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1 Introduction

The definition and detection of dependence structures is an essential building block in
the model generating process. In this respect, revealing non-trivial patterns can be
regarded as added value in the clarification of economic dynamical structures which
also postulates a positive side-effect in forecasting. Even though the recent success of
machine learning, signal processing, and natural language processing hold the key to
empower the model generating process, the financial community is far from exploiting
their full potential. In this thesis we seek to meet the demand for interdisciplinary
techniques.
Predicting an unknown state is conducted based on the analysis of information that
is believed to influence the future outcome. In finance, this process is often based on
historical time-series data which also postulates the foundation of a model generating
process. Its availability and costs determine the frequency at which economic and
financial data are collected. The question whether the sampled frequency fully captures
the movement of economic activity is of secondary importance. In case the sampled
frequency is recognized as inadequate, the discrete time series is aggregated or parti-
tioned on the time scale to obtain the ideal frequency. For example, summing daily
logarithmic stock returns of five successive business days converts daily observations to
weekly. However, this procedure shrinks the informational content of the time-series
as the sequential structure is partially lost. This hampers, additionally to the adverse
statistical properties and low signal-to-noise ratio of financial time series, the identifi-
cation of a proper global model. It is therefore necessary to use a filter that creates
linearly independent time-scale transformations without decreasing the informational
value of the data.
Summarizing, this thesis focuses on the time-frequency decomposition of time series and
temporal aggregation of information in unstructured data. The former is addressed in
chapter 2 and 3, where we use wavelet analysis to investigate patterns of interdependence
and create frequency-based features for forecasting. The latter is the topic of chapter 4,

1



1 Introduction

as we use an interdisciplinary approach based on topic modeling and network theory to
identify surprising events.
In the first part of the thesis, we investigate the effectiveness of an interdisciplinary
methodology, known as wavelet analysis, to study temporal and frequency information
simultaneously. Wavelets are small waves which have a finite length and are oscillatory
as they grow at a point in time and decay at a subsequent point in time. Wavelets
can be arbitrarily stretched and translated with a flexible resolution and are therefore
localized in both the time and frequency domain which is one of the main advantages
against base functions of the Fourier transformation. In comparison with econometric
tools which operate solely in the time-domain, this approach can be used to reveal
frequency specific features.
In the first analysis we explore the overlap between signal processing and machine
learning within an application of time series forecasting and attempt to bridge their
gaps. We focus on the decomposition of time-series into the time and frequency domain
to alleviate the influence of noise in a forecasting model for stock market indices. The
decomposition is conducted using wavelets as previous applications have shown a power-
ful feature extraction capability. One of the indispensable challenges in wavelet analysis
is to choose the wavelet filter adequately. As there is no deterministic solution to this
problem, it needs to be addressed by trial and error (Chernick 2001). Moreover, the
redundancy of features created by the time-frequency decomposition hampers the model
building process and requires an additional feature reduction step without deteriorating
the signal-to-noise ratio of the data. We incorporate a recursive elimination algorithm
to rank each feature in the context of the learning algorithm. Moreover, to avoid
overfitting, we penalize model complexity by structural risk minimization as proposed
by Vapnik, Golowich, and Smola (1997). The proposed model is evaluated on five years
of daily out-of-sample data covering the worlds major stock indices. The outperformance
of our algorithm against the SVR model with non-filtered forecasting features in the
classification task supports the hypothesis that specific wavelet decompositions do
reveal reoccurring patterns.
In the third chapter we make use of time-frequency decompositions to adopt a long-
and short-term perspective on market linkages between the nominal effective European
exchange rate and European stock markets. We estimate the spectral characteristics
of the time series as a function of time and frequency using a continuous wavelet
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transform. In a second step, we compute the continuous wavelet power spectrum and
three cross-wavelet tools: the cross-wavelet power spectrum, the cross-wavelet coherency
and the phase-difference of the complex wavelet coherency. This framework allows us
straightforwardly to reveal how periodic components of the considered time series evolve
over time. Moreover, we can include measures of co-movement between the foreign
exchange market and the European stock market. Computing the phase-difference,
we can identify lead-lag dynamics across frequencies for the observed co-movement
patterns. The tools we apply reveal economic time-frequency relations that have cannot
be captured by classical correlation or covariance-based approaches as we separately
analyze each frequency component. We identify a significant bidirectional causal re-
lationship between 2000 and 2003 as well as between 2007 and 2010 at 128-512 days
time-scale. Additionally, we discover a high degree of interdependence during financial
turmoil during 2002, 2007-2010 and 2012-2016. The observed phase pattern and thus
the implicated non-stable lead-lag relationship favor solely for specific time intervals the
Dornbusch model by Dornbusch and Fischer (1980) as well as the portfolio approach
by Dominguez and Frankel (1993).
The above chapters look at the decompositions of economic time series to study tem-
poral and frequency information simultaneously. The final chapter is devoted to the
aggregation of information in unstructured data to explain the impact of surprising
events on financial markets. To achieve this purpose, we model the informational
content, produced by the S&P500 companies on Twitter, as a network. The extracted
topic keywords stemming from the Twitter dataset are defined as nodes that form
clusters which we define as events. The network projection allows us to observe the
propagation of events and to quantify its’ dynamics on the time axis. In this regard,
we associate an unexpected event with a strongly expanding cluster in the network
representation. Aggregating this process into a single indicator over the first and second
moment allows quantifying the surprise level dynamics for each time interval. We
discover that the proposed surprise indicator has an inverse effect on S&P500 returns
and a positive impact on volatility. Additionally, for both the return and volatility
models supporting a pre-report effect. Moreover, endogeneity cannot be completely
ruled out in our study as we cannot answer the question of whether market volatility
determines the level of Twitter activity or vice versa.
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1.1 Publication details
Paper I (chapter 2):
A hybrid forecasting algorithm based on SVR and Wavelet Decomposi-
tion

Authors:
Timotheos Paraskevopoulos, Peter N. Posch

Abstract:
We present a forecasting algorithm based on support vector regression emphasizing
the practical benefits of wavelets for financial time series forecasting. We utilize an
effective de-noising algorithm based on wavelets feasible under the assumption that a
systematic pattern plus random noise generate the data. The learning algorithm focuses
solely on the decomposed time series components, leading to a more general approach.
Our findings propose how machine learning can be used for data science applications
in combination with signal processing methods. Applying the algorithm to real life
financial data, we find wavelet decompositions to improve forecasting performance
significantly.

Publication details:
Quantitative Finance and Economics, 2018, 2(3)

4



1.1 Publication details

Paper II (chapter 3):
Time-frequency linkages and co-movements between the Euro and Eu-
ropean stock market: A continuous wavelet analysis.

Authors:
Timotheos Paraskevopoulos, Peter N. Posch

Abstract:
We investigate the evolution of co-movement and lead-lag relationships between the
nominal effective European exchange rate and the largest European stock markets
in the time and frequency dimension. We decompose the financial return series into
several time scales and apply the cross-wavelet coherence and phase difference. We
observe patterns consistent with the notion of contagion, suggesting strong and sudden
increases in the cross-market synchronization on particular frequency bands for the
period between 2000 and 2016. Investigating the lead-lag relationships between both
markets reveals that causality runs from one variable to the other and vice-versa
depending on the frequency.

Publication details:
Working paper.

5



1 Introduction

Paper III (chapter 4):
Event detection and the impact of surprise.

Authors:
Timotheos Paraskevopoulos, Peter N. Posch

Abstract:
This study integrates topic modeling into network theory to develop a metric of
quantifying surprise. We propose to design an undirected network to model the flow of
informational content published by the S&P 500 companies on Twitter. The network
representation allows measuring the creation and propagation dynamics of real-world
events from an agnostic point of view. To examine the overall effect of rare events
on the S&P 500 we introduce a metric based on network indicators to quantify the
daily level of surprise on the aggregated level. According to the results, we observe a
positive impact of the aggregated surprise on the volatility and an inverse effect on
the returns. Moreover, the results indicate for both the return and volatility models a
pre-report effect. This study is the first attempt to quantify the level of surprise using
topic modeling and network theory and to suggest how surprise can be quantified in
user-generated content.

Publication details:
Working paper.
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2 A hybrid forecasting algorithm based on
SVR and Wavelet Decomposition

The following is based on Paraskevopoulos and Posch (2016).

2.1 Introduction

Forecasting the movements of stock market indices is challenging as the underlying
process is characterized by significant fluctuations and exhibits nonlinear dynamics.
There has been a tremendous amount of research on this topic over the past years, and a
great deal of effort has been made to gain advantages in financial time series predictions.
Atsalakis and Valavanis (2009), provide a cohesive presentation and classification of the
research on stock market forecasting. The most widely used methods in forecasting such
as autoregressive integrated moving average models, the exponential smoothing method,
various models for seasonality, structural models, the Kalman filter and nonlinear
models (including regime-switching models) could not reliably outperform the random
walk (Atsalakis and Valavanis 2009). Machine learning provides a theory to construct
algorithms that can learn, memorize and generalize from data. Generalization is
essential to produce sufficiently accurate predictions from new and unseen patterns
after having experienced learning on a related data set. However, before an algorithm
can generalize it must be able to recognize the observed patterns which is achieved
by the prior learning process. Therefore, the incremental informative content of the
considered learning sample is crucial. Redundant, noisy or unreliable information impair
the learning process and undermine the success of machine. Given the assumption that
a systematic pattern plus random noise generate the considered data, a useful denoising
algorithm provides a deeper understanding of the data generating process leading to a
more precise forecast.

Wavelet transformation, as a signal processing technique, enables the decomposition
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2 A hybrid forecasting algorithm based on SVR and Wavelet Decomposition

of a time series into the time and the frequency domain resulting to powerful feature
extraction capabilities (Li et al. 2002; Kim and Han 2000; Dacorogna et al. 2001;
Gonghui et al. 1999; Huang and Wu 2008; DeLurgio 1998; Seo et al. 2015). In this
study, we introduce a rolling hybrid wavelet support vector regression with a precede
recursive feature elimination (WL-RFE-SVR) algorithm, which is apart from traditional
econometric and time series techniques. Our proposed algorithm consists of three stages
which are conducted every walking forward step. In the first stage, we split the sample
set into a training, validation and test set. Each sub-sample is subsequently decomposed
into its low and high-frequency components using wavelet transform which enables us
to extract additional information from the considered time series (Chang and Fan 2008;
Li et al. 2002; Lu, Lee, and Chiu 2009; Ramsey 2002). In the second step, we identify
the optimal feature set and support vector regression (SVR) hyperparameters using the
recursive filter elimination (RFE) and hyperparameter optimization routine based on
the training and validation set. In the third step, we apply the identified optimal feature
set and SVR parameters on the test and obtain the out-of-sample (OOS) forecasts.
To best of our knowledge, the proposed WL-RFE-SVR methodology has not been
presented in the literature; however, similar ideas have been discussed by Huang and
Wu (2008). They apply a relevance vector machine on wavelet-based extracted features
to forecast stock indices. In contrast to our work, the feature space dimension is not
reduced by a feature selection algorithm. An algorithm based on wavelet decompositions
and an MLP neural network with a financial application shows promising profitability
when the data set is decomposed into low and high-frequency components (Zhang et al.
2001). Kao et al. (2013), provide a similar hybrid approach which, however, requires
multiple optimization steps for feature selection and parametrization of the SVR. Also,
their application is based on discrete wavelet transforms (DWT) which require the
sample to be dyadic, i.e., observations of pairs each from disjunct sets. This restricts
the application of the SVR as the size of the training set cannot be chosen arbitrarily.

We contribute to the literature by introducing a hybrid algorithm for processing
data based on wavelet transform and SVR which integrates feature selection and
parameter optimization in a single optimization step. Thereby we shed light on wavelet
decompositions with the purpose to improve the forecast performance of an SVR by
systematically comparing several wavelet filters and investigate the impact of short-term
to long-term forecasting horizons on the performance of a trading application. The
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2.2 Methodology

remainder of the paper is as follows: We introduce and discuss the proposed method
in the following section 2.2. In sections 2.2.1, 2.2.2 and 2.2.3 we give an introduction
into wavelet transform, recursive feature selection and describe the concept of SVR.
Section 2.3 focuses on the application of the method to real data, while the final section
concludes.

2.2 Methodology

The proposed forecasting algorithm is a purely time-delayed model which captures
the relationship between historical and subsequent index log returns. An effective
adaptation to changing market conditions is achieved by optimization which follows the
purpose of determining the most robust implementation of the forecasting algorithm
within a specific time interval. A walk-forward routine is a well-suited systematic
approach for this purpose as it allows to measure the robustness of the forecasting
algorithm exclusively by out of sample forecasts. To effectively eliminate the likelihood
that the out of sample results are just a matter of luck, the procedure is conducted over
a time span of 4 years resulting in a series of 1200 successive out of sample tests. For
each walking-forward step of 100 observations, we split the past 1100 observation into
a training set (800 observations), a validation set (200 observations) and a test set (100
observations). Subsequently, we decompose each sub-sample separately into its low and
high-frequency components. We use the training set to train our SVR with a specific
feature set and hyperparameters while we asses its performance on the validation set.
We pick the best performing SVR (based on the validation set), which is characterized
by a specific feature set and its hyperparameters, and produce 100, depending on
the forecast horizon, 1, 5, 10 and 20 days ahead, forecasts. In particular, the data
preprocessing component follows the critical objective of denoising. We obtain the
trend part by setting all high-frequency wavelet coefficients equal to zero and applying
the inverse wavelet transform. To obtain the variation part, we set the low-frequency
wavelet coefficients equal to zero and perform the same procedure. To avoid a looking
forward bias, we decompose each sub-set using a rolling window approach with a
window length of 200 observations and a step size of one observation. Subsequently,
the algorithm decides based on an RFE algorithm the amount of trend and variation
components that will be utilized to perform the forecasts. For each feature subset,

9



2 A hybrid forecasting algorithm based on SVR and Wavelet Decomposition

we perform a grid search optimization to identify the optimal SVR hyperparameters.
The flowchart in Figure A.1 depicts the proposed methodology in detail. Instead of
restricting ourselves to a single filter, we provide a comparative analysis of a wide
range of wavelet transform filters which are adequate for financial time series analysis
(Dacorogna et al. 2001). To ensure better comparability, we extended the study by a
naive strategy. For this strategy, we omit the data preprocessing based on a wavelet
transform. An important property of this algorithm is the scalability which allows
additionally to point and classification tasks, the incorporation of trading strategies
into the model.

2.2.1 Wavelet Transforms

Wavelet transforms are based on Fourier analysis, which represents any function as
the sum of the sine and cosine functions. A Fourier transform is not applicable to
non-stationary signals as it assumes the signal to be periodic. In contrast, a wavelet
transform is a mathematical tool that can be applied to numerous applications, including
non-stationary time series. The wavelet transform defines a finite domain which makes
it well localized concerning both time and frequency. Our approach is based on the
maximal overlap discrete wavelet transform (MODWT) as we can apply it to an
arbitrarily large sample whereas a discrete wavelet transform restricts the sample size
to be dyadic. Additionally, the trend and variation coefficients of a MODWT can be
perfectly aligned with the original time series as they are associated with zero-phase
filters (Chernick 2001). Depending on the normalization rules, there are two types
of wavelets within a given function/family. The father wavelets which describe the
low-frequency components of a signal and the mother wavelets which describe its’
high-frequency components:

Φj,k = 2−j/2Φ
(
t− 2jk

2j

)
(2.1)

Ψj,k = 2−j/2Ψ
(
t− 2jk

2j

)
(2.2)

where Φ(t) represents the father wavelet, Ψ(t) the mother wavelet and j = 1, ..., J is the
J-level wavelet decomposition (Ramsey and Lampart 1997). The two types of wavelets
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2.2 Methodology

stated above, satisfy ∫
Φ(t)dt = 1 and

∫
Ψ(t)dt = 0. (2.3)

The low-frequency parts can be understood as the smooth baseline trend from a
signal whereas the high-frequency parts are any deviations from that. Given a signal
f(t), its wavelet transform is formed by (Chernick 2001):

f(t) ≈
∑
k

sJ,kΦJ,k(t) +
∑
k

dJ,kΨJ,k(t) +
∑
k

dJ−1ΨJ−1,k(t) (2.4)

+ ...+
∑
k

d1,kΨ1,k(t) (2.5)

The wavelet transform coefficients are given by sJ,k and dJ,k, ..., d1,k where J denotes
the maximum decomposition level sustainable by the number of data points. More
precisely, 2j is less than the total number of data points. The parameter k is defined
as the dilation parameter ranging from one to the number of wavelet coefficients. The
high and low frequency component coefficients sj,k and dj,k can be approximated by
the following integrals:

sJ,k =
∫
f(t)ΦJ,k(t)dt (2.6)

dj,k =
∫
f(t)Ψj,k(t)dt. (2.7)

Given the coefficients, we obtain the low-frequency component of a signal by setting
all high-frequency coefficients dj,k for j = 1, ..., J to zero (Chang and Yadama 2010).
Accordingly, we obtain the high-frequency components by setting the low-frequency
coefficients sJ,k to zero. The corresponding wavelet coefficients are approximated
by the specific basis functions ΦJ,k(t) and ΨJ,k(t). Each basis function leads to a
different transform as a given signal is weighted over several scales and center time
differently. The issue of which basis function generates the best resolution for a specific
forecasting application is considered as the most indispensable challenge in wavelet
analysis and needs to be addressed by trial and error (Chernick 2001). On this account,
we provide performance comparison for basis functions appropriate for time series
analysis. In general, low order wavelets have good time resolution, but poor frequency
resolution whereas high order wavelets has good frequency resolution but poor time
resolution. As it is yet unknown how this, in particular, affects the performance of our
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2 A hybrid forecasting algorithm based on SVR and Wavelet Decomposition

forecasting algorithm during different market regimes we analyze several filter lengths
and basis functions: Daubechies (D) (4, 6, 8, 12), Least Asymmetric (LA) (8, 10,
12, 14), Best Localized (BL) (14, 18, 20) and Coiflet (CF) (6, 12, 18, 24), where the
integers in brackets indicate the wavelet filter length. Daubechies belong to the most
common applied basis functions for time series denoising. CF filters allow specifying
vanishing conditions on the associated scaling function leading to remarkably good
phase properties (Daubechies 1992). LA filters have approximately linear phase while
minimizing the maximum deviation of the phase function from the linear phase over the
low and high frequencies (Oppenheim 1999). Based on the idea that deviations from the
high-frequency phase are not as important as ones from low frequencies, Doroslovacki
(1998), introduced the BL filter which penalizes deviations at low frequencies more
heavily than those at high frequencies.

2.2.2 Feature Selection

To achieve the best possible performance with a particular learning algorithm, it is
necessary for the learning algorithm to focus on the most relevant information in a
potentially overwhelming quantity of input variables. Proper feature selection algorithms
provide a decisive countermeasure to reduce the dimensionality of the input variables.
Feature selection approaches are divided into two categories: filter and wrapper methods
(John, Kohavi, and Pfleger 1994). Filter based methods use a mathematical evaluation
function to justify a plausible relationship between the input and output variables. The
interested reader is referred to Saeys, Inza, and Larrañaga (2007), for a survey regarding
filter methods. In contrast to filter methods, wrapper methods are brute-force search
algorithms which maximize model’s performance by adding or removing features while
evaluating each feature subset in the context of the learning algorithm. The subset
selection takes place based on the learning algorithm used to train the model itself and
allows to consider how the algorithm and the training set interact. For feature selection,
we choose an RFE algorithm which repeatedly constructs our proposed model and ranks
features sets according to the achieved root mean square error (RMSE) for the point
forecast task and according to accuracy for the classification task. However, an adverse
effect on the generalization capability of our forecasting algorithm is the potential
issue of overfitting. This occurs when the learning algorithm focuses on nuances of the

12



2.2 Methodology

training data which are not found in future samples (i.e., overfitting to predictors and
samples). For example, suppose a substantial number of uninformative features were
collected, and one such feature set randomly correlates with the outcome. The RFE
algorithm would give a good rank to this feature set, and the prediction error (on the
same data set) would be lowered. It would take a different test/validation sample set
to find out that this predictor was uninformative. This is referred to as selection bias
by Ambroise and McLachlan (2002). To avoid the potential issue of overfitting and
selection bias, we resampled each training set using a 10-fold cross-validation (Svetnik
et al. 2004; Ambroise and McLachlan 2002).

2.2.3 Support Vector Regression

The supervised learning technique SVR is an application form of Support Vector
Machines which deals with estimating real-valued functions by allowing the output to
take any real number (Vapnik, Golowich, and Smola 1997). The key advantage of the
SVR is that it allows for noise in the data by addressing the loss of accuracy from large
residuals caused by outliers using structural risk minimization.

Structural Risk Minimization

Given a training set of labeled data drawn from an unknown distribution P (x, y)

{(x1, y1), (x2, y2), (x3, y3), ..., (xl, yl)}, x ∈ Rn (2.8)

where the input variable xi ∈ Rl is a n-dimensional vector and the output variable
yi ∈ R is a continuous value. The problem of learning is to determine a function f(x, α)
which approximates the relationship between xi and yi with a parameter vector α as
accurate as possible. The best approximation of yi minimizes the following expected
risk R(α):

R(α) =
∫
L(y, f(x, α))dP (x, y), (2.9)

where L(y, f(x, α)) is a loss function describing the difference between the true yi and
its approximation:

L(y, f(x, α)) = (y − f(x, α))2 (2.10)
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2 A hybrid forecasting algorithm based on SVR and Wavelet Decomposition

consequently Equation (2.9) can be written as

R(α) =
∫

(y − f(x, α))2dP (x, y) (2.11)

Since xi and yi follow an unknown distribution, Equation (2.9) can solely be minimized
by an inductive step. Hence, we replace the expected risk R(α) by the empirical risk

Remp(α) = 1
N

l∑
i=1

(y − f(x, α))2 (2.12)

However, minimizing the empirical risk does not necessarily imply a small expected risk
in small samples which hampers generalizing from unseen data. A solution to this issue
is provided by structural risk minimization principle which simultaneously minimizes
the empirical risk and a confidence interval Ω (Vapnik 1999). Given the VC-dimension,
defined as the parameter h, the bound on the expected return can be written as:

R(α) ≤ Remp(α) + Ω
(
l

h

)
, (2.13)

whereby the VC-dimension can be interpreted as the model capacity or complexity of
the learning machine. For a given amount l of data and predetermined VC-dimension
h∗, the generalization ability of the machine depends on the confidence interval Ω(l/h∗).
In case that we construct the learning machine too complex, we may be able to minimize
the empirical risk Remp(α) down to zero. However, the confidence interval Ω would be
in this case large implying a large expected risk. This case is called overfitting and
can be avoided by choosing the VC-dimension that minimizes the expected risk while
controlling both terms in Equation (2.13). In support vector methods, the tradeoff
between the quality of the approximation and the complexity of the approximating
function is determined by the parameter C. This parameter can be interpreted as the
degree of penalized loss when a training error occurs and is described in more detail in
the following section.
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2.2 Methodology

Linear Support Vector Regression

To approximate the output vector y, the SVR model performs a linear regression with
an error tolerance ε. The regression function has the following form:

ŷi = f(xi) = w0 + w · x, (2.14)

where w0 and wT are the parameter vectors of the function. The tolerated losses within
extent of the ε-tube as well the penalized losses Lε are defined by the ε-insensitive loss
function,

Lε(y, ŷ) =
 0 if |y − ŷ| ≤ ε

|y − ŷ| − ε if |y − ŷ| > ε
(2.15)

The linear regression f(xi) is estimated by simultaneously minimizing ||w||2 and the
sum of the linear ε-insensitive loss function that is given by Equation (2.15). Hence
the objective function can be written in the following, not differentiable, convex and
unconstrained form:

Lε = C
N∑
i=1

Lε(yi, ŷi) + 1
2 ||w||

2 (2.16)

where C = 1/λ is a regulation constant which controls the trade-off between the
complexity and the approximation accuracy of the regression model. By introducing
two slack variables ξ+

i and ξ−i , i = 1, 2, ..., n, which represent the upper and lower training
errors subject to the ε-tube we are able to formulate the problem as a constrained
optimization problem:

yi ≤ f(xi) + ε+ ξ+
i (2.17)

yi ≥ f(xi)− ε− ξ−i . (2.18)

Consequently, Equation (2.16) can be transformed into the following constrained form:

minw,w0,ξ
+
i ,ξ
−
i

Rreg(f) = 1
2 ||w||

2 + C
l∑

i=1
(ξ+
i + ξ−i ) (2.19)

15



2 A hybrid forecasting algorithm based on SVR and Wavelet Decomposition

with subject to:

yi − (w · xi)− w0 ≤ ε+ ξ+
i (2.20)

−yi + (w · xi) + w0 ≤ ε+ ξ−i (2.21)
ξ+
i , ξ

−
i ≥ 0, for i = 1, ...., l (2.22)

Minimizing the first term is equivalent to minimizing the confidence interval Ω since
we minimize the complexity, whereas minimizing the second term is equivalent to
minimizing the empirical risk. The constrained optimization problem can be solved by
applying the Lagrangian theory and the Karush Kuhn-Tucker condition as has been
done for SVM classifiers (Chang and Fan 2008; Schölkopf and Smola 2002). Introducing
a dual set of Langrange multipliers ai and ᾱi enables applying the standard quadratic
programming algorithm and thus to solve the optimization problem in the dual form:

minαi,ᾱi

1
2

l∑
i,l=1

(αi − ᾱi)(αi − ᾱi)〈xi · xj〉 (2.23)

+ ε
l∑

i=1
(αi + ᾱi)−

l∑
i=1

yi(αi − ᾱi) (2.24)

with subject to:

l∑
i=1

(αi − ᾱi) = 0 (2.25)

0 ≤ αi ≤ C, i = 1, 2, ..., l (2.26)
0 ≤ ᾱi ≤ C, i = 1, 2, ..., l (2.27)

Once the model is trained, by calculating the Lagrangian multipliers (αi, ᾱi), we are
able to make predictions using

ŷ(x) = ŵ0 +
l∑

j,i=1
(−αi + ᾱi)〈xi · xj〉 (2.28)

where 〈xi ·xj〉 is the inner product of xi and xj . The support vectors are given by xi for
which the corresponding coefficients (−αi + ᾱi) are nonzero. These are the data points
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for which the errors lie outside the ε-insensitive tube and thus, support the definition
of the approximate function.

Nonlinear Support Vector Regression

The practical use of a linear approximation is very limited when the data is nonlinear.
However, the input data xi can be mapped in a higher dimensional feature space
by a nonlinear function Φ(x) in which it exhibits linearity. Consequently, the higher
dimensional feature space can be lineary approximated. The decision function is now
given by

ŷi = f(xi) = w0 + 〈w · Φ(x)〉, (2.29)

The optimization problem as stated in Equation (2.19) can be expressed as:

minw,w0,ξ
+
i ,ξ
−
i

Rreg(f) = 1
2 ||w||

2 + C
l∑

i=1
(ξ+
i + ξ−i ) (2.30)

with subject to:

yi − (w · Φ(xi))− w0 ≤ ε+ ξ+
i (2.31)

−yi + (w · Φ(xi)) + w0 ≤ ε+ ξ−i (2.32)
ξ+
i , ξ

−
i ≥ 0, for i = 1, ...., l (2.33)

The dual form of the optimization problem for the nonlinear SVR is given by:

minαi,ᾱi

1
2

l∑
i,l=1

(ai − ᾱi)(αi − ᾱi)〈Φ(xi) · Φ(xj)〉 (2.34)

+ ε
l∑

i=1
(αi + ᾱi)−

l∑
i=1

yi(αi − ᾱi) (2.35)
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with subject to:

l∑
i=1

(αi − ᾱi) = 0 (2.36)

0 ≤ αi ≤ C, i = 1, 2, ..., l (2.37)
0 ≤ ᾱi ≤ C, i = 1, 2, ..., l (2.38)

In the final form of the prediction function the scalar products 〈xi · xj〉 are replaced
by 〈Φ(xi) · Φ(xj)〉 while the scalar product is computed by a kernel function K(xi, xj)
which enables to avoid a mapping Φ(x). The key advantage here is that one does
not necessarily need to specify the Φ(x) function in order to yield the inner products
〈Φ(xi) · Φ(xj)〉. Once the Lagrangian multipliers are calculated, the kernelized SVR
regression function can be written as

ŷ(x) = ŵ0 +
l∑

j,i=1
(−αi + ᾱi)K(xi, xj) (2.39)

Practically, the choice of the kernel function is restricted to those which satisfy Mercer’s
theorem (Vapnik 1999; Vapnik, Golowich, and Smola 1997). A popular kernel function
which we also apply in our study is the Radial Basis Function (RBF):

K(xi, xj) = exp(−γ||xi − xj||2). (2.40)

The choice of the RBF kernel relies on the results of a trial-error-process in which we
identified the RBF kernel as the most suitable kernel among the linear, polynomial
and sigmoid kernel. This finding is confirmed by further applications on financial time
series in the literature (Ince and Trafalis 2008; Lu, Lee, and Chiu 2009).

Parametrization of the nonlinear SVR

The generalization performance of the SVR machine strongly depends on the parameter
C, the insensitive tube ε and the kernel parameter γ (Cherkassky and Ma 2004).
Additionally, the parameters are mutually dependent which hampers the optimization
process. The greater the parameter C, the greater the penalty for errors which forces
the machine to become more complex to achieve a low empirical risk. A smaller C
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leads to an increased error tolerance which in return leads to a poor approximation.
However, such behavior may be preferred in case of noisy data. The ε-insensitive tube
affects the learning machine complexity as it determines the number of support vectors.
A greater ε leads to a greater ε-insensitive tube. As a result, a larger amount of data
points which are within the ε-insensitive are ignored by the learning machine resulting
in flattening the regression function. We identify adequate hyperparameters for our
SVR based on a grid search within a cross-validation routine which we conduct at each
walking-forward step on historical data. By doing this, we use estimated parameters
from the literature to restrict the scope of our grid search (Cherkassky and Ma 2004;
Mattera and Haykin 1999). As the scope of this study does not rely on the optimal
parametrization of an SVR, the grid search results will not be further discussed.

2.3 Empirical Results
Our data set consists of daily bid and ask closing prices from May, 18th 2007 to Dec,
30th 2015 from nine major stock indices: US (S&P 500), United Kingdom (FTSE100),
Japan (Nikkei225), Germany (DAX30), France (CAC40), Switzerland(SMI20), Australia
(ASX200) and Hong Kong (HS33). The selection was made with the premise of providing
comprehensive analysis on the most traded indices based on 2200 observations per each
index. From the daily closing price Pt the calculate the log returns for a period of l
days at time τ as rτ = ln (Pτ/Pτ−l)

We develop the WL-RFE-SVR algorithm based on the median price while conducting
the trading application based on the bid and ask price to account for transaction costs.
As we aim at predicting the logarithmic return 1, 5, 10, 15 and 20 trading days for each
index, the parameter l varies respectively from 1 to 20. The first 1000 observations
are used to initialize the model. We re-train the model every 100 observations thereby
producing 1200 out-of-sample forecast for every index. The descriptive statistics for
each index and forecasting horizon are given in Table 2.1. We observe, except for DAX,
a negative skewness for every time series. Additionally, every time series prevails a
kurtosis greater than 2.4 and is non-normal as confirmed by the Jarque-Bera statistics
at the 99 percent confidence interval.

The results are solely based on out-of-sample (OOS) forecasts to avoid any forward-
looking bias.
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Symbol DAX FTSE100 SP500 ASX200 SMI20 CAC40 HangSeng33 Nikkei225
1 Trading Day

Mean 0.00033 0.00012 0.00017 0.00012 0.00016 0.00011 0.00021 0.00016
Median 0.00096 0.00052 0.00037 0.00057 0.00065 0.00057 0.0005 0.00045
Std Dev 0.01452 0.01294 0.01159 0.01102 0.01146 0.0148 0.01591 0.01511
Skewness 0.02288 -0.14179 -0.17243 -0.4901 -0.52552 -0.22491 -0.0212 -0.16843
Kurtosis 11.11564 12.82436 13.74693 7.29642 11.57568 7.50848 6.22434 8.7834
Max 0.15788 0.12501 0.11211 0.07747 0.10545 0.11652 0.11143 0.1309
Min -0.1041 -0.11063 -0.10506 -0.09212 -0.12067 -0.1065 -0.11613 -0.11055

5 Trading Days
Mean 0.00156 0.00059 0.00082 0.0006 0.00076 0.00048 0.00098 0.00077
Median 0.00403 0.00219 0.00282 0.00258 0.00289 0.0029 0.00311 0.00296
Std Dev 0.0303 0.02501 0.0233 0.0226 0.02482 0.02956 0.03382 0.03138
Skewness -0.81624 -0.75415 -0.94196 -0.76561 -0.99497 -0.69869 -0.50057 -1.00642
Kurtosis 4.90999 6.7913 8.65197 4.45807 8.16449 4.08987 6.1168 10.46062
Max 0.1723 0.1726 0.15449 0.1096 0.15036 0.15219 0.21578 0.24451
Min -0.20055 -0.17495 -0.2041 -0.16135 -0.23922 -0.1904 -0.31876 -0.31106

10 Trading Days
Mean 0.00307 0.00118 0.0016 0.00119 0.0015 0.00093 0.00188 0.00158
Median 0.00851 0.0044 0.00526 0.00479 0.0049 0.00668 0.00454 0.00446
Std Dev 0.04113 0.03353 0.03134 0.03094 0.03291 0.03976 0.04703 0.04253
Skewness -1.24353 -1.13694 -1.52812 -1.05393 -1.08994 -1.0033 -0.63602 -1.12514
Kurtosis 4.42924 5.33443 9.42939 3.64628 2.89532 2.74262 4.47447 6.45829
Max 0.15569 0.15157 0.13999 0.11462 0.13956 0.16402 0.26098 0.23354
Min -0.27998 -0.25969 -0.28763 -0.23946 -0.22718 -0.24877 -0.38096 -0.41482

15 Trading Days
Mean 0.00453 0.00177 0.00237 0.0018 0.00223 0.00136 0.00272 0.00241
Median 0.01208 0.0066 0.00723 0.00716 0.00711 0.00938 0.00556 0.008
Std Dev 0.05 0.04005 0.03779 0.03721 0.03979 0.04739 0.0567 0.05243
Skewness -1.27906 -1.27929 -1.6261 -0.98944 -0.97344 -1.05765 -0.67646 -1.17908
Kurtosis 4.42924 5.33443 9.42939 3.64628 2.89532 2.74262 4.47447 6.45829
Max 0.15283 0.15387 0.20458 0.15854 0.14684 0.14116 0.26013 0.2174
Min -0.29832 -0.28481 -0.30758 -0.24146 -0.25497 -0.28256 -0.47736 -0.44401

20 Trading Days
Mean 0.00592 0.00229 0.00312 0.00241 0.00288 0.00168 0.00351 0.00326
Median 0.01329 0.00769 0.01028 0.00933 0.00861 0.01041 0.00772 0.00815
Std Dev 0.05691 0.045 0.04332 0.04243 0.04515 0.05387 0.06571 0.06048
Skewness -1.21703 -1.24122 -1.6735 -0.88753 -1.09631 -1.02127 -0.70065 -1.12914
Kurtosis 4.07509 4.77541 8.23162 2.5869 3.4117 2.42166 4.52242 5.9459
Max 0.18674 0.16214 0.18365 0.15382 0.17002 0.1682 0.26912 0.26389
Min -0.35076 -0.29631 -0.30981 -0.24845 -0.33676 -0.28736 -0.5371 -0.46988

Table 2.1: Descriptive statistics for each symbol and granularity. The granularity
varies between +1, +5, +10, +15, +20 days.

2.3.1 Point Forecast Results

We measure the point forecast performance based on the mean absolute percentage
error (MAPE) and the RMSE which are given by:

RMSE =

√√√√ 1
N

N∑
t=0

(yt − ŷt)2, (2.41)

MAPE = 1
N

N∑
t=0
|yt − ŷt| (2.42)

where yt is the observed value at time t, ŷt the modelled value at time t and N the
sample size. The advantage of MAPE against RMSE is that it allows comparing
the point forecast accuracy across different time series as it is scale-independent.
Nevertheless, reporting RMSE appears necessary to enhance the comparability with
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other contributions on the topic. The point forecast results are illustrated in Figure
A.2 to A.5. First, it becomes evident that the naive strategy is equal or better than
any wavelet filter regarding MAPE and RMSE. This extends across every forecasting
horizon and index. Notwithstanding the naive strategy, the wavelet filters CF6, D4
and D6 outperform every other filter, again, regarding MAPE and RMSE. We confirm
this observation by every forecasting horizon and index. It also becomes evident that
the RFE algorithm has a positive effect on the MAPE and the RMSE. This holds
for every forecasting horizon and index, which strongly emphasizes the need for a
feature selection algorithm. As to the optimal forecasting horizon, the Figures A.4
and A.5 show that a forecasting horizon of five days delivers the best point forecasting
results regarding MAPE and RMSE. Nevertheless, wavelet transforms appear to be
inappropriate for point forecasting as the naive approach outperforms each wavelet
filter regarding MAPE and RMSE.

2.3.2 Clasification Results

The forecasted sign of an asset return plays for several financial applications a more
important role than its point forecast. For this reason, we additionally asses the
performance of our model for a binary classification task based on the confusion matrix.
Consequently, returns greater than zero belong to class A and returns smaller than
zero to class B. Subsequently, we evaluate the classification performance based on the
accuracy and the Cohen’s Kappa which are given by:

Accuracy =
∑True Positive +∑True Negative

Total Population (2.43)

Kappa = Accuracy− Random Accuracy
1− Random Accuracy , (2.44)

where RandomAccuracy = N−1(Act.False × Pred.False+Act.True × Pred.True). In
contrast to Accuracy, Cohen’s Kappa provides a more reliable measure of agreement
as it takes the amount of agreement that could be expected due to chance alone into
account. The higher the Cohen’s Kappa is, the better is our classifier compared to
a random chance classifier. As we can see in Figure A.6 and A.7, the wavelet filters
CF6, D4 and D6 slightly outperform the naive strategy regarding Accuracy for most of
the indices and forecasting horizons. Additionally, we observe that the RFE algorithm
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has a positive impact on the Accuracy which is in accordance with the point forecast
results. The Cohen’s Kappa results (Figure A.8 and A.9) align with the Accuracy
results. There is no clear-cut differentiation between the dominating wavelet filters and
the naive strategy.

2.3.3 Trading Results

In practice, an ultimate goal of a forecasting algorithm in finance is to confirm its
OOS profitability as statistical accuracy is not always synonymous with the financial
profitability of the deriving forecasts. Therefore, based on the above-defined classification
rule, we implement a most basic trading simulation to extend the results by a financial
application and improve the comparability of the applied wavelet filters. We measure
the profitability of our trading algorithm based on the following metrics:

Total return

tr =
T∑
t=0

rt. (2.45)

Annualized return

ar = 252 1
T

T∑
t=1

rt. (2.46)

Sharpe Ratio

sr =

∑T

t=1 rt

T
− rfix

252√
1

T−1
∑T
t=1(rt − r̄)2

(2.47)

Standard deviation

sd =

√√√√ 1
T − 1

T∑
t=1

(rt − r̄)2 (2.48)

Maximum Drawdown
mdd = maxτ∈(0,T )

[
maxτ∈(0,T )X(t)−X(τ)

]
(2.49)

where rt denotes the realized return and X(t) the realized equity at time t. The trading
strategy is identical for all models and is defined as follows: enter a long position when
the return forecast is greater zero and enter a short position when the return forecast
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is below zero. Trading costs have been considered to the extent that long positions
are executed based on the ask quote and short positions based on the bid quote of the
respective instrument. As shown in Figure A.10 and A.11, the wavelet filters D4, D6
and CF6 outperform every other considered wavelet filter including the naive strategy.
In contrast to the point forecast and classification results we are able to make a clear
distinction in the performance between the D4, D6 and CF6 filters and the remainder.
The highest total return and annualized return is achieved for the forecasting horizon of
20 days. On the other hand, the increasing drawdown in forecasting horizon illustrates
the increasing downside risk which comes along. This trade-off between return on
investment and downside risk is present in all forecasting horizons. Again, the RFE
algorithm has a positive effect on the overall return and maximum drawdown for the
dominant wavelet filters.

2.4 Conclusion

In this study, we introduce a WL-RFE-SVR algorithm with an optimal parameter and
feature selection which is applied to the task of forecasting and trading multiple steps
ahead of the worlds major stock market indices. The proposed model is trained during
the period 16/01/2007-22/11/2010 while its out-of-sample performance is validated over
the period from 23/11/2010 through 31/12/2015 based on a walking forward analysis.
The study shows that despite the adverse statistical properties of daily data, proper
transformation and pre-processing can reveal reoccurring patterns that can be a source
for a trading algorithm. Even though we are not able to obtain an advantage over
the naive strategy in the task of point forecasting, the classification and especially the
trading results reveal a different picture. The positive results for three wavelet filter out
of fifteen, namely D4, D6 or a CF6, show that noise does not completely govern the
process of price formation in major stock indices. Furthermore, results provide evidence
to support the hypothesis of a serial dependence at least when the data is preprocessed
by a D4, D6 or a CF6 wavelet filter. In the light of limited computational power,
we are not able to exploit the full potential of the proposed hybrid method. Hence,
the results can be considered as a lower bound on profits that can be achieved with a
WL-RFE-SVR trading algorithm. A more sophisticated implementation of entry and
exit rules and the testing of a wider/smaller range of inputs may increase forecasting
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and trading performance. The same applies to the utilized money management. An
extension would include an adjustment of the size of the position depending on the
strength of the trading signal or volatility. Concerning some future directions of research,
the proposed hybrid method could be applied to other forecasting problems in the
domain of finance to prove its effectiveness. Additional research may be conducted
towards the implementation of more refined feature selection algorithms and a deeper
investigation of how wavelet filter influence the performance of the algorithm.

24



3 Time-frequency linkages and co-movements
between the Euro and European stock
market: A continuous wavelet analysis.

The following is based on Paraskevopoulos and Posch (2017).

3.1 Introduction

In times of complex interconnectedness between financial institutions, we observe the
phenomenon of propagation of financial market fluctuations from one market to another
due to financial market linkages. As a consequence, a shock in one financial market can
spread to multiple markets, leading to higher economic damage than originally expected.
As each market participant acts based on an individual investment horizon, its impact
on the market should be visible at specific frequencies. This favors the application of a
time-frequency decomposition with the aim to identify frequency specific co-movement
patterns. In this paper we aim at adopting a long-and short-term perspective on the
impact of crises on market linkages between the nominal effective European exchange
rate and European stock markets1. Our data set includes the dot-com bubble in
September 2001, the financial crisis in 2007 and the European sovereign debt crisis
since 2009.
An investigation into transmission processes between international financial markets
requires a short introduction into the terminology as the literature specifically relevant
in our study is not used coherently. The term financial market "linkages", "relations" and
"interdependence" are subdivided by a recent branch of literature into "interdependence"

1The nominal effective exchange rate of the Euro is a summary measure of the Euro currency value
vis-a-vis the currencies of the 19 most trading European partners (Austria, Canada, Denmark,
Hong-Kong, Japan, Norway, Singapore, South Korea, Sweden, Hungary, Great Britain, USA,
Bulgaria, Czech Republic, Poland, Romania, Croatia and China).
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and "contagion" (Forbes and Rigobon 2002; Corsetti, Pericoli, and Sbracia 2005; Gebka
and Karoglou 2013). Proceeding in this way, Forbes and Rigobon (2002) define
contagion as a sudden increase in measured cross-market linkages among assets or
asset classes due to a shock which disappears within a short period. Further studies
such as Caporale, Cipollini, and Spagnolo (2005), Mcclelland and Kokoski (1994), and
Billio and Caporin (2006) rely on this definition to describe contagion in the context
of cross-market co-movement in returns. In contrast, interdependence is characterized
by a fundamental-driven state of stable market linkages which are subdivided into
a continuous, normal and tranquil-period relations between the markets (Baele and
Inghelbrecht 2010; Kallberg and Pasquariello 2008). In this state, measured stock
market linkages can then be entirely explained by common observed factors due to
real or financial linkages. Phenomena such as sudden expectation shifts or herding
are excluded. However, high levels of co-movement and some limited time-variation
in measured linkages are well in line with the notion of interdependence. This is
acknowledged, for example, by Forbes and Rigobon (2002), Billio and Caporin (2006),
and Baele and Inghelbrecht (2010), who state that fundamentals vary over time too.
Our study aims at answering three questions. Firstly, are the dynamics of co-movement
between the nominal effective European exchange rate and the European stock markets
stable? Secondly, can we find evidence for contagion during our sample period and
in particular during the financial crisis of 2007 for specific frequencies? Thirdly, does
measured co-movement reveals any lead-lag dynamics at specific frequencies, such as
those in business cycles?
To address these questions empirically, we estimate the spectral characteristics of the
time series as a function of time and frequency using a continuous wavelet transform.
In a second step, we compute the continuous wavelet power spectrum (WPS) and
three cross-wavelet tools: the cross-wavelet power spectrum (CWP), the cross-wavelet
coherence (CWC) and the phase difference (PD) of the complex wavelet coherence. This
framework allows us straightforwardly to reveal linkages and co-movement patterns
between periodic components. Moreover, we can include measures which quantify
the level of co-movement and direction of lead-lag relationships between the foreign
exchange market and the European stock market.
Our work is mainly encouraged by Aguiar-Conraria and Soares (2014) as they utilized
the phase-difference to identify lead-lag dynamics across frequencies. These tools help
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to unearth economic time-frequency relations that have not been captured thus far
by classical correlation or covariance-based approaches. The dynamic interdependence
patterns over different time-scales and frequencies of stock markets cannot be identified
if the information is averaged among frequencies. We find causal and reverse causal
relation between share prices and the nominal effective European exchange rate which
varies across scale and time in Europe. The evidence supports both cyclical and anti-
cyclical relationships between the series. Share prices lag and receive cyclical effects
from exchange rate shocks at higher time scales over the study period. The findings offer
fresh insights into the causal link between the Euro and stock returns in Europe. The
methodological approach we apply succeeds in capturing the simultaneous influence of
the two series and thus, helped to detect bidirectional causality at different time scales.
This paper contributes to the literature as the first study applying the methodology of
cross-wavelet coherence and phase-difference to the given economic time series.
The rest of the paper is organized as follows. Section 3.2 reviews the relevant literature
and defines important terminology. Section 3.3 describes the applied methodology. In
section 3.4, the empirical results are reported. Section 3.5 draws conclusions based on
the findings.

3.2 Related Literature

Macroeconomic theory offers two perspectives on causal relationships from exchange
rates to stock markets and vice versa, which extend to the phenomenon of contagion
and interdependence. According to Dornbusch and Fischer (1980), the exchange rate
movements affect a firm’s international competitiveness and real income which in turn
affects firm’s future cash flow. Since stock prices are interpreted as the present value
of the firm’s future cash flows, it is safe to assume the stock prices are affected by
exchange rates. This implies a negative correlation between both instruments in which
stock prices act as a leading driver within a lead-lag relationship. On the other hand,
the portfolio approach by Dominguez and Frankel (1993) assumes that stock markets
affect the behavior of exchange rates through the demand for money. According to the
portfolio-balance model, a stock price depreciation leads to a reduction in wealth of
domestic investors, which leads to lower demand for money, and thus lower interest
rates. C. p., this must be followed by capital outflows leading to currency depreciation.
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Thus, the correlation between exchange rates and stock markets will be positive. This
is line with Karoui (2006), as stocks become due to the exchange rate depreciation
more attractive to foreign investors which again leads to a positive correlation between
exchange rates and stock markets in which exchange rates act as a driver of a lead-lag
relationship. Despite the sign of the effect, both models provide an economic foundation
in which investor’s behavior drives the correlation between exchanges rates and stock
markets. However, it is unclear which of both effects dominates in a lead-lag relationship.
The first branch of literature, consisting of Franck and Young (1972), Solnik (1987),
Smith (1992), and Phylaktis and Ravazzolo (2005), provides evidence for significant
and positive causal relationship between exchange rates and stock indices. The second
branch of literature provides evidence for a contradicting, although significant, negative
causal relationship (Soenen and Hennigar 1988; Ajayi and Mougouė 1996; Ma and Kao
1990). Concerning lead-lag relationships between both time-series, Granger, Huangb,
and Yang (2000) provide empirical evidence supporting the hypothesis that stock prices
lead exchange rates in some countries while the opposite is true for South Korea.
Abdalla and Murinde (1997), produced similar results showing unidirectional causality
from exchange rates to stock prices in developing countries, while Ajayi, Friedman,
and Mehdian (1998), extend the empirical evidence to advanced countries. The studies
on Europe produced mixed results, most supporting a unidirectionally Granger-cause
between stock prices and exchange rates for the post-Euro era while the opposite is true
for the pre-Euro era (Murinde and Poshakwale 2004; Stavarek 2005). At least one reason
for that is the observed heterogeneous integrity of each market with the EU which is in
line with the dynamic nature of the transition process. According to Stavarek (2005),
exchange rates and stock market indices stemming from more developed economies (e.g.,
UK, Germany, and France) are more likely to result in a unidirectional Granger-causal
relationship than from post-communistic EU-member countries (e.g., Hungary, Poland,
Slovakia, and the Czech Republic). In summary, the causal relationship between
exchanges rate and equities in Europe is inconclusive. Therefore, especially in the light
of forecasting and policy implications shedding additional insights from a time-domain
framework is more than necessary. Based on the idea that each market component
has its own reaction time to the information, causal and lead-lag relations might exist
at different frequencies (Dacorogna et al. 2001). Hence, the linkage bonding stock
markets and exchange rates can vary across frequencies and time. Decomposing a time

28



3.3 Methodology

series into several time scales unearths some economic time-frequency relations and the
transient effect that traditional methods do not deliver.

3.3 Methodology

We use the continuous wavelet transform to detect bidirectional causalities in the
time-frequency domain. Since the use of wavelets is a well-established technique, in
this section we only present the essential methods applied here.
We make use of the WPS, CWP, CWC, and PD, as proposed by Hudgins, Friehe, and
Mayer (1993) and Torrence and Compo (1998) to analyze possible transient effects
between the nominal effective European exchange rate and the European stock market.
The tools we use to analyze and quantify time-frequency dependencies between two time-
series are functions of time and scale/frequency. The WPS describes the evolution of the
variance of a time series at different frequencies, which is to identify volatility hotspots in
the time-frequency domain. The CWP is a multivariate method, which depicts the local
covariance at each time and frequency, analogous to the traditional covariance. The
CWC is the localized (both in time and frequency) correlation between two time-series
and is normalized by its power spectrum. The key advantage of CWC over CWP lies
in its ability to identify strong peaks even for the realization of independent processes
suggesting the possibility of spurious significance tests (Maraun and Kurths 2004).
Also, we make use of the PD to reveal lead-lag relationships between the two time
series. As the phase of a time series describes its position in the pseudo-cycle in the
time-frequency domain, the PD describes the relative position of the two times series.
In the following, we solely focus on the key elements of the wavelet transform. However,
the interested reader is referred to Dacorogna et al. (2001) and Chernick (2001) for a
more complete and insightful development of the theory.
For a given time-series xt ∈ L2(R), its continuous wavelet transform is a function of
time t and a scaling factor s which controls the width of the wavelet:

Wx(τ, s) =
∫
xt

 1√
|s|
ψ
(
t− τ
s

) dt, s, τ ∈ R, (3.1)
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where ψ denotes the complex conjugation, τ a translation parameter controlling the
location in time and ψ is defined as the mother wavelet satisfying

∫∞
−∞ ψ(t)dt = 0.

The normalization factor 1√
|s|

ensures comparability across frequency bands and time.
Scaling a wavelet means stretching it (|s| > 1) or compressing it (|s| < 1) while
translating it means shifting its position in time.
The choice of the mother wavelet depends on the particular application. As we intend
to analyze bidirectional causalities between time series, we need a complex-valued
wavelet to preserve information on amplitude and phase during the wavelet transform.
The choice of the mother wavelet is limited to analytical wavelets as they provide an
estimate of the instantaneous amplitude and instantaneous phase. The wavelet is further
characterized by how it is localized in time (δt) and frequency (δω). According to the
Heisenberg uncertainty principle, the real trade-off between localization in time and
frequency limits how small the uncertainty product (δt) · (δω) can be (Heisenberg 1927).
In case of the Morlet wavelet, which is an analytical wavelet as long as it is conveniently
parametrized, the uncertainty product attains the lowest possible theoretical value
σt,ψω0

σω;ψω0
= 1

2 . Besides, the time radius and frequency radius are equally providing a
good balance between time and frequency concentration (Aguiar-Conraria and Soares
2011; Grinsted, Moore, and Jevrejeva 2004). The Morlet mother wavelet is given by:

ψω0(t) = Keiω0te−
t2
2 , (3.2)

with i :=
√
−1 as an imaginary unit, t as a dimensionless time parameter and ω0 as a

dimensionless frequency parameter controlling the number of oscillations within the
Gaussian envelope. The normalization parameter K is restricted to π− 1

4 as it ensures
ψω0(t) to have unit energy. We set ω0 = 6 to ensure an inverse relation between wavelet
scales and frequencies, f = 6

2π ≈
1
s
which simplifies the interpretation of the results. A

robustness check has been performed for a range of parameters values which imply that
the Heisenberg box area is close to its lower bound as proposed by Foufoula-Georgiou
and Kumar (1994). In summary, for any reasonable parameter for ω0, the results were
similar or almost indistinguishable from the results presented in section 3.4.

In the wavelet domain, we can measure the relative contribution at each frequency
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and at each scale to the time series variance by the WPS:

(WPS)x(τ, s) = |Wx(τ, s)|2 (3.3)

In order to identify dominant frequencies in term of variation we average equation 3.3
over time. In a similar way, we are able to obtain the local covariance between a time
series x(t) and y(t) at each time and frequency by the CWP, defined as:

Wxy(τ, s) = Wx(τ, s)W y(τ, s) (3.4)

where Wx and Wy are the wavelet transforms of the respective time series x(t) and y(t).
While the CWP measure reveals areas with high common power, we understand the
CWC, as defined by Torrence and Compo (1998), as a localized correlation coefficient in
time frequency space. More specifically, it measures the co-movement of two time series
over time and across frequencies. The key advantage of the cross wavelet measure is
that it is normalized by the power spectrum of the two time series. A coherence factor
close to one implies a strong co-movement between the time series while the opposite is
true for a coherence factor close to zero. For the given time series x(t) and y(t) the
CWC is defined as:

Rxy(τ, s) = |S(Wxy(τ, s)|√
S(|Wxx(τ, s)|)S(|Wyy(τ, s)|

(3.5)

where S denotes a smoothing operator in both time and frequency. Following Torrence
and Compo (1998), a suitable smoothing operator with a similar footprint as the the
Morlet wavelet is given by:

S(W ) = Sscale(Stime(Wn(s))) (3.6)

where Sscale denotes smoothing along the wavelet scale axis and Stime smoothing in
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time with:

Sscale(W )|n = (Wn(s) ∗ c2Π(0.6s))
∣∣∣∣
n

(3.7)

Stime(W )|s =
(
Wn(s) ∗ c−

t2
2s2

1

) ∣∣∣∣
s

(3.8)

where c1 and c2 are denoted as normalization constants and Π as the rectangle function.
Both convolution are done discretely which enables to determine the normalizations
coefficients numerically. We asses the statistical inference of the wavelet power and
coherence based on Monte Carlo simulations.
The defintion of CWC is essential to our application. Despite the fact that it indicates
comovement, it enables to distinguish between cross-market interdependence and
contagion depending on the frequency. Significant CWC at the lower frequencies
indicates interdependence whereas significant CWC at higher frequencies indicate
cross-market contagion (Bodart and Candelon 2009; Saiti, Bacha, and Masih 2016).

Based on wavelet transform in equation 3.1 we obtain the phase angle of the time
series x(t) by:

ρx(τ, s) = tan−1
[
I{Wx(τ, s)}
R{Wx(τ, s)}

]
, (3.9)

where R(Wx) and I(Wx) are the real and imaginary parts of the wavelet tranform Wx,
respectively. The phase angle reveals the oscillation position of a time series x(t) as
a function of time and scale/frequency. The difference between the phases angles of
two time-series reveals possible delays of their oscillations. In order to evaluate the
relationship between two time series we compute the difference from the phase angle of
the cross-wavelet transform given by equation 3.4:

ρxy(τ, s) = ρx(τ, s)− ρy(τ, s) = tan−1
[
I{Wxy(τ, s)}
R{Wxy(τ, s)}

]
, (3.10)

with ρxy ∈ [−π, π]. We adhere to previous studies in relation to the interpretation of
the phase difference ρxy with respect to the sign of correlation between x(t) and y(t):

• If ρxy ∈ (−π
2 ,

π
2 ) then in-phase (positive correlation).

• If ρxy ∈ (π2 , π) ∪ (−π,−π
2 ) then out-of-phase (negative correlation).
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• If ρxy = π or ρxy = −π then anti-phase (no correlation).
The phase difference contains information regarding lead-lag relationships. However,
the interpretation of the phase difference in relation to lead-lag relationships has been
subjected to multiple interpretations in the literature. As a result, studies analysing
lead-lag relationships based on the PD have arrived at incorrect conclusions due to
the misinterpretation of the PD. It is unclear why different interpretations of the PD
exist in the literature. In fact, they have been presented without any explanation.
Funashima (2017) provides an overview of the three strands of interpretation used in
the literature and identifies a plausible interpretation of the PD. His work addresses
the gaps in the existing literature, premised on an analysis based on simulated as well
as on empirical data. In accordance with the empirical results in Funashima (2017), in
terms of lead-lag relationships, we interpret ρxy as following:

• If ρxy ∈ (0, π2 ) ∪ ρxy ∈ (−π,−π
2 ) then x(t) leads y(t).

• If ρxy ∈ (−π
2 , 0) ∪ ρ ∈ (π2 , π) then y(t) leads x(t).

3.4 Empirical Results

In this section we present the empirical results of the wavelet decomposition for the
nominal effective European exchange rate and the European stock market represented by
the eleven most traded stock indices. Each time-series represents thus daily logarithmic
returns. Table 3.1 provides the descriptive statistics. The dataset used consists of 4000
observations covering the period 05.01.2000 - 18.05.2017.

3.4.1 Co-Movement and Lead-Lag Relationships

Despite the location of potential co-movement in the time-frequency domain, the phase-
difference provides detailed information on lead-lag relationships. This measure gives
us information on the delay or synchronization between the two time-series as it implies
the position of a time-series in the pseudo-cycle as a function of frequency. Since the
theoretical distribution for the wavelet coherence is unknown, we asses the statistical
significance based on a Monte Carlo simulation with 10,000 trials, following the approach
of Torrence and Compo (1998). We present the results of the cross-wavelet analysis
between the Euro and the Euro-12 stock market in figures 3.3-3.6. The horizontal
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Mean Std Min Max Skewness Kurtosis
Euro -0.00002 0.00372 -0.02772 0.02780 0.02518 3.77828
Belgium -0.00001 0.01274 -0.08319 0.09334 -0.01536 5.65786
France 0.00002 0.01482 -0.09472 0.10595 -0.04260 4.58415
Germany 0.00015 0.01528 -0.08875 0.10797 -0.05521 4.10007
Greece -0.00036 0.01932 -0.17713 0.13431 -0.30092 6.02502
Ireland 0.00005 0.01476 -0.14955 0.10823 -0.62558 8.71025
Italy -0.00018 0.01552 -0.13331 0.10877 -0.21653 4.85545
Luxembourg 0.00010 0.01307 -0.11550 0.09104 -0.46431 7.62172
Netherlands -0.00005 0.01458 -0.09590 0.10028 -0.10984 5.99588
Portugal -0.00020 0.01216 -0.10379 0.10196 -0.24411 5.70944
Spain -0.00004 0.01508 -0.13185 0.13484 -0.10271 5.63121
United Kingdom 0.00004 0.01212 -0.09266 0.09384 -0.15437 5.80512

Table 3.1: Descriptive Statistics

axis of these figures denotes the time component while the vertical axis denotes the
frequency component in business days beginning from scale 1 (one business day) up
to 1024 (four years). Regions of high coherence (dark grey) indicate a strong local
correlation while the opposite holds for regions of low coherence (light grey). Time and
frequency regions with a significant coherence are framed in a white contour line.
We can observe that co-movement patterns do not only vary among time but also
among frequencies. Between 2000 and 2003 we have high coherence regions at 128-512
day frequency band. For the Greek, Portuguese and Irish stock market we observe
significant high coherence regions for a greater time span than for the remaining nine
stock markets. Between 2007 and 2010, we observe high coherence regions at similar
frequency bands as well. The significant coherence patterns beginning in 2007 are
more persistent in time for the Spanish, Portuguese and Greek time series than for
the remaining dataset. In figure 3.1 we plot the average coherence per frequency
over the whole period. This perspective allows us to localize significant correlation
patterns in the frequency domain. We observe for every examined pair a significant
co-movement between 64 business days (3 months) and 256 business days (one year) as
well for the frequencies below 32 days. Interpreting the results in figure 3.1 leads to
the conclusion that significant coherence patterns for frequencies lower than 128 days
appear to be more severe but not very persistent in time. As illustrated in figure 3.1,
the average coherence across frequencies follows an almost uniform pattern for every
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Figure 3.1: Average wavelet coherence per period. The red dots denote a significance
level of at least 5% while the blue dots denote a significance level of 10%.
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European stock market. The highest significant coherence is observable at the highest
frequencies. Between the frequency band 1 and 4, the coherency falls from 0.7-0.6
to 0.3 for every considered stock market. For Belgium, France Greece, Netherlands,
Portugal and Spain we observe an increase of the average coherence for the frequency
band 64-256 days. Additionally, since the crisis in 2007 we observe for Greece, Portugal
and Ireland very slow decaying significant coherence patterns on frequencies lower
than six months. This observation favors the existence of time- and frequency-varying
cross-market interdependence implying far more stable cross-market linkages than for
the remaining dataset.
The findings from the coherence analysis reveal a highly dynamic and significant co-
movement pattern for the frequencies bands between 128 and 256 days as well as between
8 and 32 days. Based on this observation we shift our focus during the phase-difference
analysis solely between these two frequency bands. The PD reveals an unstable phase
relation over the considered time interval, as it constantly varies between −π

2 and π
2

while we rarely observe anti-phase relations. Also, it is evident that the fluctuation
is more severe in the higher frequencies. We observe for each time-series pair a sharp
decline in the PD around between 2002 and 2003 towards −π2 at the frequency band
128-256 days. This observation indicates a cause-effect relationship in which the Euro
leads the respective stock market. The opposite pattern occurs between 2007 and 2008
for each time-series couple at the same frequency band. These phenomena are not
observable in the higher frequency band 8-31 days as the PD is constantly fluctuating
between π

2 and −π2 . Comparing the PD of both frequency bands, we find contradicting
results concerning lead-lag relationships. For the lower frequency band (128-256 days)
we observe with some exceptions during 2007, a cause-effect relation between the Euro
and the European stock markets in which the stock market leads the Euro up to the
time of the European debt crisis in 2012. For this particular frequency-band (128-256
days) within the time-interval 2007-2012, the observed lead-lag relationship between
both time series is in line with the portfolio approach by Dominguez and Frankel (1993).
From that moment we observe for each time-series a PD between 0 and −π2 indicating
that the Euro leads the stock market, which is in line with Dornbusch and Fischer
(1980). In summary, the existing lead-lag relationships as identified by the PD are not
persistent in time and do not indicate a dominating directional influence.
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3.4 Empirical Results

3.4.2 Link to the time domain

Wavelet analysis provides with the cross wavelet coherence a tool to measure co-
movement in the time-frequency domain. Existing co-movement patterns can be
decomposed into several frequencies, which can economically be interpreted as the
investment horizon of market participants. As this procedure enables to capture time-
frequency regions in which two time-series co-move, we can interpret it as the local
correlation while neglecting the complex component of the wavelet. In a second step,
we link the observed coherence pattern to econometric tools which operate solely in
the time-domain. For this purpose, it is necessary to reduce the coherence to the time
domain as well, which is done by averaging it for each point in time over all frequencies.
The non-significant coherence values (sign. level < 95%) have been neglected during
the averaging. Since the coherence coefficients are in absolute value, we adjust them by
the phase difference of the examined time series pair to distinguish between positive
and negative correlations. The DCC-GARCH, as well as the unconditional correlation,
have been considered as representatives of standard econometric methods. Table 3.2
compares the mean values of correlation between the Euro and the major European
stock markets using the whole sample.

Unconditional DCC WTC
Belgium 0.000 -0.004 -0.059
France -0.015 -0.020 -0.081
Germany -0.014 -0.013 -0.069
Greece 0.062 0.022 -0.003
Ireland 0.040 -0.060 -0.124
Italy 0.040 -0.060 -0.124
Luxembourg -0.023 -0.034 -0.075
Netherlands -0.047 -0.048 -0.130
Portugal 0.031 0.013 0.063
Spain 0.037 0.020 0.015
United.Kingdom -0.008 0.015 -0.020

Table 3.2: Comparison of the unconditional correlation, DCC-GARCH and the
wavelet coherence. The standard deviation is provided in the parentheses.

We observe that the correlation estimates strongly differ from one another. A part
of the deviation can be explained by the standard deviation of arithmetic mean of
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correlations from the DCC-GARCH as well as from the coherence. The difference is most
striking in figure 3.2 in which we plot the unconditional correlation, the DCC-GARCH
correlation and the time domain based coherence. We observe that the average wavelet
coherence in the time domain has a stronger tendency to switch the direction and to
take boundary values. This can be explained by the fact that non significant coherence
pattens have been removed a priori.
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Figure 3.3: On the left we plot the wavelet coherence where the white contour
indicates the 5% significance level estimated by Monte Carlo simulations (10,000
trials). The code for coherence ranges from dark grey (high power) to light gray (low
power). On the right we plot the phase difference for the frequency bands 256-512
days and 128-256 days..
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Figure 3.4: On the left we plot the wavelet coherence where the white contour
indicates the 5% significance level estimated by Monte Carlo simulations (10,000
trials). The code for coherence ranges from dark grey (high power) to light gray (low
power). On the right we plot the phase difference for the frequency bands 256-512
days and 128-256 days.
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Figure 3.5: On the left we plot the wavelet coherence where the white contour
indicates the 5% significance level estimated by Monte Carlo simulations (10,000
trials). The code for coherence ranges from dark grey (high power) to light gray (low
power). On the right we plot the phase difference for the frequency bands 256-512
days and 128-256 days..
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Figure 3.6: On the left we plot the wavelet coherence where the white contour
indicates the 5% significance level estimated by Monte Carlo simulations (10,000
trials). The code for coherence ranges from dark grey (high power) to light gray (low
power). On the right we plot the phase difference for the frequency bands 256-512
days and 128-256 days.
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3.5 Conclusion
We use wavelet analysis to study the causal relationship between the largest European
stock markets and the nominal effective Euro exchange rate. Based on the cross-wavelet
coherence results, we identify a significant bidirectional causal relationship between 2000
and 2003 as well as between 2007 and 2010 at 128-256 days time-scale. Additionally,
we discover a high degree of interdependence during financial turmoil during 2002,
2007-2010 and 2012-2016. Also, we provide evidence for financial contagion between
the nominal effective exchange rate and the European stock markets as significant
cross-wavelet coherence be observable in every stock market at frequencies lower than
32 days. The phase difference analysis identifies a time and frequency-varying lead-
lag relationship. The bidirectional causal relationship between the nominal effective
exchange rate and European stock indices continually fluctuates between a cyclical and
an anti-cyclical relationship. However, during the dot-com bubble in 2002, the financial
crisis in 2007 and the European debt crisis in 2012 we observe homogeneous lead-lag
relationships over the entire dataset. Further, the observed phase pattern and thus the
implicated non-stable lead-lag relationship favor solely for specific time intervals the
Dornbusch model by Dornbusch and Fischer (1980), as well as the portfolio approach
by Dominguez and Frankel (1993).
Based on a time-frequency analysis we were not only able to distinguish between
contagion and interdependence but also to identify lead-lag relationships. Knowledge of
the directional causality is of the essence for developing appropriate policy implications.
While we recognize the limits of the bivariate approach, in the future, researchers might
apply a multivariate approach to revisit the relation. It might be of interest to assess
the nexus by including variables, e.g., interest rates, oil price return, money supply,
and other macroeconomic variables as can be justified on theoretical grounds in the
particular economic context.
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4 Event detection and the impact of surprise.

4.1 Introduction

According to the infamous Efficient Market Hypothesis (EMH) market prices fully and
instantaneously incorporate all information and expectations of market participants.
Weaker forms of the EMH relax these strong assumptions to a semi-strong and weak form
efficient markets in which only publicly available information and historical information
is reflected in the prices. Fama (1997) argues market efficiency not to hold at any single
point but on average over time and agents implying anomalies to vanish subsequent to
their discovery. In light of this theory, agents have stable and well-defined preferences
which they apply in maximizing their expected utility when facing risky investment
decisions. Empirically there is evidence that such behaviour leads participants to reflect
new information accurately and mispricing quickly vanish, e.g. (Malkiel 2003).
With the rise of the internet new sources of information have gained the agent’s

attention making it more time consuming and thus more expensive to monitor the
relevant information stream. Active users on online platforms like Facebook or Twitter
produce content about events in real time (Sakaki, Okazaki, and Matsuo 2010) making
them a relevant stream of information (Aiello et al. 2013).
While more timely information is beneficial, empirical findings are pointing to

behavioural biases such as herding or overreaction to unexpected events (Thaler and
Benartzi 1985). The impact of such unexpected events on financial markets is extensively
discussed within the context of interest rate, surprise indexes, and earnings (Han 2010;
Scotti 2016; Bernard and Thomas 1989; Brown 2003).
We use Twitter to quantify the presence of surprise and the effect on the S&P 500.

We develop a three-step algorithm to mimic the agent’s behaviour and apply modern
techniques in natural language processing to analyse it empirically. Firstly we access
for any event if the news triggers a discrepancy from prior beliefs. When an agent
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is exposed to new information (tweets), this is only considered as a ’surprise’ if the
distance from earlier beliefs is sufficiently high and the ’surprise threshold’ is crossed.
If this happens the agent experiences surprise, leading to an interruption of ongoing
mental process and resources such as attention are reallocated towards the unexpected.
In a second step, the event is analysed by the verification of the schema discrepancy, the
study of the causes of the unexpected event, the evaluation of the unexpected event’s
significance and the assessment of the event’s relevance for ongoing action. The final
step incorporates the schema update that involves producing the immediate reactions
to the unexpected event such as the update, extension, or revision of the schema or sets
of beliefs that gave rise to a discrepancy. Under the EMH we would observe increased
volatility that epitomizes the price adjustment as a reaction to the unexpected event.

Empirically we perform content analysis through topic modelling on all information
provided by the Twitter accounts of the S&P 500 companies within a 31-month period,
and we quantify the surprise level of financial tweets within a time-frame of 24 hours.
We integrate the informational content of the Twitter ecosystem into a network topology
which allows quantifying the surprise level by gaining awareness of propagating rare
events on an aggregate level. Specifically, we investigate whether Twitter covers topics
that are relevant to the financial markets and especially volatility modelling. In doing
so, we focus on quantifying the propagation of rare events to explain a reaction to the
financial markets.

We contribute to the literature by providing a novel approach which allows quantifying
the propagation of information within the network on an aggregated level from an
agnostic point of view concerning the topic and information domain. By analysing
the impact of aggregated informational content on the S&P 500 return and volatility
we provide the first empirical assessment of surprise on the market. We condition the
return and volatility response in the pre- and post-announcement periods on realized
surprise to identify pre-report effects and to capture the evolution of surprise in time.

There are two branches of literature associated with our approach. The first analyses
text with sentiment classification algorithms. Sprenger et al. (2014) use a naïve Bayesian
algorithm to classify the sentiment of 250,000 stock-related tweets and analyse its
association with stock returns and trading volume. Liu et al. (2017) use a polarity model
of sentiment to compute a sentiment score of a randomly selected dataset stemming
from a financial forum and analyse its predictive information about the stock market.
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4.2 Methodology

Gilbert and Karahalios (2010) show the non-financial information sources to provide
novel information about future stock movements. The impact of Twitter sentiment
has been analysed during financial events such as IPOs, earning announcements or
Federal Open Market Committee (FOMC). Liew and Wang (2016) found a positive
relationship between tweet sentiment and IPO performance within a cross-sectional
analysis. These findings are also in line with Liew, Guo, and Zhang (2016), who shows
that in addition to the consensus earnings of crowdsourced information, tweet sentiment
before the earnings announcement can predict stock market returns. The second branch
of literature focuses on the impact of Twitter users and information diffusion and
propagation. Cha et al. (2010) measure the influence of Twitter users based on three
measures: in-degree, retweets, and mentions. Based on a large dataset of 54 million
Twitter accounts, they found users with a large number of followers (in-degree) cannot
be characterized as influential which has been measured based on retweets and mentions.
This is in line with Romero et al. (2011) who shows the linear correlation between
user popularity concerning followers and influence to be weaker that one might expect.
The study also reveals that the majority of Twitter users consumes information as
a passive medium and do not forward the information to the network per se. This
observation implies that an individual needs to overcome user passivity to influence
instead of attracting a large follower base. As a consequence non-popular individuals
may have a further reach than the average, regardless of their popularity.

The remainder of this paper continues with the methodology and data processing in
section 4.2 and discuss results in section 4.3. The final section concludes.

4.2 Methodology
We link the aggregate level of surprise in the ecosystem of Twitter to real-world events.
An event is an arbitrary location of a space-time region which consists of actively
participating agents or passive factors. As we are interested in the general surprise level,
we do not target the identification of specific events but the quantification of the surprise
level in a broader context. The Twitter ecosystem is suitable for our experiment as in
a more general definition events can be of any scale and hence influence an arbitrary
amount of people inducing them to tweet about it. Furthermore, events can allocate in
spatial and temporal regions utilizing metadata which are specific to each tweet. To
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quantify the surprise level in real-time, we introduce a hierarchical processing pipeline.
The first part of our approach is to pre-process the raw Twitter data. This step is
critical as Twitter data is noisy, redundant and unstructured. The informational content
within an unfiltered Twitter stream is sparse, making aggressive preprocessing essential.
In a second step, we hierarchically cluster the tweets and extract the keywords that are
representative of the context embedded in the tweet. In the final step, we construct
a network to explain the dynamics of information flow and compute the aggregated
surprise level based on a specially developed method. To assess the impact of the
proposed surprise index on the daily volatility of the S&P500 index, we follow a two-step
econometric methodology proposed by Andersen and Bollerslev (1998). Specifically, we
estimate the conditional means of returns and fit a conditional volatility model to the
predicted residuals. The fitted conditional volatility is then used in a weighted least
squares (WLS) procedure to obtain heteroskedasticity-robust standard errors in the
conditional mean equation. In addition, we investigate the predictability of the S&P
500 volatility when the proposed surprise metric is incorporated in the GARCH(1,1)
model.

4.2.1 Data Collection

Event detection from a text-based stream can enable agents to react on the news
without human involvement, a critical requirement for scaling up in large portfolios. To
investigate event detection we construct a dataset consisting of real-world text-based
information stream that links to events. We extract 1,568,572 unique tweets from the
public API of Twitter which covers the period between 01/01/2015 and 01/06/2017.
We capture every tweet published by every verified Twitter account belonging to one of
the S&P 500 companies. Restricting the Twitter stream to specific accounts, namely to
verified accounts belonging to the S&P 500 companies makes it safe to assume that the
observed rising events are linked to the brand and thus to the company holding the
Twitter account.

To analyse the impact of surprise on a financial system, we choose the S&P 500
index prices 1 as a representative economic agglomeration. We compute daily returns

1We obtained the S&P 500 index data from the Chicago Board Options Exchange.
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as follows:
Rt = 100× ln(Pt/Pt−1) (4.1)

where Pt is the end-of-day closing price of S&P 500 index. The descriptive statistics for
daily returns and absolute daily returns are provided in table 4.1.

Summary statistics of S&P 500 daily returns.

daily returns daily
absolute returns

Mean −0.026 0.584
Median. −0.005 0.377
Std. dev. 0.834 0.596
Interquartile range 0.757 0.684
JB 226.3131*** 1066.821 ***
ADF unit root test −9.408*** −5.691***
LB 0.091 53.646***
Obs. 627 627

Table 4.1: The sample period is January 1, 2015 - June 30, 2017. Interquartile
range is the difference between the 75 th and 25 th percentiles. Null hypothesis of
the Jarque–Bera test is the normality of the series in investigation. Null hypothesis
of the Augmented Dickey–Fuller unit root test is the existence of a unit root. Null
hypothesis of the Ljung Box test is no serial correlation. The stars on the test statistic
correspond to p-values ≤ 0.01 ***, ≤ 0.05 ** or ≤ 0.1 *.

The average daily return is close to zero, while the average absolute return is 0.58%.
We reject the hypothesis of normality and unit root according to the results of Jarque-
Bera and augmented Dickey-Fuller tests for both returns and absolute returns. The
results of the Ljung-Box test indicate the existence of serial correlation in the return
series, presumably due to microstructure effects (Andersen et al. 2003).

4.2.2 Data Pre-Processing

The social micro-blogging service provided by Twitter is solely restricted by the number
of total characters (140 before and 280 since September 2017). As a result of the character
restrictions, the informational content of tweets is highly compressed, and users refrain
eg. from the utilization of proper punctuation and stop-words. Although Twitter
provides almost real-time information and discussion of current events most tweets

49



4 Event detection and the impact of surprise.

appear to be highly fragmented, noisy and contain irrelevant events as well. Traditional
natural language processing algorithms are designed to work on carefully written and
well-structured texts instead of grammatically, semantically and syntactically messy
texts (Liu et al. 2013). To counteract this, we apply an aggressive pre-processing and
filtering which is constructed as follows.

First, we normalize each tweet by removing links, user mentions, digits, hashtags, and
any excessive punctuation. Next, we tokenize each tweet and perform spell-checking
using vector representations for words (Pennington, Socher, and Manning 2014). We
filter out tweets that have less than three text tokens. This structure-based filtering
identifies noisy tweets which do not carry enough news-like content. Reprocessing
reduced the Twitter dataset by 106,009 (-6.76%) tweets leading to 1,462,563 remaining
tweets. The effect of preprocessing on the dataset is visualized in figure 4.1a and 4.1b.
Each of the 1379 Twitter accounts generated within the considered period of 31 months
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Figure 4.1: Activity on Twitter per account covering the period between 01/01/2015
and 01/06/2017.

on average 1137 tweets, preprocessing removed on average 76 tweets per account.
In the second step, we construct a binary tweet-term matrix based on the filtered

tweets and compute the term frequency and inverse term frequency (TF-IDF) to
identify highly informative features. The frequency based term weighting evaluates
the importance of each term to a corpus d by discounting the term frequency within
the corpus by the logarithmic inverse term frequency. Given the TF-IDF score, we
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hierarchically cluster the tweets based on the pairwise cosine distance. Given the
assumption that tweets belonging to the same broad topic do also possess similar
semantic structure it is safe to assume that each cluster, which is formed by the pairwise
cosine distance of each TF-IDF, represents a topic and at least one sub-topic. We cut
the resulting dendrogram at a fixed threshold of θ = 0.5, producing the final set of
clusters for the corresponding time slot. This implies that two tweets with a pairwise
cosine distance smaller than 0.5 belong to the same cluster. The threshold variable θ
controls how loose or tight the clusters will be. A higher threshold would lead to a
weaker segmentation which bears the risk of collating different topics in the same cluster.
A lower threshold would result in tighter clusters and thus to a stronger segmentation.
However, the likelihood that several clusters represent the same topic increases as well.

4.2.3 Topic Extraction

Each cluster forms a set of numerous event instances that are clustered superficially
under the purview of their subject. One possible approach to extract specific events at
first level is to bypass the semantic clustering. However, given the significant amount
of data produced by Twitter, it is consequently not advisable to zero down on specific
events without a top-level segmentation. Also, by following the proposed high-level
topic segmentation, we can accomplish event identification and track within the logical
domain of a topic. This prevents identical entities to be erroneously clustered together
in case they belong to unrelated topics. We extract the topics for each cluster using the
unsupervised topic modelling technique latent Dirichlet allocation (LDA) which infers
topic distributions in documents. The traditional LDA is designed for well-structured
documents, such as news articles in which it delivers satisfactory results (Steyvers and
Griffiths 2010). Due to the highly compressed, sparse and noisy structure of tweets, the
standard LDA fails to infer topic distributions when it is applied to microblog posts. As
the standard LDA is built on the assumption that the underlying document represents
a mixture of topics it does not incorporate an essential observation concerning Twitter:
Due to character limitation, tweets mostly cover a single topic. A possible solution is
given by aggregating tweets of a user in a single document. As a result, we receive the
topic profile of each user which is not in accordance with our objective of identifying
and tracking events in time but serves the profiling of single users. This has been first
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4 Event detection and the impact of surprise.

facilitated by Zhao et al. (2011) and allows to model topic distributions at a user level.
Given that a user selects a topic from his favourite list of topics and embeds it among
background words within a tweet. We use a slightly modified version of the Twitter-LDA
as proposed in Zhao et al. (2011) to capture this particular behaviour. Our approach
allows us to model topic distributions at separate time segments and does not require a
user-specific tweet history. Instead of clustering tweets based on users, we aggregate
tweets based on the TF-IDF pattern which is derived from the tweet-term matrix to
obtain more coherent and logical topic clusters. We introduce a topic distribution
θc for each cluster c whereas every tweet is generated by picking a topic t from its
cluster topic distribution respectively. In the next step, the tweet is populated by
additional topic words for the topic t following the distribution φt and background
words following the distribution φB, forming a bag of words. An arbitrary word belongs
to the background class or the topic class according to a Bernoulli distribution π.
Some symmetric Dirichlet distribution governs each multinomial distribution. We

Algorithm 1 Twitter-LDA Topic Extraction
draw φB ∼ Dir(β), π ∼ Dir(γ)
for topic in t = 1, ..., T do

draw φt ∼ Dir(β)
for cluster in c = 1, ..., C, do

draw θc ∼ Dir(α)
for tweet in s = 1, ..., Nc do

draw zc,s ∼Multi(θc)
for word in n = 1, ...Nc,s do draw yc,s,n ∼Multi(π)

if yc,s,n = 0 then return wc,s,n ∼Mult(φB)
else if yc,s,n = 1 then return wc,s,n ∼Mult(φB)

illustrate the modified Twitter-LDA in pseudo-code 1. The parameters α, β, γ specify
the Dirichlet distributions. We use collapsed Gibbs sampling to obtain samples of the
topic and background words assignment and to estimate the model parameters from
these samples.

As an extracted topic can be mentioned in a different context during a time interval,
it is not possible to track an event solely by its keywords which we identified by the
Twitter-LDA. To counter this, we extract the named entities of an event that are
classified as a person, localization, and organization. Due to the specific grammatical
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structure of micro-texts, we found that general name-entity recognition (NER) models
do not perform well in a noisy environment such as the Twitter stream. For example,
the Stanford NER which has been trained on the CoNLL03 shared task dataset achieves
90.8% on that task while drops to 45.% on tweets. That is to the domain mismatch
due to a short, mostly informal, often ungrammatical and noise prone structure of
tweets that sharply differs from more traditional genres of text (Liu et al. 2013). We
use a pre-trained NER model which has been specifically trained for Twitter by Liu
et al. (2013). A glance at the results of the NER process reveals that a significant
number of tweets does not have any entity mentions. It is highly unlikely that a tweet
referring to an important event associated with a high impact does not include a single
associated entity. For this reason, we are confident that ignoring these tweets do not
distort our overall results but are beneficial to de-noising the Twitter stream.

4.2.4 Event Detection

The Twitter ecosystem can be regarded as a network which offers the potential for
studying the spread of information and associated events. A network-based approach
can be a useful tool for revealing existing heterogeneity among events according to
their level of connectivity. The practical consequence of the graph theory perspective is
that we model the Twitter ecosystem as a two-mode network which consists of nodes
representing tweets and topic-keywords. A link between a tweet node and a keyword
node implies that the keyword has been mentioned in that particular tweet. A link
between two keywords implies that both keywords have been mentioned in a discussion
which occurs in case a user responds to the initial tweet. Replying to a tweet may also
lead to new topics. This is incorporated in the graph by linking the topic-keywords
that have been identified in the reply-tweets keywords to the initial tweet’s keywords.
This allows identifying keywords that are involved in discussions and are thus at some
level controversial. Additionally, linking the extracted keywords stemming from the
reply-tweet to the initial tweet allows observing whether the specific topics are discussed
across multiple tweets. Our graph is fully defined by the set of nodes V and the set of
edges E. An edge ei,j connects two single nodes vi and vj . By distinguishing between a
keyword stemming from a tweet and a keyword stemming from a reply one obtains a
directed graph G = (V,E). In an undirected graph, the degree ki of a node vi stands for
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the number of its neighbouring nodes and is an indicator of the node’s connectedness
to the network. Highly connected nodes are called hubs and postulate in our case
frequently mentioned keywords across multiple tweets and replies. An event is formed
by such a locally dense connected group of keywords when each node vi within the
sub-graph C has more links than with the rest of the graph. Specifically, a sub-graph
C forms a clique for each node vi ∈ C when,

kinti (C) > kexti (C) (4.2)

where the internal degree kinti describes the number of edges that connect node i to other
nodes in C and the external degree kexti describes the number of edges that connect
node i to the rest of the network G. For each node i the largest complete subgraph
containing node i, given that 4.2 holds, is defined as the maximal clique. We obtain the
maximal cliques using the backtracking algorithm implemented by Bron and Kerbosch
(1973) and adapted by Tomita, Tanaka, and Takahashi 2006. With progressing time,
cliques are affected by the dynamic evolution of the network leading to birth or death,
growth or contraction and merging or splitting of cliques. In to order to track changes
in the clique structure during the time we define the node with the largest degree within
each clique as its identifier. This allows to analyse networks’ properties in time as
we can observe the evolution of events and quantify their propagation speed in the
network. In addition to connectivity measures, we use a strength parameter to further
quantify the relevance of each clique to the system. For this purpose, each edge ei,j
that connects a tweet to a topic-keyword is assigned a weight wij which represents the
total amount of retweets.

sl =
∑
Cl

wij(eij) (4.3)

where wi the strength of each clique is defined for each topic-keyword node vj taking
into account the size of each topic-cluster i the node is connected too.

4.2.5 Surprise Level

To assess the impact of aggregated events on the financial market we compute an
indicator that aggregates for each time frame popularity and speed of propagation
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for each topic-keyword. The output of the key indicator is the surprise level for a
particular time frame that considers past information within a look-back window θ.
The time frame of interest, as well as the look back window, can be chosen arbitrarily.
We propose a surprise level method which rewards rare and punishes popular keywords
by taking the inverse degree centrality per topic cluster into account:

Surpriset = 1
Vt

∑
j∈G(Vt)

1
kCl,t
· σt−θ,t(∆kCl,t) · sl,t (4.4)

where kCl,t is the degree centrality of keyword cluster Cl and V the number of nodes
and therefore the number of distinguishable objects in the network.at time t. Rare
events exhibit a large inverse degree while the value converges to zero for popular
events. We take the speed of propagation into account by scaling this factor with the
standard deviation of the degrees’ first difference between t and t− 1. The averaged
value obtained by 4.4 allows measuring the surprise level of propagating information on
an aggregated level. In a second step, we aim to assess its impact on financial markets.

4.2.6 Return Model

We model the daily return, Rt as follows:

Rt = α +
P∑
p=1

γpRt−p +
Q∑
q=1

δqεt−q +
∑
l

J∑
j=−1

βl,jSt−j + εt (4.5)

t=1,...,T (T=912).

l = {positive, negative}

where Rt is the continuously compounded return as defined in Equation 4.1; Sl,t−j is
the surprise index; and εt is the random error term. In the regressions we use the
first difference of the surprise index time series. In order to determine the duration of
surprise index, we allow the surprise indicator to last for J periods. (1-day intervals
from j=-1 to j=J). With this notation, j = 0 refers to the time-interval within the
Twitter posts are released, while j = −1 refers to the interval right before the Twitter
post are released, which is included to test for any information leakage effects (Andersen
et al. 2003). According to Akaike information criterion, we set P = 3, Q = 0 and J = 2.
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We estimate the return model given by equation (4.5) using OLS to obtain the residuals,
ε̂t. In the second step, we approximate the time-varying volatility of the residuals ε̂t by
the following linear model using WLS:

|ε̂t| = µ+
P ′∑
p=1

γ′p|ε̂t−p|+
Q′∑
q=1

δ′qut−q + ψ
σ̂d(t)√
N

+
∑
l

J ′∑
j=−1

β′l,j|St−j|+ ut (4.6)

where t = 1, ..., T (T = 912) and l ∈ positive, negative and |ε̂t| is the absolute value of
estimate residuals from the return model in equation (4.5), |St−j| the absolute value
of the surprise index calculated as in equation (4.4) and ut is the random error term.
Similar to Andersen et al. 2003, the term σ̂d(t)√

N
describes the average volatility over the

trading week w, computed from a Gaussian GARCH(1,1). The first two summation
terms represent autoregressive and moving average terms. Again, to determine the
impact duration of a surprise shock, we allow the impact to last for J ′ periods. According
to the Akaike information criterion, we set P ′ = 4, Q′ = 1, J ′ = 3.

4.3 Results

We calculate the proposed metric of surprise for the information published via the
Twitter network. The descriptive statistics for the proposed metric of surprise are shown
in table 4.2. The distribution of the surprise metric is further illustrated in Figure 4.2a
and 4.2b. The ADF test reveals that surprise in the informational content does not
follow a unit root process. This means that the surprise metric is not building up over
time and reverts to its mean which is line on how we expect an agent to experience
surprise as described in chapter 4.1. Accordingly, the Ljung-Box test statistic does not
imply any serial correlation. This makes it safe to assume that surprising events do
not appear in clusters and form independent entities. While most of the probability
mass is surrounded around the mean, we observe rare realizations with a multiple of
the standard deviation beyond the lower and upper quartile. In view of the summary
statistics in table 4.2 and the Figures 4.2a and 4.2b, the proposed surprised metric
behaves very similar to a stock market index return time series.

56



4.3 Results

Summary statistics of the surprise metric
Mean 0.233
Median 0.0826
Std dev 0.854
Min −3.476
Max 4.731
Interquartile range 0.800 83
JB 326.15 ***
ADF −11.414 ***
Ljung Box 76.968 ***
Obs 627

Table 4.2: The sample period is January 1, 2015 - June 30, 2017. Interquartile
range is the difference between the 75 th and 25 th percentiles. Null hypothesis of
the Jarque–Bera test is the normality of the series in investigation. Null hypothesis
of the Augmented Dickey–Fuller unit root test is the existence of a unit root. Null
hypothesis of the Ljung Box test is no serial correlation. The stars on the test statistic
correspond to p-values ≤ 0.01 ***, ≤ 0.05 ** or ≤ 0.1 *.

(a) (b)

Figure 4.2: (a) Time series plot and (b) histogram for the surprise index based
on the activity of the S&P 500 companies on Twitter covering the period between
01/01/2015 and 01/06/2017.
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4.3.1 Network Characteristics

A fundamental characteristic of Twitter is its order V in the form of the number
of topic keywords included in the network. In the considered period, we observe
strong fluctuating number of topic-keywords nodes in the graph (Figure 4.3a). The
observed fluctuation in network size implies that the spectrum covered by the identified
topics is highly dynamic and heterogeneous across time. A quantity reflecting the
interdependence within the discussed topics is the density in the undirected topic
partition of the network. Calculated density values in between ρmin = 0.01 and
ρmax = 0.1 indicate a comparatively low linkage among discussed topics. A second

(a) (b)

Figure 4.3: (a) Size of the network for each time interval. (b) Average network
density for each time interval.

quantity reflecting the connectivity across the network is the average degree 〈k〉. The
degree of a node ki denotes the number of its direct neighbouring nodes in the graph. In
respect of Twitter, a node with a large degree represents a highly connected topic with
many subtopics. The average degree is strongly correlated to the size and the density
of the network. The cumulative distribution of the degree values in the undirected
version of the Twitter topic network is presented in figure 4.4. When a node in the
topic network reaches a critical number of edges, new edges cannot connect to it. This
indicates that for small k the degree distribution follows a power-law corresponding to
an exponent γ = 2.6, for large k an exponential cut-off develops. In this respect, the
Twitter topic network cannot be regarded as a scale-free network.
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Figure 4.4: Cumulative degree centrality distribution in comparison to a power law
and log-normal distribution.

4.3.2 Volatility Modelling

We present the results along with the diagnostics in Tables 4.3. Starting with the
results for the return model given by Equation (4.5), the estimated coefficients on the
autoregressive terms indicate that daily returns exhibit negative and statistical signifi-
cant autocorrelation. For the surprise index, the significant estimates corresponding
to the interval [-1,0] suggest that there is a pre-report effect for events published via
Twitter posts. The coefficients during the first day following the event realization re-
main significant while the coefficients become non-significant for the successive interval.
Positive (negative) surprise index first differences have a negative (positive) effect on
returns. The impact of the [0,1] interval is larger compared to the effect during the
subsequent interval. The observed decreasing impact of surprising events on returns is
in line with the results presented in (Malkiel 2003) as pricing readjusts to new relevant
information quickly.
In table 4.3 the coefficients of the volatility model for the autoregressive terms are

mostly significant except for the third lag. The surprise index coefficients show that an
increasing level of surprise leads to an increased volatility. Similarly to the results of the
return model, we observe a pre-report effect which postulates that the volatility rises
before the event is reported on Twitter. The coefficients for the interval greater than 1
day are not statistical significant, claiming that the effect of surprise level differences
wear off within the first time interval.
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Estimation results for the return model given by Equa-
tion (4.5) and the volatility model given by Equation
(4.6)
Variable Estimate

Return Model Volatility Model
Intercept 0.000 0.003 **
Rt−1 −0.028 ***
Rt−2 −0.019 ***
Rt−3 −0.011 **
|ε̂t−1| 1.021 ***
|ε̂t−2| −0.037 ***
|ε̂t−3| 0.012
|ε̂t−4| −0.028 ***
ut−1 0.874 ***
Surprise Index
S+[−1, 0] −0.004 ** 0.003
S−[−1, 0] 0.003 ** 0.026 **
S+[0, 1] −0.003 ** 0.010 *
S−[0, 1] 0.002 * −0.013 *
S+[1, 2] −0.031 −0.019
S−[1, 2] 0.024 −0.012

Joint F-tests
∀γl,j = 0 43.445 ***
∀βl,j = 0 3.211 **
∀βl,j = ∀γl,j = 0 41.587
Likelihood ratio tests
∀γ′l,j = 0 3018 ***
∀δ′1 = 0 745 ***
∀β′l,j = 0 1473 ***

Table 4.3: The estimates for the return model (Equation 4.5) are obtained using WLS.
The estimates for the volatility model (Equation 4.6) are obtained using maximum
likelihood estimation. The Null hypothesis of the F-test and of the Likelihood ratio
test is that the estimated parameters are jointly zero. *,**,*** indicates the statistical
significance level 10%, 5%, and 1% respectively.
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4.3.3 Volatility Forecasting

We additionally evaluate the practical value for financial forecasting by including the
surprise metric in a classical GARCH(1,1) model. Therefore, the volatility of a return
series is modelled as an autoregressive process:

σ2
t = ω + αy2

t−1 + βσ2
t−1 + γst−1 (4.7)

We add to the initial model 4.7 an additional lagged regressor st−1 to investigate if
the aggregated surprise value provides an explanatory value to the volatility. We fit
the volatility model using the first 250 observations and forecast 1-step ahead. We
re-estimate the model parameters every ten observations to capture the impact of
structural data changes. The out-of-sample consists of 350 observations, while the
in-sample of 250. Table 4.4 reports the results for the baseline GARCH model as well as

Estimation results for the GARCH model given by Equa-
tion (4.7)
Variable Estimate

GARCH(1, 1) GARCH(1, 1) + S
ω 0.076 ** 0.094
α 0.201 ** 0.205
β 0.699 *** 0.695
γ 0.065*
Diagnostics
LogLikelihood −613.713 −616.393
AIC 2.402 2.400
Qr2(5) 18.885 18.671
JB 173.443 138.662
Forecasting
MSE 0.463 0.457
MAE 0.464 0.456

Table 4.4: Regression results for the first 250 observations; 01/01/2015 - 31/12/2015.
T-values are in parentheses. AIC denotes the Akaike information criterion. Qr2(5)
denotes the Ljung-Box statistics for the first five lags of squared residuals. JB is the
value of the Jarque and Bera Normality test statistics (p-values are reported within
the brackets) on standardized residuals. MSE denotes mean squared error. MAE
denotes mean absolute error.
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including the proposed surprise index. Estimating a GARCH model with the proposed
surprise index shows that there exist a significant linear relationship between volatility
and surprise in the Twitter network. The positive sign of γ implies a positive correlation
between volatility and surprise, as expected. The Ljung-Box test strongly rejects serial
autocorrelation among the standardized squared residuals for both model implications.
The Jarque-Bera normality test rejects the normality of standardized residuals even
after controlling for volatility clustering. Judging by the Akaike Information Criterion
(AIC) the GARCH model which includes the surprise index would be confirmed to
outperform the plain GARCH model regarding goodness-of-fit.

A simple assumption about the effectiveness of the surprise index is that the quantified
surprise level does not provide additional information if the stock market volatility can
be predicted well by the historical returns only. This implies that if the explanatory
power of the baseline model is high, events manifested by the surprise index are already
expected and therefore considered in the pricing. In such cases, only the baseline model
is sufficient to predict volatility and integration of surprise level does not improve the
explanatory power much. On the other hand, if the prediction power of the baseline
model is low, the stock markets seem to expect any events that will cause a surprise.

4.4 Conclusion
Based on the review of recent works on analysing social media data with a focus
on mining the public opinion concerning publicly traded companies, we provide a
framework to handle a vital research problem with satisfactory experimental results
via the proposed methodology. More specifically, while mostly the overall sentiment
in user-generated content is considered in the previous research, this study proposes a
method for quantifying the surprise level of events despite their content or sentiment.
The contribution of this study can be summarized as follows. First, we propose a
method that quantifies the heterogeneity of the informational content within the Twitter
ecosystem. Second, we can measure the level of surprise by taking the diffusion speed
of rare or unforeseen events by modelling the information flow in Twitter as a network.
Third, we investigate how the S&P 500 returns and volatility react to changes inherent
in the daily aggregated surprise index. We find that an increase in the surprise index
has an inverse effect on S&P 500 returns. A positive increase of the uprise level has
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a positive impact on the daily volatility. Moreover, the results indicate for both the
return and volatility models a pre-report effect. Overall, our results support the EMH
in that prices adjust to unexpected events, however, the adjustment process may take
up to 2 days. Although this study provides novel results, the following limitations
need to be noted. The first limitation concerns the choice of our time frame. Although
we deemed a two and a half years period sufficient for our study, as the size of the
Twitter network still increases exponentially it is yet unknown whether we may consider
the observed conditions can as stable. Moreover, endogeneity cannot be completely
ruled out in our study as we cannot answer the question of whether market volatility
determines the level of Twitter activity or vice versa.

63
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In the first part of this thesis, we study the informative value of time-frequency de-
compositions based on wavelets. In Chapter 2 we address the challenge of forecasting
major stock indices. For the binary classification task, we can identify three wavelet
filter out of fifteen, namely D4, D6 and CF6, which outperform the naive approach.
However, this does not hold for the task of point forecasting task as our approach fails
to outperform the naive strategy. We exemplify the performance of the forecasting
algorithm by simulating a trading application in which the wavelet-based approach
outperforms the naive strategy by a factor of about two in terms of Sharpe ratio.
In Chapter 3 we study the transmission processes between the European stock markets
and the nominal European exchange rate. To effectively distinguish between contagion
and interdependence we estimate the spectral characteristics of the time series as a
function of time and frequency using a continuous wavelet transform. This approach
also allows us to reveal linkages and co-movement patterns, including lead-lag relation-
ships, between periodic components. The empirical results support both cyclical and
anti-cyclical relationships between the series while existing casual and reverse casual
relation vary across scale and time. We strongly emphasize the limitations of a bivariate
approach and encourage the conduction of a multivariate analysis to revisit our findings.
In the second part of the thesis, namely Chapter 4, we aim to quantify the level of
surprise in events published on Twitter. The proposed methodology maps the informa-
tional content of every Twitter account belonging to at least one S&P500 constituent
into a network. This approach allows to observe the formation of events and to quantify
its propagation on an aggregate level. In a regression analysis, we investigate whether
the proposed surprise metric has any explanatory power for the S&P500 logarithmic
returns and volatility. We find that an increase in the surprise index has an inverse
effect on daily returns and a positive impact on the daily volatility. Moreover, the
results support the hypothesis of a pre-report effect for both the return and volatility
models.
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Future work might also explore the limits of a multivariate approach to analyze direc-
tional interdependence and contagion patterns at different time scales. Considering deep
neural network embeddings to reduce the dimensionality of frequency decompositions
is one of the next steps in this research.
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performance of the WL-RFE-SVR
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Figure A.1: Flowchart of the proposed WL-RFE-SVR algorithm.
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Figure A.2: Point forecast performance of each wavelet filter including the naive
method based on root mean squared error (RMSE), defined by Equation (2.41), for
1200 out-of-sample forecasts for the period from 29.20.2010 to 26.06.2015. The wavelet
filters are denoted as Daubechies (D) (4,6,8,12), Least Asymetric (LA) (8,10,12,14),
Best Localized (BL) (14,18,20) and Coiflet (CF) (6, 12, 18, 24), where the integers
in brackets indicate the wavelet filter length. For the naive method the time series
has not been preprocessed by a wavelet filter. As a result the input vector consists of
20 lagged returns. The considered stock indices are from Germany (DAX30), United
Kingdom (FTSE100) ,US (SP500), France (CAC40), Switzerland (SMI20), Australia
(ASX200), Japan (Nikkei225) and Hong Kong(HS33). The forecasting horizon is
denoted as FH and varies between +1, +5, +10, +15 and +20 days.
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Figure A.3: Point forecast performance of each wavelet filter including the naive
method based on the root mean squared error (RMSE), defined by Equation (2.41),
for 1200 out-of-sample forecasts for the period from 29.20.2010 to 26.06.2015. The
feature set has been selected based on the results from the Recursive Filter Elimination
algorithm, which is described in Section 2.2.2. The wavelet filters are denoted as
Daubechies (D) (4,6,8,12), Least Asymmetric (LA) (8,10,12,14), Best Localized (BL)
(14,18,20) and Coiflet (CF) (6, 12, 18, 24), where the integers in brackets indicate the
wavelet filter length. For the naive method, the time series has not been preprocessed
by a wavelet filter. As a result, the input vector consists of 20 lagged returns. The
considered stock indices are from Germany (DAX30), United Kingdom (FTSE100),
US (SP500), France (CAC40), Switzerland (SMI20), Australia (ASX200), Japan
(Nikkei225) and Hong Kong(HS33). The forecasting horizon is denoted as FH and
varies between +1, +5, +10, +15 and +20 days.
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Figure A.4: Point forecast performance of each wavelet filter including the naive
method based on mean absolute percentage error (MAPE), defined by Equation (2.42),
for 1200 out-of-sample forecasts for the period from 29.20.2010 to 26.06.2015. The
wavelet filters are denoted as Daubechies (D) (4,6,8,12), Least Asymmetric (LA)
(8,10,12,14), Best Localized (BL) (14,18,20) and Coiflet (CF) (6, 12, 18, 24), where
the integers in brackets indicate the wavelet filter length. For the naive method, the
time series has not been preprocessed by a wavelet filter. As a result, the input vector
consists of 20 lagged returns. The considered stock indices are from Germany (DAX30),
United Kingdom (FTSE100), US (SP500), France (CAC40), Switzerland (SMI20),
Australia (ASX200), Japan (Nikkei225) and Hong Kong(HS33). The forecasting
horizon is denoted as FH and varies between +1, +5, +10, +15 and +20 days.
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Figure A.5: Point forecast performance of each wavelet filter including the naive
method based on mean absolute percentage error (MAPE), defined by Equation (2.42),
for 1200 out-of-sample forecasts for the period from 29.20.2010 to 26.06.2015. The
feature set has been selected based on the results from the Recursive Filter Elimination
algorithm, which is described in Section 2.2.2. The wavelet filters are denoted as
Daubechies (D) (4,6,8,12), Least Asymmetric (LA) (8,10,12,14), Best Localized (BL)
(14,18,20) and Coiflet (CF) (6, 12, 18, 24), where the integers in brackets indicate the
wavelet filter length. For the naive method, the time series has not been preprocessed
by a wavelet filter. As a result, the input vector consists of 20 lagged returns. The
considered stock indices are from Germany (DAX30), United Kingdom (FTSE100),
US (SP500), France (CAC40), Switzerland (SMI20), Australia (ASX200), Japan
(Nikkei225) and Hong Kong(HS33). The forecasting horizon is denoted as FH and
varies between +1, +5, +10, +15 and +20 days.
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Figure A.6: Classification forecast performance of each wavelet filter including the
naive method based on Accuracy, defined by Equation (2.43), for 1200 out-of-sample
forecasts for the period from 29.20.2010 to 26.06.2015. The wavelet filters are denoted
as Daubechies (D) (4,6,8,12), Least Asymetric (LA) (8,10,12,14), Best Localized (BL)
(14,18,20) and Coiflet (CF) (6, 12, 18, 24), where the integers in brackets indicate the
wavelet filter length. For the naive method the time series has not been preprocessed
by a wavelet filter. As a result the input vector consists of 20 lagged returns. The
considered stock indices are from Germany (DAX30), United Kingdom (FTSE100)
,US (SP500), France (CAC40), Switzerland (SMI20), Australia (ASX200), Japan
(Nikkei225) and Hong Kong(HS33). The forecasting horizon is denoted as FH and
varies between +1, +5, +10, +15 and +20 days.
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Figure A.7: Classification forecast performance of each wavelet filter including the
naive method based on Accuracy, defined by Equation (2.43), for 1200 out-of-sample
forecasts for the period from 29.20.2010 to 26.06.2015. The feature set has been
selected based on the results from the Recursive Filter Elimination algorithm, which is
described in Section 2.2.2. The wavelet filters are denoted as Daubechies (D) (4,6,8,12),
Least Asymetric (LA) (8,10,12,14), Best Localized (BL) (14,18,20) and Coiflet (CF)
(6, 12, 18, 24), where the integers in brackets indicate the wavelet filter length. For
the naive method the time series has not been preprocessed by a wavelet filter. As a
result the input vector consists of 20 lagged returns. The considered stock indices are
from Germany (DAX30), United Kingdom (FTSE100) ,US (SP500), France (CAC40),
Switzerland (SMI20), Australia (ASX200), Japan (Nikkei225) and Hong Kong(HS33).
The forecasting horizon is denoted as FH and varies between +1, +5, +10, +15 and
+20 days.
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Figure A.8: Classification forecast performance of each wavelet filter including the
naive method based on Kappa, defined by Equation (2.44), for 1200 out-of-sample
forecasts for the period from 29.20.2010 to 26.06.2015. The wavelet filters are denoted
as Daubechies (D) (4,6,8,12), Least Asymetric (LA) (8,10,12,14), Best Localized (BL)
(14,18,20) and Coiflet (CF) (6, 12, 18, 24), where the integers in brackets indicate the
wavelet filter length. For the naive method the time series has not been preprocessed
by a wavelet filter. As a result the input vector consists of 20 lagged returns. The
considered stock indices are from Germany (DAX30), United Kingdom (FTSE100)
,US (SP500), France (CAC40), Switzerland (SMI20), Australia (ASX200), Japan
(Nikkei225) and Hong Kong(HS33). The forecasting horizon is denoted as FH and
varies between +1, +5, +10, +15 and +20 days.
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Figure A.9: Classification forecast performance of each wavelet filter including the
naive method based on Kappa, defined by Equation (2.44), for 1200 out-of-sample
forecasts for the period from 29.20.2010 to 26.06.2015. The feature set has been
selected based on the results from the Recursive Filter Elimination algorithm, which is
described in Section 2.2.2. The wavelet filters are denoted as Daubechies (D) (4,6,8,12),
Least Asymetric (LA) (8,10,12,14), Best Localized (BL) (14,18,20) and Coiflet (CF)
(6, 12, 18, 24), where the integers in brackets indicate the wavelet filter length. For
the naive method the time series has not been preprocessed by a wavelet filter. As a
result the input vector consists of 20 lagged returns. The considered stock indices are
from Germany (DAX30), United Kingdom (FTSE100) ,US (SP500), France (CAC40),
Switzerland (SMI20), Australia (ASX200), Japan (Nikkei225) and Hong Kong(HS33).
The forecasting horizon is denoted as FH and varies between +1, +5, +10, +15 and
+20 days.
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Figure A.10: Trading performance in terms of Total Return (Equation (2.45)), annual
return (Equation (2.46)) and standard deviation (Equation (2.48) for the equally
weighted portfolio consisting of the major stock indices from Germany (DAX30),
United Kingdom (FTSE100) ,US (SP500), France (CAC40), Switzerland (SMI20),
Australia (ASX200), Japan (Nikkei225) and Hong Kong(HS33). The results are
based on 1200 out-of-sample forecasts for the period from 29.20.2010 to 26.06.2015.
The wavelet filters are denoted as Daubechies (D) (4,6,8,12), Least Asymetric (LA)
(8,10,12,14), Best Localized (BL) (14,18,20) and Coiflet (CF) (6, 12, 18, 24), where
the integers in brackets indicate the wavelet filter length. For the naive method the
time series has not been preprocessed by a wavelet filter. As a result the input vector
consists of 20 lagged returns. The forecasting horizon is denoted as FH and varies
between +1, +5, +10, +15 and +20 days.
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Figure A.11: Trading performance in terms of Sharpe Ratio (Equation (2.47)),
maximum drawdown (Equation (2.49)) and average recovery for the equally weighted
portfolio consisting of the major stock indices from Germany (DAX30), United
Kingdom (FTSE100) ,US (SP500), France (CAC40), Switzerland (SMI20), Australia
(ASX200), Japan (Nikkei225) and Hong Kong(HS33). Average Recovery is defined
as the mean duration of an equity drawdown period. The results are based on 1200
out-of-sample forecasts for the period from 29.20.2010 to 26.06.2015. The wavelet
filters are denoted as Daubechies (D) (4,6,8,12), Least Asymmetric (LA) (8,10,12,14),
Best Localized (BL) (14,18,20) and Coiflet (CF) (6, 12, 18, 24), where the integers in
brackets indicate the wavelet filter length. For the naive method, the time series has
not been preprocessed by a wavelet filter. As a result, the input vector consists of 20
lagged returns. The forecasting horizon is denoted as FH and varies between +1, +5,
+10, +15 and +20 days.
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Figure A.12: Trading performance in terms of total return (Equation (2.45)), annual
return (Equation (2.46)) and standard deviation (Equation 2.48) for the equally
weighted portfolio consisting of the major stock indices from Germany (DAX30),
United Kingdom (FTSE100) ,US (SP500), France (CAC40), Switzerland (SMI20),
Australia (ASX200), Japan (Nikkei225) and Hong Kong(HS33). The results are based
on 1200 out-of-sample forecasts for the period from 29.20.2010 to 26.06.2015. The
feature set has been selected based on the results from the Recursive Filter Elimination
algorithm, which is described in Section 2.2.2. The wavelet filters are denoted as
Daubechies (D) (4,6,8,12), Least Asymetric (LA) (8,10,12,14), Best Localized (BL)
(14,18,20) and Coiflet (CF) (6, 12, 18, 24), where the integers in brackets indicate the
wavelet filter length. For the naive method the time series has not been preprocessed
by a wavelet filter. As a result the input vector consists of 20 lagged returns. The
forecasting horizon is denoted as FH and varies between +1, +5, +10, +15 and +20
days.
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Figure A.13: Trading performance in terms of Sharpe Ratio (Equation (2.47)),
maximum drawdown (Equation (2.49)) and average recovery for the equally weighted
portfolio consisting of the major stock indices from Germany (DAX30), United
Kingdom (FTSE100) ,US (SP500), France (CAC40), Switzerland (SMI20), Australia
(ASX200), Japan (Nikkei225) and Hong Kong(HS33). Average Recovery is defined
as the mean duration of an equity drawdown period. The feature set has been
selected based on the results from the Recursive Filter Elimination algorithm, which is
described in Section 2.2.2. The wavelet filters are denoted as Daubechies (D) (4,6,8,12),
Least Asymmetric (LA) (8,10,12,14), Best Localized (BL) (14,18,20) and Coiflet (CF)
(6, 12, 18, 24), where the integers in brackets indicate the wavelet filter length. For
the naive method, the time series has not been preprocessed by a wavelet filter. As
a result, the input vector consists of 20 lagged returns. The forecasting horizon is
denoted as FH and varies between +1, +5, +10, +15 and +20 days.
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