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Abstract

Quantitative predictions in computational life sciences are often based on regression models. The advent of machine
learning has led to highly accurate regression models that have gained widespread acceptance. While there are statistical
methods available to estimate the global performance of regression models on a test or training dataset, it is often not clear
how well this performance transfers to other datasets or how reliable an individual prediction is–a fact that often reduces a
user’s trust into a computational method. In analogy to the concept of an experimental error, we sketch how estimators for
individual prediction errors can be used to provide confidence intervals for individual predictions. Two novel statistical
methods, named CONFINE and CONFIVE, can estimate the reliability of an individual prediction based on the local
properties of nearby training data. The methods can be applied equally to linear and non-linear regression methods with
very little computational overhead. We compare our confidence estimators with other existing confidence and applicability
domain estimators on two biologically relevant problems (MHC–peptide binding prediction and quantitative structure-
activity relationship (QSAR)). Our results suggest that the proposed confidence estimators perform comparable to or better
than previously proposed estimation methods. Given a sufficient amount of training data, the estimators exhibit error
estimates of high quality. In addition, we observed that the quality of estimated confidence intervals is predictable. We
discuss how confidence estimation is influenced by noise, the number of features, and the dataset size. Estimating the
confidence in individual prediction in terms of error intervals represents an important step from plain, non-informative
predictions towards transparent and interpretable predictions that will help to improve the acceptance of computational
methods in the biological community.
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Introduction

Computational methods, in particular regression methods, are

usually praised as a potential replacement of wet lab experiments.

Due to their ability to learn patterns and coherences from

empirical data they can provide reasonably accurate predictions in

a very time-efficient manner. Unfortunately, the credibility of

computational models in the biological community is still rather

low. One major reason is their ‘‘black box’’ character: Biologists

are often left with plain prediction values without any additional

error information. Since biologists are not made aware of the fact

that predictions can be prone to errors, they are forced to use the

regression model as a ‘‘black box’’, leaving them disappointed in

case of less accurate prediction.

In the experimental sciences, the concept of a measurement and

its associated error is a cornerstone in understanding the reliability

of a data point. Determining these errors is well established, be it

through experimental replicates or by considering uncertainty in

the input variables. Not specifying the error of an experimental

measurement is thus rightly considered a violation of good

scientific practice.

Statistical measures to capture the prediction error of compu-

tational methods are not a direct replacement for the measure-

ment error. In most cases, it is not even clear what the reliability of

a prediction method means. Specifying the correlation coefficient

for a training dataset is not sufficient to really give the user an idea

of the error of an individual prediction. A further complication is

the fact that regression methods are often trained on rather limited

datasets. While they maintain good performance on closely related

datasets, the error may increase drastically when applied to data

points far from the training set. Most of this is usually totally

opaque for the user of machine learning methods and hardly ever

reported in the popular web servers offering predictions in

bioinformatics.

To overcome these problems, confidence estimation, which

determines the reliability of individual predictions, is desirable. In

cases where highly accurate predictions are required, e.g. for

choosing candidates for expensive experiments, confidence inter-

vals would be especially invaluable to biologists.

In classification, the confidence of individual predictions have

sometimes already been estimated. Intuitive estimation approaches

use the uncertainty between classes, expressed by the posterior

probability [1] or the distance to a separating hyperplane [2], to

assess the different nature of individual predictions. In contrast,

confidence estimators for regression have to utilize properties of
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the training data or characteristics of the machine learning model

[3].

In the area of quantitative structure-activity relationships

(QSAR), where regression methods are applied to predict the

biological activity of small molecules, the concept of confidence

estimation was introduced through so-called applicability domains

[4]. The AD defines the input space on which the model is

expected to give reliable predictions [5]. However, AD estimators

were designed to detect possible extrapolation errors but not to

measure the error of instances within the AD. Consequently, some

estimators cannot express the confidence in a prediction in a

quantitative manner. Although some estimators can provide

quantitative scores, it is usually difficult to relate a score to an

actual error. Despite some efforts in AD estimation, confidence

estimators for regression models have not been applied extensively

in the context of computational biology.

It can be distinguished between methods that utilize certain

properties of a regression model, e.g. the predictive variance of a

Gaussian process, and methods that are independent from a

particular regression model. Here, we concentrate on the latter,

since model-independent confidence estimators are more univer-

sal.

In this work, we introduce a novel concept to confidence

estimation. In analogy to experimental measurements, we

associate each individual regression prediction with an estimate

of its error. We propose two novel confidence estimators,

CONFINE and CONFIVE, which return confidence intervals

with only a small computational overhead. These intervals contain

the real value with a certain probability, while being very small for

confident predictions and fairly broad if the prediction is likely to

be erroneous. Hence, in contrast to other estimation approaches

that only return arbitrary scores, their error estimates are very

intuitive and easy to interpret.

CONFINE and CONFIVE estimate the confidence of a

prediction by inspecting local properties of the input space.

CONFINE determines the error rate of the nearest neighbors of a

test instance in the training data. CONFIVE examines the

variance in the surrounding local environment and assumes that

large variances result in higher error rates. Since both estimators

are strictly model-independent, they can be applied with any linear

and non-linear regression algorithm.

After presenting related work in this area, we introduce the

methods underlying CONFINE and CONFIVE. We discuss their

applicability by analyzing the influence of noise, the number of

features, and the dataset size on the quality of the estimated

confidence intervals. We then compare our confidence estimators

with other existing confidence and AD estimators on two well-

studied biological benchmark datasets from MHC–peptide bind-

ing prediction and QSAR. Our results suggest that CONFINE

and CONFIVE perform comparable to or better than previously

proposed estimators, given a sufficient amount of training data.

We also show that confidence intervals are a very intuitive and

informative way to express the reliability of individual predictions.

To illustrate the universal character of CONFINE and CONF-

IVE, we apply them to linear as well as non-linear regression. The

results confirm that the confidence estimators presented here are

able to estimate the reliability of predictions in terms of their error

and thus can improve the user’s confidence in prediction methods

in computational biology.

An open-source implementation of both methods is available in

the R package confReg (http://cran.r-project.org/web/packages/

confReg/index.html).

Related Work
When the response of a novel instance x� has been predicted

using a trained regression model, confidence estimators try to

determine the reliability of this particular prediction. A confidence

estimator is a function f : Rk?R, where the input is a test

instance x� and the output is a confidence score cs(x�). Note that

confidence estimators and AD estimators do not try to predict the

exact error of a prediction itself. Instead, they require predictions

with a low error to have a small confidence score and predictions

with a high error to have a large confidence score. Scores

determined by different estimators are not necessarily comparable

nor interpretable. Determining a threshold for the applicability

domain of a model is, hence, often very vague. Instead of relying

on non-interpretable scores that cannot be interpreted by a user,

we propose an approach of translating confidence scores into

interpretable confidence intervals, a more intuitive expression of

confidence. We will briefly discuss related work before introducing

our novel concepts for confidence estimation in ‘Materials and

Methods’.

A traditional approach to estimate ADs is based on the number

of neighbors (NoNN) of x� in the training dataset [4,6]. It is based

on the assumption that the prediction error is lower for instances

within a more populated subspace and higher for instances within

a sparsely populated subspace. The size of the subspace can either

be given in advance or determined in a cross-validation.

An intuitive approach to confidence estimation calculates the

absolute difference of the predicted response y� and the average

response of the m nearest neighbors [6]:

csDiffNN (x�)~1{

Pm
i~1 yi

m
{ŷy�

����

����:

If the error difference is relatively low, the prediction is assumed

to be reliable.

Another popular class of AD estimators are distance-based

[7,8]. One popular representative is the average Euclidean

distance (AvgDist) to instances in the training dataset [4]:

csAvgDist(x
�)~1{

1

n

Xn

i

d(xi,x
�):

It is assumed that predictions of instances with a large average

distance to the training dataset are more erroneous since the

model has to extrapolate.

Bosnic0 and Kononenko [9] introduced a method of confidence

estimation based on the local sensitivity of a regression model.

Predictions are rated as confident if the local variance (LocalVar)

introduced by local changes in the learning data is considerably

low. Local changes are introduced by adding the test instance to

the training datasets using different response values. For each

change, the model is re-trained and the original prediction is

repeated. This obviously requires a lot of runtime resulting in a

huge computational overhead. A detailed description of this

approach can be found in the Supporting Information S1. Note,

when this method is applied in combination with linear regression,

it approximates the predictive variance of the regression model.

Later, the same authors proposed a confidence estimator that

performs a leave-one-out cross-validation on the m nearest

neighbors of x� (LocalCV) [6]. It does not consider errors made

by the overall model, but errors made by locally trained models.

The local environment E(x�,m) of x� in training dataset D is

Estimating Confidence of Individual Predictions
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defined as a set of the m nearest neighbors, the m instances

f(x1,y1), . . . ,(xm,ym)g(D with the smallest Euclidean distance

d(xi,x
�) to x�. For every neighbor (xi,yi) in the local environment

E, a regression model is trained on E\(xi,yi). Then, the response

ŷyi of xi is predicted with this model and the absolute prediction

error ÊEi~jŷyi{yij is calculated. By weighting the instances

according to their distance to x�, we receive the following

confidence estimator:

csLocalCV (x�)~1{

Pm
i~1 e{0:5d(xi ,x

�)2 ÊEi
Pm

i~1 e{0:5d(xi ,x
�)2

:

Obviously, estimation with LocalCV requires long runtimes,

since the leave-one-out cross-validation has to be repeated for

every single instances x�. In our work, we set m to minf n

20
,50g to

reduce runtime.

Last but not least, the variance of multiple regression models

combined by bootstrap aggregation, also known as bagging, has

been used to estimate confidences [10,11]. Given a training

dataset D, we create m~50 new datasets Di of the same size as D
by uniformly sampling with replacement instances from D. Every

dataset Di is used to train a regression model and to predict our

novel instance x�, resulting in m predicted response values ŷy�i .

Since we expect agreement among the predictors in case of a

reliable prediction, the final confidence estimator is based on the

variance of the predicted responses:

csbagging(x�)~1{
1

m{1

Xm

i~1

(y�{ŷy�i )2,

where y� denotes the mean of all predictions ŷy�i .

The presented confidence estimation approaches show different

advantages and disadvantages: Estimators NoNN, DiffNN, and

AvgDist are obviously very fast. However, they do not consider the

prediction model and, hence, might be less sensitive to model

specific prediction behavior. Moreover, NoNN and AvgDist

assume that a populated subspace leads to a better prediction

quality, which might be wrong if the responses in the small

subspace show a very large variance. Similar, a large variance of

responses in the local neighborhood can lead to false estimates by

DiffNN. Confidence estimators LocalVar, LocalCV, and bagging

are more involved since they consider the used prediction model.

As a consequence, they require far more runtime. These three

estimators analyze the variance of the prediction model using

different approaches. However, none of these approaches take

actual prediction errors into account.

Note that several other estimation methods, which are mostly

modified versions of the above estimators, have been introduced in

the past. A more comprehensive overview of these methods is

given in the Supporting Information S1.

Materials and Methods

In the following, we introduce our two novel confidence

estimators, CONFINE and CONFIVE, and how their output is

transformed into confidence intervals. Since both estimators are

model-independent, they require some regression model to make

predictions. In the first part of this work, we apply all confidence

estimators together with linear least square regression. Let

D~f(xi,yi)jxi~(xi1, . . . ,xik)T ^ yi[Rg denote a given training

dataset, with yi being the response values and xi the input features.

First, we select an appropriate feature set by minimizing the mean

squared error (MSE) in a cross-validation (see Supporting

Information S1 for details). Then, a linear regression model is

trained via ordinary least squares on the resulting training dataset.

The performance of the trained model is subsequently accessed by

predicting the response values of a test dataset, which is disjoint

from D. Later in the manuscript, we also apply our confidence

estimators to non-linear support vector regression (SVR) model

with a Gaussian radial basis kernel.

Errors of Nearest Neighbors
Our first confidence estimator is called CONFINE (CONFidence

estimation based on the Neighbors’ Errors). It is based on the MSE

in the local environment of x� in the training dataset. We simply

analyze how well the model fits the surrounding data and transfer

this error to our test instance x�. It has been adapted from Dimitrov

et al. [5], who proposed a similar approach for classification. If the

MSE of the m nearest neighbors is already very high, we do not

expect the model to be very good on novel instances either. Thus, a

large error in the local environment results in a low confidence

score, whereas a low error results in a large score:

csCONFINE(x�)~1{
1

m

Xm

i~1

ÊE2
i :

The prediction errors ÊEi can be obtained by predicting the

response values of the training dataset using a model trained on

the same data or by performing a cross-validation on the training

data. The optimal value of m is obtained using five two-fold cross-

validations on the training dataset by averaging the values of m
resulting in the highest estimation quality of each fold. We chose to

use two-fold cross-validations to have a large test set in the

optimization process.

We believe that CONFINE is very powerful since it considers

actual errors made by the model instead of analyzing only the

variance of predictions. If x� lies within a populated subspace,

CONFINE is able to interpolate the error based on very similar

instances. On the other hand, if x� lies within a sparsely populated

subspace, we transfer the errors of instances within these sparsely

populates subspace, which we are likely to show larger absolute

errors.

Note that we also propose a modified version of this estimator,

which uses a kernel density estimate. Instead of relying on a fixed

local environment, we weight instances according to their distance

to x�, such that we put more weight on instances that are close to

x� (see Supporting Information S1 for details).

Variance of in the Environment
Our second confidence estimator is called CONFIVE (CON-

FIdcence estimation based on the Variance in the Environment).

It is based on the variance of the response values of the m nearest

neighbors of x�. CONFIVE assumes that a large variance of the

responses in a local region is difficult to model with a regression

approach. This is especially true if a linear model is applied. Thus,

large variances result in a low confidence score, whereas small

variances result in a large score:

csCONFIVE(x�)~1{
1

m{1

Xm

i~1

(�yy{yi)
2:
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The optimal value of m is also obtained using five two-fold

cross-validations. As an alternative, we propose a version of

CONFIVE based on a kernel density estimate (see Supporting

Information S1).

Confidence Intervals
When the response of a novel instance x� has been predicted

using the trained regression model, we apply our confidence

estimators for this particular prediction. Since obtained confidence

scores cs(x�) determined by different estimators are not necessarily

comparable nor interpretable, we calculate normalized confidence

scores ncs(x�) as described below. We first predict the responses of

the training data and then apply the confidence estimator for each

prediction. The normalized confidence score ncs(x�) of a novel

instance x� is then calculated by determining the fraction of

predictions from the training dataset with a smaller confidence

value than x�. Thus, an ncs of 0:8 implies that 80% of the

instances in the training dataset have been predicted with a smaller

confidence value. Using this approach, we obtain meaningful and

interpretable scores which lie between zero and one.

Normalized confidence scores are useful indicators of the

prediction error. We assume that the higher the score of a

predicted instance, the more likely this instance was predicted with

a small error. Still, it is not obvious how such a score relates to an

actual error. For example, given an ncs of 0:9, it is not obvious

how large the actual prediction error is.

Confidence intervals are a much more intuitive concept than

arbitrary scores. Instead of predicting only the response ŷy and the

corresponding normalized confidence score ncs, we predict an

interval based on ncs which includes the correct response value y
with a probability of 0:8. Since reliable predictions with a large ncs
have, on average, a smaller squared error, we expect them to have

smaller confidence intervals. We can relate an ncs to confidence

intervals (e.g., 80% confidence intervals) as follows.

Since we assume that instances with a similar confidence score

have a similar error, we estimate confidence intervals based on the

errors of predictions with similar confidence score. In a first step,

we predict the responses of the training instances using a model

trained on the training dataset. Subsequently, the normalized

confidence scores of all training instances are first estimated using

a confidence estimator based on the training data and then sorted

in ascending order fncs1, . . . ,ncsng. For every possible normalized

confidence score nsci, we collect the errors of instances with an ncs
of fncsi{50, . . . ,ncsi, . . . ,ncsiz50g where possible. Otherwise, we

use a reduced set of errors. Based on this set of errors E, we

calculate the 0:1 quantile qncsi
(0:1) and the 0:9 quantile qncsi

(0:9)
as interval borders. By using empirical quantiles, we do not assume

a normal distribution and, hence, are independent of the

underlying error distribution.

When predicting the response ŷy� and the confidence score ncs�

of a novel instance x�, we calculate the 80% confidence interval as

½ŷy�zqncs� (0:1),ŷy�zqncs� (0:9)�.
Note, in case of CONFINE, we could also simply utilize only

the errors of the nearest neighbors of an instance to estimate

intervals. However, we found this naive estimate to perform worse

than the above described approach, possibly due to the smaller set

of acquired errors.

Evaluation
The quality of the predicted confidence intervals is measured

based on a simple requirement: the more erroneous a prediction is,

the larger should be the confidence interval. Hence, predictions

with a large squared error should yield a broad confidence

interval, while predictions with a low squared error are assumed to

have a small confidence interval. Since, to the best of our

knowledge, there exists no appropriate evaluation metric, we

measure the quality of confidence interval estimation as follows.

An intuitive measure of this requirement is the Pearson product-

moment correlation coefficient r. Consequently, we can assess the

quality of estimates by calculating the correlation r between the

absolute prediction errors ĵEEj and the widths of the corresponding

confidence intervals ciw~q(0:9){q(0:1). The resulting correla-

tion is then normalized by the correlation obtained by a perfect

confidence estimator. To simulate a perfect confidence estimator,

we re-order the prediction errors and confidence interval widths in

a way that r is maximized. This can be simply done by sorting ĵEEj
and ciw. We define the confidence–error correlation (CEC) as

CEC~
r(ciw,ĵEEj)

r(sort(ciw),sort(ĵEEj)) ,

where sort is an arbitrary sorting function. Since we wish to

calculate an 80% confidence interval, we obviously also require

about 80% of the test errors to lie within the confidence interval.

In Fig. 1, we show absolute errors as a function of confidence

interval widths estimated by CONFINE. At a first glance, the

resulting CEC of 0:3 does not seem all that impressive. It should

be noted, however, that we do not expect a perfect correlation

between the error and the confidence interval width. It is only

required that the error is smaller than the confidence interval.

While correlation is thus obviously not the perfect measure, we

used it because of its rather intuitive nature.

The CEC should not be confounded with the prediction quality

of a model itself. Even if a model performs almost perfect, it is not

necessarily easier to estimate its prediction errors. It should also be

noted that already a CEC of 0:3 can lead to a considerably

reduced confidence interval for confident predictions, as can also

be seen in the left-hand plot of Fig. 1.

In many real world applications, users are only interested in

highly reliable predictions. To account for that, we also measure

the confidence-associated prediction improvement (CAPI). Therefore, we

calculate by what percentage the MSE is reduced if we consider

only the top 20% predictions, i.e. the 20% predictions with the

smallest confidence intervals.

Datasets
We benchmarked our methods on three different types of

datasets: a synthetic dataset, several QSAR datasets, and a dataset

stemming from immunoinformatics (MHC–peptide binding). The

synthetic dataset was created using the Friedman function [12]

with different levels of Gaussian noise:

y(x)~10 sin (Px1x2)z20(x3{
1

2
)2z10x4z5x5

zN (m~0,s[f0:1,0:5,1:0,2:0g):
ð1Þ

This test function has five relevant features x1, . . . ,x5, where

two are linear and three are non-linear. We created datasets of

different sizes f100,500,1000g by sampling 10, 50, 100, or 500
features from ½0,1� uniformly. The response values were calculated

by applying the Friedman function to the first five features,

additional features x6, . . . have no influence on the response value.

Since we are able to scale properties such as the size, the number

features, and the noise, this dataset is well suited to measure the

influence of these attributes.

Estimating Confidence of Individual Predictions
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Furthermore, we used eight popular benchmark datasets from

QSAR [13], which consist of 66 to 397 chemical compounds and

corresponding experimentally obtained response values. We

calculated up to 1,872 features using DragonX 1.4.0 [14].

Our third type of data is MHC–peptide binding data. We

extracted peptides of length nine with experimentally verified

binding affinities to molecules from 12 different MHC class I

alleles from the IEDB benchmark dataset [15]. We chose the 12
HLA alleles for which more than 1,000 examples are available:

HLA-A*01:01, HLA-A*02:01, HLA-A*02:02, HLA-A*02:03,

HLA-A*02:06, HLA-A*03:01, HLA-A*11:01, HLA-A*31:01,

HLA-A*33:01, HLA-A*68:01, HLA-A*68:02, and HLA-

B*07:02. Each position in the peptide sequence is encoded by a

vector consisting of 19 zeros and a one corresponding to the amino

acid at this position and, further, six values encoding for the

hydrophobicity and charge of the amino acid. The resulting

datasets contain 1,157 to 3,089 instances, each encoded by 234
features.

We chose datasets from QSAR and MHC-I binding prediction

since they have quite different properties with respect to the

number of data points, the size of the input feature space, and the

coverage of that input space. Peptides are defined by their

sequence, which is usually encoded by a simple 180-dimensional

binary feature vector. In contrast, chemical compounds are more

complex, since their 3D structure has to be encoded into features,

leading to more than 1,500 feature values for each instance.

Moreover, the feature values of compounds can take values that

might be unique within the whole dataset. In contrast, it is very

unlikely that there is no peptide with the same amino acid at one

particular position in a dataset of more than 1,000 peptides.

Further, the amount of training data used for QSAR models is

usually very small, often only 100 to 1,000 instances, while MHC

binding data might be given for more than 1,000 peptides. See

also Table 1 in the Supporting Information S1 for detailed dataset

sizes.

Results and Discussion

Influence of Dataset Size, Features, and Noise
In an initial experiment, we analyzed how the introduced

confidence estimators are influenced by the dataset size, the

number of features, and noise in the data. The experiment was

performed on the synthetic dataset, which gives us full control over

these parameters. We performed five nested five-fold cross-

validations on randomly generated artificial datasets, each with a

different number of instances, features, and noise levels in the

response variable, resulting in 48 combinations. The estimation

quality of the confidence estimators in terms of the average CEC

(avgCEC) are shown for different parameter combinations in

Table 1. Details on qualities regarding the confidence associated

Figure 1. Example of estimating confidence intervals. In this example, we estimated the confidence intervals of 200 instances. The left-hand
plot shows the confidence interval widths and the corresponding absolute errors. The corresponding CEC equals 0:3. Although the CEC is not very
large, it is possible to see an increased number of small confidence intervals for predictions with a low error. In the right-hand plot, the estimated
confidence interval borders are displayed. In addition, every prediction defined by its prediction error and its normalized confidence score is depicted
by a red circle. On average, the absolute error is smaller for predictions with a high ncs and a small confidence interval.
doi:10.1371/journal.pone.0048723.g001

Table 1. Performance of confidence estimators on artificial
data with different properties.

n#100 n.100 m#10 m.10 s,1.0 s$1.0 best

CONFINE 0.05 0.22 0.19 0.05 0.21 0.15 0.30

CONFIVE 20.02 0.05 0.03 20.01 0.04 0.02 0.07

AvgDist 0.02 0.12 0.10 0.03 0.11 0.08 0.16

Bagging 0.11 0.20 0.18 0.11 0.19 0.16 0.25

Diff5NN 0.01 0.17 0.14 0.02 0.14 0.11 0.29

LocalCV 0.01 0.05 0.04 0.02 0.04 0.03 0.05

LocalVar 0.00 0.12 0.10 20.00 0.09 0.08 0.16

NoNN 0.05 0.12 0.12 0.03 0.11 0.09 0.16

For every confidence estimator, we calculated the average CEC by considering
datasets with a different number of instances n, a different number of selected
features m, and a different noise level s. In the last column, we show the
average CEC for the best parameter combination (n~1,000, mƒ10, s~0:1).
doi:10.1371/journal.pone.0048723.t001

Estimating Confidence of Individual Predictions
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prediction improvement (CAPI) can be found in the Supporting

Information S1.

We found that the dataset size has the strongest influence on the

estimation performance. On very small datasets with only 100
instances, the estimators yield an avgCEC of 0:05. When

considering datasets with more than 100 instances, the avgCEC

of all estimators increases to 0:13. In addition, we observed a

CAPI of 9% on small datasets and a CAPI of 21% if more than

100 training instances are given. Still, not all estimators are equally

sensitive to the dataset size. While the avgCEC of estimator

CONFIVE is only slightly influenced by the dataset size, the

avgCEC of CONFINE increases by 0:17 when considering

sufficiently large datasets. For large datasets, CONFINE shows a

CAPI of 35%. Moreover, note that when the dataset size is

increased from 100 to 1,000 instances, the standard deviation of

the CECs decreased from 0:27 to 0:11.

We also observed that noisy features and noise in the responses

have an influence on the quality of confidence estimates.

Particularly when the initial number of features was high or the

dataset size was low, noisy, non-predictive features were included

in the feature set. When more than 10 features were selected, the

avgCEC of all estimators decreased by 0:09. Similar results were

obtained regarding the noise in the data. When random values

with a low standard deviation (sv1:0) were added to the data, the

avgCEC was up to 0:06 larger compared to avgCECs obtained on

data with a higher noise level.

As expected, when we considered only datasets with 1,000
instances, ƒ10 selected features, and a noise level of s~0:1, all

estimators yield their best performance. In particular, CONFINE

performs well, yielding an avgCEC of 0:30 and a CAPI of 0:48,

i.e. the 20% of predictions that had the smallest confidence

intervals exhibited a 48% lower MSE than an average prediction.

From our results, we can conclude that – not surprisingly – a

larger amount of training data results in more robust confidence

estimates and higher confidence estimation quality. In addition, a

good feature representation and a low noise level support

confidence estimation. Clearly, these properties are not indepen-

dent of each other. Distinguishing between informative and non-

informative features is easier for large datasets, since the difference

between noise and information becomes more evident. The same

holds for datasets with a low level of noise, resulting in less noisy

features. Since most confidence estimators discussed here inspect

local properties of the input space, they rely on good feature

representation. If noisy features are part of the feature set,

instances in the local environment are not necessarily similar to the

test instance and, thus, provide no reliable confidence information.

Furthermore, given more instances in the dataset, we can define a

local environment with a smaller diameter since the density of

instances is higher. Consequently, the nearest neighbors are more

similar to the test instance and contain more relevant confidence

information.

Evaluation on Biological Data
To compare CONFINE and CONFIVE with existing confi-

dence estimators, we performed five nested five-fold cross-

validations on the MHC datasets and the QSAR datasets.

Due to the different properties of the biological datasets, the

results are rather diverse (see Table 2). On the MHC datasets, our

estimators CONFINE and CONFIVE, as well as DiffNN, with an

avgCEC of around 0:25, perform superior to all other estimators,

which yield an avgCEC around 0:12. We summarized the

improvement in CEC values across the MHC datasets with

random effects models [16]. We found that CONFINE,

CONFIVE, and DiffNN show a higher CEC of at least 0:11,

0:08, and 0:08, respectively, compared to all other methods. In all

three cases the improvement was significantly greater than 0 with

a p-value pv0:001. In addition, the best three confidence

estimators show a CAPI of up to 39%, while the other estimators

yield an average improvement of only 19%. When summarizing

the CAPI improvements across the datasets using random effect

models, we found that CONFINE and CONFIVE perform

significantly better than all other methods except of DiffNN with a

p-value pv0:002. On the QSAR data, bagging performs best (p-

value pv0:005), yielding an avgCEC of 0:20, while estimators

CONFINE, CONFIVE, and LocalCV perform second best, with

avgCECs around 0:08 and p-values of pv0:005, pv0:005, and

pv0:05, respectively. Since most estimators have been shown to

be very sensitive to the dataset size, we also calculated the avgCEC

considering only QSAR datasets with more than 100 learning

examples. On large QSAR datasets, the avgCEC of most

estimators, except for bagging, is considerably improved. In the

case of CONFINE and CONFIVE, the avgCEC improves to 0:13
and 0:15, respectively. A similar trend can be observed when

considering prediction improvement.

Estimating confidences with CONFINE and CONFIVE is

possible with only a minor computational overhead. Estimating

the confidence intervals of one individual prediction requires

about 2 ms on a 2 GHz dual-core AMD Opteron with 4 GB of

RAM using our R implementation. But also most other estimators

need about 2 ms for an estimation. Only estimators LocalCV and

LocalVar require more than 200 ms for an individual estimation.

For each estimation, both estimators train multiple regression

models, which results in a huge computational overhead. Note

that bagging uses only predictions of multiple regression models

and is faster than LocalCV and LocalVar as long as we rely on

linear regression, as we will experience in the following section.

Our results suggest that CONFINE and CONFIVE often

perform better than most other confidence estimators while being

comparable in quality to bagging. Especially on the MHC

datasets, where more than 1,000 training examples are given,

and on sufficiently large QSAR datasets, our methods yield high

quality confidence estimates. In contrast, commonly used AD

estimators such as AvgDist, DiffNN, and NoNN often fail to give

reasonable error estimates. Interestingly, CONFIVE performs well

on the biological datasets, while yielding a poor performance on

artificial data. In addition, CONFINE and CONFINE require

only a small computational overhead.

Confidence Estimation for Non-linear Models
To show that CONFINE and CONFIVE can be also applied to

non-linear regression models, we repeated the evaluation on the

MHC and QSAR datasets using SVR. Since estimators LocalCV

and LocalVar require too much runtime, we excluded them from

this study. The parameters of the SVR and the estimators were

optimized by performing nested cross-validations on the training

dataset. Since optimizing SVRs requires more runtime, we

restricted the evaluation to only one nested five-fold cross-

validation. The results are shown in Table 2.

Similar to our previous results, confidence estimators CON-

FINE, CONFIVE, DiffNN, and bagging show the best overall

performance. While the avgCEC of CONFINE and CONFIVE

was comparable to our previous results on the MHC datasets, the

avgCEC on the QSAR data was higher. In particular on the

QSAR datasets, the avgCEC and CAPI of CONFINE is

significantly larger than the avgCEC of all other methods except

of DiffNN (p-value pv0:05), which shows large variance in its

performance. Note that we again observed that CONFINE and

CONFIVE performed better on larger QSAR datasets.
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Confidence scores and confidence intervals could be predicted

with only a small computational overhead using estimators

CONFINE, CONFIVE, AvgDist, DiffNN, and NoNN. On the

MHC and QSAR datasets they require between 9 to 44 ms for an

individual prediction. The different estimation times between

estimators and the differences compared to our previous results

using linear regression origin from the different number of

features. Confidence estimation based on bagging requires the

largest runtime of up to 3 seconds for an individual prediction.

Our findings support the assumption that CONFINE and

CONFIVE show similar behavior when being applied in

combination with non-linear regression models. In particular,

CONFINE shows again a very good and very robust performance,

while being fast at the same time. Although confidence estimation

based on bagging shows also a good performance, bagging is less

practical for real world applications. If bagging is applied with a

time-consuming regression model, runtimes can be considerably

high. In contrast, CONFINE and CONFIVE perform indepen-

dent of the actual regression model, making them even more

interesting for real world application.

Evaluation of Confidence Intervals
To show that a score-based 80% confidence interval contains as

many instances as an interval estimated independently from a

confidence score, we compared it with a general 80% confidence

interval. Therefore, we calculate the 0:1 quantile and the 0:9
quantile of the squared errors of all training instances without

considering the confidence scores. While the score-based confi-

dence intervals are expected to be smaller for large ncs, the general

interval is always of the same size.

On the artificial dataset, we observed an almost equal fraction

of 0:72 and 0:73 instances in the score-based interval and the

general interval, respectively. If we consider only datasets with

more than 100 instances, we find about 77% of the instances

within both confidence intervals. Among the different confidence

estimators, we could not find considerable differences. On the

MHC datasets, a fraction of 0:74 and 0:77 instances are covered

by the score-based interval and general interval, respectively. In

contrast, only 54% and 55% of the instances from the QSAR

datasets fall into the respective confidence intervals. However,

when considering only QSAR datasets with more than 100
training examples, about 67% of the instances are within both

confidence intervals.

Our results suggest that score-based confidence intervals contain

the same fraction of instances as general confidence intervals. In

particular, on large datasets, the fraction of instances within the

confidence interval converges to 0:8. Further, since the widths of

score-based confidence intervals are correlated with the absolute

prediction error, they are a very intuitive measure of confidence.

Predicting the Estimation Performance
Although confidence estimation can give valuable information

in addition to plain response values, the quality of estimates differs

from dataset to dataset. To answer the question whether we can

predict the quality of confidence estimates, we compared the

CECs obtained from the training data (CECtrain) with the CECs

obtained from the corresponding test data (CECtest) for all

estimators.

On the artificial dataset, we observed an average correlation

coefficient r between CECtrain and CECtest of 0:16. When

considering only datasets with more than 100 training examples,

the average r increased to 0:38. The same trend could be observed

in the biological datasets. For the considerably large MHC

datasets, we received an average r between CECtrain and CECtest

of 0:91, while no correlation appeared for the fairly small QSAR

datasets. In particular, the training CECs of CONFINE and

bagging show a comparably good correlation with their corre-

sponding CECstest for all datasets. See Supporting Information S1

for more details.

If a sufficient amount of training data is available, the

performance of confidence estimators is well correlated with their

performance on the training data. This allows us to make an

Table 2. Performance of confidence estimators on biological datasets.

Regression model confidence MHC QSAR

estimator CEC CAPI runtime [ms] CEC CAPI runtime [ms]

LR CONFINE 0.27 0.39 2 0.08 0.09 1

CONFIVE 0.24 0.35 2 0.09 0.13 1

AvgDist 0.11 0.18 2 20.02 20.10 1

Bagging 0.13 0.18 1 0.20 0.35 1

DiffNN 0.24 0.32 2 20.00 20.14 1

LocalCV 0.16 0.27 214 0.08 0.10 353

LocalVar 0.10 0.17 482 20.08 20.22 430

NoNN 0.10 0.17 2 20.03 20.09 1

SVR CONFINE 0.23 0.41 9 0.23 0.32 9

CONFIVE 0.21 0.34 10 0.16 0.21 10

AvgDist 0.12 0.23 9 0.02 0.03 12

Bagging 0.21 0.50 374 0.15 0.17 3064

DiffNN 0.24 0.35 9 0.10 0.20 10

NoNN 0.22 0.18 9 0.12 0.14 44

For every confidence estimator, the avgCEC, the confidence associated prediction improvement (CAPI), and the time for an individual estimation in milliseconds on the
MHC datasets and on the QSAR datasets is shown. For the upper part of the table, the estimators were applied together with linear regression (LR), whereas the number
in the lower part were obtained using support vector regression with an RBF kernel (SVR).
doi:10.1371/journal.pone.0048723.t002
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educated guess as to how a confidence estimator will behave on

new data. In particular, the performance of CONFINE and

bagging is quite predictable using performance information from

the training data.

Conclusion
Estimating the confidence in individual predictions is crucial for

the interpretability of machine learning models. Confidence

estimation has two main purposes: it yields reliable bounds on

the error of individual predictions thus increasing the confidence of

the user in predictions and it allows the selection of highly

confident predictions. The latter can be very valuable if

predictions for large datasets are made and confidence can serve

as a selection criterion for experimental validation. For example,

in the case of MHC binding prediction, a large number of high-

affinity binders might be predicted and experimental validation

might proceed based on the confidence in the prediction in order

to confirm a larger number of good binders with fewer

experiments.

In this work, we propose two novel confidence estimators for

regression, CONFINE and CONFIVE. They determine normal-

ized confidence scores and confidence intervals that help biologists

to rate the reliability of an individual prediction. Both estimators

are model-independent and can be applied with any regression

model. In contrast to model-dependent confidence estimation

methods, CONFINE and CONFIVE are computationally very

efficient and can thus be added easily to existing predictors without

a significant performance loss.

In an initial study on artificial data, we observed that

CONFINE and CONFIVE, as well as other estimators, yielded

a better estimation performance on large datasets. A sufficient

amount of training data helps to identify irrelevant features and

increases the prospect of having adequate neighbors in the training

dataset. We then compared CONFINE and CONFIVE with other

existing confidence and AD estimators on two benchmark MHC

binding prediction and QSAR datasets. Our results suggest that

CONFINE and CONFIVE give high quality confidence estimates

if sufficient training data is available. Especially on the large MHC

datasets, both estimators often perform better than existing

methods. Similar results obtained using non-linear support vector

regression demonstrate that CONFINE and CONFIVE can be

applied to non-linear regression models as well. Only confidence

estimation based on bagging performs comparably on the tested

datasets. However, depending on the regression method used,

bagging can require a huge computational overhead. We also have

seen that confidence intervals estimated by our two methods are

comparable to fixed confidence intervals, while having the

advantage of giving a very intuitive measure of confidence.

Nevertheless, since properties differ from dataset to dataset, care

needs to be taken when applying confidence estimators. Moreover,

different needs might influence the choice of a confidence

estimator. In cases where only outlier detection is required (i.e.,

where the prediction of an applicability domain is required),

simple distance-based estimators might suffice. However, if

enough data is given, one should exploit the advantages of having

quantitative confidence estimates. Furthermore, since the quality

of future confidence estimates by CONFINE and CONFIVE can

be predicted if large training datasets are given, it can be checked

in advance whether they yield satisfactory estimation quality for a

given task.

It is still a long way towards highly accurate confidence

estimators that work equally well on any kind of data. A

combination of multiple confidence estimators as well as an

automated selection [17] could improve both the quality and the

robustness of the estimation. Further, predicting not only the size

of errors but also their sign will increase the amount of information

gained from a confidence estimator. As an alternative, signed error

estimates can be used to correct the prediction results and might

increase the prediction performance of the regression model.

Estimation of normalized confidence scores and confidence

intervals is clearly a step forward, moving away from plain

regression values and a discrete applicability information. In

particular, confidence intervals provide a very intuitive represen-

tation of reliability, which can be easily interpreted by biologists.

As a consequence, confidence information will help to increase the

trust of biologists in in silico predictions. Distinguishing between

confident and almost random predictions will also help biologists

to choose suitable candidates for further experiments. We are

convinced that confidence estimators will become standard for

computational prediction models in the near future.
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3. Bosnić Z, Kononenko I (2009) An overview of advances in reliability estimation

of individual predictions in machine learning. Intell Data Analysis 13: 385–401.

4. Sheridan R, Feuston B, Maiorov V, Kearsley S (2004) Similarity to molecules in

the training set is a good discriminator for prediction accuracy in QSAR. J Chem

Inf Comput Sci 44: 1912–1928.

5. Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, et al. (2005) A

stepwise approach for defining the applicability domain of SAR and QSAR

models. J Chem Inf Model 45: 839–849.
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