
S C H E D U L I N G A L G O R I T H M S A N D T I M I N G A N A LY S I S
F O R H A R D R E A L - T I M E S Y S T E M S

Dissertation

zur Erlangung des Grades eines

doktors der ingenieurwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

wen-hung kevin huang

Dortmund
2017

Tag der mündlichen Prüfung: 18. April 2017

Dekan: Prof. Dr.-Ing. Gernot A. Fink
Gutachter: Prof. Dr. Jian-Jia Chen

Prof. Dr. Jan Reineke

If you put an infinite number of monkeys at typewriters, eventually one will bash
out the script for Hamlet.

Infinite Monkey Theorem

iii

A B S T R A C T

Real-time systems are designed for applications in which response time is critical. As
timing is a major property of such systems, proving timing correctness is of utter
importance. To achieve this, a two-fold approach of timing analysis is traditionally
involved: (i) worst-case execution time (WCET) analysis, which computes an upper
bound on the execution time of a single job of a task running in isolation; and
(ii) schedulability analysis using the WCET as the input, which determines whether
multiple tasks are guaranteed to meet their deadlines.

Formal models used for representing recurrent real-time tasks have traditionally
been characterized by a collection of independent jobs that are released periodically.
However, such a modeling may result in resource under-utilization in systems whose
behaviors are not entirely periodic or independent. Examples are (i) multicore platforms
where tasks share a communication fabric, like bus, for accesses to a shared memory
beside processors; (ii) tasks with synchronization, where no two concurrent access to
one shared resource are allowed to be in their critical section at the same time; and (iii)
automotive systems, where tasks are linked to rotation (e.g., of the crankshaft, gears, or
wheels). There, their activation rate is proportional to the angular velocity of a specific
device.

This dissertation presents multiple approaches towards designing scheduling
algorithms and schedulability analysis for a variety of real-time systems with different
characteristics. Specifically, we look at those design problems from the perspective
of speedup factor — a metric that quantifies both the pessimism of the analysis and
the non-optimality of the scheduling algorithm. The proposed solutions are shown
promising by means of not only speedup factor but also extensive evaluations.

v

A C K N O W L E D G M E N T S

First of all, I would like to express my gratitude to my advisor Prof. Dr. Jian-Jia
Chen for giving me the opportunity to work in his group. I am truly grateful for the
freedom and support of research he gave. He never hesitated to guide me through my
troublesome times of doing research. I thank for all the interesting discussion we had
altogether from different perspectives. I would also like to thank Prof. Dr. Jan Reineke
for his time and commitment to review this dissertation. Furthermore, special thanks
go to Prof. Dr. Heinrich Müller and Prof. Dr. Kristian Kersting for being in my doctoral
committee.

I cherish the opportunity to work in a nice group: I thank Waqaas Munawar for
being my officemate during my first year in Karlsruhe. I will yearn those inspiring
off-topic talks. I thank Matthias Freier for being my peer and hospitable during my
visit to Bosch. Many thanks to Timon Kelter for proofreading my drafts and papers
and being my officemate in Dortmund. Part of the work presented in this dissertation
has been done closely in collaboration with Georg von der Brueggen, Husheng Zhou,
Maolin Yang, Kuan Hsun Chen, and Prof. Dr. Cong Liu. Thanks to all you guys. We
did a good job.

Without all the kindness of everyone who had profoundly influenced me and were
instrumental in getting me to this point, this work would not and could not have been
done. I extend my deepest gratitude to all. Last, I also like to thank my friends and
family for their unconditional love and support during these years.

This work was supported by DFG, as part of the Collaborative Research Center
SFB876 (http://sfb876.tu-dortmund.de/).

vii

P U B L I C AT I O N S

The following publications are included in parts or in an extended version in this thesis:

• Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou, and Cong Liu. “PASS: Priority
Assignment of Real-Time Tasks with Dynamic Suspending Behavior under Fixed-
Priority Scheduling.” In: Design Automation Conference (DAC), San Francisco, CA,
USA. 2015.

• Wen-Hung Huang and Jian-Jia Chen. “Techniques for Schedulability Analysis in
Mode Change Systems under Fixed-Priority Scheduling.” In: IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA).
(Best Paper Award). Hong Kong, 2015.

• Wen-Hung Huang and Jian-Jia Chen. “Response Time Bounds for Sporadic
Arbitrary-Deadline Tasks under Global Fixed-Priority Scheduling on Multiproces-
sors.” In: International Conference on Real-Time Networks and Systems (RTNS). Lille,
France, 2015.

• Wen-Hung Huang and Jian-Jia Chen. “Self-Suspension Real-Time Tasks under
Fixed-Relative-Deadline Fixed-Priority Scheduling.” In: Design, Automation and
Test in Europe (DATE). Dresden, Germany, 2016.

• Wen-Hung Huang and Jian-Jia Chen. “Utilization Bounds on Allocating Rate-
Monotonic Scheduled Multi-Mode Tasks on Multiprocessor Systems.” In: Design
Automation Conference (DAC). Austin, TX, USA, 2016.

• Wen-Hung Huang, Jian-Jia Chen, and Jan Reineke. “MIRROR: Symmetric Timing
Analysis for Real-Time Tasks on Multicore Platforms with Shared Resources.” In:
Design Automation Conference (DAC). Austin, TX, USA, 2016.

• Wen-Hung Huang, Maolin Yang, and Jian-Jia Chen. “Resource-Oriented
Partitioned Scheduling in Multiprocessor Systems: How to Partition and How
to Share?” In: Real-Time Systems Symposium (RTSS). (Outstanding Paper Award).
Porto, Portugal, 2016.

Furthermore, the following publications, which are part of my PhD research, are
however not covered in this dissertation. The topics of these publications are outside of
the scope of the material covered here:

• Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. “k2U: A General Framework
from k-Point Effective Schedulability Analysis to Utilization-Based Tests.” In:
Real-Time Systems Symposium (RTSS). 2015.

ix

• Konstantinos Bletsas, Neil Audsley, Wen-Hung Huang, Jian-Jia Chen, and
Geoffrey Nelissen. Errata for three papers (2004-05) on fixed-priority scheduling
with self-suspensions. Tech. rep. CISTER-TR-150713. CISTER, 2015.

• Georg von der Bruggen, Jian-Jia Chen, and Wen-Hung Huang. “Schedulability
and Optimization Analysis for Non-preemptive Static Priority Scheduling Based
on Task Utilization and Blocking Factors.” In: 27th Euromicro Conference on Real-
Time Systems, ECRTS 2015, Lund, Sweden, July 8-10, 2015. 2015, pp. 90–101. doi:
10.1109/ECRTS.2015.16. url: http://dx.doi.org/10.1109/ECRTS.2015.16.

• Jian-Jia Chen et al. Many Suspensions, Many Problems: A Review of Self-Suspending
Tasks in Real-Time Systems. Tech. rep. 854. (Status: Preprint). Department of
Computer Science, TU Dortmund, 2016. url: http://ls12-www.cs.tu-dortmund.
de/daes/media/documents/publications/downloads/2016-chen-techreport-

854.pdf.

• Jian-Jia Chen, Geoffrey Nelissen, and Wen-Hung Kevin Huang. “A Unifying
Response Time Analysis Framework for Dynamic Self-Suspending Tasks.” In:
Euromicro Conference on Real-Time Systems (ECRTS). Toulouse, France, 2016.

• Georg von der Brüggen, Jian-Jia Chen, Robert I. Davis, and Wen-Hung Kevin
Huang. “Exact Speedup Factors for Linear-Time Schedulability Tests for Fixed-
Priority Preemptive and Non-preemptive Scheduling.” In: Information Processing
Letters (IPL) (2016). url: doi:10.1016/j.ipl.2016.08.001.

• Georg von der Brüggen, Wen-Hung Huang, Jian-Jia Chen, and Cong Liu.
“Uniprocessor Scheduling Strategies for Self-Suspending Task Systems.” In:
Proceedings of the 24th International Conference on Real-Time Networks and Systems,
RTNS 2016, Brest, France, October 19-21, 2016. 2016, pp. 119–128. doi: 10.1145/
2997465.2997497. url: http://doi.acm.org/10.1145/2997465.2997497.

• Georg von der Brüggen, Kuan-Hsun Chen, Wen-Hung Huang, and Jian-Jia Chen.
“Systems with Dynamic Real-Time Guarantees in Uncertain and Faulty Execution
Environments.” In: Real-Time Systems Symposium (RTSS). Porto, Portugal, 2016.

• Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. “k2Q: A Quadratic-Form
Response Time and Schedulability Analysis Framework for Utilization-Based
Analysis.” In: Real-Time Systems Symposium (RTSS). Porto, Portugal, 2016.

x

http://dx.doi.org/10.1109/ECRTS.2015.16
http://dx.doi.org/10.1109/ECRTS.2015.16
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-techreport-854.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-techreport-854.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-techreport-854.pdf
doi:10.1016/j.ipl.2016.08.001
http://dx.doi.org/10.1145/2997465.2997497
http://dx.doi.org/10.1145/2997465.2997497
http://doi.acm.org/10.1145/2997465.2997497

C O N T E N T S

1 introduction 1

1.1 Concepts and Definitions of Real-Time Systems 1

1.1.1 Task model . 2

1.1.2 Deadline model . 3

1.1.3 Feasibility and Optimality . 3

1.2 Motivation . 4

1.3 Organization of this Thesis . 4

1.4 Contributions of this Work . 5

2 timing analysis concepts 7

2.1 Worst-Case Execution Time . 7

2.1.1 Measurement-Based Approach . 8

2.1.2 Static Approach . 9

2.2 Real-Time Scheduling . 11

2.2.1 The Taxonomy of Scheduling Algorithms 11

2.2.2 Schedulability and Response-Time Analysis 13

2.2.3 Metrics for Quantifying Scheduling Algorithms 14

2.3 Multiprocessor Systems . 15

2.3.1 Multiprocessor Scheduling Algorithms 16

2.3.2 Task-to-Core Mapping . 16

3 sporadic task model 19

3.1 Related Work . 20

3.2 Preliminary Results and Definitions . 21

3.2.1 Level-k Busy Interval for Task τk 21

3.2.2 Workload Functions . 23

3.3 Response Time Analysis . 23

3.3.1 Safe Bound of Rk,h for Given h . 24

3.3.2 Worst-Case Response Time of Task τk 29

3.3.3 Improved Carry-in Workload Function 30

3.4 Linear-Time Upper Bound under FP . 30

3.5 Experiments . 33

3.5.1 Simulation Environment . 34

3.5.2 Constrained-Deadline Systems & Results 34

3.5.3 Arbitrary-Deadline Systems & Results 35

3.6 Summary . 35

4 resource access task models 39

4.1 System Model . 40

4.1.1 Multicore Architecture Model . 40

xi

contents

4.1.2 Task Model . 40

4.1.3 Related Work. 42

4.2 Schedulability Analysis . 44

4.2.1 Our Strategies and Preliminaries 44

4.2.2 Calculating Sk(t) and Xk(t) . 46

4.2.3 Calculating X∗k and S∗k . 47

4.2.4 Response-Time Analysis . 48

4.3 Task Allocation . 49

4.4 Speedup Factor . 50

4.5 Experimental Results . 52

4.6 Summary . 54

5 synchronization 57

5.1 Task Model and Shared Resources . 61

5.1.1 Task Model . 61

5.1.2 Shared Resources . 61

5.2 Uniprocessor Synchronization Protocols 62

5.2.1 Non-Preemptive Protocol . 62

5.2.2 Priority Ceiling Protocol . 63

5.3 Multiprocessors . 67

5.3.1 Resource-Oriented Algorithm . 68

5.3.2 Schedulability Analysis . 70

5.4 Task and Resource Allocations . 74

5.4.1 Speedup Factor under RM . 76

5.5 Multiple Resource Accesses . 81

5.5.1 Multiple Occurrences on Each Resource 81

5.5.2 Multiple Resource Accesses . 81

5.6 Improved Response Time Analysis . 82

5.7 Experimental Results . 84

5.8 Summary . 91

6 multi-mode task model 93

6.1 Uniprocessors . 95

6.1.1 Schedulability Analysis under FPT Scheduling 97

6.1.2 Schedulability Analysis under FPM Scheduling 104

6.1.3 Evaluations . 117

6.2 Multiprocessors . 121

6.2.1 Utilization Bounds in Uniprocessors 122

6.2.2 Reasonable Allocation Decreasing Algorithm 123

6.2.3 Utilization Bound by Using Quadratic Bound (QB) 124

6.2.4 Bounds Based on Max Utilization 127

6.2.5 Evaluations under different RADs 131

6.3 Summary . 132

xii

contents

7 conclusions and future work 135

7.1 Summary . 135

7.2 Future Work . 137

bibliography 139

acronyms 155

index 157

xiii

1
I N T R O D U C T I O N

Today, real-time computing plays a crucial role in our society, since an increasing
number of complex systems rely, in part or completely, on computer control. Real-
time systems are defined as those systems in which the correctness of the system
behavior depends not only on the logical results of the computations, but also on the
physical instant at which these results are produced. Timing correctness requirements
in a real-time system arise because of the physical impact of the controlling system’s
activities upon its environment. This raises the questions of what happens when timing
correctness properties of the systems are not satisfied.

On September 20, 2007, the 2005 Toyota Camry driven by Jean Bookout crashed
on an Oklahoma highway off-ramp, injuring her and killing her passenger, Barbara
Schwarz. The blame for the accident is laid on Electronic Throttle Control System (ETCS)
responsible for controlling air flow to the engine based on driver and vehicle condition,
causing the vehicle to accelerate out of control. In a spite of no smoking gun founded
during the Toyota investigations, Michael Barr, a well-respected embedded software
specialist, after spending more than 20 months reviewing Toyota’s source code, testified
at trial: the death of tasks within a CPU due to not getting to use the CPU can cause
the vehicle misbehavior, leading to loss of throttle control [Koo14].

1.1 concepts and definitions of real-time systems

Defining requirements to establish specifications is the first stage in the deign flow of
a predictable real-time system. In establishing requirements, the specification would
include technical information about specific design aspects. For example, consider a
Lane Keeping Assist System (LKAS) that monitors the carriageway markings – usually
using camera systems fitted behind the windscreen – to support the driver in staying
within a lane through electronic assistance with the steering force. In such a system,
only a few 100 milliseconds can be taken in determining if a vehicle is drifting off lane,
and whether to steer the vehicle back towards the lane center. This timing requirement
is written down on the specification to be satisfied.

A typical timing requirement on a task is called deadline, which represents the time
before which a task should complete its execution without causing any damage to
the system. Real-time systems/tasks are classified by the consequence of missing a
deadline:

• Hard real-time: every deadline must be strictly met. Any deadline misses are
deemed a total system failure. Some examples are nuclear systems, automotive

1

introduction

systems, medical applications, such as pacemakers, a large number of defense
applications, and avionics.

• Firm/soft real-time: deadline misses can be tolerated. Performance will degrade if
too many are missed. In firm real-time systems, the usefulness of a result is zero
after its deadline, whereas in soft real-time systems, the usefulness of a result
degrades after its deadline. Examples of soft real-time systems can be multimedia
and telephony. Each audio or video frame must be rendered it time, or else it
has to be skipped; If one misses a few bits, no big deal, but if missing too many,
eventually the performance of the system degrades.

1.1.1 Task model

Most feedback control systems are essentially periodic, where the inputs (reading on
sensors) and the outputs (posting on actuators) of the controller are sampled at a fixed
rate. Here comes a real-time system example: Anti-lock Brake System (ABS). ABS is an
automobile safety system that allows the wheels on a motor vehicle to maintain tractive
contact with the road surface according to driver inputs while braking, preventing the
wheels from locking up (ceasing rotation) and avoiding uncontrolled skidding. When
the system detects sudden braking by comparing the sampled sensor data with the
reference input, it will do computation to release braking pressure for a moment. Then,
the optimum braking pressure is computed to provide to each wheel via actuator. Such
a process is activated periodically, smoothing steering control during sudden stops. It
has to be deadline-oriented, meaning that the computation must be finished within
a deadline. A typical real-time control system and its respective software are shown
in Figure 1.1 and Algorithm 1. This gives rise to the sporadic task model. Each task
is characterized by a a three-tuple (Ci, Ti, Di): Ci denotes the Worst-Case Execution
Time (WCET) of each job of τi, Ti denotes the minimum inter-arrival time (also known
as period) of τi; and Di denotes the relative deadline.

Algorithm 1: Real-Time Control System

set timer to interrupt periodically with period Ti;
do

perform analog-to-digital conversion y(t) to get input yk;
compute control output uk based on reference rk and yk;
do digital-to-analog conversion of uk to get output u(t);

while at each timer interrupt;

2

1.1 concepts and definitions of real-time systems

A/D
Reference
input: r(t)

Computation D/A
uk

ActuatorPlant

A/D

Sensor

rk

u(t)

y(t)

yk

Controller

Figure 1.1: Real-Time Control System

1.1.2 Deadline model

Relative deadlines of tasks may be classified as:

• Implicit-deadline: a task’s deadline is equal to its minimum inter-arrival
time/period;

• Constrained-deadline: a task’s deadline is no more than its minimum inter-arrival
time/period; or

• Arbitrary-deadline: a task’s deadline is not restrictive.

1.1.3 Feasibility and Optimality

Predictability is one of the most important properties that a hard real-time system
should have. We call a system predictable if one can guarantee that 100% of all tasks
over the entire life of the system will meet their timing requirements.

Definition 1.1 (feasibility). A system τ is said to be feasible if there exists a scheduling
algorithm that schedules the system without timing constraints violated.

Definition 1.2 (optimality). A scheduling algorithm is said optimal with respect to a
system and a task model if any task sets that are feasible can also be scheduled by the
scheduling algorithm.

3

introduction

1.2 motivation

Unlike general-purpose computing systems in which the design is optimized towards
average-case performance, real-time systems must provide the predictable low-latency
[SR90].

Testing is not Enough to Establish Safety

Vehicle level testing is a matter of great importance in designing bomb-proof systems.
From calendar year 2005 to 2010 Toyota Motor Corp. reported approximately 11 million
hours in module level software testing, and 35 million miles of system level testing,
including unit testing, hardware-in-the-loop field testing, and the verification of normal
functions of the vehicle engine control system, speed control, and vehicle driving
handling [Nan]. One might wonder how come the 2005 Toyota Camry mishap resulting
in a major catastrophe can still happen after such testing?

In fact, due to system complexity, despite a considerable time invested in exploring
potential failures, it is still impracticable to test everything at the vehicle level: too many
possible operating conditions, timing sequences, and possible fault types. Butler and
Finelli, senior research engineers at the National Aeronautics and Space Administration
(NASA) Langley Research Center, stated in [BF93]

Life-testing of ultrareliable software is infeasible.

It would take more than 108 h (∼11,415 years) of testing to quantify 10−8/h failure
rate. Since life-testing of ultrareliable software is infeasible, timing analysis has been
developed for predictable real-time systems.

1.3 organization of this thesis

The remaining parts of this dissertation is organized as follows:

• In Chapter 2, we introduce a basic concept of timing analysis required for the
understanding of this dissertation.

• Chapter 3 first provides an overview of the well-adopted sporadic task model.
In this chapter, we study the problem of scheduling arbitrary-deadline real-
time sporadic task sets on a multiprocessor system under global fixed-priority
scheduling. Since this model is essentially restrictive, we introduce in the
following chapters more expressive models that better characterize the behavior
of real-time systems in timing analysis.

• In Chapter 4, we study the problem of scheduling real-time tasks on multicore
platforms with shared resources. We assume that we have a multicore platform
comprised of a set of identical cores connected by a shared resource, e.g., a
communication fabric (bus) for accesses to a shared memory.

4

1.4 contributions of this work

• In Chapter 5, we study the problem of real-time tasks with synchronizations
on multiprocessor systems: no two concurrent accesses to one (logical) shared
resource are in their critical sections at the same time.

• In Chapter 6, we study a model that is a generalization of the periodic task model,
called multi-mode task model: a task has several modes specified with different
execution times and periods to switch during runtime, independent of other tasks.
Moreover, we also study the problem of allocating a set of multi-mode tasks on a
homogeneous multiprocessor system.

1.4 contributions of this work

The following overview lists the contribution of the author on the presented results for
each chapter:

• In Chapter 3, there are two main contributions made here. First, it has been shown
that the existing response time analysis in multiprocessor arbitrary-deadline
systems is flawed: the response time may be larger than the derived bound.
This paper provides a revised analysis resolving the problems with the original
approach, and then propose a corresponding schedulability test. Secondly, we
derive a linear-time upper bound on the response time of arbitrary-deadline tasks
in multiprocessor systems. To the best of our knowledge, this is the first work presenting
a linear-time response time bound on global scheduled multiprocessor systems.

• In Chapter 4, we develop a pseudo-polynomial-time schedulability test and
response-time analysis for constrained-deadline sporadic tasks scheduled on a
multicore platform connected by a shared resource. We also propose our task
allocation algorithm. We show that this algorithm offers non-trivial quantitative
guarantees, including a speedup factor of 7 in polynomial-time complexity.
The experimental evaluation demonstrates that our approach can yield good
acceptance ratios. To the best of our knowledge, this is the first result that provides a
speedup factor in the context of multicore platforms with shared resources.

• In Chapter 5, we show that the proposed resource-oriented partitioned scheduling
using Priority Ceiling Protocol (PCP) combined with a reasonable allocation
algorithm can achieve a non-trivial speedup factor guarantee. Specifically, we
prove that our task mapping and resource allocation algorithm has a speedup
factor 11− 6/(m + 1) on a platform comprising m processors, where a task may
request at most one shared resource and the number of requests on any resource
by any single job is at most one. Our empirical investigations show that the
proposed algorithm is highly effective in terms of task sets deemed schedulable.
Again, to the best of our knowledge, this is the best result studying the problem of resource

5

introduction

sharing on multiprocessors in terms of non-optimality when partitioned scheduling
schemes are concerned.

• In Chapter 6, we propose a technique for analyzing schedulability of the system
where tasks can undergo mode change under fixed-priority scheduling. We
study two scheduling algorithms upon multi-mode task systems: Fixed-Priority
Task-level (FPT) and Fixed-Priority Mode-level (FPM). We further show that a
utilization of 2−

√
2 ≈ 0.5857 can be guaranteed in implicit-deadline multi-mode

uniprocessor systems if each mode is prioritized according to rate-monotonic
policy. To the best of our knowledge, this is the first work studying the mode change
systems under FPM scheduling. Moreover, we present a scheduling algorithm using
any Reasonable Allocation Decreasing (RAD) algorithm for task allocations for
scheduling multi-mode tasks on multiprocessor systems. We prove that this
algorithm achieves 38% utilization for implicit-deadline Rate-Monotonic (RM)
scheduled multi-mode tasks on multiprocessor systems. To the best of our knowledge,
this is the first result for multi-mode tasks on multiprocessor systems.

6

2
T I M I N G A N A LY S I S C O N C E P T S

2.1 Worst-Case Execution Time . 7

2.1.1 Measurement-Based Approach . 8

2.1.2 Static Approach . 9

2.2 Real-Time Scheduling . 11

2.2.1 The Taxonomy of Scheduling Algorithms 11

2.2.2 Schedulability and Response-Time Analysis 13

2.2.3 Metrics for Quantifying Scheduling Algorithms 14

2.3 Multiprocessor Systems . 15

2.3.1 Multiprocessor Scheduling Algorithms 16

2.3.2 Task-to-Core Mapping . 16

Traditionally, timing analysis consists of two separate steps: (i) WCET analysis, which
computes an upper bound on the execution time of a single job of a task running in
isolation and (ii) schedulability analysis, which determines whether multiple tasks
are guaranteed to meet their deadlines, while sharing a processor. In this chapter,
we introduce the WCET analysis in Section 2.1, and definitions and terminologies on
real-time scheduling in Section 2.2. Terminologies and design issues towards real-time
multiprocessor systems are introduced in Section 2.3. This chapter only serves as a
basic introduction required for the understanding of this dissertation.

2.1 worst-case execution time

First of all, the WCET of each tasks in real-time systems must be known in order to
guarantee feasibility. In event-triggered or periodic systems it is required for schedula-
bility analysis, in time-triggered systems (e.g. Time-Triggered Protocol (TTP) [KG93] and
FlexRay [Con+05]) it is required for determining a static schedule.

Two classes of methods to analyze the WCET can be distinguished:

• Measurement-based approach: running real programs with sets of representative
inputs to measure the longest program execution time.

• Static analysis approach: counting assembler instructions for each function, loop
etc. and then combining them.

7

timing analysis concepts

2.1.1 Measurement-Based Approach

With the availability of the hardware under development and the respective simulators,
measurement-based approaches are the approach that has been widely put into practice
in industry.

Software Requirements
Specification

Code Generation

Compilation

WCETMEAS+

safety margin
< timing

constraints?

End

no

yes

Figure 2.1: Trial-and-error based design process [LM11]

With the increasing complexity of software and hardware, there is a need for tool
support in developing a complex system. Code generator tools like ASCET [ETA] are
widely used to optimize for resource-limited systems and to provide high-performance
with low overheads. The code generated by these tools in a high-level language with
strong abstraction from the details of the system is later translated into machine code
by a complier, which is utilized for WCET measurements. Then, the program runs
with sets of representative inputs to measure the longest end-to-end program execution
time of a task or task parts. After that, it is common practice in industry to use a safety
margin for error to account for untested code, hardware performance approximations

8

2.1 worst-case execution time

or mistakes (cf. Figure 2.1). The accumulated value is used for the verification of timing
constraints. In case of violated constraints, the designers have to revisit the requirements
and specifications to fix the timing problem, starting the next system design cycle. The
design requirements process ends when all the necessary requirements are met.

Issues of this approach

time

nu
m

be
r

of
ev

en
ts

measured execution time
possible execution time

observed
WCET

observed
BCET

actual
WCET

actual
BCET

lower
bound
BCET

upper
bound
WCET

Figure 2.2: Distribution of execution time. The white bars represent the times of
measured executions. The black bars represent the times of all possible
executions.

This approach has the advantage that execution times are determined from real
measurements, avoiding modeling errors; however, it has one major shortcoming: it
is not safe. Those representative inputs possibly may not cover the worst case input.
Figure 2.2 depicts the distribution of execution time under different approaches. The
shortest execution time is called the Best-Case Execution Time (BCET), the longest time
is called the WCET. Practically, it is impossible measuring for all inputs. As a result, the
measurement-based approach in general will underestimate the actual WCET. Despite
that a safety margin, typically of 20%, is often used for accounting for underestimate,
there is very little justification for being safe; on the other hand, a large margin for error
can result in under-utilization of a real-time system. In summary, there is little science
and mostly ad hoc with this approach.

2.1.2 Static Approach

Static Approach emphasizes safety by producing bounds on the execution time,
guaranteeing that the execution time will not exceed these bounds. The bounds
allow safe schedulability analysis of hard real-time systems. Figure 2.3 depicts the
workflow of most WCET analyzers such as aiT WCET Analyzers1, the most well-known

1 https://www.absint.com/ait/

9

timing analysis concepts

CFG Reconstruction

Value Analysis

Cache Analysis

Path Analysis

Cycles
Contexts

Loop Bounds

Executable

ILP
Generation

ILP Solver

WCET

Figure 2.3: Workflow for most static WCET analyzers

and industrially used WCET analyzer. The workflow is composed of several different
components, starting from reading a (binary) executable:

• Control Flow Graph (CFG) reconstruction: extracts an interprocedural CFG that
reflects all possible transitions of control flow among instructions from the given
executable.

• Value analysis: Knowledge about the memory addresses that are accessed by a
memory reference is required in order to compute a precise bound on the WCET.
Value analysis determines ranges (safe approximations) for values in registers
by means of the annotated CFG served as the input. In some cases, there are
addresses of a memory reference that may not be able to determine. Then the
cache analysis must conservatively account for all possible addresses, which may
be manually refined by the user later on.

• Cache analysis: cache analysis would be not needed if all access data could ideally
be cached (cache hit). However, to be cost-effective and to enable efficient use of
data, caches are relatively small, meaning that the requested data may not reside

10

2.2 real-time scheduling

in a cache but elsewhere (cache miss). On the other hand, the suppression of cache
(assuming always cache misses) may result in a pessimistically large WCET owing
to the high variance of delays: a cache miss may take 100 times longer than a
cache hit. Cache analysis classifies the accesses to main memory, i.e. whether
or not the needed date resides in the cache. The classification requires may and
must information. May and must caches are upper and lower approximations,
respectively, to the contents of all concrete caches that will occur whenever
program execution reaches a program point [Rei09]. Must cache information
is used to derive safe information about cache hits; may cache information is
used to safely predict cache misses. In the context of preemptive scheduling,
Cache-Related Preemption Delay (CRPD) must be taken into account, whereby
the so-called Useful–Cache-Block (UCB) analysis is used [AB09; AB11].

• Path analysis: path analysis is also called Bound Calculation in the litera-
ture [Wil+08]. It finally computes the WCET result. Intuitively speaking, the
upper bound of WCET for a task is determined by finding the overall feasible
path with the longest execution time. To achieve this, it must know upper
bounds on the execution frequency of all cyclic paths, i.e., loops and recursions.
For simple cases, the these bounds are obtained by value analysis, whereas for
complex loops the user has to provide a bound. There are three main classes of
methods for bound calculation in literature: structure-based [PK89; CP00; CB02],
path-based [HAMWH99], and Implicit Path Enumeration Technique (IPET) [LM95;
LM97]. The de-facto standard one is IPET. The control flow of tasks is translated
into Integer Linear Programming (ILP) by reflecting the structure of the task
and possible flows. An upper bound is determined by maximizing the sum of
products of the execution counts and times such that the execution count variables
are subject to the constraints of bounds on loops and recursions.

2.2 real-time scheduling

In this section, we introduce definitions and terminologies common to the whole
spectrum of research on real-time scheduling.

2.2.1 The Taxonomy of Scheduling Algorithms

Scheduling algorithms for real-time systems can be classified according to when changes
to priority can be made [Car+04]:

• Fixed task priority: each task is associated with an unique priority applied to all of
its jobs. It is the scheduling algorithm most commonly used in real-time systems,

11

timing analysis concepts

also known as fixed-priority scheduling2. With fixed task priority scheduling, the
scheduler ensures that at any given time, the processor executes the highest
priority task of all those tasks that are currently ready to execute.

• Fixed job priority: each job of a task has a single priority; however, different jobs
of the same task may have different priorities. One example of this is Earliest-
Deadline-First (EDF) scheduling: the task with the earliest absolute deadline is
always executed first.

• Dynamic priority: Each job may have different priorities during runtime, for
instance, Least-Laxity-First (LLF) scheduling: the task with the least laxity is
always executed first.

There are also other commonly used techniques to achieve predictability, for example,
Time Division Multiple Access (TDMA) [SCT10b]. With a TDMA system, each task in the
system is assigned a particular time window, called TDMA slot, to use for execution.

Determining when control is transferred from one running task to another., we can
identify the following two classes of scheduling algorithms:

• Preemptive: with preemptive scheduling, once a job/task has executed, it can be
taken away from the CPU at any time, according to a scheduling policy.

• Non-preemptive: with non-preemptive scheduling, once a job/task has started to
execute, it cannot be preempted until it finishes the execution. The scheduler is
only invoked at the end of a job (assuming the interrupts are disabled).

In the context of preemptive scheduling [LL73], whereby EDF scheduling is shown
an optimal scheduling, the cost of preemption is considered negligible, and therefore
assumed to be zero. But the fact is that context switching is in general computationally
intensive, typically in single-digit milliseconds [LDS07], depending on what precisely
it entails and which architecture it is operated on. On the other hand, with
non-preemptive scheduling, context switches are more predictable and much less
frequent. However, it is known that non-preemptive scheduling suffers from long
non-preemptible region blocking [Sho10], thereby resulting in longer response times.
The question whether preemptive scheduling is better than non-preemptive one has
been long debated in the real-time community. Recently, limited preemption scheduling
as a viable alternative to non-preemptive and fully preemptive scheduling has been
introduced, to reduce the runtime overhead due to preemptions while avoiding long
non-preemptiable region blocking [BBY13]. In the context of limited preemption
scheduling, several approaches have been proposed in the literature: (i) preemption
thresholds scheduling: preemptions are allowed to take place if the priority of arriving
tasks is over the specified preemption threshold [WS99]; (ii) deferred preemptions scheduling:

2 We interchangeably use fixed task priority and fixed-priority in this dissertation.

12

2.2 real-time scheduling

preemptions are maximally deferred by a given amount of time [Bar05]; and (iii) fixed
preemption points: preemptions are allowed only at selected points of the code of each
task [Bur93]. Please find a more in-depth review in [BBY13].

2.2.2 Schedulability and Response-Time Analysis

When developing multitasking real-time systems, schedulability tests using the WCET
as input are used to formally prove that a given task set under a scheduling algorithm
will meet its deadlines:

Definition 2.1 (schedulability test). Schedulability test of a scheduling algorithm is to
verify whether the task system is feasible under the given algorithm.

Logically speaking, there are three types of tests in schedulability analysis:

Definition 2.2 (sufficient test). A schedulability test is said sufficient, with respect to a
scheduling algorithm and a system if all of the task sets that are deemed schedulable
according to the test are in fact schedulable.

Definition 2.3 (necessary test). A schedulability test is said necessary if all of the task
sets that are deemed unschedulable according to the test are in fact unschedulable.

Definition 2.4 (exact test). A schedulability test that is both sufficient and necessary is
referred to as exact.

An example of necessary tests with respect to any scheduling algorithms is Demand
Bound Function (DBF):

Definition 2.5 (demand bound function). For any interval length t, the DBF db fi(t) of
a sporadic task τi bounds the maximum cumulative execution requirement by jobs of τi
that both arrive in, and have deadlines within, any interval of length t.

In other words, it is necessary for a task set being schedulable (by any scheduling
policies) that the total jobs for each task by the DBF must be executed within any
interval of length t. It has been shown in [BMR90] that the DBF of a sporadic task τi
can be defined as

db fi(t) = max
(

0,
⌊

t + (Ti − Di)

Ti

⌋
Ci

)
(2.1)

For any sporadic task uniprocessors system τ that is feasible it must be that ∀t > 0

∑
τi∈τ

db fi(t) ≤ t (2.2)

Necessary test is a necessary condition for all of the task sets being schedulable. So
we cannot say that a system that passes a necessary test is schedulable. Despite the

13

timing analysis concepts

fact that schedulability cannot be fulfilled by a necessary condition, this condition is
however useful in quantifying the optimality of a schedulability test associated with
a scheduling algorithm [LL73; BB08; DTGDP15; CL14; HCZL15; HC16a; BCDH16;
HCR16; HYC16].

To verify whether or not a given task under a scheduling algorithm can meet it
deadline, it suffices to consider only critical instants:

Definition 2.6 (critical instant). A critical instant of a task is defined to be an
(hypothetical) instant at which the task will have the longest response time.

Typically, such an instant is described as a point in time with particular properties.
As an example, a critical instant for tasks under fixed-priority preemptive scheduling is
given by a point in time for which all tasks have a simultaneous release [LL73].

Definition 2.7 (time-demand analysis). Time-Demand Analysis (TDA) computes the total
demand for processor time by a job released at a critical instant of the task and by
all the higher-priority tasks, and checks whether this demand can be met before the
deadline of the job.

TDA is typically applied to produce a schedulability test for fixed task priority
scheduling that ensures that each job of every task completes before the next job of that
task is released [LSD89].

An alternative approach for checking the feasibility of a system is to perform
Response-Time Analysis (RTA), whereby the Worst-Case Response Time (WCRT) of
each task is calculated to compare with its relative deadline.

Definition 2.8 (worst-case response time). The WCRT of a task is defined as the largest
response time of any of its jobs.

Definition 2.9 (response-time analysis). RTA determines the worst-case response time
of a task.

It is worth noting that TDA produces a boolean decision: feasibility or infeasibility,
whereas RTA calculates a numerical value: the WCRT.

2.2.3 Metrics for Quantifying Scheduling Algorithms

Ideally, an exact test associated with an optimal scheduling algorithm is preferred.
However, it is often the case that an optimal scheduling is unavailable and/or
scheduling algorithms associated with schedulability tests are too expensive due
to either the runtime overhead or the complexity of tests themselves. As a result,
one settles for (pseudo)polynomial-time, near-optimal solutions, called approximation
algorithm. Unlike heuristics, which usually find reasonably good solutions in the vast
majority of cases, approximation algorithms ensure that solutions with provable quality
are far from being optimal up to a constant factor, even for specific pathological inputs.

14

2.3 multiprocessor systems

In mathematics, finding approximation/competitive ratio of an algorithm is arguably the
most mathematically satisfying approach to pursue ideas other than optimal solutions.
The approximation ratio (or approximation factor) is the ratio between the result
obtained by the algorithm and the optimal cost or profit. Unlike approximation ratio, in
the real-time system community, resource augmentation factors (in speed or processors)
are preferably, widely used to quantify the quality of scheduling algorithms associated
with the corresponding schedulability tests, first introduced in [KP95]. Specifically, the
formal definition of speedup factor is as follows:

Definition 2.10. (speedup factor) A scheduling algorithm associated with some
sufficient schedulability test A is said to have a speedup factor of α if for any task
system the task system that is not deemed schedulable by the test is also not schedulable
by any scheduling algorithms upon a platform in which each processor is 1

α times as
fast.

The smaller the processor speedup bound, the better the sufficient schedulability test.
In addition, a processor speedup bound of one implies that the test is an exact one and
that the scheduling algorithm is optimal.

Alternatively, another metric commonly used is utilization bounds:

Definition 2.11 (utilization bound). A task set is schedulable if its total utilization is
less than a specific bound.

Two classic examples of utilization bounds are EDF and RM scheduling algorithm,
one example of fixed task priority scheduling. Roughly speaking, with periodic tasks
that have deadlines equal to their periods, EDF scheduling has a utilization bound
of 100%, whereas RM scheduling can meet all of the deadlines if CPU utilization
is less than 69.32% [LL73]. Despite that EDF scheduling is known as an optimal
scheduling algorithm for sporadic implicit-deadline tasks [LL73], it entails higher
runtime overhead of implementations than RM due to dynamic priority changes during
runtime. Therefore, with the quality guarantee, using RM scheduling algorithm would
be a pragmatically good trade-off between performance and efficiency.

But the utilization bound metric fails to justify many systems and scheduling
algorithms, such as non-preemptive scheduling, constrained-deadline systems, and so
on: non-preemptive scheduling can trivially be unfeasible at a very small utilization,
whereby the longest execution time of one task that is non-preemptible exceeds the
shortest deadline of another [Sho10]. As a result, instead of using utilization bounds,
one may have to refer to the processor speedup factor as an indicator to distinguish
those non-preemptive scheduling algorithms [DTGDP15].

2.3 multiprocessor systems

Due to the issue of power consumption and excessive heat dissipation in increasing high
processor clock speeds, there has been a move towards using multiprocessor platforms.

15

timing analysis concepts

Such a move also takes place in real-time system domains due to the evolution and
integration of features and consequently the need for more processing power. In the
context of multiprocessor platforms, several dimensions are added on to real-time
system designs.

2.3.1 Multiprocessor Scheduling Algorithms

To schedule real-time tasks on multiprocessor platforms, there are two widely adopted
approaches: partitioned and global scheduling algorithms. In global scheduling, a global
queue is implemented for all instances of tasks, namely jobs, and the jobs can be
arbitrarily assigned to any processor, depending upon a global scheduling scheme.
Hence, different jobs of the same task may execute upon different processors. In
partitioned scheduling, contrary to global scheduling, each task is assigned statically to
one processor and cannot migrate to the others. As a result, all jobs generated by a task
only execute on the processor where the task is assigned.

In addition to the pure partitioned and global ones, semi-partitioned scheduling
algorithms have recently received considerable attention. They combine characteristics
from partitioned and global scheduling by allowing a small number of tasks or a
proportion of jobs to migrate, thereby improving schedulability.

2.3.2 Task-to-Core Mapping

Partitioned scheduling policy is the scheduling policy supported by the AUTOSAR
standard for automotive systems [Aut], as well as most commercial Real-Time Operating
System (RTOS), including VxWorks, QNX, LynxOS, and all POSIX-compliant ones.
Under partitioned scheduling policy the performance of a system is highly dependent
of task-to-core mapping. The task allocation under partitioned scheduling is analogous to
the well-known bin packing problem [GJ79]. In the bin packing problem, the objective
is to pack a set of items into a number of bins such that the volume of the packed
items in every bin does not exceed that of the bin and the number of used bins is
minimized. As task allocation is a bin-packing-like problem, which is NP-hard [Joh73],
rather than finding the optimal solution, the goal of optimization problems is usual to
find a good solution quickly. For this reason, several reasonable allocation algorithm has
been long developed for the bin-packing problem. Reasonable allocation algorithm is
the algorithm that declares failures only if there is no bin having sufficient capacity to
hold the pending item. Examples of reasonable allocation algorithm include:

• First-Fit (FF) algorithm: it places the item in the first bin that can accommodate
the item. If no bin is found, it opens a new bin and puts the item to the new bin.
Every time it starts searching for the first bin.

16

2.3 multiprocessor systems

• Next-Fit (NF) algorithm: Same as FF, except every time it starts searching for the
next bin from the last bin it allots rather than the first one.

• Best-Fit (BF) algorithm: it places each item to the bin with the lowest remaining
capacity among all the bins with sufficient capacity to accommodate the item.

• Worst-Fit (WF) algorithm: it places each item to the bin with the largest remaining
capacity among all the bins with sufficient capacity to accommodate the item.

17

3
S P O R A D I C TA S K M O D E L

3.1 Related Work . 20

3.2 Preliminary Results and Definitions . 21

3.2.1 Level-k Busy Interval for Task τk . 21

3.2.2 Workload Functions . 23

3.3 Response Time Analysis . 23

3.3.1 Safe Bound of Rk,h for Given h . 24

3.3.2 Worst-Case Response Time of Task τk 29

3.3.3 Improved Carry-in Workload Function 30

3.4 Linear-Time Upper Bound under FP . 30

3.5 Experiments . 33

3.5.1 Simulation Environment . 34

3.5.2 Constrained-Deadline Systems & Results 34

3.5.3 Arbitrary-Deadline Systems & Results 35

3.6 Summary . 35

In this chapter, we study the problem of scheduling arbitrary-deadline real-time
sporadic task sets on a multiprocessor system under global fixed-priority scheduling.
Two contributions are made here. First, it has been shown that the existing response
time analysis in arbitrary-deadline systems is flawed: the response time may be larger
than the derived bound. This dissertation provides a revised analysis resolving the
problems with the original approach, and then propose a corresponding schedulability
test. Secondly, we derive a linear-time upper bound on the response time of arbitrary-
deadline tasks in multiprocessor systems. To the best of our knowledge, this is the first work
presenting a linear-time response time bound on arbitrary-deadline multiprocessors.

The presentation is organized as follows: We first review some related work in
Chapter 3.1, where the state-of-the-art analysis is shown to be flawed. Some preliminary
results and definitions are provided in Chapter 3.2. In Chapter 3.3, we propose a
revisited response time analysis by using a proper annotation of the workload function.
In Chapter 3.4, we derive the first known linear-time response time bound on arbitrary-
deadline multiprocessor systems. Finally, we evaluate our results in Section 3.5 by
comparing to the state-of-the-art results for both constrained-deadline systems [BCL05b;
BBMS10; Bak06; GSYY09] and arbitrary-deadline systems [Bak06; BF08].

19

sporadic task model

3.1 related work

The origin of using this model dates back to the seminal work by Liu and Layland [LL73].
For uniprocessor fixed-priority scheduling in arbitrary-deadline task systems, the exact
schedulability tests and the (tight) worst-case response time using time-demand analysis
(TDA) are proposed by Lehoczky [Leh90; TBW94]. Such results may suffer from their
high time-complexity because of the explosion of busy interval in arbitrary-deadline
systems. From the designers’ perspective, a fast test is more applicable during design
space exploration, even at a price of accuracy. Several approaches have been proposed
for reducing the computational complexity of thes TDA [SH98; BB04]. Lehoczky
proposes a utilization upper bound for a set of periodic arbitrary-deadline tasks under
fixed-priority scheduling [Leh90]. Bini proposes a quadratic bound by considering
some information about the task periods [Bin15]. The linear-time response-time bound
for fixed-priority systems has been first proposed by Davis and Burns [DB08]. This
bound has been later improved by Bini et al. [BNRB09].

To schedule real-time tasks on multiprocessor platforms, there are three widely
adopted paradigms: partitioned, global, and semi-partitioned scheduling[DB11a]. In
this chapter, we consider global scheduling, in which a job can migrate from one processor
to another processor during its executions. But, a job cannot be simultaneously executed
on more than one processor.

Unfortunately, deriving exact schedulability tests under multiprocessor global
scheduling is extremely harder than in uniprocessor due to the non-existence of critical
instant. The first brute force approach regarding the exact response time is proposed
by Baker and Cirinei [BC07a]. The analysis consists in solving reachability problem in
a finite state machine that represents all possible combinations of arrival times and
execution sequences for a task set. In addition, some results are recently proposed to
reduce the number of states to be analyzed in the reachability analysis [GGL13; SL14].
Generally speaking, these approaches are so complex that only task sets with very
small integer periods can be tractably solved. Alternatively, most of the research in
the literature focus on finding approximate upper bounds to the response time. The
response time analysis for implicit-deadline sporadic task systems has been studied
by Andersson et al. [ABJ01]. The fixed-priority scheduling of constrained-deadline
sporadic task systems has been studied in the literature [Bak03; BCL05b; BBMS10].

Regarding arbitrary-deadline task systems, several results have been proposed in
the literature [Bak06; BF08; GSYY09; SLGY14]. Baker [Bak06] designs a test based
on some deep insights, in that if a task τk misses its deadline, then the load in the
analyzed interval, called problem window, must satisfy some necessary conditions on
the parameters of all the tasks. Baruah and Fisher [BF08] use another annotation
to extend the analysis window and derive a corresponding pseudo-polynomial-time
schedulability test. The first worst-case response-time analysis for arbitrary-deadline
task systems is proposed by Guan et al. [GSYY09], in which the authors use the insight

20

3.2 preliminary results and definitions

proposed by Baruah [Bar07] to limit the number of carry-in tasks, and then apply the
workload function proposed by Bertogna et al. [BCL05b] to quantify the requested
demand of higher-priority tasks. Unfortunately, it has recently been shown in [SLGY14]
that the analysis by Guan et al. [GSYY09] is optimistic for arbitrary-deadline tasks.
The assumption that each carry-in task has only one carry-in job in [GSYY09] is in
fact problematic, as a carry-in task can be shown to carry more than one carry-in
job [SLGY14]. Sun et al. [SLGY14] derive a complex carry-in workload function for the
response time analysis where all possible combinations of carry-in and non-carry-in
functions have to be explicitly enumerated. However, such a method is computationally
intractable since the time complexity is exponential.

3.2 preliminary results and definitions

This section reviews some results in the literature with respect to the worst-case
response-time analysis. We will first explain the level-k busy interval (period) concept
by Lehoczky [Leh90] in uniprocessor systems and extend the concept for multiprocessor
systems. As our analysis also exploits the workload function, as defined in [BCL05a;
BNRB09], we also provide its definition at the end of this section.

3.2.1 Level-k Busy Interval for Task τk

For the special case with uniprocessor systems when m = 1, the response-time analysis
for sporadic arbitrary-deadline task systems under fixed-priority scheduling has been
developed in [Leh90]. The analysis utilizes a level-k busy interval concept to evaluate the
worst-case response time. For such a case, we release all the higher-priority tasks in
hp(k) together with task τk at time 0 and all the subsequent jobs are released as early
as possible by respecting to the minimum inter-arrival time. The level-k busy interval
finishes when a job of task τk finishes before the next release of a job of task τk.

For the h-th job of task τk in the level-k busy interval, the finishing time Rk,h is the
minimum t such that

hCk + ∑
τi∈hp(k)

⌈
t
Ti

⌉
Ci ≤ t,

and, hence, its response time is Rk,h − (h− 1)Tk. The level-k busy interval of task τk
finishes at the h-th job if Rk,h ≤ hTk.

The above analysis works on one processor. However, it requires quite some
annotations for the general cases when m ≥ 2. There are some difficulties for
multiprocessor systems. In general, we are unaware of the worst-case release pattern of
the higher-priority tasks in hp(k) when m ≥ 2. The level-k busy interval of task τk may
have different arrival patterns to create the worst-case response time for different hs.

21

sporadic task model

As a result, all possible cases with some unfinished jobs before the arrival of a job have
to be considered!

Towards this, we need more precise definitions to capture all the busy intervals for
task τk and use them to safely bound the worst-case response time. The first definition
defines whether a task is busy at time θ in a legal schedule.

Definition 3.1 (Task Busy). A task is said busy at time instant θ in a legal schedule if at
least one job of the task that arrives earlier than θ has not yet completed its execution
at time instant θ.

Note that, by the definition, even if a task is busy at time θ, it may not be executed
at time θ. From Definition 3.2 to Definition 3.3, we will look at a specific time interval
starting from time θa in a legal schedule of a legal sequence of jobs of τ.

Definition 3.2 (A Level-k Busy Interval). A level-k busy interval of task τk in a legal
schedule is an interval [θa, θa + t) of time in which, in the legal schedule, (1) task τk is
busy at all the time points in the interval, and (2) task τk is not busy right prior to θa.

Definition 3.3 (An h-Incomplete Busy Interval). A level-k busy interval [θa, θa + t) in a
legal schedule is an h-incomplete busy interval if the hth-job of task τk released in the
busy interval [θa, θa + t) has not completed yet at time θa + t.

The above definitions are general forms of the level-k busy interval in [Leh90], i.e.,
θa is 0 for the case when m is 1. If θa is given, the maximum h-incomplete busy
interval [θa, θa + t∗) (under the assumption to start from θa) in a legal schedule happens
when task τk is not busy at time θa + t∗ or task τk is (h + 1)-incomplete at time θa + t∗.
Moreover, according to the above definition, for a given θa as a fixed left point in the
busy intervals, an (h + 1)-incomplete busy interval (if it exists) completely covers an
h-incomplete busy interval.

Definition 3.4 (Maximum h-Incomplete Length). The maximum h-incomplete length
Rk,h is the maximum interval length among all the h-incomplete busy intervals in the
legal schedules of all the legal sequences of the jobs of task system τ.

According to the above definitions, we can reach the following lemma regarding the
worst-case response time RTk,h of the hth-job released in a level-k busy interval.

Lemma 3.1. Suppose that Rk,h is known. The worst-case response time RTk,h of the hth-job
released in an h-incomplete busy interval is at most Rk,h − (h− 1)Tk, i.e.,

RTk,h ≤ Rk,h − (h− 1)Tk

Proof. According to Definition 3.4, we know that the length of any h-incomplete busy
interval of task τk is at most Rk,h. For an h-incomplete busy interval, starting at time θa,
this implies that the finishing time of the h-th job released no earlier than θa is at most
θa + Rk,h. In a legal sequence of jobs of task system τ, we also know that the arrival
time of the h-th job released no earlier than θa is at least θa + (h− 1)Tk. Therefore, we
reach the conclusion.

22

3.3 response time analysis

θa + Bk,hθaθ0

some proc. idled

Ak,h Bk,h

a 3-incomplete busy interval

Figure 3.1: An example of an h-incomplete busy interval and the downward extension
to θ0.

Based on Lemma 3.1, we can now obtain an upper bound on the worst-case response
time of task τk by evaluating all possible RTk,h:

RTk ≤ maxh=1,2,... {RTk,h}

3.2.2 Workload Functions

The concept of workload function has been widely used in real-time schedulability
analysis [BCL05a; BNRB09]. Briefly, for a given interval length t, the workload function
of task τi is defined to be the largest accumulative execution time of the legal sequence
of the jobs of task τi over an interval of length t that could be legally executed within
the interval. We provide the formal definition as follows:

Definition 3.5 (Workload Function [BCL05a; BNRB09]). For any interval length t,
the workload function Wi(t) of a sporadic task τi bounds the maximum cumulative
execution requirement by jobs of τi that are released and may execute within any
interval of length t.

Wi(t) =
⌊

t
Ti

⌋
Ci + min(t mod Ti, Ci) (3.1)

It has been shown in [BNRB09] that the workload function is upper-bounded by the
following linear function:

Wi(t) ≤ Uit + Ci(1−Ui) (3.2)

3.3 response time analysis

Based on the observations in Section 3.2, we will first analyze a safe upper bound of
Rk,h for a given h. Then, the worst-case response time of task τk can be obtained by
evaluating all possible values of h. Although the analysis by Guan et al. [GSYY09] is
optimistic for arbitrary-deadline task systems, some observations can still be applied.
Throughout the section, we will implicitly only analyze a specific task τk under the

23

sporadic task model

assumption that the worst-case response time RTi ≤ Di of every higher-priority task τi
in hp(k) has been already analyzed.

3.3.1 Safe Bound of Rk,h for Given h

We will first shortly review the analysis by Guan et al. [GSYY09] and then explain how
we plan to conquer the problem to safely derive Rk,h. Suppose that an h-incomplete
busy interval of task τk begins at time-instant θa. Suppose that this h-incomplete
busy interval finishes at time θa + Bk,h. That is, at time θa + Bk,h, the hth-job in this
h-incomplete busy interval finishes. Throughout this section, we only focus on this
interval [θa, θa + Bk,h) under a legal schedule of a legal sequence of jobs of task system
τ.

We first remove some unnecessary jobs in the legal sequence of jobs of task system
τ. From this legal sequence of jobs, we first discard all those jobs that have priority
lower than task τk. Since those jobs with priority lower than τk have no effect on the
scheduling of the jobs generated by hp(k) and task τk, this removal does not change
the scheduling for tasks τk and hp(k) in the interval [θa, θa + Bk,h). Moreover, we also
remove the jobs of task τk that are released strictly before θa. Similarly, due to the
definition of the h-incomplete busy interval, these jobs also have no influence on the
scheduling of the jobs generated by hp(k) and task τk in the interval [θa, θa + Bk,h). For
the rest of our analysis in this subsection, we will consider only the above reduced legal
sequence of jobs.

3.3.1.1 Extending the h-Incomplete Busy Interval

The technique for extending the h-incomplete busy interval is needed for precisely
bounding the amount of work resulting from higher-priority tasks τi in hp(k). Here,
we will use the techniques proposed by Baruah [Bar07] and also adopted by Guan et al.
[GSYY09]. Let θ0 denote the latest time-instant ≤ θa at which at least one processor is
idle in the legal schedule of the reduced legal sequence of jobs. For notational brevity,
let Ak,h = θa − θ0.
Example: Figure 3.1 illustrates a 3-incomplete busy interval [θa, θa + Bk,h) and a
downward extension of the interval to time θ0. Task τk is not busy prior to the arrival of
the first of these 3 jobs, the first job completes its execution after the second job arrives,
and the second job completes its execution after the third job arrives. Thus, the task is
continuously busy after the arrival of the first job shown, and θa is hence set equal to
the arrival time of this job.

We then have the following observations:

• θa is the arrival time of some job of task τk.

• Over [θ0, θa), all the processor must be busily executing jobs having priority higher
than τk.

24

3.3 response time analysis

The shifting of task τk to θ0. Whenever we shift the release time of the job arriving at
θa to θ0, this job cannot be executed over [θ0, θa), and this task that is being h-incomplete
at θa + Bk,h previously is still being h-incomplete at θa + Bk,h afterwards. In other words,
we can consider the more pessimistic case where the release time of the job arriving at θa

is shifted such that θ′a = θ0, without decreasing the response time of task τk. Meanwhile,
the amount of work executing prior to θ0 can still be more precisely quantified than
that without extending the busy interval. Thus, we assume θa = θ0 in the rest of this
paper.

θ0 θ0 + Bk,h

Bk,h

higher-priority jobs

τk ’s exeuction

Figure 3.2: All processors are executing other higher-priority tasks whenever τk is not
executing. Let θa = θ0.

Another insight on multiprocessors is the lower bound on the workload of the higher-
priority tasks in hp(k) in the h-incomplete busy interval, as used in most of analysis
in the literature [Bak06; Bar07; GSYY09]: Due to the h-incomplete busy interval of
task τk in the interval [θ0, θ0 + Bk,h) and the definition of θ0, for any 0 < t < Bk,h, the
sum of the length in interval [θ0, θ0 + t) in which τk does not execute must be strictly
larger than t − hCk. The situation is illustrated for m = 3 processors in Figure 3.2.
The striped rectangles indicate the execution of task τk during the h-incomplete busy
period. The dashed rectangle indicates the intervals in which all m processors execute
higher-priority jobs.

τi
yi yi + Di

Ti

carry-in jobs

Di

θ0 − yi Bk,h

θ0 θ0 + Bk,h

Figure 3.3: An illustration of releases of a higher-priority task τi over [yi, θ0 + Bk,h). The
release time of the first job of τi released before θ0 and having an absolute
deadline (or worst-case completion time) after θ0 is denoted as yi.

25

sporadic task model

Let us denote by Γk a collection of intervals, not necessarily contiguous, of cumulative
length Bk,h − hCk over [θ0, θ0 + Bk,h), during which all m processors are executing jobs
other than τk’s jobs in the legal schedule.

Definition 3.6 (Higher-Priority Interference). We denote Ω(t) as the maximum total
amount of execution times of the higher-priority interference from the tasks in hp(k) in
the time interval [θ0, θ0 + t).

From the above observations, an h-incomplete busy interval [θ0, θ0 + Bk,h) of task τk
requires that

∀0 < t < Bk,h, Ω(t) > m× (t− hCk) (3.3)

Therefore, we can reach the following lemma.

Lemma 3.2. For a given h, the maximum h-incomplete length Rk,h is upper bounded by the
minimum value Bk,h satisfying the following equation

Ω(Bk,h) ≤ m× (Bk,h − hCk) (3.4)

Note that Lemma 2 can be thought of as a generalized result of Theorem 2 in [Bar07],
where h = 1 and Bk,h = Dk.

3.3.1.2 Calculating Higher-Priority Interference

The treatment up to here is identical to the analysis by Guan et al. in [GSYY09]. As long
as we can safely bound Ω(Bk,h) for an h-incomplete busy interval of task τk defined
above, we can use Lemma 3.2 to get Rk,h. However, calculating Ω(Bk,h) is not trivial.
The derivation in [GSYY09] was not safe enough.

To derive the contribution of task τi in hp(k) to the interference Ω(Bk,h), the
contribution from higher-priority task τi can be considered by two parts in the interval
[θ0, θ0 + Bk,h) (see Figure 3.3): (i) carry-in jobs: the jobs (portion) from task τi that arrive
prior to θ0 and have not yet completed their execution by θ0, and (ii) body jobs: the jobs
of τi that have the release time within the interval [θ0, θ0 + Bk,h).

By the definition of θ0, at most (m− 1) tasks are with carry-in jobs at time instant θ0.
Consequently, Lemma 3.3 follows immediately:

Lemma 3.3 (Guan et al. [GSYY09]). There are at most (m− 1) tasks having carry-in jobs in
the interval [θ0, θ0 + Bk,h].

A higher-priority task τi in hp(k) can be considered as either with or without carry-in
jobs. We now introduce some notations by considering two cases for the amount of
execution time executed for a higher-priority task τi in the time interval [θ0, θ0 + Bk,h]

in the legal schedule:

26

3.3 response time analysis

1. the maximum work done by task τi without carry-in jobs over [θ0, θ0 + Bk,h) is
denoted by I1

i (Bk,h), and

2. the maximum work done by task τi with carry-in jobs1 over [θ0, θ0 + Bk,h) is
denoted by I2

i (Bk,h).

Then we explain how to compute a safe interference upper bound on these two
functions I1

i (Bk,h) and I2
i (Bk,h), provided that h and Bk,h are given.

Computing I1
i (Bk,h). First, if a task τi contributes no carry-in jobs, then its contribution

to the work over [θ0, θ0 + Bk,h) must arrive no earlier than θ0 and no later than θ0 + Bk,h,
and the total amount of work is bounded from above by the workload function with an
interval of length Bk,h. Consequently, I1

i can be sufficiently computed by Wi(Bk,h), as
defined in Section 3.2.2.

Secondly, the total amount of executed work cannot exceed the total length of the
interval in Γk. The reason behind this is that any work that exceeds the total length of
the interval in Γk cannot be parallelly executed with the other work from τi that have
contributed to Γk, in which the total interference by all tasks busily executes on m
processors. We formally state this with the following lemma:

Lemma 3.4. The contribution to Γk from any task is at most Bk,h − hCk + 1.

Since both are safe upper bounds, we can safely choose the minimum one between
them as the maximum interference. Notice that the total length of Γk is equal to
(Bk,h − hCk) and "+1" models the minimum interference that prevents τk from executing
in the integer time-domain [BC07b; GSYY09]. Consequently,

I1
i (Bk,h)

def
= min (Wi(Bk,h), max(0, Bk,h − hCk + 1)) (3.5)

Computing I2
i (Bk,h). Now, consider the case that a higher-priority task τi contributes

carry-in jobs over [θ0, θ0 + Bk,h). Let yi denote the arrival time of the first job of τi
released before θ0 and having an absolute deadline (or worst-case completion time)
after θ0. Under the assumption that a higher-priority task τi has worst-case response
time RTi ≤ Di, the work of task τi executed in the interval [θ0, θ0 + Bk,h) must arrive
no earlier than yi and no later than θ0 + Bk,h. Consequently, the total amount of work
I2
i (Bk,h) is bounded from above by the workload function with an interval length of

θ0 − yi + Bk,h (see Figure 3.3). Since θ0 − yi ≤ RTi ≤ Di, consequently, I2
i (Bk,h) can

be sufficiently computed by Wi(Di + Bk,h). Together with the bounded length of the
interval in Γk, we therefore have that

I2
i (Bk,h)

def
= min (Wi(Di + Bk,h), max(0, Bk,h − hCk + 1)) (3.6)

1 The assumption by [GSYY09] that at most one carry-in job of a task contributes to the interval [θ0, θ0 + Bk,h)
is optimistic, as shown in [SLGY14].

27

sporadic task model

τi

Di Ti

(t − Ci)modTi b(t − Ci)/TicTi

t

(a) The workload function in [BC07b; GSYY09]

τi

Di Ti

tDi

(b) Our workload function

Figure 3.4: Comparison between the workload function in [BC07b; GSYY09] and ours
for a carry-in task, assumed Ri = Di

Moreover, it is not difficult to see that given an upper bound on the worst-case
response time RTi, the workload function for carry-in task τi can be more precisely
bounded from above by Wi(RTi + Bk,h). Hence, a tighter I2

i (Bk,h) can be computed as
follows:

Î2
i (Bk,h)

def
= min (Wi(RTi + Bk,h), max(0, Bk,h − hCk + 1)) (3.7)

For simplifying the analysis, we only use I2
i (Bk,h) as the maximum work of a higher-

priority task τi with carry-in jobs in the following presentation.

From the discussion above, we have seen how to sufficiently quantify the interference
from these two types of higher-priority tasks. By Lemma 3.3, there are at most (m− 1)
tasks with carry-in jobs at time instant θ0. Hence, there are at most (m − 1) tasks
contributing to I2

i (Bk,h), and the remaining (k−m) tasks in hp(k) must contribute to
I1
i (Bk,h).

Computing Ω(Bk,h). With the above settings of I1
i (Bk,h) and I2

i (Bk,h), we can now
compute Ω(Bk,h). Let us denote by IDIFF

i (Bk,h) the difference between I2
i (Bk,h) and

I1
i (Bk,h):

IDIFF
i (Bk,h)

def
= I2

i (Bk,h)− I1
i (Bk,h)

28

3.3 response time analysis

Therefore, by Lemma 3.3, we know that

Ω(Bk,h)
def
= ∑

τi∈hp(k)
I1
i (Bk,h)

+ ∑
the (m− 1) largest

τi ∈ hp(k)

IDIFF
i (Bk,h) (3.8)

where hp(k) denotes the set of tasks that are assigned higher priority than τk. Note that
Eq. (3.8) can be computed in linear time by using linear-time selection [BFPRT73] when
Bk,h is given.

3.3.2 Worst-Case Response Time of Task τk

Once having the upper bound on the interferences from higher-priority tasks Ω(Bk,h),
we can compute the maximum h-incomplete length Rk,h by using Time Demand
Analysis.
Compute Rk,h using TDA. By Lemma 3.2 and the derived Ω(Bk,h), Rk,h is upper
bounded by the smallest t satisfying the following inequality:

Ω(t) ≤ m× (t− hCk) (3.9)

By the above analysis, we can now derive the worst-case response time of task τk by
the following theorem.

Theorem 3.7. The worst-case response time RTk of task τk is at most:

RTk ≤ RT∗k = maxh∈{1,...,H}{R∗k,h − (h− 1)Tk}

where H = min{h ≥ 1|Ω(hTk)
m + hCk ≤ hTk}, and R∗k,h is defined as the minimum t satisfying

Eq. (3.9).

Proof. Roughly speaking, H represents the maximum h to have h-incomplete busy
intervals for task τk. Therefore, by Lemmas 3.1 and 3.2, we reach the conclusion.

Even though H may become infinite, the TDA can be terminated whenever a deadline
miss occurs:

Ω((h− 1)Tk + Dk)

m
+ hCk > (h− 1)Tk + Dk (3.10)

We than state the schedulability test in the following corollary. In the later section,
we will discuss how to upper bound such an H to be tested.

Corollary 3.1 (TDA). An arbitrary-deadline sporadic task system τ is schedulable on m
identical processors under fixed-priority scheduling if for all tasks τk ∈ τ,

RT∗k ≤ Dk (3.11)

where RT∗k is as defined in Theorem 3.7.

29

sporadic task model

Comparison between carry-in workload functions.

The carry-in workload function derived in [BC07b; GSYY09] shows that the worst-
case scenario in constrained-deadline systems occurs when some job of τi executing
Ci units precedes the end of a contiguous interval of length t and the earliest job
having absolute deadline within the interval finishes its execution at the end of its
deadline (also see Figure 3.4a). This scenario may accord with the work executing in
the schedule as long as the worst-case response time is equal to its relative deadline.
On the other hand, our carry-in workload function overly counts the carry-in job that
is assumed to arrive Di time-units prior to t (also see Figure 3.4b), even if such a job
cannot effectively execute over the interval. Hence, our carry-in workload function for
constrained-deadline tasks is inferior to that in [BC07b; GSYY09]: at most Ci may be
overestimated. Nevertheless, empirical results show that the difference is insignificant
in terms of schedulability, as will be seen later. On the other hand, the assumption that
there is at most one carry-in job of a carry-in arbitrary-deadline task is problematic
for the carry-in workload function derived in [BC07b; GSYY09]. The corresponding
counterexample can be found in [SLGY14]. Hence, the revised workload function is the
first one proved correct for arbitrary-deadline tasks.

3.3.3 Improved Carry-in Workload Function

A similar concept from [Bar07] can be conceived here while considering multiple
carry-in jobs. Some job finishes its execution right before the end of the interval
of interest. From this job on, all its previous jobs are reversely released as soon
as possible, as shown in Figure 3.5. Suppose the job released at time yi is the
first job having absolute deadline within the interval of our interest. To respect
timing constraints, this job cannot start its execution later than yi + Di − Ci. The
amount of execution time from such a job satisfying the release pattern is maximally
min (Ci, max (0, (t− Ci) mod Ti − (Ti − Di mod Ti))). In addition, there are exactly
(
⌊

t−Ci
Ti

⌋
+ 1) complete jobs from body and

⌊
Di
Ti

⌋
complete jobs from carry-ins, yielding

the following expression for W ′i (t):

W ′i (t) =
(⌊

t− Ci

Ti

⌋
+

⌊
Di

Ti

⌋
+ 1
)

Ci+

min (Ci, max (0, (t− Ci) mod Ti − (Ti − Di mod Ti))) (3.12)

3.4 linear-time upper bound under fp

In this section we present a linear-time response time analysis. This test determines
the upper bound on the response time under global fixed-priority scheduling upon the

30

3.4 linear-time upper bound under fp

τi
yi

Di

⌊Di/Ti⌋Di Di mod Ti

(t− Ci) mod Ti ⌊(t− Ci)/Ti⌋ Ti

t

Figure 3.5: Improved carry-in workload function, aligning the very end of the interval
with the end of execution of some job and completing the earliest job having
absolute deadline within the interval, just in time.

values of the tasks’ parameters, i.e., the worst-case execution time, the relative deadline,
and the period.

We first linearize the upper interference function Ω(t) by using Eq. (3.2) in the
following lemma:

Lemma 3.5. For all t > 0

Ω(t) ≤
⎛⎝ZΣ + ∑

τi∈hp(k)
(tUi + Ci(1−Ui))

⎞⎠ (3.13)

where ZΣ denotes the sum of the (m− 1) largest UiDi’s among the tasks in hp(k).

Proof. Let S denote the set of the (m− 1) largest IDIFF
i (t).

Ω(t) = ∑
τi∈hp(k)

I1
i (t) + ∑

the (m− 1) largest
IDIFF
i (t)

= ∑
τi∈hp(k)\S

I1
i (t) + ∑

τi∈S
I2
i (t)

(3.5) and (3.6)
≤ ∑

τi∈hp(k)\S
Wi(t) + ∑

τi∈S
Wi(t + Di)

(3.2)
≤ ZΣ + ∑

τi∈hp(k)
(tUi + Ci(1−Ui))

Lemma 3.6.

Rk ≤ R†
k :=

mCk + ZΣ + ∑τi∈hp(k) Ci(1−Ui)

m−mUk −∑τi∈hp(k) Ui
(3.14)

where ZΣ denotes the sum of the (m− 1) largest DiUi’s.

31

sporadic task model

Proof. It is necessary for task τk being busy over an interval of length t:

mWk(t) + Ω(t) > mt

≡m
⌈

t
Tk

⌉
Ck + Ω(t) > mt

⇒m (tUk + Ck) + Ω(t) > mt (3.15)

With the same logic, substituting Ω(t) in the above inequality by the one in Lemma 3.5,
the resulting condition is still the one for task τk being busy over an interval of
length t. The negation of this condition is sufficient for task τk being complete. After
reformulation, we can obtain Eq (3.14).

From Lemma 3.6, we know the H to be checked in Theorem 3.7 must be finite if

mUk − ∑
τi∈hp(k)

Ui < m (3.16)

Subsequently, the following lemma provides an upper bound on the maximum length
of the h-incomplete busy periods of task τk.

Lemma 3.7.

Rk,h ≤ R†
k,h :=

hmCk + ZΣ + ∑τi∈hp(k) Ci(1−Ui)

m−∑τi∈hp(k) Ui
(3.17)

where ZΣ denotes the sum of the (m− 1) largest DiUi’s.

Proof. Substituting Ω(t) in the recurrence Eq. (3.9) by the one in Lemma 3.5, we can
find the point t of the intersection, which leads to the statement.

By Lemmas 3.1 and 3.7, RTk,h is bounded from above by

RTk,h ≤ RT†
k,h := R†

k,h − (h− 1)Tk (3.18)

where R†
k,h is defined in Lemma 3.7. Intuitively, one may examine all possible h in the

above equation to ensure that the upper bound on the worst-case response time. Our
observation is that RT†

k,h defined by Eq. (3.18) is monotonically decreasing with respect
to h, under certain condition. We state this with the following lemma:

Lemma 3.8. Suppose that
mUk + ∑

τi∈hp(k)
Ui < m (3.19)

Then, for any integer h ≥ 1,
RT†

k,1 ≥ RT†
k,h

where RT†
k,h is as defined in Eq. (3.18).

32

3.5 experiments

Proof. We now prove that R†
k,h − (h − 1)Tk is maximized when h is 1, under Condi-

tion (3.19). Differentiating R†
k,h − (h− 1)Tk with respect to h, we have that

∂

∂h

(
R†

k,h − (h− 1)Tk

)
=

mCk

m−∑τi∈hp(k) Ui
− Tk

=Tk

(
mUk

m−∑τi∈hp(k) Ui
− 1

)

=Tk

(
mUk + ∑τi∈hp(k) Ui −m

m−∑τi∈hp(k) Ui

)
which is negative due to our assumption mUk + ∑τi∈hp(k) Ui < m. Since R†

k,h− (h− 1)Tk
is decreasing with respect to h, the maximum occurs when h = 1.

Putting these pieces together, Theorem 3.8 provides the response time upper bound
of arbitrary-deadline tasks on multiprocessor systems.

Theorem 3.8. The worst-case response time RTk of task τk is at most

RTk ≤ RT†
k =

{
Rup

k if mUk + ∑τi∈hp(k) Ui < m,

∞ otherwise.

where Rup
k =

mCk+ZΣ+∑τi∈hp(k) Ci(1−Ui)

m−∑τi∈hp(k) Ui
and ZΣ denotes the sum of the (m− 1) largest DiUi’s

among the tasks in hp(k).

Proof. By Lemmas 3.7 and 3.8, we can conclude this theorem by setting h = 1 in Eq.
(3.18).

Subsequently, we provide our linear-time upper bound (LTUB) on the worst-case
response time in the follow corollary:

Corollary 3.2 (LTUB). An arbitrary-deadline sporadic task system τ is schedulable on m
identical processors under fixed-priority scheduling if for all tasks τk ∈ τ,

RT†
k ≤ Dk (3.20)

where RT†
k is as defined in Theorem 3.8.

3.5 experiments

In this section, we conduct extensive experiments using synthesized task sets for
evaluating the proposed tests. The metric to compare results is to measure the acceptance
ratio of the above tests with respect to a given goal of task set utilization. We generate
100 task sets for each utilization level, from 0.05 to 1, in steps of 0.05. The acceptance
ratio of a level is said to be the number of task sets that are schedulable divided by the
number of task sets for this level, i.e., 100.

33

sporadic task model

3.5.1 Simulation Environment

We first generated a set of sporadic tasks. The cardinality of the task set was 5 times the
number of processors. In each utilization step, the Randfixedsum method [ESD10] is
adopted to generate a set of utilization values with the given goal. We use the approach
suggested by Emberson et al. [ESD10] to generate the task periods according to the
logarithm distribution. The order of magnitude p to control the period values between
largest and smallest periods is parameterized in evaluations, e.g., 1− 10ms for p = 1
and 1− 100ms for p = 2.

We evaluate these tests in 8-core processor systems with p ∈ [1, 2, 3]. Similar results
can be seen in different numbers of processors. The priority of tasks is assigned
according to deadline-monotonic (DM) scheduling: the smaller the relative deadline,
the higher the priority level. We note that deadline-monotonic (DM) scheduling is not
optimal on multiprocessor systems. Alternatively, one can use the laxity-monotonic (LM)
scheduling: the smaller the laxity Di − Ci, the higher the priority level [AJ00]. Also,
it is not difficult to see that the proposed TDA analysis and the linear-time response
bound comply with the required conditions for the optimal priority assignment (OPA)
compatibility provided in [DB11b]. Hence, our proposed tests are compatible with
OPA: if there exists feasible priority assignments by our test, OPA returns one of
them. It is also worth noting that Davis and Burns have suggested that being
OPA-compatible is as important as being effective since priority assignment is an
important factor in determining the schedulability of tasksets under global fixed
priority pre-emptive scheduling [DB11b]. Consequently, applying the tighter test but
not OPA-compatible, e.g. maximum work function Î2

i (Bk,h), by using DM, may not
yield better performance than the less effective but OPA-compatible test using OPA
priority assignment. Nevertheless, we here focus on showing the effectiveness of the
tests themselves, and similar results can be seen under different priority assignment
policies.

3.5.2 Constrained-Deadline Systems & Results

The execution time was set accordingly, i.e., Ci = TiUi. Task relative deadlines were
uniformly drawn from the interval [0.8Ti, Ti].

The tests evaluated are shown as follows:
• BCL: the polynomial-time test in Theorem 4 in [BCL05b].
• FF: the force-forward (FF) analysis in Eq. (5) in [BBMS10].
• BAK: the O(n3) test in Theorem 11 in [Bak06].
• Guan: the TDA analysis by Guan [GSYY09].
• TDA: Corollary 3.1 in this paper using the carry-in function by Eq. (3.6).
• TDA+: Corollary 3.1 in this paper using the improved carry-in function by

Eq. (3.12).

34

3.6 summary

• LTUB: Corollary 3.2 in this paper.
Result I. Figure 3.6 presents the evaluation result in constrained-deadline systems. We
first notice that the response time analysis with limited carry-in tasks, namely Guan and
TDA, can admit the most number of task sets. Overall, these two tests achieve similar
performance, even though our TDA is inferior to Guan due to the over-approximate
workload function, as mentioned earlier. As shown in Figure 3.6, BCL, FF, and BAK
perform poorer than LTUB, even though their computational complexity is higher
than LTUB. (pseudo-polynomial time for FF and O(n3) for BAK). It is noticeable that
TDA is only slightly advantageous to LTUB in case of p = 2 and p = 3 (Figure 3.6(b)
and (c)) where the TDA essentially suffers from its high computational complexity.
Hence, in practice, one would expect that the TDA be adopted in the low order of
magnitude of task periods and the linear-time response time bound in the high order
of the magnitude.

3.5.3 Arbitrary-Deadline Systems & Results

The execution time was set accordingly, i.e., Ci = TiUi. Task relative deadlines were
uniformly drawn from the interval [0.8Ti, 2Ti].

The tests evaluated are shown as follows:
• LOAD: the load-based analysis [BF08].
• BAK: the O(n3) test in Theorem 11 [Bak06].
• LTUB: Corollary 3.2 in this paper.
• TDA: Corollary 3.1 in this paper.

Result II. Figure 3.7 presents the result in arbitrary-deadline systems where Di
Ti
∈ [0.8, 2].

Due to the overly optimistic workload function, Guan’s analysis becomes unsafe for
arbitrary-deadline tasks. The proposed TDA is the best TDA with limited carry-in
interferences in arbitrary-deadline systems, as can be seen in Figure 3.7. Also, in terms
of schedulability and time complexity, the proposed linear-time upper bound LTUB
is superior to LOAD and BAK, where the time complexity is pseudo-polynomial for
LOAD and O(n3) for BAK.

3.6 summary

In this chapter, we have proposed the response time analysis for sporadic arbitrary-
deadline tasks on multiprocessor systems under fixed-priority scheduling. We also
derived a linear-time upper bound on the response time of arbitrary-deadline tasks in
multiprocessor systems. This bound is capable of leveraging the number of task sets
that are deemed schedulable while keeping task sets solvable within polynomial time.

Today, the problem of scheduling the sporadic task model is well-understood,
and many sound scheduling algorithms are also available. Nevertheless, several
assumptions on this model must be assured to make use of those algorithms:

35

sporadic task model

1. All tasks are assumed to be independent; there is neither precedence relationships
nor resource constraints among tasks.

2. Tasks cannot suspend themselves. Once a job is released, it becomes idle only
when its execution is finished.

3. Tasks are periodically/sporadically activated; and all jobs of a task have the same
worst-case execution time.

However, this is often not the case in practice. For example, if no data information
is locally available, I/O operations must be involved during the execution of a task,
typically making the task suspended on CPUs, yielding the CPU to other tasks. To
cope with such assumptions while benefiting from those well-developed scheduling
algorithms for the sporadic task model, one may choose to properly account for the
unfavorable effect of relaxing the assumptions. For instance, the times spent on I/O
operations of a task would be subsumed into its WCET, figuratively assuming the task
running without suspensions. This, however, may result in underutilization of real-time
systems.

More preferably, one may adopt more expressive models that better characterize the
behavior of real-time systems in timing analysis. In the following chapters, we discuss
the problems and solutions related to the above assumptions not valid.

36

3.6 summary

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

BCL

FF

BAK

LTUB

TDA

TDA+

Guan

(a) p = 1

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

BCL

FF

BAK

LTUB

TDA

TDA+

Guan

(b) p = 2

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

BCL

FF

BAK

LTUB

TDA

TDA+

Guan

(c) p = 3

Figure 3.6: Acceptance ratio comparison with different p on 8-multiprocessor,
constrained-deadline systems where Di

Ti
∈ [0.8, 1].

37

sporadic task model

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

BCL FF BAK LTUB TDA+

(a) p = 1

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

BCL FF BAK LTUB TDA+

(b) p = 2

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

BCL FF BAK LTUB TDA+

(c) p = 3

Figure 3.7: Acceptance ratio comparison with different p on 8-multiprocessor, arbitrary-
deadline systems where Di

Ti
∈ [0.8, 2].

38

4
R E S O U R C E A C C E S S TA S K M O D E L S

4.1 System Model . 40

4.1.1 Multicore Architecture Model . 40

4.1.2 Task Model . 40

4.1.3 Related Work. 42

4.2 Schedulability Analysis . 44

4.2.1 Our Strategies and Preliminaries 44

4.2.2 Calculating Sk(t) and Xk(t) . 46

4.2.3 Calculating X∗k and S∗k . 47

4.2.4 Response-Time Analysis . 48

4.3 Task Allocation . 49

4.4 Speedup Factor . 50

4.5 Experimental Results . 52

4.6 Summary . 54

Traditionally, timing analysis consists of two separate steps: (i) worst-case execution
time (WCET) analysis, which computes an upper bound on the execution time of
a single job of a task running in isolation, and (ii) schedulability analysis, which
determines whether multiple tasks are guaranteed to meet their deadlines, while
sharing a processor.

As far as resource access is concerned, the delay of access must be taken into account
of calculating the WCET. Traditional approaches assume that each memory access
takes constant time. For instance, SymTA/P assumes that each memory access takes
constant time. This approach is sensible only if resource access time is relatively short.
However, in practice each resource access can range from a few microseconds (e.g., a
write operation on a flash drive) to a few hundreds of milliseconds (e.g., offloading
computation to Graph Processing Units (GPUs)). As a result, subsuming resource
consumptions into WCET can result in a huge underutilization of systems.

In this chapter, we propose an approach that characterizes each task by not only its
local computation times but also resource access times to avoid unnecessary utilization
loss in abstract interpretation. The main contribution is that we propose a task
partitioning algorithm that achieves a speedup factor of 7, compared to the optimal
schedule. This constitutes the first result in this research line with a speedup factor
guarantee.

The presentation is organized as follows: In Chapter 4.1, we first introduce the system
and task model studied here, followed by a review of related work. In Chapter 4.2,

39

resource access task models

we develop the corresponding schedulability analysis. In Chapter 4.3, we propose our
task allocation algorithm. Later on in Chapter 4.4, we show that this algorithm offers
non-trivial quantitative guarantees, including a speedup factor of 7 in polynomial-
time complexity. In Chapter 4.5, the experimental evaluation demonstrates that our
approach can yield good acceptance ratios. We also show that our analysis can utilize
the structured information in the task models to provide tighter schedulability analysis.
Finally, we summarize our results in Chapter 4.6.

4.1 system model

4.1.1 Multicore Architecture Model

We assume that we have a multicore platform comprised of m identical cores connected
by a shared resource, e.g., a communication fabric (bus) for accesses to a shared memory.
We assume the following properties:

• Each data request (after it is granted) has a processing time (upper bound) of B.

• Each resource access request is atomic (non-split transaction). However, a segment
of resource accesses with several consecutive requests can be preempted at any
point at which a request finishes its transfer. This is illustrated in Figure 4.1
where task τ1 requesting the shared resource at the beginning of clock cycle 1
experiences blocking of 4 clock cycles from task τ2 granted at time 0, i.e., B is 5
clock cycles in this example, whereas the second request from τ2 is preempted by
τ1 having highest-priority at time 5.

• We consider a fixed-priority resource arbiter in this dissertation: the arbiter of the
shared resource always grants the request that is assigned the highest priority.

• We assume that data transfers from the local to the shared memory and vice
versa are handled by direct memory access (DMA) units, so that the computation
on the core may carry on during such activities. Such a feature is found in
PTARM [RLPKL11].

4.1.2 Task Model

We consider a real-time system to execute a set of n independent, preemptive, resource
access sporadic (RAS), real-time tasks τ = {τ1, τ2, ..., τn}. Each task can release an infinite
number of jobs under a given minimum inter-arrival time constraint. An RAS real-time
task τi is characterized by a 5-tuple (Ci, Ai, Ti, Di, σi): Ti denotes the minimum inter-
arrival time (also known as period) of τi; each job of τi has a relative deadline Di; Ci
denotes an upper bound on total execution time of each job of τi on a computing core

40

4.1 system model

Resp τ2

R RReq τ2

RReq τ1

Resp τ1

0 1 2 3 4 5 6 7 8 9 10

B

CLK

Figure 4.1: Two tasks access the share resource on a non-split-transaction bus.

(ignoring the latency due to shared resource accesses); Ai denotes an upper bound
on the amount of execution time of shared resource accesses of τi; and σi denotes the
maximum number of resource access segments, each of them may consist of several
consecutive data requests to access the shared resource. That is, if the platform allows
multiple requests to be directly processed without involving the core, a task can have
multiple requests to the shared resource within a resource access segment, e.g., fetching
(or writing back in the other direction) a collection of data and instructions from the
shared main memory to the local scratchpad memory.

That is, if there is no interference on the shared resource accesses, the worst-case
execution time of task τi is at most Ci + Ai. Note that, the derivation of Ci assumes
that the shared resource accesses incur no timing cost. Moreover, the derivation of Ai
considers only the worst-case shared resource access time of task τi. Figure 4.2 provides
an example. Each resource access segment may consist of several requests on the shared
resource. For example, given that B = 1 time units, there are twenty resource accesses
in resource access segment (block) E in Figure 4.2. Note that Ai is assumed to be wiB
where wi is an integer. Similar to the models in the literature, [PSCCT10; PSCCT10;
Alt+15], we consider that the multicore platform is timing-compositional [Wil+09;
HRW15]. Therefore, we can use these parameters to bound the worst-case behaviour
safely.

We assume that Ci + Ai ≤ Di for any task τi ∈ τ. The utilizations of task τi on a core
and on shared resource are defined as UC

i = Ci/Ti and UA
i = Ai/Ti, respectively. We

further assume that UC
Σ = ∑n

i=1 UC
i ≤ m and UA

Σ = ∑n
i=1 UA

i ≤ 1. Otherwise, it cannot
be feasibly scheduled.

In this dissertation, we consider partitioned scheduling: each task is statically assigned
onto one core, and we assume that all the tasks allocated to a core are preemptively
scheduled using fixed priority scheduling, for which each task is associated with a
unique priority level for scheduling. Since each shared resource request is assumed non-

41

resource access task models

A

B

C

D

E

F

G

H

10

10

7 10

8 20

10

10

Critical path marked for Ai

C
ri

ti
ca

lp
at

h
m

ar
ke

d
fo

r
C

i

Local execution

Resource access

Ci = 35
Ai = 40
σi = 3

Figure 4.2: Two tasks access the share resource on a non-split-transaction bus.

preemptive, if task τi starts a resource access segment, it has to wait for a lower priority
task to finish the access of the shared resource for at most B time units. Therefore, we
know that the maximum blocking time of task τi due to non-preemptive blocking on
the shared resource is at most σiB. We assume that σiB ≤ Ai.

For any RAS task τi and any real number t ≥ 0, the demand bound function of task
τi on the core for an interval of length t is db f C

i (t) = max(0, (
⌊

t−Di
Ti

⌋
+ 1)×Ci) and that

on the shared resource is db f A
i (t) = max(0, (

⌊
t−Di

Ti

⌋
+ 1)× Ai).

The terminology and notation to be used are list in Table 5.1.

4.1.3 Related Work.

For a more in-depth treatment of literature on the impact of resource sharing on
performance and worst-case timing analysis please consult the survey in [Abe+13].
One line of work in timing analysis for multicores is to assume structured execution
models, e.g., [LGPWS14; SPCTC10; PSCCT10; MBBMB15]. For example, the superblock
execution model, proposed by Pellizzoni et al. [PSCCT10], classifies the execution of
a superblock into three phases: data acquisition, local execution, and data replication
phases. This is also standardized in IEC 61131-3. For this structured model, the state-
of-the-art results are restricted to the sequential execution of superblocks without any
preemptions [LGPWS14; SPCTC10; PSCCT10]. Recently, Melani et al. [MBBMB15]
have studied the problem of scheduling tasks consisting of one memory phase and
one execution phase, called M/C (memory-computation) tasks, providing an exact

42

4.1 system model

symbol meaning

Ci an upper bound on total execution time of each job of τi on a computing
core (ignoring the latency due to shared resource accesses)

Ai an upper bound on the amount of execution time of shared resource
accesses of τi

σi the maximum number of resource access segments, each of which may
consist of several consecutive data requests to access the shared bus

UA
i the utilizations of task τi on the shared bus; UA

i = Ai/Ti
UC

i the utilizations of task τi on a core; UC
i = Ci/Ti

Ui the utilization of task τi; Ui = (Ci + Ai)/Ti
B the (upper bound) processing time of each data request (after it is granted)
db fi(t) the demand bound function of task τi over an interval of length t; db fi(t) =

max
(

0, (
⌊

t−Di
Ti

⌋
+ 1)× (Ai + Ci)

)
db f C

i (t) the demand bound functions of task τi for local computing execution;
db f C

i (t) = max
(

0, (
⌊

t−Di
Ti

⌋
+ 1)× Ci

)
db f A

i (t) the demand bound functions of task τi for accesses to the shared bus;
db f Rq

i (t) = max
(

0, (
⌊

t−Di
Ti

⌋
+ 1)× Ai

)
Table 4.1: Resource access: notation and terminology

response-time analysis under fixed-priority scheduling. Another direction is to consider
structured resource arbitration methods, e.g., Time Division Multiple Access (TDMA)
or Round-Robin (RR) arbitration [KFMCR14; SPCTC10]. Since the resource sharing
problem in multicore systems does not admit tight analytical solutions, approaches
adopting timed automata, e.g., [PSCCT10; LYGY10], have been also reported. Altmeyer
et. al [Alt+15] present a framework to decouple response-time analysis from a reliance
on context independent WCET values by separately analyzing the timing contribution
of each resource to a task’s response time. They implicitly assume that tasks spin while
awaiting the response from a shared resource, rather than suspending.

In summary, existing schemes either make very strong assumptions about the tasks
and their execution model [PSCCT10; SPCTC10; PSCCT10; MBBMB15] or the analysis
complexity is intractably high (the state explosion problem) [PSCCT10; LYGY10].
Further, mathematical guarantees about the quality of the scheduling policy and the
schedulability analysis are usually not provided [PSCCT10; SPCTC10; KFMCR14;
Alt+15], in contrast to classical results for single-core scheduling. In this work, we
introduce a new task model that is more permissive than the structured models
proposed earlier, while at the same time enabling the derivation of hard mathematical
guarantees in the form of a speedup factor.

43

resource access task models

4.2 schedulability analysis

We present our response-time and schedulability analyses under the following
conditions:

• We assume that the priority levels are assigned a priori.

• Each task τi is assigned to a core. Let Γp denote the set of tasks that are allocated
on core p, on which task τk (that is under analysis) is allocated.

• We only test the schedulability of task τk assuming that all tasks with higher
priority than task τk are already guaranteed to meet their deadlines.

The last condition also implies that we have to perform schedulability tests by
considering all the tasks one by one. The task set hp(k) consists of the tasks with
higher priority than task τk. Therefore, the tasks in hp(k) can interfere with task
τk on the shared resource and the tasks in hp(k) ∩ Γp can interfere with task τk on
core p. Throughout this section, we assume that we know an upper bound Ri on
the worst-case response time of any higher-priority task τi in hp(k), which can be
derived in the previous iterations. By the last condition above and the assumption of
constrained-deadline task systems, we have Ri ≤ Di ≤ Ti.

4.2.1 Our Strategies and Preliminaries

Consider the simplest case in which two tasks τ1 and τ2 are assigned on core 1 and
core 2, respectively. That is, there is no multitasking on each core. We assume that τ1

has higher priority than τ2 and we are now analyzing task τ2 in all the examples. The
schedule of accessing a shared resource by these two tasks is indicated in Figure 4.3:
• At time t1, tasks τ1 and τ2 start their computation.
• At time t2, tasks τ1 and τ2 both attempt to access the shared resource. The request

from task τ1 is granted, while task τ2 suspends itself on core 2.
• At time t3, task τ1 finishes its access to the shared resource and resumes its local

computation. At the same time, task τ2 starts to access the shared resource.
• At time t4, task τ1 again attempts to access the shared resource. Due to the

minimum non-preemptive region, this request from task τ1 is blocked by task τ2.
• At time t5, after leaving the non-preemptive region, task τ2 on the shared resource

is preempted by task τ1.
• At time t6, task τ1 finishes its access to the shared resource and resumes its local

computation. At the same time, task τ2 continues to access the shared resource.
• At time t7, task τ2 finishes its access to the shared resource and resumes its local

computation.
• At time t8, task τ2 finishes its execution.

44

4.2 schedulability analysis

Shared

Resource

Core 2 (τ2)

Core 1 (τ1)

t1 t2 t3 t4 t5 t6 t7 t8

local execution access by core 1 access by core 2

c-execution c-suspension
r-executionr-suspension

Figure 4.3: An example of accessing a shared resource by two cores, on which τ1 and
τ2 are allocated separately.

From the point of view of the shared resource, task τ2 suspends its resource accesses
in time intervals [t1, t2) and [t7, t8) due to local computations, both of which are called
r-suspension intervals in this dissertation. Moreover, task τ2 executes on the shared
resource in time intervals [t3, t4) and [t6, t7) and awaits (in the queue) to access the
shared resource in time intervals [t2, t3) and [t5, t6), all of which are called r-execution
intervals in this dissertation. Symmetrically, from the point of view of core 2, task τ2

executes/suspends its computation on the core, called c-execution/c-suspension, in time
intervals [t1, t2) and [t7, t8)/ time intervals [t2, t7). In either perspective, the feasibility
of τ2 can be examined by answering whether the summation of r-execution time and
r-suspension time (or c-execution time and c-suspension time) of a job of task τ2 is
never more than its relative deadline.

Our analysis strategy to safely bound Rk of task τk is as follows: Suppose that task
τk releases a job at time t0. We check whether this job of task τk is guaranteed to be
finished by t0 + t. Therefore, we have to determine the cumulative amount of time in
the time interval (t0, t0 + t] for r-execution and r-suspension while executing this job
of task τk. They are defined as r-execution time and r-suspension time of task τk in an
interval of length t, respectively.

Without multitasking, the total time of resource access suspension from the bus (r-
suspension) is trivially upper bounded by the execution time due to local computation.
However, with multitasking, this time increases due to interference from other tasks

45

resource access task models

allocated on the same core p. To calculate an upper bound on the r-execution and
r-suspension time of task τk, we first provide two lemmas:

Lemma 4.1. The cumulative resource access time of task τi ∈ hp(k) on the shared resource
within an interval of length t is upper bounded by:

Ei(t) =
⌈

t + Ri − Ai

Ti

⌉
Ai (4.1)

Proof. In the presence of suspension, we need to consider the carry-in effect, as pointed
out in [LC14; HCZL15]. Nevertheless, the interference due to such an effect can be
quantified as jitter, and thereafter the access times can be upper bounded by releasing
all the accesses from the first job (that arrives before t0 and has an absolute deadline
after t0) as late as possible and the following accesses as soon as possible.

Lemma 4.2. The cumulative execution time of task τi ∈ hp(k) on the core, on which τi is
allocated, within an interval of length t is upper bounded by:

Wi(t) =
⌈

t + Ri − Ci

Ti

⌉
Ci (4.2)

Proof. This is due to the same argument in Lemma 4.1.

The rest of this section is organized as follows: (1) We first derive a bound on
the r-execution time (denoted as Xk(t)) and r-suspension time (denoted as Sk(t)) in
Section 4.2.2 under the assumption that the worst-case response time of task τk is no
more than t for some 0 < t ≤ Tk. (2) We then derive a bound on the r-execution time
(denoted as X∗k) and r-suspension time (denoted as S∗k) that is independent of the task’s
response time in Section 4.2.3 by referring to the number of resource access segments.
(3) Section 4.2.4 provides the schedulability test, combining the results from (1) and (2).

4.2.2 Calculating Sk(t) and Xk(t)

To evaluate the maximum r-suspension time, provided that the interval length of
interest is t ≤ Tk, we can simply sum over the computation workload Wi(t) from all
the higher-priority tasks that are allocated on core p plus Ck. The proofs are relatively
straightforward.

Lemma 4.3. The r-suspension time of task τk due to its executions on core p in an interval of
length t is at most

Sk(t) = Ck + ∑
τi∈hp(k)∩Γp

Wi(t) (4.3)

Similarly, we have the corresponding lemma for the maximum r-execution time as
follows.

46

4.2 schedulability analysis

Lemma 4.4. The r-execution time for task τk in an interval of length t is at most

Xk(t) = Ak + σkB + ∑
τi∈hp(k)

Ei(t) (4.4)

4.2.3 Calculating X∗k and S∗k

We now show how to bound the r-execution time and the r-suspension time,
independently of the task’s overall response time. To this end, we use σk to calculate X∗k
and S∗k .

Lemma 4.5. X∗k for task τk is the smallest t satisfying the following inequality:

Ak + σkB + ∑
τi∈hp(k)

(
σk − 1 +

⌈
t + σk · (Ri − Ai)

Ti

⌉)
Ai ≤ t (4.5)

Proof. We consider any arbitrary program path with z ≤ σk shared resource access
segments. W.l.o.g., we only have to consider z as an integer and ≥ 1. Let Aj

k denote
the amount of execution times on the jth resource access segment from τk in the
program path. By definition, ∑z

j=1 Aj
k ≤ Ak. Let rj be the smallest t satisfying Aj

k + B +

∑τi∈hp(k) Ei(t) ≤ t. In other words, we know that the condition ∀0 ≤ t < rj, Aj
k + B +

∑τi∈hp(k) Ei(t) > t holds for all j = 1, . . . , z. By adopting Lemma 4.1, the worst-case

response of Aj
k can be easily proved to be upper bounded by rj for all j = 1, . . . , z.

Thus, the maximum r-execution time of this program path for task τk is upper
bounded by r1 + r2 + · · ·+ rz. For a specified 0 ≤ θ < r1 + r2 + · · ·+ rz, there always
exists a combination of t1, t2, . . . , tz with 0 ≤ tj < rj such that θ = t1 + t2 + · · ·+ tz.
Therefore, we know that

(
z

∑
j=1

Aj
k) + zB + ∑

τi∈hp(k)

z

∑
j=1

Ei(tj) >
z

∑
j=1

tj = θ. (4.6)

By the fact that ⌈x + y⌉+ 1 ≥ ⌈x⌉+ ⌈y⌉, we have

z

∑
j=1

Ei(tj) =
z

∑
j=1

(

⌈
tj + Ri − Ai

Ti

⌉
)Ai

≤ (z− 1 +

⌈
z · (Ri − Ai) + ∑z

j=1 tj

Ti

⌉
)Ai

= (z− 1 +
⌈

z · (Ri − Ai) + θ

Ti

⌉
)Ai (4.7)

47

resource access task models

By substituting ∑z
j=1 Ei(tj) in Eq. (4.6) with the above inequality, the left hand side in

Eq. (4.6) is at most

Ak + σkB + ∑
τi∈hp(k)

(
σk − 1 +

⌈
θ + σk · (Ri − Ai)

Ti

⌉)
Ai (4.8)

That is, the smallest t solved by Eq. (4.5) is at least r1 + r2 + · · ·+ rz.

Similarly, we have the following lemma:

Lemma 4.6. Sr∗
k for task τk is the smallest t satisfying the following inequality:

Ck + ∑
τi∈hp(k)∩Γp

(
σk +

⌈
t + (σk + 1) · (Ri − Ci)

Ti

⌉)
Ci ≤ t (4.9)

Proof. Since the number of shared resource access segments of τk is at most σk, the
maximum number of execution segments of τk on core p will be potentially σk + 1,
interleaved the τk resource access segments. The rest of the proof for Eq. (4.9) is similar
to Lemma 4.5.

Note that it is also possible that resource accesses start both at the beginning and at
the end of a program. Hence, there are at most σk − 1 execution segments of τk in this
case, which in turn reduces pessimism, to be discussed in Section 4.5.

4.2.4 Response-Time Analysis

The following theorem concludes the schedulability test and response-time analysis
directly from Lemmas 4.3 to 4.6.

Theorem 4.1. The smallest t satisfying:

min {Xk(t), X∗k}+ min {Sk(t), S∗k} ≤ t (4.10)

is a safe upper bound of Rk if t is no more than Tk.

Proof. We prove this by contraposition. Suppose that task τk releases a job at time t0.
(Since we assume constrained-deadline task systems, we can safely consider that there
is no job of task τk in the ready queue at time t0 if Rk ≤ Dk ≤ Tk.) If this job has not yet
finished by time t0 + t, then, at any point in the time interval (t0, t0 + t], task τk either
executes (or is queued) on the shared resource or suspends on the shared resource.
Therefore, if the job of task τk is not finished at time t0 + t, a necessary condition is that
its r-execution time plus its r-suspension time from t0 to time t0 + t has been strictly
larger than t. Such a condition implies min

{
Xk(t), X∗k

}
+ min

{
Sk(t), S∗k

}
> t, which

contradicts the assumption that t satisfies Eq. (4.10).

48

4.3 task allocation

Corollary 4.1. An RAS task τk allocated on core p is schedulable in fixed-priority partitioned
scheduling if there exists 0 ≤ t ≤ Dk s.t. Eq. (4.10) holds.

The response-time analysis in Theorem 4.1 and the schedulability test in Corollary 4.1
require pseudo-polynomial time complexity. Note that we can also simply test t = Dk
requiring only polynomial time complexity at the expense of potentially less precise
results.

response-time analysis : spinning versus suspension One might assume
that Lemmas 4.3 and 4.4 also apply to a scenario in which tasks spin rather than
suspending upon resource accesses. Unfortunately, this is not true, as it may
underestimate delays due to lower-priority blocking: In a spinning scenario the response
time of task τk is also affected by lower-priority blocking of higher-priority task that have
preempted τk. To safely account for such delays, one would have to adapt Lemma 4.1
to account for lower-priority blocking of each resource access segment of task τi. A
response-time analysis obtained in this manner roughly corresponds to the analysis
described by Altmeyer et al. [Alt+15] adapted to the setting explored in this dissertation.
For the special case that B is 0, employing Lemmas 4.3 and 4.4 without adaptation is
correct for a model in which tasks spin upon resource accesses:

Proposition 4.2. For B = 0, the smallest t satisfying:

Xk(t) + Sk(t) ≤ t (4.11)

is a safe upper bound of Rk if t is no more than Tk, even if tasks spin upon resource accesses
rather than suspending.

4.3 task allocation

We now present a task allocation algorithm that is compatible with the schedulability
test in Corollary 4.1. Our strategy is to first sort the tasks according to their relative
deadlines such that D1 ≤ D2 ≤ · · · ≤ Dn. Then, we allocate the tasks by using a simple
heuristic reasonable allocation (RA) algorithm [GJ79], i.e., either First-Fit (FF), Best-Fit
(BF), or Worst-Fit (WF). The First-Fit algorithm places the task in the first core that can
accommodate the task. If no core is found, it opens a new core and places the task
in the new core. The Best-Fit (Worst-Fit, respectively) algorithm places each task in
the core with the smallest (largest, respectively) remaining capacity among all the core
with sufficient capacity to accommodate the item. The remaining capacity is defined
as the relative deadline minus the upper bound on the worst-case response time by
Theorem 4.1. Algorithm 2 presents the pseudocode for the first-fit packing. Due to
Corollary 4.1, if Algorithm 2 returns a feasible allocation, this results in a feasible
schedule under the deadline-monotonic strategy (a task with a shorter relative deadline
has higher priority).

49

resource access task models

Algorithm 2: MIRROR First-Fit Deadline-Monotonic
input : A set τ of RAS tasks and m identical cores
output : Task allocations Γj and the feasibility of system τ

sort the given n tasks in τ s.t. D1 ≤ D2 ≤ · · · ≤ Dn;
Γj ← ∅, ∀j = 1, 2, . . . , m;
for k = 1, 2, . . . , n do

for j = 1, 2, . . . , m do
if task τk is schedulable according to Corollary 4.1 then

Γj ← Γj ∪ {τk}; // assign τk to core j
break (continue the outer loop) ;

return “infeasible allocation”;

return “feasible allocation”;

4.4 speedup factor

In this section, we derive a speedup factor for Algorithm 2.
Lemma 4.7. Any constrained-deadline RAS task system τ that is feasible upon a multicore
platform comprised of m cores and a shared resource must satisfy

max

{
max
t>0

∑τi∈τ db f C
i (t)

mt
, max

t>0

∑τi∈τ db f A
i (t)

t
, max

τi∈τ

Ci + Ai

Di

}
≤ 1 (4.12)

Proof. These conditions come from the definition of the demand bound functions, as
also used in traditional multiprocessor scheduling [CC11] (without considering resource
sharing).

First, if τi generates jobs with execution time exactly Ci + Ai, it is necessary for
meeting all the deadlines of task τi that Ci + Ai ≤ Di.

Secondly, all the demand for accesses to the shared resource, i.e., db f A
i (t), must be

sequentially executed on a single computing unit, i.e., shared bus.
Last, the demand coming from the all tasks must be proceed on the platform with

the maximum processing capacity of m, within any interval of length t.

Theorem 4.3. Algorithm 2 has a speedup factor of 7.

Proof. Suppose that Algorithm 2 fails to obtain a partition for τ: there exists task τk
which cannot be mapped to any core. Note that due to the sorting of the tasks in
Algorithm 2, all the tasks before task τk mapped onto cores have been ensured Ri ≤ Di
for i = 1, 2, . . . , k − 1. Since τk fails the test of Corollary 4.1 on each of the m cores,
for each core p = 1, 2, . . . , m, we have Sk(Dk) + Xk(Dk) > Dk. By Lemma 4.3 and
Lemma 4.4, we have

Ck + Ak + σkB + ∑
τi∈hp(k)

Ei(Dk) + ∑
τi∈hp(k)∩Γp

Wi(Dk) > Dk

50

4.4 speedup factor

Summing over all m such cores, we obtain

m

⎛⎝Ck + Ak + σkB + ∑
τi∈hp(k)

Ei(Dk)

⎞⎠+ ∑
τi∈hp(k)

Wi(Dk) > mDk (4.13)

By definition, Ri ≤ Di ≤ Dk for τi ∈ hp(k). To conclude the speedup factor, we need to
prove Ei(Dk) ≤ 3db f A

i (Dk). If Ti > Dk, then

Ei(Dk) ≤ (

⌈
Dk

Ti

⌉
+ 1)Ai

≤ 2Ai = 2db f A
i (Di)

≤ 2db f A
i (Dk) (4.14)

Otherwise, if Ti ≤ Dk, then

Ei(Dk) ≤ (

⌈
Dk

Ti

⌉
+ 1)Ai

≤ (

⌊
Dk

Ti

⌋
+ 2)Ai

≤ 3
⌊

Dk

Ti

⌋
Ai

≤ 3db f A
i (Dk) (4.15)

Similarly, Wi(Dk) ≤ 3db f C
i (Dk). Dividing both sides by mDk in Eq. (4.13), together with

our assumption σkB ≤ Ak and the facts Ei(Dk) ≤ 3d f bA
i (Dk) and Wi(Dk) ≤ 3db f C

i (Dk),
we have

Ck

Dk
+

2Ak + 3 ∑τi∈hp(k) db f A
i (Dk)

Dk
+

3 ∑τi∈hp(k) db f C
i (Dk)

mDk
> 1. (4.16)

Recall that ∑τi∈τ db f A
i (Dk) ≥ Ak + ∑τi∈hp(k) db f A

i (Dk). Therefore, we have

Ck

Dk
+

3 ∑τi∈τ db f C
i (Dk)

mDk
+

3 ∑τi∈τ db f A
i (Dk)

Dk
> 1. (4.17)

Assume for a contradiction that the task set is feasible on a multicore with speed
1
7 . Then, considering the adjusted speed, we know by Lemma 4.7 that Ck

Dk
≤ 1

7 ,
∑τi∈τ db f C

i (Dk)

mDk
≤ 1

7 , and
∑τi∈τ db f A

i (Dk)

Dk
≤ 1

7 . This, however, clearly contradicts Eq. (4.17),
implying a speedup factor of 7.

We would like emphasize that the factor 7 in Theorem 4.3 can already be obtained in
polynomial time if we only test t at Dk in Corollary 4.1. Moreover, for implicit-deadline,
harmonic-period task systems, i.e., Ti = Di and Dk

Ti
is an integer for τi ∈ hp(k), the

speedup factor is 5, since Ei(Dk) ≤ 2db f A
i (Dk) and Wi(Dk) ≤ 2db f C

i (Dk) in such cases.

51

resource access task models

4.5 experimental results

In this section, we conduct extensive experiments using synthesized task sets. We
evaluate these tests on a 4-core system, i.e., m = 4. We generate 100 task sets for each
utilization level, from 0.05m to m, in steps of 0.05m. The metric to compare the results is
to measure the acceptance ratio. The acceptance ratio of a level is said to be the number
of task sets that are deemed schedulable by the test divided by the number of task sets
for this level, i.e., 100.

The cardinality of the task set is 5 times the number of processors, e.g. 20 tasks
on 4 cores. In each utilization step, the Randfixedsum method [ESD10] is adopted to
generate a set of utilization values with the given goal. We use the approach suggested
by Emberson et al. [ESD10] to generate the task periods according to the exponential
distribution. The distribution of periods is within two orders of magnitude, i.e., 10ms-
1000ms. The execution time is set accordingly, i.e., Ci = TiUi. Task relative deadlines
are implicit, i.e., Di = Ti. We then generate a set of access utilization values UA

i for tasks
with the given UA

Σ , according to the uniform distribution, generated by the UUniFast
method. We consider task sets with total access utilization UA

Σ of 40% and 70%. We
ensure that for every task τi, UA

i + UC
i ≤ 1. Then, the upper bound on the access time

to shared resources Ai was set accordingly, i.e., Ai = TiUA
i .

The maximum number of resource access segments σi is set depending on the
following types of access: 1 (rare access, type=R), 2 (moderate access, type=M), and 10
(frequent access, type=F). The evaluated tests are listed as follows:
• MIRROR: the test proposed in Corollary 4.1.
• MIRROR-SPIN: the test following Proposition 4.2 using only Sk(t) and Xk(t),

which applies also to tasks that spin while awaiting access to the shared resource.
This resembles the test from [Alt+15] in our model when B is 0.
• exact-MC: the exact test proposed in [MBBMB15] for M/C tasks, which is the

special case of the RAS task model.
To fairly compare the results with respect to [Alt+15; MBBMB15], we assume that B = 0
in all the tests; otherwise, our tests can benefit from the short blocking time, and the
other results can be significantly impacted by their considerations of blocking time as
explained in Section 4.2.4.
Result I. Figures 4.4 (a) and (b) depict the results (by using the FF allocation) with
frequent access (F) for 40% and 70% bus utilizations. As shown in Figures 4.4 (a)
and (b), the performance by MIRROR-SPIN and MIRROR are identical in the case of
frequent accesses. The reason behind this is that Lemma 4.5 and 4.6, by which MIRROR
are advantageous to MIRROR-SPIN, become ineffective when the number of resource
access segments is large.
Result II. In Figures 4.5 (a) and (b) we consider performance differences between
different reasonable allocations: FF, BF, and WF, denoted by MIRROR-FF, MIRROR-BF,
and MIRROR-WF, respectively. The number of resource access segments is 2 (type=M),

52

4.5 experimental results

0.0 0.2 0.4 0.6 0.8 1.0
UC

Σ /m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

MIRROR-SPIN MIRROR

(a) UA
σ = 40% and type=F

0.0 0.2 0.4 0.6 0.8 1.0
UC

Σ /m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

MIRROR-SPIN MIRROR

(b) UA
σ = 70% and type=F

Figure 4.4: Comparison with different access utilizations UA
Σ under frequent access (F).

which is aligned with the superblock model used in the literature [LGPWS14; PSCCT10]
and the IEC61131-3 standard. This models the execution of a job into three phases, i.e.,
read, execution, and write. Therefore, we only consider one computation segment in
Lemma 4.6. The performance of FF is identical to that of BF, and noticeably better than
that of WF. In such a case, the effectiveness of MIRROR is sustainable for the case of
40% bus utilization, smoothly dropping down at around 50% core utilization.

Result III. In Figures 4.6 (a) and (b), we show the effectiveness by our proposed
MIRROR (by using the FF allocation) for M/C tasks, in which each task has only one
computation segment and one resource access segment [MBBMB15]. We denote the
proposed approach for such tasks as MIRROR-MC, distinct from MIRROR-RAS for
RAS tasks which needs two segments in Lemma 4.6. Note that in the presence of the
M/C task model, we do not have to consider the arrival jitter on the interference due to
memory accesses, quantified in Lemma 4.1. We first notice that without knowing the
program structure, both MIRROR-SPIN and MIRROR-RAS perform relatively poorly,

53

resource access task models

0.0 0.2 0.4 0.6 0.8 1.0
UC

Σ /m (%)

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
e
p
ta

n
ce

 R
a
ti

o
MIRROR-FF MIRROR-BF MIRROR-WF

(a) UA
σ = 40% and type=M

0.0 0.2 0.4 0.6 0.8 1.0
UC

Σ /m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

MIRROR-FF MIRROR-BF MIRROR-WF

(b) UA
σ = 70% and type=M

Figure 4.5: Comparison with different access utilizations UA
Σ under moderate access

(M).

even though MIRROR still outperforms MIRROR-SPIN. In the presence of M/C tasks,
the proposed MIRROR achieves high schedulability, compared to exact-MC.

More importantly, the more the number of resource access segments, the lower the
schedulability, for instance, as can be seen from MIRROR-RAS in Figure 4.6 (a) to
MIRROR in Figure 4.4 (a).

4.6 summary

This chapter presents a symmetric approach to analyze the schedulability of a set
of resource access sporadic real-time tasks. Our key observation is to consider
suspension-aware response-time analysis in both core-centric and shared-resource-centric
perspectives. Our schedulability analysis can also be seamlessly adopted for shared
resource models, e.g., Time Division Multiple Access (TDMA), First-Come First-Serve

54

4.6 summary

0.0 0.2 0.4 0.6 0.8 1.0
UC

Σ /m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

MIRROR-SPIN MIRROR-RAS MIRROR-MC exact-MC

(a) UA
σ = 40% and type=R

0.0 0.2 0.4 0.6 0.8 1.0
UC

Σ /m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

MIRROR-SPIN MIRROR-RAS MIRROR-MC exact-MC

(b) UA
σ = 70% and type=R

Figure 4.6: Comparison with different access utilizations UA
Σ under rare access (R).

(FCFS), and Round-Robin (RR) protocols. Together with reasonable task allocations, we
show that the speedup factor of our approach using fixed-priority arbitration, compared
to the optimal schedule, is at most 7. This is the first result that provides a speedup
factor for the scheduling problem in the presence of shared resources.

55

5
S Y N C H R O N I Z AT I O N

5.1 Task Model and Shared Resources . 61

5.1.1 Task Model . 61

5.1.2 Shared Resources . 61

5.2 Uniprocessor Synchronization Protocols 62

5.2.1 Non-Preemptive Protocol . 62

5.2.2 Priority Ceiling Protocol . 63

5.3 Multiprocessors . 67

5.3.1 Resource-Oriented Algorithm . 68

5.3.2 Schedulability Analysis . 70

5.4 Task and Resource Allocations . 74

5.4.1 Speedup Factor under RM . 76

5.5 Multiple Resource Accesses . 81

5.5.1 Multiple Occurrences on Each Resource 81

5.5.2 Multiple Resource Accesses . 81

5.6 Improved Response Time Analysis . 82

5.7 Experimental Results . 84

5.8 Summary . 91

Classic fixed-priority scheduling algorithms for scheduling a set of periodic real-time
tasks are based on the assumption that tasks are independent, i.e., the tasks do not
share any other resource except the processing platform. However, this assumption
does not hold and problems begin when tasks share resources.

Mars pathfinder is the first mission of NASA’s Discovery program for investigating
the atmosphere and other factors of Mars. Although the project was successful from a
scientific point of view, its path to success was not smooth at the beginning. The system
suffered from the priority inversion problem – a real-time synchronization problem –
soon after it was landed on Mars on July 4, 1997. The spacecraft was resetting itself due
to the priority inversion problem and caused significant delay in collecting scientific
data from the surface of the red planet [Dur98].

The source of the problem was due to priority inversion which subsequently caused a
deadline-miss of a critical task, which was identified by a watchdog timer, and finally,
the action in such faulty scenario was to reset the spacecraft.

Why is Synchronization Needed and Priority Inversion Problem

57

synchronization

The technique for access management is called locking or mutual exclusion—making
sure that no two concurrent accesses to one shared resource can execute at the same
time. To this end, we can set up critical section: code that can be executed by only one
task at any given time, typically guarded by a binary semaphore Semk. Each critical
section begins with a wait(Semk) primitive and ends with a signal(Semk), as shown in
Figure 5.1.

resource
Rk

wait(Semk)
use resource Rk

signal(Semk)

wait(Semk)
use resource Rk

signal(Semk)

Task τ1 Task τ2

Figure 5.1: Critical section

Without furnishing a mechanism specifically dealing with resource access, a task can
be arbitrarily long blocked by lower-priority tasks—called priority inversion problem.
It is unavoidable under mutual exclusion that task τ1 may be blocked by task τ2’s
critical section holding resource Rk while requesting it. Since it is a direct consequence
of protecting the shared resource from having concurrent accesses of tasks, such a
blocking is called direct blocking. However, with classic scheduling algorithms, e.g., RM
algorithm, a task may additionally be blocked by those lower-priority tasks that access
no shared resources.

Consider a set of three sporadic tasks where task τ1 and τ2 share a resource; and task
τm has only normal execution. Here, task τ1, τm, and τ2 have decreasing priorities:
• At time t1, task τ2 enters the critical section while it is held by no one.
• At time t2, task τm is released, and preempts the execution of τ2 due to having

higher priority.

58

synchronization

• At time t3, tasks τ1 is released and attempts to enter the critical section. The
request from task τ1 is not granted, as the resource is hold by task τ2, being
preempted by τm.
• At time t4, task τm finishes its execution, giving up its time on the CPU. At the

same time, task τ2 continues to execute its critical section.
• At time t5, after leaving the critical section, task τ2 exits the critical section waited

by task τ1. Meanwhile, task τ1 having highest priority starts to enter the critical
section.

• At time t6, task τ1 finishes its execution.
Figure 5.2 illustrates the schedule. In this example, priority inversion occurs in the
interval [t2, t4], since highest-priority is waiting for the execution of lower-priority task
τm having no access to shared resources. Generally speaking, such a duration can
be relatively long, depending on intermediate-priority tasks, easily causing task τ1’s
deadline misses.

τm

τ2

τ1

t1 t2 t3 t4 t5 t6

normal execution critical section

pr
io

ri
ty

Figure 5.2: Priority Inversion

In this chapter, we study the problem of scheduling real-time tasks with synchroniza-
tion. The presentation is organized as follows: In Chapter 5.1, we first introduce the task
model and shared resources studied here. In Chapter 5.2, we review those consolidated
techniques long developed in uniprocessor systems. In Chapter 5.3, we then move on to
multiprocessor systems, where we propose resource-oriented algorithms as a backbone
to schedule task with synchronization. In Chapter 5.3.2, we provide a schedulability test
for a given resource-oriented task partition. Combined with the proposed schedulability
test, we then propose an algorithm for deriving resource-oriented task partitioning.
In Chapter 5.4.1, we show that our algorithm using PCP (after resource and task
partitioning) can achieve a speedup factor 11− 6/(m + 1) if a task may request at most
one shared resource and each job of a task may request the resource at most once
during its execution, where m ≥ 2 is the number of processors. The effectiveness of
our proposed algorithm is highly supported by extensive evaluations, in Chapter 5.7.

59

synchronization

Finally, we summarize our results in Chapter 5.8. To the best of our knowledge, this is
the best result studying the problem of resource sharing on multiprocessors in terms of
non-optimality The terminology and notation to be used are list in Table 5.1.

symbol meaning

Ci the upper bound on the amount of non-critical-section execution time
Rq shared resource q
RS i the set of all resources accessed by jobs of task τi; RS i ⊆ {R1, R2, ..., Rr}
Ni,q the maximum number of requests on resource Rq by any single job of τi
Vi,q the maximum (worst-case) resource usage time among all requests on

resource Rq by jobs of τi
Ai,q an upper bound on the total resource usage time for resource Rq by any

single job of τi
Ai the total resource usage time of task τi; Ai = ∑Rq∈RS i

Ai,q

UA
i the total resource utilization of task τi; UA

i = Ai/Ti
Ui the utilization of task τi; Ui = (Ci + Ai)/Ti
UC

i the utilization of task τi with non-resource execution; UC
i = Ci/Ti

UC the total utilization of non-critical-section; UC = ∑τi∈τ UC
i

URq
i the utilization of resource Rq from task τi; URq

i = Ai,q/Ti

URq the total utilization of resource Rq; URq = ∑τi∈τ URq
i

URS the total utilization of shared resources; URS = ∑Rq∈RS URq

π(τi) the base priority of task τi
C(Rq) the ceiling priority of resource Rq

℘p processor p
Θp the set of shared resources that are bound to the synchronization processor

℘p

db fi(t) the demand bound function of task τi over an interval of length t; db fi(t) =
max

(
0, (
⌊

t−Di
Ti

⌋
+ 1)× (Ai + Ci)

)
db f C

i (t) the demand bound functions of task τi for non-critical-section execution;
db f C

i (t) = max
(

0, (
⌊

t−Di
Ti

⌋
+ 1)× Ci

)
db f Rq

i (t) the demand bound functions of task τi for accesses to resource Rq;

db f Rq
i (t) = max

(
0, (
⌊

t−Di
Ti

⌋
+ 1)× Ai,q

)
Table 5.1: Synchronization: notation and terminology

60

5.1 task model and shared resources

5.1 task model and shared resources

We assume in this chapter that we have a set of sporadic tasks τ = {τ1, τ2, ..., τn} sharing
a set of resources RS = (R1, R2, ..., Rr).

5.1.1 Task Model

Each sporadic task is characterized as τi = (Ci, Ai, Ti, Di), where Ci the upper bound
on the amount of non-critical-section execution time; Ai the upper bound on the amount
of critical-section execution time; Ti denotes the minimum inter-arrival time; and Di the
relative deadline. We note that the total worst-case execution time (WCET) of task τi,
including critical-sections and non-critical-sections, is equal to WCETi = Ci + Ai. Each
job of task τi requires WCETi units of processing capacity within Di time units from its
release, and this processing capacity must be supplied sequentially, i.e., the job cannot
be scheduled on more than one processor at any given time instant. Further, any two
successive jobs of this task must be released at least Ti time units apart.

5.1.2 Shared Resources

A shared resource can be in-memory data, such as a set of variables, and external
objects, such as files, database connections, and network connections. To prevent
race conditions, resources shared between sets of tasks must be accessed under mutual
exclusion: no two concurrent accesses to one shared resource are in their critical sections
at the same time. We note that in this work we focus ourselves on logical shared
resources: a piece of code to be executed on processors. Hence, no shared resources are
processor-specific.

The jobs of any task can issue requests for exclusive access to shared resources
R1, R2, ..., Rr. A job of task τi could request resource Rq on multiple occasions during its
execution, and we denote as Ni,q ≤ N the maximum number of such requests by any
single job of τi where N is an integer. Associated with these requests is the worst-case
duration of time for which a job uses resource Rq. We do not put any assumption on
the access patterns of resource requests, dependent on different execution paths with
different execution times. Resource requests cannot be nested. We denote by Vi,q the
maximum (worst-case) resource usage time among all requests for resource Rq by jobs
of τi. We denote by Ai,q an upper bound on the total resource usage time for resource
Rq by any single job of τi (sum of resource usage times over all requests for resource
Rq). Clearly, Ai,q/Ni,q ≤ Vi,q. Further, we denote by RS i ⊆ {R1, R2, ..., Rr} the set of
all resources accessed by jobs of τi, and the cardinality of this set is at most Q, i.e.
|RS i| ≤ Q ≤ r.

We denote the total resource usage time of task τi as Ai = ∑Rq∈RS i
Ai,q. We assume

that Ci + Ai ≤ Di for any task τi ∈ τ. The utilization of resource Rq from task τi

61

synchronization

is denoted by URq
i = Ai,q/Ti. The total resource utilization of task τi is denoted by

UA
i = Ai/Ti. We denote the utilization of task τi as Ui = (Ci + Ai)/Ti. The utilization

of task τi with non-resource execution is defined as UC
i = Ci/Ti. We further assume that

UΣ = ∑n
i=1 Ui ≤ m. Otherwise, it cannot be feasibly scheduled. The total utilization of

resource Rq is denoted by URq = ∑τi∈τ URq
i . The total utilization of non-critical-section

is denoted by UC = ∑τi∈τ UC
i ; and the total utilization of shared resources is denoted

by URS = ∑Rq∈RS URq .
In this dissertation, we focus on preemptive fixed-priority scheduling, in which each

task τi is associated with a unique priority level, called base priority π(τi): π(τi) > π(τj)

if task τi has a higher base priority than task τj. We restrict our attention to implicit-
deadline task systems.

5.2 uniprocessor synchronization protocols

To avoid such priority inversion, several approaches have been proposed to deal with
the problem of scheduling tasks accessing shared resources on uniprocessors. We
briefly review those approaches in the following section.

5.2.1 Non-Preemptive Protocol

The Non-Preemptive Protocol (NPP) is characterized by the fact that once a critical
section has started to execute, it cannot be preempted until it finishes the section. This
has several advantages:
• The implementation of a non-preemptive scheduling is simpler because the

scheduler is inactive during the execution of a non-preemptible section.
• A set of tasks may need to share resources that must be accessed under mutual

exclusion. It implies that once a job enters a critical section, it cannot be preempted
by any access to this critical section until it finishes the critical section. This
condition is automatically satisfied under non-preemptive scheduling.

The schedule of two tasks accessing a shared resource by NPP is illustrated in Figure 5.3:
• At time t1, tasks τ2 enters the critical section while it is hold by no one and the

CPU is idle.
• At time t2, task τm is released, but the request from τm is not granted due to τ2’s

non-preemptive execution.
• At time t3, tasks τ1 is released, and attempts to enter the critical section. The

request from task τ1 is not granted due to τ2’s non-preemptive execution.
• At time t4, task τ2 finishes its execution, giving up its time on the CPU. At the

same time, task τ1 having highest priority starts to execute, entering the critical
section.

• At time t5, task τ1 finishes its execution. Meanwhile, task τm starts to execute.

62

5.2 uniprocessor synchronization protocols

• At time t6. Task τm finishes its execution.

τm

τ2

τ1

t1 t2 t3 t4 t5 t6

normal execution critical section

pr
io

ri
ty

Figure 5.3: Non-preemptive protocol

Let π(τi) denote the base priority of task τi. It is shown in [But11] that under NPP a
task may incur blocking due to any lower-priority task that accesses resources. Under
the NPP, the blocking for a task τk being analyzed is

Bk = max
i,q
{Vi,q|π(τi) < π(τk)} (5.1)

where Vi,q is the maximum (worst-case) resource usage time among all requests for
resource Rq by jobs of τi.

5.2.2 Priority Ceiling Protocol

Despite some advantages, the NPP is only appropriate for task sets with short critical
sections, but falls short of avoiding some unnecessary blocking incurred by lower-
priority tasks [But11]. For example, the length of critical section of lower-priority tasks,
as in the interval [t1, t4], can be arbitrarily long, unfavorably blocking task τm from
execution.

Recall that the problem of priority inversion is induced by the grant for intermediate-
priority task’s execution while a higher-priority task tries to lock a shared resource
that is held by the lower-priority task to be preempted. Intuitively, one can avoid such
a blocking by preventing the intermediate-priority task from preempting the lower-
priority task. This is the idea behind the Priority Inheritance Protocol (PIP) [SRL90].
Nevertheless, the PIP incurs another substantial blocking duration because of chained
blocking, even if nesting is disallowed.

Consider a set of three sporadic tasks where task τ1 and τ3 share one resource; τ2

and τ3 share another resource. Here, task τ1, τ2, and τ3 have decreasing priorities:
The schedule of the three tasks by PIP is illustrated in Figure 5.4:

63

synchronization

• At time t1, tasks τ3 enters critical section A while it is hold by no one and the
CPU is idle.

• At time t2, task τ2 is released and preempts the execution of τ3 due to having
higher priority.

• At time t3, tasks τ1 is released, and preempts the execution of τ2 due to having
higher priority.

• At time t4, tasks τ1 attempts to enter critical section A. The request from task τ1 is
not granted because critical section A is currently locked by τ3. At the same time,
τ3 inherits the priority of τ1 and resumes its execution.

• At time t5, task τ3 finishes its execution, leaving critical section A. At the same
time, task τ1 having highest priority starts to execute, entering critical section A.

• At time t6, task τ1 exits critical section A and attempts to enter critical section
B. The request from task τ1 is not granted because critical section A is currently
locked by τ2. At the same time, τ2 inherits the priority of τ1 and resumes its
execution.

• At time t7, task τ2 exits critical section B, whereas τ1 enters the critical section.
• At time t8, task τ1 finishes its execution, blocked by lower-priority critical sections

twice, in the intervals [t4, t5] and [t6, t7].
Extended from PIP, the PCP is introduced by Sha, et. al [SRL90] to remove the

unnecessary blocking while preventing deadlocks and chained blocking. The idea
behind this protocol to prevent chained blocking is that a job is not allowed to enter
a critical section if there is potential that the critical section can further block any
higher-priority tasks that may request on the semaphores being locked. In other words,
a critical section to be executed must be the one with priority strictly higher than all the
tasks that may enter the critical sections being locked. Such an idea can be furnished
through a priority ceiling table. Each semaphore is assigned with a ceiling priority
which is the priority of highest-priority tasks that may request the semaphore. From
the above exemplary task set, semaphores are assigned the following priority ceilings:

Table 5.2: Example of Ceiling Priority Table
Semaphore C(Rq)

RA 1
RB 1

The schedule by PCP is illustrated in Figure 5.5:
• At time t1, tasks τ3 enters critical section A while it is hold by no one and the

CPU is idle.
• At time t2, task τ2 is released and attempts to enter critical section B. However,

task τ2 is blocked by the protocol because its priority is not higher than C(RA) so
as to enter critical section B. At the same time, task τ3 is running with τ2’s priority,
preventing any intermediate blocking.

64

5.2 uniprocessor synchronization protocols

τ2

τ3

τ1

t1 t2 t3 t4 t5 t7t6 t8

critical section A critical section B normal execution

pr
io

ri
ty

Figure 5.4: Chained blocking under PIP

τ2

τ3

τ1

t1 t2 t3 t4 t6t5 t7 t8

critical section A critical section B normal execution

pr
io

ri
ty

Figure 5.5: Example of PCP

• At time t3, tasks τ1 is released, and preempts the execution of τ3 due to having
higher priority.
• At time t4, tasks τ1 attempts to enter critical section A. The request from task τ1 is

not granted because critical section A is currently locked by τ3. At the same time,
τ3 inherits the priority of τ1 and resumes its execution.

• At time t5, task τ3 finishes its execution, leaving critical section A. At the same
time, task τ1 having highest priority starts to execute, entering critical section A.
• At time t6, task τ1 exits critical section A and enters critical section B.
• At time t7, task τ1 finishes its execution, blocked for the duration of critical section

A of task τ3. At the same time, τ2 enters critical section B.
• At time t8, task τ2 finishes its execution.

65

synchronization

In fact, under PCP a job can be blocked for at most the duration of the longest critical
section among those that can block the job [SRL90]. Formally, the blocking under PCP
can be computed as follows:

Bk = max
i,q
{Vi,q|π(τi) < π(τk), C(Rq) ≥ π(τk)} (5.2)

where C(Rq) is the ceiling priority of shared resource Rq under PCP.

In the following theorem, we show that PCP associated with the TDA test
by [ABRTW93] under RM scheduling offers non-trivial quantitative guarantees:

Theorem 5.1. The speedup factor of the PCP associated with the TDA test by [ABRTW93]
under RM scheduling in uniprocessor systems is 2.

Proof. We prove this theorem by showing that a task set deemed schedulable by the
priority ceiling protocol (PCP) using TDA by [ABRTW93] under RM scheduling is also
not schedulable by any scheduling polices on a speed-1/2 uniprocessor.

Suppose task τk is the task that misses its relative deadline. Let Bk ̸= 0 be the longest
critical section of accessing resource Rb of lower-priority tasks τlp that blocks task τk.
Note that if B = 0, we can conclude the utilization is at least 69% by the Liu and
Layland bound, which by taking its multiplicative inverse implies a speedup factor
1.44. Recall that under the PCP a task can only be blocked by lower-priority tasks’
critical sections that are accessed by a task with higher priority than τk. Thus, under
RM scheduling there must exist a task τa with a relative deadline Da ≤ Dk that may
request on Rb.

We now release task τlp alone, at time −ϵ, right before time 0, starting to execute
the critical section Bk of accessing Rb. We then release all the other tasks at time 0 and
let the following jobs execute in their worst case and release as soon as possible. To
complete τa’s execution under mutual exclusion, it is necessary for the task set being
schedulable that Bk together with all the necessary demands are finished at τa’s relative
deadline Da and afterwards. This means that by Definition 2.5 and Eq. (2.2), it must be

∀t ≥ Da, Bk + ∑
τi∈τ\{τlp}

db fi(t) ≤ t (5.3)

The failure of RTA by [ABRTW93] implies that

∀0 < t ≤ Dk, Bk + ∑
τi∈hep(k)

⌈
t
Ti

⌉
(Ci + Ai) > t. (5.4)

66

5.3 multiprocessors

where hep(k) is the set of task τk together with tasks having higher-priority than τk. Let
us instantiate this inequality for t← Dk:

Bk + Ck + Ak + ∑
τi∈hep(k)

⌈
Dk

Ti

⌉
(Ci + Ai) > Dk

{Thanks to RM scheduling, hep(k) = {τi|Di ≤ Dk}}

⇒Bk + ∑
τi :Di≤Dk

⌈
Dk

Ti

⌉
(Ci + Ai) > Dk

{∀τi: Di ≤ Dk, 2db fi(Dk) ≥
⌈

Dk

Ti

⌉
(Ci + Ai)}

⇒Bk + 2 ∑
τi :Di≤Dk

db fi(Dk) > Dk

⇒2(Bk + ∑
τi∈τ\{τlp}

db fi(Dk)) > Dk

which implies that by Eq. (5.3) and Dk ≥ Da this task set is not schedulable by
any scheduling policies on a speed-1/2 uniprocessor. Hence, we here conclude this
theorem.

5.3 multiprocessors

To handle the synchronization problem when tasks share resources in real-time systems,
a wide variety of real-time locking protocols have been developed. Briefly speaking, a
real-time locking protocol is used to limit priority inversions [SRL90; BA10], such that
higher-priority tasks incur priority inversions only if lower-priority tasks execute in
critical sections. Recent analysis and comparisons of semaphore protocols may be found
in [Bra13] for partitioned scheduling (e.g., the DPCP [RSL88] and the MPCP [Raj90].)
and in [YWB15] for global scheduling (e.g., the global PIP). To support nested critical
sections, Ward and Anderson [WA12; WA13] recently introduced the Real-time Nested
Locking Protocol (RNLP) [WA12], which adds supports for fine-grained nested locking
on top of non-nested protocols.

Further, to ensure mutual exclusive access to shared resources, tasks either self-
suspend (under semaphore protocols such as the DPCP [RSL88] and the MPCP [Raj90])
or busy wait (under spin-based protocols such as the MSRP [GLN01]) when blocked on
shared resources. Busy waiting has been shown to be efficient when critical sections are
short [Bra11; HZNLD14], but the resulting loss of processor service must be accounted
for. More recently, Burns and Wellings [BW13] proposed a variant of the MSRP, the
Multiprocessor resource sharing Protocol (MrsP) [BW13], to exploit the spinning cycles
of one task to help other tasks make progress. Wieder and Brandenburg [WB13b]
presented a fine-grained analysis for several types of spin locks. In contrast, self-
suspensions are more efficient for long critical sections [Bra11; LNR09]. Moreover, in

67

synchronization

some distributed-configured scheduling systems, such as the designated [RSL88] or
dedicated [HLK11] synchronization frameworks, jobs self-suspend on host processors,
waiting for resource service on remote processors, is a natural fit for the scheduling
strategy. In this work, we adopt the suspension-based methodology for resource
sharing.

As far as task partitioning is concerned, Lakshmanan et al. [LNR09] presented
a synchronization-aware partitioned (SAP) heuristic tailored to the MPCP [Raj90],
which organizes tasks sharing common resources into groups and attempts to assign
each group of tasks to the same processor. Following the same principle, Nemati et
al. [NNB10] presented a blocking-aware partitioning method that uses advanced cost
heuristic to split task group when an entire group fails to be assigned on one processor.
In subsequent work, Hsiu et al. [HLK11] proposed a dedicated-core framework to
separate the execution of critical sections and normal sections, and employed an
priority-based RPC-like mechanism for resource sharing, such that each higher-priority
request can be blocked by at most one lower-priority request. More recently, Wieder
and Brandenburg [WB13a] use integer linear programming to solve the partitioning
problem in the presence of spin locks.

From an algorithmic optimality point of view, Brandenburg and Anderson [BA10]
are first to study the multiprocessor real-time locking problem. It is shown
that FIFO-based locking protocols, such as the Flexible Multiprocessor Locking
Protocol (FMLP) [BLBA07], the Generalized FIFO Multiprocessor Locking Protocol
(FMLP+) [Bra14a], and the Distributed FIFO Locking Protocol (DFLP) [Bra14b], are
asymptotically optimal in terms of maximum priority-inversion blocking. Andersson
and Easwaran [AE10] presented an virtualization-based G-EDF scheduling with
shared resources, which guarantees a 12(1 + 3r/(4m)) competitive ratio on a platform
comprising m identical processors, where each task uses at most one of the r shared
resources and each job may request the resource at most once, whereas the presented
algorithm in this work achieves a constant speedup factor 11, without using any
virtualization.

5.3.1 Resource-Oriented Algorithm

It is known that Ω(m) pi-blocking is unavoidable on multiprocessor systems, provided
that any task partition is given, as shown in [BA10]. Therefore, as can be seen in the
literature [Raj90; BW13; LNR09] in which task partitioning is given, a higher-priority job
under MPCP or MrsP may suffer from the so-called chained blocking: a higher-priority
job can be blocked for the duration of either m, for MrsP, or n, for MPCP, critical
sections. The chained blocking has significant influence on the schedulability analyses.

The spirit of resource-oriented partitioned scheduling is to position the resource
accesses as the first-class citizens in the system when we consider task and resource

68

5.3 multiprocessors

partitioning so as to keep the blocking time as short as possible. In principle, the
resource-oriented algorithm works as follows:
• Each shared resource should be assigned on one processor, and the critical sections

guarded by this shared resource are executed on the designated processor.
• The non-critical sections of a task are executed on its designated processor (that

can be different from the processors executing the critical sections of the task).
Note that, in general, we still follow the partitioned scheduling policy for the non-
critical sections, but the critical sections are proposed to be executed on the designated
synchronization processors. A similar concept to execute the critical sections guarded
by one shared resource on a designated processor can also be found in Distributed
Priority Ceiling Protocols (DPCP) developed by Rajkumar et al. [RSL88]. But, there has
been no further elaboration in the literature to provide evidence on how to assign tasks
and resources among multiple processors.

A clear advantage of resource-oriented scheduling by bounding all accesses to each shared
resource to the same processor is that it avoids chained blocking: each access to a shared
resource of a task can be only blocked by those low-priority accesses that are assigned
on the same processor.
Runtime overhead. The additional overheads in resource-oriented partitioned
scheduling are just identical to semi-partitioned scheduling (which is less than global
scheduling) due to the critical-section migration, since we only specifically migrate
critical sections. The migration can be managed directly from the operating systems,
in which a request to lock a shared resource can be handled directly (by the resource
manager residing) on the designated processor. The resource-oriented partitioned
scheduling has more overhead than the original partitioned scheduling since the critical
sections have to be executed on the remote processors. Even though this may seem to
be a drawback, we should also keep in mind the implementations of MPCP and MrsP
also require an arbiter to decide which critical section is granted to be executed, which
is also not free.

Compared to traditional partitioned scheduling, resource-oriented partitioned
scheduling has additional overheads. In our approach, the execution of a task in
the resource-oriented scheduling is split into more than one processor, similar to semi-
partitioned scheduling. From the implementation’s point of view, the resource-oriented
partitioned scheduling can benefit from the pre-planned nature of push-migrations: the
jobs to be scheduled on the next processor are statically determined (more details can
be found in [BBA11]). This gives us several advantages:
• As which critical-section executions will migrate and also among which processors

are known beforehand, cache-related preemption and migration delay (CPMD)
accounting is task-specific and hence less pessimistic.

• Furthermore, since push-migrations can be implemented with mostly-local state,
migrations of the resource-oriented scheduling entail less overhead and are easier
to implement.

69

synchronization

However, for example, MrsP requires a lock holder to progress within the critical
section of a task waiting for a resource already locked by a preempted task executing
on a different processor. Therefore, the migration of jobs across partitions must be
furnished, and the next processor is dynamically determined at runtime, the so-called
pull-migrations. Such migrations imply much higher overheads than push-migrations at
runtime.

In addition, based on resource-oriented partitioned scheduling, we actually break
down the problem of scheduling tasks with shared resources on multiprocessors into
smaller uniprocessor sub-problems, on which standard consolidated techniques can
still be applied (on each synchronization processor), e.g., NPP and PCP in uniprocessor
systems, denoted by R-NPP and the R-PCP for the rest of this paper, respectively.
Moreover, unlike uniprocessor systems, the unnecessary blocking incurred by the NPP
(compared to PCP) could be removed by partitioning tasks properly on multiprocessor
systems. This might in turns enable us to use the R-NPP due to its simplicity of
implementations, where maintaining a list of currently locked semaphores and priority
ceiling orders during runtime is not needed.

Inspired by these, in this work we aim at obtaining a better understanding of this
seemingly promising scheduling along with task and resource partitioning.

5.3.2 Schedulability Analysis

In this section, we present the response time analysis and the schedulability test for a
specific task τk. We assume that the priority assignment for fixed-priority preemptive
scheduling is already specified and the tasks are already mapped onto the processors.
Note that as mentioned in Section 3.2, we will focus on the case that N = 1 and
Q = 1 in this section. In Section 5.3.2.1, we begin with a simpler case in which the
synchronization processors are used only for executing critical sections and application
processors are used only for executing non-critical sections. We will consider running
non-critical sections on some synchronization processors in Section 5.3.2.2.

We implicitly assume that the higher-priority tasks already meet their deadlines while
analyzing task τk. Since we use partitioned scheduling for the non-critical sections,
we define hpl(k) as the set of the higher-priority tasks that are assigned on the same
processor where task τk is assigned to run its non-critical sections. Suppose that a job
of task τk arrives at time t0 and has an absolute deadline at time t0 + Dk. To analyze
whether we can finish the job in time, we need to analyze the interference from the
higher-priority tasks hpl(k) on the local application processor and that due to resource
accesses on the remote synchronization processors in the time interval [t0, t0 + Dk).
Without loss of generality, we can set t0 to 0.

70

5.3 multiprocessors

5.3.2.1 Response Time Analysis

Here, in this subsection, suppose that the synchronization processors are used only
for executing critical sections and application processors are used only for executing
non-critical sections. Under resource-oriented partitioned scheduling, every time a
task requests a shared resource mapped onto a remote processor, the task suspends
itself on the local processor until the request is complete. With the suspension-based
scheduling, no critical instant theorem, at which the worst-case behavior in analyzing a
task is concretely captured, has been yet established. To cover the worst-case behavior
for the non-existence of critical instant, accounting for the so-called carry-in jobs, that
may be carried into the interval of our interest, i.e., [t0, t0 + t), is commonly used in
schedulability analysis, as shown in [LC14; HCZL15; BAHCN15; CNH16]. Moreover,
the interference due to such jobs can be more precisely quantified as jitter. Importantly,
such jitter has to be carefully incorporated. Several misconceptions with incorrect
quantifications of jitter for self-suspending task systems were reported in a recent
survey paper by Chen et al. [Che+16]. Nevertheless, it has been reported in [BAHCN15;
CNH16] that using RTi − Ci as the jitter is safe, where RTi is the worst-case response
time of task τi, like global scheduling in multiprocessor systems [BC07b].

Lemma 5.1. The cumulative non-critical-section execution time of a task τi in hpl(k) in the
time interval [t0, t0 + t) is upper bounded by:

Wi(t) =
⌈

t + RTi − Ci

Ti

⌉
Ci (5.5)

Lemma 5.2. The cumulative execution time of a task τi for accesses to resource Rq in the time
interval [t0, t0 + t) is upper bounded by:

Ei,q(t) =
⌈

t + RTi − Ai,q

Ti

⌉
Ai,q (5.6)

where RTi (in the above two lemmas) is the worst-case response time of task τi and
RTi ≤ Ti.

Proof. The proofs are omitted since they are identical to the proofs in the literature. See
[BAHCN15; CNH16] for details.

Under multiprocessor partitioned scheduling for sporadic tasks without resource
sharing, all the jobs generated by a task are constrained to execute only upon the
processor to which the task is assigned. It thus follows that only those tasks that are
executed on the same processor have to be taken into consideration when we analyze
the schedulability of a task. However, in the presence of resource sharing, the time a

71

synchronization

task waits for executing itself is determined by not only the interference caused by local
tasks but also resource accesses to the processors on which the task may request for
shared resources.

Let S(t) be the upper bound on the demand in time interval [t0, t0 + t) on the
processor at which task τk executes its critical section. Let X(t) be the upper bound on
the demand in time interval [t0, t0 + t) on the processor at which task τk executes its
non-critical section.

Then, if the job of task τk released at time t0 cannot finish its execution at time t0 + t,
it must be the case that S(t) + X(t) > t. Equivalently, the negation of this condition is
sufficient to upper bound the response time of a task. As a result, the classic TDA can
be extended as follows:

Theorem 5.2. Suppose that S(t) and X(t) are both safe upper bounds. The smallest t satisfying
the following

S(t) + X(t) ≤ t (5.7)

is a safe upper bound on the response time of task τk if t ≤ Tk.

We now explain how to compute X(t) and S(t).
Computing X(t). The demand on the local processor is only dependent on the
execution of non-critical-section codes of tasks bound to the same processor, which can
be elaborated as follows:

X(t) = InRes(t) + Ck (5.8)

where the terms are as described below:
• Ck denotes an upper bound on the amount of non-critical-section execution from

task τk itself.
• InRes(t) denotes an upper bound on the amount of interferences from higher-

priority non-critical-section execution with an interval of length t on the same
processor.

From Lemma 5.1, it is safe to set

InRes(t) = ∑
τi∈hpl(k)

Wi(t) (5.9)

where hpl(k) is the set of the tasks with priority higher than τk on the local application
processor where τk runs its non-critical sections.
Computing S(t). The demand on the synchronization processor that runs the critical
section of task τk can be elaborated as follows:

S(t) = Ak + Bk + IrRes
k (t) (5.10)

where the terms are as described below:

72

5.3 multiprocessors

• Ak denotes an upper bound on the amount of critical-section execution from task
τk itself.

• Bk denotes an upper bound on the amount of blocking from lower-priority critical-
section accesses bound on the same synchronization processor.

• IrRes
k (t) denotes an upper bound on the amount of interferences from higher-

priority synchronization execution with an interval of length t.
Under the resource-oriented scheduling, the demand on a synchronization processor

in time interval [t0, t0 + t) is contributed by all the resources that are bound to the same
synchronization processor. Let Θr be the set of shared resources that are bound to the
synchronization processor ℘r on which task τk executes its critical section.

The Bk parameter is similar to the one in uniprocessor systems, but dependent on
only those low-priority accesses to the same synchronization processor: under the
R-NPP

Bk = max
i,q
{Vi,q|π(τi) < π(τk), Rq ∈ Θr} (5.11)

and under the R-PCP

Bk = max
i,q
{Vi,q|π(τi) < π(τk), C(Rq) ≥ π(k), Rq ∈ Θr} (5.12)

From Lemma 5.2, it follows that

IrRes
k (t) = ∑

Rq∈Θr

∑
τi∈hp(k)

Ei,q(t) (5.13)

5.3.2.2 Non-Critical Sections on Synchronization Processors

A synchronization processor can also execute non-critical sections. In our design, if
there are non-critical sections assigned to be executed on a synchronization processor,
the execution of the non-critical-sections has the priority lower than any of the critical-
sections. Suppose that task τk is assigned to a synchronization processor. In this case,
when calculating X(t), we also need to consider the interference from critical-section
executions running at higher priority:

X(t) = InRes(t) + I lRes(t) + Fk (5.14)

where I lRes
k (t) denotes an upper bound on the amount of interferences from local critical-

section executions of tasks with their base priority higher than τk with an interval of
length t, i.e. π(τi) > π(τk); and Fk denotes an upper bound on the amount of
interferences from local critical-section executions of tasks, denoted by a set lp(k), with
their base priority lower than τk, i.e. π(τi) < π(τk), i.e., lp(k) = {τi ∈ τ|π(τi) < π(τk)}.

Let Θl be the set of shared resources that are bound to the processor ℘l on which
task τk executes its non-critical-section codes. We have

I lRes(t) = ∑
Rq∈Θl

∑
τi∈hp(k)

Ei,q(t) (5.15)

73

synchronization

Algorithm 3: Linear Search
input : A set of n tasks τ, m processors ℘, and r resources RS
output : Resources allocations Θ, task allocations Γ and the feasibility of system τ

for mR = 1, ..., min(m, r) do
if WFD (Q, mR) returns “feasible allocation” then

Θ←WFD (Q, mR);

else
continue;

if FFRM(τ,Θ) returns “feasible allocation”;
then

return “feasible system”;

return “infeasible system”;

To calculate Fk, we can again use Lemma 5.2 directly if we are aware of the worst-case
response time of the lower-priority task under the assumption that RTi ≤ Ti for each
τi ∈ lp(k). Later in Section 5.4, we will not be able to know RTi of a lower-priority task
τi in lp(k) when testing the schedulability of task τk. However, it can be safely assumed
that RTi ≤ Ti and this predicate RTi ≤ Ti for τi ∈ lp(k) will be verified later when we
test the schedulability of task τi. Therefore, we have

Fk = ∑
Rq∈Θl

∑
τi∈lp(k)

⌈
t + Ti − Ai,q

Ti

⌉
Ai,q (5.16)

As S(t) and X(t) have been computed, we present our schedulability in the following
theorem:

Theorem 5.3. For each task τk in τ, if there exists 0 ≤ t ≤ Dk s.t. Eq. (5.7) holds, then task
τk with resource sharing is schedulable in fixed-priority partitioned scheduling under a given
task partitioning.

5.4 task and resource allocations

In this section we present our algorithm that determines a set of synchronization
processors and that allocates both shared resources and tasks onto processors. The
intuition underlying the proposed algorithm is that under the resource-oriented
scheduling, once shared resources are mapped onto the synchronization processors,
the blocking time incurred by lower-priority tasks can be determined, irrespective of
their task allocations. Hence, by initially sorting the tasks in an order of decreasing
priorities (non-decreasing order of relative deadlines), any task being assigned will not

74

5.4 task and resource allocations

Algorithm 4: Worst-Fit Decreasing (WFD)

input : A set resource RS and mR identical processors for synchronization
output : Resources allocations Θ
Θj ← ∅, ∀j = 1, 2, . . . , m;
sort the r shared resources RS with non-increasing URq ;
for Rq ∈ RS do

// put these processors furthest

for h = m−mR + 1, . . . , m do
calculating the load ∑Rj∈Θh

URj ;

// least utilization first

assign Rq to the mR processor ℘h with the minimum load;
if URq + ∑Rj∈Θh

URj > 1 then
return “infeasible allocation”;

else
Θh ← Θh ∪ {Rq};

return “feasible allocation”,Θ;

jeopardize the schedulability of the tasks that have been successfully assigned onto
processors:

1. First, we iteratively determine a configuration of initializing a set of processors to
be used as synchronization processors. From a schedulability point of view, the
reduction in the number of the synchronization processors is a tradeoff between

• an increase on the time spent on the execution of critical sections on the
synchronization processors, and
• a reduction on the time spent on the execution of non-critical sections on the

application processors.

As each resource is bound to one processor, at most min(m, r) configurations of
processors need to be checked until either a feasible system is found or does not
exist. In each configuration of processors, resources and tasks are respectively
allocated by Worst-Fit Decreasing (WFD) algorithm and First-Fit Rate-Monotonic
(FFRM) algorithm, presented later.

2. The resources are ordered in a list in a non-increasing order of their utilization.
The algorithm attempts to allocate each resource onto the synchronization
processor with the least load, called WFD. We note that this is a well-known
strategy for the bin-packing problem. The intuition underlying the WFD is that
by distributing resources evenly, it is sensible to reduce the time spent by tasks
waiting for resource accesses remotely. These synchronization processors are

75

synchronization

preferably put as far as possible from the processors on which tasks will be
allocated later.

3. Tasks are prioritized and sorted in the order of non-decreasing relative deadlines,
i.e., D1 ≤ D2 ≤ ... ≤ Dn. That is, for implicit-deadline task systems, we use the
well-known rate-monotonic (RM) policy for assigning the base priorities of the
tasks. Then, the algorithm considers to assign (the non-critical sections of) the
tasks to processors from the highest base priority to the lowest base priority. Our
algorithm here, called First-Fit Rate-Monotonic (FFRM), places the task in the first
processor that can accommodate the task according to Theorem 5.3. In addition,
the algorithm heuristically places the task in the processors to which no shared
resources are bound. If no such processors can accommodate this task, then the
algorithm will also check the feasibility of putting it in those processors initialized
to be synchronization processors.

We denote our algorithm as Algorithm ROP-PCP when PCP is used and Algorithm
ROP-NPP when NPP is adopted.
Runtime complexity. In attempting to find a configuration for synchronization
processors, we need at most m rounds. We note that the overall sorting time of
Algorithm 4 and Algorithm 5 in all rounds can be amortized to O(r log r + n log n) by
using appropriate data structures. In each round, Algorithm 4 runs in time complexity
O(r log m) by maintaining the processor utilization with a heap data structure, and
Algorithm 5 requires O(mnDn) for checking whether a task can fit into one processor
according to Theorem 5.3, where Dn is the longest relative deadline among tasks.
Overall, our algorithm runs in O(r log r + n log n + m(r log m + mnDn)), which is in
pseudo-polynomial time complexity.

5.4.1 Speedup Factor under RM

In this section, we obtain a speedup factor for Algorithm ROP-PCP under rate-
monotonic (RM) scheduling, in which Di = Ti for every task τi ∈ τ. The approach is as
follow. We identify the smallest value of x ≥ 1 for which we can prove that any task
set that is feasible upon a platform comprising m unispeed processors is deemed to be
schedulable by the RMFF upon a platform in which each processor is at least x times
as fast. Consequently, we can conclude that the value x is a processor speedup bound.

In the following lemma, we first provide necessary conditions for any optimal
scheduling, which are based upon the concept of demand bound functions (dbf).

Lemma 5.3. Any implicit-deadline task system τ that is feasible upon a platform comprised of
m processors must satisfy

UC + URS ≤ m and ∀τi ∈ τ, Ui ≤ 1 (5.17)

76

5.4 task and resource allocations

Algorithm 5: First-Fit Rate-Monotonic (FFRM)

input : A set τ of tasks, mC identical processors for non-synchronization, resources
allocation Θ

output : Task allocations Γj and the feasibility of system τ

sort the given n tasks in τ s.t. D1 ≤ D2 ≤ · · · ≤ Dn;
Γj ← ∅, ∀j = 1, 2, . . . , m;
for k = 1, 2, . . . , n do

for p = 1, ..., . . . , m do
if task τk is schedulable according to Theorem 5.3 then

Γp ← Γp ∪ {τk}; // assign τk to processor p
break ;

if τk cannot fit any processor in the above loop then
return “infeasible allocation”;

return “feasible allocation”;

and ∀τk ∈ τ, ∀Rq ∈ RS k

maxτi :Di>Dk Vi,q + ∑τi :Di≤Dk
db f Rq

i (Dk)

Dk
≤ 1 (5.18)

Proof. If τi generates jobs with execution time exactly Ci + Ai, it is necessary for meeting
all the deadlines of task τi that (Ci + Ai)/Di ≤ 1. Moreover, in order for the task system
to be schedulable by any algorithm upon a platform comprised of m processors, it is
necessary that

UC + URS ≤ m (5.19)

Suppose that task τlp is the task having a relative deadline larger than Dk with the
longest critical section of accessing Rq. Let task τlp be released alone at time −ϵ, right
before time 0, starting to execute this longest critical section of accessing Rq. Suppose
that all the tasks having relative deadlines Di ≤ Dk that may request on Rq along with
τk are released at time 0, and each task τi generates jobs only requesting on Rq and the
jobs are released as soon as possible. Recall these executions are subject to exclusion
constraints, and therefore must be serialized. To complete τk’s execution under mutual
exclusion feasibly, it is necessary to finish τlp’s critical section together with all the
necessary demands at relative deadline Dk:

max
τi :Di>Dk

Vi,q + ∑
τi :Di≤Dk

db f Rq

i (Dk) ≤ Dk (5.20)

Hence, we here conclude this lemma.

We will derive a speedup factor for the RMFF. Before that, we first need the following
two lemmas:

77

synchronization

Lemma 5.4. For t ≥ Di,
3db f C

i (t) ≥Wi(t) (5.21)

and
3db f Rq

i (t) ≥ Ei,q(t) (5.22)

Proof. The proof is similar to that of Theorem 4.3. We here omit the details.

Lemma 5.5. Suppose that Ui ≤ 1 for every task τi ∈ τ. Given mR synchronization processors,
the utilization of shared resources on each processor under WFD is at most

1 +
URS − 1

mR (5.23)

Proof. The proof is similar to the scheduling algorithms of the makespan problem. Let
L∗ be the maximum utilization among the mR processors to schedule shared resources
under WFD. Let uℓ be the utilization of the last resource mapped onto L∗. The WFD
algorithm assigns each resource onto the processor with the least load. It follows that

L∗ − uℓ ≤
URS − uℓ

mR ⇒ L∗ ≤ URS − uℓ

mR + uℓ ≤
URS − 1

mR + 1 (5.24)

where the last inequality is due to the condition uℓ ≤ 1.

In the following theorem, we show that the speedup factor of our algorithm is
11− 6/(m + 1) when N = 1 and Q = 1, irrespective of how many shared resources, r,
are present.

Theorem 5.4. The speedup factor of the proposed resource-oriented partitioned scheduling
algorithm ROP-PCP is 11− 6

m+1 when m ≥ 2, N = 1, and Q = 1 under the resource-oriented
scheduling using PCP in Section 5.3.1.

Proof. We prove this theorem by showing that any task set that is feasible upon a
platform comprising m unispeed processors is deemed to be schedulable by Algorithm
ROP-PCP upon a platform in which each processor is at least 11− 6/(m + 1) times as
fast.

Suppose that Algorithm ROP-PCP fails to obtain an allocation for τ: there exists task
τk which cannot be mapped on to any processor by Algorithm FFRM. Note that due to
the sorting of the tasks in Algorithm ROP-PCP, all the tasks before task τk mapped onto
processor have been ensured RTi ≤ Di = Ti for i = 1, 2, . . . , k− 1. Since τk fails the test
of Theorem 5.3, it must be the case that for every processor

S(Dk) + X(Dk) > Dk (5.25)

78

5.4 task and resource allocations

The failure of Algorithm ROP-PCP implies that τk also fails the test of Theorem 5.3
on each of the mC = m−mR application processors.

Summing over all mC such processors and after reformulation, we obtain

Ck + Ak

Dk
+

Bk

Dk
+

IrRes
k (Dk)

Dk
+

∑τi∈hp(k) Wi(Dk)

mCDk
> 1 (5.26)

Let Bk ̸= 0 be the longest critical section of accessing resource Rb of tasks having
relative deadline larger than Dk that blocks task τk’s critical-section execution on the
designated processor. We now consider two separate cases:

• τk may request on Rb. From Lemma 5.3, it is necessary for task τk that(
Bk + ∑τi :Di≤Dk

db f Rb
i (Dk)

)
/Dk ≤ 1. Clearly, it follows that Bk ≤ Dk.

• τk does not request on Rb. Recall that under PCP a task can only be blocked
by lower-priory tasks’ critical sections that are accessed by a task with an equal
or higher priority than τk. Thus, under RM scheduling there must exist a task
τa with a relative deadline Da ≤ Dk that may request on Rb. As Da ≤ Dk, the
execution time from tasks having relative deadlines larger than Da that has to
be serialized must be at least Bk. From Lemma 5.3, it is necessary for task τa

being schedulable that
(

Bk + ∑τi :Di≤Da
db f Rb

i (Da)
)

/Da ≤ 1. It then follows that
Bk ≤ Da ≤ Dk.

In either case, we can see that Bk ≤ Dk.
If each processor is at least x times as fast, and by Lemma 5.3 and the above

discussions, we know (Ck + Ak)/Dk ≤ 1/x, Bk/Dk ≤ 1/x, and

UC ≤ m−URS

x
(5.27)

By Lemma 5.5, if each processor is at least x times as fast, it must be the case that

∑Rq∈Θh ∑τi∈hp(k) db f Aq
i (Dk)

Dk

Eq. (5.23)
≤ 1 + URS−1

mR

x
(5.28)

Putting the pieces together, at processors with speed x we have

IrRes
k (Dk)

Dk
=

∑τi∈hp(k) ∑Rq∈Θh
Xi,q(Dk)

Dk

Eq. (5.22)
≤

3 ∑τi∈hp(k) ∑Rq∈Θh
db f Aq

i (Dk)

Dk

Eq. (5.28)
≤ 3(1 + URS−1

mR)

x
(5.29)

79

synchronization

and

∑τi∈hp(k) Wi(Dk)

mCDk

Eq. (5.21)
≤

3
∑τi∈τ db f C

i (Dk)

Dk

mC

≤ 3UC

mC

Eq. (5.27)
≤ 3(m−URS)

x(m−mR)
(5.30)

Summing over the corresponding terms and to contradict to Eq. (5.26), we need to set

x ≥ 5 +
3(URS − 1)

mR +
3(m−URS)

m−mR (5.31)

Let f (m, URS) = 5 + 3(URS−1)
mR + 3(m−URS)

m−mR . In the following proof, we show that
f (m, URS) is upper bounded by 11− 6/(m + 1). We consider two separate cases:
• m is even. Let mR be m

2 . Thus, we have

f (m, URS) = 5 +
3(URS − 1)

m/2
+

3(m−URS)
m/2

= 5 + 6
m− 1

m

= 11− 6
m

(5.32)

• m is odd. Due to our assumption, m ≥ 3; therefore, (m− 1)/2 ≥ 1. In this case,
we further consider two subcases:

– URS ≥ m+1
2 . Let mR be m+1

2 .

f (m, URS) = 5 +
3(URS − 1)
(m + 1)/2

+
3(m−URS)
(m− 1)/2

= 5 + 6
(
(m2 − 1) + 2− 2URS

m2 − 1

)
≤1 11− 6

m + 1
(5.33)

where ≤1 is due to the assumption that URS ≥ m+1
2 .

– URS < m+1
2 . Let mR be m−1

2 .

f (m, URS) = 5 +
3(URS − 1)
(m− 1)/2

+
3(m−URS)
(m + 1)/2

= 5 + 6
(
(m2 − 1)− 2m + 2URS

m2 − 1

)
≤1 11− 6

m + 1
(5.34)

where ≤1 is due to the assumption that URS < m+1
2 .

80

5.5 multiple resource accesses

In either case, we can see that f (m, URS) is upper bounded by 11− 6/(m + 1).
Note that our analysis in this proof greedily sets mR instead of searching mR

sequentially as in Algorithm 3. It is possible that mR in our greedy setting is larger
than r, the number of shared resources. However, this does not create any problem
for the above analysis of the speedup factor. In this case, mR − r processors are
completely unused and wasted in the above proof since they are not used under WFD
in Algorithm 4. Therefore, the above analysis is more pessimistic, and we here conclude
this theorem.

5.5 multiple resource accesses

In this section, we extend the schedulability analyses presented in Section 5.3.2 to
include multiple resource accesses during a job’s execution and multiple occurrences
on one resource request, i.e., N ≥ 2 or Q ≥ 2.

5.5.1 Multiple Occurrences on Each Resource

Eq. (5.2) is based on the assumption that once a job begins execution, it does not suspend
itself until completion. However, the execution on the synchronization processor under
the resource-oriented scheduling may suspend itself for executing the non-critical-
section codes on the application processor; Let ℘h be the processor h task τk may
execute remotely and γk,h be the number of blocking of task τk subject to ℘h. It is clear
that the number of blocking of a task having multiple occurrences on resource requests
can be up to the total number of accesses to those critical sections on ℘h:

γk,h = ∑
Rq∈RSk∩Θh

Nk,q (5.35)

where Θh is the set of shared resources that are bound to the synchronization processor
℘h. Moreover, each access may suffer from the longest duration of one critical section
of lower priority jobs on ℘h. Hence, the maximum blocking time of a job of task τk
subject to ℘h is upper bounded by

Bk,h = γk,h × BUni
k,h (5.36)

where γk,h is defined as in Eq. (5.35), and BUni
k,h is similar to the one in uniprocessor

systems, as defined in Eqs. (5.2) or (5.1), determined by the used protocol.

5.5.2 Multiple Resource Accesses

The resource-oriented scheduling assumes partitioned fixed-priority scheduling; the
computation has to be executed locally in accordance with the designated processors.

81

synchronization

With multiple resource accesses, there may be more than one processor on which task
τk may execute remotely, dependent of resource allocations. Similar to Section 5.3.2.1,
at any time, a task being busy must execute/wait on one of the processors that the
task may execute. Hence, the S(t) on synchronization processors can be generalized as
follows: Let Φk be the set of processors on which task τk may execute remotely.

S(t) = ∑
℘h∈Φk

Sh(t) (5.37)

Elaborating the time spent on each processor gives us:

Sh(t) = Ak,h + Bk,h + IrRes
k,h (t) (5.38)

where the terms are as described below:
• Ak,h denotes an upper bound on the amount of critical section execution from

task τk itself on processor ℘h.
• Bk,h denotes an upper bound on the amount of blocking from lower-priority tasks

on processor ℘h, as defined in Eq. (5.36).
• IrRes

k,h (t) denotes an upper bound on the amount of interferences from higher-
priority synchronization execution on processor ℘h with an interval of length
t.

With the above definition of S(t) in Eq. (5.37) and Bk in Eq. (5.36), we can again apply
Theorem 5.2 and Theorem 5.3 for schedulability test.

5.6 improved response time analysis

We have shown that the analysis presented in Section 5.3.2.1 combined with our
allocation algorithm can achieve a non-trivial resource augmentation factor. Despite
this, the TDA in Section 5.3.2.1 using Theorem 5.2 may be deficient in some aspect: the
analyzed task being suspended or executing is indistinguishable to the calculation of
the work imposed either by execution or by resource accesses. To put it more precisely,
the interference is calculated only based on the interval of the analyzed task being
busy, regardless of executing or being suspended. By doing so, it is safe but there may
have to some degree pessimism over analysis. This is because any executions on the
core during resource accesses, and vice versa, of the analyzed task have no impact
on this analyzed task. In this section we propose an approach, similar to the one in
Section 4.2.4, to improve the analysis in Section 5.3.2.1.

Let S∗ be the upper bound on the cumulative times, not necessarily contiguous,
of a job of task τk that executes or waits in the waiting queue to be granted to enter the
critical section. Similarly, suppose X∗ is the upper bound on the cumulative times,
necessarily contiguous, of a job of task τk that executes or waits in the waiting queue to
execute its non-critical-section. Unlike S(t) and X(t), the upper bound on demands
generated over an interval, S∗ and X∗ are the times of task τk spent on some particular

82

5.6 improved response time analysis

processing element, independent of any interval of interest. By the definition of S∗ and
X∗, they are the times by which a job of task τk will certainly finish its execution on the
synchronization processor and the application, respectively. Taking such upper bounds
into consideration, we can tighten the analysis in Theorem 5.2 as follows:

Theorem 5.5. The smallest t satisfying the following

min{S∗, S(t)}+ min{X∗, X(t)} ≤ t (5.39)

is a safe upper bound on the response time of task τk if t ≤ Tk.

Consider multiple requests with at most σ times from a task on same processing
element. The work by a higher-priority task τi that may prevent such requests from
execution over an interval of length t is upper bounded by:

Ei,q(t, σ) =

(
σ− 1 +

⌈
t + σ · (RTi − Ai,q)

Ti

⌉)
Ai,q (5.40)

Intuitively speaking, the σ− 1 extra complete jobs here counted are the price we have
to pay for having arbitrary requests.

Similarly, we have the workload function for a higher-priority task preventing σ

normal executions over an interval of length t:

Wi(t, σ) =

(
σ− 1 +

⌈
t + σ · (RTi − Ci)

Ti

⌉)
Ci (5.41)

Putting these pieces together, we have the following two lemmas to bound the response
times, S∗ and X∗:

Lemma 5.6. S∗ for task τk is the smallest t satisfying the following inequality:

S(t) = Ak + γkBk + IrRes
k (t, γk) (5.42)

where γk is defined as in Eq. (5.35) and

I lRes(t, σ) = ∑
Rq∈Θl

∑
τi∈hp(k)

Ei,q(t, σ) (5.43)

Notice that with σ external requests, there are at most σ + 1 normal executions within
a job.

Lemma 5.7. X∗ for task τk is the smallest t satisfying the following inequality:

X(t) = InRes(t, γk + 1) + Ck (5.44)

where γk is defined as in Eq. (5.35) and

InRes(t, σ) = ∑
τi∈hpl(k)

Wi(t, σ) (5.45)

83

synchronization

5.7 experimental results

In this section, we conduct extensive experiments using synthesized task sets. We
evaluate these tests on m-processor platforms. We generate 100 task sets for each
utilization level, from 0.05m to m, in steps of 0.05m. The metric to compare the results is
to measure the acceptance ratio. The acceptance ratio of a level is said to be the number
of task sets that are deemed schedulable by the test divided by the number of task sets
for this level, i.e., 100.

The cardinality of the task set is 10 times the number of processors, e.g. 40 tasks on
4 processors. We use the approach suggested by Emberson et al. [ESD10] to generate
the task periods according to the exponential distribution. The distribution of periods is
within two orders of magnitude, i.e., 10ms-1000ms. Task relative deadlines are implicit,
i.e., Di = Ti.

We vary the ratio of non-critical-sections to critical-sections α ∈ {20, 5} to evaluate the
effect of resource sharing: the smaller the α, the more the critical-sections. For example,
if α = 5 and the utilization level UΣ = 120%, we have URS = 120%× 1

5+1 = 20% and
UC = 120%× 5

5+1 = 100% in the system. In each utilization step, the Randfixedsum

method [ESD10] is adopted twice to generate two sets of utilization values with the
given goals of critical-sections and non-critical-sections. We ensure that for every task
τi, UA

i + UC
i ≤ 1. The worst-case execution time of a task for its non-critical-sections

and critical-sections is set accordingly, i.e., Ci = TiUC
i and Ai = TiUA

i .

We assume there are 5, 8, and 16 shared resources in multiprocessor systems
comprised of 4, 8, and 16 processors, respectively. We vary the number of shared
resources that a task requests N ∈ {1, 3}. For each task, we then again use the
Randfixedsum method to generate a set of vectors which are evenly distributed in the Q
resource accesses and the total access utilization sums to its critical-section utilization.
The critical section of accessing resource Rq of task τi is set accordingly, i.e. Ai,q = Ui,qTi.
We set the number of requests on each resource during execution N to either 1 or 3.
The maximum total resource usage time Vi,q for resource Rq by any single job of τi is
drawn uniformly from [Ai,q/N, Ai,q].

The global/partitioned RM scheduling is applied by default in the system, unless
otherwise stated. The evaluated tests are listed as follows:

• PIP: the Priority Inheritance Protocol (PIP) [EA09], which is a fixed-priority global
scheduling algorithm.

• MPCP: the Multiprocessor Priority Ceiling Protocol (MPCP) [Raj90] along with
the Synchronization-Aware Partitioning Algorithm (SPA) [LNR09]. Informally
speaking, contrary to the proposed approach, the MPCP can be thought of as the
conservative approach wherein task bodies are not split.

• MrsP: the Multiprocessor resource sharing Protocol (MrsP) [BW13] along with
the SPA.

84

5.7 experimental results

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

PIP MPCP MrsP R-NPP R-PCP NCDBF

Figure 5.6: Effectiveness by different algorithms with m = 4, α = 20, r = 5, Q =

1, N = 1.

• R-NPP: the proposed resource-oriented partitioned scheduling using ROP-NPP
by Algorithm 3 where Theorem 5.3 uses the blocking time Eq. (5.11).

• R-PCP: the proposed resource-oriented partitioned scheduling using ROP-PCP
by Algorithm 3 where Theorem 5.3 uses the blocking time Eq. (5.12).

• NCDBF: the theoretical upper bound using necessary conditions stated in
Lemma 5.3.

To make comparison fair, all the implemented tests have pseudo-polynomial time
complexity. We note that the accuracy of the sufficient schedulability tests listed above
can be improved by formalizing the problem of finding a response-time bound as a
linear optimization problem [YWB15]. However, tests using the LP solver may suffer
from their high time complexity, especially, in conjunction with partitioning resources
and tasks. Besides, we here focus on showing the effectiveness of protocols themselves,
and similar results can be seen under LP formalizations.
Result I. We show the evaluation of the performance by the above scheduling algorithms
in terms of task sets deemed schedulable. Figures 5.6 to 5.11 show the effectiveness
by different algorithms, varying the number of processors m, the ratio of non-critical-
sections to critical-sections α, the number of available resources r, the maximum number
of resource accesses Q, and the maximum requests on each resource N. In the first two
figures (Figures 5.6 and 5.7), we vary the number of processors m ∈ {4, 8}, assuming
α = 20, Q = 1, and N = 1. We first notice that both the R-NPP and the R-PCP dominate
all the existing approaches, including the PIP, the MPCP, and the MrsP. The later three
are neither better than another.

Although the PIP bounds the priority inversion and is shown to be relatively
effective [YWB15], the execution for a job still suffers from the chained blocking.
MPCP and MrsP using the SPA attempt to assign each of the so-called macrotasks
(defined in [LNR09]) onto a processor. However, it is often the case that a macrotask is

85

synchronization

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o
PIP MPCP MrsP R-NPP R-PCP NCDBF

Figure 5.7: Effectiveness by different algorithms with m = 8, α = 20, r = 8, Q =

1, N = 1.

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

PIP MPCP MrsP R-NPP R-PCP NCDBF

Figure 5.8: Effectiveness by different algorithms with m = 8, α = 5, r = 8, Q = 1, N =

1.

too heavy to fit into one processor and hence is forced to be split into several processors.
After that, any task belonging to the split macrotask suffers from the excessive blocking
time incurred by lower-priority tasks on other processors. On the other hand, even
though the total utilization of a macrotask can fit into one processor, sometimes it is
better to shift some non-critical-section execution to other processor as the utilization
of a macrotask may become quite heavy. Hence, not surprisingly, PIP, MrsP, and MPCP
perform worse than R-PCP and R-NPP, both minimizing the number of blocking with
Q = 1 and N = 1.

It is remarkable that both R-PCP and R-NPP can still keep pace with the theoretical
upper bound, the NCDBF, until utilizations are over 70%. A similar result can also be
seen from Figure 5.11 where a 16-processor platform is assumed.

86

5.7 experimental results

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

PIP MPCP MrsP R-NPP R-PCP NCDBF

Figure 5.9: Effectiveness by different algorithms with m = 8, α = 20, r = 8, Q =

3, N = 1.

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

PIP MPCP MrsP R-NPP R-PCP NCDBF

Figure 5.10: Effectiveness by different algorithms with m = 8, α = 20, r = 8, Q =

1, N = 3.

In Figures 5.7 and 5.8, we vary α in [20, 5] on a 8-processor platform with 8 shared
resources where a task requests one resource out of the five, assigned randomly, and
each job of a task requests the resource once during its execution. We first notice that
NCDBF drops off as α decreases from 20 to 5. R-PCP and R-NPP can still keep pace
with the theoretical upper bound, NCDBF, until utilizations are over 50%

In Figures 5.9 and 5.10, we evaluate the effect of accessing multiple resource and
requesting multiple times on one resource. Here we can see that despite that R-PCP and
R-NPP are still superior to the others, there exists a large gap between the theoretical
upper bound and the best available algorithm, dropping down from 40% with multiple
resource accesses and from 25% with multiple requests on one resource. We also notice
that in Figure 5.10 both MPCP and MrsP drop quickly from 15%. This is due to that
the SPA algorithm only considers utilizations to allocate tasks onto processors. With

87

synchronization

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o
PIP MPCP MrsP R-NPP R-PCP NCDBF

Figure 5.11: Effectiveness by different algorithms with m = 16, α = 20, r = 16, Q =

1, N = 1.

multiple resource accesses, it is often the case that a macrotask, within which tasks
directly or indirectly share resources are bundled, becomes extremely heavy. The
algorithm allocates the tasks within the macrotask onto one processor as far as possible,
so as to reduce the processors used (also remote blocking). As a result, some tasks
on this processor can be punished by such excessive interferences: the effectiveness of
partitioned protocols is highly dependent on task partitioning. Hence, both designing
synchronization protocols and finding task mapping are needed to be considered.

From the perspective of schedulability, using PCP in each individual processor is
as good as using the non-preemptive scheduling. Surprisingly, R-PCP and R-NPP
have almost the same performance in our evaluations (although invisible, there still
have some tasks not deemed schedulable by R-NPP but schedulable by R-PCP). This is
because the long blocking incurred by the NPP might be painlessly removed by finding
a good task and resource partitioning.

Maintaining a list of currently locked semaphores and priority ceiling orders during
runtime may incur a noticeable computational overhead. In practice, one would expect
R-NPP to be default, and R-PCP to be used only when the unnecessary blocking from
the non-preemptive scheduling can be surely removed. Last but not least, the research
result reported in this paper suggests that finding a good task mapping and resource
allocation is as important as designing a good resource sharing protocol while ignoring
task partitioning.
Result II. Intuitively speaking, task partitioning is tractably done by iteratively ensuring
the schedulability of each task, starting from the task with highest priority, until
a feasible partitioning is found or no processor can accommodate the task being
assigned. The idea behind this is that no tasks that have been successfully assigned
can be jeopardized by the task being assigned. Under our proposed resource-oriented
algorithm, a synchronization processor may execute non-critical sections. In this case,

88

5.7 experimental results

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

R-elvPCP R-NPP R-PCP R-DNP+ R-PCP+ NCDBF

Figure 5.12: Effectiveness by different algorithms with m = 4, α = 20, r = 5, Q =

1, N = 1.

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

R-elvPCP R-NPP R-PCP R-DNP+ R-PCP+ NCDBF

Figure 5.13: Effectiveness by different algorithms with m = 8, α = 20, r = 8, Q =

1, N = 1.

the above idea is followed if a task being assigned executes its non-critical sections on
the synchronization processors at the priority no higher than all the tasks that have been
successfully assigned. But at which priority should the task execute its non-critical
sections? From the schedulability point of view, assigning higher priority for the task
executing its non-critical sections may make this task easier schedulable at first, but
may result in longer resource access times for the tasks that have not been assigned yet.
We discuss two extreme cases in this dissertation:

1. the execution of non-critical-sections at lower priority than any of critical-sections.
2. the execution of non-critical-sections at its base priority.

Notice that the first case has been preferably studied in this dissertation, as appeared
in Section 5.3.2.2. The question is whether or not the second case can outperform the
first one. Another question interesting to know is how much the schedulability can be

89

synchronization

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o
R-elvPCP R-NPP R-PCP R-DNP+ R-PCP+ NCDBF

Figure 5.14: Effectiveness by different algorithms with m = 8, α = 5, r = 8, Q =

1, N = 1.

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

R-elvPCP R-NPP R-PCP R-DNP+ R-PCP+ NCDBF

Figure 5.15: Effectiveness by different algorithms with m = 8, α = 20, r = 8, Q =

3, N = 1.

improved by using the improved response time analysis proposed in Section 5.6. The
evaluated tests are listed as follows:
• R-elvPCP: the execution of non-critical-sections on each synchronization processor

at its base priority.
• R-NPP: the proposed resource-oriented partitioned scheduling using ROP-NPP

by Algorithm 3 where Theorem 5.3 uses the blocking time Eq. (5.11).
• R-PCP: the proposed resource-oriented partitioned scheduling using ROP-PCP

by Algorithm 3 where Theorem 5.3 uses the blocking time Eq. (5.12).
• R-NPP+: the improved ROP-NPP using Theorem 5.5.
• R-PCP+: the improved ROP-PCP using Theorem 5.5.

Figures 5.12 to 5.17 show the effectiveness by the above algorithms. In all the
evaluated settings we notice that the performance by R-elvPCP is not as good as one

90

5.8 summary

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

R-elvPCP R-NPP R-PCP R-DNP+ R-PCP+ NCDBF

Figure 5.16: Effectiveness by different algorithms with m = 8, α = 20, r = 8, Q =

1, N = 3.

0 20 40 60 80 100
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

R-elvPCP R-NPP R-PCP R-DNP+ R-PCP+ NCDBF

Figure 5.17: Effectiveness by different algorithms with m = 16, α = 20, r = 16, Q =

1, N = 1.

would expect: there is a noticeable gap between R-elvPCP and R-PCP. On the other
hand, the approaches using the improved response time analysis, R-PCP+ and R-NPP+,
can additionally admit quite a number of task sets that are not deemed schedulable by
R-PCP and R-NPP.

5.8 summary

In this chapter, we study the problem of scheduling real-time tasks with synchronization.
We show that the proposed resource-oriented scheduling using PCP combined with
a reasonable allocation algorithm can achieve a non-trivial speedup factor guarantee.
Furthermore, our empirical investigations indicate that the resource-oriented scheduling

91

synchronization

algorithm using NPP is pragmatically good in the sense of high performance in terms
of schedulability and low runtime overheads.

92

6
M U LT I - M O D E TA S K M O D E L

6.1 Uniprocessors . 95

6.1.1 Schedulability Analysis under FPT Scheduling 97

6.1.2 Schedulability Analysis under FPM Scheduling 104

6.1.3 Evaluations . 117

6.2 Multiprocessors . 121

6.2.1 Utilization Bounds in Uniprocessors 122

6.2.2 Reasonable Allocation Decreasing Algorithm 123

6.2.3 Utilization Bound by Using QB . 124

6.2.4 Bounds Based on Max Utilization 127

6.2.5 Evaluations under different RADs 131

6.3 Summary . 132

Formal models used for representing recurrent real-time processes have traditionally
been characterized by a collection of jobs that are released periodically. However, such
a modeling may result in resource under-utilization in systems whose behaviors are
not entirely periodic. For instance, tasks in Cyber-Physical System (CPS) may change
their service levels, e.g., periods and/or execution times, to adapt to the changes of
environments.

In CPS, the characteristics of a real-time task may be able to change over time, e.g.,
the computational demand or the resource allocation. Such behavior is referred to as
mode changes. The importance of mode changes for real-time systems has been pointed
out in many perspectives, for instance, aircraft control systems, automotive Electronic
Control Units (ECU) [RC04; DFPS14], energy management [SCT10a], and server-based
systems [SBB11].

Specifically, the engine control in automotive systems has several computational
demands reacted to different angular rotations. In each periodic interval, the engine
control software calculates the engine speed and position to determine when to fire
the next spark signal and evaluates the acceleration/deceleration commands from
the driver to adjust the settings of fuel flow [DFPS14]. Such a control has the nature
of computation mode changes according to the physical environment. Besides, the
stringent timing requirement has to be met to inject and to deliver fuel to each cylinder
at every revolution.

In automotive applications, several tasks are linked to rotation (e.g., of the crankshaft,
gears, or wheels). Thus their activation rate is proportional to the angular velocity of
a specific device. In such a system a common practice is to design a rate-dependent

93

multi-mode task model

task, called Variable Rate-dependent Behavior (VRB) task model [KLR12; DFPS14;
BBB14; BMMNB14]. Typically, at lower rotation some functions that minimize fuel
consumption and emissions have to be executed, whereas they are shed at higher
rotation speeds to reduce the processor utilization. Table 6.1 illustrates an example of a
task with four levels of functionality, specified for different speed intervals.

Table 6.1: An example of variable-rate behavior task with four types of execution modes
dependent on the rotation speed.

rotation (rpm) functions to be executed
[0, 2000] f 1(); f 2(); f 3(); f 4();

(2000, 4000] f 1(); f 2(); f 3();
(4000, 6000] f 1(); f 2();
(6000, 8000] f 1();

In this chapter we study a real-time system comprised of n independent, preemptive
multi-mode tasks τ = {τ1, τ2, ..., τn} where each task has several execution modes to
switch during the runtime. The cost of synchronization on mode change within a
task is assumed to be subsumed into the worst-case execution time of each mode. A
multi-mode task τi with Hi modes is denoted by a set of triplets:

τi = {τ1
i = (C1

i , T1
i , D1

i),

τ2
i = (C2

i , T2
i , D2

i), ...,

τHi
i = (CHi

i , THi
i , DHi

i)}

Cm
i denotes the WCET of task τi under mode m, Tm

i denotes the minimum inter-arrival
time of task τi under mode m, and Dm

i denotes the relative deadline. That is, when a
job of mode τm

i is released at time t, the next release time of task τi is no earlier than
t + Tm

i , and when a job of mode τm
i is released at time t, this job has to be finished no

later than its absolute deadline at time t + Dm
i .

Related Mode Change Models

The studied mode change model is a generalization of the sporadic model [Mok83].
The concept of mode change is distinct from that of system-wide operating
modes [TBW92; SRLR89]. This model characterizes the system where different tasks
may progress through their different execution modes independent of each other.

Even though the studied mode change model essentially differs from the VRB model
where different angular sources drive the inter-arrival time, the mode change model
is still applicable when considering only those thresholds that determine which level
of functionality should be executed, and in fact the worst-case scenario occurs at the
particular value of thresholds. Similar concepts have been presented in [DFPS14]. In

94

6.1 uniprocessors

general, the mode change model can be thought of as a relaxation model of VRB task
model [KLR12; DFPS14] and digraph Digraph Real-Time (DRT) [SEGY11]. From the
designer’s perspective, the studied mode change model provides an easier way to
specify and reason comparing to the more general DRT model.

Specifically, this dissertation studies two scheduling algorithms upon multi-mode
task uniprocessor systems: FPT and FPM. In this dissertation, we derive a technique
for analyzing the schedulability in uniprocessor multi-mode systems. Based on this
technique, we propose tests that leverage the accuracy and the time complexity for
both FPT and FPM scheduling in multi-mode uniprocessor systems. Furthermore, we
make use of these tests from uniprocessor systems to derive utilization bounds for
multiprocessor multi-mode systems.

The presentation is organized as follows: This chapter consists of two main parts: (i)
uniprocessors, in Chapter 6.1, and (ii) multiprocessors, in Chapter 6.2. In Chapter 6.1.1,
we first review the known critical instance for multi-mode tasks, and then formally
define a multi-mode demand bound function. After putting these pieces together,
the schedulability test for uniprocessor multi-mode systems under FPT scheduling is
derived. In Chapter 6.1.2, based on the proposed technique for FPT scheduling, we
derive schedulability tests for FPM scheduling. From there, we prove that a utilization
bound of 2−

√
2 ≈ 0.5857 can be guaranteed in implicit-deadline multi-mode systems

under rate-monotonic (RM) scheduling, one example of FPM scheduling. In Chapter 6.2,
following the result from uniprocessor systems, we trivially provide a utilization bound

∑i Ui ≤ 2−
√

2
2 M ≈ 0.293 · M if Ui ≤ 2 −

√
2 for every task τi. More favorably, a

utilization bound ∑i Ui ≤ 3−
√

5
2 M ≈ 0.381 ·M on multiprocessor systems under RM

scheduling is derived in Chapter 6.2.3. In Chapter 6.2.4, we then further improve this
bound by considering the upper bound on the utilization for every task. Finally, we
summarize our results in Chapter 6.3. The notation and terminology to be used in this
chapter are listed in Table 6.2.

6.1 uniprocessors

The objective of the mode change schedulability analysis is to guarantee that a system
is feasible not only in the steady state but also during the mode transition. In mode
change systems, during mode transitions, the phenomenon of demand strides may
occur and lead to an unfeasible scheduling, even though there is no deadline miss in
the steady state. We show this with the following example:
Example. Consider a system with one multi-mode task and one sporadic task: τ1 =

{(2, 3, 3), (4, 8, 8)} and τ2 = {(4, 12, 12)}. Both tasks are schedulable by RM without
mode transition. However, task τ2 misses its deadline at time-instant 12 when task τ1

switches from mode τ2
1 to mode τ1

1 at time-instant 9, as illustrated in Figure 6.1.
On the other hand, if mode τ2

1 is released at the beginning, followed by mode τ1
1 ,

then τ2 becomes schedulable, meaning that different release sequences of modes may

95

multi-mode task model

symbol meaning

M the number of processors available
N the number of tasks
Hi the total number of modes of task τi
Cmax

i the maximum worst-case execution times of task τi among all the
modes to invoke; Cmax

i = maxτm
i ∈τi(C

m
i)

Ch
i /Th

i the utilization factor Uh
i of task τi under mode h

Ui the (maximum) utilization of task τi; Ui = maxh=1,...,Hi{Uh
i }

βi the ratio of the maximum worst-case execution times among modes to
the maximum utilization among modes; βi = Cmax

i /Umax
i

α the upper bound on utilizations for every task; 0 < Ui ≤ α ≤ 1
Usum the total utilization of the system; Usum = ∑N

i=1 Ui ≤ M
DBFi(t, τh

k) the demand bound function of a multi-mode task τi over an interval of
length t with respect to mode τh

k

Table 6.2: Multi-mode systems: notation and terminology

result in different response times. As a result, we have to take combinatorial releases
into account so as to identify the worst-case scenario. In addition, the response time of
a task depends on not only release sequences of modes but also time instants of mode
releases.

We first check whether there exists critical instant for multi-mode tasks, in the hopes
of providing analysis amenable to the calculation of WCRT. Critical instant is the instant
at which the execution of a task will have the longest response time [LL73]. For sporadic
tasks with constrained deadlines, it is proven that the critical instant for a task occurs
when the task is released simultaneously with all higher priority tasks and all the
following jobs are released as early as possible [LL73]. As for multi-mode tasks, the
critical instant for a multi-mode task under FPT scheduling has been shown in Theorem
1 in [DFPS14].1 For completeness, we paraphrase this theorem in the following lemma:

Lemma 6.1 (Davis et al. [DFPS14]). There is a sequence Y of jobs of task τi , that τi releases
the maximum interference Ii(w) in a window [0, w), where

1. the offset, from the start of the window, of the first job of τi is zero;

2. each of the jobs of τi released in the window has the minimum period commensurate with
its particular execution mode;

3. the last job has the largest WCET for any execution mode.

1 Although the focus in [DFPS14] was for the VRB task model, the critical instant theorem in [DFPS14]
works for the mode change task model in this dissertation as well. The proof to create the maximum
interference is exactly the same.

96

6.1 uniprocessors

τ 11 = (2, 3, 3)
τ2 = (4, 12, 12)

τ2 τ2 τ2 τ2τ 11

0

τ 11

3

τ 11

6

τ 11

9

τ 11 , τ2 τ 11 τ 11 τ 11

τ 21 = (4, 8, 8)
τ2 = (4, 12, 12)

τ2τ 21 τ 21

τ 21

0

τ 21

8

τ 11 = (2, 3, 3)
τ 21 = (4, 8, 8)
τ2 = (4, 12, 12)

τ2 τ2 τ2τ 11 τ 11 τ 11 τ 21

τ 11 , τ2 τ 11 τ 11 τ 21 miss

×

0 3 6 9 12

Figure 6.1: The missed deadline during mode transition

Nevertheless, unlike for the sporadic task, the critical instant provided in Lemma 6.1
is only necessary for creating the maximum interference. The calculation of the
exact worst-case interference from all tasks involves enumerating all possible release
sequences that satisfy the above conditions, but is, however, computationally intractable
since the time complexity is O(W1 ×W2 × ...Wn−1) where Wi is the possible release
sequences within the input period and is ≥ Mi.

As an amenable solution, instead of enumerating possible release sequences of all the
tasks, one can count the interferences from tasks one by one, by enumerating each task’s
possible release modes over the interval of interest, which is computable in pseudo-
polynomial time. Such an approach has been proposed in the literature. For instance,
a method using integer linear programming (ILP) solvers for deriving the maximum
demand has been proposed in [DFPS14]. Also, a dynamic programming method has
been reported in [SEGY11] for the DRT model, which is a generalization of the studied
mode change model. However, both approaches may lead to an over-approximation of
the exact response time, due to non-concrete traces.

6.1.1 Schedulability Analysis under FPT Scheduling

In this section, we first introduce the concept of the multi-mode demand bound
function, and then make use of this function to derive a sufficient schedulability test
for multi-mode task systems under a given FPT assignment, in Theorem 6.4.

97

multi-mode task model

By Lemma 6.1, we can see that no matter how the sequence of task τi releases prior
to the arrival time of the last release, one can replace the last release mode in [0, w) by
the mode with the largest WCET among all modes without decreasing the interference.
Based on this observation, we can decompose the interference from a multi-mode task
into two parts: (i) the execution time from the last release that has the largest WCET
among modes; and (ii) the total demand prior to the arrival time of the last release.
We formally define the last release time and multi-mode demand bound function as
follows:

Definition 6.1 (Last Release Time). For a given sequence of releases of task τi in the
interval [t0, t0 + t), we define ti as the time of the last release of task τi upon the
sequence.

Definition 6.2 (Multi-mode demand bound function). For any interval length of t, the
demand bound function DBFi(t, τh

k) of a multi-mode task τi is defined as the maximum
cumulative execution requirement by jobs of τi that are assigned with higher priority
than mode τh

k and have both arrive time and next release time within an interval length
of t.

Multi-Mode Demand Bound Function

The DBF bounds the maximum cumulative execution requirement by jobs of task
τi that both arrive in and have absolute deadlines within any interval of length t,
as mentioned earlier in Definition 2.5. This function for sporadic tasks, shown in
Eq. (2.1), is computable in constant time. As far as multi-mode tasks are concerned, the
multi-mode demand bound function however involves combinatorial releases.

In fact, calculating the multi-mode demand bound function is equivalent to the
well-known unbounded knapsack problem (UKP) [Van93]. The unbounded knapsack problem
is to determine the number of each item to include in a collection of items so that
total weight (execution time) of the selected items is less than or equal to a given
limit (interval length) (called knapsack) and total value (cumulative executions) of the
selected items is maximized.

Given that the UKP can be optimally solved by using dynamic programming [Van93],
the multi-mode demand bound function is solvable in pseudo-polynomial time.
Furthermore, it has been shown in [Van93] that an upper bound B for UKP is

B =

⌊
c

p1

w1

⌋
(6.1)

where pi denotes the profit of an item of type i, wi denotes the weight of an item of type
i, c is the limit of the knapsack, and the item types are ordered so that

p1

w1
≥ p2

w2
≥ ... ≥ pn

wn
(6.2)

98

6.1 uniprocessors

Notice that p1
w1

corresponds to the maximum utilization among the eligible modes, i.e.,
Umax

i (τh
k). Lemma 6.2 follows immediately:

Lemma 6.2. For any τi and a higher-priority mode τh
k , for t > 0

DBFi(t, τh
k) ≤ t ·Umax

i (τh
k)

Proof. Notice that p1
w1

= Umax
i (τh

k).

By Eq. (6.1) DBFi(t, τh
k) ≤

⌊
tUmax

i (τh
k)
⌋

⇒ DBFi(t, τh
k) ≤t ·Umax

i (τh
k)

It is worth noting that by definition it is possible that the mode belonging to Umax
i (τh

k)

has a period > t and thus cannot both arrive in and have next release time within
interval length of t. Nevertheless, the upper bound still holds. We will use the upper
bound on the multi-mode demand function to derive a schedulability technique that
requires the continuity of the upper bound with the interval length of t. The mode
having period larger than t can be removed only if the interval of interest is known,
e.g., under FPT 0 < t ≤ Dh

k .

6.1.1.1 Sufficient Test

In this section, we use the concept of the interference decomposition to derive a
technique for analyzing schedulability of real-time systems represented using the mode
change model.

Consider any legal sequence of jobs of task system τ, on which a deadline miss
occurs. Suppose that a mode m of the kth- highest priority task is the one to first miss a
deadline and that the mode arrives at time-instant ta and this deadline miss occurs at
time-instant ta + Dh

k .
Without loss of generality, by Lemma 6.1, we set ta = 0. We first assume that the

tasks assigned with higher priority than mode τh
k are indexed according to the last

release time ordering π, upon which the deadline miss occurs.

Definition 6.3 (Last Release Time Ordering). Let π be the assignment of a last release
time ordering as a bijective function π : τ → {1, 2, . . . , k− 1} to define the last release
time ordering of task τi ∈ hp(τh

k). The ordering of last releases is numbered from 1 to
k− 1 where 1 is the earliest and k− 1 the latest.

We now derive a necessary condition for a deadline miss to occur with a last release
time ordering π in the following lemma:

99

multi-mode task model

Lemma 6.3. If task mode τh
k misses its deadline under FPT upon a last release assignment π,

then there exists an assignment t1, t2, . . . , tk−1 ∈ [0, Dh
k) of the last release of task τi such that

∀i ∈ {1, ..., k− 1, k}
k−1

∑
j=1

DBFj(tj, τh
k) +

i−1

∑
j=1

Cmax
j + Ch

k > ti (6.3)

where tk ≡ Dh
k .

Proof. By Lemma 6.1 and the assumption of the deadline miss of mode τh
k , the released

pattern described in Lemma 6.1 will result in a deadline miss for the job released by
mode τh

k at time ta = 0. Let π be such a last release ordering, and define the last release
time ti of task τi for i = 1, 2, . . . , k− 1 accordingly with ti ≤ ti+1. The executed workload
of the job released by mode τh

k must be strictly less than Ch
k amount of execution time

over [0, Dh
k]. We observe the followings:

• At time point ti for any i = 1, 2, . . . , k− 1, the requested higher-priority execution
time prior to ti plus Ch

k is larger than ti.

• Up to time ti, a task τj with j = 1, 2, . . . , i− 1 has requested DBFj(tj, τh
k) + Cmax

j
amount of execution time to be executed.

• Up to time ti, a task τj with j = i, i + 1, . . . , k − 1 has requested DBFj(ti, τh
k)

amount of execution time to be executed.

The above observation results in ∀i = 1, 2, . . . , k,

Ch
k +

i−1

∑
j=1

(DBFj(tj, τh
k) + Cmax

j) +
k−1

∑
j=i

DBFj(ti, τh
k) > ti

By the fact that DBFj(t, τh
k) is monotonically non-decreasing with respect to the interval

length t, we know that DBFj(ti, τh
k) ≤ DBFj(tj, τh

k) when j ≥ i. (Due to the last release
ordering π, we have tj ≥ ti for such cases.) As a result, we reach the conclusion in
Eq. (6.3).

Without knowing the exact last release times ti, all possible last release time-instants
of ti have to be enumerated by combinatorial releases as shown in [DFPS14]. In contrast,
in this work we are aiming at obtaining tests that leverage the accuracy and the time
complexity (in polynomial). In the following lemma we provide a necessary condition
for a deadline miss by maximizing the higher-priority tasks’ interference in Eq. (6.3),
depending on the assignment of last release times:

Lemma 6.4. If mode τh
k misses its deadline upon a last release time assignment π, it must be

either the case that

Ch
k +

k−1

∑
i=1

Cmax
i > Dh

k (6.4)

100

6.1 uniprocessors

or

Ch
k > Dh

k −
k−1

∑
i=1

(
Umax

i ·
(

Dh
k −

k−1

∑
j=i

Cmax
j

))
−

k−1

∑
i=1

Cmax
i (6.5)

Proof. In the case of Eq. (6.4), it is clear that there will be a deadline miss.
We now consider the case where Eq. (6.4) does not hold. From Lemma 6.3, we

know that it is necessary for a deadline miss to occur: there exists an assignment
t1, t2, . . . , tk−1 ∈ [0, Dh

k) of the last release of task τi, ∀i ∈ {1, ..., k− 1, k}

k−1

∑
j=1

DBFj(tj, τh
k) +

i−1

∑
j=1

Cmax
j + Ch

k > ti

(By Lemma 6.2)⇒
k−1

∑
j=1

Umax
j tj +

i−1

∑
j=1

Cmax
j + Ch

k > ti

where tk ≡ Dh
k . Our objective is to find the infimum Ch

k such that the above constraints
always hold. In fact, this is equivalent to the following linear programming (LP):

inf C∗

s.t.
k−1

∑
j=1

Umax
j tj +

i−1

∑
j=1

Cmax
j + C∗ > ti, ∀1 ≤ i ≤ k (6.6a)

ti ≤ ti+1, ∀1 ≤ i ≤ k− 1 (6.6b)

ti ≥ 0, ∀1 ≤ i ≤ k− 1 (6.6c)

where Eq. (6.6c) and Eq. (6.6b) come from the definition of ti and tk ≡ Dh
k for

notational brevity. We now replace > with ≥ in Eq. (6.6a) as infimum and minimum
are the same if ≥ is used.

From Eq. (6.6a) when i = k, we get C∗ ≥ tk −∑k−1
j=1 Umax

j tj −∑k−1
j=1 Cmax

j . Then, we can
use this inequality by adding a slack variable s ≥ 0 into its RHS to replace C∗ in our
objective, and thus finding the minimum Ch

k is equivalent to finding the maximum
∑k−1

j=1 Umax
j tj − s as tk and ∑k−1

j=1 Cmax
j are constant. Additionally, by replacing C∗ in

Eq. (6.6a), we get

k−1

∑
j=1

Umax
j tj +

i−1

∑
j=1

Cmax
j + tk −

k−1

∑
j=1

Umax
j tj −

k−1

∑
j=1

Cmax
j + s ≥ ti

≡tk −
k−1

∑
j=i

Cmax
j + s ≥ ti, ∀1 ≤ i ≤ k− 1

101

multi-mode task model

After reformulation, we have the following LP:

max
k−1

∑
j=1

Umax
j tj − s

s.t. tk −
k−1

∑
j=i

Cmax
j + s ≥ ti, ∀1 ≤ i ≤ k− 1 (6.7a)

ti ≤ ti+1, ∀1 ≤ i ≤ k− 1 (6.7b)

s, ti ≥ 0, ∀1 ≤ i ≤ k− 1 (6.7c)

The objective function is maximized when ti is maximized and s is minimized if
all the constraints in Eq. (6.7a), Eq. (6.7b) and Eq. (6.7c) are feasible. From Eq. (6.7a),
any increase ∆ on s will increase the feasible range of ti by at most ∆, but, at the
same time, the objective function decreases due to the assumption that ∑n

i=1 Ui ≤ 1,
i.e., ∆ ∑n

i=1 Ui − ∆ ≤ 0. Thus, the objective function is maximized when s = 0. From
Eq. (6.7a), ti is upper bounded by tk −∑k−1

j=i Cmax
j , by assuming s = 0. In other words,

if there are no constraints violated by setting ti = tk −∑k−1
j=i Cmax

j and s = 0, then the
objective function is maximized.

By setting ti = tk −∑k−1
j=i Cmax

j and s = 0, the given condition that Eq. (6.4) does not

hold implies ti’s non-negativity by Eq. (6.7c), i.e., tk −∑k−1
j=i Cmax

j ≥ Dh
k −∑k−1

j=1 Cmax
j ≥

Ch
k > 0. In addition, this setting assures that ti ≤ ti+1 by Eq. (6.7b). This immediately

follows that the maximum ∑k−1
j=1 Umax

j tj − s occurs when all the constraints in Eq. (6.7a)
are active and s = 0, and thus we have that for 1 ≤ i ≤ k− 1

ti = tk −
k−1

∑
j=i

Cmax
j (6.8)

Replacing ti in C∗ = tk −∑k−1
j=1 Umax

j tj−∑k−1
j=1 Cmax

j − s by the above equalities and s = 0,
we obtain the minimum C∗, as represented in the RHS of Eq. (6.5). Thus, we conclude
that if mode τh

k misses its deadline upon a last release time assignment π and Eq. (6.4)
does not hold, it must the case that Ch

k > C∗. Hence, this lemma is proven.

However, the necessary condition above for a deadline miss is established upon
a given last release ordering π. Without knowing the exact ordering observed in
the schedule, intuitively, one may relax the ordering assumption by examining all
the possible permutations. However, this is computationally intractable as (k − 1)!
permutations have to be necessarily checked. Fortunately, the following lemma shows
that Dh

k − ∑k−1
i=1

(
Umax

i ·
(

Dh
k −∑k−1

j=i Cmax
j

))
− ∑k−1

i=1 Cmax
i is minimized for a specific

ordering of π.

102

6.1 uniprocessors

Lemma 6.5. Dh
k −∑k−1

i=1

(
Umax

i ·
(

Dh
k −∑k−1

j=i Cmax
j

))
−∑k−1

i=1 Cmax
i is minimized when the

last release time ordering π of the k− 1 higher priority tasks is with a non-increasing order of
βi.

Proof. Suppose that π∗ does not follow a non-increasing order of βi. That is, there
exists ℓ in the ordering π∗ such that βℓ < βℓ+1 for some ℓ = 1, 2, . . . , k− 2. We can
now swap these two tasks, and this results in a new last release time ordering π′. By
inspecting the term to be proved, we know that the last release ordering only changes

∑k−1
i=1

(
Umax

i ∑k−1
j=i Cmax

j

)
. Therefore, to prove the lemma, we just have to show that the

ordering π′ has smaller ∑k−1
i=1

(
Umax

i ∑k−1
j=i Cmax

j

)
than the ordering π∗. By comparing

these two orderings π∗ and π′, the term
(

Umax
i ∑k−1

j=i Cmax
j

)
remains the same in π and

π′ for any i ̸= ℓ and i ̸= ℓ+ 1. Therefore, the difference (the result by using π′ minus
the result by using π∗) in the term ∑k−1

i=1

(
Umax

i ∑k−1
j=i Cmax

j

)
is(

Umax
ℓ+1

k−1

∑
j=ℓ

Cmax
j + Umax

ℓ

k−1

∑
j=ℓ+1

Cmax
j

)
−
(

Umax
ℓ

k−1

∑
j=ℓ

Cmax
j + Umax

ℓ+1

k−1

∑
j=ℓ+1

Cmax
j

)

It follows that

Umax
ℓ+1 Cmax

ℓ −Umax
ℓ Cmax

ℓ+1 =Umax
ℓ+1 Umax

ℓ

(
Cmax
ℓ

Umax
ℓ

− Cmax
ℓ+1

Umax
ℓ+1

)
=Umax

ℓ+1 Umax
ℓ (βℓ − βℓ+1) <

1 0,

where the last inequality comes from the definition of ℓ and <1 is due to the non-
increasing order of βi.

Therefore, we can keep swapping the last release ordering to reduce

∑k−1
i=1

(
Umax

i ∑k−1
j=i Cmax

j

)
. By adopting the above swapping procedure repeatedly,

we reach the conclusion.

Since Lemma 6.4 is the necessary condition for a deadline miss to occur, equivalently,
the negation of Lemma 6.4 is the sufficient condition for a deadline to be met. We can
now conclude the following schedulability test by using Lemma 6.4 and Lemma 6.5.

Theorem 6.4 (QT-FPT). A constrained-deadline multi-mode task τh
k is schedulable if

Dh
k −

k−1

∑
i=1

Cmax
i − Ch

k ≥ 0

and

Ch
k ≤ Dh

k −
k−1

∑
i=1

(
Umax

i ·
(

Dh
k −

k−1

∑
j=i

Cmax
j

))
−

k−1

∑
i=1

Cmax
i

where the higher priority tasks τi are indexed by non-increasing βi.

103

multi-mode task model

Computational Complexity. There are (M1 + M2 + ...+ Mn) task modes to be checked
for the schedulability. The test for each mode runs in time of O(n2) without any
optimization while higher-priority tasks have to be sorted by non-increasing βi
beforehand, which requires O(n · log n). Therefore, the proposed test can be computed
in polynomial time of O(n2 · (M1 + M2 + ... + Mn)).

6.1.2 Schedulability Analysis under FPM Scheduling

In this subsection, we derive a schedulability test for multi-mode systems under FPM
scheduling by using a similar technique provided in Section 6.1.1. Specifically, we
study RM scheduling, one example of FPM, and then provide utilization bounds for
implicit-deadline multi-mode systems, in Theorem 6.7 and Theorem 6.8.

Several results have been reported on FPT scheduling [SY13; DFPS14]. We here show
that FPT scheduling may perform rather poorly comparing to FPM scheduling.

Example. Consider the set of tasks defined in Table 6.3 where task τ1 is a sporadic task;
τ2 is a multi-mode task; 0 < ϵ ≤ 0.5. If τ1 has higher priority than τ2, mode τ1

2 cannot
meet its deadline. Similarly, if τ2 has higher priority than τ1, task τ1 cannot meet its
deadline due to the preemption resulting from the mode τ2

2 .

Task Mode Cm
i Tm

i Dm
i

τ1 1 1 1/ϵ 1/ϵ

τ2 1 ϵ 1 1

2 1/ϵ (1/ϵ)2 (1/ϵ)2

Table 6.3: An example of associating fixed priority with the task set

According to the example, when FPT is adopted, a feasible scheduling that will
always meet deadlines does not exist, no matter task τ1 or task τ2 is assigned to the
higher priority for any ϵ > 0. Therefore, the utilization bound for such a case is 0 when
ϵ is close to 0. That is, there exist input instances with a very small utilization such that
the task set is not schedulable under any FPT assignments.

A naive way to check the schedulability under RM is to pessimistically consider
each mode as an individual sporadic task. Subsequently, by inspecting the Liu &
Layland bound [LL73], the schedulability of the above example can be guaranteed

when C1
1

T1
1
+

C1
2

T1
2
+

C2
2

T2
2
≤ 3(2

1
3 − 1) = 0.779 and accordingly ϵ ≤ 0.779

3 . Nevertheless, the
schedulability bound is inversely proportional to the total number of modes in a system,
and it thus cannot be put into practice.

To the best of our knowledge, there is no previous work studying on the mode
change system under FPM.

104

6.1 uniprocessors

6.1.2.1 Carry-in Effect under FPM Scheduling

Unfortunately, the critical instant provided by Lemma 6.1 is no longer satisfied under
FPM scheduling due to the so-called carry-in effect. We show this with the following
example.
Example. Consider a system with two tasks: a sporadic task τ1 = {(10, 30, 30)} and a
multi-mode task τ2 = {τ1

2 = (5, 10, 10), τ2
2 = (16, 30, 30)}. We assign the highest, the

middle, and the lowest priority to task τ1
2 , task τ1, and task τ2

2 , respectively. As shown
in Figure 6.2, five additional time-units jobs from mode τ1 are carried into the interval
of task τ2

2 ’s releases due to the preemption from higher-priority mode τ1
2 under FPM

scheduling. Hence, task τ2
1 misses its deadline at time 40, whereas it will meet its

deadline if released as the synchronous arrival sequence, mentioned in Lemma 6.1.

τ 12 = (5, 10, 10)
τ 22 = (16, 30, 30)

τ 12 τ 22 miss

×
0 5 10 15 20 25 30 35 40

τ1 = (10, 30, 30)

Figure 6.2: An example of carry-in effects under FPM.

6.1.2.2 Sufficient Test for FPM Scheduling

In this subsection, we first use the concept of problem window extension to quantify
the carry-in job and then reuse the technique derived in the previous section for FPT
scheduling to establish schedulability tests for FPM scheduling.

Consider any legal sequence of jobs of task system τ, on which a deadline miss
occurs. Without loss of generality, we assume mode τh

k is the mode that there exist
k− 1 tasks such that each task has at least one mode that is assigned higher priority
than mode τh

k . Suppose that mode τh
k is the one to first miss a deadline and arrives at

time-instant ta, and this deadline miss occurs at time-instant ta + Dh
k .

We now discard all those jobs that have priority lower than τh
k ’s priority from this

sequence. Since those jobs with priority lower than τh
k ’s have no effect on the scheduling

of the jobs with priority higher than or equals to task τh
k , this schedule will see a deadline

miss of mode τh
k at time-instant ta + Dh

k , and it will also be the first deadline miss in
the schedule. Hence in this section, we consider only such a reduced sequence of jobs.

Let t0 denote the latest time-instant with t0 ≤ ta at which the processor is idle (or
executing some lower-priority jobs before discarding), c.f. Figure 6.3. Clearly, t0 exists
and is well-defined. Let Ah

k = ta − t0 and td = ta + Dh
k . The technique to extend the

interval of interest is needed for identifying the necessary condition for a deadline miss
where the carry-in effect may occur. We have the following observation:

105

multi-mode task model

tdtat0

proc. idled deadline miss

Ah
k Dh

k

Figure 6.3: Illustration: a mode of task τi arrives at ta and misses its deadline at time-
instant td. The latest time-instant prior to ta when the processor is idle is
denoted t0.

• Let X denote the workload contributed from task τk, that is to under anlaysis,
over [t0, td). Due to mode τh

k ’s deadline miss, the amount of execution time,
executed for mode τh

k , is strictly less than Ch
k over [ta, td). By the definition of

t0, the jobs of task τk that contribute to the interval [t0, td) must arrive no earlier
than t0. The jobs of task τk contributing to [t0, ta) is bounded by the multi-mode
demand bound function of task τi over [t0, ta). Hence, we have

X ≤ Ch
k + DBFi(ta − t0, τh

k) (6.9)

• The higher-priority jobs of any multi-mode task must arrive no earlier than time-
instant t0. Hence, the work executing prior to the last release time ti is bounded
from above by its multi-mode demand bound function with an interval length of
ti − t0.

Consequently, we provide a necessary condition for a deadline to be missed under FPM
scheduling in the following lemma:

Lemma 6.6. If task mode τh
k misses its deadline under FPM upon an assignment π, it must be

the case that there exist an Ah
k ≥ 0 and an assignment t1, t2, . . . , tk−1 of the last release of task

τi such that ∀i ∈ {1, ..., k− 1, k},

X + ∑
τj∈hp(τh

k)

DBFj(tj − t0, τh
k) + ∑

j:tj≤ti

Cmax
j (τh

k) > ti − t0

and for time td

X + ∑
τj∈hp(τh

k)

DBFj(tj − t0, τh
k) +

k−1

∑
j=1

Cmax
j (τh

k) > Ah
k + Dh

k

Proof. This is by the above discussions with a similar proof as in Lemma 6.3.

Without loss of generality, we can simply set t0 to 0.

106

6.1 uniprocessors

Theorem 6.5 (QT-FPM). Task mode τh
k is schedulable under an FPM scheduling if

Dh
k −

k−1

∑
i=1

Cmax
i (τh

k)− Ch
k ≥ 0 (6.10)

and

Ch
k ≤ Dh

k −
k−1

∑
i=1

(
Umax

i (τh
k) · t∗i

)
−

k−1

∑
i=1

Cmax
i (τh

k) (6.11)

where

t∗i = Dh
k −

k−1

∑
j=i

Cmax
j (τh

k)

in which higher-priority tasks τi are indexed by non-increasing βi(τ
h
k).

Proof. In case of Eq. (6.10), it is clear that there will be a deadline miss.
By Lemma 6.6 and Eq. (6.9) and using the same concept of Lemma 6.4 and Lemma 6.5,

we then have the necessary condition for the deadline miss under FPM:

Ch
k > Dh

k −
k−1

∑
i=1

(
Umax

i (τh
k) · t∗i

)
−

k−1

∑
i=1

Cmax
i (τh

k)

+Ah
k

(
1−

k

∑
i=1

Umax
i (τh

k)

)
(6.12)

where

t∗i = Dh
k −

k−1

∑
j=i

Cmax
j (τh

k)

Notice that due to the assumption that Usum ≤ 1, the RHS of the above inequality is
monotonically increasing with the length of interval Ah

k . By substituting Ah
k = 0 and

taking the negation of Eq. (6.12), this theorem is proven.

Roughly speaking, the work contributing over interval [t0, td) where t0 ̸= ta will be
no more than that in the case t0 = ta. One may observe that in order to make the
interval [t0, ta) busy, there will be a loss of some workloads over [ta, td) due to Usum ≤ 1
according to our analysis.

6.1.2.3 Utilization Bounds for Implicit-Deadline Tasks under RM

Here, we specifically study RM scheduling in implicit-deadline multi-mode systems
where the relative deadline of each mode is equal to its period. Under RM scheduling,
we first observe that the interference from the last release can be naturally bounded:

107

multi-mode task model

Lemma 6.7. Under RM scheduling, for any task τi with respect to mode τh
k

Cmax
i (τh

k) ≤ Umax
i (τh

k) · Th
k

Proof. Under RM scheduling, only those modes with period Tb
a ≤ Th

k will be assigned
higher priority than τh

k . By the definition of Cmax
i (τh

k) we have that

Cmax
i (τh

k) = max
τb

a∈hp(τh
k)∩τi

{Ub
a · Tb

a } ≤ Umax
i (τh

k) · Th
k

By Lemma 6.7 we now pessimistically inflate each Cmax
i (τh

k) to Umax
i (τh

k) · Th
k . Note

that thereafter we can simply relax the ordering specified in Theorem 6.5 since according
to Theorem 6.5 for all tasks τi

β1 = β2 = ... = βk−1 =
Cmax

i (τh
k)

Umax
i (τh

k)
= Th

k

after the inflation. Theorem 6.6 immediately follows:

Theorem 6.6. Implicit-deadline mode τh
k is schedulable under RM if

Uh
k ≤ 1− 2

k−1

∑
i=1

Umax
i (τh

k) +
1
2

(
k−1

∑
i=1

Umax
i (τh

k)

)2

+
1
2

k−1

∑
i=1

(
Umax

i (τh
k)
)2

(6.13)

Proof. In case of Eq. (6.10), due to Usum ≤ 1, we know that Th
k ·
(

1−∑k−1
i=1 Umax

i (τh
k)−Uh

k

)
≥

0. For notational simplicity, we denote Ui as Umax
i (τh

k) in this proof. In case of Eq. (6.11),
substituting Cmax

i in Eq. (6.11) by Umax
i · Th

k and Dh
k by Th

k , we have

Ch
k

Th
k
≤ 1−

k−1

∑
i=1

(
Ui ·

(
1−

k−1

∑
j=i

Uj

))
−

k−1

∑
i=1

Ui

= 1− 2
k−1

∑
j=1

Uj +
k−1

∑
i=1

(
Ui ·

(
k−1

∑
j=i

Uj

))

= 1− 2
k−1

∑
i=1

Ui +
1
2

(
k−1

∑
i=1

Ui

)2

+
1
2

k−1

∑
i=1

U2
i

Hence this theorem is proven.

The schedulability test proposed in the previous section must check each task mode
τh

k individually. If one is willing to sacrifice some precision, we can further provide
two linear-time schedulability tests for a task set, called quadratic bound (QB) and total
utilization bound, in Theorem 6.7 and 6.8, respectively.

108

6.1 uniprocessors

Theorem 6.7 (QB-RM). A multi-mode task set τ with implicit-deadline is schedulable under
RM scheduling if

Ua ≤ 1− 2 ∑
τi∈τ\{τa}

Umax
i +

1
2

(
∑

τi∈τ\{τa}
Umax

i

)2

+
1
2 ∑

τi∈τ\{τa}
(Umax

i)2 (6.14)

where Ua = minτi∈τ{Umax
i }.

Proof. It is clear that for any task τk ∈ τ if

Umax
k ≤ 1− 2 ∑

τi∈τ\{τk}
Umax

i +
1
2

(
∑

τi∈τ\{τk}
Umax

i

)2

+
1
2 ∑

τi∈τ\{τk}
(Umax

i)2 (6.15)

then Eq. (6.13) must hold for all modes τh
k ∈ τk. We then show that if Eq. (6.15) holds

by the choice of Umax
k = minτi∈τ{Umax

i }, then it also holds for all the other cases.

Let τa denote the task with minimum Umax
i among all tasks. Given that Eq. (6.15)

holds for τa, we have that

Umax
a ≤ 1− 2 ∑

τi∈τ\{τa}
Umax

i +
1
2

(
∑

τi∈τ\{τa}
Umax

i

)2

+
1
2 ∑

τi∈τ\{τa}
(Umax

i)2

We prove this by contradiction: suppose for some Umax
b > Umax

a Eq. (6.14) does not hold:

Umax
b > 1− 2 ∑

τi∈τ\{τb}
Umax

i +
1
2

(
∑

τi∈τ\{τb}
Umax

i

)2

+
1
2 ∑

τi∈τ\{τb}
(Umax

i)2

109

multi-mode task model

For notational simplicity, let Umax
a and Umax

b denote Ua and Ub. Summing the above
two inequities we have

Ua −Ub < 2 (Ua −Ub) +
1
2
(
U2

b −U2
a
)

+
1
2

(
Ua + Ub + 2 ∑

τi∈τ\{τa,τb}
Umax

i

)
(Ub −Ua)

{reorganization}

= (Ua −Ub)

(
2− ∑

τi∈τ\{τa,τb}
Umax

i

)
{reorganization}
⇒ (Ua −Ub) (1− ∑

τi∈τ\{τa,τb}
Umax

i) > 0

{divided by (Ua −Ub) and recall Ub > Ua}
⇒ 1− ∑

τi∈τ\{τa,τb}
Umax

i < 0

⇒ ∑
τi∈τ\{τa,τb}

Umax
i > 1

which contradicts the assumptions that Usum ≤ 1 and Ua, Ub > 0. Hence this theorem
is proven.

Theorem 6.8. An implicit-deadline multi-mode tasks system τ is schedulable under RM
scheduling if

Usum ≤

⎧⎪⎪⎨⎪⎪⎩
2(n− 1)−

√
2(n− 1)(n− 2)
n

if n ≥ 3 (6.16)

1
2
+

1
2n

if n = 2 (6.17)

Proof. For n = 2 the minimization can be done directly by solving the differential
equation in two variables. We discuss the case for n ≥ 3 by using Lagrange Multiplier
Method.

minimize
n

∑
i=1

Ui

subject to Un = 1− 2
n−1

∑
i=1

Ui +
1
2
(

n−1

∑
i=1

Ui)
2 +

1
2

n−1

∑
i=1

U2
i (6.18a)

Un ≥ 0 (6.18b)

110

6.1 uniprocessors

Let λ be the multiplier of the schedulability constraint by Eq. (6.18a) and µ be the
multiplier of the constraint Un ≥ 0. The Lagrange function is

L(U1, U2, ..., Un) =
n

∑
i=1

Ui + µ(−Un)

+λ

(
1− 2

n−1

∑
i=1

Ui +
1
2
(

n−1

∑
i=1

Ui)
2 +

1
2

n−1

∑
i=1

U2
i −Un

)
with derivatives

∂L
∂Ui

=

⎧⎪⎨⎪⎩
1− µ− λ, if i = n (6.19a)

1 + λ

(
−2 + Ui +

n−1

∑
i=1

Ui

)
otherwise (6.19b)

A necessary condition for the minimum is that the two derivatives of (6.19a) and (6.19b)
are zero. Eq. (6.19b) implies that for all i ̸= n

U1 = U2 = ... = Un−1 (6.20)

To solve these equations, we look at several cases:
Case 1: µ = 0

When µ = 0, λ = 1 by Eq. (6.19a) according to the necessary condition for the
minimum. Setting λ = 1 in Eq. (6.19b) and using the above condition, we obtain
optimum values Ui ∀1 ≤ i ≤ n− 1:

Ui =
1
n

(6.21)

After solving the condition of (6.18a) by replacing Eq. (6.21), we have

Un =
1
2

(
3
n
− 1
)

(6.22)

which leads to the violation of the nonnegative constraint Un ≥ 0 if n > 3. In case of
n = 3, we have Un = 0, which leads to Case 2.
Case 2: µ ̸= 0

When µ ̸= 0, it must be the case Un = 0 due to the complementarity.
After solving Eq. (6.18a) with the condition (6.20) and Un = 0, we get for all i ̸= n

Ui =
2(n− 1)−

√
2(n− 1)(n− 2)
n

· 1
n− 1

(6.23)

It follows that
n

∑
i=1

Ui =
2(n− 1)−

√
2(n− 1)(n− 2)
n

(6.24)

111

multi-mode task model

Theorem 6.9. An implicit-deadline multi-mode tasks system τ is schedulable under RM
scheduling if

Usum ≤ 2−
√

2 ≈ 0.5857

Proof. By taking n→ ∞ for n ≥ 3 in Theorem 6.8, Theorem 6.9 follows immediately.

It is not difficult to see that QB and the total utilization bound are tight in Theorem 6.7
and in Theorem 6.8, respectively. The idea is that increasing the maximum utilization
of any higher-priority task mode τi leads to mode τh

n ’s deadline miss. We illustrate this
with the following example.
Example. For a given n, there are two modes in τi for i = 1, 2, . . . , n − 1 with

given Umax
i =

2(n−1)−
√

2(n−1)(n−2)
n · 1

n−1 , in which T2
i is Th

n , C2
i is Th

n · Umax
i , T1

i is

Th
n ·
(

1−∑n−1
j=i Umax

j

)
, and C1

i is T1
i ·Umax

i . Thus, task mode τh
n can only be schedulable

when its utilization is 0.

Comparison Between Total Utilization Bound and Quadratic Bound

Figure 6.4 illustrates the difference between QB and the total utilization bound in
Theorem 6.7 and in Theorem 6.8, respectively, for two tasks. We can clearly see that
the feasibility region below QB is larger than that below the total utilization bound, in
Figure 6.4a. Moreover, as shown in Figure 6.4b, the summation of utilizations that can
be schedulable under QB is larger, especially when U1 is away from 0.5.

Computational Complexity. Considering all deadlines to be met, QT-RM runs in O(n2 ·
(M1 + M2 + ...+ Mn) + (M1 + M2 + ...+ Mn)log(M1 + M2 + ...+ Mn)) where n2 comes
from the time complexity of the test for each mode and (M1 + M2 + ... + Mn)log(M1 +

M2 + ...+ Mn) is the sorting time for prioritizing the modes at the beginning. Moreover,
Theorem 6.6 can be computed in O(n · (M1 + M2 + ... + Mn) + (M1 + M2 + ... + Mn) ·
log(M1 + M2 + ... + Mn)), and QB-RM requires only O(n + (M1 + M2 + ... + Mn))

where (M1 + M2 + ... + Mn) accounts for the time of deciding the maximum utilization
among modes.

6.1.2.4 Optimal Priority Assignment for FPM scheduling

Despite RM scheduling algorithm preserves some properties of being good scheduling
algorithms, e.g., utilization bound, RM for multi-mode tasks is however not optimal in
the sense of FPM scheduling algorithm. We state this with the following theorem:

Theorem 6.10. DM/RM scheduling is not an optimal FPM scheduling algorithm.

Proof. We prove this theorem by showing: there exists a task set not deemed schedulable
by DM scheduling algorithm, that is deemed schedulable by another model-level fixed-
priority scheduling.

112

6.1 uniprocessors

0.0 0.2 0.4 0.6 0.8 1.0

U1

0.0

0.2

0.4

0.6

0.8

1.0
U

2

Quadratic Bound (QB)

Total Utilization Bound

(a) Utilization of U2 under given U1

0.0 0.2 0.4 0.6 0.8 1.0

U1

0.70

0.75

0.80

0.85

0.90

0.95

1.00

U
1

+
U

2

Quadratic Bound (QB)

Total Utilization Bound

(b) Total utilization U1 + U2 under given U1

Figure 6.4: Utilization Bounds for 2 implicit-deadline multi-mode tasks under RM

113

multi-mode task model

Table 6.4: An example of showing DM is not optimal under FPM scheduling.

Task Mode Cm
i Tm

i Dm
i DM priority optimal priority

τ1 1 4 8 8 1

√
1

√

2 6 12 12 2

√
3

√

τ2 1 5 14 14 3 × 2

√

τ1
1 = (4, 8, 8)

τ2
1 = (6, 12, 12)

τ1
1 τ2

1

0 2 4 6 8 10 12 14 16
τ2 = (5, 14, 14)

miss

×

Figure 6.5: DM scheduling algorithm fails to produce a feasible schedule for task τ2.

Consider a set of implicit-deadline tasks defined in Table 6.4 where task τ1 is a
multi-mode task consisting of two modes and task τ2 is a sporadic task. Under DM
scheduling mode 2 of task τ1 is assigned the highest priority, whereas task τ2 the lowest
priority. It is evident that highest-priority task τ1 is by all means schedulable. However,
task τ2 misses its deadline at the synchronous arrival release where task τ1 releases its
mode 1 at time-instant 0 and then mode 2 at time-instant 8, as illustrated in Figure 6.5.

Now, let us consider another mode-level priority assignment by swapping the priority
levels of task τ2 and mode 2 of task τ1, as shown in Table 6.4 (optimal priority). It is
not difficult to see that task τ2 and mode 1 of task τ1 are both schedulable.

Recall that the synchronous arrival release is not critical instant under FPM, at which
the worst-case behavior in analyzing tasks is concretely captured. As a result, we need
to consider the so-called push-through effect. We observe that there is a slack of four
time units over any release of task τ1

1 , giving the CPU time to task τ2. In other words,
at most one additional execution unit of task τ2 can be pushed through into the interval
of τ2

1 ’s release, resulting in a response time of 12 for task τ2
1 , which is schedulable. The

worst-case scenario is illustrated in Figure 6.6.

Optimal Priority Assignment. ForM modes, inspecting all possible priority orderings
takes O(M!) time complexity, which is however computationally intractable. It has been
shown in [Aud01] that it suffices to examine a polynomial number of priority orderings
in systems with n periodic tasks, in total with at most n(n + 1)/2 schedulability
tests, for finding a feasible priority ordering. This is a significant improvement over
inspecting all n! possible priority orderings. This method is called Optimal Priority

114

6.1 uniprocessors

τ1
1 = (4, 8, 8)

τ2
1 = (6, 12, 12)

τ1
1 τ2

1

0 2 4 6 8 10 12 14 16 18 20
τ2 = (5, 14, 14)

Figure 6.6: A feasible schedule for task τ2
1 under FPM scheduling algorithm.

Assignment (OPA) [Aud91; Aud01; DB11b]. The OPA algorithm assigns each priority
level ℓ to one of unassigned tasks that has no deadline miss along with the other
unassigned task assumed to have higher priorities. The iterative priority assignment
terminates as soon as either no unassigned task can be assigned at priority level ℓ or
all priority levels are assigned. The pseudo code for the OPA algorithm, using some
compatible schedulability test S is given in Algorithm 6.

Algorithm 6: Optimal Priority Assignment Algorithm
input : A set of tasks τ

output : Priority assignment π and the feasibility of system τ

π ← ∅;
for each priority ℓ from |τ| to 1 do

for each unassigned task τi do
if task τi is schedulable at priority ℓ with all unassigned tasks (assume them as
higher-priority tasks) according to schedulability test S then

π(τi)← ℓ // assign task τi to priority ℓ

break ;

if no task τi can be assigned to priority ℓ in the above loop then
return “unscheduable”;

return “scheduable”;

In fact, checking the fixed-priority feasibility of a multi-mode task set under FPM
scheduling can also be achieved by the OPA. For a schedulability test to be compatible
with the OPA algorithm, it must comply with three conditions provided in [DB11b].
For completeness, we state these conditions as follows:

• Condition 1. The schedulability of a task τi may, according to test S, depend on
any independent properties of tasks with priorities higher than ℓ, but not on any
properties of those tasks that depend on their relative priority ordering.

115

multi-mode task model

1

ℓ− 1

ℓ

M

1

ℓ− 1

ℓ

M

Priority order Qℓ−1Priority order Qℓ

(Ineffective) modes associated with
the same task as mode
at priority level ℓ in Qℓ

Figure 6.7: Transformation of the priority ordering

• Condition 2. The schedulability of a task τi may, according to test S, depend on
any independent properties of tasks with priorities lower than ℓ, but not on any
properties of those tasks that depend on their relative priority ordering.

• Condition 3. When the priorities of any two tasks of adjacent priority are
swapped, the task being assigned the higher priority cannot become unschedula-
ble according to test S, if it was previously schedulable at the lower priority.

In the following lemma we show that the sufficient schedulability test by Theorem 6.5
complies with the required conditions for the OPA algorithm:

Lemma 6.8. The sufficient schedulability test by Theorem 6.5 complies with Conditions 1-3.

Proof. Inspection of Eq. (6.11) shows that the schedulability of τh
k depends on the set of

higher-priority modes but not on their relative priority ordering, as their associated
tasks must be indexed by non-increasing βi(τ

h
k) in the schedulability test. Hence,

Condition 1 holds.
It is obvious that the schedulability of τh

k testing by Eq. (6.11) has no dependency on
the set of modes with lower priority than τh

k , hence Condition 2 holds.
Consider two modes τh

k and τr
q initially at priorities ℓ − 1 and ℓ, respectively.

Inspection of Eq. (6.11) shows that the schedulability of τr
q is independent of the modes

associated the same task as mode τr
q . If task τr

q is schedulable, it is still schedulable
when it is shifted up one priority level to priority ℓ − 1, since the only change of
higher-priority mode demand is the removal of mode τh

k from the set of modes that
have higher priority than mode τr

q (cf. Figure 6.7). Hence, Condition 3 holds.

116

6.1 uniprocessors

6.1.3 Evaluations

As can be seen, we have established several utilization-based tests for FPT and FPM
scheduling. In this section we evaluate the effectiveness of the existing tests and the
proposed utilization-based tests in terms of the number of tasksets that are deemed
schedulable. First, we recap these tests as follows:
• Demand-based Test under FPT (DT-OPA): the time-demand test approach under

FPT presented in Section III.D in [DFPS14] along with the OPA.
• Quadratic Test under FPT along with the OPA (QT-OPA) : Theorem 6.4.
• Quadratic Bound under FPM using RM (QB-RM): Theorem 6.7.
• Quadratic Test under FPM using RM (QT-RM): Theorem 6.5.

The metric to compare the results is to measure the success ratio of these tests for a
given goal of task set utilization. We generate 100 task sets for each utilization level.
The success ratio of a level is said to be the number of task sets that are schedulable
divided by the number of task sets for this level.
Task Set Generation.

The task set was generated in a similar manner to the method in [DFPS14]. We first
generated a set of sporadic tasks. The cardinality of the task set was 10. The UUniFast
method [BB05] was adopted to generate a set of utilization values with the given goal.
We use the approach suggested by Emberson et al. [ESD10] to generate the task periods
according to the exponential distribution. The distribution of periods is within two orders
of magnitude, i.e., 10ms-1000ms. Task relative deadlines are implicit, i.e., Di = Ti. The
worst-case execution time was computed accordingly, i.e. Ci = TiUi. We converted a
proportion p of tasks to multi-mode tasks:
• A multi-mode task has M execution modes
• The generated sporadic task triplet (Ci, Ti, Di) was assigned to the setting of task

mode τ1
i .

• We use a scaling factor 1.5 to assign the parameters of the other modes2, i.e.,
Cm+1

i = 1.5Cm
i and Tm+1

i = 1.5Tm
i .

• We randomly choose a mode to have the largest utilization. The worst-case
execution times of the remaining modes were adjusted by multiplying them by
uniform random values in the range [0.75, 1].

Checking the FPT feasibility of a multi-mode task set was achieved by using the
method for sporadic tasks, called Audsley’s Algorithm [Aud01], since the above tests
comply with the required conditions for the compatibility provided in [DB11b]. We
report the results evaluating a variety of M and p in the following subsection.
Result I. We first evaluated the impact on different numbers of modes when p was set
to 0.5, as illustrated in Figure 6.8. With few number of modes, the schedulability of

2 We use the dynamic programming approach to implement DT-FPT instead of using the ILP solver for the
sake of efficiency. To comply with it, we apply a correction factor ⌈Ti⌉

Ti
on both the generated period and

execution time to ensure the discrete time model.

117

multi-mode task model

0 20 40 60 80 100
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o
QT-FPT DT-FPT QB-RM QT-RM

(a) M = 5

0 20 40 60 80 100
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

QT-FPT DT-FPT QB-RM QT-RM

(b) M = 8

0 20 40 60 80 100
Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

QT-FPT DT-FPT QB-RM QT-RM

(c) M = 10

Figure 6.8: Comparison with different numbers of modes M of multi-mode tasks,
assuming p = 50%.

118

6.1 uniprocessors

0 20 40 60 80 100
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

QT-FPT DT-FPT QB-RM QT-RM

(a) p = 20%

0 20 40 60 80 100
UΣ/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

QT-FPT DT-FPT QB-RM QT-RM

(b) p = 50%

0 20 40 60 80 100
Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

QT-FPT DT-FPT QB-RM QT-RM

(c) p = 80%

Figure 6.9: Comparison with different proportions p of multi-mode tasks, each of which
is with 5 modes.

119

multi-mode task model

0 20 40 60 80 100
UΣ (%)

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
e
p
ta

n
ce

 R
a
ti

o
QT-RM QT-FPM-OPA

(a) M = 5

0 20 40 60 80 100
UΣ (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

QT-RM QT-FPM-OPA

(b) M = 8

0 20 40 60 80 100
UΣ (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

QT-RM QT-FPM-OPA

(c) M = 10

Figure 6.10: Comparison between the QTs associated with RM and OPA, with different
numbers of modes M of multi-mode tasks, assuming p = 50%.

multi-mode tasks under FPT scheduling can be provided with up to 90% of utilization;
however, it drops significantly when the number of modes increases. This also accords

120

6.2 multiprocessors

to the discussion in previous section: the FPT scheduling may perform rather poorly.
In fact, under FPT, some jobs with sizable WCET released by different tasks may
dominate each other, and this thus results in poor performance of the schedulability.
On the other hand, RM scheduling is expected to be more sustainable due to the
guarantee of theoretical qualifications. Moreover, QT-RM can accept the task set with
total utilizations of up to 80% compared to only 65% by QB-RM. However, QB-RM
takes the advantage on the runtime overhead and can be applied on-line efficiently
when long execution times are prohibitive.

As far as the FPT scheduling is concerned, we observe that the proposed QT-FPT is
competitive to the pseudo-polynomial-time DT-FPT. The more the number of modes,
the more competitive the QT-FPT. One can imagine that the actual workload generated
by a substantial modes can be very close to the one we overly approximate.

We further evaluate the impact of proportion of multi-mode tasks on schedulability.
Figure 6.9 shows the data for different proportions of multi-mode tasks equal to 20%,
50%, and 80%. Similar results can be observed here.

Result II. In Chapter 6.1.2.4, we have shown that the QT by Theorem 6.5 is compatible
with the OPA. It is interesting to see how much improvement over the RM can be
brought up by using the OPA, denoted by QT-FPM-OPA. Figure 6.10 shows the
comparisons by varying the number of modes in {5, 8, 10}. From the graphs, we can
see that the QT along with the OPA can further admit task sets that are unschedulable
by the test with the best performance, i.e., QT-RM. We conclude that the QT along with
OPA brings up a great improvement in the number of tasksets deemed schedulable.

6.2 multiprocessors

To schedule real-time tasks on multiprocessor platforms, there are two widely adopted
approaches: partitioned and global scheduling. In this dissertation, we consider the
partitioned strategy: each task is assigned statically to one processor and cannot migrate
to the others.

As for the sporadic task model, when the relative deadline is equal to the period, the
task allocation for partitioned scheduling on multiprocessor systems is analogous to
the well-known bin packing problem [GJ79]. In the bin packing problem, the objective
is to pack a set of items into a number of bins such that the volume of the packed
items in every bin does not exceed that of the bin and the number of used bins is
minimized. The problem of scheduling sporadic real-time tasks on multiprocessors
regarding partitioned scheduling has been addressed in a number of studies. The
details can be found in [DB11a]. Unfortunately, because the studied mode change
model is a generalized model of the sporadic task model, those results are by no means
applicable.

121

multi-mode task model

6.2.1 Utilization Bounds in Uniprocessors

As shown earlier in Theorem 6.9, a uniprocessor system comprised of a set of multi-
mode rate-monotonic scheduled tasks is schedulable if

Usum ≤ 2−
√

2 (6.25)

We could use this bound as the capacity of each bin to allocate tasks under partitioned
scheduling; however, if doing so, we may fall short of some accuracy. Instead, we make
use of a more precise utilization bound based a quadratic bound (denoted as QB), as
shown in Theorem 6.7. For completeness, we state QB in the following lemma:

Lemma 6.9 (Theorem 6.7). A multi-mode task set Γ with implicit deadline is schedulable on a
uniprocessor under RM scheduling if ∑τi∈Γ Ui ≤ 1 and

Ua ≤1− 2 ∑
τi∈Γ\τa

Ui +
1
2

(
∑

τi∈Γ\τa

Ui

)2

+
1
2 ∑

τi∈Γ\τa

(Ui)
2 (6.26)

where Ua = minτi∈ΓUi.

Note that the above lemma requires to test both ∑τi∈Γ Ui ≤ 1 and Eq. (6.26). Testing
only Eq. (6.26) is unsafe since the quadratic form in the right-hand side of Eq. (6.26)
may become larger than 1 when ∑τi∈Γ\τa

Ui is sufficiently large. Nevertheless, one can
show that the schedulability can be equivalently ensured if the tasks are sequentially
tested by the condition Eq. (6.26) alone, which is exactly what task allocations do. We
state this in the following theorem:

Theorem 6.11. Suppose that the tasks in Γ are sorted and indexed such that U1 ≥ U2 ≥ · · · ≥
U|Γ|. A multi-mode task set Γ with implicit deadline is schedulable on a uniprocessor under RM
scheduling if ∀k = 1, ..., Γ,

Uk ≤1− 2
k−1

∑
i=1

Ui +
1
2

(
k−1

∑
i=1

Ui

)2

+
1
2

k−1

∑
i=1

(Ui)
2 (6.27)

Proof. When k is 1, this holds naturally. In this proof, we show that any feasible
allocation by using Eq. (6.27) implies that ∑k

i=1 Ui ≤ 1 under the assumption that
∑k−1

i=1 Ui ≤ 1 for k = 2, 3, . . . , |Γ|.
Due to the evidence that

(
∑k−1

i=1 Ui

)2
≥ ∑k−1

i=1 (Ui)
2, the satisfaction of Eq. (6.27)

implies that

Uk ≤1− 2
k−1

∑
i=1

Ui +
1
2

(
k−1

∑
i=1

Ui

)2

+
1
2

(
k−1

∑
i=1

Ui

)2

(6.28)

122

6.2 multiprocessors

Let z denote ∑k−1
i=1 Ui. Replacing ∑k−1

i=1 Ui by z, we have Uk ≤ 1− 2z + z2. It follows that

Uk + z ≤1− z + z2 (6.29)

Hence, the total utilization Uk + z of the k tasks to pass Eq. (6.27) is upper bounded
by the right-hand side of Eq. (6.29), which is upper bounded by 1 if 0 ≤ z ≤ 1. By the
assumption that Ui ≤ 1 for every task τi ∈ Γ and 0 ≤ z ≤ 1, if Eq. (6.27) holds for every
k = 1, 2, . . . , |Γ|, the task set Γ can also pass the test in Lemma 6.9.

6.2.2 Reasonable Allocation Decreasing Algorithm

In this section, we first introduce some simple heuristic allocation algorithms that have
been developed for the bin-packing problem [GJ79]. An allocation algorithm is said to
be reasonable if the tasks are allocated sequentially and the allocation algorithm fails
to allocate a task to the previously allocated processors only if there is no processor
having sufficient capacity to hold the pending task. There are three simple heuristic
reasonable allocation (RA) algorithms, known as First-Fit (FF), Best-Fit (BF), and Worst-
Fit (WF). The First-Fit algorithm places the item in the first bin that can accommodate
the item. If no bin is found, it opens a new bin and puts the item to the new bin. The
Best-Fit (Worst-Fit, respectively) algorithm places each item to the bin with the lowest
(largest, respectively) remaining capacity among all the bins with sufficient capacity to
accommodate the item.

In addition, if the items are ordered by a decreasing ratio of the value to the weight,
of an item, before allocation, it is known as a RAD algorithm, described in [GJ79]. A
RAD algorithm is characterized as follows:
• Items are ordered by a decreasing ratio of the value to the weight before allocation.
• Items are allocated sequentially by following the order defined above and the

allocation algorithm fails only if there is no bin having sufficient capacity to hold
the pending item.

It has been shown that the approximation factor of a RAD algorithm is 2 for the
bin packing problem [Vaz01, Chapter 9]. More precisely, if a RAD algorithm allocates
M bins with M ≥ 2, the overall weight is strictly larger than M

2 times the bin size.3

Therefore, we can directly use the utilization bound 2−
√

2 as the bin size and reach
the following theorem.

Theorem 6.12 (RAD-TUB). An implicit-deadline multi-mode system τ is feasible under RM
scheduling and a RAD algorithm using the total utilization bound 2−

√
2 as the bin size if

Ui ≤ 2−
√

2 ∀τi ∈ τ and Usum ≤ (
2−
√

2
2

)M ∼= 0.293 ·M (6.30)

3 Although the description in the book [Vaz01] is for the first-fit algorithm, the factor 2 holds also for any RAD algorithm.
The description in [Vaz01] was for a trivial analysis with overall weight strictly larger than M−1

2 . The overall weight
M
2 can be easily achieved as well.

123

multi-mode task model

Algorithm 7: First-Fit Decreasing (FFD)
input : A set τ of multi-mode tasks and M identical processors
output : Task allocations Γj and the feasibility of system τ

sort the given N tasks in τ s.t. U1 ≥ U2 ≥ · · · ≥ UN ;
Γj ← ∅, ∀j = 1, 2, . . . , M;
for k = 1, 2, . . . , N do

for j = 1, 2, . . . , M do
if Uk ≤ 1− 2 ∑τi∈Γj

Ui +
1
2 (∑τi∈Γj

Ui)
2 + 1

2 ∑τi∈Γj
(Ui)

2 then
Γj ← Γj ∪ {τk}; // assign τk to proc. j
break (continue the outer loop) ;

return “infeasible allocation”;

return “feasible allocation”;

Proof. This comes from the above discussions and the link to the bin packing problem.
The condition Ui ≤ 2−

√
2 for every task τi is needed since RAD algorithms assume

that the size of any item is smaller than the bin size.

Using the total utilization bound is a simple solution, but we will show in the next
subsection that using the QB in Theorem 6.11 can reach much better results.

6.2.3 Utilization Bound by Using QB

We consider any reasonable allocation decreasing algorithm using the QB in The-
orem 6.11, for example, First-Fit Decreasing (FFD) algorithm using QB (also see
Algorithm 7). Note that by using the RAD algorithm, when we consider to assign task
τk, we know that the utilization of τk is no more than the utilization of the tasks that
have been assigned onto the processors.

For the rest of the analysis, we assume that the N given tasks are sorted such that
U1 ≥ U2 ≥ · · · ≥ UN . Let τY+1 be the task that fails to be assigned to any of the
processors, as Y tasks have been assigned onto the processors successfully. Let Γj be the
set of the tasks that have been assigned on processor j before task τY+1 is considered.
Thus, by Theorem 6.11, the schedulability condition for each processor that cannot
accommodate task τY+1 can be concluded as follows:

∀j ∈ [1, M], UY+1 > 1− 2 ∑
τi∈Γj

Ui +
1
2
(∑

τi∈Γj

Ui)
2 +

1
2 ∑

τi∈Γj

(Ui)
2

124

6.2 multiprocessors

Notice that ∑M
j=1 |Γj| = Y. By adding these M inequalities together, we therefore have

that

MUY+1 > M− 2
Y

∑
i=1

Ui +
1
2

Y

∑
i=1

(Ui)
2

+
1
2

(
(∑

τi∈Γ1

Ui)
2 + (∑

τi∈Γ2

Ui)
2 + ... + (∑

τi∈ΓM

Ui)
2

)
(6.31)

Here, we can use Cauchy’s Inequality ∑i r2
i ∑i s2

i ≥ (∑i risi)
2 where all of ri, si ∈ R.

When si is replaced by 1, we have x ∑i r2
i ≥ (∑i ri)

2, where x is the number of terms of
i in the summation. By this inequality, we then have that

(
(∑

τi∈Γ1

Ui)
2 + (∑

τi∈Γ2

Ui)
2 + ... + (∑

τi∈ΓM

Ui)
2

)
≥ 1

M
(

Y

∑
i=1

Ui)
2. (6.32)

Consequently, it follows that by Eq. (6.31) and (6.32)

MUY+1 > M− 2
Y

∑
i=1

Ui +
1
2

Y

∑
i=1

(Ui)
2 +

1
2M

(
Y

∑
i=1

Ui)
2 (6.33)

In the following lemma, we first provide a necessary condition for a RAD algorithm to
fail to allocate a task onto the M processors:

Lemma 6.10. Let Y be the number of multi-mode tasks that have been assigned feasibly on M
processors. If a reasonable allocation decreasing (RAD) algorithm using QB fails to allocate task
τY+1, then the following condition must hold:

Usum >
Y

∑
i=1

Ui >
1 + 2γ−

√
1 + 2γ + 2γ2

(1 + γ)
·M (6.34)

where γ = Y
M .

Proof. We have shown that the condition in Eq. (6.33) is necessary for an RAD algorithm
using QB to fail to allocate a task onto the M processors. Due to the non-increasing
utilization ordering of the tasks, we have

Y

∑
i=1

Ui ≥ YUY+1 (6.35)

125

multi-mode task model

Our objective in this proof is to find the infimum ∑Y
i=1 Ui such that Eq. (6.33) and (6.35)

always hold. This is equivalent to the following quadratic programming (QP), where
Uis are variables:

min.
Y

∑
i=1

Ui (6.36a)

s.t. MUY+1 ≥ M− 2
Y

∑
i=1

Ui +
1

2M
(

Y

∑
i=1

Ui)
2 +

1
2

Y

∑
i=1

(Ui)
2 (6.36b)

Y

∑
i=1

Ui ≥ YUY+1 (6.36c)

Let λ be the multiplier of the schedulability constraint by Eq. (6.36b) and µ be the
multiplier of the constraint by Eq. (6.36c). The Lagrange function is

L(U1, U2, ..., UY) =
Y

∑
i=1

Ui − µ(
Y

∑
i=1

Ui −YUY+1)−

λ

(
MUY+1 −M + 2

Y

∑
i=1

Ui −
1

2M
(

Y

∑
i=1

Ui)
2 − 1

2

Y

∑
i=1

(Ui)
2

)
with derivatives

∂L
∂Ui

=

⎧⎪⎨⎪⎩
Yµ−Mλ, if i = Y + 1 (6.37a)

1− µ− λ(2−Ui −
1
M

Y

∑
i=1

Ui), otherwise. (6.37b)

A necessary condition for the minimum is that the two derivatives of (6.37a)
and (6.37b) are zero. One can reformulate each derivative in Eq. (6.37b) equal to
zero such that Ui is a function of M, µ, λ, and ∑Y

i=1 Ui. In doing so, we can notice that
all the Ui have the same value. It follows that for all i = 1, 2, . . . , Y:

U1 = U2 = ... = UY (6.38)

To solve these equations, we look at several cases:
Case 1: µ = 0. Since the derivative of (6.37a) must be 0 and M > 0, we then have λ = 0.
This in turn results in an infeasible solution in (6.37b).
Case 2: λ = 0. Similarly, we get µ = 0 by (6.37a). This also leads to an infeasible
solution in (6.37b).
Case 3: µ ̸= 0 and, λ ̸= 0. In this case, both constraints (6.36b) and (6.36c) must
be active. By Eq. (6.38) and the activation of Eq. (6.36c), it follows that UY+1 = Ui.
Therefore, we have U1 = U2 = ... = UY = UY+1. After solving quadratic equation in
one variable with (active) Eq. (6.36b), we have

126

6.2 multiprocessors

∀1 ≤ i ≤ Y + 1, Ui =
1 + 2 Y

M −
√

1 + 2 Y
M + 2 Y2

M2

(1 + Y
M)

· M
Y

It follows that

Y

∑
i=1

Ui =
1 + 2 Y

M −
√

1 + 2 Y
M + 2 Y2

M2

(1 + Y
M)

·M

which is identical to Eq. (6.34). Hence, this theorem is proven.

Thus, we see that Lemma 6.10 is necessary for a RAD algorithm to fail; equivalently,
the negation of Lemma 6.10 is a sufficient condition for a system to be feasible for a
RAD algorithm using QB:

Theorem 6.13. An implicit-deadline multi-mode system τ is feasible under RM scheduling
and by a RAD algorithm using QB if

Usum ≤
(

3−
√

5
2

)
M ∼= 0.381 ·M (6.39)

Proof. Notice that the right-hand side of Eq. (6.34) monotonically increases with respect
to the value of γ = Y

M . Thus, the minimization in the right-hand side of Eq. (6.34)
happens when γ is minimized. It is evident that at least M tasks can be feasibly
assigned to the given processors before the RAD fails; hence, γ ≥ 1. It follows that

1 + 2γ−
√

1 + 2γ + 2γ2

(1 + γ)
M ≥ (

3−
√

5
2

)M ∼= 0.381 ·M (6.40)

Taking the negation of Lemma 6.10, this theorem is proven by contrapositive.

Figure 6.11 shows the utilization bound under RAD with respect to γ, assumed to be
given. Therefore, if a tighter lower bound on γ could be derived, we would be able to
achieve better utilization bounds. For example, as shown in Figure 6.11, if γ ≥ 2, we
can conclude a utilization bound of 0.464 ·M.

6.2.4 Bounds Based on Max Utilization

In this section, we derive a generalized utilization bound by considering the upper
bound on the utilization for ever tasks α. Note that Ui ≤ α for every task τi. This is
motivated by Figure 6.11. If α is small enough, then, we would like to show that γ is
also big enough in Lemma 6.10. We here introduce a new function φ(α) defined as the

127

multi-mode task model

1 2 3 4 5 6 7 8 9 10
 γ

0.381

0.450

0.500

0.550

 P
ro

ce
ss

o
rs

 U
ti

liz
a
ti

o
n
 (
M

)

Figure 6.11: Utilization bound of RAD with respect to γ

maximum number of tasks with utilization no more than α that can be always guaranteed to fit
into one processor. If we compute φ(α) by simply combining the total utilization bound
of Eq. (6.25) and the fact that a uniprocessor system with one task is schedulable, we
can already obtain a bound on φ(α) ≥ max

(⌊
2−
√

2
α

⌋
, 1
)

. However, such a lower bound

on φ(α) is pessimistic, since the bound 2−
√

2 by Eq. (6.25) comes from a large amount
of tasks in [HC15b]. Hence, instead, we consider the quadratic bound, provided in
Theorem 6.11, in hopes of getting a tighter lower bound on φ(α).

Lemma 6.11. The maximum number of tasks with utilization no more than α that can be
always guaranteed to fit into one processor φ(α) is at least:

φ(α) ≥ β =

⌊
4 + α−

√
α2 + 8

2α

⌋
(6.41)

Proof. It is not difficult to see the minimum φ(α) happens when all the tasks are with
utilization α. The value of β can be solved with the following inequality with respect to
the upper bound on the utilization for ever task α:

α ≤ 1− 2
(β−1)

∑
i=1

α +
1
2
(
(β−1)

∑
i=1

α)2 +
1
2

(β−1)

∑
i=1

α2 (6.42)

After reformulation, we obtain

α2(β− 1)2 + (β− 1)(α2 − 4α) + 2− 2α ≥ 0 (6.43)

128

6.2 multiprocessors

0.050 0.1290.166 0.232 0.381

α

0

1

2

3

4

5

6

7

8

9

10

11

12

β

Figure 6.12: The value of β with respect to given α.

Solving it as the standard quadratic inequality w.r.t. β, we obtain

β ≤ 4 + α−
√

α2 + 8
2α

or β ≥ 4 + α +
√

α2 + 8
2α

(6.44)

Since we are only interested in providing the lower bound on φ(α), it is sufficient to take
the value with the “−” sign as our solution of β. Thus, it indicates a feasible schedule
under RM scheduling on one processor if β tasks with utilization no more than α are
allocated on the processor. Recall that by definition β must be an integer. Hence, we
have to apply the floor function to round it down thereafter. We here conclude this
lemma.

Figure 6.12 depicts β with respect to the utilization upper bound α. This lower
bound is tighter than the one by using only Eq.(6.25). For example, if α = 0.381,
we can conclude that β = 2 by Lemma 6.11, as can be seen in Figure 6.12; however,
max

(⌊
2−
√

2
α

⌋
, 1
)

= 1. We then make use of Lemma 6.11 to derive the following
generalized utilization bound taking the value of β:

Theorem 6.14. For a given α, suppose that β is from Lemma 6.11. A multiprocessor system
τ with implicit deadline, multi-mode tasks is feasible under RM scheduling and a reasonable
allocation decreasing (RAD) algorithm using QB if

Usum ≤ 1 + 2β−
√

1 + 2β + 2β2

(1 + β)
·M (6.45)

129

multi-mode task model

α (0.381, 1] (0.231, 0.381] (0.166, 0.231] (0.129, 0.166]
β 1 2 3 4

utilization 0.381M 0.464M 0.500M 0.519M

Table 6.5: Utilization bounds of RAD using QB under α

Proof. By Lemma 6.11, we have γ = Y
M =

∑M
j=1 |Γj|

M ≥ Mβ
M = β. Hence, β is a lower

bound on γ. Replacing γ in Lemma 6.10 by β, and similarly taking the negation of
Lemma 6.10, we can thus conclude this theorem.

This utilization bound is a generalized result of Theorem 6.13. For example, if
α = 0.23, then β = 3. By Theorem 6.14, we then obtain the utilization bound of
50%, shown in Table 6.5. Moreover, if α → 0, then β → ∞ and the utilization bound
converges to 2−

√
2:

lim
β→∞

2 + 1
β −

√
2 + 2

β + 1
β2

(1 + 1
β)

M = (2−
√

2)M ≈ 0.58M

6.2.4.1 Bounds for Related Models

In this section, we intend to answer the utilization bound on multiprocessor systems
for those related models: the Generalized MultiFrame (GMF) model, the VRB model,
and the DRT model. As we only focus on implicit-deadline multi-mode task systems,
we also implicitly assume that these GMF, VRB, and DRT models are also with implicit
deadlines. We explicitly show that the studied mode change model is a relaxation of
these models under the above assumption.

Lemma 6.12. The studied mode change model is a relaxation of the GMF model , the VRB
model, and DRT model if the minimum inter-arrival time to change to the next mode is always
equal to the relative deadline of the current task mode.

Proof. By definition, a generalized multiframe task [BCGM99] must execute each frame
sequentially and circularly, starting from any of its frames. The studied multi-mode task
model can be equivalently obtained by relaxing the constraint of sequential executions
for the generalized multiframe task. Likewise, we can reconstruct the structure of job
executions from the directed graph, represented by the DRT model [SEGY11], into a
complete graph with a self-loop for each vertex. Regarding the VRB model [DFPS14],
the acceleration or deceleration, that determines which modes may be possibly invoked
in the next release under the current rotation speed, can be assumed to be an unlimited
value. By considering those execution modes invoked on the threshold of rotation
speeds, the corresponding mode change model is thereafter obtained.

We also conclude the utilization bounds for these models:

130

6.2 multiprocessors

Corollary 6.1. The GMF task, the VRB task, and the DRT tasks with implicit deadline on
multiprocessor systems achieve the utilization bound provided in Theorems 6.12, 6.13, and 6.14.

6.2.5 Evaluations under different RADs

In this subsection, extensive simulations have been carried out in order to quantify the
pessimism of the multiprocessor utilization bounds. The metric to compare the results
is to measure the acceptance ratio of these tests for a given goal of task set utilization.
We generate 100 task sets for each utilization level.

Task utilization values were generated from a uniform distribution but with the
constraint that they summed to a constant desired total utilization U∑. We adopted
the UUnifast-Discard to generate task sets. The cardinality of a task set was decided
according to the ratio of the number of tasks to the number processors, in one of
three values [2, 5, 10], provided that the number of available processors is given. We
evaluated three RAD algorithms mentioned earlier, namely First-Fit Decreasing, Best-Fit
Decreasing, and Worst-Fit Decreasing, using the total utilization bound in Theorem 6.12,
denoted by FFD-TUB, BFD-TUB, and WFD-TUB, receptively, and those using QB in
Theorem 6.13, denoted by FFD-QB, BFD-QB, and WFD-QB, receptively.

The remaining capacity δj on processor j for an RAD using TUB and QB is defined
as follows: for TUB we use δj = 2−

√
2−∑τi∈Γj

Ui −Uk, and for QB we use δj = 1−
2 ∑τi∈Γj

Ui +
1
2 (∑τi∈Γj

Ui)
2 + 1

2 ∑τi∈Γj
(Ui)

2−Uk, where task τk is the task being allocated.

Results. Figure 6.13 and Figure 6.14 show the acceptance ratio under difference tasks
on a platform with 4 processors and 16 processors, respectively, e.g., M = 16, N

M = 5
implies the number of tasks is N = 16× 5 = 80. Note that for better readability, we
only show the result of FFD-TUB. The performance of FFD-TUB is identical to that of
BFD-TUB and slightly better than that of WFD-TUB, similar to the cases where QB is
used. The first and most obvious observation is that the RAD algorithm using QB is far
more effective than that using TUB. We then notice that FFD-QB and BFD-QB perform
alike and are superior to WFD, across all the settings. We also notice that the maximum
effective utilization of RAD decreases noticeably from 90% down to 70% when the
ratio N

M increases from 2 to 10, with a fixed number of processors (e.g. Figure 6.13

(a), (b), and (c)). On the other hand, the variance of the number of processors would
slightly affect the acceptance ratio, as the ratio of the number of tasks to the number of
processors is fixed (e.g. Figure 6.13 (a) and Figure 6.14 (a)).

Overall, in our simulations, the simple RAD heuristics combined together with the
quadratic bound can admit task sets even with noticeable high utilization, from 70%
and up to 90%.

131

multi-mode task model

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
e
p
ta

n
ce

 R
a
ti

o
FFD-TUB FFD-QB BFD-QB WFD-QB

(a) M = 4 and N
M = 2

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

FFD-TUB FFD-QB BFD-QB WFD-QB

(b) M = 4 and N
M = 5

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

FFD-TUB FFD-QB BFD-QB WFD-QB

(c) M = 4 and N
M = 10

Figure 6.13: The acceptance ratio by FFD, BFD, and WFD using the quadratic bound
under under different task-to-processor ratios on a 4-processor platform.

6.3 summary

A multi-mode task model is a natural generalization model that represents higher
expressiveness over the sporadic task model. This dissertation addresses the scheduling
problem of mode change real-time tasks under fixed-priority scheduling.
132

6.3 summary

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

FFD-TUB FFD-QB BFD-QB WFD-QB

(a) M = 16 and N
M = 2

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

FFD-TUB FFD-QB BFD-QB WFD-QB

(b) M = 16 and N
M = 5

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

FFD-TUB FFD-QB BFD-QB WFD-QB

(c) M = 16 and N
M = 10

Figure 6.14: The acceptance ratio by FFD, BFD, and WFD using the quadratic bound
under under different task-to-processor ratios on a 16-processor platform.

For uniprocessors, we prove that a utilization bound of 2−
√

2 ≈ 0.5857 can be
guaranteed in implicit-deadline multi-mode systems under RM scheduling. In addition,

133

multi-mode task model

we prove that a 38% utilization bound can be guaranteed for implicit-deadline multi-
mode tasks on multiprocessor systems by using any RAD algorithm, e.g. FFD, if each
mode is prioritized according to RM scheduling policy.

134

7
C O N C L U S I O N S A N D F U T U R E W O R K

7.1 summary

Timing analysis must be carried out in association with scheduling algorithms. An
exact schedulability test will be in vain if associated with poor scheduling algorithms;
similarly, a scheduling algorithm is meaningless when the corresponding schedulability
test is unavailable or intractable. As far as schedulability is concerned, these two
dimensions should be considered equally at the same time, and one should seek as far
as possible to find solutions that are either optimal or closely optimal. In this regard,
we look at problems from the perspective of speedup factor — a metric that quantifies
both the pessimism of the test and the non-optimality of the scheduling algorithm.

On the other hand, several assumptions on the conventional sporadic task model
must be assured: (i) all tasks are assumed to be independent; (ii) tasks cannot suspend
themselves; and (iii) tasks’ behaviors are entirely periodic/sporadic. In this dissertation,
we discuss the problems and solutions related to the above assumptions not valid.

In Chapter 3, we propose the response time analysis for sporadic arbitrary-deadline
tasks on multiprocessor systems under fixed-priority scheduling. Further, we derive
a linear-time response time bound that provides an amenable solution for the the
admission control and the interactive system and prototyping. We further conclude
that the linear-time response time bound can yield high performance compared to the
state-of-the-art TDA tests, especially in case of large task periods, where time-demand
analysis tests suffer from high computational complexity.

In Chapter 4, we observe that response-time analysis for multicore platforms with
shared resources can be symmetrically approached from two perspectives: a core-centric
and a shared-resource-centric perspective. The common “core-centric” perspective is
that a task executes on a core until it suspends the execution due to shared resource
accesses. The potentially less intuitive “shared-resource-centric” perspective is that a
task performs requests on shared resources until suspending itself back to perform
computation on its respective core. Based on the above observation, we provide a
pseudo-polynomial-time schedulability test and response-time analysis for constrained-
deadline sporadic task systems. In addition, we propose a task partitioning algorithm
that achieves a speedup factor of 7, compared to the optimal schedule. This constitutes
the first result in this research line with a speedup factor guarantee. The experimental
evaluation demonstrates that our approach can yield high acceptance ratios if the tasks
have only a few resource access segments.

135

conclusions and future work

In Chapter 5, we study the problem of real-time tasks with synchronizations on
multiprocessor systems. We show that the proposed resource-oriented partitioned
scheduling using PCP combined with a reasonable allocation algorithm can achieve
a non-trivial speedup factor guarantee. Specifically, we prove that our task mapping
and resource allocation algorithm has a speedup factor 11− 6/(m + 1) on a platform
comprising m processors, where a task may request at most one shared resource and
the number of requests on any resource by any single job is at most one. Earlier results
by Andersson and Easwaran [AE10] achieved a speedup factor 12(1 + 3r/4m) by using
G-EDF and virtualization under the same resource access model, where r is the number
of shared resources. The effectiveness of our proposed algorithm is highly supported
by the evaluation results. Empirical results show that our algorithm along with either
PCP or NPP for task sets with utilization below 50% is nearly optimal in the sense that
task sets not deemed schedulable by our algorithm are also not schedulable using any
scheduling policy. Further, we observe that while the additional overhead is incurred by
the implementation of PCP in each single processor, the improvement over the simple
non-preemptive scheduling by using PCP is very little: the long blocking incurred
by the non-preemptive scheduling can be painlessly removed by finding a good task
partitioning. Therefore, this enables us to use the simple non-preemptive scheduling
for resource sharing on multiprocessor systems while keeping high schedulability.

In Chapter 6, we study a model that is a generalization of the periodic task model,
called multi-mode task model: a task has several modes specified with different
execution times and periods to switch during runtime, independent of other tasks. The
proposed test for uniprocessor systems can be efficiently run in polynomial time and
is shown to be comparable to the existing state-of-the-art pseudo-polynomial tests for
FPT scheduling. On one hand, we show that the FPT scheduling can perform rather
poorly in the worst case. On the other hand, we prove that a utilization bound of
2−
√

2 ≈ 0.5857 can be guaranteed in implicit-deadline multi-mode systems under
RM scheduling, one example of FPM scheduling. Moreover, we study the problem
of allocating a set of multi-mode tasks on a homogeneous multiprocessor system.
We present a scheduling algorithm using any RAD algorithm for task allocations for
scheduling multi-mode tasks on multiprocessor systems. We prove that this algorithm
achieves 38% utilization for implicit-deadline RM scheduled multi-mode tasks on
multiprocessor systems. We then further improve this bound by considering the
upper bound on the utilization for every task. We explicitly also conclude that
the studied mode change model is a relaxation of the GMF model [BCGM99], the
VRB model [DFPS14] (also known as the adaptive variable-rate (AVR) model [BBB14;
BNB15]), and the DRT model [SEGY11]. As a consequence, we also derived utilization
bounds for these models on multiprocessor systems.

136

7.2 future work

7.2 future work

Release enforcement. In the presence of suspension, our analyses done in Chapter 4

and 5 must take into account the carry-in effect. Such an effect adversely affects
schedulability, causing additional interferences to be counted in the timing analysis.
Recently, there have been quite a few researches [CL14; HC16a; BHCL16; PF16] in
favor of release enforcement—a mechanism by deterministically releasing internal jobs to
potentially enhance predictability. It is worth seeing whether the release enforcement
can offset the unfavorable carry-in effect, thereafter bringing down the speedup factor.

Multiple resource accesses and multiple requests on each resource with constant

speedup factor. In Chapter 5, although we do not implicitly show the speedup factor
of our proposed algorithm for multiple resource accesses and multiple requests on each
resource, i.e., N > 1 and Q > 1, informally speaking, it would be however the value
related to N and Q. This implies that our proposed algorithm does not scale very well in
the presence of multiple resource accesses and multiple requests on one resource in the
sense of speedup factor. Empirical results also indicate the downside of our proposed
algorithm under multiple resource accesses and multiple requests on each resource. In
future work, we aim at bridging this gap, by developing an algorithm with a constant
speedup factor. Furthermore, it is also interesting in providing quality-guaranteed
algorithms for resource sharing with nested critical sections.

Constrained-deadline tasks with synchronization. In Chapter 5, we restrict ourselves
on implicit deadlines. However, extending implicit deadlines into constrained deadlines
might not be as easy as it seems. In constrained-deadline partitioned systems, density
and load are two key factors to algorithms with non-optimality [BF07]. Unlike for
utilizations, as used under implicit-deadline systems, there is no additivity for density
and load. This may lead to some property not being available under constrained-
deadline systems while packing shared resources. It would be definitely interesting to
see how to pack those resources such that some property is preserved, e.g., Lemma 5.5.

137

B I B L I O G R A P H Y

[Abe+13] Andreas Abel et al. “Impact of Resource Sharing on Performance and
Performance Prediction: A Survey.” In: CONCUR 2013 - Concurrency
Theory - 24th International Conference, CONCUR 2013, Buenos Aires,
Argentina, August 27-30, 2013. Proceedings. 2013, pp. 25–43.

[AB09] Sebastian Altmeyer and Claire Burguière. “A New Notion of Useful
Cache Block to Improve the Bounds of Cache-Related Preemption
Delay.” In: 21st Euromicro Conference on Real-Time Systems, ECRTS 2009,
Dublin, Ireland, July 1-3, 2009. 2009, pp. 109–118. doi: 10.1109/ECRTS.
2009.21. url: http://dx.doi.org/10.1109/ECRTS.2009.21.

[AB11] Sebastian Altmeyer and Claire Maiza Burguière. “Cache-related pre-
emption delay via useful cache blocks: Survey and redefinition.” In:
Journal of Systems Architecture 57.7 (2011), pp. 707–719.

[Alt+15] Sebastian Altmeyer et al. “A generic and compositional framework for
multicore response time analysis.” In: Proceedings of the 23rd International
Conference on Real Time Networks and Systems, RTNS 2015, Lille, France,
November 4-6, 2015. 2015, pp. 129–138. doi: 10.1145/2834848.2834862.
url: http://doi.acm.org/10.1145/2834848.2834862.

[ABJ01] Björn Andersson, Sanjoy K. Baruah, and Jan Jonsson. “Static-Priority
Scheduling on Multiprocessors.” In: Proceedings of the 22nd IEEE Real-
Time Systems Symposium (RTSS 2001), London, UK, 2-6 December 2001.
2001, pp. 193–202. doi: 10.1109/REAL.2001.990610. url: http://dx.
doi.org/10.1109/REAL.2001.990610.

[AE10] Björn Andersson and Arvind Easwaran. “Provably good multiprocessor
scheduling with resource sharing.” In: Real-Time Systems 46.2 (2010),
pp. 153–159. doi: 10.1007/s11241-010-9105-6. url: http://dx.doi.
org/10.1007/s11241-010-9105-6.

[AJ00] Björn Andersson and Jan Jonsson. “Fixed-priority preemptive multipro-
cessor scheduling: to partition or not to partition.” In: 7th International
Workshop on Real-Time Computing and Applications Symposium (RTCSA
2000), 12-14 December 2000, Cheju Island, South Korea. 2000, pp. 337–346.
doi: 10.1109/RTCSA.2000.896409. url: http://dx.doi.org/10.1109/
RTCSA.2000.896409.

[Aud91] Neil C Audsley. Optimal priority assignment and feasibility of static priority
tasks with arbitrary start times. Citeseer, 1991.

139

http://dx.doi.org/10.1109/ECRTS.2009.21
http://dx.doi.org/10.1109/ECRTS.2009.21
http://dx.doi.org/10.1109/ECRTS.2009.21
http://dx.doi.org/10.1145/2834848.2834862
http://doi.acm.org/10.1145/2834848.2834862
http://dx.doi.org/10.1109/REAL.2001.990610
http://dx.doi.org/10.1109/REAL.2001.990610
http://dx.doi.org/10.1109/REAL.2001.990610
http://dx.doi.org/10.1007/s11241-010-9105-6
http://dx.doi.org/10.1007/s11241-010-9105-6
http://dx.doi.org/10.1007/s11241-010-9105-6
http://dx.doi.org/10.1109/RTCSA.2000.896409
http://dx.doi.org/10.1109/RTCSA.2000.896409
http://dx.doi.org/10.1109/RTCSA.2000.896409

Bibliography

[Aud01] Neil C. Audsley. “On priority assignment in fixed priority scheduling.”
In: Inf. Process. Lett. 79.1 (2001), pp. 39–44. doi: 10 . 1016 / S0020 -

0190(00)00165-4. url: http://dx.doi.org/10.1016/S0020-0190(00)
00165-4.

[ABRTW93] Neil C. Audsley et al. “Applying new scheduling theory to static
priority pre-emptive scheduling.” In: Software Engineering Journal 8.5
(1993), pp. 284–292. url: http : / / ieeexplore . ieee . org / xpl /

articleDetails.jsp?arnumber=238595.

[Aut] AUTOSAR release 4.2. 2014. url: http://www.autosar.org.

[Bak03] Theodore P. Baker. “Multiprocessor EDF and Deadline Monotonic
Schedulability Analysis.” In: Proceedings of the 24th IEEE Real-Time
Systems Symposium (RTSS 2003), 3-5 December 2003, Cancun, Mexico.
2003, pp. 120–129. doi: 10 . 1109 / REAL . 2003 . 1253260. url: http :

//dx.doi.org/10.1109/REAL.2003.1253260.

[Bak06] Theodore P. Baker. “An Analysis of Fixed-Priority Schedulability on
a Multiprocessor.” In: Real-Time Systems 32.1-2 (2006), pp. 49–71. doi:
10.1007/S11241-005-4686-1. url: http://dx.doi.org/10.1007/
S11241-005-4686-1.

[BC07a] Theodore P. Baker and Michele Cirinei. “Brute-Force Determination
of Multiprocessor Schedulability for Sets of Sporadic Hard-Deadline
Tasks.” In: Principles of Distributed Systems, 11th International Conference,
OPODIS 2007, Guadeloupe, French West Indies, December 17-20, 2007.
Proceedings. 2007, pp. 62–75.

[Bar05] Sanjoy K. Baruah. “The Limited-Preemption Uniprocessor Scheduling
of Sporadic Task Systems.” In: 17th Euromicro Conference on Real-Time
Systems (ECRTS 2005), 6-8 July 2005, Palma de Mallorca, Spain, Proceedings.
2005, pp. 137–144. doi: 10.1109/ECRTS.2005.32. url: http://dx.doi.
org/10.1109/ECRTS.2005.32.

[Bar07] Sanjoy K. Baruah. “Techniques for Multiprocessor Global Schedulability
Analysis.” In: Proceedings of the 28th IEEE Real-Time Systems Symposium
(RTSS 2007), 3-6 December 2007, Tucson, Arizona, USA. 2007, pp. 119–128.
doi: 10.1109/RTSS.2007.35. url: http://dx.doi.org/10.1109/RTSS.
2007.35.

[BB08] Sanjoy K. Baruah and Theodore P. Baker. “Schedulability analysis of
global edf.” In: Real-Time Systems 38.3 (2008), pp. 223–235. doi: 10.1007/
s11241-007-9047-9. url: http://dx.doi.org/10.1007/s11241-007-
9047-9.

140

http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=238595
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=238595
http://www.autosar.org
http://dx.doi.org/10.1109/REAL.2003.1253260
http://dx.doi.org/10.1109/REAL.2003.1253260
http://dx.doi.org/10.1109/REAL.2003.1253260
http://dx.doi.org/10.1007/S11241-005-4686-1
http://dx.doi.org/10.1007/S11241-005-4686-1
http://dx.doi.org/10.1007/S11241-005-4686-1
http://dx.doi.org/10.1109/ECRTS.2005.32
http://dx.doi.org/10.1109/ECRTS.2005.32
http://dx.doi.org/10.1109/ECRTS.2005.32
http://dx.doi.org/10.1109/RTSS.2007.35
http://dx.doi.org/10.1109/RTSS.2007.35
http://dx.doi.org/10.1109/RTSS.2007.35
http://dx.doi.org/10.1007/s11241-007-9047-9
http://dx.doi.org/10.1007/s11241-007-9047-9
http://dx.doi.org/10.1007/s11241-007-9047-9
http://dx.doi.org/10.1007/s11241-007-9047-9

Bibliography

[BBMS10] Sanjoy K. Baruah et al. “Improved multiprocessor global schedulability
analysis.” In: Real-Time Systems 46.1 (2010), pp. 3–24. doi: 10.1007/
s11241-010-9096-3. url: http://dx.doi.org/10.1007/s11241-010-
9096-3.

[BCGM99] Sanjoy K. Baruah et al. “Generalized Multiframe Tasks.” In: Real-Time
Systems 17.1 (1999), pp. 5–22. doi: 10.1023/A:1008030427220. url:
http://dx.doi.org/10.1023/A:1008030427220.

[BF07] Sanjoy K. Baruah and Nathan Fisher. “Global Deadline-Monotonic
Scheduling of Arbitrary-Deadline Sporadic Task Systems.” In: Principles
of Distributed Systems, 11th International Conference, OPODIS 2007,
Guadeloupe, French West Indies, December 17-20, 2007. Proceedings. 2007,
pp. 204–216.

[BF08] Sanjoy K. Baruah and Nathan Fisher. “Global Fixed-Priority Scheduling
of Arbitrary-Deadline Sporadic Task Systems.” In: Distributed Computing
and Networking, 9th International Conference, ICDCN 2008, Kolkata, India,
January 5-8, 2008. 2008, pp. 215–226.

[BMR90] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. “Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor.” In: IEEE
Real-Time Systems Symposium. 1990, pp. 182–190.

[BBA11] Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson. “Is
Semi-Partitioned Scheduling Practical?” In: Euromicro Conference on Real-
Time Systems (ECRTS). 2011, pp. 125–135. doi: 10.1109/ECRTS.2011.20.
url: http://dx.doi.org/10.1109/ECRTS.2011.20.

[BC07b] Marko Bertogna and Michele Cirinei. “Response-Time Analysis for
Globally Scheduled Symmetric Multiprocessor Platforms.” In: Proceed-
ings of the 28th IEEE Real-Time Systems Symposium (RTSS 2007), 3-6
December 2007, Tucson, Arizona, USA. 2007, pp. 149–160. doi: 10.1109/
RTSS.2007.31. url: http://dx.doi.org/10.1109/RTSS.2007.31.

[BCL05a] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. “Improved
Schedulability Analysis of EDF on Multiprocessor Platforms.” In: 17th
Euromicro Conference on Real-Time Systems (ECRTS 2005), 6-8 July 2005,
Palma de Mallorca, Spain, Proceedings. 2005, pp. 209–218.

[BCL05b] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. “New Schedu-
lability Tests for Real-Time Task Sets Scheduled by Deadline Monotonic
on Multiprocessors.” In: Principles of Distributed Systems, 9th International
Conference, OPODIS 2005, Pisa, Italy, December 12-14, 2005, Revised
Selected Papers. 2005, pp. 306–321.

141

http://dx.doi.org/10.1007/s11241-010-9096-3
http://dx.doi.org/10.1007/s11241-010-9096-3
http://dx.doi.org/10.1007/s11241-010-9096-3
http://dx.doi.org/10.1007/s11241-010-9096-3
http://dx.doi.org/10.1023/A:1008030427220
http://dx.doi.org/10.1023/A:1008030427220
http://dx.doi.org/10.1109/ECRTS.2011.20
http://dx.doi.org/10.1109/ECRTS.2011.20
http://dx.doi.org/10.1109/RTSS.2007.31
http://dx.doi.org/10.1109/RTSS.2007.31
http://dx.doi.org/10.1109/RTSS.2007.31

Bibliography

[Bin15] Enrico Bini. “The Quadratic Utilization Upper Bound for Arbitrary
Deadline Real-Time Tasks.” In: IEEE Trans. Computers 64.2 (2015),
pp. 593–599. doi: 10.1109/TC.2013.209. url: http://dx.doi.org/10.
1109/TC.2013.209.

[BB04] Enrico Bini and Giorgio C. Buttazzo. “Schedulability Analysis of
Periodic Fixed Priority Systems.” In: IEEE Trans. Computers 53.11 (2004),
pp. 1462–1473. doi: 10.1109/TC.2004.103. url: http://dx.doi.org/
10.1109/TC.2004.103.

[BB05] Enrico Bini and Giorgio C. Buttazzo. “Measuring the Performance of
Schedulability Tests.” In: Real-Time Systems 30.1-2 (2005), pp. 129–154.
doi: 10.1007/s11241-005-0507-9. url: http://dx.doi.org/10.1007/
s11241-005-0507-9.

[BNRB09] Enrico Bini et al. “A Response-Time Bound in Fixed-Priority Scheduling
with Arbitrary Deadlines.” In: IEEE Trans. Computers 58.2 (2009),
pp. 279–286. doi: 10.1109/TC.2008.167. url: http://dx.doi.org/10.
1109/TC.2008.167.

[BMMNB14] Alessandro Biondi et al. “Exact Interference of Adaptive Variable-Rate
Tasks under Fixed-Priority Scheduling.” In: 26th Euromicro Conference
on Real-Time Systems, ECRTS 2014, Madrid, Spain, July 8-11, 2014. 2014,
pp. 165–174. doi: 10.1109/ECRTS.2014.38. url: http://dx.doi.org/
10.1109/ECRTS.2014.38.

[BNB15] Alessandro Biondi, Marco Di Natale, and Giorgio C. Buttazzo.
“Response-time analysis for real-time tasks in engine control appli-
cations.” In: International Conference on Cyber-Physical Systems (ICCPS).
2015, pp. 120–129. doi: 10.1145/2735960.2735963. url: http://doi.
acm.org/10.1145/2735960.2735963.

[BAHCN15] Konstantinos Bletsas et al. Errata for three papers (2004-05) on fixed-priority
scheduling with self-suspensions. Tech. rep. CISTER-TR-150713. CISTER,
2015.

[BLBA07] Aaron Block et al. “A Flexible Real-Time Locking Protocol for Multi-
processors.” In: RTCSA. 2007, pp. 47–56. doi: 10.1109/RTCSA.2007.8.
url: http://dx.doi.org/10.1109/RTCSA.2007.8.

[BFPRT73] Manuel Blum et al. “Time Bounds for Selection.” In: J. Comput. Syst. Sci.
7.4 (1973), pp. 448–461. doi: 10.1016/S0022-0000(73)80033-9. url:
http://dx.doi.org/10.1016/S0022-0000(73)80033-9.

[Bra11] B.B. Brandenburg. “Scheduling and Locking in Multiprocessor Real-
Time Operating Systems.” PhD thesis. The University of North Carolina
at Chapel Hill, 2011.

142

http://dx.doi.org/10.1109/TC.2013.209
http://dx.doi.org/10.1109/TC.2013.209
http://dx.doi.org/10.1109/TC.2013.209
http://dx.doi.org/10.1109/TC.2004.103
http://dx.doi.org/10.1109/TC.2004.103
http://dx.doi.org/10.1109/TC.2004.103
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/TC.2008.167
http://dx.doi.org/10.1109/TC.2008.167
http://dx.doi.org/10.1109/TC.2008.167
http://dx.doi.org/10.1109/ECRTS.2014.38
http://dx.doi.org/10.1109/ECRTS.2014.38
http://dx.doi.org/10.1109/ECRTS.2014.38
http://dx.doi.org/10.1145/2735960.2735963
http://doi.acm.org/10.1145/2735960.2735963
http://doi.acm.org/10.1145/2735960.2735963
http://dx.doi.org/10.1109/RTCSA.2007.8
http://dx.doi.org/10.1109/RTCSA.2007.8
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9

Bibliography

[Bra13] Björn B. Brandenburg. “Improved analysis and evaluation of real-time
semaphore protocols for P-FP scheduling.” In: Real-Time and Embedded
Technology and Applications Symposium, RTAS. 2013, pp. 141–152. doi:
10.1109/RTAS.2013.6531087. url: http://dx.doi.org/10.1109/
RTAS.2013.6531087.

[Bra14a] Björn B. Brandenburg. “The FMLP+: An Asymptotically Optimal Real-
Time Locking Protocol for Suspension-Aware Analysis.” In: Euromicro
Conference on Real-Time Systems (ECRTS). 2014, pp. 61–71. doi: 10.1109/
ECRTS.2014.26. url: http://dx.doi.org/10.1109/ECRTS.2014.26.

[BA10] Björn B. Brandenburg and James H. Anderson. “Optimality Results for
Multiprocessor Real-Time Locking.” In: Real-Time Systems Symposium
(RTSS). 2010, pp. 49–60. doi: 10 . 1109 / RTSS . 2010 . 17. url: http :

//dx.doi.org/10.1109/RTSS.2010.17.

[Bra14b] Björn Bernhard Brandenburg. “Blocking Optimality in Distributed
Real-Time Locking Protocols.” In: LITES 1.2 (2014), 01:1–01:22. doi:
10.4230/LITES-v001-i002-a001. url: http://dx.doi.org/10.4230/
LITES-v001-i002-a001.

[BCDH16] Georg von der Brüggen et al. “Exact Speedup Factors for Linear-Time
Schedulability Tests for Fixed-Priority Preemptive and Non-preemptive
Scheduling.” In: Information Processing Letters (IPL) (2016). url: doi:
10.1016/j.ipl.2016.08.001.

[BCH15] Georg von der Bruggen, Jian-Jia Chen, and Wen-Hung Huang. “Schedu-
lability and Optimization Analysis for Non-preemptive Static Priority
Scheduling Based on Task Utilization and Blocking Factors.” In: 27th
Euromicro Conference on Real-Time Systems, ECRTS 2015, Lund, Sweden,
July 8-10, 2015. 2015, pp. 90–101. doi: 10.1109/ECRTS.2015.16. url:
http://dx.doi.org/10.1109/ECRTS.2015.16.

[BCHC16] Georg von der Brüggen et al. “Systems with Dynamic Real-Time
Guarantees in Uncertain and Faulty Execution Environments.” In: Real-
Time Systems Symposium (RTSS). Porto, Portugal, 2016.

[BHCL16] Georg von der Brüggen et al. “Uniprocessor Scheduling Strategies for
Self-Suspending Task Systems.” In: Proceedings of the 24th International
Conference on Real-Time Networks and Systems, RTNS 2016, Brest, France,
October 19-21, 2016. 2016, pp. 119–128. doi: 10.1145/2997465.2997497.
url: http://doi.acm.org/10.1145/2997465.2997497.

[Bur93] Alan Burns. Preemptive priority based scheduling: An appropriate engineer-
ing approach. University of York, Department of Computer Science,
1993.

143

http://dx.doi.org/10.1109/RTAS.2013.6531087
http://dx.doi.org/10.1109/RTAS.2013.6531087
http://dx.doi.org/10.1109/RTAS.2013.6531087
http://dx.doi.org/10.1109/ECRTS.2014.26
http://dx.doi.org/10.1109/ECRTS.2014.26
http://dx.doi.org/10.1109/ECRTS.2014.26
http://dx.doi.org/10.1109/RTSS.2010.17
http://dx.doi.org/10.1109/RTSS.2010.17
http://dx.doi.org/10.1109/RTSS.2010.17
http://dx.doi.org/10.4230/LITES-v001-i002-a001
http://dx.doi.org/10.4230/LITES-v001-i002-a001
http://dx.doi.org/10.4230/LITES-v001-i002-a001
doi:10.1016/j.ipl.2016.08.001
doi:10.1016/j.ipl.2016.08.001
http://dx.doi.org/10.1109/ECRTS.2015.16
http://dx.doi.org/10.1109/ECRTS.2015.16
http://dx.doi.org/10.1145/2997465.2997497
http://doi.acm.org/10.1145/2997465.2997497

Bibliography

[BW13] Alan Burns and Andy J. Wellings. “A Schedulability Compatible
Multiprocessor Resource Sharing Protocol - MrsP.” In: Euromicro
Conference on Real-Time Systems (ECRTS). 2013, pp. 282–291. doi: 10.
1109/ECRTS.2013.37. url: http://dx.doi.org/10.1109/ECRTS.2013.
37.

[BF93] Ricky W. Butler and George B. Finelli. “The Infeasibility of Quantifying
the Reliability of Life-Critical Real-Time Software.” In: IEEE Trans.
Software Eng. 19.1 (1993), pp. 3–12. doi: 10.1109/32.210303. url:
http://dx.doi.org/10.1109/32.210303.

[But11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Third Edition. Vol. 24. Real-Time
Systems Series. Springer, 2011. isbn: 978-1-4614-0675-4. doi: 10.1007/
978-1-4614-0676-1. url: http://dx.doi.org/10.1007/978-1-4614-
0676-1.

[BBY13] Giorgio C. Buttazzo, Marko Bertogna, and Gang Yao. “Limited Pre-
emptive Scheduling for Real-Time Systems. A Survey.” In: IEEE Trans.
Industrial Informatics 9.1 (2013), pp. 3–15. doi: 10.1109/TII.2012.
2188805. url: http://dx.doi.org/10.1109/TII.2012.2188805.

[BBB14] Giorgio C. Buttazzo, Enrico Bini, and Darren Buttle. “Rate-adaptive
tasks: Model, analysis, and design issues.” In: Design, Automation &
Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany,
March 24-28, 2014. 2014, pp. 1–6. doi: 10.7873/DATE.2014.266. url:
http://dx.doi.org/10.7873/DATE.2014.266.

[Car+04] John Carpenter et al. “A Categorization of Real-Time Multiprocessor
Scheduling Problems and Algorithms.” In: Handbook of Scheduling -
Algorithms, Models, and Performance Analysis. 2004. url: http://www.
crcnetbase.com/doi/abs/10.1201/9780203489802.ch30.

[CC11] Jian-Jia Chen and Samarjit Chakraborty. “Resource Augmentation
Bounds for Approximate Demand Bound Functions.” In: Proceedings of
the 32nd IEEE Real-Time Systems Symposium, RTSS 2011, Vienna, Austria,
November 29 - December 2, 2011. 2011, pp. 272–281. doi: 10.1109/RTSS.
2011.32. url: http://dx.doi.org/10.1109/RTSS.2011.32.

[CHL15] Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. “k2U: A Gen-
eral Framework from k-Point Effective Schedulability Analysis to
Utilization-Based Tests.” In: Real-Time Systems Symposium (RTSS). 2015.

[CHL16] Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. “k2Q: A Quadratic-
Form Response Time and Schedulability Analysis Framework for
Utilization-Based Analysis.” In: Real-Time Systems Symposium (RTSS).
Porto, Portugal, 2016.

144

http://dx.doi.org/10.1109/ECRTS.2013.37
http://dx.doi.org/10.1109/ECRTS.2013.37
http://dx.doi.org/10.1109/ECRTS.2013.37
http://dx.doi.org/10.1109/ECRTS.2013.37
http://dx.doi.org/10.1109/32.210303
http://dx.doi.org/10.1109/32.210303
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1109/TII.2012.2188805
http://dx.doi.org/10.1109/TII.2012.2188805
http://dx.doi.org/10.1109/TII.2012.2188805
http://dx.doi.org/10.7873/DATE.2014.266
http://dx.doi.org/10.7873/DATE.2014.266
http://www.crcnetbase.com/doi/abs/10.1201/9780203489802.ch30
http://www.crcnetbase.com/doi/abs/10.1201/9780203489802.ch30
http://dx.doi.org/10.1109/RTSS.2011.32
http://dx.doi.org/10.1109/RTSS.2011.32
http://dx.doi.org/10.1109/RTSS.2011.32

Bibliography

[CL14] Jian-Jia Chen and Cong Liu. “Fixed-Relative-Deadline Scheduling of
Hard Real-Time Tasks with Self-Suspensions.” In: Proceedings of the
IEEE 35th IEEE Real-Time Systems Symposium, RTSS 2014, Rome, Italy,
December 2-5, 2014. 2014, pp. 149–160. doi: 10.1109/RTSS.2014.31. url:
http://dx.doi.org/10.1109/RTSS.2014.31.

[CNH16] Jian-Jia Chen, Geoffrey Nelissen, and Wen-Hung Kevin Huang. “A
Unifying Response Time Analysis Framework for Dynamic Self-
Suspending Tasks.” In: Euromicro Conference on Real-Time Systems
(ECRTS). Toulouse, France, 2016.

[Che+16] Jian-Jia Chen et al. Many Suspensions, Many Problems: A Review of
Self-Suspending Tasks in Real-Time Systems. Tech. rep. 854. (Status:
Preprint). Department of Computer Science, TU Dortmund, 2016. url:
http://ls12- www.cs.tu- dortmund.de/daes/media/documents/

publications/downloads/2016-chen-techreport-854.pdf.

[CB02] Antoine Colin and Guillem Bernat. “Scope-Tree: A Program Repre-
sentation for Symbolic Worst-Case Execution Time Analysis.” In: 14th
Euromicro Conference on Real-Time Systems (ECRTS 2002), 19-21 June 2002,
Vienna, Austria, Proceedings. 2002, p. 50. doi: 10.1109/EMRTS.2002.
1019185. url: http://dx.doi.org/10.1109/EMRTS.2002.1019185.

[CP00] Antoine Colin and Isabelle Puaut. “Worst Case Execution Time Analysis
for a Processor with Branch Prediction.” In: Real-Time Systems 18.2/3

(2000), pp. 249–274. doi: 10.1023/A:1008149332687. url: http://dx.
doi.org/10.1023/A:1008149332687.

[Con+05] FlexRay Consortium et al. “FlexRay communications system-protocol
specification.” In: Version 2.1 (2005), pp. 198–207.

[DB08] Robert I. Davis and Alan Burns. “Response Time Upper Bounds for
Fixed Priority Real-Time Systems.” In: Proceedings of the 29th IEEE Real-
Time Systems Symposium, RTSS 2008, Barcelona, Spain, 30 November - 3
December 2008. 2008, pp. 407–418. doi: 10.1109/RTSS.2008.18. url:
http://dx.doi.org/10.1109/RTSS.2008.18.

[DB11a] Robert I. Davis and Alan Burns. “A survey of hard real-time scheduling
for multiprocessor systems.” In: ACM Comput. Surv. 43.4 (2011), p. 35.
doi: 10.1145/1978802.1978814. url: http://doi.acm.org/10.1145/
1978802.1978814.

[DB11b] Robert I. Davis and Alan Burns. “Improved priority assignment for
global fixed priority pre-emptive scheduling in multiprocessor real-
time systems.” In: Real-Time Systems 47.1 (2011), pp. 1–40. doi: 10.1007/
s11241-010-9106-5. url: http://dx.doi.org/10.1007/s11241-010-
9106-5.

145

http://dx.doi.org/10.1109/RTSS.2014.31
http://dx.doi.org/10.1109/RTSS.2014.31
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-techreport-854.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-techreport-854.pdf
http://dx.doi.org/10.1109/EMRTS.2002.1019185
http://dx.doi.org/10.1109/EMRTS.2002.1019185
http://dx.doi.org/10.1109/EMRTS.2002.1019185
http://dx.doi.org/10.1023/A:1008149332687
http://dx.doi.org/10.1023/A:1008149332687
http://dx.doi.org/10.1023/A:1008149332687
http://dx.doi.org/10.1109/RTSS.2008.18
http://dx.doi.org/10.1109/RTSS.2008.18
http://dx.doi.org/10.1145/1978802.1978814
http://doi.acm.org/10.1145/1978802.1978814
http://doi.acm.org/10.1145/1978802.1978814
http://dx.doi.org/10.1007/s11241-010-9106-5
http://dx.doi.org/10.1007/s11241-010-9106-5
http://dx.doi.org/10.1007/s11241-010-9106-5
http://dx.doi.org/10.1007/s11241-010-9106-5

Bibliography

[DFPS14] Robert I. Davis et al. “Schedulability tests for tasks with Variable Rate-
dependent Behaviour under fixed priority scheduling.” In: 20th IEEE
Real-Time and Embedded Technology and Applications Symposium, RTAS
2014, Berlin, Germany, April 15-17, 2014. 2014, pp. 51–62. doi: 10.1109/
RTAS.2014.6925990. url: http://dx.doi.org/10.1109/RTAS.2014.
6925990.

[DTGDP15] Robert I. Davis et al. “Quantifying the Exact Sub-optimality of Non-
preemptive Scheduling.” In: 2015 IEEE Real-Time Systems Symposium,
RTSS 2015, San Antonio, Texas, USA, December 1-4, 2015. 2015, pp. 96–106.
doi: 10.1109/RTSS.2015.17. url: http://dx.doi.org/10.1109/RTSS.
2015.17.

[Dur98] Tom Durkin. “What the Media Couldn’t Tell You About Mars
Pathfinder.” In: Robot Science & (1998).

[EA09] Arvind Easwaran and Björn Andersson. “Resource Sharing in Global
Fixed-Priority Preemptive Multiprocessor Scheduling.” In: Real-Time
Systems Symposium (RTSS). 2009, pp. 377–386. doi: 10.1109/RTSS.2009.
37. url: http://dx.doi.org/10.1109/RTSS.2009.37.

[ESD10] Paul Emberson, Roger Stafford, and Robert I Davis. “Techniques for
the synthesis of multiprocessor tasksets.” In: International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS 2010). 2010, pp. 6–11.

[ETA] ETAS Group. ASCET Software Products. url: http://www.etas.com/en/
products.

[GLN01] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. “Minimizing Memory
Utilization of Real-Time Task Sets in Single and Multi-Processor
Systems-on-a-Chip.” In: Real-Time Systems Symposium (RTSS). 2001,
pp. 73–83. doi: 10.1109/REAL.2001.990598. url: http://dx.doi.org/
10.1109/REAL.2001.990598.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979. isbn: 0-7167-1044-
7.

[GGL13] Gilles Geeraerts, Joël Goossens, and Markus Lindström. “Multiproces-
sor schedulability of arbitrary-deadline sporadic tasks: complexity and
antichain algorithm.” In: Real-Time Systems 49.2 (2013), pp. 171–218.
doi: 10.1007/s11241-012-9172-y. url: http://dx.doi.org/10.1007/
s11241-012-9172-y.

146

http://dx.doi.org/10.1109/RTAS.2014.6925990
http://dx.doi.org/10.1109/RTAS.2014.6925990
http://dx.doi.org/10.1109/RTAS.2014.6925990
http://dx.doi.org/10.1109/RTAS.2014.6925990
http://dx.doi.org/10.1109/RTSS.2015.17
http://dx.doi.org/10.1109/RTSS.2015.17
http://dx.doi.org/10.1109/RTSS.2015.17
http://dx.doi.org/10.1109/RTSS.2009.37
http://dx.doi.org/10.1109/RTSS.2009.37
http://dx.doi.org/10.1109/RTSS.2009.37
http://www.etas.com/en/products
http://www.etas.com/en/products
http://dx.doi.org/10.1109/REAL.2001.990598
http://dx.doi.org/10.1109/REAL.2001.990598
http://dx.doi.org/10.1109/REAL.2001.990598
http://dx.doi.org/10.1007/s11241-012-9172-y
http://dx.doi.org/10.1007/s11241-012-9172-y
http://dx.doi.org/10.1007/s11241-012-9172-y

Bibliography

[GSYY09] Nan Guan et al. “New Response Time Bounds for Fixed Priority
Multiprocessor Scheduling.” In: Proceedings of the 30th IEEE Real-Time
Systems Symposium, RTSS 2009, Washington, DC, USA, 1-4 December
2009. 2009, pp. 387–397. doi: 10.1109/RTSS.2009.11. url: http:
//dx.doi.org/10.1109/RTSS.2009.11.

[HRW15] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. “Towards com-
positionality in execution time analysis: definition and challenges.” In:
SIGBED Review 12.1 (2015), pp. 28–36. doi: 10.1145/2752801.2752805.
url: http://doi.acm.org/10.1145/2752801.2752805.

[HZNLD14] Gang Han et al. “Experimental Evaluation and Selection of Data
Consistency Mechanisms for Hard Real-Time Applications on Multicore
Platforms.” In: IEEE Trans. Industrial Informatics 10.2 (2014), pp. 903–918.
doi: 10.1109/TII.2013.2290585. url: http://dx.doi.org/10.1109/
TII.2013.2290585.

[HAMWH99] Christopher A. Healy et al. “Bounding Pipeline and Instruction Cache
Performance.” In: IEEE Trans. Computers 48.1 (1999), pp. 53–70. doi:
10.1109/12.743411. url: http://dx.doi.org/10.1109/12.743411.

[HLK11] Pi-Cheng Hsiu, Der-Nien Lee, and Tei-Wei Kuo. “Task synchronization
and allocation for many-core real-time systems.” In: International
Conference on Embedded Software, (EMSOFT). 2011, pp. 79–88. doi: 10.
1145/2038642.2038656. url: http://doi.acm.org/10.1145/2038642.
2038656.

[HC15a] Wen-Hung Huang and Jian-Jia Chen. “Response Time Bounds for Spo-
radic Arbitrary-Deadline Tasks under Global Fixed-Priority Scheduling
on Multiprocessors.” In: International Conference on Real-Time Networks
and Systems (RTNS). Lille, France, 2015.

[HC15b] Wen-Hung Huang and Jian-Jia Chen. “Techniques for Schedulability
Analysis in Mode Change Systems under Fixed-Priority Scheduling.”
In: IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). (Best Paper Award). Hong Kong,
2015.

[HC16a] Wen-Hung Huang and Jian-Jia Chen. “Self-Suspension Real-Time Tasks
under Fixed-Relative-Deadline Fixed-Priority Scheduling.” In: Design,
Automation and Test in Europe (DATE). Dresden, Germany, 2016.

[HC16b] Wen-Hung Huang and Jian-Jia Chen. “Utilization Bounds on Allocat-
ing Rate-Monotonic Scheduled Multi-Mode Tasks on Multiprocessor
Systems.” In: Design Automation Conference (DAC). Austin, TX, USA,
2016.

147

http://dx.doi.org/10.1109/RTSS.2009.11
http://dx.doi.org/10.1109/RTSS.2009.11
http://dx.doi.org/10.1109/RTSS.2009.11
http://dx.doi.org/10.1145/2752801.2752805
http://doi.acm.org/10.1145/2752801.2752805
http://dx.doi.org/10.1109/TII.2013.2290585
http://dx.doi.org/10.1109/TII.2013.2290585
http://dx.doi.org/10.1109/TII.2013.2290585
http://dx.doi.org/10.1109/12.743411
http://dx.doi.org/10.1109/12.743411
http://dx.doi.org/10.1145/2038642.2038656
http://dx.doi.org/10.1145/2038642.2038656
http://doi.acm.org/10.1145/2038642.2038656
http://doi.acm.org/10.1145/2038642.2038656

Bibliography

[HCR16] Wen-Hung Huang, Jian-Jia Chen, and Jan Reineke. “MIRROR: Symmet-
ric Timing Analysis for Real-Time Tasks on Multicore Platforms with
Shared Resources.” In: Design Automation Conference (DAC). Austin, TX,
USA, 2016.

[HCZL15] Wen-Hung Huang et al. “PASS: Priority Assignment of Real-Time Tasks
with Dynamic Suspending Behavior under Fixed-Priority Scheduling.”
In: Design Automation Conference (DAC), San Francisco, CA, USA. 2015.

[HYC16] Wen-Hung Huang, Maolin Yang, and Jian-Jia Chen. “Resource-Oriented
Partitioned Scheduling in Multiprocessor Systems: How to Partition
and How to Share?” In: Real-Time Systems Symposium (RTSS). (Outstand-
ing Paper Award). Porto, Portugal, 2016.

[Joh73] David S Johnson. “Near-optimal bin packing algorithms.” PhD thesis.
Massachusetts Institute of Technology, 1973.

[KP95] Bala Kalyanasundaram and Kirk Pruhs. “Speed is as Powerful as
Clairvoyance.” In: 36th Annual Symposium on Foundations of Computer
Science, Milwaukee, Wisconsin, 23-25 October 1995. 1995, pp. 214–221.

[KFMCR14] Timon Kelter et al. “Static analysis of multi-core TDMA resource
arbitration delays.” In: Real-Time Systems 50.2 (2014), pp. 185–229. doi:
10.1007/s11241-013-9189-x. url: http://dx.doi.org/10.1007/
s11241-013-9189-x.

[KLR12] Junsung Kim, Karthik Lakshmanan, and Ragunathan Rajkumar. “Rhyth-
mic Tasks: A New Task Model with Continually Varying Periods
for Cyber-Physical Systems.” In: 2012 IEEE/ACM Third International
Conference on Cyber-Physical Systems, ICCPS 2012, Beijing, China, April
17-19, 2012. 2012, pp. 55–64. doi: 10.1109/ICCPS.2012.14. url: http:
//dx.doi.org/10.1109/ICCPS.2012.14.

[Koo14] Phil Koopman. “A case study of Toyota unintended acceleration and
software safety.” In: Presentation. Sept (2014).

[KG93] Hermann Kopetz and Günter Grünsteidl. “TTP - A Time-Triggered
Protocol for Fault-Tolerant Real-Time Systems.” In: Digest of Papers:
FTCS-23, The Twenty-Third Annual International Symposium on Fault-
Tolerant Computing, Toulouse, France, June 22-24, 1993. 1993, pp. 524–533.
doi: 10.1109/FTCS.1993.627355. url: http://dx.doi.org/10.1109/
FTCS.1993.627355.

[LNR09] Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar.
“Coordinated Task Scheduling, Allocation and Synchronization on
Multiprocessors.” In: Real-Time Systems Symposium, (RTSS). 2009,
pp. 469–478. doi: 10. 1109/ RTSS.2009 .51. url: http: // dx. doi.

org/10.1109/RTSS.2009.51.

148

http://dx.doi.org/10.1007/s11241-013-9189-x
http://dx.doi.org/10.1007/s11241-013-9189-x
http://dx.doi.org/10.1007/s11241-013-9189-x
http://dx.doi.org/10.1109/ICCPS.2012.14
http://dx.doi.org/10.1109/ICCPS.2012.14
http://dx.doi.org/10.1109/ICCPS.2012.14
http://dx.doi.org/10.1109/FTCS.1993.627355
http://dx.doi.org/10.1109/FTCS.1993.627355
http://dx.doi.org/10.1109/FTCS.1993.627355
http://dx.doi.org/10.1109/RTSS.2009.51
http://dx.doi.org/10.1109/RTSS.2009.51
http://dx.doi.org/10.1109/RTSS.2009.51

Bibliography

[LGPWS14] Kai Lampka et al. “A formal approach to the WCRT analysis of
multicore systems with memory contention under phase-structured
task sets.” In: Real-Time Systems 50.5-6 (2014), pp. 736–773. doi: 10.
1007/s11241-014-9211-y. url: http://dx.doi.org/10.1007/s11241-
014-9211-y.

[Leh90] John P. Lehoczky. “Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines.” In: Proceedings of the Real-Time Systems Symposium
- 1990, Lake Buena Vista, Florida, USA, December 1990. 1990, pp. 201–209.
doi: 10.1109/REAL.1990.128748. url: http://dx.doi.org/10.1109/
REAL.1990.128748.

[LSD89] John P. Lehoczky, Lui Sha, and Y. Ding. “The Rate Monotonic Schedul-
ing Algorithm: Exact Characterization and Average Case Behavior.”
In: Proceedings of the Real-Time Systems Symposium - 1989, Santa Monica,
California, USA, December 1989. 1989, pp. 166–171. doi: 10.1109/REAL.
1989.63567. url: http://dx.doi.org/10.1109/REAL.1989.63567.

[LDS07] Chuanpeng Li, Chen Ding, and Kai Shen. “Quantifying the cost of
context switch.” In: Proceedings of the Workshop on Experimental Computer
Science, Part of ACM FCRC, San Diego, 13-14 June 2007. 2007, p. 2. doi:
10.1145/1281700.1281702. url: http://doi.acm.org/10.1145/
1281700.1281702.

[LM95] Yau-Tsun Steven Li and Sharad Malik. “Performance Analysis of
Embedded Software Using Implicit Path Enumeration.” In: DAC. 1995,
pp. 456–461. doi: 10.1145/217474.217570. url: http://doi.acm.org/
10.1145/217474.217570.

[LM97] Yau-Tsun Steven Li and Sharad Malik. “Performance analysis of
embedded software using implicit path enumeration.” In: IEEE Trans.
on CAD of Integrated Circuits and Systems 16.12 (1997), pp. 1477–1487. doi:
10.1109/43.664229. url: http://dx.doi.org/10.1109/43.664229.

[LL73] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment.” In: J. ACM 20.1 (1973),
pp. 46–61. doi: 10.1145/321738.321743. url: http://doi.acm.org/
10.1145/321738.321743.

[LC14] Cong Liu and Jian-Jia Chen. “Bursty-Interference Analysis Techniques
for Analyzing Complex Real-Time Task Models.” In: Proceedings of the
IEEE 35th IEEE Real-Time Systems Symposium, RTSS 2014, Rome, Italy,
December 2-5, 2014. 2014, pp. 173–183. doi: 10.1109/RTSS.2014.10. url:
http://dx.doi.org/10.1109/RTSS.2014.10.

149

http://dx.doi.org/10.1007/s11241-014-9211-y
http://dx.doi.org/10.1007/s11241-014-9211-y
http://dx.doi.org/10.1007/s11241-014-9211-y
http://dx.doi.org/10.1007/s11241-014-9211-y
http://dx.doi.org/10.1109/REAL.1990.128748
http://dx.doi.org/10.1109/REAL.1990.128748
http://dx.doi.org/10.1109/REAL.1990.128748
http://dx.doi.org/10.1109/REAL.1989.63567
http://dx.doi.org/10.1109/REAL.1989.63567
http://dx.doi.org/10.1109/REAL.1989.63567
http://dx.doi.org/10.1145/1281700.1281702
http://doi.acm.org/10.1145/1281700.1281702
http://doi.acm.org/10.1145/1281700.1281702
http://dx.doi.org/10.1145/217474.217570
http://doi.acm.org/10.1145/217474.217570
http://doi.acm.org/10.1145/217474.217570
http://dx.doi.org/10.1109/43.664229
http://dx.doi.org/10.1109/43.664229
http://dx.doi.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743
http://dx.doi.org/10.1109/RTSS.2014.10
http://dx.doi.org/10.1109/RTSS.2014.10

Bibliography

[LM11] Paul Lokuciejewski and Peter Marwedel. Worst-Case Execution Time
Aware Compilation Techniques for Real-Time Systems. Springer, 2011. isbn:
978-90-481-9928-0. doi: 10.1007/978- 90- 481- 9929- 7. url: http:
//dx.doi.org/10.1007/978-90-481-9929-7.

[LYGY10] Mingsong Lv et al. “Combining Abstract Interpretation with Model
Checking for Timing Analysis of Multicore Software.” In: RTSS. 2010,
pp. 339–349.

[MBBMB15] Alessandra Melani et al. “Memory-processor co-scheduling in fixed
priority systems.” In: Proceedings of the 23rd International Conference on
Real Time Networks and Systems, RTNS 2015, Lille, France, November 4-
6, 2015. 2015, pp. 87–96. doi: 10.1145/2834848.2834854. url: http:
//doi.acm.org/10.1145/2834848.2834854.

[Mok83] Aloysius K Mok. “Fundamental design problems of distributed systems
for the hard-real-time environment.” In: (1983).

[NNB10] Farhang Nemati, Thomas Nolte, and Moris Behnam. “Partitioning
Real-Time Systems on Multiprocessors with Shared Resources.” In:
Principles of Distributed Systems - International Conference, OPODIS. 2010,
pp. 253–269.

[Nan] NHTSA-NASA Study of Unintended Acceleration in Toyota Vehicles. Tech.
rep. National Aeronautics and Space Administration (NASA), Jan. 2011.

[PSCCT10] Rodolfo Pellizzoni et al. “Worst case delay analysis for memory
interference in multicore systems.” In: Design, Automation and Test
in Europe, DATE 2010, Dresden, Germany, March 8-12, 2010. 2010,
pp. 741–746. doi: 10.1109/DATE.2010.5456952. url: http://dx.
doi.org/10.1109/DATE.2010.5456952.

[PF16] Bo Peng and Nathan Fisher. “Parameter adaption for generalized mul-
tiframe tasks and applications to self-suspending tasks.” In: Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2016 IEEE
22nd International Conference on. IEEE. 2016, pp. 49–58.

[PK89] Peter P. Puschner and Christian Koza. “Calculating the Maximum
Execution Time of Real-Time Programs.” In: Real-Time Systems 1.2 (1989),
pp. 159–176. doi: 10.1007/BF00571421. url: http://dx.doi.org/10.
1007/BF00571421.

[Raj90] R. Rajkumar. “Real-Time Synchronization Protocols for Shared Memory
Multiprocessors.” In: 10th International Conference on Distributed Com-
puting Systems (ICDCS). 1990, pp. 116–123. doi: 10.1109/ICDCS.1990.
89257. url: http://dx.doi.org/10.1109/ICDCS.1990.89257.

150

http://dx.doi.org/10.1007/978-90-481-9929-7
http://dx.doi.org/10.1007/978-90-481-9929-7
http://dx.doi.org/10.1007/978-90-481-9929-7
http://dx.doi.org/10.1145/2834848.2834854
http://doi.acm.org/10.1145/2834848.2834854
http://doi.acm.org/10.1145/2834848.2834854
http://dx.doi.org/10.1109/DATE.2010.5456952
http://dx.doi.org/10.1109/DATE.2010.5456952
http://dx.doi.org/10.1109/DATE.2010.5456952
http://dx.doi.org/10.1007/BF00571421
http://dx.doi.org/10.1007/BF00571421
http://dx.doi.org/10.1007/BF00571421
http://dx.doi.org/10.1109/ICDCS.1990.89257
http://dx.doi.org/10.1109/ICDCS.1990.89257
http://dx.doi.org/10.1109/ICDCS.1990.89257

Bibliography

[RSL88] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. “Real-Time
Synchronization Protocols for Multiprocessors.” In: Real-Time Systems
Symposium (RTSS). 1988, pp. 259–269. doi: 10.1109/REAL.1988.51121.
url: http://dx.doi.org/10.1109/REAL.1988.51121.

[RC04] Jorge Real and Alfons Crespo. “Mode Change Protocols for Real-Time
Systems: A Survey and a New Proposal.” In: Real-Time Systems 26.2
(2004), pp. 161–197. doi: 10.1023/B:TIME.0000016129.97430.c6. url:
http://dx.doi.org/10.1023/B:TIME.0000016129.97430.c6.

[Rei09] Jan Reineke. “Caches in WCET Analysis: Predictability - Competitive-
ness - Sensitivity.” PhD thesis. Saarland University, 2009. isbn: 978-
3-941071-69-8. url: http://www.epubli.de/shop/buch/Caches-in-
WCET-Analysis-Jan-Reineke-9783941071698/12835.

[RLPKL11] Jan Reineke et al. “PRET DRAM controller: bank privatization for
predictability and temporal isolation.” In: Proceedings of the 9th Inter-
national Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2011, part of ESWeek ’11 Seventh Embedded Systems Week,
Taipei, Taiwan, 9-14 October, 2011. 2011, pp. 99–108. doi: 10 . 1145 /

2039370.2039388. url: http://doi.acm.org/10.1145/2039370.
2039388.

[SBB11] Luca Santinelli, Giorgio C. Buttazzo, and Enrico Bini. “Multi-moded
Resource Reservations.” In: 17th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2011, Chicago, Illinois, USA, 11-14
April 2011. 2011, pp. 37–46. doi: 10.1109/RTAS.2011.12. url: http:
//dx.doi.org/10.1109/RTAS.2011.12.

[SCT10a] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. “Dynamic
Power-Aware Mapping of Applications onto Heterogeneous MPSoC
Platforms.” In: IEEE Trans. Industrial Informatics 6.4 (2010), pp. 692–707.

[SCT10b] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. “Timing
Analysis for TDMA Arbitration in Resource Sharing Systems.” In:
16th IEEE Real-Time and Embedded Technology and Applications Symposium,
RTAS 2010, Stockholm, Sweden, April 12-15, 2010. 2010, pp. 215–224. doi:
10.1109/RTAS.2010.24. url: http://dx.doi.org/10.1109/RTAS.
2010.24.

[SPCTC10] Andreas Schranzhofer et al. “Worst-case response time analysis of
resource access models in multi-core systems.” In: Proceedings of the
47th Design Automation Conference, DAC 2010, Anaheim, California, USA,
July 13-18, 2010. 2010, pp. 332–337. doi: 10.1145/1837274.1837359.
url: http://doi.acm.org/10.1145/1837274.1837359.

151

http://dx.doi.org/10.1109/REAL.1988.51121
http://dx.doi.org/10.1109/REAL.1988.51121
http://dx.doi.org/10.1023/B:TIME.0000016129.97430.c6
http://dx.doi.org/10.1023/B:TIME.0000016129.97430.c6
http://www.epubli.de/shop/buch/Caches-in-WCET-Analysis-Jan-Reineke-9783941071698/12835
http://www.epubli.de/shop/buch/Caches-in-WCET-Analysis-Jan-Reineke-9783941071698/12835
http://dx.doi.org/10.1145/2039370.2039388
http://dx.doi.org/10.1145/2039370.2039388
http://doi.acm.org/10.1145/2039370.2039388
http://doi.acm.org/10.1145/2039370.2039388
http://dx.doi.org/10.1109/RTAS.2011.12
http://dx.doi.org/10.1109/RTAS.2011.12
http://dx.doi.org/10.1109/RTAS.2011.12
http://dx.doi.org/10.1109/RTAS.2010.24
http://dx.doi.org/10.1109/RTAS.2010.24
http://dx.doi.org/10.1109/RTAS.2010.24
http://dx.doi.org/10.1145/1837274.1837359
http://doi.acm.org/10.1145/1837274.1837359

Bibliography

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. “Priority
Inheritance Protocols: An Approach to Real-Time Synchronization.”
In: IEEE Trans. Computers 39.9 (1990), pp. 1175–1185. doi: 10.1109/12.
57058. url: http://dx.doi.org/10.1109/12.57058.

[SRLR89] Lui Sha et al. “Mode Change Protocols for Priority-Driven Preemptive
Scheduling.” In: Real-Time Systems 1.3 (1989), pp. 243–264. doi: 10.
1007/BF00365439. url: http://dx.doi.org/10.1007/BF00365439.

[Sho10] Michael Short. “The case for non-preemptive, deadline-driven schedul-
ing in real-time embedded systems.” In: Lecture notes in engineering and
computer science: Proceedings of the World Congress on Engineering. 2010.

[SH98] Mikael Sjödin and Hans Hansson. “Improved Response-Time Anal-
ysis Calculations.” In: Proceedings of the 19th IEEE Real-Time Systems
Symposium, Madrid, Spain, December 2-4, 1998. 1998, pp. 399–408. doi:
10.1109/REAL.1998.739773. url: http://dx.doi.org/10.1109/REAL.
1998.739773.

[SR90] John A. Stankovic and Krithi Ramamritham. “Editorial: What is
Predictability for Real-Time Systems?” In: Real-Time Systems 2.4 (1990),
pp. 247–254. doi: 10.1007/BF01995673. url: http://dx.doi.org/10.
1007/BF01995673.

[SEGY11] Martin Stigge et al. “The Digraph Real-Time Task Model.” In: 17th
IEEE Real-Time and Embedded Technology and Applications Symposium,
RTAS 2011, Chicago, Illinois, USA, 11-14 April 2011. 2011, pp. 71–80. doi:
10.1109/RTAS.2011.15. url: http://dx.doi.org/10.1109/RTAS.
2011.15.

[SY13] Martin Stigge and Wang Yi. “Combinatorial Abstraction Refinement for
Feasibility Analysis.” In: Proceedings of the IEEE 34th Real-Time Systems
Symposium, RTSS 2013, Vancouver, BC, Canada, December 3-6, 2013. 2013,
pp. 340–349. doi: 10.1109/RTSS.2013.41. url: http://dx.doi.org/
10.1109/RTSS.2013.41.

[SL14] Youcheng Sun and Giuseppe Lipari. “A Weak Simulation Relation for
Real-Time Schedulability Analysis of Global Fixed Priority Scheduling
Using Linear Hybrid Automata.” In: 22nd International Conference on
Real-Time Networks and Systems, RTNS ’14, Versaille, France, October
8-10, 2014. 2014, p. 35. doi: 10.1145/2659787.2659814. url: http:
//doi.acm.org/10.1145/2659787.2659814.

[SLGY14] Youcheng Sun et al. “Improving the response time analysis of global
fixed-priority multiprocessor scheduling.” In: 2014 IEEE 20th Inter-
national Conference on Embedded and Real-Time Computing Systems and
Applications, Chongqing, China, August 20-22, 2014. 2014, pp. 1–9. doi:

152

http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1007/BF00365439
http://dx.doi.org/10.1007/BF00365439
http://dx.doi.org/10.1007/BF00365439
http://dx.doi.org/10.1109/REAL.1998.739773
http://dx.doi.org/10.1109/REAL.1998.739773
http://dx.doi.org/10.1109/REAL.1998.739773
http://dx.doi.org/10.1007/BF01995673
http://dx.doi.org/10.1007/BF01995673
http://dx.doi.org/10.1007/BF01995673
http://dx.doi.org/10.1109/RTAS.2011.15
http://dx.doi.org/10.1109/RTAS.2011.15
http://dx.doi.org/10.1109/RTAS.2011.15
http://dx.doi.org/10.1109/RTSS.2013.41
http://dx.doi.org/10.1109/RTSS.2013.41
http://dx.doi.org/10.1109/RTSS.2013.41
http://dx.doi.org/10.1145/2659787.2659814
http://doi.acm.org/10.1145/2659787.2659814
http://doi.acm.org/10.1145/2659787.2659814

Bibliography

10.1109/RTCSA.2014.6910543. url: http://dx.doi.org/10.1109/
RTCSA.2014.6910543.

[TBW94] Ken Tindell, Alan Burns, and Andy J. Wellings. “An Extendible
Approach for Analyzing Fixed Priority Hard Real-Time Tasks.” In:
Real-Time Systems 6.2 (1994), pp. 133–151. doi: 10.1007/BF01088593.
url: http://dx.doi.org/10.1007/BF01088593.

[TBW92] Ken W Tindell, Alan Burns, and Andy J Wellings. “Mode changes
in priority preemptively scheduled systems.” In: Real-Time Systems
Symposium. 1992, pp. 100–109.

[Van93] Pamela H. Vance. “Knapsack Problems: Algorithms and Computer
Implementations (S. Martello and P. Toth).” In: SIAM Review 35.4 (1993),
pp. 684–685. doi: 10.1137/1035174. url: http://dx.doi.org/10.
1137/1035174.

[Vaz01] Vijay V Vazirani. Approximation algorithms. Springer, 2001.

[WS99] Yun Wang and Manas Saksena. “Scheduling Fixed-Priority Tasks with
Preemption Threshold.” In: 6th International Workshop on Real-Time
Computing and Applications Symposium (RTCSA ’99), 13-16 December
1999, Hong Kong, China. 1999, p. 328. doi: 10.1109/RTCSA.1999.811269.
url: http://dx.doi.org/10.1109/RTCSA.1999.811269.

[WA12] Bryan C. Ward and James H. Anderson. “Supporting Nested Locking
in Multiprocessor Real-Time Systems.” In: Euromicro Conference on Real-
Time Systems ECRTS. 2012, pp. 223–232. doi: 10.1109/ECRTS.2012.17.
url: http://dx.doi.org/10.1109/ECRTS.2012.17.

[WA13] Bryan C. Ward and James H. Anderson. “Fine-grained multiprocessor
real-time locking with improved blocking.” In: International Conference
on Real-Time Networks and Systems, RTNS. 2013, pp. 67–76. doi: 10.
1145/2516821.2516843. url: http://doi.acm.org/10.1145/2516821.
2516843.

[WB13a] Alexander Wieder and Björn B. Brandenburg. “Efficient partitioning
of sporadic real-time tasks with shared resources and spin locks.” In:
International Symposium on Industrial Embedded Systems, (SIES). 2013,
pp. 49–58. doi: 10.1109/SIES.2013.6601470. url: http://dx.doi.
org/10.1109/SIES.2013.6601470.

[WB13b] Alexander Wieder and Björn B. Brandenburg. “On Spin Locks in
AUTOSAR: Blocking Analysis of FIFO, Unordered, and Priority-
Ordered Spin Locks.” In: Real-Time Systems Symposium. 2013, pp. 45–56.
doi: 10.1109/RTSS.2013.13. url: http://dx.doi.org/10.1109/RTSS.
2013.13.

153

http://dx.doi.org/10.1109/RTCSA.2014.6910543
http://dx.doi.org/10.1109/RTCSA.2014.6910543
http://dx.doi.org/10.1109/RTCSA.2014.6910543
http://dx.doi.org/10.1007/BF01088593
http://dx.doi.org/10.1007/BF01088593
http://dx.doi.org/10.1137/1035174
http://dx.doi.org/10.1137/1035174
http://dx.doi.org/10.1137/1035174
http://dx.doi.org/10.1109/RTCSA.1999.811269
http://dx.doi.org/10.1109/RTCSA.1999.811269
http://dx.doi.org/10.1109/ECRTS.2012.17
http://dx.doi.org/10.1109/ECRTS.2012.17
http://dx.doi.org/10.1145/2516821.2516843
http://dx.doi.org/10.1145/2516821.2516843
http://doi.acm.org/10.1145/2516821.2516843
http://doi.acm.org/10.1145/2516821.2516843
http://dx.doi.org/10.1109/SIES.2013.6601470
http://dx.doi.org/10.1109/SIES.2013.6601470
http://dx.doi.org/10.1109/SIES.2013.6601470
http://dx.doi.org/10.1109/RTSS.2013.13
http://dx.doi.org/10.1109/RTSS.2013.13
http://dx.doi.org/10.1109/RTSS.2013.13

Bibliography

[Wil+08] Reinhard Wilhelm et al. “The worst-case execution-time problem -
overview of methods and survey of tools.” In: ACM Trans. Embedded
Comput. Syst. 7.3 (2008), 36:1–36:53. doi: 10.1145/1347375.1347389.
url: http://doi.acm.org/10.1145/1347375.1347389.

[Wil+09] Reinhard Wilhelm et al. “Memory Hierarchies, Pipelines, and Buses
for Future Architectures in Time-Critical Embedded Systems.” In: IEEE
Trans. on CAD of Integrated Circuits and Systems 28.7 (2009), pp. 966–978.
doi: 10.1109/TCAD.2009.2013287. url: http://dx.doi.org/10.1109/
TCAD.2009.2013287.

[YWB15] Maolin Yang, Alexander Wieder, and Björn B. Brandenburg. “Global
Real-Time Semaphore Protocols: A Survey, Unified Analysis, and
Comparison.” In: Real-Time Systems Symposium (RTSS). 2015, pp. 1–12.
doi: 10.1109/RTSS.2015.8. url: http://dx.doi.org/10.1109/RTSS.
2015.8.

154

http://dx.doi.org/10.1145/1347375.1347389
http://doi.acm.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://dx.doi.org/10.1109/RTSS.2015.8
http://dx.doi.org/10.1109/RTSS.2015.8
http://dx.doi.org/10.1109/RTSS.2015.8

A C R O N Y M S

ETCS Electronic Throttle Control System

NASA National Aeronautics and Space Administration

FPM Fixed-Priority Mode-level

FPT Fixed-Priority Task-level

DM Deadline-Monotonic

RM Rate-Monotonic

EDF Earliest-Deadline-First

BCET Best-Case Execution Time

WCET Worst-Case Execution Time

WCRT Worst-Case Response Time

FF First-Fit

BF Best-Fit

WF Worst-Fit

NF Next-Fit

FFD First-Fit Decreasing

BFD Best-Fit Decreasing

WFD Worst-Fit Decreasing

FFRM First-Fit Rate-Monotonic

DBF Demand Bound Function

RAD Reasonable Allocation Decreasing

QB Quadratic Bound

OPA Optimal Priority Assignment

LKAS Lane Keeping Assist System

155

Bibliography

ASCET Advanced Simulation and Control Engineering Tool

RTOS Real-Time Operating System priority ceiling protocol (PCP)

PCP Priority Ceiling Protocol

PIP Priority Inheritance Protocol

NPP Non-Preemptive Protocol

TDA Time-Demand Analysis

DRT Digraph Real-Time

CPS Cyber-Physical System

VRB Variable Rate-dependent Behavior

GMF Generalized MultiFrame

DRT Digraph Real-Time

ABS Anti-lock Brake System

CFG Control Flow Graph

ILP Integer Linear Programming

TDMA Time Division Multiple Access

LLF Least-Laxity-First

TDA Time-Demand Analysis

RTA Response-Time Analysis

TTP Time-Triggered Protocol

UCB Useful–Cache-Block

CRPD Cache-Related Preemption Delay

156

colophon

This document was typeset in LATEX using the typographical look-and-feel
classicthesis. The bibliography is typeset using biblatex with natbib. No electrons
were harmed in the creation of this thesis.

	Abstract
	Acknowledgments
	Publications
	Contents
	1 Introduction
	1.1 Concepts and Definitions of Real-Time Systems
	1.1.1 Task model
	1.1.2 Deadline model
	1.1.3 Feasibility and Optimality

	1.2 Motivation
	1.3 Organization of this Thesis
	1.4 Contributions of this Work

	2 Timing Analysis Concepts
	2.1 Worst-Case Execution Time
	2.1.1 Measurement-Based Approach
	2.1.2 Static Approach

	2.2 Real-Time Scheduling
	2.2.1 The Taxonomy of Scheduling Algorithms
	2.2.2 Schedulability and Response-Time Analysis
	2.2.3 Metrics for Quantifying Scheduling Algorithms

	2.3 Multiprocessor Systems
	2.3.1 Multiprocessor Scheduling Algorithms
	2.3.2 Task-to-Core Mapping

	3 Sporadic Task Model
	3.1 Related Work
	3.2 Preliminary Results and Definitions
	3.2.1 Level-k Busy Interval for Task τk
	3.2.2 Workload Functions

	3.3 Response Time Analysis
	3.3.1 Safe Bound of Rk,h for Given h
	3.3.2 Worst-Case Response Time of Task τk
	3.3.3 Improved Carry-in Workload Function

	3.4 Linear-Time Upper Bound under FP
	3.5 Experiments
	3.5.1 Simulation Environment
	3.5.2 Constrained-Deadline Systems & Results
	3.5.3 Arbitrary-Deadline Systems & Results

	3.6 Summary

	4 Resource Access Task Models
	4.1 System Model
	4.1.1 Multicore Architecture Model
	4.1.2 Task Model
	4.1.3 Related Work.

	4.2 Schedulability Analysis
	4.2.1 Our Strategies and Preliminaries
	4.2.2 Calculating Sk(t) and Xk(t)
	4.2.3 Calculating Xk* and Sk*
	4.2.4 Response-Time Analysis

	4.3 Task Allocation
	4.4 Speedup Factor
	4.5 Experimental Results
	4.6 Summary

	5 Synchronization
	5.1 Task Model and Shared Resources
	5.1.1 Task Model
	5.1.2 Shared Resources

	5.2 Uniprocessor Synchronization Protocols
	5.2.1 Non-Preemptive Protocol
	5.2.2 Priority Ceiling Protocol

	5.3 Multiprocessors
	5.3.1 Resource-Oriented Algorithm
	5.3.2 Schedulability Analysis

	5.4 Task and Resource Allocations
	5.4.1 Speedup Factor under RM

	5.5 Multiple Resource Accesses
	5.5.1 Multiple Occurrences on Each Resource
	5.5.2 Multiple Resource Accesses

	5.6 Improved Response Time Analysis
	5.7 Experimental Results
	5.8 Summary

	6 Multi-Mode Task Model
	6.1 Uniprocessors
	6.1.1 Schedulability Analysis under FPT Scheduling
	6.1.2 Schedulability Analysis under FPM Scheduling
	6.1.3 Evaluations

	6.2 Multiprocessors
	6.2.1 Utilization Bounds in Uniprocessors
	6.2.2 Reasonable Allocation Decreasing Algorithm
	6.2.3 Utilization Bound by Using QB
	6.2.4 Bounds Based on Max Utilization
	6.2.5 Evaluations under different RADs

	6.3 Summary

	7 Conclusions and Future Work
	7.1 Summary
	7.2 Future Work

	Bibliography
	Acronyms
	Index
	Colophon

