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CHANGE POINT ESTIMATION BASED ON THE WILCOXON TEST IN THE

PRESENCE OF LONG-RANGE DEPENDENCE

ANNIKA BETKEN

Abstract. We consider an estimator, based on the two-sample Wilcoxon statistic, for the location of a

shift in the mean of long-range dependent sequences. Consistency and the rate of convergence for the

estimated change point are established. In particular, the 1/n convergence rate (with n denoting the number
of observations), which is typical under the assumption of independent observations, is also achieved for

long memory sequences in case of a constant shift height. It is proved that after a suitable normalization

the estimator converges in distribution to a functional of a fractional Brownian motion, if the change point
height decreases to 0 with a certain rate. The estimator is tested on two well-known data sets. Finite sample

behaviors are investigated in a Monte Carlo simulation study.

1. Introduction

Suppose that the observations X1, . . . , Xn are generated by a stochastic process (Xi)i≥1

Xi = µi + Yi,

where (µi)i≥1 are unknown constants and where (Yi)i≥1 is a stationary, long-range dependent (LRD, in short)
process with mean zero. A stationary process (Yi)i≥1 is called “long-range dependent” if its autocovariance
function ρ, ρ(k) := Cov(Y1, Yk+1), satisfies

ρ(k) ∼ k−DL(k), as k →∞,(1)

where 0 < D < 1 (referred to as long-range dependence (LRD) parameter) and where L is a slowly varying
function.

Furthermore, we assume that there is a change point in the mean of the observations, that is

µi =

{
µ, for i = 1, . . . , k0,

µ+ hn, for i = k0 + 1, . . . , n,

where k0 = bnτc denotes the change point location and hn is the height of the level-shift.
In the following we differentiate between fixed and local changes. Under fixed changes we assume that

hn = h for some h 6= 0. Local changes are characterized by a sequence hn, n ∈ N, with hn −→ 0 as n −→∞;
in other words, in a model where the height of the jump decreases with increasing sample size n.

In order to test the hypothesis

H : µ1 = . . . = µn

against the alternative

A : µ1 = . . . = µk 6= µk+1 = . . . = µn for some k ∈ {1, . . . , n− 1}

the Wilcoxon change point test can be applied. It rejects the hypothesis for large values of the Wilcoxon test
statistic defined by

Wn := max
1≤k≤n−1

|Wk,n| , where Wk,n :=

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
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(see Dehling, Rooch and Taqqu (2013a)). Under the assumption that there is a change point in the mean in
k0 we expect the absolute value of Wk0,n to exceed the absolute value of Wl,n for any l 6= k0. Therefore, it
seems natural to define an estimator of k0 by

k̂W := min

{
k : |Wk,n| = max

1≤i≤n−1
|Wi,n|

}
.

Preceding papers that address the problem of estimating change point locations in dependent observations
X1, . . . , Xn with a shift in mean usually refer to a family of estimators based on the Cusum change point
test statistic C(γ) := max1≤k<n |Ck(γ)|, where

Ck(γ) :=

(
k(n− k)

n

)1−γ
(

1

k

k∑
i=1

Xi −
1

n− k

n∑
i=k+1

Xi

)

with parameter 0 ≤ γ < 1. The corresponding change point estimator is defined by

k̂C(γ) := min

{
k : |Ck(γ)| = max

1≤k≤n−1
|Ck(γ)|

}
.(2)

Horváth and Kokoszka (1997) derive the asymptotic distribution of the estimator k̂C(γ) under the assumption
of a decreasing jump height hn, i.e. under the assumption that hn approaches 0 as the sample size n
increases, for long-range dependent observations provided that the data generating process is Gaussian. Under
non-restrictive constraints on the dependence structure of the data-generating process (including long-range

dependent time series) Kokoszka and Leipus (1998) prove consistency of k̂C(γ) under the assumption of fixed
as well as under the assumption of decreasing jump heights. Furthermore, they establish the convergence
rate of the change point estimator as a function of the intensity of dependence in the data if the jump
height is constant. Ben Hariz and Wylie (2005) show that under a similar assumption on the decay of
the autocovariances the convergence rate that is achieved in the case of independent observations can be
obtained for short- and long-range dependent data, as well. Furthermore, it is shown in their paper that for a
decreasing jump height the convergence rate derived by Horváth and Kokoszka (1997) under the assumption
of gaussianity can be established under more general assumptions on the data-generating sequences.

Bai (1994) establishes an estimator for the location of a shift in the mean by the method of least squares.
He proves consistency, determines the rate of convergence of the change point estimator and derives its
asymptotic distribution. These results are shown to hold for weakly dependent observations that satisfy a
linear model and cover, for example, ARMA(p, q)-processes. Bai extended these results to the estimation of
the location of a parameter change in multiple regression models that also allow for lagged dependent variables
and trending regressors (see Bai (1997)). A generalisation of these results to possibly long-range dependent
data-generating processes (including fractionally integrated processes) is given in Kuan and Hsu (1998) and
Lavielle and Moulines (2000). Under the assumption of independent data Darkhovskh (1976) establishes an
estimator for the location of a change in distribution based on the two-sample Mann-Whitney test statistic.
He obtains a convergence rate that has order 1

n , where n is the number of observations. Allowing for strong
dependence in the data Giraitis, Leipus and Surgailis (1996) consider Kolmogorov-Smirnov and Cramér-von-
Mises-type test statistics for the detection of a change in the marginal distribution of the random variables
that underlie the observed data. Consistency of the corresponding change point estimators is proved under
the assumption that the jump height approaches 0. A change point estimator based on a self-normalized
Cusum test statistic has been applied in Shao (2011) to real data sets. Although Shao assumes validity
of using the estimator, the article does not cover a formal proof of consistency. Furthermore, it has been
noted by Shao and Zhang (2010) that even under the assumption of short-range dependence it seems difficult
to obtain the asymptotic distribution of the estimate. In this paper we will shortly address the issue of
estimating the change point location on the basis of the self-normalized Wilcoxon test statistic proposed in
Betken (2016).

In order to construct the self-normalized Wilcoxon test statistic, we have to consider the ranks Ri, i =
1, . . . , n, of the observations X1, . . . , Xn. These are defined by Ri := rank(Xi) =

∑n
j=1 1{Xj≤Xi} for i =
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1, . . . , n. The self-normalized two-sample test statistic equals

Gk,n =

∑k
i=1Ri −

k
n

∑n
i=1Ri{

1
n

∑k
t=1 S

2
t (1, k) + 1

n

∑n
t=k+1 S

2
t (k + 1, n)

}1/2
,

where

St(j, k) :=

t∑
h=j

(
Rh − R̄j,k

)
with R̄j,k :=

1

k − j + 1

k∑
t=j

Rt.

The self-normalized Wilcoxon change point test for the test problem (H,A) rejects the hypothesis for large
values of Tn(τ1, τ2) = maxk∈{bnτ1c,...,bnτ2c} |Gk,n|, where 0 < τ1 < τ2 < 1. Note that the proportion of the
data that is included in the calculation of the supremum is restricted by τ1 and τ2. A common choice for
these parameters is τ1 = 1− τ2 = 0.15; see Andrews (1993).

A natural change point estimator that results from the self-normalized Wilcoxon test statistic is

k̂SW := min

{
k : |Gk,n| = max

bnτ1c≤k≤bnτ2c
|Gk,n|

}
.

We will prove consistency of the estimator k̂SW under fixed changes and under local changes whose height
converges to 0 with a rate depending on the intensity of dependence in the data. Nonetheless, the main aim

of this paper is to characterize the asymptotic behavior of the change point estimator k̂W . In Section 2 we

will establish consistency of k̂W and k̂SW, derive the optimal convergence rate of k̂W and finally consider its
asymptotic distribution. The finite sample properties of the estimators will be investigated by simulations in
Section 4. Proofs of the theoretical results can be found in Section 5.

2. Main Results

Recall that for fixed x, x ∈ R, the Hermite expansion of 1{G(ξi)≤x} − F (x) is given by

1{G(ξi)≤x} − F (x) =

∞∑
q=1

Jq(x)

q!
Hq(ξi),

where Hq denotes the q-th order Hermite polynomial and where

Jq(x) = E
(
Hq(ξi)1{G(ξi)≤x}

)
.

Assumption 1. Let Yi = G(ξi), where (ξi)i≥1 is a stationary, long-range dependent Gaussian process with

mean 0, variance 1 and LRD parameter D. We assume that 0 < D < 1
r , where r denotes the Hermite rank

of the class of functions 1{G(ξi)≤x} − F (x), x ∈ R, defined by

r := min {q ≥ 1 : Jq(x) 6= 0 for some x ∈ R} .

Moreover, we assume that (Yi)i≥1 has a continuous distribution function F and that G : R −→ R is a
measurable function.

Let

gD,r(t) := t
rD
2 L−

r
2 (t)

and define

dn,r :=
n

gD,r(n)
cr, where cr :=

√
2r!

(1−Dr)(2−Dr)
.

Since gD,r is a regularly varying function, it has an asymptotic inverse g−D,r, i.e.

gD,r(g
−
D,r(t)) ∼ g

−
D,r(gD,r(t)) ∼ t, as t→∞,

(see Theorem 1.5.12 in Bingham, Goldie and Teugels (1989)).

The following result states that k̂W
n and k̂SW

n are consistent estimators for the change point location under
fixed as well as certain local changes.
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Proposition 1. Suppose that Assumption 1 holds. Under fixed changes, k̂W
n and k̂SW

n are consistent estima-

tors for the change point location. The estimators are also consistent under local changes if h−1n = o
(

n
dn,r

)
and if F has a bounded density f . In other words, we have

k̂W
n

P−→ τ,
k̂SW
n

P−→ τ

in both situations. Furthermore, it follows that the Wilcoxon test is consistent under these assumptions (in

the sense that 1
ndn,r

max1≤k≤n−1 |Wk,n|
P−→∞).

The following theorem establishes a convergence rate for the change point estimator k̂W . Note that only
under local changes the convergence rate depends on the intensity of dependence in the data.

Theorem 1. Suppose that Assumption 1 holds and let mn := g−D,r(h
−1
n ). Then, we have∣∣∣k̂W − k0∣∣∣ = OP (mn)

if either

• hn = h with h 6= 0

or

• limn→∞ hn = 0 with h−1n = o
(

n
dn,r

)
and F has a bounded density f .

Remark 1.

(1) Under fixed changes mn is constant. As a consequence,
∣∣∣k̂W − k0∣∣∣ = OP (1). This result corresponds

to the convergence rates obtained by Ben Hariz and Wylie (2005) for the Cusum-test based change
point estimator and by Lavielle and Moulines (2000) for the least-squares estimate of the change
point location. Surprisingly, in this case the rate of convergence is independent of the intensity of
dependence in the data characterized by the value of the LRD-parameter D. An explanation for this
phenomenon might be the occurence of two opposing effects: increasing values of the LRD-parameter
D go along with a slower convergence of the test statistic Wk,n (making estimation more difficult),
but a more regular behaviour of the random component (making estimation easier) (see Ben Hariz
and Wylie (2005)).

(2) Note that under local changes
• mn −→∞ as n −→∞,
• mn

n −→ 0 as n −→∞,

• dmn,r
mn

∼ hn as n −→∞.

Based on the previous results it is possible to derive the asymptotic distribution of the change point

estimator k̂W :

Theorem 2. Suppose that Assumption 1 holds with r = 1 and assume that F has a bounded density f . If

h−1n = o
(

n
dn,1

)
and mn = g−D,1(h−1n ), then, for all M > 0,

1

en

(
W 2
n(k0 + bmnsc)−W 2

n(k0)
) D−→ 2τ(1− τ)

∫
f2(x)dx

(
sign(s)BH(s)

∫
J1(x)dF (x) + h(s; τ)

)
in the Skorohod space D [−M,M ], where en = n3hndmn,1, BH is a fractional Brownian motion process, and
where h(s; τ) is defined by

h(s; τ) =

{
s(1− τ)

∫
f2(x)dx if s ≤ 0

−sτ
∫
f2(x)dx if s > 0

.

Furthermore, it follows that

m−1n (k̂W − k0)
D−→ argmax−∞<s<∞

(
sign(s)BH(s)

∫
J1(x)dF (x) + h(s; τ)

)
.(3)
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Remark 2. (1) Under local changes the assumption h−1n = o
(

n
dn,1

)
is equivalent to Assumption C.5 (i)

in Horváth and Kokoszka (1997). Moreover, the limit distribution of the Cusum-based change point
estimator closely resembles the limit distribution of the change point estimator considered in that
paper.

(2) The proof of Theorem 2 is mainly based on the empirical process non-central limit theorem for subor-
dinated Gaussian sequences in Dehling and Taqqu (1989). The sequential empirical process has also
been studied by many other authors in the context of different models. See, among many others, the
following: Müller (1970) and Kiefer (1972) for independent and identically distributed data, Berkes
and Philipp (1977) and Philipp and Pinzur (1980) for strongly mixing processes, Berkes, Hörmann
and Schauer (2009) for S-mixing processes, Giraitis and Surgailis (1999) for long memory linear (or
moving average) processes, Dehling, Durieu and Tusche (2014) for multiple mixing processes. Conse-

quently, in these situations the asymptotic distribution of k̂W can be derived by the same argument
as in the proof of Theorem 2 for subordinated Gaussian processes. In particular, Theorem 1 in
Giraitis and Surgailis (1999) can be considered as a generalization of Theorem 1.1 in Dehling and

Taqqu (1989), i.e. with an appropriate normalization the change point estimator k̂W computed with
respect to long-range dependent linear processes as defined in Giraitis and Surgailis (1999) converges
in distribution to a limit that corresponds to (3) (up to multiplicative constants).

3. Applications

We consider two well-known data sets which have been analyzed before. We compute the estimator k̂W
based on the given observations and put our results into context with the findings and conclusions of other
authors.
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Figure 1. Measurements of the annual discharge of the river Nile at Aswan in 108 m3 for
the years 1871-1970. The dotted line indicates the location of the change point; the dashed
lines designate the sample means for the pre-break and post-break samples.

The plot in Figure 1 depicts the annual volume of discharge from the Nile river at Aswan in 108 m3 for
the years 1871 to 1970. Amongst others, Cobb (1978), Macneill, Tang and Jandhyala (1991), Wu and Zhao
(2007), Shao (2011) and Betken and Wendler (2015) provide statistically significant evidence for a decrease
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of the Nile’s annual discharge towards the end of the 19th century. The construction of the Aswan Low Dam
between 1898 and 1902 serves as a popular explanation for an abrupt change in the data around the turn of
the century. Yet, Cobb gave another explanation for the decrease in water volume by citing rainfall records
which suggest a decline of tropical rainfall at that time. In fact, an application of the change point estimator

k̂W identifies a change in 1898. This result seems to be in good accordance with the estimated change point
locations suggested by other authors: Cobb’s analysis of the Nile data leads to the conjecture of a significant
decrease in discharge volume in 1898. Moreover, computation of the Cusum-based change point estimator

k̂C(0) considered in Horváth and Kokoszka (1997) indicates a change in 1898. Balke (1993) and Wu and
Zhao (2007) suggest that the change occurred in 1899.
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Figure 2. Monthly temperature of the northern hemisphere for the years 1854-1989 from
the data base held at the Climate Research Unit of the University of East Anglia, Norwich,
England. The temperature anomalies (in degrees C) are calculated with respect to the
reference period 1950-1979. The dotted line indicates the location of the potential change
point; the dashed lines designate the sample means for the pre-break and post-break samples.

The second data set consists of the seasonally adjusted monthly deviations of the temperature (degrees
C) for the northern hemisphere during the years 1854 to 1989 from the monthly averages over the period
1950 to 1979. The data results from spatial averaging of temperatures measured over land and sea. In
view of the plot in Figure 2 it seems natural to assume that the data generating process is non-stationary.
Previous analysis of this data offers different explanations for the irregular behavior of the time series. Deo
and Hurvich (1998) fitted a linear trend to the data, thereby providing statistical evidence for global warming
during the last decades. However, the consideration of a more general stochastic model by the assumption
of so-called semiparametric fractional autoregressive (SEMIFAR) processes in Beran and Feng (2002) does
not confirm the conjecture of a trend-like behavior. Neither does the investigation of the global temperature
data in Wang (2007) support the hypothesis of an increasing trend. It is pointed out by Wang that the
trend-like behavior of the Northern hemisphere temperature data may have been generated by stationary
long range dependent processes. Yet, it is shown in Shao (2011) and also in Betken and Wendler (2015)
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that under model assumptions that include long range dependence an application of change point tests leads
to a rejection of the hypothesis that the time series is stationary. According to Shao (2011) an estimation
based on a self-normalized Cusum test statistic suggests a change around October 1924. Computation of the

change point estimator k̂W corresponds to a potential change point located around June 1924. The same

change point location results from an application of the previously mentioned estimator k̂C(0) considered in

Horváth and Kokoszka (1997). In this regard estimation by k̂W seems to be in good accordance with the
results of alternative change point estimators.

4. Simulations

We will now investigate the finite sample performance of the change point estimator k̂W and compare

it to corresponding simulation results for the estimators k̂SW (based on the self-normalized Wilcoxon test

statistic) and k̂C (based on the Cusum test statistic with parameter γ = 0) . For this purpose, we consider
two different scenarios:

(1) Normal margins: We generate fractional Gaussian noise time series (ξi)i≥1 and choose G(t) = t in
Assumption 1. As a result, the simulated observations (Yi)i≥1 are Gaussian with autocovariance
function

ρ(k) ∼
(

1− D

2

)
(1−D) k−D.

Note that in this case the Hermite coefficient J1(x) is not equal to 0 for all x ∈ R (see Dehling, Rooch
and Taqqu (2013a)) so that m = 1, where m denotes the Hermite rank of 1{Yi≤x} − F (x), x ∈ R.
Therefore, Assumption 1 holds for all values of D ∈ (0, 1).

(2) Pareto margins: In order to get standardized Pareto-distributed data which has a representation as
a functional of a Gaussian process, we consider the transformation

G(t) =

(
βk2

(β − 1)2(β − 2)

)− 1
2
(
k(Φ(t))−

1
β − βk

β − 1

)
with parameters k, β > 0 and with Φ denoting the standard normal distribution function. Since G
is a strictly decreasing function, it follows by Theorem 2 in Dehling, Rooch and Taqqu (2013a) that
the Hermite rank of 1{G(ξi)≤x} − F (x), x ∈ R, is m = 1 so that Assumption 1 holds for all values of
D ∈ (0, 1).

To analyze the behavior of the estimators we simulated 500 time series of length 600 and added a level shift
of height h after a proportion τ of the data. We have done so for several choices of h and τ . The descriptive
statistics, i.e. mean, sample standard deviation (S.D.) and quartiles, are reported in Tables 1, 2, 3 for the

three change point estimators k̂W , k̂SW and k̂C(γ).
The following observations, made on the basis of Tables 1, 2, 3 correspond to the expected behavior of

consistent change point estimators:

• Bias and variance of the estimated change point location decrease when the height of the level shift
increases.

• change points that are located in the middle of the sample are detected more often than change
points that are located close to the boundary of the testing region.

• High values of H go along with an increase of bias and variance. This seems natural since when there
is very strong dependence, i.e. H is large, the variance of the series increases, so that it becomes
harder to detect a level shift of a fixed height.

The above statements hold for all three change point estimators.

A comparison of the descriptive statistics of the estimator k̂W (based on the Wilcoxon statistic) and k̂SW
(based on the self-normalized Wilcoxon statistic) shows that

• In most cases the estimator k̂SW has a smaller bias, especially for an early change point location.

However, the difference between the biases of k̂SW and k̂W is not big.

• In general the sample standard deviation of k̂W is smaller than that of k̂SW. Indeed, it is only slightly
better for τ = 0.25, but there is a clear difference for τ = 0.5.
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Table 1. Descriptive statistics of the sampling distribution of k̂W for a change in the mean based on 500 fractional Gaussian
noise and Pareto time series of length 600 with Hurst parameter H and a change in mean in τ of height h.

margins τ h H = 0.6 H = 0.7 H = 0.8 H = 0.9
normal 0.25 0.5 mean (S.D.) 193.84 (64.020) 227.59 (99.788) 252.408 (110.084) 270.646 (113.72)

quartiles (150, 168, 217.25) (150, 191, 284.25) (157, 226.5, 335.25) (172.75, 250, 353)
1 mean (S.D.) 164.244 (27.156) 176.362 (42.059) 188.328 (63.751) 215.108 (88.621)

quartiles (150, 153.5, 167) (150, 158, 190) (150, 159.5, 206.25) (150 176 256)
2 mean (S.D.) 153.604 (8.255) 156.656 (12.393) 164.338 (29.570) 173.61 (41.514)

quartiles (150, 151, 154) (150, 151, 158) (150, 151, 164) (150, 152, 180.25)

0.5 0.5 mean (S.D.) 299.506 (30.586) 301.87 (61.392) 300.774 (82.610) 298.93 (98.368)
quartiles (291, 300, 309) (274.75, 300.5, 320.25) (264, 299, 339.25) (233, 299, 353)

1 mean (S.D.) 300.014 (9.141) 300.438 (18.695) 302.592 (42.213) 300.902 (50.487)
quartiles (298, 300, 302) (297, 300, 304) (293, 300 307) (290, 300, 311)

2 mean (S.D.) 300.064 (1.294) 299.922 (3.215) 299.504 (5.520) 300.282 (7.494)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)

Pareto(3, 1) 0.25 0.5 mean (S.D.) 158.166 (17.762) 164.08 (31.219) 179.512 (58.871) 194.126 (74.767)
quartiles (150, 151, 159.25) (150, 152, 168) (150, 154, 191.25) (150, 159, 218.25)

1 mean (S.D.) 154.16 (8.765) 156.09 (13.516) 164.712 (28.774) 178.174 (54.429)
quartiles (150, 151, 155) (150, 151, 157) (150, 152, 168) (150, 152, 186)

2 mean (S.D.) 152.256 (4.852) 155.592 (11.092) 160.686 (24.599) 169.374 (38.197)
quartiles (150, 150, 152) (150, 151, 155.25) (150, 151, 159) (150, 150, 172)

0.5 0.5 mean (S.D.) 298.072 (6.008) 296.432 (13.441) 293.06 (26.221) 289.946 (45.739)
quartiles (297, 300, 300) (296, 300, 300) (294, 300, 301) (291, 300, 301)

1 mean (S.D.) 299.178 (2.712) 298.744 (4.587) 296.674 (11.585) 296.168 (20.424)
quartiles (299, 300, 300) (299, 300, 300) (298, 300, 300) (300, 300, 300)

2 mean (S.D.) 299.798 (1.008) 299.716 (1.543) 299.384 (3.070) 298.896 (6.560)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)
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Table 2. Descriptive statistics of the sampling distribution of k̂SW for a change in the mean based on 500 replications of fractional
Gaussian noise and Pareto time series of length 600 with Hurst parameter H and a change in mean in τ of height h.

margins τ h H = 0.6 H = 0.7 H = 0.8 H = 0.9
normal 0.25 0.5 mean (S.D.) 172.288 (63.639) 216.934 (110.934) 242.202 (119.655) 268.878 (122.615)

quartiles (135, 153, 183.25) (138, 171, 272.5) (143, 207.5, 333.5) (157, 243.5, 370.25)
1 mean (S.D.) 152.406 (24.840) 160.618 (39.834) 174.424 (70.673) 204.906 (99.648)

quartiles (140, 149, 158) (139, 150.5, 172.25) (136, 150, 188.25) (139.75, 161.5, 243.75)
2 mean (S.D.) 148.836 (9.007295) 150.208 (13.575) 153.194 (28.251) 160.026 (40.979)

quartiles (144, 150, 152) (142.75, 150, 154) (138, 150, 158) (137.75, 150, 165)

0.5 0.5 mean (S.D.) 297.712 (43.291) 302.204 (77.719) 302.866 (96.511) 297.662 (110.175)
quartiles (277, 297, 320) (262, 300, 337) (248, 298.5, 369.5) (215, 301, 369.5)

1 mean (S.D.) 299.052 (16.132) 299.91 (28.907) 302.386 (55.267) 300.956 (62.821)
quartiles (290, 299, 308) (288, 300, 313) (277, 300, 324.25) (270, 300, 329)

2 mean (S.D.) 300.01 (6.054) 299.612 (10.079) 298.844 (14.059) 301.424 (21.022)
quartiles (297, 300, 303.25) (294, 300, 305) (291, 300, 307) (289, 300, 312)

Pareto(3, 1) 0.25 0.5 mean (S.D.) 151.562 (18.392) 155.034 (32.505) 165.26 (58.363) 182.706 (83.268)
quartiles (142, 150, 157) (140, 150, 163) (136, 150, 173) (136.75, 150, 196.25)

1 mean (S.D.) 150.206 (9.116) 150.272 (15.405) 152.824 (25.074) 166.602 (58.982)
quartiles (145, 150, 154) (143, 150, 156) (140, 150, 159.25) (136, 150, 174.25)

2 mean (S.D.) 149.21 (6.201) 149.934 (11.821) 151.946 (21.426) 156.836 (39.311)
quartiles (146, 150, 152) (143, 150, 153) (140, 150, 156) (136, 150, 160.25)

0.5 0.5 mean (S.D.) 300.524 (11.841) 299.488 (21.317) 299.664 (37.136) 295.048 (55.000)
quartiles (294, 300, 307) (290, 300, 310) (287, 300, 317) (280.75, 300, 318)

1 mean (S.D.) 300.498 (6.600) 300.56 (10.383) 299.52 (18.862) 297.766 (28.308)
quartiles (297, 300, 304) (296, 300, 306) (292, 300, 309.25) (289, 300, 312.25)

2 mean (S.D.) 300.444 (4.411) 300.234 (7.517) 300.524 (11.122) 298.84 (16.004)
quartiles (298, 300, 303) (296, 300, 304) (295.75, 300, 307) (292, 300, 308)
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Table 3. Descriptive statistics of the sampling distribution of k̂C for a change in the mean based on 500 replications of fractional
Gaussian noise and Pareto time series of length 600 with Hurst parameter H and a change in mean in τ of height h.

margins τ h H = 0.6 H = 0.7 H = 0.8 H = 0.9
normal 0.25 0.5 mean (S.D.) 193.06 (64.917) 228.948 (101.442) 253.114 (111.182) 271.38 (114.590)

quartiles (150, 166.5, 222) (151, 191.5, 286.75) (156.75, 226, 341.5) (172.75, 249.5, 354.25)
1 mean (S.D.) 162.028 (22.948) 173.838 (39.845) 187.386 (63.865) 213.114 (87.356)

quartiles (150, 153, 164) (150, 156.5, 187.25) (150, 158, 206) (150, 173, 254.25)
2 mean (S.D.) 152.374 (6.249) 154.878 (10.395) 159.7 (22.064) 165.94 (33.124)

quartiles (150, 150, 152) (150, 150, 156) (150, 151, 158) (150, 150, 165)

0.5 0.5 mean (S.D.) 297.84 (30.249) 302.06 (63.878) 300.246 (84.346) 298.91 (97.904)
quartiles (290, 299, 308) (276, 301, 322) (261.75, 300, 340) (236.25, 299, 353.25)

1 mean(S.D.) 299.87 (9.356) 299.662 (21.281) 303.646 (42.245) 299.762 (52.492)
quartiles (298, 300, 302) (297, 300, 304) (293, 300, 307) (290, 300, 311)

2 mean (S.D.) 300.06 (1.473) 299.916 (3.199) 299.442 (5.234) 300.46 (8.179)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)

Pareto(3, 1) 0.25 0.5 mean (S.D.) 175.632 (48.517) 198.452 (79.303) 205.506 (88.482) 210.444(93.831)
quartiles (150, 159, 185) (150, 168, 223.75) (150, 173, 251.25) (150, 167, 259.5)

1 mean (S.D.) 156.586 (14.133) 160.35 (27.204) 170.278 (45.402) 177.278 (66.661)
quartiles (150, 152, 159) (150, 152, 161) (150, 153, 171) (150, 150, 174)

2 mean (S.D.) 150.314 (1.349) 150.566 (3.984) 152.474 (18.578) 155.496 (29.408)
quartiles (150, 150, 150) (150, 150, 150) (150, 150, 150) (150, 150, 150)

0.5 0.5 mean (S.D.) 296.26 (22.306) 292.904 (43.471) 289.192 (64.033) 287.966 (64.827)
quartiles (292, 300, 303.25) (288.75, 300, 305) (273.75, 300, 308.25) (285, 300, 303)

1 mean (S.D.) 298.24 (6.104) 297.306 (9.361) 293.116 (26.614) 292.864 (37.601)
quartiles (299, 300, 300) (299, 300, 300) (298, 300, 300) (300, 300, 300)

2 mean (S.D.) 299.604 (1.843) 299.228 (3.385) 298.35 (8.354) 297.632 (14.525)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)
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All in all, our simulations do not give rise to choosing k̂SW over k̂W . In particular, better standard

deviations of k̂W compensate for smaller biases of k̂SW.

Comparing the finite sample performance of k̂W and the Cusum-based change point estimator k̂C(0) we
observe that

• For fractional Gaussian noise time series bias and variance of k̂C(0) tend to be slightly better, at
least when τ = 0.25 and especially for relatively high level shifts. Nonetheless, the deviations are in
most cases negligible.

• If the change happens in the middle of a sample with normal margins, bias and variance of k̂W
tend to be smaller, especially for relatively high level shifts. Again, in most cases the deviations are
negligible.

• For Pareto(3, 1) time series k̂W clearly outperforms k̂C(0) by yielding smaller biases and decisively
smaller variances for almost every combination of parameters that has been considered.

• The performance of the estimator k̂C(0) surpasses the performance of k̂W only for high values of the
jump height h.

It is well-known that the Wilcoxon change point test is more robust against outliers in data sets than the
Cusum-like change point tests, i.e. the Wilcoxon test outperforms Cusum-like tests if heavy-tailed time series
are considered. Our simulations confirm that this observation is also reflected by the finite sample behavior
of the corresponding change point estimators.

As noted in Remark 1, k̂W − k0 = OP (1) under the assumption of a change point height h independent of
n. This observation is illustrated by simulations of the mean absolute error

MAE =
1

m

m∑
i=1

∣∣∣k̂W,i − k0∣∣∣ ,
where k̂W,i, i = 1, . . . ,m, denote the estimates for k0, computed on the basis of m = 1000 different sequences
of length n. Figure 3 depicts a plot of MAE against n with n varying between 1000 and 30000. Since
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Figure 3. The MAE of k̂W − k0 for different values of H and sample length n.

k̂W − k0 = OP (1) due to Theorem 1, we expect MAE to approach a constant as n tends to infinity. This
can be clearly seen in Figure 3 for H = 0.6 and H = 0.7. For a high intensity of dependence in the data
(characterized by H = 0.8 or H = 0.9) convergence becomes slower, although asymptotically the behavior of
the mean absolute error is independent of H (according to Theorem 1). This is due to a slower convergence
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of the test statistic Wk,n, which is not canceled out by the effect of a more regular behavior of the sample
paths of the limit process for relatively small values of n.

5. Proofs

In the following let Fk and Fk+1,n denote the empirical distribution functions of the first k and last n− k
realizations of Y1, . . . , Yn, i.e.

Fk(x) :=
1

k

k∑
i=1

1{Yi≤x},

Fk+1,n(x) :=
1

n− k

n∑
i=k+1

1{Yi≤x}.

Proof of Proposition 1. The proof of Proposition 1 is based on an application of Lemma 1 in the appendix.
According to Lemma 1 it holds that, under the assumptions of Proposition 1,

1

n2

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
P−→ δτ (λ)

∫
(F (x+ h)− F (x)) dF (x)

P−→ Cδτ (λ), 0 ≤ λ ≤ 1,

where δτ : [0, 1] −→ R is defined by

δτ (λ) =

{
λ(1− τ) for λ ≤ τ
(1− λ)τ for λ ≥ τ

and C denotes some non-zero constant.
It directly follows that 1

ndn,r
max1≤k≤n−1 |Wk,n|

P−→∞.

Furthermore, we have

1

n2hn
max

1≤k≤bn(τ−ε)c

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ P−→ C sup
0≤λ≤τ−ε

δτ (λ) = C(τ − ε)(1− τ)

for any 0 ≤ ε < τ .
For ε > 0 define

Zn,ε :=
1

n2hn
max

1≤k≤bnτc

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣− 1

n2hn
max

1≤k≤bn(τ−ε)c

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ .
As Zn,ε

P−→ C(1 − τ)ε, it follows that P (k̂ < bn(τ − ε)c) = P (Zn,ε ≤ 0) −→ 0. An analogous line of
argument yields

P (k̂W > bn(τ + ε)c) −→ 0.

All in all, it follows that for any ε > 0

lim
n−→∞

P

(∣∣∣∣∣ k̂Wn − τ
∣∣∣∣∣ > ε

)
= lim
n−→∞

(
P (k̂W > bn(τ + ε)c) + P (k̂W < bn(τ − ε)c)

)
= 0.

This proves consistency of the change point estimator, which is based on the Wilcoxon test statistic.

In the following it is shown that 1
n k̂SW is a consistent estimator, too. For this purpose, we consider the

process Gn(λ), 0 ≤ λ ≤ 1, defined by Gn(λ) := Gbnλc,n. According to Betken (2016) the limit of the self-
normalized Wilcoxon test statistic can be obtained by an application of the continuous mapping theorem to
the process

1

an

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
, 0 ≤ λ ≤ 1,
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where an denotes an appropriate normalization. Therefore, it follows by the corresponding argument in
Betken (2016) that

Gn(bnλc) P−→ |δτ (λ)|{∫ λ
0

(
δτ (t)− t

λδτ (λ)
)2
dt+

∫ 1

λ

(
δτ (t)− 1−t

1−λδτ (λ)
)2
dt

} 1
2

uniformly in λ ∈ [0, 1]. Elementary calculations yield

sup
bnτ1c≤k≤k0−nε

Gn(k)
P−→ sup

τ1≤λ≤τ−ε

√
3λ
√

1− λ
(τ − λ)

,

sup
k0+nε≤k≤bnτ2c

Gn(k)
P−→ sup

τ+ε≤λ≤τ2

√
3
√
λ(1− λ)

(τ − λ)
.

As Gn(τ)
P−→ ∞ due to Theorem 2 in Betken (2016), we may conclude that P (k̂SW > k0 + nε) and

P (k̂SW < k0 − nε) converge to 0 in probability. This proves k̂SW
n

P−→ τ . �

Proof of Theorem 1. In the following we write k̂ instead of k̂W . For convenience, we assume that h > 0 under
fixed changes, and that for some n0 ∈ N hn > 0 for all n ≥ n0 under local changes, respectively. Furthermore,
we subsume both changes under the general assumption that lim→∞ hn = h (under fixed changes hn = h for
all n ∈ N, under local changes h = 0). In order to prove Theorem 1, we need to show that for all ε > 0 there
exists an n(ε) ∈ N and an M > 0 such that

P
(∣∣∣k̂ − k0∣∣∣ > Mmn

)
< ε

for all n ≥ n(ε).
For M ∈ R+ define Dn,M := {k ∈ {1, . . . , n− 1} | |k − k0| > Mmn}.
We have

P
(∣∣∣k̂ − k0∣∣∣ > Mmn

)
≤ P

(
sup

k∈Dn,M
|Wn(k)| ≥ |Wn(k0)|

)
.

If supk∈Dn,M |Wn(k)| ≥ |Wn(k0)|, then either supk∈Dn,M (Wn(k)−Wn(k0)) ≥ 0 or

supk∈Dn,M (−Wn(k)−Wn(k0)) ≥ 0.
As a result,

P

(
sup

k∈Dn,M
|Wn(k)| ≥ |Wn(k0)|

)
≤ P1 + P2

with

P1 := P

(
sup

k∈Dn,M
(Wn(k)−Wn(k0)) ≥ 0

)
, P2 := P

(
sup

k∈Dn,M
(−Wn(k)−Wn(k0)) ≥ 0

)
.

Note that Dn,M = Dn,M (1) ∪ Dn,M (2), where Dn,M (1) := {k ∈ {1, . . . , n− 1} | k0 − k > Mmn} and
Dn,M (2) := {k ∈ {1, . . . , n− 1} | k − k0 > Mmn}. Therefore, P2 ≤ P2,1 + P2,2, where

P2,1 := P

(
sup

k∈Dn,M (1)

(−Wn(k)−Wn(k0)) ≥ 0

)
, P2,2 := P

(
sup

k∈Dn,M (2)

(−Wn(k)−Wn(k0)) ≥ 0

)
.

In the following we will consider the first summand only. (For the second summand analogous implications
result from the same argument.)

For this, we define

Ŵn(k) := δn(k)∆(hn),

where

δn(k) :=

{
k(n− k0), k0 ≥ k
k0(n− k), k0 ≤ k
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and

∆(hn) :=

∫
(F (x+ hn)− F (x)) dF (x).

Note that

P2,1 ≤ P

(
sup

k∈Dn,M (1)

(
Ŵn(k)−Wn(k) + Ŵn(k0)−Wn(k0)

)
≥ Ŵn(k0)

)

≤ P

(
2 sup
λ∈[0,τ ]

∣∣∣Wn(bnλc)− Ŵn(bnλc)
∣∣∣ ≥ k0(n− k0)∆(hn)

)
.

We have

sup
λ∈[0,τ ]

∣∣∣Wn(bnλc)− Ŵn(bnλc)
∣∣∣

= sup
λ∈[0,τ ]

∣∣∣∣∣∣
bnλc∑
i=1

n∑
j=bnτc+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)
+

bnλc∑
i=1

bnτc∑
j=bnλc+1

(
1{Yi≤Yj} −

1

2

)∣∣∣∣∣∣ .
It follows that due to Lemma 2 in the appendix and Theorem 1.1 in Dehling, Rooch and Taqqu (2013a)

2 sup
λ∈[0,τ ]

∣∣∣Wn(bnλc)− Ŵn(bnλc)
∣∣∣ = OP (ndn,r) ,

i.e. for all ε > 0 there is a K > 0 such that

P

(
2 sup
λ∈[0,τ ]

∣∣∣Wn(bnλc)− Ŵn(bnλc)
∣∣∣ ≥ Kndn,r) < ε

for all n. Furthermore, k0(n−k0)∆(hn) ∼ Cn2hn for some constant C. Note that Kndn,r ≤ k0(n−k0)∆(hn)
if and only if

K ≤ k0
n

n− k0
n

∆(hn)

hn

nhn
dn,r

.

The right hand side of the above inequality diverges if hn = h is fixed and if h−1n = o
(

n
dn,r

)
. Therefore, it is

possible to find an n(ε) ∈ N such that

P2,1 ≤ P

(
2 sup
λ∈[0,τ ]

∣∣∣Wn(bnλc)− Ŵn(bnλc)
∣∣∣ ≥ k0(n− k0)∆(hn)

)

≤ P

(
2 sup
λ∈[0,τ ]

∣∣∣Wn(bnλc)− Ŵn(bnλc)
∣∣∣ ≥ Kndn,r)

< ε

for all n ≥ n(ε).
We will now turn to the summand P1. We have P1 ≤ P1,1 + P1,2, where

P1,1 := P

(
sup

k∈Dn,M (1)

Wn(k)−Wn(k0) ≥ 0

)
, P1,2 := P

(
sup

k∈Dn,M (2)

Wn(k)−Wn(k0) ≥ 0

)
.

In the following we will consider the first summand only. (For the second summand analogous implications
result from the same argument.)

We define a random sequence kn, n ∈ N, by choosing kn ∈ Dn,M (1) such that

sup
k∈Dn,M (1)

(
Wn(k)− Ŵn(k) + Ŵn(k0)−Wn(k0)

)
= Wn(kn)− Ŵn(kn) + Ŵn(k0)−Wn(k0).

It follows that

P1,1 = P

(
1

ndk0−kn,r

(
Wn(kn)− Ŵn(kn) + Ŵn(k0)−Wn(k0)

)
≥ 1

ndk0−kn,r

(
Ŵn(k0)− Ŵn(kn)

))
.
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Note that for any sequence kn, n ∈ N, with kn ∈ Dn,M (1)

Ŵn(k0)− Ŵn(kn) = (n− k0)ln∆(hn)

where ln := k0 − kn. By definition, ln ≥ Mmn and mn −→ ∞ so that ln
dln,r

= l1−Hn L−
r
2 (ln) ≥

(Mmn)1−HL−
r
2 (Mmn) for n sufficiently large. Thus, we have

1

ndln,r

(
Ŵn(k0)− Ŵn(kn)

)
≥ n− k0

n

mn

dmn,r
M1−H L

r
2 (mn)

L
r
2 (Mmn)

∆(hn).

If hn is fixed, the right hand side of the inequality diverges. Under local changes the right hand side
asymptotically behaves like

M1−H(1− τ)C

∫
f2(x)dx,

since, in this case, hn ∼ dmn,r
mn

according to the assumptions of Theorem 1.

In any case, for δ > 0 it is possible to find an n0 ∈ N such that 1
ndln,r

(
Ŵn(k0)− Ŵn(kn)

)
≥ KM1−H − δ

for all n ≥ n0.
All in all, the previous considerations show that there exists an n0 ∈ N and a constant K such that for all

n ≥ n0

P1,1 ≤ P

(
sup

k∈Dn,M (1)

1

ndk0−k,r

(
Wn(k)− Ŵn(k) + Ŵn(k0)−Wn(k0)

)
≥ b(M)

)
where b(M) := KM1−H − δ with δ > 0 fixed.

Elementary calculations show that for k ≤ k0
Wn(k)− Ŵn(k) + Ŵn(k0)−Wn(k0) = An,1(k) +An,2(k) +An,3(k) +An,4(k),

where

An,1(k) = (n− k0)

∫
k0 (Fk0(x+ hn)− F (x+ hn))− k (Fk(x+ hn)− F (x+ hn)) dFk0,n(x),

An,2(k) := (n− k0)(k0 − k)

∫
(Fk0,n(x)− F (x)) dF (x+ hn),

An,3(k) := (k0 − k)k

∫
(Fk(x)− F (x)) dFk,k0(x),

An,4(k) := −k
∫
k0 (Fk0(x)− F (x))− k (Fk(x)− F (x)) dF (x).

Thus, for n ≥ n0

P1,1 ≤ P

(
sup

k∈Dn,M (1)

1

ndk0−k,r

4∑
i=1

|An,i(k)| ≥ b(M)

)

≤
4∑
i=1

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,i(k)| ≥ 1

4
b(M)

)
.

For each i ∈ {1, . . . , 4} it will be shown that

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,i(k)| ≥ 1

4
b(M)

)
<
ε

4

for n and M sufficiently large.

(1) Note that

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,1(k)| ≤ sup

k∈Dn,M (1)

sup
x∈R

∣∣∣d−1k0−k,r(k0 − k) (Fk,k0(x)− F (x))
∣∣∣ .



16 A. BETKEN

Due to stationarity

sup
k∈Dn,M (1)

sup
x∈R

∣∣∣d−1k0−k,r(k0 − k) (Fk,k0(x)− F (x))
∣∣∣

D
= sup
k∈Dn,M (1)

sup
x∈R

∣∣∣d−1k0−k,r(k0 − k) (Fk0−k(x)− F (x))
∣∣∣ .

Note that

sup
k∈Dn,M (1)

sup
x∈R

∣∣∣d−1k0−k,r(k0 − k) (Fk0−k(x)− F (x))
∣∣∣

≤ sup
k∈Dn,M (1)

sup
x∈R

∣∣∣∣d−1k0−k,r(k0 − k) (Fk0−k(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)

∣∣∣∣
+

1

r!

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R
|Jr(x)| .

Since

sup
x∈R

∣∣∣∣d−1k0−k,r(k0 − k) (Fk0−k(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)

∣∣∣∣ −→ 0 a.s.

if k0 − k −→ ∞, and as by definition k0 − k ≥ Mmn for k ∈ Dn,M (1) (with mn −→ ∞), it follows
that

sup
k∈Dn,M (1)

sup
x∈R

∣∣∣∣d−1k0−k,r(k0 − k) (Fk0−k(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)

∣∣∣∣ −→ 0 a.s.

Therefore,

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,1(k)| ≥ 1

4
b(M)

)

≤ P

(
sup

k∈Dn,M (1)

sup
x∈R

∣∣∣d−1k0−k,r(k0 − k) (Fk,k0(x)− F (x))
∣∣∣ ≥ 1

4
b(M)

)

≤ P
(

1

r!

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R
|Jr(x)| ≥ 1

4
b(M)

)
+
ε

8

<
ε

4

for n and M sufficiently large.
(2) We have

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,2(k)| ≤

∣∣∣∣d−1n,r(n− k0)

∫
(Fk0,n(x)− F (x)) dF (x+ hn)

∣∣∣∣
for n sufficiently large. As a result,

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,2(k)| ≤ sup

x∈R

∣∣d−1n,r(n− k0) (Fk0,n(x)− F (x))
∣∣ .

Due to the empirical process non-central limit theorem of Dehling and Taqqu (1989) we have

sup
x∈R

∣∣d−1n,r(n− k0) (Fk0,n(x)− F (x))
∣∣ D−→ 1

r!

∣∣∣(Z(r)
H (1)− Z(r)

H (τ))
)∣∣∣ sup

x∈R
|Jr(x)| .

Note that sup
x
|Jr(x)| <∞. Moreover,

1

r!

∣∣∣(Z(r)
H (1)− Z(r)

H (τ))
)∣∣∣ sup

x∈R
|Jr(x)| D= 1

r!
(1− τ)H

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R
|Jr(x)|
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since Z
(r)
H is a H-self-similar process with stationary increments. Thus, we have

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,2(k)| ≥ b(M)

)

≤ P
(

1

r!
(1− τ)H

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R
|Jr(x)| ≥ b(M)

)
+
ε

8

<
ε

4
for n and M sufficiently large.

(3) Note that

1

ndk0−k,r
|An,3(k)| ≤

∣∣∣∣d−1n,rk ∫ (Fk(x)− F (x)) dFk,k0(x)

∣∣∣∣
for n sufficiently large. Therefore,

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,3(k)| ≤ sup

x∈R,0≤λ≤1

∣∣d−1n,rbnλc (Fbnλc(x)− F (x)
)∣∣ .

The expression on the right hand side of the inequality converges in distribution to

1

r!
sup

0≤λ≤1

∣∣∣Z(r)
H (λ)

∣∣∣ sup
x∈R
|Jr(x)|

due to the empirical process non-central limit theorem. Since{
Z

(r)
H (λ), 0 ≤ λ ≤ 1

}
D
=
{
λHZ

(r)
H (1), 0 ≤ λ ≤ 1

}
,

we have

sup
0≤λ≤1

∣∣∣Z(r)
H (λ)

∣∣∣ D= |Z(r)
H (1)|.

In addition, sup
x∈R
|Jr(x)| <∞ such that

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,3(k)| ≥ 1

4
b(M)

)

≤ P
(

1

r!

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R
|Jr(x)| ≥ 1

4
b(M)

)
+
ε

8

<
ε

4
for n and M sufficiently large.

(4) We have

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,4(k)| ≤ sup

k∈Dn,M (1)

sup
x∈R

∣∣∣d−1k0−k,r(k0 − k) (Fk,k0(x)− F (x))
∣∣∣ .

Hence, the same argument that yields P
(

supk∈Dn,M (1)
1

ndk0−k,r
|An,1(k)| < 1

4b(M)
)
≤ ε

4 can be ap-

plied to conclude that

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,4(k)| ≥ 1

4
b(M)

)
<
ε

4

for n and M sufficiently large.

All in all, it follows that for all ε > 0 there exists a n(ε) ∈ N and a M > 0 such that

P
(∣∣∣k̂ − k0∣∣∣ > Mmn

)
< ε

for all n ≥ n(ε). This proves Theorem 1. �
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Proof of Theorem 2. Note that

W 2
n(k0 + bmnsc)−W 2

n(k0) = (Wn(k0 + bmnsc)−Wn(k0)) (Wn(k0 + bmnsc) +Wn(k0)) .

We will show that (with an appropriate normalization) (Wn(k0 + bmnsc)−Wn(k0)) converges in distribu-
tion to a non-deterministic limit process whereas (Wn(k0 + bmnsc) +Wn(k0)) (with stronger normalization)
converges in probability to a deterministic expression. For notational convenience we write dmn instead of

dmn,1, k̂ instead of k̂W and we define ln(s) := k0 + bmnsc.
Note that

Wn(k0 + bmnsc)−Wn(k0) = Ṽn(ln(s)) + Vn(ln(s)),

where

Ṽn(l) =


−

k0∑
i=l+1

n∑
j=k0+1

(
1{Yi≤Yj+hn} − 1{Yi≤Yj}

)
if s < 0

−
k0∑
i=1

l∑
j=k0+1

(
1{Yi≤Yj+hn} − 1{Yi≤Yj}

)
if s > 0

and

Vn(l) =


l∑
i=1

k0∑
j=l+1

(
1{Yi≤Yj} − 1

2

)
−

k0∑
i=l+1

n∑
j=k0+1

(
1{Yi≤Yj} − 1

2

)
if s < 0

l∑
i=k0+1

n∑
j=l+1

(
1{Yi≤Yj} − 1

2

)
−

k0∑
i=1

l∑
j=k0+1

(
1{Yi≤Yj} − 1

2

)
if s > 0

.

We will show that 1
ndmn

Ṽn(ln(s)) converges to h(s; τ) in probability and that 1
ndmn

Vn(ln(s)) converges in

distribution to sign(s)BH(s)
∫
J(x)dF (x) in D [−M,M ].

For this purpose we rewrite Ṽn(ln(s)) and Vn(ln(s)) in the following way:

Ṽn(ln(s)) =

{
−(k0 − ln(s))(n− k0)

∫ (
Fln(s),k0(x+ hn)− Fln(s),k0(x)

)
dFk0,n(x) if s < 0

−k0(ln(s)− k0)
∫

(Fk0(x+ hn)− Fk0(x)) dFk0,ln(s)(x) if s > 0,

Vn(ln(s)) =

{
A1,n(s) +A2,n(s) +A3,n(s) if s < 0

A1,n(s) +A2,n(s) +A3,n(s) if s > 0
,

where

A1,n(s) :=

{
(−ln(s)− n+ k0)(k0 − ln(s))

∫ (
Fln(s),k0(x)− F (x)

)
dF (x) if s < 0

(n− ln(s) + k0)(l − k0)
∫ (
Fk0,ln(s)(x)− F (x)

)
dF (x) if s > 0

,

A2,n(s) :=

{
(k0 − ln(s))ln(s)

∫
(Fln(s)(x)− F (x))dF (x) if s < 0

−(ln(s)− k0)(n− ln(s))
∫ (
Fln(s),n(x)− F (x)

)
dF (x) if s > 0

,

A3,n(s) :=

{
(k0 − ln(s))(n− k0)

∫
(Fk0,n(x)− F (x)) dF (x) if s < 0

(ln(s)− k0)k0
∫

(Fk0(x)− F (x)) dF (x) if s > 0
.

We consider Ṽn(ln(s)) first:

For s < 0 the limit of 1
ndmn

Ṽn(ln(s)) corresponds to the limit of

−(1− τ)d−1mn(k0 − ln(s))

∫
(F (x+ hn)− F (x)) dF (x)

due to Lemma 3 and stationarity of the random sequence Yi, i ≥ 1. Note that

d−1mn(k0 − ln(s))

∫
(F (x+ hn)− F (x)) dF (x) = −d−1mnbmnschn

∫
F (x+ hn)− F (x)

hn
dF (x).

The above expression converges to −s
∫
f2(x)dx, since hn ∼ dmn

mn
.
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For s > 0 the limit of 1
ndmn

Ṽn(ln(s)) corresponds to the limit of

−τd−1mn(ln(s)− k0)

∫
(F (x+ hn)− F (x)) dF (x)

due to Lemma 3 and stationarity of the random sequence Yi, i ≥ 1. Note that

d−1mn(ln(s)− k0)

∫
(F (x+ hn)− F (x)) dF (x) = d−1mnbmnschn

∫
F (x+ hn)− F (x)

hn
dF (x)

The above expression converges to s
∫
f2(x)dx, since hn ∼ dmn

mn
.

All in all, it follows that 1
ndmn

Ṽn(ln(s)) converges to h(s; τ) defined by

h(s; τ) =

{
s(1− τ)

∫
f2(x)dx if s ≤ 0

−sτ
∫
f2(x)dx if s > 0

.

In the following it is shown that 1
ndmn

Vn(ln(s)) converges in distribution to

sign(s)BH(s)

∫
J1(x)dF (x), −M ≤ s ≤M.

Note that for s < 0

1

ndmn
A2,n(s) = −bmnsc

mn

mn

dmn

dn
n
d−1n ln(s)

∫
(Fln(s)(x)− F (x))dF (x).

The above expression converges to 0 uniformly in s, since

sup
−M≤s≤0

∣∣∣∣d−1n ln(s)

∫
(Fln(s)(x)− F (x))dF (x)

∣∣∣∣
≤ sup

x,λ

∣∣d−1n bnλc(Fbnλc(x)− F (x))−BH(λ)J(x)
∣∣+ sup

0≤λ≤1
|BH(λ)|

∣∣∣∣∫ J(x)dF (x)

∣∣∣∣ ,
i.e. sup−M≤s≤0

∣∣d−1n ln(s)
∫

(Fln(s)(x)− F (x))dF (x)
∣∣ is bounded in probability, and mn

dmn
= o( ndn ). An analo-

gous argument shows that 1
ndmn

A3,n(s) vanishes if n tends to ∞.

Therefore, it remains to show that 1
ndmn

A1,n(s) converges in distribution to a non-deterministic expression.

Due to stationarity

1

ndmn
A1,n(s)

D
=
n− bmnsc

n
d−1mnbmnsc

∫ (
F−bmnsc(x)− F (x)

)
dF (x)

for s < 0. As a result, 1
ndmn

A1,n(s) converges in distribution to −BH(s)
∫
J1(x)dF (x).

An application of the previous arguments shows that, if s > 0, 1
ndmn

A2,n(s) and 1
ndmn

A3,n(s) converge to

0 whereas 1
ndmn

A1,n(s) converges in distribution to BH(s)
∫
J(x)dF (x).

So far, we have seen that

sup
−M≤s≤0

∣∣∣∣ 1

ndmn
Vn(ln(s)) +BH(s)

∫
J1(x)dF (x)

∣∣∣∣ −→ 0,

sup
0≤s≤M

∣∣∣∣ 1

ndmn
Vn(ln(s))−BH(s)

∫
J1(x)dF (x)

∣∣∣∣ −→ 0.

As a result,

1

ndmn
(Wn(k0 + bmnsc)−Wn(k0))

D−→ sign(s)BH(s)

∫
J1(x)dF (x) + h(s; τ)

in D[−M,M ].
Furthermore, it follows that with the stronger normalization hnn

2 the limit of 1
hnn2Wn(k0 + bmnsc)

corresponds to the limit of 1
hnn2Wn(k0).



20 A. BETKEN

We have

1

hnn2
Wn(k0)

=
1

hnn2
k0(n− k0)

∫
(Fk0(x+ hn)− Fk0(x)) dFk0,n(x) +

1

hnn2

k0∑
i=1

n∑
j=k0+1

(
1{Yi≤Yj} −

1

2

)
.

The second summand on the right hand side vanishes as n tends to ∞, since h−1n = o
(
n
dn

)
.

Due to Lemma 3 the limit of d−1n k0
∫

(Fk0(x+ hn)− Fk0(x)) dFk0,n(x) corresponds to the limit of
d−1n k0

∫
(F (x+ hn)− F (x)) dF (x). Therefore,

h−1n

∫
(Fk0(x+ hn)− Fk0(x)) dFk0,n(x) −→

∫
f2(x)dx a.s.

In addition, k0
n

(n−k0)
n −→ τ(1− τ).

From this we can conclude that

1

hnn2
(Wn(k0 +mns) +Wn(k0))

P−→ 2τ(1− τ)

∫
f2(x)dx

in D[−M,M ].
In order to show that

m−1n (k̂ − k0)
D−→ argsup−∞<s<∞

(
sign(s)BH(s)

∫
J(x)dF (x) + h(s; τ)

)
,

we make use of Lemma 4.
For this purpose, we note that according to Lifshits’ criterion for unimodality of Gaussian processes (see

Theorem 1.1 in Ferger (1999)) the random function GH,τ (s) = sign(s)BH(s)
∫
J(x)dF (x) + h(s; τ) attains

its maximal value in [−M,M ] at a unique point with probability 1 for every M > 0. Hence, an application
of Lemma 4 in the appendix yields

sargmaxs∈[−M,M ]

1

en

(
W 2
n(k0 + bmnsc)−W 2

n(k0)
) D−→ argsups∈[−M,M ]GH,τ (s).

By the law of the iterated logarithm for fractional Brownian motions we have lim|s|→∞
BH(s)
s = 0 a.s.

so that sign(s)BH(s)
∫
J1(x)dF (x) + h(s; τ) −→ −∞ if |s| → ∞. Therefore, the limit corresponds to

argsups∈(−∞,∞)GH,τ (s) if M is sufficiently large.

It remains to be shown that instead of considering the sargmax in [−M,M ] we may as well consider the
smallest argmax in R.

For M > 0 define

ˆ̂
k(M) := min

{
k : |k0 − k| ≤Mmn, |Wk,n| = max

|k0−i|≤Mmn
|Wi,n|

}
.

Note that∣∣∣sargmaxs∈[−M,M ]

(
W 2
n(k0 + bmnsc)−W 2

n(k0)
)
− sargmaxs∈(−∞,∞)

(
W 2
n(k0 + bmnsc)−W 2

n(k0)
)∣∣∣

= m−1n

∣∣∣ˆ̂k(M)− k̂
∣∣∣+OP (1).

Therefore, we have to show that for some M ∈ R

m−1n

∣∣∣ˆ̂k(M)− k̂
∣∣∣ P−→ 0

as n tends to infinity. Note that

P
(
k̂ =

ˆ̂
k(M)

)
= P

(∣∣∣k̂ − k0∣∣∣ ≤Mmn

)
= 1− P

(∣∣∣k̂ − k0∣∣∣ > Mmn

)
.



Furthermore, we have

lim
M→∞

lim inf
n

(
1− P

(
|k̂ − k0| > Mmn

))
= 1− lim

M→∞
lim sup

n

(
P
(
|k̂ − k0| > Mmn

))
= 1

because |k̂ − k0| = OP (mn) by Theorem 1 and since |k̂ − k0| = OP (mn) is equivalent to

lim
M→∞

lim supn

(
P
(
|k̂ − k0| > Mmn

))
= 0. As a result, we have

lim
M→∞

lim inf
n

P
(
k̂ =

ˆ̂
k(M)

)
= 1.

Hence, for all ε > 0 there is an M0 ∈ R and an n0 ∈ N such that

P
(

ˆ̂
k(M) 6= k̂

)
< ε

for all n ≥ n0 and all M ≥M0. This concludes the proof of Theorem 2. �

References

Andrews, D. W. K. (1993) Tests for parameter instability and structural change with unknown change point.
Econometrica 61, 821–856.

Bai, J. (1994) Least squares estimation of a shift in linear processes. Journal of Time Series Analysis 15(5),
453–472.

Bai, J. (1997) Estimation of a change point in multiple regression models. Review of Economics and Statistics
79(4), 551–563.

Balke, N. S. (1993) Detecting level shifts in time series. Journal of Business & Economic Statistics 11(1),
81–92.

Ben Hariz, S. and Wylie, J. J. (2005) Convergence rates for estimating a change-point with long-range
dependent sequences. Comptes Rendus Mathematique 341(12), 765–768.

Beran, J. and Feng, Y. (2002) SEMIFAR models - a semiparametric framework for modelling trends, long-
range dependence and nonstationarity. Computational Statistics & Data Analysis 40(2), 393–419.
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6. Appendix

Lemma 1. Define δτ : [0, 1] −→ R by

δτ (λ) =

{
λ(1− τ) for λ ≤ τ
(1− λ)τ for λ ≥ τ

.

Assume that Assumption 1 holds and that either

• hn = h with h 6= 0,

or

• limn→∞ hn = 0 with h−1n = o
(

n
dn,r

)
and F has a bounded density f .

Then, we have

1

n2hn

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
P−→ Cδτ (λ), 0 ≤ λ ≤ 1,

where

C :=

{
1
h

∫
(F (x+ h)− F (x)) dF (x), if hn = h, h 6= 0,∫

f2(x)dx, if hn → 0 and h−1n = o
(

n
dn,r

) .
Proof. First, consider the case hn = h with h 6= 0. For bnλc ≤ bnτc we have

1

n2

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)

=
1

n2

bnλc∑
i=1

n∑
j=bnτc+1

(
1{Yi≤Yj+h} −

1

2

)
+

1

n2

bnλc∑
i=1

bnτc∑
j=bnλc+1

(
1{Yi≤Yj} −

1

2

)
.

By Lemma 1 in Betken (2016) the first summand on the right hand side of the equation converges in
probability to λ(1 − τ)

∫
(F (x+ h)− F (x)) dF (x) uniformly in λ ≤ τ . The second summand vanishes as n

tends to ∞.
If bnλc > bnτc,

1

n2

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)

=
1

n2

bnτc∑
i=1

n∑
j=bnλc+1

(
1{Yi≤Yj+h} −

1

2

)
+

1

n2

bnλc∑
i=bnτc+1

n∑
j=bnλc+1

(
1{Yi≤Yj} −

1

2

)
.

In this case, the first summand on the right hand side of the equation converges in probability to (1 −
λ)τ

∫
(F (x+ h)− F (x)) dF (x) uniformly in λ ≥ τ due to Lemma 1 in Betken (2016) while the second

summand converges in probability to zero. All in all, it follows that

1

n2

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
P−→ δτ (λ)

∫
(F (x+ h)− F (x)) dF (x)

uniformly in λ ∈ [0, 1].
If hn −→ 0, the process

1

ndn,r

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
− n

dn,r
δτ (λ)

∫
(F (x+ hn)− F (x)) dF (x), 0 ≤ λ ≤ 1,
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converges in distribution to

1

r!

∫
Jr(x)dF (x)

{
Z

(r)
H (λ)− λZ(r)

H (1)
}
, 0 ≤ λ ≤ 1,

due to Theorem 3.1 in Dehling, Rooch and Taqqu (2013b). By assumption h−1n = o
(

n
dn,r

)
, so that

1

n2hn

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
P−→ δτ (λ)

∫
f2(x)dx.

�

Lemma 2. Suppose that Assumption 1 holds and let hn, n ∈ N, be a sequence of real numbers with lim
n→∞

hn =

h.

• The process

1

ndn,r

bnλc∑
i=1

n∑
j=bnτc+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)
converges in distribution to

(1− τ)
1

r!
Z

(r)
H (λ)

∫
Jr(x+ h)dF (x)− λ 1

r!
(Z

(r)
H (1)− Z(r)

H (τ))

∫
Jr(x)dF (x+ h)

uniformly in λ ≤ τ .
• The process

1

ndn,r

bnτc∑
i=1

n∑
j=bnλc+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)
converges in distribution to

(1− λ)
1

r!
Z

(r)
H (τ)

∫
Jr(x+ h)dF (x)− τ 1

r!
(Z

(r)
H (1)− Z(r)

H (λ))

∫
Jr(x)dF (x+ h)

uniformly in λ ≥ τ .

Proof. We give a proof for the first assertion only as the convergence of the second term follows by an
analogous argument. The steps in this proof correspond to the argument that proves Theorem 1.1 in Dehling,
Rooch and Taqqu (2013a).

For λ ≤ τ we have the following representation:

bnλc∑
i=1

n∑
j=bnτc+1

1{Yi≤Yj+hn} = (n− bnτc) bnλc
∫
Fbnλc(x+ hn)dFbnτc+1,n(x).

This yields the following decomposition

1

ndn,r

bnλc∑
i=1

n∑
j=bnτc+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)
(4)

=
n− bnτc

n
d−1n,rbnλc

(∫
Fbnλc(x+ hn)− F (x+ hn)dFbnτc+1,n(x)

)
+
n− bnτc

n
d−1n,rbnλc

(∫
F (x+ hn)d

(
Fbnτc+1,n(x)− F (x)

))
.

We will show that the first summand of the above expression converges to the first summand of the limit
process whereas the second summand converges to the second summand of the limit.
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For the first summand we have

sup
0≤λ≤τ

∣∣∣∣d−1n,rbnλc(∫ Fbnλc(x+ hn)− F (x+ hn)dFbnτc+1,n(x)

)
− 1

r!
Z

(r)
H (λ)

∫
Jr(x+ h)dF (x)

∣∣∣∣
≤ sup

0≤λ≤τ

∣∣∣∣∫ d−1n,rbnλc
(
Fbnλc(x+ hn)− F (x+ hn)

)
− 1

r!
Jr(x+ hn)Z

(r)
H (λ)dFbnτc+1,n(x)

∣∣∣∣
+

1

r!
sup

0≤λ≤τ

∣∣∣Z(r)
H (λ)

∣∣∣ ∣∣∣∣∫ (Jr(x+ hn)− Jr(x+ h)) dFbnτc+1,n(x)

∣∣∣∣
+

1

r!
sup

0≤λ≤τ

∣∣∣Z(r)
H (λ)

∣∣∣ ∣∣∣∣∫ Jr(x+ h)d
(
Fbnτc+1,n(x)− F (x)

)∣∣∣∣ .
We will show that each of the summands on the right hand side converges to 0. The first summand

converges to 0 because supλ,x

∣∣∣d−1n,rbnλc (Fbnλc(x)− F (x)
)
− 1

r!Jr(x)Z
(r)
H (λ)

∣∣∣ −→ 0 a.s.

In order to show convergence of the second and third summand, note that sup0≤λ≤τ

∣∣∣Z(r)
H (λ)

∣∣∣ < ∞ a.s.

since the sample paths of the Hermite process Z
(r)
H are almost surely continuous.

Furthermore, we have∫
Jr(x+ h)dFbnτc+1,n(x) = −

∫ ∫
1{x+h≤G(y)}Hr(y)ϕ(y)dydFbnτc+1,n(x)

= −
∫ ∫

1{x≤G(y)−h}dFbnτc+1,n(x)Hr(y)ϕ(y)dy

= −
∫
Fbnτc+1,n(G(y)− h)Hr(y)ϕ(y)dy.

Analogously, it follows that∫
Jr(x+ hn)dFbnτc+1,n(x) = −

∫
Fbnτc+1,n(G(y)− hn)Hr(y)ϕ(y)dy.

Therefore, we may conclude that∣∣∣∣∫ (Jr(x+ h)− Jr(x+ hn)) dFbnτc+1,n(x)

∣∣∣∣
=

∣∣∣∣∫ (Fbnτc+1,n(G(y)− hn)− F (G(y)− hn) + F (G(y)− h)− Fbnτc+1,n(G(y))
)
Hr(y)ϕ(y)dy

∣∣∣∣
+

∣∣∣∣∫ (F (G(y)− hn)− F (G(y)− h))Hr(y)ϕ(y)dy

∣∣∣∣
≤ 2 sup

x∈R

∣∣Fbnτc+1,n(x)− F (x)
∣∣ ∫ |Hr(y)|ϕ(y)dy +

∫
|F (G(y)− hn)− F (G(y)− h)| |Hr(y)|ϕ(y)dy.

The first expression on the right hand side converges to 0 by the Glivenko-Cantelli theorem and the fact
that

∫
|Hr(y)|ϕ(y)dy < ∞; the second expression converges to 0 due to continuity of F and the dominated

convergence theorem.
To show convergence of the third summand note that∣∣∣∣∫ Jr(x+ h)d

(
Fbnτc+1,n(x)− F (x)

)∣∣∣∣
=

1

n− bnτc

∣∣∣∣∣∣
n∑

i=bnτc+1

(Jr(Yi + h)− EJr(Yi + h))

∣∣∣∣∣∣
≤ n

n− bnτc
1

n

∣∣∣∣∣
n∑
i=1

(Jr(Yi + h)− EJr(Yi + h))

∣∣∣∣∣+
bnτc

n− bnτc
1

bnτc

∣∣∣∣∣∣
bnτc∑
i=1

(Jr(Yi + h)− EJr(Yi + h))

∣∣∣∣∣∣ .
The ergodic theorem implies almost sure convergence to 0.
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For the second summand in (4) we have

n− bnτc
n

d−1n,rbnλc
(∫

F (x+ hn)d
(
Fbnτc+1,n(x)− F (x)

))
= −bnλc

n
d−1n,r(n− bnτc)

(∫ (
Fbnτc+1,n(x)− F (x)

))
dF (x+ hn).

Since bnλcn −→ λ uniformly in λ, consider∣∣∣∣d−1n,r(n− bnτc)(∫ (Fbnτc+1,n(x)− F (x)
))

dF (x+ hn)− 1

r!
(Z

(r)
H (1)− Z(r)

H (τ))

∫
Jr(x)dF (x+ hn)

∣∣∣∣
≤
∣∣∣∣∫ d−1n,rn (Fn(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)dF (x+ hn)

∣∣∣∣
+

∣∣∣∣∫ d−1n,rbnτc
(
Fbnτc(x)− F (x)

)
− 1

r!
Z

(r)
H (τ)Jr(x)dF (x+ hn)

∣∣∣∣ .
Both summands on the right hand side converge to 0 because of the empirical process non-central limit
theorem. �

Lemma 3. Suppose that Assumption 1 holds and let ln, n ∈ N, and hn, n ∈ N, be two sequences ln → ∞
and with hn −→ h. Then, it holds that

sup
0≤s≤1

∣∣∣∣d−1n,rbnsc ∫ (Fbnsc(x+ hn)− Fbnsc(x+ h)
)
dFln(x)− d−1n,rbnsc

∫
(F (x+ hn)− F (x+ h)) dFln(x)

∣∣∣∣
and∣∣∣∣d−1n,rn∫ (F (x+ hn)− F (x+ h)) dF (x)− d−1n,rn

∫
(F (x+ hn)− F (x+ h)) dFn(x)

∣∣∣∣
converge to 0 almost surely.

Proof. The triangle inequality yields

sup
0≤s≤1

∣∣∣∣d−1n,rbnsc ∫ (Fbnsc(x+ hn)− F (x+ hn)−
(
Fbnsc(x+ h)− F (x+ h)

))
dFln(x)

∣∣∣∣
≤ sup

0≤s≤1

∣∣∣∣∫ d−1n,rbnsc
(
Fbnsc(x+ hn)− F (x+ hn)

)
− 1

r!
Z

(r)
H (s)Jr(x+ hn)dFln(x)

∣∣∣∣
+ sup

0≤s≤1

∣∣∣∣∫ d−1n,rbnsc
(
Fbnsc(x+ h)− F (x+ h)

)
− 1

r!
Z

(r)
H (s)Jr(x+ h)dFln(x)

∣∣∣∣
+

1

r!
sup

0≤s≤1

∣∣∣Z(r)
H (s)

∣∣∣ ∣∣∣∣∫ (Jr(x+ h)− Jr(x+ hn))dFln(x)

∣∣∣∣ .
The first and second summand converge to 0 because of the empirical non-central limit theorem. More-

over, sup0≤s≤1

∣∣∣Z(r)
H (s)

∣∣∣ < ∞ a.s. due to the fact that Z
(r)
H is continuous with probability 1. In

order to show that the third summand vanishes as n tends to ∞, it therefore suffices to show that∣∣∫ (Jr(x+ h)− Jr(x+ hn))dFln(x)
∣∣ −→ 0. The corresponding argument has already been given in the proof

of Lemma 2.
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To prove the second assertion of Lemma 3, note that∣∣∣∣d−1n,rn∫ (F (x+ hn)− F (x+ h)) dF (x)− d−1n,rn
∫

(F (x+ hn)− F (x+ h)) dFn(x)

∣∣∣∣
=

∣∣∣∣∫ d−1n,rn (Fn(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)dF (x+ hn)

∣∣∣∣
+

∣∣∣∣∫ d−1n,rn (Fn(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)dF (x+ h)

∣∣∣∣
+

1

r!

∣∣∣Z(r)
H (1)

∣∣∣ ∣∣∣∣∫ Jr(x)d (F (x+ hn)− F (x+ h))

∣∣∣∣ .
The first and second summand on the right hand side of the above inequality converge to 0 due to the
empirical process non-central limit theorem. In addition, supx∈R |F (x+ hn)− F (x+ h)| −→ 0. (A sequence
Fn, n ∈ N, of distribution functions on R that converges pointwise to a continuous distribution function F
also converges uniformly.) Thus, the third summand goes to 0 since Jr is continuous and bounded. �

Lemma 4. Let K be a compact interval and denote by D(K) the corresponding Skorohod space, i.e. the
collection of all functions f : K −→ R which are right-continuous with left limits. Assume that Zn, n ∈ N,

are random variables taking values in D(K) and that Zn
D−→ Z, where (with probability 1) Z is continuous

and Z has a unique maximizer. Then sargmax(Zn)
D−→ sargmax(Z).

Proof. Due to Skorohod’s representation theorem there exist random variables Z̃n and Z̃ defined on a common

probability space (Ω̃, F̃ , P̃ ), such that Z̃n
D
= Zn, Z̃

D
= Z and Z̃n

a.s.−→ Z̃. Due to Lemma 2.9 in Seijo,
Sen et al. (2011) the smallest argmax functional is continuous at W (with respect to the Skorohod-metric
and the sup-norm metric) if W ∈ D(K) is a continuous function which has a unique maximizer. Since

(with probability 1) Z is continuous with unique maximizer ξ, sargmax(Z̃n)
a.s.−→ sargmax(Z̃). As almost

sure convergence implies convergence in distribution, we have sargmax(Z̃n)
D−→ sargmax(Z̃) and therefore

sargmax(Zn)
D−→ sargmax(Z). �
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