Electromagnetic embossing and forming of optical microstructures

I2FG
workshop on impulse metalworking
2nd December 2016 - Nantes

L. Langstädtler – bime – University of Bremen
Motivation

diamond tool
convex base geometry
toolpath
workpiece
cf. [Schö - LFM]

IDEA

© bime | University of Bremen | Lasse Langstädtler
Diamond micro chiseling (DMC)

process kinematics

- Toolpath: [X Y Z]
- Workpiece: [-X Y -Z]
- Diamond tool

- 0°
- 120°
- 240°
- 3-sided cavity

SEM 50 μm
SEM 60 μm
SEM 500 μm

→ conventional process

reference: Schönemann - LFM
Technology

1st step tool

2nd step tool

coil

sheet

magnetic field

tool

1st step

2nd step
Experimental set up

- Inductor
- Sheet (Al99.5)
- Clearance tool

Energy E_c 1.8 kJ
Current I_{max} 70 kA
Frequency f_0 22 kHz
Workpiece velocity 200 m/s
Impact pressure 500 MPa
Structural deformation behavior

![Graph showing the structural deformation behavior with two profiles: one for \(s_0 = 50 \mu m \) and another for \(s_0 = 300 \mu m \). The profiles are compared with the corresponding images showing the deformation at 100 \(\mu m \).]
Quality of embossed structure

![Profile graph](image)

- **Height h**
- **Profile x**

- **Tool**

- **Sheet ($s_0 = 300 \, \mu m$)**
Embossing efficiency

![Graph showing embossing efficiency vs. profile width. The graph highlights the forming width \(d_{w50} \) and the width of the inductor. There is an image of a micrograph showing a 300 µm scale.]
Lateral deformation behavior

\[
\begin{align*}
 s_0 &= 50 \mu m + \text{driver} \\
 s_0 &= 300 \mu m
\end{align*}
\]

kinetic energy e.g. air cushions and rebounding
Quality of embossed surface

probe initial surface
\(S_a = 1000 \text{ nm} \)

tool surface
\(S_a = 20 \text{ nm} \)

probe embossed surface
\(S_a = 44 \text{ nm} \)

\(s_0 = 0.3 \text{ mm} \)
\(d = 0.9 \text{ mm} \)
\(E_C = 1.8 \text{ kJ} \)
Sequenced forming

1st step
embossing
d = 0.9 mm; \(E_C = 1.8 \text{ kJ} \)

2nd step
free forming
d = 0 mm; \(E_C = 0.6 \text{ J} \)

microstructure can be inside or outside of the freeformed macrogeometry due to the application of the formed part
Cross structure – 1st step

\[s_0 = 0.05 \text{ mm } + \text{ driver} \]
\[d = 0.9 \text{ mm} \]
\[E_C = 1.8 \text{ kJ} \]
Cross structure – 2nd step

microstructure deformation:
with 20 % strain in the makro geometry no influence on width

1st step probe

1st step

2nd step

Profile x

Height h
Conclusion

• replication of microstructures
• replication of surface quality with near optical finish
• embossing thin micro metal sheets
• free forming of structured sheets
• complex optical geometries realizable
• shorter manufacturing times
• lower invest (tools)
Future work

- embossing of more complex micro structures
- embossing of optical diffractive structures
- controlling macro geometry and shape by adapted micro structures
Contact

M. Sc. Lasse Langstädtler
phone +49 42121864828
mail langstaedtler@bime.de

bime | Bremen Institute for Mechanical Engineering
Badgasteiner Str. 1
Germany - 28359 Bremen
www.bime.de

Thanks to…
Dr.-Ing. L. Schönemann

LFM | Laboratory for Precision Machining
Badgasteiner Str. 2
Germany - 28359 Bremen
www.lfm.uni-bremen.de