Change point estimation based on the Wilcoxon test in the presence of long-range dependence

Annika Betken

Nr. 67/2016
CHANGE POINT ESTIMATION BASED ON THE WILCOXON TEST IN THE PRESENCE OF LONG-RANGE DEPENDENCE

ANNIKA BETKEN

Abstract. We consider an estimator, based on the two-sample Wilcoxon statistic, for the location of a shift in the mean of long-range dependent sequences. Consistency and the rate of convergence for the estimated change point are established. In particular, the $1/n$ convergence rate (with n denoting the number of observations), which is typical under the assumption of independent observations, is also achieved for long memory sequences in case of a constant shift height. It is proved that after a suitable normalization the estimator converges in distribution to a functional of a fractional Brownian motion, if the change point height decreases to 0 with a certain rate. The estimator is tested on two well-known data sets. Finite sample behaviors are investigated in a Monte Carlo simulation study.

1. Introduction

Suppose that the observations X_1, \ldots, X_n are generated by a stochastic process $(X_i)_{i \geq 1}$

$$X_i = \mu_i + Y_i,$$

where $(\mu_i)_{i \geq 1}$ are unknown constants and where $(Y_i)_{i \geq 1}$ is a stationary, long-range dependent (LRD, in short) process with mean zero. A stationary process $(Y_i)_{i \geq 1}$ is called “long-range dependent” if its autocovariance function ρ, $\rho(k) := \text{Cov}(Y_1, Y_{k+1})$, satisfies

$$\rho(k) \sim k^{-D} L(k), \text{ as } k \to \infty,$$

where $0 < D < 1$ (referred to as long-range dependence (LRD) parameter) and where L is a slowly varying function.

Furthermore, we assume that there is a change point in the mean of the observations, that is

$$\mu_i = \begin{cases} \mu, & \text{for } i = 1, \ldots, k_0, \\ \mu + h_n, & \text{for } i = k_0 + 1, \ldots, n, \end{cases}$$

where $k_0 = \lfloor n \tau \rfloor$ denotes the change point location and h_n is the height of the level-shift.

In the following we differentiate between fixed and local changes. Under fixed changes we assume that $h_n = h$ for some $h \neq 0$. Local changes are characterized by a sequence $h_n, n \in \mathbb{N}$, with $h_n \to 0$ as $n \to \infty$; in other words, in a model where the height of the jump decreases with increasing sample size n.

In order to test the hypothesis

$$H : \mu_1 = \ldots = \mu_n$$

against the alternative

$$A : \mu_1 = \ldots = \mu_k \neq \mu_{k+1} = \ldots = \mu_n \text{ for some } k \in \{1, \ldots, n-1\}$$

the Wilcoxon change point test can be applied. It rejects the hypothesis for large values of the Wilcoxon test statistic defined by

$$W_n := \max_{1 \leq k \leq n-1} |W_{k,n}|, \text{ where } W_{k,n} := \sum_{i=1}^{k} \sum_{j=k+1}^{n} \left(1_{\{X_i \leq X_j\}} - \frac{1}{2}\right)$$

2010 Mathematics Subject Classification. Primary 62G05, 62M10; Secondary 60G15, 60G22.

Key words and phrases. change point estimation; long-range dependence; Wilcoxon test; self-normalization.

Research supported by the German National Academic Foundation and Collaborative Research Center SFB 823 Statistical modelling of nonlinear dynamic processes.
Preceding papers that address the problem of estimating change point locations in dependent observations seem natural to define an estimator of k (see Dehling, Rooch and Taqqu (2013a)). Under the assumption that there is a change point in the mean in $A. Buetken (2016)$, estimating the change point location on the basis of the self-normalized Wilcoxon test statistic proposed in to obtain the asymptotic distribution of the estimate. In this paper we will shortly address the issue of noted by Shao and Zhang (2010) that even under the assumption of short-range dependence it seems difficult of using the estimator, the article does not cover a formal proof of consistency. Furthermore, it has been Cusum test statistic has been applied in Shao (2011) to real data sets. Although Shao assumes validity of a decreasing jump height the convergence rate derived by Horváth and Kokoszka (1997) under the assumption that the jump height approaches 0. A change point estimator based on a self-normalized Mises-type test statistics for the detection of a change in the marginal distribution of the random variables to exceed the absolute value of W_n for any $l \neq k$0. Therefore, it seems natural to define an estimator of k0 by

$$\hat{k}_W := \min \left\{ k : |W_{k,n}| = \max_{1 \leq i \leq n-1} |W_{i,n}| \right\}.$$

Horváth and Kokoszka (1997) derive the asymptotic distribution of the estimator $\hat{k}_C(\gamma)$ under the assumption of a decreasing jump height h_n, i.e. under the assumption that h_n approaches 0 as the sample size n increases, for long-range dependent observations provided that the data generating process is Gaussian. Under non-restrictive constraints on the dependence structure of the data-generating process (including long-range dependent time series) Kokoszka and Leipus (1998) prove consistency of $\hat{k}_C(\gamma)$ under the assumption of fixed as well as under the assumption of decreasing jump heights. Furthermore, they establish the convergence rate of the change point estimator as a function of the intensity of dependence in the data if the jump height is constant. Ben Hariz and Wylie (2005) show that under a similar assumption on the decay of the autocovariances the convergence rate that is achieved in the case of independent observations can be obtained for short- and long-range dependent data, as well. Furthermore, it is shown in their paper that for a decreasing jump height the convergence rate derived by Horváth and Kokoszka (1997) under the assumption of gaussianity can be established under more general assumptions on the data-generating sequences.

Bai (1994) establishes an estimator for the location of a shift in the mean by the method of least squares. He proves consistency, determines the rate of convergence of the change point estimator and derives its asymptotic distribution. These results are shown to hold for weakly dependent observations that satisfy a linear model and cover, for example, ARMA(p, q)-processes. Bai extended these results to the estimation of the location of a parameter change in multiple regression models that also allow for lagged dependent variables and trending regressors (see Bai (1997)). A generalisation of these results to possibly long-range dependent data-generating processes (including fractionally integrated processes) is given in Kuan and Hsu (1998) and Lavielle and Moulines (2000). Under the assumption of independent data Darkhovskh (1976) establishes an estimator for the location of a change in distribution based on the two-sample Mann-Whitney test statistic. He obtains a convergence rate that has order $\frac{1}{n}$, where n is the number of observations. Allowing for strong dependence in the data Giraitis, Leipus and Surgailis (1996) consider Kolmogorov-Smirnov and Cramér-von-Mises-type test statistics for the detection of a change in the marginal distribution of the random variables that underlie the observed data. Consistency of the corresponding change point estimators is proved under the assumption that the jump height approaches 0. A change point estimator based on a self-normalized Cusum test statistic has been applied in Shao (2011) to real data sets. Although Shao assumes validity of using the estimator, the article does not cover a formal proof of consistency. Furthermore, it has been noted by Shao and Zhang (2010) that even under the assumption of short-range dependence it seems difficult to obtain the asymptotic distribution of the estimate. In this paper we will shortly address the issue of estimating the change point location on the basis of the self-normalized Wilcoxon test statistic proposed in Betken (2016).

In order to construct the self-normalized Wilcoxon test statistic, we have to consider the ranks R_i, $i = 1, \ldots, n$, of the observations X_1, \ldots, X_n. These are defined by $R_i := \text{rank}(X_i) = \sum_{j=1}^{n} 1\{X_j \leq X_i\}$ for $i =
$1, \ldots, n$. The self-normalized two-sample test statistic equals
\[
G_{k,n} = \frac{\sum_{i=1}^{k} R_i - \frac{k}{n} \sum_{i=1}^{n} R_i}{\left\{ \frac{1}{n} \sum_{i=1}^{k} S_i^2(1, k) + \frac{1}{n} \sum_{i=k+1}^{n} S_i^2(k+1, n) \right\}^{1/2}},
\]
where
\[
S_i(j, k) := \sum_{h=j}^{i} (R_h - \bar{R}_{j,k}) \quad \text{with} \quad \bar{R}_{j,k} := \frac{1}{k-j+1} \sum_{t=j}^{k} R_t.
\]
The self-normalized Wilcoxon change point test for the test problem (H, A) rejects the hypothesis for large values of $T_n(\tau_1, \tau_2) = \max_{k \in \{\lfloor n \tau_1 \rfloor, \ldots, \lfloor n \tau_2 \rfloor \}} |G_{k,n}|$, where $0 < \tau_1 < \tau_2 < 1$. Note that the proportion of the data that is included in the calculation of the supremum is restricted by τ_1 and τ_2. A common choice for these parameters is $\tau_1 = 1 - \tau_2 = 0.15$; see Andrews (1993).

A natural change point estimator that results from the self-normalized Wilcoxon test statistic is
\[
\hat{k}_{SW} := \min \left\{ k : |G_{k,n}| = \max_{|n \tau_1| \leq k \leq |n \tau_2|} |G_{k,n}| \right\}.
\]
We will prove consistency of the estimator \hat{k}_{SW} under fixed changes and under local changes whose height converges to 0 with a rate depending on the intensity of dependence in the data. Nonetheless, the main aim of this paper is to characterize the asymptotic behavior of the change point estimator \hat{k}_W. In Section 2 we will establish consistency of \hat{k}_W and \hat{k}_{SW}, derive the optimal convergence rate of \hat{k}_W and finally consider its asymptotic distribution. The finite sample properties of the estimators will be investigated by simulations in Section 4. Proofs of the theoretical results can be found in Section 5.

2. Main Results

Recall that for fixed $x, x \in \mathbb{R}$, the Hermite expansion of $1_{\{G(\xi_i) \leq x\}} - F(x)$ is given by
\[
1_{\{G(\xi_i) \leq x\}} - F(x) = \sum_{q=1}^{\infty} \frac{J_q(x)}{q!} H_q(\xi_i),
\]
where H_q denotes the q-th order Hermite polynomial and where
\[
J_q(x) = E \left(H_q(\xi_i) 1_{\{G(\xi_i) \leq x\}} \right).
\]

Assumption 1. Let $Y_i = G(\xi_i)$, where $(\xi_i)_{i \geq 1}$ is a stationary, long-range dependent Gaussian process with mean 0, variance 1 and LRD parameter D. We assume that $0 < D < \frac{1}{2}$, where r denotes the Hermite rank of the class of functions $1_{\{G(\xi_i) \leq x\}} - F(x), x \in \mathbb{R}$, defined by
\[
r := \min \{q \geq 1 : J_q(x) \neq 0 \text{ for some } x \in \mathbb{R} \}.
\]
Moreover, we assume that $(Y_i)_{i \geq 1}$ has a continuous distribution function F and that $G : \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function.

Let
\[
g_{D,r}(t) := \frac{2^{2r}}{D^r} L^{-\frac{r}{2}}(t)
\]
and define
\[
d_{n,r} := n \frac{g_{D,r}(n)}{g_{D,r}(n)} c_r, \text{ where } c_r := \sqrt{\frac{2r!}{(1-Dr)(2-Dr)}}.
\]
Since $g_{D,r}$ is a regularly varying function, it has an asymptotic inverse $g_{D,r}^{-1}$, i.e.
\[
g_{D,r}(g_{D,r}^{-1}(t)) \sim g_{D,r}(g_{D,r}(t)) \sim t, \text{ as } t \rightarrow \infty,
\]
(see Theorem 1.5.12 in Bingham, Goldie and Teugels (1989)).

The following result states that \hat{k}_W/n and \hat{k}_{SW}/n are consistent estimators for the change point location under fixed as well as certain local changes.
Proposition 1. Suppose that Assumption 1 holds. Under fixed changes, \(\frac{\hat{k}_W}{n} \) and \(\frac{k_{SW}}{n} \) are consistent estimators for the change point location. The estimators are also consistent under local changes if \(h_n^{-1} = o \left(\frac{n}{d_{n,r}} \right) \) and if \(F \) has a bounded density \(f \). In other words, we have
\[
\frac{\hat{k}_W}{n} \overset{p}{\to} \tau, \quad \frac{k_{SW}}{n} \overset{p}{\to} \tau
\]
in both situations. Furthermore, it follows that the Wilcoxon test is consistent under these assumptions (in the sense that \(\frac{1}{n^{2/3}} \max_{1 \leq k \leq n-1} |W_{k,n}| \overset{P}{\to} \infty \)).

The following theorem establishes a convergence rate for the change point estimator \(\hat{k}_W \). Note that only under local changes the convergence rate depends on the intensity of dependence in the data.

Theorem 1. Suppose that Assumption 1 holds and let \(m_n := g_{D,r}(h_n^{-1}) \). Then, we have
\[
\left| \hat{k}_W - k_0 \right| = O_P(m_n)
\]
if either
- \(h_n = h \) with \(h \neq 0 \)
- \(\lim_{n \to \infty} h_n = 0 \) with \(h_n^{-1} = o \left(\frac{n^{1/3}}{d_{n,r}} \right) \) and \(F \) has a bounded density \(f \).

Remark 1.

1. Under fixed changes \(m_n \) is constant. As a consequence, \(\left| \hat{k}_W - k_0 \right| = O_P(1) \). This result corresponds to the convergence rates obtained by Ben Hariz and Wylie (2005) for the Cusum-test based change point estimator and by Lavielle and Moulines (2000) for the least-squares estimate of the change point location. Surprisingly, in this case the rate of convergence is independent of the intensity of dependence in the data characterized by the value of the LRD-parameter \(D \). An explanation for this phenomenon might be the occurrence of two opposing effects: increasing values of the LRD-parameter \(D \) go along with a slower convergence of the test statistic \(W_{k,n} \) (making estimation more difficult), but a more regular behaviour of the random component (making estimation easier) (see Ben Hariz and Wylie (2005)).

2. Note that under local changes
 - \(m_n \overset{\text{a.s.}}{\to} \infty \) as \(n \to \infty \),
 - \(\frac{m_n}{n} \overset{\text{a.s.}}{\to} 0 \) as \(n \to \infty \),
 - \(\frac{d_{n,r}}{m_n} \sim h_n \) as \(n \to \infty \).

Based on the previous results it is possible to derive the asymptotic distribution of the change point estimator \(\hat{k}_W \):

Theorem 2. Suppose that Assumption 1 holds with \(r = 1 \) and assume that \(F \) has a bounded density \(f \). If \(h_n^{-1} = o \left(\frac{n^{1/3}}{d_{n,r}} \right) \) and \(m_n = g_{D,1}(h_n^{-1}) \), then, for all \(M > 0 \),
\[
\frac{1}{c_n} \left(W_n^2(k_0 + [m_n s]) - W_n^2(k_0) \right) \overset{D}{\to} 2(1 - \tau) \int f^2(x)dx \left(\text{sign}(s)B_H(s) \int J_1(x)dF(x) + h(s;\tau) \right)
\]
in the Skorohod space \(D [-M, M] \), where \(c_n = n^{\frac{3}{2}}h_n d_{m_n,1}, B_H \) is a fractional Brownian motion process, and where \(h(s;\tau) \) is defined by
\[
h(s;\tau) = \begin{cases}
 s(1 - \tau) \int f^2(x)dx & \text{if } s \leq 0 \\
 -s\tau \int f^2(x)dx & \text{if } s > 0
\end{cases}
\]
Furthermore, it follows that
\[
m_n^{-1}(\hat{k}_W - k_0) \overset{D}{\to} \arg\max_{-\infty < s < \infty} \left(\text{sign}(s)B_H(s) \int J_1(x)dF(x) + h(s;\tau) \right).
\]
Remark 2. (1) Under local changes the assumption $h^{-1}_n = o \left(\frac{n}{\log n} \right)$ is equivalent to Assumption C.5 (i) in Horváth and Kokoszka (1997). Moreover, the limit distribution of the Cusum-based change point estimator closely resembles the limit distribution of the change point estimator considered in that paper.

(2) The proof of Theorem 2 is mainly based on the empirical process non-central limit theorem for subordinated Gaussian sequences in Dehling and Taqqu (1989). The sequential empirical process has also been studied by many other authors in the context of different models. See, among many others, the following: Müller (1970) and Kiefer (1972) for independent and identically distributed data, Berkes and Philipp (1977) and Philipp and Pinzur (1980) for strongly mixing processes, Berkes, Hörmann and Schauer (2009) for S-mixing processes, Giraitis and Surgailis (1999) for long memory linear (or moving average) processes, Dehling, Durieu and Tusche (2014) for multiple mixing processes. Consequently, in these situations the asymptotic distribution of \hat{k}_W can be derived by the same argument as in the proof of Theorem 2 for subordinated Gaussian processes. In particular, Theorem 1 in Giraitis and Surgailis (1999) can be considered as a generalization of Theorem 1.1 in Dehling and Taqqu (1989), i.e. with an appropriate normalization the change point estimator \hat{k}_W computed with respect to long-range dependent linear processes as defined in Giraitis and Surgailis (1999) converges in distribution to a limit that corresponds to (3) (up to multiplicative constants).

3. Applications

We consider two well-known data sets which have been analyzed before. We compute the estimator \hat{k}_W based on the given observations and put our results into context with the findings and conclusions of other authors.

Figure 1. Measurements of the annual discharge of the river Nile at Aswan in $10^8 m^3$ for the years 1871-1970. The dotted line indicates the location of the change point; the dashed lines designate the sample means for the pre-break and post-break samples.

The plot in Figure 1 depicts the annual volume of discharge from the Nile river at Aswan in $10^8 m^3$ for the years 1871 to 1970. Amongst others, Cobb (1978), Macneill, Tang and Jandhyala (1991), Wu and Zhao (2007), Shao (2011) and Betken and Wendler (2015) provide statistically significant evidence for a decrease
of the Nile’s annual discharge towards the end of the 19th century. The construction of the Aswan Low Dam between 1898 and 1902 serves as a popular explanation for an abrupt change in the data around the turn of the century. Yet, Cobb gave another explanation for the decrease in water volume by citing rainfall records which suggest a decline of tropical rainfall at that time. In fact, an application of the change point estimator \(\hat{k}_W \) identifies a change in 1898. This result seems to be in good accordance with the estimated change point locations suggested by other authors: Cobb’s analysis of the Nile data leads to the conjecture of a significant decrease in discharge volume in 1898. Moreover, computation of the Cusum-based change point estimator \(\hat{k}_C(0) \) considered in Horváth and Kokoszka (1997) indicates a change in 1898. Balke (1993) and Wu and Zhao (2007) suggest that the change occurred in 1899.

\[\text{Figure 2. Monthly temperature of the northern hemisphere for the years 1854-1989 from the data base held at the Climate Research Unit of the University of East Anglia, Norwich, England. The temperature anomalies (in degrees C) are calculated with respect to the reference period 1950-1979. The dotted line indicates the location of the potential change point; the dashed lines designate the sample means for the pre-break and post-break samples.} \]

The second data set consists of the seasonally adjusted monthly deviations of the temperature (degrees C) for the northern hemisphere during the years 1854 to 1989 from the monthly averages over the period 1950 to 1979. The data results from spatial averaging of temperatures measured over land and sea. In view of the plot in Figure 2 it seems natural to assume that the data generating process is non-stationary. Previous analysis of this data offers different explanations for the irregular behavior of the time series. Deo and Hurvich (1998) fitted a linear trend to the data, thereby providing statistical evidence for global warming during the last decades. However, the consideration of a more general stochastic model by the assumption of so-called semiparametric fractional autoregressive (SEMIFAR) processes in Beran and Feng (2002) does not confirm the conjecture of a trend-like behavior. Neither does the investigation of the global temperature data in Wang (2007) support the hypothesis of an increasing trend. It is pointed out by Wang that the trend-like behavior of the Northern hemisphere temperature data may have been generated by stationary long range dependent processes. Yet, it is shown in Shao (2011) and also in Betken and Wendler (2015)
that under model assumptions that include long range dependence an application of change point tests leads to a rejection of the hypothesis that the time series is stationary. According to Shao (2011) an estimation based on a self-normalized Cusum test statistic suggests a change around October 1924. Computation of the change point estimator \(\hat{k}_W \) corresponds to a potential change point located around June 1924. The same change point location results from an application of the previously mentioned estimator \(\hat{k}_C(0) \) considered in Horváth and Kokoszka (1997). In this regard estimation by \(\hat{k}_W \) seems to be in good accordance with the results of alternative change point estimators.

4. Simulations

We will now investigate the finite sample performance of the change point estimator \(\hat{k}_W \) and compare it to corresponding simulation results for the estimators \(\hat{k}_{SW} \) (based on the self-normalized Wilcoxon test statistic) and \(\hat{k}_C \) (based on the Cusum test statistic with parameter \(\gamma = 0 \)). For this purpose, we consider two different scenarios:

(1) Normal margins: We generate fractional Gaussian noise time series \(\{\xi_i\}_{i \geq 1} \) and choose \(G(t) = t \) in Assumption 1. As a result, the simulated observations \(\{Y_i\}_{i \geq 1} \) are Gaussian with autocovariance function

\[
\rho(k) \sim \left(1 - \frac{D}{2}\right)(1 - D)k^{-D}.
\]

Note that in this case the Hermite coefficient \(J_1(x) \) is not equal to 0 for all \(x \in \mathbb{R} \) (see Dehling, Rooch and Taqqu (2013a)) so that \(m = 1 \), where \(m \) denotes the Hermite rank of \(1_{\{Y_i \leq x\}} - F(x), x \in \mathbb{R} \). Therefore, Assumption 1 holds for all values of \(D \in (0, 1) \).

(2) Pareto margins: In order to get standardized Pareto-distributed data which has a representation as a functional of a Gaussian process, we consider the transformation

\[
G(t) = \left(\frac{\beta k^2}{(\beta - 1)^2(\beta - 2)}\right)^{-\frac{1}{2}} \left(k(\Phi(t))^{-\frac{1}{2}} - \frac{\beta k}{\beta - 1}\right)
\]

with parameters \(k, \beta > 0 \) and with \(\Phi \) denoting the standard normal distribution function. Since \(G \) is a strictly decreasing function, it follows by Theorem 2 in Dehling, Rooch and Taqqu (2013a) that the Hermite rank of \(1_{\{G(\xi_i) \leq x\}} - F(x), x \in \mathbb{R} \), is \(m = 1 \) so that Assumption 1 holds for all values of \(D \in (0, 1) \).

To analyze the behavior of the estimators we simulated 500 time series of length 600 and added a level shift of height \(h \) after a proportion \(\tau \) of the data. We have done so for several choices of \(h \) and \(\tau \). The descriptive statistics, i.e. mean, sample standard deviation (S.D.) and quartiles, are reported in Tables 1, 2, 3 for the three change point estimators \(\hat{k}_W, \hat{k}_{SW} \) and \(\hat{k}_C(\gamma) \).

The following observations, made on the basis of Tables 1, 2, 3 correspond to the expected behavior of consistent change point estimators:

- Bias and variance of the estimated change point location decrease when the height of the level shift increases.
- Change points that are located in the middle of the sample are detected more often than change points that are located close to the boundary of the testing region.
- High values of \(H \) go along with an increase of bias and variance. This seems natural since when there is very strong dependence, i.e. \(H \) is large, the variance of the series increases, so that it becomes harder to detect a level shift of a fixed height.

The above statements hold for all three change point estimators.

A comparison of the descriptive statistics of the estimator \(\hat{k}_W \) (based on the Wilcoxon statistic) and \(\hat{k}_{SW} \) (based on the self-normalized Wilcoxon statistic) shows that

- In most cases the estimator \(\hat{k}_{SW} \) has a smaller bias, especially for an early change point location. However, the difference between the biases of \(\hat{k}_{SW} \) and \(\hat{k}_W \) is not big.
- In general the sample standard deviation of \(\hat{k}_W \) is smaller than that of \(\hat{k}_{SW} \). Indeed, it is only slightly better for \(\tau = 0.25 \), but there is a clear difference for \(\tau = 0.5 \).
Table 1. Descriptive statistics of the sampling distribution of \hat{k}_W for a change in the mean based on 500 fractional Gaussian noise and Pareto time series of length 600 with Hurst parameter H and a change in mean in τ of height h.

<table>
<thead>
<tr>
<th>margins τ</th>
<th>h</th>
<th>$H = 0.6$</th>
<th>$H = 0.7$</th>
<th>$H = 0.8$</th>
<th>$H = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal 0.25</td>
<td>0.5</td>
<td>193.84 (64.020)</td>
<td>227.59 (99.788)</td>
<td>252.408 (110.084)</td>
<td>270.646 (113.72)</td>
</tr>
<tr>
<td>mean (S.D.)</td>
<td>2</td>
<td>153.604 (8.255)</td>
<td>156.656 (12.393)</td>
<td>164.338 (29.570)</td>
<td>173.61 (41.514)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td>(150, 151, 154)</td>
<td>(150, 151, 158)</td>
<td>(150, 151, 164)</td>
<td>(150, 152, 180.25)</td>
</tr>
<tr>
<td>normal 0.5</td>
<td>0.5</td>
<td>299.506 (30.586)</td>
<td>301.87 (61.392)</td>
<td>300.774 (82.610)</td>
<td>298.93 (98.368)</td>
</tr>
<tr>
<td>mean (S.D.)</td>
<td>2</td>
<td>300.064 (1.294)</td>
<td>299.922 (3.215)</td>
<td>299.504 (5.520)</td>
<td>300.282 (7.494)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
</tr>
<tr>
<td>Pareto(3, 1)</td>
<td>0.25</td>
<td>158.166 (17.762)</td>
<td>164.08 (31.219)</td>
<td>179.512 (58.871)</td>
<td>194.126 (74.767)</td>
</tr>
<tr>
<td>quartiles</td>
<td>1</td>
<td>(150, 151, 159.25)</td>
<td>(150, 152, 168)</td>
<td>(150, 154, 191.25)</td>
<td>(150, 159, 218.25)</td>
</tr>
<tr>
<td>mean (S.D.)</td>
<td>2</td>
<td>152.256 (4.852)</td>
<td>155.592 (11.092)</td>
<td>160.686 (24.599)</td>
<td>169.374 (38.197)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td>(150, 150, 152)</td>
<td>(150, 151, 155)</td>
<td>(150, 151, 159)</td>
<td>(150, 150, 172)</td>
</tr>
<tr>
<td>normal 0.5</td>
<td>0.5</td>
<td>298.072 (6.008)</td>
<td>296.432 (13.441)</td>
<td>293.06 (26.221)</td>
<td>289.946 (45.739)</td>
</tr>
<tr>
<td>quartiles</td>
<td>1</td>
<td>(297, 300, 300)</td>
<td>(296, 300, 300)</td>
<td>(294, 300, 301)</td>
<td>(291, 300, 301)</td>
</tr>
<tr>
<td>mean (S.D.)</td>
<td>2</td>
<td>299.798 (1.008)</td>
<td>299.716 (1.543)</td>
<td>299.384 (3.070)</td>
<td>298.896 (6.560)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
</tr>
</tbody>
</table>
Table 2. Descriptive statistics of the sampling distribution of \hat{k}_{SW} for a change in the mean based on 500 replications of fractional Gaussian noise and Pareto time series of length 600 with Hurst parameter H and a change in mean in τ of height h.

<table>
<thead>
<tr>
<th>margins</th>
<th>τ</th>
<th>h</th>
<th>$H = 0.6$</th>
<th>$H = 0.7$</th>
<th>$H = 0.8$</th>
<th>$H = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>0.25</td>
<td>0.5</td>
<td>172.288 (63.639)</td>
<td>216.934 (110.934)</td>
<td>242.202 (119.655)</td>
<td>268.878 (122.615)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>152.406 (24.840)</td>
<td>160.618 (39.834)</td>
<td>174.424 (70.673)</td>
<td>204.906 (99.648)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(140, 149, 158)</td>
<td>(139, 150.5, 172.25)</td>
<td>(136, 150, 188.25)</td>
<td>(139.75, 161.5, 243.75)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>148.836 (9.00795)</td>
<td>150.208 (13.575)</td>
<td>153.194 (28.251)</td>
<td>160.026 (40.979)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(144, 150, 152)</td>
<td>(142.75, 150, 154)</td>
<td>(138, 150, 158)</td>
<td>(137.75, 150, 165)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td>297.712 (43.291)</td>
<td>302.204 (77.719)</td>
<td>302.866 (96.511)</td>
<td>297.662 (110.175)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(277, 297, 320)</td>
<td>(262, 300, 337)</td>
<td>(248, 298.5, 369.5)</td>
<td>(215, 301, 369.5)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>299.052 (16.132)</td>
<td>299.91 (28.907)</td>
<td>302.386 (55.267)</td>
<td>300.956 (62.821)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(290, 299, 308)</td>
<td>(288, 300, 313)</td>
<td>(277, 300, 324.25)</td>
<td>(270, 300, 329)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>300.01 (6.054)</td>
<td>299.612 (10.079)</td>
<td>298.844 (14.059)</td>
<td>301.424 (21.022)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(297, 300, 303.25)</td>
<td>(294, 300, 305)</td>
<td>(291, 300, 307)</td>
<td>(289, 300, 312)</td>
</tr>
<tr>
<td>Pareto(3,1)</td>
<td>0.25</td>
<td>0.5</td>
<td>151.562 (18.392)</td>
<td>155.034 (32.505)</td>
<td>165.26 (58.363)</td>
<td>182.706 (83.268)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(142, 150, 157)</td>
<td>(140, 150, 163)</td>
<td>(136, 150, 173)</td>
<td>(136.75, 150, 196.25)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>150.206 (9.116)</td>
<td>150.272 (15.405)</td>
<td>152.824 (25.074)</td>
<td>166.602 (58.982)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(145, 150, 154)</td>
<td>(143, 150, 156)</td>
<td>(140, 150, 159.25)</td>
<td>(136, 150, 174.25)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>149.21 (6.201)</td>
<td>149.934 (11.821)</td>
<td>151.946 (21.426)</td>
<td>156.836 (39.311)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(146, 150, 152)</td>
<td>(143, 150, 153)</td>
<td>(140, 150, 156)</td>
<td>(136, 150, 160.25)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td>300.524 (11.841)</td>
<td>299.488 (21.317)</td>
<td>299.664 (37.136)</td>
<td>295.048 (55.000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(294, 300, 307)</td>
<td>(290, 300, 310)</td>
<td>(287, 300, 317)</td>
<td>(280.75, 300, 318)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>300.498 (6.600)</td>
<td>300.56 (10.383)</td>
<td>299.52 (18.862)</td>
<td>297.766 (28.308)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(297, 300, 304)</td>
<td>(296, 300, 306)</td>
<td>(292, 300, 309.25)</td>
<td>(289, 300, 312.25)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>300.444 (4.411)</td>
<td>300.234 (7.517)</td>
<td>300.524 (11.122)</td>
<td>298.84 (16.004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(298, 300, 303)</td>
<td>(296, 300, 304)</td>
<td>(295.75, 300, 307)</td>
<td>(292, 300, 308)</td>
</tr>
</tbody>
</table>
Table 3. Descriptive statistics of the sampling distribution of \hat{k}_C for a change in the mean based on 500 replications of fractional Gaussian noise and Pareto time series of length 600 with Hurst parameter H and a change in mean in τ of height h.

<table>
<thead>
<tr>
<th>margins</th>
<th>τ</th>
<th>h</th>
<th>$H = 0.6$</th>
<th>$H = 0.7$</th>
<th>$H = 0.8$</th>
<th>$H = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean (S.D.)</td>
<td>mean (S.D.)</td>
<td>mean (S.D.)</td>
<td>mean (S.D.)</td>
</tr>
<tr>
<td>normal</td>
<td>0.25</td>
<td>0.5</td>
<td>193.06 (64.917)</td>
<td>228.948 (101.442)</td>
<td>253.114 (111.182)</td>
<td>271.38 (114.590)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(150, 166.5, 222)</td>
<td>(151, 191.5, 286.75)</td>
<td>(156.75, 226, 341.5)</td>
<td>(172.75, 249.5, 354.25)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>162.028 (22.948)</td>
<td>173.838 (39.845)</td>
<td>187.386 (63.865)</td>
<td>213.114 (87.356)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(150, 153, 164)</td>
<td>(150, 156.5, 187.25)</td>
<td>(150, 158, 206)</td>
<td>(150, 173, 254.25)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>152.374 (6.249)</td>
<td>154.878 (10.395)</td>
<td>159.7 (22.064)</td>
<td>165.94 (33.124)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(150, 150, 152)</td>
<td>(150, 150, 156)</td>
<td>(150, 151, 158)</td>
<td>(150, 150, 165)</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>297.84 (30.249)</td>
<td>302.06 (63.878)</td>
<td>300.246 (84.346)</td>
<td>298.91 (97.904)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(290, 299, 308)</td>
<td>(276, 301, 322)</td>
<td>(261.75, 300, 340)</td>
<td>(236.25, 299, 353.25)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>299.87 (9.356)</td>
<td>299.662 (21.281)</td>
<td>303.646 (42.245)</td>
<td>299.762 (52.492)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(298, 300, 302)</td>
<td>(297, 300, 304)</td>
<td>(293, 300, 307)</td>
<td>(290, 300, 311)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>300.06 (1.473)</td>
<td>299.916 (3.199)</td>
<td>299.442 (5.234)</td>
<td>300.46 (8.179)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
</tr>
<tr>
<td>Pareto(3, 1)</td>
<td>0.25</td>
<td>0.5</td>
<td>175.632 (48.517)</td>
<td>198.452 (79.303)</td>
<td>205.506 (88.482)</td>
<td>210.444 (93.831)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(150, 159, 185)</td>
<td>(150, 168, 223.75)</td>
<td>(150, 173, 251.25)</td>
<td>(150, 167, 259.5)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>156.586 (14.133)</td>
<td>160.35 (27.204)</td>
<td>170.278 (45.402)</td>
<td>177.278 (66.661)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(150, 152, 159)</td>
<td>(150, 152, 161)</td>
<td>(150, 153, 171)</td>
<td>(150, 150, 174)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>150.314 (1.349)</td>
<td>150.566 (3.984)</td>
<td>152.474 (18.578)</td>
<td>155.496 (29.408)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(150, 150, 150)</td>
<td>(150, 150, 150)</td>
<td>(150, 150, 150)</td>
<td>(150, 150, 150)</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>296.26 (22.306)</td>
<td>292.904 (43.471)</td>
<td>289.192 (64.033)</td>
<td>287.966 (64.827)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(292, 300, 303.25)</td>
<td>(288.75, 300, 305)</td>
<td>(273.75, 300, 308.25)</td>
<td>(285, 300, 303)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(299, 300, 300)</td>
<td>(299, 300, 300)</td>
<td>(298, 300, 300)</td>
<td>(300, 300, 300)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>299.604 (1.843)</td>
<td>299.228 (3.385)</td>
<td>298.35 (8.354)</td>
<td>297.632 (14.525)</td>
</tr>
<tr>
<td>quartiles</td>
<td></td>
<td></td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
<td>(300, 300, 300)</td>
</tr>
</tbody>
</table>
All in all, our simulations do not give rise to choosing \hat{k}_{SW} over \hat{k}_W. In particular, better standard deviations of \hat{k}_W compensate for smaller biases of \hat{k}_{SW}. Comparing the finite sample performance of \hat{k}_W and the Cusum-based change point estimator $\hat{k}_C(0)$ we observe that

- For fractional Gaussian noise time series bias and variance of $\hat{k}_C(0)$ tend to be slightly better, at least when $\tau = 0.25$ and especially for relatively high level shifts. Nonetheless, the deviations are in most cases negligible.
- If the change happens in the middle of a sample with normal margins, bias and variance of \hat{k}_W tend to be smaller, especially for relatively high level shifts. Again, in most cases the deviations are negligible.
- For Pareto(3, 1) time series \hat{k}_W clearly outperforms $\hat{k}_C(0)$ by yielding smaller biases and decisively smaller variances for almost every combination of parameters that has been considered.
- The performance of the estimator $\hat{k}_C(0)$ surpasses the performance of \hat{k}_W only for high values of the jump height h.

It is well-known that the Wilcoxon change point test is more robust against outliers in data sets than the Cusum-like change point tests, i.e. the Wilcoxon test outperforms Cusum-like tests if heavy-tailed time series are considered. Our simulations confirm that this observation is also reflected by the finite sample behavior of the corresponding change point estimators.

As noted in Remark 1, $\hat{k}_W - k_0 = O_P(1)$ under the assumption of a change point height h independent of n. This observation is illustrated by simulations of the mean absolute error

$$\text{MAE} = \frac{1}{m} \sum_{i=1}^{m} |\hat{k}_W,i - k_0|,$$

where \hat{k}_W,i, $i = 1, \ldots, m$, denote the estimates for k_0, computed on the basis of $m = 1000$ different sequences of length n. Figure 3 depicts a plot of MAE against n with n varying between 1000 and 30000. Since $\hat{k}_W - k_0 = O_P(1)$ due to Theorem 1, we expect MAE to approach a constant as n tends to infinity. This can be clearly seen in Figure 3 for $H = 0.6$ and $H = 0.7$. For a high intensity of dependence in the data (characterized by $H = 0.8$ or $H = 0.9$) convergence becomes slower, although asymptotically the behavior of the mean absolute error is independent of H (according to Theorem 1). This is due to a slower convergence
of the test statistic $W_{k,n}$, which is not canceled out by the effect of a more regular behavior of the sample paths of the limit process for relatively small values of n.

5. Proofs

In the following let F_k and $F_{k+1,n}$ denote the empirical distribution functions of the first k and last $n-k$ realizations of Y_1, \ldots, Y_n, i.e.

$$F_k(x) := \frac{1}{k} \sum_{i=1}^{k} 1\{Y_i \leq x\},$$

$$F_{k+1,n}(x) := \frac{1}{n-k} \sum_{i=k+1}^{n} 1\{Y_i \leq x\}.$$

Proof of Proposition 1. The proof of Proposition 1 is based on an application of Lemma 1 in the appendix.

According to Lemma 1 it holds that, under the assumptions of Proposition 1,

$$\frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=[n\lambda]+1}^{n} \left(1\{X_i \leq X_j\} - \frac{1}{2}\right) \xrightarrow{P} \delta_\tau(\lambda) \int (F(x + h) - F(x)) \, dF(x) \xrightarrow{P} C \delta_\tau(\lambda), \ 0 \leq \lambda \leq 1,$$

where $\delta_\tau : [0, 1] \to \mathbb{R}$ is defined by

$$\delta_\tau(\lambda) = \begin{cases} \lambda(1 - \tau) & \text{for } \lambda \leq \tau \\ (1 - \lambda)\tau & \text{for } \lambda \geq \tau \end{cases}$$

and C denotes some non-zero constant.

It directly follows that $\frac{1}{n^{d_{n,\varepsilon}}} \max_{1 \leq k \leq n-1} |W_{k,n}| \xrightarrow{P} \infty$.

Furthermore, we have

$$\frac{1}{n^2 h_n} \max_{1 \leq k \leq [n(\tau - \varepsilon)]} \left| \sum_{i=1}^{k} \sum_{j=k+1}^{n} \left(1\{X_i \leq X_j\} - \frac{1}{2}\right) \right| \xrightarrow{P} C \sup_{0 \leq \lambda \leq \tau - \varepsilon} \delta_\tau(\lambda) = C(\tau - \varepsilon)(1 - \tau)$$

for any $0 \leq \varepsilon < \tau$.

For $\varepsilon > 0$ define

$$Z_{n,\varepsilon} := \frac{1}{n^2 h_n} \max_{1 \leq k \leq [n\tau]} \left| \sum_{i=1}^{k} \sum_{j=k+1}^{n} \left(1\{X_i \leq X_j\} - \frac{1}{2}\right) \right| - \frac{1}{n^2 h_n} \max_{1 \leq k \leq \lfloor n(\tau - \varepsilon) \rfloor} \left| \sum_{i=1}^{k} \sum_{j=k+1}^{\lfloor n(\tau - \varepsilon) \rfloor} \left(1\{X_i \leq X_j\} - \frac{1}{2}\right) \right|.$$

As $Z_{n,\varepsilon} \xrightarrow{P} C(1 - \tau)\varepsilon$, it follows that $P(\hat{k} < \lfloor n(\tau - \varepsilon) \rfloor) = P(Z_{n,\varepsilon} \leq 0) \to 0$. An analogous line of argument yields

$$P(\hat{k} > \lfloor n(\tau + \varepsilon) \rfloor) \to 0.$$

All in all, it follows that for any $\varepsilon > 0$

$$\lim_{n \to \infty} P\left(\frac{\hat{k}_W}{n} - \tau > \varepsilon\right) = \lim_{n \to \infty} \left(P(\hat{k}_W > \lfloor n(\tau + \varepsilon) \rfloor) + P(\hat{k}_W < \lfloor n(\tau - \varepsilon) \rfloor) \right) = 0.$$

This proves consistency of the change point estimator, which is based on the Wilcoxon test statistic.

In the following it is shown that $\frac{1}{n} \hat{k}_{SW}^2$ is a consistent estimator, too. For this purpose, we consider the process $G_n(\lambda), \ 0 \leq \lambda \leq 1$, defined by $G_n(\lambda) := G_{[n\lambda],n}$. According to Betken (2016) the limit of the self-normalized Wilcoxon test statistic can be obtained by an application of the continuous mapping theorem to the process

$$\frac{1}{a_n} \sum_{i=1}^{[n\lambda]} \sum_{j=[n\lambda]+1}^{n} \left(1\{X_i \leq X_j\} - \frac{1}{2}\right), \ 0 \leq \lambda \leq 1,$$
Proof of Theorem 1. In the following we write \hat{k} instead of \hat{k}_W. For convenience, we assume that $h > 0$ under fixed changes, and that for some $n_0 \in \mathbb{N}$ $h_n > 0$ for all $n \geq n_0$ under local changes, respectively. Furthermore, we subsume both changes under the general assumption that $\lim_{n \to \infty} h_n = h$ (under fixed changes $h_n = h$ for all $n \in \mathbb{N}$, under local changes $h = 0$). In order to prove Theorem 1, we need to show that for all $\varepsilon > 0$ there exists an $n(\varepsilon) \in \mathbb{N}$ and an $M > 0$ such that

$$P\left(\left|\hat{k} - k_0\right| > Mm_n\right) < \varepsilon$$

for all $n \geq n(\varepsilon)$.

For $M \in \mathbb{R}^+$ define $D_{n,M} := \{k \in \{1, \ldots, n - 1\} \mid |k - k_0| > Mm_n\}$.

We have

$$P\left(\left|\hat{k} - k_0\right| > Mm_n\right) \leq P\left(\sup_{k \in D_{n,M}} |W_n(k)| \geq |W_n(k_0)|\right).$$

If $\sup_{k \in D_{n,M}} |W_n(k)| \geq |W_n(k_0)|$, then either $\sup_{k \in D_{n,M}} (W_n(k) - W_n(k_0)) \geq 0$ or $\sup_{k \in D_{n,M}} (-W_n(k) - W_n(k_0)) \geq 0$.

As a result,

$$P\left(\sup_{k \in D_{n,M}} |W_n(k)| \geq |W_n(k_0)|\right) \leq P_1 + P_2$$

with

$$P_1 := P\left(\sup_{k \in D_{n,M}} (W_n(k) - W_n(k_0)) \geq 0\right), \quad P_2 := P\left(\sup_{k \in D_{n,M}} (-W_n(k) - W_n(k_0)) \geq 0\right).$$

Note that $D_{n,M} = D_{n,M}(1) \cup D_{n,M}(2)$, where $D_{n,M}(1) := \{k \in \{1, \ldots, n - 1\} \mid k_0 - k > Mm_n\}$ and $D_{n,M}(2) := \{k \in \{1, \ldots, n - 1\} \mid k - k_0 > Mm_n\}$. Therefore, $P_2 \leq P_{2,1} + P_{2,2}$, where

$$P_{2,1} := P\left(\sup_{k \in D_{n,M}(1)} (-W_n(k) - W_n(k_0)) \geq 0\right), \quad P_{2,2} := P\left(\sup_{k \in D_{n,M}(2)} (-W_n(k) - W_n(k_0)) \geq 0\right).$$

In the following we will consider the first summand only. (For the second summand analogous implications result from the same argument.)

For this, we define

$$\widehat{W}_n(k) := \delta_n(k) \Delta(h_n),$$

where

$$\delta_n(k) := \begin{cases} k(n - k), & k_0 \geq k \\ k_0(n - k), & k_0 \leq k \end{cases}$$
and
\[\Delta(h_n) := \int (F(x + h_n) - F(x)) \, dF(x). \]

Note that
\[P_{2,1} \leq P \left(\sup_{k \in D_{n,M}(1)} \left(\hat{W}_n(k) - W_n(k) + \hat{W}_n(k_0) - W_n(k_0) \right) \geq \hat{W}_n(k_0) \right) \]
\[\leq P \left(2 \sup_{\lambda \in [0,\tau]} \left| W_n([n\lambda]) - \hat{W}_n([n\lambda]) \right| \geq k_0(n - k_0)\Delta(h_n) \right) . \]

We have
\[\sup_{\lambda \in [0,\tau]} \left| W_n([n\lambda]) - \hat{W}_n([n\lambda]) \right| = \sup_{\lambda \in [0,\tau]} \left[\sum_{i=1}^{[n\lambda]} \left(1_{\{Y_i \leq Y_j + h_n\}} - \int F(x + h_n) \, dF(x) \right) + \sum_{i=1}^{[n\lambda]} \sum_{j=[n\lambda]+1}^{[n\tau]} \left(1_{\{Y_i \leq Y_j\}} - \frac{1}{2} \right) \right] . \]

It follows that due to Lemma 2 in the appendix and Theorem 1.1 in Dehling, Rooch and Taqqu (2013a)
\[2 \sup_{\lambda \in [0,\tau]} \left| W_n([n\lambda]) - \hat{W}_n([n\lambda]) \right| = O_P(nd_{n,r}) , \]

i.e. for all \(\varepsilon > 0 \) there is a \(K > 0 \) such that
\[P \left(2 \sup_{\lambda \in [0,\tau]} \left| W_n([n\lambda]) - \hat{W}_n([n\lambda]) \right| \geq Knd_{n,r} \right) < \varepsilon \]
for all \(n \). Furthermore, \(k_0(n - k_0)\Delta(h_n) \sim Cn^2h_n \) for some constant \(C \). Note that \(Knd_{n,r} \leq k_0(n - k_0)\Delta(h_n) \) if and only if
\[K \leq \frac{k_0}{n} \frac{n - k_0}{n} \frac{\Delta(h_n)}{h_n} d_{n,r} . \]

The right hand side of the above inequality diverges if \(h_n = h \) is fixed and if \(h_n^{-1} = o \left(\frac{n}{d_{n,r}} \right) \). Therefore, it is possible to find an \(n(\varepsilon) \in \mathbb{N} \) such that
\[P_{2,1} \leq P \left(2 \sup_{\lambda \in [0,\tau]} \left| W_n([n\lambda]) - \hat{W}_n([n\lambda]) \right| \geq k_0(n - k_0)\Delta(h_n) \right) \]
\[\leq P \left(2 \sup_{\lambda \in [0,\tau]} \left| W_n([n\lambda]) - \hat{W}_n([n\lambda]) \right| \geq Knd_{n,r} \right) \]
\[< \varepsilon \]
for all \(n \geq n(\varepsilon) \).

We will now turn to the summand \(P_1 \). We have \(P_1 \leq P_{1,1} + P_{1,2} \), where
\[P_{1,1} := P \left(\sup_{k \in D_{n,M}(1)} W_n(k) - W_n(k_0) \geq 0 \right) , \quad P_{1,2} := P \left(\sup_{k \in D_{n,M}(2)} W_n(k) - W_n(k_0) \geq 0 \right) . \]

In the following we will consider the first summand only. (For the second summand analogous implications result from the same argument.)

We define a random sequence \(k_n, n \in \mathbb{N} \), by choosing \(k_n \in D_{n,M}(1) \) such that
\[\sup_{k \in D_{n,M}(1)} \left(W_n(k) - \hat{W}_n(k) + \hat{W}_n(k_0) - W_n(k_0) \right) = W_n(k_n) - \hat{W}_n(k_n) + \hat{W}_n(k_0) - W_n(k_0) . \]

It follows that
\[P_{1,1} = P \left(\frac{1}{nd_{k_0-k_n,r}} (W_n(k_n) - \hat{W}_n(k_n) + \hat{W}_n(k_0) - W_n(k_0)) \geq \frac{1}{nd_{k_0-k_n,r}} (\hat{W}_n(k_0) - \hat{W}_n(k_n)) \right) . \]
Note that for any sequence \(k_n, n \in \mathbb{N} \), with \(k_n \in D_{n,M}(1) \)

\[
\hat{W}_n(k_0) - \hat{W}_n(k_n) = (n-k_0)l_n \Delta(h_n)
\]

where \(l_n := k_0 - k_n \). By definition, \(l_n \geq Mm_n \) and \(m_n \to \infty \) so that \(\frac{l_n}{d_{n,r}} = l_n^{1-H} L^{-\hat{z}}(l_n) \geq (Mm_n)^{1-H} L^{-\hat{z}}(Mm_n) \) for \(n \) sufficiently large. Thus, we have

\[
\frac{1}{nd_{n,r}} (\hat{W}_n(k_0) - \hat{W}_n(k_n)) \geq \frac{n-k_0}{n} m_n \frac{M^{1-H}}{d_{n,r}} \frac{L^{-\hat{z}}(m_n)}{L^{-\hat{z}}(Mm_n)} \Delta(h_n).
\]

If \(h_n \) is fixed, the right hand side of the inequality diverges. Under local changes the right hand side asymptotically behaves like

\[
M^{1-H} (1-\tau) C \int f^2(x) \, dx,
\]

since, in this case, \(h_n \sim \frac{d_{n,r}}{m_n} \) according to the assumptions of Theorem 1.

In any case, for \(\delta > 0 \) it is possible to find an \(n_0 \in \mathbb{N} \) such that \(\frac{1}{nd_{n,r}} (\hat{W}_n(k_0) - \hat{W}_n(k_n)) \geq K M^{1-H} - \delta \) for all \(n \geq n_0 \).

All in all, the previous considerations show that there exists an \(n_0 \in \mathbb{N} \) and a constant \(K \) such that for all \(n \geq n_0 \)

\[
P_{1,1} \leq P \left(\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} (W_n(k) - \hat{W}_n(k) + \hat{W}_n(k_0) - W_n(k_0)) \geq b(M) \right)
\]

where \(b(M) := KM^{1-H} - \delta \) with \(\delta > 0 \) fixed.

Elementary calculations show that for \(k \leq k_0 \)

\[
W_n(k) - \hat{W}_n(k) + \hat{W}_n(k_0) - W_n(k_0) = A_{n,1}(k) + A_{n,2}(k) + A_{n,3}(k) + A_{n,4}(k),
\]

where

\[
A_{n,1}(k) = (n-k_0) \int k_0 (F_{k_0}(x + h_n) - F(x + h_n)) - k (F_k(x + h_n) - F(x + h_n)) \, dF_{k_0,n}(x),
\]

\[
A_{n,2}(k) := (n-k_0)(k_0-k) \int (F_{k_0,n}(x) - F(x)) \, dF(x + h_n),
\]

\[
A_{n,3}(k) := (k_0-k)k \int (F_k(x) - F(x)) \, dF_{k,k_0}(x),
\]

\[
A_{n,4}(k) := -k \int k_0 (F_{k_0}(x) - F(x)) - k (F_k(x) - F(x)) \, dF(x).
\]

Thus, for \(n \geq n_0 \)

\[
P_{1,1} \leq P \left(\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} \sum_{i=1}^{4} |A_{n,i}(k)| \geq b(M) \right) \]

\[
\leq \sum_{i=1}^{4} P \left(\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,i}(k)| \geq \frac{1}{4} b(M) \right).\]

For each \(i \in \{1, \ldots, 4\} \) it will be shown that

\[
P \left(\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,i}(k)| \geq \frac{1}{4} b(M) \right) < \frac{\varepsilon}{4}
\]

for \(n \) and \(M \) sufficiently large.

(1) Note that

\[
\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,1}(k)| \leq \sup_{k \in D_{n,M}(1)} \sup_{x \in \mathbb{R}} \left| d_{k_0-k,r}^{-1}(k_0-k) (F_{k,k_0}(x) - F(x)) \right|.
\]
Due to stationarity

\[
\sup_{k \in D_{n,M}(1)} \sup_{x \in \mathbb{R}} \left| d_{k_0-k,r}^{-1} (k_0 - k) (F_{k,k_0}(x) - F(x)) \right|
\]

\[\overset{D}{\rightarrow} \sup_{k \in D_{n,M}(1)} \sup_{x \in \mathbb{R}} \left| d_{k_0-k,r}^{-1} (k_0 - k) (F_{k,k_0}(x) - F(x)) \right|.\]

Note that

\[
\sup_{k \in D_{n,M}(1)} \sup_{x \in \mathbb{R}} \left| d_{k_0-k,r}^{-1} (k_0 - k) (F_{k,k_0}(x) - F(x)) \right| \leq \sup_{k \in D_{n,M}(1)} \sup_{x \in \mathbb{R}} \left| d_{k_0-k,r}^{-1} (k_0 - k) (F_k(x) - F(x)) - \frac{1}{r!} Z_H^{(r)}(1) J_r(x) \right| + \frac{1}{r!} \left| Z_H^{(r)}(1) \right| \sup_{x \in \mathbb{R}} |J_r(x)|.
\]

Since

\[
\sup_{x \in \mathbb{R}} \left| d_{k_0-k,r}^{-1} (k_0 - k) (F_{k,k_0}(x) - F(x)) - \frac{1}{r!} Z_H^{(r)}(1) J_r(x) \right| \rightarrow 0 \ a.s.
\]

if \(k_0 - k \rightarrow \infty \), and as by definition \(k_0 - k \geq Mm_n \) for \(k \in D_{n,M}(1) \) (with \(m_n \rightarrow \infty \)), it follows that

\[
\sup_{k \in D_{n,M}(1)} \sup_{x \in \mathbb{R}} \left| d_{k_0-k,r}^{-1} (k_0 - k) (F_{k,k_0}(x) - F(x)) - \frac{1}{r!} Z_H^{(r)}(1) J_r(x) \right| \rightarrow 0 \ \ a.s.
\]

Therefore,

\[
P \left(\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,1}(k)| \geq \frac{1}{4} b(M) \right)
\]

\[
\leq P \left(\sup_{k \in D_{n,M}(1)} \sup_{x \in \mathbb{R}} \left| d_{k_0-k,r}^{-1} (k_0 - k) (F_k(x) - F(x)) \right| \geq \frac{1}{4} b(M) \right)
\]

\[
\leq P \left(\frac{1}{r!} \left| Z_H^{(r)}(1) \right| \sup_{x \in \mathbb{R}} |J_r(x)| \geq \frac{1}{4} b(M) \right) + \frac{\varepsilon}{8}
\]

\[
\leq \frac{\varepsilon}{4}
\]

for \(n \) and \(M \) sufficiently large.

(2) We have

\[
\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,2}(k)| \leq \left| d_{n,r}^{-1} (n - k_0) \int (F_{k_0,n}(x) - F(x)) dF(x + h_n) \right|
\]

for \(n \) sufficiently large. As a result,

\[
\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,2}(k)| \leq \sup_{x \in \mathbb{R}} \left| d_{n,r}^{-1} (n - k_0) (F_{k_0,n}(x) - F(x)) \right|.
\]

Due to the empirical process non-central limit theorem of Dehling and Taqqu (1989) we have

\[
\sup_{x \in \mathbb{R}} \left| d_{n,r}^{-1} (n - k_0) (F_{k_0,n}(x) - F(x)) \right| \overset{D}{\rightarrow} \frac{1}{r!} \left| \left(Z_H^{(r)}(1) - Z_H^{(r)}(\tau) \right) \right| \sup_{x \in \mathbb{R}} |J_r(x)|.
\]

Note that \(\sup_{x} |J_r(x)| < \infty \). Moreover,

\[
\frac{1}{r!} \left| \left(Z_H^{(r)}(1) - Z_H^{(r)}(\tau) \right) \right| \sup_{x \in \mathbb{R}} |J_r(x)| \overset{D}{\rightarrow} \frac{1}{r!} (1 - \tau)^H \left| Z_H^{(r)}(1) \right| \sup_{x \in \mathbb{R}} |J_r(x)|.
\]
since $Z_H^{(r)}$ is a H-self-similar process with stationary increments. Thus, we have

$$
P \left(\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,2}(k)| \geq b(M) \right) \leq P \left(\frac{1}{r!} (1 - \tau)^H \left| Z_H^{(r)}(1) \right| \sup_{x \in \mathbb{R}} |J_r(x)| \geq b(M) \right) + \frac{\varepsilon}{8} < \frac{\varepsilon}{4}$$

for n and M sufficiently large.

(3) Note that

$$
\frac{1}{nd_{k_0-k,r}} |A_{n,3}(k)| \leq \left| d_{n,r}^{-1} k \int (F_k(x) - F(x)) dF_{k,k_0}(x) \right|
$$

for n sufficiently large. Therefore,

$$
\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,3}(k)| \leq \sup_{x \in \mathbb{R}, 0 \leq \lambda \leq 1} \left| d_{n,r}^{-1} \left| n \lambda (F_{n\lambda}(x) - F(x)) \right| \right|
$$

The expression on the right hand side of the inequality converges in distribution to

$$
\frac{1}{r!} \sup_{0 \leq \lambda \leq 1} \left| Z_H^{(r)}(\lambda) \sup_{x \in \mathbb{R}} |J_r(x)| \right|
$$

due to the empirical process non-central limit theorem. Since

$$\left\{ Z_H^{(r)}(\lambda), 0 \leq \lambda \leq 1 \right\} \overset{D}{=} \left\{ \lambda^H Z_H^{(r)}(1), 0 \leq \lambda \leq 1 \right\},$$

we have

$$\sup_{0 \leq \lambda \leq 1} \left| Z_H^{(r)}(\lambda) \right| \overset{D}{=} \left| Z_H^{(r)}(1) \right|.$$

In addition, $\sup_{x \in \mathbb{R}} |J_r(x)| < \infty$ such that

$$
P \left(\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,3}(k)| \geq \frac{1}{4} b(M) \right) \leq P \left(\frac{1}{r!} |Z_H^{(r)}(1)| \sup_{x \in \mathbb{R}} |J_r(x)| \geq \frac{1}{4} b(M) \right) + \frac{\varepsilon}{8} < \frac{\varepsilon}{4}$$

for n and M sufficiently large.

(4) We have

$$
\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,4}(k)| \leq \sup_{k \in D_{n,M}(1)} \sup_{x \in \mathbb{R}} \left| d_{k_0-k,r}^{-1} (k_0 - k) (F_{k,k_0}(x) - F(x)) \right|.
$$

Hence, the same argument that yields $P \left(\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,1}(k)| < \frac{1}{4} b(M) \right) \leq \frac{\varepsilon}{4}$ can be applied to conclude that

$$
P \left(\sup_{k \in D_{n,M}(1)} \frac{1}{nd_{k_0-k,r}} |A_{n,4}(k)| \geq \frac{1}{4} b(M) \right) < \frac{\varepsilon}{4}$$

for n and M sufficiently large.

All in all, it follows that for all $\varepsilon > 0$ there exists a $n(\varepsilon) \in \mathbb{N}$ and a $M > 0$ such that

$$P \left(\left| k - k_0 \right| > Mm_n \right) < \varepsilon$$

for all $n \geq n(\varepsilon)$. This proves Theorem 1. \qed
Proof of Theorem 2. Note that
\[W_n^2(k_0 + [m_n s]) - W_n^2(k_0) = (W_n(k_0 + [m_n s]) - W_n(k_0))(W_n(k_0 + [m_n s]) + W_n(k_0)). \]

We will show that (with an appropriate normalization) \((W_n(k_0 + [m_n s]) - W_n(k_0))\) converges in distribution to a non-deterministic limit process whereas \((W_n(k_0 + [m_n s]) + W_n(k_0))\) (with stronger normalization) converges in probability to a deterministic expression. For notational convenience we write \(d_{m_n}^\perp\) instead of \(d_{m_n,1}\), \(\hat{k}\) instead of \(\hat{k}_W\) and we define \(l_n(s) := k_0 + [m_n s]\).

Note that
\[W_n(k_0 + [m_n s]) - W_n(k_0) = \tilde{V}_n(l_n(s)) + V_n(l_n(s)), \]
where
\[
\tilde{V}_n(l) = \begin{cases}
- \sum_{i=1+1}^{k_0} \sum_{j=k_0+1}^{n} (1\{Y_i \leq Y_j + h_n\} - 1\{Y_i \leq Y_j\}) & \text{if } s < 0 \\
- \sum_{i=1}^{k_0} \sum_{j=k_0+1}^{n} (1\{Y_i \leq Y_j + h_n\} - 1\{Y_i \leq Y_j\}) & \text{if } s > 0
\end{cases}
\]
and
\[
V_n(l) = \begin{cases}
\sum_{i=1}^{l} \sum_{j=k_0+1}^{k_n} (1\{Y_i \leq Y_j\} - \frac{1}{2}) & \text{if } s < 0 \\
\sum_{i=k_0+1}^{l} \sum_{j=k_0+1}^{n} (1\{Y_i \leq Y_j\} - \frac{1}{2}) & \text{if } s > 0
\end{cases}.
\]

We will show that \(\frac{1}{n d_{m_n}^\perp} \tilde{V}_n(l_n(s))\) converges to \(h(s; \tau)\) in probability and that \(\frac{1}{n d_{m_n}^\perp} V_n(l_n(s))\) converges in distribution to \(\text{sign}(s) B_H(s) \int f(x) dF(x)\) in \(D [-M, M]\).

For this purpose we rewrite \(V_n(l_n(s))\) and \(V_n(l_n(s))\) in the following way:
\[
\tilde{V}_n(l_n(s)) = \begin{cases}
-(k_0 - l_n(s))(n - k_0) \int (F_{l_n(s),k_0}(x + h_n) - F_{l_n(s),k_0}(x)) dF_{k_0,n}(x) & \text{if } s < 0 \\
-k_0 (l_n(s) - k_0) \int (F_{k_0,n}(x + h_n) - F_{k_0,n}(x)) dF_{k_0,n}(x) & \text{if } s > 0
\end{cases},
\]
\[
V_n(l_n(s)) = \begin{cases}
A_{1,n}(s) + A_{2,n}(s) + A_{3,n}(s) & \text{if } s < 0 \\
A_{1,n}(s) + A_{2,n}(s) + A_{3,n}(s) & \text{if } s > 0
\end{cases},
\]
where
\[
A_{1,n}(s) := \begin{cases}
(l_n(s) - n + k_0)(k_0 - l_n(s)) \int (F_{l_n(s),k_0}(x) - F(x)) dF(x) & \text{if } s < 0 \\
(n - l_n(s) + k_0)(l_n(s) - k_0) \int (F_{k_0,n}(x) - F(x)) dF(x) & \text{if } s > 0
\end{cases},
\]
\[
A_{2,n}(s) := \begin{cases}
(k_0 - l_n(s)) l_n(s) \int (F_{l_n(s)}(x) - F(x)) dF(x) & \text{if } s < 0 \\
(l_n(s) - k_0)(n - l_n(s)) \int (F_{l_n(s),k_0}(x) - F(x)) dF(x) & \text{if } s > 0
\end{cases},
\]
\[
A_{3,n}(s) := \begin{cases}
(k_0 - l_n(s))(n - k_0) \int (F_{k_0,n}(x) - F(x)) dF(x) & \text{if } s < 0 \\
(l_n(s) - k_0) k_0 \int (F_{k_0,n}(x) - F(x)) dF(x) & \text{if } s > 0
\end{cases}.
\]

We consider \(\tilde{V}_n(l_n(s))\) first:

For \(s < 0\) the limit of \(\frac{1}{n d_{m_n}^\perp} \tilde{V}_n(l_n(s))\) corresponds to the limit of
\[-(1 - \tau) d_{m_n}^\perp (k_0 - l_n(s)) \int (F(x + h_n) - F(x)) dF(x) \]
due to Lemma 3 and stationarity of the random sequence \(Y_i, i \geq 1\). Note that
\[d_{m_n}^\perp (k_0 - l_n(s)) \int (F(x + h_n) - F(x)) dF(x) = -d_{m_n}^\perp [m_n s] h_n \int \frac{F(x + h_n) - F(x)}{h_n} dF(x). \]
The above expression converges to \(-s \int f^2(x) dx\), since \(h_n \sim \frac{d_{m_n}}{m_n}\).
For $s > 0$ the limit of \(\frac{1}{nd_m} \tilde{V}_n(l_n(s)) \) corresponds to the limit of

\[-\tau d_m^{-1} (l_n(s) - k_0) \int (F(x + h_n) - F(x)) \, dF(x)\]
due to Lemma 3 and stationarity of the random sequence $Y_i, i \geq 1$. Note that

\[d_m^{-1} (l_n(s) - k_0) \int (F(x + h_n) - F(x)) \, dF(x) = d_m^{-1} [m_n s] h_n \int \frac{F(x + h_n) - F(x)}{h_n} \, dF(x)\]
The above expression converges to $s \int f^2(x) \, dx$, since $h_n \sim \frac{d_m}{m_n}$.

All in all, it follows that \(\frac{1}{nd_m} \tilde{V}_n(l_n(s)) \) converges to $h(s; \tau)$ defined by

\[h(s; \tau) = \begin{cases} s(1 - \tau) \int f^2(x) \, dx & \text{if } s \leq 0 \\ -s\tau \int f^2(x) \, dx & \text{if } s > 0 \end{cases}\]

In the following it is shown that \(\frac{1}{nd_m} V_n(l_n(s)) \) converges in distribution to

\[\text{sign}(s) B_H(s) \int J_1(x) \, dF(x), \quad -M \leq s \leq M.\]

Note that for $s < 0$

\[\frac{1}{nd_m} A_{2,s}(s) = \frac{[m_n s]}{m_n} m_n \frac{d_n}{n} d_m^{-1} l_n(s) \int (F_{l_n(x)}(x) - F(x)) \, dF(x).\]
The above expression converges to 0 uniformly in s, since

\[\sup_{-M \leq s \leq 0} \left| d_n^{-1} l_n(s) \int (F_{l_n(x)}(x) - F(x)) \, dF(x) \right| \leq \sup_{x, \lambda} |d_n^{-1} n\lambda| (F_{l_n(x)}(x) - F(x)) - B_H(\lambda) J(x) + \sup_{0 \leq \lambda \leq 1} |B_H(\lambda)| \left| \int J(x) \, dF(x) \right|,\]
i.e. \(\sup_{-M \leq s \leq 0} |d_n^{-1} l_n(s) \int (F_{l_n(x)}(x) - F(x)) \, dF(x)| \) is bounded in probability, and $\frac{m_n}{d_m} = o(\frac{n}{d_n})$. An analogous argument shows that \(\frac{1}{nd_m} A_{3,n}(s) \) vanishes if n tends to ∞.

Therefore, it remains to show that \(\frac{1}{nd_m} A_{1,s}(s) \) converges in distribution to a non-deterministic expression. Due to stationarity

\[\frac{1}{nd_m} A_{1,s}(s) \overset{D}{=} n - \frac{[m_n s]}{n} d_m^{-1} [m_n s] \int (F_{-|m_n s|}(x) - F(x)) \, dF(x)\]
for $s < 0$. As a result, \(\frac{1}{nd_m} A_{1,s}(s) \) converges in distribution to $-B_H(s) \int J_1(x) \, dF(x)$.

An application of the previous arguments shows that, if $s > 0$, \(\frac{1}{nd_m} A_{2,s}(s) \) and \(\frac{1}{nd_m} A_{3,s}(s) \) converge to 0 whereas \(\frac{1}{nd_m} A_{1,s}(s) \) converges in distribution to $B_H(s) \int J_1(x) \, dF(x)$.

So far, we have seen that

\[\sup_{-M \leq s \leq 0} \left| \frac{1}{nd_m} V_n(l_n(s)) + B_H(s) \int J_1(x) \, dF(x) \right| \rightarrow 0,\]
\[\sup_{0 \leq s \leq M} \left| \frac{1}{nd_m} V_n(l_n(s)) - B_H(s) \int J_1(x) \, dF(x) \right| \rightarrow 0.\]

As a result,

\[\frac{1}{nd_m} (W_n(k_0 + [m_n s]) - W_n(k_0)) \overset{D}{=} \text{sign}(s) B_H(s) \int J_1(x) \, dF(x) + h(s; \tau)\]
in $D[-M, M]$.

Furthermore, it follows that with the stronger normalization $h_n n^2$ the limit of \(\frac{1}{h_n n^2} W_n(k_0 + [m_n s]) \) corresponds to the limit of \(\frac{1}{h_n n^2} W_n(k_0) \).
We have
\[
\frac{1}{h_n n^2} W_n(0)
= \frac{1}{h_n n^2 - k_0 (n - k_0)} \int (F_{k_0}(x + h_n) - F_{k_0}(x)) dF_{k_0, n}(x) + \frac{1}{h_n n^2} \sum_{i=1}^{k_0} \sum_{j=k_0+1}^{n} \left(1 \{ Y_i \leq Y_j \} - \frac{1}{2} \right).
\]

The second summand on the right hand side vanishes as \(n \) tends to \(\infty \), since \(h_n^{-1} = o \left(\frac{n}{m} \right) \).

Due to Lemma 3 the limit of \(d_n^{-1} k_0 \int (F_{k_0}(x + h_n) - F_{k_0}(x)) dF_{k_0, n}(x) \) corresponds to the limit of \(d_n^{-1} k_0 \int (F(x + h_n) - F(x)) dF(x) \). Therefore,
\[
h_n^{-1} \int (F_{k_0}(x + h_n) - F_{k_0}(x)) dF_{k_0, n}(x) \to \int f^2(x) dx \quad \text{a.s.}
\]

In addition, \(\frac{k_0}{n} (\frac{n-k_0}{n}) \to \tau (1 - \tau) \).

From this we can conclude that
\[
\frac{1}{h_n n^2} (W_n(k_0 + m_n s) + W_n(k_0)) \xrightarrow{P} 2 \tau (1 - \tau) \int f^2(x) dx
\]
in \(D[-M, M] \).

In order to show that
\[
m_n^{-1} (k - k_0) \xrightarrow{D} \text{sargsup}_{s \in \mathbb{R}} \left(\text{sign}(s) B_H(s) \int J(x) dF(x) + h(s; \tau) \right),
\]
we make use of Lemma 4.

For this purpose, we note that according to Lifshits’ criterion for unimodality of Gaussian processes (see Theorem 1.1 in Ferger (1999)) the random function \(G_{H, \tau}(s) = \text{sign}(s) B_H(s) \int J(x) dF(x) + h(s; \tau) \) attains its maximal value in \([-M, M]\) at a unique point with probability 1 for every \(M > 0 \). Hence, an application of Lemma 4 in the appendix yields
\[
\text{sargmax}_{s \in [-M, M]} \frac{1}{\epsilon_n} \left(W_n^2(k_0 + [m_n s]) - W_n^2(k_0) \right) \xrightarrow{D} \text{argsup}_{s \in [-M, M]} G_{H, \tau}(s).
\]

By the law of the iterated logarithm for fractional Brownian motions we have \(\lim_{|s| \to \infty} \frac{B_H(s)}{s} = 0 \) a.s. so that \(\text{sign}(s) B_H(s) \int J(x) dF(x) + h(s; \tau) \to -\infty \) if \(|s| \to \infty \). Therefore, the limit corresponds to \(\text{argsup}_{s \in (-\infty, \infty)} G_{H, \tau}(s) \) if \(M \) is sufficiently large.

It remains to be shown that instead of considering the sargmax in \([-M, M]\) we may as well consider the smallest argmax in \(\mathbb{R} \).

For \(M > 0 \) define
\[
\hat{k}(M) := \min \left\{ k : |k_0 - k| \leq M m_n, |W_{k,n}| = \max_{|k_0 - i| \leq M m_n} |W_{i,n}| \right\}.
\]

Note that
\[
\left| \text{sargmax}_{s \in [-M, M]} \left(W_n^2(k_0 + [m_n s]) - W_n^2(k_0) \right) - \text{sargmax}_{s \in (-\infty, \infty)} \left(W_n^2(k_0 + [m_n s]) - W_n^2(k_0) \right) \right|
= m_n^{-1} \left| \hat{k}(M) - \hat{k} \right| + \mathcal{O}_P(1).
\]

Therefore, we have to show that for some \(M \in \mathbb{R} \)
\[
m_n^{-1} \left| \hat{k}(M) - \hat{k} \right| \xrightarrow{P} 0
\]
as \(n \) tends to infinity. Note that
\[
P \left(\hat{k} = \hat{k}(M) \right) = P \left(\left| \hat{k} - k_0 \right| \leq M m_n \right)
= 1 - P \left(\left| \hat{k} - k_0 \right| > M m_n \right).
\]
Furthermore, we have
\[
\lim_{M \to \infty} \lim_{n} \inf \left(1 - P \left(|\hat{k} - k_0| > Mm_n \right) \right) \\
= 1 - \lim_{M \to \infty} \lim_{n} \sup \left(P \left(|\hat{k} - k_0| > Mm_n \right) \right) \\
= 1
\]
because \(|\hat{k} - k_0| = O_P(m_n)| by Theorem 1 and since \(|\hat{k} - k_0| = O_P(m_n)| is equivalent to
\[
\lim_{M \to \infty} \lim_{n} \sup \left(P \left(|\hat{k} - k_0| > Mm_n \right) \right) = 0.
\]
As a result, we have
\[
\lim_{M \to \infty} \lim_{n} \inf \left(P \left(\hat{k} = \hat{k}(M) \right) \right) = 1.
\]
Hence, for all \(\varepsilon > 0\) there is an \(M_0 \in \mathbb{R}\) and an \(n_0 \in \mathbb{N}\) such that
\[
P \left(\hat{k}(M) \neq \hat{k} \right) < \varepsilon
\]
for all \(n \geq n_0\) and all \(M \geq M_0\). This concludes the proof of Theorem 2. \(\square\)

References

Lemma 1. Define \(\delta_r : [0,1] \to \mathbb{R} \) by

\[
\delta_r(\lambda) = \begin{cases}
\lambda(1 - \tau) & \text{for } \lambda \leq \tau \\
(1 - \lambda)\tau & \text{for } \lambda \geq \tau
\end{cases}
\]

Assume that Assumption 1 holds and that either

- \(h_n = h \) with \(h \neq 0 \),

or

- \(\lim_{n \to \infty} h_n = 0 \) with \(h_n^{-1} = o\left(\frac{n}{d_{n,r}}\right) \) and \(F \) has a bounded density \(f \).

Then, we have

\[
\frac{1}{n^2 h_n} \sum_{i=1}^{\lfloor n\lambda \rfloor} \sum_{j=\lfloor n\lambda \rfloor + 1}^{n} \left(1_{\{X_i \leq X_j\}} - \frac{1}{2} \right) \xrightarrow{P} C\delta_r(\lambda), \quad 0 \leq \lambda \leq 1,
\]

where

\[
C := \begin{cases}
\frac{1}{2} \int (F(x+h) - F(x)) \, dF(x), & \text{if } h_n = h, \ h \neq 0, \\
\int f^2(x) \, dx, & \text{if } h_n \to 0 \text{ and } h_n^{-1} = o\left(\frac{n}{d_{n,r}}\right)
\end{cases}
\]

Proof. First, consider the case \(h_n = h \) with \(h \neq 0 \). For \(\lfloor n\lambda \rfloor \leq \lfloor n\tau \rfloor \) we have

\[
\frac{1}{n^2} \sum_{i=1}^{\lfloor n\lambda \rfloor} \sum_{j=\lfloor n\lambda \rfloor + 1}^{\lfloor n\tau \rfloor + 1} \left(1_{\{X_i \leq X_j\}} - \frac{1}{2} \right) = \frac{1}{n^2} \sum_{i=1}^{\lfloor n\lambda \rfloor} \sum_{j=\lfloor n\lambda \rfloor + 1}^{\lfloor n\tau \rfloor + 1} \left(1_{\{Y_i \leq Y_j\} + h} - \frac{1}{2} \right) + \frac{1}{n^2} \sum_{i=1}^{\lfloor n\lambda \rfloor} \sum_{j=\lfloor n\lambda \rfloor + 1}^{\lfloor n\tau \rfloor + 1} \left(1_{\{Y_i \leq Y_j\}} - \frac{1}{2} \right).
\]

By Lemma 1 in Betken (2016) the first summand on the right hand side of the equation converges in probability to \(\lambda(1 - \tau)\int (F(x+h) - F(x)) \, dF(x) \) uniformly in \(\lambda \leq \tau \). The second summand vanishes as \(n \) tends to \(\infty \).

If \(\lfloor n\lambda \rfloor > \lfloor n\tau \rfloor \),

\[
\frac{1}{n^2} \sum_{i=1}^{\lfloor n\lambda \rfloor} \sum_{j=\lfloor n\lambda \rfloor + 1}^{\lfloor n\tau \rfloor + 1} \left(1_{\{X_i \leq X_j\}} - \frac{1}{2} \right) = \frac{1}{n^2} \sum_{i=1}^{\lfloor n\tau \rfloor} \sum_{j=\lfloor n\lambda \rfloor + 1}^{\lfloor n\lambda \rfloor + 1} \left(1_{\{Y_i \leq Y_j\} + h} - \frac{1}{2} \right) + \frac{1}{n^2} \sum_{i=1}^{\lfloor n\lambda \rfloor} \sum_{j=\lfloor n\lambda \rfloor + 1}^{\lfloor n\lambda \rfloor + 1} \left(1_{\{Y_i \leq Y_j\}} - \frac{1}{2} \right).
\]

In this case, the first summand on the right hand side of the equation converges in probability to \((1 - \lambda)\tau\int (F(x+h) - F(x)) \, dF(x) \) uniformly in \(\lambda \geq \tau \) due to Lemma 1 in Betken (2016) while the second summand converges in probability to zero. All in all, it follows that

\[
\frac{1}{n^2} \sum_{i=1}^{\lfloor n\lambda \rfloor} \sum_{j=\lfloor n\lambda \rfloor + 1}^{n} \left(1_{\{X_i \leq X_j\}} - \frac{1}{2} \right) \xrightarrow{P} \delta_r(\lambda) \int (F(x+h) - F(x)) \, dF(x)
\]

uniformly in \(\lambda \in [0,1] \).

If \(h_n \to 0 \), the process

\[
\frac{1}{n^2 d_{n,r}} \sum_{i=1}^{\lfloor n\lambda \rfloor} \sum_{j=\lfloor n\lambda \rfloor + 1}^{n} \left(1_{\{X_i \leq X_j\}} - \frac{1}{2} \right) = \frac{n}{d_{n,r}} \delta_r(\lambda) \int (F(x+h_n) - F(x)) \, dF(x), \quad 0 \leq \lambda \leq 1,
\]

as well as
Lemma 2. Suppose that Assumption 1 holds and let \(h_n, n \in \mathbb{N} \), be a sequence of real numbers with \(\lim_{n \to \infty} h_n = h \).

- The process

\[
\frac{1}{n^2 h_n} \sum_{i=1}^{\lfloor n \lambda \rfloor} \sum_{j=\lfloor n \tau \rfloor + 1}^{n} \left(1_{\{Y_i \leq Y_j + h_n\}} - \int F(x + h_n) dF(x) \right)
\]

converges in distribution to

\[
(1 - \tau) \frac{1}{r!} Z_H^{(r)}(\lambda) \int J_r(x + h)dF(x) - \tau \frac{1}{r!} (Z_H^{(r)}(1) - Z_H^{(r)}(\tau)) \int J_r(x)dF(x + h)
\]

uniformly in \(\lambda \leq \tau \).

- The process

\[
\frac{1}{n^2 h_n} \sum_{i=1}^{\lfloor n \lambda \rfloor} \sum_{j=\lfloor n \tau \rfloor + 1}^{n} \left(1_{\{Y_i \leq Y_j + h_n\}} - \int F(x + h_n) dF(x) \right)
\]

converges in distribution to

\[
(1 - \lambda) \frac{1}{r!} Z_H^{(r)}(\tau) \int J_r(x + h)dF(x) - \lambda \frac{1}{r!} (Z_H^{(r)}(1) - Z_H^{(r)}(\lambda)) \int J_r(x)dF(x + h)
\]

uniformly in \(\lambda \geq \tau \).

Proof. We give a proof for the first assertion only as the convergence of the second term follows by an analogous argument. The steps in this proof correspond to the argument that proves Theorem 1.1 in Dehling, Rooch and Taqqu (2013a).

For \(\lambda \leq \tau \) we have the following representation:

\[
\sum_{i=1}^{\lfloor n \lambda \rfloor} \sum_{j=\lfloor n \tau \rfloor + 1}^{n} 1_{\{Y_i \leq Y_j + h_n\}} = (n - \lfloor n \tau \rfloor) \lfloor n \lambda \rfloor \int F_{\lfloor n \lambda \rfloor}(x + h_n) dF_{\lfloor n \tau \rfloor + 1, n}(x).
\]

This yields the following decomposition

\[
\frac{1}{n^2 h_n} \sum_{i=1}^{\lfloor n \lambda \rfloor} \sum_{j=\lfloor n \tau \rfloor + 1}^{n} \left(1_{\{Y_i \leq Y_j + h_n\}} - \int F(x + h_n) dF(x) \right) =\]

\[
\frac{n - \lfloor n \tau \rfloor}{n} d_{n,r}^{-1} \lfloor n \lambda \rfloor \left(\int F_{\lfloor n \lambda \rfloor}(x + h_n) - F(x + h_n) dF_{\lfloor n \tau \rfloor + 1, n}(x) \right) + \frac{n - \lfloor n \tau \rfloor}{n} d_{n,r}^{-1} \lfloor n \lambda \rfloor \left(\int F(x + h_n) d\left(F_{\lfloor n \tau \rfloor + 1, n}(x) - F(x) \right) \right).
\]

We will show that the first summand of the above expression converges to the first summand of the limit process whereas the second summand converges to the second summand of the limit.
For the first summand we have
\[
\sup_{0 \leq \lambda \leq r} \left| d_{n,r}^{-1} [n \lambda] \left(\int F_{\lfloor n \lambda \rfloor} (x + h_n) - F(x + h_n) dF_{\lfloor n \lambda \rfloor + 1,n} (x) \right) - \frac{1}{r!} Z_H^{(\tau)} (\lambda) \int J_r(x + h) dF(x) \right|
\]
\[
\leq \sup_{0 \leq \lambda \leq r} \left| \int d_{n,r}^{-1} [n \lambda] \left(F_{\lfloor n \lambda \rfloor} (x + h_n) - F(x + h_n) \right) - \frac{1}{r!} J_r(x + h_n) Z_H^{(\tau)} (\lambda) dF_{\lfloor n \lambda \rfloor + 1,n} (x) \right|
\]
\[
+ \frac{1}{r!} \left| \sup_{0 \leq \lambda \leq r} \left| Z_H^{(\tau)} (\lambda) \right| \right| \left(J_r(x + h_n) - J_r(x + h) \right) dF_{\lfloor n \lambda \rfloor + 1,n} (x) \right|
\]
\[
+ \frac{1}{r!} \sup_{0 \leq \lambda \leq r} \left| Z_H^{(\tau)} (\lambda) \right| \left| \int J_r(x + h) d \left(F_{\lfloor n \lambda \rfloor + 1,n} (x) - F(x) \right) \right|
\]

We will show that each of the summands on the right hand side converges to 0. The first summand converges to 0 because \(\sup_{\lambda,x} \left| d_{n,r}^{-1} [n \lambda] \left(F_{\lfloor n \lambda \rfloor} (x) - F(x) \right) - \frac{1}{r!} J_r(x) Z_H^{(\tau)} (\lambda) \right| \rightarrow 0 \) a.s.

In order to show convergence of the second and third summand, note that \(\sup_{0 \leq \lambda \leq r} \left| Z_H^{(\tau)} (\lambda) \right| < \infty \) a.s. since the sample paths of the Hermite process \(Z_H^{(\tau)} \) are almost surely continuous.

Furthermore, we have
\[
\int J_r(x + h) dF_{\lfloor n \lambda \rfloor + 1,n} (x) = - \int \int 1_{x+h \leq G(y)} H_r(y) \varphi(y) dy dF_{\lfloor n \lambda \rfloor + 1,n} (x)
\]
\[
= - \int \int 1_{x \leq G(y) - h} dF_{\lfloor n \lambda \rfloor + 1,n} (x) H_r(y) \varphi(y) dy
\]
\[
= - \int F_{\lfloor n \lambda \rfloor + 1,n} (G(y) - h) H_r(y) \varphi(y) dy.
\]

Analogously, it follows that
\[
\int J_r(x + h_n) dF_{\lfloor n \lambda \rfloor + 1,n} (x) = - \int F_{\lfloor n \lambda \rfloor + 1,n} (G(y) - h_n) H_r(y) \varphi(y) dy.
\]

Therefore, we may conclude that
\[
\left| \int (J_r(x + h) - J_r(x + h_n)) dF_{\lfloor n \lambda \rfloor + 1,n} (x) \right|
\]
\[
= \left| \int (F_{\lfloor n \lambda \rfloor + 1,n} (G(y) - h_n) - F(G(y) - h_n) + F(G(y) - h) - F_{\lfloor n \lambda \rfloor + 1,n} (G(y))) H_r(y) \varphi(y) dy \right|
\]
\[
+ \left| \int (F(G(y) - h_n) - F(G(y) - h)) H_r(y) \varphi(y) dy \right|
\]
\[
\leq 2 \sup_{x \in \mathbb{R}} \left| F_{\lfloor n \lambda \rfloor + 1,n} (x) - F(x) \right| \left| H_r(y) \varphi(y) dy \right| + \left| F(G(y) - h_n) - F(G(y) - h) \right| \left| H_r(y) \varphi(y) dy \right|
\]

The first expression on the right hand side converges to 0 by the Glivenko-Cantelli theorem and the fact that \(\int H_r(y) \varphi(y) dy < \infty \); the second expression converges to 0 due to continuity of \(F \) and the dominated convergence theorem.

To show convergence of the third summand note that
\[
\left| \int J_r(x + h) d \left(F_{\lfloor n \lambda \rfloor + 1,n} (x) - F(x) \right) \right|
\]
\[
= \frac{1}{n - \lfloor n \lambda \rfloor} \left| \sum_{i=[n \lambda + 1]}^{n} (J_r(Y_i + h) - EJ_r(Y_i + h)) \right|
\]
\[
\leq \frac{n}{n - \lfloor n \lambda \rfloor} \left| \sum_{i=1}^{n} (J_r(Y_i + h) - EJ_r(Y_i + h)) \right| + \frac{\lfloor n \lambda \rfloor}{n - \lfloor n \lambda \rfloor} \left| \sum_{i=1}^{\lfloor n \lambda \rfloor} (J_r(Y_i + h) - EJ_r(Y_i + h)) \right|
\]

The ergodic theorem implies almost sure convergence to 0.
For the second summand in (4) we have
\[
\frac{n - \lfloor n\tau \rfloor}{n} d_{n,r}^{-1}(n\lambda) \left(\int F(x + h_n) d\left(F_{[n\tau] + 1,n}(x) - F(x) \right) \right)
\]
\[
= -\lfloor n\lambda \rfloor n d_{n,r}^{-1}(n - [n\tau]) \left(\int (F_{[n\tau] + 1,n}(x) - F(x)) dF(x + h_n). \right)
\]
Since \(\frac{\lfloor n\lambda \rfloor}{n} \to \lambda\) uniformly in \(\lambda\), consider
\[
\left| d_{n,r}^{-1}(n - [n\tau]) \left(\int (F_{[n\tau] + 1,n}(x) - F(x)) dF(x + h_n) - \frac{1}{r!} Z_H^{(r)}(\lfloor n\tau \rfloor, \lfloor n\tau \rfloor + 1, x) J_r(x) dF(x + h_n) \right) \right|
\]
\[
\leq \int d_{n,r}^{-1}(n - [n\tau]) (F_{[n\tau] + 1,n}(x) - F(x)) dF(x + h_n)
\]
\[
+ \left| d_{n,r}^{-1}[n\tau] (F_{[n\tau] + 1,n}(x) - F(x)) - \frac{1}{r!} Z_H^{(r)}(\lfloor n\tau \rfloor, \lfloor n\tau \rfloor + 1, x) J_r(x) dF(x + h_n) \right|.
\]
Both summands on the right hand side converge to 0 because of the empirical process non-central limit theorem.

Lemma 3. Suppose that Assumption 1 holds and let \(l_n, n \in \mathbb{N}\), and \(h_n, n \in \mathbb{N}\), be two sequences \(l_n \to \infty\) and with \(h_n \to h\). Then, it holds that
\[
\sup_{0 \leq s \leq 1} \left| d_{n,r}^{-1}[ns] \int (F_{[ns]}(x + h_n) - F_{[ns]}(x + h)) dF_{l_n}(x) - d_{n,r}^{-1}[ns] \int \left(F(x + h_n) - F(x + h) \right) dF_{l_n}(x) \right|
\]
and
\[
\left| d_{n,r}^{-1}n \int (F(x + h_n) - F(x + h)) dF(x) - d_{n,r}^{-1}n \int (F(x + h_n) - F(x + h)) dF(x) \right|
\]
converge to 0 almost surely.

Proof. The triangle inequality yields
\[
\sup_{0 \leq s \leq 1} \left| d_{n,r}^{-1}[ns] \int (F_{[ns]}(x + h_n) - F(x + h_n) - (F_{[ns]}(x + h) - F(x + h))) dF_{l_n}(x) \right|
\]
\[
\leq \sup_{0 \leq s \leq 1} \left| \int d_{n,r}^{-1}[ns] (F_{[ns]}(x + h_n) - F(x + h_n)) - \frac{1}{r!} Z_H^{(r)}(s) J_r(x + h_n) dF_{l_n}(x) \right|
\]
\[
+ \sup_{0 \leq s \leq 1} \left| \int d_{n,r}^{-1}[ns] (F_{[ns]}(x + h) - F(x + h)) - \frac{1}{r!} Z_H^{(r)}(s) J_r(x + h) dF_{l_n}(x) \right|
\]
\[
+ \frac{1}{r!} \sup_{0 \leq s \leq 1} |Z_H^{(r)}(s)| \left| \int (J_r(x + h) - J_r(x + h_n)) dF_{l_n}(x) \right|.
\]
The first and second summand converge to 0 because of the empirical non-central limit theorem. Moreover, \(\sup_{0 \leq s \leq 1} |Z_H^{(r)}(s)| < \infty \) a.s. due to the fact that \(Z_H^{(r)}\) is continuous with probability 1. In order to show that the third summand vanishes as \(n\) tends to \(\infty\), it therefore suffices to show that \(\left| \int (J_r(x + h) - J_r(x + h_n)) dF_{l_n}(x) \right| \to 0\). The corresponding argument has already been given in the proof of Lemma 2.
To prove the second assertion of Lemma 3, note that
\[
\left| d_{n,r}^{-1} n \int (F(x + h_n) - F(x + h)) dF(x) - d_{n,r}^{-1} n \int (F(x + h_n) - F(x + h)) dF_n(x) \right|
\]
\[
= \left| d_{n,r}^{-1} n (F_n(x) - F(x)) - \frac{1}{r!} Z(r)^1_H J_r(x) dF(x + h_n) \right|
\]
\[
+ \left| d_{n,r}^{-1} n (F_n(x) - F(x)) - \frac{1}{r!} Z(r)^1_H J_r(x) dF(x + h) \right|
\]
\[
+ \frac{1}{r!} \left| Z(r)^1_H (1) \left| \int J_r(x) d (F(x + h_n) - F(x + h)) \right| \right|.
\]

The first and second summand on the right hand side of the above inequality converge to 0 due to the empirical process non-central limit theorem. In addition, \(\sup_{x \in \mathbb{R}} |F(x + h_n) - F(x + h)| \rightarrow 0 \). (A sequence \(F_n, n \in \mathbb{N} \), of distribution functions on \(\mathbb{R} \) that converges pointwise to a continuous distribution function \(F \) also converges uniformly.) Thus, the third summand goes to 0 since \(J_r \) is continuous and bounded. □

Lemma 4. Let \(K \) be a compact interval and denote by \(D(K) \) the corresponding Skorohod space, i.e. the collection of all functions \(f : K \rightarrow \mathbb{R} \) which are right-continuous with left limits. Assume that \(Z_n, n \in \mathbb{N} \), are random variables taking values in \(D(K) \) and that \(Z_n \xrightarrow{D} Z \), where (with probability 1) \(Z \) is continuous and \(Z \) has a unique maximizer. Then \(\text{sargmax}(Z_n) \xrightarrow{D} \text{sargmax}(Z) \).

Proof. Due to Skorohod’s representation theorem there exist random variables \(\tilde{Z}_n \) and \(\tilde{Z} \) defined on a common probability space \((\tilde{\Omega}, \tilde{F}, \tilde{P}) \), such that \(\tilde{Z}_n \xrightarrow{D} Z_n, \tilde{Z} \xrightarrow{D} Z \) and \(\tilde{Z}_n \xrightarrow{a.s.} \tilde{Z} \). Due to Lemma 2.9 in Seijo, Sen et al. (2011) the smallest argmax functional is continuous at \(W \) (with respect to the Skorohod-metric and the sup-norm metric) if \(W \in D(K) \) is a continuous function which has a unique maximizer. Since (with probability 1) \(Z \) is continuous with unique maximizer \(\xi \), \(\text{sargmax}(\tilde{Z}_n) \xrightarrow{a.s.} \text{sargmax}(\tilde{Z}) \). As almost sure convergence implies convergence in distribution, we have \(\text{sargmax}(\tilde{Z}_n) \xrightarrow{D} \text{sargmax}(\tilde{Z}) \) and therefore \(\text{sargmax}(Z_n) \xrightarrow{D} \text{sargmax}(Z) \). □