Welding and other applications of the Vaporizing Foil Actuator (VFA) tool

2nd December 2016, Nantes, France

Anupam Vivek, Glenn Daehn
Geoff Taber, Bert Liu, Steve Hansen, Ryan Brune, Brian Thurston, Yu Mao, Alex Koenig, Scott Wright, Taeseon Lee, Ali Nassiri, Angshuman Kapil, Bhuvi Nirudhoddi

iml.osu.edu
Outline

• Impulse manufacturing lab
• Impact welding (Vaporizing Foil Actuator Welding)
• Other applications
 – Cutting
 – Shape calibration
Impulse Manufacturing Lab

• Moving materials at strain rates > 1000/s
• Speeds > 100 m/s
• By electromagnetic induction, laser ablation and vaporizing foil actuator
• Weld, form and cut materials, mostly metals
• 5 capacitor banks: 1 kJ to 48 kJ
• 3 PDVs measuring velocities from 1 m/s to 2 km/s on up to 16 channels

iml.osu.edu
Impact welding

• Solid-state welding by means of a high-speed, oblique impact.
 – Critical parameters
 • Speed: typically about 300~1000 m/s
 • Angle: typically about 5°~30° (must be > 0°)
 – Traditionally done by using explosives and later, magnetic pulse

Cons: Explosive! Actuator longevity!
Vaporizing Foil Actuator Welding

NOT MPW

Capacitor Bank

aluminum foil actuator

100 kAmps

vaporized foil

Vivek, I2FG workshop, Nantes 2016
Welding Procedure

Vaporizing foil actuator
VFAW shapes

Area weld
8 kJ

Spot weld
2.6 kJ energy VF

Vivek, I2FG workshop, Nantes 2016
Current, Voltage and Velocity

Foil burst time

Current (kA)
Flyer velocity (m/s)
Voltage (V)

Time (µs)

0 5 10 15 20 25
High Velocity Impact Welding of CP-Ti/Cu 110

Impact Velocity: 770m/s

Impact Angle: 24°
VFAW combinations

- AA6061-SS304
- AA6061-Cu
- Cu-1018 steel
- Cu-CP Ti
- Cu- Zr BMG
- Cu-17F W alloy
- AA6061-AZ91D
- CP Ti-1018 steel

and a few more…
VFAW-ed combinations

<table>
<thead>
<tr>
<th>Target</th>
<th>1xxx</th>
<th>2xxx</th>
<th>5xxx</th>
<th>6xxx</th>
<th>7xxx</th>
<th>Aural 2</th>
<th>A356</th>
<th>AISI 1018</th>
<th>DDQ stainless steel</th>
<th>DP 590</th>
<th>DP 780</th>
<th>DP 980</th>
<th>Usibor 1500</th>
<th>Cu 110</th>
<th>CP Ti</th>
<th>Magnesium AM60B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xxx</td>
<td>😊</td>
</tr>
<tr>
<td>2xxx</td>
<td>😊</td>
</tr>
<tr>
<td>5xxx</td>
<td>😊</td>
</tr>
<tr>
<td>6xxx</td>
<td>😊</td>
</tr>
<tr>
<td>7xxx</td>
<td>😊</td>
</tr>
<tr>
<td>Aural 2</td>
<td>😊</td>
</tr>
<tr>
<td>A356</td>
<td>😊</td>
</tr>
</tbody>
</table>

Peel strength > 250 N/mm
5052-H32 welds: Comparison to FSSW

Lap shear tests

All welds created with 600 J

AA5052/AA7075 results: Mechanical Tests

- 5052 thickness: 2 mm
- 7075 thickness: 2.3 mm
- Input energy: 4 kiloJoules
- Impact velocity: 580 m/s
- Spot size: 15 mm
- Samples left a nugget
AA5052/AA7075 results: Microanalysis

- Strength of base material retained
- Negligible thinning
- Wavy interface
Aluminum-steel welding

Vivek, I2FG workshop, Nantes 2016
Present: Pedestal system

<100 decibels, 20 second cycle time
Current Collaborations on VFAW

• **OEM:** Honda, others
• **Tier 1:** Magna, Jefferson Industries
• **Equipment builder:** Coldwater Machine
• **Materials:** Alcoa, Meridian, Ashland
• **Modeling:** UNH, OSU SIM Center, PNNL
• **Training:** Tri-Rivers Center

Collaborators:
- Tim Abke (Honda)
- Duane Detwiler (Honda)
- Pete Edwards (Honda)
- JK Hong (Battelle)
- Marc Auger (Magna)
- Michael Barker (Ashland)
- Matt Brienzo (JIC)
- Dan Bryant (Alcoa)
- Jen Locke (OSU)
- Jason Johnson (OSU)
- Erman Tekkaya (TU)
- Tim Abke (Honda)
- Christian Weddeling (TU)
- Marlon Hahn (TU)
- Anthony Luscher (OSU)
- Suresh Babu (UTK)
- Curtis Prothe (DMC)
- Brad Kinsey (UNH)
- Xin Sun (PNNL)
- ….and many others
Other applications

• Forming
• Cutting
• Shape calibration
• Conformal/Interference fits
Other applications

• Forming
• Cutting
• Shape calibration
• Conformal/Interference fits
22MnB5 shearing using VFA

1.5 mm thick 1500 MPa boron steel
22MnB5 shearing using VFA

- Uniaxial tension
- Low-cycle fatigue
 - 10 Hz, 50% ultimate failure load

<table>
<thead>
<tr>
<th>Cutting method</th>
<th>Cycles to failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFA shear</td>
<td>4219</td>
</tr>
<tr>
<td>Water jet</td>
<td>6131</td>
</tr>
</tbody>
</table>

Vivek, I2FG workshop, Nantes 2016
VFA Shape Calibration Process

1. Pre-form as received sample to target shape using a hydraulic press

2. Calibrate using Vaporizing Foil Actuator Method

- Insulated Preformed Sample
- Punch
- Backing Block
- Die
- Backing Block
- Hydraulic Press
- Vaporizing Foil

Sample

Preformed

Shocked

Al - 6061

Steel - 590

Ti - 64

Preformed

Shocked w/o gap 6 kJ
Shocked w/o gap 8 kJ
Shocked w/ gap 6 kJ
Shocked w/ gap 8 kJ

Ti - 6242
More calibrated shapes

Titanium

Grade 2 CP Ti: 0.9mm thick

Uncalibrated

Calibrated at 10kJ

3”

DP 980 Steel

DP780 steel: 1 mm thick

Uncalibrated

Calibrated at 10kJ

3”

T6 6061 Al

AA6061 T6: 1mm thick

Uncalibrated

Calibrated at 6kJ

3”
Study of Springback Relief Mechanism

1. Pre-form as received sample to a semicircular shape using a hydraulic press. Tonnage = 10 US tons

2. Flatten the pre-formed sample using a hydraulic press. Tonnage = 20 US tons

3. Recalibrate/Flatten using VFA, at 3 energy levels: 5 kJ, 8 kJ, 11 kJ

4. Measure Residual Stresses at different stages using Laser XRD

Vivek, I2FG workshop, Nantes 2016

Top View of Samples

VFA/Shock Energy ↑ Residual Stresses ↓ Springback ↓
Key takeaways

- Similar and dissimilar combinations
- 6mm thick aluminum
- Flange width 10mm with aluminum
- Aluminum welding: reliable

- Current status: Pedestal system
- Well-supported by state, federal and industry projects
- Key strategic partners engaging

- SPH-based simulations
- Also useful for springback removal and cutting of high strength materials
Questions

- Anupam Vivek: vivek.4@osu.edu
 Glenn Daehn: daehn.1@osu.edu

- Impulse Manufacturing Lab: iml.osu.edu