technische universitat
dortmund

Faculty of Statistics

Subgroup analyses and investigations of
treatment effect heterogeneity in clinical

dose-finding trials

Marius Thomas

Dissertation

submitted to the Faculty of Statistics at TU Dortmund University in partial fulfilment of the

requirements for the degree Doktor der Naturwissenschaften

Advisors and referees: Prof. Dr. Katja Ickstadt, Dr. Bjorn Bornkamp
Referee: Prof. Dr. Jorg Rahnenfiihrer

Chair of the thesis comitee: Prof. Dr. Guido Knapp

Submitted: 30.11.2018

Date of oral examination: 25.01.2019



Acknowledgements

Many people directly or indirectly supported the work on this thesis and made these three
years an interesting, educational and fun experience for me.

My greatest thanks go to my advisor Bjorn Bornkamp, who gave me great freedom to
pursue my own ideas and whose door was open at all times, when I needed advice. 1
am also very grateful to Katja Ickstadt, who was always available for discussions during
my visits in Dortmund and gave particularly helpful feedback on the Bayesian aspects of
my thesis. Franz Konig and Martin Posch were great hosts during the three months I
spent at the Medical University of Vienna and made my stay a productive and enjoyable
experience. My thanks also go to Heidi Seibold for sharing her expertise on the model-
based recursive partitioning with me, leading to a fruitful collaboration.

I am very grateful to have been a part of the IDEAS network during my PhD, and I would
like to thank the supervisors of the network for creating it and organizing our meetings
together. A special shout-out goes to the other IDEAS students, I have many great
memories from our trips together to summer schools and conferences. I would also like
to thank my colleagues from the Novartis Statistical Methodology Group for creating a
very pleasant atmosphere at work, in particular my office mate Johanna, who was always
able to answer all my questions about deadlines or PhD formalities. I am also grateful to
my friends, the ones in Basel, who were always available for an after work beer, when I
needed it, and the ones in Dortmund, who always made me look forward to coming back.
Finally I would like to thank my family, my parents and Christina, for encouraging me to

take on this challenge and supporting me all the way through.



This dissertation was supported by the Swiss State Secretariat for Education, Research
and Innovation (SERI) under contract number 999754557. The opinions expressed and
arguments employed herein do not necessarily reflect the official views of the Swiss Gov-
ernment. The project is part of the IDEAS European training network from the FEuropean
Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-

Clurie grant agreement No 633567.



List of contributed articles

Thomas, M. and Bornkamp, B. (2017): Comparing approaches to treatment effect estima-
tion for subgroups in early phase clinical trials. Statistics in Biopharmaceutical Research,

9 (2), 160-171

Thomas, M., Bornkamp, B. and Seibold, H. (2018c): Subgroup identification in dose-
finding trials via model-based recursive partitioning. Statistics in Medicine, 37 (10),

1608-1624

Thomas, M., Bornkamp, B. and Ickstadt, K. (2018a): Identifying treatment effect hetero-
geneity in dose-finding trials using Bayesian hierarchical models. submitted for publication.

Preprint: arXiv:1811.10488

Thomas, M., Bornkamp, B., Posch, M. and Konig, F. (2018b): A multiple comparison
procedure for dose-finding trials with subpopulations. submitted for publication. Preprint:

arXiv:1811.09824



Contents

(1__Introductionl 1
2 Subgroup analyses in clinical trials| 5
[2.1  Exploratory subgroup analyses|. . . . . . . ... ... ... ... ... ... 5)
[2.1.1 Standard models and statistical challenges| . . . . . . . .. ... .. 5

[2.1.2  Basic approaches| . . . . . . . ... ... o0 8

2.1.3 Review of the literaturel . . . . . . . ... .. ... ... 10

[2.2  Confirmatory subgroup analyses| . . . . . . .. ... ... ... ... .... 18

[3 Phase Il dose-finding studies| 20
[3.1 General principles|. . . . . . . . ... o 21
[3.2  Dose-response models|. . . . . .. ... oo 0o 23
3.3 MCP-Mod| . . . . . . . 24
O . & . F A I Ies 28
41 Overviewl. . . . . . . . . . e 28
[4.1.1  Treatment effect estimation for subgroups in clinical trials . . . . . 29

[4.1.2  Subgroup identification in dose-finding trials via model-based re- |

cursive partitioning . . . . . . . . ... Lo 32

[4.1.3 Identitying treatment eftect heterogeneity in dose-finding trials us- |

ing Bayesian hierarchical models{. . . . . . ... .. ... ... ... 35

[4.1.4 A multiple comparison procedure for dose-finding trials with sub- |

| populations| . . . . ... ... 38
M2 Discussion and outlookl . . . . . . . ... Lo Lo 41
[References| 45



Chapter 1

Introduction

Over the last 20 years there has been a shift in drug development towards stronger taking
individual differences between patients into account. Genetic and molecular information
for each patient is more easily available than ever and pharmaceutical companies hope
to reduce failure rates in clinical trials by identifying the patients, for which a new drug
is most effective (Woodcock! (2007)). The increased interest in personalized or precision
medicine (see for example |Ginsburg and McCarthy| (2001)); Woodcock| (2007); Hamburg
and Collins (2010)) further drives these changes.

As a result of these trends in medicine and drug development, exploratory subgroup
analyses have become commonplace for many clinical trials. Often such analyses have the
aim of identifying a subgroup of patients with high treatment effects, especially when the
treatment effect in the overall population is insufficient and development would otherwise
be stopped. Alternatively, when the treatment is shown to be effective overall, such
analyses can be used to confirm the consistency of the beneficial treatment effect across
the whole patient population. For these purposes, exploratory analyses are routinely
conducted in addition to the primary analysis of the trial, which is in most cases concerned
with assessing overall efficacy of the treatment. Generally these analyses can however not
be used to rescue failed confirmatory trials. Instead the results can inform design of future
trials, which can for example take the subgroup into account and potentially replicate
the finding. The European Medicines Agency (EMA) discusses possible scenarios and

consequences of subgroup analyses in detail in their draft guideline on the topic (EMA
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(2014).

The subgroup analyses we consider in this thesis are commonly performed for Phase II
and III clinical trials. Phase II clinical trials are usually the first studies in patients. Phase
I studies therefore aim to establish Proof of Concept (PoC), i.e. that the drug shows the
desired effect in patients and is more effective than a placebo. After PoC, dose-finding
trials, in which the efficacy and safety of several doses of the treatment are investigated,
are conducted in this phase. Trials in Phase II are generally small for financial and
ethical reasons and don’t recruit more than a few hundred patients. Phase III trials are
confirmatory trials, that aim to confirm the results from previous exploratory studies and
to show, that the new treatment is efficacious and safe enough to warrant approval and
market release. Phase III trials are generally larger than Phase II trials and often recruit
thousands of patients. While Phase III studies are primarily confirmatory, additional
exploratory analyses, for example investigating treatment effect heterogeneity, might be

conducted.

In this cumulative thesis we develop and investigate statistical tools for identifying and
confirming subgroups in clinical trials. From a statistical perspective, for most clinical
trials we have a clinically relevant response Y and a new treatment 7" and we want to
assess if the treatment has a positive effect on Y. When considering treatment effect het-
erogeneity and possible subgroups, we have to consider the effect of additional covariates
X, which might interact with the treatment 7" and can explain differences in treatment
effects between individual patients. Covariates in X can be binary subgroup variables,
but in this thesis we often consider the original baseline covariates, which are underlying
possible subgroups. Thus X can also include continuous or categorical variables. Broadly
speaking, the problems discussed in this thesis boil down to identifying if treatment ef-
fect heterogeneity exists and which covariates can be used to explain it. Furthermore we

discuss how to define suitable subgroups based on these covariates.

These problems are challenging from a statistical perspective, since the covariate vector X
often has a relatively large dimension. In Phase II trials an additional challenge is the small
sample size. On the one hand, this leads to a high probability of false positive subgroup
identifications, when the resulting multiplicity is not properly taken into account (Pocock

et al.| (2002)). On the other hand, there is a high probability of a false negative, where an
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existing subgroup can not be detected, because of small sample size (Keene and Garrett
(2014)). Further complications arise, since we are focusing on identifying interactions
(with treatment), which makes detection of existing effects even more difficult. In addition
treatment effect heterogeneity might also be caused by covariate-covariate interactions,

which further increases the number of possible subgroups.

In recent years several statistical approaches to these problems have been proposed, em-
ploying for example tree-based recursive partitioning algorithms, which are well-suited for
handling interactions, penalized regression methods, which can be used to prevent overfit-
ting, when explicitly modeling a large number of covariate effects, or Bayesian approaches,
which allow incorporating uncertainty and can be used to make optimal decisions with
regard to subgroups (Lipkovich et al.| (2017)). In confirmatory settings parametric testing
approaches can be used to control the type I error rate, while taking the overlap between

subgroup and the full population into account (Alosh et al| (2017)).

The available literature focuses however on two-arm clinical trials, where patients are
randomized to the experimental treatment or a control (e.g. current standard of care or
placebo). A main contribution of this thesis is the development of statistical methodology
for identification of subgroups in dose-finding trials with more than two arms. Dose-
finding trials play a key role in the drug development process, since they provide valuable
information about the effect of the dose on efficacy and safety. In dose-finding trials
patients are administered several doses of the new drug. Thus, instead of considering
a binary treatment variable 7', as is common in the literature on subgroup analyses, we
consider a dose variable D and explicitly take the relationship between D and the response
Y into account. For identifying subgroups in this setting we consider the treatment effect
to be a function of the dose and then try to identify relevant covariate effects X on
this treatment effect curve. This allows us to not only identify subgroups with higher

treatment effects but also subgroups, which require a different dose of the treatment.

The two chapters following this introduction aim to provide the reader with the necessary
background for the contributed articles, which make up the main part of this thesis.
Chapter 2 focuses on statistical aspects of subgroup analyses for the routinely considered
setting of two-arm clinical trials. The statistical challenges are discussed in detail and

an overview over the available statistical methodology is given. Chapter 3 introduces
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Phase II dose-finding trials and gives an overview over general principles and commonly
used dose-response models. In addition the MCP-Mod methodology for the analysis of
dose-finding trials, originally proposed in Bretz et al.| (2005) is introduced.

In Chapter 4 the four contributed articles are summarized and discussed. The articles
deal with different aspects of subgroup analyses. In Thomas and Bornkamp (2017) we
consider the problem of unbiased treatment effect estimation after a subgroup has been
identified. In Thomas et al.[(2018c|) and [Thomas et al.| (2018al) we focus on subgroup and
treatment effect heterogeneity identification in dose-finding trials. [Thomas et al.| (2018b)
deals with a more confirmatory setting, where a subgroup is prespecified and tests for
a significant dose-response signal are performed under uncertainty about the underlying

dose-response model.



Chapter 2

Subgroup analyses in clinical trials

This chapter serves as an introduction to the statistical aspects of subgroup analyses
and subgroup identification in clinical trials to provide the necessary background for the
contributed articles. The chapter is divided into two main sections. The first deals with
exploratory subgroup analyses, which are the main focus of this thesis. In this Section
the statistical challenges of these analyses are discussed and some possible approaches
are presented, first basic ones in Subsection and then more advanced approaches in
Subsection [2.1.3] which have been proposed in the literature over the recent years. In the
second part of this chapter multiplicity adjustments for confirmatory subgroup analyses

are briefly discussed to provide the necessary background for [Thomas et al.| (2018b)).

2.1 Exploratory subgroup analyses

2.1.1 Standard models and statistical challenges

In the introduction some intuition was already given on the statistical principles and
challenges behind subgroup analyses. In this section these aspects will be discussed in
more detail. First we introduce some general notation. Assume we conduct a clinical trial
for a new treatment, where the clinical response variable is Y and we observe responses

for the n patients in the trial, y1,...,9,. In general Y could be related to efficacy or
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safety of the drug in question, however in the context of subgroup analyses we usually
focus on efficacy. Y can be a continuous, binary, time-to-event or count variable. T is
the treatment variable and we denote by t; the treatment indicator for patient ¢. In this
Section we assume, that there are two arms in the clinical trial, one that receives the new
treatment (patients with ¢; = 1) and one that receives a control (patients with ¢; = 0), for
example the current standard of care or a placebo. Such clinical trial designs are common
in Phase II Proof of Concept trials and many Phase III trials. Trials with more than two

arms and multiple doses of the same treatment will be discussed in Chapter [3]

In the context of subgroup analyses and investigations of treatment effect heterogeneity,
baseline covariates X = (XU ... X®)" play an important role. Such covariates can
for example be demographic, clinical, or genetic. These covariates are measured for each
patient at baseline, before any treatment has been given. The dimension k of the covariate
vector can range from 5-30 for the scenarios we consider in this thesis. For each patient
(1) (k))/.

we then have an observed vector of covariates, x; = (z; T

i g oo i

Defining f(x,t) = E(Y|X = x,T = t) as the expected response of a patient with
covariate vector of & and assigned to treatment ¢, we can generally write this mean

response as (Lipkovich et al.| (2017)))
F(X,T) = g(W(X) +1(2(X)T)), (2.1)

where g and [ are monotone functions, h describes the baseline response without treatment
and z describes the treatment effect. This model is very general and encompasses a large
range of models for different types of outcomes. For time-to-event data, where generally
one is interested in survival times and count data, where rates are of main interest,
covariate effects would however be modeled on the hazard function or rates, instead of
the expected response. In the case of a continuous response, which we consider in most

of this thesis we can simplify the model and write
f(X,T)=h(X)+ 2(X)T.
If 2(X) = ¢, where ¢ is some constant, there is no treatment effect heterogeneity.

Based on model (2.1]), a distinction between two types of covariates can be made. Covari-

ates, that contribute to h(X) are called prognostic and influence the baseline response,
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independent of the given treatment. Covariates, that contribute to z(X) are called predic-

tive and interact with the treatment (Oldenhuis et al|(2008)). Covariates can naturally

also be both, prognostic and predictive. These different types of covariate effects are visu-
alized in Figure 2.1} In the context of subgroup analyses predictive covariates are of main
interest, since they have an influence on treatment effects. Based on predictive covariates,
subgroups of patients with increased treatment effects can be defined as a subset of the

covariate space.

no covariate effect prognostic covariate effect

predictive covariate effect prognostic + predictive covariate effect

response Y

covariate X

Figure 2.1: Different types of covariate effects. The difference between the two lines is

the treatment effect, which is only altered by predictive covariates.

For example, a simple rule for defining a subgroup could be S = {X|z(X) > v}, where
v is a relevant threshold on the treatment effect. When z is a complex function, such a
subgroup definition could however depend on a large number covariates. This means, that
for a new patient, all covariates have to be measured to determine if the patient belongs
to the subgroup, which can often be impractical. Therefore simpler subgroup definitions
are often used, for example by finding a suitable cut-off ¢ on a continuous covariate and

defining S = {X™ > ¢}, so that the subgroup definition is univariate.

In practice, instead of using the raw baseline covariates for the exploratory analyses, a
set of candidate subgroups will often be considered. These candidate subgroups are com-
monly derived from baseline covariates, for example by using quantiles of the empirical

distribution of the covariate as cut-offs. Alternatively cut-offs can be specified based on
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k") is then obtained, where

clinical considerations. A set of subgroup variables S, ... S(
generally k* > k, since multiple cut-offs could possibly be considered for each covariate.
The aim of the analysis would then be to find a promising subgroup among this predefined
set. Considering only a set of candidate subgroups can simplify the analysis, since the
underlying covariates can then be ignored, however dichotomization of continuous covari-

ates will generally lead to a loss of information and is often criticized (Weinberg (1995));

Royston et al.| (2006)).

From a statistical perspective subgroup analyses in the settings described above are chal-
lenging. Multiplicity is commonly considered to be one of the major challenges of sub-
group analyses (Lagakos (2006); Wang et al.| (2007); Ruberg and Shen| (2015)). Multi-
plicity arises firstly through the large number of possible predictive covariates and is then
amplified by multiple possible combinations of covariates and also multiple cut-offs for
continuous covariates. If multiplicity is ignored, there is a high chance for false positive
findings, which could then lead to failures in later trials. Obtaining reliable treatment
effect estimates is a related issue, since unadjusted treatment effect estimates in selected
subgroups will generally suffer from selection bias and confidence intervals will not ac-
count for the uncertainty with regard to the selection procedure (Rosenkranz (2016))). In
addition sample sizes in clinical trials are primarily chosen based on power considerations
for treatment effects in the whole population. Statistical tests to detect possible sub-
groups focus on interactions (with treatment), and generally have low power, because of

the lower sample sizes in subgroups and the often comparably small differences between

subgroups (Wang and Ware| (2013)).

2.1.2 Basic approaches

Before giving an overview over the methods proposed in the literature, we will go over some
basic approaches to subgroup analyses and subgroup identification, which are commonly
employed in practice. We will discuss the shortcomings of these approaches to further
illustrate the challenges of subgroup analyses and to provide some motivation for the use

of more advanced approaches.

In practice, many exploratory subgroup analyses are conducted using univariate subgroup
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models, where for each candidate subgroup a separate model is fit to the data. For
example, for a continuous response Y and assuming a standard linear model, £* models can
be fit to the data using standard Maximum-Likelihood estimation (MLE), with conditional

mean modeled as
E(Y|SD T) = B+ 1S9 + (By + BsSNT, j=1,... k" (2.2)

Then for each model an interaction test for the null hypothesis f3 = 0 is performed.
A naive subgroup identification strategy chooses either all subgroups, where the p-value
for the interaction test is below some threshold a (for example o = 0.1) or chooses the

subgroup with the lowest p-value.

It’s easy to see, that such an approach suffers from the issues with subgroup analyses
described above. Multiplicity is not properly taken into account and the chance for false
positive findings is rapidly increasing with k£*. While standard multiplicity adjustments
such as Bonferroni (Dunn| (1961)) could be used to adjust for the number of tests, the
resulting critical values would require extreme evidence for a subgroup to pass the thresh-
old, if k£* is reasonably large. It is then almost impossible to detect an existing subgroup,
because of small sample sizes and the low power of interactions tests. In addition unad-
justed treatment effect estimates for the most promising subgroup from the above models

will be strongly biased upwards.

One issue with the univariate models above is that only one covariate or subgroup is
considered at a time. Thus there is no adjustment for (prognostic or predictive) effects
of other covariates and possible interactions between covariates are ignored. As a simple

alternative a multivariate linear model including all candidate covariates,
k k
E(Y|X.T)=fo+ Y B XD+ (B + > s, XN, (2.3)
j=1 j=1

could be considered. However such a model would be highly prone to overfitting (Hawkins
(2004)) for the considered settings, where n is relatively small and & can be large. These
tendencies to overfit would be further increased, when interactions between covariates
would be included. In addition to the overfitting problems, interaction tests for single

covariates would have greatly reduced power.

Regression trees (Breiman| (2017))) and similar tree-based approaches, like random forests

9
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(Breiman| (2001))), intuitively seem like a good approach to the problem, since they par-
tition the overall data-set into subgroups, in which different models are adequate. Com-
pared to the univariate and multivariate models described above, they are good at han-
dling interactions between covariates and also find suitable cut-offs for continuous covari-
ates. Fitting a regression tree with Y as the outcome and (X,7) as predictors returns
however subgroups with differential outcomes, while of main interest would be subgroups
with differential treatment effects. The regression tree does not distinguish between prog-
nostic and predictive covariates, since both would affect the outcome Y. Here we are
however particularly interested in identifying covariates as predictive and the distinc-
tion between prognostic and predictive effects is therefore of great importance. While
tree-based approaches can find interactions between covariates and treatment, as well as
covariate-covariate interactions, a subgroup identified with a simple regression tree does

not necessarily indicate heterogeneous treatment effects.

The basic approaches discussed here are therefore not sufficient for the problems at hand
and can only be used as a starting point for further analyses with more advanced methods.
In the following an overview over such methods, which have been proposed in the literature

in recent years will be provided.

2.1.3 Review of the literature

This section provides an overview over the recent literature on subgroup analyses. This
overview is split into three parts, one for each of the main approaches used, recursive
partitioning, penalized regression and Bayesian approaches. The literature on the topic
is extensive, therefore a complete review of all relevant publications in this field would
be beyond the scope of this thesis. We will therefore focus on the most important con-
tributions, illustrating the main ideas of each. For extensive reviews of the literature on

subgroup analyses see Ondra et al.| (2016) or Lipkovich et al.| (2017)).

Recursive partitioning A large number of approaches proposed in the literature can
be classified as recursive partitioning methods. In the context of subgroup analyses re-

cursive partitioning methods use tree-based algorithms to detect optimal splits over the

10
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available baseline covariates, resulting in subgroups with differential treatment effects.
The final output of such methods is commonly a tree, in which each terminal node rep-
resents a subgroup and the splitting rules of the tree determine the subgroup definitions.
An example of such a tree output is also shown in Chapter [4] in Figure 1.2l Recursive
partitioning approaches are well suited to the problems discussed in this thesis, since they
are good at handling interaction through the tree structure, and are usually flexible with
regards to the underlying model (Ruberg and Shen (2015))). In addition the tree outputs
are easily interpretable. In comparison to the simple regression tree procedure described
in the previous section, the following methods focus on the function determining the treat-
ment effect, z(X) in model , to partition the patients based on predictive covariates
and obtain subgroups with differences in treatment effects instead of the overall outcome.
To prevent overfitting and to reduce the number of false positives, many of the approaches
described below use pruning or stopping criteria to control the size of the final tree or
the number of identified subgroups. Many of the approaches also use bootstrapping or
similar resampling techniques to obtain adjusted treatment effect estimates or p-values
in identified subgroups. In addition variable importance measures are often provided to

rank the predictive covariates.

The interaction tree (IT) method (Su et al.| (2009)) was one of the first approaches using
recursive partitioning for subgroup identification. The IT algorithm is based on the
CART algorithm (Breiman (2017))), however instead of splitting based on differences in
the outcome Y, I'T uses a splitting criterion, which is based on interaction tests in models
similar to The optimal split is chosen by maximizing the interaction test statistic
over all covariates and over all possible splits for each covariate. This guarantees that only
predictive covariates, which contribute to z(X), are used for splitting. Similar to CART,
the method uses pruning to control the complexity of the tree and prevent overfitting.

Variable importance measures are provided.

Virtual Twins (Foster et al.| (2011)) is a two step procedure, which combines random
forests and regression trees. In the first step random forests are used to make a prediction
for the missing outcome of each patient, i.e. the potential outcome under control is
predicted for patients on the treatment arm and the potential outcome under treatment

is predicted for patients on the control arm, using the available covariates as predictors.

11
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With these predictions estimates of the individual treatment effect for each patient can
be obtained. These are then used as outcomes in a regression tree, which again uses
the covariates as predictors. This way a regression tree can be fit directly on individual
treatment effects and can essentially be used to model z(X), ignoring the prognostic terms
of model . To provide reliable treatment effect estimates in identified subgroups

resampling methods are used.

SIDES (Lipkovich et al.| (2011); Lipkovich and Dmitrienko (2014]))) is a recursive algorithm,
which searches for promising subgroups. Compared to the methods described above,
SIDES does not try to model z(X) over the whole covariate space and instead focuses
on regions of the covariate space, where treatment effects are large. To identify these
regions the authors provide several possible splitting criteria to find the best covariates
and the best splits on each level of the recursion. These splitting criteria for example
maximize the differences in treatment effect between a subgroup and a complement or
simply maximize the treatment effect in one of the subgroups. Based on these criteria,
SIDES then retains the M most promising subgroups, where M is a tuning parameter
of the algorithm. Only in these subgroups with large treatment effects the algorithm
continues with the next step of the recursion and the complements of these subgroups,
which generally will have small treatment effects, will be ignored. The algorithm continues
until the improvement in the splitting criterion becomes negligible. For each candidate
subgroup the algorithm produces an adjusted p-value using a permutation approach.

Additionally variable importance measures are provided to identify predictive covariates.

GUIDE (Loh|(2002)) is a general regression tree algorithm like CART, which was extended
to subgroup identification in [Loh et al. (2015)). In contrast to traditional regression tree
approaches like CART, which find the optimal split over all possible cut-offs for all co-
variates, GUIDE separates the selection of covariate and cut-off. This avoids a bias for
selecting variables with more possible splits, which would, for example, lead to continu-
ous covariates (n — 1 possible cut-offs) being selected more often than binary covariates
(1 possible cut-off). For the purpose of subgroup identification, GUIDE first calculates
lack-of-fit test statistics for univariate models with only the prognostic effect of each co-
variate and the treatment effect, without any interactions of treatment and covariate. If a

covariate is truly predictive (e.g. interacting with the treatment) it is expected, that the

12
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lack-of-fit statistics will be large for this covariate. Therefore the covariate, which maxi-
mizes this lack-of-fit test statistics is chosen for the split. The optimal cut-off for the split
is then selected, so that the residual sum of squares in the two resulting daughter nodes
are minimized. To provide adjusted treatment effect estimates in subgroups a bootstrap

procedure is used.

Model-based recursive partitioning (MOB) (Zeileis et al.| (2008); Seibold et al.| (2016))) is
a recursive partitioning algorithm, which tries to detect parameter instabilities to iden-
tify predictive (and prognostic) covariates. The idea behind this approach is similar to
GUIDE, in that essentially lack-of-fit in models without covariate effects is evaluated. As
the name suggests, MOB is however model-based and allows fitting a wide range of para-
metric models in each node of the tree. The test statistics used to detect covariate effects
are based on these parametric models and tend to be more powerful than the tests used
by GUIDE (Seibold et al| (2016)). Similar to GUIDE, MOB also separates selection of
covariate and cut-off to avoid the aforementioned bias for selecting covariates with more
possible splits. MOB fits a parametric model without covariate effects in each node of
the tree. Then tests on the score function, the first derivative of the objective function of
the model (for example negative log-likelihood or residual sum of squares) are employed
to determine, if the scores fluctuate randomly around zero or if the scores depend on
covariates. The covariate which maximizes the test statistics is chosen for the split. An
optimal cut-off is determined by minimizing the objective function in the two resulting
daughter nodes. To control the complexity of the tree, the p-value corresponding to the
best covariate, which can be adjusted for multiplicity using a Bonferroni correction, has
to be below a prespecified significance level « for a split to occur. An extension of MOB

for dose-finding trials is presented in [Thomas et al.| (2018c).

Huang et al.| (2017) investigate the use of bootstrapping and aggregating of thresholds from
trees (BATTing) (McKeegan et al. (2015))) for subgroup identification. The proposed
approaches are similar to SIDES, in that they only consider interesting regions of the
covariate space. The algorithm sequentially builds a subgroup definition by adding the
covariates and corresponding cut-offs, which maximize the score test statistics for the
interaction terms between subgroup and treatment. To find the optimal cut-off for each

covariate BATTing is used: Bootstrap samples are drawn from the data and for each

13
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bootstrap sample the optimal cut-off (maximizing the score tests statistics) for each co-
variate is obtained. Then for each covariate the average cut-off over all bootstrap samples
is chosen to determine, which split is included in the subgroup definition. Through BAT-
Ting, variance introduced through the choice of the cut-off is reduced. Similar to MOB
and GUIDFE this also removes the bias for covariates with more possible splits, since for
each covariate only one split is considered in the final ranking. The authors propose the

use of cross-validation to obtain adjusted p-values for the resulting subgroup.

Penalized Regression As discussed in Section [2.1.2] we could assume linear func-
tions of the covariates for h and z in and estimate a model as using standard
maximum-likelihood estimation. When sample sizes are however comparatively low, as in
the settings considered in this thesis, and the dimension of the covariate vector k is large,
this quickly becomes infeasible, since overfitting will occur for models with too many pa-
rameters. Penalized regression methods deal with this problem through regularization of
coefficients and add penalty terms to the objective function of the model. A standard pe-
nalized regression method is lasso regression (Tibshirani (1996))), which uses the absolute
size of coefficients in the penalty terms. In a Bayesian setting penalized regression can
be achieved through shrinkage priors, which put more prior mass on values close to zero.
Examples for such priors are for example the Bayesian lasso (Park and Casella (2008)))
or the horseshoe (Carvalho et al.| (2010)). Bayesian penalized regression for subgroup

analyses is also considered in Thomas et al.| (2018a).

Penalized regression methods are an attractive tool in the context of subgroup analyses,
since they generally lead to sparse models, in which only few covariates interact with the
treatment. Compared to the recursive partitioning methods discussed in the previous
section they generally require stronger parametric assumptions (for example linearity of
covariate effects and no interactions between covariates) but provide a model for the out-
come and the treatment effect, on which further inferences can be based. While recursive
partitioning methods generally provide subgroup definitions directly, penalized regression
approaches often define subgroups based on individual treatment effect estimates, using
subgroup definitions of the form S = {X|z(X) > v}, where v is some threshold. Some

examples of penalized regression approaches used in the context of subgroup analyses are
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provided below.

Imai et al. (2013 propose an approach for binary outcomes using a Support Vector
Machine (SVM) to estimate model . The authors propose lasso penalization on
the prognostic effects 511, ..., f1x and predictive effects b31, ..., B3, with different lasso
penalty parameters. The obtained model can be used to obtain individual treatment

effect estimates for each patient, based on which subgroups can be identified.

A modified outcome approach is presented in Tian et al. (2014) and combined with lasso
regression to obtain individual treatment effects. For a continuous outcome Y and assum-
ing equal randomization to treatment and control the authors propose using the modified
outcome Y* = 2YT™*, where T* = 2T — 1 is a modified treatment variable. Then, instead
of fitting model (2.3)) a model, where E(Y*| X = x) = f; + i Bsx X ®) is used, so that
prognostic covariate effects don’t have to be estimated. Tian]; al| (2014) provide justi-

fications for this approach and extend it to different types of outcomes. As [Imai et al.

(2013) they use lasso regression to obtain estimates for the coefficients 831, .. ., B3.-

Ghosh et al.| (2015) propose an approach for identifying subgroups with heterogeneous
treatment effects, which is similar to Virtual Twins by [Foster et al.| (2011). As for Virtual
Twins, in the first step random forests are used to predict the missing outcome for each
patient, which is then used to obtain individual treatment effect estimates. In the second
step lasso regression is employed to model z(X) and select relevant covariates. As a
further extension the authors argue, that the first step can essentially be considered as
imputation of a missing value. Instead of performing a single imputation, the extension
uses multiple imputations to take into account uncertainty in the prediction: Imputed
values are drawn from a normal distribution with the random forest prediction as the
mean and the average mean squared error of the random forest as the variance. Therefore
multiple sets of individual treatment effect estimates are obtained. For the second step
the authors then propose Lasso regression for the average individual treatment effects

over these datasets or fit separate lasso regressions for each imputed dataset.

Bayesian approaches Bayesian approaches are used in the context of subgroup analy-

ses to shrink subgroup effects through hierarchical modeling. This can prevent overfitting
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and reduce false positive identifications of subgroups. This makes them conceptually sim-
ilar to the penalized regression methods discussed above, however the methods discussed
in the following do not fit multivariate models for the underlying covariates as in
but rather consider binary subgroup variables. In addition Bayesian decision-theoretic
approaches have been proposed to provide complex decision rules, which apart from the
treatment effect size also take the size of the subgroup or the complexity of the subgroup

definition into account, when deciding on an optimal subgroup.

Jones et al.| (2011]) propose a Bayesian hierarchical model for modeling treatment effects in
non-overlapping subgroups defined by binary covariates. The approach extends an earlier
Bayesian model for subgroup analysis by Dixon and Simon| (1991)). |[Dixon and Simon
(1991) proposed modeling the treatment effect in each subgroup as a linear function of
the binary covariates with only main effects of each covariates. |Jones et al.| (2011) extend
this approach to also include two-way and three-way interactions between covariates.
Shrinkage is induced through priors, which assume covariate main effects are drawn from
prior distributions with the same variance components and similarly two-way and three-
way interactions are also drawn from the same prior. The model can be applied to
different types of outcome, however only to binary covariates. In addition this approach
is only feasible for a small number of covariates (Jones et al. (2011) consider three), since
treatment effects are explicitly modeled in each possible subgroup. For larger number of
covariates the number of non-overlapping subgroups quickly becomes very large and as a

result the number of patients in each is very small.

Bayesian model averaging is proposed for subgroup identification in [Berger et al.| (2014).
In the context of model averaging each candidate subgroup can be considered to corre-
spond to a model. [Berger et al| (2014) consider binary covariates and consider separate
models for prognostic and predictive effects of covariates. They use linear models, in
which up to one of the covariates is prognostic, and up to one is predictive and include
all possible combinations of prognostic and predictive covariates in their model space. In
addition null models, where the treatment effect is zero or the treatment effect is the
same for all patients are included in the model space. Appropriate choices of prior model
probabilities to adjust for multiplicity are discussed. The approach then provides poste-

rior model probabilities for each model, as well as several quantities of interest related to
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patients’ individual treatment effects and to treatment effects in subgroups.

A Bayesian model averaging approach is also considered in Bornkamp et al.| (2017). How-
ever the focus for this paper lies on treatment effect estimation in prespecified subgroups.
The authors argue, that subgroup selection can be seen as model selection. Following
this line of thought, unadjusted treatment effect estimates in selected subgroups do not
properly account for model uncertainty and thus suffer from a selection bias. Model aver-
aging is proposed to take model uncertainty into account and obtain adjusted treatment
effect estimates in subgroups. For each subgroup a corresponding univariate model of
type is included in the model space. Additionally a null model with no treatment ef-
fect heterogeneity can be included. The model averaging approach is then used to obtain
treatment effect estimates and credible intervals for candidate subgroups with reduced
selection bias. This model averaging approach is compared to other possible treatment

effect estimation methods for subgroups in [Thomas and Bornkamp]| (2017)).

A Bayesian decision-theoretic approach to identify the best subgroup from a set of can-
didate subgroups was proposed by [Sivaganesan et al. (2017)). The proposed approach is
divided into two steps. First MCMC samples from the posterior predictive distribution of
the individual treatment effect for each patient are obtained from a Bayesian regression
tree (BART) (Chipman et al.|(2010)). A utility function, which depends on the treatment
effect in the subgroup, the size of the subgroup and the number of covariates included
in the subgroup definition is proposed. The best subgroup is then found by maximizing
posterior expected utility over the set of candidate subgroups, using the MCMC samples
of the individual treatment effects. The candidate set for this approach always includes

an empty subgroup to allow for not identifying any subgroups.

A very similar decision-theoretic approach, termed Bayesian population finding (BaPoF%i),
is presented in |Morita and Muller| (2017). This approach explicitly considers the situation
of a Phase II trial and poses the decision problem at the end of Phase II in a Bayesian
framework. The approach tries to optimize utility over a set of possible decisions: the
development for the treatment is stopped (no-go decision) or continued (go decision) with
Phase III trials in the entire population, only in a subgroup (identified from a set of

candidate subgroups) or in the entire population and the subgroup.
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2.2 Confirmatory subgroup analyses

The previous sections in this chapter were concerned with exploratory subgroup analyses,
where the main aim is commonly the identification of a subgroup with an increased
treatment effect. If a potential subgroup is identified as a consequence of such an analysis,
it typically needs to be confirmed in a later trial. Depending on the size of the treatment
effect in the subgroup and the overall treatment effect, several different trial designs with
subgroups are possible. If the treatment is shown to be effective only in the subgroup the
trial might only be conducted in this subgroup. Alternatively the trial might investigate
the subgroup in addition to the overall population. Enrichment trial designs, in which
patients from the subgroup are recruited at a higher rate are possible as well. Possible
designs for trials with subgroups are for example discussed in Ondra et al. (2016) and

Dmitrienko et al.| (2016).

In confirmatory clinical trials with subgroups multiplicity issues arise, when tests for
efficacy are performed in the subgroup and the full population. In such trials there are
generally two main null hypotheses of interest: H(()F), the null hypothesis of no treatment
effect in the full population and H((]S), the null hypothesis of no treatment effect in the
subpopulation. Let Zr and Zg then denote the corresponding test statistics. From the
sponsor’s perspective the trial will often be successful, if one of these null hypotheses
can be rejected. The aim of multiplicity adjustments in confirmatory clinical trials is
to control the family-wise error rate (FWER), i.e. the probability to reject at least one
true null hypothesis at a nominal level . The multiplicity adjustments discussed in
the following provide FWER control in the strong sense. This means, that they control
the aforementioned probability under all combinations of false and true null hypotheses.
Weak FWER control on the other hand would only control the probability to reject at

least one true null hypothesis under the global null hypothesis HO(F) N Hés).

Simple nonparametric multiplicity adjustments, as for example the Bonferroni-Holm pro-
cedure (Holm| (1979))), control FWER in this setting are however unnecessarily conserva-
tive by not taking all available information into account. Semiparametric procedures are
a more powerful alternative, for example Hochberg (Hochberg (1988)) or Hommel proce-

dures (Hommel (1988)). These semiparametric methods make some assumptions about
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the test statistics’ distributions, namely that test statistics are non-negatively correlated.
When tests are performed in subgroup and full population, where one population is a sub-
set of the other, this assumption obviously holds. While these approaches will therefore
guarantee FWER control, they will generally still be conservative for tests in subgroup

and full population, which are positively correlated.

Parametric procedures, which explicitly take the correlation between Zp and Zg into ac-
count have more power to reject a false null hypothesis. A simple parametric procedure
can be constructed by using the joint distribution of Zr and Zg under the null hypoth-
esis. A critical value for the testing procedure can be obtained by finding ¢, for which
Py, (Zp > cor Zg > ¢) = «, or equivalently Py, (Zr < ¢,Zs < ¢) = 1 — «, assuming
that large values of the test statistics will lead to rejections of the null hypotheses. Since
Py, (Zp > cor Zg > ¢) = Pg,(max{Zp, Zs} > c) such tests are also known as mazimum
tests. As this procedure uses the exact joint distribution under the null hypothesis, it
exactly controls the FWER and is more powerful than the other procedures described
above, which make only vague assumptions about the test statistics’ distributions. An
example of a parametric testing procedure used in clinical trials is the Dunnett test for
comparing multiple treatments to the same control (Dunnett (1955))). MCP-Mod (Bretz
et al. (2005)), which is introduced in Chapter [3|of this thesis, also makes use of parametric
procedures. In Thomas et al. (2018b)) we derive an extended testing procedure based on

MCP-Mod, which uses a parametric test for dose-response signals in multiple populations.

Further extensions of parametric tests, which will not be discussed in detail here, make use
of sequential testing procedures (Alosh and Huque (2009)) or graphical testing approaches
(Bretz et al.| (2011))).
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Chapter 3

Phase 1I dose-finding studies

Dose-finding is an essential component of drug development. The term dose-finding study
is often used to refer to both Phase I and Phase II studies, which investigate several doses
of the same treatment. However Phase I and Phase II studies are very different with
regard to their design and their objectives. Phase I dose-finding studies are usually the
first trials in humans. Commonly, the main aim is the estimation of a mazimum tolerated
dose (MTD), below which no severe side effects are expected to occur. Phase I trials
(outside the area of oncology) are typically conducted in healthy volunteers, therefore

efficacy cannot be assessed in these trials.

Phase II dose-finding studies are usually run after a proof-of-concept has been achieved
in patients, i.e. an early phase efficacy trial was positive. Phase II trials usually have two
main objectives (Bornkamp| (2017)): Firstly, to investigate general efficacy of the drug to
determine if development should continue into Phase III. Secondly, to decide on a dose for
a potential Phase III trial, which is both efficacious and safe. Phase II dose-finding trials
commonly focus on efficacy instead of safety, since safety-related events are rare for most
treatments and hard to model reliably. Instead Phase II dose-finding trials are designed
to estimate the efficacy dose-response curve and assume, that toxicity of the drug and
related safety-events will increase monotonically with the dose. From a safety standpoint
the dose is therefore best chosen as low as possible. The optimal dose for Phase III is
thus often the lowest dose, which provides close to maximum efficacy or efficacy beyond

a clinically relevant threshold.
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The articles related to dose-finding trials, which are part of this thesis, are considering
Phase II dose-finding trials. Thus, when we talk about dose-finding trials from here on,
we are referring to Phase II trials. For more information on Phase I trials, see for example
the relevant chapters in Ting| (2006 or O’Quigley et al. (2017). To provide the necessary
background for the articles on dose-finding a brief overview over statistical aspects of
dose-finding trials and commonly used models will be provided in this chapter, following
Bornkamp| (2017). Additionally the MCP-Mod methodology for the analysis of dose-
finding trials is introduced, which was originally proposed in Bretz et al.| (2005) and an

extension of which is presented in Thomas et al. (2018b).

3.1 General principles

In Phase II dose-finding trials patients are randomized to different doses dj, ..., d; of an
investigational treatment, where the first dose is commonly a placebo, so that di = 0.
Typically the number of doses is between 4-7. To illustrate common methods for the
statistical analysis of dose-finding trials a continuous normally distributed clinical response
of interest Y is assumed in the following. These types of analyses are however not limited
to continuous response variables and can be applied to other outcomes as well. A general

model for a normally distributed response of each patient can be specified as

Vi = u(d5,0) +eij, e X N(0,0%), i=1,....t,j=1,...,n;, (3.1)
where n; is the number of patients on dose level df and p(d;,0) describes the mean
response at dose d; for some parameter vector 8. Possible models for p will be discussed
in Section . Most dose-response profiles follow monotonic, plateauing shapes (Thomas
et al. (2014)), as for example depicted in Figure and the treatment effect pu(d) — u(0)

will generally approach a maximum, commonly denoted as E,,.., as the dose increases.

In dose-finding trials a main quantity of interest is often the dose, for which a specific
treatment effect is achieved. The dose for which a treatment effect of p% of E,,.. is
achieved for p € [0,100] is denoted by ED,. EDsy and E Dy, which are frequently used
in practice, are depicted in Figure [3.1] An alternative dose of interest is the target dose

(TD), which is the minimum dose for which a target treatment effect is achieved. If the

21



CHAPTER 3. PHASE II DOSE-FINDING STUDIES

target is the minimum clinically relevant treatment effect, the term minimum effective
dose (MED) is commonly used. Which of these doses is used as the dose for a possible
Phase I1I trial, depends on the investigated treatment and the related efficacy and safety

considerations.

response

ED90

dose

Figure 3.1: EDsy and E Dy, for an E,,,, model.

While the design of dose-finding trials is not a focus of this thesis, it is worth noting, that
the choice of the active dose levels d, . .., d} is crucial to guarantee, that the dose-response
curve can be adequately estimated. Ideally the investigated doses should include doses,
which lie on the ascending part of the dose-response curves, as well as doses which lie on
the plateau of the curve. If, for example, the first dose is already on the plateau, then it
is unclear if a lower dose could maybe provide the same treatment effect at a lower safety
risk. On the other hand, if the plateau is not reached at the highest dose in the trial,
E,... can not be estimated. For an extensive discussion on optimal designs of Phase II

dose-finding trials see |Pinheiro and Bornkamp, (2017)).
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3.2 Dose-response models

One of the most common models for dose-response relationships is the F,,,, model, for
which the mean dose response from is
d
u(d,0) = Ey + Emaxm-

Here Ej represents the response in the placebo group and h is the so called hill parameter,
which controls the steepness of the curve. EDj5q and E,,.. were already introduced in
the previous section. The special case of h = 1 is sometimes called the hyperbolic E,,q.
model. Possible F,,,, shapes are depicted in Figure 3.2l The FE,,,, model is frequently
used, since it can be derived from underlying pharmacological principles (Kallén| (2007))), is

easily interpretable and has been shown to be an appropriate model for the dose-response

relationship of a large number of drugs (Thomas et al.| (2014)).

ED50=10 ED50=20 ED50=40

h
0.5

— ]

response

5

dose

Figure 3.2: E,,.. shapes for different £ D5 and hill parameters h. The E,,,, parameter
is fixed for all depicted shapes.

Still, there might be situations in which other models are more appropriate. For example,
when the MTD, which determines the upper limit of the possible dose range, lies below the
plateau of the dose-response curve, there is no way to estimate the whole dose-response
curve. In such situations simpler models can be adequate, for example exponential or
linear models. In addition FE,,,, models only allow for monotonous dose-response rela-

tionships. Non-monotonous (e.g. quadratic) dose-response could occur, when large doses
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lead to increased safety issues, which could then have a negative effect on efficacy as
well. Table gives an overview over common dose-response models. Possible non F,,,.-

models are depicted in Figure [3.3]

The above parametric models can be fit in a frequentist framework using least-squares
methods, as for example in the DoseFinding package for R (Bornkamp et al. (2013)). Al-
ternatively, Bayesian estimation is possible and has for example been discussed in [T homas
(2006) and Bornkamp| (2014)). Non-parametric dose-response models have been consid-
ered in [Bornkamp and Ickstadt| (2009). Complete nonparametric estimation is however
considered difficult, because of usually low number of doses combined with high variability
of the response (Bornkamp)| (2017))). MCP-Mod, which is introduced in the next section,
relaxes the assumptions of parametric models, by taking model uncertainty into account

and allowing different parametric dose-response models.

exponential power linear
o J / /
(2]
c
§ linear logdose quadratic Beta
| / /\
dose

Figure 3.3: Non-FE,,,, dose-response models (see also Table .

3.3 MCP-Mod

MCP-Mod is a method for the analysis of Phase II dose-finding studies. It was first
proposed by Bretz et al. (2005) for normally distributed endpoints and has since been
extended to general parametric models in [Pinheiro et al.|(2014). Further details regarding

design and analysis were also discussed in [Pinheiro et al. (2006). Xun and Bretz (2017)
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is a recent book chapter on the method, which discusses many practical aspects.

MCP-Mod combines multiple comparison techniques with dose-response modeling in a
two-step procedure. The main objective of the method is to establish a significant dose-
response signal and provide an estimate for the recommended dose for a possible Phase
IIT trial, while accounting for possible uncertainty with regard to the underlying dose-
response model. Often there is not a lot of information about the shape of the dose-
response before the trial, which makes it sensible to allow for some flexibility with regard

to the dose-response model, which will be fit to the data.

MCP-Mod derives its name from the two steps, which make up the method. The first
part of the method is the multiple comparison procedure (MCP) step, in which a set
of possible candidate dose-response models is considered and tests for a significant dose-
response signal are performed for each of those candidate models. In the second part
of the method, the Mod step, the best candidate model from the MCP step is used to
estimate the dose-response curve. Alternatively all significant models can be combined

via model averaging.

To explain the method in detail we will again use the basic model , which assumes
a normally distributed clinical response. As mentioned above, MCP-Mod has also been
extended to other types of outcomes in Pinheiro et al.| (2014]). For the MCP step a set of
Z candidate dose response models for the mean response p(d, @) is considered, which can

generally be written as

f(d, ) =0y +0,°(d, 6%,

where f°(d, 0°) is the standardized model for f(d, ). Commonly considered dose-response

models with their standardized forms are summarized in Table [3.1]

Linear contrast tests are used to test for a dose-response signal. A single contrast test
tests the null hypothesis of no dose-response signal Hy : ¢ g = 0 versus the alternative of
a positive dose-response trend, H; : ¢ pu > 0, where ¢ = (c1y. .-, ct)/ is a vector of contrast
coefficients with i ¢i =0, and p = (ju1,..., ) is the vector of mean responses at the
dose levels in thé:tlrial. Contrast tests are preferable over simple pairwise comparisons

between each dose and placebo, since they take the underlying dose-response relationship

into account and combine information across all doses. For a mean response vector pu,
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Model £(d, ) £9(d, 6°)
Hyperbolic Ey s | Eo + Emaed/(EDso + d) d/(EDsy + d)
Sigmoid Epae | Eo + Evaed"/(ED + d") d" /(EDL, + d*)
Exponential Eo+ Ey -exp(d/d) —1 exp(d/d) —1
Power Ey+ Ed* d”

Linear Ey+dd d

Linear logdose | Ey + dlog(d + ¢) log(d + ¢)
Quadratic Eo + Bid + Bod? d+ (B2/|61])d?
Beta Eo + EpmaeB(61,00)(6/D)% (1 — d/D)% | (§/D)* (1 — d/ D)

Table 3.1: Common dose response-models and their standardized form (from Xun and

Bretz] (2017)). Here B(dy,05) = (8, + 85)% 102 /(59692).

resulting from an assumed underlying dose-response shape, Bretz et al.| (2005) show, that

contrast coefficients with optimal power for the single contrast tests are proportional to

¢ =ni(u; — @), fori=1,...t,
t t
where o = > n;u;/ > n;. A unique solution is given after normalization as ¢/||c]]|.
i=1 i=1
Since the main idea of MCP-Mod is to take model uncertainty into account, instead of
performing just a single contrast test, contrast tests are performed for all Z candidate
models simultaneously. From each candidate model m = 1,...,Z a resulting mean re-
sponse vector ty, = (fm1,-- -, fme) can be obtained, which can then be used to derive
optimal contrast coefficients under this dose-response shape. The optimal contrast coef-
ficients provided above are invariant to any change in shift or scale of the mean response
vectors, so that the standardized models f° are sufficient for deriving optimal coefficients.
For the parameter vector 8° guesses have to be made, based on prior knowledge. Using

these guesstimates, optimal contrast vectors ¢, = (¢, - - - cmk)' for each of the candidate

models can be derived.

(m)
1

For each candidate model m a test of Hém) : c;n,u = 0versus H; " : c;nu > () is performed

using test statistics of the form
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where ¥y = (41,...,%) is the vector of observed means at the dose levels and S? =
t

t n;
S5 (yi; — 9:)?/ (3. n; — t) is the pooled variance estimator. Univariately, each of these
i=1j=1 i=1
¢
test statistics follows a t-distribution with >  n; — ¢ degrees of freedom under the null
i=1

hypothesis.

When performing multiple contrast tests, multiplicity has to be taken into account. MCP-
Mod uses the joint distribution of the Z test statistics and takes into account correlations
between the tests. Under the global null hypothesis Hy: Hél) n-- -ﬂHéZ) the test statistics

t
Ti,...,T7 jointly follow a multivariate ¢-distribution with > n; — ¢ degrees of freedom
i=1

and a correlation matrix, which depends on the sample sizes on each dose level and the

contrast coeflicients.

The joint distribution can then be used to obtain a multiplicity-adjusted critical value
¢1—o for a given «, so that Py (Thee < ¢1-a) = Pao(T1 < 1—0as -, 172 < q1-a) = 1 — q,
where T,0. = max, Ty I Thae > qi_o, a significant dose-response signal has been
established and the null hypothesis can be rejected. Generally, all candidate shapes for
which T, > q1_, can then be declared as significant. This multiple comparison procedure
guarantees control of the family-wise error rate (FWER), e.g. the probability to falsely

reject at least one true null hypothesis is controlled at significance level a.

If a significant dose-response signal could be established in the MCP step the method
continues to the Mod step. Several possible options for modeling dose-response are avail-
able. A single dose-response model out of the set of significant candidate models could
be used. This can either be the model with the largest test statistic or the model with
the best fit according to a model selection criterion like AIC. Model averaging over all
selected models is another alternative. Based on the resulting dose-response curve, a dose
for a possible Phase III trial can then be chosen, for example by estimating one of the

doses described in Section B.11
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Overview and discussion of

contributed articles

4.1 Overview

The four contributed articles, that form the main part of this cumulative thesis, deal with

different aspects of subgroup analyses.

In Thomas and Bornkamp (2017) we consider the problem of treatment effect estimation
in subgroups in the two-arm trial setting. As discussed in Chapter [2] treatment effect
estimates in selected subgroups often suffer from selection bias. We discuss several ways
to obtain adjusted treatment effect estimates with reduced bias and compare them in
an extensive simulation study. Our results show, that several of the considered meth-
ods provide treatment effect estimates with strongly reduced selection bias and provide

confidence intervals, which give close to nominal coverage.

In Thomas et al.| (2018c) and Thomas et al.| (2018a]) we propose approaches for identifica-
tion of subgroups and treatment effect heterogeneity in dose-finding trials. While a large
number of methods have been proposed for subgroup identification in the literature (see
Chapter , they generally target two-arm trials. The setting of dose-finding trials is quite
different, since underlying dose-response relationships have to be considered and the used

models are often non-linear (see Chapter |3]), so that methods for two-arm trials can not
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be easily transferred to dose-finding settings. The first approach, proposed in [Thomas
et al| (2018c), is based on the model- based recursive partitioning algorithm by Zeileis
et al.| (2008), which was briefly discussed in Section in Chapter 2l The algorithm
tries to detect covariate effects on the parameters of dose-response models. The proposed
approach produces a tree of subgroups, in each of which a separate dose-response model is
fit. As an alternative approach, in [Thomas et al.| (2018a]) we consider Bayesian hierarchi-
cal models using shrinkage priors to model covariate effects on dose-response parameters.
This approach is conceptually similar to penalized regression approaches proposed for

two-arm trials, which were introduced in Chapter

Thomas et al| (2018b) again considers subgroup analyses in a dose-finding setting, but
considers a more confirmatory situation. Here we assume, that a subgroup has been
identified before the start of the trial and we want to test for a significant dose-response
signal in multiple populations, for example in the subgroup and the full population. In a
confirmatory setting the aim is usually to control the family-wise error rate, the probability
to reject at least one true null hypothesis, at the desired a-level. For this purpose we
extend the MCP-Mod Methodology method, which was introduced in Chapter [3], to trials

with multiple populations.

In the following we provide a short synopsis for each article, in which we highlight the

main contributions.

4.1.1 Treatment effect estimation for subgroups in clinical trials

Contributed material
Thomas, M. and Bornkamp, B. (2017): Comparing approaches to treatment effect estima-
tion for subgroups in early phase clinical trials. Statistics in Biopharmaceutical Research,

9 (2), 160-171

As discussed in Section in Chapter [2| subgroups are in practice often analyzed using
univariate models of type (2.2)) and by testing for significant interaction terms in these
models. A common identification strategy is to fit such models for all subgroups and

check for significant p-values among all interactions without properly taking multiplicity
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into account. Subgroups with significant p-values are then investigated further. When
subgroups are identified with this procedure, treatment effect estimates in the identified
subgroups will suffer from selection bias, especially if the total number of considered
subgroups was large. Such naive estimates can therefore lead to over-optimism with
regard to the subgroup finding. Since the size of the treatment effect is essential to
determine, if the subgroup is clinically relevant, it is important to obtain an adjusted

estimate, that does not suffer from selection bias.

In [Thomas and Bornkamp) (2017) we specifically focus on the issue of obtaining an ad-
justed treatment effect estimate after subgroup selection. We consider several proposed
estimators for treatment effects in subgroups from the literature and perform an extensive
simulation study to investigate their ability to reduce the bias, their mean squared error
(MSE) and also coverage of confidence intervals. We consider a large number of scenarios
with varying sample size, number of subgroups, effect sizes in the subgroup and functional

forms for the underlying covariate effects.

In total, we compare five adjusted estimators, which can be divided into three main
approaches, model averaging, resampling and penalized regression. The main ideas behind

these approaches are provided in the following.

1. Model averaging (ma): Bayesian model averaging for treatment effect estimation
in subgroups was proposed in |[Bornkamp et al.| (2017), motivated by an earlier paper
by Berger et al.| (2014). When univariate subgroups model are used, each subgroup
has its own model and subgroup selection can essentially be considered as a model
selection procedure. The ma-estimator aims to provide an adjusted treatment effect
estimate in the selected subgroup, which takes model uncertainty of this selection
procedure into account. Instead of using a naive estimate for the identified subgroup,
which is obtained using just the model for that subgroup, treatment effect estimates
are obtained under all considered models. The ma-estimator is then given by a
weighted average of estimates under all considered models, with weights determined
by the posterior model probabilities. The resulting estimate reflects how strong
the evidence for the identified subgroup is. If the model for the selected subgroup

has a high posterior model probability the final estimate will be close to the naive
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estimate. On the other hand, if posterior model probabilities are spread across
several models, the final estimate will be shrunken towards the overall treatment

effect.

. Resampling: A second class of estimators uses resampling methods, motivated by
Sun and Bull (2005)), which used resampling approaches to adjust for selection bias
in genome-wide association studies. The main idea of these approaches is to perform
subgroup identification and treatment effect estimation on separate datasets. The
approaches use bootstrapping to create these two datasets. Bootstrap samples are
obtained by drawing a sample of size n with replacement from the original dataset.
In total B bootstrap samples are generated and for each bootstrap sample the sub-
group identification procedure is repeated. Treatment effect estimates for these
subgroups are then obtained in the corresponding out-of-bag sample, which consists
of all patients, which did not end up in the bootstrap sample. The difference be-
tween the size of the treatment effect in the bootstrap sample and in the out-of-bag
sample selection can be used to gain information about the amount of selection bias
introduced through the identification procedure. Three adjusted estimators based

on resampling are compared in the simulation study:

(a) 7632, the 0.652-estimator first proposed in [Efron| (1983).

(b) rsbias, which subtracts the selection bias averaged over the bootstrap samples

from the original naive estimate.

(¢) rsma, which is similar to the model averaging approach and in each bootstrap
sample estimates the treatment effect for the selected subgroup using the best

model for that bootstrap sample (selected via BIC).

. Penalized regression: An estimator based on lasso regression (Tibshirani (1996)))
is included as well. For this estimator a multivariate model, as model in Sec-
tion is fit to the data, using lasso penalties on covariate effects. A treatment
effect estimate for the selected subgroup can be obtained by averaging all individual
treatment effect predictions for patients in the subgroup obtained from this model.
In contrast to the other treatment effect estimators described above, the lasso esti-
mator explicitly models the effect of the underlying baseline covariates (instead of

dichotomizing them into subgroups).
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For all considered estimators above confidence intervals are provided in the paper.

Based on our simulation study the model averaging estimator, and two of the resampling
estimators (rs632 and rsma) show good performance. These three estimators all have
close to zero biases over all considered scenarios. Similarly, MSE is strongly reduced
compared to naive estimates and confidence intervals generally have close to nominal
coverage. On the other hand, the lasso estimator and rshias are both overly conservative
and generally over-adjust in scenarios with existing subgroups, which leads to negatively

biased estimates.

4.1.2 Subgroup identification in dose-finding trials via model-

based recursive partitioning

Contributed material
Thomas, M., Bornkamp, B. and Seibold, H. (2018c): Subgroup identification in dose-
finding trials via model-based recursive partitioning. Statistics in Medicine, 37 (10),

1608-1624

In Section in Chapter [2] an overview over the recent literature on subgroup identifica-
tion was provided. While the literature on the topic is quite extensive, almost all proposed
approaches focus on clinical trials with two arms, where patients are administered either
one dose of the new treatment or a control. The exploratory subgroup analyses consid-
ered in this thesis are commonly performed in Phase II, where also dose-finding studies
take place. However subgroup identification for dose-finding trials has, to our knowledge,
previously not been considered in the literature. Subgroup identification approaches de-
signed for two-arm trials can generally not be directly transferred to settings with multiple
doses, since they do not account for the underlying dose-response relationship. In addition
many dose-response models are non-linear (see Section , which provides an additional

challenge.

In Thomas et al.| (2018c|) we transfer the subgroup identification problem to dose-finding
trials and propose a possible approach to identify subgroups in this setting. We combine

the subgroup models described in Section in Chapter [2 with the dose-response models
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presented in Chapter |3 and use dose-response models, in which the parameters of the
model can depend on covariates. We consider F,,,, models of the form

dh

w(d, 0) = Eg(X) + Enae(X) EDso(X)" + d»’

(4.1)

focusing however on the special case for h = 1 (the hyperbolic E,,,, model), since sigmoid
E,... model proved to be hard to fit with the tree-based approach we consider in this paper.
Using the terminology introduced in Section [2.1) we can consider covariates with effects
on Fj to be prognostic, while covariates with effects on F,,,, or ED5q can be considered to

dh

be predictive, since they lead to differential treatment effect curves E,,q.(X )m.

As for subgroup identification in two-arm trials, we are mostly interested in identifying

predictive covariates.

While subgroup analyses for two-arm trials are generally only concerned with efficacy
of the treatment and aim to identify subgroups with large treatment effects, in dose-
finding trials we are additionally interested in dose estimation. Therefore, instead of
only considering subgroups with increased treatment effects (e.g. with higher E,,.,) we
could also aim at identifying subgroups of patients, which require different doses of the
treatment. Figure visualizes the two scenarios, where subgroups have different F,,,,
or different F D5, leading to subgroups with differences in maximum treatment effects or
with differences in the steepness of the dose-response curve. If we estimate target doses

in the latter scenario, these could possibly differ greatly between the three subgroups.

response

dose dose

Figure 4.1: Exemplary dose-response shapes in three subgroups S1-S3. A shows subgroups
with different F,,.., B shows subgroups of with different F Dsx.
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In this paper we propose to use model-based recursive partitioning (MOB) for subgroup
identification in dose-finding trials. Model-based recursive partitioning was first introduced
in Zeileis et al. (2008) and was applied to subgroup identification in two-arm trials in
Seibold et al.| (2016). The method belongs to the class of recursive partitioning algorithms
discussed in Section and shares the advantages of these approaches, namely ability
to deal with interactions, model non-linearities and additionally good interpretability. In
contrast to other recursive partitioning methods, which are mostly non-parametric, MOB
is in addition, as the name suggests, model-based. This makes it a particular attractive
approach in the dose-finding situations, because it allows us to use dose-response models
in the recursive partitioning algorithm, so that we can model covariate effects on the
dose-response parameters as in model . MOB has previously only been applied to
generalized non-linear models and investigating the feasibility of this approach for non-

linear dose-response models is a key contribution of the article.

MOB’s algorithm, in the configuration that we propose for subgroup identification, tries to
identify covariate effects on the model parameters by testing for parameter instabilities of
the dose-response parameters E,,., or EDsy. Formally, the hypotheses of independence
between the partial scores and the covariates are tested. The partial score function is

the first partial derivative of the objective function, for example ¥, . ((y,d,x), ) =

OV ((y,d,z),P)

T~ is the partial score function for FE,,,., where ¢ is the parameter vector of the

dose-response model and W is the model’s objective function (for example the residual

sum-of-squares for normally distributed data). The algorithm tests the null hypotheses
H(g%p) 1¢p((y7d>ﬂ3),§0) il x(j)v ] = 17"-7k7 pe {EmaxyEDE)O}-

The intersection of these null hypotheses is the global null of no parameter instability. The
hypotheses are tested using M-fluctuation tests, which aim to detect structural changes in
the scores (see Zeileis et al.| (2008)) and Zeileis and Hornik| (2007) for details). To control
for multiplicity, Bonferroni corrections are used. If covariate effects are detected using
this approach the data is partitioned into two subgroups. This procedure is recursively
repeated, until a stopping criterion is reached. The final output is a tree, with separate

dose-response parameter estimates in each node of the tree, an example is shown in Figure

E2

In simulation studies the performance of the proposed approach is assessed. In these
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x.1
=0.001

<-0015 >-0015

{2}
n=130
Estimated parameters:
e0 1.2307
eMax 0.2359
ed50 29.9412

hY
=-0.0861 = —0.061
{a] {5}
n=63 n=57
Estimated parameters: Estimated parameters
e0 1.21140 e01.2413
eMax-0.01546 eMax 0.1447
ed50 32.40841 ed50 23.1001

Figure 4.2: Example output for the MOB approach with FE,,,, models.

studies MOB shows good performance with regard to subgroup identification and selec-
tion of predictive covariates. We also consider linear models (for example splines) as an
alternative to the non-linear F,,,, models, however FE,,,, models show good performance
in all scenarios and there seems to be no benefit, when using linear models. In addition to
the simulation studies we also apply the proposed method to a real Phase II dose-finding

trial to illustrate its use in practice.

4.1.3 Identifying treatment effect heterogeneity in dose-finding

trials using Bayesian hierarchical models

Contributed material
Thomas, M., Bornkamp, B. and Ickstadt, K. (2018a): Identifying treatment effect hetero-
geneity in dose-finding trials using Bayesian hierarchical models. submitted for publication.

Preprint: arXiv:1811.10488

In Thomas et al. (2018¢]), which was discussed in the previous section, we introduced sub-

group analyses in the context of dose-finding trials and presented model-based recursive
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partitioning as a possible approach to identify subgroups in dose-finding settings. In this
article we propose an alternative approach, which is partially motivated by similar penal-
ized regression approaches proposed in the subgroup analyses literature for two-arm trials.
As in the previous section, one of the key contributions of this article is the extension of

such methods to the dose-finding setting.

The recursive partitioning approach we proposed for subgroup identification in dose-
finding trials in Thomas et al. (2018c), which was described in Section is easily
interpretable, straightforward to use and is generally a good approach to identify rele-
vant predictive covariates as well as subgroups. However, the dose-response models in
the trees are fit separately in each terminal node, without borrowing information across
subgroups or taking the uncertainty over the whole identification procedure into account.
Thus dose-response models obtained from the resulting trees often have small precision,
since only the patients in the subgroup are used. While recursive partitioning is suitable,
when the main aim of the analysis is to identify subgroups, it might not be optimal, when
one is also interested in estimating dose-response curves in the subgroups, for example to

estimate target doses (see Chapter [3).

In Thomas et al.| (2018a)) we propose an alternative approach using Bayesian hierarchical
dose-response models, which is able to identify relevant predictive covariates and sub-
groups as MOB but with improved dose-response estimation. We achieve this by fitting a
single hierarchical dose-response model, which estimates underlying covariate effects and
allows borrowing of information across possible subgroups. We propose shrinkage priors
on covariate effects to prevent issues with overfitting, which are likely to occur, when
multivariate models with many covariates are considered (see also Section in Chap-
ter . In addition we also incorporate dependencies between prognostic and predictive

effects in our model.
For this article we consider sigmoid E,,,, models (see Table in Chapter [3)) with linear
covariate effects of the form

By = ap, + Bz + - + gra®
Emax — &Emg,g; + ﬁylx(l) + P + r)/kx(k) (42)

log(EDso) = apps, + S 4 5k:v(k).
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We choose flat priors for ag,, ag,,,. and o and functional uniform priors (see |Bornkamp
(2014)) for details) for the non-linear parameters agp., and h. If flat priors would also be
chosen for the covariate effects 3, and &, overfitting would be likely to occur. To avoid
this we propose using shrinkage priors, such as the horseshoe (Carvalho et al|(2010)). In
the proposed model, covariate effects on each of the dose-response models have horsehoe
priors

B; ~ N(O,#Af’”oﬂ)z), j=1,....,k

v~ N, 7P ok (4.3)

5~ N(O,72APD%) =1,k
The prior variance for each of the coefficients is a mixture of a local component \ and
a global component 7. A priori )\5-’) "9 and )\ép red) follow positively bounded Cauchy
(C*(0,1))-distributions and determine how strongly the prognostic and predictive effect
of a covariate is shrunken to zero. The global components 73, 7., 75 determine the overall
amount of shrinkage. The priors for these global components determine how many co-
variates can be expected to have non-zero effects a priori. The choice of priors for these
parameters is specific to each analysis and should take the total number of considered

covariates into account. In the paper we give some guidance on the choice of these priors.

The mixture of local and global components allows the horseshoe to clearly separate
spurious covariate effects, which are strongly shrunken to zero, from large effects, which
can escape the shrinkage through the local components. As a result, horseshoe priors have
shown good performance in a number of scenarios and often outperform other common
shrinkage priors, like the Bayesian lasso or the spike-and-slab (Carvalho et al. (2010);
Polson and Scott| (2010)). For our model we compare horseshoe priors to spike-and-slab
priors in a simulation study. The results suggest, that horseshoe priors give a more

consistent performance over the scenarios we consider.

An additional key aspect of our model is the incorporation of dependencies between
prognostic and predictive effects. There are some arguments, why this model specification
might be preferable to completely independent priors. First, from a modeling perspective,
increasing the probability of prognostic and predictive effects occuring together, helps to
clearly distinguish prognostic and predictive effects and avoids possible bias in the size of

the predictive effect. Second, from a biological perspective, a covariate, which has already
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been identified as predictive, could be considered more likely to be prognostic as well.

For this purpose, as an alternative to independent C*(0, 1)-priors for the local shrinkage
components proposed previously, we also consider alternative dependent priors, which
make it more likely to include a covariate as prognostic, when it is already included
as predictive. We choose priors such that marginal probabilities to include predictive
coefficients are unaffected. We achieve this by using modified priors for the local shrinkage

components of the horseshoe in (4.3)),
(%) + -
AT~ C7(0,1), j=1,...k
(pred) + -
A ~CT0,1), j=1,...,k
(prog) _ (*) y (pred) .
A =maz(\;", A7), J=1,.. 0k
With these priors prognostic effects are not shrunken more than predictive effects. In our

simulation studies the model with dependent priors outperforms the independent prior

model in most scenarios.

We compare the proposed Bayesian hierachical modeling approach to the recursive par-
titioning approach from [Thomas et al|(2018c) in simulation studies. In most considered
scenarios the Bayesian approach shows similar performance with regard to subgroup iden-
tification and identification of predictive covariates as MOB. However, the estimation of
individual dose-response curves is much improved compared to mob. In Section the

differences between the two methods are discussed in greater detail.

4.1.4 A multiple comparison procedure for dose-finding trials

with subpopulations

Contributed material
Thomas, M., Bornkamp, B., Posch, M. and Koénig, F. (2018b): A multiple comparison
procedure for dose-finding trials with subpopulations. submitted for publication. Preprint:

arXiv:1811.09824

The methods presented in the previous sections deal with exploratory subgroup analyses,
where the focus generally lies on identifying a promising subgroup from a large set of

candidate subgroups or based on a large number of baseline covariates. In Thomas et al.
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(2018b) we consider a different situation, where knowledge about a possible subgroup
exists ahead of a clinical trial. If this trial is a dose-finding trial it might be of interest
to perform tests for a significant dose-response signal in both the subgroup and the full
population. Such a scenario leads to issues of multiplicity, which have to be taken into

account.

In Chapter (3l MCP-Mod (Bretz et al. (2005)); Pinheiro et al. (2014)) was introduced as
a methodology for the analyses of dose-finding trials. MCP-Mod consists of two steps,
the MCP step, which focuses on establishing a significant dose-response signal and the
Mod step, which fits a dose-response model for dose-estimation if a significant signal
has been established in the MCP step. As discussed in Section 3.3, MCP-Mod performs
contrast tests for several possible candidate dose-response models and aims to establish a

dose-response signal for at least one of the candidate models.

In Thomas et al.| (2018b)) we extend the MCP part of MCP-Mod to settings, where dose-
response signals are tested in multiple populations, for example in the full population
and a subgroup. With the presented extension it is then possible to test for a dose-
response signal in multiple populations, while controlling family-wise error rate over the
whole testing procedure. As the standard MCP-Mod, the proposed extension uses the
joint distribution of test statistics to take the correlation between tests in subgroup and
full population into account. The approach therefore falls under the class of parametric

approaches to control multiplicity, which were introduced in Section in Chapter 2]

In the following we briefly summarize the proposed extension using a similar notation as in
Section [3.3], however we introduce population indices to refer to the different populations.
We consider a situation, where a subgroup S is prespecified and denote the complement

of this subgroup as C. In addition we consider the full population F' = S U C.

For each candidate model m and each population P a contrast test of H(()P’m) Cm pP) =0

against the alternative Hl(P’m) : e P > 0 is performed, where u®) is the vector of

mean responses in population P. We define the population null hypothesis (in P) as

7" M A H?,

the intersection of the null hypotheses for all Z candidate models in population P. The
global null hypothesis is then the intersection between the population null hypotheses,
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in all tested populations. For example for the full testing strategy, which includes both

subgroup and complement, as well as the full population, the global null hypothesis is
H - H 0 Y 0 HE.

While rejecting the global null is of main interest, the population hypotheses have to be
considered to determine if a dose-response trend has been established in all populations

or, for example, only in a subgroup.

The test statistics for Hép’m) vs H fp’m) are contrast tests of the form

'y (P)
m) Y
TP = (Cm) m=1,....7: P=F.S,C.
t
\/ (6)2 3 /i
i=1
Here Y = (371(P), e ,YQ(P)), is the vector of estimated dose means and ) is an

estimator of the standard deviation in population P.

With our extension we are not only testing for multiple possible candidate shapes, but
also in multiple populations. We still want to control the family-wise error rate (FWER),

H{") " at the nominal level of o. Similar to the

i.e. the probability to falsely reject
standard MCP-Mod we use a parametric approach to control for multiplicity. We consider
here a full testing strategy, for which tests are performed in all populations, e.g. in F,
S and C, as the most complete case. Simpler testing strategies with tests only in F
and S can easily be derived from the formulas below. For the full testing strategy and
assuming normally distributed data and homoscedasticity across populations the vector

of test statistics

T

"= (ijfl), . ,TJEfZ), Tﬁ), .. ,ijfz), Tﬁﬁ), o ,T]Efz)) follows a multivariate ¢-distribution

k

with > (> nl(-P) — k) degrees of freedom, mean vector 0 and correlation matrix R. The
PeV i=1

correlation matrix has the form

Rrr Rrs Rrc
R=|R,; Rss Rsc
R;rc R,SC’ Rco
Each of the 9 submatrices is of dimension Z x Z and includes the correlations between

the contrast tests in the corresponding populations. The correlations depend on the

considered candidate models and the overlap between the populations. Based on this
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exact joint distribution critical values can be provided, using the approach outlined in

Section [3.3] which guarantees FWER-control for this testing procedure.

In heteroscedastic scenarios, where variances in subgroup and complement differ, the ex-
act joint distribution cannot be obtained, since the degrees of freedom for each single test
statistic depend on the population and thus the tests statistic no longer jointly follow a
multivariate t-distribution. For large sample sizes multivariate normal distributions can
be used as an approximation, however for small sample sizes this will lead to a liberal
testing procedure with inflation of the FWER. We investigate an alternative approxi-
mation to the joint distributions, originally proposed by Hasler| (2014). We show, that
this approximation controls the FWER for our testing procedure at the nominal level

for very small sample sizes, where the multivariate normal approximation leads to large

FWER-inflation.

In a simulation study we investigate the power of our multi-population testing procedure
compared to the standard MCP-Mod, which only considers a single population (the full
population F). Depending on the prevalence of the subgroup and the difference in treat-
ment effect sizes, as well as variances, between subgroup and complement, the proposed

multi-population test can greatly increase power over the standard MCP-Mod.

4.2 Discussion and outlook

The four articles summarized above focus on different aspects, that are related to subgroup

analyses in clinical trials.

In|Thomas and Bornkamp| (2017)) (Section[4.1.1]) we focus on treatment effect estimation in
subgroups after a subgroup has been identified. In addition we consider two-arm trials and
not dose-finding trials as in the other articles in this thesis. However, there is some overlap
with the methods used in [Thomas et al| (20184) (Section [1.1.3)), for example we consider
treatment effect estimation based on penalized regression in the form of lasso regression,
while in [Thomas et al. (2018a) a Bayesian penalized regression approach is proposed.
The concept of shrinkage is also common to both articles: The model averaging approach

we consider in Section Thomas and Bornkamp| (2017), which shows great performance
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in the simulation studies, shrinks effects in subgroups to the overall treatment effect by
averaging over univariate models for different possible subgroups. In similar fashion, the
horseshoe priors we use in Thomas et al. (2018a) shrink the effects of covariates on dose-
response parameters to zero. This then leads to shrinkage towards the overall average
for the specific dose-response parameter. In both cases, there needs to be a strong signal
to prevent shrinkage, either in the form of a very large treatment effect (relative to the

overall effect) in a subgroup or a very large covariate effect on the dose-response curve.

Several extensions of the work described in [Thomas and Bornkamp| (2017)) are possible.
We specifically focused on simple subgroup identification strategies based on interaction
p-values, however it could be interesting to also consider more complex identification
strategies, for example using one of the approaches described in Section in Chapter
2l While several resampling approaches were already considered in the simulation study,
the recent method by [Rosenkranz| (2016) is based on a similar idea, but uses a different
estimator for treatment effects in subgroups. This new method could be included as an
additional competitor in the simulation study.

As an alternative to the lasso estimator, which did not perform well in the simulation
study, one could also consider a Bayesian penalized regression approach, using for example
horseshoe priors as in[Thomas et al.| (2018a)). The horseshoe shows good performance with
regard to treatment effect estimation in the dose-response scenario, it could therefore also

be a promising alternative for two-arm trials.

The main contribution of [Thomas et al.| (2018¢|) (Section and [Thomas et al.| (2018a))
(Section is the development of methods for subgroup identification for dose-finding
trials. While many methods have been proposed in the context of two-arm clinical trials
(see Chapter, to our knowledge no other articles currently exist, which specifically target
the dose-finding setting. The methods we propose in these papers take the underlying
dose-response relationship into account and can be used with non-linear models, which
are commonly used to model dose-response. In addition they can handle the challenges
of subgroup analyses, and prevent high false positive rates and overfitting, either through

explicit multiplicity adjustments or by using shrinkage or variable selection priors.

The two approaches are conceptually quite different. M OB, starting off from a model with

no covariate effects, recursively detects covariate effects through an algorithm, resulting
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in a tree, while the Bayesian hierarchical model (abbreviated as BHM from here on)
explicitly models effects of all covariates, but shrinks most of them to zero. Apart from
differences in the methodology used, there are also further dissimilarities in the produced
outputs and the amount of input required from users. A detailed discussion of these
differences, as well as resulting advantages and disadvantages of the two approaches, is

provided below.

For BHM we use a sigmoid FE,,,, model, MOB however uses a hyperbolic F,,,, model,
i.e. the special case of a sigmoid F,,,, model with h = 1 (see Table in Chapter (3)).
BHM can therefore fit a larger range of dose-response shapes. Extensions to sigmoid
E, ... models were considered for MOB, however estimating the additional parameter
proved difficult, when sample sizes in subgroups became too small. In addition we noticed
increased rates of false positive identifications. However it is worth noting that the spline
models investigated in Thomas et al.| (2018c) should be a reasonable alternative, when

the hyperbolic E,,,, model does not provide a good fit.

The MOB-algorithm is available in the partykit package for R (Hothorn and Zeileis
(2015)), however only for generalized linear models. Custom fitting functions can be de-
fined for non-standard models. We provide an F,,,, fitting function for MOB in Thomas
et al.| (2018c)). MOB’s output is a tree of subgroups with separate dose-response models
in each, which is easily interpretable. However as mentioned previously, the dose-response
modeling is performed separately in each of the found subgroups. This leads to reduced
precision due to lower sample sizes. In addition confidence intervals will generally not

take the uncertainty over the whole search procedure into account.

BHM on the other hand requires more input from the user. The use of Bayesian models
makes it necessary to use MCMC sampling tools, as for example Stan (Carpenter et al.
(2017)) or JAGS (Plummer| (2017)). Additional input is required with regard to hyper-
parameter distributions for the shrinkage priors, for which we provide some guidance in
Thomas et al| (2018a). There is however a reward for the additional work, since the
output of BHM is much richer than for MOB and provides posterior distributions for
individual parameters of the dose-response model and individual treatment effect curves,
which allow for much more detailed statements about uncertainty. Relevant predictive

(and prognostic) covariates can be identified and while the method does not directly
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suggest promising subgroups as MOB, some possible strategies to identify subgroups are

outlined in Thomas et al. (2018al).

Summarizing, MOB’s main advantages are, that it is possibly easier to use and allows for
non-linearities and interactions. It is therefore particularly suitable for a quick search for
possible subgroups. BHM requires more time for setting up and is more complex, however
it provides a much richer output, which provides more information for decision-making.
It is therefore more suitable for a detailed analysis, possibly after a first analysis with

MOB suggested, that there might be subgroups with differential dose-response.

As an avenue for further research on MOB, one could consider using a forest instead
of just a single tree. Similar to random forests (Breiman (2001)), which average over
multiple regression trees on bootstrapped datasets, one could consider bagging multiple
MOB trees to reduce variance in treatment effect estimates in subgroups. While such
an approach could possibly be used to close the gap to BHM in terms of estimation of

individual treatment curves, it would reduce interpretability.

As a possible extension for BHM non-linear functions of the covariates could be con-
sidered. For example basis function expansions, like splines, could be used to allow for
non-linearities. Incorporating such non-linearities and possibly also (selected) covariate-
covariate interactions in Bayesian models with shrinkage priors is however not straight-
forward and would require further investigation. In addition it might be of interest to
further investigate possible subgroup identification strategies based on BHM. Some strate-
gies are suggested in Thomas et al. (2018a), but it might be useful to compare operating

characteristics in a simulation study.

While the other articles in this thesis focus on exploratory subgroup analyses, Thomas
et al. (2018b) (Section considers a more confirmatory setting. An approach like
the one we outline in this paper would often be the next step after a possible subgroup
was identified in a previous trial, for example using one of the tools we discuss in [Thomas

et al.| (2018c) and [Thomas et al. (2018a).

In the contributed article we focus on the MCP step of MCP-Mod to develop a testing
strategy to control FWER over tests for all candidate shapes and in all populations.

We do not extend the Mod step, in which one or multiple dose-response models are fit
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and used for dose estimation. A natural extension would therefore be an incorporation
of the Mod step, which is however not straightforward. First of all different candidate
models could be significant in different populations. In addition it is unclear how the
subgroup should be incorporated in the dose-response model. For example dose-response
models could be fit only in the subgroup or subgroup effects could be modeled on the
dose-response parameters. Model averaging could be considered to take several different
dose-response models with and without subgroups into account, using a similar approach
as the one proposed in Bornkamp et al,| (2017) and utilized in [Thomas and Bornkamp

(2017).
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