10
7

6.75
×

10
7

2.30
×

10
7

2.08
×

10
7

301
372

150
200.6

86
956.6

301
372

124
995.0

92
278.2

sm
all

4.18
×

10
7

2.86
×

10
6

4.50
×

10
6

1.53
×

10
6

1.38
×

10
6

20
122

10
051.3

5807.5
20

122
8374.9

6170.8

qsort
large

4.59
×

10
8

1.50
×

10
8

3.14
×

10
6

6.78
×

10
5

7.06
×

10
5

59
562

3203.7
4838.8

5
3.1

0.7

sm
all

1.78
×

10
7

7.12
×

10
6

4.63
×

10
5

6.73
×

10
4

8.85
×

10
4

6318
708.9

879.8
8

2.7
0.7

susan
large

3.92
×

10
8

1.52
×

10
8

9.95
×

10
6

2.54
×

10
6

2.93
×

10
6

28
849

116.0
689.5

40
2.9

1.0

sm
all

2.42
×

10
7

8.94
×

10
6

6.50
×

10
5

1.74
×

10
5

1.93
×

10
5

1883
55.3

57.5
40

2.8
0.8

network

dijkstra
large

2.03
×

10
8

6.94
×

10
7

1.85
×

10
7

6.76
×

10
6

5.11
×

10
6

534
179.8

96.3
9

4.6
1.0

sm
all

4.59
×

10
7

1.60
×

10
7

3.67
×

10
6

1.18
×

10
6

1.04
×

10
6

534
153.3

103.2
7

3.8
1.1

p atricia
large

5.81
×

10
8

2.25
×

10
8

5.10
×

10
6

4.47
×

10
5

6.13
×

10
5

70
9.4

2.7
8

2.7
0.7

sm
all

9.45
×

10
7

3.65
×

10
7

7.84
×

10
5

6.84
×

10
4

9.30
×

10
4

70
7.9

2.5
8

2.6
0.7

Table
6.1:Benchm

arksfrom
M

iBench’s
a
u
t
o
m
o
t
i
v
e

and
n
e
t
w
o
r
k

benchm
ark

categories(w
ith

both
s
m
a
l
land

l
a
r
g
e

inputdata
sets)w

ith
dynam

ic
instruction

counts
on

A
RM

v5and
m

em
ory

accesscounts,fed
through

the
s
i
m
p
l
e
-
h
o
p
p
i
n
g

heuristic,
s
m
a
r
t
-
h
o
p
p
i
n
g

w
ith

only
breakpoints,and

s
m
a
r
t
-
h
o
p
p
i
n
g

w
ith

both
break-

and
w

atchpoints.The
resultsinclude

m
axim

um
and

average
costsforfast-forw

arding
to

e
v
e
r
y
d
y
n
a
m
i
c
i
n
s
t
r
u
c
t
i
o
n

in
the

respective
benchm

ark.
A
d
a
p
t
e
d

f
r
o
m

[
S
R
S
1
4
]
.

6.5 discussion 179

• The commonly used simple-hopping heuristic is clearly not usable for
programs of this size: even for the “small” input of qsort it takes an
average of 78 minutes to fast-forward to a chosen dynamic instruction,
and the other benchmarks are worse by a factor of up to 342.

• Using the smart-hopping heuristic without watchpoints already im-
proves the situation signi�cantly: Most benchmarks can on average
be fast-forwarded within a matter of seconds, although the maximum
forwarding costs are still relatively high, especially for the “large” in-
puts. The average fast-forwarding time improvement ranges between
a factor of 94.9 for the “small” qsort benchmark and 68 945 for the
“small” basicmath. However, the bitcount benchmark’s costs stand
out: On average it still takes 175 minutes to fast-forward the “large”
variant, the maximum takes even twice that long.

• Allowing smart-hopping to additionally use watchpoints as hop tar-
gets again dramatically improves fast-forwarding times for almost all
benchmarks: The average fast-forward is below 330 ms for all but bit-
count and the “large” basicmath, and also the maximum costs are
within reasonable bounds. The improvement compared to the simple-
hopping heuristic now ranges between 183.2 for the “small” bitcount
to 1.48 million for the “large” dijkstra benchmark. Unfortunately, the
problematic bitcount benchmark still has extremely high forward-
ing times – its maximum costs did not improve at all with the help of
watchpoints.

Figure 6.3 shows the average fast-forwarding costs for the �rst 106 dy-
namic instructions of the dijkstra and the problematic bitcount bench-
marks. dijkstra’s trace constantly o�ers trace features that ease fast-for-
warding, such as static instructions that are rarely executed, or speci�c mem-
ory accesses. In contrast, the costs for forwarding in the bitcount bench-
mark linearly increase with the dynamic instruction count.

A closer investigation of the C code behind bitcount reveals that its
nested loop constructs repeat almost identical operations 1.125 million times
in the “large” setup. Only the use of a pseudo-random number generator
seems to introduce some variation. I believe that this pathologic setting is
relatively unrealistic for the application domain, as FI experiments will not
yield any new and interesting results after analyzing the �rst few of the mil-
lion outer loop iterations.

6.5 discussion

The e�ectiveness evaluation showed that the smart-hopping heuristic im-
proves fast-forwarding times massively for most workloads, as the round-
trip time bottleneck between host PC and target platform dominates the to-
tal experiment time. For example, even for the shortest benchmark (qsort

180 smart-hopping: campaign speedup by single-experiment acceleration

0

1

2

3

4

0e+00 2e+05 5e+05 8e+05 1e+06

Dynamic instruction

A
v
g

 F
F

 c
o
s
t

(a) dijkstra

0

1000

2000

3000

0e+00 2e+05 5e+05 8e+05 1e+06

Dynamic instruction

A
v
g

 F
F

 c
o
s
t

(b) bitcount

Figure 6.3: Average fast-forwarding costs (bin size: 104 dynamic instructions) for
the �rst 106 dynamic instructions of the “small” dijkstra and bitcount
benchmarks.

6.5 discussion 181

0

3

6

9

0e+00 1e+07 2e+07 3e+07 4e+07

Dynamic instruction

#
C

h
e
c
k
p

o
in

ts

Figure 6.4: Distribution of 387 checkpoints (histogram bin size: 2 × 105 dynamic
instructions) for the “small” bitcount benchmark with a cost-capping
checkpoint threshold of 500.

“small”) the FI campaign throughput4 improves from 18.3 experiments per
day to 1707 without or 72 666 with watchpoints using smart-hopping on
a single PandaBoard. This results in a fault-space coverage improvement
of more than three orders of magnitude, with even more extreme improve-
ments for longer-running programs – for example, dijkstra “large” improves
throughput by a factor of 357 943.

On the other hand, the bitcount benchmark demonstrates the limitations
of smart-hopping: In the worst case, even optimal hop chains are too long on
average for reasonable fast-forwarding times. Programs with very long loops
that only operate on register contents, or on a very small set of data from
memory, cannot be e�ciently fast-forwarded using hardware breakpoints
and watchpoints only. In the remainder of this section I discuss an extension
that would allow to handle these pathological cases as well. Additionally, I
explore further optimization potential that factors in additional information
from def/use pruning.

6.5.1 Extending the Approach: Checkpointing

For target programs that exceed reasonable average fast-forwarding costs,
the approach can be complemented with checkpointing (see Section 3.3.2.1
and Section 6.1.3). The heuristic was extended by an automatism that cre-
ates a checkpoint whenever the costs amounting in the current_solution

variable (Algorithm 6.1) cross a speci�ed threshold, e�ectively capping fast-
forwarding costs there. This threshold must be chosen large enough that

4 Assuming that setup/reset of the target platform and actual program runtime texec add up to
1 s per experiment.

182 smart-hopping: campaign speedup by single-experiment acceleration

0

100

200

300

400

0e+00 2e+05 5e+05 8e+05 1e+06

Dynamic instruction

A
v
g

 F
F

 c
o

s
t

Figure 6.5: Average fast-forwarding costs for the �rst 106 dynamic instructions
of the “small” bitcount benchmark after adding checkpoints (cf. Fig-
ure 6.4): Fast-forwarding costs are capped at the speci�ed threshold of
500, transforming the linearly growing costs from Figure 6.3b to a saw-
tooth growth curve.

it exceeds the runtime for a checkpoint load, and should be tuned to even
higher values to reduce the number of checkpoints that must be created and
stored.

Assuming checkpoint load costs of 300,5 and a threshold of 500, the “small”
bitcount benchmark’s fast-forwarding costs can be reduced to an average
of 377.4 (max: 500) with only 387 checkpoints placed program-phase specif-
ically by the heuristic. Figure 6.4 shows the distribution of these checkpoints
over the benchmark’s runtime: While some program phases are very imper-
vious to smart-hopping and therefore interspersed with checkpoints – up
to 11 per 200 000 dynamic instructions, – others can be fast-forwarded to
without any need for additional checkpoints. Figure 6.5 shows the average
cost curve from Figure 6.3b after adding checkpoints: The costs are capped
at the speci�ed threshold of 500.

6.5.2 Alternative and Complementary Improvements

An alternative for dealing with programs unfavorable for smart-hopping in-
cludes hardware breakpoint/watchpoint support that can be con�gured to
trigger not at the �rst, but the Nth occurence of the watched event. For ex-
ample, the Lauterbach TRACE32 debugger attached to a Hitachi SH-4 or
Freescale MPC5500 microcontroller o�ers this feature. Unfortunately, these
products are very expensive. Similarly, some CPUs come with hardware

5 Measurements on the PandaBoard indicate that it takes about 20 s, or (rounded up) ca. 300
cost units with 70 ms each, to load 2 MiB of data from the host PC into the target’s memory.

6.5 discussion 183

performance-counting units that can be exploited to fast-forward a speci�ed
number of, for example, branch instructions. However, in many instances
these counters only work “approximately accurate” [ARM11, WTM13], coun-
teracting the task of forwarding to an exact dynamic instruction. More widely
available hardware support for fast-forwarding would certainly be desirable.

Another complementary approach is to reduce the debugger round-trip
times (tsinglestep, tBP, . . .), which directly improves all previously mentioned
fast-forwarding techniques. For example, Heinig et al. [HKS+13] showed
that JTAG debugging round-trip times can be reduced to around 2 ms by
implementing all timing-critical operations on a microcontroller, removing
all USB and host-PC related delays from the fast-forwarding operation.

6.5.3 Def/Use Equivalence-Class Aware Fast-Forwarding

Even more optimization potential lies in the fact that on the assessment-
cycle layer, Fail*’s FI campaigns are based on def/use equivalence classes
(see Section 3.3.1.1 and Section 4.5.3.4). Instead of injecting once at every
dynamic instruction, as assumed in the evaluation in Section 6.4, a def/use-
pruning based campaign di�ers in two aspects:

• Usually, several injections take place at one single dynamic instruction.
For example, the def/use equivalence classes Figure 3.3 lead to eight

injections – in eight separate FI experiments – at, for example, CPU
cycle #11.

• Instead of injecting at every dynamic instruction, injections take place
on the granularity of def/use equivalence classes. For example, for
each equivalence class in Figure 3.3 only one FI experiment is run. The
exact injection time can be selected arbitrarily from the time range the
equivalence class spans; for historic reasons, Fail*’s Database-Cam-

paign/Database-Experiment pair injects at the last dynamic instruction
of each equivalence class.

The �rst fact – that usually several injections take place at the same dynamic
instruction – is exploited by the Database-Campaign by simply reusing an
already calculated hop chain for all subsequent injections at that CPU cycle,
but this alone does not further speed up the fast-forwarding process. Instead,
the implementation also exploits the degree of freedom introduced by def/
use equivalence classes: Instead of always injecting at the last dynamic in-
struction – the “right margin” – of each def/use class, the algorithm picks the
dynamic instruction within the class’s range with the lowest fast-forwarding

cost for the injection.
The analysis of this def/use-class aware fast-forwarding extension showed

that exploiting this degree of freedom further reduces the fast-forwarding
costs by up to an additional 30 percent for the dijkstra, qsort, and susan
benchmarks. The pathologic bitcount, however, only reduces by an addi-
tional 3 percent.

184 smart-hopping: campaign speedup by single-experiment acceleration

6.6 summary and conclusions

This chapter presented the smart-hopping heuristic, a trace-based fast-for-
warding approach for running ISA-level FI experiments on embedded plat-
forms. It only requires basic hardware support, and can easily be ported
from Fail* to other FI tools. Using instruction traces from programs in the
MiBench benchmarking suite, a comparison to the prevalent simple-hopping
approach demonstrated that smart-hopping improves experiment through-
put by several orders of magnitude for most benchmarks.

A detailed analysis of a suboptimally performing input – the bitcount
benchmark – illustrated a principal limitation of smart-hopping using only
breakpoints and watchpoints: Without additional hardware support, pro-
grams with long-running, homogeneous loops and little to no memory ac-
cesses cannot be e�ciently fast-forwarded. Subsequently I described an ex-
tension to the heuristic that automatically inserts checkpoints based on a
fast-forwarding cost threshold, e�ectively capping costs. The resulting check-
point positions are aligned with program-phase speci�c forwarding imper-
viousness, and the total checkpoint count – which directly results in record-
ing time and hard-disk space consumption – can be tuned by increasing the
threshold. Beyond the checkpointing solution, I discussed further optimiza-
tion potential.

7
C O M PA R I S O N O F P R O G R A M S U S C E P T I B I L I T Y T O S O F T
E R R O R S

“Statistics are like bikinis.
What they reveal is suggestive, but what they conceal is vital.”

— Aaron Levenstein

Contents
7.1 Setting the Stage: Machine, Fault, and Failure Model 186

7.1.1 Fault and Machine Model 186
7.1.2 Example Workloads and Failure Model 187

7.2 Experiment-Count Reduction Pitfalls 187
7.2.1 Improbable Independent Faults 187
7.2.2 Experiment-Count Reduction: Fault Sampling 188
7.2.3 Experiment-Count Reduction: Def/Use Pruning 189
7.2.4 Def/Use Pruning and the Weighting Pitfall 189
7.2.5 Combining Def/Use Pruning and Sampling 192

7.3 Fooling Fault Coverage: A Gedankenexperiment 193
7.3.1 “Hi”, A Simple Benchmark 193
7.3.2 The Fault-Space Dilution Delusion 195
7.3.3 Analyzing the Root Cause 196

7.4 Constructing an Objective Comparison Metric 197
7.4.1 Back to the Roots: Failure Probability 197
7.4.2 Fault Coverage and Failure Probability in the Real World 199
7.4.3 No-E�ect Results and Sampling 200

7.5 Discussion and Generalization 201
7.5.1 Revisiting Pitfall 1: Unweighted Raw Numbers 201
7.5.2 Possible Generalizations 201
7.5.3 Cross-Layer Comparisons 202

7.6 Related Work 203
7.7 Conclusions 204

The previous two chapters approached the problem of FI-campaign
computation e�orts from two di�erent angles – reducing the total
experiment count (Chapter 5), and speeding up individual experi-

ments (Chapter 6). In contrast, this chapter is concerned with the interpreta-
tion of FI results after the campaign is completed.

As described in Chapter 3, SIHFT mechanisms need to be tested, measured
and compared in order to assess their e�ectiveness in the particular use case.

185

186 comparison of program susceptibility to soft errors

In the simplest scenario, an unmodi�ed baseline version of a workload –
with some pre-de�ned input – competes with a hardened version of the same
program, and the latter is expected to exhibit increased fault resilience. The
analysis of the state of the art in hardware FI in Section 3.5 indicated that the
literature predominantly conducts this kind of comparison using the fault-

coverage factor metric (see Section 3.1.2.5).
This chapter further dissects current practices in simulation-based FI with

regard to transient memory errors. Substantiated by a subset of the results
from the GOP case study (see Section 4.6), I identify three common pitfalls
that can skew or even completely invalidate a quantitative comparison of
SIHFT-protected workloads, potentially leading to wrong conclusions for
the developer. Ultimately, I propose an alternative metric that can be used
for benchmark comparison.

• Described in Section 7.2, a central �nding of this chapter is that special
care has to be taken to avoid distorted results when using experiment-

count reduction methods, such as def/use pruning or fault sampling.

• Even more importantly, in Section 7.3 I show that the widely used
fault-coverage metric is generally unsound for comparing di�erent pro-

grams. Speci�cally, this metric is defective for the evaluation of SIHFT
mechanisms applied to a benchmark program.

• As a remedy, in Section 7.4 I construct an objective comparison metric

based on extrapolated absolute failure counts, and introduce the math-
ematical foundation supporting this proposition.

As a contextual frame around these contributions, the following Section 7.1
describes the simpli�ed machine, fault, and failure models used throughout
the chapter, and Section 7.5 discusses possible generalizations and implica-
tions of the �ndings. Section 7.6 presents related work speci�cally address-
ing the measurement issues discussed in this chapter, and Section 7.7 sum-
marizes the chapter.

Parts of this chapter were originally published on DSN 2015 [SBS15].

7.1 setting the stage: machine, fault, and failure model

This section establishes the fault and machine model used throughout this
chapter. Subsequently, I brie�y revisit the benchmarks from the GOP case
study, and describe the possible failure modes these programs can exhibit.

7.1.1 Fault and Machine Model

To focus on the core �ndings of this chapter, I use a simplistic machine model.
Abstracting from CPU speci�cs, I assume a simple RISC CPU with classic in-
order execution, without any cache levels on the way to a wait-free main
memory, and with a timing of one cycle per CPU instruction. The CPU ex-

7.2 experiment-count reduction pitfalls 187

ecutes programs from read-only memory. Section 7.5.2 discusses possible
generalizations from this simple model.

On this machine, workload runs can be carried out deterministically, just
as assumed for any of the Fail* back ends. Deterministic does not necessarily
mean that system reactions on external events, such as asynchronous device
interrupts, are out of scope, but that such events are replayed at the exact
same point in time during each run.

As the basic fault model, I again – as in the GOP case study (see Sec-
tion 4.6) – use uniformly distributed, independent and transient single-bit
�ips in main memory. Additionally, I assume the ROM, holding the program
instructions, to be immune to faults. Some of the �ndings in this chapter
may apply for other fault models, too, as discussed in Section 7.5.

7.1.2 Example Workloads and Failure Model

As a real-world example, – substantiating two of the three pitfalls identi�ed
in the remainder of this chapter, – I reuse the bin_sem3 and sync3 bench-
marks from the GOP case study (see Section 4.6.2) in two variants:

baseline: The unmodi�ed test programs.

hardened: The CRC variant of each benchmark, more concretely the con-
�guration with all classes protected (see Figure 4.12).

Instead of using the di�erentiated failure model of the GOP case study, this
chapter reduces the number of di�erent experiment-outcome types to two

for simplicity – “No E�ect” and “Failure”. From the experiment-outcome
types described in Section 4.6, two – “No E�ect” and “Detected” – can be
interpreted as a benign behavior that has no visible e�ect from the outside.
I coalesce these two result types into “No E�ect”, and the remaining failure
modes into a subsuming “Failure” type.

7.2 experiment-count reduction pitfalls

In this section, I �rst brie�y recapitulate the single-fault assumption and
two classic experiment-count reduction techniques – sampling, and def/use
pruning. By examining common practices in applying these techniques, I
identify two pitfalls with potentially adverse e�ects on FI-result interpreta-
tion, and present means to avoid them.

7.2.1 Improbable Independent Faults

As already described in Section 3.1.3.2, it su�ces to inject one fault per work-
load run – assuming current real-world fault rates and relatively short work-
load runtimes. The Poisson probability that two or more faults hit one run
is negligible when compared to the probability for a single fault.

188 comparison of program susceptibility to soft errors

In consequence, under the assumed single-bit �ip fault model, we must
conduct one FI experiment for every possible CPU-cycle and memory-bit
coordinate to achieve full fault-space coverage. In the simpli�ed fault-space
illustration in Figure 3.1 on page 50 with ∆t = 12 cycles and ∆m = 9 bit,
N = 12 ⋅ 9 = 108 experiments are necessary.

7.2.2 Experiment-Count Reduction: Fault Sampling

Unfortunately, even for small workloads, injecting one fault for each possible
CPU-cycle and memory-bit coordinate is in general infeasible. For the hypo-
thetical workload described in Section 3.1.3.2 with a runtime of ∆t = 1 s –
corresponding to 109 cycles for an assumed 1 GHz CPU – and ∆m = 1 MiB =
223 bit, for a full fault-space scan w = ∆t ⋅ ∆m ≈ 8.4 ⋅ 1015 FI experiments
would have to be conducted. Even assuming it is possible to simulate our
simple CPU in real-time, this procedure would take about 266 million CPU
years.

One widespread solution to this fault-space explosion problem is fault

sampling [AAA+90, PMAC95, LCMV09], as already described in detail in
Section 3.1.2.5. Since the distribution of faults in the fault space is assumed
uniform (see Section 7.1.1), FI experiments are picked uniformly from this
space. Consequently, the results can be used to estimate the fault-coverage
factor [BCS69]. Powell et al. de�ne this metric “as the probability of system

recovery given that a fault exists” [PMAC95].
The fault coverage c, or – formalizing the citation from [PMAC95] – the

probability P(No Effect∣1 Fault) or 1-P(Failure∣1 Fault), can be calculated
after randomly picking N (time, space) coordinates from the fault space, and
running an FI experiment for each of them. In each experiment, the work-
load is run from the beginning until the CPU cycle for the FI – the time

component of the randomly picked coordinate from Figure 3.1 on page 50
– has been reached. The machine is then paused, the fault gets injected by
�ipping the bit in memory corresponding to the space component of the co-
ordinate, and the machine is resumed. As described in Section 7.1.2, then
the experiment outcome is observed, turning out either as “No E�ect”, or as
“Failure”. In the latter case, the failure counter F is incremented.1

Repeating the formula from Section 3.1.2.5, the fault coverage c can sub-
sequently be calculated as

c = 1− P(Failure∣1 Fault) = 1−
F
N . (7.1)

We will see in Section 7.3 and 7.4 that the fault-coverage metric, originally
only devised for the assessment of hardware systems [BCS69], is �awed for
comparing software programs. However, the sampling process itself is un-
problematic, as long as a su�ciently large number of samples is taken for
statistically authoritative results (see Section 3.1.2.5).

1 “No E�ect” results are implicitly counted as N − F.

7.2 experiment-count reduction pitfalls 189

7.2.3 Experiment-Count Reduction: Def/Use Pruning

An alternative, widely used experiment-count reduction is def/use pruning,
as already described in detail in Section 3.3.1.1. Based on the information
from a golden-run trace, the technique partitions the fault space into def/
use equivalence classes, as shown in Figure 3.3 on page 70. For those equiv-
alence classes ending with a memory read, one FI experiment must be con-
ducted – its result is representative for all fault-space coordinates contained
in the equivalence class. For those classes ending with a memory write, a
“No E�ect” result can be assumed without running an experiment at all.

As a result, from the 12 ⋅ 9 = 108 experiments in the illustrative example
of Figure 3.1 on page 50, only 8 remain after def/use pruning in Figure 3.3.
But also in real-world examples, def/use pruning – especially when applied
to faults in memory – is extremely e�ective. For example, the baseline variant
of the sync3 benchmark (see Section 7.1.2) is reduced from a raw fault-space
size of w ≈ 1.2×109 to merely 5985. Thus, a full fault-space scan becomes
feasible even on a single machine within a reasonable time frame, and with-
out any loss of precision regarding the result information on any point in
the fault space.

7.2.4 Def/Use Pruning and the Weighting Pitfall

Since its inception, def/use pruning was meant as an e�ort-reducing, con-
servative optimization for the theoretical full fault-space scanning model
[BVFK05b, BVFK05a]. If, assuming the experiment numbers from Figure 3.3
on page 70, four of the eight (black-dotted) actually conducted experiments
turned out as “Failure” – and, inversely, the remaining four as “No E�ect”, –
this number must not be used in Equation 7.1 for fault-coverage calculation
without any post-processing, yielding a wrongly calculated coverage of

c = 1−
4
8 = 50 %.

Instead, the previously collapsed equivalence classes must be expanded to
their original size again,weighting each FI-obtained result with the correspond-
ing equivalence-class size. Gütho� et al. also state this explicitly: “Each result
obtained by [. . .] fault injection experiments must be weighted with the corre-

sponding relative data life-cycle length.” [GS95]

Going beyond their statement, the literature presents no plausible argu-
ment why fault-space coordinates we do not conduct any experiment for –
the white dots in Figure 3.3, known a priori to yield “No E�ect” – should be
omitted in the result calculation. Section 7.3 and 7.4 will shed more light on
this debate. For now, assume that all coordinates – the example fault-space
size N is 12 ⋅ 9 = 108 – should be included in the fault-coverage calculation.
The fault-coverage factor now correctly – with a weight of 7, the size of

190 comparison of program susceptibility to soft errors

bin_sem3 sync3

80%

85%

90%

95%

100%

B
a

s
e
lin

e

H
a

rd
e

n
e

d

B
a

s
e
lin

e

H
a

rd
e

n
e

d

F
a
u
lt
 c

o
ve

ra
g

e
Experiment result

Failure

No effect

(a) Coverage, without result weighting.

bin_sem3 sync3

99.00%

99.25%

99.50%

99.75%

100.00%

B
a

s
e
lin

e

H
a

rd
e

n
e

d

B
a

s
e
lin

e

H
a

rd
e

n
e

d

F
a
u
lt
 c

o
ve

ra
g

e

Experiment result

Failure

No effect

(b) Coverage, with result weighting.

fault
coverage

bin_sem3 sync3

w/o weighted w/o weighted

Baseline 88.58 % 99.22 % 91.47 % 99.70 %

Hardened 92.82 % 99.83 % 93.44 % 99.87 %

(c) Fault coverage, raw data: The percentages without (w/o) weighting are o� by 6.43 to 10.63
percent-points compared to the weighted coverages.

bin_sem3 sync3

0e+00

1e+05

2e+05

0.0e+00

5.0e+04

1.0e+05

1.5e+05

B
a
s
e
lin

e

H
a

rd
e
n
e
d

B
a
s
e
lin

e

H
a

rd
e
n
e
d

A
b
s
o
lu

te
 #

 f
a
ile

d
 e

x
p
e

ri
m

e
n

ts

(d) Absolute failure result counts, without re-
sult weighting.

bin_sem3 sync3

0e+00

1e+11

2e+11

3e+11

4e+11

0e+00

1e+07

2e+07

3e+07

4e+07

B
a
s
e
lin

e

H
a

rd
e
n
e
d

B
a
s
e
lin

e

H
a

rd
e
n
e
d

(e) Absolute failure result counts, with result
weighting.

failure
count

bin_sem3 sync3

w/o weighted w/o weighted

Baseline 39 619 4.22×1011 27 138 3.51×106

Hardened 260 053 1.01×1011 189 159 4.35×107

(f) Absolute failure counts, raw data. Without (w/o) weighting, the failure counts are under-
estimated by several orders of magnitude.

Figure 7.1: FI-result interpretation with and without avoidance of Pitfalls 1 and 3.

7.2 experiment-count reduction pitfalls 191

each light-gray equivalence class in Figure 3.3, for each of the four “Failure”
results, – calculates as

c = 1−
F
N = 1−

4 ⋅ 7
108

≈ 74.1 %.

Another explanation why this weighting is necessary can be derived from
intuition: The longer data lives in a memory cell, the more probable a soft
error will a�ect it. If no weighting is applied, the same fault coverage is cal-
culated regardless of seven (Figure 3.3) or seven million cycles between the
store and the subsequent load of the data. Then, the pruning technique is
not only a methodology to reduce FI experiment e�orts, but has a severe
impact on the result: The fault model unintentionally has degenerated from
“uniform transient single-bit �ips in main memory” to “uniform transient
single-bit �ips in main memory while a memory read operation is in progress”
– modeling something similar to single-bit �ips on the memory bus, or the
“inject-on-read” CPU fault model described in Section 3.1.3.3. Hence, the re-
sults are extremely skewed depending on the amount of memory accesses
the benchmark executes, and the variance in memory-data lifetimes.

Now that we know def/use equivalence classes should be weighted in the-
ory, does this have an impact on real-world examples? Figure 7.1a and 7.1b
show fault coverages for the baseline and hardened variants of the bin_sem3
and sync3 benchmarks (see Section 7.1.2), calculated without and with weight-
ing. The di�erence is directly visible (note the di�erent Y-axis labels): In the
unweighted case, the fault coverages of all benchmark variants are underes-
timated compared to the weighted case. The coverage values are o� by 6.43
(sync3 hardened) up to 10.63 percent points (bin_sem3 baseline).

The reason for the bias in the two example benchmarks is a correlation
between def/use equivalence class size and experiment outcome. For the four
benchmark variants used in this chapter, the only positive aspect is that the
trend from the baseline to the hardened variants is the same in both cases, so
that no dangerously wrong design decisions would have been made using
the unweighted coverage results. Nevertheless, the improvements achieved
by the hardened program variants are not as high as Figure 7.1a suggests.

Pitfall 1: Unweighted Result Accounting

Summarizing this section, the �rst pitfall is the unweighted result account-
ing when using def/use pruning. Fault-space pruning is an optimization,
and, thus, must not have any in�uence on the resulting numbers. When a
technique such as the common def/use pruning changes the fault model’s
uniform distribution into a distribution that is strongly biased by the pro-
gram execution, each result must be weighted with the corresponding data

lifetime to compensate.

In the literature, a lack of result weighting is in most cases hidden behind
fault-coverage factor percentages that do not reveal whether weights were
applied. One example where the additionally provided data indicates that
no weights were used is from Ho�mann et al. [HDL13b], who compare the

192 comparison of program susceptibility to soft errors

fault susceptibility of two embedded operating systems using unweighted
experiment numbers. Barbosa et al. [BVFK05b] recognize that weighting is
needed to compensate for the e�ects of pruning, but conclude that the dif-
ference is small for the benchmarks they used. In contrast, our benchmark
examples in Figure 7.1 serve as a warning that this is not always the case.
Alexandersson and Karlsson [AK11] realize that def/use pruning a�ects the
comparability of their results to those of other studies. Other def/use prun-
ing descriptions simply omit the relevant detail whether weighting is used,
for example Berrojo et al. [BGC+02]. Additionally, tools clearly designed for
the purpose of testing – where weighting is not necessary, – such as Re-
lyzer from Hari et al. [HANR12], may be misused for comparison purposes.
Correct metrics should be integrated.

7.2.5 Combining Def/Use Pruning and Sampling

The conclusions from the previous section are based on def/use pruning of a
full fault-space scan. However, often a prohibitive number of FI experiments
still remain after def/use pruning. Pruning and sampling can be combined
to further reduce the experiment count. Clearly, the combination of both
techniques must yield the same results as pure sampling, but with reduced
e�ort.

Therefore, samples – or, fault-space coordinates – have to be drawn uni-
formly from the raw, un-pruned fault space to get a representative sample
of the entire fault-space population, as implemented by Fail*’s prune-trace
tool (see Section 4.5.3.4). The def/use pruning is then carefully applied in a
second step: We only need to conduct a single FI experiment for fault-space
coordinates in the sample that belong to the same def/use equivalence class.
Nevertheless, we still need to count the results of all sampled fault-space
coordinates to properly calculate the estimate for the entire fault-space pop-
ulation. Thereby, even coordinates known to result in “No E�ect” – because
their def/use equivalence class ends with a store (see Section 3.3.1.1), – must
be included, although we will lift that requirement in Section 7.4.3.

The other way around, applying def/use pruning �rst and then drawing
samples uniformly from the already-pruned fault space, – in other words,
picking def/use equivalence classes with the same probability, – leads to a bi-
ased estimate. A fault-space coordinate that belongs to a small def/use equiv-
alence class would be included in the sample with a higher probability than
for uniform sampling of the raw fault space. The reason is that the weight

of each equivalence class biases the selection probability of its fault-space
coordinates.

7.3 fooling fault coverage: a gedankenexperiment 193

Pitfall 2: Biased Sampling

Hence, the second pitfall is biased sampling. If def/use pruning and sam-
pling are combined, the sampling process must pick samples from the raw,

un-pruned fault space. If several samples belong to the same def/use equiv-
alence class, only a single FI experiment needs to be conducted for them,
but all samples count in the estimate.

For example, Skarin and Karlsson [SK08a] recognize that sampling from
the pruned fault-space may have biased the results in their FI-based mea-
surement of a brake-by-wire system:

“One factor that can contribute to the di�erence in the distribution

of the error classi�cation is the risk of having a biased sampling.

Errors to inject were randomly selected from a list of possible er-

rors created by the pre-injection analysis. A register or memory

location that is read more often will also occur more often in this

list and therefore be more likely to be selected. By adding error

handling mechanisms to the most vulnerable parts of the brake

controller, we also increase the number of accesses to these parts.

These parts will therefore occur more often in the list of possible

errors to inject. Consequently, the probability of injecting errors

into the most vulnerable parts increases.” [SK08a]

However, the authors did not attempt to correct this bias.

7.3 fooling fault coverage: a gedankenexperiment

In this section, I will conduct a Gedankenexperiment with an apparently in-
e�ective software-based hardware fault-tolerance mechanism protecting a
simple benchmark program, and miraculously improving its fault coverage.
Subsequently, I will revisit the fault-coverage numbers for the bin_sem3 and
sync3 benchmarks, and reconsider the e�ectiveness of the used CRC hard-
ening mechanism.

7.3.1 “Hi”, A Simple Benchmark

Figure 7.2 shows the C-like source code for a tiny benchmark program that
initializes a local character array, and subsequently communicates both char-
acter values to the outside world via the serial interface. The corresponding
machine code consists of eight machine instructions consisting of four load
and four store instructions. Figure 7.2a shows these loads and stores – “R”
respectively “W”, – similarly as in Figure 3.3, in the complete fault space of
this benchmark, spanning 16 bits on the memory axis, and eight cycles on
the time axis.

If we run a full fault-space scan and run one independent FI experiment
for every discrete coordinate in the fault space, and observe whether the
benchmark’s output is identical to the golden run – it is supposed to say “Hi”,

194 comparison of program susceptibility to soft errors

CPU Cycles

1 2 3 4 5 6 7 8

1

8

16

W

W

W

W

W

W

W

W

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

W

W

W

W

W

W

W

W

st 0x1←r1 ld r1←0x1

st 0x2←r1 ld r1←0x2

M
em
o
ry
 A
d
d
re
ss
 0
x
1

M
em
o
ry
 A
d
d
re
ss
 0
x
2

(a) Fault-space diagram for the base-
line version, �nishing after eight
CPU cycles. Legend:
◦ = e�ectless fault (e.g., masked),
• = fault turning into failure.

111 2 3 4 5 6 7 8 9 10 12

1

8

W

W

W

W

W

W

W

W

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

W

W

W

W

W

W

W

W

16

st 0x2←r1 ld r1←0x2

st 0x1←r1 ld r1←0x1

NOP NOP NOP NOP

CPU Cycles

(b) Fault-space diagram after applying the Dilu-

tion Fault Tolerance (DFT) mechanism. Four no-
operation instructions (NOP) are prepended to
the baseline version, resulting in an o�set of
four CPU cycles.

1 volatile char msg[2];

2 msg[0] = ’H’;

3 msg[1] = ’i’;

4 serial_put_char(msg[0]);

5 serial_put_char(msg[1]);

6
7
8 /* C program */ �

0 ld r1 <- ’H’

1 st 0x1 <- r1

2 ld r1 <- ’i’

3 st 0x2 <- r1

4 ld r1 <- 0x1

5 st $SERIAL <- r1

6 ld r1 <- 0x2

7 st $SERIAL <- r1 �
Figure 7.2: Gedankenexperiment with C-like source code for the baseline version to

the left, and corresponding machine instructions (and CPU-cycle num-
bers) to the right. Adapted from [SBS15].

7.3 fooling fault coverage: a gedankenexperiment 195

– the black-dotted experiments in Figure 7.2a will turn out as a “Failure”, and
the other ones as “No E�ect”:

• In the “Failure” cases, the fault hits msg[0] at address 0x1 while the
letter ’H’ is stored there but not yet read back – which happens in
CPU instruction #5, – or analogously msg[1] at address 0x2 while the
datum ’i’ lives there.

• The “No E�ect” cases are FI experiments where the fault is subse-
quently overwritten – before the store cycle #1 respectively #3, – or it
is not activated anymore because the program terminates – after the
load cycle #4 respectively #6.

The fault coverage cbaseline can easily be calculated (see Section 7.2.2 and 7.2.4)
by counting the number of experiments Nbaseline = 8 ⋅ 16 = 128 and the
number of “Failure” outcomes Fbaseline = 3 ⋅ 8 ⋅ 2 = 48, and inserting them
into Equation 7.1:

cbaseline = 1−
Fbaseline

Nbaseline
= 62.5 %

7.3.2 The Fault-Space Dilution Delusion

Now, I apply a hypothetical software-based fault-tolerance method – I call it
“Dilution Fault Tolerance (DFT)”, or short DFT – to the baseline’s machine
code by conducting a program transformation. It works by prepending four
NOP instructions2 to the machine code, increasing the benchmark’s runtime
from eight to twelve CPU cycles. Figure 7.2b shows the modi�ed fault-space
diagram for the DFT-hardened benchmark: The loads and stores have shifted
four cycles to the right, and the newly added experiment dots are all “No
E�ect”, as no live data is stored in memory before the original beginning of
the benchmark.

Again calculating the fault coverage chardened with Nhardened = 12 ⋅ 16 =
192 and the number of “Failure” outcomes Fhardened = 3 ⋅ 8 ⋅ 2 = 48 yields:

chardened = 1−
Fhardened

Nhardened
= 75.0 %

Interestingly, by applying a seemingly ine�ective “fault tolerance” pro-
gram transformation, I increased the fault coverage by 12.5 percent points.
In fact, I could arbitrarily increase the coverage to any chardened < 100 % by
inserting more NOPs.

Now, the attentive reader may point to the literature, and cite, for exam-
ple, Barbosa et al. [BVFK05b], who argue in the context of their def/use fault-
space pruning technique that never activated faults – a priori known “No Ef-
fect” results – should not be included in the coverage calculation. The newly
added experiment dots in Figure 7.2b, that contributed to Nhardened in the
above calculation would disappear again, and yield chardened = cbaseline.

2 No operation, performing no real work for one cycle each.

196 comparison of program susceptibility to soft errors

As a reaction to such disgraceful attempts to make the DFT mechanism
look bad, I would devise DFT’, which replaces the NOPs by memory reads
– for instance, alternatingly executing ld r1 ← 0x1 and ld r1 ← 0x2 in-
structions to read those two memory locations. Now, all newly added ex-
periment dots would represent faults that actually are “activated” – by be-
ing loaded into a CPU register, and subsequently discarded. DFT’ would be
back at chardened = 75.0 %, this time with the restriction from Barbosa et al.
[BVFK05b].

The central problem with this restriction is, that in a black-box technique
such as FI the “activation” of a fault, turning it into an error (see Section 2.2.2),
is an extremely vague business in itself. It strongly depends on the sophisti-
cation of the used fault-space pruning technique, for example:

• Not injecting into unused memory.

• Not injecting into state that is known to be overwritten afterwards.

• Not injecting into state that is known to be masked by subsequent arith-

metic operations [HANR12].

• . . . – this list could be continued for a while.

In my opinion, this vague distinction between “activation” and “no activa-
tion” should therefore have no place in the context of an objective fault-
tolerance benchmarking metric. Though, we will see in Section 7.4 that bench-
mark comparison can take place without having to decide this question at
all.

To summarize, a seemingly unsuspicious – but entirely arti�cial – pro-
gram transformation can severely skew the fault-coverage factor metric.

7.3.3 Analyzing the Root Cause

The remaining question is:Why is the fault-coverage metric un�t to discover
the obvious ine�ectiveness of the Dilution Fault-Tolerance mechanism – and
does this metric skewing not only happen in an arti�cial example, but also
occur in real-world examples?

The fact that I used a – hypothetical – full fault-space scan in the example,
and not sampling, as most works in the community, is not the culprit: Sam-
pling is an estimate of the whole population, and if the whole population
provides a wrong answer, sampling most probably does as well. A su�cient
number of samples taken from both fault spaces in Figure 7.2 would yield
estimates close to the exact numbers for cbaseline and chardened from the pre-
vious section.

A closer look at the de�nition of fault coverage (Equation 7.1) suggests
that the metric itself is un�t for benchmark comparison: The calculated per-
centages are not relative to the same base – a common N for both bench-
marks – as the divisor directly depends on the benchmark’s runtime, and

7.4 constructing an objective comparison metric 197

also its memory usage.3 Due to the usual overhead in space and time for
most software-based fault-tolerance mechanisms, a di�erent fault-space size
for baseline and hardened variants must be considered the norm rather than
the exception.

If a simple benchmarking cheat – the DFT is, of course, nothing more –
can improve the fault coverage from 62.5 percent to 75 percent, how about
the real fault-tolerance mechanism used on the bin_sem3 and sync3 bench-
marks in Figure 7.1b? Does the CRC mechanism really improve the hardware
fault-tolerance of these programs, or is this also a (dilution) delusion?

The next section will try and construct an objective metric that can be
used for benchmark comparison, and then revisit these benchmarks again.

7.4 constructing an objective comparison metric

Arrived at the suspicion from the previous section that the fault-coverage
factor may be un�t for the comparison of software-based fault-tolerance
mechanisms, I construct an objective comparisonmetric in this section. Subse-
quently, I answer the question whether the CRC mechanism really improves
both the bin_sem3 and sync3 benchmarks.

7.4.1 Back to the Roots: Failure Probability

Section 3.2.2.1 pointed out that radiation-based FI – in contrast to the (sim-
pli�ed) simulation-based FI I want to draw results from in this chapter –
is considered “the gold standard for assessing radiation-hardness assurance”

[QBRB13]. If we used radiation-based FI on the baseline and the hardened
version of a workload, we could determine the probabilities P(Failure)baseline

and P(Failure)hardened under increased radiation conditions. The probabili-
ties include a linear factor that accounts for the increased radiation [Muk08,
NIS], which cancels out in the comparison ratio quotient r,

r =
P(Failure)hardened

P(Failure)baseline
.

The hardened version improves over the baseline i� r < 1.
Consequently, if we want to compare benchmark variants on the basis of

results from simulation-based FI, we must calculate P(Failure) instead of

3 The DFT could also simply have used more memory for no particular purpose instead of
prolonging the workload’s runtime.

198 comparison of program susceptibility to soft errors

P(Failure∣1 Fault). It can be derived by decomposing it using the law of
total probability:

P(Failure)
= P(Failure∣0 Faults∨ 1 Fault∨ 2 F.∨ 3 F.∨ . . .)
= P(Failure∣0 Faults) ⋅ P(0 Faults)+

P(Failure∣1 Fault) ⋅ P(1 Fault)+
P(Failure∣2 Faults) ⋅ P(2 Faults)+
P(Failure∣3 Faults) ⋅ P(3 Faults)+ . . .

P(Failure∣0 Faults) is known to be zero, and from Section 7.2.1 respec-
tively Section 3.1.3.2 we know P(k Faults) is negligibly small for k ≥ 2 for
real-world soft-error rates and su�ciently short workload runs. Hence:

P(Failure) ≈ P(Failure∣1 Fault) ⋅ P(1 Fault) (7.2)

In Equation 7.2, P(Failure∣1 Fault) can be directly calculated from the FI
results collected by a complete fault-space scan, using the number of failed
experiments F, and the fault-space size w (see Section 7.2.1):

P(Failure∣1 Fault) =
F
w (7.3)

In Equation 7.2, P(1 Fault) can be calculated using the Poisson probability
Pλ(k = 1) from Equation 3.1 in Section 3.1.3.2. Inserting Equation 3.1 and
Equation 7.3 in Equation 7.2 yields:

P(Failure) ≈
F
w ⋅

λ
1

1!
e−λ

=
F
w ⋅ g ⋅w ⋅ e−gw

= F ⋅ g ⋅ e−gw (7.4)

g is constant for di�erent workload runs, and may not even be exactly
known, but is expected to be very small. −gw is negative and depends on
the fault-space size, but – using the numbers from Section 3.1.3.2 – is with
−gw ≈ 1.3×10−13 also so small that assuming e−gw

≈ 1 yields an error of
only 1 − e−gw

< 10−12. Hence, the failure probability – the metric identi-
�ed in the beginning of this section as the ground truth closest to radiation-
experiment results – can be approximated to be directly proportional to the
absolute number of failed experiments F:

P(Failure) ∝ F (7.5)

Using this proportionality, we also can calculate the comparison ratio r,
knowing that r < 1 denotes an improvement of the hardened variant over
the baseline:

r =
P(Failure)hardened

P(Failure)baseline
=

Fhardened

Fbaseline

To conclude, the number of “Failed” FI experiments from a complete fault-

space scan is a valid metric for comparing workloads.

7.4 constructing an objective comparison metric 199

bin_sem3 sync3

Cycles Mem. usage Cycles Mem. usage

Baseline 266 610 436 25 256 5262 28 008

Hardened 266 656 644 27 192 136 927 30 232

Figure 7.3: Benchmark characteristics: Runtime in CPU cycles, and memory usage
(data addresses read or written during the run) in bytes.

7.4.2 Fault Coverage and Failure Probability in the Real World

Figure 7.1e shows the application of this �nding to the bin_sem3 and sync3
benchmarks by plotting their weighted, raw failure counts. Comparing the
new results to the weighted coverage from Figure 7.1b exhibits that bin_sem3
indeed turns out to be protected e�ectively by the CRC protection scheme,
the same trend predicted by the misguiding fault-coverage plot in Figure 7.1b.
More surprisingly, though, sync3’s failure probability seems to worsen by
more than a factor of twelve compared to its baseline – a fact that was com-
pletely hidden by the fault-coverage factor, possibly resulting in a wrong
design decision by the developer.

The fact that the hardened variant of sync3 has an extremely increased
runtime over the baseline, as indicated in Figure 7.3, points at the reason: In
this case, a massively increased “No E�ect” rate – just as in the arti�cial “Hi”
example in Section 7.3 – completely hid the increase in absolute “Failure”
results.

Pitfall 3: Fault-Coverage Percentages for Benchmark Comparison

Subsequently, the third and most important pitfall is the usage of fault-

coverage percentages for benchmark comparison. Unless the fault-space
dimensions of two program variants are identical – which is practically
never the case when e�ective software-based fault-tolerance mechanisms
are in place, – their fault coverages are measured in percent relative to
di�erent fault-space areas, and are by de�nition not comparable. Instead,
absolute failure counts from a full fault-space scan must be used for com-
parison.

Despite its un�tness for the purpose, there exists an endless amount of
studies that use the fault-coverage factor as a comparison metric for pro-
gram susceptibility to soft errors in memory. Examples are Fuchs’s analy-
sis of the MARS operating system [Fuc96], Rebaudengo et al. [RSRVT01]
with a source-to-source compiler for dependable software, Nicolescu et al.
[NSV04] analyzing a hardened space communications application, Chen et
al. [CCK+06] measuring the e�ectiveness of object duplication in a Java run-
time environment, or work I contributed to myself [BSS12] analyzing a pro-
tection scheme for virtual-function pointers in C++. Depending on the over-

200 comparison of program susceptibility to soft errors

head the analyzed protection mechanisms introduce, – a�ecting the fault-
space size in time or memory dimensions, – the conclusions in these studies
may be worth a second look. In some cases, the evaluated mechanisms may
actually worsen the system’s fault resilience in the presented workload sce-
narios.

7.4.3 No-E�ect Results and Sampling

For the new absolute failure count metric, only “Failure” results are relevant
for comparison. As I demonstrated and discussed in Section 7.3, “No E�ect”
results can be arbitrarily skewed – either voluntarily, as in the case of the
Dilution Fault Tolerance mechanism, or by chance – by arti�cially modifying
the workload’s runtime or memory usage.

Pitfall 3 (Corollary 1): “No E�ect” Result Counts

Thus, Corollary 1 of Pitfall 3 is that “No E�ect” experiment outcomes are

irrelevant for the comparison of program susceptibility to soft errors in
memory, and should be excluded from the data. Their occurrence is ar-
bitrarily in�uenced by the activation and subsequent masking of faults,
and ultimately by the sophistication of fault-space pruning mechanisms
(see cf. Section 7.3.2).

This also means that when combining def/use pruning with sampling (see
Section 7.2.5), it is not necessary to sample from equivalence classes that are
known to result in “No E�ect”. This reduces the population size from w to
w′
≤ w.
When sampling is used (see Section 7.2.2 and 7.2.5), the number of sam-

ples Nsampled, and indirectly also the measured “Failure” count Fsampled, is
arbitrarily chosen by the developer4. Hence, the raw Fsampled cannot be used
directly for comparison. To get sampling results into a form usable for the
new metric, the raw sample counts must be extrapolated to the fault-space
size to estimate the number of “Failure” results from a full fault-space scan.

Pitfall 3 (Corollary 2): Raw Sample Counts

Thus, Corollary 2 of Pitfall 3 is not to use raw sample counts. If sampling
is used, the raw result counts are insu�cient for benchmark comparison.
The result counts must be extrapolated to the population size w (or w′, see
above) to be usable for this purpose.

Fextrapolated = w ⋅
Fsampled

Nsampled

One example from the literature that provides raw result numbers, but
omits the extrapolation step from sampling to the full fault space, is from
Nicolescu et al. [NSV04].

4 . . . but potentially also in�uenced by the envisaged con�dence level, see Section 3.1.2.5.

7.5 discussion and generalization 201

Summary: Avoiding Pitfalls 1–3

To summarize, the comparison ratio r to objectively compare hardware-
fault tolerant software systems must be calculated as follows:

r =
P(Failure)hardened

P(Failure)baseline
=

whardened ⋅
Fhardened,sampled

Nhardened,sampled

wbaseline ⋅
Fbaseline,sampled

Nbaseline,sampled

In the case of a complete fault-space scan, w and N are equal, and the
given formula reduces to

r =
Fhardened

Fbaseline
.

7.5 discussion and generalization

In the following, I brie�y revisit Pitfall 1 to get an intuition how weighting
a�ects the absolute “Failure” counts from Pitfall 3. Subsequently, I describe
possible generalizations of the �ndings in this chapter to other fault models.
Finally, I discuss a speci�c case of cross-layer fault-coverage comparison,
and its implications for the validity of high-level FI.

7.5.1 Revisiting Pitfall 1: Unweighted Raw Numbers

In Section 7.2.4, I already discussed the necessity to weight def/use equiv-
alence classes by their corresponding data lifetimes (Pitfall 1), and demon-
strated the impact of this decision on the fault coverages of the bin_sem3
and sync3 benchmarks. After being convinced that fault coverage is an in-
adequate metric for comparison in this context, how much in�uence does
weighting have on the absolute “Failure” counts advocated in Section 7.4.2
(Pitfall 3)?

Figure 7.1d presents the absolute failure counts without weighting. In this
case, both benchmarks seem to be less resilient to soft errors in their hard-
ened variant when compared to the baseline. In contrast, the weighted re-
sults in Figure 7.1e reveal that bin_sem3 in fact improves – again (cf. Sec-
tion 7.4.2), a wrong design decision would have been made.

This example underlines that all three pitfalls mentioned in this chapter
must be paid attention to, as each of them independently can signi�cantly
falsify the results, and lead to incorrect design decisions.

7.5.2 Possible Generalizations

In Section 7.1.2, I simpli�ed the failure modes to only “Failure” and “No Ef-
fect” types. However, the �ndings in this chapter can easily be generalized
to more di�erent experiment outcomes, for example, Pitfall 3 (Corollary 1)

202 comparison of program susceptibility to soft errors

still holds: Only “No E�ect” results – denoting no visible e�ect for the ob-
server – should be excluded, while the remaining e�ective result-type counts
– such as SDC or timeout – should be included in the analysis and separately
extrapolated to the fault-space size (Pitfall 3, Corollary 2).

In Section 7.1.1, I strongly restricted the machine and fault model to sim-
plify the explanations throughout this chapter. Nevertheless, some of the
�ndings may be generalizable to both complex machines and a broader hard-
ware fault model:

• A modern super-scalar out-of-order CPU with several cache levels
would primarily change the timing of memory-access events. The def/
use equivalence-class sizes would be derived from more detailed tim-
ing information, and therefore would gain a more accurate weight
(Section 7.2.4).

• When a much more detailed simulator, for example on the �ip-�op or
gate level, is available, the �ndings may be extensible to other parts of
the memory hierarchy. Every bit in the caches, the CPU registers, or
the microarchitectural state of the CPU, could be part of the fault space.
However, in this case di�erent error rates g may be present within the
same machine, – for example, due to di�erent memory technologies or
manufacturing processes, – requiring an adaption of the metric from
Section 7.4. As an educated guess, especially Pitfall 3 may very well
also be applicable in such a low-level FI scenario.

From an abstract point of view, the �ndings in this chapter should be ap-
plicable to any FI approach on a machine that provides timing information,
operates on a set of state bits, and provides �ne-grained read and write ac-
cess information on this state.

7.5.3 Cross-Layer Comparisons

In principle, my �ndings may also be applicable to the results of two re-
cent cross-layer FI studies that analyzed the general validity of high-level
FI. Cho et al. [CMC+13] inject into main memory and CPU registers, while
Wei et al. [WTLP14] use the state of an arti�cial virtual-machine model for
high-level FI validation. Both studies compare the results from high-level FI
experiments to results from running the same workloads on fault-injected
low-level simulators – simulating at the �ip-�op level [CMC+13], or the ISA
level [WTLP14], in both cases providing a ground truth to match against.

Similarly to my �ndings in Section 7.3, the authors use the fault-coverage
metric with di�erent fault-space sizes. However, in their case, the di�erent
fault-space sizes are not caused by varying benchmark runtimes or memory
footprints, but by the vastly di�erent simulator models a�ecting both the
state-space size and timing granularity.

From their analysis, Cho et al. [CMC+13] conclude that high-level FI “can
result in high degrees of inaccuracies by more than an order of magnitude”,
quoting an error of up to factor 45. Without challenging the possibility that

7.6 related work 203

high-level FI may indeed be inaccurate, the used fault-coverage metric –
with di�ering fault-space size quotients – may contribute signi�cantly to
this error. Consequently, the obtained result data should be reexamined us-
ing my extrapolated absolute failure count metric.

7.6 related work

Section 3.1.2.5 and Section 3.1.2.6 already described classic metrics for the
assessment of fault-tolerance mechanisms: The fault-coverage factor metric
from Bouricius et al. [BCS69] de�nes a mathematical model that is used and
instantiated by many subsequent approaches, such as the AVF [MWE+03b,
MWE+03a] and PVF [SK08b, SK09b] metrics.5 More recently, Rehman et al.
[RSKH11] proposed the AVI, composed of values from their FVI, and recur-
sively their IVI – which in the end is derived in a comparable way as the
aforementioned AVF.

A primary reason for this widespread dependence on the fault-coverage
factor metric may be that in their seminal FI paper, Arlat et al. [AAA+90]
initially de�ned FI to be a practical measurement method for this metric.
Consequently, most FI literature sees this to be set in stone, and virtually all
FI tools provide a way to measure fault coverage [CP95, HTI97, BP03].

In the literature, little work exists that scrutinizes the fault-coverage factor
metric in the substantial way this chapter does:

• Generalizing the hardware-implemented fault-tolerance focusedMean

Instructions To Failure (MITF) metric by Weaver et al. [WEMR04], Reis
et al. [RCV+05a] recognize the need for a metric that adequately cap-
tures the trade-o� between performance and reliability of SIHFT tech-
niques. They devise the Mean Work To Failure (MWTF) metric based
on an application-speci�c de�nition of “work units” and FI measure-
ments. Unlike the metric introduced in this chapter, MWTF is based
on measuring the AVF implying a constant ∆m. Furthermore, the au-
thors do not derive the connection between MWTF and P(Failure),
or the relation to common practices in the �eld. Interestingly, Reis
himself was inconsequent in applying his �ndings and the MWTF
metric in subsequent publications: In two papers from 2006 and 2007
[CRA06, RCA07], his group falls back to applying a metric equivalent
to the fault-coverage factor, while another paper from 2006 [RCA+06]
presents MWTF results.

• Gawkowski et al. [GSR05] discuss SIHFT overheads in both state space
and time, and propose scaling the fault-coverage factor accordingly.
They discuss neither fault-space pruning nor the connection to the
probability P(Failure). Nevertheless, their fundamental �nding re-
garding the fault-coverage factor metric is similar to the one described
in Section 7.3, so it is unfortunate that their publication [GSR05] has

5 However, both AVF and PVF weight their results by the observed data lifetimes, and, thus,
avoid Pitfall 1 (see Section 7.2.4).

204 comparison of program susceptibility to soft errors

had little impact on the SIHFT community beyond their own research
group until today.

• Vemu and Abraham [VA06] de�ne the method e�ciency metric, which
weights the fault-coverage factor with the performance overhead of
their SIHFT method. Similar to the MWTF, they as well do not factor
in additional attack surface in the state-space dimension ∆m, and do
not provide any formal derivation of their metric.

• Demertzi et al. [DAH11] reinvent the MWTF under the name E�ective
Number of Failures (EF). It corresponds to the reciprocal value 1

MWTF ,
and shares the same properties.

• More recently, Santini et al. [SRN+14] introduced a similarMeanWork-

load Between Failures (MWBF) metric parametrized with results from
radiation measurements, in contrast to the simulation-based approach
discussed in this chapter.

7.7 conclusions

After a step-by-step analysis of current practices in simulation-based FI, I
identi�ed three common pitfalls in interpreting FI result data for the com-
parison of program susceptibility to soft errors in memory. Showing the ef-
fects on a real-world data set from the GOP case study (see Section 4.6), I
demonstrated that each pitfall independently can skew or even completely
invalidate the analysis, and lead to wrong conclusions regarding the e�ec-
tiveness of software-based fault-tolerance. To summarize the three pitfalls:

1. Special care has to be taken when processing the FI results after def/
use fault-space pruning has been applied (Pitfall 1 in Section 7.2.4).

2. Sampling combined with def/use pruning must account for di�erent
equivalence-class sizes (Pitfall 2 in Section 7.2.5).

3. The widely used fault coverage factor metric is inadequate for the com-
parison of di�erent SIHFT-hardened program variants (Pitfall 3 in Sec-
tion 7.4.2, and two corollaries in Section 7.4.3).

As a remedy, I derived an objective comparison metric that can be calculated
both with full fault-space scans and from sampling results: Absolute failure
counts, extrapolated to the fault-space size in the case of sampling. The vari-
ant of this metric avoiding all three pitfalls was presented in Section 7.4.3.

For each pitfall presented in this chapter, I found FI studies that are most
probably a�ected. Especially the usage of the fault-coverage metric for bench-
mark comparison is widespread – the few examples cited in Section 7.4.2 by
no means particularly stand out. Although I believe that many of the de-
scribed SIHFT mechanisms would prevail, I suggest to reevaluate them with

7.7 conclusions 205

the absolute failure count comparison metric to sort out mechanisms that in
fact decrease fault tolerance of programs they are deployed in.6

The new metric is an integral part of the result-analysis tools built into
Fail*’s assessment-cycle layer (see Section 4.5.5.1), and was used in all tran-
sient-fault case studies in Chapter 4.

6 With a similar motivation, a recent study by Shrivastava et al. [SRJW14] using the AVF metric
[MWE+03b] surprisingly showed that �ve control-�ow checking schemes – claimed e�ective
by their original authors – actually increase the system vulnerability.

8
C O N C L U S I O N S A N D O U T L O O K

“A dissertation is never �nished.

You just stop writing.”

— Everyone with a PhD1

Contents
8.1 Summary 208

8.1.1 Contribution 1: Design and Implementation of Fail* 208
8.1.2 Contribution 2: Fault-Similarity Pruning 209
8.1.3 Contribution 3: Fast-Forwarding with Smart-Hopping 209
8.1.4 Contribution 4: Comparison Metric 210
8.1.5 Contribution 5: Fine-Grained FI-Result Analysis 210
8.1.6 Limitations 211

8.2 Ongoing and Future Work 212
8.2.1 Ongoing: Fine-grained Analysis 212
8.2.2 Ongoing/Future Work: Comparison Metric 213
8.2.3 Future Work: Fault-Injection Optimizations 213

8.3 Final Remarks 214

With continuously shrinking semiconductor structure sizes and
lower supply voltages, the per-device hardware-fault suscepti-
bility is on the rise. A class of countermeasures with growing

popularity is Software-Implemented Hardware Fault Tolerance (SIHFT), which
avoids expensive hardware mechanisms and, even more importantly, can
be applied application-speci�cally. However, SIHFT can, against intuition,
cause more harm than good, because its overhead in time and space also
increases the �gurative “attack surface” of the system. It turns out that ap-
plication-speci�c con�guration of SIHFT is in fact a necessity rather than
just an advantage.

Consequently, target programs need to be analyzed for particularly crit-
ical spots to harden. SIHFT-hardened programs need to be measured and

compared throughout all development phases of the program to determine
improvements or deteriorations over the baseline. Last but not least, SIHFT
implementations need to be tested. The contributions of this dissertation fo-
cus on Fault Injection (FI) as a technique satisfying all these requirements –
analysis, measurement and comparison, and test.

1 as quoted by Henry/Alexia Massalin in Synthesis: An E�cient Implementation of Fundamental

Operating System Services [Mas92]

207

208 conclusions and outlook

The following Section 8.1 summarizes the contributions of this disserta-
tion, and discusses their either implementation-speci�c or general limita-
tions. Section 8.2 provides an outlook with ongoing and future work, and
Section 8.3 concludes the thesis.

8.1 summary

This dissertation advances the state of the art in �ve distinct contributions
in the context of simulation- and TAP-based FI. The following sections sum-
marize each contribution.

8.1.1 Contribution 1: Design and Implementation of Fail*

The �rst contribution is the design and implementation of an FI tool, named
Fail*, that overcomes several shortcomings in the state of the art, and en-
ables research on the general drawbacks of simulation-based FI.

• The tool supports covering the complete ISA-level fault-space of a
given workload, and enables analysis methods utilizing the detail level
of the resulting data. This goal was achieved by integrating paralleliza-
tion as a core feature into Fail*’s plumbing layer, and by adding fault-
space pruning as an integral step to the assessment-cycle layer tooling.

• Beyond the testing purpose widespread in the literature, Fail* explic-
itly supports measurement and comparison, and provides an appropri-
ate metric for this purpose (see contribution 4).

• By using AOP as a minimally invasive software coupling technique,
Fail* attaches to existing simulator software without provoking seri-
ous maintainability issues.

• With the help of the carefully designed Execution-Environment Ab-

straction (EEA) layer, Fail* can be – transparently to the experiment
designer – used to inject faults in several target back ends, using two
di�erent FI techniques. The tooling also allows to implement a wide
range of di�erent ISA-level CPU and memory fault models.

Although Fail*’s �rst workshop publication on its �rst prototype is only
four years old [SHK+12], the tool has already made a measurable impact
on the SIHFT community. Since it had begun to be used project-internally –
followed by the public GitHub release in 2014 – it was used

• in at least 14 bachelor and master theses [Unz13, Fri13, Wul13, Rad13,
Taf14, Hel14, Luk14, Dem14, Die14, Sch15b, Sel15, Sch15c, Met16, Bre16],

• in at least �ve doctoral dissertations at three di�erent universities
[Ulb14, Döb14, Hof16, Sti16, Sch16] (including my own),

• for graduate and post-graduate lectures at FAU Erlangen and at the
international Winter School on Operating Systems (WSOS),

8.1 summary 209

• and in at least 20 publications by 21 researchers from four di�erent
research groups [BSS12, DSE13, SKSE13, BSS13a, SSE+13, HDL13b,
BSS13b, HUD+14b, SRS14, HBD+14, SBS14, STE+14, HUD+14a, DL15,
HLDL15, BSS15, SBS15, Stu15, DHL15, BS15].

8.1.2 Contribution 2: Fault-Similarity Pruning

The second contribution addresses the problem of exhaustive fault-space
exploration and the accompanying huge computation e�orts, which are in
some cases – for example the GOP case study in Section 4.6 – measured in
CPU years. My Fault-Similarity Pruning (FSP) approach, a heuristical fault-
space pruning technique, tackles this problem by reducing the number of
necessary FI experiments. I advance the state of the art in several aspects:

• The heuristic adapts to the injected workloads, compiler and machine
speci�cs, and the used fault and failure models.

• It allows to freely trade the FI-experiment count for result accuracy,
and allows the user to choose a Pareto-optimal heuristic con�guration.

• Unlike prevalent sampling techniques, FSP provides information on
all possible fault-space coordinates, enabling �ne-grained analysis tech-
niques (see contribution 4).

These properties allow to gain insights on local phenomena for EDM/ERM
placement with massively reduced experimentation e�orts: For example, if
the user chooses to run 1.5 percent of all FI experiments, the average result
accuracy is 99.84 percent (see Chapter 5 for more results).

8.1.3 Contribution 3: Fast-Forwarding with Smart-Hopping

The third contribution also addresses FI-campaign computation e�orts, but
from another angle: It decreases the runtime of individual FI experiments on
real prototype hardware, controlled via a Test-Access Port (TAP). I identi�ed
the fast-forwarding operation – advancing a workload to the speci�c CPU
cycle in its instruction stream when the fault is injected – as a major bottle-
neck, and advance the state of the art by a novel fast-forwarding technique
named Smart-Hopping:

• Based on an instruction and memory-access trace, the approach uses
standard debugging hardware to advance to a chosen point in program
execution with a minimal number of steps.

• Compared to the state of the art, Smart-Hopping increases the speed of
the fast-forwarding operation by several orders of magnitude for most
workloads.

210 conclusions and outlook

8.1.4 Contribution 4: Comparison Metric

In the fourth contribution, I dissect current practices in FI-based evaluation
of SIHFT-hardened programs. I identify three pitfalls in the result interpre-
tation, and advance the state of the art by providing a novel comparison
metric:

• After uncovering another two ill-advised practices in the interpreta-
tion of FI results when using fault-space pruning or sampling, I demon-
strate in a thought experiment that the fault-coverage factor metric is

unsound for the comparison of soft-error susceptibility of programs,
and can lead to wrong design decisions.

• These �ndings are substantiated by results from an FI campaign con-
ducted with Fail*, and by providing references to works where mis-
interpretations may have skewed the evaluation results, and possibly
have in�uenced the drawn conclusions.

• Based on these insights, I construct an objective metric usable for com-

parison using extrapolated absolute failure counts, and introduce the
mathematical foundation supporting this proposition.

The novel extrapolated absolute failure count metric is an integral part of
the result-analysis tools built into Fail*’s assessment-cycle layer, and helped
improving all works that used it in their evaluation.

8.1.5 Contribution 5: Fine-Grained FI-Result Analysis

The �fth contribution exploits the newly gained possibility to analyze FI
results from complete fault-space exploration, and distills useful information
for SIHFT development and placement:

• Unlike current practice in the state of the art, collecting result data on
the whole ISA-level fault space allows postponing the decision on the
analysis granularity in space and time until after the FI campaign.

• The detail level of the result data allows to visually inspect the fault
space, and to run analyses aiding design decisions on the level of pro-
gram modules, functions, variables, source-code lines, or single ma-
chine instructions.

• Two case studies demonstrated the utility of these analyses for iter-
atively developing, improving, and placing respectively con�guring
SIHFT mechanisms.

Similarly to contribution 4, these novel FI-result analysis methods are an
integral part of the result-analysis tools built into Fail*’s assessment-cycle
layer, and has since proved invaluable for its users.

8.1 summary 211

8.1.6 Limitations

FI in general, and some of the presented approaches in particular, are subject
to a set of limitations that should not remain unmentioned.

As already described in Section 3.1.2.3, FI is generally limited in two as-
pects:

• In its purpose as a testing methodology for SIHFT, it can be seen as
a special case of program testing. Hence, it can only be used to �nd
�aws in the SIHFT implementation, not to prove its correctness.

• When used for analysis or measurement, FI results are highly depen-
dent on the real-world representativeness of the chosen workloads
and their inputs.2

Consequently, FI results always – especially when they indicate “perfect”
fault tolerance of the analyzed workload – must be interpreted with care.

More speci�cally, simulation-based FI – as used throughout major parts of
this dissertation – is limited by the level of detail of the used machine model.
The Bochs simulator I used throughout parts of this thesis uses a very simple
timing model of one instruction per cycle, and assumes wait-free access to
memory. The simulator was chosen speci�cally for its simplicity, but Fail*
now has the interfaces to attach more realistic machine models. However,
some of the �ndings in this dissertation would not have been possible with a
slow, complex, but timing-accurate simulator. A slow FI infrastructure would
have precluded full fault-space scans for most workloads even with def/use
pruning – and full fault-space result data provided the fundament for all of
the �ne-grained analyses, constituted the basis of comparison for the FSP
technique, and last but not least it was pivotal for understanding prevalent
FI-result interpretation pitfalls and developing the novel comparison metric.
In particular, Fail*’s now developed FI-optimization techniques are rather
a prerequisite for switching to a more accurate but slower simulator with
Fail*.

Nevertheless, Bochs’ simple machine model, including the lack of a cache
hierarchy, partially relativizes the FI results obtained with it. The results
from injecting memory faults are rather a pessimistic overapproximation: A
contemporary cache hierarchy would mask some main-memory bit �ips, for
example, when a cache line is written back to main memory.

Last but not least, the single-bit �ip and eight-bit burst bit-�ip fault mod-
els implemented in Fail*’s assessment-cycle layer are less realistic than the
multi-bit fault models described in recent research. However, I believe the
simple single- and eight-bit fault models in Fail* are a good enough approx-
imation for analysis, measurement, and test: In most workloads and SIHFT
mechanisms, they presumably provoke reactions similar to those from more
complex fault patterns – unless, of course, the four-bit correction capability
of, for example, a Hamming code is being tested, – and at least stand a chance

2 I speci�cally excluded this aspect in the present dissertation, and assumed given, expertly
chosen, and representative workloads and inputs.

212 conclusions and outlook

to be exhaustively covered. Besides patterns in the state-space dimension, in
the time dimension the single-fault assumption – one SEU per FI run – still
holds even in more complex fault models.

8.2 ongoing and future work

During the work on Fail*, the two FI optimizations, and FI-related metrics, a
multitude of new research ideas have spawned. In the following, I summarize
ongoing and future work in the context of this dissertation.

8.2.1 Ongoing: Fine-grained Analysis

harnessing debugging information Beyond the mapping infor-
mation from machine instructions to high-level source code lines, Fail*’s
assessment-cycle layer could harness more parts of the DWARF debugging
information, which modern compilers can generate. This information would
enable more detailed �ne-grained analyses:3

• Failures within thread stacks could be mapped to local data struc-
tures – local variables, or compiler-generated structures like return
addresses. This would allow to assess, for example, the RAP mecha-
nism’s e�ectiveness much more in detail.

• Failures in global or stack-local data structures could be aggregated
by data type. This would strongly simplify the con�guration of AOP-
based SIHFT mechanisms, such as the GOP or RAP mechanisms.

• Similarly, failures in composite data structures could be mapped down
to individual data members, providing an even better basis for SIHFT
placement.

optimizing fault-detector configurations A workload can be
hardened with executable fault-detection assertions, such as invariant check-
ers. For a program hardened with n of these assertions, �ne-grained analyses
could try to answer the question which should remain in the �nal product,
and which should be disabled – because they add more to the failure count
than they prevent, due to their additional attack surface. Based on full fault-
space FI-result data on a workload variant with all assertions enabled, result-
data transformations could approximate the failure counts for all other vari-
ants. This can help �nding an optimal con�guration with much less e�orts
than conducting 2n separate FI campaigns, which is generally infeasible for
a real-world n.4

3 Michael Lenz currently works on this idea in his bachelor thesis.
4 First results with this approach turn out quite promising.

8.2 ongoing and future work 213

8.2.2 Ongoing/Future Work: Comparison Metric

comparison of fi results on different abstraction levels
In their 2013 DAC paper, Cho et al. [CMC+13] claim that ISA-level FI is in-
accurate by up to factor 45, even without a trend towards over- or underap-
proximation. However, they used the fault-coverage factor metric for their
cross-layer comparison, with similar issues as described in Chapter 7, such
as vastly di�ering fault-space size quotients. Consequently, a cross-layer FI-
result comparison should be conducted again with the extrapolated absolute
failure-count metric to investigate whether ISA-level FI is really inaccurate,
or the fault-coverage metric led to a wrong conclusion.5

While the previous three ideas are concrete and currently being worked on, the

remainder of this section presents research ideas for future work.

comparing isa-level fi results to radiation measurements
With a similar research question, simulation-based FI results interpreted
with the new metric should be compared to radiation-based FI results, “the
gold standard for assessing radiation-hardness assurance” [QBRB13], to inves-
tigate how close the much cheaper ISA-level results get to reality. Santini et
al.’s 2016 SELSE paper [SBD+16] (work I also contributed to) takes a �rst
step in this direction by assessing the GOP mechanism [BSS13a, BSS15] and
the dOSEK operating system [HDL13a, HLDL15] – which were both devel-
oped in a tight assessment cycle with Fail*– with neutron radiation at the
LANSCE facility, and measuring a reliability improvement of up to 91 re-
spectively 74 percent.

application to other fault models The general idea behind the
un�tness of the fault-coverage metric, and the resulting new comparison
metric, should be applicable to other fault models as well. Further research
should investigate what relevance the new metric has for ISA-level CPU fault
models, for FI in gate-level or �ip-�op level simulators, or even for software
faults.

8.2.3 Future Work: Fault-Injection Optimizations

hierarchical combination of fi experiments As an alternative
FI-experiment count reduction approach, the fact that a large percentage of
FI experiments results in “No E�ect” could be exploited. A new campaign
strategy could inject multiple bit-�ips at once. Assuming that faults in these
di�erent locations do not extinguish each other – because, for example, a
datum and its parity bit are hit at once, – a “No E�ect” of such a combined
experiment would allow skipping the corresponding single-bit experiments.
Only if the outcome is any kind of failure, the campaign must – for example,

5 Mark Breddemann is currently �nalizing his work on this idea in his master thesis [Bre16].

214 conclusions and outlook

with binary search – investigate the bits more in detail that were part of the
combined experiment.

speedup by instruction-seqence modularization An idea to
further reduce the execution time for single experiments exploits the deter-
ministic execution of FI experiments. It is, again, based on the assumption
that in many cases, after the FI a workload very quickly returns to the track
lined out by the golden run. Before the FI campaign begins – and probably
as well during the campaign in a successive learning process – the approach
would modularize suitable instruction sequences from the golden run, de-
termine its input and output data set, and subsequently record actual inputs
and outputs for each sequence. Once during an FI experiment one of these
instruction sequence starts and is provided a known input, the sequence can
be completely skipped by replaying the known output, cutting short espe-
cially many of the “No E�ect” experiments.

8.3 final remarks

To conclude, this dissertation advances the state of the art with �ve dis-
tinct contributions. They include a FI tool avoiding several shortcomings in
the existing FI-tool landscape, two separate and complementary techniques
speeding up FI campaigns by up to several orders of magnitude, a novel FI-
result interpretation metric usable for program comparison, and a variety of
di�erent, �ne-grained FI-result analysis techniques exploiting results from
complete fault-space scans. Building on these results, several research op-
portunities in the context of FI and SIHFT open up, and can be followed by
further extending the open-source Fail* tool set.

A P P E N D I X

215

L I S T O F F I G U R E S

Figure 1.1 Single-bit �ip fault space for a run-to-completion
workload. 6

Figure 1.2 Workload lengths vs. number of necessary FI ex-
periments for benchmarks used in three di�erent
publications, showing a roughly linear dependency. 9

Figure 2.1 DRAM half-pitch size evolution. 19
Figure 2.2 The chain of dependability threats [ALR01, ALRL04]. 20
Figure 2.3 The relationship between MTTF, MTTR, and MTBF. 22
Figure 2.4 The dependability tree. Figure based on [ALRL04]. 24
Figure 2.5 n-channel MOSFET in open and conducting states. 25
Figure 2.6 MOSFET struck by an alpha particle or a neutron. 26
Figure 2.7 The relative neutron-�ux increase I(H) for eleva-

tions above sea level. 30
Figure 2.8 Rock-climbing belay anchor. 34
Figure 3.1 Single-bit �ip fault space for a run-to-completion

workload. 50
Figure 3.2 Basic components of a FI environment. 51
Figure 3.3 Single-bit �ip fault space and def/use equivalence

classes. 70
Figure 3.4 Unoptimized FI-experiment phases, and speedup us-

ing checkpoints or early experiment termination. 72
Figure 4.1 Fail* plumbing-layer architecture overview. 88
Figure 4.2 Most important classes on the plumbing layer’s client-

side. 89
Figure 4.3 Sequence diagram of a typical control �ow in Fail*’s

plumbing layer. 91
Figure 4.4 Fail*’s CMake-based static con�guration. 92
Figure 4.5 Quanti�cation of Bochs-speci�c hook aspects. 95
Figure 4.6 FailPanda architecture. 96
Figure 4.7 Overview on RAMpage’s architecture and basic op-

eration. 100
Figure 4.8 Single-bit stuck-at memory errors detected by RAM-

page. 105
Figure 4.9 Distribution of RAMpage’s fault-detection latencies. 106
Figure 4.10 The fault-tolerance assessment cycle. 108
Figure 4.11 Fail*’s basic database schema. 112
Figure 4.12 FI results for increasingly more GOP-protected classes. 124
Figure 4.13 GOP protection e�ectiveness for di�erent EDM/ERM

variants. 125
Figure 4.14 Wall-clock FI-experiment runtime histogram for the

GOP campaign. 127
Figure 4.15 mutex1 fault-space plot in the Baseline variant. 129

217

Figure 4.16 mutex1 benchmark call-stack histogram in form of
a �ame graph. 132

Figure 4.17 mutex1 fault-space plot for Detection and Correc-
tion variants. 134

Figure 4.18 Stack-only results from the RAP FI campaign. 135
Figure 4.19 Complete fault-space results from the RAP FI cam-

paign. 136
Figure 4.20 Fault-space plot excerpt for the bare-metal-sort base-

line. 139
Figure 4.21 VisualFail* screenshot with highlighted source-code

lines. 139
Figure 5.1 Def/use and fault-equivalence/fault-similarity prun-

ing. 152
Figure 5.2 IA-32 assembler snippet and dynamic execution trace. 154
Figure 5.3 FSP steps: Sampling, fault-space partitioning, and

result prediction. 156
Figure 5.4 Calculation of the comparison vector. 160
Figure 5.5 Accuracy in training set and complete fault space

(eCos benchmarks). 162
Figure 5.6 Fault-space plot excerpt – ground-truth results, re-

sults from sampling, and reconstructed results. 164
Figure 5.7 Accuracy in training set and complete fault space

(MiBench automotive benchmarks). 166
Figure 5.8 Comparison to sampling. 167
Figure 6.1 Example ARM machine code and the C-code snip-

pet it was compiled from. 171
Figure 6.2 Program trace and di�erent fast-forwarding meth-

ods. 172
Figure 6.3 Average fast-forwarding costs for dijkstra and bit-

count benchmarks. 180
Figure 6.4 Checkpoint distribution for bitcount benchmark. 181
Figure 6.5 Average fast-forwarding costs for bitcount after

adding checkpoints. 182
Figure 7.1 FI-result interpretation with and without avoidance

of Pitfalls 1 and 3. 190
Figure 7.2 Gedankenexperiment with C-like source code, cor-

responding machine instructions, and fault-space
diagrams. 194

Figure 7.3 Benchmark characteristics for bin_sem3 and sync3. 199

L I S T O F TA B L E S

Table 2.1 Classi�cation of possible outcomes from a SBU. 31

218

Table 3.1 Con�dence levels and corresponding cut-o� points. 53
Table 3.2 Poisson probabilities for k = 0, 1, 2, or more inde-

pendent faults hitting one benchmark run. 58
Table 3.3 FI techniques: Overview and characterization. 69
Table 4.1 Runtimes averaged over 100 measurements for some

of FailPanda’s plumbing-layer primitives. 98
Table 4.2 List of eCos kernel-test benchmarks. 119
Table 4.3 FI results from the GOP baseline assessment. 121
Table 4.4 GOP variants and a short description which information-

redundancy method they implement. 122
Table 4.5 Top ten fault-susceptible symbols for the unmodi-

�ed mutex1 benchmark. 130
Table 4.6 mutex1 top ten susceptible symbols in the Correc-

tion variant. 133
Table 4.7 Global result counts for the bare-metal-sort base-

line. 140
Table 4.8 Per-symbol result counts for the bare-metal-sort base-

line. 140
Table 4.9 Per translation-unit result counts for the bare-metal-

sort baseline. 141
Table 4.10 Per-function result counts for the bare-metal-sort

baseline. 141
Table 4.11 The two WSOS FI hands-on competition leaderboards. 142
Table 4.12 Fault-model examples implemented using Fail*. 145
Table 5.1 Information recorded for every dynamic def or use

instruction executed during the golden run of each
workload. 159

Table 5.2 Benchmark characteristics and FI runtimes. 161
Table 6.1 Simple-hopping and smart-hopping results for MiBench

benchmarks. 178

L I S T I N G S

Listing 3.1 Heavily tangled FAUmachine code excerpt. 80
Listing 4.1 Control-message type for communication between

Fail* client and server. 93
Listing 4.2 Excerpt of an AspectC++ implementation of a memory-

access hook. 94
Listing 4.3 Campaign implementation for RAMpage. 102
Listing 4.4 Protobuf message description for the RAMpage cam-

paign. 103
Listing 4.5 Experiment implementation for RAMpage. 104

219

220 Listings

Listing 4.6 Protobuf message description for recording instruc-
tion and memory-access trace events. 109

B I B L I O G R A P H Y

[AAA+90] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-Charles Fabre,
Jean-Claude Laprie, Eliane Martins, and David Powell. Fault injection for de-
pendability validation: A methodology and some applications. IEEE Trans-

actions on Software Engineering, 16(2):166–182, February 1990. doi: 10.1109/
32.44380. (Cited on pages 4, 49, 62, 188, and 203.)

[ACC+93] Jean Arlat, Alain Costes, Yves Crouzet, Jean-Claude Laprie, and David Pow-
ell. Fault injection and dependability evaluation of fault-tolerant systems.
IEEE Transactions on Computers, 42(8):913–923, August 1993. doi: 10.1109/12.
238482. (Cited on page 62.)

[ACK+03] Jean Arlat, Yves Crouzet, Johan Karlsson, Peter Folkesson, Emmerich Fuchs,
and Günther H. Leber. Comparison of physical and software-implemented
fault injection techniques. IEEE Transactions on Computers, 52(9):1115–1133,
September 2003. doi: 10.1109/TC.2003.1228509. (Cited on page 60.)

[ACL89] Jean Arlat, Yves Crouzet, and Jean-Claude Laprie. Fault injection for de-
pendability validation of fault-tolerant computing systems. In Proceedings of

the 19th Annual International Symposium on Fault-Tolerant Computing (FTCS

’89), pages 348–355, 1989. (Cited on page 62.)

[Afo09] Francisco Carlos Afonso. Operating System Fault Tolerance Support for Real-

Time Embedded Applications. Dissertation, Universidade do Minho, Escola
de Engenharia, January 2009. (Cited on page 45.)

[AFRS02] Jean Arlat, Jean-Charles Fabre, Manuel Rodríguez, and Frédéric Salles. De-
pendability of COTS microkernel-based systems. IEEE Transactions on Com-

puters, 51:138–163, February 2002. doi: 10.1109/12.980005. (Cited on page 65.)

[AGM+71] Algirdas Avižienis, George C. Gilley, Francis P. Mathur, David A. Rennels,
John A. Rohr, and David K. Rubin. The STAR (self-testing and repairing)
computer: An investigation of the theory and practice of fault-tolerant com-
puter design. IEEE Transactions on Computers, 20(11):1312–1321, November
1971. doi: 10.1109/T-C.1971.223133. (Cited on page 41.)

[AK11] Ruben Alexandersson and Johan Karlsson. Fault injection-based assessment
of aspect-oriented implementation of fault tolerance. In Proceedings of the

41st IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN ’11), pages 303–314, Washington, DC, USA, June 2011. IEEE Computer
Society Press. doi: 10.1109/DSN.2011.5958244. (Cited on pages 45 and 192.)

[All70] Frances E. Allen. Control �ow analysis. In Proceedings of the Symposium on

Compiler Optimization, pages 1–19. ACM Press, 1970. doi: 10.1145/800028.
808479. (Cited on page 42.)

[ALR01] Algirdas Avižienis, Jean-Claude Laprie, and Brian Randell. Fundamental
concepts of dependability. Technical Report UCLA CSD Report 0100, Com-
puter Science Department, University of California, Los Angeles, USA, 2001.
(Cited on pages 20, 21, and 217.)

[ALR04] Algirdas Avižienis, Jean-Claude Laprie, and Brian Randell. Dependabil-
ity and its threats: A taxonomy. In Renè Jacquart, editor, Building the

Information Society, volume 156 of IFIP International Federation for In-

formation Processing, pages 91–120. Springer-Verlag, 2004. doi: 10.1007/
978-1-4020-8157-6_13. (Cited on pages 19, 20, and 21.)

221

222 bibliography

[ALRL04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic concepts and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing, 1(1):11–33, January 2004.
doi: 10.1109/TDSC.2004.2. (Cited on pages 19, 20, 21, 22, 24, and 217.)

[Alt13] Altera Corporation. Introduction to single-event upsets. White pa-
per, September 2013. https://www.altera.com/en_US/pdfs/literature/wp/
wp-01206-introduction-single-event-upsets.pdf. (Cited on page 31.)

[AN97] Zeyad Alkhalifa and V. S. S. Nair. Design of a portable control-�ow check-
ing technique. In Proceedings of the Workshop on High Assurance Systems

Engineering, pages 120–123. IEEE Computer Society Press, August 1997. doi:
10.1109/HASE.1997.648049. (Cited on pages 39 and 43.)

[ANKA99] Zeyad Alkhalifa, V. S. S. Nair, Narayanan Krishnamurthy, and Jacob A. Abra-
ham. Design and evaluation of system-level checks for on-line control
�ow error detection. IEEE Transactions on Parallel and Distributed Systems,
10(6):627–641, June 1999. doi: 10.1109/71.774911. (Cited on pages 39, 43,
and 63.)

[AÖ07] Ruben Alexandersson and Peter Öhman. Implementing fault tolerance us-
ing aspect oriented programming. In Proceedings of the 3rd Latin-American

Symposium on Dependable Computing (LADC ’07), volume 4746 of Lecture
Notes in Computer Science, pages 57–74. Springer-Verlag, 2007. doi: 10.1007/
978-3-540-75294-3_6. (Cited on page 45.)

[AÖ10] Ruben Alexandersson and Peter Öhman. On hardware resource consump-
tion for aspect-oriented implementation of fault tolerance. In Proceedings of

the 8th European Dependable Computing Conference (EDCC ’10), pages 61–66.
IEEE Computer Society Press, April 2010. doi: 10.1109/EDCC.2010.17. (Cited
on page 45.)

[AÖI05] Ruben Alexandersson, Peter Öhman, and Martin Ivarsson. Aspect oriented
software implemented node level fault tolerance. In 9th IASTED International

Conference on Software Engineering and Applications (SEA ’05), Calgary, Al-
berta, Canada, November 2005. ACTA Press. (Cited on page 45.)

[AÖK10] Ruben Alexandersson, Peter Öhman, and Johan Karlsson. Aspect-oriented
implementation of fault tolerance: An assessment of overhead. In Proceed-

ings of the 29th International Conference on Computer Safety, Reliability and

Security (SAFECOMP ’10), Lecture Notes in Computer Science, pages 466–
479. Springer-Verlag, September 2010. doi: 10.1007/978-3-642-15651-9_34.
(Cited on page 45.)

[ARH15] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. Lineage-driven fault
injection. In Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD ’15), pages 331–346. ACM Press, May/June
2015. doi: 10.1145/2723372.2723711. (Cited on page 68.)

[ARM11] ARM Limited. ARM architecture reference manual, ARMv7-A and ARMv7-R
edition (DDI 0406C), November 2011. (Cited on page 183.)

[ASB+08] Francisco Afonso, Carlos Silva, Nuno Brito, Sergio Montenegro, and Adriano
Tavares. Aspect-oriented fault tolerance for real-time embedded systems. In
Proceedings of the 7th AOSD Workshop on Aspects, Components, and Patterns

for Infrastructure Software (AOSD-ACP4IS ’08), pages 2:1–2:8, New York, NY,
USA, 2008. ACM Press. doi: 10.1145/1404891.1404893. (Cited on page 45.)

[AVFK01] Joakim Aidemark, Jonny Vinter, Peter Folkesson, and Johan Karlsson.
GOOFI: Generic object-oriented fault injection tool. In Proceedings of the

https://www.altera.com/en_US/pdfs/literature/wp/wp-01206-introduction-single-event-upsets.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01206-introduction-single-event-upsets.pdf

bibliography 223

31st IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN ’01), pages 83–88, Washington, DC, USA, June/July 2001. IEEE Com-
puter Society Press. (Cited on pages 63, 64, 78, and 79.)

[Avi71] Algirdas Avižienis. Arithmetic error codes: Cost and e�ectiveness studies
for application in digital system design. IEEE Transactions on Computers,
20(11):1322–1331, November 1971. doi: 10.1109/T-C.1971.223134. (Cited on
page 41.)

[Bau05a] Robert C. Baumann. Radiation-induced soft errors in advanced semicon-
ductor technologies. IEEE Transactions on Device and Materials Reliability,
5(3):305–316, September 2005. doi: 10.1109/TDMR.2005.853449. (Cited on
pages 30 and 34.)

[Bau05b] Robert C. Baumann. Soft errors in advanced computer systems. IEEE De-

sign & Test of Computers, 22(3):258–266, May 2005. doi: 10.1109/MDT.2005.69.
(Cited on pages 1 and 30.)

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The Gem5 simulator. SIGARCH

Computer Architecture News, 39(2):1–7, August 2011. doi: 10.1145/2024716.
2024718. (Cited on pages 67, 78, 86, and 177.)

[BCPT00] Alfredo Benso, Silvia Chiusano, Paolo Ernesto Prinetto, and Luca Tagliaferri.
A C/C++ source-to-source compiler for dependable applications. In Proceed-

ings of the 30th IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN ’00), pages 71–78. IEEE Computer Society Press, June 2000.
doi: 10.1109/ICDSN.2000.857517. (Cited on pages 41 and 42.)

[BCS69] W. G. Bouricius, W. C. Carter, and P. R. Schneider. Reliability modeling tech-
niques for self-repairing computer systems. In Proceedings of the 24th Na-

tional Conference, ACM ’69, pages 295–309, New York, NY, USA, 1969. ACM
Press. doi: 10.1145/800195.805940. (Cited on pages 10, 52, 188, and 203.)

[BCSS90] James H. Barton, Edward W. Czeck, Zary Z. Segall, and Daniel P. Siewiorek.
Fault injection experiments using FIAT. IEEE Transactions on Computers,
39(4):575–582, April 1990. doi: 10.1109/12.54853. (Cited on page 64.)

[BDC11] Alfredo Benso and Stefano Di Carlo. The art of fault injection. Control En-
gineering and Applied Informatics, 13(4):9–18, June 2011. (Cited on page 52.)

[BDCDN+01a] Alfredo Benso, Stefano Di Carlo, Giorgio Di Natale, Paolo Ernesto Prinetto,
and Luca Tagliaferri. Control-�ow checking via regular expressions. In
Proceedings of the 10th Asian Test Symposium (ATS ’01), pages 299–303, Los
Alamitos, CA, USA, November 2001. IEEE Computer Society Press. doi: 10.
1109/ATS.2001.990300. (Cited on page 43.)

[BDCDN+01b] Alfredo Benso, Stefano Di Carlo, Giorgio Di Natale, Luca Tagliaferri, and
Paolo Ernesto Prinetto. Validation of a software dependability tool via
fault injection experiments. In 7th International On-Line Testing Workshop,
pages 3–8. IEEE Computer Society Press, 2001. doi: 10.1109/OLT.2001.937809.
(Cited on page 41.)

[BDCDN+03] Alfredo Benso, Stefano Di Carlo, Giorgio Di Natale, Paolo Ernesto Prinetto,
and Luca Tagliaferri. Data criticality estimation in software applications. In
Proceedings of the 2003 International Test Conference (ITC ’03), Los Alamitos,
CA, USA, 2003. IEEE Computer Society Press. (Cited on pages 11 and 76.)

224 bibliography

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew War�eld. Xen and the art of virtu-
alization. ACM SIGOPS Operating Systems Review, 37(5):164–177, October
2003. doi: 10.1145/1165389.945462. (Cited on page 67.)

[Bel05] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Proceed-

ings of the 2005 USENIX Annual Technical Conference, pages 41–46, Berkeley,
CA, USA, 2005. USENIX Association. (Cited on pages 66, 67, 78, and 86.)

[BF93] Ricky W. Butler and George B. Finelli. The infeasibility of quantifying
the reliability of life-critical real-time software. IEEE Transactions on Soft-

ware Engineering, 19(1):3–12, January 1993. doi: 10.1109/32.210303. (Cited
on page 48.)

[BGC+02] L. Berrojo, I. Gonzalez, F. Corno, M. S. Reorda, G. Squillero, L. Entrena, and
C. Lopez. New techniques for speeding-up fault-injection campaigns. In
Proceedings of the 2002 Conference on Design, Automation & Test in Europe

(DATE ’02), pages 847–852. IEEE Computer Society Press, 2002. doi: 10.1109/
DATE.2002.998398. (Cited on pages 8, 10, 70, 73, 74, and 192.)

[BGGO03] Jan Blomgren, Bo Granbom, Thomas Granlund, and Nils Olsson. Relations
between basic nuclear data and single-event upsets phenomena. MRS Bul-

letin, 28:121–125, 2 2003. doi: 10.1557/mrs2003.39. (Cited on page 60.)

[BHS+95] Robert C. Baumann, Tim Hossain, Eric Smith, Shinya Murata, and Hideki
Kitagawa. Boron as a primary source of radiation in high density DRAMs. In
Symposium on VLSI Technology, pages 81–82, June 1995. doi: 10.1109/VLSIT.
1995.520868. (Cited on page 27.)

[BJS07] Shekhar Borkar, Norman P. Jouppi, and Per Stenstrom. Microprocessors in
the era of terascale integration. In Proceedings of the 2007 Conference on

Design, Automation & Test in Europe (DATE ’07), pages 237–242, San Jose,
CA, USA, 2007. EDA Consortium. (Cited on pages 2 and 18.)

[BLTZ03] Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. PISA —
a platform and programming language independent interface for search al-
gorithms. In Carlos M. Fonseca, Peter J. Fleming, Eckart Zitzler, Kalyanmoy
Deb, and Lothar Thiele, editors, Proceedings of the 2nd International Confer-

ence on Evolutionary Multi-Criterion Optimization (EMO ’03), volume 2632
of Lecture Notes in Computer Science, pages 494–508. Springer-Verlag, April
2003. doi: 10.1007/3-540-36970-8_35. (Cited on page 159.)

[Bor05] Shekhar Y. Borkar. Designing reliable systems from unreliable compo-
nents: The challenges of transistor variability and degradation. IEEE Micro,
25(6):10–16, 2005. (Cited on page 1.)

[BP03] Alfredo Benso and Paolo Ernesto Prinetto. Fault Injection Techniques and

Tools for Embedded Systems Reliability Evaluation. Frontiers in electronic
testing. Kluwer Academic Publishers, Boston, Dordrecht, London, 2003.
(Cited on pages 4, 49, 50, 52, 54, 70, and 203.)

[BPC98] Jérome Boué, Philippe Pétillon, and Yves Crouzet. MEFISTO-L: A VHDL-
based fault injection tool for the experimental assessment of fault tolerance.
In Proceedings of the 28th Annual International Symposium on Fault-Tolerant

Computing (FTCS ’98), pages 168–173. IEEE Computer Society Press, June
1998. doi: 10.1109/FTCS.1998.689467. (Cited on page 66.)

[BPRSR98a] Alfredo Benso, Paolo Prinetto, Maurizio Rebaudengo, and Matteo Sonza Re-
orda. A fault injection environment for microprocessor-based boards. In
Proceedings of the 1998 International Test Conference (ITC ’98), pages 768–773.

bibliography 225

IEEE Computer Society Press, October 1998. doi: 10.1109/TEST.1998.743259.
(Cited on pages 65 and 170.)

[BPRSR98b] Alfredo Benso, Paolo Ernesto Prinetto, Maurizio Rebaudengo, and Mat-
teo Sonza Reorda. EXFI: A low-cost fault injection system for embedded
microprocessor-based boards. ACM Transactions on Design Automation of

Electronic Systems, 3(4):626–634, October 1998. doi: 10.1145/296333.296351.
(Cited on pages 58, 65, and 170.)

[Bre16] Mark Breddemann. Gütevergleich von Prozessorfehler-
Injektionsergebnissen auf unterschiedlichen Abstraktionsebenen. Master
thesis, Technische Universität Dortmund, April 2016. (Cited on pages 208
and 213.)

[BRIM98] Alfredo Benso, Maurizio Rebaudengo, Leonardo Impagliazzo, and Pietro
Marmo. Fault-list collapsing for fault-injection experiments. In Proceed-

ings of the Annual Reliability andMaintainability Symposium, pages 383–388.
IEEE Computer Society Press, January 1998. doi: 10.1109/RAMS.1998.653808.
(Cited on pages 8 and 70.)

[Bro60] David T. Brown. Error detecting and correcting binary codes for arith-
metic operations. IRE Transactions on Electronic Computers, EC-9(3):333–337,
September 1960. doi: 10.1109/TEC.1960.5219855. (Cited on page 41.)

[Bro83] Rita Mae Brown. Sudden Death. Bantam Books, Toronto, Canada, 1st edition,
May 1983. (Cited on page 149.)

[BRSR99] Alfredo Benso, Maurizio Rebaudengo, and Matteo Sonza Reorda. FlexFi: A
�exible fault injection environment for microprocessor-based systems. In
Proceedings of the 18th International Conference on Computer Safety, Reliabil-

ity and Security (SAFECOMP ’99), pages 323–335, London, UK, 1999. Springer-
Verlag. doi: 10.1007/3-540-48249-0_28. (Cited on pages 63, 65, 79, and 172.)

[BS15] Christoph Borchert and Olaf Spinczyk. Hardening an L4 microkernel against
soft errors by aspect-oriented programming and whole-program analysis. In
Proceedings of the 8th Workshop on Programming Languages and Operating

Systems (PLOS ’15), pages 1–7, New York, NY, USA, October 2015. ACM Press.
doi: 10.1145/2818302.2818304. (Cited on pages 145 and 209.)

[BSH75] D. Binder, E. C. Smith, and A. B. Holman. Satellite anomalies from galactic
cosmic rays. IEEE Transactions on Nuclear Science, 22(6):2675–2680, Decem-
ber 1975. doi: 10.1109/TNS.1975.4328188. (Cited on pages 4, 26, and 27.)

[BSS12] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Protecting the
dynamic dispatch in C++ by dependability aspects. In Proceedings of the

1st GI Workshop on Software-Based Methods for Robust Embedded Systems

(SOBRES ’12), Lecture Notes in Informatics, pages 521–535. German Society
of Informatics, September 2012. (Cited on pages v, 3, 10, 45, 199, and 209.)

[BSS13a] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Generative
software-based memory error detection and correction for operating system
data structures. In Proceedings of the 43rd IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN ’13), Washington, DC, USA, June
2013. IEEE Computer Society Press. doi: 10.1109/DSN.2013.6575308. (Cited
on pages vi, 3, 9, 14, 45, 84, 118, 128, 145, 209, and 213.)

[BSS13b] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Return-address
protection in C/C++ code by dependability aspects. In Proceedings of the

2nd GI Workshop on Software-Based Methods for Robust Embedded Systems

(SOBRES ’13), Lecture Notes in Informatics. German Society of Informatics,

226 bibliography

September 2013. (Cited on pages vi, 3, 14, 45, 84, 127, 128, 129, 132, 134,
and 209.)

[BSS15] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Generic soft-
error detection and correction for concurrent data structures. IEEE Trans-

actions on Dependable and Secure Computing, PP(99), 2015. Pre-print. doi:
10.1109/TDSC.2015.2427832. (Cited on pages vi, 9, 14, 45, 84, 118, 123, 145,
209, and 213.)

[BST02] Pete Broadwell, Naveen Sastry, and Jonathan Traupman. FIG: A prototype
tool for online veri�cation of recovery mechanisms. In Workshop on Self-

Healing, Adaptive and Self-Managed Systems (SHAMAN ’02). ACM Press,
2002. (Cited on page 65.)

[BT93] Dominique Brière and Pascal Traverse. AIRBUS A320/A330/A340 elec-
trical �ight controls – a family of fault-tolerant systems. In Proceedings

of the 23rd Annual International Symposium on Fault-Tolerant Computing

(FTCS ’93), pages 616–623. IEEE Computer Society Press, June 1993. doi:
10.1109/FTCS.1993.627364. (Cited on page 38.)

[BVFK05a] Raul Barbosa, Jonny Vinter, Peter Folkesson, and Johan Karlsson. An ap-
proach to reducing the cost of fault injection. In Proceedings of Real-Time

in Sweden (RTiS ’05), pages 129–134, August 2005. (Cited on pages 70, 71,
and 189.)

[BVFK05b] Raul Barbosa, Jonny Vinter, Peter Folkesson, and Johan Karlsson. Assembly-
level pre-injection analysis for improving fault injection e�ciency. In Pro-

ceedings of the 5th European Dependable Computing Conference (EDCC ’05),
volume 3463, page 246. Springer-Verlag, April 2005. (Cited on pages 58, 70,
71, 172, 189, 192, 195, and 196.)

[BWK+87] S. P. Buchner, D. Wilson, K. Kang, D. Gill, J. A. Mazer, W. D. Raburn, A. B.
Campbell, and A. R. Knudson. Laser simulation of single event upsets.
IEEE Transactions on Nuclear Science, 34(6):1227–1233, December 1987. doi:
10.1109/TNS.1987.4337457. (Cited on page 61.)

[CA78] Liming Chen and Algirdas Avižienis. N-version programming: A fault-
tolerance approach to reliability of software operation. In Proceedings of

the 8th Annual International Symposium on Fault-Tolerant Computing (FTCS

’78), pages 3–9, 1978. (Cited on page 44.)

[CBS10] CBS News / AP. Toyota “unintended acceleration” has killed 89. http:
//www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/,
May 2010. Retrieved 2016-04-02. (Cited on page 2.)

[CCA05] Yves Crouzet, Jacques Collet, and Jean Arlat. Mitigating soft errors to pre-
vent a hard threat to dependable computing. In Proceedings of the 11th Inter-

national On-Line Testing Symposium (IOLTS ’05), pages 295–298, July 2005.
doi: 10.1109/IOLTS.2005.42. (Cited on page 27.)

[CCDM+09] Marcello Cinque, Domenico Cotroneo, Catello Di Martino, Stefano Russo,
and Alessandro Testa. AVR-INJECT: A tool for injecting faults in wireless
sensor nodes. In Proceedings of the 23rd IEEE Parallel and Distributed Pro-

cessing Symposium (PDPS ’09), pages 1–8, May 2009. doi: 10.1109/IPDPS.2009.
5160907. (Cited on pages 58 and 172.)

[CCK+06] Guilin Chen, Guangyu Chen, Mahmut Kandemir, Narayanan Vijaykrishnan,
and Mary Jane Irwin. Object duplication for improving reliability. In
Proceedings of the 2006 Asia and South Paci�c Design Automation Confer-

ence, ASP-DAC ’06, pages 140–145. IEEE Computer Society Press, 2006. doi:
10.1145/1118299.1118343. (Cited on pages 3, 10, and 199.)

http://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/
http://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/

bibliography 227

[CG12] Sławomir Chyłek and Marcin Goliszewski. QEMU-based fault injection
framework. Studia Informatica, 33(4), 2012. (Cited on page 67.)

[CH02] Yuhua Cheng and Chenming Hu. MOSFET modeling & BSIM3 user’s guide.
Kluwer Academic Publishers, 2002. (Cited on page 25.)

[Che10] Steve Chessin. Injecting errors for fun and pro�t. ACM Queue, 8, August
2010. (Cited on pages 4 and 83.)

[Chy14] Sławomir Chyłek. Emulation based software reliability evaluation and opti-
mization. Przegląd Elektrotechniczny, 90(2):121–124, 2014. doi: 10.12915/pe.
2014.02.32. (Cited on page 67.)

[CMC+13] Hyungmin Cho, Shahrzad Mirkhani, Chen-Yong Cher, Jacob A. Abraham,
and Subhasish Mitra. Quantitative evaluation of soft error injection tech-
niques for robust system design. In Proceedings of the 50th Design Automa-

tion Conference (DAC ’13), pages 1–10. IEEE Computer Society Press, May
2013. doi: 10.1145/2463209.2488859. (Cited on pages 55, 58, 202, and 213.)

[CMR15] Luigi Carro, Álvaro Moreira, and Paolo Rech. Mitigation of soft errors: from
adding selective redundancy to changing the abstraction stack. In Proceed-

ings of the 45th IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN ’15), June 2015. Tutorial slides. (Cited on pages 18 and 60.)

[CMS95] João Carreira, Henrique S. Madeira, and João Gabriel Silva. Xception: Soft-
ware fault injection and monitoring in processor functional units. In Pro-

ceedings of the Conference on Dependable Computing for Critical Applications

(DCCA ’95), pages 135–149, September 1995. (Cited on pages 65, 79, and 81.)

[CMS98] João Carreira, Henrique S. Madeira, and João Gabriel Silva. Xception: A
technique for the experimental evaluation of dependability in modern com-
puters. IEEE Transactions on Software Engineering, 24(2):125–136, February
1998. doi: 10.1109/32.666826. (Cited on pages 65, 79, and 81.)

[CMV02] Pierluigi Civera, Luca Macchiarulo, and Massimo Violante. A simpli�ed gate-
level fault model for crosstalk e�ects analysis. In Proceedings of the 17th IEEE

International Symposium on Proceedings of the IEEE International Symposium

on Defect and Fault Tolerance in VLSI Systems (DFT ’02), pages 31–39. IEEE
Computer Society Press, 2002. doi: 10.1109/DFTVS.2002.1173499. (Cited on
page 31.)

[Con02] Cristian Constantinescu. Impact of deep submicron technology on depend-
ability of VLSI circuits. In Proceedings of the 32nd IEEE/IFIP International Con-

ference on Dependable Systems and Networks (DSN ’02), pages 205–209. IEEE
Computer Society Press, June 2002. doi: 10.1109/DSN.2002.1028901. (Cited
on page 1.)

[Con03] Cristian Constantinescu. Trends and challenges in VLSI circuit reliability.
IEEE Micro, 23(4):14–19, July 2003. doi: 10.1109/MM.2003.1225959. (Cited on
pages 1, 22, 27, 30, and 31.)

[Con05] Cristian Constantinescu. Neutron SER characterization of microprocessors.
In Proceedings of the 35th IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN ’05), pages 754–759, June/July 2005. doi: 10.1109/
DSN.2005.69. (Cited on pages 1 and 30.)

[Coo98] Richard I. Cook. How complex systems fail. https://info.aiaa.org/tac/SMG/
SOSTC/Shared%20Documents/How%20Complex%20Systems%20Fail.pdf,
1998. (Cited on page 47.)

https://info.aiaa.org/tac/SMG/SOSTC/Shared%20Documents/How%20Complex%20Systems%20Fail.pdf
https://info.aiaa.org/tac/SMG/SOSTC/Shared%20Documents/How%20Complex%20Systems%20Fail.pdf

228 bibliography

[CP95] Je�rey A. Clark and Dhiraj K. Pradhan. Fault injection: A method for val-
idating computer-system dependability. IEEE Computer, 28(6):47–56, June
1995. doi: 10.1109/2.386985. (Cited on pages 4 and 203.)

[CRA06] Jonathan Chang, George A. Reis, and David I. August. Automatic instruction-
level software-only recovery. In Proceedings of the 36th IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks (DSN ’06), pages
83–92, Los Alamitos, CA, USA, 2006. IEEE Computer Society Press. doi:
10.1109/DSN.2006.15. (Cited on pages 10, 40, 43, and 203.)

[CRS99] João Carlos Cunha, Mário Zenha Rela, and João Gabriel Silva. Can soft-
ware implemented fault-injection be used on real-time systems? In Jan Hlav-
ička, Erik Maehle, and András Pataricza, editors, Proceedings of the 3rd Euro-
peanDependable Computing Conference (EDCC ’99), pages 209–226. Springer-
Verlag, 1999. doi: 10.1007/3-540-48254-7_15. (Cited on page 59.)

[CS90] Edward W. Czeck and Daniel P. Siewiorek. E�ects of transient gate-level
faults on program behavior. In Proceedings of the 20th Annual International

Symposium on Fault-Tolerant Computing (FTCS ’90), pages 236–243, June
1990. doi: 10.1109/FTCS.1990.89371. (Cited on page 58.)

[dAGLKPS14] Filipe de Aguiar Geissler, Fernanda Lima Kastensmidt, and José Eduardo
Pereira Souza. Soft error injection methodology based on QEMU software
platform. In Proceedings of the 15th Latin American Test Workshop (LATW

’14). IEEE Computer Society Press, March 2014. doi: 10.1109/LATW.2014.
6841910. (Cited on page 67.)

[DAH11] Melina Demertzi, Murali Annavaram, and Mary Hall. Analyzing the e�ects
of compiler optimizations on application reliability. In Proceedings of the

2011 IEEE International Symposium onWorkload Characterization (IISWC ’11),
pages 184–193. IEEE Computer Society Press, 2011. doi: 10.1109/IISWC.2011.
6114178. (Cited on page 204.)

[DBG+09] Jean-Marc Daveau, Alexandre Blampey, Gilles Gasiot, Joseph Bulone, and
Philippe Roche. An industrial fault injection platform for soft-error depend-
ability analysis and hardening of complex system-on-a-chip. In Proceed-

ings of the IEEE International Reliability Physics Symposium (IRPS ’09), pages
212–220. IEEE Computer Society Press, April 2009. doi: 10.1109/IRPS.2009.
5173253. (Cited on pages 6, 66, and 77.)

[DBG+11] Nathan DeBardeleben, Sean Blanchard, Qiang Guan, Ziming Zhang, and
Song Fu. Experimental framework for injecting logic errors in a virtual
machine to pro�le applications for soft error resilience. In Proceedings of

the 2011 International Conference on Parallel Processing (Euro-Par ’11), Lec-
ture Notes in Computer Science, pages 282–291. Springer-Verlag, September
2011. doi: 10.1007/978-3-642-29740-3_32. (Cited on pages 58 and 67.)

[DBT90] Rob Dekker, Frans Beenker, and Loek Thijssen. A realistic fault model and
test algorithms for static random access memories. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 9(6):567–572, June
1990. doi: 10.1109/43.55188. (Cited on page 101.)

[DC07] Francis M. David and Roy H. Campbell. Building a self-healing operating
system. In Proceedings of the 3rd IEEE International Symposium on Depend-

able, Autonomic and Secure Computing (DASC ’07), pages 3–10. IEEE Com-
puter Society Press, September 2007. doi: 10.1109/DASC.2007.22. (Cited on
pages 78 and 79.)

[DCCC08] Francis M. David, Ellick Chan, Je�rey Carlyle, and Roy H. Campbell. Qin-
ject: A virtual-machine based fault injection framework. In Proceedings of

bibliography 229

the 13th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’08), 2008. (Poster Presentation).
(Cited on pages 67, 78, and 79.)

[Deb01] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algo-

rithms. John Wiley & Sons, Inc., New York, NY, USA, 2001. (Cited on
page 158.)

[Del97] Timothy J. Dell. A white paper on the bene�ts of chipkill-correct ECC for
PC server main memory. Ibm white paper, 1997. (Cited on page 37.)

[Dem11] Samuel Demeulemeester. Memtest86+ – an advanced memory diagnostic
tool. http://www.memtest.org/, 2011. (Cited on page 100.)

[Dem14] Tony Demann. Bewertung von aspektorientierten Fehlertoleranzmechanis-
men im Mikrokern-Betriebssystem Fiasco. Master thesis, Technische Uni-
versität Dortmund, 2014. (Cited on page 208.)

[DGCM+09] Antonio Dasilva, A. Gonzalez-Calero, José-Fernán Martínez, Lourdes López,
Ana-B. García, and Vicente Hernández. Design and implementation of a Java
fault injector for Exhaustif SWIFI tool. In Proceedings of the 4th International

Conference on Dependability of Computer Systems (DepCos-RELCOMEX ’09),
pages 77–83, June 2009. doi: 10.1109/DepCoS-RELCOMEX.2009.27. (Cited
on page 64.)

[DGFFP13] Guiseppe Di Guglielmo, Davide Ferraretto, Franco Fummi, and Graziano
Pravadelli. E�cient fault simulation through dynamic binary translation
for dependability analysis of embedded software. In Proceedings of the 18th

IEEE European Test Symposium (ETS ’13). IEEE Computer Society Press, May
2013. doi: 10.1109/ETS.2013.6569351. (Cited on page 67.)

[DH12] Björn Döbel and Hermann Härtig. Who watches the watchmen? – protect-
ing operating system reliability mechanisms. In Proceedings of the Workshop

on Hot Topics in System Dependability (HotDep ’12). USENIX Association, Oc-
tober 2012. (Cited on page 44.)

[DH14] Björn Döbel and Hermann Härtig. Can we put concurrency back into re-
dundant multithreading? In Proceedings of the 14th ACM International Con-

ference on Embedded Software (EMSOFT ’14), pages 19:1–19:10. ACM Press,
October 2014. doi: 10.1145/2656045.2656050. (Cited on page 44.)

[DHE12] Björn Döbel, Hermann Härtig, and Michael Engel. Operating system support
for redundant multithreading. In Proceedings of the 12th ACM International

Conference on Embedded Software (EMSOFT ’12), pages 83–92, New York, NY,
USA, 2012. ACM Press. doi: 10.1145/2380356.2380375. (Cited on page 44.)

[DHL15] Christian Dietrich, Martin Ho�mann, and Daniel Lohmann. Cross-kernel
control-�ow-graph analysis for event-driven real-time systems. In Proceed-

ings of the 2015 ACM SIGPLAN/SIGBED Conference on Languages, Compilers

and Tools for Embedded Systems (LCTES ’15), New York, NY, USA, June 2015.
ACM Press. doi: 10.1145/2670529.2754963. (Cited on pages 145 and 209.)

[Die14] Christian Dietrich. Static state space exploration of an OSEK real-time op-
erating system. Master thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg, September 2014. (Cited on page 208.)

[Dij59] Edsger Wybe Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, December 1959. doi: 10.1007/
BF01386390. (Cited on page 175.)

http://www.memtest.org/

230 bibliography

[Dij72] Edsger Wybe Dijkstra. The humble programmer. Communications of the

ACM, 15(10):859–866, October 1972. doi: 10.1145/355604.361591. (Cited on
page 52.)

[DJM96] Scott Dawson, Farnam Jahanian, and Todd Mitton. ORCHESTRA: A prob-
ing and fault injection environment for testing protocol implementations. In
Proceedings of the IEEE International Computer Performance and Dependabil-

ity Symposium (IPDS ’96), September 1996. doi: 10.1109/IPDS.1996.540200.
(Cited on page 58.)

[DJMT96] Scott Dawson, Farnam Jahanian, Todd Mitton, and Teck-Lee Tung. Testing
of fault-tolerant and real-time distributed systems via protocol fault injec-
tion. In Proceedings of the 26th Annual International Symposium on Fault-

Tolerant Computing (FTCS ’96), pages 404–414, June 1996. doi: 10.1109/FTCS.
1996.534626. (Cited on page 58.)

[DL13] Domenico Di Leo. Robustness Evaluation of Software Systems through Fault

Injection. PhD thesis, Università degli Studi di Napoli Federico II, March
2013. doi: 10.6092/UNINA/FEDOA/9257. (Cited on page 52.)

[DL15] Christian Dietrich and Daniel Lohmann. The dataref versuchung. ACM

Operating Systems Review, pages 1–10, 2015. (Cited on page 209.)

[DLAS+12] Domenico Di Leo, Fatemeh Ayatolahi, Behrooz Sangchoolie, Johan Karlsson,
and Roger Johansson. On the impact of hardware faults – an investigation of
the relationship between workload inputs and failure mode distributions. In
Proceedings of the 31st International Conference on Computer Safety, Reliabil-

ity and Security (SAFECOMP ’12), pages 198–209. Springer-Verlag, September
2012. doi: 10.1007/978-3-642-33678-2_17. (Cited on page 52.)

[DM06] João A. Durães and Henrique S. Madeira. Emulation of software faults: A
�eld data study and a practical approach. IEEE Transactions on Software En-

gineering, 32(11):849–867, November 2006. doi: 10.1109/TSE.2006.113. (Cited
on pages 4 and 58.)

[DMH14] Björn Döbel, Robert Muschner, and Hermann Härtig. Resource-aware repli-
cation on heterogeneous multicores: Challenges and opportunities. In Work-

shop on Resource Awareness and Adaptivity in Multi-Core Computing (RAC-

ING ’14), May 2014. (Cited on page 44.)

[DML+07] Antonio Dasilva, José-Fernán Martínez, Lourdes López, Ana-B. García, and
Luis Redondo. Exhaustif: A fault injection tool for distributed heterogeneous
embedded systems. In Proceedings of the 2007 Euro American Conference on

Telematics and Information Systems (EATIS ’07), pages 17:1–17:8, New York,
NY, USA, 2007. ACM Press. doi: 10.1145/1352694.1352712. (Cited on page 64.)

[Döb14] Björn Döbel. Operating System Support for Redundant Multithreading. Dis-
sertation, Technische Universität Dresden, 2014. (Cited on pages 20, 21, 23,
25, 30, 33, 44, and 208.)

[DSE13] Björn Döbel, Horst Schirmeier, and Michael Engel. Investigating the limi-
tations of PVF for realistic program vulnerability assessment. In Proceedings

of the 5th HiPEAC Workshop on Design for Reliability (DFR ’13), Berlin, Ger-
many, January 2013. (Cited on pages v, 71, 76, and 209.)

[DW11] Anand Dixit and Alan Wood. The impact of new technology on soft error
rates. In Proceedings of the IEEE International Reliability Physics Symposium

(IRPS ’11), pages 5B.4.1–5B.4.7, April 2011. doi: 10.1109/IRPS.2011.5784522.
(Cited on pages 1, 30, 56, and 60.)

bibliography 231

[DWA10] DWARF Standards Committee. DWARF Debugging Information Format Ver-

sion 4, June 2010. (Cited on page 117.)

[DYdS+10] Marc Duranton, Sami Yehia, Bjorn de Sutter, Koen de Bosschere, Albert
Cohen, Babak Falsa�, Georgi Gaydadjiev, Manolis Katevenis, Jonas Maebe,
Harm Munk, Nacho Navarro, Alex Ramirez, Olivier Temam, and Mateo
Valero. The HiPEAC vision. Technical report, Network of Excellence
on High Performance and Embedded Architecture and Compilation, 2010.
(Cited on page 1.)

[Ech90] Klaus Echtle. Fehlertoleranzverfahren. Springer-Verlag, 1990. doi: 10.1007/
978-3-642-75765-5. (Cited on pages 20, 34, and 35.)

[ES98] Klaus Echtle and João Gabriel Silva. Fehlerinjektion – ein Mittel zur
Bewertung der Maßnahmen gegen Fehler in komplexen Rechensyste-
men. Informatik-Spektrum, 21(6):328–336, 1998. doi: 10.1007/s002870050113.
(Cited on page 4.)

[Eva03] Chris Evans-Pughe. They come from outer space. IEE Review, 49(8):30–33,
September 2003. doi: 10.1049/ir:20030805. (Cited on page 27.)

[Fec09] Bernhard Fechner. Transiente Fehler in Mikroprozessoren: Mechanismen zur

Erkennung, Behebung und Tolerierung. Dissertation, FernUniversität in Ha-
gen, 2009. (Cited on pages 23 and 33.)

[FECA04] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit. Aspect-

oriented Software Development. Addison-Wesley, Boston, MA, USA, 1st edi-
tion, October 2004. (Cited on page 94.)

[FF00] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is
quanti�cation and obliviousness. In Workshop on Advanced SoC (OOPSLA

’00), October 2000. (Cited on page 94.)

[FFI06] Umberto Ferraro-Petrillo, Irene Finocchi, and Giuseppe F. Italiano. The price
of resiliency: A case study on sorting with memory faults. In Yossi Azar and
Thomas Erlebach, editors, Proceedings of the 14th Annual European Sympo-

sium on Algorithms (ESA ’06), volume 4168 of Lecture Notes in Computer Sci-

ence, pages 768–779. Springer-Verlag, 2006. doi: 10.1007/11841036_68. (Cited
on page 39.)

[FFI09] Umberto Ferraro-Petrillo, Irene Finocchi, and Giuseppe F. Italiano. The price
of resiliency: A case study on sorting withÂ memory faults. Algorithmica,
53(4):597–620, 2009. doi: 10.1007/s00453-008-9264-1. (Cited on page 39.)

[FGAF06] André Fidalgo, Manuel Gericota, Gustavo Alves, and José Ferreira. Using
NEXUS compliant debuggers for real time fault injection on microproces-
sors. In Proceedings of the 19th Annual Symposium on Integrated Circuits and

Systems Design (SBCCI ’06), pages 214–219. ACM Press, August/September
2006. doi: 10.1145/1150343.1150397. (Cited on pages 7, 63, 78, 97, and 172.)

[FGI05] Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. Designing re-
liable algorithms in unreliable memories. In Gerth Stølting Brodal and Ste-
fano Leonardi, editors, Proceedings of the 13th Annual European Symposium

on Algorithms (ESA ’05), volume 3669 of Lecture Notes in Computer Science.
Springer-Verlag, 2005. doi: 10.1007/11561071_1. (Cited on page 39.)

[FGI07] Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. Designing reli-
able algorithms in unreliable memories. Computer Science Review, 1(2):77–87,
2007. doi: 10.1016/j.cosrev.2007.10.001. (Cited on page 39.)

232 bibliography

[FGI09] Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. Optimal re-
silient sorting and searching in the presence of memory faults. Theoreti-

cal Computer Science, 410(44):4457–4470, 2009. doi: 10.1016/j.tcs.2009.07.026.
(Cited on page 39.)

[FI04] Irene Finocchi and Giuseppe F. Italiano. Sorting and searching in the pres-
ence of memory faults (without redundancy). In Proceedings of the 36th An-

nual ACM Symposium on Theory of Computing (STOC ’04), pages 101–110.
ACM Press, 2004. doi: 10.1145/1007352.1007375. (Cited on page 39.)

[FI08] Irene Finocchi and Giuseppe F. Italiano. Sorting and searching in faulty
memories. Algorithmica, 52(3):309–332, November 2008. doi: 10.1007/
s00453-007-9088-4. (Cited on page 39.)

[For89] Philippe Forin. Vital coded microprocessor principles and application for
various transit systems. In Proceedings of the IFAC IFIP/IFORS Symposium

on Control, Computers, Communications in Transportation (CCCT ’89), pages
79–84, Oxford, UK, September 1989. Pergamon Press. (Cited on page 41.)

[Fri13] Tobias Friemel. Eine kon�gurierbare Softwarearchitektur für zielplattfor-
munabhängige Fehlerinjektion. Diploma thesis, Technische Universität
Dortmund, January 2013. (Cited on page 208.)

[FSK98] Peter Folkesson, Sven Svensson, and Johan Karlsson. A comparison of sim-
ulation based and scan chain implemented fault injection. In Proceedings of

the 28th Annual International Symposium on Fault-Tolerant Computing (FTCS

’98), pages 284–293, Los Alamitos, CA, USA, June 1998. IEEE Computer So-
ciety Press. doi: 10.1109/FTCS.1998.689479. (Cited on pages 63 and 172.)

[FSS09] Christof Fetzer, Ute Schi�el, and Martin Süßkraut. AN-encoding compiler:
Building safety-critical systems with commodity hardware. In Proceedings of

the 28th International Conference on Computer Safety, Reliability and Security

(SAFECOMP ’09), pages 283–296. Springer-Verlag, September 2009. doi: 10.
1007/978-3-642-04468-7_23. (Cited on page 41.)

[Fuc96] Emmerich Fuchs. An evaluation of the error detection mechanisms in
MARS using software-implemented fault injection. In Andrzej Hlawiczka,
João Gabriel Silva, and Luca Simoncini, editors, Proceedings of the 2nd Euro-
pean Dependable Computing Conference (EDCC ’96), pages 73–90. Springer-
Verlag, 1996. doi: 10.1007/3-540-61772-8_31. (Cited on pages 10, 63, and 199.)

[GDBF14] Qiang Guan, Nathan Debardeleben, Sean Blanchard, and Song Fu. F-SEFI:
A �ne-grained soft error fault injection tool for pro�ling application vulner-
ability. In Proceedings of the 28th IEEE Parallel and Distributed Processing

Symposium (PDPS ’14), pages 1245–1254. IEEE Computer Society Press, May
2014. doi: 10.1109/IPDPS.2014.128. (Cited on page 67.)

[GDJ+11] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M. Heller-
stein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Koushik Sen,
and Dhruba Borthakur. FATE and DESTINI: A framework for cloud recov-
ery testing. In Proceedings of the 8th USENIX Symposium on Network Systems

Design and Implementation (NSDI ’11), Berkeley, CA, USA, 2011. USENIX As-
sociation. (Cited on pages 6, 58, and 77.)

[GDK11] N. Gligorić, Igor Dejanović, and Srđan Krčo. Performance evaluation of
compact binary XML representation for constrained devices. In Interna-

tional Conference on Distributed Computing in Sensor Systems (DCOSS ’11).
IEEE Computer Society Press, June 2011. doi: 10.1109/DCOSS.2011.5982183.
(Cited on page 92.)

bibliography 233

[GEJL10] Nishant J. George, Carl R. Elks, Barry W. Johnson, and John Lach. Tran-
sient fault models and AVF estimation revisited. In Proceedings of the

40th IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN ’10), pages 477–486. IEEE Computer Society Press, June/July 2010. doi:
10.1109/DSN.2010.5544276. (Cited on page 76.)

[GGO03a] Thomas Granlund, Bo Granbom, and Nils Olsson. A comparative study be-
tween two neutron facilities regarding SEU. In Proceedings of the 7th Eu-

ropean Conference on Radiation and Its E�ects on Components and Systems

(RADECS ’03), pages 493–497. IEEE Computer Society Press, September 2003.
(Cited on page 60.)

[GGO03b] Thomas Granlund, Bo Granbom, and Nils Olsson. Soft error rate increase for
new generations of SRAMs. IEEE Transactions on Nuclear Science, 50(6):2065–
2068, December 2003. doi: 10.1109/TNS.2003.821593. (Cited on page 60.)

[GGO04] Thomas Granlund, Bo Granbom, and Nils Olsson. A comparative study be-
tween two neutron facilities regarding SEU. IEEE Transactions on Nuclear

Science, 51(5):2922–2926, October 2004. doi: 10.1109/TNS.2004.835070. (Cited
on page 60.)

[GGR+04] M. S. Gordon, P. Goldhagen, K. P. Rodbell, T. H. Zabel, H. H. K. Tang, J. M.
Clem, and P. Bailey. Measurement of the �ux and energy spectrum of cosmic-
ray induced neutrons on the ground. IEEE Transactions on Nuclear Science,
51(6):3427–3434, December 2004. doi: 10.1109/TNS.2004.839134. (Cited on
page 29.)

[GHO+07] Georg Georgakos, Peter Huber, Martin Ostermayr, Ettore Amirante, and
Franz Ruckerbauer. Investigation of increased multi-bit failure rate due to
neutron induced SEU in advanced embedded SRAMs. In Proceedings of the

2007 IEEE Symposium on VLSI Circuits, pages 80–81. IEEE Computer Society
Press, June 2007. doi: 10.1109/VLSIC.2007.4342774. (Cited on page 28.)

[Giu14] Cristiano Giu�rida. Safe and Automatic Live Update. PhD thesis, VU Ams-
terdam, 2014. (Cited on pages 49, 58, and 65.)

[GKI04] Weining Gu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Error sensitivity
of the Linux kernel executing on PowerPC G4 and Pentium 4 processors. In
Proceedings of the 34th IEEE/IFIP International Conference on Dependable Sys-

tems and Networks (DSN ’04), pages 887–896. IEEE Computer Society Press,
June/July 2004. doi: 10.1109/DSN.2004.1311959. (Cited on page 65.)

[GKS+12] Johannes Grinschgl, Armin Krieg, Christian Steger, Reinhold Weiss, Holger
Bock, and Josef Haid. E�cient fault emulation using automatic pre-injection
memory access analysis. In Proceedings of the 25th IEEE System-on-Chip

Conference (SOCC ’12), pages 277–282. IEEE Computer Society Press, 2012.
doi: 10.1109/SOCC.2012.6398361. (Cited on page 70.)

[GKT89] Ulf Gunne�o, Johan Karlsson, and Jan Torin. Evaluation of error detec-
tion schemes using fault injection by heavy-ion radiation. In Proceedings

of the 19th Annual International Symposium on Fault-Tolerant Computing

(FTCS ’89), pages 340–347. IEEE Computer Society Press, June 1989. doi:
10.1109/FTCS.1989.105590. (Cited on page 60.)

[GKT13] Cristiano Giu�rida, Anton Kuijsten, and Andrew S. Tanenbaum. EDFI:
A dependable fault injection tool for dependability benchmarking exper-
iments. In Proceedings of the 19th IEEE Paci�c Rim International Sympo-

sium on Dependable Computing (PRDC ’13), pages 31–40, December 2013.
doi: 10.1109/PRDC.2013.12. (Cited on pages 58 and 65.)

234 bibliography

[GŁM+09] Piotr Gawkowski, Maciej Ławryńczuk, Piotr M. Marusak, Piotr Tatjewski,
and Janusz Sosnowski. On improving dependability of the numerical GPC
algorithm. In European Control Conference (ECC ’09), pages 1377–1382, Au-
gust 2009. (Cited on page 40.)

[GO05] Thomas Granlund and Nils Olsson. A comparative study between proton
and neutron induced SEUs in SRAMs. In Proceedings of the 8th European Con-

ference on Radiation and Its E�ects on Components and Systems (RADECS ’05),
pages PE2–1–PE2–4, September 2005. doi: 10.1109/RADECS.2005.4365592.
(Cited on page 60.)

[GO06] Thomas Granlund and Nils Olsson. SEUs induced by thermal to high-energy
neutrons in SRAMs. IEEE Transactions on Nuclear Science, 53(6):3798–3802,
December 2006. doi: 10.1109/TNS.2006.880930. (Cited on page 60.)

[Goo08] Google, Inc. Google Protocol Bu�ers, 2008. (Cited on page 92.)

[Gra85] Jim Gray. Why do computers stop and what can be done about it? Technical
Report 85.7, Tandem Computers, June 1985. (Cited on page 20.)

[GRE+01] Matthew R. Guthaus, Je�rey S. Ringenberg, Dan Ernst, Todd M. Austin,
Trevor Mudge, and Richard B. Brown. MiBench: A free, commercially repre-
sentative embedded benchmark suite. In Proceedings of the IEEE International

Workshop on Workload Characterization (WWC ’01), pages 3–14, Washing-
ton, DC, USA, 2001. IEEE Computer Society Press. doi: 10.1109/WWC.2001.
15. (Cited on pages 51, 150, 161, 170, and 177.)

[GRS10] Piotr Gawkowski, Tomasz Rutkowski, and Janusz Sosnowski. Improving
fault handling software techniques. In Proceedings of the 16th International

On-Line Testing Symposium (IOLTS ’10), pages 197–199. IEEE Computer So-
ciety Press, July 2010. doi: 10.1109/IOLTS.2010.5560206. (Cited on page 44.)

[GRSRV06] Olga Goloubeva, Maurizio Rebaudengo, Matteo Sonza Reorda, and Massimo
Violante. Software-Implemented Hardware Fault Tolerance. Springer-Verlag,
New York, NY, USA, 1 edition, 2006. (Cited on pages 8, 18, 21, 40, 42, 43, 49,
50, 51, and 68.)

[GS95] Jens Gütho� and Volkmar Sieh. Combining software-implemented and
simulation-based fault injection into a single fault injection method. In Pro-

ceedings of the 25th Annual International Symposium on Fault-Tolerant Com-

puting (FTCS ’95), pages 196–206. IEEE Computer Society Press, June 1995.
doi: 10.1109/FTCS.1995.466978. (Cited on pages 8, 70, and 189.)

[GSR05] Piotr Gawkowski, Janusz Sosnowski, and B. Radko. Analyzing the e�ective-
ness of fault hardening procedures. In Proceedings of the 11th International

On-Line Testing Symposium (IOLTS ’05), pages 14–19. IEEE Computer Soci-
ety Press, July 2005. doi: 10.1109/IOLTS.2005.16. (Cited on pages 3 and 203.)

[HA84] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault tolerance
for matrix operations. IEEE Transactions on Computers, C-33(6):518–528,
June 1984. doi: 10.1109/TC.1984.1676475. (Cited on page 39.)

[Ham50] Richard Wesley Hamming. Error detecting and error correcting codes. Bell
System Technical Journal, 29(2):147–160, April 1950. doi: 10.1002/j.1538-7305.
1950.tb00463.x. (Cited on pages 36 and 37.)

[HAN12] Siva Kumar Sastry Hari, Sarita V. Adve, and Helia Naeimi. Low-cost
program-level detectors for reducing silent data corruptions. In Proceed-

ings of the 42nd IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN ’12), pages 1–12, Washington, DC, USA, June 2012. IEEE
Computer Society Press. (Cited on pages 3, 10, 11, and 40.)

bibliography 235

[HANR11] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ra-
machandran. Relyzer: Application resiliency analyzer for transient faults.
In Proceedings of the 7th Workshop on Silicon Errors in Logic – System E�ects

(SELSE ’11), 2011. (Cited on pages 67, 70, 71, 151, 152, 153, 155, and 159.)

[HANR12] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ra-
machandran. Relyzer: Exploiting application-level fault equivalence to ana-
lyze application resiliency to transient faults. In Proceedings of the 17th In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’12), pages 123–134, New York, NY, USA,
2012. ACM Press. doi: 10.1145/2150976.2150990. (Cited on pages 6, 8, 67, 70,
71, 77, 151, 152, 153, 155, 159, 192, and 196.)

[HANR13] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ra-
machandran. Relyzer: Application resiliency analyzer for transient faults.
IEEE Micro, 33(3):58–66, May 2013. doi: 10.1109/MM.2013.30. (Cited on
pages 67, 70, 71, 151, 152, 153, 155, and 159.)

[HBB+11] Jörg Henkel, Lars Bauer, Joachim Becker, Oliver Bringmann, Uwe
Brinkschulte, Samarjit Chakraborty, Michael Engel, Rolf Ernst, Hermann
Härtig, Lars Hedrich, Andreas Herkersdorf, Rüdiger Kapitza, Daniel
Lohmann, Peter Marwedel, Marco Platzner, Wolfgang Rosenstiel, Ulf
Schlichtmann, Olaf Spinczyk, Mehdi Tahoori, Jürgen Teich, Norbert Wehn,
and Hans-Joachim Wunderlich. Design and architectures for dependable em-
bedded systems. In Robert P. Dick and Jan Madsen, editors, Proceedings of
the 9th IEEE/ACM International Conference on Hardware/Software Codesign

and System Synthesis (CODES+ISSS ’11), pages 69–78. ACM Press, October
2011. doi: 10.1145/2039370.2039384. (Cited on page 2.)

[HBD+13] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muhammad
Sha�que, Mehdi Tahoori, and Norbert Wehn. Reliable on-chip systems in the
nano-era: Lessons learnt and future trends. In Proceedings of the 50th Design

Automation Conference (DAC ’13), pages 99:1–99:10. ACM Press, June 2013.
doi: 10.1145/2463209.2488857. (Cited on page 56.)

[HBD+14] Martin Ho�mann, Christoph Borchert, Christian Dietrich, Horst Schir-
meier, Rüdiger Kapitza, Olaf Spinczyk, and Daniel Lohmann. E�ectiveness
of fault detection mechanisms in static and dynamic operating system de-
signs. In Proceedings of the 17th IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing (ISORC ’14), pages 230–237. IEEE
Computer Society Press, June 2014. doi: 10.1109/ISORC.2014.26. (Cited on
pages vi, 3, 145, 161, and 209.)

[HBKS14] Marcel Heing-Becker, Timo Kamph, and Sibylle Schupp. Bit-error injection
for software developers. In Proceedings of the IEEE CSMR-WCRE Software

EvolutionWeek, pages 434–439. IEEE Computer Society Press, February 2014.
doi: 10.1109/CSMR-WCRE.2014.6747212. (Cited on page 67.)

[HDL13a] Martin Ho�mann, Christian Dietrich, and Daniel Lohmann. dOSEK: A de-
pendable RTOS for automotive applications. In Proceedings of the 19th IEEE

Paci�c Rim International Symposium on Dependable Computing (PRDC ’13),
pages 120–121, Vancouver, British Columbia, Canada, December 2013. IEEE
Computer Society Press. Fast abstract. doi: 10.1109/PRDC.2013.22. (Cited on
page 213.)

[HDL13b] Martin Ho�mann, Christian Dietrich, and Daniel Lohmann. Failure by de-
sign: In�uence of the RTOS interface on memory fault resilience. In Proceed-

ings of the 2nd GI Workshop on Software-Based Methods for Robust Embedded

Systems (SOBRES ’13), Lecture Notes in Informatics. German Society of In-
formatics, September 2013. (Cited on pages 191 and 209.)

236 bibliography

[Hel14] Richard Hellwig. Automatisierte Analyse von Fehlerinjektionsexperi-
menten mit Fail*. Master thesis, Technische Universität Dortmund, April
2014. (Cited on pages 117 and 208.)

[HHJ90] Robert W. Horst, Richard L. Harris, and Robert L. Jardine. Multiple instruc-
tion issue in the NonStop Cyclone processor. In Proceedings of the 17th In-

ternational Symposium on Computer Architecture (ISCA ’90), pages 216–226,
May 1990. doi: 10.1109/ISCA.1990.134528. (Cited on pages 37 and 38.)

[Hil99] Martin Hiller. Error recovery error recovery using forced validity assisted
by executable assertions for error detection: An experimental evaluation. In
Proceedings of the 25th EUROMICRO Conference, volume 2, pages 105–112.
IEEE Computer Society Press, September 1999. doi: 10.1109/EURMIC.1999.
794768. (Cited on page 40.)

[Hil00] Martin Hiller. Executable assertions for detecting data errors in embedded
control systems. In Proceedings of the 30th IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN ’00), pages 24–33. IEEE Computer
Society Press, June 2000. doi: 10.1109/ICDSN.2000.857510. (Cited on pages 3
and 40.)

[Hil02] Martin Hiller. A Software Pro�ling Methodology for Design and Assessment of

Dependable Software. PhD thesis, Chalmers University of Technology, 2002.
(Cited on page 64.)

[HJS01] Martin Hiller, Arshad Jhumka, and Neeraj Suri. An approach for analysing
the propagation of data errors in software. In Proceedings of the 31st IEEE/I-

FIP International Conference on Dependable Systems and Networks (DSN ’01),
pages 161–172, Los Alamitos, CA, USA, June/July 2001. IEEE Computer So-
ciety Press. (Cited on pages 11, 64, and 75.)

[HJS02a] Martin Hiller, Arshad Jhumka, and Neeraj Suri. On the placement of
software mechanisms for detection of data errors. In Proceedings of the

32nd IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN ’02), pages 135–144. IEEE Computer Society Press, June 2002. doi:
10.1109/DSN.2002.1028894. (Cited on pages 3, 11, 64, and 75.)

[HJS02b] Martin Hiller, Arshad Jhumka, and Neeraj Suri. PROPANE: An environ-
ment for examining the propagation of errors in software. ACM SIG-

SOFT, 27(4):81–85, July 2002. doi: 10.1145/566171.566184. (Cited on pages 64
and 75.)

[HJS04] Martin Hiller, Arshad Jhumka, and Neeraj Suri. EPIC: Pro�ling the propaga-
tion and e�ect of data errors in software. IEEE Transactions on Computers,
53(5):512–530, May 2004. doi: 10.1109/TC.2004.1275294. (Cited on pages 11,
64, and 75.)

[HK93] Yennun Huang and Chandra Kintala. Software implemented fault tolerance:
Technologies and experience. In Proceedings of the 23rd Annual International

Symposium on Fault-Tolerant Computing (FTCS ’93). IEEE Computer Society
Press, June 1993. doi: 10.1109/FTCS.1993.627302. (Cited on page 44.)

[HK12] Olof Hannius and Johan Karlsson. Impact of soft errors in a jet engine
controller. In Frank Ortmeier and Peter Daniel, editors, Proceedings of the
31st International Conference on Computer Safety, Reliability and Security

(SAFECOMP ’12), volume 7612 of Lecture Notes in Computer Science, pages
223–234. Springer-Verlag, Heidelberg, BW, Germany, September 2012. doi:
10.1007/978-3-642-33678-2_19. (Cited on page 172.)

bibliography 237

[HKS+13] Andreas Heinig, Ingo Korb, Florian Schmoll, Peter Marwedel, and Michael
Engel. Fast and low-cost instruction-aware fault injection. In Proceedings of

the 2ndGIWorkshop on Software-BasedMethods for Robust Embedded Systems

(SOBRES ’13), Lecture Notes in Informatics. German Society of Informatics,
September 2013. (Cited on page 183.)

[HL06] Rainer Hähnle and Daniel Larsson. Symbolic fault injection. Technical Re-
port 06-17, Chalmers University of Technology, Gothenburg, Sweden, 2006.
(Cited on page 68.)

[HLDL15] Martin Ho�mann, Florian Lukas, Christian Dietrich, and Daniel Lohmann.
dOSEK: The design and implementation of a dependability-oriented static
embedded kernel. In Proceedings of the 21st IEEE Real-Time and Embed-

ded Technology and Applications (RTAS ’15), pages 259–270, Los Alamitos,
CA, USA, April 2015. IEEE Computer Society Press. doi: 10.1109/RTAS.2015.
7108449. (Cited on pages 39, 40, 145, 209, and 213.)

[HMA+01] Scott Hareland, Jose Maiz, Mohsen Alavi, Kaizad Mistry, Steve Walsta, and
Changhong Dai. Impact of CMOS process scaling and SOI on the soft error
rates of logic processes. In Proceedings of the IEEE International Symposium

on VLSI Technology, pages 73–74, June 2001. doi: 10.1109/VLSIT.2001.934953.
(Cited on page 30.)

[HMR+15] Andrea Höller, Georg Macher, Tobias Rauter, Johannes Iber, and Christian
Kreiner. A virtual fault injection framework for reliability-aware software
development. In International Workshop on Recent Advances in the Depend-

abIlity AssessmeNt of Complex systEms (RADIANCE ’15), pages 69–74. IEEE
Computer Society Press, June 2015. doi: 10.1109/DSN-W.2015.16. (Cited on
page 67.)

[Hof16] Martin Ho�mann. Konstruktive Zuverlässigkeit – Eine Methodik für zuverläs-

sige Systemsoftware auf unzuverlässiger Hardware. Dissertation, Friedrich-
Alexander-Universität Erlangen-Nürnberg, April 2016. (Cited on page 208.)

[How96] Scott Howard. A background debugging mode driver package for modular
microcontrollers. Semiconductor Application Note AN1230/D, Motorola Inc.,
1996. (Cited on pages 7 and 63.)

[HRP15] Lena Herscheid, Daniel Richter, and Andreas Polze. Hovac: A con�gurable
fault injection framework for benchmarking the dependability of C/C++ ap-
plications. In Proceedings of the 2015 IEEE International Conference on Soft-

ware Quality, Reliability and Security (QRS ’15), pages 1–10, August 2015. doi:
10.1109/QRS.2015.12. (Cited on page 58.)

[HRS95] Seungjae Han, Harold A. Rosenberg, and Kang G. Shin. DOCTOR: An inte-
grated software fault injection environment. In Proceedings of the Interna-

tional Computer Performance and Dependability Symposium, pages 204–213,
April 1995. doi: 10.1109/IPDS.1995.395831. (Cited on pages 58 and 64.)

[HSK+14] Andrea Höller, Gerhard Schönfelder, Nermin Kajtazovic, Tobias Rauter, and
Christian Kreiner. FIES: A fault injection framework for the evaluation of
self-tests for COTS-based safety-critical systems. In Proceedings of the 15th

International Workshop on Microprocessor Test and Veri�cation (MTV 2014),
pages 105–110. IEEE Computer Society Press, December 2014. doi: 10.1109/
MTV.2014.27. (Cited on page 67.)

[HSS12] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. Cosmic rays
don’t strike twice: Understanding the nature of DRAM errors and the im-
plications for system design. In Proceedings of the 17th International Con-

ference on Architectural Support for Programming Languages and Operating

238 bibliography

Systems (ASPLOS ’12), pages 111–122, New York, NY, USA, 2012. ACM. doi:
10.1145/2150976.2150989. (Cited on pages 2, 28, and 37.)

[HTI97] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault injection
techniques and tools. IEEE Computer, 30(4):75–82, April 1997. doi: 10.1109/
2.585157. (Cited on pages 4, 50, 51, and 203.)

[HTV07] William Hoarau, Sébastien Tixeuil, and Fabien Vauchelles. FAIL-FCI: Versa-
tile fault injection. Future Generation Computer Systems, 23(7):913–919, 2007.
doi: 10.1016/j.future.2007.01.005. (Cited on page 84.)

[HUD+14a] Martin Ho�mann, Peter Ulbrich, Christian Dietrich, Horst Schirmeier,
Daniel Lohmann, and Wolfgang Schröder-Preikschat. Experiences with
software-based soft-error mitigation using AN codes. Software Quality Jour-
nal, pages 1–27, November 2014. doi: 10.1007/s11219-014-9260-4. (Cited on
pages vi, 8, 42, 44, 145, and 209.)

[HUD+14b] Martin Ho�mann, Peter Ulbrich, Christian Dietrich, Horst Schirmeier,
Daniel Lohmann, and Wolfgang Schröder-Preikschat. A practitioner’s guide
to software-based soft-error mitigation using AN-codes. In Proceedings of the

15th IEEE International Symposium on High Assurance Systems Engineering

(HASE ’14), pages 33–40, Miami, Florida, USA, January 2014. IEEE Computer
Society Press. doi: 10.1109/HASE.2014.14. (Cited on pages vi, 8, 42, 44, 145,
and 209.)

[HVAN14] Siva Kumar Sastry Hari, Radha Venkatagiri, Sarita V. Adve, and Helia
Naeimi. GangES: Gang error simulation for hardware resiliency evalua-
tion. SIGARCH Computer Architecture News, 42(3):61–72, June 2014. doi:
10.1145/2678373.2665685. (Cited on pages 10, 73, and 74.)

[HWS10] Kashif Hameed, Rob Williams, and Jim Smith. Separation of fault toler-
ance and non-functional concerns: Aspect oriented patterns and evaluation.
Journal of Software Engineering and Applications, 3(4):303–311, 2010. doi:
10.4236/jsea.2010.34036. (Cited on page 45.)

[IEC98] IEC. IEC 61508 – Functional safety of electrical/electronic/programmable elec-

tronic safety-related systems. International Electrotechnical Commission,
Geneva, Switzerland, December 1998. (Cited on page 2.)

[II99] IEEE-ISTO. The Nexus 5001 Forum Standard for a Global Embedded Proces-

sor Debug Interface. IEEE Computer Society Press, 1999. (Cited on pages 7
and 63.)

[Int08] International Roadmap Committee. International technology roadmap for
semiconductors, 2008 update. http://www.itrs.net/, 2008. (Cited on page 19.)

[Int10] International Roadmap Committee. International technology roadmap for
semiconductors, 2010 update. http://www.itrs.net/, 2010. (Cited on page 19.)

[Int11] International Roadmap Committee. International technology roadmap for
semiconductors, 2011 edn. (executive summary). http://www.itrs.net/, 2011.
(Cited on page 19.)

[Int13] International Roadmap Committee. International technology roadmap for
semiconductors, 2013 edn. (executive summary). http://www.itrs.net/, 2013.
(Cited on pages 1 and 19.)

[ISO11] ISO. ISO 26262-6:2011: Road vehicles – Functional safety – Part 6: Product devel-

opment at the software level. International Organization for Standardization,
Geneva, Switzerland, 2011. (Cited on page 2.)

http://www.itrs.net/
http://www.itrs.net/
http://www.itrs.net/
http://www.itrs.net/

bibliography 239

[JAR+94] Eric Jenn, Jean Arlat, Marcus Rimén, Joakim Ohlsson, and Johan Karls-
son. Fault injection into VHDL models: The MEFISTO tool. In Proceed-

ings of the 24th Annual International Symposium on Fault-Tolerant Comput-

ing (FTCS ’94), pages 66–75. IEEE Computer Society Press, June 1994. doi:
10.1109/FTCS.1994.315656. (Cited on page 66.)

[JED01] JEDEC Solid State Technology Association. JESD85: Methods for Calculating

Failure Rates in Units of FITs, July 2001. (Cited on pages 23 and 29.)

[JGS11] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. PREFAIL: A pro-
grammable tool for multiple-failure injection. ACM SIGPLAN Notices,
46(10):171–188, October 2011. doi: 10.1145/2076021.2048082. (Cited on
page 84.)

[JNW08] Bruce Jacob, Spencer W. Ng, and David T. Wang. Memory Systems: Cache,

DRAM, Disk. Morgan Kaufmann Publishers Inc., 2008. (Cited on page 26.)

[Joh08] Andréas Johansson. Robustness Evaluation of Operating Systems. PhD thesis,
TU Darmstadt, 2008. (Cited on pages 58 and 75.)

[JS05] Andréas Johansson and Neeraj Suri. Error propagation pro�ling of oper-
ating systems. In Proceedings of the 35th IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN ’05), pages 86–95, June/July 2005.
doi: 10.1109/DSN.2005.45. (Cited on page 75.)

[JSM07] Andréas Johansson, Neeraj Suri, and Brendan Murphy. On the selection
of error model(s) for OS robustness evaluation. In Proceedings of the 37th

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

’07), pages 502–511. IEEE Computer Society Press, June 2007. doi: 10.1109/
DSN.2007.71. (Cited on page 58.)

[KDC05] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging oper-
ating systems with time-traveling virtual machines. In Proceedings of the

2005 USENIX Annual Technical Conference, Berkeley, CA, USA, April 2005.
USENIX Association. (Cited on page 170.)

[KDK+89] Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani, Wolf-
gang Schwabl, Christoph Senft, and Ralph Zainlinger. Distributed fault-
tolerant real-time systems: The Mars approach. IEEE Micro, 9(1):25–40,
February 1989. doi: 10.1109/40.16792. (Cited on pages 60 and 63.)

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
In Proceedings of the 41st International Symposium on Computer Architecture

(ISCA ’14), pages 361–372, Piscataway, NJ, USA, June 2014. IEEE Computer
Society Press. doi: 10.1145/2678373.2665726. (Cited on page 31.)

[KDN14] Maha Kooli and Giorgio Di Natale. A survey on simulation-based fault
injection tools for complex systems. In Proceedings of the 9th Interna-

tional Conference on Design & Technology of Integrated Systems in Nanoscale

Era (DTIS ’14), pages 1–6. IEEE Computer Society Press, May 2014. doi:
10.1109/DTIS.2014.6850649. (Cited on page 4.)

[KFA+94] Johan Karlsson, Peter Folkesson, Jean Arlat, Yves Crouzet, Günther H. Leber,
and Johannes Reisinger. Evaluation of the MARS fault tolerance mecha-
nisms using three physical fault injection techniques. In 3rd IEEE Interna-

tional Workshop on Integrating Error Models with Fault Injection, pages 21–
22, Washington, DC, USA, 1994. IEEE Computer Society Press. (Cited on
page 60.)

240 bibliography

[KFA+95a] Johan Karlsson, Peter Folkesson, Jean Arlat, Yves Crouzet, and Günther H.
Leber. Integration and comparison of three physical fault injection tech-
niques. In Brian Randell, Jean-Claude Laprie, Hermann Kopetz, and Bev
Littlewood, editors, Predictably Dependable Computing Systems, ESPRIT Ba-
sic Research Series, pages 309–327. Springer Berlin Heidelberg, 1995. doi:
10.1007/978-3-642-79789-7_18. (Cited on page 60.)

[KFA+95b] Johan Karlsson, Peter Folkesson, Jean Arlat, Yves Crouzet, Günther H. Leber,
and Johannes Reisinger. Application of three physical fault injection tech-
niques to the experimental assessment of the MARS architecture. In Pro-

ceedings of the Conference on Dependable Computing for Critical Applica-

tions (DCCA ’95), Washington, DC, USA, 1995. IEEE Computer Society Press.
(Cited on page 60.)

[KGLT91] Johan Karlsson, Ulf Gunne�o, Peter Lidén, and Jan Torin. Two fault injection
techniques for test of fault handling mechanisms. In Proceedings of the 1991

International Test Conference (ITC ’91), October 1991. doi: 10.1109/TEST.1991.
519504. (Cited on pages 60 and 62.)

[KI94] Wei-lun Kao and Ravishankar K. Iyer. DEFINE: A distributed fault injection
and monitoring environment. In Proceedings of the IEEE Workshop on Fault-

Tolerant Parallel and Distributed Systems, pages 252–259, June 1994. doi: 10.
1109/FTPDS.1994.494497. (Cited on page 64.)

[Kil76] Jack S. Kilby. Invention of the integrated circuit. IEEE Transactions on Elec-

tron Devices, 23(7):648–654, July 1976. doi: 10.1109/T-ED.1976.18467. (Cited
on page 1.)

[KIR+99] Zbigniew Kalbarczyk, Ravishankar K. Iyer, Gregory L. Ries, Jaqdish U. Pa-
tel, Myeong S. Lee, and Yuxiao Xiao. Hierarchical simulation approach to
accurate fault modeling for system dependability evaluation. IEEE Transac-

tions on Software Engineering, 25(5):619–632, September/October 1999. doi:
10.1109/32.815322. (Cited on page 58.)

[KIT93] Wei-lun Kao, Ravishankar K. Iyer, and Dong Tang. FINE: A fault injection
and monitoring environment for tracing the UNIX system behavior under
faults. IEEE Transactions on Software Engineering, 19(11):1105–1118, Novem-
ber 1993. doi: 10.1109/32.256857. (Cited on page 64.)

[KK07] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007. (Cited on pages 23 and 34.)

[KKA93] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. EMAX:
An automatic extractor of high-level error models. In Proceedings of the

9th AIAA Computing in Aerospace Conference, pages 1297–1306. Ameri-
can Institute of Aeronautics and Astronautics, October 1993. doi: 10.2514/
6.1993-4698. (Cited on page 58.)

[KKA95] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. FERRARI:
A �exible software-based fault and error injection system. IEEE Transactions
on Computers, 44:248–260, 1995. (Cited on pages 63 and 65.)

[KKW+15] Naghmeh Karimi, Arun Karthik Kanuparthi, Xueyang Wang, Ozgur
Sinanoglu, and Ramesh Karri. MAGIC: Malicious aging in circuits/cores.
ACM Transactions on Architecture and Code Optimization (TACO), 12(1):5:1–
5:25, April 2015. doi: 10.1145/2724718. (Cited on page 33.)

[KLD+94] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunne�o. Using
heavy-ion radiation to validate fault-handling mechanisms. IEEE Micro,
14(1):8–23, February 1994. doi: 10.1109/40.259894. (Cited on pages 60 and 61.)

bibliography 241

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings of the 11th Euro-
pean Conference on Object-Oriented Programming (ECOOP ’97), volume 1241
of Lecture Notes in Computer Science, pages 220–242. Springer-Verlag, June
1997. doi: 10.1007/BFb0053381. (Cited on pages 45, 79, 85, and 93.)

[KMJM08] Naghmeh Karimi, Michail Maniatakos, Abhijit Jas, and Yiorgos Makris. On
the correlation between controller faults and instruction-level errors in mod-
ern microprocessors. In Proceedings of the 2008 International Test Conference

(ITC ’08). IEEE Computer Society Press, October 2008. doi: 10.1109/TEST.
2008.4700613. (Cited on page 58.)

[KNKA96] Ghani A. Kanawati, V. S. S. Nair, Narayanan Krishnamurthy, and Jacob A.
Abraham. Evaluation of integrated system-level checks for on-line error
detection. In Proceedings of the IEEE International Computer Performance and

Dependability Symposium (IPDS ’96), pages 292–301. IEEE Computer Society
Press, September 1996. doi: 10.1109/IPDS.1996.540230. (Cited on page 43.)

[Koe93] Thomas Koenig. assert(3) – Linux man page. http://linux.die.net/man/3/
assert, 1993. (Cited on page 40.)

[Kon08] Kai Konrad. Implications of microcontroller software and tool-
ing on safety-critical automotive systems. Presentation at Auto-
motive Electronics and Electrical Systems Forum, Stuttgart. Available
online: http://www.ukintpress-conferences.com/conf/08eac_conf/pdf/day_
3/kaikonrad.pdf, 2008. Accessed: 2015-02-25. (Cited on page 3.)

[Kor12] Ingo Korb. A cross-layer analysis of error impact on the instruction exe-
cution in an 8-bit microprocessor. Diploma thesis, Technische Universität
Dortmund, 2012. (Cited on page 58.)

[KSD+97] Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, and
Ted Marz. Comparing operating systems using robustness benchmarks. In
Proceedings of the 16th IEEE Symposium on Reliable Distributed Systems (SRDS

’97), pages 72–79. IEEE Computer Society Press, October 1997. doi: 10.1109/
RELDIS.1997.632800. (Cited on page 65.)

[Kur05] Ray Kurzweil. The Singularity Is Near: When Humans Transcend Biology.
Viking Press Inc., 2005. http://www.singularity.com/charts/page57.html.
(Cited on page 19.)

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In Proceedings of the 2004 Interna-

tional Symposium on Code Generation and Optimization (CGO’04), Los Alami-
tos, CA, USA, March 2004. IEEE Computer Society Press. (Cited on pages 64
and 114.)

[LAK92] Jean-Claude Laprie, Algirdas Avižienis, and Hermann Kopetz, editors. De-

pendability: Basic Concepts and Terminology. Springer-Verlag, Secaucus, NJ,
USA, 1992. (Cited on pages 20 and 21.)

[Lap85] Jean-Claude Laprie. Dependable computing and fault tolerance: Concepts
and terminology. In Proceedings of the 15th Annual International Symposium

on Fault-Tolerant Computing (FTCS ’85), pages 2–11. IEEE Computer Society
Press, 1985. (Cited on pages 20 and 21.)

[Law96] Kevin P. Lawton. Bochs: A portable PC emulator for Unix/X. Linux Journal,
1996(29es):7, 1996. (Cited on pages 86, 87, and 93.)

http://linux.die.net/man/3/assert
http://linux.die.net/man/3/assert
http://www.ukintpress-conferences.com/conf/08eac_conf/pdf/day_3/kaikonrad.pdf
http://www.ukintpress-conferences.com/conf/08eac_conf/pdf/day_3/kaikonrad.pdf
http://www.singularity.com/charts/page57.html

242 bibliography

[LCMV09] Régis Leveugle, A. Calvez, Paolo Maistri, and Pierre Vanhauwaert. Statistical
fault injection: Quanti�ed error and con�dence. In Proceedings of the 2009

Conference onDesign, Automation& Test in Europe (DATE ’09), pages 502–506.
IEEE Computer Society Press, April 2009. doi: 10.1109/DATE.2009.5090716.
(Cited on pages 53, 68, 150, and 188.)

[LCP+09] Galen Lyle, Shelley Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk, and
Ravishankar K. Iyer. An end-to-end approach for the automatic derivation
of application-aware error detectors. In Proceedings of the 39th IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks (DSN ’09), pages
584–589, June/July 2009. doi: 10.1109/DSN.2009.5270291. (Cited on page 3.)

[LCWV13] Dong Li, Zizhong Chen, Panruo Wu, and Je�rey S. Vetter. Rethinking
algorithm-based fault tolerance with a cooperative software-hardware ap-
proach. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis (SC ’13), pages 44:1–44:12.
ACM Press, 2013. doi: 10.1145/2503210.2503226. (Cited on page 39.)

[LFW+15] Qining Lu, Mostafa Farahani, Jiesheng Wei, Anna Thomas, and Karthik Pat-
tabiraman. LLFI: An intermediate code-level fault injection tool for hard-
ware faults. In Proceedings of the IEEE International Conference on Software

Quality, Reliability and Security (QRS ’15), pages 11–16. IEEE Computer Soci-
ety Press, August 2015. doi: 10.1109/QRS.2015.13. (Cited on pages 64 and 81.)

[LH07a] Daniel Larsson and Rainer Hähnle. Symbolic fault injection. In Bernhard
Beckert, editor, Proceedings of the 4th International Workshop on Veri�ca-

tion (VERIFY ’07), volume 259 of CEUR Workshop Proceedings, pages 85–103.
CEUR-WS.org, July 2007. (Cited on page 68.)

[LH07b] Aiguo Li and Bingrong Hong. Software implemented transient fault detec-
tion in space computer. Aerospace Science and Technology, 11(2):245–252,
2007. doi: 10.1016/j.ast.2006.06.006. (Cited on page 44.)

[LHSC10] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. A realistic evaluation
of memory hardware errors and software system susceptibility. In Proceed-

ings of the 2010 USENIX Annual Technical Conference, Berkeley, CA, USA,
2010. USENIX Association. (Cited on pages 27, 56, and 57.)

[LJ10] Matthew Leeke and Arshad Jhumka. Towards understanding the importance
of variables in dependable software. In Proceedings of the 8th European De-

pendable Computing Conference (EDCC ’10), pages 85–94, Washington, DC,
USA, 2010. IEEE Computer Society Press. doi: 10.1109/EDCC.2010.20. (Cited
on page 75.)

[LJ11] Matthew Leeke and Arshad Jhumka. An automated wrapper-based ap-
proach to the design of dependable software. In Proceedings of the 4th In-

ternational Conference on Dependability (DEPEND ’11). IARIA, 2011. (Cited
on pages 11, 40, and 75.)

[LMX04] Nik Looker, Malcolm Munro, and Jie Xu. WS-FIT: A tool for dependabil-
ity analysis of web services. In Proceedings of the 28th International Con-

ference on Computer Software and Applications Conference (COMPSAC ’04),
Los Alamitos, CA, USA, 2004. IEEE Computer Society Press. doi: 10.1109/
CMPSAC.2004.1342690. (Cited on page 58.)

[LRK+09] Man-Lap Li, Pradeep Ramachandran, Ulya R. Karpuzcu, Siva Kumar Sas-
try Hari, and Sarita V. Adve. Accurate microarchitecture-level fault mod-
eling for studying hardware faults. In Proceedings of the 15th IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA ’09),
pages 105–116. IEEE Computer Society Press, February 2009. doi: 10.1109/
HPCA.2009.4798242. (Cited on page 58.)

bibliography 243

[LSHC07] Xin Li, Kai Shen, Michael C. Huang, and Lingkun Chu. A memory soft error
measurement on production systems. In Proceedings of the 2007 USENIX

Annual Technical Conference, Berkeley, CA, USA, 2007. USENIX Association.
(Cited on pages 27 and 57.)

[LT13] Jianli Li and Qingping Tan. SmartInjector: Exploiting intelligent fault in-
jection for SDC rate analysis. In Proceedings of the IEEE International Sym-

posium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFT 2013), pages 236–242. IEEE Computer Society Press, October 2013. doi:
10.1109/DFT.2013.6653612. (Cited on pages 6, 10, 58, 67, 71, 74, 77, 151,
and 153.)

[Luk14] Florian Lukas. Design and implementation of a soft-error resilient OSEK
real-time operating system. Master thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg, May 2014. (Cited on page 208.)

[LWW+02] Michael N. Lovellette, K. S. Wood, D. L. Wood, Jim H. Beall, Philip P. Shirvani,
Namsuk Oh, and Edward J. McCluskey. Strategies for fault-tolerant, space-
based computing: Lessons learned from the ARGOS testbed. In Proceedings

of the 2002 IEEEAerospace Conference, pages 5–2109–5–2119. IEEE Computer
Society Press, 2002. doi: 10.1109/AERO.2002.1035377. (Cited on pages 2, 41,
and 48.)

[LX07] Nik Looker and Jie Xu. Dependability assessment of grid middleware. In Pro-

ceedings of the 37th IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN ’07), pages 125–130, June 2007. doi: 10.1109/DSN.2007.31.
(Cited on page 58.)

[MAM84] Aamer Mahmood, Dorothy M. Andrews, and Edward J. McCluskey. Exe-
cutable assertions and �ight software. In Proceedings of the 6th AIAA/IEEE

Digital Avionics Systems Conference (DASC ’84), pages 346–351, 1984. doi:
10.2514/6.1984-2726. (Cited on page 40.)

[Mar11] Peter Marwedel. Embedded System Design. Springer-Verlag, 2nd edition,
2011. doi: 10.1007/978-94-007-0257-8. (Cited on pages 22, 23, and 48.)

[Mas92] Henry Massalin. Synthesis: An E�cient Implementation of Fundamental Op-

erating System Services. Dissertation, Columbia University, New York, NY,
USA, 1992. UMI Order No. GAX92-32050. (Cited on page 207.)

[Mas02] Anthony Massa. Embedded Software Development with eCos. Prentice Hall
Professional Technical Reference, 2002. (Cited on page 118.)

[MBC10] Paul D. Marinescu, Radu Banabic, and George Candea. An extensible tech-
nique for high-precision testing of recovery code. In Proceedings of the

2010 USENIX Annual Technical Conference, pages 23–23. USENIX Associa-
tion, 2010. (Cited on page 65.)

[MC09] Paul D. Marinescu and George Candea. LFI: A practical and general library-
level fault injector. In Proceedings of the 39th IEEE/IFIP International Confer-

ence on Dependable Systems and Networks (DSN ’09), pages 379–388, June/
July 2009. doi: 10.1109/DSN.2009.5270313. (Cited on page 65.)

[McP74] W. S. McPhee. Operating system integrity in OS/VS2. IBM Systems Journal,
13(3):230–252, September 1974. doi: 10.1147/sj.133.0230. (Cited on page 135.)

[MCR+12] Antonio Martínez-Álvarez, Sergio A. Cuenca-Asensi, Felipe Restrepo-Calle,
Francesco R. Palomo Pinto, Hipólito Guzmán-Miranda, and Miguel A.
Aguirre. Compiler-directed soft error mitigation for embedded systems.
IEEE Transactions on Dependable and Secure Computing, 9(2):159–172, March
2012. doi: 10.1109/TDSC.2011.54. (Cited on page 3.)

244 bibliography

[MCS95] Henrique S. Madeira, João Carreira, and João Gabriel Silva. Injection of faults
in complex computers. In IEEE Workshop on Evaluation Techniques for De-

pendable Systems, 1995. (Cited on pages 65, 79, and 81.)

[MCV00] Henrique S. Madeira, Diamantino Costa, and Marco Vieira. On the emula-
tion of software faults by software fault injection. In Proceedings of the 30th

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

’00), pages 417–426, June 2000. doi: 10.1109/ICDSN.2000.857571. (Cited on
pages 4 and 58.)

[MEFR04] Shubhendu S. Mukherjee, Joel Emer, Tryggve Fossum, and Steven K. Rein-
hardt. Cache scrubbing in microprocessors: Myth or necessity? In Proceed-

ings of the 10th IEEE Paci�c Rim International Symposium on Dependable

Computing (PRDC ’04), pages 37–42. IEEE Computer Society Press, March
2004. doi: 10.1109/PRDC.2004.1276550. (Cited on page 23.)

[Mem13] Memory Alpha Star Trek Wiki. Brak’lul. http://en.memory-alpha.wikia.
com/wiki/Brak’lul, 2013. (Cited on page 34.)

[MER05] Shubhendu S. Mukherjee, Joel Emer, and Steven K. Reinhardt. The soft error
problem: An architectural perspective. In Proceedings of the 11th IEEE Inter-

national Symposium on High-Performance Computer Architecture (HPCA ’05),
pages 243–247. IEEE Computer Society Press, 2005. doi: 10.1109/HPCA.2005.
37. (Cited on pages 23 and 31.)

[Met16] Christian Metz. Automated application of fault tolerance measures in the
KESO multi-JVM. Master thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg, February 2016. (Cited on page 208.)

[MFS98] Wilfrido A. Moreno, Fernando J. Falquez, and Nitin Saini. Fault tolerant
design validation through laser fault injection. In Proceedings of the 1998 2nd

IEEE International Caracas Conference on Devices, Circuits and Systems, pages
132–137. IEEE Computer Society Press, March 1998. doi: 10.1109/ICCDCS.
1998.705820. (Cited on page 61.)

[MGM+99] R. J. Martínez, Pedro J. Gil, G. Martín, C. Pérez, and Juan José Serrano. Ex-
perimental validation of high-speed fault-tolerant systems using physical
fault injection. In Proceedings of the Conference on Dependable Computing

for Critical Applications (DCCA ’99), pages 249–265, November 1999. doi:
10.1109/DCFTS.1999.814299. (Cited on page 62.)

[MHB+05] Ricardo Jorge Maia, Luis Henriques, Ricardo Barbosa, Diamantino Costa,
and Henrique S. Madeira. Xception fault injection and robustness testing
framework: a case-study of testing RTEMS. In VI Test and Fault Tolerance

Workshop, 2005. (Cited on page 63.)

[MHCM02] Ricardo Jorge Maia, Luis Henriques, Diamantino Costa, and Henrique S.
Madeira. Xception – enhanced automated fault-injection environment. In
Proceedings of the 32nd IEEE/IFIP International Conference on Dependable Sys-

tems and Networks (DSN ’02). IEEE Computer Society Press, June 2002. (Cited
on pages 63, 65, 79, and 81.)

[MHH+05] Sarah E. Michalak, Kevin W. Harris, Nicolas W. Hengartner, Bruce E. Takala,
and Stephen A. Wender. Predicting the number of fatal soft errors in Los
Alamos National Laboratory’s ASC Q supercomputer. IEEE Transactions on

Device and Materials Reliability, 5(3):329–335, September 2005. doi: 10.1109/
TDMR.2005.855685. (Cited on page 27.)

[MHZA03] Jose Maiz, Scott Hareland, Kevin Zhang, and Patrick Armstrong. Charac-
terization of multi-bit soft error events in advanced SRAMs. In Proceedings

http://en.memory-alpha.wikia.com/wiki/Brak'lul
http://en.memory-alpha.wikia.com/wiki/Brak'lul

bibliography 245

of the IEEE International Electron Devices Meeting (IEDM ’03), pages 21.4.1–
21.4.4. IEEE Computer Society Press, December 2003. doi: 10.1109/IEDM.
2003.1269335. (Cited on page 28.)

[Mit98] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA, USA, 1998. (Cited on page 159.)

[Mit14] Sparsh Mittal. A survey of techniques for improving energy e�ciency in em-
bedded computing systems. International Journal of Computer Aided Engi-

neering and Technology, 6(4):440–459, 2014. doi: 10.1504/IJCAET.2014.065419.
(Cited on page 18.)

[MKGT92] Seyed-Ghassem Miremadi, Johan Karlsson, Ulf Gunne�o, and Jan Torin. Two
software techniques for on-line error detection. In Proceedings of the 22nd

Annual International Symposium on Fault-Tolerant Computing (FTCS ’92),
pages 328–335. IEEE Computer Society Press, July 1992. doi: 10.1109/FTCS.
1992.243568. (Cited on pages 39, 40, 43, and 62.)

[MKT+09] Michail Maniatakos, Naghmeh Karimi, Chandra Tirumurti, Abhijit Jas, and
Yiorgos Makris. Instruction-level impact comparison of RT- vs. gate-level
faults in a modern microprocessor controller. In Proceedings of the 27th IEEE

VLSI Test Symposium (VTS ’09), pages 9–14. IEEE Computer Society Press,
May 2009. doi: 10.1109/VTS.2009.32. (Cited on page 58.)

[MKT+11] Michail Maniatakos, Naghmeh Karimi, Chandra Tirumurti, Abhijit Jas,
and Yiorgos Makris. Instruction-level impact analysis of low-level faults
in a modern microprocessor controller. IEEE Transactions on Comput-

ers, 60(9):1260–1273, September 2011. doi: 10.1109/TC.2010.60. (Cited on
page 58.)

[MRMS94] Henrique S. Madeira, Mário Rela, Francisco Moreira, and João Gabriel Silva.
RIFLE: A general purpose pin-level fault injector. In Klaus Echtle, Dieter
Hammer, and David Powell, editors, Proceedings of the 1st European Depend-
able Computing Conference (EDCC ’94), pages 197–216. Springer-Verlag, 1994.
doi: 10.1007/3-540-58426-9_132. (Cited on page 62.)

[MS08] Darek Mihocka and Stanislav Shwartsman. Virtualization without direct ex-
ecution or jitting: Designing a portable virtual machine infrastructure. In 1st

Workshop on Architectural and Microarchitectural Support for Binary Trans-

lation (AMAS-BT ’08), June 2008. (Cited on pages 87 and 93.)

[MSB11] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software

Testing. John Wiley & Sons, Inc., New York, NY, USA, 3rd edition, 2011.
(Cited on page 51.)

[MT90] Colin M. Maunder and Rodham E. Tulloss. The Test Access Port and Boundary-
Scan Architecture. IEEE Computer Society Press, 1990. (Cited on pages 7, 63,
and 169.)

[MT95] Seyed-Ghassem Miremadi and Jan Torin. Evaluating processor-behavior and
three error-detection mechanisms using physical fault-injection. IEEE Trans-
actions on Reliability, 44(3):441–454, September 1995. doi: 10.1109/24.406580.
(Cited on pages 43, 60, and 62.)

[Muk08] Shubu Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008. (Cited on pages 1, 2, 17, 18,
20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 36, 37, 41, 62, and 197.)

[MW79] Timothy C. May and Murray H. Woods. Alpha-particle-induced soft errors
in dynamic memories. IEEE Transactions on Electron Devices, 26(1):2–9, Jan-
uary 1979. doi: 10.1109/T-ED.1979.19370. (Cited on pages 4, 27, and 57.)

246 bibliography

[MWE+03a] Shubendu S. Mukherjee, Christopher T. Weaver, Joel Emer, Steven K. Rein-
hardt, and Todd Austin. Measuring architectural vulnerability factors. IEEE
Micro, 23(6):70–75, November 2003. doi: 10.1109/MM.2003.1261389. (Cited
on pages 54, 76, and 203.)

[MWE+03b] Shubhendu S. Mukherjee, Christopher T. Weaver, Joel Emer, Steven K. Rein-
hardt, and Todd Austin. A systematic methodology to compute the archi-
tectural vulnerability factors for a high-performance microprocessor. In
Proceedings of the 36th Annual IEEE/ACM Symposium on Microarchitecture,
pages 29–40, Los Alamitos, CA, USA, December 2003. IEEE Computer Soci-
ety Press. doi: 10.1109/MICRO.2003.1253181. (Cited on pages 53, 54, 76, 203,
and 205.)

[MWKM15] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. Revisiting mem-
ory errors in large-scale production data centers: Analysis and modeling of
new trends from the �eld. In Proceedings of the 45th IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN ’15), pages 415–426.
IEEE Computer Society Press, June 2015. doi: 10.1109/DSN.2015.57. (Cited
on page 56.)

[NCDM13] Roberto Natella, Domenico Cotroneo, João A. Durães, and Henrique S.
Madeira. On fault representativeness of software fault injection. IEEE Trans-
actions on Software Engineering, 39(1):80–96, January 2013. doi: 10.1109/TSE.
2011.124. (Cited on pages 4 and 58.)

[NDO11] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. Cycles, cells
and platters: An empirical analysis of hardware failures on a million con-
sumer PCs. In Proceedings of the ACM SIGOPS/EuroSys European Conference

on Computer Systems 2011 (EuroSys ’11), pages 343–356, New York, NY, USA,
April 2011. ACM Press. doi: 10.1145/1966445.1966477. (Cited on page 27.)

[Neu10] Jens Neuhalfen. Proactive memory error detection for the Linux kernel.
Diplomarbeit, TU Dortmund, June 2010. (Cited on page 14.)

[Nic10] Michael Nicolaidis. Soft Errors in Modern Electronic Systems, volume 41 of
Frontiers in Electronic Testing. Springer-Verlag, 1st edition, 2010. doi: 10.1007/
978-1-4419-6993-4. (Cited on pages 23 and 31.)

[NIS] NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/

div898/handbook/ . Retrieved 2015-05-19. (Cited on pages 62 and 197.)

[Nor96] Eugene Normand. Single event upset at ground level. IEEE Transactions on

Nuclear Science, 43(6):2742–2750, 1996. (Cited on pages 27 and 57.)

[NSV04] Bogdan Nicolescu, Yvon Savaria, and Raoul Velazco. Software detection
mechanisms providing full coverage against single bit-�ip faults. IEEE Trans-
actions on Nuclear Science, 51(6):3510–3518, December 2004. doi: 10.1109/
TNS.2004.839110. (Cited on pages 10, 199, and 200.)

[NTA78] Ravindra Nair, Satish M. Thatte, and Jacob A. Abraham. E�cient algorithms
for testing semiconductor random-access memories. IEEE Transactions on

Computers, C-27(6):572–576, June 1978. doi: 10.1109/TC.1978.1675150. (Cited
on page 56.)

[NV03] Bogdan Nicolescu and Raoul Velazco. Detecting soft errors by a purely soft-
ware approach: method, tools and experimental results. In Embedded Soft-

ware for SoC, pages 39–51. Springer-Verlag, 2003. (Cited on page 3.)

[NVSR01] Bogdan Nicolescu, Raoul Velazco, and Matteo Sonza Reorda. E�ectiveness
and limitations of various software techniques for “soft error” detection: A

http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/

bibliography 247

comparative study. In 7th International On-Line TestingWorkshop, pages 172–
177. IEEE Computer Society Press, July 2001. doi: 10.1109/OLT.2001.937838.
(Cited on page 41.)

[NX06] Vijaykrishnan Narayanan and Yuan Xie. Reliability concerns in embedded
system designs. IEEE Computer, 39(1):118–120, 2006. (Cited on page 1.)

[OR95] Joakim Ohlsson and Marcus Rimén. Implicit signature checking. In Proceed-

ings of the 25th Annual International Symposium on Fault-Tolerant Comput-

ing (FTCS ’95), pages 218–227. IEEE Computer Society Press, June 1995. doi:
10.1109/FTCS.1995.466976. (Cited on page 44.)

[ORQ+14] Daniel A. G. Oliveira, Paolo Rech, Heather M. Quinn, Thomas D. Fairbanks,
Laura Monroe, Sarah E. Michalak, Christine Anderson-Cook, Philippe O. A.
Navaux, and Luigi Carro. Modern GPUs radiation sensitivity evaluation
and mitigation through duplication with comparison. IEEE Transactions

on Nuclear Science, 61(6):3115–3122, December 2014. doi: 10.1109/TNS.2014.
2362014. (Cited on page 60.)

[ORT+96] Timothy J. O’Gorman, John M. Ross, Allen H. Taber, James F. Ziegler, Hans P.
Muhlfeld, Charles J. Montrose, Huntington W. Curtis, and James L. Walsh.
Field testing for cosmic ray soft errors in semiconductor memories. IBM

Journal of Research and Development, 40(1):41–50, January 1996. doi: 10.1147/
rd.401.0041. (Cited on page 27.)

[OSM02] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error detec-
tion by duplicated instructions in super-scalar processors. IEEE Transac-

tions on Reliability, 51(1):63–75, March 2002. doi: 10.1109/24.994913. (Cited
on pages 3, 10, and 43.)

[Pan] Pandaboard homepage. http://pandaboard.org. (Cited on page 86.)

[Pan07] Bernd Panzer-Steindel. Data integrity. Technical report, CERN, Geneve,
Switzerland, 2007. (Cited on page 27.)

[PB61] W. Wesley Peterson and David T. Brown. Cyclic codes for error detection.
Proceedings of the IRE, 49(1):228–235, January 1961. doi: 10.1109/JRPROC.
1961.287814. (Cited on page 41.)

[PCZ+08] Andrea Pellegrini, Kypros Constantinides, Dan Zhang, Shobana Sudhakar,
Valeria Bertacco, and Todd Austin. CrashTest: A fast high-�delity FPGA-
based resiliency analysis framework. In Proceedings of the 26th IEEE Interna-

tional Conference on Computer Design (ICCD ’08), pages 363–370. IEEE Com-
puter Society Press, October 2008. doi: 10.1109/ICCD.2008.4751886. (Cited
on pages 66 and 73.)

[Pfo36] Georg Pfotzer. Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Rich-
tung in der Stratosphäre. Zeitschrift für Physik, 102(1–2):41–58, 1936. doi:
10.1007/BF01336830. (Cited on page 29.)

[PGZ08] Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn. Samurai:
Protecting critical data in unsafe languages. In Proceedings of the ACM

SIGOPS/EuroSys European Conference on Computer Systems 2008 (EuroSys

’08), pages 219–232, New York, NY, USA, 2008. ACM Press. doi: 10.1145/
1352592.1352616. (Cited on pages 3 and 42.)

[Pig05] Michel Pignol. How to cope with SEU/SET at system level? In Proceedings of

the 11th International On-Line Testing Symposium (IOLTS ’05), pages 315–318.
IEEE Computer Society Press, July 2005. doi: 10.1109/IOLTS.2005.34. (Cited
on page 43.)

http://pandaboard.org

248 bibliography

[PKI05] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K. Iyer.
Application-based metrics for strategic placement of detectors. In Proceed-

ings of the 11th IEEE Paci�c Rim International Symposium on Dependable

Computing (PRDC ’05), pages 75–82. IEEE Computer Society Press, 2005.
(Cited on page 11.)

[PKI07] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Au-
tomated derivation of application-aware error detectors using static anal-
ysis. In Proceedings of the 13th International On-Line Testing Symposium

(IOLTS ’07), pages 211–216. IEEE Computer Society Press, July 2007. doi:
10.1109/IOLTS.2007.21. (Cited on page 11.)

[PKI11] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Auto-
mated derivation of application-aware error detectors using static analysis:
The trusted illiac approach. IEEE Transactions on Dependable and Secure

Computing, 8(1):44–57, January 2011. doi: 10.1109/TDSC.2009.23. (Cited on
page 11.)

[PMAC95] David Powell, Elaine Martins, Jean Arlat, and Yves Crouzet. Estimators
for fault tolerance coverage evaluation. IEEE Transactions on Computers,
44(2):261–274, February 1995. doi: 10.1109/12.364537. (Cited on pages 10,
53, and 188.)

[PMW96] Divya Prasad, John McDermid, and Ian Wand. Dependability terminology:
Similarities and di�erences. Aerospace and Electronic Systems Magazine,
11(1):14–21, January 1996. doi: 10.1109/62.484145. (Cited on pages 21 and 24.)

[PNKI08] Karthik Pattabiraman, Nithin M. Nakka, Zbigniew T. Kalbarczyk, and Rav-
ishankar K. Iyer. SymPLFIED: Symbolic program-level fault injection and
error detection framework. In Proceedings of the 38th IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN ’08), pages 472–481,
June 2008. doi: 10.1109/DSN.2008.4630118. (Cited on pages 11 and 67.)

[PNKI13] Karthik Pattabiraman, Nithin M. Nakka, Zbigniew T. Kalbarczyk, and Rav-
ishankar K. Iyer. SymPLFIED: Symbolic program-level fault injection and
error detection framework. IEEE Transactions on Computers, 62(11):2292–
2307, November 2013. doi: 10.1109/TC.2012.219. (Cited on pages 11 and 67.)

[PPS+10] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James
Cownie. PinPlay: A framework for deterministic replay and reproducible
analysis of parallel programs. In Proceedings of the 8th International Sym-

posium on Code Generation and Optimization (CGO ’10), pages 2–11. ACM
Press, April 2010. doi: 10.1145/1772954.1772958. (Cited on page 170.)

[PRSR98] Paolo Prinetto, Maurizio Rebaudengo, and Matteo Sonza Reorda. Exploiting
the background debugging mode in a fault injection system. In Proceedings of

the IEEE International Computer Performance and Dependability Symposium

(IPDS ’98), page 277. IEEE Computer Society Press, September 1998. doi: 10.
1109/IPDS.1998.707736. (Cited on pages 58, 63, 79, and 172.)

[PRSRV00a] B. Parrotta, Maurizio Rebaudengo, Matteo Sonza Reorda, and Massimo Vi-
olante. New techniques for accelerating fault injection in VHDL descrip-
tions. In Proceedings of the 6th IEEE International On-Line Testing Work-

shop (IOLTW ’00), pages 61–66. IEEE Computer Society Press, July 2000. doi:
10.1109/OLT.2000.856613. (Cited on pages 10 and 73.)

[PRSRV00b] B. Parrotta, Maurizio Rebaudengo, Matteo Sonza Reorda, and Massimo Vi-
olante. Speeding-up fault injection campaigns in VHDL models. In Proceed-

ings of the 19th International Conference on Computer Safety, Reliability and

Security (SAFECOMP ’00), pages 27–36. Springer-Verlag, October 2000. doi:
10.1007/3-540-40891-6_3. (Cited on pages 10 and 73.)

bibliography 249

[PSC+11] Karthik Pattabiraman, Giacinto Paolo Saggese, Daniel Chen, Zbigniew
Kalbarczyk, and Ravishankar K. Iyer. Automated derivation of application-
speci�c error detectors using dynamic analysis. IEEE Transactions on De-

pendable and Secure Computing, 8(5):640–655, September/October 2011. doi:
10.1109/TDSC.2010.19. (Cited on page 11.)

[PSDC07] Stefan Potyra, Volkmar Sieh, and Mario Dal Cin. Evaluating fault-tolerant
system designs using FAUmachine. In Proceedings of the 2nd International

Workshop on Engineering Fault Tolerant Systems (EFTS ’07), New York, NY,
USA, 2007. ACM Press. doi: 10.1145/1316550.1316559. (Cited on pages 6, 58,
66, 78, 81, and 85.)

[PTAB14] Konstantinos Parasyris, Georgios Tziantzoulis, Christos D. Antonopoulos,
and Nikolaos Bellas. GemFI: A fault injection tool for studying the behavior
of applications on unreliable substrates. In Proceedings of the 44th IEEE/I-

FIP International Conference on Dependable Systems and Networks (DSN ’14),
pages 622–629, Washington, DC, USA, June 2014. IEEE Computer Society
Press. (Cited on pages 6, 10, 51, 67, 73, 78, 81, and 85.)

[PWSF15] Thorsten Piper, Stefan Winter, Neeraj Suri, and Thomas E. Fuhrman. On the
e�ective use of fault injection for the assessment of AUTOSAR safety mecha-
nisms. In Proceedings of the 11th European Dependable Computing Conference

(EDCC ’15), pages 85–96. IEEE Computer Society Press, September 2015. doi:
10.1109/EDCC.2015.14. (Cited on page 58.)

[QBRB13] Heather M. Quinn, Dolores A. Black, William H. Robinson, and Stephen P.
Buchner. Fault simulation and emulation tools to augment radiation-
hardness assurance testing. IEEE Transactions on Nuclear Science, 60(3):2119–
2142, June 2013. doi: 10.1109/TNS.2013.2259503. (Cited on pages 61, 197,
and 213.)

[RAA02] Manuel Rodríguez, Arnaud Albinet, and Jean Arlat. MAFALDA-RT: A tool
for dependability assessment of real-time systems. In Proceedings of the 32nd

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

’02), pages 267–272. IEEE Computer Society Press, June 2002. doi: 10.1109/
DSN.2002.1028909. (Cited on pages 59 and 65.)

[Rad13] Lars Rademacher. FailPanda: Fehlerinjektionsexperimente auf einer einge-
betteten ARM-Plattform. Master thesis, Technische Universität Dortmund,
December 2013. (Cited on pages 14 and 208.)

[Rat04] David Ratter. FPGAs on Mars. Xilinx Xcell Journal, pages 8–11, 2004. (Cited
on pages 37 and 38.)

[Rat05] Dominic Rath. OpenOCD: Open On-Chip Debugging. Diploma thesis, FH
Augsburg, July 2005. (Cited on pages 88, 96, and 97.)

[RBQ96] Christophe Rabéjac, Jean-Paul Blanquart, and Jean-Pierre Queille. Exe-
cutable assertions and timed traces for on-line software error detection. In
Proceedings of the 26th Annual International Symposium on Fault-Tolerant

Computing (FTCS ’96), pages 138–147, June 1996. doi: 10.1109/FTCS.1996.
534602. (Cited on pages 40 and 43.)

[RC13] Paolo Rech and Luigi Carro. Experimental evaluation of gpus radiation sen-
sitivity and algorithm-based fault tolerance e�ciency. In Proceedings of the

19th International On-Line Testing Symposium (IOLTS ’13), pages 244–247.
IEEE Computer Society Press, July 2013. doi: 10.1109/IOLTS.2013.6604091.
(Cited on page 60.)

250 bibliography

[RCA+06] George A. Reis, Jonathan Chang, David I. August, Robin Cohn, and Shub-
hendu S. Mukherjee. Con�gurable transient fault detection via dynamic
binary translation. In Proceedings of the 2nd Workshop on Architectural Reli-

ability (WAR ’06), 2006. (Cited on page 203.)

[RCA07] George A. Reis, Jonathan Chang, and David I. August. Automatic instruction-
level software-only recovery. IEEE Micro, 27(1):36–47, January 2007. doi:
10.1109/MM.2007.4. (Cited on page 203.)

[RCE02] Michael Redeker, Bruce F. Cockburn, and Duncan G. Elliott. An investigation
into crosstalk noise in DRAM structures. In Proceedings of the 2002 IEEE

International Workshop on Memory Technology, Design and Testing, MTDT
’02, pages 123–129. IEEE Computer Society Press, 2002. doi: 10.1109/MTDT.
2002.1029773. (Cited on page 31.)

[RCV+05a] George A. Reis, Jonathan Chang, Neil Vachharajani, Shubhendu S. Mukher-
jee, Ram Rangan, and David I. August. Design and evaluation of hybrid
fault-detection systems. In Proceedings of the 32nd International Symposium

on Computer Architecture (ISCA ’05), pages 148–159. IEEE Computer Society
Press, June 2005. doi: 10.1109/ISCA.2005.21. (Cited on pages 37 and 203.)

[RCV+05b] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I. August. SWIFT: Software implemented fault tolerance. In Proceed-

ings of the 3rd International Symposium on Code Generation and Optimization

(CGO ’05), pages 243–254, Los Alamitos, CA, USA, 2005. IEEE Computer So-
ciety Press. doi: 10.1109/CGO.2005.34. (Cited on pages 3, 10, and 43.)

[RCV+05c] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I.
August, and Shubhendu S. Mukherjee. Software-controlled fault tolerance.
ACM Transactions on Architecture and Code Optimization (TACO), 2(4):366–
396, December 2005. doi: 10.1145/1113841.1113843. (Cited on pages 38
and 39.)

[Rec15] Paolo Rech. Personal correspondence, 2014–2015. (Cited on page 61.)

[RKK+08] Pradeep Ramachandran, Prabhakar Kudva, Je�rey Kellington, John Schu-
mann, and Pia Sanda. Statistical fault injection. In Proceedings of the 38th

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

’08), pages 122–127, Washington, DC, USA, June 2008. IEEE Computer Soci-
ety Press. (Cited on pages 53, 68, and 150.)

[RLX+98] Gregory L. Ries, Myeong S. Lee, Yuxiao Xiao, Zbigniew Kalbarczyk,
Jaqdish U. Patel, and Ravishankar K. Iyer. Hierarchical approach to ac-
curate fault modeling for system evaluation. In Proceedings of the IEEE

International Computer Performance and Dependability Symposium (IPDS

’98), pages 249–258. IEEE Computer Society Press, September 1998. doi:
10.1109/IPDS.1998.707727. (Cited on page 58.)

[RM00] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection
via simultaneous multithreading. In Proceedings of the 27th International

Symposium on Computer Architecture (ISCA ’00), pages 25–36, New York, NY,
USA, 2000. ACM Press. doi: 10.1145/339647.339652. (Cited on page 38.)

[RMCJ13] Felipe Restrepo-Calle, Antonio Martínez-Álvarez, Sergio Cuenca-Asensi,
and Antonio Jimeno-Morenilla. Selective SWIFT-R. Journal of Electronic Test-
ing, 29(6):825–838, 2013. doi: 10.1007/s10836-013-5416-6. (Cited on page 3.)

[RMM04] Amir Rajabzadeh, Seyed-Ghassem Miremadi, and Mirzad Mohandespour.
Experimental evaluation of master/checker architecture using power

bibliography 251

supply- and software-based fault injection. In Proceedings of the 10th In-

ternational On-Line Testing Symposium (IOLTS ’04), Washington, DC, USA,
2004. IEEE Computer Society Press. doi: 10.1109/IOLTS.2004.21. (Cited on
page 62.)

[Rot99] Eric Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance
in microprocessors. In Proceedings of the 29th Annual International Sym-

posium on Fault-Tolerant Computing (FTCS ’99), pages 84–91, Washington,
DC, USA, June 1999. IEEE Computer Society Press. doi: 10.1109/FTCS.1999.
781037. (Cited on page 38.)

[RPWD05] Daniele Radaelli, Helmut Puchner, Skip Wong, and Sabbas Daniel. Investiga-
tion of multi-bit upsets in a 150 nm technology SRAM device. IEEE Transac-

tions on Nuclear Science, 52(6):2433–2437, December 2005. doi: 10.1109/TNS.
2005.860675. (Cited on page 28.)

[RSFA99] Manuel Rodríguez, Frédéric Salles, Jean-Charles Fabre, and Jean Arlat.
MAFALDA: Microkernel assessment by fault injection and design aid.
In Proceedings of the 3rd European Dependable Computing Conference

(EDCC ’99), pages 143–160. Springer-Verlag, September 1999. doi: 10.1007/
3-540-48254-7_11. (Cited on page 65.)

[RSKH11] Semeen Rehman, Muhammad Sha�que, Florian Kriebel, and Jörg Henkel. Re-
liable software for unreliable hardware: Embedded code generation aiming
at reliability. In Proceedings of the 9th IEEE/ACM International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS ’11), pages
237–246, Taipei, Taiwan, October 2011. (Cited on pages 76 and 203.)

[RSR99] Maurizio Rebaudengo and Matteo Sonza Reorda. Evaluating the fault toler-
ance capabilities of embedded systems via BDM. In Proceedings of the 17th

IEEE VLSI Test Symposium (VTS ’99), pages 452–457. IEEE Computer Society
Press, April 1999. doi: 10.1109/VTEST.1999.766703. (Cited on pages 7, 63, 172,
and 173.)

[RSRVT01] Maurizio Rebaudengo, Matteo Sonza Reorda, Massimo Violante, and Marco
Torchiano. A source-to-source compiler for generating dependable software.
In Proceedings of the 1st IEEE International Workshop on Source Code Analysis

and Manipulation, pages 33–42. IEEE Computer Society Press, 2001. doi: 10.
1109/SCAM.2001.972664. (Cited on pages 10 and 199.)

[RTSM11] Daniele Rossi, Nicola Timoncini, Michael Spica, and Cecilia Metra. Error
correcting code analysis for cache memory high reliability and performance.
In Proceedings of the 2011 Conference on Design, Automation & Test in Europe

(DATE ’11), March 2011. doi: 10.1109/DATE.2011.5763257. (Cited on pages 2
and 37.)

[Sai77] Sabina H. Saib. Executable assertions – an aid to reliable software. In
Proceedings of the 11th Asilomar Conference on Circuits, Systems and Com-

puters, pages 277–281. IEEE Computer Society Press, November 1977. doi:
10.1109/ACSSC.1977.748932. (Cited on page 40.)

[Sai05] Yasushi Saito. Jockey: A user-space library for record-replay debugging. In
Proceedings of the 6th International Symposium on Automated and Analysis-

Driven Debugging (AADEBUG ’05), pages 69–76. ACM Press, September 2005.
doi: 10.1145/1085130.1085139. (Cited on page 170.)

[SAIC+99] Timothy J. Slegel, Robert M. Averill III, Mark A. Check, Bruce C. Giamei,
Barry W. Krumm, Christopher A. Krygowski, Wen H. Li, John S. Liptay,
John D. MacDougall, Thomas J. McPherson, Jennifer A. Navarro, Eric M.
Schwarz, Kevin Shum, and Charles F. Webb. IBM’s S/390 G5 microprocessor

252 bibliography

design. IEEE Micro, 19(2):12–23, March 1999. doi: 10.1109/40.755464. (Cited
on pages 37 and 38.)

[SAJK15] Behrooz Sangchoolie, Fatemeh Ayatolahi, Roger Johansson, and Johan Karls-
son. A comparison of inject-on-read and inject-on-write in ISA-level fault
injection. In Proceedings of the 11th European Dependable Computing Con-

ference (EDCC ’15), pages 178–189. IEEE Computer Society Press, September
2015. doi: 10.1109/EDCC.2015.24. (Cited on page 58.)

[SBD+16] Thiago Santini, Christoph Borchert, Christian Dietrich, Horst Schirmeier,
Martin Ho�mann, Olaf Spinczyk, Daniel Lohmann, Flávio Rech Wagner, and
Paolo Rech. Evaluating the radiation reliability of dependability-oriented
real-time operating systems. In Proceedings of the 12th Workshop on Silicon

Errors in Logic – System E�ects (SELSE ’16), March 2016. (Cited on pages vii
and 213.)

[SBK10] Daniel Skarin, Raul Barbosa, and Johan Karlsson. GOOFI-2: A tool for experi-
mental dependability assessment. In Proceedings of the 40th IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN ’10), pages 557–
562, Washington, DC, USA, June/July 2010. IEEE Computer Society Press.
doi: 10.1109/DSN.2010.5544265. (Cited on pages 58, 59, 63, 64, 65, 69, 78, 79,
and 172.)

[SBM+09] Alex Shye, Joseph Blomstedt, Tipp Moseley, Vijay Janapa Reddi, and
Daniel A. Connors. PLR: A software approach to transient fault tolerance
for multicore architectures. IEEE Transactions on Dependable and Secure

Computing, 6(2):135–148, April 2009. doi: 10.1109/TDSC.2008.62. (Cited on
page 44.)

[SBS14] Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk. Rapid fault-
space exploration by evolutionary pruning. In Proceedings of the 33rd Inter-

national Conference on Computer Safety, Reliability and Security (SAFECOMP

’14), Lecture Notes in Computer Science, pages 17–32. Springer-Verlag,
September 2014. doi: 10.1007/978-3-319-10506-2_2. (Cited on pages vi, 8,
9, 14, 48, 73, 145, 150, 154, 164, and 209.)

[SBS15] Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk. Avoiding pit-
falls in fault-injection based comparison of program susceptibility to soft er-
rors. In Proceedings of the 45th IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN ’15), pages 319–330, Washington, DC, USA,
June 2015. IEEE Computer Society Press. doi: 10.1109/DSN.2015.44. (Cited
on pages vi, 3, 8, 14, 15, 48, 145, 186, 194, and 209.)

[Sch97] Robert R. Schaller. Moore’s law: past, present and future. IEEE Spectrum,
34(6):52–59, June 1997. doi: 10.1109/6.591665. (Cited on pages 1, 18, and 30.)

[Sch11] Ute Schi�el. Hardware Error Detection Using AN-Codes. Dissertation, Tech-
nische Universität Dresden, June 2011. (Cited on pages 42 and 64.)

[Sch15a] Gerhard Schönfelder. FIES: A fault injection framework for the evaluation
of self-tests. Master thesis, TU Graz, January 2015. (Cited on page 67.)

[Sch15b] Simon Schröder. Entwicklung und Bewertung von Advice für vorde�nierte
Operatoren in AspectC++. Bachelor thesis, Technische Universität Dort-
mund, February 2015. (Cited on page 208.)

[Sch15c] Simon Schuster. Ein Kontroll�ussüberwachungsdienst für KESO An-
wendungen. Bachelor thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg, June 2015. (Cited on page 208.)

bibliography 253

[Sch16] Horst Schirmeier. E�cient Fault-Injection-based Assessment of Software-

Implemented Hardware Fault Tolerance. Dissertation, Technische Universität
Dortmund, July 2016. (Cited on page 208.)

[SDB+15] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon
Stearley, John Shalf, and Sudhanva Gurumurthi. Memory errors in modern
systems: The good, the bad, and the ugly. In Proceedings of the 20th Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’15), pages 297–310, New York, NY, USA, 2015.
ACM Press. doi: 10.1145/2694344.2694348. (Cited on page 28.)

[Sel15] Marcel Sellung. Vergleich von Hardwarefehlermodellen bei
Fehlerinjektions-Experimenten. Bachelor thesis, Technische Universität
Dortmund, March 2015. (Cited on page 208.)

[SFKI00] David T. Stott, Benjamin Floering, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. NFTAPE: A framework for assessing dependability in distributed sys-
tems with lightweight fault injectors. In Proceedings of the IEEE Interna-

tional Computer Performance and Dependability Symposium (IPDS ’00), pages
91–100. IEEE Computer Society Press, March 2000. doi: 10.1109/IPDS.2000.
839467. (Cited on page 65.)

[SG06] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in
high-performance computing systems. In Proceedings of the 36th IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks (DSN ’06), pages
249–258, Washington, DC, USA, June 2006. IEEE Computer Society Press.
doi: 10.1109/DSN.2006.5. (Cited on pages 27 and 28.)

[SG10] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in
high-performance computing systems. IEEE Transactions on Dependable

and Secure Computing, 7(4):337–350, October 2010. doi: 10.1109/TDSC.2009.4.
(Cited on pages 2, 27, and 28.)

[SHD+15] Horst Schirmeier, Martin Ho�mann, Christian Dietrich, Michael Lenz,
Daniel Lohmann, and Olaf Spinczyk. FAIL*: An open and versatile fault-
injection framework for the assessment of software-implemented hardware
fault tolerance. In Proceedings of the 11th European Dependable Comput-

ing Conference (EDCC ’15), pages 245–255. IEEE Computer Society Press,
September 2015. doi: 10.1109/EDCC.2015.28. (Cited on pages vii, 14, 48, 84,
88, and 108.)

[SHK+11] Horst Schirmeier, Martin Ho�mann, Rüdiger Kapitza, Daniel Lohmann,
and Olaf Spinczyk. Revisiting fault-injection experiment-platform archi-
tectures. In Proceedings of the 17th IEEE Paci�c Rim International Sympo-

sium on Dependable Computing (PRDC ’11), pages 284–285, Pasadena, CA,
USA, December 2011. IEEE Computer Society Press. Fast abstract. doi:
10.1109/PRDC.2011.46. (Cited on pages v, 7, 14, and 48.)

[SHK+12] Horst Schirmeier, Martin Ho�mann, Rüdiger Kapitza, Daniel Lohmann,
and Olaf Spinczyk. FAIL*: Towards a versatile fault-injection experiment
framework. In Gero Mühl, Jan Richling, and Andreas Herkersdorf, editors,
25th International Conference on Architecture of Computing Systems (ARCS

’12), Workshop Proceedings, volume 200 of Lecture Notes in Informatics, pages
201–210. German Society of Informatics, March 2012. (Cited on pages v, 14,
48, 84, and 208.)

[SHLR+09] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi, and
Sarita V. Adve. mSWAT: Low-cost hardware fault detection and diagnosis
for multicore systems. In Proceedings of the 42nd IEEE/ACM International

254 bibliography

Symposium on Microarchitecture (MICRO ’09), pages 122–132, New York, NY,
USA, 2009. ACM Press. doi: 10.1145/1669112.1669129. (Cited on page 3.)

[SJAP97] D. Todd Smith, Barry W. Johnson, Nikos Andrianos, and Joseph A. Profeta,
III. A variance-reduction technique via fault-expansion for fault-coverage
estimation. IEEE Transactions on Reliability, 46(3):366–374, September 1997.
doi: 10.1109/24.664008. (Cited on page 165.)

[SJPB95] D. Todd Smith, Barry W. Johnson, Joseph A. Profeta, III, and Daniele G. Boz-
zolo. A method to determine equivalent fault classes for permanent and
transient faults. In Proceedings of the Annual Reliability and Maintainability

Symposium, pages 418–424. IEEE Computer Society Press, January 1995. doi:
10.1109/RAMS.1995.513278. (Cited on pages 8 and 70.)

[SK08a] Daniel Skarin and Johan Karlsson. Software implemented detection and re-
covery of soft errors in a brake-by-wire system. In Proceedings of the 7th Eu-

ropean Dependable Computing Conference (EDCC ’08), pages 145–154, Wash-
ington, DC, USA, 2008. IEEE Computer Society Press. doi: 10.1109/EDCC-7.
2008.24. (Cited on pages 40 and 193.)

[SK08b] Vilas Sridharan and David R. Kaeli. Quantifying software vulnerability.
In Proceedings of the Workshop on Radiation E�ects and Fault Tolerance in

Nanometer Technologies (WREFT ’08), pages 323–328, New York, NY, USA,
2008. ACM Press. doi: 10.1145/1366224.1366225. (Cited on pages 11, 54,
and 203.)

[SK09a] Vilas Sridharan and David R. Kaeli. The e�ect of input data on program
vulnerability. In Proceedings of the 5th Workshop on Silicon Errors in Logic –

System E�ects (SELSE ’09), March 2009. (Cited on page 52.)

[SK09b] Vilas Sridharan and David R. Kaeli. Eliminating microarchitectural depen-
dency from architectural vulnerability. In Proceedings of the 15th IEEE Inter-

national Symposium on High Performance Computer Architecture (HPCA ’09),
pages 117–128. IEEE Computer Society Press, February 2009. doi: 10.1109/
HPCA.2009.4798243. (Cited on pages 11, 54, 76, and 203.)

[Ska10] Daniel Skarin. On Fault Injection-Based Assessment of Safety-Critical Systems.
PhD thesis, Chalmers University of Technology, 2010. (Cited on pages 63,
64, 65, and 172.)

[SKK+02] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger,
and Lorenzo Alvisi. Modeling the e�ect of technology trends on the soft
error rate of combinational logic. In Proceedings of the 32nd IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks (DSN ’02), pages
389–398, June 2002. doi: 10.1109/DSN.2002.1028924. (Cited on page 1.)

[SKLS11] Horst Schirmeier, Rüdiger Kapitza, Daniel Lohmann, and Olaf Spinczyk.
DanceOS: Towards dependability aspects in con�gurable embedded operat-
ing systems. In Alex Orailoglu, editor, Proceedings of the 3rd HiPEAC Work-

shop on Design for Reliability (DFR ’11), pages 21–26, Heraklion, Greece, Jan-
uary 2011. (Cited on pages v and 118.)

[SKSE13] Horst Schirmeier, Ingo Korb, Olaf Spinczyk, and Michael Engel. E�cient
online memory error assessment and circumvention for Linux with RAM-
page. International Journal of Critical Computer-Based Systems, 4(3):227–247,
2013. Special Issue on PRDC 2011 Dependable Architecture and Analysis.
doi: 10.1504/IJCCBS.2013.058397. (Cited on pages v, 14, 84, 87, 99, 101, 145,
and 209.)

bibliography 255

[SL07] Olaf Spinczyk and Daniel Lohmann. The design and implementation of As-
pectC++. Knowledge-Based Systems, Special Issue on Techniques to Produce

Intelligent Secure Software, 20(7):636–651, 2007. doi: 10.1016/j.knosys.2007.05.
004. (Cited on pages 45, 93, and 94.)

[SL12] Vilas Sridharan and Dean Liberty. A study of DRAM failures in the �eld. In
Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC ’12), pages 76:1–76:11, Los Alamitos,
CA, USA, November 2012. IEEE Computer Society Press. doi: 10.1109/SC.
2012.13. (Cited on pages 28, 37, and 57.)

[Sla11] Charles Slayman. Soft error trends and mitigation techniques in mem-
ory devices. In Proceedings of the Annual Reliability and Maintainabil-

ity Symposium (RAMS). IEEE Computer Society Press, January 2011. doi:
10.1109/RAMS.2011.5754515. (Cited on pages 27, 28, 30, and 48.)

[SM98] Philip P. Shirvani and Edward J. McCluskey. Fault-tolerant systems in a
space environment: The CRC ARGOS project. Technical Report 98-2, Center
for Reliable Computing, Stanford University, Stanford, CA, USA, December
1998. (Cited on page 41.)

[SMF97] John R. Samson, Jr., Wilfrido A. Moreno, and Fernando J. Falquez. Validating
fault tolerant designs using laser fault injection (LFI). In Proceedings of the

IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

(DFT ’97), pages 175–183. IEEE Computer Society Press, October 1997. doi:
10.1109/DFTVS.1997.628323. (Cited on page 61.)

[SMF98] John R. Samson, Jr., Wilfrido A. Moreno, and Fernando J. Falquez. A tech-
nique for automated validation of fault tolerant designs using laser fault in-
jection (LFI). In Proceedings of the 28th Annual International Symposium on

Fault-Tolerant Computing (FTCS ’98), pages 162–167. IEEE Computer Society
Press, June 1998. doi: 10.1109/FTCS.1998.689466. (Cited on page 61.)

[SMHW02] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and David A. Wood. Safe-
tyNet: Improving the availability of shared memory multiprocessors with
global checkpoint/recovery. In Proceedings of the 29th International Sympo-

sium on Computer Architecture (ISCA ’02), pages 123–134. IEEE Computer
Society Press, 2002. doi: 10.1109/ISCA.2002.1003568. (Cited on page 37.)

[Smi82] Brian Cantwell Smith. Procedural Re�ection in Programming Languages. Dis-
sertation, Massachusetts Institute of Technology, February 1982. (Cited on
page 45.)

[SMR+07] Alex Shye, Tipp Moseley, Vijay Janapa Reddi, Joseph Blomstedt, and
Daniel A. Connors. Using process-level redundancy to exploit multiple cores
for transient fault tolerance. In Proceedings of the 37th IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN ’07), pages 297–306.
IEEE Computer Society Press, June 2007. doi: 10.1109/DSN.2007.98. (Cited
on page 44.)

[SNK+11] Horst Schirmeier, Jens Neuhalfen, Ingo Korb, Olaf Spinczyk, and Michael
Engel. RAMpage: Graceful degradation management for memory errors
in commodity Linux servers. In Proceedings of the 17th IEEE Paci�c Rim

International Symposium on Dependable Computing (PRDC ’11), pages 89–
98, Pasadena, CA, USA, December 2011. IEEE Computer Society Press. doi:
10.1109/PRDC.2011.20. (Cited on pages v, 14, 84, 87, 99, and 101.)

[SOM+00] Philip P. Shirvani, Namsuk Oh, Edward J. Mccluskey, D. L. Wood, Michael N.
Lovellette, and K. S. Wood. Software-implemented hardware fault toler-
ance experiments: COTS in space. In Proceedings of the 30th IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks (DSN ’00), pages

256 bibliography

B56–B57. IEEE Computer Society Press, June 2000. Fast abstract. (Cited on
pages 41 and 48.)

[Sor09] Daniel J. Sorin. Fault Tolerant Computer Architecture. Synthesis Lectures on
Computer Architecture. Morgan and Claypool Publishers, 1st edition, 2009.
doi: 10.2200/S00192ED1V01Y200904CAC005. (Cited on page 23.)

[SPS09] Matthias Sand, Stefan Potyra, and Volkmar Sieh. Deterministic high-speed
simulation of complex systems including fault-injection. In Proceedings of

the 39th IEEE/IFIP International Conference on Dependable Systems and Net-

works (DSN ’09), pages 211–216, Washington, DC, USA, June/July 2009. IEEE
Computer Society Press. doi: 10.1109/DSN.2009.5270335. (Cited on pages 6,
66, 78, 81, and 85.)

[SPW09] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM er-
rors in the wild: A large-scale �eld study. In Proceedings of the 11th Inter-

national Joint Conference on Measurement and Modeling of Computer Sys-

tems, SIGMETRICS ’09, pages 193–204, New York, NY, USA, 2009. ACM. doi:
10.1145/1555349.1555372. (Cited on pages 27 and 28.)

[SPW11] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM er-
rors in the wild: A large-scale �eld study. Communications of the ACM,
54(2):100–107, February 2011. doi: 10.1145/1897816.1897844. (Cited on
pages 27 and 28.)

[SRCRW15] Thiago Santini, Paolo Rech, Luigi Carro, and Flávio Rech Wagner. Exploiting
cache con�icts to reduce radiation sensitivity of operating systems on em-
bedded systems. In Proceedings of the 2015 International Conference on Com-

pilers, Architectures, and Synthesis for Embedded Systems (CASES ’15), pages
49–58. IEEE Computer Society Press, October 2015. doi: 10.1109/CASES.2015.
7324545. (Cited on pages 1 and 60.)

[SRFA99] Frédéric Salles, Manuel Rodríguez, Jean-Charles Fabre, and Jean Arlat.
MetaKernels and fault containment wrappers. In Proceedings of the 29th

Annual International Symposium on Fault-Tolerant Computing (FTCS ’99),
pages 22–29. IEEE Computer Society Press, June 1999. doi: 10.1109/FTCS.
1999.781030. (Cited on page 65.)

[SRJW14] Aviral Shrivastava, Abhishek Rhisheekesan, Reiley Jeyapaul, and Carole-
Jean Wu. Quantitative analysis of control �ow checking mechanisms for
soft errors. In Proceedings of the 51st Design Automation Conference (DAC

’14), pages 13:1–13:6, New York, NY, USA, 2014. ACM Press. doi: 10.1145/
2593069.2593195. (Cited on pages 3 and 205.)

[SRN+14] Thiago Santini, Paolo Rech, Gabriel Nazar, Luigi Carro, and Flávio Rech Wag-
ner. Reducing embedded software radiation-induced failures through cache
memories. In Proceedings of the 19th IEEE European Test Symposium (ETS

’14), May 2014. doi: 10.1109/ETS.2014.6847793. (Cited on pages 60 and 204.)

[SRS14] Horst Schirmeier, Lars Rademacher, and Olaf Spinczyk. Smart-hopping:
Highly e�cient ISA-level fault injection on real hardware. In Proceedings of

the 19th IEEE European Test Symposium (ETS ’14), pages 69–74. IEEE Com-
puter Society Press, May 2014. doi: 10.1109/ETS.2014.6847803. (Cited on
pages vi, 14, 48, 170, 171, 172, 174, 178, and 209.)

[SS94] Michael A. Schuette and John P. Shen. Exploiting instruction-level paral-
lelism for integrated control-�ow monitoring. IEEE Transactions on Comput-

ers, 43(2):129–140, February 1994. doi: 10.1109/12.262118. (Cited on page 43.)

bibliography 257

[SSD+13] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, and
Sudhanva Gurumurthi. Feng shui of supercomputer memory: Positional
e�ects in DRAM and SRAM faults. In Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage and Analysis

(SC ’13), pages 22:1–22:11, New York, NY, USA, November 2013. ACM Press.
doi: 10.1145/2503210.2503257. (Cited on pages 28, 37, 48, 56, and 57.)

[SSE+13] Isabella Stilkerich, Michael Strotz, Christoph Erhardt, Martin Ho�mann,
Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-Preikschat. A JVM
for soft-error-prone embedded systems. In Proceedings of the 2013 ACM SIG-

PLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded

Systems (LCTES ’13), pages 21–32, June 2013. doi: 10.1145/2465554.2465571.
(Cited on page 209.)

[SSM00] Philip P. Shirvani, Nirmal R. Saxena, and Edward J. McCluskey. Software-
implemented EDAC protection against SEUs. IEEE Transactions on Reli-

ability, 49(3):273–284, September 2000. doi: 10.1109/24.914544. (Cited on
pages 41 and 118.)

[SSSF10a] Ute Schi�el, André Schmitt, Martin Süßkraut, and Christof Fetzer. ANB-
and ANBDmem-encoding: Detecting hardware errors in software. In Pro-

ceedings of the 29th International Conference on Computer Safety, Reliability

and Security (SAFECOMP ’10), pages 169–182. Springer-Verlag, September
2010. (Cited on pages 41 and 42.)

[SSSF10b] Ute Schi�el, André Schmitt, Martin Süßkraut, and Christof Fetzer. Slice your
bug: Debugging error detection mechanisms using error injection slicing.
In Proceedings of the 8th European Dependable Computing Conference (EDCC

’10), pages 13–22. IEEE Computer Society Press, 2010. (Cited on pages 11, 58,
64, and 81.)

[STB97] Volkmar Sieh, Oliver Tschäche, and Frank Balbach. VERIFY: Evaluation of
reliability using VHDL-models with embedded fault descriptions. In Proceed-

ings of the 27th Annual International Symposium on Fault-Tolerant Computing

(FTCS ’97), pages 32–36, June 1997. doi: 10.1109/FTCS.1997.614074. (Cited on
page 66.)

[STE+14] Isabella Stilkerich, Philip Ta�ner, Christoph Erhardt, Christian Dietrich,
Christian Wawersich, and Michael Stilkerich. Team up: Cooperative mem-
ory management in embedded systems. In Proceedings of the 2014 Inter-

national Conference on Compilers, Architectures, and Synthesis for Embed-

ded Systems (CASES ’14), pages 10:1–10:10. ACM Press, October 2014. doi:
10.1145/2656106.2656129. (Cited on page 209.)

[Sti16] Isabella Stilkerich. Cooperative Memory Management in Safety-Critical Em-

bedded Systems. Dissertation, Friedrich-Alexander-Universität Erlangen-
Nürnberg, 2016. (Cited on page 208.)

[Stu15] Tobias Stumpf. How to protect the protector? In Proceedings of the 45th

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

’15), Student Forum. IEEE Computer Society Press, June 2015. (Cited on
page 209.)

[SVS+95] Zary Z. Segall, D. Vrsalovic, Daniel P. Siewiorek, D. Ysskin, J. Kownacki,
James H. Barton, R. Dancey, A. Robinson, and T. Lin. FIAT – fault injection
based automated testing environment. In Proceedings of the 25th Annual

International Symposium on Fault-Tolerant Computing (FTCS ’95), June 1995.
doi: 10.1109/FTCSH.1995.532663. (Cited on page 64.)

258 bibliography

[SZR03] Luís Santos and Mário Zenha Rela. Constraints on the use of boundary-scan
for fault injection. In Proceedings of the 1st Latin-American Symposium on

Dependable Computing (LADC ’03), pages 39–55. Springer-Verlag, 2003. doi:
10.1007/978-3-540-45214-0_6. (Cited on pages 7 and 62.)

[Taf14] Philip Ta�ner. Design und Implementierung einer fehlertoleranten Spe-
icherbereinigung für die KESO-JVM. Diploma thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg, February 2014. (Cited on page 208.)

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous mul-
tithreading: Maximizing on-chip parallelism. In Proceedings of the 22nd In-

ternational Symposium on Computer Architecture (ISCA ’95), pages 392–403,
New York, NY, USA, 1995. ACM Press. doi: 10.1145/223982.224449. (Cited on
page 38.)

[TI95a] Timothy K. Tsai and Ravishankar K. Iyer. FTAPE: A fault injection tool to
measure fault tolerance. In Proceedings of the 10th Computing in Aerospace

Conference. AIAA, March 1995. (Cited on page 65.)

[TI95b] Timothy K. Tsai and Ravishankar K. Iyer. Measuring fault tolerance with
the FTAPE fault injection tool. In Proceedings of the 8th International Con-

ference on Modelling Techniques and Tools for Computer Performance Eval-

uation: Quantitative Evaluation of Computing and Communication Systems,
pages 26–40, London, UK, 1995. Springer-Verlag. (Cited on pages 58 and 65.)

[TMB80] David J. Taylor, David E. Morgan, and James P. Black. Redundancy in data
structures: Improving software fault tolerance. IEEE Transactions on Soft-

ware Engineering, SE-6(6):585–594, November 1980. doi: 10.1109/TSE.1980.
234507. (Cited on page 46.)

[TP13] Anna Thomas and Karthik Pattabiraman. LLFI: An intermediate code level
fault injector for soft computing applications. In Proceedings of the 9thWork-

shop on Silicon Errors in Logic – System E�ects (SELSE ’13), March 2013. (Cited
on pages 32, 58, 64, 71, and 81.)

[Tri02] Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing, and

Computer Science Applications. John Wiley & Sons, Inc., New York, NY, USA,
second edition, 2002. (Cited on pages 53 and 57.)

[TS09] Peter Tummeltshammer and Andreas Steininger. Power supply induced
common cause faults – experimental assessment of potential countermea-
sures. In Proceedings of the 39th IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN ’09), pages 449–457. IEEE Computer Society
Press, June/July 2009. doi: 10.1109/DSN.2009.5270308. (Cited on page 62.)

[TS13] Clemens Terasa and Sibylle Schupp. Annotation-guided soft-error injection.
In Proceedings of the 2nd GI Workshop on Software-Based Methods for Robust

Embedded Systems (SOBRES ’13), Lecture Notes in Informatics. German So-
ciety of Informatics, September 2013. (Cited on page 67.)

[Tyr96] Andrew M. Tyrrell. Recovery blocks and algorithm-based fault tolerance.
In Proceedings of the 22nd EUROMICRO Conference, pages 292–299. IEEE
Computer Society Press, September 1996. doi: 10.1109/EURMIC.1996.546394.
(Cited on page 39.)

[UHK+12] Peter Ulbrich, Martin Ho�mann, Rüdiger Kapitza, Daniel Lohmann, Wolf-
gang Schröder-Preikschat, and Reiner Schmid. Eliminating single points of
failure in software-based redundancy. In Proceedings of the 9th European De-

pendable Computing Conference (EDCC ’12). IEEE Computer Society Press,
May 2012. doi: 10.1109/EDCC.2012.21. (Cited on page 44.)

bibliography 259

[Ulb14] Peter Ulbrich. Ganzheitliche Fehlertoleranz in eingebetteten Softwaresyste-

men. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Au-
gust 2014. (Cited on pages 20, 21, 41, and 208.)

[Unz13] Martin Unzner. Implementation of a fault injection framework for Fi-
asco.OC. Belegarbeit, Technische Universität Dresden, January 2013. (Cited
on page 208.)

[VA06] Ramtilak Vemu and Jacob A. Abraham. CEDA: Control-�ow error detection
through assertions. In Proceedings of the 12th International On-Line Testing

Symposium (IOLTS ’06), pages 151–158. IEEE Computer Society Press, 2006.
doi: 10.1109/IOLTS.2006.14. (Cited on page 204.)

[VAS+05] Jonny Vinter, Joakim Aidemark, Daniel Skarin, Raul Barbosa, Peter
Folkesson, and Johan Karlsson. An overview of GOOFI – a generic object-
oriented fault injection framework. Technical Report 05-07, Chalmers Uni-
versity of Technology, Gothenburg, Sweden, June 2005. (Cited on pages 63,
64, 78, and 79.)

[VCT+99] Raoul Velazco, Phillipe Cheynet, André Tissot, Jacques Haussy, Jean Lam-
bert, and Robert Eco�et. Evidences of SEU tolerance for digital implementa-
tions of arti�cial neural networks: one year MPTB �ight results. In Proceed-

ings of the 5th European Conference on Radiation and Its E�ects on Components

and Systems (RADECS ’99), pages 565–568. IEEE Computer Society Press,
September 1999. doi: 10.1109/RADECS.1999.858648. (Cited on page 39.)

[VG00] Je�rey M. Voas and Anup K. Ghosh. Software fault injection for survivability.
In Proceedings of the DARPA Information Survivability Conference and Exposi-

tion (DISCEX ’00), volume 2, pages 338–346, 2000. doi: 10.1109/DISCEX.2000.
821531. (Cited on page 4.)

[Voa97] Je�rey M. Voas. Fault injection for the masses. IEEE Transactions on Comput-

ers, 30(12):129–130, December 1997. doi: 10.1109/2.642820. (Cited on page 4.)

[VPC02] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault recov-
ery using simultaneous multithreading. In Proceedings of the 29th Interna-

tional Symposium on Computer Architecture (ISCA ’02), pages 87–98. IEEE
Computer Society Press, 2002. doi: 10.1109/ISCA.2002.1003565. (Cited on
page 38.)

[WEL+13] Lucas Wanner, Salma Elmalaki, Liangzhen Lai, Puneet Gupta, and Mani Sri-
vastava. VarEMU: An emulation testbed for variability-aware software. In
Proceedings of the 11th IEEE/ACM International Conference on Hardware/Soft-

ware Codesign and System Synthesis (CODES+ISSS ’13), pages 27:1–27:10, Pis-
cataway, NJ, USA, 2013. IEEE Computer Society Press. (Cited on page 67.)

[WEMR04] Christopher Weaver, Joel Emer, Shubhendu S. Mukherjee, and Steven K.
Reinhardt. Techniques to reduce the soft error rate of a high-performance
microprocessor. In Proceedings of the 31st International Symposium on Com-

puter Architecture (ISCA ’04), pages 264–275. IEEE Computer Society Press,
June 2004. doi: 10.1109/ISCA.2004.1310780. (Cited on pages 31, 32, and 203.)

[WF07] Ute Wappler and Christof Fetzer. Software encoded processing: Building de-
pendable systems with commodity hardware. In Proceedings of the 26th Inter-

national Conference on Computer Safety, Reliability and Security (SAFECOMP

’07), pages 356–369. Springer-Verlag, 2007. doi: 10.1007/978-3-540-75101-4_
34. (Cited on page 41.)

[WH11] Neil H. E. Weste and David Money Harris. CMOS VLSI Design: A Circuits and

Systems Perspective. Addison-Wesley, Boston, MA, USA, 4th edition, 2011.
(Cited on pages 25 and 26.)

260 bibliography

[Wik13] Wikipedia. 2009–11 Toyota vehicle recalls. https://en.wikipedia.org/
wiki/2009%E2%80%9311_Toyota_vehicle_recalls, 2013. Retrieved 2015-12-06.
(Cited on page 2.)

[Wil06] Je� Wilkinson. Neutron �ux calculator. http://seutest.com/cgi-bin/
FluxCalculator.cgi, 2006. (Cited on page 29.)

[Win15] Stefan Winter. On the Utility of Higher Order Fault Models for Fault Injections.
Dissertation, TU Darmstadt, May 2015. (Cited on pages 65 and 81.)

[WMP07] Nicholas J. Wang, Aqeel Mahesri, and Sanjay J. Patel. Examining ACE anal-
ysis reliability estimates using fault-injection. In Proceedings of the 34th In-

ternational Symposium on Computer Architecture (ISCA ’07), pages 460–469.
ACM Press, June 2007. doi: 10.1145/1250662.1250719. (Cited on page 76.)

[WP05] Nicholas J. Wang and Sanjay J. Patel. ReStore: Symptom based soft error de-
tection in microprocessors. In Proceedings of the 35th IEEE/IFIP International

Conference onDependable Systems andNetworks (DSN ’05), pages 30–39. IEEE
Computer Society Press, June/July 2005. doi: 10.1109/DSN.2005.82. (Cited on
page 37.)

[WPS+15] Stefan Winter, Thorsten Piper, Oliver Schwahn, Roberto Natella, Neeraj Suri,
and Domenico Cotroneo. GRINDER: On reusability of fault injection tools.
In Proceedings of the 10th IEEE/ACM International Workshop on Automation

of Software Test (AST 2015). IEEE Computer Society Press, May 2015. (Cited
on pages 58, 65, and 81.)

[WTLP14] Jiesheng Wei, Anna Thomas, Guanpeng Li, and Karthik Pattabiraman. Quan-
tifying the accuracy of high-level fault injection techniques for hardware
faults. In Proceedings of the 44th IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN ’14), pages 375–382, Washington, DC,
USA, June 2014. IEEE Computer Society Press. doi: 10.1109/DSN.2014.2.
(Cited on pages 64 and 202.)

[WTM13] Vincent M. Weaver, Dan Terpstra, and Shirley Moore. Non-determinism and
overcount on modern hardware performance counter implementations. In
2013 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS ’13), pages 215–224. IEEE Computer Society Press, April
2013. doi: 10.1109/ISPASS.2013.6557172. (Cited on page 183.)

[WTSS13] Stefan Winter, Michael Tretter, Benjamin Sattler, and Neeraj Suri. simFI:
From single to simultaneous software fault injections. In Proceedings of the

43rd IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN ’13), June 2013. doi: 10.1109/DSN.2013.6575310. (Cited on pages 65
and 67.)

[Wul13] Daniel Wulfert. Aspektorientierte Implementierung und Bewertung
von Fehlertoleranzmechanismen im eingebetteten Betriebssystem eCos.
Diploma thesis, Technische Universität Dortmund, March 2013. (Cited on
page 208.)

[WZF13] John Paul Walters, Kenneth M. Zick, and Matthew French. A practical char-
acterization of a NASA SpaceCube application through fault emulation and
laser testing. In Proceedings of the 43rd IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN ’13). IEEE Computer Society Press,
June 2013. doi: 10.1109/DSN.2013.6575354. (Cited on page 61.)

[XL12] Xin Xu and Man-Lap Li. Understanding soft error propagation using e�-
cient vulnerability-driven fault injection. In Proceedings of the 42nd IEEE/I-

FIP International Conference on Dependable Systems and Networks (DSN ’12),
pages 1–12, June 2012. doi: 10.1109/DSN.2012.6263923. (Cited on page 67.)

https://en.wikipedia.org/wiki/2009%E2%80%9311_Toyota_vehicle_recalls
https://en.wikipedia.org/wiki/2009%E2%80%9311_Toyota_vehicle_recalls
http://seutest.com/cgi-bin/FluxCalculator.cgi
http://seutest.com/cgi-bin/FluxCalculator.cgi

bibliography 261

[XST08] Jianjun Xu, Rui Shen, and Qingping Tan. PRASE: An approach for program
reliability analysis with soft errors. In Proceedings of the 14th IEEE Paci�c

Rim International Symposium on Dependable Computing (PRDC ’08), pages
240–247. IEEE Computer Society Press, December 2008. doi: 10.1109/PRDC.
2008.30. (Cited on page 41.)

[XTS08] Jianjun Xu, Qingping Tan, and Rui Shen. A novel optimum data duplication
approach for soft error detection. In Proceedings of the 15th Asia-Paci�c Soft-

ware Engineering Conference (APSEC ’08), pages 161–168. IEEE Computer So-
ciety Press, December 2008. doi: 10.1109/APSEC.2008.46. (Cited on pages 41
and 42.)

[XX12] Jun Xu and Ping Xu. The research of memory fault simulation and fault in-
jection method for BIT software test. In Proceedings of the 2nd International

Conference on Instrumentation, Measurement, Computer, Communication and

Control (IMCCC ’12), pages 718–722. IEEE Computer Society Press, Decem-
ber 2012. doi: 10.1109/IMCCC.2012.174. (Cited on page 67.)

[YC80] Stephen S. Yau and Fu-Chung Chen. An approach to concurrent control
�ow checking. IEEE Transactions on Software Engineering, SE-6(2):126–137,
March 1980. doi: 10.1109/TSE.1980.234478. (Cited on page 43.)

[YdAL+03] Pedro Yuste, David de Andrés, Lenin Lemus, Juan José Serrano, and Pedro
Gil. INERTE: Integrated nexus-based real-time fault injection tool for embed-
ded systems. In Proceedings of the 33rd IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN ’03). IEEE Computer Society Press,
June 2003. (Cited on pages 7 and 63.)

[YE09] Doe Hyun Yoon and Mattan Erez. Memory mapped ECC: Low-cost error
protection for last level caches. In Proceedings of the 36th International Sym-

posium on Computer Architecture (ISCA ’09), pages 116–127, New York, NY,
USA, 2009. ACM Press. doi: 10.1145/1555754.1555771. (Cited on page 30.)

[YE10] Doe Hyun Yoon and Mattan Erez. Virtualized and �exible ECC for main
memory. In Proceedings of the 15th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS ’10),
pages 397–408, New York, NY, USA, 2010. ACM Press. doi: 10.1145/1736020.
1736064. (Cited on page 37.)

[Yeh96] Ying Chin Yeh. Triple-triple redundant 777 primary �ight computer. In
Proceedings of the IEEE Aerospace Applications Conference, volume 1, pages
293–307, February 1996. doi: 10.1109/AERO.1996.495891. (Cited on pages 37
and 38.)

[Yos13] Junko Yoshida. Toyota case: Single bit �ip that killed. http://www.eetimes.
com/document.asp?doc_id=1319903, 2013. Retrieved 2015-12-06. (Cited on
page 2.)

[YRLG03] Pedro Yuste, Juan Carlos Ruiz, Lenin Lemus, and Pedro Gil. Non-
intrusive software-implemented fault injection in embedded systems. In
Rogério Lemos, Taisy Silva Weber, and João Batista Camargo, editors,
Proceedings of the 1st Latin-American Symposium on Dependable Comput-

ing (LADC ’03), pages 23–38. Springer-Verlag, October 2003. doi: 10.1007/
978-3-540-45214-0_5. (Cited on page 63.)

[YS96] Charles R. Yount and Daniel P. Siewiorek. A methodology for the rapid injec-
tion of transient hardware errors. IEEE Transactions on Computers, 45(8):881–
891, August 1996. doi: 10.1109/12.536231. (Cited on page 58.)

http://www.eetimes.com/document.asp?doc_id=1319903
http://www.eetimes.com/document.asp?doc_id=1319903

262 bibliography

[ZAV04] Haissam Ziade, Ra�c A. Ayoubi, and Raoul Velazco. A survey on fault injec-
tion techniques. The International Arab Journal of Information Technology,
1(2):171–186, 2004. (Cited on pages 4 and 60.)

[ZCM+96] James F. Ziegler, Huntington W. Curtis, Hans P. Muhlfeld, Charles J. Mon-
trose, B. Chin, Michael Nicewicz, C. A. Russell, Wen Y. Wang, Leo B. Freeman,
P. Hosier, L. E. LaFave, James L. Walsh, José M. Orro, G. J. Unger, John M.
Ross, Timothy J. O’Gorman, B. Messina, Timothy D. Sullivan, A. J. Sykes,
H. Yourke, Thomas A. Enger, Vikram R. Tolat, T. S. Scott, Allen H. Taber,
R. J. Sussman, W. A. Klein, and C. W. Wahaus. IBM experiments in soft fails
in computer electronics (1978–1994). IBM Journal of Research and Develop-

ment, 40(1):3–18, January 1996. doi: 10.1147/rd.401.0003. (Cited on page 27.)

[Zie96] James F. Ziegler. Terrestrial cosmic rays. IBM Journal of Research and De-

velopment, 40(1):19–39, January 1996. doi: 10.1147/rd.401.0019. (Cited on
page 29.)

[ZL79] James F. Ziegler and W. A. Lanford. E�ect of cosmic rays on computer mem-
ories. Science, 206(4420):776–788, November 1979. doi: 10.1126/science.206.
4420.776. (Cited on pages 26 and 27.)

[ZLT02] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization. In
K. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou, and T. Fogarty, edi-
tors, Proceedings of the International Conference on Evolutionary Methods for

Design, Optimisation and Control with Application to Industrial Problems (EU-

ROGEN 2001), pages 95–100, Barcelona, Spain, 2002. International Center for
Numerical Methods in Engineering (CIMNE). (Cited on page 159.)

bibliography 263

	Abstract
	Publications
	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	1.1 Software-Implemented Hardware Fault Tolerance
	1.2 Fault Injection: Tools, Techniques, and Contributions of this Dissertation
	1.2.1 Fault Injection
	1.2.2 Fault-Space Exploration and the Fault-Injection Tool Landscape
	1.2.3 Fault-Injection Campaign Runtimes
	1.2.4 Fault-Space Pruning
	1.2.5 Reducing Experiment Runtime on Real Hardware
	1.2.6 Measuring and Comparing Program Susceptibility to Soft Errors
	1.2.7 Fine-Grained Post-Injection Analysis and Result Visualization

	1.3 Outline
	1.4 Author's Contribution to this Dissertation

	2 Hardware Faults and Fault-Tolerant Computing
	2.1 Moore's Law and the Evolution of Semiconductor Technology
	2.2 Dependable Systems: Attributes, Threats, and Means
	2.2.1 Dependable Systems
	2.2.2 Dependability Threats: Faults, Errors, and Failures
	2.2.3 Means to Achieve Dependability
	2.2.4 Dependability Metrics
	2.2.5 Summary

	2.3 Hardware Faults at the Transistor Level
	2.3.1 MOSFETs and CMOS Circuitry
	2.3.2 Radiation-Induced Transient Faults
	2.3.2.1 Evidence of Transient Faults
	2.3.2.2 High-Energy Alpha Particles and Neutrons
	2.3.2.3 Other Sources for Transient Faults
	2.3.2.4 Effects of Soft Errors

	2.3.3 Permanent Faults
	2.3.4 Summary

	2.4 Fault-Tolerant Computing
	2.4.1 Redundancy
	2.4.2 Hardware-Implemented
	2.4.2.1 Transistor- and Circuit-Level Device Enhancements
	2.4.2.2 Memory-Protection Schemes
	2.4.2.3 N-Modular Redundancy
	2.4.2.4 Hardware Multithreading and the Sphere of Replication

	2.4.3 Software-Implemented
	2.4.3.1 Inherent Fault Tolerance
	2.4.3.2 Leveraging Hardware Detectors
	2.4.3.3 Executable Assertions for Data Error Detection
	2.4.3.4 Information Redundancy
	2.4.3.5 Control-Flow Monitoring
	2.4.3.6 Redundant Multithreading
	2.4.3.7 Hybrid Hardware/Software Techniques
	2.4.3.8 Language Support

	2.5 Summary
	2.5.1 Fault Tolerance
	2.5.2 Reliability Analysis, Measurement, and Test

	3 Fault Tolerance Assessment and Hardware Fault Injection
	3.1 Fault Injection
	3.1.1 Purposes of Fault Injection
	3.1.2 The FARM Model
	3.1.2.1 Fault Set, Fault Space, Campaign, and Experiment
	3.1.2.2 A Fault-Injection Environment
	3.1.2.3 Activation Trajectories and Workloads
	3.1.2.4 Readouts and Measures
	3.1.2.5 The Fault-Coverage Factor
	3.1.2.6 Other Measures

	3.1.3 Fault Models
	3.1.3.1 ISA-Level Memory Fault Models
	3.1.3.2 Independent Faults and the Single-Fault Assumption
	3.1.3.3 ISA-Level CPU Fault Models
	3.1.3.4 Other Fault Models

	3.2 Fault-Injection Tools and Techniques
	3.2.1 Characterization
	3.2.2 Hardware-Based Fault Injection
	3.2.2.1 Radiation-based Fault Injection
	3.2.2.2 Power-Supply Disturbance and Pin-Level Fault Injection
	3.2.2.3 Test-Access Port Fault Injection

	3.2.3 Software-Implemented Fault Injection
	3.2.3.1 Pre-Runtime SWIFI
	3.2.3.2 Runtime SWIFI

	3.2.4 Simulation- and VM-Based Fault Injection
	3.2.5 Symbolic Fault Injection
	3.2.6 Summary

	3.3 Fault-Injection Optimizations
	3.3.1 Experiment-Count Reduction
	3.3.1.1 Def/Use Pruning
	3.3.1.2 Fault-Equivalence Heuristics

	3.3.2 Experiment Speedup
	3.3.2.1 Pre-Injection Speedup: Fast-Forwarding and Checkpointing
	3.3.2.2 Post-Injection Speedup: Outcome Prediction

	3.3.3 Summary

	3.4 Alternative Analysis Techniques
	3.4.1 Fine-Grained Analysis with Fault Injection
	3.4.2 Analysis Methods without Fault Injection

	3.5 Summary: Observations and Gaps in the State of the Art
	3.5.1 Fault-Space Coverage
	3.5.2 Measurement and Comparison
	3.5.3 FI-Tool Maintainability
	3.5.3.1 Generalists
	3.5.3.2 Specialists
	3.5.3.3 Separation of Concerns

	3.5.4 Back-end and FI-Technique Flexibility
	3.5.5 Public Availability

	4 Fail*: A Versatile Fault-Injection Framework
	4.1 Design Goals
	4.1.1 Fault-Space Coverage
	4.1.2 Measurement and Comparison
	4.1.3 Maintainable Back-End Extension
	4.1.4 Back-end and FI-Technique Flexibility

	4.2 Fail* Overview
	4.3 Plumbing Layer: Back-End Abstraction and Extension
	4.3.1 Architecture
	4.3.1.1 Server Side: Campaign and JobServer
	4.3.1.2 Client Side

	4.3.2 Implementation
	4.3.2.1 Static Configuration
	4.3.2.2 Communication
	4.3.2.3 Back-End Extension: Bochs
	4.3.2.4 Back-End Extension: gem5 and QEMU

	4.3.3 FailPanda: OpenOCD TAP/SWIFI Back-End
	4.3.3.1 Overview
	4.3.3.2 Mapping the Plumbing API to OpenOCD Primitives
	4.3.3.3 SWIFI Components for Workload Monitoring
	4.3.3.4 Performance Measurements

	4.3.4 Summary

	4.4 Case Study: RAMpage
	4.4.1 Workload: An Online Memory Tester for Linux
	4.4.2 Fail* Experiment Setup
	4.4.3 Evaluation
	4.4.4 Reality Check: Tests on Real Hardware
	4.4.5 Summary

	4.5 Assessment-Cycle Layer: Fault-Model Defaults, Pruning, and Tool Support
	4.5.1 The Fault-Tolerance Assessment Cycle
	4.5.2 Experiment Definition
	4.5.2.1 Golden-Run Mode, Experiment Plugins, and Generic-Tracing
	4.5.2.2 Experiment Definition, Database-Experiment, and Generic-Experiment
	4.5.2.3 Database-Campaign

	4.5.3 Pre-Injection Analysis
	4.5.3.1 Golden Run
	4.5.3.2 Interjection: Database Support
	4.5.3.3 Trace Import
	4.5.3.4 Fault-Space Pruning and Sampling

	4.5.4 Fault-Injection Campaign
	4.5.5 Post-Injection Analysis
	4.5.5.1 Global Metrics
	4.5.5.2 Symbol-Level Analyses
	4.5.5.3 Leveraging Debug Information

	4.5.6 Summary

	4.6 Case Study: Generic Object Protection
	4.6.1 Fault and Failure Model
	4.6.2 Workload and Experiment Setup
	4.6.3 Baseline Assessment
	4.6.4 Generic Object Protection
	4.6.5 Evaluation: Finding an Optimal GOP Configuration
	4.6.6 Evaluation: Variant Comparison
	4.6.7 Conclusions on Fail* Tooling
	4.6.7.1 Experiment Definition
	4.6.7.2 Importing and Pruning
	4.6.7.3 Fault-Injection Campaign
	4.6.7.4 Post-Injection Analysis

	4.7 Case Study: Return-Address Protection
	4.7.1 Baseline Assessment
	4.7.2 Return-Address Protection
	4.7.3 Evaluation: Detection and Correction Effectiveness
	4.7.4 Conclusions on Fail* Tooling

	4.8 Case Study: WSOS / Bare-Metal-Sort
	4.8.1 Hands-On Setup
	4.8.2 Fault and Failure Model
	4.8.3 Baseline Assessment and Analysis Methods
	4.8.4 Competition Results
	4.8.5 Conclusions on Fail* Tooling

	4.9 Discussion
	4.9.1 Fault-Space Coverage
	4.9.2 Measurement and Comparison
	4.9.3 Maintainable Back-End Extension
	4.9.4 Back-End and FI-Technique Flexibility

	4.10 Summary

	5 Fault-Similarity Pruning: Campaign Speedup by Experiment-Count Reduction
	5.1 The Need for Full Fault-Space Coverage
	5.1.1 Fine-Grained Analyses
	5.1.2 Chapter Outline

	5.2 Generalizing Fault Equivalence
	5.2.1 Def/Use Pruning and Fault Equivalence
	5.2.2 Fault Similarity and a Generalization of Fault Equivalence
	5.2.3 A Flexible Fault-Similarity Heuristic
	5.2.3.1 Preparation: Record Machine-State Vectors
	5.2.3.2 Step 1: Sampling
	5.2.3.3 Step 2: Projection-Function Search

	5.2.4 Applying the Similarity Heuristic

	5.3 Implementation
	5.3.1 Encoding Machine State and Projection Function
	5.3.2 A Genetic Algorithm for Searching Optimal Projections

	5.4 Evaluation
	5.4.1 Evaluation Setup and Ground Truth
	5.4.2 Heuristic Training and Test
	5.4.3 Experiment-Outcome Breakup and Comparison with Sampling

	5.5 Summary and Conclusions

	6 Smart-Hopping: Campaign Speedup by Single-Experiment Acceleration
	6.1 Fast-Forwarding: State of the Art
	6.1.1 Single-Stepping
	6.1.2 Simple-Hopping with Hardware Breakpoints
	6.1.3 Checkpointing

	6.2 Smart-hopping: Choosing the Shortest Path
	6.2.1 Embracing Memory Watchpoints
	6.2.2 Optimality

	6.3 Implementation
	6.3.1 Hop-Chain Calculator
	6.3.2 Database-Campaign Extension

	6.4 Evaluation
	6.4.1 Benchmark Setup
	6.4.2 Hop-Chain Calculation Efficiency
	6.4.3 Smart-Hopping Effectiveness

	6.5 Discussion
	6.5.1 Extending the Approach: Checkpointing
	6.5.2 Alternative and Complementary Improvements
	6.5.3 Def/Use Equivalence-Class Aware Fast-Forwarding

	6.6 Summary and Conclusions

	7 Comparison of Program Susceptibility to Soft Errors
	7.1 Setting the Stage: Machine, Fault, and Failure Model
	7.1.1 Fault and Machine Model
	7.1.2 Example Workloads and Failure Model

	7.2 Experiment-Count Reduction Pitfalls
	7.2.1 Improbable Independent Faults
	7.2.2 Experiment-Count Reduction: Fault Sampling
	7.2.3 Experiment-Count Reduction: Def/Use Pruning
	7.2.4 Def/Use Pruning and the Weighting Pitfall
	7.2.5 Combining Def/Use Pruning and Sampling

	7.3 Fooling Fault Coverage: A Gedankenexperiment
	7.3.1 ``Hi'', A Simple Benchmark
	7.3.2 The Fault-Space Dilution Delusion
	7.3.3 Analyzing the Root Cause

	7.4 Constructing an Objective Comparison Metric
	7.4.1 Back to the Roots: Failure Probability
	7.4.2 Fault Coverage and Failure Probability in the Real World
	7.4.3 No-Effect Results and Sampling

	7.5 Discussion and Generalization
	7.5.1 Revisiting Pitfall 1: Unweighted Raw Numbers
	7.5.2 Possible Generalizations
	7.5.3 Cross-Layer Comparisons

	7.6 Related Work
	7.7 Conclusions

	8 Conclusions and Outlook
	8.1 Summary
	8.1.1 Contribution 1: Design and Implementation of Fail*
	8.1.2 Contribution 2: Fault-Similarity Pruning
	8.1.3 Contribution 3: Fast-Forwarding with Smart-Hopping
	8.1.4 Contribution 4: Comparison Metric
	8.1.5 Contribution 5: Fine-Grained FI-Result Analysis
	8.1.6 Limitations

	8.2 Ongoing and Future Work
	8.2.1 Ongoing: Fine-grained Analysis
	Harnessing Debugging Information
	Optimizing Fault-Detector Configurations

	8.2.2 Ongoing/Future Work: Comparison Metric
	Comparison of FI Results on Different Abstraction Levels
	Comparing ISA-Level FI Results to Radiation Measurements
	Application to Other Fault Models

	8.2.3 Future Work: Fault-Injection Optimizations
	Hierarchical Combination of FI Experiments
	Speedup by Instruction-Sequence Modularization

	8.3 Final Remarks

	Appendix
	List of Figures
	List of Tables
	Listings
	Bibliography

