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Zusammenfassung

Diese Arbeit beinhaltet eine Studie seltener Charmzerfälle im Standardmodell (SM) und
jenseits davon. Im Rahmen einer effektiven Theorie berechnen wir die SM Wilsonkoef-
fizienten bis zur (teils) übernächsten Korrektur zur führenden logarithmischen Ordnung
in der Quantenchromodynamik. Die Berechnung umfasst Anschlussbedingungen und das
Laufen der Wilsonkoeffizienten in der Renormierungsgruppen-verbesserten Störungstheo-
rie. In der Literatur verwendete Ausdrücke konnten korrigiert werden. Weiterhin wird
eine Berechnung von phänomenologisch relevanten zwei Schleifen Matrixelementen der
Strom-Strom Operatoren vorgestellt. Wir erarbeiten die Phänomenologie im SM für ra-
diative und semileptonische inklusive Zerfälle, sowie für exklusive Zerfälle D → Pll und
D → V γ, einschließlich nicht-perturbativer Effekte. Die Verzweigungsverhältnisse sind
von Resonanzen dominiert, jedoch können wir verschiedene Observablen konstruieren, die
eindeutig das SM prüfen, z.B. sind Asymmetrien, Winkelobservablen und Leptonflavor-
verletzende Zerfälle (approximate) Nulltests des SM. Effekte von Physik jenseits des SM
werden modellunabhängig und mit Leptoquark Modellen analysiert, wobei verschiede-
ne Einschränkungen und Korrelationen, z.B. mittels Flavor Strukturen, herausgearbeitet
werden. Zusätzlich prüfen wir das SM anhand des Zerfalls Λc → pγ, welcher an (zukünf-
tigen) Experimenten zugänglich ist und untersuchen die radiativen Zerfälle in supersym-
metrischen Modellen.

Abstract

This thesis comprises a study of rare charm decays in the standard model (SM) and
beyond. Within an effective theory framework, we calculate the SM Wilson coefficients
to (partly) next-to-next-to leading logarithmic order in quantumchromodynamics. The
calculation includes matching conditions and the running of the Wilson coefficients in
the renormalization group-improved perturbation theory, thereby correcting expressions
used in the literature. Furthermore, a calculation of phenomenological relevant two loop
matrix elements of current-current operators is presented. We work out the phenomenol-
ogy in the SM for radiative and semileptonic inclusive decays as well as the exclusive
decays D → Pll and D → V γ, including non-perturbative effects. The branching ratios
are dominated by resonances, yet we can construct various observables which cleanly
probe the SM, e.g. asymmetries, angular observables and lepton flavor violating decays
are (approximate) SM null tests. Beyond the SM physics effects are analyzed model-
independently and via leptoquark models, where various constraints and correlations,
e.g. through flavor patterns, are worked out. In addition, we probe the SM by means of
the decay Λc → pγ, which is accessible at (future) colliders, and investigate the radiative
decays in supersymmetric models.
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1. Introduction

The physics of particles is a field with an inspiring past of intriguing developments. The
purpose of elementary particle physics is to describe nature at its fundamental level,
where matter and interactions emerge. The present theory of particle physics is based on
the one hand on quantum field theory with its abstract mathematical structure and on
the other hand on the tangible concept of symmetries, condensed in the standard model
(SM).
Whereas the last decades can be assigned to the theoretical formulation and experi-

mental confirmation of the SM, nowadays weight is shifted towards the search of beyond
the standard model (BSM) physics. In particular, the observation of the Higgs boson in
2012 [7, 8], as predicted by the Higgs mechanism introduced in 1964 [9–12], completes the
SM. Further theoretical predictions have been observed subsequently by experiments, e.g.
the charm quark was predicted in 1964 [13] and discovered in 1974 [14, 15]. Nowadays,
the SM is established as the theory of particle physics due to the interplay of theory and
experiment. On the other side, experiments have confronted theory with observations
that are not grounded in the SM.
A shortcoming of the SM is the absence of neutrino masses, which are necessary for

neutrino oscillations as observed in 1998 and 2001 [16, 17]. Cosmological observations
show that ordinary matter is accompanied with dark matter [18], where the latter con-
stitutes five times the mass-energy of the universe as ordinary matter, which is even
less than dark energy constitutes. As a first guess dark matter is a BSM particle or it
may be part of a modified description of gravity. Besides, gravity is not part of the SM,
which would be desirable in view of a unified theory, in addition to a unification of the
strong and electroweak (EW) theories. Furthermore, the baryon asymmetry in the early
universe requires sizable charge parity (CP) violation, which follows from the Sakharov
conditions [19], but cannot be accounted for in the SM. Interestingly, the cosmological
observations can be related to particle physics, thus connecting the largest and smallest
scales. Nonetheless, particle experiments themselves also challenge the SM. The muon
anomalous magnetic moment is the most precisely calculated and measured observable,
see [20] for a review. The measurement is largely in agreement with the SM calculation
but exhibits a 3.6σ discrepancy [21] at the high precision level. Recently several SM
anomalies were revealed in b physics, see [22] for a discussion and, additionally, [23] for
a measurement of the lepton flavor ratio in B0 → K∗0ll decays. These deviations are
indirect hints for BSM physics. Indirect searches at low energies generically require a
high degree of theoretical precision and experimental sensitivity. On the other hand,



2 1. Introduction

indirect searches allow to probe physics at scales beyond the reach of complementary
direct searches at high energies.
Physics of rare decays with charmed particles give rise to such probes. The current

situation of rare charm decays may be compared to the one of b physics several years ago,
when a broad program, including high precision calculations, developments of new meth-
ods, and experimental observations of various modes, has been waiting ahead. Nonethe-
less, the setting for rare charm physics is intrinsically exceptional: Firstly, the decays are
particularly rare, hence experimentally hardly accessible. In fact, apart from a single ra-
diative mode that was observed only in 2016 [24], solely upper limits on branching ratios
down to the ten ppb level have been obtained [25]. Various experiments have been and
still are involved in the experimental charm program, e.g. D0− D̄0 mixing was observed
from 2007 onwards by the BaBar, Belle, CDF, and LHCb collaborations [26–29]. Fur-
thermore, charm decays hold a privileged position in lattice calculations, see, e.g., [30].
Secondly, common theoretical frameworks can only be cautiously employed for charm de-
cays. The charm mass may not be large enough for a heavy quark expansion, nor small
enough to employ chiral perturbation theory, and is slightly above the non-perturbative
scale. Nevertheless, as each coin has two sides, one may turn apparent drawbacks into a
virtue - a guideline that we will follow throughout this thesis - i.e. charm decays uniquely
probe quantum chromodynamics (QCD). Furthermore, they uniquely probe the up-type
sector, as the u quark is stable and decays of the t quark are even more challenging,
see e.g. [31] for a review. Specifically, the hints at violation of lepton flavor universality
(LFU) in b decays mentioned above should also emerge in charm physics, accompanied
with a clean SM prediction, as QCD uncertainties cancel. Thus, charm decays are nec-
essarily linked to an answer of the conceptional question of flavor in the SM: Why are
the observed patterns of masses and mixing in the fermion sector the way they are and
what is the origin of three copies of fermions? In fact, the flavor sector constitutes most
of the parameters of the SM, yet their structure is an unanswered question. A minimal
extension to a fourth generation of fermions is excluded, see [32] for a review.
This thesis consists of three chapters followed by the conclusion and outlook in chap-

ter 5. The chapters cover the following topics:

• In chapter 2 we review flavor in the SM and introduce the effective theory which
is utilized throughout this thesis. It is based on an operator product expansion
(OPE), where we calculate the corresponding Wilson coefficients [33] in the SM to
(partly) next-to-next-to leading logarithmic (NNLL) order in QCD. This calcula-
tion includes a two step matching as well as the running in renormalization group
(RG)-improved perturbation theory. Along we settle the issue of different calcu-
lations existing in the literature. We further calculate effective Wilson coefficients
that encode perturbative matrix elements to (partly) next-to-next-to leading order
(NNLO). Finally, we discuss quantum electrodynamics (QED) contributions.
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• Chapter 3 is dedicated to a phenomenological study of rare charm decays in the
SM. We consider inclusive radiative and semileptonic decays. Furthermore, we
analyze various observables in exclusive D → Pll and D → V γ decays, where P
and V denote a pseudoscalar and vector meson, respectively. Non-perturbative
effects are taken into account. Of particular interest are (approximate) SM null
tests which provide a testing ground for BSM physics. Finally, we review several
other semileptonic modes.

• BSM physics effects are studied in chapter 4. We utilize a model-independent ap-
proach, leptoquark (LQ) models and supersymmetric (SUSY) models for radiative
decays. We analyze semileptonic and radiative D decays as well as the baryonic
decay Λc → pγ. Correlations are worked out, including constraints on LQ models
and flavor patterns.

Details on the renormalization group equation (RGE) and constraints on LQ models are
compiled in the appendix. Additionally, to make this thesis more self-contained, the
latter comprises parameters, distributions and observables, form factors, resonant decays
and chiral Fierz identities.
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2. Standard model Wilson coefficients

The main objects analyzed in this thesis are Wilson coefficients. They are part of an
effective field theory which is valid below a certain scale, e.g. the EW scale in the SM.
For an introduction to effective field theories see, e.g., [34]. The physics above that scale
is reflected in these Wilson coefficients. An example of an effective theory is Fermi’s
theory of the weak interaction. Back then the W boson was not known, indeed its
dynamical nature is negligible at low energies due to its heavy mass. Within this bottom-
up approach, theW boson enters through coefficients, the Wilson coefficients. Nowadays,
we utilize a top-down approach to calculate the Wilson coefficients in the SM, as it is
experimentally established. The same effective theory will be utilized in chapter 4 to
explore BSM physics. Within this framework, different models, including the SM, are
parametrized in a unified way, allowing for a comparison. In this chapter, which is based
on [2], we calculate the SM Wilson coefficients. We start with a review of flavor in the
SM in the next section. If one is solely interested in phenomenological applications of
the SM Wilson coefficients, one is referred to chapter 3.

2.1. Flavor in the standard model

The SM of particle physics is a renormalizable quantum field theory with the local gauge
group SU(3)C⊗SU(2)L⊗U(1)Y . The SU(3)C group encodes the theory of QCD [35–38].
The EW symmetry group SU(2)L⊗U(1)Y → U(1)QED is spontaneously broken to QED,
due to a non-trivial vacuum that breaks the symmetry of the Lagrangian [39, 40], and
see e.g. [41] for Salam’s contribution. In table 2.1 the fermions of the SM and their group
representations are given. For the experimentally measured masses see appendix A.
In the SM a change of flavor is only possible via charged currents. The W±µ bosons

couple to left handed quark currents J±µ via

LSM ⊃
e√

2 sin θw

(
Wµ

+J
+
µ +Wµ

−J
−
µ

)
,

J+
µ = Vij ū

i
Lγ

µdjL , J−µ = V †ij d̄
i
Lγ

µujL , (2.1)

where e is the electromagnetic coupling and θw denotes the weak mixing/Weinberg angle.
Here V is the Cabibbo–Kobayashi–Maskawa (CKM) matrix [42, 43], which describes the
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field SU(3)C SU(2)L Yw T3 qu
d


L

,

c
s


L

,

t
b


L

3 2 1/6
1/2 2/3

−1/2 −1/3νe
e


L

,

νµ
µ


L

,

ντ
τ


L

1 2 −1/2
1/2 0

−1/2 −1

uR , cR , tR 3 1 2/3 0 2/3

dR , sR , bR 3 1 −1/3 0 −1/3

eR , µR , τR 1 1 −1 0 −1

Table 2.1.: The SM fermions, their group representations and charges. The weak hyper-
charge is defined as Yw = (q−T3), where q denotes the electric charge in units
of the proton charge, and T3 is the third component of the weak isospin. The
labels L and R refer to left and right handed fields, respectively.

rotation between eigenvectors of the weak interaction and the mass eigenstates, as given
by Yukawa interactions. We write the CKM matrix as

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.2)

and refer to appendix A for its experimental data. The CKM matrix obeys the unitarity
condition V V † = 1 and it is the only source of flavor and CP violation in the SM since
V 6= 1 and V ∈ C, respectively. For the latter we neglect a possible very small strong
CP phase, due to a non-trivial topology of the QCD vacuum.

On the other hand, neutral currents via the Z boson preserve flavor. Hence, flavor
changing neutral current (FCNC) transitions are only induced at loop level in the SM, as
shown in figure 2.1. In fact, the absence of tree level FCNC transitions in the SM leads
to the postulation of the Glashow–Iliopolus–Maiani (GIM) mechanism [44].
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c W u

d, s, b
Figure 2.1.: A FCNC in the SM. The dots represent insertions of the corresponding entries

of the CKM matrix.

The FCNC transitions inducing rare charm decays involve the mass ratios md : ms :
mb : mW ∼ 0.00006 : 0.001 : 0.05 : 1. Utilizing the unitarity condition one can estimate
the generic c→ u amplitude as

A(c→ u) = V ∗cdVud f(m2
d/m

2
W ) + V ∗csVus f(m2

s/m
2
W ) + V ∗cbVub f(m2

b/m
2
W )

= V ∗csVus
(
f(m2

s/m
2
W )− f(m2

d/m
2
W )
)

+ V ∗cbVub
(
f(m2

b/m
2
W )− f(m2

d/m
2
W )
)

(2.3)

with the loop function f(m2
q/m

2
W ) ∼ 1

16π2

m2
q

m2
W
. The first term is GIM suppressed, while

the second term is suppressed by means of the CKM hierarchy V ∗cbVub ' λ4, where
λ ' 0.225 [45], employing the Wolfenstein parametrization [46]. Thus, we estimate
A(c → u) ∼ O(10−8). Note that the involved CP violating phases are small. Hence,
charm FCNC transitions are rare in the SM as loop and GIM/CKM suppressed. Indeed,
the estimated amplitude is enhanced by QCD effects, which are calculated in the next
sections.

2.2. Effective weak Lagrangian

The formulation utilized throughout this thesis is an effective low-energy theory based
on the OPE. The effective Lagrangian at leading order (LO) in the Fermi coupling GF
is given as [2, 47, 48]

Leff = LQCD⊗QED|{f :mf<µ} + Lweakeff , (2.4)

where the Lagrangian of QCD and QED is restricted to fermions f with masses m
below a mass scale µ. The QCD ⊗ QED Lagrangian contains the covariant derivative
Dµ = (∂µ + igsT

aAaµ + ieqAµ), where T a are the SU(3)C generators normalized to
Tr[T aT b] = δab/2. Furthermore, gs is the strong coupling, Aaµ and Aµ denote the gluon
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and electromagnetic fields, respectively, and q is the electric charge in units of the proton
charge. The effective weak Lagrangian describing c→ ull transitions reads

Lweakeff
∣∣
mW≥µ>mb

=
4GF√

2

∑
q∈{d,s,b}

V ∗cqVuq

(
C1(µ)P

(q)
1 + C2(µ)P

(q)
2

)
, (2.5)

Lweakeff
∣∣
mb>µ≥mc

=
4GF√

2

∑
q∈{d,s}

V ∗cqVuq

(
C1(µ)P

(q)
1 + C2(µ)P

(q)
2 +

10∑
i=3

Ci(µ)Pi

)
, (2.6)

where the sum is over light down-type quark fields. The Wilson coefficients Ci and the
operators Pi, see eqs. (2.7-2.16) for their definitions, are discussed below.
In the effective Lagrangian approach, heavy fields with masses M > (µW , µb) for the

corresponding thresholds are integrated out and absorbed in the Wilson coefficients. This
is done by equating the amputed, one-particle-irreducible off-shell Green’s functions in
the full, e.g. the SM, and the effective theory with single insertions of the operators Pi. An
expansion is done at LO in the EW gauge couplings and external momenta/light quark
masses squared divided by the squared masses of the particles, which are integrated out.
Hence, masses of the light fields are consistently set to zero.
The effective weak Lagrangian, eqs. (2.5, 2.6), depends on the scale. The matching at

the scale µW induces solely the operators P1,2, whereas only due to a second matching,
where the b quark is integrated out, the additional operators P3−10 emerge. This pro-
cedure can be compared to the running of couplings and masses in a mass independent
renormalization scheme, where corrections at flavor thresholds are included by hand.
The matching will be described in detail in the next sections. Furthermore, the Wilson
coefficients Ci and the operators are each scale dependent, yet physical observables are
scale independent. In fact, the scale dependence of the Wilson coefficients and operator
matrix elements do not cancel to a certain order in perturbation theory. The residual
scale dependence is related to the RGE, which is employed to evaluate the Wilson co-
efficients at different scales. For an introduction to the RGE see, e.g., [49]. The RGE
allows to sum logarithms of the form (α ln[µ0/µ])n for n ∈ N and α = g2/(4π), where g
denotes the coupling, to all orders in α. In particular, large logarithms are resummed,
e.g. for µ0 ∼ mW and µ ∼ mb in eq. (2.5). The RGE and its solution is presented in
appendix B. It follows that the residual scale dependence probes higher order terms in
the perturbative expansion by varying the scale, yet a scheme dependence remains. In
QCD, the Wilson coefficients C1,2 in eqs. (2.5, 2.6) are quark universal and the quark
dependence is solely given by CKM matrix. At higher order in QED this does not hold.
In the current chapter we focus on QCD effects, as its coupling αs is much larger than
the QED coupling αe at low energies. As we include expression to order α2

s leading QED
effects may, however, become of similar size. This will be considered in section 2.7. The
Wilson coefficients are, furthermore, universal for all c→ ull processes. This also includes
processes induced by c→ uγ, c→ ug, and cū→ qq̄ transitions as well as for the effective
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Wilson coefficients introduced in section 2.6. However, note that additional effects can
be absorbed in Wilson coefficients, but are process dependent, e.g. weak annihilation and
spectator interaction, see section 3.3.1.
The basis of local off-shell physical SM operators of dimension less than six consists of

[2, 50–52]

P
(q)
1 = (ūLγµ1T

aqL)(qLγ
µ1T acL) , (2.7)

P
(q)
2 = (ūLγµ1qL)(qLγ

µ1cL) , (2.8)

P3 = (ūLγµ1cL)
∑

{q:mq<µ}

(qγµ1q) , (2.9)

P4 = (ūLγµ1T
acL)

∑
{q:mq<µ}

(qγµ1T aq) , (2.10)

P5 = (ūLγµ1γµ2γµ3cL)
∑

{q:mq<µ}

(qγµ1γµ2γµ3q) , (2.11)

P6 = (ūLγµ1γµ2γµ3T
acL)

∑
{q:mq<µ}

(qγµ1γµ2γµ3T aq) , (2.12)

P7 =
e

g2
s

mc ūLσ
µ1µ2cRFµ1µ2 , (2.13)

P8 =
1

gs
mc ūLσ

µ1µ2T acRG
a
µ1µ2 , (2.14)

P9 =
e2

g2
s

(ūLγµ1cL)
(
lγµ1 l

)
, (2.15)

P10 =
e2

g2
s

(ūLγµ1cL)
(
lγµ1γ5l

)
. (2.16)

Here, qL/R = 1
2(1 ∓ γ5)q are chiral quark fields, σµ1µ2 = i

2 [γµ1 , γµ2 ], and Fµ1µ2 =

(∂µ1Aµ2 − ∂µ2Aµ1) and Gaµ1µ2 = (∂µ1Aaµ2 − ∂µ2Aaµ1 − gsf
abcAbµ1Acµ2) are the electro-

magnetic and chromomagnetic field strength tensors, respectively. The gauge-invariant
physical operators, eqs. (2.7-2.16), consist of current-current operators P1,2, QCD pen-
guin operators P3−6, magnetic moment operators P7,8, and semileptonic operators P9,10.
They are build from light fields only. The operator basis also includes the operators
P ′7 = e

g2s
mc ūRσ

µ1µ2cLFµ1µ2 and P ′8 = 1
gs
mc ūRσ

µ1µ2T acLG
a
µ1µ2 , whose Wilson coeffi-

cients are suppressed by mu/mc with respect to C7,8 in the SM, and are neglected,
as light quark masses are neglected. Furthermore, we do not consider electromagnetic
penguin operators, which are the QED equivalents of P3−6. For completeness, also one
dimension five operator may be added to the operator basis, which violates lepton num-
ber and is thus omitted [53]. The choice of the operator basis is not unique and we will
give a more suitable one for phenomenological analyses in chapter 3. The definitions
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given by eqs. (2.7-2.16) are, however, common for higher order calculations as we discuss
next.
In the basis of eqs. (2.7-2.16) Dirac traces of γ5 are absent at the LO in the Fermi

coupling and to all orders in QCD. This feature allows to consistently anticommute γ5

within dimensional regularization [50], see [54] for other prescriptions. However, no such
traces are present in the SM diagrams. Other choices of operator bases and the mappings
between different ones are (partly) given in [2, 52, 55]. We extend this description by
noting that the mapping onto the “traditional” operator basis, see e.g. [56], is given by
the action of the rotation matrix R [55] on the P1−6 → P9 mixing at LO and the mixing
[52] onto operators αs/(4π)P eff

7,8, see section 2.6, at next-to leading order (NLO). The
normalization of the dipole and semileptonic operators, eqs. (2.13-2.16), allows to count
diagrams in orders of αs equivalent to the number of loops in the SM diagrams [51], e.g.
the LO mixing of P1−6 onto P9 is of order α0

s.
To regularize ultraviolet (UV) divergences, dimensionally non-physical “evanescent”

operators have to be included, which vanish algebraically in four dimension. They are
equivalently defined in [50–52, 55, 57], while three loop evanescent operators are given
in [55]. Additionally, non-physical gauge-invariant and gauge-variant operators that van-
ish by the QCD⊗QED equations of motion (EOM) up to a total derivative, emerge
due to QCD renormalization. The EOM-vanishing operators are given in [52] and are
equivalently defined in [51, 55]. Matrix elements of the non-physical operators between
physical states vanish if the infrared (IR) regularization does not break symmetries and
the calculation is performed without an expansion in external momenta. Moreover, the
Becchi–Rouet–Stora–Tyutin (BRST) variation of certain operators induce non-physical
BRST-exact operators as counterterms. These are, however, not relevant up to three
loop for the operators Pi [52, 55, 57].
In the following sections we will calculate the SM Wilson coefficients at (partly) NNLL

order in QCD,

Ci(µ) = C
(0)
i (µ) +

αs(µ)

4π
C

(1)
i (µ) +

(
αs(µ)

4π

)2

C
(2)
i (µ) +O

(
α3
s(µ)

)
, (2.17)

following the definitions made in eqs. (2.5-2.16). The matching at µW at fixed order in
perturbation theory is at NNLO, while the matching at µb is at NLO. The running of
the Wilson coefficients is calculated in the RG-improved perturbation theory at NNLL
order. It is obtained from a calculation at one loop order higher than the actual matching
calculation, which guarantees the scheme independence of physical observables at the
order the matching is performed. Finally, effective Wilson coefficients are introduced
and calculated at (partly) NNLO. The combination of different orders in different steps
is not consistent, yet as will be shown, the missing NNLO calculations are numerically
small in phenomenological applications. To regularize UV divergences we use the mass
independent dimensional regularization scheme, which does not break power counting
and the mass independent modified minimal subtraction (MS) renormalization scheme.
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2.3. Matching at µ ∼ mW

As already mentioned in the previous section, only C1,2 are induced at the EW scale in
the SM. This follows from a consistent implementation of the effective weak theory and is
elaborated in this section. The numerical values of the Wilson coefficients, in particular
of C9, depend on the correct treatment of light quark fields.
At the scale µ ∼ mW the t quark, H boson, Z boson, and W boson are integrated

out simultaneously. This does not induce large logarithms as the involved masses are of
similar size. Indeed, a sequential integration of the t quark and the bosons would break
the SU(2)L ⊗ U(1)Y gauge symmetry, introducing Wess-Zumino terms.
The NNLO QCD matching at µW ∼ mW is given as [2, 51, 55]

C1(µW ) =
αs(µW )

4π

(
15 + 6 ln

µ2
W

m2
W

)
+

(
αs(µW )

4π

)2

×
(
−T

[
m2
t

m2
W

]
+

7987

72
+

17

3
π2 +

475

6
ln
µ2
W

m2
W

+ 17 ln2 µ
2
W

m2
W

)
, (2.18)

C2(µW ) = 1 +

(
αs(µW )

4π

)2(127

18
+

4

3
π2 +

46

3
ln
µ2
W

m2
W

+ 4 ln2 µ
2
W

m2
W

)
(2.19)

with

T [x] = −(16x+ 8)
√

4x− 1Cl2

[
2 sin−1 1

2
√
x

]
+

(
16x+

20

3

)
lnx+ 32x+

112

9
, (2.20)

and the Clausen function of order two

Cl2[x] = Im[Li2[exp[ix]]] , Li2[x] = −
∫ x

0
dt

ln[1− t]
t

. (2.21)

With respect to [2], additional terms ∼ ln[µ2
W /m

2
W ] are provided that vanish for µW =

mW but are used in this thesis to estimate the scale uncertainty. The other Wilson
coefficients C3−10(µW ) are zero due to the CKM unitarity. Corresponding matching
diagrams involve, e.g. two loop diagrams with a t quark.
The vanishing of C3−10(µW ) is treated differently in the literature. The approach

presented here is the same as in [47, 48]. Contrary [58–60] start with non-vanishing
Wilson coefficients C3−10(µW ). They are driven by non-vanishing light quark masses,
e.g. via [61] ∑

q∈{d,s,b}

V ∗cqVuqC
(q)
9 (µW ) ' V ∗csVus

−2

9
ln
m2
s

m2
d

' −0.29 , (2.22)

thus breaking the GIM mechanism. We add that the electromagnetic Wilson coefficient
in [58–60] was adopted from [61], which is, however, only valid for b → sγ transitions.
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The corresponding expressions for c → uγ transitions are given in [62], yet a correct
treatment implies C7(µW ) = 0. The non-vanishing Wilson coefficients follow from a
fixed order calculation, which is valid on its own but not in the context of the OPE,
where the light quark fields form the operators, but do not contribute to the Wilson
coefficients. The light quark masses have to be consistently set to zero, or used as an
expansion parameter if they enter the definitions of operators, e.g. for P7. Indeed, this
prescription was used in [61], which provides the basic expressions for the results in [58–
60]. In particular, the numerical value in eq. (2.22) is driven by a large logarithm arising
from the light quark masses. Employing the RGE the fixed order calculation is improved
and these spurious logarithms are resummed, see also [2].
Nevertheless, non-vanishing C3−10(µW ) are possible within the OPE if the CKM uni-

tarity is broken. However, the corresponding Wilson coefficients are not enhanced by
large logarithms. Here we provide their expressions proportional to (V ∗cdVud + V ∗csVus +
V ∗cbVub) = −∆Vcu extracted from [51]

C3(µW ) =

(
αs(µW )

4π

)2(
−680

243
− 20

81
π2 − 68

81
ln
µ2
W

m2
W

− 20

27
ln2 µ

2
W

m2
W

)
,

C4(µW ) =
αs(µW )

4π

(
−7

9
+

2

3
ln
µ2
W

m2
W

)
+

(
αs(µW )

4π

)2(950

243
+

10

81
π2 +

124

27
ln
µ2
W

m2
W

+
10

27
ln2 µ

2
W

m2
W

)
,

C5(µW ) =

(
αs(µW )

4π

)2( 68

243
+

2

81
π2 +

14

81
ln
µ2
W

m2
W

+
2

27
ln2 µ

2
W

m2
W

)
,

C6(µW ) =

(
αs(µW )

4π

)2( 85

162
+

5

108
π2 +

35

108
ln
µ2
W

m2
W

+
5

36
ln2 µ

2
W

m2
W

)
,

C7(µW ) =
αs(µW )

4π

(
−23

36

)
+

(
αs(µW )

4π

)2(713

243
+

4

81
ln
µ2
W

m2
W

)
,

C8(µW ) =
αs(µW )

4π

(
−1

3

)
+

(
αs(µW )

4π

)2( 91

324
− 4

27
ln
µ2
W

m2
W

)
,

C9(µW ) =
αs(µW )

4π

(
1

4 sin2 θw
+

38

27
− 4

9
ln
µ2
W

m2
W

)
+

(
αs(µW )

4π

)2

×
(

1

sin2 θw
+

524

729
− 128

243
π2 − 16

3
ln
µ2
W

m2
W

− 128

81
ln2 µ

2
W

m2
W

)
,

C10(µW ) =
αs(µW )

4π

(
− 1

4 sin2 θw

)
+

(
αs(µW )

4π

)2(
− 1

sin2 θw

)
. (2.23)

However, we will take the CKM unitarity to be intact and consequently C3−10(µW ) = 0.
Effects of a breaking of the CKM unitarity will be considered in section 2.7.
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2× +2×

Figure 2.2.: One loop diagrams contributing to the mixing of O1 and O2 in QCD. The
boxes denote the insertion of the current-current operator O2. The multi-
plicative factors follow from symmetry. The second diagram is non-planar.

The next step is to evolve the Wilson coefficients, governed by the RGE. Its solution
is given in appendix B, for which the anomalous dimension matrix (ADM) is needed,
which is provided in appendix B.2.

2.4. Anomalous dimension and loop integrals in a nutshell

In this section we show how the anomalous dimension is obtained from renormalization.
We calculate the ADM for current-current operators at LO QCD. Along we compute
basic one loop integrals, including finite terms. The current section contains solely sample
calculations and serves as an introduction into some technical aspects. For the actual
calculation of the Wilson coefficients one is referred to the next sections.
In the following, we calculate the mixing of current-current operators from renormaliza-

tion, hence derive the LO ADM. For simplicity, we work with operators in the traditional
basis, that is

O1 = ((uL)αγµ(qL)β)((qL)βγ
µ(cL)α) , O2 = ((uL)αγµ(qL)α)((qL)βγ

µ(cL)β) , (2.24)

where α and β denote color indices. The resulting one loop diagrams are shown in
figure 2.2. The purpose is to calculate these diagrams and to express the results in terms
of tree level matrix elements of O1 and O2, giving rise to the matching between operators.
The first diagram in d dimensions yields, neglecting external quark momenta,

A1 =
4GF√

2
V ∗cqVuq

∫
dkd

(2π)d

(
ūα(igsγµT

a)
i/k

k2
(γνPL)qα

) −i
k2

×
(
q̄β(igsγ

µT a)
i(−/k)

k2
(γνPL)cβ

)
= i

4GF√
2
V ∗cqVuq g

2
s

∫
dkd

(2π)d
kρkσ

k6
(ūαγ

µT aγργνPLq
α)(q̄βγµT

aγσγ
νPLc

β)

= i
4GF√

2
V ∗cqVuq g

2
s

∫
dkd

(2π)d
k2/d

k6
(ūαγ

µT aγργνPLq
α)(q̄βγµT

aγργνPLc
β) . (2.25)
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We neglect the mass dependence from the integral in d dimension, as it does not con-
tribute to the divergence at one loop. The last line follows from the symmetry of the
integral, i.e.

∫
dkd

(2π)d
kρkσ/k6 ∝ ηρσ, where the proportionality constant is determined by

a contraction with the metric ηρσ.
After a Wick-rotation the integral is evaluated to

∫
dkd

(2π)d
1

k4
=

∫
dkd

(2π)d

[
1

k2(k2 −m2)
− m2

k4(k2 −m2)

]
=
i(Γ[2− d/2]UV − Γ[2− d/2]IR)

(4π)d/2
(2.26)

with an arbitrary mass m and Γ[ε] = 1/ε−γ+O(ε), where γ denotes the Euler constant.
The evaluation of this and a more general class of integrals will be done at the end of
the current section. In eq. (2.26) the UV and IR divergences are separated. They cancel
within dimensional regularization. In fact, the IR divergences are the same in the full
and the effective theory. We keep only the UV divergences as needed for the anomalous
dimension.
The generators T a in the fundamental representation obey the relation

(T a)ij(T
a)kl =

1

2

(
δilδkj −

1

N
δijδkl

)
(2.27)

which follows from building an SU(N) invariant as well as the properties (T a)ii(T
a)kl = 0

and (T aT a)il = (N2 − 1)/(2N)δil. In fact, eq. (2.27) is the source of the mixing of the
operators O1 and O2.
Using the identity (ū1γ

µγργνPLu2)(ū3γµγργνPLu4) = d2(ū1γ
µPLu2)(ū3γµPLu4) for

Dirac spinors one obtains

A1 = −4GF√
2
V ∗cqVuq g

2
s

Γ[2− d/2]

(4π)d/2
d

2

×
(

(ūβγµPLq
α)(q̄αγ

µPLc
β)− 1

N
(ūαγµ PLq

α)(q̄βγ
µPLc

β)

)
= −4GF√

2
V ∗cqVuq

g2
s

(4π)2
Γ[ε]

×
(

2(ūβγµPLq
α)(q̄αγ

µPLc
β)− 2

N
(ūαγµ PLq

α)(q̄βγ
µPLc

β)

)
, (2.28)

where d = 4− 2ε. In the calculation we use the anticommutation relation {γ5, γµ} = 0.
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The second diagram yields

A2 =
4GF√

2
V ∗cqVuq

∫
dkd

(2π)d

(
ūα(igγµT

a)
i/k

k2
(γνPL)qα

)
+i

k2

(
q̄β(igγνT a)

i(−/k)

k2
(γµPL)cβ

)
=

4GF√
2
V ∗cqVuq

g2
s

(4π)2
Γ[ε]

×
(

1

2
(ūβγµPLq

α)(q̄αγ
µPLc

β)− 1

2N
(ūαγµ PLq

α)(q̄βγ
µPLc

β)

)
(2.29)

which follows from (ū1γ
µγργνPLu2)(ū3γνγργµPLu4) = d(ū1γ

µPLu2)(ū3γµPLu4).
The sum of these amplitudes for N = 3, written in terms of the tree level matrix

elements of the operators 〈Oi〉(0), is

2×A1 + 2×A2 =
4GF√

2
V ∗cqVuq

g2
s

(4π)2
Γ[ε]

(
〈O1〉(0) − 3〈O2〉(0)

)
. (2.30)

The same calculation can be repeated for the operator O1 by an appropriate interchange
of the color indices.
Upon renormalization

Oi = Z−1
ij (Oj)r , (2.31)

where r denotes renormalized quantities, the renormalization matrix is obtained as

Z = 1 +
αs
4π

1

ε

(
1 −3
−3 1

)
. (2.32)

The ADM can be found from the renormalization matrix as [52]

γij = 2β(ε, αs)Zik
d

dαs
Z−1
kj (2.33)

with

β(ε, αs) = αs(−ε+ β(αs)) , β(αs) = −
∞∑
i=0

(αs
4π

)i+1
βi(nf ) , (2.34)

where βi are given by eq. (B.5) and nf denotes the number of flavors.
Finally, we obtain

γ =
αs
4π

(
2 −6
−6 2

)
. (2.35)

This result agrees with the one given in appendix B.2 after an appropriate change of the
operator basis, as described in section 2.2.
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iΠµν(q2) = µ ν
k + q

k

Figure 2.3.: The fermionic one loop correlation function. The external momentum asso-
ciated with the vertices µ and ν is denoted by k.

In the following, we turn to the computation of the fermionic one loop correlation
function Πµν , shown in figure 2.3.
We obtain

iΠµν(q2) = −µ4−d
∫

ddk

(2π)d
Tr

[
i(/k + /q +m)

(k + q)2 −m2
(−iγµ)

i(/k +m)

k2 −m2
(−iγν)

]
= −µ4−d

∫
ddk

(2π)d

∫ 1

0
dz

Tr
[
(/k + /q +m)γµ(/k +m)γν

]
((k + zq)2 + z(1− z)q2 −m2)2

= −µ4−d
∫ 1

0
dz

∫
ddl

(2π)d

× 2dz(1− z)(q2gµν − qµqν)− d(l2 + z(1− z)q2 −m2)gµν + 2dlµlν

(l2 + z(1− z)q2 −m2)2 , (2.36)

where l = k + zq and employing the symmetry of the integral.
Writing, in euclidean form, In =

∫
ddk/(k2 +m2)n we obtain from integration by parts

(IBP) identities [63] the linear difference equation

(d− 2n)In + 2nm2In+1 = 0 (2.37)

the solution of which is, incorporating the mass dimension,

In ∝
(
m2
)d/2−n Γ[n− d/2]

Γ[n]
. (2.38)

As a boundary condition we use I1, that is

I1 =
2πd/2

Γ[d/2]

∫ ∞
0

dr
rd−1

r2 +m2

=
2πd/2

Γ[d/2]

md−2

2

∫ 1

0
ds s1−d/2−1(1− s)d/2−1

=
πd/2md−2

Γ[d/2]

Γ[1− d/2]Γ[d/2]

Γ[1− d/2 + d/2]
, (2.39)
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where r = m
√

1/s− 1. It follows that

In = πd/2
(
m2
)d/2−n Γ[n− d/2]

Γ[n]
(2.40)

as well as the integrals∫
ddk

k2

(k2 +m2)n
=

d

2n
In−1 ,

∫
ddk

kµkν

(k2 +m2)n
=
gµν

2n
In−1 . (2.41)

Finally, one obtains

iΠµν(q2) = −µ4−d
∫ 1

0
dz 2dz(1− z)

(
q2gµν − qµqν

) i

16π2

(
4π

m2 − z(1− z)q2

)ε
Γ[ε]

= −i
(
q2gµν − qµqν

)( 1

12π2

(
1

ε
− 1

2
− γ + ln[4π]

)
+

1

2π2

∫ 1

0
dz z(1− z) ln

µ2

m2 − z(1− z)q2

)
, (2.42)

where d = 4−2ε. Note that PL/R insertions on the fermion lines do not induce additional
contributions, as the corresponding terms ∝ γ5 vanish.

2.5. Matching at µ ∼ mb

While evolving the Wilson coefficients C1,2 from µW to µc, the intermediate scale µb
is crossed. This results in a matching of the nf = 5 quark onto the nf = 4 quark
effective theory without the b quark. To be consistent, the matching should be done
at NNLO. However, only the NLO matching is fully known and part of the NNLO
matching remains missing. Nevertheless, the effect of the latter is additionally suppressed
in phenomenological applications due to the GIM mechanism, see chapter 3. In contrast
to the matching at µW all the SM operators P1−10 are induced at µb. This is illustrated
in figure 2.4, where the diagrams relevant for the matching onto P4 and P9 at NLO are
shown.
The LO matching reads C(0)

i |nf=4 = C
(0)
i |nf=5 for any Wilson coefficient. The match-

ing onto P1,2 yields C(1)
1,2 |nf=4 = C

(1)
1,2 |nf=5 at NLO. Furthermore, we obtain from the one

loop matching

C
(1)
4 |nf=4 =

1

9

(
1− ln

µ2
b

m2
b

)
C

(0)
1 |nf=5 −

2

3

(
1− ln

µ2
b

m2
b

)
C

(0)
2 |nf=5 , (2.43)

C
(1)
9 |nf=4 = − 8

27

(
1− ln

µ2
b

m2
b

)
C

(0)
1 |nf=5 −

2

9

(
1− ln

µ2
b

m2
b

)
C

(0)
2 |nf=5 , (2.44)

C
(1)
3,5−8,10|nf=4 = 0 . (2.45)
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c u

b b

g

P1/2

q q

c u

b b

γ

P1/2

l l

Figure 2.4.: Diagrams relevant for the NLO matching of P1/2 onto P4 (left) and P9 (right)
at µb.

These results can be checked against the matching known from kaon decays. Approxi-
mating q2 = 0 in equation (C.3) of [64], a mapping via the inverse of equation (87) and
equations (97), (98), (A.8) of [55] yields the same C(1)

3−6|nf=4, as C
(0)
1 |nf=5 vanishes. In

addition, we find the same C(1)
9 |nf=4 by mapping the coefficients in [65] via the inverse

of equation (A.8) of [55] and taking into account the quark charges. Part of the NNLO
matching is obtained by the replacements C(0)

1,2 |nf=5 → C
(1)
1,2 |nf=5 in eqs. (2.43, 2.44).

At two loop the matching onto P1,2 can be extracted from [66]. We obtain for C =
(C1, C2)T

C(2)|nf=4 = C(2)|nf=5 +
2

3
ln
µ2
b

m2
b

C(1)|nf=5

+

(
R−1

(
A(2) +

2

3
ln
µ2
b

m2
b

Z
′(1,0)
QQ

)
R

)T
C(0)|nf=5 (2.46)

with

A(2) =

 −2
3

(
59
36 + 1

3 ln
µ2b
m2
b

+ ln2 µ2b
m2
b

)
0

0 4
3

(
59
36 + 1

3 ln
µ2b
m2
b

+ ln2 µ2b
m2
b

)
 ,

R =

 1 2
3

−1 1
3

 , Z
′(1,0)
QQ =

 −5
3 −8

9

−4 0

 . (2.47)



18 2. Standard model Wilson coefficients

Note that all functions are linear in number of flavors at this order. One explicitly obtains

C
(2)
1 |nf=4 = C

(2)
1 |nf=5 +

2

3
ln
µ2
b

m2
b

C
(1)
1 |nf=5 +

(
59

54
+

148

81
ln
µ2
b

m2
b

+
2

3
ln2 µ

2
b

m2
b

)
C

(0)
1 |nf=5

+

(
−59

18
− 104

27
ln
µ2
b

m2
b

− 2 ln2 µ
2
b

m2
b

)
C

(0)
2 |nf=5 , (2.48)

C
(2)
2 |nf=4 = C

(2)
2 |nf=5 +

2

3
ln
µ2
b

m2
b

C
(1)
2 |nf=5 +

(
−59

81
+

176

243
ln
µ2
b

m2
b

− 4

9
ln2 µ

2
b

m2
b

)
C

(0)
1 |nf=5

− 220

81
ln
µ2
b

m2
b

C
(0)
2 |nf=5 . (2.49)

This result is new with respect to [2]. We confirm the terms∼ C(2)
i |nf=5, ∼ C(1)

i |nf=5, and
∼ ln2[µ2

b/m
2
b ]C

(0)
i |nf=5 by an explicit calculation. In particular, the terms ∼ C

(1)
i |nf=5

follow from coupling renormalization, whereas mass renormalization is a higher order
effect [67].

2.6. Effective Wilson coefficients at µ ∼ mc

Evaluating the Wilson coefficients down to µc, as described in appendix B, concludes the
calculation of the Wilson coefficients. Their numerical values are provided in section 2.9.
One is left with matrix elements of the operators. We can calculate certain matrix el-
ements in perturbation theory, giving rise to “effective” Wilson coefficients, considered
in this section. They account for effects of light quarks, where we still approximate
mu,d = 0, but use a non-zero strange quark mass. In this way the number of matrix
elements is reduced. In particular, we calculate 〈P1−6,8〉 ∼ 〈P7,9,10〉(0), where the pertur-
bative coefficients of the tree level matrix elements are absorbed into redefined Wilson
coefficients, the effective Wilson coefficients. Note that effective Wilson coefficients are
actually not Wilson coefficients as they encode low energy physics. Perturbative effective
Wilson coefficients are process universal as well as independent of the operator basis,
regularization and renormalization scheme [68].
From the previous sections, the Wilson coefficient C10 vanishes due to the chiral struc-

ture of the operators which also holds for the effective Wilson coefficient, Ceff
10 = 0, to all

orders in QCD. In addition, the LO effective Wilson coefficients are

C
eff(0)
7 = 0 , (2.50)

C
eff(0)
9 = C

(0)
9 . (2.51)

At NLO we get

C
eff(1)
9 |

P
(q)
1

=
8

27

(
1− L(m2

q , q
2)
)
C

(0)
1 , C

eff(1)
9 |

P
(q)
2

=
2

9

(
1− L(m2

q , q
2)
)
C

(0)
2 , (2.52)
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where the label q ∈ {d, s}. Furthermore,

L(m2, q2) = 6

∫ 1

0
dz z(1− z) ln

µ2
c

m2 − q2z(1− z)

=
5

3
+ ln

µ2
c

m2
+ x− 1

2
(2 + x)|1− x|1/2

ln 1+
√

1−x
1−
√

1−x − iπ x < 1

2 tan−1
[

1√
x−1

]
x > 1

,

L(m2 = 0, q2) =
5

3
+ ln

µ2
c

q2
+ iπ . (2.53)

where x = (2m)2/q2, q2 = (pc − pu)2 = (p+ + p−)2 with momenta p, and we use
tan−1[1/

√
x− 1] = − i

2(ln[(1+
√

1− x)/(1−
√

1− x)]− iπ). The calculation is analogous
to the one described in the previous sections.
For the operators P3−6 we have to keep in mind that they encode a sum over all light

quark fields. For P4,6 only c and u quarks contribute, giving

C
eff(1)
9 |P4 = −16

27

(∑
q=c,u

[
1− L(m2

q , q
2)
])

C
(0)
4 ,

C
eff(1)
9 |P6 = −256

27

(∑
q=c,u

[
1− L(m2

q , q
2)
])

C
(0)
6 . (2.54)

For P3,5, restricting to a single light quark in the loop, we obtain

C
eff(1)
9 |

P
(q)
3

=

(
4qqL(m2

q , q
2) + δuf

4

3
qu(L(m2

q , q
2)− 1)

)
C

(0)
3 ,

C
eff(1)
9 |

P
(q)
5

=

(
40qqL(m2

q , q
2) + δuf

64

3
qu

1

2
(L(m2

q , q
2)− 1)

)
C

(0)
5 , (2.55)

where qi denotes the charge and summing all light quarks gives

C
eff(1)
9 |P3 = −4

9

∑
q=c,u

[
1− 7L(m2

q , q
2)
]

+ 3
∑
q=s,d

L(m2
q , q

2)

C
(0)
3 ,

C
eff(1)
9 |P5 = −8

9

∑
q=c,u

[
8− 38L(m2

q , q
2)
]

+ 15
∑
q=s,d

L(m2
q , q

2)

C
(0)
5 . (2.56)

As we have made the quark charge dependence explicit, with Ceff(1)
9 |

P
(q)
1,2 ,P4,6

∼ qu, we

can check our results against the ones known from b decays. We find agreement with the
results in [56], when approximating massless u, d and s quarks.
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Summing up the contributions from each operator insertion, we find for massless u, d
quarks and q ∈ {d, s}

C
eff(1)
9 |q = C

(1)
9 +

8

27
C

(0)
1 +

2

9
C

(0)
2 − 8

9
C

(0)
3 − 32

27
C

(0)
4 − 128

9
C

(0)
5 − 512

27
C

(0)
6

+ L(m2
c , q

2)

(
28

9
C

(0)
3 +

16

27
C

(0)
4 +

304

9
C

(0)
5 +

256

27
C

(0)
6

)
+ L(m2

s, q
2)

(
−4

3
C

(0)
3 − 40

3
C

(0)
5

)
+ L(0, q2)

(
16

9
C

(0)
3 +

16

27
C

(0)
4 +

184

9
C

(0)
5 +

256

27
C

(0)
6

)
+
(
δqsL(m2

s, q
2) + δqdL(0, q2)

)(
− 8

27
C

(0)
1 − 2

9
C

(0)
2

)
. (2.57)

Coming back to the discussion of the fixed order calculation around eq. (2.22) we add
that penguin diagrams are double-counted in the effective Wilson coefficients, as e.g.
done in [58–60, 69, 70].
Concerning Ceff

7 at NLO, the contribution from P3−6 yields [71]

C
eff(1)
7 = C

(1)
7 +

6∑
i=1

y
(7)
i C

(0)
i (2.58)

and we obtain from [52] by multiplying y(7) with the charge ratio qu/qd = −2

y(7) =
(
0 0 2

3
8
9

40
3

160
9

)
, y(8) =

(
0 0 1 −1

6 20 −10
3

)
. (2.59)

Analogously, y(8) contributes to Ceff
8 = C

(1)
8 +

∑6
i=1 y

(8)
i C

(0)
i , which is part of the NNLO

contribution,

C
eff(2)
7 |q = C

(2)
7 +

6∑
i=1

y
(7)
i C

(1)
i

+

2∑
i=1

iqC
eff(2)
7 +

6∑
i=3

(
ri −

γ
(1)eff
i7

2
ln
µ2
c

m2
c

)
C

(0)
i + F

(7)
8 (q2/m2

c)C
eff
8 . (2.60)

Multiplying again by the charge ratio the function F8 is obtained from [72] as

F
(7)
8 (ρ) =

8π2

27

(2 + ρ)

(1− ρ)4
− 8

9

(
11− 16ρ+ 8ρ2

)
(1− ρ)2

− 16

9

√
ρ
√

4− ρ
(1− ρ)3

(
9− 5ρ+ 2ρ2

)
arcsin

√
ρ

2

− 32

3

(2 + ρ)

(1− ρ)4
arcsin2

√
ρ

2
− 16

9

ρ

(1− ρ)
ln ρ− 32

9
ln
µ2
c

m2
c

− 16

9
πi . (2.61)
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The calculation of F8 is done in the pole mass scheme, however, the result is the same
in the MS mass to the order considered here. Furthermore,

C
eff(2)
7 |

P
(q)
2

= f(m2
q/m

2
c)C

(0)
2 , (2.62)

where the function f at q2 = 0 can be taken from [47],

f(ρ) = f0 −
1

243

(
576π2ρ

3
2 + (3672− 288π2 − 1296ζ3 + (1944− 324π2) ln ρ+ 108 ln2 ρ

+ 36 ln3 ρ)ρ+ (324− 576π2 + (1728− 216π2) ln ρ+ 324 ln2 ρ+ 36 ln3 ρ)ρ2

+ (1296− 12π2 + 1776 ln ρ− 2052 ln2 ρ)ρ3
)
− 4πi

81

(
(144− 6π2 + 18 ln ρ+ 18 ln2 ρ)

× ρ+ (−54− 6π2 + 108 ln ρ+ 18 ln2 ρ)ρ2 + (116− 96 ln ρ)ρ3
)

+O
(
(ρ ln ρ)4

)
. (2.63)

The constant term f0 is neglected in [47] as it is GIM suppressed. We obtain this term
from [73] as

f0 = − 16

27ε
qu

(
1 + 2ε ln

µ2
c

m2
c

)
+ qu

(
100

81
+

8

27
πi

)
− 2

ε
qd

(
1 + 2 ln

µ2
c

m2
c

)
+ qd

(
−29

3
− 4

3
πi

)
+

2

3

4

3
qu

1

ε

(
1 + ε ln

µ2
c

m2
c

)
+

1

ε

(
2qd −

8

27
qu

)
= −92

81
ln
µ2
c

m2
c

+
983

243
+

52

81
πi . (2.64)

Additionally, we find

C
eff(2)
7 |

P
(q)
1

= −1

6
f(m2

q/m
2
c)C

(0)
1 (2.65)

due to the color structure
∑

a,b T
aT bT aT b/(

∑
a T

aT a) = (−2
9)/(4

3) which is derived
by using

∑
a T

a
µνT

a
ρσ = (−1/6 δµνδρσ + 1/2 δµσδνρ). Furthermore, we obtain along the

calculation of [74] at q2 = 0

r3 = −4784

243
− 16π

3
√

3
− 64

9
Xb + 2a(1)− 4b(1)− 112

81
iπ ,

r4 =
1270

729
+

8π

9
√

3
+

32

27
Xb −

1

3
a(1)− 10

3
b(1)− 4b(m2

s/m
2
c) +

248

243
iπ ,

r5 = −113360

243
− 64π

3
√

3
− 256

9
Xb + 32a(1)− 64b(1)− 1792

81
iπ ,

r6 = −60980

729
+

32π

9
√

3
+

128

27
Xb +

20

3
a(1)− 88

3
b(1) + 6a(m2

s/m
2
c)− 40b(m2

s/m
2
c)

+
1520

243
iπ , (2.66)
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with Xb ' −0.1684,

a(ρ) =
16

9

((
5

2
− 1

3
π2 − 3ζ3 +

(
5

2
− 3

4
π2

)
ln ρ+

1

4
ln2 ρ+

1

12
ln3 ρ

)
ρ+

(
7

4
+

2

3
π2

− 1

2
π2 ln ρ− 1

4
ln2 ρ+

1

12
ln3 ρ

)
ρ2 +

(
−7

6
− 1

4
π2 + 2 ln ρ− 3

4
ln2 ρ

)
ρ3 +

(
457

216

− 5

18
π2 − 1

72
ln ρ− 5

6
ln2 ρ

)
ρ4 +

(
35101

8640
− 35

72
π2 − 185

144
ln ρ− 35

24
ln2 ρ

)
ρ5

+

(
67801

8000
− 21

20
π2 − 3303

800
ln ρ− 63

20
ln2 ρ

)
ρ6 + iπ

((
2− 1

6
π2 +

1

2
ln ρ+

1

2
ln2 ρ

)
ρ

+

(
1

2
− 1

6
π2 − ln ρ+

1

2
ln2 ρ

)
ρ2 + ρ3 +

5

9
ρ4 +

49

72
ρ5 +

231

200
ρ6

))
+O

(
ρ7 ln2 ρ

)
, (2.67)

and

b(ρ) = −8

9

((
−3 +

1

6
π2 − ln ρ

)
ρ− 2

3
π2ρ3/2 +

(
1

2
+ π2 − 2 ln ρ− 1

2
ln2 ρ

)
ρ2

+

(
−25

12
− 1

9
π2 − 19

18
ln ρ+ 2 ln2 ρ

)
ρ3 +

(
−1376

225
+

137

30
ln ρ+ 2 ln2 ρ+

2

3
π2

)
ρ4

+

(
−131317

11760
+

887

84
ln ρ+ 5 ln2 ρ+

5

3
π2

)
ρ5 +

(
− 2807617

97200
+

16597

540
ln ρ+ 14 ln2 ρ

+
14

3
π2

)
ρ6 + iπ

(
−ρ+ (1− 2 ln ρ)ρ2 +

(
−10

9
+

4

3
ln ρ

)
ρ3 + ρ4 +

2

3
ρ5 +

7

9
ρ6

))
+O

(
ρ7 ln2 ρ

)
. (2.68)

Note that x4,6 in equation (6.16) of [74] implicitly depends on the number of quarks.
Due to a typing error ∼ Q2

d, i.e. the appearance of the charge squared, we can not check
the divergent and finite rational terms of x4,6 given in equation (6.18) of [74] via their
equation (6.16). Finally, the effective anomalous dimensions read

γ
(1)eff
37 = −128

81
, γ

(1)eff
47 =

592

243
, γ

(1)eff
57 =

12928

81
, γ

(1)eff
67 =

40288

243
. (2.69)

For convenience, the P3−6 → P7,8 mixing can be absorbed in an effective ADM. The
corresponding basis is chosen in [2].
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At NNLO we further obtain

C
eff(2)
9 |q = C

(2)
9 +

8

27
C

(1)
1 +

2

9
C

(1)
2 − 8

9
C

(1)
3 − 32

27
C

(1)
4 − 128

9
C

(1)
5 − 512

27
C

(1)
6

+ L(m2
c , q

2)

(
28

9
C

(1)
3 +

16

27
C

(1)
4 +

304

9
C

(1)
5 +

256

27
C

(1)
6

)
+ L(m2

s, q
2)

(
−4

3
C

(1)
3 − 40

3
C

(1)
5

)
+ L(0, q2)

(
16

9
C

(1)
3 +

16

27
C

(1)
4 +

184

9
C

(1)
5 +

256

27
C

(1)
6

)
+
(
δqsL(m2

s, q
2) + δqdL(0, q2)

)(
− 8

27
C

(1)
1 − 2

9
C

(1)
2

)
+ F

(9)
8 (q2/m2

c)C
eff
8 (2.70)

with

F
(9)
8 (ρ) = −16π2

27

(4− ρ)

(1− ρ)4
+

16

9

(5− 2ρ)

(1− ρ)2
+

32

9

√
4− ρ√

ρ(1− ρ)3

(
4 + 3ρ− ρ2

)
arcsin

√
ρ

2

+
64

3

(4− ρ)

(1− ρ)4
arcsin2

√
ρ

2
+

32

9

1

(1− ρ)
ln ρ (2.71)

which is obtained from [72] by multiplying with the charge ratio.
In eq. (2.70) the two loop mixing of P1−6 into P9 is missing. The contributions from

P1,2, also into P7, which extends eq. (2.63) to q2 6= 0, is subject of the next section. The
effective Wilson coefficients are discussed in chapter 3 in the context of phenomenological
applications.

2.6.1. Two loop QCD matrix elements of current-current operators

This section is devoted to the calculation of the two loop QCD matrix elements of P1/2

into P7,9. The result is valid for a more general class of heavy to light transitions with
arbitrary momentum transfer and mass of the internal quark-antiquark pair, whereas the
mass of the light external quark is neglected. This includes the transitions c → u(qq̄)
with q = d, s, which are studied in this thesis, and also b → (s, d)(qq̄) with q = c, u,
where (qq̄) is annihilated and a photon is emitted, which may then couple to a lepton
pair. The calculation uses the recent works [75] and [76] for the master integrals (MIs)
and numerical evaluation, respectively.
Several calculations were performed for b → (s, d) transitions: In [77] and [78] b → s

and b → d transitions, respectively, were computed for small q2. The calculation of
b → s transitions for large q2 was accomplished in [72]. A seminumerical approach was
employed in [79] to present results based on b→ s transitions for the full q2 range. In [80]
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Figure 2.5.: Diagrams for heavy to light transitions at two loop QCD. The boxes denote
operator insertions of P1/2. The crosses indicate the emission of a photon,
which may then couple to a lepton pair.

b→ d transitions for any q2 range were computed, extending [78]. For c→ u transitions
no such calculations were performed to date.

In the following, we outline our calculation. The analytical expressions and their
numerical evaluation will be given in [4]. Also the relevance for b → (d, s) transitions
will be considered there. In this thesis we are concerned with the impact for c → u
transitions.

The diagrams relevant for heavy to light transitions at two loop QCD are shown in
figure 2.5. Each of the six subsets of diagrams represents a class which is gauge invariant.
The sixth class preserves the operator structure of P9. Hence, it is commonly considered
as a correction of the matrix element of P9 [77], see e.g. section 3.1.2 for inclusive decays.
Nonetheless, we have checked that in this class only the diagram with a photon from the
loop of the quark-antiquark pair is non-zero and factorizes into two one loop integrals.
It is the only diagram with IR and collinear singularities. The latter can be regulated by
a non-zero mass of the external light quark.

We calculate the diagrams in figure 2.5 with insertions of P2. Insertions of P1 are
then given by color factors due to additional generators in the definition of the operator:
The expressions for the first four and last two classes are multiplied with −1/6 and 4/3,
respectively.
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The matrix element for an off-shell photon γ∗ can be decomposed as [80]

〈γ∗(q, µ)u(pu)|P2|c(pc)〉 = 〈u(pu)|ūXµc|c(pc)〉

=
(αs

4π

)2
F (q)(q2)〈u(pu)|ūLqµcL|c(pc)〉

+
(αs

4π

)2
F (7)(q2)〈u(pu)|ūLσµνqνcL|c(pc)〉

+
(αs

4π

)2
F (9)(q2)〈u(pu)|ūL(q2γµ − qµ/q)cL|c(pc)〉 , (2.72)

where Xµ is the sum of the amputed diagrams in figure 2.5. Here qµ = (pc − pu)µ.
The scalar form factors F (i) are given as [80]

F (i)(q2) = Tr[Pµi Xµ] (2.73)

with the projectors

Pµi = (/pc +mc)(Ci1q
µ + Ci2p

µ
c + Ci3γ

µ)/pu . (2.74)

The factors (/pc +mc) and /pu reflect the on-shell conditions for the external quarks. We
find the coefficients

Cq1 =
1

(m2
c − q2)q2

, Cq2 = 0 , Cq3 = 0 ,

C91 = C93
(d− 2)m3

c + dmcq
2

m2
cq

2 − q4
,

C92 = C93
2(d− 1)mc

−m2
c + q2

,

C93 =
1

(d− 2)(m2
c − q2)2

,

C71 = C72
−dm4

cq
2 + 2m2

cq
4 + (d− 2)q6

2m4
cq

2 + 2(d− 3)m2
cq

4 − 2(d− 2)q6
,

C72 = −i 2m2
c + 2(d− 2)q2

(d− 2)(m2
c − q2)3

,

C73 = C72
mc(m

2
c − q2)2

−2m4
c − 2(d− 3)m2

cq
2 + 2(d− 2)q4

. (2.75)

Here the dimension is d = 4−2ε. The contribution to the effective Wilson coefficients Ceff
7,9

from the two loop matrix element 〈ull|P2|c〉 are given by multiplying the renormalized
F (7,9) with ie/(2mc) and e, respectively. The form factor F (q) vanishes for each class by
gauge invariance, which we have checked.
For the calculation we utilize the computer programs FORM 4.0 [81] and REDUZE 2 [82].

We use the former for algebraic manipulations, e.g. the tensor algebra, and the latter
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is used for the reduction to MIs. We compute some reductions by hand to reduce the
number of integrals that are fed into REDUZE 2. It is based on the Laporta algorithm [83]
which employs IBP identities [63] and Lorentz invariance (LI) identities [84]. See, e.g.,
section 2.4 for a calculation using IBP identities. Indeed, LI identities can be written as
linear combinations of IBP identities [85]. Thus, we have calculated relations for each
diagram based on LI identities by hand and checked them against the reduction tables
built with REDUZE 2.
We find that the following diagrams in figure 2.5 vanish: In the fifth class, both

diagrams with photons attached to the external lines vanish. The diagram with a photon
emitted from the charm quark line in the first class is zero. For F (7) all diagrams with
photons attached to the external lines vanish. Furthermore, all diagrams of the fifth
class vanish for F (7). This implies that the 〈P1〉 induced dipole form factor is given by
−1/6F (7).
As for the set of the MIs, we match a subset of the integrals calculated in [75]. A

canonical set is given in [72], where the MIs are calculated for large q2, yet the set
of integrals is not minimal. While matching their set onto the MIs taken from [75],
we find additional relations among the former, e.g. for the integral Id23 and the one of
equation (A12) in [72]. Additionally, we do not encounter the integrals of equations (A5),
(A8), and (A14) in [72]. Note that in the latter equation the diagram and the integral
representation do not coincide.
With the MIs from [75] the calculation of the unrenormalized form factors is completed.

The prescription for the renormalization is given in, e.g., [77]. Accordingly, the operator
renormalization constants are written as

Zij = δij + δZij ,

δZij =
αs
4π

(
a01
ij +

1

ε
a11
ij

)
+

α2
s

(4π)2

(
a02
ij +

1

ε
a12
ij +

1

ε2
a22
ij

)
+O(α3

s) . (2.76)

Extending the set of physical operators P1−10 by the evanescent operators E11,12 defined
as

E11 = (ūLγµ1γµ2γµ3T
aqL) (q̄Lγ

µ1γµ2γµ3T acL)− 16P1 , (2.77)
E12 = (ūLγµ1γµ2γµ3qL) (q̄Lγ

µ1γµ2γµ3cL)− 16P2 . (2.78)

the coefficients aij are compactly written as

a11|i=1,2 =

−2 4
3 0 −1

9 0 0 0 0 −8
9qd 0 5

12
2
9

6 0 0 2
3 0 0 0 0 −2

3qd 0 1 0

 , (2.79)
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and

− 6 a12
17 = a12

27 = 2qd −
8

27
qu , a12

19 = −2

9
qd −

44

243
qu , a12

29 =
16

3
qd +

88

81
qu , (2.80)

a22
19 =

92

9
qd −

16

27
nf qd +

8

81
qu , a22

29 =
14

3
qd −

4

9
nf qd −

16

27
qu . (2.81)

Here nf is the number of flavors and qu,d are the charges of the external/up- and
internal/down-type quarks, respectively. The coefficients a11,22

ij can be found from the
LO ADM γ(0), given in appendix B.2, and the coefficients a12

ij from [57],

a11 =
1

2
γ(0) , a12 =

1

4
γ(1) +

1

2
b̂ · ĉ , a22 =

1

8
γ(0) · γ(0) − 1

4
β0γ

(0) , (2.82)

where the mixing via the evanescent operators is

b̂|i=1,2 =

 5
12

2
9

1 0

 , ĉ|j=9 =

32
9 qd

8
3qd

 . (2.83)

Accordingly, the counterterm form factors F ct(7,9)
i→(7,9), due to the mixing of P1/2 into P7,9,

and the one loop renormalization of gs in the definition of P9, are [77, 78]

F
ct(7)
i→7 = −a

12
i7

ε
, F

ct(9)
i→9 = −

(
a22
i9

ε2
+
a12
i9

ε

)
− a11

i9β0

ε2
. (2.84)

Here β0 = 11− 2
3nf . We find that the nf dependence cancels in F ct(9)

i→9 , thus also for all
counterterms.
The counterterms F ct(7,9)

i→4quark, due to the mixing of P1/2 into four-quark operators Pj ,
are defined by [77]

∑
j

αs
4π

1

ε
a11
ij 〈ull|Pj |c〉1l = −

(αs
4π

)2 (
F

ct(7)
i→4quark〈P7〉tree + F

ct(9)
i→4quark〈P9〉tree

)
, (2.85)

where 1l labels one loop matrix elements. We calculate them to O(ε) and for insertions
of P1,2,4, E11,12 according to eqs. (2.85) and (2.79), respectively. Therefore, we write

l1(m2
q) =

(
µ2

m2
q

)ε ∫ 1

0
dz(1− z)z

(
− 6

ε
+ 6− 6 ln

1

1− z(1− z)q2/m2
q

− π2

2
ε

+ 6ε ln
1

1− z(1− z)q2/m2
q

− 3ε ln2 1

1− z(1− z)q2/m2
q

)
. (2.86)
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Here µ is a mass scale. Note that
∫ 1

0 dz(1− z)z = 1/6. In the massless limit, m2
q → 0,∫ 1

0
dz(1− z)z ln

1

1− z(1− z)q2/m2
→ 5

18
− 1

6
ln

q2

m2
q

+ i
π

6
,∫ 1

0
dz(1− z)z ln2 1

1− z(1− z)q2/m2
→28

27
+ i

5π

9
− 2π2

9
− 5

9
ln

q2

m2
q

− iπ
3

ln
q2

m2
q

+
1

6
ln2 q2

m2
q

, (2.87)

where the residual m2
q dependence cancels to O(ε) in eq. (2.86). Thus, the matrix ele-

ments are

〈ull|P1|c〉1l = −8

9
qdl1(m2

q)
αs
4π
〈P9〉tree ,

〈ull|P2|c〉1l =
3

4
〈ull|P1|c〉1l ,

〈ull|P4|c〉1l = −4

3
qu

(
µ2

m2
c

)ε(
−1− ε

∫ 1

0
dz ln

1

1− z(1− z)q2/m2
c

)
αs
4π
〈P7〉tree

− 8

9
qu
(
l1(m2

c) + l1(0)
) αs

4π
〈P9〉tree ,

〈ull|E11|c〉1l = −4

(
−8

9
qd

)(
µ2

m2
q

)ε ∫ 1

0
dz(1− z)z

(
−6− 6ε ln

1

1− z(1− z)q2/m2
q

)
× αs

4π
〈P9〉tree ,

〈ull|E12|c〉1l =
3

4
〈ull|E11|c〉1l . (2.88)

We have checked that expanding the matrix elements in small q2 and in the limit m2
q → 0

yields the results in [77] and [80], respectively.
Following [77], the renormalization of the mass mq is given by the replacement mq →

Zmqmq in 〈ull|P1,2|c〉1l of eq. (2.88). The mass renormalization constants in the MS and
the pole mass scheme are [51]

ZMS
m = 1 +

αs
4π

(
−4

ε

)
+O(α2

s) ,

Zpole
m = 1 +

αs
4π

(
−4

ε
− 4 ln

µ2

m2
− 16

3

)
+O(α2

s) . (2.89)

Expanding the matrix elements at O(αs/(4π)) and O(ε0) gives the counterterms F ct(9)
i,mq

and F ct(7)
i,mq

= 0. We have checked for both schemes that expanding the counterterm F
(9)
i,mq

in small q2 yields the results in [77].
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Finally, the renormalized form factors are given by subtracting F ct(7,9)
i = (F

ct(7,9)
i→7,9 +

F
ct(7,9)
i→4quark + F

ct(7,9)
i,mq

) from the unrenormalized form factors. Note that mass and wave

function renormalization is a higher order effect [80]. We have checked that F ct(7)
i |ε0

agrees with the results in [79]. However, we did not check F ct(9)
i |ε0 , as [79] computed

inclusive decays, including corrections to the matrix element of P9 from the last diagram
in figure 2.5 which we excluded.
For the numerical evaluation we use the computer package lieevaluate [76]. The MIs

given in terms of harmonic polylogarithms (HPLs) are written as generalized/Goncharov
polylogarithms (GPLs) [75] that are fed into lieevaluate. Other packages for the nu-
merical evaluation of GPLs are found in [86, 87]. Details on the numerical evaluation
will be given in [4]. 1

We find that subtracting the counterterm form factors from the unrenormalized form
factors, the 1/ε2 and 1/ε divergences cancel numerically. We have checked our calculation
against the ones of [72, 77, 80] for b→ (d, s) transitions, finding numerical agreement for
any q2 as well as different scales, mass schemes, and parameters. For c→ uγ transitions
[47] calculated Ceff

7 (q2 = 0) from the two loop matrix element of P2, see also section 2.6.
Adding the constant terms given in [1] we have checked the calculations, finding numerical
agreement. However, we did not check the finite unrenormalized form factors in figure 4
of [79] as we did not see which scale is shown.
Note that the computation of two loop matrix elements presented here is not restricted

to SM calculations, see section 4.2.1 for an example in LQ models. Furthermore, the two
loop matching of P1,2 onto P7,9 at µb, see section 2.5, can be calculated as described
in the current section. For the impact of the two loop matrix elements of P1/2 in phe-
nomenological applications for rare charm decays we refer to chapter 3.

2.7. Electromagnetic effects

Electromagnetic effects may become important, as αe/(4π) ∼ (αs/(4π))2. In principle,
we have to enlarge the operator basis to account for QED penguin operators. However,
as we are interested in the leading effects we concentrate on QED corrections to P1,2 as
they are still the only operators present at µW . We also take into account the mixing of
P9,10 in QED, because of a non-vanishing mixing into P10.
We obtain the leading QED correction to the Wilson coefficients at µW from [88] as

CQED
1 (µW ) = 0 +O(αeαs, α

2
e) , (2.90)

CQED
2 (µW ) =

αe
4π

(
−7

3
− 4

3
ln
µ2
W

M2
Z

)
+O(αeαs, α

2
e) , (2.91)

1We would like to acknowledge the authors of [75] for providing additional code on their work, which
we use for checks. We thank Tobias Huber for useful discussions.
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where the LO matching is already given by eqs. (2.18, 2.19), which are to be added. The
corresponding LO QED ADM can be obtained from [88, 89] as

γQED
0

∣∣
1,2

=

(
−8/3 0

0 −8/3

)
. (2.92)

The one loop running of αe is given by

αe(µ) = αe(µ0)

(
1 +

β
(0)
e

4π
αe(µ0) ln

µ2
0

µ2

)−1

, β(0)
e =

((
nuq

2
u + ndq

2
u

)
3 + 3q2

e

)
, (2.93)

where qe = −1 denotes the charge of the electron in units of the proton charge. Neglecting
matching effects at µb, we find that CQED

1,2 (µc) are equal to the QCD induced C1,2(µc)
within one percent.
The QED Wilson coefficients CQED

9,10 (µb) are equal to those given in eqs. (2.44, 2.45).
The operators P1,2 do not mix into P9 at this order in QED and the mixing of P9,10 is
governed by

γQED
0

∣∣
9,10

=

(
−16− 2β

(0)
e 8

8 −2β
(0)
e

)
. (2.94)

It follows that CQED
9 (µc) is equal to the QCD induced C9(µc) within three percent and

CQED
10 (µc) < 0.01C9(µc).
We conclude that QED effects are negligible with respect to the results from QCD. In

particular, one can still approximate a vanishing C10.
Moreover, one can limit effects from a violation of the CKM unitarity, in which

case C10 would be non-zero. The corresponding Wilson coefficients are already given
in section 2.3, parametrized by ∆Vcu. Neglecting the matching effects at µb we find
that C10(mc) ' 1.1∆Vcu. From the experimental data, see appendix A, one obtains
|∆Vcu| = −0.000 014± 0.000 005, hence C10 is negligible.

2.8. Non-perturbative effects

This section is devoted to an estimate of universal non-perturbative effects from the
QCD vacuum condensate. The intention is to get an impression of the size of effects not
calculated so far. Specifically, we do not use the results obtained in the current section
for later analyses, where we include non-perturbative effects within different frameworks.
We absorb QCD vacuum condensate effects of the light quark fields in the function

L(m2, q2) entering Ceff
9 and defined by eq. (2.53). This follows from the similar structure

of L(m2, q2) and the fermionic one loop correlation function, see section 2.4, for which



2.9. Summary of the standard model Wilson coefficients 31

the OPE at high q2 is given in [90, 91] for the QCD vacuum condensate. Matching the
contributions, we obtain the corrections to L(m2, q2) as

LQCDvc = −m
4

q4

(
1 + ln

µ2

m2

)
+ 8π2 〈mq̄q〉

q4

(
1 +

4

3

m2

q2

)
+
π

3

〈αsG2〉
q4

(
1− 4

3

m2

q2

)
− 8π2

3

〈gq̄Gq〉
q5

m3

q3
. (2.95)

The condensates include quark and gluon fields. A term 〈G3〉 is absent as its coefficient
is zero for light quarks. The absence of dimension two operators follows from gauge-
invariance and is in agreement with lattice computations [92]. We neglect condensates of
dimension higher than six and effects of a heavy c quark. The latter are GIM suppressed
and can be included from [90, 91].
The condensates in eq. (2.95) are non-normal-ordered, as required for a consistent OPE

[91]. A normal-ordering does not affect the gluon and quark-gluon condensates, but the
quark-quark condensate mixes with the unit operator. We neglect renormalization effects,
but note that the gluon condensate is renormalization scale independent and mixing is
suppressed by light quark masses. The LO mixing can be found in [91].
The condensates are [93–95]

〈Ω|ml l̄l|Ω〉(µ = 2 GeV) = −(7.63± 0.04)× 105 GeV4 ,

〈Ω|mss̄s|Ω〉(µ = 2 GeV) = −(2.26± 0.34)× 10−3 GeV4 ,

〈Ω|αsGµν,aGaµν |Ω〉 = π(0.037± 0.015) GeV4 ,

〈Ω|gs q̄σµνT aGaµνq|Ω〉(µ = 2 GeV) = −(0.434± 0.004)5 GeV5 , (2.96)

where l ∈ {u, d} and Ω labels the vacuum. The approximations 〈ml l̄l〉 = −f2
πm

2
π/4 and

〈s̄s〉/〈l̄l〉 = 1 [94] hold. We use the gluon condensate extracted from e+e− annihilation
data via QCD sum rules [95], as the corresponding lattice computations inherently suffer
from large uncertainties [94], e.g. 〈αsG2〉lattice = π(0.077± 0.087) GeV4 [92].
Evaluating LQCDvc, we find that LQCDvc(m = 0) ' L(m = ms) and LQCDvc(m =

ms) ' L(m = 0). We conclude that non-perturbative effects cannot be neglected.

2.9. Summary of the standard model Wilson coefficients

We have calculated the effective SM Wilson coefficients defined in section 2.2 at partly
NNLL order in QCD. The missing pieces are the NNLO matching of P1,2 onto P3−9 at µb,
see section 2.5, as well as the NNLO effective Wilson coefficients of P7, for q2 6= 0, and
P9 from P3−6, see section 2.6. We will find in chapter 3 that these pieces are numerically
small in phenomenological applications. The consistent matching at µW , given at NNLO
in section 2.3, settles the issue of different calculations existing in the literature. The
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×(αs/(4π))i C
(i)
1 C

(i)
2 C

(i)
3 C

(i)
4 C

(i)
5

i = 0 −1.0231 1.0919 −0.0036 −0.0601 0.0003
i = 1 0.3195 −0.0549 −0.0024 −0.0309 0.0000
i = 2 0.0756 −0.0036 −0.0019 −0.0007 0.0001

×(αs/(4π))i C
(i)
6 C

(i)
7 C

(i)
8 C

(i)
9 C

(i)
10

i = 0 0.0007 0 0 −0.0030 0
i = 1 0.0002 0.0035 −0.0020 −0.0063 0
i = 2 0.0003 0.0002 −0.0003 −0.0036 0

Table 2.2.: SM Wilson coefficients (αs/(4π))iC(i)(µc = mc), as defined section in 2.2.

running and mixing is described by the RGE, see appendix B.1 for its solution yielding
the Wilson coefficients at next-to-next-to-next-to leading logarithmic (NNNLL) order
and appendix B.2 for the ADM to NNLO and partly from four loop calculations. As a
novel aspect we have calculated the NNLO effective Wilson coefficients of P7,9 from P1,2

in section 2.6.1. This calculation will also be of use in section 4.2.1 and for b physics.
We have calculated the leading QED effects in section 2.7, finding that they can be

neglected. In section 2.8 we have made an attempt to include non-perturbative effects
from the QCD vacuum condensate within the OPE at high q2. We have found that
non-perturbative effects are not negligible on general grounds.
We conclude the current chapter by giving the Wilson coefficients at µc = mc in ta-

ble 2.2 for the parameters listed in appendix A. The NNLO QCD running and decoupling
at flavor thresholds is taken from [67]. The low-energy value for αe is used, which is con-
sistent with the solution of the QCD-QED RGE [89]. For the Wilson coefficients in
different operator bases and a comparison with the Wilson coefficients from b decays, see
[2]. Neglecting the matching at µb the NNNLL Wilson coefficients of the dipole operators
are C7|NNNLL = 0.0003 and C8|NNNLL = −0.0003. The effective Wilson coefficients will
be discussed in the next chapter.
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For a phenomenological analysis it is convenient to work in a different basis than the
one introduced in chapter 2 to directly compare the SM with physics beyond. In view of
chapter 4, we enlarge the basis by operators that are not present in the SM but may be
induced by BSM physics. Matrix elements of the effective weak Lagrangian at µc then
read

〈Lweakeff 〉 =
4GF√

2

αe
4π

∑
i

(
Ci〈Qi〉+ C ′i〈Q′i〉

)
, (3.1)

where the operators of dimension six relevant for charm FCNC transitions are written as

Q7 =
mc

e
(ūσµνPRc)Fµν , Q′7 =

mc

e
(ūσµνPLc)Fµν , (3.2)

Q9 = (ūγµPLc)
(
l̄γµl

)
, Q′9 = (ūγµPRc)

(
l̄γµl

)
, (3.3)

Q10 = (ūγµPLc)
(
l̄γµγ5l

)
, Q′10 = (ūγµPRc)

(
l̄γµγ5l

)
, (3.4)

QS = (ūPRc)
(
l̄l
)
, Q′S = (ūPLc)

(
l̄l
)
, (3.5)

QP = (ūPRc)
(
l̄γ5l

)
, Q′P = (ūPLc)

(
l̄γ5l

)
, (3.6)

QT =
1

2
(ūσµνc)

(
l̄σµν l

)
, QT5 =

1

2
(ūσµνc)

(
l̄σµνγ5l

)
. (3.7)

Here PL/R = 1
2(1 ∓ γ5), σµν = i

2 [γµ, γν ] and the remaining notation is the same as in
section 2.2. The primed operators are obtained from the unprimed ones by flipping the
chirality. Contributions from P ′1−6 given by the replacement qL → qR in eqs. (2.7-2.12)
are absorbed into effective Wilson coefficients as for P1−6. Furthermore, we can introduce
a lepton flavor label for the dilepton operators, but as the SM preserves LFU we do not
write them in the current chapter. For decays involving anti-charm quarks one uses the
hermitian conjugated expressions.
For simplicity of notation, we call the (effective) Wilson coefficients Ci, and do not

write the scale dependence whenever we refer to µc. The same notation was used in
chapter 2 for a different operator basis. We emphasize that in the current and the
following chapter Ci will refer to the Wilson coefficients of the operator basis given here.
The relation to the effective SM Wilson coefficients calculated in chapter 2 is

C7,9 =
∑

q∈{d,s}

V ∗cqVuq
4π

αs(µc)
C

eff(q)
7,9 (µc) . (3.8)



34 3. Phenomenology in the standard model

Recall that C10 = 0, C ′7 ∼ mu/mc ' 0, C ′9,10 = 0 as well as C(′)
S,P,T,T5 = 0 from the

previous chapter. Effects from

Q8 =
gsmc

e2
(ūσµνT aPRc)G

a
µν , Q′8 =

gsmc

e2
(ūσµνT aPLc)G

a
µν (3.9)

are absorbed into C(′)
7,9. With the notation introduced above, the SM Wilson coefficients

are known to O(αs), where C9 starts at O(α−1
s ). One should keep in mind that weak

phases and strong phases from the CKM matrix and the matrix elements absorbed in the
effective Wilson coefficients, respectively, are both part of the Wilson coefficients. The
weak phases, however, are small due to the CKM structure, see appendix A.
The factor 1/2 in the definitions of QT,T5 is introduced to compensate for a dou-

ble counting in µ ↔ ν. Note that σµνγ5 = i
2εµνρσσ

ρσ which implies that QT =
1
2(ūσµνγ5c)(l̄σµνγ5l), and QT5 = 1

2(ūσµνγ5c)(l̄σµν l), hence no primed tensor operators
are needed. The mixing of the scalar, pseuodoscalar, tensor, and pseudotensor opera-
tors, respectively, Q(′)

S,P,T,T5 is each closed at one loop QCD. The running of their Wilson
coefficients is, due to the parity invariance of QCD, [96]

Ci(µ)(′) =

(
αs(µ0)

αs(µ)

)−γ(0)i /(2β0)

C
(′)
i (µ0) , γ(0) = diag

(
−8,−8,

8

3
,
8

3

)
, (3.10)

where β0 is given by eq. (B.5). The anomalous dimension of C(′)
S,P is the same as the one

of the of MS mass.
For physical observables we switch to the on-shell and renormalized pole mass scheme.

Its relation to the MS mass scheme is [67]

mpole(µ)

mMS(µ)
=

(
1 +

αs
4π

(
16

3
+ 4 ln

µ2

m2
MS

))
. (3.11)

Ratios of masses are scheme independent but care has to be taken of expressions involving
q2/m2, andmc due to the definitions of Q(′)

7 , wheremcC
(′)
7 are mass scheme independent.

The SM Wilson coefficients are shown in figures 3.1 and 3.2. We observe the following:
At q2 = (2ms)

2 a discontinuity represents the ss̄ intermediate quark state. Furthermore,
the full calculation of chapter 2 can be approximated by the contributions from matrix
elements of P1,2 to the effective Wilson coefficients of P7,9. This feature reflects the
GIM mechanism which is broken by a non-zero strange quark mass entering these matrix
elements. The remaining contributions are subject to GIM suppression, which also holds
for the pieces which are missing towards a complete NNLL calculation in chapter 2. These
pieces mainly come from QCD penguin operators, for which the Wilson coefficients are
additionally suppressed in the SM. We conclude that for phenomenological purposes
the one and two loop matrix elements of P1,2 into P7,9 are numerically equivalent to a
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Figure 3.1.: SM Wilson coefficient C7. The real (blue, upper) and imaginary (purple,
lower) parts are shown. The label “2l” (dashed) indicates the two loop re-
sult of the calculation from section 2.6.1, whereas “q2 = 0” (dotted) shows
C7(q2 = 0) from [47]. Indeed, “2l” represents the full NNLL result as obtained
in chapter 2, see text, and for vanishing q2 it agrees with “q2 = 0”.

complete NNLL calculation of C7,9. Specifically, the two loop matrix elements give the
leading contribution. However, this should not be seen as a breakdown of perturbativity,
as the other contributions are more strongly GIM suppressed. Moreover, the one loop
matrix elements are suppressed by cancellations from C1 and C2. The qq̄ pair in the
loop is color-singlet suppressed at one loop, whereas it forms a color-octet pair at two
loop due to the additional gluon, giving rise to additional color factors. Indeed, from
the SM Wilson coefficients in table 2.2 a breakdown of the perturbation series cannot be
concluded.
The q2 dependence of C7 shows significant deviations from its value at q2 = 0. This

should be kept in mind, as C7(q2 = 0) was used on the full q2 range for c→ ull induced
decays in literature till today. For c → uγ induced decays, however, C7(q2 = 0) can be
obtained by eq. (2.62),

C7(q2 = 0) ' −0.0011− 0.0041i . (3.12)

In this chapter, which is based on [1] and [3], predictions for inclusive decays will be pre-
sented, see the next section. Exclusive decays, including form factors, non-perturbative
effects, and different observables, will be the topic of sections 3.2 and 3.3 for D → Pll
and D → V γ, respectively. Other exclusive modes will be considered in section 3.4.
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Figure 3.2.: SM Wilson coefficient C9. The q2 ranges are split corresponding to different
orders of C9. The real (blue) and imaginary (purple) parts are shown. The
label “2l” (dashed) indicates the two loop result of the calculation from sec-
tion 2.6.1. The label “1l” (dotted) indicates the one loop matrix element of
P1,2 resulting in an effective Wilson coefficient of P9, see text. Indeed, the
sum of “2l” and “1l” represents the full NNLL (solid) result as obtained in
chapter 2, see text.
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mode branching ratio norm αs(mZ) mc ms µW µc

D+ → Xuγ 4.6× 10−8 ±4%
+11
−10%

+13
−12%

+24
−21% ±7% +82

−37%D0 → Xuγ 2.3× 10−8 ±4%

D+
s → Xuγ 2.8× 10−8 ±18%

Table 3.1.: Branching ratios of D → Xuγ decays in the SM. The normalization is given
by B(D → Xdeν) and the other uncertainties apply for all modes. We vary
mW,b/2 ≤ µW,b ≤ 2mW,b, mc/

√
2 ≤ µc ≤

√
2mc, and all other parameters

according the intervals given in appendix A.

3.1. Inclusive decays

As a direct application of the SM Wilson coefficients calculated in chapter 2 and dis-
cussed above, we study inclusive c→ uγ and c→ ull decays in sections 3.1.1 and 3.1.2,
respectively.

3.1.1. Inclusive D → Xuγ decays

The inclusive c→ uγ branching ratio can be expressed as [47]

BD→Xuγ =
αe
π

6|C7|2
|V ∗cdVud|2

B(D → Xdeν) . (3.13)

Here Xu denotes a not fully specified final hadronic state containing a u quark. The
branching ratio of c → d induced D → Xdeν decays is chosen as a normalization to
reduce parametric uncertainties. Also renormalization scheme and scale uncertainties
entering in the charm quark mass are reduced by this choice. The branching ratios, as
obtained for the parameters listed in appendix A, are given in table 3.1. The difference
between the modes follows from the normalization. Additionally, we give all individual
non-negligible uncertainties, of at least one percent. We vary mi/2 ≤ µi ≤ 2mi, only for
µc we choose mc/

√
2 ≤ µc ≤

√
2mc. This choice follows as µc = mc/2 would be close

to the non-perturbative region and µc = 2mc > mb/2 = µb would reverse the ordering
of the c and b quarks, which is inconsistent with matching of the b quark. The largest
uncertainty arises from the variation of the scale µc, yielding an uncertainty of a factor
∼ 1/2 to ∼ 2 for the branching ratios. The branching ratios are in agreement with the
ones found in [47]. No experimental data are currently available.
The CP conjugated modes yield approximately the same branching ratios. This follows

from the GIM mechanism and the structure of the CKM matrix, which is the only source
of CP violation in the SM. Nonetheless, strong phases are sizable, see figures 3.1, 3.2.
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Note that effects from D0−D̄0 mixing are small [97]. Considering untagged CP averaged
branching ratios doubles the numbers provided in table 3.1.
An additional observable is the photon polarization, defined as the difference between

the right-handed and left-handed quark currents. Due to a dominantly left handed
polarization the SM prediction for the photon polarization is −1.
The predictions made here can be further improved, analogue to b physics: One

can evaluate contributions from c → dd̄uγ transitions, see [98], and one can calculate
Brodsky–Lepage–Mackenzie (BLM) corrections, as done for b decays [99] (and references
therein). Furthermore, one can include power corrections ∼ ΛQCD

mc
, see [100] (and ref-

erences therein). Additionally, energy moments and power corrections to them can be
calculated as well, see e.g. [101]. See [102], for non-local operators ∼ ΛQCD

mc
. However,

This class of corrections will be numerically small as C8 is GIM suppressed. Also kine-
matical cuts on the photon energy spectrum yield power corrections, see [100] for a review
in b physics.
We will consider power corrections for exclusive radiative decays in section 3.3. Power

corrections, e.g. spectator interactions, and resonant effects do, in fact, dominate the
branching ratios, but were not taken into account for the inclusive predictions. A com-
parison of the inclusive branching ratio ∼ O(10−8), see table 3.1, which is an upper limit
on exclusive branching ratios, with a measurement of the exclusive decay D0 → ρ0γ, i.e.
B(D0 → ρ0γ) = (1.77± 0.30± 0.07)× 10−5 [24], points towards large corrections.
We will address this issue for exclusive radiative decays within the SM and BSM in

section 3.3 and chapter 4, respectively. Similar observations will be made for c → ull
induced decays. However, inclusive dilepton decays are instructive and will be analyzed
in the next section.

3.1.2. Inclusive D → Xull decays

We refer to appendix C.1 for the distributions and observables relevant for D → Xull
decays. They are obtained by means of a heavy quark expansion (HQE), where pertur-
bative corrections to the matrix elements as well as power corrections can be included.
The q2 distribution of the decay D+ → X+

u e
+e− is shown in figure 3.3. We plot

distributions for matrix elements to NNLO and, additionally, with non-vanishing lepton
masses as well as power corrections. One observes that the effect of a non-zero lepton
mass is small apart from the very low q2 range, where it renders the branching ratio to be
finite. Indeed, the SM respects LFU and the lepton flavor ratio B(c→ uµµ)/B(c→ uee)
is solely broken due to kinematical effects. The decay c→ uττ is kinematically forbidden.
For vanishing lepton, i.e. electron, masses and in the limit q2 → 0 on-shell photons, thus
c→ uγ transitions, are probed.
At high q2, the relative power corrections diverge and the distribution becomes nega-

tive. As in b decays [103] the HQE breaks down for q2 & m2
c/2, as the soft momentum

and soft mass hadronic system is non-perturbative. Analogue to b decays [103] no resum-
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Figure 3.3.: The q2 distribution of the branching ratio of the decay D+ → X+
u e

+e−. We
plot distributions for matrix elements to NNLO (solid blue) and, additionally,
with a non-zero muon lepton mass (dashed cyan) as well as power corrections
(dotted purple).

mation into a light-cone distribution function, as for D → Xuγ and D → Xulνl decays,
is possible. However, the fully integrated branching ratio is dominated by the low q2

range, where power corrections are small. Note that for the power corrected distribution
a kinematical cut on the hadron mass should be employed, which in turn induces ΛQCD

mc

corrections. Nevertheless, the high q2 range is theoretically accessible as the inclusive
decay degenerates into only a few exclusive modes, e.g. D → πll which will be studied
in the next section. In principle, one can perform an expansion in inverse powers of
meff

heavy = mc(1 −
√
q2
min), where q2

min ∼ m2
c/2 to calculate the inclusive branching ratio

at high q2, see [79] for b decays. A HQE for charm decays was used to calculate the D
meson lifetime, showing that predictions within the HQE and the perturbation theory are
consistent with measurements, although, subleading corrections are sizable [104]. Analo-
gously, calculations of subleading corrections in charm mixing do not signal a breakdown
of the HQE [105]: It was found that formally leading contributions are more strongly
GIM suppressed than subleading corrections, analogously to what we have observed for
rare charm decays within the perturbation theory.

In principle, one can include additional non-perturbative effects by means of the OPE
at high q2 via quark-hadron duality, a dispersion relation, and e+e− → hadrons data
following [103, 106, 107]. Furthermore, one can obtain the hadronic spectrum and its
moments, giving rise to non-perturbative parameters, analogue to b decays [108].
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mode branching ratio norm αs(mZ) µW µc

D+ → Xuµ
+µ− 4.4× 10−10 ±19%

+14
−13%

+14
−11%

+104
−41 %D0 → Xuµ

+µ− 1.7× 10−10 ±9%

Ds → Xuµ
+µ− 1.6× 10−10 ±7%

Table 3.2.: Fully integrated ranching ratios of D → Xull decays in the SM. The results
are obtained from eq. (C.12) with NNLO matrix elements for massive leptons.
Power corrections are not taken into account, see text. The normalization is
given by B(D → Xµν) and the other uncertainties apply for all modes. We
varymW,b/2 ≤ µW,b ≤ 2mW,b,mc/

√
2 ≤ µc ≤

√
2mc, and all other parameters

according to the intervals given in appendix A. We do not vary mc,s as they
were fixed in the calculation of the two loop matrix elements for simplicity.

The D → Xuµµ branching ratios are given in table 3.2. The difference between the
modes follows from the normalization, i.e. B(D → Xµν). As in the radiative case, the
uncertainties are dominated by the scale µc, which induces an uncertainty of a factor
∼ 1/2 to ∼ 2. We do not consider electrons as their branching ratios depend on a cut
in the q2 distribution, see figure 3.3. Moreover, a q2-cut is experimentally required to
reduce jet-like Xu, which yields power corrections, as in b decays, e.g., [109]. As can
be seen from figure 3.3 the branching ratios with electrons are equal to the muonic case
apart from very low q2, where branching ratios with electrons increase.
Comparing with the branching ratios obtained in [1], where the two loop matrix ele-

ments for P9 were not taken into account, one finds that the branching ratios given in
table 3.2 are only slightly increased: The enhancement of C9 is suppressed by a small
phase space, whereas the branching ratio on most of the phase-space is shifted to smaller
values due to cancellations between C7 and C9.
In the literature the branching ratios were found to vary by two orders of magnitude

[48, 58, 59, 110]. We agree with the results obtained in [48, 110] (see [111] for updated
plots). The discrepancy with [58, 59] is driven by eq. (2.22).
Apart from a CP asymmetry which is approximately zero, also the leptonic forward-

backward asymmetry, see appendix C, vanishes. These null tests follow from the vanish-
ing of the Wilson coefficient C10 in the SM. If C10 would be non-vanishing, a zero point,
where the forward-backward asymmetry changes sign, could be induced. Such a point is
observed in b decays.
In addition to the forward-backward asymmetry, one can define the leptonic left-

right asymmetry and the leptonic longitudinal/normal polarization asymmetries, see ap-
pendix C. Also the latter observables are zero as C10 = 0. Again, zero points could
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be induced if C10 would be non-zero. All four zero points, including the one from the
forward-backward asymmetry, would be driven by the same Wilson coefficients, but mul-
tiplied with different phase space factors.
Furthermore, the leptonic transverse polarization asymmetries of l± are given in ap-

pendix C. They come with a non-vanishing combination of SM Wilson coefficients but
are lepton mass suppressed, which in turn is softened by a pole for low q2. The difference
between the l+ and l− transverse polarization asymmetries is again a null-test which can
be broken by a non-vanishing C10.

3.1.3. Summary of inclusive decays

In the previous sections on inclusive decays we have learnt the following: The main
uncertainty in the perturbative calculation is due the scale µc ∼ mc, i.e. higher order
effects. The branching ratios calculated at NNLO are found as B(c → uγ) ∼ O(10−8),
see section 3.1.1, and B(c → uµµ) ∼ O(10−11), see section 3.1.2. The GIM mechanism
which drives the smallness of the perturbative contributions, also renders CP asymmetries
small. Additionally, due to the vanishing C10 several observables are approximate null-
tests. As already found in section 2.8 non-perturbative effects, e.g. power corrections,
should be taken care off. Indeed, comparing the measured branching ratio of D0 → ρ0γ
with inclusive branching ratios calls for additional dynamics at work. While including
power corrections to the branching ratio of c→ ull, the breakdown of the HQE at high
q2 was evident. To address these issues we will consider exclusive decays in the next
sections.

3.2. The decay D → Pll

The exclusive decay of a pseudoscalar D meson into a pseudoscalar P meson and a lepton
pair has the simplest spin structure of rare charm decays. Furthermore, D → Pll decays
constitute the only mode for inclusive decays at sufficiently high q2. Experimentally,
the most stringent limits are obtained for this mode and on the theoretical side several
observables are calculable. Despite possible large uncertainties, clean SM predictions can
be obtained, which can then be confronted with experiments as well as BSM physics.
The decay D → Pll is hence the first way to be taken in probing the SM with rare charm
decays. Note that the decay D → Pγ with an on-shell photon is forbidden due to the
spin of the photon.
The decay distribution is worked out in appendix C.2 and form factors, which describe

the hadronic matrix elements for exclusive decays, will be considered in the next section.
In section 3.2.2 resonance effects will be taken into account and the phenomenology in
the SM will be worked out in section 3.2.3.
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3.2.1. Form factors

The heavy-to-light transition form factors as defined in appendix C.2 read

〈P (pP )|ūγµc|D(pD)〉 = f+(q2)

(
pµ − m2

D −m2
P

q2
qµ
)

+ f0(q2)
m2
D −m2

P

q2
qµ , (3.14)

〈P (pP )|ūσµνc|D(pD)〉 = ifT (q2)(pµqν − qµpν) , (3.15)

where qµ = (pD − pP )µ = (p+ + p−)µ, and pµ = (pD + pP )µ. If the pseudoscalar P is
neutrally charged, the form factors f+,0,T are multiplied by the isospin factor of the uū
content in P , e.g. 1/

√
2 for P = π0. In particular, f+(0) = f0(0) to avoid a singularity in

eq. (3.14) for q2 → 0. For vanishing lepton masses qµ[l̄γµl] = 0 due to the lepton EOM,
thus f0 is absent. Moreover, f0 is irrelevant in the SM as C10 is vanishing.
The form factors are of hadronic nature and presently only calculable on the lattice.

Firstly, we reduce the number of independent form factors by use of the heavy quark
spin symmetry. The remaining single form factor is extracted from D → Plν decays by
means of isospin symmetry.
By employing the heavy quark spin symmetry within the heavy quark effective theory

(HQET) [112] form factors are related at large q2, q2 ∼ m2
c � Λ2

QCD, that is at low
hadronic recoil [113]. In this case the momentum of a softly interacting heavy quark
can be decomposed as pµc = mcv

µ + kµ with |k| ∼ ΛQCD. Within the HQET hv is the
heavy charm quark with velocity vµ = (pD)µ/mD, where /vhv = hv. Matching the quark
currents gives ūγµc = ūγµhv + O(αs,

ΛQCD
mc

) and ūσµνc = ūσµνhv + O(αs,
ΛQCD
mc

) [114].
Multiplying eq. (3.14) with vµ and qµ, yields up to power corrections, respectively,

〈ūhv〉 = f+
m2
D + pD · pP
mD

+ (−f+ + f0)
m2
D −m2

P

q2

m2
D − pD · pP
mD

,

〈ūc〉 = f+
m2
D −m2

P

mD
+ (−f+ + f0)

m2
D −m2

P

q2

m2
D +m2

P − 2pD · pP
mD

. (3.16)

Thus, the leading form factor relations at low recoil follow as

f0(q2) = f+(q2)

(
1− q2

m2
D −m2

P

)
+O

(
ΛQCD

mc

)
. (3.17)

For the tensor form factor we multiply eq. (3.15) with vν yielding

vν〈ūσµνhv〉 = ifT

(
pµ
m2
D − pD · pP
mD

− qµm
2
D + pD · pP
mD

)
(3.18)

= i〈ūγµhv〉 − i〈ūvµhv〉 (3.19)

= i

(
f+

(
pµ − vµm

2
D + pD · pP
mD

)
+ (−f+ + f0)

m2
D −m2

P

q2

×
(
qµ − vµm

2
D − pD · pP
mD

))
(3.20)
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up to power corrections. This implies

fT 2mD = f+ − (−f+ + f0)
m2
D −m2

P

q2
(3.21)

and combined with eq. (3.17) the second leading form factor relation at low recoil follows
as

fT (q2) = f+(q2)
1

mD
+O

(
ΛQCD

mc

)
. (3.22)

These relations are also valid at large hadronic recoil, i.e. low q2, as derived in the
HQET/large energy effective theory (LEET) [115, 116]. We point out that power cor-
rections enter as ∼ C7

C9

ΛQCD
mc

, which are suppressed once the two loop calculation of
the current-current matrix elements are taken into account, see section 2.6.1, and fig-
ures 3.1, 3.2. This would not be the case without the two loop calculation.
Perturbative corrections, which break the heavy quark symmetry can be included at

low and large recoil. At low recoil, they are obtained from the HQET [1, 114],

f0(q2) = 0 +O
(

ΛQCD

mc
, α2

s

)
, (3.23)

fT (q2) =
mD

q2

(
1− αs

π

1

3
ln
µ2
c

m2
c

)
f+(q2) +O

(
ΛQCD

mc
, α2

s

)
. (3.24)

The pole in the form factor relation of eq. (3.24) is of kinematical origin. In the calculation
of the corrections, the QCD EOM induce the matrix element 〈ūi←−Dµ(1 + γ5)hv〉, which
is power suppressed, hence neglected, yet it can be calculated in the chiral perturbation
theory as done in b decays [117].
At large recoil, perturbative QCD vertex corrections can be included from [118] as

f0(q2) =
2E

mD

(
1 +

αs
π

(
2

3
+

2

3

2E

mD − 2E
ln

2E

mD

))
f+(q2) , (3.25)

fT (q2) =
1

mD

(
1 +

αs
π

(
−2

3

2E

mD − 2E
ln

2E

mD
− 1

3
ln
µ2
c

m2
c

))
f+(q2) , (3.26)

where the energy E = (m2
D+m2

P −q2)/(2mD). Here mP ∼ ΛQCD will be consistently set
to zero. Note that 2E/(mD − 2E) ln[2E/(mD)] → 1, as q2 → 0, and mP ' 0, implying
f0|α1

s
' 0, i.e. αs corrections vanish at large recoil, as for the low recoil relation.

To obtain the full q2 dependence of the form factor relations for fT we take eq. (3.22)
and interpolate the corrections from eqs. (3.24) and (3.26) for mP = 0. The form factor
f0 is also provided by lattice computations [119] (preliminary [120, 121]). It turns out
that the lattice result for f0 is non-zero at low recoil, as opposed to its corresponding
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HQET prediction, eq. (3.23). This can be attributed to large power corrections as the
leading order relation is vanishing. Experiments have only restricted access to f0 as it is
suppressed by the lepton mass. Therefore, we take the f0 from the lattice computation,
where we estimate the uncertainty from [119] as . 10%.
We are left with the single form factor f+. It can be parametrized by a conformal map

of the branch cut in the q2 plane onto a circle, |z| < 1, via [97]

z(q2, t0) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

, t± = (mD ±mP )2 , (3.27)

and some t0 < t+ which is chosen as

t0 = t+

(
1−

√
1− t−

t+

)
. (3.28)

One obtains |z| ≤ 0.171 as the radius of convergence on the full q2 range. The form
factor can be expanded as a series around q2 = t0,

f+(q2) =
1

P (q2)φ(q2, t0)

∞∑
i=0

ai(t0)
(
z(q2, t0)

)i
, (3.29)

where ai ∈ R, and φ(q2, t0) is analytic in the complex q2 plane, apart from a cut from t+
to ∞. It reads [122]

φ(q2, t0) =

√
πm2

c

3

(√
t+ − q2 +

√
t+ − t0

) t+ − q2

(t+ − t0)1/4

×

(√
t+ − q2 +

√
t+ − t−

)3/2

(√
t+ − q2 +

√
t+

)5 (3.30)

and resonances below the continuum threshold at t+ are subtracted via

P (q2) = 1 . (3.31)

The parameters ai are bounded by unitarity constraints from the correlation function
[122]. For a series up to i = 3 they are given by the HFAG [97] for D → π transitions
from experimental fits to D → πlν decays. Defining ri ≡ ai/a0, the parameters read [97]

f+(0) |Vcd| = 0.1426± 0.0019 , r1 = −1.95± 0.18 , r2 = −0.52± 1.21 , (3.32)

where a0 is fixed by f+(0). We use the isospin masses mi = (mi+ + mi0)/2. From
lattice computations we learn that the spectator quark dependence of f+ is less than two
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Figure 3.4.: Form factors for D → π transitions. The bands represent the parametric
uncertainties for f+, scale uncertainty for fT , and estimated uncertainties
for f0, see text. The parametric uncertainties for fT are not shown, following
the ones of f+.

percent on most of the q2 range [119]. Hence, we take the same form factors for Ds → K
transitions, while adjusting the masses. Moreover, f+ is provided by lattice computations
[119] (preliminary [120]), consistent with the experimental fits, yet the preliminary lattice
calculation of [121] yields a smaller form factor at high q2.
The form factors forD → π transitions are shown in figure 3.4. For a different definition

of fT , the corresponding relation, and plot, see [1].

3.2.2. Non-perturbative effects

We include resonant effects in a phenomenological approach as described in the following.
The relevant resonances for D → PR(→ l+l−) decays are the pseudoscalars η(′) as
well as the vectors ρ/ω, and φ. We employ a constant width, relativistic Breit-Wigner
parametrization for the amplitude

−iA|R =
GFαe

2
√

2π

aRe
iδR

q2 −m2
R + imRΓR

l̄(p+)/pDl(p−) , (3.33)

where aR ∈ R+ is a constant fit parameter, and δR is an unknown strong phase.
The parametrizations of eq. (3.33) ∼ (pµ + qµ) and of eq. (C.42) ∼ (pµ − (m2

D −
m2
P )/q2qµ) are equivalent for vanishing lepton masses as qµ(l̄γµl) ∼ ml. This holds also
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for non-zero masses as C10 is vanishing. Hence, one can include effects of the resonances
compactly in C9,P as

CR9 = aρe
iδρ

(
1

q2 −m2
ρ + imρΓρ

− 1

3

1

q2 −m2
ω + imωΓω

)
+

aφe
iδφ

q2 −m2
φ + imφΓφ

,

CRP =
aηe

iδη

q2 −m2
η + imηΓη

+
aη′

q2 −m2
η′ + imη′Γη′

(3.34)

as the resonances decay electromagnetically, thus conserve parity. Here we relate the
decays D+ → π+ω and D+ → π+ρ by means of isospin symmetry as in [110] to reduce
the number of parameters.
The matrix elements of pseudoscalar and vector particles are not independent but

related by the EOM. Note that generically |CR|2 → |aR|2π/(mRΓR)δ(q2 − m2
R) as

mRΓR → 0, which, in particular, holds for η(′). The corresponding contributions from
light qq̄ pairs in the loop to the SM Wilson coefficients will consistently be omitted to
avoid a double-counting. In the notation of eq. (3.34) CKM factors are implicit. We
consider them separately wherever needed, e.g. for CP asymmetries.
As we are mainly concerned with D+ → π+V (→ µµ) decays we give their fit param-

eters only. Approximating B(D+ → π+(R → µµ)) ' B(D+ → π+R)B(R → µµ), which
is e.g. measured for R = φ [21], and taking the branching ratios from measurements, see
appendix A, one obtains

aρ = (0.17± 0.02) GeV2 , aω = (0.032+0.006
−0.007) GeV2 , aφ = (0.24+0.05

−0.06) GeV2 ,

aη = (0.00060+0.00004
−0.00005) GeV2 , aη′ ∼ 0.0007 GeV2 . (3.35)

The branching ratio for η′ is not measured and cannot be approximated by the one
from B(η′ → ee) as the branching ratio of a pseudoscalar decaying into dileptons is
proportional to the lepton mass. Here it is obtained from unitarity [123] as

B(η′ → µµ) ∼ B(η′ → γγ)
α2
e

2

(
mµ

mη′

)2/√
1− (2mµ)2

m2
η′

× ln2

[(
1 +

√
1− (2mµ)2

m2
η′

)/(
1−

√
1− (2mµ)2

m2
η′

)]
(3.36)

yielding B(η′ → µµ) ∼ 10−7 which is in agreement with the findings in [124, 125].
Compared to [1] the fitted parameter aω is new due to a recent measurement. The
isospin relation |aω| = |aρ|/3 slightly overestimates the fitted parameters. However, as
can be seen from eq. (3.35) the ρ and φ are the dominant resonances, due to their total
width and branching ratio, respectively. Hence, the approximations made here do not
affect the phenomenology away from the ω and η′ peaks. If we relax the condition of
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constant widths and parameters, e.g., replace (ΓR, aR) → (ΓR, aR)
√
q2/mR, the fitted

parameters obtained in eq. (3.35) stay approximately the same. Resonances with spin
higher than one are not included as their branching ratios are not measured, yet their
decays to electrons are seen [21].
We observe some discrepancies with respect to the literature: In [126] equation (16)

should be λsaφ = 1.23± 0.05. The work of [60] is based on the fitted parameters of [127]
(and updates thereof, e.g. [128]) multiplied by form factors, which was not done in the
fitting of [127] (and updates thereof). In [129] the pseudoscalar η is treated as a scalar
particle which results in a non-vanishing SM forward-backward asymmetry there, but is
not the case for pseudoscalars. Resonant decays described within a chiral theory [70] give
a similar q2 shape, yet light penguin diagrams are double counted. Note that the decay
of a ρ is hardly accessible in lattice computations due to the large total width of the ρ.
Apart from this phenomenological approach one can employ different approaches to

include non-perturbative effects. One is to perform an OPE at high q2 via quark-hadron
duality, a dispersion relation, and e+e− → hadrons data as for inclusive decays, see
[114, 130–133] for b decays. Furthermore, non-perturbative effects can be calculated, as
done in b physics, via QCD factorization [134], and the soft collinear effective theory
(SCET) [135] (and references therein) at low q2. At large q2, power corrections ∼ 1/m2

c

due to hard spectator interactions (HSIs) and weak annihilation (WA) ∼ 1/m3
c via QCD

penguin operators emerge within the OPE, see [131] for b physics. Analogous calculations
for rare charm decays may be done elsewhere.

3.2.3. Phenomenology

For D → Pll decays only upper limits on the branching ratios are measured, with the
most stringent one for D+ → π+µ+µ−. The q2 distribution of the latter, as derived
in appendix C, is shown in figure 3.5. The perturbative contribution along with the
resonance distribution as obtained in the previous section, and the experimental limit
are plotted. One observes that the resonances dominate, apart from very low q2, where
perturbative contributions are of similar size. The resonant uncertainties mainly stem
from the unknown relative phases, only near the resonance the uncertainties of the fit-
ting parameters become noticeable. Towards high q2 the SM induced branching ratio
decreases. Compared to [1] we observe a similar behavior as already noticed for the in-
clusive study when taking the two loop matrix elements into account: The enhancement
of C9 is visible at very low q2, whereas on most of the phase-space cancellations between
C7 and C9 take place. The experimental limit is obtained assuming a model dependent
phase space interpolation of the low and high q2 ranges, and neglecting resonant inter-
ferences [136]. The experimentally defined binnings are

√
q2 ∈ [0.250, 0.525] GeV and√

q2 ≥ 1.25 GeV to cut on the η and φ resonances, respectively. The resonant distribu-
tion at high q2 is driven by the uncertainties of the unknown phases of ρ and φ. Once
the uncertainties of the measured resonant distribution is reduced, a fit will provide fur-
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Figure 3.5.: The q2 distribution of the branching ratio of D+ → π+µ+µ−. The non-
resonant 90% confidence/credibility level (CL) experimental limit, shown
as a dashed purple line, is taken from [136]. The solid blue line is the
perturbative contribution and the blue band shows its µc uncertainty, where
mc/
√

2 ≤ µc ≤
√

2mc. The orange band represents the resonances, where
the phases are varied independently within [−π, π].

ther information, e.g. about the phases. Note that the resonant distribution is similar
to the one in figure 4 of [136]. In principle, one can fit the experimentally data on the
resonant distribution, which requires less uncertainties than what is presently available
to be meaningful. Finally, note that the contribution from a decay via a resonant K0

around m2
K0 ' 0.25 GeV2, induced by charged currents, is barely visible as its branching

ratio ∼ O(10−10) [21] . A decay via a resonant π0 to muons is forbidden since no phase
space is available.
In view of the experimentally defined ranges we give the perturbative contributions

to the branching ratios for FCNC induced D(s) → (π, η(′),K)ll decays integrated on the
full, low and high q2 ranges in table 3.3. For the full q2 range we only deal with muons in
the final state, due to the same reasons as discussed in section 3.1.2. For D → η′ decays
the high q2 range is not available because no phase space is left. Reminding that the
scale µc induces the dominant uncertainty we ignore other uncertainties, but the ones
from the normalization and from the form factors, which provide additional sources of
uncertainties. We observe that µc yields still the largest uncertainty, i.e. a factor ∼ 1/2 to
∼ 2. Compared to [1] it is reduced due to the inclusion of the two loop matrix elements.
In principle, one can choose the decay D → Plν, see e.g. [137] for its distribution, for
the normalization to reduce parametric uncertainties. The parametric uncertainties are,
nevertheless, small. The predictions for decays into electrons are significantly below the
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experimental limits B(D0 → π0e+e−) < 4.5× 10−5, B(D0 → ηe+e−) < 1.1× 10−4 and
B(D+

s → K+e+e−) < 3.7× 10−6 [136]. For D+ → π+e+e− the BESIII collaboration
[138] (preliminary) found the improved upper limit B(D+ → π+e+e−) < 0.3× 10−6.

mode B norm µc form factors exp. limit

D+ → π+µ+µ− 8.2× 10−11 ±1% +121
−45 % ±5% 7.3× 10−8

D0 → π0µ+µ− 1.6× 10−11 ±1% +121
−45 % ±5% 1.8× 10−4

D0 → ηµ+µ− 4.0× 10−12 ±1% +120
−45 % +5

−4% 5.3× 10−4

D0 → η′µ+µ− 3.7× 10−12 ±1% +122
−46 % +5

−4% –

Ds → K+µ+µ− 3.8× 10−11 ±2% +121
−45 % ±5% 2.1× 10−5

mode B|(low q2) norm µc form factors exp. limit

D+ → π+µ+µ− 6.1× 10−11 ±1% +117
−41 % +5

−4% 2.0× 10−8

D+ → π+e+e− 7.2× 10−11 ±1% +118
−41 % +5

−4% –

D0 → π0µ+µ− 1.2× 10−11 ±1% +117
−41 % +5

−4% –

D0 → π0e+e− 1.4× 10−11 ±1% +118
−41 % +5

−4% –

D0 → ηµ+µ− 3.0× 10−12 ±1% +118
−41 % +5

−4% –

D0 → ηe+e− 3.5× 10−12 ±1% +118
−41 % +5

−4% –

D0 → η′µ+µ− 2.9× 10−12 ±1% +118
−41 % +5

−4% –

D0 → η′e+e− 3.4× 10−12 ±1% +119
−42 % +5

−4% –

Ds → K+µ+µ− 2.8× 10−11 ±2% +117
−41 % +5

−4% –

Ds → K+e+e− 3.3× 10−11 ±2% +118
−41 % +5

−4% –

mode B|(high q2) norm µc form factors exp. limit

D+ → π+l+l− 1.4× 10−13 ±1% +93
−33%

+28
−19% 2.6× 10−8

D0 → π0l+l− 2.6× 10−14 ±1% +91
−34%

+26
−19% –

D0 → ηl+l− 1.3× 10−16 ±1% +92
−33%

+24
−18% –

Ds → K+l+l− 2.0× 10−14 ±2% +97
−35%

+25
−19% –
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Table 3.3.: Branching ratios of D → Pll decays for the perturbative contribution in
the SM, integrated on the ranges

√
q2 ≥ 2mµ,

√
q2 ∈ [0.250, 0.525] GeV,

and
√
q2 ≥ 1.25 GeV, where the latter two are labeled “low q2” and “high q2”,

respectively. We normalize to the total width and vary mc/
√

2 ≤ µc ≤
√

2mc,
and the form factors according to the uncertainties obtained in section 3.2.1.
The experimental limits for the non-resonant branching ratios at 90% CL are
taken from [21], and the LHCb collaboration [136] for D+ → π+µ+µ−.

In table 3.3 we provide additional predictions for P = η(′) with respect to [1]. The
modes D0 → η(′)ll are actually not independent as η and η′ mix electromagnetically.
However, experiments show that η ' η8 and η′ ' η1 [21]. Here, the form factors are mul-
tiplied with 1/

√
6 and 1/

√
3 for the flavor octet η8 and the flavor singlet η1, respectively,

to account for the isospin factors. The smallest branching ratio is predicted for the decay
D0 → η′µ+µ− due to a reduced phase space. This, on the other hand, restricts resonant
decays. In particular a decay via an on-shell φ is forbidden. Only the decay D0 → ηη′

is measured so far, and experimental information on resonant decays via ρ and ω are
missing. Nevertheless, it may constitute an interesting mode for future studies.
The experimental sensitivity for the LHCb is extrapolated in [139]: The branching

ratios of D+ → π+µ+µ− will be probed down to O(10−9). This will allow to probe
resonances, the very low q2 and high q2 ranges, see figure 3.5.
The branching ratios found in the literature reveal a discrepancy analogue to one

discussed for inclusive decays in section 3.1.2. Again, we agree with the calculations
performed in [110], which updates their previous work [70]. We disagree with the latter
reference, where the sum of branching ratios of the exclusive modes is larger than the one
from the inclusive decays. We further disagree with the calculation of [60] as discussed
around eq. (2.22).
However, the SM predictions for the branching ratios are dominated by resonances,

which are accompanied with large uncertainties, including inherent modeling uncertain-
ties. In the following, we study designed observables, which reduce the SM contribution,
thus its uncertainties, to enhance the predictive power. Definitions and expressions are
given in appendix C.2.
The CP asymmetry is small in the SM given the perturbative contribution. For the

decay D+ → φπ+ no evidence for CP violation is found [140]. As the decay of a φ into
a lepton pair is of electromagnetic nature, we conclude that the resonant CP asymmetry
is not sizable. Nevertheless, the combination of perturbative and resonant contributions
may catalyze the CP asymmetries [126], see appendix C.2 for the relevant expressions.
The crucial observation is that resonances allow to evade the otherwise strong GIM
mechanism. In particular, this effect may be sizable on the φ resonance as shown in
figure 3.6. There, we included the ρ and φ resonances with unknown strong phases.
Effects due to additional resonances are negligible. Normalizing the resonant catalyzed



3.2. The decay D → Pll 51

1.00 1.02 1.04 1.06 1.08
-4. ´ 10

-9

-2. ´ 10
-9

0

2. ´ 10
-9

4. ´ 10
-9

q
2 @GeV

2D

d
A

C
P

HD+
®

Π
+

Μ
+

Μ
-

L�dq
2

@Ge
V

-
2

D
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CP asymmetry to
∫ (mD−mπ)2

(2mµ)2
dq2(dBD+→P+ll/dq

2 + dBD−→P−ll/dq2) yields less than
5× 10−3 for any q2. The CP asymmetry remains small in the SM due to small phases
of the CKM factors.
The lepton forward-backward asymmetry, see eq. (C.54), is zero in the SM. This is also

true for resonant decays including pseudoscalar resonances. Technically, the forward-
backward asymmetry singles out odd powers of cos θ. Higher orders in cos θ which allow
for a non-zero forward-backward asymmetry, are estimated to be subleading: Firstly,
operators of dimension larger than six are suppressed by powers of external momenta
or masses with respect to the EW scale. Secondly, electromagnetic effects, e.g. the two
photon diagram ∼ pD · (p+ − p−) ∼ u [141, 142], are suppressed by αe/(4π).
Combining the forward-backward asymmetry and the CP asymmetry results in the

lepton forward-backward CP asymmetry, see eq. (C.55). It is zero in the SM as the
forward-backward asymmetry is zero itself. If the latter would not be zero, the forward-
backward CP asymmetry would still vanish in limit of CP symmetric Wilson coefficients.
The flat term is basically vanishing in the limit ml → 0. The only non-vanishing

contribution arises from the pseudoscalar resonances, see eq. (C.57). The total widths
of η(′) are small, thus the pseudoscalar resonances can be cut. An integration of both,
the numerator and denominator, i.e. the decay rate, over

√
q2 ≥ 1.25 GeV yields a SM

contribution < 0.001.
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At the kinematical endpoint q2
max = (mD−mP )2 the branching ratio, the flat term and

the forward-backward asymmetry are predicted to be 1/2, 1 and 0, respectively [143].
This follows from the distributions given in appendix C.2 with λ(m2

D,m
2
P , q

2
max) = 0.

The endpoint relations can be broken by (pseudo-)scalar operators. Note that the effects
of the narrow pseudoscalar resonances η(′) are negligible at high q2.
Finally, we comment on observables that may become interesting for future analyses.

The observable (Γ(D+ → π+l+l−) − |Vcd|2|Vcs|2
m5
D+

m5
Ds

Γ(D+
s → π+l+l−)) is less sensitive to

WA. The current experimental limit on the WA induced mode is B(Ds → π+µ+µ−) <
4.1× 10−7 at CL=90% [21], leaving the WA reduced observable for future studies.
From table 3.3 the lepton flavor ratio is determined to be approximately one at high

q2. The lepton flavor ratio probes C10 for LFU couplings, see eq. (C.58). A possible
breaking of LFU would be basically due to the SM operators [144]. Resonant decays
preserve LFU as they couple electromagnetically, which is consistent with measurements
[21]. A non-conservation of LFU implies lepton flavor violation (LFV) [145] if the family
number is not conserved [144]. However, a test of LFU requires to increase measurements
with electrons in the final state by a few orders of magnitude, which is beyond current
experiments.

3.3. The decay D → V γ

The D → V form factors are deferred to appendix D. For the exclusive decay of a
pseudoscalar D meson into a vector V meson and a lepton pair only the form factors
T = T1(0) = T2(0), V (0) and A1(q2) are needed. Following appendix D we use

T = 0.7(1± 0.20) , V (0) = 0.9(1± 0.25) , (D → (ρ, ω)γ)

T = 0.7(1± 0.25) , V (0) = 0.9(1± 0.30) , (Ds → K∗γ) (3.37)

and

A
(c→u)
1 (q2) =

0.6

1− 0.5 q2/m2
D

(1± 0.15) ,

A
(D→K∗,Ds→φ)
1 (q2) =

0.6

1− 0.5 q2/m2
D

(1± 0.15) , (3.38)

which are multiplied by 1/
√

2 for D0 → (ρ0, ω)γ decays due to isospin. The form factors
V (0) and A1(q2) only enter the resonant model, described in the following.
We include resonances as modeled in [146, 147], see appendix E. This model is a

hybrid of factorization, heavy quark effective theory and chiral theory. Relating the
intrinsic parameters to measured ones includes implicitly a breaking of SU(3) flavor
symmetry. For the predictions made we vary the parameters within their uncertainties.
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Figure 3.7.: The leading HSI (first and second) and WA (third) corrections to c → uγ
transitions. The crosses and boxes indicate the emission of a photon and
operator insertions, respectively.

In particular, the unknown strong phases give the largest uncertainties, followed by the
ones of the coefficients a1,2.
Despite its smaller number of observables, radiative decays provide a complementary

phenomenology, see section 3.3.2, to rare semileptonic decays analyzed in the previous
section. In particular, the only observed decay involving charm FCNC transitions is
D0 → ρ0γ, for which the branching ratio and the CP asymmetry are measured. Fur-
thermore, the predictability of the SM contribution to these observables is enhanced as
mode dependent corrections to the SM Wilson coefficients can be included, see the next
section. Additionally to rare charm decays, we consider WA modes.

3.3.1. Perturbative and non-perturbative corrections

The total width for D → V γ decays can be written as [148]

Γ =
m3
D

32π

(
1− m2

V

m2
D

)3 (
|APC|2 + |APV|2

)
, (3.39)

where the parity conserving (PC) and parity violating (PV) amplitudes read

APC/PV =

√
αe4πGFmc

2
√

2π2
(A7 ±A′7)T . (3.40)

Here the coefficients A(′)
7 = C

(′)
7 + ... include the SM Wilson coefficients and the ellipses

indicate perturbative and non-perturbative corrections, as well as BSM contributions
studied in chapter 4. Note that A7 and A′7 do not mix in eq. (3.39). For numeri-
cal purposes (−0.00151 − (0.00556i)CP-even + (0.00005i)CP-odd) ≤ C7 ≤ (−0.00088 −
(0.00327i)CP-even + (0.00002i)CP-odd), varying mc/

√
2 ≤ µc ≤

√
2mc and the CP phases

are decomposed. In the next section we consider corrections from HSIs and WA, shown
in figure 3.7. Diagrams, which are not shown, are additionally power suppressed.
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Hard spectator interactions and weak annihilation

The expressions for the HSI diagrams within QCD factorization can be adopted from b
physics [149] (and [134, 150, 151]). We follow [149] to obtain the leading corrections, at
O(α1

s(
ΛQCD
mc

)0),

CHSI
7 =

αs(µh)

4π

 ∑
q∈{d,s}

V ∗cqVuq

(
−1

6
C1(µh) + C2(µh)

)
H

(q)
1 + C8(µh)H8

 , (3.41)

where the hard scale µh ∼
√

ΛQCDmc. Here C1,2,8 are taken at leading order due to
additional non-factorisable diagrams at higher orders. Furthermore, taking into account
the charge ratios,

H
(q)
1 =

4π2fDf
⊥
V

27TmDλD

∫ 1

0
dv h

(q)
V (v̄) ΦV⊥(v) ,

h
(q)
V =

4m2
q

m2
c v̄

2

(
Li2

 2

1−
√

(v̄ − 4m2
q/m

2
c + iε])/v̄


+ Li2

 2

1 +
√

(v̄ − 4m2
q/m

2
c + iε])/v̄

)− 2

v̄
, (3.42)

H8 = − 32π2fDf
⊥
V

27TmDλD

∫ 1

0
dv

ΦV⊥(v)

v
, (3.43)

where v̄ = 1 − v, and the dilogarithm Li2 is given by eq. (2.21). We use md = 0. The
(transverse) decay constants f (⊥)

i are given in appendix A. The transverse distribution
at leading twist can be expressed to first order in Gegenbauer polynomials as

ΦV⊥ = 6vv̄

(
1 + aV⊥1 3(v − v̄) + aV⊥2

3

2

(
5(v − v̄)2 − 1

))
, (3.44)

For D(s) → (ρ, ω,K∗+)γ decays we use the Gegenbauer moments [152] (and references
therein)

aρ⊥1 = 0 , aρ⊥2 = 0.14± 0.06 ,

aω⊥1 = 0 , aω⊥2 = 0.14± 0.12 ,

aK
∗⊥

1 = −0.04± 0.03 , aK
∗⊥

2 = 0.10± 0.08 (3.45)

at µ = 1 GeV, where the sign of aK∗⊥1 is fixed by K∗+ = (us̄) [153]. Here we neglect
isospin breaking in the ρ. The running of the Gegenbauer moments can be found in, e.g.,
[150].
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The parameter λD is defined as

mD

λD
=

∫ 1

0
dξ

ΦD(ξ)

ξ
, (3.46)

that is the first negative moment of the leading twist distribution Φ of the light-cone
momentum fraction ξ of the spectator quark within the D meson. In b physics, the
first negative moment of the B meson light-cone distribution amplitude is measured
as λHQET

B > 0.172 GeV at 90% CL [154], a positive light-cone wave function yields
λHQET
B ≤ 4/3 Λ̄ [155], and by means of light-cone sum rules λQCD

B . Λ̄ [156, 157].
Here Λ̄ = (mB −mb) + O(Λ2

QCD/mb), and λ
HQET
B > λQCD

B at one loop QCD [158]. In
the heavy quark limit λHQET

D ∼ λHQET
B . We use λD ∼ ΛQCD ∼ O(0.1 GeV).

Taking µh = 1 GeV for simplicity, varying the Gegenbauer moments, and decay con-
stants one obtains

CHSI,ρ
7 ∈ [0.00051 + 0.0014i, 0.00091 + 0.0020i]× GeV

λD
,

CHSI,ω
7 ∈ [0.00030 + 0.0010i, 0.00098 + 0.0020i]× GeV

λD
,

CHSI,K∗+
7 ∈ [0.00032 + 0.0013i, 0.00096 + 0.0022i]× GeV

λD
. (3.47)

We do not vary the form factor since it cancels in the amplitude. Chromomagnetic
contributions will be discussed more generally in section 3.3.1. Contributions due to
additional operators, which are subleading, can be adopted from [159].
The WA contribution is a power correction. Following [149, 160], we obtain the leading

contribution, at O(α0
s(

ΛQCD
mc

)1), for D0 → (ρ0, ω)γ, D+ → ρ+γ and Ds → K∗+γ decays

CWA,ρ0
7 = −

2π2qufDf
(d)
ρ0
mρ

TmD0mcλD
V ∗cdVud

(
4

9
C1 +

1

3
C2

)
,

CWA,ω
7 =

2π2qufDf
(d)
ω mω

TmD0mcλD
V ∗cdVud

(
4

9
C1 +

1

3
C2

)
,

CWA,ρ+
7 =

2π2qdfDfρmρ

TmD+mcλD
V ∗cdVudC2 ,

CWA,K∗+
7 =

2π2qdfDsfK∗mK∗

TmDsmcλD
V ∗csVusC2 . (3.48)

Again, C1,2 is taken at leading order, qu = 2/3 and qd = −1/3 are the up-type and
down-type quark charges, respectively, in units of the proton charge. The isospin factor
of T is canceled by the one of f (d)

V , which is the contribution from d quarks to the form
factor, and given in appendix A. We neglect WA contributions due to QCD penguin
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operators as they are additionally GIM suppressed as well as further subleading terms,
which are calculated in b physics [159, 160]. These include non-local corrections, which
are shown to be additionally power suppressed by means of QCD sum rules in b physics
[159]. The overall sign for ρ0 follows from isospin. It is due the relative sign of the d
quarks generated via WA and the u quarks in 〈Q7〉.
Varying the decay constants and µc ∈ [mc/

√
2,
√

2mc] one obtains

CWA,ρ0
7 ∈ [−0.010,−0.0011]× GeV

λD
,

CWA,ω
7 ∈ [0.0097, 0.0011]× GeV

λD
,

CWA,ρ+
7 ∈ [0.029, 0.038]× GeV

λD
,

CWA,K∗+
7 ∈ [−0.034,−0.047]× GeV

λD
. (3.49)

Note that WA contributions to the neutral modes is subject to large uncertainties stem-
ming from the color suppressed combination of Wilson coefficients.
We add that one can calculate non-factorisable power corrections, which also induce

A′7, by means of light-cone sum rules, as done in b physics [153]. However, αs corrections
vanish at leading twist in the limit of massless quarks in the V meson [161]. Corrections
to A′7, as well as to A7, are additionally power suppressed. Nevertheless, effects due to
c → uγg transitions via a soft gluon coupling to the Q2 induced quark loop and the V
meson can be estimated following [162] as

C
′(c→uγg)
7 ∼ 1

3
C2

(
V ∗cdVud f

(c→uγg)(m2
d/m

2
c) + V ∗csVus f

(c→uγg)(m2
s/m

2
c)
) ΛQCD

mc
. (3.50)

This contribution is ∼ O(10−4) if the expansion coefficients of f (c→uγg) in m2
q/m

2
c are of

order one. Effects from Q1 and QCD penguin operators induced quark loops are further
color suppressed and additionally GIM suppressed, respectively. In principle, one can
calculate f (c→uγg) by means of light-cone sum rules, as done in b physics in [153].
We conclude that |CWA,V +

7 | > |CWA,V 0

7 | & |CHSI
7 | > |C7|. Hence, form factors are

irrelevant in the SM, but may become important in BSM models. The SM uncer-
tainties are driven by µc and λD. Due to the absence of further calculations, we take
|A′7,SM/A7,SM| . 0.2 for simplicity, where weak phases follow from CKM factors, that is
A′7,SM = A′7,SM(V ∗cdVud, V

∗
csVus).

Chromomagnetic effects

In the SM chromomagnetic effects are GIM suppressed ∼ O(10−5), which renders the
impact from 〈Q(′)

8 〉 small. However, 〈Q(′)
8 〉 effects may become relevant in BSM scenarios.
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From eq. (3.41) the 〈Q(′)
8 〉 HSI contributions follow as

C
(′)HSI,ρ
7

∣∣
〈Q(′)

8 〉
∈ −GeV

λD
× [0.031, 0.042]× C(′)

8 ,

C
(′)HSI,ω
7

∣∣
〈Q(′)

8 〉
∈ −GeV

λD
× [0.024, 0.040]× C(′)

8 ,

C
(′)HSI,K∗+
7

∣∣
〈Q(′)

8 〉
∈ −GeV

λD
× [0.031, 0.039]× C(′)

8 . (3.51)

Independently, from light cone sum rules (LCSR) the 〈Q(′)
8 〉 gluon spectator interaction

(GSI) contributions [152] (and [163]) are obtained as

C
(′)GSI,ρ0
7 ∈ −[0.068 + 0.048i, 0.14 + 0.10i]× C(′)

8 ,

C
(′)GSI,ω
7 ∈ −[0.018− 0.024i, 0.036− 0.048i]× C(′)

8 ,

C
(′)GSI,ρ+
7 ∈ −[0.057 + 0.040i, 0.12 + 0.083i]× C(′)

8 ,

C
(′)GSI,K∗+
7 ∈ −[0.017− 0.020i, 0.034− 0.040i]× C(′)

8 . (3.52)

The LCSR calculation extends the calculation by means of QCD factorization. Note that
the latter actually breaks down at subleading power for 〈Q(′)

8 〉 HSIs due to a logarithmic
singularity for a soft spectator quark [159]. Nevertheless, eqs. (3.52) and (3.51) are similar
for λD ∼ O(0.1 GeV), yet they may come with different real and imaginary parts.
Furthermore, a similar contribution, as obtained from the perturbative matrix element,

is

C
(′)
7

∣∣
〈Q(′)

8 〉
' (−0.12− 0.17i)C

(′)
8 . (3.53)

We conclude that chromomagnetic effects contribute as C(′)
7

∣∣
〈Q(′)

8 〉
∼ (−0.1− 0.1i)C

(′)
8 ,

which is negligible in the SM.

Weak annihilation modes

Extending section 3.3.1 we calculate the WA contributions to WA modes in this section.
They are not induced due to HSI nor by FCNC transitions, hence BSM effects are
negligible. Hence, WA modes probe the SM and the employed theoretical frameworks.
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We obtain the coefficients for the WA modes D0 → (φ, K̄∗0,K∗0)γ, D+ → K∗+γ and
Ds → ρ+γ as

CD
0→φγ

7 =
2π2qufDfφmφ

TmD0mcλD
V ∗csVus

(
4

9
C

(ūs)(s̄c)
1 +

1

3
C

(ūs)(s̄c)
2

)
,

CD
0→K̄∗0γ

7 =
2π2qufDfK∗mK∗0

TmD0mcλD
V ∗csVud

(
4

9
C

(ūd)(s̄c)
1 +

1

3
C

(ūd)(s̄c)
2

)
,

CD
0→K∗0γ

7 =
V ∗cdVus
V ∗csVud

CD
0→K̄∗0γ

7 ,

CD
+→K∗+γ

7 =
2π2qdfDfK∗mK∗+

TmD+mcλD
V ∗cdVusC

(ūs)(d̄c)
2 ,

CDs→ρ
+γ

7 =
2π2qdfDsfρmρ

TmDsmcλD
V ∗csVudC

(ūd)(s̄c)
2 . (3.54)

Here we indicate the operator structure, yet as QCD is flavor symmetric C(q̄1q2)(q̄3c)
1,2 =

C
(0)
1,2 . Note that the form factor T is decay dependent, however, GeV

mcT
∼ 1 cancels in

the amplitude. The mode D0 → φγ actually receives a contribution from the decay
D0 → ρ0γ. This will be taken care of in section 3.3.2.
Varying the decay constants and µc ∈ [mc/

√
2,
√

2mc] one obtains

CD
0→φγ

7 ∈ [−0.016,−0.0013]× GeV

λD

GeV

mcT
,

CD
0→K̄∗0γ

7 ∈ [−0.051,−0.0044]× GeV

λD

GeV

mcT
,

CD
0→K∗0γ

7 ∈ [0.0028, 0.00023]× GeV

λD

GeV

mcT
,

CD
+→K∗+γ

7 ∈ [0.0082, 0.0070]× GeV

λD

GeV

mcT
,

CDs→ρ
+γ

7 ∈ [−0.16,−0.13]× GeV

λD

GeV

mcT
. (3.55)

3.3.2. Phenomenology

The branching ratios for c → uγ induced modes are given in table 3.4 for the different
approaches, two loop QCD, HSI plus WA, and the resonant model, along with experi-
mental data. For comparison, also the branching ratios from the resonant model as found
in [146, 147] are provided. Furthermore, predictions from pole diagrams and the vector
meson dominance mechanism [164], and QCD sum rules [165] are listed. An update of
[164] is given in [166], yet their predictions differ partially by an order of magnitude from
[164], thus we do not list them. Note that the sum of the two loop QCD predictions are
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branching ratio D0 → ρ0γ D0 → ωγ

two loop QCD [0.14− 2.0]× 10−8 [0.14− 2.0]× 10−8

HSI+WA [0.11− 3.8]× 10−6 [0.078− 5.2]× 10−6

resonant [0.041− 1.17]× 10−5 [0.042− 1.12]× 10−5

[146, 147] (0.1− 1)× 10−5 (0.1− 0.9)× 10−5

[164] (0.1− 0.5)× 10−5 0.2× 10−5

[165] 3.8× 10−6 –
exp. data (1.77± 0.31)× 10−5 < 2.4× 10−4

branching ratio D+ → ρ+γ Ds → K∗+γ

two loop QCD [0.75− 1.0]× 10−8 [0.32− 5.5]× 10−8

HSI+WA [1.6− 1.9]× 10−4 [1.0− 1.4]× 10−4

resonant [0.038− 1.15]× 10−4 [0.98− 8.77]× 10−5

[146, 147] (0.4− 6.3)× 10−5 (1.2− 5.1)× 10−5

[164] (2− 6)× 10−5 (0.8− 3)× 10−5

[165] 4.6× 10−6 –
exp. data – –

Table 3.4.: Branching ratios of D → V γ decays in the SM. We normalize to the to-
tal width and vary the form factors, decay constants, widths, Gegenbauer
moments, relative strong phases and µc ∈ [mc/

√
2,
√

2mc]. The branching
ratios from HSI plus WA scale as (0.1 GeV/λD)2. The experimental data at
CL=90% are from [24], where we add uncertainties in quadrature, and from
[21]. The branching ratios from [165] are given without uncertainties and are
obtained by taking a1 = 1.3 and a2 = −0.55 [167].

below, yet close to the inclusive branching ratios of table 3.1. However, corrections to the
two loop QCD calculation are dominant. The branching ratios from HSI plus WA are
smaller than/similar to the resonant branching ratios for neutral/charged c→ uγ modes.
The resonant branching ratios cover the ranges found in [146, 147, 164, 165]. Note that
the hierarchies of various amplitudes are dominated by CKM factors and color counting,
which is taken care of in both approaches. Nonetheless, SM predictions are slightly to
low to explain the measured D0 → ρ0γ branching ratio. Only for λD < 0.1 GeV in the
QCD based approach the SM prediction can be sufficiently large, which indicates sizable
ΛQCD
mc

and/or αs corrections.

The predictions are compiled in figure 3.8, where the branching ratios of D → ργ as
a function of λD are shown. A measurement of the D+ → ρ+γ branching ratio would
allow to constrain λD. The contributions from the QCD based approach to the decay
D0 → ρ0γ are subject to large uncertainties due to possible cancellations.



60 3. Phenomenology in the standard model

0.1 0.2 0.3 0.4 0.5 0.6

10
-5

10
-4

0.001

0.01

0.1

1

ΛD @GeVD

B
HD®

Ρ
Γ

L´1
0

4

D
0

®Ρ
0

Γ non-resonant

D
0

®Ρ
0

Γ resonant HmaximalL
D

0
®Ρ

0
Γ Belle 2016

D
+

®Ρ
+

Γ non-resonant

D
+

®Ρ
+

Γ resonant HmaximalL

Figure 3.8.: Branching ratios of D → ργ decays as a function of λD. The blue and orange
curves are for D0 → ρ0γ and D+ → ρ+γ, respectively. The dashed lines
show the maximal predictions as obtained from the resonant model. The
solid filled curves are the non-resonant predictions, from two loop QCD and
HSI plus WA. The experimental data from [24] are depicted as a cyan band.
We vary the form factors, decay constants, widths, Gegenbauer moments,
relative strong phases and µc ∈ [mc/

√
2,
√

2mc].

The uncertainties in the QCD based approach for D0 → ρ0γ and D+ → ρ+γ decays
are anticorrelated implying large isospin violation. One obtains BD+→ρ+γ ' [44, 2900]×
BD0→ρ0γ , which is relaxed in the resonant model, giving BD+→ρ+γ ' [0.3, 280]×BD0→ρ0γ .
Note that isospin is already broken by the lifetimes τ(D0)/τ(D+) ' 0.4.
In addition to the branching ratio of D0 → ρ0γ its CP asymmetry is measured as [24]

ACP = 0.056± 0.152± 0.006 . (3.56)

The CP asymmetry is mostly direct, analogous to the time-integrated CP asymmetry in
D0 → K+K− [168], thus we neglect the small indirect contribution [3].
The CP asymmetry along with the branching ratio is shown in figure 3.9. One sees

that in the QCD based approach |ACP | . 2× 10−2 if B & 10−9, and |ACP | . 2× 10−3, if
B & 10−6. The latter case is closer to the data for the branching ratio and can be obtained
for, e.g., λD . 0.3. Sizable CP asymmetries are only possible for small branching ratios
due to cancellations. In the resonant model one obtains ACP . 10−3, which vanishes in
the SU(3) flavor limit.
The CP asymmetry for D0 → ωγ is similar to the ACP of D0 → ρ0γ. For D+ → ρ+γ

and Ds → K∗+γ the CP asymmetries are . 2× 10−3 within the QCD based approach,
whereas CP asymmetries . 3× 10−4 are predicted in the resonant model.



3.3. The decay D → V γ 61

0.0 0.1 0.2 0.3 0.4 0.5
-20

-10

0

10

20

B HD0
®Ρ

0
ΓL´10

5

A
C

P
HD0

®
Ρ

0
Γ

L´
1

0
3

Figure 3.9.: The distributions of the CP asymmetry and the branching ratio for
D0 → ρ0γ in the QCD based approach. We vary the form factor, de-
cay constants, widths, Gegenbauer moments, relative strong phases and
µc ∈ [mc/

√
2,
√

2mc]. Furthermore, we assume λD ∈ [0.1, 0.6]GeV and
|A′7(V ∗cdVud, V

∗
csVus)/A7| . 0.2. The experimental data on the CP asymme-

try and the branching ratio, respectively, do cover and are beyond the shown
range.
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Another observable is the photon polarization, defined as

Pγ =
|A′7|2 − |A7|2
|A′7|2 + |A7|2

. (3.57)

In the QCD based approach Pγ . −0.92. Within the resonant model |A′7/A7| cannot be
predicted, hence no prediction for the photon polarization is given. One may get further
information once WA in the QCD based approach is matched onto the resonant model.

Weak annihilation modes

The branching ratios of the WA modes are presented in table 3.5. Predictions from
the QCD based approach and the resonant model are provided along with experimental
data. For comparison, the branching ratios from the resonant model as found in [146,
147], from pole diagrams and the vector meson dominance mechanism [164], and QCD
sum rules [165] are listed. They give consistent SM predictions. Again, an update of
[164] is given in [166] with sizable deviations from [164], thus not listed. One observes
that the branching ratios for the neutral WA modes in the resonant model are larger than
the ones from the QCD based approach, similar to what was observed in the previous
section for D0 → ρ0γ. On the other hand this pattern is reversed for the charged WA
modes. The measurements for D0 → K̄∗0γ by Belle and BaBar differ by 2.2σ, yet are in
the range of the SM predictions, whereas the measurements and the SM prediction for
D0 → φγ are consistent.

Furthermore, CP asymmetries are measured as ACP (D0 → φγ) = −0.094± 0.066 and
ACP (D0 → K̄∗0γ) = −0.003 ± 0.020 [24], where uncertainties are added in quadrature.
The predictions for all WA modes are zero due to a single weak phase. A slight tension
thus emerges for D0 → φγ decays. However, due to a small (dd̄+ uū) admixture in the
φ [21], one can approximate A(D0→φγ)

CP ∼ O(0.01)ACP [3], where ACP is the D0 → ρ0γ
CP asymmetry. Furthermore, due to ππ → KK scattering at the φ mass, a Breit-
Wigner ansatz gives A(D0→φγ)

CP ∼ O(0.1)ACP . Hence, A(D0→φγ)
CP . 10−3 in the SM and

the measured data on D0 → ρ0γ imply A(D0→φγ)
CP . 10−2. Thus, A(D0→φγ)

CP may contain
information from BSM physics. Similar observation were made in [148].

We conclude that despite some discrepancies in the experimental data, they are in
agreement with the calculations supporting the theoretical frameworks utilized. Further-
more, they suggest that the SM predictions are close to their upper limits. Concerning
the QCD based approach sizable corrections are needed. Further information can be
gained from measurements of the charges WA modes.
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branching ratio D0 → φγ D0 → K̄∗0γ D0 → K∗0γ

WA [0.0074− 1.2]× 10−5 [0.011− 1.6]× 10−4 [0.032− 4.4]× 10−7

resonant [0.24− 2.8]× 10−5 [0.26− 4.6]× 10−4 [0.076− 1.3]× 10−6

[146, 147] (0.4− 1.9)× 10−5 (6− 36)× 10−5 (0.03− 0.2)× 10−5

[164] (0.1− 3.4)× 10−5 (7− 12)× 10−5 0.01× 10−5

[165] – 1.8× 10−4 –
Belle (2.76± 0.21)× 10−5 (4.66± 0.30)× 10−4 –
BaBar (2.81± 0.41)× 10−5 (3.31± 0.34)× 10−4 –

branching ratio D+ → K∗+γ Ds → ρ+γ

WA [0.73− 1.1]× 10−5 [1.8− 2.9]× 10−3

resonant [0.48− 7.6]× 10−6 [0.11− 1.3]× 10−3

[146, 147] (0.03− 0.44)× 10−5 (20− 80)× 10−5

[164] (0.1− 0.3)× 10−5 (6− 38)× 10−5

[165] – 4.7× 10−5

Belle – –
BaBar – –

Table 3.5.: Branching ratios of WA modes in the SM. We vary the decay constants, life-
times and µc ∈ [mc/

√
2,
√

2mc]. The WA predictions from the QCD based
approach scale as (0.1 GeV/λD)2. The branching ratios from [165] are ob-
tained by taking a1 = 1.3 and a2 = −0.55 [167]. The experimental data
are taken from Belle [24] and BaBar [169], where we add uncertainties in
quadrature and for the latter update the normalization [21].
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3.4. Summary of exclusive decays

The branching ratios ofD → Pll andD → V γ decays are dominated by non-perturbative
physics. For the reference mode D+ → π+µ+µ− resonant decays are orders of magnitude
above the perturbative predictions in the SM, see section 3.2.3. However, at very low q2

they are competitive and at high q2, above the resonances, resonant decays are an order of
magnitude below the current experimental limit. In particular, angular observables and
CP asymmetries are clean observables, i.e. (approximate) null tests of the SM, even when
including contributions from resonant decays. Similarly, for the reference modeD0 → ρ0γ
non-perturbative physics are dominating the branching ratio, see section 3.3. Again, the
CP asymmetry is an approximate null test of the SM. Moreover, WA modes serve as a
test for the theoretical frameworks and, indeed, show agreement for the measured modes.
However, in the QCD based approach sizable perturbative/power corrections are needed.
For D0 → ρ0γ the experimental data on the branching ratio is slightly above the SM
predictions and the statistically driven uncertainty on the CP asymmetry is presently
not indicative. Nonetheless, future measurements may reveal a gap with respect to the
SM predictions, which will then be filled with BSM physics. This will be studied in the
next chapter. Before proceeding, we comment on several other charm FCNC transitions
in the following.

The branching ratio for the purely leptonic decay D0 → ll, eq. (C.61), receives no
perturbative contribution in the SM, as C10 is vanishing therein. However, a non-zero
branching ratio in the SM is given by off-shell photons at the loop level. It is found
to be ∼ O(10−13) [58, 170, 171], and experimentally constrained as 2.7× 10−5 B(D0 →
γγ) < 2.3× 10−11 at CL=90%, where B(D0 → γγ) = 8.4× 10−7 is taken from the
measurement [172]. The current experimental limits are B(D0 → e+e−) < 7.9× 10−8

and B(D0 → µ+µ−) < 6.2× 10−9 at CL=90% [21]. Mixing effects of the D0 have to be
taken into account to compare experimental data with theoretical predictions, see e.g.
[173] for b decays, which turn out to be negligible due to the small width difference [21].
Finally, note that the diphoton contribution may be overestimated [174].

For the decay D∗0 → l+l− the SM branching ratio is ∼ 10−18 [175] due to the small
lifetime. At the LHCb the decay D∗0 → π+π− induces an irreducible uncertainty due
to the π → µ misidentification rate. We find the D∗0 → π+π− total width by means of
factorization via [176]

ΓD∗0→π+π− =
G2
F

32π

√
(m2

D∗0
− (2mπ+)2)2 − 4m4

π+

3

m3
D∗0

|V ∗cdVud||a1(π+π−)|2f2
π

× (A
(D∗→π)
0 )2(m2

π+) , (3.58)
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where we fix the coefficient |a1(π+π−)| from

BD0→π+π− =
1

ΓD0

G2
F

32π

(m2
D0 −m2

π+)2
√

(m2
D0 − (2mπ+)2)2 − 4m4

π+

m3
D0

|V ∗cdVud||a1(π+π−)|2

× f2
πf

2
0 (m2

π+) , (3.59)

and the measured B(D0 → π+π−) ' 1.4× 10−3 [21]. Furthermore, we approximate the
form factor A(D∗→π)

0 ' A
(D→ρ)
0 , see appendix D, yielding BD∗0→π+π− ∼ 5× 10−11 for

ΓD∗0 ' 6× 10−5 GeV. We find that the background is larger than the SM prediction for
the D∗0 → l+l− branching ratio.
The SM contribution to the dineutrino decays D → PνLν̄L is negligible [58], if we

restrict q2 > (m2
τ −m2

π+)(m2
D+ −m2

τ )/m2
τ ' 0.34 GeV2 to cut the resonant D → τ(→

πν)ν mode [177]. This holds also for different neutrinos in the final state.
The LFV decays D → Pll′ and D0 → ll′ are vanishing in the SM, also including

Majorana neutrinos, and do not emerge from resonant decays. Furthermore, angular
distributions in LFV decays vanish in the SM.
Several charm FCNC transitions were studied in the literature. These contain the

decays D0 → V (→ l+l−)γ [48], Bc → B∗uγ [178] and D0 → π+π−γ [148]. For the latter
a non-vanishing C ′7 is generated at leading order in ΛQCD

mc
by means of a soft and a hard

pion, see [179] for b decays.
One possible extension of the previous sections would be a study on D → V ll decays.

They were studied in [58, 69, 110], including BSM physics. We do not agree with [69]
on the perturbative contribution to the SM branching ratios, see the discussion around
eq. (2.22). In [58, 110] it was found to be negligible. We estimate that they are in the
same range as for D → Pll decays. The smaller phase space in D → V ll decays reduces
the high q2 range, where the contribution to the branching ratio is small. Nevertheless,
the branching ratios are dominated by non-perturbative effects. They are approximated
in [58] by D → PV (→ ll) decays, and are taken from chiral theory in [69, 110]. The
lineshapes at low q2 are not in agreement, see also [58]. The strongest experimental
limit is obtained for D0 → ρ0µ+µ−, i.e. B(D0 → ρ0µ+µ−) < 2.2× 10−5 at CL=90%
[21]. Compared to the decay into a pseudoscalar meson, D → V ll decays give rise
to additional observables. Kinematic endpoint relations, where non-factorisable terms
vanish, see [143] for b decays, offer additional information. A dedicated analysis may be
done elsewhere.
The decay D → V ll is a resonant mode for D → PPll decays, which were studied

in [180, 181]. Note that the phase space for D0 → PPll decays is larger than the
corresponding one for the decay into a vector meson. Experimentally the most stringent
constraints are obtained for non-resonant D0 → π+π−µ+µ− as B(D0 → π+π−µ+µ−) <
5.5× 10−7 at CL=90% [21]. Including resonances, the D0 → π+π−µ+µ− branching
ratios ∼ O(10−10 − 10−9) [180] and ∼ 10−7 [181] were found. The latter reference
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also predicts B(D0 → K−π+µ+µ−), which in agreement with the measurement of [182].
Moreover, the SM Dalitz plot is given in [181], as well as an angular analysis in the context
of BSM physics. In [180] an angular asymmetry, which is odd under time reversal, ∼ 10−2,
the time-dependent direct CP asymmetry ∼ O(10−4), and the time-dependent indirect
CP asymmetry ∼ O(10−5) were found in the SM, as well as studied in the context of
BSM physics. The kinematic endpoint relations for the non-resonant mode are inherited
by and smearing the resonant vector mode relations, due to different endpoints, see e.g.
[183] for b decays.
A further possible extension of the previous sections would be a study on Λc → pll

decays. The strongest experimental limit is obtained for Λc → pee, i.e. B(Λc → pee) <
5.5× 10−6 at CL=90% [21]. The SM branching ratios due to perturbative contributions
were found to be ∼ O(10−14) in [184] and [185], where the latter reference also studies
BSM physics. This result should be taken with care: A reference for the SM Wilson
coefficients is not given in [184] and [185] employs the Wilson coefficients from [59], see
the clarification around eq. (2.22). Both references employ the form factors as calculated
in [184] (and references therein) by use of QCD LCSR. However, the form factors do not
agree with the QCD LCSR calculations performed by [186, 187], also noted in [186, 188].
We estimate that the perturbative contribution to the branching ratios is similar to the
one for D → Pll decays, however, non-perturbative effects are dominating. Due to the
baryons involved in Λc → pll decays additional (angular) observables can be constructed.
A dedicated analysis may be done elsewhere. The radiative decay Λc → pγ will be studied
in section 4.5.
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4. Probing the standard model and
physics beyond

In the previous chapters we have calculated the SM contributions to observables within an
effective theory. The same framework, in particular the definitions given at the beginning
of chapter 3, is used to study BSM effects in this chapter, based on [1] and [3]. Keep
in mind that a Wilson coefficient C does not necessarily relate to the SM in the current
chapter as opposed to the previous ones. Wilson coefficients reflect the high energy
physics, whereas the SM is the low energy theory. At the BSM scale, which is around or
above the EW scale, the BSM theory is matched onto the SM. Mainly two approaches are
used. In the top-down approach, a UV complete BSM theory, realized at a certain scale,
is evolved down to the EW scale, matched onto the SM, and thereafter evolved to the
scale where physics are probed. As traces of concrete BSM models are presently missing,
we utilize the bottom-up approach, where classes of models are directly probed at low
energies. A UV completion can be built once the BSM direction shows up. In a general
approach, BSM effects will be studied model-independently in section 4.1 by analyzing
the Wilson coefficients. Effects from models which were considered in the literature will
be summarized in section 4.2. We will mostly be concerned with LQ models introduced
in section 4.2.1. Their effects in the decays D → Pll, D → V γ and Λc → pγ will be
studied in sections 4.3, 4.4 and 4.5, respectively. For the latter two we also utilize SUSY
models.

4.1. Model-independent analysis

For the model-independent analysis of this section we constrain the Wilson coefficients by
experimental data and we correlate different observables. The Wilson coefficients in BSM
scenarios do not exhibit a q2 dependence. We have seen in the previous chapter that the
perturbative SM Wilson coefficients are small with respect to the current experimental
data. In view of satisfying them by BSM physics we neglect the perturbative SM Wilson
coefficients. Still, non-perturbative corrections may be sizable and should be taken into
account.
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For the D+ → π+µ+µ− branching ratio in the range
√
q2 ≥ 1.25 GeV resonant decays

can presently be neglected in view of the experimental data, see figure 3.5. Thus, the
Wilson coefficients are constrained as

108 × B(D+ → π+µ+µ−) ' 5.9|C7|2 + 2.3|C(µ)
9 |2 + 2.4|C(µ)

10 |2 + 10.7|C(µ)
S |2

+ 10.9|C(µ)
P |2 + 2.8|C(µ)

T |2 + 2.6|C(µ)
T5 |2

+ 7.4 Re[C∗7C
(µ)
9 ] + 2.2Re[C∗7C

(µ)
T ]

+ 1.6 Re[C
(µ)
9 (C

(µ)
T )∗] + 3.2 Re[C

(µ)
10 (C

(µ)
P )∗] . (4.1)

Here B(D+ → π+µ+µ−) < 2.0× 10−8 at CL=90% [136], the primed Wilson coefficients
are additive and the lepton flavor dependence is labeled. It is possible to obtain similar
constraints for low and full q2 ranges, see [1]. The experimental data for the full q2 range
assume a model dependent phase space interpolation of the low and high q2 ranges,
where the intermediate range is dominated by resonances, which are subtracted from
the data. For constraints from the low q2 range the SM contribution, perturbative and
resonant, should be taken into account as well. For electrons the experimental limit is
B(D+ → π+e+e−) < 1.1× 10−6 at CL=90% [21] for the full q2 range. This limit is
above the low and high q2 SM predictions and assuming the experimental limit to be
satisfied by BSM physics, one obtains

106 × B(D+ → π+e+e−) ' 0.28|C7|2 + 0.10|C(e)
9 |2 + 0.10|C(e)

10 |2 + 0.17|C(e)
S |2

+ 0.17|C(e)
P |2 + 0.06|C(e)

T |2 + 0.06|C(e)
T5 |2 + 0.33 Re[C∗7C

(e)
9 ]

+ 0.0005 Re[C∗7C
(e)
T ] + 0.0003 Re[C

(e)
9 (C

(e)
T )∗]

+ 0.0004 Re[C
(e)
10 (C

(e)
P )∗] , (4.2)

where the primed Wilson coefficients are additive.
In addition, from B(D0 → µ+µ−) < 6.2× 10−9 at CL=90% [21] one obtains

106 ×B(D → µ+µ−) ' 1.0|C(µ)
S − C ′(µ)

S |2

+ 1.0|C(µ)
P − C ′(µ)

P + 0.1(C
(µ)
10 − C

′(µ)
10 )|2 . (4.3)

Satisfying the experimental limit, the SM contribution can be neglected. Furthermore,
B(D0 → e+e−) < 7.9× 10−8 at CL=90% [21] gives

106 ×B(D → e+e−) ' 1.0|C(e)
S − C

′(e)
S |2

+ 1.0|C(e)
P − C

′(e)
P + 0.0004(C

(e)
10 − C

′(e)
10 )|2 . (4.4)
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To summarize, similar model-independent constraints on the Wilson coefficients are
obtained from different observables. The constraints on individual BSM Wilson coeffi-
cients δC read

|δC(′)(µ)
i | . 1 , |δC(′)(µ)

S,P | . 0.1 , (4.5)

|δC(′)(e)
9,10 | . 4 , |δC(′)(e)

T,T5 | . 5 , |δ(C7C
(′)(e)
9 )| . 2 , |δC(′)(e)

S,P | . 0.3 . (4.6)

Additional limits for electron Wilson coefficients are above 10, which we do not take
into account in view of weakly induced tree level or loop BSM contributions ∼ g2/Λ2 or
∼ g2/(16π2Λ2), respectively, implying a too low BSM scale Λ below 1 TeV or the EW
scale. On the other hand, the muon limits imply that Λ ∼ O(10 TeV) are probed for
tree level induced BSM contributions with order one couplings. This scale is competitive
with the one in reach of b physics, i.e. Λ ∼ 36 TeV [189]. Charm physics allow to probe
Λ ∼ O(100 TeV) for an experimental sensitivity on asymmetries ∼ O(0.1%) that is in
the reach of LHCb [139] and where SM contributions may become relevant.
From the constraints given by eqs. (4.5, 4.6) one can obtain upper limits for the angular

observables in D+ → π+ll decays,

|AFB(D+ → π+µ+µ−)| . 0.6 , |AFB(D+ → π+ee)| . 0.8 ,

FH(D+ → π+µ+µ−) . 1.5 , FH(D+ → π+ee) . 1.6 . (4.7)

Here resonances are taken into account in the normalization and the numerator and
denominator in eqs. (C.54, C.57) were separately integrated over

√
q2 ≥ 1.25 GeV.

The SM contributions are negligible with respect to the limits. Furthermore, we find
BD∗0→µ+µ− . 2× 10−14 and BD∗0→e+e− . 3× 10−13, which are below the background
estimated in section 3.4.
In the following, we constrain the LFV Wilson coefficients Ki = K

(eµ,µe)
i . Recall

that the associated operators are defined as given at the beginning of chapter 3 by the
replacements l̄Γl→ (ēΓµ, µ̄Γe) for Dirac matrices Γ. One obtains, with additive primed
Wilson coefficients,

106 × B(D+ → π+e±µ∓) ' 0.10|K9|2 + 0.10|K10|2 + 0.17|KS |2 + 0.17|KP |2

+ 0.06|KT |2 + 0.06|KT5|2 ± 0.04 Re[K9K
∗
S ]± 0.04Re[K10K

∗
T5]

+ 0.04 Re[K9K
∗
T ] + 0.04 Re[K

(µ)
10 K

∗
P ] (4.8)

for B(D+ → π+e+µ−) < 2.9× 10−6, and B(D+ → π+e−µ+) < 3.6× 10−6 at 90% CL
[21]. Furthermore, for B(D0 → (e+µ−+e−µ+)) < 1.3× 10−8 at 90% CL [25] one obtains

106 × B(D0 → e±µ∓) ' 1.1|KS −K ′S ± 0.002(K9 −K ′9)|2

+ 1.1|KP −K ′P + 0.002(K10 −K10|2 . (4.9)
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Barring cancellations and considering again only limits less than 10 it follows that

|K(′)
9,10| . 6 , |K(′)

S,P | . 0.4 , |K(′)
T,T5| . 7 . (4.10)

These constraints are weaker than the ones from dielectron modes, hence sizable effects
in angular observables from LFV decays are possible.
From B(D0 → ρ0γ) = (1.77± 0.30± 0.07)× 10−5 [24] one obtains constraints on the

coefficients as

|A(′)
7 , δA

(′)
7 | . 0.5 . (4.11)

Recall that A(′)
7 contains the SM Wilson coefficient and corrections to it, obtained in sec-

tion 3.3.1. Indeed, the SM contribution is competitive with the allowed BSM coefficients.
Corrections from BSM physics are denoted by δA(′)

7 . These constraints are similar to the
ones from eq. (4.1). If the branching ratio of D0 → ρ0γ is dominated by BSM physics,
BD0→ωγ/BD0→ρ0γ ' 1 follows, the same as in the SM, see table 3.4. This ratio may be
different from one for finite non dominant BSM effects. Similar observations were made
in [190]. For the charged modes we do not give such relations as they come with larger
uncertainties. The constraints from the decay D0 → ρ0γ prohibit that branching ratios
of D+ → ρ+γ and Ds → K∗+γ are dominated by BSM physics.
The experimental data on the CP asymmetry, ACP (D0 → ρ0γ) = (0.056 ± 0.152 ±

0.006) [24], do not give limits on the imaginary part of the coefficients smaller than
one. For sizable phases the CP asymmetry ∼ 8 Im[δC7], which for δC ′7 is suppressed by a
smaller SM contribution, and because different chiralities do not interfere in the branching
ratio. In particular, CP asymmetries . O(0.1) are also possible for D0 → ωγ, D+ → ρ+γ
and Ds → K∗+γ. Solely the relative signs of the CP asymmetries are correlated, allowing
sizable CP asymmetries in only some of the modes. To estimate the impact of future
data we work out projected constraints for a 16 times reduced statistical uncertainty in
the measurements of [24] keeping the central values, i.e. A(proj)

CP = 0.056± 0.038, and
B(proj)(D0 → ρ0γ) = (1.77± 0.10)× 10−5, where we add uncertainties in quadrature.
The statistical uncertainties of the branching ratio and CP asymmetry scale as 1/

√
N

and
√

1−A2
CP /
√
N , respectively, for N events. A non-vanishing CP asymmetry would

be due to BSM physics. The projected constraints on the BSM coefficients are shown
in figure 4.1. The SM contributions are obtained from the QCD based approach and
from the resonant model, described in section 3.3. The projected constraints are 0.2 .

|δA(′)
7 | . 0.3, and |Im[δA

(′)
7 ]| & O(0.001) for the QCD based approach, and for the

resonant model 0.1 . |δA(′)
7 | . 0.4, |Im[δA7]| & O(0.001), and |Im[δA′7]| & O(0.0001).
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Figure 4.1.: Projected constraints on the BSM coefficients (Re[δA7], Im[δA7]) (purple)
and (Re[δA′7], Im[δA′7]) (cyan) if A(proj)

CP = 0.056± 0.038, and B(proj)(D0 →
ρ0γ) = (1.77± 0.10)× 10−5, see text. The dashed circles show |δA(′)

7 | =

0.1, 0.4 (left plot) and |δA(′)
7 | = 0.2, 0.3 (right plot). The left and right

plots are obtained for the QCD based approach and the resonant model,
respectively, which are described in section 3.3 and for which uncertainties
are including.
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In section 3.3.1 effects from the chromomagnetic operator are discussed. They do not
give limits smaller than one, yet. On the other hand, the CP asymmetry constrains the
imaginary part. From LCSR [191]

ACP
∣∣
〈Q(′)

8 〉
∼ −Im

[
2C8 +

1

2
C ′8

]
(4.12)

yields |Im[δC
(′)
8 ]| . O(0.1). Recall that the chromomagnetic Wilson coefficients are neg-

ligible in the SM. Note that eq. (4.12) is obtained for V 0 ∈ {ρ0, ω} and an analogue
expression for charged modes can be found in [191]. Furthermore, an orthogonal con-
straint can be obtained from [191, 192]

∆ACP = (ACP (K+K−)−ACP (π+π−)) ∼ −2Im[C8 − C ′8] sin δKK−ππ . (4.13)

The measured difference of the CP asymmetries is ∆ACP = −0.00134 ± 0.00070 [97],
but δKK−ππ, the strong phase difference between K+K− and π+π−, is presently not
available.
The constraints are obtained at a scale around the charm quark mass. To make contact

with a high energy scale, i.e. 1 TeV for simplicity in the following, we employ the RGE. At
one loop QCD C9,10(µ ∼ 1 TeV) = C9,10(µ ∼ µc), CS,P (µ ∼ 1 TeV) ' 0.5CS,P (µ ∼ µc)
and CT,T5(µ ∼ 1 TeV) ' 1.3CT,T5(µ ∼ µc). Hence, the only correlations between these
Wilson coefficients are given within a specific BSM scenario. In particular, the running
is an order one effect. This is not the case for the magnetic Wilson coefficients, which
mix according to

C
(′)
7 (µc) = a7C

(′)
7 (M) +

16

3
(a7 − a8)C

(′)
8 (M) , C

(′)
8 (µc) = a8C

(′)
8 (M) , (4.14)

where M is a high energy scale, and

a7 =

(
αs(M)

αs(µt)

)16/21(αs(µt)
αs(µb)

)16/23(αs(µb)
αs(µc)

)16/25

,

a8 =

(
αs(M)

αs(µt)

)14/21(αs(µt)
αs(µb)

)14/23(αs(µb)
αs(µc)

)14/25

. (4.15)

Including chromomagnetic effects, as described in section 3.3.1, and ignoring contribu-
tions to the SM Wilson coefficients one obtains at µc

δA
(′)
7

∣∣
〈Q(′)

8 〉
' 0.38 δC

(′)
7 (1 TeV)− (0.31 + 0.07i) δC

(′)
8 (1 TeV) . (4.16)

Furthermore, including effects from the four quark operators, see section 2.6, we find [3]

δA
(′)
7

∣∣
〈P (′)

3−6〉
' (0.3− 0.1i) δC

(′)
3 (1 TeV) + (0.7 + 0.1i) δC

(′)
4 (1 TeV)

+ (−3.5− 1.9i) δC
(′)
5 (1 TeV) + (−0.6 + 1.1i) δC

(′)
6 (1 TeV) , (4.17)
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model [reference(s)] B ACP AFB

little Higgs model [59, 110] . BSM . O(10−3) . O(5× 10−3)
minimal SUSY SM [58, 60, 70, 127] . Bexp . O(10−3) . O(10−1)

two Higgs doublet model [70, 129, 193] . BSM – –
unparticle [193] . BSM – –

up vector-like quark singlet [127] . BSM – . 10−3

warped extra dimension [194, 195] . BSM . O(10−2) . O(5× 10−2)
weak vector triplet [129] . BSM – –
Z’ boson [129, 193, 196] . BSM – –

Table 4.1.: Models beyond the SM generating semileptonic decays. The predictions were
found for inclusive and exclusive sample modes.

where SM contributions are negligible. Note that the imaginary parts in eq. (4.17) are
CP even and that the running and mixing also hold for the Wilson coefficients Ki.
The model-independent constraints obtained in the current section will be confronted

with specific models in the next sections.

4.2. Models extending the standard model

Extensions of the SM respect the SM gauge group at low energies. At high energies
further symmetries may be present along with additional interactions and particles. The
latter can be gauged if they follow from a spontaneously broken gauge symmetry.
Several models which extend the SM and generate semileptonic decays were studied

in the literature. We summarize them in table 4.1 and list predictions for observables
if available. They include a sample of exclusive and inclusive modes but can be seen as
generic here from what we have learnt in chapter 3. From these models only the minimal
SUSY SM can give branching ratios above the SM, and close to the experimental limits.
The predictions for the CP asymmetry and the forward-backward asymmetry differ from
model to model. In most cases these observables can be larger than the SM contributions.
Furthermore, the ACPFB is predicted to be . O(10−1) in the little Higgs model and warped
extra dimension give . O(102), while in the SM ∼ O(10−5).
Additionally, left-right symmetric models and a vector-like quark were studied in the

context of inclusive radiative decays in [166]. While the branching ratio was found to be
below the SM, deviations from the SM are possible in the photon polarization. Moreover,
charm FCNC induced D0 → ll decays were studied for BSM scenarios in [58, 60, 129,
171, 195, 197].



74 4. Probing the standard model and physics beyond

Up to this point we have not considered LQ models, which were studied in [128, 129,
196] for the models S1, S2 and Ṽ1 In the following sections we will give a comprehensive
study on LQ models.

4.2.1. Leptoquark models

As a bottom-up approach we assume the existence of renormalizable up-type quark-
lepton-boson couplings extending the SM gauge group, that is colored scalar and vector
LQs which are SU(2)L singlets, doublets and triplets [198]. A recent review of LQ models
is given in [199], to which we also refer for embeddings into larger symmetry groups, see
also [200] (and references therein) for UV completions. Models involving LQs are of
recent interest as they can account for several SM anomalies, see, e.g., [144, 200–206].
Note that the measured R(D) = B(D → τν)/B(D → (e, µ)ν) may not constitute an
anomaly in the SM [207] and R(D) may be correlated to leptonic decays of vectors [208].
Furthermore, neutrino masses and mixing can be generated within LQ models [209–211].
The LQ models relevant for c → ul(′)l transitions, that is S1,2,3, and Ṽ1,2, V2,3, their

couplings, weak hypercharges Yw, and electric charges along with the induced effective
vertices are listed in table 4.2. The latter are obtained by integrating out the LQs and
employing Fierz identities, provided in appendix F. The effective c → u(l′)+l− vertices
for the SU(2)L triplets follow from the completeness relation for the Pauli matrices,
~ταβ · ~τµν = (2δαµδβν − δαβδµν). Charge conjugation of quark fields q̄C = −qTC−1,
qC = Cq̄T yields q ↔ q′, and an additional minus sign in the vector and tensor effective
vertices with respect to the non-conjugated fields, see, e.g., [212]. Note that a minus sign
is present in the propagator of the vector LQs, which was omitted in [1]. For non-gauge
vector LQs with momentum k, and mass M additional terms ∼ kµkν/M2 emerge in the
propagator. In tree diagrams, e.g. the ones for the effective vertices, these terms are
negligible. Note that the models S1,2 each contain two couplings denoted by the lepton
chirality.

⊂ LLQ [Y
(LQ)
w (qLQ)] effective vertices

(
λS1LQ̄

C
L iτ2LL + λS1Rq

C
R lR

)
S†1 [−1

3 (−1
3)]

λ
(q′l′)
S1R

(
λ
(ql)
S1R

)∗
2M2

S1

(q̄Rγµq
′
R)
(
l̄Rγ

µl′R
)

λ
(q′l′)
S1L

(
λ
(ql)
S1L

)∗
2M2

S1

(q̄Lγµq
′
L)
(
l̄Lγ

µl′L
)

−
λ
(q′l′)
S1R

(
λ
(ql)
S1L

)∗
2M2

S1

(q̄Lq
′
R)
(
l̄Ll
′
R

)
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−
λ
(q′l′)
S1L

(
λ
(ql)
S1R

)∗
2M2

S1

(q̄Rq
′
L)
(
l̄Rl
′
L

)
λ
(q′l′)
S1R

(
λ
(ql)
S1L

)∗
8M2

S1

(q̄σµνq
′)
(
l̄Lσ

µν l′R
)

λ
(q′l′)
S1L

(
λ
(ql)
S1R

)∗
8M2

S1

(q̄σµνq
′)
(
l̄Rσ

µν l′L
)

(
λS2Lq̄RLL + λS2RQ̄Liτ2lR

)
S†2 [−7

6 (−2
3 ,−5

3)] −
λ
(ql′)
S2R

(
λ
(q′l)
S2R

)∗
2M2

S2

(q̄Lγµq
′
L)
(
l̄Rγ

µl′R
)

−
λ
(ql′)
S2L

(
λ
(q′l)
S2L

)∗
2M2

S2

(q̄Rγµq
′
R)
(
l̄Lγ

µl′L
)

−
λ
(ql′)
S2R

(
λ
(q′l)
S2L

)∗
2M2

S2

(q̄Lq
′
R)
(
l̄Ll
′
R

)
−
λ
(ql′)
S2L

(
λ
(q′l)
S2R

)∗
2M2

S2

(q̄Rq
′
L)
(
l̄Rl
′
L

)
−
λ
(ql′)
S2R

(
λ
(q′l)
S2L

)∗
8M2

S2

(q̄σµνq
′)
(
l̄Lσ

µν l′R
)

−
λ
(ql′)
S2L

(
λ
(q′l)
S2R

)∗
8M2

S2

(q̄σµνq
′)
(
l̄Rσ

µν l′L
)

(
λS3Q̄

C
L iτ2~τLL

)
· ~S3
†

[−1
3 (2

3 ,−1
3 ,−4

3)]
λ
(q′l′)
S3

(
λ
(ql)
S3

)∗
2M2

S3

(q̄Lγµq
′
L)
(
l̄Lγ

µl′L
)

λṼ1 q̄RγµlR

(
Ṽ µ

1

)†
[−5

3 (−5
3)] −

λ
(ql′)
Ṽ1

(
λ
(q′l)
Ṽ1

)∗
M2
Ṽ1

(q̄Rγµq
′
R)
(
l̄Rγ

µl′R
)

λV2Q̄
C
LγµlR (V µ

2 )
†

[−5
6 (−1

3 ,−4
3)]

λ
(q′l′)
V2

(
λ
(ql)
V2

)∗
M2
V2

(q̄Lγµq
′
L)
(
l̄Rγ

µl′R
)

λṼ2 q̄
C
RγµLL

(
Ṽ µ

2

)†
[1
6 (2

3 ,−1
3)]

λ
(q′l′)
Ṽ2

(
λ
(ql)

Ṽ2

)∗
M2
Ṽ2

(q̄Rγµq
′
R)
(
l̄Lγ

µl′L
)

λV3Q̄Lγµ~τLL ·
(
~V3
µ
)†

[−2
3 (1

3 ,−2
3 ,−5

3)] −
2λ

(ql′)
V3

(
λ
(q′l)
V3

)∗
M2
V3

(q̄Lγµq
′
L)
(
l̄Lγ

µl′L
)
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Table 4.2.: Part of the Lagrangian defining the LQ interactions with the SM fermions.
Here qR, q′R ∈ {uR, cR}, lR, l′R ∈ {eR, µR} and Q, L are SU(2)L doublets, see
table 2.1 for the SM fermion charges. In case of a single coupling λ we do not
write the lepton chirality. The weak hypercharge is defined as Yw = (q− T3),
where T3 is the third component of the weak isospin.

Additional couplings and effective vertices, involving neutrinos and down-type quarks,
are given in [213]. The effective vertices of table 4.2 agree with and extend the ones
obtained in [213–216] but differ from the ones given in [128] by a relative sign for the
tensor vertices, and by a factor 1/2 from the vector vertices of [129].
Note that Ṽ2 only couples up-type quarks and charged leptons. Down-type quark bilin-

ears obey a different structure and do not induce, e.g., pseudoscalar nor (pseudo-)tensor
effective vertices. However, the entire set of effective vertices can be generated via weakly
mixing states of equal quantum numbers in the broken EW phase due to LQ-Higgs cou-
plings [217]. These can further induce mass splitting, neutrinoless double beta decay
[218], a Majorana mass matrix [219] and stabilize the EW vacuum [220].
Spontaneous breaking of the EW symmetry induces unitary matrices which modify

the couplings to quark and lepton doublets. Thus, quark and charged lepton flavors mix.
Note that a mixing of neutrino flavors is irrelevant since they are summed in decay rates,
and due to the unitarity. We neglect mixing effects for simplicity, yet they provide the
link for a full flavor analysis.
Baryon number and lepton number are each conserved in the interactions as we neglect

possible diquark couplings so that the proton is stable at tree level. Note that for S3 a
possible quark bilinear coupling is absent due to its antisymmetry in flavor space [221].
Furthermore, one can employ unitary transformations to suppress the LO vector LQ
contributions to proton decay [222] (and references therein). However, mixed trilinear
renormalized operators [223] can induce proton decay [221]. Proton decay inducing non-
renormalizable dimension five operators in an SU(2)L singlet scalar LQ model are absent
if an additional Z3 gauge symmetry is assumed [216].
We add that LQ couplings to SM gauge bosons are given in [224, 225], and for anoma-

lous couplings in [226]. A UV complete LQ model should not induce anomalies, see e.g.
[227, 228].
The LQ masses are constrained by oblique parameters [215], yielding a small range for

mass differences in an SU(2)L multiplet. We take LQ masses to be degenerate. Collider
experiments obtain MS & 1.730 TeV and MS & 1.165 TeV at 95% CL for couplings to
electrons and muons, respectively, assuming the branching ratio into a charged lepton
and a quark is 100% [229, 230] (and [231]). These bounds are relaxed for smaller branch-
ing ratios, i.e. taking into account other final states, and are obtained via direct pair
production which depends on the mass only. On the other hand, direct single production
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of scalar LQs depends on the mass and the couplings. The relative number of direct
single to pair produced scalar LQs is large/small for small/large couplings and masses
[232]. Measurements for vector LQs rely on assumptions of the anomalous LQ-gluon
couplings [233]. As a reference LQ mass we take M = 1 TeV. Furthermore, we consider
perturbative LQ couplings, λ . 1. Note that the total widths ΓS = 1/(16π)λ2

SmS and
ΓV = 1/(24π)λ2

VmV [198] provide complementary information on masses and couplings,
once the total widths are measured.

The tree level LQ induced Wilson coefficients read

δLQC9,10 =

√
2π

GFαe
k9,10

λIi
(
λJi
)∗

M2
,

δLQC
′
9,10 =

√
2π

GFαe
k′9,10

λIj

(
λJj

)∗
M2

,

δLQCS = δLQCP =

√
2π

GFαe
kS,P

λIR
(
λJL
)∗

M2
,

δLQC
′
S = −δLQC ′P =

√
2π

GFαe
k′S,P

λIL
(
λJR
)∗

M2
,

δLQCT =

√
2π

GFαe
kT

λIi
(
λJj

)∗
M2

+
λIj
(
λJi
)∗

M2

 ,

δLQCT5 =

√
2π

GFαe
kT5

λIi
(
λJj

)∗
M2

−
λIj
(
λJi
)∗

M2

 , (4.18)

where the coefficients k(′) are given in table 4.3.

The Wilson coefficients C(′)
7 are generically induced at loop level. We calculate the

corresponding contributions from LQs in RG-improved perturbation theory. Within LQ
models δLQC

(′)
1−8(MLQ) = 0 due to light leptons in the loop, however, Wilson coefficients

C
(l)
V (MLQ), and, schematically, C(l)

S (MLQ) = λRλL/M
2
S are induced at tree level. Here

the scalar and vector operators are O(l)
V = (ūLγµlL)(lLγ

µcL) and O(l)
S = (ūLlR)(lLcR) re-

spectively, with C(l)
i O

(l)
i ⊂ L as well as analogue contributions from chirality-flipped oper-

ators. At one loop QCD C
(l)
V (µc) = C

(l)
V (MLQ) and C(l)

S (µ) = (
αs(MLQ)
αs(µ) )8/(2β0)C

(l)
S (MLQ),

where threshold effects from β0 = 11 − 2
3nf arise. At the scale µ = mτ the τ lepton is

integrated out. Since numerically mτ '
√

2mc ∼ µc we include its one loop contribution
in the matrix element 〈Q(l)

V,S〉, see figure 4.2.
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LQ I , J i , j k9 k10 k′9 k′10 kS,P k′S,P kT kT5

S1 (cl) , (ul) L ,R 1/4 −1/4 1/4 1/4 −1/4 −1/4 −1/8 −1/8

S2 (ul) , (cl) R ,L −1/4 −1/4 −1/4 1/4 −1/4 −1/4 −1/8 −1/8

S3 (cl) , (ul) L , – 1/4 −1/4 0 0 0 0 0 0

Ṽ1 (ul) , (cl) – , R 0 0 −1/2 −1/2 0 0 0 0

V2 (cl) , (ul) R , – 1/2 1/2 0 0 0 0 0 0

Ṽ2 (cl) , (ul) – , L 0 0 1/2 −1/2 0 0 0 0

V3 (ul) , (cl) L , – −1 1 0 0 0 0 0 0

Table 4.3.: Coefficients for eq. (4.18).

c u

l l

γ

O(l)

Figure 4.2.: One loop diagram inducing c→ uγ transitions within LQ models. The box
denotes an operator insertion, see text.



4.2. Models extending the standard model 79

The coefficients from 〈O(l)(′)
V 〉 are found to be zero to all orders in αs. The contributions

from 〈O(l)(′)
S 〉 are non-zero,

δSA
(′)
7 (µc) =

1

2
√

2GF

−qlml

2mc

(
1 + ln

µ2
c

m2
l

)
×
(
αs(MS)

αs(µt)

)12/21(αs(µt)
αs(µb)

)12/23(αs(µb)
αs(µc)

)12/25 ν(′)

M2
S

, (4.19)

where ql is the charge of the lepton, and the LQ couplings ν(′) are given in table 4.4. Nu-
merically, one obtains |δS1,2A

(′)
7 (µc)| ' 0.01|λRλ∗L| (TeVMS

)2 for l = τ . Note that δLQA
(′)
8 (µc)

are additionally αe suppressed.
The matrix elements 〈O(l)(′)

V 〉 are non-zero at two loop, where the corresponding dia-
grams can be read off from figure 2.5 with the gluons replaced by a photons. As it turns
out, we can adopt the calculation of section 2.6.1 with modifications of the perturbative
coupling. Therefore, only diagrams with a photon exchange between the external up-type
quark lines and internal LQs contribute, yielding an overall factor 2

3ql
3
4 , where the last

factor compensates the SU(3)C group invariant CF . We find for l = τ

|δVA(′)
7 (µc)| ' (0.00004, 0.00006, 0.00009) |κ(′)|

(
1 TeV

MV

)2

, (4.20)

where (Ṽ1, {V2, Ṽ2}, V3) is distinguished due to different lepton charges. For V3 an ad-
ditional factor 2 from the completeness relation for Pauli matrices emerges. These two
loop contributions are newly obtained with respect to [3], and allow to estimate effects
from V2,3 which vanish otherwise. The couplings κ(′) are given in table 4.4. The induced
coefficients from vector LQs are small due to the loop suppression ∼ αe/(4π).
Nevertheless, coefficients for scalar LQs with equal chirality couplings fall short. Thus,

we employ the fixed order one loop calculation [234] to obtain the matrix elements in the
full SM plus (gauge vector) LQ theory. The coefficients are

δ〈S〉A
(′)
7 = − 1

2
√

2GF

κ(′)

M2
S

(
qlk1 + qS k̄1

)
,

δ〈V 〉A
(′)
7 = − 1

2
√

2GF

κ(′)

M2
S

(qly1 + qV ȳ1) , (4.21)

where

k1 =
1

12
, k̄1 =

1

24
, y1 =

−1

3
, ȳ1 = 1 , (4.22)

and the couplings are given in table 4.4. Here light fermion masses are neglected to avoid
spurious large logarithms, which are resummed in the RG-improved perturbation theory.
Indeed, the logarithm in the fixed order calculation is resummed by eq. (4.19) [3].
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LQ κ κ′ ν ν ′

S1 λ
(cl)
R (λ

(ul)
R )∗ λ

(cl)
L (λ

(ul)
L )∗ λ

(cl)
L (λ

(ul)
R )∗ λ

(cl)
R (λ

(ul)
L )∗

S2 (λ
(cl)
R )∗λ

(ul)
R (λ

(cl)
L )∗λ

(ul)
L (λ

(cl)
L )∗λ

(ul)
R (λ

(cl)
R )∗λ

(ul)
L

S3 – λ(cl)(λ(ul))∗ – –

Ṽ1 (λ(cl))∗λ(ul) – – –

V2 λ(cl)(λ(ul))∗ – – –

Ṽ2 – λ(cl)(λ(ul))∗ – –

V3 – (λ(cl))∗λ(ul) – –

Table 4.4.: Couplings for eqs. (4.19), (4.20) and (4.21).

The numerical coefficients are given in table 4.5. Note that different contributions
cancel for V2,3, thus no A

(′)
7 are induced in these models from the fixed order calculation.

In the subsequent analysis we combine both approaches, as otherwise we would miss
important contributions in each of them.

In appendix G we work out constraints on LQ couplings from various observables
relevant for charm FCNC transitions. The constraints are calculated at fixed order
for simplicity, hence RGE effects for the lepton Wilson coefficients given by eq. (4.18)
are neglected. Assuming perturbativity of the couplings and gauge vector LQs, the
constraints due to the experimental data, see appendix A, are collected in appendix G.1,
updating and extending the tables given in [1].

To summarize, LQ constraints are basically compatible with all considered observ-
ables. In general, products of couplings are constrained ∼ O(10−3 − 10−1), thus no
definite conclusion on a single coupling can be drawn. Only bounds from kaon decays,
electric moments, semileptonic and LFV decays are stronger. Whereas the former, in
particular K+ → π+ν̄ν decays, constrain products of quark doublets with equal chiral-
ity couplings, i.e. S1L, S2R,S3, and V2,3, the other ones constrain products of couplings
with different chiralities in S1,2 models. Note that the products of couplings relevant for
charm FCNC transitions are directly bounded only by rare charm decays, yielding similar
constraints, see section 4.1. To further accommodate constraints from other decays and
study correlations between observables we employ flavor patterns in the next section.
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LQ δ〈LQ〉A7 δ〈LQ〉A
′
7

S1 −0.003λ
(cl)
R (λ

(ul)
R )∗ −0.003λ

(cl)
L (λ

(ul)
L )∗

S2 0.005 (λ
(cl)
R )∗λ

(ul)
R 0.006 (λ

(cl)
L )∗λ

(ul)
L

S3 0 −0.002λ(cl)(λ(ul))∗

Ṽ1 0.04 (λ(cl))∗λ(ul) 0

V2 0 0

Ṽ2 0 −0.02λ(cl)(λ(ul))∗

V3 0 0

Table 4.5.: The LQ induced coefficients from the fixed order calculation for M =
1 TeV. For M → 10 TeV the effective coupling λ(cl)λ(ul)/(M = 1 TeV)2 →
0.9λ(cl)λ(ul)/(M = 10 TeV)2.

LQ (ee) (eµ), (µe) (µµ)

S1L . 4× 10−3 . 4× 10−3 . 4× 10−3

S2R, V2 . 3× 10−2 . 2× 10−4 . 4× 10−3

S3 . 4× 10−3 . 1× 10−4 . 2× 10−3

V3 . 4× 10−3 . 2× 10−4 . 4× 10−3

Table 4.6.: Limits on LQ induced c→ ul(′)l Wilson coefficients |C(′)
9,10| and |K

(′)
9,10| due to

kaon decays. Here M = 1 TeV.

4.3. Probes with rare semileptonic D decays

The strongest limits on tree level induced Wilson coefficients are listed in tables 4.6
and 4.7. Additionally, from the electric dipole moments one finds Im[C

(e)
S,P,T,T5] .

4× 10−9 and Im[C
(µ)
S,P,T,T5] . 4× 10−6.

As already mentioned we employ flavor patterns to enhance the predictivity. We define
the following classes of LQ couplings, inspired by [235], that is Frogatt-Nielsen U(1) [236]
and A4 symmetries [237], for quarks (rows) and leptons (columns), respectively: (i) a
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LQ (ee)(µµ), (eµ)(µe)

S1 . 2× 10−7

S2 . 8× 10−8

S3, Ṽ1, V2, Ṽ2, V3 . 6× 10−8

S1|LR, S2|LR . 2× 10−10

Table 4.7.: Limits on the products of two c→ ul(′)l Wilson coefficients |C(e)(′)
i C

(µ)(′)
i | and

|K(eµ)(′)
i K

(µe)(′)
i | due to µ−e conversion and µ→ eγ decays. HereM = 1 TeV.

The label LR denotes products of couplings with different chiralities, i.e. for
(pseudo-)scalar and (pseudo-)tensor Wilson coefficients.

hierarchical flavor pattern, (ii) a single flavor lepton pattern, where couplings to electron
are negligible, and (iii) a skewed pattern, where λ(uµ) and λ(ce) are negligible, that is

λi ∼

 ρdκ ρd ρd
ρκ ρ ρ
κ 1 1

 , λii ∼

 0 ∗ 0
0 ∗ 0
0 ∗ 0

 , λiii ∼

 ∗ 0 0
0 ∗ 0
0 ∗ 0

 . (4.23)

The binary textures involving “*” reflect a discrete non-abelian symmetry, i.e. A4. The
patterns (i) and (ii) have been obtained for quarks coupling to lepton doublets by means
of the A4 symmetry [1]. Further justification for the (sub-)patterns employed here is
given in [213].
For the patterns (ii) and (iii) we further distinguish subclasses: (1) represents S1,2,

and Ṽ1,2 and a second subclass (2) with S3, and V2,3 is not affected by bounds from kaon
decays. For pattern (i) we exemplary study κ ∼ 1, for which table 4.7 implies that all
Wilson coefficients are similar. If κ is small, the pattern (i) effectively reduces to pattern
(ii).
The electron Wilson coefficients are zero for patterns (ii) and (iii). The muon Wilson

coefficients in class (ii.1) are constrained by D+ → π+µ+µ− and D0 → µ+µ− decays and
the constraints for class (ii.2) are given in table 4.6. For pattern (iii) the muon Wilson
coefficients are zero in any case.
The LFV Wilson coefficients are zero for the pattern (ii). For the pattern (iii) either,

for qLQ = −1/3, B(D0 → µ−e+) and B(D̄0 → µ+e−) vanish or, for qLQ = 5/3, B(D0 →
µ+e−) and B(D̄0 → µ−e+) vanish as well as analogously for D+ → π+e±µ∓ decays. In
class (iii.1) the LFV Wilson coefficients are constrained by D+ → π+e±µ∓ and D0 →
e±µ∓ decays giving . O(10) and the constraints for class (iii.2) are given in table 4.6.
Exemplary, the decay distribution for D+ → π+µ+µ− at high q2 including LQs of the

class (ii.2) is shown in figure 4.3. In agreement with the model-independent observations
the LQ induced branching ratio at high q2 can be larger than the SM predictions and
close the experimental limit.
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Figure 4.3.: Branching ratio of D+ → π+µ+µ− at high q2. The orange band shows the
resonant modes and the dashed purple line represents the 90% CL exper-
imental upper limit [136]. The solid blue curve and lighter band are the
perturbative SM prediction at µc = mc and its µc uncertainty, respectively.
Additionally, the dotted cyan curve is for LQ models of the class (ii.2), see
text.
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BD+→π+µ+µ− BD0→µ+µ− BD+→π+eµ BD0→eµ BD+→π+νν̄

(i) SM-like SM-like . 2× 10−13 . 7× 10−15 . 3× 10−13

(ii.1) . 7/2× 10−8 . 3× 10−9 0 0 . 8× 10−8

(ii.2) SM-like . 4× 10−13 0 0 . 4× 10−12

(iii.1) SM-like SM-like . 2× 10−6 . 1× 10−8 . 2× 10−6

(iii.2) SM-like SM-like . 8× 10−15 . 2× 10−16 . 9× 10−15

exp. < 7.3/2.6× 10−8 < 6.2× 10−6 . 3× 10−6 < 1.3× 10−8 –

Table 4.8.: Integrated branching ratios on the full/high q2 range for different cases of
LQ couplings. The experimental limits at 90% CL are taken from [21, 136],
where B(D0 → eµ) = B(D0 → (e+µ− + e−µ+)), and from [25] for B(D+ →
π+e+µ−) < 2.9× 10−6, and B(D+ → π+e−µ+) < 3.6× 10−6, see text for the
LFV decays in LQ models.

The integrated branching ratios for rare semileptonic D decays are provided in ta-
ble 4.8. We observe that different classes give distinguishable predictions. The pattern
(i) allows for limited effects. For each mode the induced branching ratios can be above the
SM predictions and, apart from B(D0 → µ+µ−), close to the experimental limits. Only
BD+→π+e+e− and BD0→e+e− are SM-like in any case. Note that these results are opti-
mistic in contrast to the statement of [193]. The dineutrino mode can be induced via S2,3,
Ṽ2, and V3. Therefore, we sum the lepton flavors and remind the experimental cut due
to resonant D → τ(→ πν)ν decays, see section 3.4. Recall that BD0→µ+µ− ∼ O(10−13)
in the SM. Note that one may distinguish between different LQ models by the q2-shape
of the observables which are different for the various induced Wilson coefficients, see
appendix C and table 4.3. Furthermore, note that the lepton charge asymmetry for
D → Pe±µ∓ and D0 → e±µ∓ may be non-zero due to different couplings but also due
to different signs in the distributions, see eqs. (C.63) and (C.69), respectively.

We have already identified the resonance catalyzed CP asymmetry as an approximate
SM null test in section 3.2.3. The D+ → π+µ+µ− CP asymmetry for the pattern
(ii) is shown in figure 4.4. We observe that the CP asymmetry can be sizable for large
imaginary Wilson coefficients. Nevertheless, also small Wilson coefficients, as in the class
(ii.2), which comes with an interface to b physics, can be probed if sizable phases are
present. In particular, a non-vanishing CP asymmetry can arise around the φ resonance,
independent of strong phases. For the pattern (i) the CP asymmetry is . 0.003 on the
φ resonance, and . 0.03 at high q2.
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Figure 4.4.: Direct CP asymmetry for D+ → π+µ+µ− normalized to the decay rate that
is integrated over [q2

min = (mφ − 5Γφ)2, q2
max = (mφ + 5Γφ)2] (left plots)

and [q2
min = 1.252 GeV2, q2

max = (mD+ −mπ+)2] (right plots) for the classes
(ii.1) (upper plots) and (ii.2) (lower plots), see text. From yellow (upper
curves above φ) to red (lower curves above φ) each bunch represents δφ =
π/2, π, 0, 3/2π, where a further splitting follows from δρ ∈ {0, π/2, π, 3π/2}.
The vertical lines in the left plots indicate (mφ ± Γφ)2.
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Finally, also decays involving τ leptons at tree level can be probed via D0 → τ±e∓

decays. From eq. (C.69) one obtains the branching ratio as

BD0→τ±e∓ ' 5× 10−9
(
|1.3(K

(τe/eτ)
S −K ′(τe/eτ)

S )∓ (K
(τe/eτ)
9 −K ′(τe/eτ)

9 )|2

+ |1.3(K
(τe/eτ)
P −K ′(τe/eτ)

P ) +K
(τe/eτ)
10 −K ′(τe/eτ)

10 |2
)
. (4.24)

The strongest constraints emerge from SU(2)L relations, yielding |K(τe,eτ)
9,10 | . 4× 10−3

(B(K+ → π+ν̄ν)), |K ′(τe,eτ)
9,10 | . 0.2 (B(τ → eK)) and |K(′)(τe,eτ)

S,P | . 7× 10−3 (B(K+ →
ēν)), which are obtained from [238]. Thus, the pattern (i) gives B(D0 → τ±e∓) .
7× 10−15, which is zero for the patterns (ii) and (iii). No experimental data is currently
available.
A pattern to bypass the constraints the SU(2)L relations and to obtain sizable branch-

ing ratios is, inspired by [235],

λiv ∼

 0 0 ∗
∗ 0 0
∗ 0 0

 . (4.25)

This pattern yields SM-like c → ul+l− induced decays, where l ∈ {e, µ}, and vanishing
c→ ue±µ∓ induced modes, whereas c→ uνν̄ induced branching ratios can be sizable.

4.4. Probes with rare radiative D decays

Firstly, we extend the analysis of the previous section by considering D → V γ decays
in LQ models, thus probing the magnetic operators. In a further step we also obtain
predictions in SUSY models. Presently it is not clear if the experimental data on the
branching ratio of D0 → ρ0γ exhibit a discrepancy with the SM due to uncertainties
of non-perturbative contributions. In view of future data we give predictions for the
branching ratios. Possible signals from BSM physics can be cleaner revealed in CP
asymmetries, where the SM contribution is negligible at the current state of precision.
In contrast to the tree level induced operators discussed in the previous sections ra-

diative decays are only induced at loop level. In particular, the τ lepton directly con-
tributes. From the constraints listed in appendix G and the coefficients found in sec-
tion 4.2.1 one obtains for e, µ leptons |δ〈Ṽ1〉A7|e,µ . 0.002, |δ〈Ṽ2〉A

′
7|e,µ . 0.002, and

|δ〈S1,2,3〉A
(′)
7 |e,µ . O(10−5). Effects from V2,3 are negligible in any case. The constraints

for τ leptons are generically softer, e.g. assuming smaller couplings to electrons and
muons, we obtain |δS1,2 |τ . O(0.001), |δ〈Ṽ1〉A7|τ . 0.04 and |δ〈Ṽ2〉A

′
7|τ . 0.02. Here we

further assumed phases to evade the constraints from D0 − D̄0 mass difference, which
would otherwise yield |δ〈S1L,S2L,S2R〉A

(′)
7 |τ . O(10−4). Only for S1L and S3 bounds on

the τ couplings are stronger, yielding |δ〈S1L,S3〉A
′
7|τ . O(10−6). The impact from four
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quark operators, as given by eq. (4.17), is negligible in the RG-improved perturbation
theory due to double insertions of the operator O(l), see section 4.2.1.

We conclude that in LQ models the c→ uγ induced branching ratios and the photon
polarization are SM-like. However, S1,2, and Ṽ2 may induce CP asymmetries ∼ O(0.01)
which are SM-like for S3, and V1,2. The largest CP asymmetries ∼ O(0.1) are possible
for Ṽ1.

A characteristic of LQ models is that magnetic operators are induced via a heavy and
a light particle, i.e. the LQ and a SM lepton, in the loop. In particular, a helicity flip
requires a mass insertion of participating particles, i.e. the lepton mass. Another class
of BSM models constitute two heavy particles in the loop, hence a mass suppression is
generically avoided. As an example we study SUSY models within the mass insertion
approximation (MIA) [239]. In particular, we only consider leading gluino contribution,
but note that charginos and neutralinos are negligible in, e.g., the minimal SUSY SM
[240].

The induced Wilson coefficients at the BSM scale can be obtained from [239] as

δMIAC
(′)
3 (M) = − 1

8
√

2GF

α2
s

m2
q̃

(δu12)LL(RR)

(
B1 −

1

2
B2 −

1

9
P1 − P2

)
,

δMIAC
(′)
4 (M) = − 1

8
√

2GF

α2
s

m2
q̃

(δu12)LL(RR)

(
−5

3
B1 +

5

6
B2 +

5

27
P1 +

5

3
P2

)
,

δMIAC
(′)
5 (M) = − 1

8
√

2GF

α2
s

m2
q̃

(δu12)LL(RR)

(
8

3
B1 −

26

3
B2 −

10

9
P1 − 10P2

)
,

δMIAC
(′)
6 (M) = − 1

8
√

2GF

α2
s

m2
q̃

(δu12)LL(RR)

(
−184

9
B1 +

58

9
B2 +

50

27
P1 +

50

3
P2

)
,

δMIAC
(′)
7 (M) = − 2

3
√

2GF

αsπ

m2
q̃

(
(δu12)LL(RR)

8

3
M3 + (δu12)LR(RL)

mg̃

mc

8

3
M1

)
,

δMIAC
(′)
8 (M) = − 1√

2GF

αsπ

m2
q̃

(
(δu12)LL(RR)

(
−1

3
M3 − 3M4

)
+ (δu12)LR(RL)

mg̃

mc

(
−1

3
M1 − 3M2

))
, (4.26)
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where

B1 =
1 + 4x− 5x2 + 4x lnx+ 2x2 lnx

8(1− x)4
, B1(x = 1) =

1

48
,

B2 = x
5− 4x− x2 + 2 lnx+ 4x lnx

2(1− x)4
, B2(x = 1) = − 1

12
,

P1 =
1− 6x+ 18x2 − 10x3 − 3x4 + 12x3 lnx

18(x− 1)5
, P1(x = 1) = − 1

30
,

P2 =
7− 18x+ 9x2 + 2x3 + 3 lnx− 9x2 lnx

9(x− 1)5
, P2(x = 1) =

1

30
,

M1 = 4B1 ,

M2 = −xB2 ,

M3 =
−1 + 9x+ 9x2 − 17x3 + 18x2 lnx+ 6x3 lnx

12(x− 1)5
, M3(x = 1) =

1

40
,

M4 =
−1− 9x+ 9x2 + x3 − 6x lnx− 6x2 lnx

6(x− 1)5
, M4(x = 1) =

1

60
. (4.27)

Here mq̃ is the average squark mass, where the individual masses are assumed to be
approximately degenerate, and mg̃ is the gluino mass. Furthermore, x = m2

g̃/m
2
q̃ and

M ∼ mg̃,q̃.
The mass insertions δu12 are constrained by data on the D0 − D̄0 mass difference, see

appendix A. We consider the two cases (m
(i)
g̃ = 1 TeV, m

(i)
q̃ = 2 TeV) and (m

(ii)
g̃ =

2 TeV, m
(ii)
q̃ = 1 TeV) to obtain via [239]√∣∣∣Re(δ

u(i)
12 )2

LL,RR

∣∣∣ . 0.05 ,

√∣∣∣Re(δ
u(i)
12 )2

LR,RL

∣∣∣ . 0.07 ,√∣∣∣Re
[
(δ
u(i)
12 )LL(δ

u(i)
12 )RR

]∣∣∣ . 0.02 , (4.28)√∣∣∣Re(δ
u(ii)
12 )2

LL,RR

∣∣∣ . 0.2 ,

√∣∣∣Re(δ
u(ii)
12 )2

LR,RL

∣∣∣ . 0.02 ,√∣∣∣Re
[
(δ
u(ii)
12 )LL(δ

u(ii)
12 )RR

]∣∣∣ . 0.02 . (4.29)

These constraints yield |δ(i),(ii)
MIA C

(′)
3−6(M)| . 10−5, negligible. On the oder hand, as

δMIAC
(′)
7,8(M) ∼ (δu12)LR,RL

mg̃
mc

one finds |δ(i)
MIAA

(′)
7 | . 0.2 and |δ(ii)

MIAA
(′)
7 | . 0.3. We add

that |δMIAA
(′)
7 /δMIAA

(′)
8 | ∈ [0.75, 5.46], where the lower and upper limits are for x & 10

and x . 0.01, respectively.

Moreover, [241] found
√∣∣∣Im(δ

u(ii)
12 )2

LR,RL

∣∣∣ . 0.0025 at 95% CL for mq̃ = mg̃ = 1 TeV.

This limit is based on the parameters |q/p| ∈ [0.981, 1.058] and φ[◦] ∈ [−1.8, 0.6] at 95%
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CL [242], which are presently relaxed as |q/p| ∈ [0.77, 1.12] and φ(◦) ∈ [−30.2, 10.6]
at 95% CL [97]. Furthermore, constraints from ε′/ε and chargino loops are model-
dependent, e.g. [243], yet not stronger than corresponding bounds from D0− D̄0 mixing.
Thus, the constraints found for δMIAA

(′)
7 are similar to the model-independent bounds

of section 4.1, and the limits on δA(′)
8 are satisfied. We conclude that generic SUSY models

may show up in c→ uγ induced branching ratios and CP asymmetries, being above the
SM predictions and close to the experimental limits. Moreover, a photon polarization
Pγ ∈ [−1, 1] may be induced. Indeed, in a specific SUSY model the experimental data
on B(D0 → ρ0γ) may already constrain parameters. Furthermore, keep in mind that
additional constraints may have to be taken into account, e.g. for the minimal SUSY SM
with SUSY breaking [240].

4.5. Probes with Λc → pγ

In this section we discuss possibilities to discover BSM physics in Λc → pγ decays. A
calculation of the SM contribution may be done elsewhere, but it is most likely dominated
by non-perturbative physics. Nevertheless, we estimate the branching ratio on general
grounds. The expressions for the branching ratio of the decay Λc → pγ is the same as
for D0 → ρ0γ decays, see e.g. [244] and eq. (3.39). Thus, we write

BΛc→pγ = r(Λc → pγ/D0 → ρ0γ)B(D0 → ρ0γ) ∼ O(10−5) , (4.30)

where B(D0 → ρ0γ) is given by experimental data. Here infer the ratio of the two
modes for common decay mechanisms as follows: WA gives r(Λc → pγ/D0 → ρ0γ) ∼

√
2

due to color counting, which is even larger for radiative D decays, see section 3.3.1.
Considering the amplitude AIII,Λc→pγ [245] suggests r(Λc → pγ/D0 → ρ0γ) ∼ 1 for
resonant decays. Finally, perturbative contributions, including BSM dynamics, yield
r(Λc → pγ/D0 → ρ0γ) '

√
2f⊥/T ∼ 1. Here, the form factor f⊥ = fT⊥(0) = fT5

⊥ (0) is
defined as in [246], and it is calculated within QCD LCSR [186] [187], a covariant confined
quark model [247] and a relativistic quark model [188]. The estimate given by eq. (4.30)
is in agreement with B(Λc → pγ) = 2.2× 10−5 found in the constituent quark model
[248]. We only utilize the branching ratio to infer experimental sensitivities. Ultimately,
the branching ratio has to be measured, e.g. at the forthcoming Belle II, where the cross
section σ(e+e− → c̄c) ' 1.3 nb and a luminosity L ' 5 ab−1 within one year [249] indicate
a number of N = [104, 105] decays.
For the remainder of the current section we focus on an observable which, not accessible

in rare D decays, is induced by the spin of the decaying charmed particle, i.e. the Λc
baryon, once the particle is produced polarized. Following [244], an angular asymmetry
can be defined in the Λc rest frame by the angle between the Λc spin and the proton
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momentum, that is the forward-backward asymmetry of the photon momentum relative
to the Λc boost, normalized to the total width by

Aγ = −PΛc

2

1− |r|2
1 + |r|2 , (4.31)

where r = A′7/A7.
Here the longitudinal polarization of the Λc, PΛc , is presently not measured. Nonethe-

less, it can be parametrized in terms of the polarization of the charm quark, Pc, as [250–
252]

PΛc

Pc
' 1 +A(0.07 + 0.46ω1)

1 +A
, (4.32)

where A ' 1.1 is extrapolated [251] from a measurement by the E791 collaboration [253],
and ω1 = 0.71± 0.13 is measured by the CLEO collaboration [254], yielding PΛc/Pc '
0.68± 0.03. Furthermore, the parameters A and ω1 are measurable at Atlas, BaBar,
Belle, CMS and LHCb [251]. Note that PΛc/Pc is approximately scale independent and
it can be related to fragmentation functions [251] (and references therein). At the Z
pole, where P (Z)

c ' −0.65 [255], one obtains

P
(Z)
Λc
' −0.44± 0.02 . (4.33)

Note that P < 0 by means of a left-handed polarization. In Z decays (0.0305± 0.0045)
cc̄ are produced via gluon splitting [21], hence this depolarization effect is negligible.
In principle, one can also include a depolarization due to Λ

(′)
c1 decaying strongly into Λc,

which induces additional parametersB and ω̃1, [256, 257]. However, no experimental data
are available, thus we neglect its contribution. The Λc polarization is directly measurable,
e.g. via Λc → Λ(→ pπ)lν decays, where B(Λc → Λ(→ pπ)eνe) = 0.023 [21] and, in
particular, at Atlas, CMS, and LHCb via pp → t(→ bW+(→ cs̄))t̄(→ b̄W−(→ l−ν̄))

[251] and pp → W−c [252] production with P (W−)
c ' −0.97 [255]. Note that eq. (4.33)

indicates a sizable, non-zero, polarization that, ultimately, needs to be measured.
The observable Aγ can be extracted in the laboratory frame for a boost ~β = ~pΛc/EΛc ,

where ~p and E denote is the three momentum and energy, respectively, by

〈q‖〉|~β| = γE∗γ

(∣∣∣~β∣∣∣+
2

3
Aγ
)
. (4.34)

Here 〈q‖〉|~β| is the average longitudinal momentum of the photon in the laboratory frame

relative to the boost axis, γ = 1/

√
1− |~β|2, and E∗γ = (m2

Λc
−m2

p)/(2mΛc) ' 0.95 GeV
is the photon energy in the Λc rest frame. The statistical uncertainty is given by
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Figure 4.5.: Angular asymmetry of Λc → pγ as a function of r = A′7/A7 taking PΛc =
−0.44. It approaches PΛc/2 as r → ∞. The bands represent the statistical
uncertainties for 103 (orange curved band) and 105 decays (purple curved
band). Within the SM and LQ models Aγ(r . 0.2), which are represented
by the lighter horizontal bands and the dashed vertical line. For SUSY
models Aγ(|r| . O(1)) covers the shown range.

δAγ =
√

1− (Aγ)2/
√
N for N decays of Λc → pγ. To estimate the latter we neglect

reconstruction efficiencies to find

N = N(cc̄) f(c→ Λc)BΛc→pγ ∼ N(cc̄)× 10−6 , (4.35)

where f(c → Λc) ' 0.06 [258] is the fragmentation function, which is insensitive to the
production process, and N(cc̄) denotes the number of produced cc̄. At a future e+e−

collider operating at the Z pole, i.e. an FCC-ee with N(Z) ∼ 1012 within one year [259]
and B(Z → cc̄) ' 0.12 [21]. Thus, it would allow for sizable statistics to measure the
branching ratio of Λc → pγ, the polarization PΛc as well as the angular asymmetry Aγ .
The above considerations suggest to measure Aγ , hence testing the handedness of

the c → uγ current and models beyond the SM. The angular asymmetry is shown in
figure 4.5, where PΛc = −0.44 is assumed. From the analysis of section 3.3 we infer
r . 0.2 for SM-like scenarios, and A(′)

7 ∼ δC
(′)
7 for large BSM effects. We observe that

Aγ is a complementary observable to search for right-handed currents and to distinguish
between different models. In particular, Aγ > 0 in the SM. On the other side, SUSY
models, see section 4.4, may induce significant deviations, including a flip of the sign,
which is observable already for N = 103.
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5. Conclusion and outlook

This thesis comprises a study of FCNC transitions of charm quarks. Chapters 2 and 3 are
dedicated to the calculation of Wilson coefficients in the framework of the effective weak
Lagrangian and predictions for observables within the SM, respectively. The chapters
are summarized in sections 2.9 and 3.4. The main observations are:

• The SM Wilson coefficients are known to (partly) NNLL order, where the missing
pieces of NNLO are negligible in phenomenological applications.

• A longstanding inconsistency in the treatment of light quarks within the effective
theory, which affects the Wilson coefficients to a considerable extent is resolved.

• A novel calculation of two loop matrix elements is presented, which yields the
dominant perturbative contribution in phenomenological applications. However, a
breakdown of the perturbation theory for c→ u transitions cannot be deduced, as
lower order contributions are more strongly GIM suppressed. Nonetheless, sizable
perturbative corrections are indicated.

• Whereas the perturbative calculation is state-of-the-art, the branching ratios for
c → uγ and c → ull induced decays are dominated by non-perturbative effects,
which are presently not known from first principles and accompanied with sizable
uncertainties.

• On the other hand, angular observables and asymmetries that are (approximate)
null tests of the SM, including the non-perturbative uncertainties, can be con-
structed. This observation is characteristic for rare charm decays due to the struc-
ture of the Wilson coefficients and the CKM matrix, e.g. the GIM mechanism.

In view of the BSM potential, see chapter 4, the modes and observables considered are
competitive and complementary to each other as well as b physics, while being sensitive
to different types of BSM physics, see section 4.1. To mention the main issues: Basically
any sizable BSM effect is visible in the decay D+ → π+µ+µ− at high q2. Smaller effects
may be observed in CP asymmetries once sizable BSM phases are present. Presently,
any signal in angular observables, dineutrino and LFV modes can be assigned to BSM
physics. LQ models, see section 4.2.1, are an instructive example where sizable BSM
effects close to the experimental reach are possible. Nonetheless, the different LQ models
can be distinguished by experimental data, see sections 4.3 and 4.4. Further correlations
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with, e.g., kaon and b physics, see section 4.3, may add valuable information to reveal
the source of the present SM anomalies in b decays as well as, ultimately, to identify the
origin of flavor. SUSY models constitute a second example with similar signatures as LQ
models, see section 4.2. Nevertheless, both models are distinguishable in radiative decays,
where SUSY models can induce larger deviations from the SM, see sections 4.4 and 4.5.
To conclude this thesis, we comment on the present status and on future prospects

of rare charm decays, which uniquely probe the up-type sector. The current available
methods and techniques for calculating SM contributions seem to be exhausted. Never-
theless, a few improvements as noted in this thesis are possible. Further ones include,
e.g., the identification of additional observables and lattice calculations. SM predictions
are generically vague due to our deficiency of understanding QCD, where theoretical
ideas are welcome. Nonetheless, striking observations of BSM physics are possible and
assisted by various hadronic and BSM models. Further models, including flavor patterns
on the BSM side, may be studied. Irrespective of the potential for BSM searches, charm
physics are also important probes of QCD. We emphasize that experimental searches
in all modes and observables are desirable, as they allow to improve the theoretical un-
derstanding, to detect different types of BSM physics and, once revealed, to identify its
underlying model. Despite the experimental effort only one charm FCNC induced mode,
i.e. D0 → ρ0γ, was recently observed. Nevertheless, other modes, e.g. D+ → π+µ+µ−,
are planned to be measured and call for imminent detection. It is desirable to include
rare charm decays, e.g. Λc → pγ, in (future) experimental programs. In this respect
theoretical studies on, e.g., D → V ll, D → PPll and Λc → pll decays will support
experimental searches.
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A. Parameters

As a rule at hand, we give parameters within 68% CL in the Bayesian/Frequentist lan-
guage. We neglect uncertainties if their numerical effect is negligible. Their distributions
are taken to be uniform. If uncertainties σi are added, we take them as uncorrelated and
add them in quadrature, i.e. σ =

√∑
σ2
i . Upper limits are given at 90% CL or 95% CL

as stated, which multiplied with 0.60 or 0.51, respectively, yield limits at 68% CL.
The parameters used for the calculation of the SM Wilson coefficients, see chapter 2,

are given by [21]

mt(mt) = (160+5
−4) GeV ,

mZ = 91.19 GeV ,

mW = 80.4 GeV ,

mb(mb) = (4.18+0.04
−0.03) GeV ,

mc(mc) = (1.27± 0.03) GeV ,

ms(2 GeV) = (0.096+0.008
−0.004) GeV ,

αs(mZ) = 0.1182± 0.0012 ,

αe = 7.297 352 57× 10−3 ,

sin2 θw(mZ) = 0.2313 ,

GF = 1.166 379× 10−5 GeV−2 , (A.1)

where m(µ) denotes a MS mass. The NNLO QCD running and decoupling at flavor
thresholds is taken from [260].
The CKM matrix as obtained by the UTfit collaboration [45] via a Bayesian fit reads

Vud = 0.974 31± 0.000 15 ,

Vus = 0.225 12± 0.000 67 ,

Vub = (0.003 65± 0.000 12) exp[i(−65.88± 1.88)◦] ,

Vcd = (−0.224 97± 0.000 67) exp[i(0.0352± 0.0010)◦] ,

Vcs = (0.973 44± 0.000 15) exp[i(−0.001 877± 0.000 055)◦] ,

Vcb = 0.042 55± 0.000 69 . (A.2)

For a Frequentist fit, see the CKMfitter group [261].
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In the calculation of the inclusive branching ratios we use inclusive semileptonic branch-
ing ratios as a normalization, see section 3.1. The inclusive c → d induced branching
ratios for massless leptons are obtained from a sum of the corresponding exclusive modes
[21],

B(D+ → Xdeν) = B(D+ → π0e+ν) + B(D+ → ρ0e+ν) + B(D+ → ωe+ν)

+ B(D+ → ηe+ν) + B(D+ → η′e+ν) = 0.00928+0.00035
−0.00029 ,

B(D0 → Xdeν) = B(D0 → π−e+ν) + B(D0 → ρ−e+ν) = 0.004 68± 0.000 16 ,

B(Ds → Xdeν) = B(Ds → K0e+ν) + B(Ds → K∗0 − e+ν)

= 0.0057± 0.0010 . (A.3)

Due to missing experimental information we take for muons [21]

B(D+ → Xµ+) = 0.176± 0.032 ,

B(D0 → Xµ+) = 0.067± 0.006 , (A.4)

as approximations of the corresponding c → (d, s) induced semileptonic modes. The
approximation B(D → Xµ+νµ) = B(D → Xµ+) is justified as the branching ratios of
the leptonic modes ∼ O(10−4) [21]. Since no corresponding branching ratio for Ds is
measured we assume B(Ds → Xµ+νµ) ' B(Ds → Xe+), where [21]

B(Ds → Xe+) = 0.065± 0.004 . (A.5)

Comparing the measured muonic modes given by eq. (A.4) with B(D+ → Xe+) =
0.1607± 0.0030, and B(D0 → Xe+) = 0.0649± 0.0011 [21] suggests that the approxi-
mation for theDs → Xµ+νµ branching ratio, eq. (A.5), yields a slightly smaller branching
ratio.
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Further used particle masses and total widths, where Γ = ~/τ , are [21]

mΛ+
c

= 2.286 GeV ,

mD∗s = 2.112 GeV ,

mD∗+ = 2.0103 GeV ,

mD∗0 = 2.0069 GeV ,

mDs = 1.968 GeV , τDs = (500± 7)× 10−15 s ,

mD+ = 1.8696 GeV , τD+ = (1040± 7)× 10−15 s ,

mD0 = 1.8648 GeV , τD0 = (410.1± 1.5)× 10−15 s ,

mτ = 1.777 GeV , ττ = (290.3± 0.5)× 10−15 s ,

mφ = 1.0195 GeV , Γφ = (4.2660± 0.0311)× 10−3 GeV ,

mη′ = 0.9578 GeV , Γη′ = (1.97± 0.09)× 10−4 GeV ,

mp = 0.938 272 08 GeV ,

mK∗0 = 0.896 GeV , ΓK∗0 = (0.0474± 0.0006) GeV ,

mK∗+ = 0.892 GeV , ΓK∗+ = (0.0508± 0.0009) GeV ,

mω = 0.783 GeV , Γω = (8.49± 0.08)× 10−3 GeV ,

mρ = 0.775 GeV , Γρ = (0.1491± 0.0008) GeV ,

mη = 0.5479 GeV , Γη = (1.31± 0.05)× 10−6 GeV ,

mK0 = 0.4976 GeV ,

mK+ = 0.4937 GeV , τK+ = (1.2380± 0.0020)× 10−8 s ,

mπ+ = 0.139 570 GeV , τπ+ = (2.6033± 0.0005)× 10−8 s ,

mπ0 = 0.134 977 GeV , τπ0 = (8.52± 0.18)× 10−17 s ,

mµ = 0.105 658 37 GeV , τµ = (2.196 981 1± 0.000 002 2)× 10−6 s ,

me = 0.000 510 998 95 GeV . (A.6)

For resonant decays, see section 3.2.2 and appendix E, we use the branching ratios [21]

B(D∗+ → D+π0) = 0.307± 0.005 , B(D∗+ → D+γ) = 0.016± 0.004 ,

Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) = 1.85± 0.07 ,

B(D+ → π+η′) = (4.84± 0.31)× 10−3 ,

B(D+ → π+ρ) = (8.4± 1.5)× 10−4 ,

B(D+ → π+η) = (3.66± 0.22)× 10−3 ,

B(φ→ µµ) = (2.87± 0.19)× 10−4 ,

B(η′ → γγ) = (2.21± 0.08)× 10−2 ,
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B(K∗0 → K0γ) = (2.46± 0.21)× 10−3 ,

B(K∗+ → K+γ) = (9.9± 0.9)× 10−4 ,

B(ω → µµ) = (9.0± 3.1)× 10−5 ,

B(ω → π0γ) = 0.0828± 0.0028 ,

B(ρ→ µµ) = (4.55± 0.28)× 10−5 ,

B(ρ0 → π0γ) = (6.0± 0.8)× 10−4 , B(ρ+ → π+γ) = (4.5± 0.5)× 10−4 ,

B(η → µµ) = (5.8± 0.8)× 10−6 , (A.7)

and observed by the BESIII collaboration [262]

B(D+ → ωπ+) = (2.79± 0.57± 0.16)× 10−4 . (A.8)

The decay constants are given by the FLAG [263]

fDs = (0.248 83± 0.001 27) GeV ,

fD = (0.212 15± 0.001 45) GeV ,

fK = (0.1556± 0.0004) GeV ,

fπ = (0.1302± 0.0014) GeV , (A.9)

and by [152, 264] (and references therein)

fφ = (0.233± 0.004) GeV ,

fK∗ = (0.204± 0.007) GeV , f⊥K∗ = (0.163± 0.008) GeV ,

fρ = (0.213± 0.005) GeV , f⊥ρ = (0.160± 0.011) GeV ,

f
(d)
ρ0

= (0.2097± 0.0003) GeV ,

fω = (0.197± 0.008) GeV , f⊥ω = (0.139± 0.018) GeV ,

f (d)
ω = (0.2013± 0.0008) GeV , (A.10)

where the label d indicates the quark content. Here µ = 1 GeV for the transverse decay
constants, for which the running can be taken from, e.g., [150].
In the following, we list the experimental data utilized to constrain the LQ couplings

in appendix G. We update the nuclear weak charge of Cs [21, 265, 266]

∆Qw(Cs) = 0.69± 0.44 , (A.11)

where ∆Qw = Qexp
w −QSM

w . We obtain the ratio of leptonic pion decays as

∆Re/µ = (−2.5± 2.3)× 10−7 , (A.12)
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where the experimental data Rexp
e/µ = Γ(π+→(e+νe+e+νeγ))

Γ(π+→(µ+νµ+µ+νµγ))
= (1.2327± 0.0023)× 10−4

[21], and the SM prediction RSM
e/µ = (1.2352± 0.0001)× 10−4 [267]. The anomalous

magnetic moment of the electron is found to be [268]

∆a(e) = (−0.91± 0.82)× 10−12 (A.13)

and the electric dipole moment of Hg is [269]

|d(Hg)| < 7.4× 10−30 e cm . (A.14)

Note that this constraint on Hg implies a slightly stronger model-dependent limit on the
neutron magnetic moment, i.e. d(n) < 1.6× 10−26 e cm [269], as compared to the direct
bound given in eq. (A.18). The parity odd triple correlation coefficient in Li beta decay
is [270]

R(Li) = (0.9± 2.2)× 10−3 . (A.15)

Other observables are taken from [21], reading

D(n) = (−1.2± 2.0)× 10−4 ,

R(n) = 0.004± 0.013 ,

∆a(µ) = (288± 80)× 10−11 ,

d(µ) = (−0.1± 0.9)× 10−19 e cm ,

|mD0
1
−mD0

2
| = (0.95+0.41

−0.44)× 1010 ~ s−1 ,

(ΓD0
1
− ΓD0

2
)/ΓD0 = (1.29+0.14

−0.18)× 10−2 ,

B(D+ → µ+νµ) = (3.74± 0.17)× 10−4 ,

B(Ds → µ+νµ) = (5.56± 0.25)× 10−3 ,

B(K+ → µ+νµ) = (63.56± 0.11)× 10−2 ,

Γ(Z → µ+µ−)/Γ(Z → e+e−) = 1.0009± 0.0028 ,

Γ(Z → (uū+ cc̄)/2)/Γ(Z → hadrons) = 0.166± 0.009 ,

Γ(Z → cc̄)/Γ(Z → hadrons) = 0.1721± 0.0030 , ΓSM
Z→cc̄/Γ(Z → hadrons) = 0.1723 ,

B(Ds → τ+ντ ) = (5.55± 0.24)× 10−2 ,

B(K+ → e+νe) = (1.582± 0.007)× 10−5 ,

B(τ− → π+ντ ) = (10.82± 0.05)× 10−2 ,

B(τ− → K+ντ ) = (6.96± 0.10)× 10−2 , (A.16)

where

Γ(Z → hadrons) = 1.74 GeV . (A.17)
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Additionally, at CL=90% [21]

d(n) < 0.30× 10−25 e cm ,

d(e) < 0.87× 10−28 e cm ,

B(D+ → e+νe) < 8.8× 10−6 ,

B(Ds → e+νe) < 8.3× 10−5 ,

B(π+ → µ+νe) < 8.0× 10−3 ,

B(K+ → µ+νe) < 4× 10−3 ,

B(µ− → e−e+e−) < 1.0× 10−12 ,

B(Z → (e+µ− + e−µ+)) < 7.5× 10−6 @CL = 95% ,

B(D+ → τ+ντ ) < 1.2× 10−3 ,

B(τ− → e−γ) < 3.3× 10−8 ,

B(τ− → µ−γ) < 4.4× 10−8 ,

B(τ− → e−e+e−) < 2.7× 10−8 ,

B(τ− → µ−µ+µ−) < 2.1× 10−8 ,

Γ(µ−Ti→ e−Ti)/Γcapture(µ
−Ti) < 4.3× 10−12 ,

Γ(µ−Au→ e−Au)/Γcapture(µ
−Au) < 7× 10−13 , (A.18)

where [271]

Γcapture(µ
−Ti) = 2.59× 106 s−1 , Γcapture(µ

−Au) = 13.07× 106 s−1 . (A.19)

Furthermore, we use the experimental limit obtained by the MEG collaboration [272]

B(µ+ → e+γ) < 4.2× 10−13 . (A.20)

Future searches for LFV decays will improve the limits by a few order of magnitude.
The MEG-II experiment [273] will test B(µ→ eγ) to O(10−14), whereas the Mu3e experi-
ment [274] will reach O(10−16) for B(µ→ eee). For the µ→ eγ and µ→ eee experiments
the SM background from the transitions µ→ eνν̄γ [275] and µ→ e(e+e−)νν̄ via internal
conversion [276], respectively, may become important. The COMET experiment [277],
the DeMee experiment [278] and the Mu2e experiment [279] will probe µ− e conversion
to O(1017).
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Finally, we collect experimental data involving charm FCNC transitions at CL=90%
[21],

B(D+ → π+e+e−) < 0.3× 10−6 , B(D+ → π+µ+µ−) < 7.3× 10−8 ,

B(D0 → π0e+e−) < 4.5× 10−5 , B(D0 → π0µ+µ−) < 1.8× 10−4 ,

B(D0 → ηe+e−) < 1.1× 10−4 , B(D0 → ηµ+µ−) < 5.3× 10−4 ,

B(Ds → K+e+e−) < 3.7× 10−6 , B(Ds → K+µ+µ−) < 2.1× 10−5 ,

B(D0 → e+e−) < 7.9× 10−8 , B(D0 → µ+µ−) < 6.2× 10−9 ,

B(D+ → π+e+µ−) < 2.9× 10−6 , B(D+ → π+e−µ+) < 3.6× 10−6 ,

B(D0 → π0(e+µ− + e−µ+)) < 8.6× 10−5 ,

B(Ds → K+e+µ−) < 1.4× 10−5 , B(Ds → K+e−µ+) < 9.7× 10−6 ,

B(D0 → (e+µ− + e−µ+)) < 1.3× 10−8 ,

B(D0 → ωγ) < 2.4× 10−4 , (A.21)

where B(D0 → (e+µ−+ e−µ+)) was obtained by the LHCb collaboration [25], B(D+ →
π+e+e−) was found by BESIII collaboration [138] (preliminary), and the

√
q2-binned

branching ratios of the LHCb collaboration [136] read

B(D+ → π+µ+µ−)[0.250,0.525] < 2.0× 10−8 ,

B(D+ → π+µ+µ−)[1.250,2.000] < 2.6× 10−8 . (A.22)

Additionally, the Belle collaboration measured [24]

B(D0 → ρ0γ) = (1.77± 0.30± 0.07)× 10−5 , ACP = 0.056± 0.152± 0.006 . (A.23)

Recall that B(D+ → π+µ+µ−) on the full q2 range assumes a model dependent phase
space interpolation of the low and high q2 ranges, neglecting resonant interferences, and
that the CP asymmetry is mostly direct. The LHCb experiment will probe branching
ratios for D+ → π+µ+µ−, Ds → K+µ+µ−, D0 → µ+µ− and D0 → eµ at the levels of
O(10−9), O(10−8), O(10−10) and O(10−9), respectively, as well as asymmetries O(0.1%)
for D+ → π+µ+µ− [139]. In [193] the future sensitivity of the BESIII experiment is
estimated as O(10−7)−O(10−6) for Ds → K+e+e− and Ds → K+eµ branching ratios.
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B. Renormalization group equation

The RGE for Wilson coefficients C at a scale µ reads

µ
d

dµ
C(µ) = γTC(µ) , (B.1)

where γ is the ADM. In appendix B.1 we derive the solution of the RGE to next-to-
next-to-next-to leading order (NNNLO). The corresponding ADM to NNLO as well as
the known parts at NNNLO are provided in appendix B.2.

B.1. Solution of the renormalization group equation

The RGE, eq. (B.1), encodes the mixing and running of the Wilson coefficients. The
evolution of the latter from an initial scale µ0 is given by

C(µ) = U(µ, µ0)C(µ0) , (B.2)

where the evolution matrix U is the formal solution of the RGE, eq. (B.1). It reads

U(µ, µ0) = Tg exp

[∫ g(µ)

g(µ0)
dg
γT (g)

β(g)

]
, U(µ0, µ0) = 1 , (B.3)

where Tg operates as an ordering in powers of g, from left to right, and β(g) = ∂g
∂ lnµ with

β = −g
∞∑
i=0

(
g2

16π2

)
βi . (B.4)

In case of QCD [67]

β0(nf ) = 11− 2

3
nf ,

β1(nf ) = 102− 38

3
nf ,

β2(nf ) =
2857

2
− 5033

18
nf +

325

54
n2
f ,

β3(nf ) =
149753

6
+ 3564ζ(3)−

(
1078361

162
+

6508

27
ζ(3)

)
nf

+

(
50065

162
+

6472

81
ζ(3)

)
n2
f +

1093

729
n3
f , (B.5)
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where ζ is the Riemann zeta function, and nf denotes the number of flavors.
The ADM is expanded as

γ =

∞∑
i=0

(
g2

16π2

)i+1

γ(i) , (B.6)

where γ(0,1,2) and known parts of γ(3) are given in appendix B.2.
In the current appendix we work out the solution U as an expansion in the QCD

coupling αs = g2
s/(4π) to O(α3

s). This extends the O(α2
s) expansion in [2, 55]. In

particular, an alternative representation with respect to [2] is provided here. Throughout
this thesis we employ the O(α2

s) solution. As the ADM for the mixing into the dipole
operators is available at NNNLO, from four loop calculations, we give the solution of the
evolution matrix to this order and provide the Wilson coefficients at NNNLL order in
section 2.9.
The expansion of the solution is conveniently written as

U(µ, µ0) = K(µ)U (0)(µ, µ0)K−1(µ0) (B.7)

with

K(µ) = 1 +
αs(µ)

4π
J (1) +

(
αs(µ)

4π

)2

J (2) +

(
αs(µ)

4π

)3

J (3) ,

K−1(µ0) = 1− αs(µ0)

4π
J (1) −

(
αs(µ0)

4π

)2(
J (2) −

(
J (1)

)2
)

−
(
αs(µ0)

4π

)3(
J (3) − 2J (1)J (2) +

(
J (1)

)3
)
,

U (0)(µ, µ0) = V diag
[(

αs(µ0)

αs(µ)

)ai]
V −1 , (B.8)

where (
V −1

(
γ(0)

)T
V

)
ij

= 2β0aiδij . (B.9)

Thus, the RGE yields a differential equation in gs [55],

∂gsK(gs) +
1

gs

[(
γ(0)

)T
β0

,K(gs)

]
=

((
γ(0)

)T
β(gs)

+
1

gs

(
γ(0)

)T
β0

)
K(gs) . (B.10)
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Its solutions, at respective order in αs, read

J (1) +

[(
γ(0)

)T
2β0

, J (1)

]
=

β1

2β2
0

(
γ(0)

)T
− 1

2β0

(
γ(1)

)T
,

J (2) +

[(
γ(0)

)T
4β0

, J (2)

]
=

(
β2

4β2
0

− β2
1

4β3
0

)(
γ(0)

)T
+

β1

4β2
0

(
γ(1)

)T
− 1

4β0

(
γ(2)

)T
+

(
β1

4β2
0

(
γ(0)

)T
− 1

4β0

(
γ(1)

)T)
J (1) ,

J (3) +

[(
γ(0)

)T
6β0

, J (3)

]
=

(
β3

6β2
0

− β1β2

3β3
0

+
β3

1

6β4
0

)(
γ(0)

)T
+

(
β2

6β2
0

− β2
1

6β3
0

)(
γ(1)

)T
+

β1

6β2
0

(
γ(2)

)T
− 1

6β0

(
γ(3)

)T
+

((
β2

6β2
0

− β2
1

6β3
0

)(
γ(0)

)T
+

β1

6β2
0

(
γ(1)

)T
− 1

6β0

(
γ(2)

)T)
J (1)

+

(
β1

6β2
0

(
γ(0)

)T
− 1

6β0

(
γ(1)

)T)
J (2) . (B.11)

Defining

J (i) = V S(i)V −1 , G(i) = V −1
(
γ(i)
)T

V , (B.12)

the matrix kernels obey the relations

S
(1)
ij =

β1

β0
aiδij −

G
(1)
ij

2β0(1 + ai − aj)
, (B.13)

S
(2)
ij =

(
β2

2β0
− β2

1

2β2
0

)
aiδij +

∑
k

2β1aiδik −G(1)
ik

2β0(2 + ai − aj)
S

(1)
kj +

β1G
(1)
ij − β0G

(2)
ij

2β2
0(2 + ai − aj)

, (B.14)

S
(3)
ij =

(
β3

3β0
− 2β1β2

3β2
0

+
β3

1

3β3
0

)
aiδij +

∑
k

2
(
β0β2 − β2

1

)
aiδik + β1G

(1)
ik − β0G

(2)
ik

2β2
0(3 + ai − aj)

S
(1)
kj

+
∑
k

2β1aiδik −G(1)
ik

2β0(3 + ai − aj)
S

(2)
kj +

(
β0β2 − β2

1

)
G

(1)
ij + β0β1G

(2)
ij − β2

0G
(3)
ij

2β3
0(3 + ai − aj)

. (B.15)
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The evolution matrices U (0,1) can already be read off from the above equations, cutting
the higher order terms. For U (2,3) we simplify the matrix kernels S(2,3) at first. Therefore,
one obtains

G
(1)
ij = 2β1aiδij − 2β0(1 + ai − aj)S(1)

ij , (B.16)

S
(2)
ij =

β2

2β0
aiδij +

∑
k

1 + ai − ak
2 + ai − aj

(
S

(1)
ik S

(1)
kj −

β1

β0
S

(1)
ij δjk

)
−

G
(2)
ij

2β0(2 + ai − aj)
, (B.17)

giving

G
(2)
ij = 2β2aiδij − 2β0(2 + ai − aj)S(2)

ij

+
∑
k

2(1 + ai − ak)
(
β0S

(1)
ik S

(1)
kj − β1S

(1)
ij δjk

)
. (B.18)

Finally, we find

S
(3)
ij =

β3

3β0
aiδij −

∑
k,l

1 + ai − al
3 + ai − aj

×
(
S

(1)
ik S

(1)
kl S

(1)
lj −

β1

β0
S

(1)
ik S

(1)
kj δkl − S

(1)
ik S

(2)
kj δkl +

β2

β0
S

(1)
ij δjkδkl

)
+
∑
k

2 + ai − ak
3 + ai − aj

(
S

(2)
ik S

(1)
kj −

β1

β0
S

(2)
ij δjk

)
−

G
(3)
ij

2β0(3 + ai − aj)
. (B.19)

Note that the eigenvalues given by eq. (B.9) obtained for the running µW → µb and
µb → µc, for the ADM given in the next appendix, do not give rise to singularities of the
matrix kernels of eqs. (B.13, B.17, B.19). Finally, to complement the discussion about
light quark masses in section 2.3, we add that the RGE needs to be modified for non-
vanishing light quark masses, that is within a mass-dependent renormalization scheme,
see e.g. [280].

B.2. Anomalous dimension matrix

On the following pages we provide the ADM for the operators defined in section 2.2 and
which is utilized for the solution of the RGE as derived in the previous appendix. The
ADM at NNLO QCD can partly be extracted from [51, 55, 281, 282]. The missing parts
are given in [2] in the basis for effective Wilson coefficients, thus we provide complemen-
tary information here. The ADM for the mixing of the penguin operators into the dipole
operators at NNNLO QCD can be found in [282].
In the following, qu = 2/3 and qd = −1/3 denote the up- and down-type quark charges,

respectively, in units of the proton charge. Furthermore, q̄ = nu qu + nd qd, where ni
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depend on the range of the evolution, i.e. nf = 5, nu = 2 and nd = 3 for µb ≤ µ ≤ µW ,
and nf = 4, nu = 2 and nd = 2 for µc ≤ µ ≤ µb. With appropriate changes of these
parameters the ADM relevant in b decays can be regained. We use the expansion of the
ADM given by eq. (B.6) and we decompose the ADM in block as

γ =


(γ1,2)2×2 (γ3−6)2×4 (γ7,8)2×2 (γ9)2×1 02×1

04×2 (γ3−6)4×4 (γ7,8)4×2 (γ9)4×1 04×1

02×2 02×4 (γ7,8)2×2 02×1 02×1

01×2 01×4 01×2 (γ9)1×1 01×1

01×2 01×4 01×2 01×1 (γ10)1×1

 , (B.20)

where the labels represent the corresponding columns, and the dimension of the matrices
are indicated. With the decomposition into blocks the evaluation of subsets of Wilson
coefficients is readily obtained, e.g. for C1,2(µW ). Terms ∝ βi(nf ) emerge due to the
factor αs in the definitions of the corresponding operators, i.e. for P7−10.
Specifically,

(γ
(i)
9 )1×1 = (γ

(i)
10 )1×1 = −2βi(nf ) . (B.21)

The other blocks are given as unified matrices for the respective columns, where we omit
the zeros in eq. (B.20). The LO ADM reads

γ
(0)
1,2 =

−4 8
3

12 0

 , (B.22)

γ
(0)
3−6 =



0 −2
9 0 0

0 4
3 0 0

0 −52
3 0 2

−40
9 −160

9 + 4
3nf

4
9

5
6

0 −256
3 0 20

−256
9 −544

9 + 40
3 nf

40
9 −2

3


, (B.23)
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γ
(0)
7,8 =



0 0

0 0

0 0

0 0

0 0

0 0

32
3 − 2β0(nf ) 0

32
3 qu

28
3 − 2β0(nf )



, (B.24)

γ
(0)
9 =



−16
9 qd

−4
3qd

−8q̄ − 8
3qu

−32
9 qu

−80q̄ − 128
3 qu

−512
9 qu


. (B.25)

Note that the LO ADM is independent of specific renormalization schemes as long as it
is a mass independent renormalization scheme, as used in this thesis. The NLO ADM is
given by

γ
(1)
1,2 =

−145
3 + 16

9 nf −26 + 40
27nf

−45 + 20
3 nf −28

3

 , (B.26)

γ
(1)
3−6 =



−1412
243 −1369

243
134
243 − 35

162

−416
81

1280
81

56
81

35
27

−4468
81 −29129

81 − 52
9 nf

400
81

3493
108 − 2

9nf

−13678
243 + 368

81 nf −79409
243 + 1334

81 nf
509
486 − 8

81nf
13499
648 − 5

27nf

−244480
81 − 160

9 nf −29648
81 − 2200

9 nf
23116

81 + 16
9 nf

3886
27 + 148

9 nf

77600
243 − 1264

81 nf −28808
243 + 164

81 nf −20324
243 + 400

81 nf −21211
162 + 622

27 nf


,

(B.27)
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γ
(1)
7,8 =



−4
3qd + 16

81qu
167
162

8qd − 32
27qu

76
27

−64
27qu

368
27(

680
81 − 32

27nf
)
qu −427

81 − 37
54nf

6464
27 qu

8192
27 + 36nf

48q̄ +
(

20096
81 − 320

27 nf
)
qu −6040

81 + 220
27 nf

1936
9 − 224

27 nf − 2β1(nf ) 0(
368
3 − 224

27 nf
)
qu

1456
9 − 61

27nf − 2β1(nf )



, (B.28)

γ
(1)
9 =



−136
27 qd − 176

243qu

128
9 qd + 352

81 qu

−32q̄ + 4160
81 qu

64
3 q̄ +

(
−784

243 + 544
81 nf

)
qu

−320q̄ + 58112
81 qu

608
3 q̄ +

(
22784
243 + 4288

81 nf
)
qu


. (B.29)

For each column, the NNLO ADM reads

γ
(2)
1 =

−1927
2 + 257

9 nf + 40
9 n

2
f +

(
224 + 160

3 nf
)
ζ3

307
2 + 361

3 nf − 20
3 n

2
f − (1344 + 160nf ) ζ3

 , (B.30)

γ
(2)
2 =

475
9 + 362

27 nf − 40
27n

2
f −

(
896
3 + 320

9 nf
)
ζ3

1298
3 − 76

3 nf − 224ζ3

 , (B.31)
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γ
(2)
3 =



269107
13122 − 2288

729 nf − 1360
81 ζ3

69797
2187 + 904

243nf + 2720
27 ζ3

−4203068
2187 + 14012

243 nf − 608
27 ζ3

−5875184
6561 + 217892

2187 nf + 472
81 n

2
f +

(
27520

81 + 1360
9 nf

)
ζ3

−194951552
2187 + 358672

81 nf − 2144
81 n2

f + 87040
27 ζ3

162733912
6561 − 2535466

2187 nf + 17920
243 n2

f +
(

174208
81 + 12160

9 nf
)
ζ3


, (B.32)

γ
(2)
4 =



−2425817
13122 + 30815

4374 nf − 776
81 ζ3

1457549
8748 − 22067

729 nf − 2768
27 ζ3

−18422762
2187 + 888605

2916 nf + 272
27 f

2 +
(

39824
27 + 160nf

)
ζ3

−70274587
13122 + 8860733

17496 nf − 4010
729 n

2
f +

(
16592

81 + 2512
27 nf

)
ζ3

−130500332
2187 − 2949616

729 nf + 3088
27 n2

f +
(

238016
27 + 640nf

)
ζ3

13286236
6561 − 1826023

4374 nf − 159548
729 n2

f −
(

24832
81 + 9440

27 nf
)
ζ3


, (B.33)

γ
(2)
5 =



−343783
52488 + 392

729nf + 124
81 ζ3

−37889
8748 − 28

243nf − 248
27 ζ3

674281
4374 − 1352

243 nf − 496
27 ζ3

2951809
52488 − 31175

8748 nf − 52
81n

2
f −

(
3154
81 + 136

9 nf
)
ζ3

14732222
2187 − 27428

81 nf + 272
81 n

2
f − 13984

27 ζ3

−22191107
13122 + 395783

4374 nf − 1720
243 n

2
f −

(
33832

81 + 1360
9 nf

)
ζ3


, (B.34)

γ
(2)
6 =



−37573
69984 + 35

972nf + 100
27 ζ3

366919
11664 − 35

162nf − 110
9 ζ3

9284531
11664 − 2798

81 nf − 26
27n

2
f −

(
1921

9 + 20nf
)
ζ3

3227801
8748 − 105293

11664 nf − 65
54n

2
f −

(
−200

27 + 220
9 nf

)
ζ3

16521659
2916 + 8081

54 nf − 316
27 n

2
f −

(
22420

9 + 200nf
)
ζ3

−32043361
8748 + 3353393

5832 nf − 533
81 n

2
f −

(
−9248

27 + 1120
9 nf

)
ζ3


, (B.35)
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γ
(2)
7 =



−
(

374
27 − 2

27nf
)
qd −

(
6742
729 − 64

729nf
)
qu(

136
9 − 4

9nf
)
qd −

(
13300
243 + 128

243nf
)
qu

−112
3 q̄ −

(
119456

243 − 3632
243 nf

)
qu

−140
9 q̄ +

(
202990

729 − 5548
729 nf − 32

243n
2
f

)
qu

−3136
3 q̄ −

(
530240

81 + 46912
243 nf

)
qu

−
(

1136
9 + 56

3 nf
)
q̄ +

(
1112344

243 − 327424
729 nf − 896

243n
2
f

)
qu

307448
81 − 23776

81 nf − 352
81 n

2
f −

(
1856
27 + 1280

9 nf
)
ζ3 − 2β2(nf )

−1600
27 q̄ +

(
159872

81 − 17108
81 nf − 352

81 n
2
f

)
qu +

(
640
9 q̄ −

(
1856
27 + 1280

9 nf
)
qu
)
ζ3



,

(B.36)

γ
(2)
8 =



25759
5832 + 431

5832nf

9733
486 − 917

972nf

82873
243 − 3361

243 nf

−570773
2916 − 40091

5832 nf − 253
486n

2
f

838684
81 + 129074

243 nf − 14n2
f

−923522
243 − 13247

1458 nf − 6031
486 n

2
f

0

268807
81 − 4343

27 nf − 461
81 n

2
f −

(
28624

27 + 1312
9 nf

)
ζ3 − 2β2(nf )



, (B.37)
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and for each component,

(γ
(2)
9 )1 =

536

27
q̄ −

(
14999

81
− 3152

243
nf

)
qd −

(
72560

6561
+

1120

2187
nf

)
qu

+

(
352

9
qd −

640

81
qu

)
ζ3 ,

(γ
(2)
9 )2 =

224

9
q̄ +

(
820

27
− 184

81
nf

)
qd +

(
333688

2187
+

2240

729
nf

)
qu

+

(
−128

3
qd +

1280

27
qu

)
ζ3 ,

(γ
(2)
9 )3 = −

(
2636

9
− 176

9
f

)
q̄ +

(
1524104

2187
− 44048

729
nf

)
qu +

(
128q̄ +

256

27
qu

)
ζ3 ,

(γ
(2)
9 )4 =

(
1201

27
− 32

9
nf

)
q̄ +

(
−1535926

6561
+

159620

2187
nf +

608

729
n2
f

)
qu

+

(
160

3
q̄ +

(
5056

81
+

1280

27
nf

)
qu

)
ζ3 ,

(γ
(2)
9 )5 =

(
46552

9
+

2912

9
nf

)
q̄ +

(
31433600

2187
+

15904

729
nf

)
qu +

(
1280q̄ +

4096

27
qu

)
ζ3 ,

(γ
(2)
9 )6 = −

(
47624

27
− 1312

27
nf

)
q̄ +

(
−48510784

6561
+

3516560

2187
nf +

15872

729
n2
f

)
qu

+

(
−512

3
q̄ +

(
80896

81
+

12800

27
nf

)
qu

)
ζ3 . (B.38)

Additionally, at NNNLO the ADM encoding the mixing of P1−6 into P7,8 is given by
[282],

(γ
(3)
7 )1 =

3695

486
q̄ +

(
−9731

162
+

11045

729
nf +

316

729
n2
f

)
qd −

(
23465621

354294
+

185708

59049
nf

+
560

6561
n2
f

)
qu +

(
−100

27
q̄ +

(
25508

81
− 64

81
nf

)
qd −

(
106088

2187
+

728
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+
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and
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+
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+
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C. Distributions and observables

In the following appendices several distributions and observables used throughout the
thesis are provided. Only the ones for radiative decays are given in the main text, see
sections 3.1.1, 3.3 and 4.5. For the definition of the Lagrangian, see the beginning of
chapter 3.

C.1. Inclusive D → Xull decays

The inclusive q2 distribution, where qµ = (pc − pu)µ = (p+ + p−)µ, for c → ull induced
decays, as studied in section 3.1, can be obtained to leading order in the HQE [283, 284]
as

dΓc→ull
dq2

=
G2
Fα

2
em

3
c

768π5

(
1− q2

m2
c

)2
√

1− (2ml)2

q2

[(
1 + 2

q2

m2
c

− 2
m2
l

m2
c

(
1− m2

c

q2

))
×
(
|C9|2 + |C10|2

)
+

(
1 + 2

m2
l

q2

)(
4

(
2
m2
c

q2
+ 1

)
|C7|2 + 12Re [C7C

∗
9 ]

)
+ 6

m2
l

m2
c

(
|C9|2 − |C10|2

) ]
, (C.1)

where (2ml)
2 ≤ q2 ≤ m2

c , and the up quark mass is neglected.
The distribution stemming from additional operators, beyond the SM ones, can be

found in [283, 284]. The c→ (d, s)lνl distribution for massless leptons can be recovered
for C9 = −C10 = 1/2, C7 = 0 and αe/(4π)→ −V ∗c(d,s).
Corrections to the matrix elements of the operators Q7,9,10 at NLO QCD can be

incorporated following [79] (and references therein). They can compactly be absorbed in
the Wilson coefficients as

Ci → Ci

(
1 +

αs
π
σi(q

2/m2
c)
)
, Re[CiC

∗
j ]→ Re[CiC

∗
j ]
(

1 +
αs
π
τ

(1)
ij (q2/m2

c)
)
. (C.2)

Here

σ7(ρ) = −4

3
Li2[ρ]− 2

3
ln ρ ln[1− ρ]− 2

9
π2 − ln[1− ρ]− 2

9
(1− ρ) ln[1− ρ] +

1

6

− 4

3
ln
µ2
c

m2
c

,

σ9(ρ) = −4

3
Li2[ρ]− 2

3
ln ρ ln[1− ρ]− 2

9
π2 − ln[1− ρ]− 2

9
(1− ρ) ln[1− ρ] +

3

2
, (C.3)
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where σ10 = σ9 due to parity invariance of QCD. Furthermore, for massless leptons

τ
(1)
77 (ρ) = − 2

9(2 + ρ)

(
2(1− ρ)2 ln[1− ρ] +

6ρ(2− 2ρ− ρ2)

(1− ρ)2
ln ρ+

11− 7ρ− 10ρ2

1− ρ

)
,

τ
(1)
99 (ρ) = − 4

9(1 + 2ρ)

(
2(1− ρ)2 ln[1− ρ] +

3ρ(1 + ρ)(1− 2ρ)

(1− ρ)2
ln ρ+

3(1− 3ρ2

1− ρ

)
,

τ
(1)
79 (ρ) = −4(1− ρ)2

9ρ
ln[1− ρ]− 4ρ(3− 2ρ)

9(1− ρ)2
ln ρ− 2(5− 3ρ)

9(1− ρ)
, (C.4)

where τ10 10 = τ99, and

τ
(1)
710(ρ) = −5

2
+

1

3(1− 3ρ)
− ρ(6− 7ρ) ln ρ

3(1− ρ)2
− (3− 7ρ+ 4ρ2) ln[1− ρ]

9ρ
+

1

18(1− ρ)2

×
[
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(
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)
Li2[
√
ρ] + 12

(
1− 17ρ+ 6ρ2

)
Li2[ρ] + 6ρ(6− 7ρ) ln ρ

+ 24(1− ρ)2 ln ρ ln[1− ρ] + 12
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−13 + 16ρ− 3ρ2

)
(ln[1−√ρ]− ln[1− ρ])

+ 39− 2π2 + 252ρ− 26π2ρ+ 21ρ2 + 8π2ρ2 − 180
√
ρ− 132ρ

√
ρ
]
,

τ
(1)
910(ρ) = −5

2
+

1

3(1− ρ)
− ρ(6− 7ρ) ln ρ

3(1− ρ)2
− 2(3− 5ρ+ 2ρ2) ln[1− ρ]

9ρ
− 1
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×
[
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√
ρ] + 24

(
−1 + 7ρ− 3ρ2
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Li2[ρ] + 6ρ(−6 + 7ρ) ln ρ

− 24(1− ρ)2 ln ρ ln[1− ρ] + 24
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)
(ln[1−√ρ]− ln[1− ρ])

− 21− 156ρ+ 20π2ρ+ 9ρ2 − 8π2ρ2 + 120
√
ρ+ 48ρ

√
ρ
]
. (C.5)

The logarithm in σ7 stems from infrared singularities. We neglect finite bremsstrahlung
corrections not related to matrix elements of Q7,9,10 ⊗Q7,9,10. They are estimated to be
at the percent level in b decays [285]. The NNLO QCD correction, normalized to the
tree level matrix element, can be obtained from [286], yielding

|C9|2|α2
s

= |C9|2
(αs
π

)2
τ

(2)
99 (q2/m2

c) . (C.6)

Here

τ
(2)
99 (ρ) =

1

(1− ρ)2 (1 + 2ρ)

[
2

3

(
2.854− 0.665ρ− 0.109ρ2 − 8.572ρ3 + 5.561ρ4 + 0.931ρ5

)
× fl +

2

3

(
− 0.063615 + 0.098146ρ+ 0.144642ρ2 − 0.307331ρ3 + 0.107417ρ4

+ 0.020707ρ5
)
fh +

16

9

(
3.575− 2.867ρ+ 2.241ρ2 − 12.027ρ3 + 11.564ρ4

− 2.489ρ5
)

+ 4
(
− 8.151 + 2.990ρ− 3.537ρ2 + 36.561ρ3 − 42.275ρ4 + 23.899ρ5

− 9.494ρ6
)]
, (C.7)
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where fl = 3 and fh = 1 denote the numbers of light and heavy flavors, respectively.
This approximative expression is exact within less than one percent compared to the
analytic function for any value of ρ.
As in the case of radiative decays we normalize the distribution with respect the

semileptonic decay width to reduce parametric uncertainties. For massless leptons, to
leading order in the HQE, and NNLO in QCD it is [287]

Γc→(d,s)lν =
G2
Fm

3
c

192π3

∑
q∈{d,s}

|Vcq|2
(
X0(mq/mc) +

αs
π
X1(mq/mc)

+
(αs
π

)2
X2(mq/mc)

)
. (C.8)

Here

X0(ρ) = 1− 8ρ2 − 24ρ4 ln ρ+ 8ρ6 − ρ8 ,

X1(ρ) =
4
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, (C.9)

and

X2(ρ) =
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(
39− 16

3
π2

)
ln ρ
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(
344

27
+

28

27
π2 − 1564

27
ln ρ

+ 24 ln2 ρ
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+
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+
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− 8π2 ln2 2− 4 ln4 2− 144 ln3 ρ−
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(C.10)

with
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With the above expressions the branching ratio is given as

dBD→Xull
dq2

=
B(D → X(d,s)lν)

Γc→(d,s)lν

dΓc→ull
dq2

, (C.12)

where B(D → X(d,s)lν) is taken from measurements, see appendix A.

Next, we include the leading power corrections. For massless leptons they can be
adopted from [103, 288],

δ1/m2
c

dBD→Xull
dq2

=
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)
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c
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+

g(m2
q/m

2
c)

X0(m2
q/m

2
c)

dΓc→ull
dq2

]
. (C.13)

Here δ1/m2
c
Γc→(d,s)lν = ( λ1

2m2
c
− 3λ2

2m2
c

g(m2
q/m

2
c

X0(m2
q/m

2
c
)Γc→(d,s)lν is included and for a heavy charm

quark hv with velocity v

λ2 =
1

6

〈D|h̄vgσµνGµνhv|D〉
2mD

=
(m∗D)2 −m2

D

4
, (C.14)

g(ρ) = 3− 8ρ+ 24ρ2 − 24ρ3 + 5ρ4 + 12ρ2 ln ρ . (C.15)

The normalization to the semileptonic decay width reduces uncertainties due to power
corrections. In fact, ΛQCD

mc
corrections and the multiplicative kinetic matrix element

λ1 = 〈D|h̄v(iD)2hv|D〉/(2mD) are canceled due to the normalization. In principle, one
can include (

ΛQCD
mc

)3 corrections, analogue to [79]. However, these corrections give rise
to additional matrix elements.

For the phenomenological analysis, the above expressions will be expanded consistently
to O(αs/(4π))2, including the expansion of the Wilson coefficients. Furthermore, as the
above expressions are given for zero lepton masses, ml = 0 will be used in eq. (C.1). To
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estimate the effect of non-vanishing lepton masses, a non-zero mass can be retained by
replacing eq. (C.4) with

τ
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. (C.16)

We still neglect lepton masses in terms ∼ O((
ΛQCD
mc

)2).
The lepton forward-backward asymmetry, normalized to c → (d, s)lν decays, can be

obtained from [283]. For massless leptons is given by

AFB =
B(D → X(d,s)lν)

Γc→(d,s)lν
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The leading power corrections can be adopted from [103], reading
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. (C.18)

Here we neglect finite bremsstrahlung corrections not related to Q7,9,10 ⊗Q7,9,10, which
constitute less than one percent in b decays [289]. The energy asymmetry turned out to
be an equivalent observable [288].
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The lepton left-right asymmetry, normalized to c → (d, s)lν decays, can be obtained
by the replacements C9 → C

L/R
9 = (C9 ∓ C10)/2, C10 → C

L/R
10 = (C10 ∓ C9)/2 and

|C7|2 → |C7|2/2 in eq. (C.1). We obtain for massless leptons

ALR =
B(D → X(d,s)lν)
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)
. (C.19)

The leading power corrections are given in [103] as

δ1/m2
c

dALR
dq2

=
3λ2

2m2
c

[B(D → X(d,s)lν)

Γc→(d,s)lν
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2
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3
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768π5
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(
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10] + 4

(
5 + 6

q2

m2
c

− 7

(
q2

m2
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)2
)

Re[C7C
∗
10]

)
+

g(m2
q/m

2
c)

X0(m2
q/m

2
c)

dALR
dq2

]
. (C.20)

Here finite bremsstrahlung corrections not related to Q7,9,10 ⊗Q7,9,10 vanish.
The lepton longitudinal and normal polarization asymmetries of l± are obtained from

[284]. They are given as

dP±L
dq2

= ±m4
cu(q2)

√
1− 4m2

l

q2

× Re

[
8

(
1− q2

m2
c

)
C7C

∗
10 +

(
1− q4

m4
c

− u2(q2)

3m4
c(1− 4m2

l /q
2)

)
C9C

∗
10

]
(C.21)

and

dP±N
dq2

= ±2π
mlm

2
c√

q2
u2(q2) Im [C7C

∗
10] . (C.22)

The defining angle is the one between the momentum of the charm quark and the mo-
mentum of the negatively charged lepton in the dilepton center of mass frame and

u(q2) = (m2
c − q2)2

√
1− 4m2

l

q2
. (C.23)

We neglect electromagnetic interactions between the leptons. The distribution due to
additional operators can also be obtained from [284].
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The lepton transverse polarization asymmetries of l± are given by [284] as

dP±T
dq2

=− π

2

mlm
2
c√

q2(1− 4m2
l /q

2)
u2(q2)

×
(

16
m2
c

q2
|C7|2 + Re[4C7C

∗
9 ∓ 2C7C

∗
10 − C9C

∗
10]

)
. (C.24)

C.2. The decay D → Pll

In this appendix we derive the distribution for the decay of a pseudoscalar into a lighter
pseudoscalar and a lepton pair, i.e. for D → Pll, which is analyzed in section 3.2 and
chapter 4. Along we introduce form factors and observables.
In the D meson rest frame, the distribution can be written as

dΓ =
1

2mD
〈|A|2〉 d3pP

(2π)32EP

d3p+

(2π)32E+

d3p−
(2π)32E−

(2π)4δ(pD − pP − p+ − p−)

=
〈|A|2〉

2mD(2π)5
dPS , (C.25)

where we separate the amplitude A, and the factorized phase space

dPS = dq2δ(pD − q − pP )
d3q

2Eq

d3pP
2EP

δ(q − p+ − p−)
d3p+

2E+

d3p−
2E−

. (C.26)

Firstly, we work out the phase space.
Keeping in mind that an integration is performed, we can write

d3p+

2E+
→ d4p+δ(p

2
+ −m2

+) (C.27)

which is implicitly multiplied by θ(p0
+). It follows that, again by means of integration,

δ(q − p+ − p−)
d3p+

2E+
→ δ(cosφ− cosφ∗)

2|q||p−|
, cosφ∗ =

2EqE− − q2

2|pq||p−|
, (C.28)

where φ is the angle between the momenta q and p−. We obtain

d3p−
2E−

= π|p−|dE− d cosφ . (C.29)

Analogously,

δ(pD − q − pP )
d3pP
2EP

→
δ(Eq − E∗q )

2mD
, E∗q =

m2
D −m2

P + q2

2mD
(C.30)
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give

d3q

2Eq
= 2π|q| dEq . (C.31)

Combining these expression we can write the phase space as

dPS =
π2

2mD
dq2dE− . (C.32)

We define [290]

u = (pD − p−)2 − (pD − p+)2 = −u(q2) cos θ , (C.33)

where θ is the angle between the momentum of the positively charged lepton and the D
meson in the dilepton center of mass frame. With this definition we obtain

− u(q2) ≤ u ≤ u(q2) , u(q2) =
√
λ(m2

D,m
2
P , q

2)βl , (C.34)

where

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc , βl =

√
1− 4

m2
l

q2
. (C.35)

It follows that, in the D meson rest frame,

dE− = − 1

4mD
du . (C.36)

The pseudoscalar distribution is thus given as

d2Γ

dq2du
=
〈|A|2〉

512π3m3
D

. (C.37)

To calculate the amplitude we restrict ourselves, at first, to the SM operator basis,
see the beginning of chapter 3. We factorize the leptonic and hadronic currents in the
amplitude as

iA|SM = 〈llP |Hweak
eff |SM|D〉

= −2GF√
2

αe
4π

(
C7
mc

e

[
−2eiqν

q2
l̄(p+)γµl(p−)

]
〈P |jµν |D〉

+ C9

[
l̄(p+)γµl(p−)

]
〈P |jµ|D〉+ C10

[
l̄(p+)γµγ5l(p−)

]
〈P |jµ|D〉

)
, (C.38)
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where the currents are defined by

〈P |jµ|D〉 = 〈P |ūγµ(1− γ5)c|D〉 , 〈P |jµν |D〉 = 〈P |ūσµν(1 + γ5)c|D〉 . (C.39)

Note that the vector current in eq. (C.39) is conserved, which implies that its anomalous
dimension is zero. Furthermore, the hadronic axialvector current vanishes as theD meson
is parity odd.
Concerning the hadronic matrix elements we utilize the Lorentz structure and parity

invariance of QCD to parametrize them in terms of the form factors f+,0,T as

〈P (pP )|ūγµc|D(pD)〉 = f+(q2)

(
pµ − m2

D −m2
P

q2
qµ
)

+ f0(q2)
m2
D −m2

P

q2
qµ , (C.40)

〈P (pP )|ūσµν(1± γ5)c|D(pD)〉 = ifT (q2)(pµqν − qµpν ± iεµνρσpρqσ) . (C.41)

Here qµ = (pD − pP )µ = (p+ + p−)µ and pµ = (pD + pP )µ.
The amplitude follows as

−iA|SM =
GFαe

2
√

2π
l̄
(
cVµ γ

µ + cAµ γ
µγ5

)
l , (C.42)

where

cVµ = (C9f+ + 2C7mcfT )
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)
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)
+ C10f0
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D −m2

P

q2
qµ . (C.43)

We sum over the spin of the leptons to find for Γµ ∈ {γµ, γµγ5}(
G2
Fα

2
e

8π2

)−1

〈|A|SM|2〉 =
∑
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− , (C.44)

where
(
cV
)ρ (

cA
∗)σ

ερσµνp
µ
+p

ν
− = 0, hence the pseudotensor current vanishes. Writing

the scalar products as p+ · p− = q2/2 −m2
l , q · p± = q2/2, p2 = 2m2

D + 2m2
P − q2, and

p · p± = (m2
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P ± u)/2, finally, we obtain the SM differential distribution(
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in agreement with the result in [290]. Here the form factors are taken to be real.
Next we include all dimension six operators. The required matrix elements are related

to the ones defined by eqs. (C.40, C.41) by the EOM, yielding

〈P (pP )|ūc|D(pD)〉 =
qµ

mc −mu
〈P (pP )|ūγµc|D(pD)〉 = f0

m2
D −m2

P

mc −mu
, (C.46)

where hadronic pseudoscalar currents vanish by parity arguments. Writing

cS = (CS + C ′S)f0
m2
D −m2

P

mc −mu
, cP = (CP + C ′P )f0

m2
D −m2

P

mc −mu
,

cTµν = CT fT (pµqν − qµpν) , cT5
µν = CT5fT (pµqν − qµpν) (C.47)

the amplitude reads

−iA =
GFαe

2
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µνγ5

)
l , (C.48)

where the ellipses represent the SM amplitude (C.42). Calculating the traces, we obtain
for Γ ∈ {..., 1, γ5, σ

µν , σµνγ5} and Γ ∈ {..., 1,−γ5, σ
µν ,−σµνγ5}(
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since
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Finally, the full differential distribution follows as(
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where the ellipsis represent the SM distribution of eq. (C.45)- Here and in the following,
for simplicity, C7mc → (C7mc + C ′7mu), and C9,10,S,P → (C9,10,S,P + C ′9,10,S,P ) since
hadronic axialvector currents vanish. With appropriate changes in the definitions of fT
and θ, the distribution is agreement with the result in [96]. Lepton dependence can
be implemented by the replacements Ci → C

(l)
i , where i 6= 7. The CP conjugated

distribution is given by the replacements V ∗cqVuq → VcqV
∗
uq and u→ −u. We use mu = 0

in the following.
Integrating u gives the q2 spectrum

dΓ

dq2
=

G2
Fα

2
e

1024π5m3
D

(
2

3

((
|C9|2 + |C10|2

)
f2

+ + 4|C7|2f2
Tm

2
c + 4Re[C7C

∗
9 ]fT f+mc

)
× λ(m2

D,m
2
P , q

2)

(
1 +

2m2
l

q2

)
+ |C10|2

(
−f2

+λ(m2
D,m

2
P , q

2) + f2
0

(
m2
D −m2

P

)2) 4m2
l

q2

+
(
|CS |2

(
q2 − 4m2

l

)
+ |CP |2q2

)
f2

0

(
m2
D −m2

P

)2
m2
c

+
4

3

(
|CT |2 + |CT5|2

)
f2
T q

2λ(m2
D,m

2
P , q

2)

(
1− 4m2

l

q2

)
+ 8Re[(C9f+ + 2C7fTmc)C

∗
T ]fTλ(m2

D,m
2
P , q

2)ml

+ 4Re[C10C
∗
P ]f2

0

(
m2
D −m2

P

)2
mc

ml

+ 16|CT |2f2
Tλ(m2

D,m
2
P , q

2)m2
l

)√
λ(m2

D,m
2
P , q

2)

(
1− 4m2

l

q2

)
, (C.52)
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in agreement with the result in [1], for appropriate changes in the definitions of fT and
θ.
The differential lepton forward-backward asymmetry is defined as the asymmetry be-

tween the forward minus backward flying l+ in the dilepton center of mass frame relative
to the recoiling P , i.e.

dAFB
dq2

∝
∫ 0

−u(q2)
du

d2Γ

dq2du
−
∫ u(q2)

0
du

d2Γ

dq2du
. (C.53)

Here and in the following, the proportionality holds up to the normalization, which will
be specified wherever needed. We obtain for D+ → P+ll
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. (C.54)

Under CP conjugation the forward-backward asymmetry changes its sign.
A combined observable is the lepton forward-backward CP asymmetry defined as

dACPFB
dq2

∝ AD+→P+ll
FB +AD

−→P−ll
FB . (C.55)

The “flat” term is defined as

FH ∝
1∑
i=0

∫
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. (C.56)

In the approximation of vanishing lepton masses we obtain
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Note that the lepton flavor ratio BD→Pµ+µ−/BD→Pe+e− and the flat term FH are related
[96]. The lepton flavor ratio restricted to the SM operator basis at high q2 follows from
kinematics as

BD→Pµ+µ−
BD→Pe+e−

∣∣∣∣
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We use a zero electron mass and will integrate the numerator and the denominator
separately.
The resonant catalyzed CP asymmetry is [1]
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=
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− dBD−→P−ll
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= − 1
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where

cd =
4π

αs
2C

eff(d)
7 fTmc + Cρ9

f+

V ∗cdVud
, cs =

4π

αs
2C

eff(s)
7 fTmc + Cφ9

f+

V ∗csVus
, (C.60)

and (δC9 + δC ′9) correspond to possible BSM contributions. The SM contribution Ceff
9

is omitted to avoid double counting. Compared with [126] effects of the ρ resonance and
δC

(′)
9 are included. In turn [126] considers BSM effects due to C7.

C.3. Exclusive (semi-)leptonic decays

Here we provide distributions and observables of other exclusive (semi-)leptonic decays
for section 3.4.
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The branching ratio for D0 → l+l− reads [96]

BD0→l+l− =
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2
em

5
D0f

2
D0

64π3ΓD0

√
1− 4m2

l

m2
D0

×
((

1− 4m2
l

m2
D0

) ∣∣∣∣CS − C ′Smc +mu

∣∣∣∣2 +

∣∣∣∣CP − C ′Pmc +mu
+

2ml

m2
D0

(C10 − C ′10)

∣∣∣∣2
)
. (C.61)

Here the only non-perturbative parameter is the decay constant fD.
For D∗0 → l+l− the total width can be written as [175]
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 , (C.62)

where the lepton and up quark masses are neglected. We use ΓD∗0 ' 6× 10−5 GeV,
fT
D∗0
' fD∗0 and fD∗0 ' 0.242GeV [175].

The distribution for the dineutrino decay D → PνLν̄L is obtained from eq. (C.45)
by the replacements ml → 0, C7 → 0 and C10 = −C9. Note that the amplitude fac-
torizes on the full q2 range as neutrinos do not couple strongly nor electromagnetically.
Furthermore, neutrino flavors are summed as they are not detectable in experiments.
We obtain the distribution for D → Peµ analogue to the one for D → Pll, see the

previous appendix. The starting point is eq. (C.37). We neglect the electron mass and
write the scalar products as p+ ·p− = q2/2− (m2

+ +m2
−)/2, q ·p± = q2/2± (m+−m−)/2,
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−)/2. It follows that the
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+ 2Re [(K9K
∗
S ±K10K

∗
P ) f0f+]

m2
D −m2

P

mc −mu
mµu

+ 4Re [(±K9K
∗
T +K10K

∗
T5) fT f0]

(
m2
D −m2

P

)
mµu

+O
(
m2
µ

)
, (C.63)
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where Ki = K
(eµ,µe)
i are the Wilson coefficients of the operators obtained from the ones

defined at the beginning of chapter 3 by the replacements l̄Γl → (ēΓµ, µ̄Γe) for Dirac
matrices Γ. Here m2

µ ≤ q2 ≤ (mD −mP )2. We obtain

u ∈ [m2
+ −m2

− + 2(Ep(E+ − E−)∓ |pP |(|p+|+ |p−|))] , (C.64)

and in the dilepton center-of-mass frame, due to momentum conservation,

q2 =

(√
m2
D + |pP |2 −

√
m2
P + |pP |2

)2

. (C.65)

It follows that

|pP |2 =
1

4q2
λ(m2

D,m
2
P , q

2) , E2
P =

1

4q2

(
m2
D −m2

P − q2
)2
, (C.66)

and, analogously,

|p±|2 =
1

4q2
λ(m2

+,m
2
−, q

2) , E2
± =

1

4q2

(
m2
± −m2

∓ + q2
)2
. (C.67)

Combining the above equations one obtains

u ≥
(
m2
D −m2

P

) m2
+ −m2

−
q2

−
√
λ(m2

D,m
2
P , q

2)

(
1− m2

+ +m2
−

q2

)
,

u ≤
(
m2
D −m2

P

) m2
+ −m2

−
q2

+
√
λ(m2

D,m
2
P , q

2)

(
1− m2

+ +m2
−

q2

)
, (C.68)

that is u(q2) =
√
λ(m2

D,m
2
P , q

2) +O(m2
µ). Note that the hadronic matrix elements are

the same as for D → Pll decays, and no Wilson coefficient K7 analogue to the one for
the operator Q7 is present, as the photon does not couple to different lepton flavors.
Furthermore one can define angular observables, e.g. the forward-backward asymmetry
and flat term, as for D → Pll decays.
Finally, the branching ratio for D0 → µ±e∓ is obtained as [1]

B(D0 → µ±e∓) =
G2
Fα

2
em

5
D0f

2
D0

64π3ΓD0

(
1−

m2
µ

m2
D0

)2( ∣∣∣∣KS −K ′S
mc

∓ mµ

m2
D0

(K9 −K ′9)

∣∣∣∣2
+

∣∣∣∣KP −K ′P
mc

+
mµ

m2
D0

(K10 −K ′10)

∣∣∣∣2) , (C.69)

where the electron and up quark masses are neglected.
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D. Form factors for D → V transitions

For D → V γ decays, see sections 3.3 and 4.4, only a few form factor at certain q2 are
needed. Compared to transitions into a pseudoscalar meson less information on D → V
form factors are available. To draw a consistent picture and to obtain reliable form
factors including uncertainties we consider the full set of form factors for any q2 in the
current appendix. Moreover, they may be of use in view of a future work on D → V ll
decays.
The form factors V , A1,2,0, and T1,2,3 are defined by

〈V (pV , ε
ν)|ūγµ(1− γ5)c|D(pD)〉 = −2εµν1ν2ν3(ε∗)ν1pν2D q

ν3 V

mD +mV

+ i

(
qµ
ε∗ · q
q2
− ε∗µ

)
(mD +mV )A1

− i
(
qµ
m2
D −m2

V

q2
− (pD + pV )µ

)
ε∗ · q

mD +mV
A2

− iqµ(ε∗ · q)2mV

q2
A0 , (D.1)

〈V (pV , ε
ν)|ūσµν1qν1(1 + γ5)c|D(pD)〉 = −i2εµν1ν2ν3(ε∗)ν1pν2D q

ν3T1

−
(
(pD + pV )µ(ε∗ · q)− ε∗µ

(
m2
D −m2

V

))
T2

+

(
qµ − (pD + pV )µ

q2

m2
D −m2

V

)
(ε∗ · q)T3 , (D.2)

where ε0123 = 1, and qµ = (pD−pV )µ. For a neutrally charged V meson the form factors
are multiplied by the isospin factor of the uū content in V , e.g. 1/

√
2 for V ∈ {ρ0, ω}.

For perturbative D → V γ decays only one form factor T1(0) = T2(0), which follows
from the EOM, is needed. Furthermore, 2mVA0(0) = ((mD + mV )A1(0) − (mD −
mV )A2(0)). Note that 〈V |ūc|D〉 = 0 and 〈V |ūγ5c|D〉 = 2mV /(mc +mu) (ε∗ · q)A0.
In the following, we compile available measurements and calculations of the form fac-

tors for D(s) → (ρ, ω,K∗) transitions. For the transition D → ρ the CLEO collaboration
measured [291], adding uncertainties in quadrature,

V (0) = 0.84+0.10
−0.11 , A1(0) = 0.56+0.02

−0.03 , A2(0) = 0.47± 0.07 ,

V (0)

A1(0)
= 1.48± 0.16 ,

A2(0)

A1(0)
= 0.83± 0.12 . (D.3)
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These values are consistent with lattice computations [292] (and references therein) yield-
ing

V (0) = 1.1± 0.2 (0.71+0.10
−0.12) , A1(0) = 0.65± 0.07 (0.60± 0.06) ,

A2(0) = 0.55± 0.10 (0.61+0.12
−0.14) , A0(0) = 0.70+0.05

−0.12 (0.59± 0.06) . (D.4)

Here, in parenthesis the preliminary results of [293] are given, where we have doubled
the uncertainties to account for systematic ones. Note that the form factors from lattice
computations slightly differ from each other.
For the transition D → ω the BESIII collaboration measured [294]

V (0)

A1(0)
= 1.24± 0.11 ,

A2(0)

A1(0)
= 1.06± 0.16 , (D.5)

where uncertainties are added in quadrature. A comparison with eq. (D.3) does not show
a sensitivity to the spectator quark. Within the LEET V (0) = A1(0)(mD+mV )2/(m2

D+
m2
V ) [295], hence from eqs. (D.3, D.5) a 1/mD uncertainty of ∼ 35% can be inferred.
For the transition Ds → K∗ no measurement or lattice computation is available.

However, employing spectator invariance one can relate the form factors of Ds → K∗

to D → (ρ, ω) form factors. A measurement of the D → K∗ form factor at q2 = 0
[296] yields A1(0), A1(0)/V (0) and A2(0)/V (0) consistent with SU(3) flavor symmetry.
In [296] also form factors in the helicity basis were measured, which allows for a model
independent form factor extraction, once current uncertainties are reduced.
To complement the information on the form factors from experiments and lattice com-

putations we include QCD LCSR calculations as well as model dependent calculations
in the following.
Within QCD LCSR the form factors are parametrized as [297]

F (q2) =
F (0)

1− aF q2/m2
D + bF (q2/m2

D)2
. (D.6)

The corresponding parameters are for D → ρ

V (0) = 0.801+0.044
−0.036 , aV = 0.78+0.24

−0.20 , bV = 2.61+0.29
−0.04 ,

A1(0) = 0.599+0.035
−0.030 , aA1 = 0.44+0.10

−0.06 , bA1 = 0.58+0.23
−0.04 ,

A2(0) = 0.372+0.026
−0.031 , aA2 = 1.64+0.10

−0.16 , bA2 = 0.56+0.04
−0.28 ,

A3(0) = −0.719+0.055
−0.066 , aA3 = 1.05± 0.15 , bA3 = 1.77+0.20

−0.11 , (D.7)

for D → ω

V (0) = 0.742+0.041
−0.034 , aV = 0.79+0.22

−0.20 , bV = 2.52+0.28
−0.13 ,

A1(0) = 0.556+0.033
−0.028 , aA1 = 0.45+0.09

−0.05 , bA1 = 0.54+0.17
−0.10 ,

A2(0) = 0.333+0.026
−0.030 , aA2 = 1.67+0.09

−0.15 , bA2 = 0.44+0.05
−0.29 ,

A3(0) = −0.657+0.053
−0.065 , aA3 = 1.07+0.17

−0.14 , bA3 = 1.77+0.14
−0.07 (D.8)
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and for Ds → K∗

V (0) = 0.771± 0.049 , aV = 1.08± 0.02 , bV = 0.13+0.03
−0.02 ,

A1(0) = 0.589+0.040
−0.042 , aA1 = 0.56± 0.02 , bA1 = −0.12+0.03

−0.02 ,

A2(0) = 0.315+0.024
−0.018 , aA2 = 0.15+0.22

−0.14 , bA2 = 0.24+0.83
−0.94 ,

A3(0) = −0.675+0.027
−0.037 , aA3 = 0.48+0.13

−0.11 , bA3 = −0.14+0.18
−0.17 . (D.9)

Here the form factor A0 is obtained via A0 = ((mD + mV )A1 − (mD − mV )A2 −
q2

mD+mV
A3)/(2mV ). For weak annihilation modes we also need

A1(0)(D→K∗) = 0.571+0.020
−0.022 , a

A
(D→K∗)
1

= 0.65+0.10
−0.06 , b

A
(D→K∗)
1

= 0.66+0.21
−0.18 , (D.10)

A1(0)(Ds→φ) = 0.569+0.046
−0.049 , a

A
(Ds→φ)
1

= 0.84+0.06
−0.05 , b

A
(Ds→φ)
1

= 0.16± 0.01 . (D.11)

Note that LCSR calculations are valid only at low q2. The results for A2(0) are lower
than the measurements and lattice computations.
The same parametrization, eq. (D.6), is utilized in the covariant light front quark

model (CLFQM) [298]. The parameters are for D → ρ

V (0) = 0.88+0.01
−0.02 , aV = 1.23± 0.01 , bV = 0.40+0.04

−0.03 ,

A0(0) = 0.69± 0.01 , aA0 = 1.08+0.01
−0.02 , bA0 = 0.45± 0.03 ,

A1(0) = 0.60+0.00
−0.01 , aA1 = 0.46± 0.02 , bA1 = 0.01± 0.00 ,

A2(0) = 0.47± 0.00 , aA2 = 0.89± 0.02 , bA2 = 0.23± 0.03 , (D.12)

for D → ω

V (0) = 0.85+0.01
−0.02 , aV = 1.24± 0.01 , bV = 0.45± 0.04 ,

A0(0) = 0.64± 0.01 , aA0 = 1.08+0.01
−0.02 , bA0 = 0.50± 0.04 ,

A1(0) = 0.58+0.00
−0.01 , aA1 = 0.49± 0.02 , bA1 = 0.02+0.01

−0.00 ,

A2(0) = 0.49± 0.00 , aA2 = 0.95± 0.01 , bA2 = 0.28± 0.02 (D.13)

and for Ds → K∗

V (0) = 0.87± 0.01 , aV = 1.13+0.00
−0.01 , bV = 0.69+0.06

−0.04 ,

A0(0) = 0.61± 0.01 , aA0 = 0.90+0.02
−0.01 , bA0 = 0.87± 0.05 ,

A1(0) = 0.56± 0.01 , aA1 = 0.59± 0.01 , bA1 = 0.08± 0.01 ,

A2(0) = 0.46± 0.00 , aA2 = 0.90± 0.01 , bA2 = 0.43± 0.03 . (D.14)
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For weak annihilation modes the needed parameters are given as

A1(0)(D→K∗) = 0.72± 0.01 , a
A

(D→K∗)
1

= 0.45± 0.02 ,

b
A

(D→K∗)
1

= 0.01± 0.00 , (D.15)

A1(0)(Ds→φ) = 0.69± 0.00 , a
A

(Ds→φ)
1

= 0.56± 0.03 ,

b
A

(Ds→φ)
1

= 0.07± 0.01 . (D.16)

Here we add uncertainties in quadrature.
In the constituent quark model (CQM) the form factors are parametrized as [299]

F (q2) =
F̃ (0)

1− σ1 q2/M2 + σ2 q4/M4
, (D.17)

where F̃ (0) = F (0)/(1 − q2/M2) for F ∈ {V,A0, T1}, else F̃ (0) = F (0), and M = mD

for A0, else M = mD∗ . Here the parameters are for D → ρ

V (0) = 0.90 , σ1 = 0.46 , σ2 = 0 ,

A0(0) = 0.66 , σ1 = 0.36 , σ2 = 0 ,

A1(0) = 0.59 , σ1 = 0.50 , σ2 = 0 ,

A2(0) = 0.49 , σ1 = 0.89 , σ2 = 0 ,

T1(0) = 0.66 , σ1 = 0.44 , σ2 = 0 ,

T2(0) = 0.66 , σ1 = 0.38 , σ2 = 0.50 ,

T3(0) = 0.31 , σ1 = 1.10 , σ2 = 0.17 (D.18)

and for Ds → K∗

V (0) = 0.90 , σ1 = 0.46 , σ2 = 0 ,

A0(0) = 0.66 , σ1 = 0.36 , σ2 = 0 ,

A1(0) = 0.59 , σ1 = 0.50 , σ2 = 0 ,

A2(0) = 0.49 , σ1 = 0.89 , σ2 = 0 ,

T1(0) = 0.66 , σ1 = 0.44 , σ2 = 0 ,

T2(0) = 0.66 , σ1 = 0.38 , σ2 = 0.50 ,

T3(0) = 0.31 , σ1 = 1.10 , σ2 = 0.17 . (D.19)

Furthermore, [300] gives the form factors based on chiral theory. The D → (ρ, ω) form
factors at q2 = 0, however, differ from measurements and lattice computations. The
same observation is made for the D → π form factors given in [300].
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In the heavy quark limit the tensor form factors Ti are related to the vector form factor
V , and axialvector form factors Ai as [297]

T1 =
m2
D −m2

V + q2

2mD(mD +mV )
V +

mD +mV

2mD
A1 ,

T2 =
λ(m2

D,m
2
V , q

2)

2mD(mD −mV )(mD +mV )2
V +

m2
D −m2

V + q2

2mD(mD −mV )
A1 ,

T3 =
m2
D + 3m2

V − q2

2mD(mD +mV )
V +

mV (m2
D −m2

V )

mDq2
A0 −

(mD +mV )(m2
D −m2

V + q2)

2mDq2
A1

+
(mD −mV )(m2

D −m2
V + q2)

2mDq2
A2 . (D.20)

In different models it is shown that the heavy quark relations hold on the full q2 range
approximatively ≥ 70% [297] (and references therein). For q2 = 0 the heavy quark
relations read [118]

T1(0) = T2(0) = V (0)
mD

mD +mV
, T3(0) = V (0)

m2
D + 3m2

V

2mD(mD +mV )
. (D.21)

Perturbative corrections can be obtained form [118]. At high q2, the relations to leading
order in heavy quark limit and O(α2

s) are [114]

T1(q2 ∼ m2
D) = V (q2 ∼ m2

D) , T2(q2 ∼ m2
D) = A1(q2 ∼ m2

D) ,

T3(q2 ∼ m2
D) = A2(q2 ∼ m2

D)
q2

m2
D

. (D.22)

The form factors from the CQM, the CLFQM, LCSR and the heavy quark relations,
eq. (D.20), are shown in figure D.1. We deduce that the uncertainties for the form
factors are sizable, and that further experimental data are needed. However, with the
compilation of available information we can set a range for the uncertainties, see the blue
band in the plots which is used for the form factor A1 in section 3.3. In particular, with
respect to the CQM form factors, we infer the model and spectator quark sensitivity
for D → (ρ, ω) form factors to be within the range of σ(V,A0,2) ∼ 20%, σA1 ∼ 10%
and σT1,2,3 ∼ 25%. These ranges cover the form factors from measurements, lattice
computations, LCSR, and the CLFQM. The uncertainties of the tensor form factors Ti
follow from the heavy quark relations. For Ds → K∗ form factors we infer σ(V,A0) ∼
25%, σA1 ∼ (10 − 20)% (low q2 to large q2), σA2 ∼ 35% and σT1,2,3 ∼ 30%. Here we
assume spectator quark invariance for A0,2, which is consistent with observations from
V and A1. The heavy quark relations differ by ∼ 15% for T1, . 35% (low q2 to large
q2) for T2 and . 55% for T3 within the CQM. Similar differences are found in b physics
[301].
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Figure D.1.: The form factors for D → V transitions from the CQM (solid curves), the
CLFQM (dashed curves) and LCSR (dotted curves). For Ti we addition-
ally provide predictions from the heavy quark relations (HQ), eq. (D.20).
The blue, purple, orange, cyan and yellow curves are for D → ρ, D → ω,
Ds → K∗, D → K∗ and Ds → φ, respectively. The error bars depict the
measurements or lattice computation [291, 292]. We cut at the kinematical
endpoint. The blue band represents the form factor used in section 3.3.
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E. Resonant decays in D → V γ

In this appendix the amplitudes of the resonance model from [146, 147], employed in
section 3.3, are collected. The amplitudes of [146, 147] are rewritten to account for
additionally measured parameters and typing errors.
The PC and PV amplitudes are defined as [146, 147]

APC/PV =
√
αe2πGFV

∗
cqVuq′

(
AI
PC/PV +AII

PC/PV +AIII
PC/PV

)
, (E.1)

where V ∗cqVuq′ are the CKM elements of the weak D → V transition. With [302] the
amplitudes are rewritten as

|AI,V 0

PC | = −
m

7/2

D∗0

(
m2
D∗0
− (mD0 +mπ0)2

) 3
4
(
m2
D∗0
− (mD0 −mπ0)2

) 3
4
mV 0

√
2παem

3/2
D0

(
m2
D∗0
−m2

D0

) 3
2

(mD∗0 +mD0 −mπ0)(m2
D∗0
−m2

V 0)

× a2fV 0

√
Γ(D∗0 → D0γ)

Γ(D∗0 → D0π0)
f+(0) ,

|AII,V 0

PC | =
2
√

3m2
D0√

αe(m2
D0 −m2

π0)

× a2fDfπ

√Γ(ρ0 → π0γ)
m

3/2
ρ(

m2
ρ −m2

π0

) 3
2

−
√

Γ(ω → π0γ)
m

3/2
ω(

m2
ω −m2

π0

) 3
2

 ,

|AIII,V 0

PC | = 1

mD0 +mV 0

a2

(
−f2

ρ +
1

3
f2
ω −

V ∗csVus
V ∗cdVud

2

3
f2
φ

)
V V 0

(0) ,

|AI,V 0

PV | = 0 ,

|AII,V 0

PV | = −
1√

2(m2
D0 −m2

V 0)

× a2fρ

(
fρA

ρ
1(m2

V 0)(mD0 +mρ) + fωA
ω
1 (m2

V 0)
(mD0 +mω)mρ

3mω

)
,

|AIII,V 0

PV | = 1

mD0 −mV 0

a2

(
−f2

ρ +
1

3
f2
ω −

V ∗csVus
V ∗cdVud

2

3
f2
φ

)
AV

0

1 (0) (E.2)
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for V = V 0 ∈ {ρ0, ω} and for V = ρ+ they read

|AI,ρ+
PC | =

m
7/2

D∗+

(
m2
D∗+
− (mD+ +mπ0)2

) 3
4
(
m2
D∗+
− (mD+ −mπ0)2

) 3
4
mρ

√
παem

3/2
D+

(
m2
D∗+
−m2

D+

) 3
2

(mD∗+ +mD+ −mπ+)(m2
D∗+
−m2

ρ)

× a1fρ

√
Γ(D∗+ → D+γ)

Γ(D∗+ → D+π0)
f+(0) ,

|AII,ρ+
PC | =

2
√

6m2
D+m

3/2
ρ

√
αe(m2

D+ −m2
π+)

(
m2
ρ −m2

π+

) 3
2

a1fDfπ
√

Γ(ρ+ → π+γ) ,

|AIII,ρ+
PC | = 1

mD+ +mρ
a2

(
−f2

ρ +
1

3
f2
ω −

V ∗csVus
V ∗cdVud

2

3
f2
φ

)
V ρ(0) ,

|AI,ρ+
PV | =

2mρ

m2
D+ −m2

ρ

a1fDfρ ,

|AII,ρ+
PV | =

1

m2
D+ −m2

ρ

a1fρ

(
fρA

ρ
1(m2

ρ)(mD+ +mρ)− fωAω1 (m2
ρ)

(mD+ +mω)mρ

3mω

)
,

|AIII,ρ+
PV | = 1

mD+ −mρ
a2

(
−f2

ρ +
1

3
f2
ω −

V ∗csVus
V ∗cdVud

2

3
f2
φ

)
Aρ1(0) . (E.3)

Here the coefficients a1 = 1.3 ± 0.1, a2 = −0.55 ± 0.1 [167] (and [303]) are obtained
by fitting non-leptonic decays. The coefficients effectively include non-factorisable ef-
fects [304] and they yield the largest parametric uncertainties. Furthermore, we take
fV (m2

V ) = fV (0) = fV .
For the decay Ds → K∗+γ the amplitudes are

|AI,K∗+
PC | =

4m
3/2
D∗s
mK∗+

m
1/2
Ds

(m2
D∗s
−m2

K∗+
)
a1fDsfK∗

∣∣∣∣∣λ′ + λg̃V
−fφ

3
√

2mφ

∣∣∣∣∣ ,
|AII,K∗+

PC | =
2
√

6m2
Ds
m

3/2

K∗+

√
αe(m2

Ds
−m2

K+)
(
m2
K∗+
−m2

K+

) 3
2

a1fDsfK

√
Γ(K∗+ → K+γ) ,

|AIII,K∗+
PC | = 1

mDs +mK∗+
a2

(
−V

∗
cdVud
V ∗csVus

(
−f2

ρ +
1

3
f2
ω

)
+

2

3
f2
φ

)
V K∗(0) ,

|AI,K∗+
PV | = 2mK∗+

m2
Ds
−m2

K∗+
a1fDsfK∗ ,

|AII,K∗+
PV | = 2(mDs +mφ)mK∗+

3mφ(m2
Ds
−m2

K∗+
)
a1fK∗fφA

(Ds→φ)
1 (m2

K∗+) ,

|AIII,K∗+
PV | = 1

mDs −mK∗+
a2

(
−V

∗
cdVud
V ∗csVus

(
−f2

ρ +
1

3
f2
ω

)
+

2

3
f2
φ

)
AK

∗
1 (0) . (E.4)
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Concerning the amplitude AI,K∗+
PC , one cannot normalize to B(D∗s → Dsπ

0) due to its
isospin breaking nature [305], which violates the approximation of [146, 147]. Further-
more, ΓD∗s , as a normalization, is not measured. However, the combination of parameters
λ′ + λg̃V (−fφ)/(3

√
2mφ) can be obtained in the framework of [146, 147] by∣∣∣∣∣λ′ + λg̃V

(
± fρ

2
√

2mρ

+
fω

6
√

2mω

)∣∣∣∣∣ =
m2
D∗
(
m2
D∗ − (mD +mπ0)2

)3/4
4
√
παemD(m2

D∗ −m2
D)3/2

×
(
m2
D∗ − (mD −mπ0)2

)3/4
(mD∗ +mD −mπ0/+)

× f+(0)

fD

√
Γ(D∗0/+ → D0/+γ)

Γ(D∗0/+ → D0/+π0)
, (E.5)

where the ambiguity in λ′ and λg̃V is fixed by means of [302]

λg̃V =
V V (0)

fD

√
2m2

D∗

(mD +mV )(mD∗ +mD −mV )
. (E.6)

Compared to [146, 147] we adjust the CKM factors in the penguin amplitudes AIII
PC/PV,

allowing for CP violation, and its sign to recover vanishing amplitudes in the SU(3)
flavor limit. The strong phases are not fixed within this model, yielding the largest
uncertainties.
In the following, we list the amplitudes for the WA modes. They are

|AI,D0→φγ
PC | = −

m
7/2

D∗0

(
m2
D∗0
− (mD0 +mπ0)2

) 3
4
(
m2
D∗0
− (mD0 −mπ0)2

) 3
4
mφ

√
παem

3/2
D0

(
m2
D∗0
−m2

D0

) 3
2

(mD∗0 +mD0 −mπ0)(m2
D∗0
−m2

φ)

× a2fφ

√
Γ(D∗0 → D0γ)

Γ(D∗0 → D0π0)
f+(0) ,

|AII,D0→φγ
PC | = − 8m2

D0

3(m2
D0 −m2

K0)mφ
a2fDfφ|CV VΠ| ,

|AIII,D0→φγ
PC | = 0 ,

|AI,D0→φγ
PV | = 0 ,

|AII,D0→φγ
PV | = − mφ

m2
D0 −m2

φ

a2fφ

(
fρA

ρ
1(m2

φ)
mD0 +mρ

mρ
+ fωA

ω
1 (m2

φ)
mD0 +mω

3mω

)
,

|AIII,D0→φγ
PV | = 0 , (E.7)
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where the parameter |CV VΠ| ' 0.3 is determined by

|CV VΠ| =
√

6m
3/2

K∗0/+√
αe(m2

K∗0/+
−m2

K0/+)3/2

fK∣∣∣∓ fρ
mρ

+ fω
3mω
− 2fφ

3mφ

∣∣∣
×
√

Γ(K∗0/+ → K0/+γ) . (E.8)

Further amplitudes are

|AI,D0→K̄∗0γ
PC | = −

m
7/2

D∗0

(
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− (mD0 +mπ0)2

) 3
4
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m2
D∗0
− (mD0 −mπ0)2

) 3
4
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√
παem
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) 3
2
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√
Γ(D∗0 → D0γ)

Γ(D∗0 → D0π0)
f+(0) ,

|AII,D0→K̄∗0γ
PC | = −

2
√

6m2
D0m

3/2

K∗0

√
αe(m2

D0 −m2
K0)

(
m2
K∗0
−m2

K0
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a2fDfK

√
Γ(K∗0 → K0γ) ,
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PC | = 0 ,

|AI,D0→K̄∗0γ
PV | = 0 ,
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PV | = − mK∗0
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D0 −m2

K∗0
a2fK∗

×
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fρA

ρ
1(m2
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mD0 +mρ

mρ
+ fωA

ω
1 (m2

K∗0)
mD0 +mω

3mω

)
,

|AIII,D0→K̄∗0γ
PV | = 0 (E.9)

as well as |AI,II,III,D0→K∗0γ
PC,PV | = |V

∗
cdVus
V ∗csVud

| |AI,II,III,D0→K̄∗0γ
PC,PV |. Furthermore,

|AI,D+→K∗+γ
PC | =

m
7/2

D∗+

(
m2
D∗+
− (mD+ +mπ0)2

) 3
4
(
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) 3
4
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Γ(D∗+ → D+π0)
f+(0) ,
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2
√

6m2
D+m

3/2

K∗+

√
αe(m2

D+ −m2
K+)

(
m2
K∗+
−m2

K+

) 3
2

a1fDfK
√

Γ(K∗ → K+γ) ,
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|AIII,D+→K∗+γ
PC | = 0 ,

|AI,D+→K∗+γ
PV | = 2mK∗+

m2
D+ −m2

K∗+
a1fDfK∗ ,

|AII,D+→K∗+γ
PV | = mK∗+

m2
D+ −m2

K∗+

× a1fK∗

(
fρA

ρ
1(m2

K∗+)
mD+ +mρ

mρ
− fωA(Ds→K∗)

1 (m2
K∗+)

mD+ +mω

3mω

)
,

|AIII,D+→K∗+γ
PV | = 0 (E.10)

and

|AI,Ds→ρ+γ
PC | =

4m
3/2
D∗s
mρ

m
1/2
Ds

(m2
D∗s
−m2

ρ)
a1fDsfρ
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Ds
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(
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a1fDsfπ
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Ds
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a1fDsfρ ,
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1 (m2

K∗+) ,
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PV | = 0 . (E.11)
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F. Chiral Fierz identities

In this appendix we derive chiral Fierz identities, which are employed in section 4.2.1.
We follow the notation as given at the beginning of chapter 3. The formalism employed
here is based on [306], see also [307].
Defining the chiral basis as

ΓA ∈ {PR, PL, γµPL, γµPR, σµν} (F.1)

its dual basis is given by

ΓA ∈ {PR, PL, γµPR, γµPL,
1

2
σµν} . (F.2)

Here, PR/L = 1
2(1 ± γ5), γ5 = iγ0γ1γ2γ3, {γµ, γν} = 2gµν , gµν = diag(1,−1,−1,−1),

σµν = i
2 [γµ, γν ], σµνγ5 = i

2ε
µναβσαβ and ε0123 = −ε0123 = 1. The normalization is

Tr[ΓAΓB] = 2δAB, where µ < ν. Following [306] we represent pairs of indices, i.e. color
indices, by closed parentheses and brackets, that is “()” and “[]”.
The completeness relations read

(ΓA][ΓB) = −1

4
Tr
[
ΓAΓDΓBΓC

]
(ΓC)[ΓD] ,

(ΓA)[ΓB] = −1

4
Tr
[
ΓAΓDΓBΓC

]
(ΓC ][ΓD) , (F.3)

where the minus sign arises from the anticommutation of fermion fields.
The Lorentz invariant bilinears are written as

O1 = (PR][PR) , O2 = (PR)[PR] ,

O3 = (PR][PL) , O4 = (PR)[PL] ,

O5 = (PL][PR) , O6 = (PL)[PR] ,

O7 = (PL][PL) , O8 = (PL)[PL] ,

O9 = (γµPR][γµPR) , O10 = (γµPR)[γµPR] ,

O11 = (γµPR][γµPL) , O12 = (γµPR)[γµPL] ,

O13 = (γµPL][γµPR) , O14 = (γµPL)[γµPR] ,

O15 = (γµPL][γµPL) , O16 = (γµPL)[γµPL] ,

O17 = (σµν ][σµν) , O18 = (σµν)[σµν ] ,

O19 = (σµν ][σµνγ5) , O20 = (σµν)[σµνγ5] . (F.4)
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Here we implicitly sum µ, ν, which is compensated by the replacement σµν → 1
2σ

µν .
We find the chiral Fierz identities for fermion fields, labeled by F ,

O1
F
= −1

2
O2 −

1

16
O18 −

1

16
O20 , O2

F
= −1

2
O1 −

1

16
O17 −

1

16
O19 ,

O3
F
= −1

2
O14 , O4

F
= −1

2
O13 ,

O5
F
= −1

2
O12 , O6

F
= −1

2
O11 ,

O7
F
= −1

2
O8 −

1

16
O18 +

1

16
O20 , O8

F
= −1

2
O7 −

1

16
O17 +

1

16
O19 ,

O9
F
= O10 ,

O15
F
= O16 ,

O17
F
= −6O2 − 6O8 +

1

2
O18 , O18

F
= −6O1 − 6O7 +

1

2
O17 ,

O19
F
= −6O2 + 6O8 +

1

2
O20 , O20

F
= −6O1 + 6O7 +

1

2
O19 . (F.5)
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G. Constraints on leptoquark models

This appendix is a compilation of expressions used to calculate constraints on LQ models
listed in appendix G.1 and utilized in chapter 4. The parameters and experimental data
are listed in appendix A. We constrain gauge vector LQ models only, as non-gauge vector
LQs depend on the cutoff characteristic for a certain UV model, see e.g. [214]. Moreover,
we do not utilize observables which depend on anomalous couplings, e.g. corrections to
the Z → ff and the W vertex, which can be found in [224]. Note that fermion doublets
coupling to LQs are taken into account. In the current appendix we do not neglect light
fermion masses if they are needed as regulators. Due to the variety of scales involved we
chose the LQ mass as the reference scale and use mc(µ ∼ 1 TeV) ' 0.5 GeV, ms(µ ∼
1 TeV) ' 0.05 GeV, md(µ ∼ 1 TeV) ' 0.002 GeV and mu(µ ∼ 1 TeV) ' 0.001 GeV.
However, this choice does not affect ratios of the masses and our issue is to constrain the
couplings at leading order.

Utilizing the model-independent limits from section 4.1 and the Wilson coefficients
given in eq. (4.18), we obtain constraints due to c→ ul(′)l induced decays, i.e. D → Pll,
D → Peµ, D0 → ll and D0 → µe. The Wilson coefficients for the radiative decay
D0 → ρ0γ are worked out in section 4.2.1. In particular, they also involve couplings to
τ leptons. The experimental D0 → ρ0γ data on do not give constraints for |λ| . M

TeV .

The D0 − D̄0 mass difference to second order in the weak interaction is given by [308]

∆mD0 =
1

mD
Re

[〈
D̄0

∣∣∣∣H(|∆C|=2)

∣∣∣∣D0

〉
+

〈
D̄0

∣∣∣∣i ∫ d4xT
[
H(|∆C|=1)(x)H(|∆C|=1)(0)

]∣∣∣∣D0

〉]
, (G.1)

where T indicates time ordering. Here CP violation is neglected, which is consistent with
experiments [97]. In the SM ∆SMmD0/ΓD0 ' 1.5× 106 ~ s−1 is found via the OPE and
to one loop QCD [308]. This contribution is helicity suppressed and subject to the GIM
mechanism, however, larger contribution are possible via higher dimensional operators
or non-local contributions [309] (and references therein). We estimate the constraints on
LQ models neglecting the SM, which dominates the non-local product of Hamiltonian
densities in the second term of eq. (G.1) [308]. On the other hand, the SM contribution
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to the local Hamiltonian in the first term of eq. (G.1) is negligible [308]. For vector LQs
one obtains [61]

∆VmD0 =
2

3
mDf

2
DBD

m2
l Re

[
λ

(ul)
V2

(
λ

(cl)
V2

)∗]2

π2M4
V2

, (G.2)

which is multiplied by 3 for V3 due to additional neutrinos. The matrix elements are, for
massless quarks, which imply no helicity flip and since QCD is parity invariant,

〈D̄0|(ūL,RγµcL,R)(ūL,Rγ
µcL,R)|D0〉 =

2

3
m2
Df

2
DBD . (G.3)

For the bag parameter we use [310], adding uncertainties in quadrature,

BD0(µ = 3 GeV) = 0.757± 0.028 (G.4)

which is consistent with the one obtained in [311]. Here, e.g., a non-gauge vector LQ
would yield eq. (G.2) with the replacement ml → M for a cutoff scale M . For scalar
LQs [312]

H
|∆C|=2
S =

1

128π2

λ
(cl)
L,R

(
λ

(ul)
L,R

)∗
λ

(cl′)
L,R

(
λ

(ul′)
L,R

)∗
M2

(ūL,RγµcL,R)(ūL,Rγ
µcL,R) , (G.5)

which is multiplied by 2 for S2L and by 5 for S3. It follows

∆SmD0 =
mDf

2
DBD

96π2

1

M2
Re

[
λ

(ce)
L

(
λ

(ue)
L

)∗
+ λ

(ce)
R

(
λ

(ue)
R

)∗
+ λ

(cµ)
L

(
λ

(uµ)
L

)∗
+ λ

(cµ)
R

(
λ

(uµ)
R

)∗
+ λ

(cτ)
L

(
λ

(uτ)
L

)∗
+ λ

(cτ)
R

(
λ

(uτ)
R

)∗ ]2

. (G.6)

Note that ∆SmD0 scales non-linear in the mass and couplings.
The D0 − D̄0 lifetime difference follows from double ∆C = 1 insertions as [308]

∆ΓD0 = − 1

mD
Im

[〈
D̄0

∣∣∣∣i ∫ d4xT
[
H(|∆C|=1)(x)H(|∆C|=1)(0)

]∣∣∣∣D0

〉]
, (G.7)

where CP violation is neglected. We neglect the SM contribution ∆SMΓD0/(2ΓD0) '
6× 10−7 which is small due to the GIM mechanism [308] but could be larger via higher
dimensional operators or non-local contributions [309] (and references therein). The
non-local contribution is obtained from diagrams with light fields, yielding for vector
LQs [313]

∆V ΓD0 = −mDm
2
cf

2
DBD

Re
[
λ

(ue)
V2

(
λ

(ce)
V2

)∗
+ λ

(uµ)
V2

(
λ

(cµ)
V2

)∗
+ λ

(uτ)
V2

(
λ

(cτ)
V2

)∗]2

128πM4
V2

, (G.8)
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multiplied by 3 for V3 due to additional neutrinos. We obtain |∆V ΓD0/ΓD0 | . 6× 10−3

for |λ| . M
TeV , thus no constraint. Up to combinatorial factors and additive LQ couplings

eq. (G.8) holds also for scalar LQs [314], yielding the same conclusion.
The Lagrangian for atomic parity violation is given by [315]

LAPV =
GF√

2

∑
q∈{u,d}

(C1q ēγ
µγ5eq̄γµq + C2q ēγ

µeq̄γµγ5q) (G.9)

from which the nuclear weak charge follows as

Qw(Z,N) = −2((2Z +N)C1u + (2N + Z)C1d) . (G.10)

Here Z = 55 and N = 78 are the proton and neutron numbers for Cs, respectively. We
find via matching

δṼ1C1u = −δṼ2C1u = −1

2
δV3C1u = −δV3C1d = −

√
2

4GF

∣∣∣λ(ue)

Ṽ

∣∣∣2
M2
Ṽ

,

δS1C1u = −δS2C1u =

√
2

8GF

∣∣∣λ(ue)
R

∣∣∣2 − ∣∣∣λ(ue)
L

∣∣∣2
M2
S1

, δS2C1d = −
√

2

8GF

∣∣∣λ(ue)
S2R

∣∣∣2
M2
S2

,

δS3C1u =
1

2
δS3C1d = −

√
2

8GF

∣∣∣λ(ue)
S3

∣∣∣2
M2
S3

. (G.11)

We do not match the model V2 due to an additional dR quark coupling which is not
relevant for charm FCNC transitions.
As mentioned we do not use observables involving the Z boson to constrain vector LQ

models. Nonetheless, we consider the shift due to scalar LQs for Z decaying to fermions
f , which is [316]

δSΓZ→ff =
αemZ

3 sin2 θ cos2 θ
gf
|λ(ff ′)
L,R |2
16π2

m2
Z

3M2

((
−11

6
− ln

m2
f ′

M2

)
gf ′ +

1

3
g

)
(G.12)

with

gf = T
(f)
3 − qf sin2 θw , g = T

(e)
3 − qe sin2 θw , (G.13)

where we neglect terms ∼ λLλR. Here T3 and q denote the third component of the weak
hypercharge and the electric charge, respectively, see tables 4.2 and 2.1 for the LQ and
SM fermion charges. The eq. (G.12) is multiplied by 3 if the conjugate f ′ is a quark, i.e.
the fermion f is a lepton, due to color and by 2 if the conjugate f ′ is a down-type quark
for S3. In the SM the ratios of up-type quarks and leptons are ΓSM

Z→ff/Γ
SM
Z→f ′f ′ = 1 and
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measurements yield Γ(Z → ((uu + cc)/2))/Γ(Z → cc) = 0.96± 0.06, see appendix A.
One obtains |δSΓZ→ff | . 6× 10−5 for |λ| . M

TeV , yielding no constraint.
Further, the LFV decay of a Z boson induced by scalar LQs is [317]

δSBZ→eµ =
αemZ

6ΓZ

(∣∣FZ1L∣∣2 +
∣∣FZ1R∣∣2 +

1

2m2
Z

(∣∣FZ2LR∣∣2 +
∣∣FZ2RL∣∣2)) , (G.14)

where

FZ1L,1R =
3

16π2

1

M2

(
λ

(qe)
L,R

(
λ

(qµ)
L,R

)∗(−1

18
g +

(
4

9
− 2

3
ln
m2
q

M2

)
gL,R

)
− mq

−m2
µ

×
(
−mµλ

(qe)
L,R

(
λ

(qµ)
R,L

)∗)(
−3

4
− ln

m2
q

M2

)
(gR,L − gL,R)

) −1

sin θw cos θw
,

FZ2LR,2RL =
3

16π2

1

M2

(
mqλ

(qe)
R,L

(
λ

(qµ)
L,R

)∗(
−3

4
− ln

m2
q

M2

)
(gL,R + gR,L)

+mµλ
(qe)
R,L

(
λ

(qµ)
R,L

)∗ 1

6
gR,L

−
(
mµλ

(qe)
R,L

(
λ

(qµ)
R,L

)∗ 1

12
+mqλ

(qe)
R,L

(
λ

(qµ)
L,R

)∗ 1

2

)
g

) −1

sin θw cos θw
. (G.15)

Here

gL,R = T
(qL,qR)
3 − qq sin2 θw , g = T

(e)
3 − qe sin2 θw (G.16)

and for S2 the interchange gL ↔ gR. LFV decays are zero in the SM and for |λ| . M
TeV

we find no constraint as |δLQBZ→eµ| . 5× 10−13.
The anomalous magnetic moments receive a contribution from vector LQs as [318]

∆V al = − 3m2
l

16π2

|λ(ql)|2
M2

(
2

3
qq +

5

6
qe

)
, (G.17)

times 2 for up-type quarks in the model V3. We obtain |∆V ae| . 2× 10−14 and
|∆V aµ| . 6× 10−10 for |λ| . M

TeV , giving no constraints. For scalar LQs the corre-
sponding expression is given by [319]

∆Sal = − 3ml

16π2

1

M2

(
ml

(∣∣∣λ(ql)
L

∣∣∣2 +
∣∣∣λ(ql)
R

∣∣∣2)(1

3
qq −

1

6
qe

)
+mq Re

[
λ

(ql)
L

(
λ

(ql)
R

)∗]((
−3− 2 ln

m2
q

M2

)
qq − qe

))
(G.18)

which agrees with the result in [317], when F1 ↔ F2 therein.



145

Couplings involving different chiralities are present in scalar LQ models only. Conse-
quently only scalar LQs contribute to the CP violating fermion electric dipole moments,
which is [319]

δSdf =
e

32π2

1

M2
mf ′Im

[
λ

(ff ′)
L

(
λ

(ff ′)
R

)∗]((
−3− 2 ln

m2
f ′

M2

)
qf ′ − qe

)
. (G.19)

If the conjugate f ′ is a quark, i.e. the fermion f is a lepton, eq. (G.19) is multiplied by
3 due to color. To compare with experiments the factor ~c

mf
m needs to be taken into

account. The SM lepton electric dipole moment is negligible, dSMe ≤ 10−38 e cm [320], as
small as the neutron electric dipole moment, dSMn ∼ (−O(10−34) e cm) [321], given by its
quark content as dn = 4/3dd−1/3du. No constraint is obtained for |Im[λ

(cµ)
L (λ

(cµ)
R )∗]| from

the muon electric dipole moment. For the Hg electric dipole moment the corresponding
expression reads [269] (and references therein)

|δSdHg| =
4.89× 10−20 e cm

8
√

2GF

∣∣∣Im [λ(qe)
L (λ

(qe)
R )∗

]∣∣∣
M2

(G.20)

which is negligible in the SM. Here the matching of the nuclear onto the quark theory is
neglected.
The amplitude for LFV radiative muon decay in vector LQ models is defined as [214]

Aµ1µ→eγ = iē

(
σµ1µ2qµ2
mµ

(
F V + FAγ5

))
µ , (G.21)

yielding the branching ratio

δV Bµ→eγ =
1

Γµ

mµ

8π

(∣∣F V ∣∣2 +
∣∣FA∣∣2) . (G.22)

Here

∣∣F V,A∣∣ =
√
αe4π

∣∣∣λ(qµ)
(
λ(qe)

)∗∣∣∣
32π2

m2
µ

M2

(
qq2 + qe

5

2

)
, (G.23)

times 2 for up-type quarks in the model V3. We add that F V comes with a minus sign.
For scalar LQs the corresponding amplitude reads [317]

Aµ→eγ =
√
αe4π ē

(
F γ2RLPL + F γ2LRPR

)
(iσµ1µ2q

µ1)µ
(
εµ2γ
)∗ (G.24)

with the polarization ε. The branching ratio is obtained as

δSBµ→eγ =
αe

4Γµ
m5
µ

(∣∣F γ2LR∣∣2 +
∣∣F γ2RL∣∣2) , (G.25)
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where, see the comment after eq. (G.18),

F γ2LR,2RL =
3

16π2

1

M2

(
λ

(qµ)
L,R

(
λ

(qe)
L,R

)∗(1

6
qq −

1

12
qe

)
− mq

mµ
λ

(qµ)
R,L

(
λ

(qe)
L,R

)∗((
−3

2
− ln

m2
q

M2

)
qq −

1

2
qe

))
. (G.26)

Note that one can include effect due to the renormalization group for µ → eγ decay,
µ− e conversion and µ→ eee decay, as in [322] (and references therein). The latter two
observables are considered in the following, without renormalization group effects.
The Lagrangian for LFV coherent µ− e conversion is defined as [323]

Lµ−e = (CDRmµēLσ
µ1µ2µL + CDLmµēRσ

µ1µ2µR)Fµ1µ2

+ (CV RēRγ
µ1µR + CV LēLγ

µ1µL)ūγµ1u+ (CSRēLµR + CSLēRµL)ūu . (G.27)

The conversion rate follows as [323]

Γconversion = 4m5
µ

∣∣∣∣14CDRD + CSLG
(u,p)
S S(p) + CSLG

(u,n)
S S(n) + 2CV RV

(p) + CV RV
(n)

∣∣∣∣2
+ 4m5

µ

∣∣∣∣14CDLD + CSRG
(u,p)
S S(p) + CSRG

(u,n)
S S(n) + 2CV LV

(p)

+ CV LV
(n)

∣∣∣∣2 (G.28)

which is normalized to the capture rate, and multiplied by 1/~ to allows for a comparison
with experiments. Here the nucleon form factors

G
(u,p)
S = 5.1 , G

(u,n)
S = 4.3 , (G.29)

and the overlap integrals of muons and electrons weighted by proton and neutron densities
for Ti and Au

DTi = 0.0864 , S
(p)
Ti = 0.0368 , S

(n)
Ti = 0.0435 , V

(p)
Ti = 0.0396 , V

(n)
Ti = 0.0468 ,

DAu = 0.189 , S
(p)
Au = 0.0614 , S

(n)
Au = 0.0918 , V

(p)
Au = 0.0974 ,

V
(n)
Au = 0.146 . (G.30)

Matching the coefficients we obtain

δṼ1CV R = δV2CV R = δṼ2CV L =
1

2
δV3CV L = −λ

(uµ)
(
λ(ue)

)∗
2M2

,

δSCV R = −
λ

(uµ)
R

(
λ

(ue)
R

)∗
4M2

, δSCV L = −
λ

(uµ)
L

(
λ

(ue)
L

)∗
4M2

,

δSCSR = −
λ

(uµ)
R

(
λ

(uE)
L

)∗
4M2

, δSCSL = −
λ

(uµ)
L

(
λ

(ue)
R

)∗
4M2

, (G.31)
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and with eqs. (G.23) and (G.26) for F V,A and F γ , respectively,

δṼ1/V2CDR,DL = − 1

4m2
µ

√
αe4π

(∣∣F V ∣∣± ∣∣FA∣∣) ,
δṼ2/V3CDR,DL = − 1

4m2
µ

√
αe4π

(∣∣F V ∣∣∓ ∣∣FA∣∣) ,
δSCDR,DL =

1

2mµ
F γ2RL,2LR , (G.32)

times 2 for up-type quarks in the model V3. Note that the definition of the overlap integral
D contains an factor of the electromagnetic coupling. We neglect loop suppressed gluonic
interactions, for which the form factor can be related to the scalar form factors by a sum
rule [324], and model dependent uncertainties [323, 324]. In principle, one can include
incoherent µ− e conversion as in [325]. The strongest constraints are presently obtained
from Au.
The branching ratio for LFV leptonic muon decay induced by vector LQs as obtained

in [326] reads

δV Bµ→eee =
3α2

e

8π2
q2
q ln2

m2
q

M2

|λ(qµ)λ(qe)|2
G2
FM

4
, (G.33)

times 4 for up-type quarks in the model V3. Terms ∼ qe, m2
f/M

2 suppressed box di-
agrams, and m2

f/m
2
Z suppressed Z diagrams are neglected. For scalar LQs the corre-

sponding branching ratio is given as [327]

δSBµ→eee =
α2
em

5
µ

32πΓµ

(
|T1L|2 + |T1R|2 +

2

3

(
|T2L|2 + |T2R|2

)(
8 ln

mµ

2me
− 11

)
− 4Re[T1LT

∗
2R + T2LT
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2
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+
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+
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+
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∗
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)
. (G.34)
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Here we correct ZL,R, i.e.

T1L,1R = − 3

16π2

1
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(qe)
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q
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λ
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)∗ 1
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q

(
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q
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)
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µ

3

8
2(−g)

)
,

B1L,1R =
3

32π2
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(
λ

(qe)
L,R

)∗ ∣∣∣λ(q′e)
L,R
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,

B2L,2R =
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(qe)
L,R
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. (G.35)

Furthermore,

gLf,Rf = T
(fL,fR)
3 − qf sin2 θw , g = T

(e)
3 − qe sin2 θw (G.36)

and for S2 the interchange gL ↔ gR. We add that µ−e− → e−e− in muonic atoms may
be used to constrain LQ models [328] once the decay measured, e.g. in the COMET
Phase-I experiment [329].

From the Lagrangian for P → lν decays [330]

LPlν = CV LL(q̄′Lγ
µqL)(ν̄LγµlL) + CV RL(q̄′Rγ

µqR)(ν̄LγµlL)

+ CSRR(q̄′LqR)(ν̄LlR) + CSLR(q̄′RqL)(ν̄LlR) (G.37)

the total width follows as

ΓP→lν =
f2
P

(
m2
P −m2

l

)2
64πm3

P

∣∣∣∣ml(CV RL − CV LL) +
m2
P

mq +mq′
(CSLR − CSRR)

∣∣∣∣2 . (G.38)
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In the SM CV LL = −4GF /
√

2Vqq′ , where q and q′ denote the quark content of P .
Matching the coefficients in LQ models gives

δV3CV LL =
λ

(q′l)
V3

(
λ

(qν)
V3

)∗
M2
V3

,

δS1CV LL = −1

2

λ
(ql)
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(
λ

(q′ν)
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)∗
M2
S1

, δS1CSRR =
1

2

λ
(ql)
S1R

(
λ

(q′ν)
S1L

)∗
M2
S1

,

δS2CSRR =
1

2

λ
(q′l)
S2R

(
λ

(qν)
S2L

)∗
M2
S2

, δS3CV LL =
1

2

λ
(ql)
S3

(
λ

(q′ν)
S3

)∗
M2
S3

. (G.39)

We do not match V2 due to an additional dL quark coupling. Note that a corrections toW
vertex via left-handed couplings due to scalar LQs can be neglected for vanishing fermion
masses [225]. Varying the decay constants one obtains no constraints from the decays
D+ → e+νe and Ds → e+νe, i.e. δV3BD+→e+νe . 2× 10−8 and δV3BDs→e+νe . 2× 10−7

for |λ| . M
TeV , as well as no constraint due to the decay D+

s → µ+νµ. The total width
for the decay l → Pν is given as Γl→Pν = m3

P /(2m
3
l ) ΓP→lν with eq. (G.38). Here only

l = τ is kinematically allowed.
We do not employ constraints from D → Klνl decays to avoid correlations with form

factors, which are extracted from D → Plνl decays and used for other constraints. Ignor-
ing this, we would obtain from the distribution given in [137] the vector LQ induced shift
|δV3ΓD→Klνl | = ΓSM

D→Klνl
1√

2GFVcs
|λ(cl)
V3
λ

(cl)
V3
|2/M2 ' 0.063 ΓSM

D→Klνl |λ
(cl)
V3

(λ
(cl)
V3

)|2(TeVM )2, to
be multiplied by 1/4 for scalar LQs. Here we neglect lepton masses, and (pseudo-)scalar
and (pseudo-)tensor operators, for which contributions to the distribution can be found
in [137]. The measured ratio Γ(D+ → K̄0µ+νµ)/Γ(D+ → K̄0e+eµ) = 0.988± 0.033
[331] is satisfied for perturbative couplings.
For the ratio of leptonic pions decays, Re/µ = Γπ→eνe/Γπ→µνµ , the interference between

the SM and LQ models is found as

δLQRe/µ = RSM
e/µ

1√
2GFVud

Re

[(
C

(l=e)
V RL − C

(l=e)
V LL

)
−
(
C

(l=µ)
V RL − C

(l=µ)
V LL

)
+

m2
π

mu +md

(
C

(l=e)
SLR − C

(l=e)
SRR

me
− C

(l=µ)
SLR − C

(l=µ)
SRR

mµ

)]
, (G.40)

where the matching coefficients are given by eq. (G.39). Note that the irreducible ex-
perimental background from π → lνlγ decays due to higher dimensional operators or
bremsstrahlung cancels in the ratio.
Analogously, we obtain constraints from the decays K+ → e+νe and K+ → µ+νµ as

well as the LFV decays π+ → µ+νe and K+ → µ+νe. Due to the decay π+ → µ+νe
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no constraints are obtained for vector LQs. The decays π0 → (µ, e)e do not give any
constraints due to the small lifetime and mass of the pion. Further LFV quarkonium
decays [332] do not give constraints for |λ| . M

TeV , yet.

The CKM parameter Vud can be extracted from quark beta decay normalized to muon
decay. The LQ induced shift is

∆LQVud
Vud

=

√
2

4GF
C

(ue)
V LL . (G.41)

Here the matching coefficients are given by eq. (G.39).

Further constraints can be obtained from nuclear beta decay. The defining Lagrangian
for Ni → Nfeν̄e decays is [333]

Lβ = (N̄fγ
µ1Ni)(CV ēγµ1νe − C ′V ēγµ1γ5νe)− (N̄fγ

µ1γ5Ni)(CAēγµ1νe − C ′Aēγµ1γ5νe)

+ (N̄fNi)(CS ēνe − C ′S ēγ5νe)

+
1

2
(N̄fσ

µ1µ2Ni)(CT ēσµ1µ2νe − C ′T ēσµ1µ2γ5νe) . (G.42)

In the SM CV = C ′V = GFVud and CA = C ′A, where a pseudoscalar coupling is absent
for non-relativistic nucleons. For neutron beta decay the parity-even triple correlation
coefficient is given by [334]

Dn =
1

1 + 3|λn|2
(
− Im[CV C

∗
A + C ′V (C ′A)∗]

|CV |2
+

Im[CSC
∗
T + C ′S(C ′T )∗]

|CV |2
)
, (G.43)

where λ = CA/CV , which is negligible in the SM, and λn = −1.27 [21]. The parity-odd
triple correlation coefficient is [335]

RN = −0.436GFVud Im

[
CS + C ′S
CV + C ′V

]
+ 0.670GFVud Im

[
CT + C ′T
CA + C ′A

]
(G.44)
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with vanishing scalar coefficients for Li beta decay, λLi ' λn [270] and we neglect the
beta decay asymmetry coefficient term, which is around a permille for neutrons. Both
triple correlation coefficients are time reversal violating. A matching gives

δV3CV = δV3C
′
V = δV3CA = δV3C

′
A = −1

4

λ
(qfνe)
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(
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(qie)
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)∗
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,
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A =
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λ
(qiνe)
S1L

(
λ

(qf e)
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S1

,
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λ
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(
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,
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′
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′
A = −1

8
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(qiνe)
S3

(
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(qf e)
S3

)∗
M2
S3

. (G.45)

One obtains |δV3Dn| . 2× 10−8, |δS1,3Dn| . 9× 10−9, |δS1,S2Rn| . 2× 10−7, and
|δS1,S2RLi| . 7× 10−8 for |λ| . M

TeV as well as |δS2Dn| = 0, yielding no constraints.
Further nuclear beta decay parameters yield at 68% CL [336, 337]

1− 2
|CS |2 + |C ′S |2
|CV |2 + |C ′V |2

+ 2× 0.21× 14αe Im
CS + C ′S
CV + C ′V

+ 2× 0.1913
√

1− (14αe)2Re
CS + C ′S
CV + C ′V

= 0.9989± 0.0064 , (G.46)

1 + 2
me

0.0033GeV

√
1− (19αe)2Re

CS + C ′S
CV + C ′V

= 0.9981+0.0044
−0.0048 (G.47)

from which we obtain, respectively, −0.0075 < 0.0042 Re[λ
(ue)
R (λ

(ue)
L )∗](TeVM )2 ≤ 0.0053

and −0.0023 < 0.0034 Re[λ
(ue)
R (λ

(ue)
L )∗](TeVM )2 ≤ 0.0063. Here we add uncertainties in

quadrature. Additionally, a fit gives at 90% CL [338]

−0.14× 10−2 <
CT + C ′T
CA

< 1.4× 10−2 , (G.48)

−0.16 <
CT − C ′T
CA

< 0.16 , (G.49)

that is −0.8 < λ
(ue)
S1R

(λ
(ue)
S1L

)∗(TeVM )2 < 0.08 and −0.08 < λ
(ue)
S2R

(λ
(ue)
S2L

)∗(TeVM )2 < 0.8, respec-
tively, employing λn. Note that [338] varies CS , C ′S and fixes CT , C ′T , yet primed and
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unprimed Wilson coefficients are related in LQ models, see eq. (G.45), which is consistent
with eq. (G.47).
Following [339] we deduce that no constraints for vector LQs are found from neutrino

trident production. Finally, from model dependent contact interactions [340] we find no
constraints as M/|λ(ql)

V | = Λ/
√

4π & 4.0 TeV, which is multiplied by
√

2 for V3, and
M/|λ(ql)

S | = 1√
2

Λ√
4π

& 2.8 TeV.

G.1. Tables

The constraints from the previous appendix are compiled in tables G.1, G.2 and G.3 for
the scalar S1,2, S3 and gauge vector LQs, respectively.
No constraints are found due to the decay D0 → ρ0γ, D0 − D̄0 lifetime difference,

π0 → ee decay, LFV quarkonium decays, triple correlation coefficients from nuclear beta
decay nor contact interactions. Furthermore, Z → ff ′ decays in case of scalar LQs
and the decays D+ → e+νe, Ds → e+νe, D+

s → µ+νµ, and π+ → µ+νe, nuclear beta
decay parameters, and neutrino trident production in case of vector LQs do not give
constraints.
Additional constraints on quark doublets from kaon and τ → πl decays [238] are

collected in table G.4. Furthermore, we find |λ(uµ)
SL (λ

(uτ)
SR )∗| . 3× 10−1, which is obtained

from B(τ− → π0µ−)/B(τ− → π−ντ ) times msmτ/m
2
π0 ' 49. Note that the constraint

from KL → µµ decays in [235] should be multiplied by
√

10.

couplings/mass constraint observable
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R )∗]| . 3× 10−7 d(n)
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Re[λ
(uτ)
R (λ

(uτ)
L )∗] ∼ [0.00, 0.09] τ− → π−ντ

Re[λ
(uτ)
S1L

(λ
(cτ)
S1L

)∗] ∼ [−0.2, 0.2] τ− → K−ντ

Re[λ
(uτ)
R (λ

(cτ)
L )∗] ∼ [−0.07, 0.04]

|Im[λ
(uτ)
R (λ

(cτ)
L )∗]| ∼ [0.0, 0.7]

|Re[λ
(uτ)
R (λ

(cτ)
L )∗]| . 0.3 D+ → τ+ντ

|λ(ce)
S1L,S2R

(λ
(ce)
S1R,S2L

)∗| . 0.1 Ds → e+νe

|Im[λ
(ce)
L (λ

(ce)
R )∗]| . 2× 10−11 d(e)

Re[λ
(ce)
S1L

(λ
(ce)
S1R

)∗] ∼ [−0.01, 0.00] ∆ae

Re[λ
(ce)
S2L

(λ
(ce)
S2R

)∗] ∼ [0.00, 0.01]

Re[λ
(cµ)
S1L

(λ
(cµ)
S1R

)∗] ∼ [0.1, 0.2] ∆aµ

Re[λ
(cµ)
S2L

(λ
(cµ)
S2R

)∗] ∼ [−0.2,−0.1]

Re[λ
(cµ)
S1L,S2R

(λ
(cµ)
S1R,S2L

)∗] ∼ [−0.02, 0.08] Ds → µ+νµ

|Im[λ
(cµ)
S1L,S2R

(λ
(cµ)
S1R,S2L

)∗]| . 0.4

Re[λ
(cτ)
R (λ

(cτ)
L )∗] ∼ [−1, 0.09] Ds → τ+ντ

(−|λ(ue)
S1L
|2 + |λ(ue)

S1R
|2)1/2 ∼ 0.0 Qw (Cs)

(−|λ(ue)
S2L
|2 + 2|λ(ue)

S2R
|2)1/2 ∼ [0.2, 0.4]

Re[(λ
(ue)
L (λ

(ue)
R )∗ − 0.009λ

(uµ)
L (λ

(uµ)
R )∗ Re/µ

+0.0001 (−|λ(ue)
S1L
|2 + |λ(uµ)

S1L
|2))] ∼ [0.00000, 0.00001]

Re[λ
(ue)
S1L,S2R

(λ
(ce)
S1R,S2L

)∗ − 0.001λ
(ue)
S1L

(λ
(ce)
S1L

)∗] ∼ [0.00000, 0.00001] K+ → e+νe

Im[λ
(ue)
{L,R}(λ

(ce)
{L,R})

∗] ∼ 0.0

|Re[λ
(ue)
L,R (λ

(ce)
L,R)∗ + λ

(uµ)
L,R (λ

(cµ)
L,R )∗ + λ

(uτ)
L,R (λ

(cτ)
L,R)∗]| ∼ [0, 0.02] ∆mD0

|λ(ue)
L (λ

(ce)
R )∗ ± λ(ue)

R (λ
(ce)
L )∗| . 1× 10−2 D0 → e+e−

|λ(ue)
L,R (λ

(cµ)
L,R )∗ + λ

(uµ)
L,R (λ

(ce)
L,R)∗| . 1× 10−1 D0 → µ±e∓

|λ(ue)
L,R (λ

(cµ)
R,L )∗ + λ

(uµ)
L,R (λ

(ce)
R,L)∗| . 6× 10−3

|λ(uµ)
S1L,S2R

(λ
(ce)
S1R,S2L

)∗ − 0.2λ
(uµ)
S1L

(λ
(ce)
S1L

)∗| . 0.002 K+ → µ+νe

|λ(uµ)
L (λ

(cµ)
L )∗ + λ

(uµ)
R (λ

(cµ)
R )∗| . 6× 10−2 D0 → µ+µ−

|λ(uµ)
L (λ

(cµ)
R )∗ ± λ(uµ)

R (λ
(cµ)
L )∗| . 4× 10−3
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Re[λ
(uµ)
S1L,S2R

(λ
(cµ)
S1R,S2L

)∗ − 0.01λ
(uµ)
S1L

(λ
(cµ)
S1L

)∗] ∼ [−0.02, 0.00] D+ → µ+νµ

Im[λ
(uµ)
{L,R}(λ

(cµ)
{L,R})

∗] ∼ 0.0

Re[λ
(uµ)
S1L,S2R

(λ
(cµ)
S1R,S2L

)∗ − 0.2λ
(uµ)
S1L

(λ
(cµ)
S1L

)∗] ∼ [−0.004,−0.001] K+ → µ+νµ

|Im[λ
(uµ)
L (λ

(cµ)
R )∗]| ∼ [0.02, 0.05]

|λ(qe)
S1L,S1R

(λ
(qµ)
S1L,S1R

)∗| . 1× 10−3 µ+ → e+γ

|λ(qe)
S2L,S2R

(λ
(qµ)
S2L,S2R

)∗| . 4× 10−4

|λ(ce)
L,R(λ

(cµ)
R,L )∗| . 2× 10−6

|λ(ue)
L,R (λ

(uµ)
L,R )∗| . 9× 10−7 µ− e (Au)

|λ(ue)
S2R

(λ
(uµ)
S2R

)∗| . 7× 10−7

|λ(ue)
L,R (λ

(uµ)
R,L )∗| . 4× 10−7

|λ(ce)
S1L,S1R

(λ
(cµ)
S1L,S1R

)∗| . 9× 10−3

|λ(ce)
S2L,S2R

(λ
(cµ)
S2L,S2R

)∗| . 3× 10−3

|λ(ce)
L,R(λ

(cµ)
R,L )∗| . 1× 10−5

|λ(ue)
L,R (λ

(uµ)
L,R )∗| . 1× 10−3 µ− → e−e+e−

|λ(ue)
S2R

(λ
(uµ)
S2R

)∗| . 3× 10−3

|λ(ue)
L,R (λ

(uµ)
R,L )∗| . 1× 10−2

|λ(ce)
L,R(λ

(cµ)
L,R )∗| . 3× 10−3

|λ(ce)
S2R

(λ
(cµ)
S2R

)∗| . 6× 10−3

|λ(ce)
S1L,S1R

(λ
(cµ)
S1R,S1L

)∗| . 6× 10−5

|λ(ce)
S2L,S2R

(λ
(cµ)
S2R,S2L

)∗| . 5× 10−5

|λ(ql)
S2L,S2R

(λ
(qτ)
S2L,S2R

)∗| . 3× 10−1 τ− → l−γ

|λ(cl)
L,R(λ

(cτ)
R,L)∗| . 3× 10−2

|λ(ul)
S1L,S1R

(λ
(uτ)
S1L,S1R

)∗| . 7× 10−1 τ− → l−l+l−

|λ(ul)
S2L,S2R

(λ
(uτ)
S2L,S2R

)∗| . 6× 10−1

|λ(cl)
S1L,S1R

(λ
(cτ)
S1R,S1L

)∗| . 8× 10−1

|λ(cl)
S2L,S2R

(λ
(cτ)
S2R,S2L

)∗| . 7× 10−1
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Table G.1.: Constraints on scalar SU(2) singlet and doublet LQs scaling as TeV
M and√

TeV
M for ∆mD0 . Here q ∈ {u, c} and l ∈ {e, µ}.

couplings/mass constraint observable

|λ(ue)| ∼ [0.1, 0.3] Qw (Cs)

|λ(ue)| . 9× 10−2 Vud

|λ(uτ)| ∼ [0.0, 0.2] τ− → π−ντ

|λ(cτ)| ∼ [0.0, 0.4] Ds → τ+ντ

Re[λ(ue)(λ(ce))∗] ∼ [0.0, 0.3] K+ → e+νe

Im[λ(ue)(λ(ce))∗] ∼ 0.0

|λ(ue)(λ(ce))∗| . 1× 10−1 D+ → π+e+e−

|λ(ue)(λ(cµ))∗| . 2× 10−1 D+ → π+e+µ−

|λ(uµ)(λ(ce))∗| . 3× 10−1 D+ → π+e−µ+

|λ(uµ)(λ(ce))∗| . 0.9 K+ → µ+νe

|λ(uµ)(λ(cµ))∗| . 1× 10−2 D+ → π+µ+µ−

|λ(uµ)(λ(cµ))∗| . 6× 10−2 D0 → µ+µ−

Re[λ(uµ)(λ(cµ))∗] ∼ [−0.2, 0.0] K+ → µ+νµ

Re[λ(uτ)(λ(cτ))∗] ∼ [−0.2, 0.2] τ− → K−ντ

(|λ(ue)|2 − |λ(uµ)|2)1/2 ∼ [0.0, 0.4] Re/µ

|λ(ue)(λ(uµ))∗ + λ(ce)(λ(cµ))∗| . 4× 10−4 µ+ → e+γ

|Re[λ(ue)(λ(ce))∗ + λ(uµ)(λ(cµ))∗ + λ(uτ)(λ(cτ))∗]| ∼ [0, 0.007] ∆mD0

|λ(ue)(λ(cµ))∗ + λ(uµ)(λ(ce))∗| . 1× 10−1 D0 → µ±e∓

|λ(ql)(λ(qτ))∗| . 3× 10−1 τ− → l−γ

|λ(ue)(λ(uµ))∗| . 7× 10−7 µ− e (Au)

|λ(ce)(λ(cµ))∗| . 9× 10−3

|λ(ue)(λ(uµ))∗| . 1× 10−2 µ− → e−e+e−
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|λ(ce)(λ(cµ))∗| . 6× 10−3

Re[λ(ue)(λ(ce))∗] ∼ [−1, 0] D+ → µ+νµ

Im[λ(uµ)(λ(cµ))∗] ∼ 0.0

Table G.2.: Constraints on scalar SU(2) triplet LQs scaling as TeV
M and

√
TeV
M for ∆mD0 .

Here q ∈ {u, c} and l ∈ {e, µ}.

couplings/mass constraint observable

|λ(ue)

Ṽ1
| ∼ 0.0 Qw (Cs)

|λ(ue)

Ṽ2,V3
| ∼ [0.0, 0.2]

|λ(ue)
V3
| ∼ [0.00, 0.06] Vud

|λ(uτ)
V3
| ∼ [0.0, 0.4] τ− → π−ντ

|λ(cτ)
V3
| ∼ [0.0, 0.2] Ds → τ+ντ

Re[λ
(ue)
V3

(λ
(ce)
V3

)∗] ∼ [0.0, 0.2] K+ → e+νe

|λ(ue)(λ(ce))∗| . 6× 10−2 D+ → π+e+e−

|λ(ue)(λ(cµ))∗| . 1× 10−1 D+ → π+e+µ−

|λ(uµ)(λ(ce))∗| . 1× 10−1 D+ → π+e−µ+

|λ(uµ)
V3

(λ
(ce)
V3

)∗| . 5× 10−1 K+ → µ+νe

|λ(uµ)(λ(cµ))∗| . 1× 10−2 D+ → π+µ+µ−

|λ(uµ)(λ(cµ))∗| . 3× 10−2 D0 → µ+µ−

Re[λ
(uµ)
V3

(λ
(cµ)
V3

)∗] ∼ [−0.5,−0.1] D+ → µ+νµ

Im[λ
(uµ)
V3

(λ
(cµ)
V3

)∗] ∼ 0.0

Re[λ
(uµ)
V3

(λ
(cµ)
V3

)∗] ∼ [−0.08,−0.01] K+ → µ+νµ

Im[λ
(uµ)
V3

(λ
(cµ)
V3

)∗] ∼ [−1,−0.6]

|Re[λ
(uτ)
V2

(λ
(cτ)
V2

)∗]| ∼ [0, 0.8] ∆mD0

|Re[λ
(uτ)
V3

(λ
(cτ)
V3

)∗]| ∼ [0, 0.4]

Re[λ
(uτ)
V3

(λ
(cτ)
V3

)∗] ∼ [−0.1, 0.1] τ− → K−ντ
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|Im[λ
(uτ)
V3

(λ
(cτ)
V3

)∗]| ∼ [0.0, 0.9]

|Re[λ
(uτ)
V3

(λ
(cτ)
V3

)∗]| . 0.5 D+ → τ+ντ

(|λ(ue)
V3
|2 − |λ(uµ)

V3
|2)1/2 ∼ [0.0, 0.3] Re/µ

|λ(ue)(λ(cµ))∗ + λ(uµ)(λ(ce))∗| . 9× 10−2 D0 → µ±e∓

|λ(qe)(λ(qµ))∗| . 1× 10−4 µ+ → e+γ

|λ(ue)(λ(uµ))∗| . 7× 10−7 µ− e (Au)

|λ(ce)

Ṽ1,Ṽ2
(λ

(cµ)

Ṽ1,Ṽ2
)∗| . 1× 10−2

|λ(ce)
V2

(λ
(cµ)
V2

)∗| . 6× 10−3

|λ(ce)
V3

(λ
(cµ)
V3

)∗| . 7× 10−3

|λ(ue)(λ(uµ))∗| . 4× 10−4 µ− → e−e+e−

|λ(ue)
V3

(λ
(uµ)
V3

)∗| . 2× 10−4

|λ(ce)

Ṽ1,Ṽ2
(λ

(cµ)

Ṽ1,Ṽ2
)∗| . 8× 10−4

|λ(ce)
V2

(λ
(cµ)
V2

)∗| . 6× 10−4

|λ(ce)
V3

(λ
(cµ)
V3

)∗| . 3× 10−4

|λ(ql)

Ṽ1
(λ

(qτ)

Ṽ1
)∗| . 9× 10−2 τ− → l−γ

|λ(ql)
V2

(λ
(qτ)
V2

)∗| . 8× 10−2

|λ(ql)

Ṽ2
(λ

(qτ)

Ṽ2
)∗| . 1× 10−1

|λ(ql)
V3

(λ
(qτ)
V3

)∗| . 4× 10−2

|λ(ul)

Ṽ1,Ṽ2
(λ

(uτ)

Ṽ1,Ṽ2
)∗| . 7× 10−2 τ− → l−l+l−

|λ(ul)
V2

(λ
(uτ)
V2

)∗| . 6× 10−2

|λ(ul)
V3

(λ
(uτ)
V3

)∗| . 3× 10−2

|λ(cl)

Ṽ1,V2,Ṽ2
(λ

(cτ)

Ṽ1,V2,Ṽ2
)∗| . 1× 10−1

|λ(cl)
V3

(λ
(cτ)
V3

)∗| . 6× 10−2

Im[λ
(ue)
V3

(λ
(ce)
V3

)∗] ∼ 0.0

Table G.3.: Constraints on vector LQs scaling as TeV
M . For V3 unlabeled constraints are

multiplied by 1/2. Here q ∈ {u, c} and l ∈ {e, µ}.
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couplings/mass constraint observable

|λ(ul′)
S1L

(λ
(cl′′)
S1L

)∗| . 4× 10−4 (K+ → π+ν̄ν)/(K+ → π0ēνe)

|λ(ue)
S2R

(λ
(ce)
S2R

)∗| . 2× 10−3 K0
L → ēe

|λ(uµ)
S2R

(λ
(ce)
S2R

)∗| . 1× 10−5 K0
L → ēµ

|λ(uµ)
S2R

(λ
(cµ)
S2R

)∗| . 3× 10−4 K0
L → µ̄µ

|λ(ul′)
S3

(λ
(cl′′)
S3

)∗| . 4× 10−4 (K+ → π+ν̄ν)/(K+ → π0ēνe)

|λ(ue)
S3

(λ
(cµ)
S3

)∗| , |λ(uµ)
S3

(λ
(ce)
S3

)∗| . 5× 10−6 K0
L → ēµ

|λ(uµ)
S3

(λ
(cµ)
S3

)∗| . 2× 10−4 K0
L → µ̄µ

|λ(ue)
V2

(λ
(ce)
V2

)∗| . 1× 10−3 K0
L → ēe

|λ(ue)
V2

(λ
(cµ)
V2

)∗| , |λ(uµ)
V2

(λ
(ce)
V2

)∗| . 5× 10−6 K0
L → ēµ

|λ(uµ)
V2

(λ
(cµ)
V2

)∗| . 2× 10−4 K0
L → µ̄µ

|λ(ul′)
V3

(λ
(cl′′)
V3

)∗| . 8× 10−5 (K+ → π+ν̄ν)/(K+ → π0ēνe)

|λ(ue)
V3

(λ
(cµ)
V3

)∗| , |λ(uµ)
V3

(λ
(ce)
V3

)∗| . 3× 10−6 K0
L → ēµ

|λ(uµ)
V3

(λ
(cµ)
V3

)∗| . 7× 10−5 K0
L → µ̄µ

|λ(ue)
S2L,S2R

(λ
(uτ)
S2L,S2R

)∗| . 3× 10−2 (τ− → π0e−)/(τ− → π−ντ )

|λ(uµ)
S2L,S2R

(λ
(uτ)
S2L,S2R

)∗| . 5× 10−3 (τ− → π0µ−)/(τ− → π−ντ )

|λ(ul)
S2L,S2R

(λ
(cτ)
S2L,S2R

)∗| . 2× 10−2 (τ → lK)/(τ → νK)

|λ(ue)
S3

(λ
(uτ)
S3

)∗| . 2× 10−2 (τ− → π0e−)/(τ− → π−ντ )

|λ(uµ)
S3

(λ
(uτ)
S3

)∗| . 3× 10−3 (τ− → π0µ−)/(τ− → π−ντ )

|λ(ue)
V2

(λ
(uτ)
V2

)∗| . 2× 10−2 (τ− → π0e−)/(τ− → π−ντ )

|λ(uµ)
V2

(λ
(uτ)
V2

)∗| . 3× 10−3 (τ− → π0µ−)/(τ− → π−ντ )

|λ(ul)
V2

(λ
(cτ)
V2

)∗| . 9× 10−3 (τ → lK)/(τ → νK)

|λ(ue)
V3

(λ
(uτ)
V3

)∗| . 7× 10−3 (τ− → π0e−)/(τ− → π−ντ )

|λ(uµ)
V3

(λ
(uτ)
V3

)∗| . 2× 10−3 (τ− → π0µ−)/(τ− → π−ντ )

Table G.4.: Constraints on LQs due to kaon and τ → πl decays scaling as TeV
M . Here

l ∈ {e, µ} and l′, l′′ ∈ {e, µ, τ}.
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MS modified minimal subtraction. 9

ADM anomalous dimension matrix. 11

BLM Brodsky–Lepage–Mackenzie. 38

BRST Becchi–Rouet–Stora–Tyutin. 9

BSM beyond the standard model. 1

CKM Cabibbo–Kobayashi–Maskawa. 4

CL confidence/credibility level. 48

CLFQM covariant light front quark model. 130

CP charge parity. 1

CQM constituent quark model. 131

EOM equations of motion. 9

EW electroweak. 1

FCNC flavor changing neutral current. 5

GIM Glashow–Iliopolus–Maiani. 5

GPL generalized/Goncharov polylogarithm. 29

GSI gluon spectator interaction. 57

HPL harmonic polylogarithm. 29

HQE heavy quark expansion. 38

HQET heavy quark effective theory. 42
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HSI hard spectator interaction. 47

IBP integration by parts. 15

IR infrared. 9

LCSR light cone sum rules. 57

LEET large energy effective theory. 43

LFU lepton flavor universality. 2

LFV lepton flavor violation. 52

LI Lorentz invariance. 25

LO leading order. 6

LQ leptoquark. 3

MI master integral. 23

MIA mass insertion approximation. 87

NLO next-to leading order. 9

NNLL next-to-next-to leading logarithmic. 2

NNLO next-to-next-to leading order. 2

NNNLL next-to-next-to-next-to leading logarithmic. 31

NNNLO next-to-next-to-next-to leading order. 101

OPE operator product expansion. 2

PC parity conserving. 53

PV parity violating. 53

QCD quantum chromodynamics. 2

QED quantum electrodynamics. 2

RG renormalization group. 2
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RGE renormalization group equation. 3

SCET soft collinear effective theory. 47

SM standard model. 1

SUSY supersymmetric. 3

UV ultraviolet. 9

WA weak annihilation. 47
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