
Meta-Model Based Generation of

Domain-Specific Modeling Tools

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Michael Lybecait

Dortmund

2019

ii

Tag der mündlichen Prüfung:
12. März 2019

Dekan:
Prof. Dr.-Ing. Gernot A. Fink

Gutachter:
Prof. Dr. Bernhard Steffen
Prof. Dr. Sven Jörges

Acknowledgements

It is always important to acknowledge the people who you owe your achievements to.
First and foremost I would like to thank Bernhard Steffen for being my supervisor of
this dissertation. His top-down approach to problems, irrelevant if interrelated to my
dissertation or not, always helped when I was running the risk of getting caught up into
minor details. I also want to thank him for helping to make our work at his chair at TU
Dortmund University as pleasant as possible.

Furthermore I want to thank Sven Jörges for being the second referee of my dissertation.
I would also like to thank Heinrich Müller and Günter Rudolph for being part of my doctoral
committee.

Without Stefan Naujokat I certainly would never had the idea to write my dissertation
in the first place. I would like to thank him for being my supervisor of my diploma-thesis
and all the fruitful discussions that spawned many of Cinco’s features. I would also like
to thank Dawid Kopetzki for being my office mate and for the continuing efforts he puts
into the Cinco project. Speaking of Cinco, I would like to thank everyone who has
contributed to the Cinco project over the years being it through final exams, as part of
their daily work or otherwise, too numerous to name them all.

Last but not least I would like to thank my family, my parents Brigitte and Wolfgang
and my brother Daniel, for lending me all the needed support through the years, and for
comforting my nervousness in the final days of writing this dissertation.

iii

iv

Abstract

Today software development often depends on the communication between different share-
holders with various professional backgrounds. Domain specific languages (DSL) aim to
close the semantic gap between these shareholders by providing a common method for
communication. When using meta-tooling suites or language workbenches it is quiet easy
to create DSLs for small scenarios or even for single use. But with the more frequent use
of DSLs the need for domain-specific tooling has also risen.

This dissertation deals with the challenges of creating domain-specific modeling tools
using high-level specification languages via code generation. It focuses on three important
elements of domain-specific tool generation such as: specification languages, the tool gener-
ation process and the generation of domain-specific APIs, for amplifying the development
of plug-ins for the generated tool, which are the main contributions of this dissertation.

The first main contribution focuses on the formalization of the specification languages.
It is illustrated by detailing the three specification languages of the Cinco meta-tooling
suite. The second main contribution introduces the product generation process, which
is used to create domain-specific modeling tools from the high-level domain specific lan-
guages, defined in the first contribution. The approach is illustrated by the Cinco product
generation process (CPGP), which defines the necessary steps to produce a standalone
modeling tool in the Cinco meta-tooling suite. The third main contribution of this disser-
tation is the generation of a domain-specific API based on the same high-level descriptions
used for the product generation. It uses information present at generation time to cre-
ate specific operations that are useful for transformations on graph-models (such as typed
successor/predecessor or containment relationships). Therefore the API generation of any
product is generated during the execution of the CPGP. The API makes it easy to develop
any extensions for the Cinco product due to its domain-specific nature and the ability to
resemble user actions in the generated editors.

v

vi

Contents

List of Figures viii

Listings ix

1 Introduction 1

1.1 My Contribution . 2

1.2 Context of Attached Publications . 3

1.3 Nomenclature . 4

1.4 Organization of this Dissertation . 5

2 Background 7

2.1 Domain-Specific Languages . 7

2.2 Eclipse . 8

2.2.1 EMF . 8

2.2.2 Xtext . 8

2.2.3 Graphiti . 9

2.3 Code Generation . 9

2.3.1 Template-Based Code Generation . 10

2.3.2 Model-Driven Code Generation Approaches 10

3 Cinco 13

3.1 The Meta Graph Language . 14

3.1.1 MGL Types . 14

3.1.2 Annotations . 22

3.2 The Meta Style Language . 22

3.2.1 Appearances . 23

3.2.2 Styles . 23

3.3 The Cinco Product Definition . 25

vii

viii CONTENTS

4 Cinco Product Generation 29
4.1 Resource Aggregation . 30
4.2 Abstract Syntax Generation . 31
4.3 Cinco API Generation . 33

4.3.1 Containment Constraints . 33
4.3.2 Connection Constraints . 35

4.4 Concrete Syntax and Editor Generation . 36
4.5 Cinco Product Configuration . 38

4.5.1 CPD meta plug-ins . 38
4.5.2 Product and Feature Project . 38

5 Conclusions and Future Work 39
5.1 Improving the Reuse of Model Elements . 39
5.2 Using Model-Driven Code Generation for the CPGP 40

A Large Figures and Listings 51

B Attached Papers 57

List of Figures

3.1 Overview of relevant Artifacts (reprinted from [NLKS17]) 13
3.2 Class hierarchy of the MGL types . 15
3.3 Example of Containment Constraint Inheritance 19
3.4 Example of Connection Constraint Inheritance 21
3.5 Example of two rounded rectangle styled nodes connected with a dotted

arrow . 24
3.6 Interaction between MGL, MSL and CPD 26

4.1 Overview of the Cinco Product Generation Process 29
4.2 Model types and inter-model dependencies in Dime [BFK+16] (reprinted

from [NLKS17]) . 31
4.3 Example for generated Class Structure . 33
4.4 Effect on getContainer/getModelElements types through inheritance 34
4.5 Example for generated connection methods 35
4.6 Relation between Editors and Models . 36
4.7 Connection between generated Classes for GraText and Graphiti editor . . . 37
4.8 Overview of the Cinco Meta Plug-in Architecture (reprinted from [NLKS17]) 37

5.1 Further examples for Cinco applications: (1) Piping & Instrumentation
Diagram [WMN16] (2) Flow Graph [WMN16] (3) Probabilistic Timed Au-
tomata [NTI+14] (4) Hierarchical Scheduling Systems [CKL+17] (5) OMG’s
Case Management CMMN [Wec16] (6) EasyDelta Pick and Place DSL [BDG+15]
(7) Place/Transition Net [NLKS17] (reprinted from [SGNM19]) 40

A.1 Class Diagram of the Meta Graph Language 52
A.2 Class Diagram of the Basic GraphModel . 53
A.3 Class Diagram of the Internal GraphModel 54

ix

x LIST OF FIGURES

Listings

2.1 Example for a Xtend Template Expression 10
3.1 Rule for Attributes . 16
3.2 Rule for the GraphModel type . 16
3.3 Example for a GraphModel type . 16
3.4 Rule for the Node type . 17
3.5 Rule for the ReferencedModelelement and ReferencedEclass 17
3.6 Example for a Prime Node type . 18
3.7 Rule for the ContainmentConstraints . 18
3.8 Example for a Container type with a containment constraint 18
3.9 Rule for the Edge type . 19
3.10 Example for an Edge specification . 20
3.11 Rule for the outgoing ConnectionConstraints 20
3.12 Rule for the UserDefinedType type . 21
3.13 Rule for the Enumeration type . 22
3.14 Example for an Enumeration specification 22
3.15 Appearance rule of the Meta Style Grammar 23
3.16 Node style rule of the Meta Style Grammar 24
3.17 Rounded rectangle rule of the Meta Style Grammar 24
3.18 Node style with RoundedRectangle container shape 25
3.19 Edge style rule of the Meta Style Grammar 25
3.20 Example for Edge Style . 26
A.1 Extended Bacchus Naur Form of the MGL 55
A.2 Extended Bacchus Naur Form of the MGL cont. 56

xi

xii LISTINGS

Chapter 1
Introduction

The Cinco project was created out of the need for graphical modeling tools. It follows
the DFS (Domain-Specificity, Full-Code-Generation, Service-Oriented) approach detailed
by Stefan Naujokat [Nau17]. Building on the traditions of process modeling tools such as
the jABC [Nag09, Neu14] that have been around since the early nineties, the creation of
more domain-specific tools using graphical domain-specific languages (GDSL) is the core
idea of the project.

Implementations of such tools tend to lead to recurring implementation of boiler-plate
code. This code, while serving comparable purposes in various tools, is often different
enough that no feasible level of code reuse can be found. The inability of reusing code
leads to a form of copy-and-paste development which is tedious and error-prone. These
considerations motivate the idea that an automatic generation of modeling tools should be
possible. To achieve this full generation, a family of high-level languages that are simple,
yet powerful enough to describe modeling tools needs to be designed. These languages
need to be precise enough to describe the abstract and concrete syntaxes of the GDSLs
and also the form and function of the complete tool. From a description expressed in these
languages the tool can be generated using a full code generation [KT08] approach.

Full code generation has several beneficial properties. First, it treats models as first-
class citizens meaning that changes in the models will be directly propagated into the
generated parts of an application. Second, full-code-generation allows only modifications
on such first-class citizens which prevents model and generated code running out-of-sync,
indirectly solving problems known from round-trip-engineering [HLR08]. It is important
to notice that full-code-generation does not necessarily mean that applications are created
from generated code alone. It is merely a method to generate vitally important parts of
an application into a given framework.

In case of the Cinco project, this leads to the conclusion: To reduce verbosity and
increase simplicity of the specification languages, it is important to have two parts: First, a
powerful framework that serves as the base of every generated modeling tool, and second,

1

2 CHAPTER 1. INTRODUCTION

a capable code-generator that can use the more abstract descriptions of the languages and
generate all the needed artifacts to turn the framework into the desired modeling tool.

1.1 My Contribution

The first main contribution of this dissertation is the formal description of a meta specifi-
cation language for graph-based model structures. The Cinco meta-tooling suite features
three specification languages, first introduced in [NLKS17], that are used to define domain-
specific graphical modeling tools. The first language is the Meta-Graph Language (MGL),
a specification language that is used to describe graph-models and its model element types
(nodes, edges and containers). The other languages used in Cinco are the Meta Style
Language (MSL), a language which is used to describe the visual appearance of defined
element types, and the Cinco Product Definition (CPD) language that is used to define
the tool configuration. These two languages, together with the MGL, form the essential
artifacts for the Cinco Product Generation Process (CPGP). This contribution focuses on
the MGL specification which was designed and implemented by myself, while the MSL was
designed by Dawid Kopetzki originating from his Master thesis [Kop14].

The second main contribution of this dissertation is the introduction of a product
generation process that can be used to create full-fledged modeling environments from high-
level domain-specific language descriptions. The approach is illustrated by the CPGP. The
CPGP defines the necessary steps to produce a standalone Eclipse [MLA10] based modeling
tool (a Cinco product) from a set of textual meta-level specification languages, predefined
libraries and other resources necessary to complete the generation. The realization of the
CPGP builds on concepts of Cinco introduced in [NLKS17] and [Nau17] but has not so
far been detailed itself in any publication.

The described process can be divided into 4 phases:

1. Resource Aggregation: Necessary resources, such as language descriptions, are gath-
ered. Language descriptions are topologically sorted by dependency [Kah62]. Un-
changed and previously generated resources that have no changed dependencies do
not need to be generated.

2. Abstract Syntax Generation: In case of the CPGP , for each language definition
used in the product, Ecore meta-models [SBPM08] and according generator models
are generated that serve as abstract syntax for the DSLs. In addition to typical EMF
operations, the generated Ecore model includes an API that is specially created to
simplify the use of the Cinco models. The Java Classes for the Ecore models is
generated from the Generator models.

3. Concrete Syntax and Editor Generation: Using the descriptions, editors that en-
sure conform the models are generated. For every language at least one editor is gen-

1.2. CONTEXT OF ATTACHED PUBLICATIONS 3

erated. In case of the CPGP, two editors a Graphiti [6] based editor and a Xtext [16]
based editor are generated by default.

4. Product Configuration: After the generation is finished, the whole product has to
be assembled out of the created artifacts.

The third main contribution of this dissertation is the generation of a domain-specific
API based on the same high-level descriptions used for the product generation. The gen-
eration of the API makes use of concepts and technologies described in [Jö11, JMS08]
and extended in [Lyb12]. In case of Cinco the generation of the Cinco Transformation
API (CT-API) has been realized. The CT-API provides the vital functionality of a Cinco

product which makes it easy to implement tool behavior and semantics through plug-ins.
It uses information present at generation time to create specific operations that are useful
for transformations on graph-models (such as typed successor/predecessor or containment
relationships). Therefore the CT-API for all products is generated during the execution of
the CPGP. The CT-API makes it easy to develop any extensions for the Cinco product
due to its domain-specific nature and the ability resembling user actions in the generated
editors. Both the realization of the CPGP and the generation of the CT-API follow the
concepts of full-code-generation [KT08].

To demonstrate the suitability of the CPGP and the usability of the Cinco transfor-
mation API, several papers using Cinco have been published. Some of the publications
listed in the next section show different examples for the usage of Cinco meta-modeling
suite. Cinco was also used in numerous student project groups of which I have supervised
the following [BDG+15, STK+16, AKS+18, BCK+19].

1.2 Context of Attached Publications

Following the development of the Cinco meta-tooling suite, various different examples of
applications have been developed to illustrate the concepts behind the suite. The pub-
lications affiliated with this cumulative dissertation show a variety of applications (e.g.
for educational purposes [LKZ+18], model transformations [LKS18] or web application
development [BFK+16]).

Cinco: A Simplicity-Driven Approach to Full Generation of Domain-
Specific Graphical Modeling Tools

This paper [NLKS17] introduces Cinco, a domain-specific tool which is used to define
domain-specific modeling products. Built on the foundations of the Eclipse Rich Client
Platform (RCP) [MLA10] and more importantly on the Eclipse project Eclipse Modeling
Framework (EMF) [SBPM08] and technologies based thereof, such as Graphiti [6] and
Xtext [16], Cinco uses a family of high level specification languages to describe graph-based
modeling tools. This publication introduces basic concepts and the meta-level specification

4 CHAPTER 1. INTRODUCTION

languages, but also shows a variety of academic and industrial applications, and features
a comparison with similar tools.

A Tutorial Introduction to Graphical Modeling and Meta-modeling with
Cinco

This paper highlights the capabilities of Cinco in terms of adaptability and ease of use.
It is done by showing a short educational example and presenting how the modification of
the specification affects the code generator [LKZ+18]. The tutorial uses a newly created
graphical Cinco specification language GCS detailed in [Fuh18] and makes use of the
Cinco generation target for the web: Pyro [Zwe15]. Cinco has been used for the imple-
mentation of various tools. The next three papers show examples of varying complexity
that can be implemented.

Design for ’X’ through Model Transformation

In this paper [LKS18] a framework for model transformations is sketched that can be used
to ensure a series of X by Construction (XbyC) [tBCSW18] properties such as model-
checkability, learn-ability, or performance by construction. It is done by specifying the
source and target languages but also the transformation language using the Cinco meta-
modeling suite. It makes use of a graphical syntax similar to structured operational se-
mantics [Plo81] using a multi-level rule pattern with micro and macro steps, similar to the
semantics of synchronous systems [BG92].

DIME: A Programming-Less Modeling Environment for Web Applica-
tions

This paper [BFK+16] describes a complex application of Cinco, the DyWa Integrated
Modeling Environment (Dime). Dime is a fully realized Integrated Modeling Environ-
ment (IME) for modeling complete web-applications. It features a family of DSLs for
implementing GUIs, Data and Processes. Dime’s process model is based on principles
used in predecessing technologies namely the jABC4 [Neu14] and the data modeling re-
lies heavily on the Dynamic Web Application (DyWA) [NFSM14]. Dime itself depends
on the concepts of the One Thing Approach (OTA) [MS09] and Exteme Model-Driven
Development (XMDD) [MS12].

1.3 Nomenclature

During this dissertation, it may not be easy to distinguish between keywords in presented
domain-specific languages (DSL), types of the abstract syntax of these DSLs, and types
used in a Cinco product, generated from these DSLs or previously implemented, since
keywords and types are often called similar (e.g. node, for the keyword that tags a Node

1.4. ORGANIZATION OF THIS DISSERTATION 5

type definition). So, whenever a keyword or anything code-related is mentioned, it is
displayed this way: keyword. When a type of the abstract syntax is used, it is displayed
this way: Type. When a generated type specific for a Cinco product is described, it will
look this way: Product Type .

1.4 Organization of this Dissertation

Following this introduction, Chapter 2 will introduce the concepts and technologies used
for Cinco and the CPGP. Chapter 3 describes the specification languages of the Cinco

meta tooling suite, with focus on the MGL (the first main contribution). While the MSL
and CPD are not part of the contribution but are connected to the MGL and the CPGP ,
and thus are only described briefly. Chapter 4 describes the other contributions of this
dissertation, the CPGP and the CT-API, with the construction of the CT-API covered
in Section 4.3. The dissertation finishes with a conclusion and a view on possible future
extensions in Chapter 5.

6 CHAPTER 1. INTRODUCTION

Chapter 2
Background

This chapter introduces the main concepts and technologies used for the realization of the
the Cinco meta-tooling suite.

2.1 Domain-Specific Languages

The term Domain-Specific Language (DSL) has been in use for quite some time [Ham75].
Usually, it describes a specialized language that is tailored to describe solutions for a specific
problem domain. According to Fowler, DSLs are popular for several reasons. The two
main ones are: "improving productivity for developers" and "improving communication
with domain experts." [FP11] An issue that is often tried to solve using DSLs is the
semantic gap [Gho11]. Domain expert may not understand the concepts of general-purpose
languages, while the developer that needs to implement the solution does not necessarily
have the knowledge of the domain experts required for developing solutions for the domain’s
problems. DSLs can be introduced to close or at least narrow this gap by empowering the
domain expert to express his own solutions or to understand solutions formalized by others.

Types of DSLs can be distinguished between internal DSLs (also called embedded
DSLs [FP11]) and external DSLs. Internal DSLs rely on a host language and use a sub-
set of the host’s syntax. Building on top of another language, an internal DSL has the
advantage that it can make use of the host language’s tool chain (e.g. editors, compilers
etc.). Languages that support the creation of internal DSLs are for example: Racket (see
[FFF+18] or [12]) or Scala [13]. External DSLs, on the other hand, are independent from
other languages which means they are more free to introduce syntactic concepts that are
easier to understand for the domain expert. The focus of the Cinco meta-tooling suite
clearly lies on external DSLs. These external DSLs can also be categorized into graphi-
cal(or visual) and textual DSLs. An example for tools that helps creating textual DSLs
is the framework Xtext [16]. A framework for the development of graph-based external
DSLs with a graphical syntax, is the Graphiti [6] framework. Both frameworks, Xtext
and Graphiti, are based on the Eclipse Modeling Framework (EMF) which itself is part of

7

8 CHAPTER 2. BACKGROUND

Eclipse [2]. The semantics of DSLs can be formalized in several ways, being it operational
semantics [Plo81], axiomatic semantics [Hoa69], or translational semantics [Kle08]. The
CPGP clearly focuses on the latter using code generation, while Cinco also supports the
creation of tools using other forms of semantics (for example as presented in [LKS18]).

2.2 Eclipse

Eclipse is an open source platform, that can be used to develop software tools. It has
been used as a basis for several tools, for example Java, C++ or Python development en-
vironments. Eclipse is divided into several top-level projects, such as the Eclipse Modeling
Project, that encompass smaller sub-projects.

2.2.1 EMF

An important part of the Eclipse Modeling Project [3] is the Eclipse Modeling Frame-
work (EMF) [SBPM08]. This project provides modeling and code generation tools for
software development with a structured data model. Data models are described in Ecore,
a reflexive meta meta-model. This model describes data in form of a class-based model,
not unlike the class diagram of UML [19]. It provides data types that mirror Java types
(e.g. EInt for int, EBoolean for boolean). It is also possible to add operations to
the Ecore model with so called EOperations. These operations need to be implemented
either inside the generated code, which conflicts with the full-code generation paradigm,
or by annotating the defined EOperations with the operation body inside the Ecore
model, which lacks any IDE features. To use the Ecore models, instances of models can be
created that confirm to the definitions made in the Ecore model. These model instances
are also called EMF models. The EMF models can be created and edited through various
means. EMF itself, for example, can generate a simple tree-based editor that can be used.
It is also possible to create and edit the models using the EMF-API. Ecore is a reflexive
meta-model, in such a way, that it can be used to describe itself, which means that every
Ecore model is also an EMF model. Several projects use EMF and the Ecore model, such
as Xtext and Graphiti, which are are used by the Cinco meta-tooling suite.

2.2.2 Xtext

Xtext [16] is a development environment for creating external textual DSLs. It uses a
grammar language to describe the concrete syntax of a DSL and how it is mapped to the
in-memory model. Internally, Xtext generates an Ecore model from such a description,
that represents the data model of the abstract syntax. Xtext also generates an editor for
the language with syntax checks, a framework for additional validation and a framework
for code generators. Code generators and validation, can be implemented using Xtend (See
Section 2.3.1) or Java.

2.3. CODE GENERATION 9

2.2.3 Graphiti

Graphiti [6] is a tooling infrastructure that facilitates the development of Eclipse based
diagram editors, that can use Ecore models as domain models. It uses GEF [4] and
Draw2d [5] as base technologies, but abstracts from using an API.

Graphiti uses them to define the graphical appearance of its models and to link its
own Diagram meta-model to the corresponding domain models. For each graphical model
element type, a set of features is required that defines the tool behavior, for example Create
Feature to create an instance of a model element or Add Feature to add a created element
into the model. Other examples for features are Move Feature or Delete Feature. All
defined elements can be added to a palette from which they can be drawn to the editor
canvas which will trigger the Create Feature first and then the Add Feature.

2.3 Code Generation

An essential part and main focus of the Cinco meta-modeling suite is the generation of
standalone modeling tools, which make use of code generation techniques, while depending
heavily on the reuse of already existing software. To clarify which type of code generation
used in the aforementioned CPGP, it is important to classify the term correctly. Code gen-
eration has been used in several fields, such as compiler construction [Sun13] or in model-
driven approaches, such as Model-Driven Software Development (MDSE) [SVEH07]. It
also plays an important part in Language-Driven Engineering (LDE) [SGNM19]. Though
many of the code generation concepts used in compiler construction can directly be applied
to MDSE [Sel03], generators of both fields differ from each other in terms of abstraction.
Code generation for domain-specific languages has more in common with code generation
in model-driven software development than compiler construction, since DSLs usually work
on an even higher abstraction level than Model-Driven approaches. In context of the meta-
tooling suite the code is generated by collecting the information found in the specification
languages.

There are several approaches to code generation. The simplest form is programming
a code generator by hand, which traverses the underlying specifications and creates the
output via string concatenation. While this seems feasible for small portions of code, there
are some problems. First, there is no separation between generator logic and the output.
This makes it hard to reuse the code generator or to maintain it. Second the concatenated
code is made of small parts of predefined code and data read from the underlying model
(e.g attribute values). Also, special characters (e.g double-quotes) have to be escaped.
This makes it hard to maintain the generated code if errors occur or features need to be
added.

10 CHAPTER 2. BACKGROUND

2.3.1 Template-Based Code Generation

Another, more sophisticated approach for code generation is the use of templates. Tem-
plates are basically larger portions of text with placeholders filled with the informa-
tion found in specifications. Template-based generation has been an important part
for web-development, but can also be used to generate code where large parts stay the
same (e.g. boiler-plate code). It was used in server-side languages, such as PHP [11]
(often assisted by external templating languages, such as Twig [14]) or Active Server
Pages.NET (ASP.NET) [1], but is also used in client-side approaches, such asMustache [10]
or Handlebars [7], often in connection with JSON [18] as the underlying data model. But
template-based approaches have also been used outside the web environment. Xtend [15]
is a programming language that features templating using Template Expressions. It is
the default language for implementing code generators and tool behavior for DSLs cre-
ated with Xtext. Xtend itself is implemented in Xtext and generates to plain Java, which
makes it fully compatible with all java projects. The Template Expressions can be used
inside code but can also be used in separate methods to allow separation of templates and
business code. Xtend uses a special syntax with guillemets (« and ») to highlight dynamic
code inside the template. Listing 2.1 shows a simple Xtend method that returns a HTML
bullet-point list made from a list of Strings using a Template Expression. Template based
code generation with Xtend is used for the generation of the Cinco transformation API.

1 def bullet(List<String> strs)’’’

2

3 «FOREACH s: strs»

4 «s»

5 «ENDFOR»

6

7 ’’’

Listing 2.1: Example for a Xtend Template Expression

2.3.2 Model-Driven Code Generation Approaches

Sven Jörges provided in his dissertation [Jö13] a model-driven and service-oriented ap-
proach for code generation, Genesys. The Genesys approach is based on the concepts of
XMDD [MS12], and the default implementation was implemented in jABC [Nag09]. The
code generators are modeled using graphical process models. These processes consist of
various predefined services that can be added to the models by using the Service Indepen-
dent Building Blocks (SIB). Third party technologies (e.g., template engines) are inside
Genesys by providing SIBs for these technologies. Models can be divided into hierarchical
sub-models, which allows for separation of concerns and reuse of models. Genesys also
allows for a better separation between generation logic and output by using the jABC
processes to define the logic, while templates are used only for text output and more ad-

2.3. CODE GENERATION 11

vanced features of template engines (e.g. loops) are forbidden by convention. Another key
feature of Genesys is the avoidance of round-trip-engineering. Process models are the only
artifacts that are changed during the construction of the code generators. Generators can
be designed in a way that the target code is fully generated from these models.

Genesys had a major impact in earlier versions of Cinco. Jörges describes a code
generator in [Jö13, Chapter 7], which allows to generate SIBs from Ecore meta-models,
that can be used to generate code from instances of this meta-model. This SIB generator
was the basis for the TransEM Framework, which I developed in the course of my diploma
thesis [Lyb12], which is used to describe process-based model transformations on EMF
models. Since Ecore models are also EMF models, TransEM can be used to describe
model transformations of Ecore models. Earlier versions of Cinco used TransEM to
generate Ecore models from high-level specifications (see Section 4.2). This approach has
since then been temporarily replaced with a template-based implementation using Xtend
to remove old legacy technology, Genesys and TransEM were based on (jABC). Though
TransEM is not present in the current version of Cinco, the ideas and concepts can still
be found in the CPGP and could be reused when developing a successor using a Cinco

process model (e.g. like the Process models in Dime [BFK+16]).

12 CHAPTER 2. BACKGROUND

Chapter 3
Cinco

Figure 3.1: Overview of relevant Artifacts (reprinted from [NLKS17])

This chapter describes the Cinco[NLKS17] meta-tooling specification languages with
focus on the Meta Graph Language (MGL). Cinco is a tooling suite for creating domain-
specific modeling tools using high-level specification languages through code generation.
The generation is provided by the CPGP. Cinco aims to be a tool that can be used to
define any tool that is based on graph-based modeling languages consisting of types of
nodes and edges. All these tools are specified using three languages:

1. The central language is the Cinco Product Definition (CPD). It describes which
languages are part of the tool, the branding of the tool, and the other components
used in the tool, which are not specified by Cinco’s specification languages.

2. The Meta Graph Language (MGL) is used to define the abstract syntax of the lan-
guages, but also maps defined element types to a concrete syntax.

3. The third language is the Meta Style Language (MSL). It defines the styling of ele-
ments defined in the languages specified in the MGL.

13

14 CHAPTER 3. CINCO

The three languages are described in the following. Figure 3.1 shows an overview of the
artifacts present in one Cinco product and the different roles associated with them:

The Cinco Product User only knows the generated tool and how to model their so-
lution. This is the layer where the communication between the domain expert and
the developer takes place (as mentioned in Section 2.1).

The Cinco Product Developer specifies the tool, using the above mentioned lan-
guages and generates it using the CPGP.

The Cinco Developer defines the specification languages along with the CPGP.
The Eclipse Developer provides the technologies necessary for Cinco, such as Eclipse,

Xtext, Graphiti, and EMF.

3.1 The Meta Graph Language

As mentioned above, the MGL is used to describe the abstract syntax of a model type.
A Cinco product often contains editors for multiple languages, so an MGL file is needed
for each. This section will define the elements of the MGL syntax. An MGL file can
be edited in Cinco using a textual editor generated from an Xtext [16] grammar. This
grammar is based on an Ecore [SBPM08] meta-model, which represents the class model
of the abstract syntax tree of the MGL. Figure A.1 in the appendix shows the full class
diagram of the MGL. Xtext can be used to provide a mapping from concrete syntax to
the abstract syntax depicted in the Ecore model. This mapping may distract from the
the concrete syntax, so Listing A.1 and Listing A.2 in the appendix show the cleaned up
concrete syntax of the entire MGL specification in form of an EBNF 1, which omits the
mapping to the Ecore meta-model. In the following, the syntactical elements are described
highlighting the concrete syntax, when needed.

3.1.1 MGL Types

Every MGL file defines a number of types that correspond to a set of generated classes in
the final product. The MGL always contains a GraphModel type as the main type. Other
types can be defined, too. These types can either be graphical model elements such as
Node or Edge types or other non graphical types such as the UserDefinedType type that
serves the purpose of a composed data-type or the Enumeration type. Figure 3.2 shows
the class hierarchy of the MGL types.

Attributes All types except the Enumeration types may have attributes which are de-
fined in the type definition. These attributes specify properties for model elements, if they
need to carry more information, than for example, position or connections for Node types.
To specify attributes, the attr keyword is used. Attribute definitions always contain a

1Used EBNF Notation from the W3C XQuery 3.1 recommendation [17]

3.1. THE META GRAPH LANGUAGE 15

GraphModel

package : EString

nsURI : EString

iconPath : EString

fileExtension : EString

Edge Node

executable : EBoolean = false

generatable : EBoolean = false

ModelElement

isAbstract : EBoolean = false

NodeContainer

Enumeration

literals : EString

Type

name : EString

UserDefinedType GraphicalModelElement

ContainingElement

[0..1] extends

[0..1] extends
[0..1] extends

[0..1] extends

[0..1] typesOpposite

[0..*] types

[1..1] graphModel

[0..*] nodes

[1..1] graphModel

[0..*] edges

Figure 3.2: Class hierarchy of the MGL types

name and a type. A type may be a primitive data type (such as integer or boolean), but
may also be a predefined complex type (for example a UserDefinedType or a Node type).
An attribute may also carry a list of elements which are defined by providing an lower and
upper bound for it (as seen in Listing 3.1), for example:

attr UserData as users[0,*]

GraphModel Type

Every MGL description starts with aGraphModel element emphasized by the graphModel
keyword and a name. Listing 3.2 shows the grammar rule for this element. TheGraphModel
type consists of all elements that can be used in a graph-model of this type. Other MGL
files or Ecore files may be imported for prime references (see pg. 17) using import as the

16 CHAPTER 3. CINCO

13 Attribute ::= PrimitiveAttribute | ComplexAttribute

14 PrimitiveAttribute ::=

15 Annotation*
16 ’final’? ’unique’? ’attr’ EDataTypeType ’as’ EString (’[’ EInt (’,’ BoundValue)

? ’]’)? (’:=’ EString)?

17 ComplexAttribute ::=

18 Annotation*
19 ’final’? ’unique’? ’override’? ’attr’ EString ’as’ EString (’[’ EInt (’,’

BoundValue)? ’]’)? (’:=’ EString)?

Listing 3.1: Rule for Attributes

1 GraphModel ::=

2 Import*
3 Annotation*
4 ’graphModel’ EString (’extends’ EString)? ’{’

5 (’package’ QName)?

6 ’nsURI’ URI

7 (’iconPath’ EString)?

8 ’diagramExtension’ EString

9 (’containableElements’ ’(’ GraphicalElementContainment (’,’

GraphicalElementContainment)* ’)’)?

10 Attribute*
11 (Node | Edge | NodeContainer | Type)*
12 ’}’

Listing 3.2: Rule for the GraphModel type

keyword. At the top of the GraphModel definition information is entered for the generated
editor such as a main Java package name or the file extension of the model type. It is
also defined which model elements may be contained directly in the GraphModel using
the containableElements keyword. A graph model may have attributes. Inside the
GraphModel every other model element part of the model type is defined. Possible types of
these elements are Node, Container, Edge, UserDefinedType or Enumeration. Listing 3.3
shows an example of the head of a GraphModel type.

3 @style("model/FlowGraph.style")

4 graphModel FlowGraph {

5 package info.scce.cinco.product.flowgraph

6 nsURI "http://cinco.scce.info/product/flowgraph"

7 diagramExtension "flowgraph"

8

9 attr EString as modelName

10 [...]

11 }

Listing 3.3: Example for a GraphModel type

3.1. THE META GRAPH LANGUAGE 17

24 Node ::=

25 Annotation* ’abstract’?

26 ’node’ EString (’extends’ EString)? ’{’

27 (Attribute*
28 | ReferencedEClass

29 | ReferencedModelElement

30 | (’incomingEdges’ ’(’ IncomingEdgeElementConnection (’,’

IncomingEdgeElementConnection)*
31 | ’outgoingEdges’ ’(’ OutgoingEdgeElementConnection (’,’

OutgoingEdgeElementConnection)*) ’)’)*
32 ’}’

Listing 3.4: Rule for the Node type

52 ReferencedType ::= ReferencedEClass | ReferencedModelElement

53 ReferencedEClass ::= Annotation* ’prime’ ID ’.’ ID ’as’ EString

54 ReferencedModelElement ::= Annotation* ’prime’ (’this’ | QName) ’::’ QName ’as’

EString URI ::= EString

Listing 3.5: Rule for the ReferencedModelelement and ReferencedEclass

Node Type

Using the node keyword, a Node type is defined. Listing 3.4 shows the rule for the
Node type. Like all other model element types nodes can also have attributes. For reuse
purposes Node types may inherit properties from other Node types. A Node type may also
be abstract meaning that it can’t be instantiated in a model editor, but may be used as
parent element for other Node types. Possible connections between nodes are defined by
the incomingEdges and outgoingEdges keywords using the connection constraints
which will be described in Section 3.1.1.

Prime References A special Node type can be specified by adding the prime keyword
to the Node type definition. This keyword indicates that the defined type will act as a
representative of another model element from a different file. This may be a model element
of a type defined in this MGL or an element whose type is defined in an imported Ecore
or an imported MGL file (see Listing 3.5). This feature can be used, for example, for
defining hierarchy in models by referencing a GraphModel or referencing information from
completely different model types. Listing 3.6 shows the prime node ExternalActivity that
references an activity, that was defined in an external library model, which was modeled
using EMF.

Container Type

The NodeContainer type behaves like a Node type, but with the addition that it may con-
tain other nodes or containers. Other than that, a Container type has the same properties

18 CHAPTER 3. CINCO

41 node ExternalActivity {

42 @pvLabel(name)

43 @pvFileExtension("elib")

44 prime externalLibrary.ExternalActivity as activity

45 incomingEdges (*[1,*])

46 outgoingEdges (LabeledTransition[1,*])

47 }

Listing 3.6: Example for a Prime Node type

46 GraphicalElementContainment ::= (QName | ’{’ QName (’,’ QName)* ’}’ | ’*’) (’[’

EInt ’,’ BoundValue ’]’)?

Listing 3.7: Rule for the ContainmentConstraints

as a Node type. A Container type may even inherit properties from defined Node types
or act as an representative for a prime referenced model element. Adding a NodeCon-
tainer type to the MGL definition is done using the container keyword. Otherwise, it
is defined just like a Node type. Containment may be specified by using the Containment
Constraints.

Containment Constraints define possible combinations of nodes and containers that
can be contained in a ModelElementContainer, such as a NodeContainer or a GraphModel
type. Listing 3.7 shows the syntax of a containment constraint. A constraint consists of a
list of possible Node or Container types which the container may contain. It also features
an upper bound and a lower bound. The bounds may be omitted if the number is arbitrary.
Instead of a list of elements it may also be a single element, or a wild card (*).

It is also possible to define that a specific type may not be contained, by using the
bounds [0,0]. The generated editor will take care that no upper bounds can be violated.
Lower bounds are checked using a validator plug-in.

A constraint reads as followed: The amount of all elements that are of the types listed
in the constraint inside this graph model must be higher or equal to the lower bound and
must be lower or equal to the upper bound. Multiple constraints may be defined which may
also overlap. Listing 3.8 shows five constraints, in this example one for each Node type
listed, which have to be respected by the Container type Swimlane . The Node types

57 container Swimlane {

58 attr EString as actor

59 containableElements (Start[1,1], End[1,1], Activity, ExternalActivity,

SubFlowGraph)

60 }

Listing 3.8: Example for a Container type with a containment constraint

3.1. THE META GRAPH LANGUAGE 19

A

Y

X

CB

contains

Z

contains
contains

container A{
 containableElements(X[0,*])
}
container B extends A{
 containableElements(Y[0,1])
}
container C extends A{
 containableElements(Z[0,*])
}

node X{}
node Y extends X{}
node Z {}

X Y Z

A ✔✔ ✔✔ ✘✘
B ✔✔ ✔✔ ✘✘
C ✔✔ ✔✔ ✔✔

Figure 3.3: Example of Containment Constraint Inheritance

21 Edge ::=

22 Annotation*
23 ’abstract’? ’edge’ EString (’extends’ EString)? (’{’ Attribute* ’}’)?

Listing 3.9: Rule for the Edge type

Start and End must occur exactly once. A container may have an abritrary number
of Activity nodes and must contain one of either ExternalActivity or SubFlowGraph .

Figure 3.3 shows an example for containment constraints with inheritance. Container
type A may contain an arbitrary number of type X nodes. Node type Y is child of X ,
which means that A also may contain nodes of Y . A has two children B and C . Both
children inherit the containment constraint from A. Type C also adds a containment
constraint stating that it may contain an arbitrary number of nodes of type Z . Type B
restricts the constraint of type A with the added constraint for node type Y . It states that
B may contain exactly one node of type Y . Since Y is child of X this means that, while
B may contain an arbitrary number of X nodes, only one of them may be of type Y .

Edge Type

Edges define connections between nodes. An Edge type can be defined using the edge
keyword. Edge types may inherit properties from other Edge types and may be defined
as abstract. Like other model elements, edge types may also contain attributes. To
specify which types of connections are available in the editor, for each Node, it is possible

20 CHAPTER 3. CINCO

67 edge LabeledTransition {

68 attr EString as label

69 }

Listing 3.10: Example for an Edge specification

44 OutgoingEdgeElementConnection ::= (QName | ’{’ QName (’,’ QName)* ’}’ | ’*’) (’[

’ EInt ’,’ BoundValue ’]’)?

Listing 3.11: Rule for the outgoing ConnectionConstraints

to define connection constraints. Listing 3.9 shows the grammar rule for the Edge type
and Listing 3.10 shows a simple edge with an EString attribute for a label.

Connection Constraints Connection constraints define which Edge types may start or
end in a Node type. They are defined inside the node definition using the
outgoingEdges keyword for outgoing (starting) constraints and the incomingEdges
keyword respectively for incoming (ending) constraints. A constraint consists of a list of
possible edge types listed in curly brackets and an upper and lower bound. This means
that the amount of the edges that are affected by this constraint must be equal or higher
to the lower bound but lower or equal to the upper bound. Multiple constraints may be
added. Like the containment constraints, the generated editor will take care that none of
the upper bound connection constraints will be violated, while lower bounds are checked
using the an model validation plug-in. Listing 3.11 defines the Xtext rule for outgoing
connection constraints. The rule for incoming constraints is analog to this. When Node
types inherit properties from their parent types, they also derive connection constraints
from them.

Figure 3.4 shows an example how inheritance can affect these constraints and how the
connection constraints are expressed in the MGL. The abstract Node type A has two
children B and C . Type A may have outgoing edges of type X , which is also abstract.
B may have incoming edges of type Y and C incoming edges of type Z . Y and Z are
both children of X . This leads to four kinds of possible connections: A source node of type
B may connect to another type B using an edge of type Y . Source B may also connect
to a node of type C using an edge of type Z . This is possible because Y and Z are both
children of X , and since B is child of A it inherits the connection constraint saying that
A may have outgoing edges of type X . Analog to this, a source node of type C may have
outgoing connections of type Y to nodes of type B and outgoing connections of type Z
to nodes of type C .

3.1. THE META GRAPH LANGUAGE 21

<<abstract>>
A

Y

<<abstract>>
X

CB

outgoing

Z

incoming
incoming

abstract node A{
 outgoingEdges(X[0,*])
}
node B extends A{
 incomingEdges(Y[0,*])
}
node C extends A{
 incomingEdges(Z[0,*])
}

abstract edge X{}
edge Y extends X{}
edge Z extends X{}

A B C

A -- YY ZZ
B -- YY ZZ
C -- YY ZZ

from to

Figure 3.4: Example of Connection Constraint Inheritance

1 UserDefinedType returns UserDefinedType:

2 {UserDefinedType}

3 (annotations+=Annotation)*
4 (isAbstract?=’abstract’)? ’type’ name=EString

5 (’extends’ extends=[UserDefinedType|EString])?’{’

6 (attributes+=Attribute)*
7 ’}’

8 ;

Listing 3.12: Rule for the UserDefinedType type

UserDefinedType

A UserDefinedType type (as seen in Listing 3.12) describes a type that does not have a
graphical representation. It is defined using the type keyword and is used as a complex
data type attribute of other model elements. UserDefinedType types can inherit from other
UserDefinedType types and may be abstract. Their complex structure can be edited
via a tree-based editor along with other attributes in the Cinco properties view.

Enumeration Type

Listing 3.13 shows the grammar rule for another simple data type, the enumeration, which
is defined with the enum keyword. It can be used as a type for attributes in all model
elements and is used to assign predefined values to a model element. See for Example the
Listing 3.14.

22 CHAPTER 3. CINCO

1 Enum returns Enumeration:

2 {Enumeration}

3 (annotations+=Annotation)*
4 ’enum’ name=EString ’{’

5 literals+=EString

6 (literals+=EString)*
7 ’}’

8 ;

Listing 3.13: Rule for the Enumeration type

70 enum Direction{ North East South West }

Listing 3.14: Example for an Enumeration specification

3.1.2 Annotations

At every defined MGL type or any of its attributes, it is possible to add annotations that
have various effects on tool generation or tool behavior. Annotations can be divided into
three categories:

Style Annotations are annotations that link MGL types to MSL Styles (further ex-
plained in Section 3.2.2) and register MSL models to the graph model. Every non-
abstract graphical MGL type has to have one Style annotation.

Meta Plug-in Annotations are annotations that activate or configure meta plug-ins
(see Section 4.4). Meta plug-ins are activated by adding the main annotation to the
graphModel definition. Annotations that configure the meta plug-ins can be placed
anywhere they are required.

Hook Annotations are annotations that can add additional behavior to the tool based
on tool actions (e.g. create, move, delete). For any possible action, a hook can be
defined that is triggered before or afterwards the event is resolved (e.g. @preMove,
@postMove). The annotation references a Java class which is implemented confirm-
ing to a hook-specific interface. Every class implements an execute method that is
called when the associated action is carried out.

3.2 The Meta Style Language

The Meta Style Language (MSL) is used to describe the visual presentation, meaning the
concrete graphical syntax of the model types used in a Cinco product. The language
was designed by Dawid Kopetzki and described in his Master thesis [Kop14]. It defines
graphical styles for all visual elements of the tool, such as nodes, containers and edges.
Furthermore, the MSL makes it easy to reuse certain aspects of a style, such as background
color, line width, or line style by introducing Appearances.

3.2. THE META STYLE LANGUAGE 23

1 Appearance returns Appearance:

2 {Appearance}

3 ’appearance’ name=ID (’extends’ parent=[Appearance])? ’{’

4 (

5 (’angle’ angle=EFloat)? &

6 (’background’ background=Color)? &

7 (’foreground’ foreground=Color)? &

8 (’font’ font=Font)? &

9 (’lineStyle’ lineStyle=LineStyle)? &

10 (’lineWidth’ lineWidth=INT)? &

11 (’transparency’ transparency=EDouble)? &

12 (’filled’ filled = Boolean)? &

13 (’imagePath’ ’(’imagePath=STRING’)’)?

14)

15 ’}’

16 ;

Listing 3.15: Appearance rule of the Meta Style Grammar

3.2.1 Appearances

Appearances (see Listing 3.15) facilitate the reuse of basic styling information throughout
a tool. They modify simple styling, such as background color for NodeStyles, or line
style, width and color for EdgeStyles and border for NodeStyles. They may be defined
beforehand using the appearance keyword and then be referenced in the style definitions,
but may also be defined inside the style definitions instead using InlineAppearances. To
facilitate reuse, appearances may also extend existing appearances. Instead of using static
appearances,it is also possible to add dynamic appearances by registering an Appearance
Provider.

3.2.2 Styles

Every non-abstract graphical element type defined in the MGL needs to have a Style.
Multiple types may share the same Style description to reuse basic graphical elements.
Styles are distinguished by the MSL between NodeStyles for Node and Container types,
and EdgeStyle for Edge types. Styles are added to the defined element types using the
@style annotation. This annotation contains the name of the style. It may also have
arguments for parameters, which are written in the Java Expression Language [8], making
it possible to reference attributes of the defined MGL element type.

NodeStyles are built from shapes. Listing 3.16 shows the Xtext rule for a NodeStyle.
Every NodeStyle needs at least one container shape2. Possible container shapes are: Rect-
angle, RoundedRectangle, Ellipse and Polygon. Container shapes may contain other shapes
put in position, such as additional container shapes or non-container shapes, such as: a

2Note, that container in this context has nothing to do with Container types of the MGL, but is used
to emphasize that this kind of shape may contain other shapes.

24 CHAPTER 3. CINCO

1 NodeStyle returns NodeStyle:

2 ’nodeStyle’ name=ID (’(’ parameterCount=INT ’)’)? ’{’

3 (’appearanceProvider’ ’(’appearanceProvider=QName’)’)?

4 (fixed?=’fixed’)?

5 mainShape=AbstractShape

6 ’}’

7 ;

Listing 3.16: Node style rule of the Meta Style Grammar

1 RoundedRectangle returns RoundedRectangle:

2 {RoundedRectangle}

3 ’roundedRectangle’ (name=EString)?

4 ’{’

5 ((’appearance’ referencedAppearance=[Appearance]) | (inlineAppearance=

InlineAppearance))?

6 (’position’ position = AbstractPosition)?

7 ’size’ size = Size

8 ’corner’ ’(’cornerWidth=INT’,’cornerHeight=INT’)’

9 (children+=AbstractShape)*
10 ’}’

11 ;

Listing 3.17: Rounded rectangle rule of the Meta Style Grammar

text label (Text), multi-lined text label (Multitext), an Image or a Polyline shape. Text
labels may be parameterized to allow dynamic values using Format Strings[9]. Listing 3.17
shows the grammar rule for the RoundedRectangle container shape. Other container shapes
have a similar structure with minor differences. Every shape may have an Appearance (see
Sec. 3.2.1). Except for the Polygon shape, every container shape has a size defined by
height and width. Polygon are defined by their points, which means the size of the shape
is implicitly determined by its vertices. The RoundedRectangle shape does have an addi-
tional property: corner. The corner keyword defines horizontal and vertical radius of
the round corners. The RoundedRectangle shape is shown by the node style defined in
Listing 3.18. This style contains a text label which takes one argument and displays it
alongside a text in the center of the container shape. Figure 3.5 shows how a node using
this style will look like.

Figure 3.5: Example of two rounded rectangle styled nodes connected with a dotted arrow

3.3. THE CINCO PRODUCT DEFINITION 25

1 nodeStyle multiRectangle (1){

2 roundedRectangle{

3 size (80,40)

4 corner(10,10)

5 text{

6 position (CENTER,MIDDLE)

7 value "%s"

8 }

9 }

10 }

Listing 3.18: Node style with RoundedRectangle container shape

1 EdgeStyle returns EdgeStyle:

2 ’edgeStyle’ name=ID (’(’ parameterCount=INT ’)’)? ’{’

3 (’appearanceProvider’ ’(’appearanceProvider=QName’)’)?

4 ((’appearance’ referencedAppearance=[Appearance]) | (inlineAppearance=

InlineAppearance))?

5 (’type’ connectionType=ConnectionType)?

6 (decorator+=ConnectionDecorator)*
7 ’}’

8 ;

Listing 3.19: Edge style rule of the Meta Style Grammar

Edge Styles describe the visual presentation of Edge types. Listing 3.19 shows the
grammar rule for the EdgeStyle. This may be as simple as a thin line, but may also have
different line styles, such as dotted lines, or decorators such as arrow heads or text labels
for the edges. Line style, color and line width definitions are provided by Appearances. An
EdgeStyle may have multiple Decorators. Possible Decorators are shapes, but for easier use
macros for common geometric figures are provided such as ARROW, DIAMOND, CIRCLE
or TRIANGLE. Decorators may be located relatively on the edge by using the location
keyword and a value between 0 and 1. Listing 3.20 shows an example for an EdgeStyle.
It defines a dotted line which is 2 pixels wide with 2 decorators. The first decorator is an
arrow located at the end of the edge (location(1.0)) and the other decorator is a text
decorator with the value "next" at the middle of the edge (location(0.5)).

3.3 The Cinco Product Definition

An important artifact for the CPGP is the Cinco product definition (CPD), as it functions
as the starting point of the product generation. Every Cinco product needs exactly one
CPD file. The CPD files collects all elements that define the Cinco product. It also
consists of a list of the MGLs that are used in the finished product, information about the
tool branding (e.g. splash screen, icons), and may contain a selection of Eclipse plug-in
descriptors which then will be added to the product in addition to required plug-ins. Every

26 CHAPTER 3. CINCO

1 edgeStyle simpleArrow {

2 appearance {

3 lineStyle DOT

4 lineWidth 2

5 }

6 decorator {

7 location (1.0) // at the end of the edge

8 ARROW

9 }

10 decorator{

11 location(0.5) // middle of the edge

12 text{

13 value "next"

14 }

15 }

16 }

Listing 3.20: Example for Edge Style

CPD starts with the cincoProduct keyword and the name of the Cinco product. It
is followed by an optional id and product version. Main part of the CPD is the list of
MGLDescription elements (starting with the mgl keyword). They define the used MGL
files, which will be part of the Cinco product. The CPD also offers options for customizing
the presentation of the Cinco product, called branding. Branding may include the use of
graphical icons in different sizes (keywords are linuxIcon, image16, image32 . . .) as
well as a customized about page. It may also include a splashScreen that is shown
during start-up. Since Cinco makes use of the Eclipse plug-in environment, any plug-
in or feature of an existing Eclipse may be built into the Cinco product. To add an
extension, such as a plug-in or feature, to the Cinco product, it is necessary that this
extension is present in Cinco. It is added to the Cinco product by using the features

CCINCOINCO Product Product

Graphiti / GraText Editors

CPD

Used Eclipse Plug-Ins

Branding

Perspective

MGL

MSL

MGL

MSL

MGL

MSL

MGL

Used Meta Plug-Ins

Model Elements

Hooks MSL

Appearances

Styles

Figure 3.6: Interaction between MGL, MSL and CPD

3.3. THE CINCO PRODUCT DEFINITION 27

or plug-ins keywords with the ids of the extensions. Another option is to define a
custom tool perspective. A tool perspective defines which views are open (e.g. editors,
property views, project view) or what actions are available. To amplify the convention
over configuration paradigm, a perspective is generated by default, which can be replaced
by a costumized one, if needed.

Figure 3.6 shows how the specification languages are linked between each other and how
each language contributes to the Cinco product. As described, the CPD defines the base
of the project defining perspective, branding, used Eclipse plug-ins, and which MGLs are
used. Each MGL describes a modeling language, defining the model elements, tool hooks
and usage of meta plug-ins. Each graphical model element has style and appearances which
are defined in an MSL. In the following chapter, the CPGP is described, which produces
the Cinco product from the three specification languages.

28 CHAPTER 3. CINCO

Chapter 4
Cinco Product Generation

Figure 4.1: Overview of the Cinco Product Generation Process

Central part of a the Cinco product generation is the Cinco Product Generation
process (CPGP). It describes the process that turns the artifacts created by the tool
developer (MGL, MSL, CPD) into a running Cinco product. Figure 4.1 shows an overview
of the generation process. The input for the process is a CPD file. The CPGP is divided
into 4 phases:

1. Resource Aggregation (See Section 4.1)
2. Abstract Syntax Generation (See Section 4.2)
3. Concrete Syntax and Editor Generation (See Section 4.4)
4. Product Configuration (See Section 4.5)

In the first phase a build order has to be determined. It is basically done by applying a
topological sort based on dependency to all MGLs defined in the CPD. When the build
order is established, phases two and three will be executed by performing the following
steps for each MGL file:

• At first, a set of Ecore models is generated. These created Ecore models themselves
depend on an Ecore model that describes the basic graph structure and the substan-
tial operations which every editor based on these Ecore models has to provide.

• Alongside the generation of the Ecore model, a generation of the Cinco transforma-
tion API (CT-API) is carried out. The CT-API provides domain-specific operations

29

30 CHAPTER 4. CINCO PRODUCT GENERATION

that respect the constraints formalized in the MGL file (e.g., typed getters for con-
tainers based on containment constraints). These generated operations are added to
the Ecore models, before the code generation from these Ecore models to Java classes
is executed by the EMF code generation facilities.

• The next steps perform the generation of the editors. The default Cinco product
provides two editors a graphical Graphiti based editor and a textual Xtext-based
editor (called GraText).

• After the generation of the editors, the execution of meta plug-ins is triggered. Meta
plug-ins provide functionality for the models (e.g., code generation or interpretation,
model transformation). Since meta plug-ins are added to the Cinco environment
(the meta-layer) to provide functionality in the generated Cinco product, we call
them meta plug-ins to distinguish them from standard Eclipse plug-ins.

After phases 2 and 3 have been completed and the code has been generated for every MGL,
the product generation is concluded in phase 4. This phase makes use of the information
present in the CPD file starting with the execution of used CPD meta plug-ins. After this
two new projects are created that are essential for every product: the feature project and
the product project. In the following, the four phases and their corresponding tasks will
be detailed.

4.1 Resource Aggregation

In a bigger Cinco product with multiple MGL files, it is often necessary to have relation-
ships between them, which can be defined using the prime-reference feature introduced on
page 17. For example Figure 4.2, for example, shows the dependencies between the three
main model types of Dime [BFK+16]. The Data model type has no dependencies to other
model types. But it can be used by them. A model of the GUI model type may display
data, so the model type depends on the Data model type. Process models have two
dependencies. On the one hand, they may read and write data so the Process model type
depends on the Data model type. But Process models may also reference GUI models
which leads to a dependency on the GUI model type.

As seen in Section 3.1.1, MGL files can import other MGL files by using the import
statement. Model elements may then reference other model elements from these imported
MGLs using prime references. In Cinco, the generated artifacts from the imported MGLs
need to be present when building the referencing MGLs. Cinco achieves this by establish-
ing a topological sort on the MGLs of a product. Resource aggregation also has a second
use: During tool development it is often necessary to rebuild the modeling tool. Rebuilding
all dependencies might take a long time. To reduce this building time, unmodified and
already generated MGL files are taken out of the sort, so only new changes need to be
considered.

4.2. ABSTRACT SYNTAX GENERATION 31

Figure 4.2: Model types and inter-model dependencies in Dime [BFK+16] (reprinted
from [NLKS17])

4.2 Abstract Syntax Generation

In the Cinco Product generation process, several steps need to be taken for every single
MGL file. Cinco uses the meta meta-model Ecore to describe the class structure of each
generated language. The runtime environment of the generated language is divided into
generated and predefined parts. The first step for every MGL file is to map the abstract
syntax described in the MGL to the basic Ecore class structure. Cinco provides an Ecore
model for basic graph structures, such as Node, Edge and Container elements, from
which the generated classes inherit default properties (e.g. x and y positions for Nodes
and Containers). The basic Ecore model separates the inheritance structure and the data
management of the generated model elements. API calls are made on the classes holding
the inheritance structure. This separation is done to abstract from internal operations
and to provide a clean API for developers and to separate internal functions from it.
Therefore, the basic Ecore model is divided into two packages: graphmodel package and
the sub package internal. The graphmodel package contains all basic types for model
elements and some helper classes.

Basic Cinco Classes Figures A.2 and A.3 in the appendix, show the basic Ecore model
every graph in an Cinco product uses. Every element in the basic Ecore model inherits
the properties of the IdentifiableElement class. This takes care that every element can

32 CHAPTER 4. CINCO PRODUCT GENERATION

be identified with a UUID. Every IdentifiableElement is either a Type , a ModelEle-
ment , or a ModelElementContainer . ModelElements are the visible parts of a graph
model. ModelElementContainers are elements that can containModelElements being
it Node , Edge or Container elements.

The GraphModel is the base element of a graph model in a Cinco product. Every
model element, except the graph model, has to be contained in another model ele-
ment. A model element can be contained in the graph model itself, or an element
that is contained in a graph model (e.g., a container). It is also possible that the
contained element itself is a container, which then also can contain elements. The
GraphModel class corresponds directly to the defined GraphModel type of the MGL
model. Every GraphModel is also a ModelElementContainer , which allows for
the containment of model elements.

The Node class describes the nodes of a graph model. Every Node is also a ModelEle-
ment . For every Node type defined in the MGL, a class is generated that inherits
all properties of the Node .

The Edge class describes the edges of a graph model. It corresponds directly to the
Edge type of the MGL. Every generated edge type defined in the MGL, inherits all
properties of Edge . Every Edge is also a ModelElement .

The Container class describes the containers of a graph model. Every generated con-
tainer type defined in the MGL, inherits all properties of Container . Every Con-
tainer is also a ModelElement and also a ModelElementContainer .

The Type class describes user-defined types that are not visible in the graph editor but
can be referenced by ModelElements or the GraphModel and may be edited
for example using the generated properties view of the generated Graphiti editor.
The class corresponds directly to the UserDefinedType types defined in the MGL
model. The defined Enumerations are generated directly into corresponding Ecore
Enumeration types.

For each model element defined in the MGL, two classes are generated: an internal class
for the data and a visible class that contains the inheritance and an API to manipulate
the data stored in the internal class. In addition to that for each hook-annotation (see
Section 3.1.2) defined in the MGL, a method is generated that calls the defined hook.

Figure 4.3 shows the generated classes for two defined node types and the connection
to the basic Cinco Ecore model. Classes A and B are the API classes. InternalA and
InternalB are the data holding internal classes. B holds an attribute t of type T defined
as an UserDefinedType, so methods getT():T and setT(t:T) are generated in the API
class B .

4.3. CINCO API GENERATION 33

<<abstract>>
Node

<<abstract>>
InternalNode

A InternalA

B

InternalB

getT():T
setT(t:T):void

T

modelElement

modelElement

modelElement

internalElement

internalElement

internalElement

t

node A{}
node B extends A{
 attr T as t
}
type T{}

Generated From MGL

Basic Ecore

Figure 4.3: Example for generated Class Structure

4.3 Cinco API Generation

The CPGP does not only generate the necessary classes for a tool, but it also generates
an API (the CT-API) that allows developers to program additional functionality for the
Cinco product, such as code generation, model transformation. The API is generated to
assist writing hooks and plug-ins for the Cinco product with domain knowledge. The API
is constructed in a way that a developer does not need to know the internal work-flow of
the tool, but can use the knowledge that was defined in the MGL specification. Therefore,
for each attribute, a set of setter and getter methods is generated, that are specifically
typed. These methods, that are specifically generated, are methods that need to satisfy
the ConnectionConstraints and ContainmentConstraints defined in the MGL. Since all
model types and constraints are known at generation time, the method signatures can be
generated as specific as possible. It is important to notice that changes in the sub-type
hierarchy may also affect the method signatures of parent types. This of course, breaks with
the common understanding of inheritance in object oriented languages, but is necessary to
get the most specific return types. The trade-off here is that a once generated tool may
not be extended, which interferes with possibly wanted reuse (see Chapter 5).

4.3.1 Containment Constraints

Every generated Container class has a method getModelElements. It returns a list of
nodes and containers that are contained. The return type of this method is the most
specific type that still covers every node and container type any sub-type of the container

34 CHAPTER 4. CINCO PRODUCT GENERATION

X::getContainer(): A
Y::getContainer(): A
Z::getContainer(): C

A::getModelElements() : List<Node>
B::getModelElements() : List<X>
C::getModelElements() : List<Node>

A

Y

X

CB

contains

Z

contains
contains

X::getContainer(): A
Y::getContainer(): A
Z::getContainer(): C

A::getModelElements() : List<Node>
B::getModelElements() : List<X>
C::getModelElements() : List<Node>

A

Y

X

CB

contains

Z

contains
contains

Figure 4.4: Effect on getContainer/getModelElements types through inheritance

may contain. The worst case is that the most specific type is Node , since every element
type that may be contained is at least this. Every generated Node does also have a
getContainer method which returns the container the Node is currently held in, with
its return type being the most specific type of container that may contain this node. In
the worst case this may be ModelElementContainer . Figure 4.4 shows an example for
the getModelElements and getContainer methods as generated by the containment
constraints and how a change in the inheritance can affect the method types. Image (1)
of this figure reproduces the example of Figure 3.3 (see page 19). Container type A can
contain any Node type that is of type X. But since type C inherits from A and can
contain nodes of type Z which does not inherit from X, the best specific type is Node.
So, the return type of the getModelElements method is List<Node>. The return type
of B ’s getModelElements method is not affected by C , so its return type is List<X>.
When the inheritance hierarchy is changed, so that Z inherits from X (see Image (2)), the
getModelElements methods of A and C are changed, so that the return type is List<X>.
This also affects the getContainer method of the Node type Z . In Image (1), Z is not part
of an inheritance hierarchy. The only containment constraint using Z is that of container
C . So, the return type of the Z ’s getContainer method is C . Adding X as parent to Z
in Image (2) changes this. Now, every container that inherits from A may contain Z so
the return type of the getContainer method changes to A. Note, that in Image (2), the
containment constraints of B and C are obsolete, because of the containment constraint
of A.

4.3. CINCO API GENERATION 35

A::getSuccessors : List
A::getPredecessors: List<Node>
A::getOutgoing : List<X>
A::getIncoming : List<Y>
B::getSuccessors : List
B::getPredecessors : List<A>
B::getOutgoing : List<X>
B::getIncoming : List<Y>
C::getSuccessors : List
C::getPredecessors : List<A>
C::getOutgoing : List<X>
C::getIncoming : List<Y>
D::getSuccessors : List
D::getPredecessors : List<Node>
A::getOutgoing : List<X>
A::getIncoming : List<Edge>

X::getTargetElement : Node
X::getSourceElement : A
Y::getTargetElement : B
Y::getSourceElement : A

A

Y

X

D

C

B

out

in

Figure 4.5: Example for generated connection methods

4.3.2 Connection Constraints

Analog to the containment constraints, connection constraints affect methods that base
on edge connections. Every node and container has the getSuccessors method. It
returns a list of nodes (including containers, which are special nodes) that are direct suc-
cessors. To determine the return type of this method, not only possible outgoing edges
(defined by the outgoingEdges constraints), but also the nodes that may have these
edges as incoming edges have to be taken into account. Identical to this is the gener-
ation of the getPredecessor methods. Other methods are the getOutgoing and
getIncoming methods, which return edges which start or end in the owning node, or
the getSourceElement and getTargetElement methods, which return for an edge
in which node it starts or ends. Figure 4.5 shows an example of methods and their return
types for nodes A, B , C and D , and the edge types X and Y . Node type A has a con-
nection constraint for outgoing edges. This constraint states that A may have outgoing
edges of type X . B and D are sub-types of A which means they inherit the connection
constraint. B also has an incoming constraint with the edge type Y . This incoming con-
straint is inherited by node type C . Analog to the example in Section 3.1.1, this means,
that possible starting points for edges are the node types A, B , C and D . Possible end
points are B and C . So, according to this, the getPredecessor methods of node type
B and C have the return type List<A> and the getSuccessor methods of node types
A, B , C , and D have the return type List.

36 CHAPTER 4. CINCO PRODUCT GENERATION

EditorModel

CP
Generation
Process

CP
Ecore

GraText
Editor

Graphiti
Editor

CP
API

Graphiti
Ecore

GraText
Ecore

uses

uses

uses

uses

generates generatesgenerates

generates generates

Figure 4.6: Relation between Editors and Models

4.4 Concrete Syntax and Editor Generation

A Cinco product usually consists of two editors for each language, a graphical and a textual
editor1. The graphical editor is based on the Graphiti framework [6], while the textual
editor uses a special Xtext [16] grammar, the GraText, which itself is generated by the
CPGP. The GraText Editor is purely optional, but will be used as the serialization format
when generated. The editors have in common that they both use specially generated Ecore
models that use the Ecore model of the abstract syntax and the generated Cinco API to
implement the editor functionality. For each model element, the required features (see
Section 2.2.3) are generated. These are: Add Features, Create Features, Update Features,
and Delete Features. In addition to these features, Node and Container types have Move
Features, Resize Features and Layout Features, while Edge types have Reconnect Features.
Figure 4.6 shows an overview of the editor generation. The CPGP generates the Ecore
models and the API for the Cinco Product (CP) in phase 2. In phase 3 of the CPGP, for
each editor that is generated, another Ecore model is created where each model element in
the CP Ecore has a counterpart in the editor’s Ecore model, which inherits all properties
from the CP model element, but also adds information needed for editor functionality.
Figure 4.7 shows the connection between the three Ecore models using the simple Node B
from Figure 4.3 as an example. The Graphiti editor works on model elements that contain
graphical information. For every model element defined in the MGL, a class prefixed with
C is generated (in this example CB). This class inherits from their base classes. When
a tool developer uses the CT-API to manipulate the model, the Graphiti editor will be
notified of any changes. The GraText editor uses the internal classes of the class structure
to serialize the model, when saving. Since all data is stored in the internal model, only

1Other editors are imaginable. For example, the Pyro [Zwe15] plug-in generates web-based editors from
the same three languages as the CPGP.

4.4. CONCRETE SYNTAX AND EDITOR GENERATION 37

InternalB

<<GraText>>

B

B
getT():T
setT(t:T):void T

modelElement

internalElement

t

node A{}
node B extends A{
 attr T as t
}
type T{}

<<GraText>>

T

InternalT

gratext_t

<<Graphiti>>

CB

modelElement

internalElement

Figure 4.7: Connection between generated Classes for GraText and Graphiti editor

Figure 4.8: Overview of the Cinco Meta Plug-in Architecture (reprinted from [NLKS17])

internal objects need to be saved. The API structure will be recreated when loading the
model. The GraText editor links the Graphiti classes by generating a counter part in the
GraText Ecore model for every internal class and allows that changes made in the textual
view are visible in the graphical view.

Meta Plug-in Activation

The usage of meta plug-ins is declared in the MGL using annotations (see Section 3.1.2)
that are added to model elements. The annotations can be divided into annotations that
can be added to model elements or to attributes of model elements. A meta plug-in must
have at least one annotation that is added to the graphmodel declaration that globally

38 CHAPTER 4. CINCO PRODUCT GENERATION

activate the meta plug-in. Each meta plug-in is identified by the name of this annotation.
The annotation may have parameters and may also depend on other annotations added
to other model elements or attributes. During the generation process, the meta plug-ins
identified by these annotations are activated. To be able to activate the meta plug-ins,
they need to be present in the meta plug-in Registry of the Cinco product generator.
Some meta plug-ins are already provided by the Cinco developer, but new meta plug-ins
may also be added. To register a new meta plug-in, few things are needed. First, the
meta plug-in has to be implemented as a bundle communicating with the registry, which
registers the used annotations, and defines the class that contains the logic of the meta
plug-in (e.g. necessary code generators). Using the annotations, the meta plug-in can be
invoked during the CPGP (See Figure 4.8).

4.5 Cinco Product Configuration

Once abstract and concrete syntax for all MGLs is generated, the last phase of the CPGP is
the Cinco product configuration. It starts with the activation of CPD meta plug-ins and
finishes with the generation of the feature and product projects, which are needed to bundle
together everything that is needed to have a complete running bundle.

4.5.1 CPD meta plug-ins

The activation of a CPD meta plug-in behaves in basically the same way as the standard
MGL meta plug-in. But instead of being added to the MGL file, a CPD meta plug-in is
added to the product description and is used for meta plug-ins that affect the whole Cinco

product and not only one MGL.

4.5.2 Product and Feature Project

The finishing steps of the CPGP are the bundling of all generated and otherwise needed
code, and adding the tool branding. This is done by generating a product plug-in that uses
the branding information defined in the CPD and including a feature plug-in. Products in
Eclipse can be either based on plug-ins or features. A feature is a set of plug-ins which to-
gether serve a specific purpose. It can also depend on other features. The CPGP generates
a feature project that contains all plug-ins generated during the generation process, basic
features and plug-ins needed to have a executable product, and all plug-ins and features
as additional dependencies which are defined in the CPD.

Chapter 5
Conclusions and Future Work

This dissertation has shown a technological view on the Cinco meta-tooling suite. While
other publications [NLKS17, SGNM19, SN16] have focused on the concepts, this disser-
tation has presented an approach to generate domain specific tools, the Cinco product
generation process, and has also presented the generation of the Cinco transformation
API. Several modeling tools were created on this basis. Some of them were part of this
dissertation [LKS18, BFK+16], several more created by other student projects, research
projects [KLNS19], or for use in the industry (for a small overview, see Figure 5.1).

From the many different projects realized with Cinco, of course, many requests for
additional features have arisen. Examples for often requested features are the introduction
of reuse in the MGL, or model-driven code generation.

5.1 Improving the Reuse of Model Elements

At the moment, there is no reuse of written MGLs, since previously defined model elements,
such as nodes, containers, and edges, can not be imported into new MGLs. As mentioned
in Section 4.3, the CT-API depends on the complete knowledge of all defined types at
generation time. This hinders the reuse of defined types. For example, the GUI model
and the Process model of the Dime project both define the concept of a DataContext .
The DataContext in both models is a container that can contain Variables. And these
Variables may be written or read (modeled by DataFlow) edges. In both models, these
elements need to be defined individually, even though their functionality is almost identical.
Future work will consist of inspections to find a serviceable way to define language libraries
or to extend existing tool descriptions. A possible solution may be the introduction of
special keywords in the MGL that define how model elements may or may not be reused:

final A model element defined as final may not be reused. The generated API can be
as specific as possible.

39

40 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Figure 5.1: Further examples for Cinco applications: (1) Piping & Instrumentation Dia-
gram [WMN16] (2) Flow Graph [WMN16] (3) Probabilistic Timed Automata [NTI+14] (4) Hierar-
chical Scheduling Systems [CKL+17] (5) OMG’s Case Management CMMN [Wec16] (6) EasyDelta
Pick and Place DSL [BDG+15] (7) Place/Transition Net [NLKS17] (reprinted from [SGNM19])

productFinal An MGL is known to other MGLs in the same project. It may be used
as a library inside the project (e.g. reusing elements of the DataContext defined in
the Process model of Dime, in the GUI model). As a project is always built by
the CPGP , the generated API can her also be as specific as possible.

library A Model element tagged as library can be used in any newly defined tool.
The API generation for this element will be generated without the knowledge which
elements subclass this element. Thus, the subclassing can only restrict containment
and connection constraints in a classical OOP way.

Implementing this or other features will most certainly affect the CPGP. To better adapt
to changes in the code generator, possible code generation approaches may need to be
reevaluated.

5.2 Using Model-Driven Code Generation for the CPGP

The template based code generation using Xtend has several advantages over simple tem-
plate engines, which can also be found in model-driven approaches such as Genesys. For
example, both approaches allow the separation of generator logic from output creation.
While it is possible in Xtend to add complete programming expressions inside the tem-

5.2. USING MODEL-DRIVEN CODE GENERATION FOR THE CPGP 41

plate expressions, this should be avoided. Instead, the template expressions should be
placed inside separate methods or even classes. The templates can be parameterized with
method arguments filling in placeholders. Both approaches also allow separation of con-
cerns, either by using hierarchy through sub-models (Genesys), or by applying concepts of
object-oriented, or even functional languages (Xtend). These aspects of the code genera-
tion frameworks can be used for the CPGP to lessen the impact that the complexity of the
generation process has. Another important factor is the ability to adapt to changes. For
example, Cinco is often improved by adding new features which also affect the CPGP.
Code generators implemented using the Genesys approach have been proven to be easily to
modify when new features are added or existing ones need to be changed. Using the default
implementation of the Genesys approach however, is problematic due to the old jABC not
being maintained anymore. It would be interesting to apply a new model-driven approach
that combines concepts from Xtend and Genesys into a new Cinco-based code generation
framework via service-orientation [JS11]. The student project nextGen [BCK+19], which
I am currently co-supervising with my colleague Dominic Wirkner, has created a new
approach for creating graphical code generators from Cinco specifications. With combi-
nation of nextGen and the Graphical Cinco Specification (GCS) [Fuh18], the possibilities
to use graphical modeling for at least parts of the CPGP should be explored.

42 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Bibliography

[AKS+18] Goddy Ntongwe Asale, Oliver Köhler, Kristina Sax, Alexander Kedzia, Sascha
Mücke, Oliver Scherf, Jens Knipper, Richard Niland, and Daniel Scholtyssek.
Projektgruppe 610: An Engine for Generative Game Development. Technical
report, TU Dortmund, 2018.

[BCK+19] Daniel Busch, Beka Chkopoia, Sascha Kiesow, Niclas Müller, Johannes
Mundorf, Alnis Murtovi, Benedikt Oesing, Sören Ohlsen, Andreas Sitta, Robin
Weisbauer, and Jonas Wielage. Projektgruppe 617: NextGen Model-based
Code Generation. Technical report, TU Dortmund, 2019. To Appear.

[BDG+15] Agata Berg, Cedric Perez Donfack, Julian Gaedecke, Eike Ogkler, Steffen
Plate, Katharina Schamber, David Schmidt, Yasin Sönmez, Florian Treinat,
Jan Weckwerth, Patrick Wolf, and Philip Zweihoff. PG 582 - Industrial Pro-
gramming by Example. Technical report, TU Dortmund, 2015.

[BFK+16] Steve Boßelmann, Markus Frohme, Dawid Kopetzki, Michael Lybecait, Stefan
Naujokat, Johannes Neubauer, Dominic Wirkner, Philip Zweihoff, and Bern-
hard Steffen. DIME: A Programming-Less Modeling Environment for Web
Applications. In Proc. of the 7th Int. Symp. on Leveraging Applications of
Formal Methods, Verification and Validation, Part II (ISoLA 2016), volume
9953 of LNCS, pages 809–832. Springer, 2016.

[BG92] Gérard Berry and Georges Gonthier. The Esterel synchronous programming
language: design, semantics, implementation. Science of Computer Program-
ming, 19(2):87 – 152, 1992.

[CKL+17] Mounir Chadli, Jin H. Kim, Kim G. Larsen, Axel Legay, Stefan Naujokat,
Bernhard Steffen, and Louis-Marie Traonouez. High-level frameworks for the
specification and verification of scheduling problems. Software Tools for Tech-
nology Transfer, 20(4):397–422, 2017.

[FFF+18] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krish-
namurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. A Pro-

43

44 BIBLIOGRAPHY

grammable Programming Language. Communications of the ACM, 61(3):62–
71, mar 2018.

[FP11] Martin Fowler and Rebecca Parsons. Domain-specific languages. Addison-
Wesley / ACM Press, 2011.

[Fuh18] Annika Fuhge. Graphische Modellierung von Cinco Produktspezifikationen.
BSc thesis, TU Dortmund, 2018.

[Gho11] Debasish Ghosh. Dsl for the uninitiated. Commun. ACM, 54(7):44–50, July
2011.

[Ham75] Michael Hammer. The design of usable programming languages. In Proceedings
of the 1975 Annual Conference, ACM ’75, pages 225–229, New York, NY,
USA, 1975. ACM.

[HLR08] Thomas Hettel, Michael Lawley, and Kerry Raymond. Model Synchronisation:
Definitions for Round-Trip Engineering. In Proceedings of the 1st International
Conference on Theory and Practice of Model Transformations, ICMT ’08,
pages 31–45, Berlin, Heidelberg, 2008. Springer-Verlag.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 1969.

[JMS08] Sven Jörges, Tiziana Margaria, and Bernhard Steffen. Genesys: service-
oriented construction of property conform code generators. Innovations in
Systems and Software Engineering, 4(4):361–384, 2008.

[JS11] Sven Jörges and Bernhard Steffen. Leveraging service-orientation for combin-
ing code generation frameworks. In Engineering of Complex Computer Sys-
tems (ICECCS), 2011 16th IEEE International Conference on, pages 198–207.
IEEE, 2011.

[Jö11] Sven Jörges. Genesys: A Model-Driven and Service-Oriented Approach to
the Construction and Evolution of Code Generators. PhD thesis, Technische
Universität Dortmund, 2011.

[Jö13] Sven Jörges. Construction and Evolution of Code Generators - A Model-Driven
and Service-Oriented Approach, volume 7747 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, Germany, 2013.

[Kah62] A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–
562, November 1962.

[Kle08] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley Professional, 1 edition, 2008.

BIBLIOGRAPHY 45

[KLNS19] Dawid Kopetzki, Michael Lybecait, Stefan Naujokat, and Bernhard Steffen.
Towards Language-to-Language Transformation. 2019. to appear.

[Kop14] Dawid Kopetzki. Model-based generation of graphical editors on the basis of
abstract meta-model specifications. Master thesis, TU Dortmund, June 2014.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. Wiley-IEEE Computer Society Press, Hoboken, NJ,
USA, 2008.

[LKS18] Michael Lybecait, Dawid Kopetzki, and Bernhard Steffen. Design for ‘X’
through Model Transformation. In Proc. of the 8th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation, Part I Modeling
(ISoLA 2018), volume 11244 of LNCS, pages 381–398. Springer, 2018.

[LKZ+18] Michael Lybecait, Dawid Kopetzki, Philip Zweihoff, Annika Fuhge, Stefan
Naujokat, and Bernhard Steffen. A Tutorial Introduction to Graphical Model-
ing and Metamodeling with Cinco. In Proc. of the 8th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation, Part I Modeling
(ISoLA 2018), volume 11244 of LNCS, pages 519–538. Springer, 2018.

[Lyb12] Michael Lybecait. Entwicklung und Implementierung eines Frameworks zur
grafischen Modellierung von Modelltransformationen auf Basis von EMF-
Metamodellen und Genesys. diploma thesis, TU Dortmund, 2012.

[MLA10] Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse Rich Client
Platform. Addison-Wesley Professional, 2nd edition, 2010.

[MS09] Tiziana Margaria and Bernhard Steffen. Business Process Modelling in the
jABC: The One-Thing-Approach. In Jorge Cardoso and Wil van der Aalst,
editors, Handbook of Research on Business Process Modeling. IGI Global, 2009.

[MS12] Tiziana Margaria and Bernhard Steffen. Service-Orientation: Conquering
Complexity with XMDD. In Mike Hinchey and Lorcan Coyle, editors, Con-
quering Complexity, pages 217–236. Springer London, 2012.

[Nag09] Ralf Nagel. Technische Herausforderungen modellgetriebener Beherrschung
von Prozesslebenszyklen aus der Fachperspektive von der Anforderungsanalyse
zur Realisierung. Dissertation, Technische Universität Dortmund, July 2009.

[Nau17] Stefan Naujokat. Heavy Meta. Model-Driven Domain-Specific Generation of
Generative Domain-Specific Modeling Tools. Dissertation, TU Dortmund,
Dortmund, Germany, August 2017.

[Neu14] Johannes Neubauer. Higher-Order Process Engineering. Phd thesis, Technis-
che Universität Dortmund, 2014.

46 BIBLIOGRAPHY

[NFSM14] Johannes Neubauer, Markus Frohme, Bernhard Steffen, and Tiziana Margaria.
Prototype-Driven Development of Web Applications with DyWA. In Proc. of
the 6th Int. Symp. on Leveraging Applications of Formal Methods, Verification
and Validation, Part I (ISoLA 2014), number 8802 in LNCS, pages 56–72.
Springer, 2014.

[NLKS17] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard Steffen.
CINCO: A Simplicity-Driven Approach to Full Generation of Domain-Specific
Graphical Modeling Tools. Software Tools for Technology Transfer, 20(3):327–
354, 2017.

[NTI+14] Stefan Naujokat, Louis-Marie Traonouez, Malte Isberner, Bernhard Steffen,
and Axel Legay. Domain-Specific Code Generator Modeling: A Case Study
for Multi-faceted Concurrent Systems. In Proc. of the 6th Int. Symp. on
Leveraging Applications of Formal Methods, Verification and Validation, Part
I (ISoLA 2014), volume 8802 of LNCS, pages 463–480. Springer, 2014.

[Plo81] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Tech-
nical report, University of Aarhus, 1981. DAIMI FN-19.

[SBPM08] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework (2nd Edition). Addison-Wesley, Boston, MA,
USA, 2008.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE software,
20(5):19–25, 2003.

[SGNM19] Bernhard Steffen, Frederik Gossen, Stefan Naujokat, and Tiziana Margaria.
Language-Driven Engineering: From General-Purpose to Purpose-Specific
Languages. In Bernhard Steffen and Gerhard Woeginger, editors, Comput-
ing and Software Science: State of the Art and Perspectives, volume 10000 of
LNCS. Springer, 2019. to appear.

[SN16] Bernhard Steffen and Stefan Naujokat. Archimedean Points: The Essence for
Mastering Change. LNCS Transactions on Foundations for Mastering Change
(FoMaC), 1(1):22–46, 2016.

[STK+16] Alexander Schäferdiek, Benjamin Tokgöz, Fabian Kotschenreuter, Hang Yu,
Jan Möller, Konstantin Tkachuk, Patrik Elfer, Ruikun Chang, and Volkan
Gümüs. PG 592 - Planspiele für Krisenmanagement in Rechenzentren. Tech-
nical report, TU Dortmund, 2016.

[Sun13] KVN Sunitha. Compiler construction. Pearson Education India, 2013.

BIBLIOGRAPHY 47

[SVEH07] Thomas Stahl, Markus Völter, Sven Efftinge, and Arno Haase. Mod-
ellgetriebene Softwareentwicklung: Techniken, Engineering, Management.
dpunkt, Heidelberg, 2. edition, 2007.

[tBCSW18] Maurice H. ter Beek, Loek Cleophas, Ina Schaefer, and Bruce W. Watson.
X-by-Construction. In Tiziana Margaria and Bernhard Steffen, editors, Lever-
aging Applications of Formal Methods, Verification and Validation. Modeling,
pages 359–364, Cham, 2018. Springer International Publishing.

[Wec16] Jan Weckwerth. Cinco Evaluation: CMMN-Modellierung und -Ausführung in
der Praxis. Master’s thesis, TU Dortmund, 2016.

[WMN16] Nils Wortmann, Malte Michel, and Stefan Naujokat. A Fully Model-Based
Approach to Software Development for Industrial Centrifuges. In Proc. of the
7th Int. Symp. on Leveraging Applications of Formal Methods, Verification
and Validation, Part II (ISoLA 2016), volume 9953 of LNCS, pages 774–783.
Springer, 2016.

[Zwe15] Philip Zweihoff. Cinco Products for the Web. Master thesis, TU Dortmund,
November 2015.

48 BIBLIOGRAPHY

Web Resources

[1] ASP.NET - The ASP.NET Site. https://www.asp.net/. [Online; last accessed
07-January-2019].

[2] The eclipse foundation. https://www.eclipse.org/. [Online; last accessed 08-
January-2019].

[3] Eclipse Modeling Project. http://www.eclipse.org/modeling/. [Online; last
accessed 08-February-2019].

[4] GEF (Graphical Editing Framework). http://www.eclipse.org/gef/. [Online;
last accessed 08-February-2019].

[5] Graphical Editing Framework - Draw2d. http://www.eclipse.org/gef/

draw2d/index.php. [Online; last accessed 08-February-2019].

[6] Graphiti - a Graphical Tooling Infrastructure. http://www.eclipse.org/

graphiti/. [Online; last accessed 13-February-2019].

[7] Handlebars.js : Minimal templating on steroids. http://handlebarsjs.com/.
[Online; last accessed 07-January-2019].

[8] Java Expression Language. http://docs.oracle.com/javaee/6/tutorial/
doc/gjddd.html. [Online; last accessed 08-February-2019.

[9] Java Platform, Standard Edition 8 API Specification. https://docs.oracle.

com/javase/8/docs/api/overview-summary.html. [Online; last accessed
07-February-2019].

[10] {{mustache}} Logic-less templates. https://mustache.github.io/. [Online;
last accessed 07-January-2019].

[11] PHP: Hypertext preprocessor. http://php.net/. [Online; last accessed 07-
January-2019].

[12] Racket. https://racket-lang.org/. [Online; last accessed 08-February-2019].

49

https://www.asp.net/
https://www.eclipse.org/
http://www.eclipse.org/modeling/
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/draw2d/index.php
http://www.eclipse.org/gef/draw2d/index.php
http://www.eclipse.org/graphiti/
http://www.eclipse.org/graphiti/
http://handlebarsjs.com/
http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
https://docs.oracle.com/javase/8/docs/api/overview-summary.html
https://docs.oracle.com/javase/8/docs/api/overview-summary.html
https://mustache.github.io/
http://php.net/
https://racket-lang.org/

50 WEB RESOURCES

[13] The Scala Programming Language. http://www.scala-lang.org. [Online; last
accessed 08-February-2019].

[14] Twig - the flexible, fast, and secure template engine for php. https://twig.

symfony.com/. [Online; last accessed 07-January-2019].

[15] Xtend - Modernized Java. http://xtend-lang.org. [Online; last accessed 08-
February-2019].

[16] Xtext - Language Engineering Made Easy! http://www.eclipse.org/Xtext/.
[Online; last accessed 13-February-2019].

[17] XQuery 3.1: An XML Query Language. http://www.w3.org/TR/xquery/

#EBNFNotation, 2017. [Online; last accessed 08-February-2019].

[18] Internet Engineering Task Force (IETF). The JavaScript Object Notation (JSON)
Data Interchange Format. https://tools.ietf.org/html/rfc7159, 3 2014.
[Online; last accessed 08-February-2019].

[19] Object Management Group (OMG). About the Unified Modeling Language Specifica-
tion Version 2.5.1. https://www.omg.org/spec/UML/2.5.1/, dec 2017. [online;
last accessed 15-March-2018].

http://www.scala-lang.org
https://twig.symfony.com/
https://twig.symfony.com/
http://xtend-lang.org
http://www.eclipse.org/Xtext/
http://www.w3.org/TR/xquery/#EBNFNotation
http://www.w3.org/TR/xquery/#EBNFNotation
https://tools.ietf.org/html/rfc7159
https://www.omg.org/spec/UML/2.5.1/

Appendix A
Large Figures and Listings

51

52 APPENDIX A. LARGE FIGURES AND LISTINGS

G
ra

p
h

M
o
d
e
l

p
a
cka

g
e

:
E
S
trin

g

n
s
U

R
I : E

S
trin

g

ico
n
Pa

th
 : E

S
trin

g

fi
le

E
x
te

n
sio

n
 : E

S
trin

g

E
d
g
e

N
o
d
e

e
xe

cu
ta

b
le

 : E
B

o
o
le

a
n
 =

 fa
lse

g
e
n
e
ra

ta
b
le

 : E
B

o
o
le

a
n
 =

 fa
lse

M
o
d
e
lE
le
m
e
n
t

isA
b
stra

ct
:

E
B

o
o
le

a
n

=
fa

lse

N
o
d
e
C

o
n
ta

in
e
r

Im
p
o
rt

im
p

o
rtU

R
I : E

S
trin

g

n
a
m

e
 : E

S
trin

g

s
te

a
lth

:
E
B

o
o
le

a
n

=
fa

ls
e

A
ttrib

u
te

n
a
m

e
 : E

S
trin

g

lo
w

e
rB

o
u
n
d
 : E

In
te

g
e
rO

b
je

ct =
 0

u
p
p
e
rB

o
u
n

d
:

E
In

te
g
e
rO

b
je

ct
=

1

u
n
iq

u
e
 : E

B
o
o
le

a
n
 =

 fa
lse

n
o
tC

h
a
n
g
e
a
b
le

 : E
B

o
o
le

a
n
 =

 fa
lse

in
sta

n
ce

A
ttrib

u
te

 : E
B

o
o
le

a
n
 =

 fa
lse

d
e
fa

u
ltV

a
lu

e
 : E

S
trin

g

E
n
u

m
e
ra

tio
n

lite
ra

ls
:

E
S
trin

g

Ty
p
e

n
a
m

e
 : E

S
trin

g

U
se

rD
e
fi
n

e
d
Ty

p
e

A
n
n
o
ta

tio
n

n
a
m

e
:

E
S

trin
g

v
a
lu

e
 : E

S
trin

g

R
e
fe
re
n
ce
d
Ty
p
e

im
p
o
rtU

R
I : E

S
trin

g

n
a
m

e
 : E

S
trin

g
 =

 p
rim

e

R
e
fe

re
n
ce

d
M

o
d
e
lE

le
m

e
n

t

lo
c
a
l
:

E
B

o
o
le

a
n

=
fa

ls
e

R
e
fe

re
n
ce

d
E
C

la
ss

ty
p
e

:
E
C

la
ss

G
ra
p
h
ica

lM
o
d
e
lE
le
m
e
n
t

G
ra

p
h

ica
lE

le
m

e
n
tC

o
n
ta

in
m

e
n
t

C
o
n
ta

in
in

g
E
le

m
e
n
t

A
n
n
o
ta
ta
b
le

E
d
g
e
E
le
m
e
n
tC
o
n
n
e
ctio

n

isO
u
tg

o
in

g
 : E

B
o
o
le

a
n
 =

 tru
e

In
co

m
in

g
E
d
g
e
E
le

m
e
n
tC

o
n
n
e
ctio

n
O

u
tg

o
in

g
E
d
g
e
E
le

m
e
n
tC

o
n
n
e
ctio

n
P
rim

e
Pa

ra
m

e
te

rs

 n
a
m

e
s : E

S
tru

ctu
ra

lFe
a
tu

re

 ty
p
e
s : E

S
tru

ctu
ra

lFe
a
tu

re

B
o
u
n
d
e
d
C
o
n
stra

in
t

u
p

p
e
rB

o
u

n
d

 : E
In

t =
 -1

lo
w

e
rB

o
u

n
d

 : E
In

t =
 0

E
D

a
ta

Ty
p
e
Ty

p
e

E
S
trin

g

E
C

h
a
r

E
Flo

a
t

E
B

o
o
le

a
n

E
D

o
u
b
le

E
In

t

E
Lo

n
g

E
B

ig
In

te
g
e
r

E
B

ig
D

e
cim

a
l

E
B

y
te

E
S
h
o
rt

E
D

a
te

C
o
m

p
le

x
A

ttrib
u
te

o
v
e
rrid

e
:

E
B

o
o
le

a
n

=
fa

lse

P
rim

itiv
e
A

ttrib
u

te

ty
p

e
:

E
D

a
ta

Ty
p

e
Ty

p
e

=
E
S

trin
g

[0
..1

] e
x
te

n
d
s

[0
..*] im

p
o
rts

[0
..*] in

clu
d
e
s

[0
..*] co

n
ta

in
m

e
n
t

[0
..1

] e
x
te

n
d
s

[0
..1

] e
x
te

n
d
s

[0
..1

] p
a
ra

m
e
te

rs

[0
..1

] p
rim

e
R

e
fe

re
n
ce

[0
..1

] e
x
te

n
d
s

[0
..1

] im
p
rt

[0
..1

] ty
p
e

[0
..*]

ty
p
e
s

[1
..1

] ty
p

e

[0
..*] co

n
n
e
ctin

g
E
d
g
e
s

[0
..*] e

d
g
e
E
le

m
e
n
tC

o
n
n
e
ctio

n
s

[0
..*] a

n
n
o
ta

tio
n
s

[0
..1

] p
a
re

n
t

[0
..1

] ty
p
e
sO

p
p
o
site

[0
..*] ty

p
e
s

[1
..1

] m
o
d
e
lE

le
m

e
n
t

[0
..*] a

ttrib
u

te
s

[0
..1

] co
n
n

e
cte

d
E
le

m
e
n

t
[0

..*] in
co

m
in

g
E
d
g
e
C

o
n
n
e
ctio

n
s

[0
..*] co

n
ta

in
a
b
le

E
le

m
e
n
ts

[0
..1

] co
n
ta

in
in

g
E
le

m
e
n

t

[0
..1

] co
n
n

e
cte

d
E
le

m
e
n

t

[0
..*] o

u
tg

o
in

g
E
d
g
e
C

o
n
n
e
ctio

n
s

[1
..1

] g
ra

p
h

M
o
d
e
l

[0
..*] n

o
d
e
s

[1
..1

] g
ra

p
h

M
o
d
e
l

[0
..*] e

d
g
e
s

F
igu

re
A

.1:
C
lass

D
iagram

of
the

M
eta

G
raph

Language

53

Figure A.2: Class Diagram of the Basic GraphModel

54 APPENDIX A. LARGE FIGURES AND LISTINGS

Figure A.3: Class Diagram of the Internal GraphModel

55

1 GraphModel ::=

2 Import*
3 Annotation*
4 ’graphModel’ EString (’extends’ EString)? ’{’

5 (’package’ QName)?

6 ’nsURI’ URI

7 (’iconPath’ EString)?

8 ’diagramExtension’ EString

9 (’containableElements’ ’(’ GraphicalElementContainment (’,’

GraphicalElementContainment)* ’)’)?

10 Attribute*
11 (Node | Edge | NodeContainer | Type)*
12 ’}’

13 Attribute ::= PrimitiveAttribute | ComplexAttribute

14 PrimitiveAttribute ::=

15 Annotation*
16 ’final’? ’unique’? ’attr’ EDataTypeType ’as’ EString (’[’ EInt (’,’ BoundValue)

? ’]’)? (’:=’ EString)?

17 ComplexAttribute ::=

18 Annotation*
19 ’final’? ’unique’? ’override’? ’attr’ EString ’as’ EString (’[’ EInt (’,’

BoundValue)? ’]’)? (’:=’ EString)?

20 GraphicalModelElement ::= Edge | Node | NodeContainer

21 Edge ::=

22 Annotation*
23 ’abstract’? ’edge’ EString (’extends’ EString)? (’{’ Attribute* ’}’)?

24 Node ::=

25 Annotation* ’abstract’?

26 ’node’ EString (’extends’ EString)? ’{’

27 (Attribute*
28 | ReferencedEClass

29 | ReferencedModelElement

30 | (’incomingEdges’ ’(’ IncomingEdgeElementConnection (’,’

IncomingEdgeElementConnection)*
31 | ’outgoingEdges’ ’(’ OutgoingEdgeElementConnection (’,’

OutgoingEdgeElementConnection)*) ’)’)*
32 ’}’

33 Annotation ::= ’@’ EString (’(’ EString (’,’ EString)* ’)’)?

34 NodeContainer ::=

35 Annotation*
36 ’abstract’? ’container’ EString (’extends’ EString)? ’{’

37 (Attribute*
38 | ReferencedEClass

39 | ReferencedModelElement

40 | (’containableElements’ ’(’ GraphicalElementContainment (’,’

GraphicalElementContainment)*
41 | ’incomingEdges’ ’(’ IncomingEdgeElementConnection (’,’

IncomingEdgeElementConnection)*
42 | ’outgoingEdges’ ’(’ OutgoingEdgeElementConnection (’,’

OutgoingEdgeElementConnection)*) ’)’)*
43 ’}’

Listing A.1: Extended Bacchus Naur Form of the MGL

56 APPENDIX A. LARGE FIGURES AND LISTINGS

44 OutgoingEdgeElementConnection ::= (QName | ’{’ QName (’,’ QName)* ’}’ | ’*’) (’[

’ EInt ’,’ BoundValue ’]’)?

45 IncomingEdgeElementConnection ::= (QName | ’{’ QName (’,’ QName)* ’}’ | ’*’) (’[

’ EInt ’,’ BoundValue ’]’)?

46 GraphicalElementContainment ::= (QName | ’{’ QName (’,’ QName)* ’}’ | ’*’) (’[’

EInt ’,’ BoundValue ’]’)?

47 Import ::= ’stealth’? ’import’ STRING ’as’ ID

48 BoundValue ::= ’*’ | EInt

49 Enum ::= Annotation* ’enum’ EString ’{’ EString+ ’}’

50 Type ::= Enum | UserDefinedType

51 UserDefinedType ::= Annotation* ’abstract’? ’type’ EString (’extends’ EString)? ’{’

Attribute* ’}’

52 ReferencedType ::= ReferencedEClass | ReferencedModelElement

53 ReferencedEClass ::= Annotation* ’prime’ ID ’.’ ID ’as’ EString

54 ReferencedModelElement ::= Annotation* ’prime’ (’this’ | QName) ’::’ QName ’as’

EString URI ::= EString

55 QName ::= (ID | ANY_OTHER)+ (’.’ (ID | ANY_OTHER)+)*
56 EString ::= STRING | ID

57 EInt ::= ’-’? INT

Listing A.2: Extended Bacchus Naur Form of the MGL cont.

Appendix B
Attached Papers

Parts portion of this dissertation have been published in cooperation with a number of
co-authors. This section lists the publications with a classification of my contribution for
each.

I Naujokat, Stefan, Michael Lybecait, Dawid Kopetzki and Bernhard

Steffen. CINCO: A Simplicity-Driven Approach to Full Generation of
Domain-Specific Graphical Modeling Tools. In: Software Tools for Technol-
ogy Transfer, 20(3):327–354, 2017.

The presented concepts and technologies were discussed among all authors. Ste-
fan Naujokat was main authors of all sections. The Cinco implementations were
primarily done by Dawid Kopetzki and myself.

II Lybecait, Michael, Dawid Kopetzki, Philip Zweihoff, Annika Fuhge,

Stefan Naujokat and Bernhard Steffen. A Tutorial Introduction to
Graphical Modeling and Meta-modeling with CINCO. In: Proc. of the
8th Int. Symp. on Leveraging Applications of Formal Methods, Verification and
Validation, Part I Modeling (ISoLA 2018), volume 11244 of LNCS, pages 519–538.
Springer, 2018.

The presented concepts and technologies were discussed among all authors. I am
the main author of sections 2 and 4. Implementation of the GCS tool was primarily
done by Annika Fuhge and implementation of Pyro was done by Philip Zweihoff,
both building on concepts and technologies developed by Stefan Naujokat, Dawid
Kopetzki and myself.

III Lybecait, Michael, Dawid Kopetzki and Bernhard Steffen. Design
for ‘X’ through Model Transformation. In: Proc. of the 8th Int. Symp.
on Leveraging Applications of Formal Methods, Verification and Validation, Part I
Modeling (ISoLA 2018), volume 11244 of LNCS, pages 381–398. Springer, 2018.

57

58 APPENDIX B. ATTACHED PAPERS

The presented concepts were discussed among all authors. I co-authored all sections
and I am main author of sections 3, 4 and 6.

IV Boßelmann, Steve, Markus Frohme, Dawid Kopetzki, Michael Lybe-

cait, Stefan Naujokat, Johannes Neubauer, Dominic Wirkner, Philip

Zweihoff and Bernhard Steffen. DIME: A Programming-Less Model-
ing Environment for Web Applications. In Proc. of the 7th Int. Symp. on
Leveraging Applications of Formal Methods, Verification and Validation, Part II
(ISoLA 2016), volume 9953 of LNCS, pages 809–832. Springer, 2016.

The presented concepts and technologies were discussed among all authors. Imple-
mentations of Dime have been done primarily by Steve Boßelmann, Markus Frohme,
Stefan Naujokat, Johannes Neubauer, Dominic Wirkner and Philip Zweihoff. En-
hancements in Cinco required for the implementation of Dime have been done
primarily by Dawid Kopetzki and myself.

	List of Figures
	Listings
	Introduction
	My Contribution
	Context of Attached Publications
	Nomenclature
	Organization of this Dissertation

	Background
	Domain-Specific Languages
	Eclipse
	EMF
	Xtext
	Graphiti

	Code Generation
	Template-Based Code Generation
	Model-Driven Code Generation Approaches

	Cinco
	The Meta Graph Language
	MGL Types
	Annotations

	The Meta Style Language
	Appearances
	Styles

	The Cinco Product Definition

	Cinco Product Generation
	Resource Aggregation
	Abstract Syntax Generation
	Cinco API Generation
	Containment Constraints
	Connection Constraints

	Concrete Syntax and Editor Generation
	Cinco Product Configuration
	CPD meta plug-ins
	Product and Feature Project

	Conclusions and Future Work
	Improving the Reuse of Model Elements
	Using Model-Driven Code Generation for the CPGP

	Large Figures and Listings
	Attached Papers

