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Abstract

In this paper we develop statistical inference tools for high dimensional func-
tional time series. We introduce a new concept of physical dependent processes in
the space of square integrable functions, which adopts the idea of basis decomposi-
tion of functional data in these spaces, and derive Gaussian and multiplier bootstrap
approximations for sums of high dimensional functional time series. These results
have numerous important statistical consequences. Exemplarily, we consider the de-
velopment of joint simultaneous confidence bands for the mean functions and the
construction of tests for the hypotheses that the mean functions in the spatial di-
mension are parallel. The results are illustrated by means of a small simulation study
and in the analysis of Canadian temperature data.

AMS Subject Classification: G2M10, G2G10, G2G09
Key words: high dimensional functional time series, physical dependence, Gaussian ap-
prozimation, simultaneous confidence bands, hypotheses tests, spatio-temporal data

1 Introduction

In many fields of statistics data, say X, ;, are recorded in time (denoted by the index i) at
different locations (denoted by the index j). This type of data is called panel or spatio-
temporal data and appears in numerous applications. For example, in economics data
are often collected for different firms or regions over several years, or in geo-statistics and
climate research data are recorded over a period of time at different locations. Statistical
methods for this type of data are meanwhile well developed, in particular in the field
of econometrics and spatial statistics, and we refer to the monographs of |Hsiao (2003),
Baltagi (2005)), [Wooldridge| (2010)), |Cressie and Wikle (2015)) and Haining and Li (2020)
among many others. In recent years there has also been substantial interest in statistical
inference tools for high dimensional time series and we mention exemplarily the work of
Cressie and Johannesson (2008), |Galvao and Montes-Rojas| (2010)), |Belloni et al.| (2016)),
Banerjee (2017) and [Kock and Tang| (2019)) who developed methodology for various high
dimensional spatio-temporal models.



A common feature of most of the literature on statistical methodology in this context
consists in the fact that the data X;; are real valued or multivariate. However in many
modern applications more and more data are recorded continuously during a time interval
or intermittently at a very dense grid of time points. In such circumstances it is often
reasonable to use a high-dimensional functional time series model, where the data X ;
observed at time ¢ in panel j is a function. Throughout this paper we call this type of data
functional panel data or high-dimensional functional time series. For example, X; ; could
represent the (smoothed) curve of the price of a stock for a day, where i denotes the index
for the different days and j is the index for the different stocks. For another example,
X, ; could represent the (smoothed) temperature or precipitation curve for a year i at a
location j.

Although functional data analysis is nowadays a rather well developed and very broad field
[see for example the monographs of Bosq| (2000), Ramsay and Silverman| (2005)), Ferraty
and Vieu| (2010)), [Horvath and Kokoszka (2012) and |Hsing and Eubank] (2015))], there does
not exist much literature for panels of functional data, in particular for high dimensional
panels. Several authors have developed statistical methodology for spatio-temporal data
[see Delicado et al.| (2010)), Gromenko et al.| (2017)), Kokoszka and Reimherr (2019) among
others|, but this literature usually does not consider the high-dimensional case, where the
spatial dimension is increasing with the sample size. High dimensional functional time
series have been investigated in the context of forecasting and factor analysis [see (Gao
et al. (2019)) or [Nisol et al.| (2019)]. Other authors considered statistical inference tools
for longitudinal functional data with a general hierarchical structure, where independent
subjects or units are observed at repeated times and at each time, a functional observation
(curve) is recorded [see for example, |Greven et al. (2010), [Park and Staicu (2015) or |Chen
et al.| (2017) among others].

The goal of this paper is to develop statistical methodology for high-dimensional functional
panel data, which exhibits dependencies in the time and spatial directions. In Section
we introduce a new concept of physical dependent processes in the space of square in-
tegrable functions on the interval [0,1]. Our approach is similar in spirit to the model
of m-approximable functional time series introduced by Hormann and Kokoszkal (2010),
but our formulation further adopts the idea of basis decomposition of functional data and
consequently separates the functional index and time index in the mathematical represen-
tation of the functional processes. We also refer to the work of |[Bosq (2002)), Bradley| (2007)
or Panaretos and Tavakoli (2013)) for other concepts modelling functional dependent data
such as mixing conditions or autocorrelations and cumulants. It is found in our theoretical

investigations that it is simpler and more efficient to establish Gaussian approximation,



chaining and bootstrap results for high dimensional functional time series using our phys-
ical representation. In Section [3| we provide some probabilistic results which are useful for
the statistical analysis of high dimensional functional pane data. In particular we derive
a Gaussian approximation for sums (with respect to time) of high dimensional panels,
which is used for the construction of a multiplier bootstrap procedure to approximate the
distribution of sums uniformly with respect to the spatial dimension. These results have
numerous applications in the statistical inference of high-dimensional functional time series
and we illustrate the potential of our approach in Section [4, Here we derive joint simulta-
neous confidence bands for the mean functions of a high-dimensional functional time series
and construct a test to check the hypothesis of parallelism of the mean functions. Section
is devoted to a small simulation study to illustrate the finite sample properties of the new
methodology. We also present a data example analyzing yearly temperature curves from
from different Canadian cities. Finally, all proofs are deferred to the online supplemental
material of the paper.

2 Physical representation of functional time series

In this section we introduce the basic functional time series model considered in this paper.
To be precise, let £2[0, 1] denote the set of all real-valued square integrable functions defined
on the interval [0, 1] and let {X;}icz be a stationary functional time series in £2[0,1]. We
begin with a motivating example for the general model defined below.

Example 2.1. Let B = {B;}52, be a basis of £?[0,1], then the i-th element X; of a time
series {X; }iez in £2[0,1] can be represented as

oo

Xi(u) =Y Li;Bj(u) (i€Z), (2.1)

J=0

where L; ; = fab Xi(u)Bj(u)du is the jth Fourier coefficient of X; with respect to the basis
B. If L, = (Lo, Liq, - - )T denotes the infinite-dimensional vector of Fourier coefficients
of X;, one can use any dependence concept for the infinite dimensional stationary time
series {L; }icz to describe the dependence structure of the functional time series {X;}icz
in £2[0,1]. Following Wul (2005)), a general model for the infinite dimensional stationary
time series {L; };cz is given by



where G : SN — RN is a given filter, F; = (--- ,m_1,m;) and {n;}icz is a sequence of
independent and identically distributed random variables taking values in some space §. In
this case each element X; of the time series can be written in the form X;(u) = H(u, F;) for
an appropriate function H mapping a sequence of Fourier coefficients to its corresponding
function in £2[0,1].

Using Example as motivation, we now introduce the following formulation of a station-
ary functional time series and the associated dependence concept, which will be considered
in this paper.

Definition 2.1. A stationary functional time series {X;(u)}icz in £2[0,1] has a physical
representation, if there exists a measurable function H : [0,1] x SN — R such that

Xi(u) = H(u, ), Vue[0,1], (2.2)

where F; = (-++ ,nmi—1,m:) and {n;}iez is a sequence of independent identically distributed

random elements in S.

Note that a functional time series {X;}icz C £2[0, 1] of the form (2.2)) is strictly stationary
by this definition. In order to specify its dependence, we define for a real valued random
variable Z and a constant ¢ > 1 (in the case of existence) its norm ||Z||, = (E[|Z|q|)1/q

and introduce the following measure of physical dependence.

Definition 2.2. Let {X;}icz denote a functional time series in L£*[0,1] of the form (2.9),
such that || X;(u)||, < co. The dependence measures of {X;}icz are defined by

0 (k,q) = sup [[H(u, Fi) = H(u, F)llg, k=0, (2.3)
u€(0,1]
where Fi= (-++ ,N—2, N1, 05 M1, =+ 5 Mk—1, M) and 1 is identically distributed as ny and is
independent of the sequence {n;}icz-

In the representation H can be viewed as a filter or data generating function of
a stochastic system and {7;};cz can be viewed as random shocks or innovations of the
system. Adopting the latter point of view, the physical dependence measures 0y (k, q)
quantify the influence of the innovations k steps ahead on the current output of the system.
Weak dependence is characterized by the fast decay of dy(k, q) as k grows. Note that our
definition of a functional time series and their dependence measures are different from the
popular concept of LP-m-approximability (see, for example, Hormann and Kokoszkal (2010)
and Horvath and Kokoszka (2012)), where X;(u) is expressed as G(¢€;(u), €;_1(u), - - - ) with
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{€i(u)}iez 1i.d. random functions and the dependence is measured by the changes in
X;(u) when certain €;(u) in the past are replaced with i.i.d. copies. Both formulations are
based on Bernoulli shifts and coupling to quantify and control the dependence strength of
functional time series. However, the formulation considered in this paper further adopts
the idea of basis decomposition of functional data and hence separates the functional index
u and time index 7 in . It is found in our theoretical investigations that it is simpler
and more efficient to establish Gaussian approximation and bootstrap results for high
dimensional functional time series using the representation ([2.2)), conditions on the decay
of the dependence measure and the associated basis decomposition.

We continue giving two examples on how to check the rate of decay of dy(k, q) for linear

and nonlinear functional time series models.

Example 2.2. Consider the following MA (co) functional linear model

u) = Z/ol aj(u,v)e,_j(v) dv,

where {a;};>0 is a sequence of square integrable functions a; : [0,1]*> — R satisfying
70 8UPy vefo 1 laj(u, v)| < oo, and {€;}icz is a sequence of ii.d. random functions in
£2[0,1]. Writing €;(u) = 372 n;;B;(u) with n; = (1:7) />0, We see that Xj can be repre-
sented in the form of (2.2). Assume that, for some ¢ > 1, sup,¢(oq [[€i(u)|l; < oo, then
simple calculations using Definition show that the physical dependence measures in

(2.3) satisfy
ou(k,q) = sup/|akuvldv

u€e(0,1]

Example 2.3. In this example we continue our investigation of the nonlinear model in-
troduced in Example Recall the representation and let b; = sup,epq1) |Bj(u)]
and [; = E|L, ;|. The rate of decay of [; is determined by the smoothness of the functions
X, as well as the basis functions B; used in the decomposition . See Proposition
below for the calculation of [; when X;(u) is twice continuously differentiable and B; is

= i ljj;l,]B u

=0

the cosine basis. Now write

with L;; = Li;/l; = ( ;). Denote the physical dependence measure of {L; ;}icz by (cf.
Wul (2005)) 8;(k,q) == |G;(Fi) — G;(F})|lq- Then using , we obtain that

ou(k,q) = O(lebﬂj(k‘,@) (2.4)



For a wide class of nonlinear time series models, Wu| (2005)) contains detailed calculations
of the rate of decay of their physical dependence measures. As [; and b; can be calculated
as discussed above, the estimate (2.4) can be used to bound the dependence measures

of a wide class of functional time series. A further simplification can be carried out if
> i—oljbj < oo. In this case we have dy (k, q) = O(0(k, ), where 0(k, q) = sup;> 0;(k, q).

Throughout this paper we will work with the basis {cos(kmu)}r—o1,.. of £2[0,1]. If {X,}icz
is a functional time series in £2[0,1] such that (2.2) holds for some filter H, it can be
represented as a Fourier series

o0

Z a; x, cos(kmu),
k=0
where )
ai = 2/ cos(kmu) X;(u)du, (2.5)
0
kE>1and a;o = fo u)du are random variables which can be written in the form

1
a;i; = Gip(Fi) = 2/ cos(kmu)H (u, F;)du
0

for some filter G. The following result specifies the rate of decay of the Fourier coefficients
under smoothness conditions on the function X;.

Proposition 2.1. Suppose that {X;}icz is a time series in L£2[0,1] such that is
satisfied and || X;(u)||, < oo for some g > 2. Assume X; is twice continuously differentiable
on the interval [0,1] a.s. and that

1X1(0)llg + 1 X1(0)llg + Sup]llX”( u)llg < oo. (2.6)

u€el0,1
Then the Fourier coefficients in satisfy

Cq
k2

for some constant C, which is independent of i, k. Furthermore,

laiklly <

lais. — ailly = O(min(0x (i, q), 1/k%)),

where aj ) = G(F;) = f cos(kmu)H (u, F})du.



Proposition establishes the rate of decay of a;) as a function of k as well as the
dependence measure of a;; when viewed as a time series indexed by 7. In the following we

will consider the standardized sum

and its approximation

where X;(k,u) = Zle a; j cos(jmu) is the kth Fourier sum of X;(u).

Proposition 2.2. If the assumptions of Proposition are satisfied, E(X;(u)) = 0 and
5r(i,q) = O(i~P) for some > 2, we have

sup |Sp(u) — Sp(k,u)|

u€[0,1]

< Ck(Q—B)/B,
q

where C' 1s a finite constant which does not depend on k or n.

Proposition establishes that S, (u) can be well approximated by S, (k,u) if k is suf-
ficiently large. The latter is an important result due to the fact that the theoretical
investigation of S,(k,u) is much easier as it can be written as a linear combination of
finitely many random variables.

We conclude this section with a result on chaining of functional time series. To be precise
define a grid U,, = {tim}ﬁ’;o where t;,, = i/l, and [, is a positive integer that diverges to
infinity. The following proposition establishes that sup,ec( 1) [Sn(k, u)| can be well approx-
imated by maxy,ey, |Sn(k,u)| for a sufficiently dense grid (that is [,, — 00).

Proposition 2.3. If the assumptions of Proposition [2.3 are satisfied, we have

where C' is a finite constant which does not depend on k or n.

k2/8
max sup  |Sp(k,u) — Sn(k;,ti,n)|H <(C—r
q

: 1-1/q’
0<i<in—1 ue[tiyn,tiJ’»l‘n} ln /q

3 Main results

In this section we derive a Gaussian approximation for partial sums of high dimensional
functional time series which can be used to define a multiplier bootstrap procedure.
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Throughout this paper {X;}! ; denotes an r-dimensional stationary functional times with
X; = (Xi1,...,Xi,)", where each component X; ; of the vector X; is an element of £2[0, 1]
satisfying for some filter H;, that is X; ;(uv) = H;(u, ;) (j = 1,2,---,r). Conse-
quently, the r-dimensional vector can be represented as

Xi(u) = H(u, ) (3.1)

(i=1,...,n, u € [0,1]), where the r-dimensional filter is defined by H = (H,,..., H,)".
We assume that the dimension
r=nh (3.2)

increases at a polynomial rate with the sample size n, where #; > 0 is a given constant.
We are interested in the probabilistic properties of the sums of high-dimensional vectors

1 n
Sn(u) =—=Y X;(u) (3.3)
as n,r — oo, and denote by
1 n
Sp.i(u) = — X j(u) (j=1,...,7) (3.4)
J \/ﬁ 1/—21 J
the j-th component of the vector S,, = (Sy1, ..., SM)T.

3.1 Gaussian approximation

Consider the component-wise Fourier expansion of the r-dimensional function X;
Xi(u) = Zai,j cos(jmu)
j=0
and define the vector
Anj—(Anjl,...Anjr)T_Liaij. (35)
. sJs sJs \/ﬁ ‘ )
=1

Forn € Nlet {N,, 1}, be a sequence of independent centered r-dimensional Gaussian ran-

dom variables that preserves the covariance structure of {A,, x }72, i.e. Cov(A,, ;) =Cov(N,, 1),
define

SN (u) = (SN (u),..., SN (u)) " =3 Ny cos(kmu) (3.6)

8



and denote by S};(u) the j-th entry of the vector S} (u) = (S}, (u),..., Sy, (u))T. By the
proof of Proposition , we have for [-th coordinates A, ;; of the vectors A, ; in (i3.5))

o
> 1 Anu
=0

and therefore the random variable S (u) in (3.6)) is well defined (almost surely).

lq < 00,

Theorem 3.1. Let {X;}icz denote a stationary r-dimensional time series satisfying .
For each j, suppose that X, ; is twice continuously differentiable on the interval [0, 1] a.s.;
satisfies || X5, < oo and (2.6) for some ¢ > 4. Assume E(X;(u)) = 0 and

max 6y, (4,q) = O(i ") (3.7)

1<j<r

for some B > 3. If there exists a positive constant & such that

min inf E[S2 (u)] > 6 (3.8)

1<j<r uel0,1]

for sufficiently large n and the exponent 01 in satisfies

q—2
0, < ,q) = , 3.9
I S = D) )
we have as n,r — 0o
ilelI[R? ]P’Lrgjagﬁ 02321 |Sh.(w)] < .7:] ]P’[lrgfué 0221 S (u)] < :L‘} ‘ — 0. (3.10)

It is easy to show that, under assumptions of Theorem the weak convergence
Smj (U) = N(()? 02 (]7 U))

holds for any j = 1,...,7 and u € [0,1], where the symbol N(u,c?) denotes a normal
distribution with mean p and variance 0. Consequently, assumption (3.8) is rather mild

and means that, uniformly in v and j, S, ;(v) will not converge to a degenerate limit.

3.2 Bootstrapping panel functional time series

Theorem provides an approximation (in distribution) of maxi<j<, Sup,eo1y [Sn.j(u)|
by a corresponding expression using normally distributed random variables. The latter
distribution can be easily simulated if the dependence structure of the process {N,, .},
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would be known. In order to mimic the dependencies, we propose a multiplier bootstrap
method. To be precise, define for a block size m the local (r-dimensional) mean

i+m

ZX (3.11)

\/n_ Z iam () = S (u) /] N;, (3.12)

where N; are i.i.d. one-dimensional standard normal random variables. Let ®,, ;(u) be the

and consider the vector

j-th entry of ®,,(u), then we have the following result.

Theorem 3.2. Let {X;}icz denote a stationary r-dimensional time series satisfying .
For each j, suppose that X, ; is twice continuously differentiable on the interval [0,1] a.s.
satisfying || Xi;|l, < oo and (@ for some g > 2 and assume that

1X55 () = X7 (0)llg < Clu— v (3.13)

holds for all u,v € [0,1] for sufficiently large n. Further assume that and (@) holds and
that

max [5H (i, q) + 0 (4, q)] = O(i™") (3.14)

1<5<
for some B > 2 and q > 4, where H}(u,F;) is the filter corresponding to the derivative
Xi ;(u) of the process of X;;(u) = Hj(u,F;). If the block size m satisfies m < n? with
0 < ¢ <1 and the exponent 0y in satisfies 01 < ¢'q?/[2(q+1)] where ¢/ = —max{(¢p—
1)/2,—¢}, then on a sequence of events E,, such that P(E,) — 1 if r,n — 0o, we have

sup IP)[ max sup (P, ;(u)| <z ‘{XZ}?:I] —IP[ max sup |SY ()] < :E” — 0.
z€R 1<jsro<u<i 1<5<r g<u<i

4 Some statistical applications

The results of Section |3 can be used for statistical inference of high-dimensional time series,
if the statistical analysis is based on a vector of sums of the form (3.4]). Typical appli-
cations are tests for parametric assumptions on the mean function, two (or more) sample
comparisons, the construction of confidence regions for parameters of interest, change point
analysis, to name just a few. Exemplarily, we illustrate in this section two applications,
namely the construction of joint simultaneous confidence bands for the mean functions
and the development of a test that the mean functions at different spatial locations are
parallel.
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4.1 Joint simultaneous confidence bands (JSCB)

let C?[0, 1] denote the space of twice continuously differentiable functions on the interval
0,1], let {X;}™, be an r-dimensional stationary functional time series in (C?[0, 1])" satis-
fying and denote by g(u) := E(X;(u)) = (g1(u),...,g,(u))" the expectation of X;.
This subsection is devoted to the construction of joint (asymptotic) simultaneous confi-
dence bands (JSCB) for the components of the vector g if the sample size n and dimension
r converge to infinity. More precisely, we aim to find (random) functions ¢, dy, ..., ¢, d,
defined on the interval [0, 1], such that ¢;(u) < d;(u) for all u € [0,1] and such that the
subset

Coo = {h € (€20, 1))" | ¢;(u) < hy(u) < dj(u) Vu € [0,1] V5 = 1,... ,r}. (4.1)
of the set of r-dimensional functions h = (hy,...,h,)" on the interval [0, 1] satisfies

lim P(g€Cho)=1—a

n,T—00

for some pre-specified constant o € (0,1). To this end, we denote by

vi(u) =/ Var(Xi;(u)), j=1,2,---,m

the variance of X; j(u) and make the following assumption.

(V) There exists a positive constant 6 > 0 such that

inf min vj(u) >4
u€l0,1] 1< <r

Proposition 4.1. Let {X;}icz denote a stationary r-dimensional time series satisfying

. For each j, suppose that X;; is twice continuously differentiable on the interval

0,1] a.s. satisfies || X;j]|; < 0o and for some q > 2. Assume that , (@,
and condition (V) hold. Let X; ;(u) = (X;;(u) — g;j(u)) and define

3 1w .
Sn(u) = — Xl(u) 3=12---r (4.2)
J \/ﬁ ; J
Then, as r,n — 0o, we have

sup IP’[ max sup |S,;(u)/vj(u)| < :U] —]P’[ max sup |S,Jyj(u)/vj(u)| < x” — 0,
zeR | L1S7Sro<u<t 1Sjsrocu<t 7

where SY;(u) is the jth component of the vector S = (SN (u),..., Sy, (u))" defined in

(5-4).
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Proposition [4.1] implies that if one can find a critical value ¢}__, such that

i N , < | =1=
i P g 8250/l < ] =1 e
then a 100(1 — )% JSCB for the vector g = (g1,...,9,)" is obtained by (4.1)) using the

functions

o) = Snil¥) _ff-a“f(”), j=1,....1 (4.3)
di(u) = Sng (1) %—a“j(“), i=1,...r (4.4)

where S, ;j(u) is defined in (3.4). As the standard deviation v; and the quantile ¢}_, are
not known, we have to estimate these from the data. In particular UJQ- is estimated by the

sample variance of {X; ;(u)}!, defined as

2 (u) = % Z (X (1) = Snj(u)/v/n)".

The following lemma establishes that @? is a uniformly consistent estimator.

Lemma 4.1. For each j, suppose X, ; is twice continuously differentiable on the interval
[0.1] a.s. and satisfies (2.6) for some q¢ > 2. Assume that holds and that 0; < q/4.
Then we have r,n — oo

‘ max sup [62(u) — v§(u)|Hq/2 = O(r¥1/+/n) = o(1).

1<5<r o<u<i
In order to obtain the critical value ¢}_,, we now utilize the multiplier bootstrap procedure
established in Theorem Detailed steps for the implementation are listed as follows.

(a) Select block size m such that m — oo, m = o(n).

(b) For a large integer B generate independent standard normal distributed random
variables {Nij}?z_lm, j=1,2,---,B. For each j, calculate

@/ (u) = - T_nm i[sz(u) — S,.(u)/+/n]N?

and
5 — J o
), = 1%?%{7« Oigglm)m,k(“”/% (u)],

where @fnk(u) is the k-th component of the vector ®/ (u) = (@fﬁﬂu), @ ()T
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(c) Let dW) < ... < dP be the ordered statistics of {®7. ). Then the quantile ¢}_,

is estimated by ®{L )

(d) The JSCB is then defined by (4.1]) using the functions in (4.3 and (4.4 with these
estimates, that is

_ Sp(u) = 25, (u)
~\</L<ﬁla>fm j=L.m (4.5)
_ Snj(u) + O B;(u)

vn

A data driven rule for the choice of the block length in step (a) will be given in Section
4.3l The following proposition establishes that these definitions yield an asymptotically
correct JSCB.

Proposition 4.2. Under the conditions of Theorem[3.9 and Proposition [{.1, we have for
the JSCB defined in with the functions c; and d; defined in

lim lim P(geC,o)=1—a.

n,r—o00 B—oo

Proposition follows directly from Theorem Proposition and Lemma [4.1] The
details are omitted for the sake of brevity. The finite coverage probabilities of these joint
simultaneous confidence bands are investigated in Section by means of a simulation
study.

4.2 Test of parallelism

Suppose we observe a panel of functional time series {X; }?; of dimension r satisfying .
Adopting the same notation as in Section [i.1], for j =1,2,--- ,r, let g;(u) = E[X;;(u)] be
the mean function of panel j. Denote by g7 = fol gj(u) du the average of g;(u) with respect
towu, j =1,2,---,r. In this subsection, we are interested in testing the null hypothesis

that the mean functions in the different panels are parallel, that is

Ho = g1() [ g20) 1+~ 1l 90(), (4.6)

versus the alternative that at least two mean functions are not parallel. Here the symbol ||
denotes parallelism of two functions; that is, g; || g; if and only if the difference g;(u)—g;(u)

is a constant function.
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Now let X
1< » )
= ZX”(u) and g7 = /0 gj(u) du
i=1
be the corresponding sample estimates of g;(u) and g5, respectively, and define
vi(u) = gi(u) — g5 ;  Uj(u) = g;(u) — g5

To test the hypothesis (4.6) we consider the following statistic

T, =+/n max sup |Dj(u) — 0g(u)|/vk(u), (4.7)

1<j<k<r 0<u<l1

where v;;(u) > 0 is a measure of scale for 7j(u) — D4(u) which will be defined below.
Observe that the null hypothesis in is satisfied if and only if vj(u) = v (u) for all
u € [0,1] and all pairs k and j, 1 < j < k < r. As a result, the test statistic 7,, should
be large if there exists at least one pair of non-parallel functions. Furthermore, T, can
be viewed as a family-wise-error-controlled pair-wise test of parallelism among the curves
g1, -..,g- and one can use the test T,, to decide which curves are parallel to each other
and which ones are not with a given family-wise error (asymptotically). Consequently, the
statistic 7T}, can be used to cluster curves with similar shapes together.

In order to obtain the critical values for a test, which rejects the null hypothesis for
large values of T},, we define the quantities

Wise) = Xiy(0) / X,j
Wijr(u) = Wi U) -
and
S (1) }: k), 1<j<k<r (4.8)
With these notations it is easy to see that the statistic 7,, in (4.7)) can be represented as

T, = max sup |Sn]k( ) /vik(w). (4.9)

1<j<k<r 0<u<1

From this representation we observe immediately that Theorems 3.1 and [3.2) can be used to
determine its critical values. Furthermore, it is easy to see from the above representation

that a natural choice for the scaling factors is
vn(u) =/ Var[Wijn(u)],
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where in practice, one replaces v, ;(u) with its sample version, that is

o) {13 Wit~ 13w}

i=1

Let W;(u) be the vector of dimension r(r — 1)/2 with entries Wiik(u), 1 <j<k<r,

consider its (coordinate-wise) Fourier expansion

u) = Zém cos(jmu)
=0

and define the r(r — 1)/2-dimensional vector

n
o 1
Anj=—=3 4.
) \/ﬁl )]
1=

For n € N let {N,;}2, be a sequence of independent centered r(r — 1)/2-dimensional
Gaussian vectors that preserves the covariance structure of {A,, ;}72,, i.e.

COV({ATLJC}ZOZO) = COV({Nn,k}ZO:O>7

and define the vector

éff(u) = ZNn,l COS(ZWU) = (Sn]k( ))1§j<k§r’

=0

where the random variables S i1 (u) denote the entries of SN (u). By the proof of Propo-
sition we have Zk 0 HAn kabllq < 00 where the random variables An k.ap denote the
entries of the vector A, (1 < a < b < r). Hence the random variable S¥ (u) is well

defined almost surely.

Proposition 4.3. For each j, suppose that X; ; is twice contmuously differentiable on the
interval [0,1] a.s. and satisfies ([2.6) for some ¢ > 2. Assume that holds; that (3.8)
holds with S?hj(u) therein replaced by 5’2 ks that holds with 6, therem replaced by 20, ;
and that condition (V) hold with v; therein replaced byvjg, 1 <j<k<r. Ifnr— oo,
we have, under the null hypothesis @ of parallelism

S (u §N
—n7j7k( >‘§x] —]P’[ max sup ‘—’Jk ‘<m”—>0
V) (1) 1<j<k<ro<u<t | Vj(u

sup IP[ max sup
z€R 1<j<k<r o<u<l
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Proposition 4.3| reveals that under the null hypothesis of parallel mean functions ¢y, ..., g,
the distribution of the statistic 7;, in can be well approximated by the law of the L*>°
norm of a high-dimensional vector of Gaussian random functions. Theorem implies
that the multiplier bootstrap can be used to approximate this L*> norm. A combination
of these results motivates the following bootstrap test for the hypothesis .

(i) Select a block size m, such that m — oo, m = o(n).

(ii) For a large integer B generate independent standard normal distributed random
variables {N/'}?-™ h = 1,2,---,B. For each h and pair (j,k), 1 < j < k < r,
calculate

. m n—m . ) X
O 5p(0) = )Y Dimi(u) = Su () /VAINT [054(1),
=1

where szjk(u) = Z;J;T W jxk(w)/m, and define

o = " .
131?313(90221‘ m]k(u)‘

h
(iii) Let O < ... < 3P be the ordered statistics of {é{n}Jle and estimate the quantile
C1—q,n Of the distribution of T}, in 1| by P{LI—IBY,

(iv) Reject the null hypothesis (4.6)) of parallel mean functions, whenever

T, > o(L(1=e)B), (4.10)

A data driven rule for the choice of the block size in step (a) will be given in Section
The asymptotic validity of the above multiplier bootstrap procedure is established in the
following two propositions.

Proposition 4.4. Suppose that and hold and that 6, < ¢'q*/[4(q + 1)].
Further assume that the conditions of Proposition [[.3 are satisfied. Then, under the null

hypothesis @ of parallel mean functions we have

lim lim P(7, > @{l-5)) = q.

n,r—o00 B—oo

Proposition [£.4] follows directly from Theorem [3.2] Proposition [4.3] and Lemma [£.1] The
details are omitted for the sake of brevity. Next, we study the power of the test considering
the local alternative
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H, : There exists a pair (j, k), 1 < j < k <r, such that

inﬂg sup |g;(u) — gr(w) — c[y/n/logn — oco. (4.11)
ceR yelo,1]

The following proposition shows that the test (4.10]) achieves asymptotic power 1 under
alternatives of the form (4.11)). Hence this test is able to detect alternatives that deviate
from the null hypothesis of parallel mean functions at the rate \/logn/n.

Proposition 4.5. If the conditions of Proposition[{.4] are satisfied, we have under alter-
natives of the form that

lim lim P(7, > ¢{L-98D) = 1.

n,r—o00 B—oo

4.3 Tuning parameter selection

To implement the multiplier bootstrap, one needs to choose the block size m. Observe that
the quality of the bootstrap depends on how well the conditional covariance operator of
®,, in approximates the covariance operator of S in . The tuning parameter
m controls the accuracy for the latter approximation. When m is too large, the variance
of the conditional covariance operator of ®,, will be too large; while if m is too small, then
the latter conditional covariance operator will have too much bias. In this paper, we adopt
the minimum volatility (MV) method proposed in |Politis et al. (1999) to select the block
size m. The idea behind the MV method is that the conditional covariance operator of
®,,, should behave stably as a function of m when m is in an appropriate range. Therefore
one could select m that minimizes the variability of the conditional covariance operator of
®,, as a function of m. We refer the readers to [Politis et al|(1999) and Zhou (2013) for
more detailed discussions of the MV method and its applications in time series analysis.
Specifically, one first determines a sequence of equally-spaced candidate block sizes m; <
mo < --- < my and defines my = 2my; — my and my; = 2my — mi_1. For each ¢ €
{0,...,k + 1}, one calculates

=(i MmN~ :
:§)<u) = n_ml Z [ﬂ7j’m _Sny.](u)/\/ﬁ]27 j = 1727'.. 7T7
k=1

where T; ; ,, denotes the jth component of T;,,. Note that Ey)(u) is an estimator of the

marginal variance operator of STJL\,[j (u). Next, one calculates for i = 1,2,--- |k
‘ r 1 ) .
=0 .= Z/ sd({Z;” (w) 127 ) du,
=170
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where sd denotes standard deviation. Observe that =) measures the overall variability
of Egz) (u) (with respect to i) at candidate block size m;. We finally recommend selecting
the block size m; such that 7 = argmin, ., =0, The MV method performs well in our

simulation studies, which are presented in the following section.

5 Numerical experiments

In this section we illustrate the application of the methodology by means of a small simu-

lation study and by the analysis of a real data example.

5.1 Simulation study

In the Monte Carlo simulations, we consider the following two types of simple panel time

series models:
The PAR(a)-model is defined as the panel autoregressive functional model
Xi(u) = g(u) + Arei(u),

where A, is an r x r tridiagonal matrix with 1’s on the diagonal and 1/2’s on the off-
diagonal, e;(u) = (e;1(u), -+ ,€;-(u))" is an r-dimensional vector with independent
entries satisfying the AR~equation

67;7]'('&) = aei,u(u) + Ei?j(U) s j = 1, e, T (51)

and a € [0, 1) denotes the auto-regressive (AR) coefficient that controls the strength
of the temporal dependence. The innovations in ({5.1)) are given by i.i.d. random

functions
e}
-3 . . .
€ j(u) = E k[cos(2mku)e; j i + sin(2mku)e; ji], i =1,2,..., j=1,...,1,
k=1
where the infinite-dimensional vector €;; := (€1, €52, -+ )" satisfies €;; = A€},

A is the infinite-dimensional tridiagonal matrix with 1’s on the diagonal and 1/2’s
on the off-diagonal and
€ =€ 1,69 ) " (5.2)

i, 4,5,10 %4,5,20

are i.i.d. infinite-dimensional random vectors with i.i.d. entries at each component.
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The PMA (a)-model is defined as the panel moving average functional model. The
setup is the same as that of PAR-model except that equation (j.1)) is replaced by a

moving average (MA) representation
eij(u) = €j(u) + aei—1;(u),
where a is the MA-coefficient that controls the temporal dependence.

Observe that the functions X; in the PAR(a)- and PMA(a)-model are twice but not
three times differentiable and that the components X j (u) and X, j,(u) are independent
if |j1 — jo| > 1. By construction, the Fourier coefficients ¢; ;, as a sequence of k are
correlated. In the simulation studies, the entries €] ;, in the vector are either i.i.d.
standard normal distributed random variables (denoted by N(0, 1)) or i.i.d. standardized
t-distributed random variables with 6 degrees of freedom (denoted by \/ﬂtﬁ) to repre-
sent light tailed and heavy tailed cases, respectively (note that the standard deviation of
a \/%tﬁ—distributed random variable is 1). Throughout the simulations, the block size is
selected by the MV method described in Section [4.3]

5.1.1 Coverage accuracy of JSCB

In order to investigate the approximation of the confidence level of the JSCB for finite
sample sizes, we consider the function g(u) = 0 in the PAR(a)- and PMA(a)-model. The
sample size n is chosen as 200 and 400 and the dimension r varies from 5 to 80 in order to
investigate the impact of the dimensionality on the coverage probability. The number of
bootstrap replications is chosen as B = 1000 and for each scenario 1000 simulation runs
are performed. The simulated coverage probabilities of the JSCB under both light and
heavy tailed errors and various levels of time series dependence are reported in Tables
and 2

We observe that the performances of the JSCB under light and heavy tailed errors are
similar. When n = 200, the JSCB is reasonably accurate for all dimensions when the
time series dependence is moderate. Under stronger time series dependence, such as for
the PAR(0.5)-model, the coverage probabilities of the JSCB are slightly smaller than the
nominal confidence level. However, the approximation improves significantly if the sample
size increases to n = 400. In this case, the coverage of the JSCB is reasonably accurate
in all cases under consideration. The impact of the dimension on the accuracy of the
approximation of the confidence level is hardly visible, but we observe a slightly better
performance of the JSCB for smaller dimensions » = 5,10 compared to the cases r =
20, 40, 80.
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n = 200
1—a=0.95 1—a=09
r | PAR(0) | PAR(.2) | PAR(.5) | PMA(5) | PMA(1) | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1)
5 |.941 .944 907 939 942 .893 878 .830 878 875
10 | .940 934 916 934 941 .891 .870 .824 .881 .878
20 | .938 943 919 945 936 .884 .890 817 .887 .869
40 | .942 942 914 .943 941 .885 871 818 873 .873
80 | .943 941 912 .944 934 902 .889 .808 871 .867
n = 400
1—a=0.95 1—a=09
r | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1) | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1)
5 1.948 947 941 945 944 .892 .880 .887 .899 .893
10 | .948 957 934 939 939 .898 .890 .862 877 872
20 | .954 953 946 943 943 897 | .891 878 .885 .891
40 | .955 944 947 .949 940 905 .885 873 .885 .888
80 | .956 946 942 955 943 903 908 .857 .896 .880

Table 1: Simulated coverage probabilities of the JSCB in the PAR- and PMA-model. The
errors in are N'(0,1)-distributed and 1—a represents the nominal coverage probability.

5.1.2 Accuracy and power of parallelism test

In order to investigate the finite sample accuracy of the test for parallelism, we consider
the functions

gi(u>:u2_u+ci’ i:1727"'7r7

in the PAR(a) and PMA (a)-model, where ¢; are i.i.d. standard normal distributed random
variables. Observe that the mean functions g;(u), 1 < i < r are parallel. Various values
for the dimension r from 5 to 30 and various values of the parameter a are selected to
investigate the impact of the dimension and temporal dependence on the accuracy of the
test, respectively. Since the parallelism test compares mean curves for every pair of the r
component functional time series, the effective dimensionality of the test is (;) Hence when
r = 30, we are effectively testing a 435 dimensional function. Throughout this subsection,
the number of bootstrap replications is chosen as B = 1000 and for each scenario, 500
simulations are used for the calculation of the rejection probabilities.

The simulated Type I error rates of the test for parallelism under light and heavy tailed
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n = 200
1—a=0.95 1—a=09
r | PAR(0) | PAR(.2) | PAR(.5) | PMA(5) | PMA(1) | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1)
5 |.941 .944 919 939 937 .884 .887 .83 873 .874
10 | .942 .943 918 938 943 .895 .880 827 873 .878
20 | .942 944 911 .936 945 .892 .880 .803 .876 .883
40 | .934 | .943 916 937 944 877 | .888 812 877 .885
80 | .944 | .954 925 935 940 877 | 871 .814 872 .868
n = 400
1—a=0.95 1—a=09
r | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1) | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1)
5 1.952 939 939 948 .940 906 .889 .883 .885 .888
10 | .947 | .945 936 944 943 .898 .899 875 .883 .874
20 | .955 952 923 946 950 904 .886 .857 .881 .890
40 | .946 944 941 .950 942 .896 .887 .861 .887 .885
80 | .947 | .956 929 .954 945 .893 901 .856 902 .886

Table 2: Simulated coverage probabilities of the JSCB in the PAR- and PMA-model. The
errors in are \/2/3tg-distributed and 1—« represents the nominal coverage probability.

errors are reported in Tables [3|and [, respectively. We observe similar results as in Section
[b.1.1] There are no significant differences in the approximation of the nominal level for
light and heavy tails, and the test is reasonably accurate when the time series
dependence is not too strong. Moreover, the test becomes also reasonably accurate under
stronger temporal dependence for larger sample size (here n = 400). The approximation of
the nominal level by the test is only slightly better for lower dimensions (r = 5, 10)
compared with higher dimensions (r = 20, 30).

Next, we investigate the finite sample performance of the test under the alternative.
To this end, we let

g(u)=uv*+Ob—1Nu+c and g(u)=v’>—u+c;, i=2,3,---,1,
where ¢;, ¢ = 1,2,--- ,r are i.i.d. standard normal random variables, b > 0 is a constant
that controls the magnitude of deviation from the null hypothesis. In particular the choice
b = 0 corresponds to parallel mean functions and larger values for b indicate a more
substantial deviation from the null hypothesis. Further observe that there is only one
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n = 200
a=0.05 a=0.1
r | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1) | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1)
5 |.042 | .062 .076 .052 .066 114 | 1130 142 102 120
10 | .058 | .054 078 .062 .060 124 | 118 .164 110 110
20 | .060 | .050 .080 .066 .058 1260 | 122 202 132 152
30 | .066 | .064 .094 .056 .066 128 | 140 190 134 .140
n = 400
a=0.05 a=0.1
r | PAR(0) | PAR(.2) | PAR(5) | PMA(.5) | PMA(1) | PAR(0) | PAR(:2) | PAR(.5) | PMA(.5) | PMA(1)
5 1.052 |.048 .056 .052 .052 108 | .100 124 .106 110
10 | .048 | .052 .066 .052 .056 100 | 122 134 116 102
20 | .058 | .058 .068 .054 .048 114 | 110 138 120 114
30 | .050 | .048 072 .038 .060 102 | 110 124 .106 .136

Table 3: Simulated type I errors of the test (4.10) for parallelism of the mean functions in
the PAR- and PMA-model. The errors in are N(0,1)-distributed and o represents

the nominal level of the test.

curve that is not parallel to the rest. For the simulations of the rejection probabilities
under the alternative, we investigate a PAR(0.2) model with n = 200 observations. The
simulated rejection rates as a function of b are plotted in Figure [1| for dimensions r = 20
and 30, respectively. We observe from Figure [1| that the simulated power of the test
increases very fast as b increases. In particular, the simulated power of the test
becomes reasonably high when b is larger than 0.15. This observation is consistent with
our theoretical finding that the parallelism test is able to detect alternatives converging to
the null hypothesis with a rate \/m. Additionally, we find that the simulated power
for the dimension » = 20 is higher than for dimension r = 30. This observation is also
consistent with the theoretical /logr/n rate for the detection of local alternatives.

5.2 Analysis of Canadian temperature data

In this section we analyze daily mean temperature records from 1902 to 2018 in 15 rep-
resentative Canadian cities as an empirical illustration of our methodology. The cities

chosen are Calgary, Charlottetown, Edmonton, Halifax, Hamilton, Kitchener, London,
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n = 200
a=0.05 a=0.1
r | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1) | PAR(0) | PAR(.2) | PAR(.5) | PMA(.5) | PMA(1)
5 |.050 | .054 .070 .050 .058 098 | 118 .166 116 122
10 | .050 | .056 .086 .058 .054 104 | 124 172 128 134
20 | .048 | .058 .088 .054 .066 108 | 108 196 116 .140
30 | .064 | .054 102 .066 .042 112 | 118 222 134 124
n = 400
a=0.05 a=0.1
r | PAR(0) | PAR(.2) | PAR(5) | PMA(.5) | PMA(1) | PAR(0) | PAR(:2) | PAR(.5) | PMA(.5) | PMA(1)
5 |.058 | .058 .062 .052 .062 112 | 104 124 110 112
10 | .050 | .046 .060 .054 .050 100 | 112 130 124 124
20 | .056 | .058 .056 .064 .056 106 | 108 126 112 128
30 | .056 | .048 .068 .064 .046 108 | 104 133 126 116

Table 4: Simulated type I errors of the test (4.10) for parallelism of the mean functions in
the PAR- and PMA-model. The errors in are \/2/3tg-distributed and o represents

the nominal level of the test.

Montreal, Ottawa, Quebec, Saskatoon, Toronto, Vancouver, Victoria, and Windsor. The
data are publicly available from the government of Canada website: https://climate.
weather.gc.ca/historical_data/search_historic_data_e.html. The daily tempera-
ture records of each year are smoothed using local linear kernel smoothing to represent
the overall yearly functional pattern of the temperature records. As a result, we obtain
a panel functional time series with temporal dimension n = 117 and spatial dimension
r = 15. Figure [2| below shows 3D plots of the functional time series of mean temperature
in Toronto from two different angles. It can be seen that the yearly mean temperature
curves are of similar shape which depicts clear seasonal variation. Additionally, substantial
temperature variability can be seen from the curves among different years.

Note that we expect spatial correlation among the panels as some selected cities are
close in distance. We are interested in constructing JSCB of the overall yearly pattern of
temperature for the 15 cities across Canada. Additionally, we are interested in identifying
which cities are similar in yearly temperature patterns in the sense that their temperature
curves are parallel to each other. As the cities chosen in the study are scattered across

four climate zones: Atlantic Canada, Great Lakes/St. Lawrence Lowlands, Prairies, and
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Figure 1: Simulated rejection rates of the test (4.10)) for the hypothesis of parallel mean
functions with r = 20 and 30. Solid and dashed lines represent the rejection rates under

nominal levels 0.05 and 0.1, respectively.

Pacific Coast, we are also interested in checking whether the temperature patterns of the
cities can be grouped according to their climate zones.

The 95% JSCB of the yearly temperature pattern of the 15 cities are plotted in Figure
Bl This JSCB is based on 10,000 bootstrap replications with block size m = 10 which
was selected by the MV method. We can see from the plots that all yearly temperature
patterns reflect clear seasonal variation of winter lows and summer highs. A closer look at
the plots shows that Calgary, Edmonton and Saskatoon have significantly wider bands in
winter than the other cities. Therefore we conclude that the winter mean temperature in
cities of the Prairies zone has more year-to-year variation than the other zones.

As all temperature curves are similar in shape to the sinusoidal functions, we would like
to test the hypothesis

k
Hf : gi(u) = ci+ Y (a5, cos(2mju) + by sin(2mju)) , i = 1,2, , 15,
j=1
Observe that one will encounter multiple testing problems if the cities are tested separately.
Here we perform the tests by fitting the harmonic functions to the mean temperature curves
and then checking whether all fitted functions can be fully embedded into the 95% JSCB.
When £ = 1, most fitted harmonic curves are not covered by the JSCB. When k£ = 2,
the fitted harmonic curves are plotted in Figure [3] It can be seen that all 15 harmonic
curves are fully covered by the 95% JSCB. These results suggest that one can use the
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Figure 2: 3D functional time series plots from two different angles for the mean temperature
curves of Toronto (1902-2018).

parametric mean model g;(u) = ¢; + Z?Zl(am cos(2mju) + b; ;sin(2mju)), i = 1,2,--- |15
for the Canadian temperature data.

For the test of parallelism, we follow the implementation steps in Section with block
sizes m = 10 and B = 10,000 bootstrap replications. Observe that there are 105 pairs to
be compared and that the sample size is n = 117. Therefore the dimensionality here is
almost as large as the sample size. The resulted pairwise test statistics range from 3.0 to
93 and the critical values of the test at 0.1%, 0.5%, 1%, 5% and 10% are 7.9, 7.04, 6.61,
5.50 and 5.04, respectively. In Table |5 we display the pairwise p-values of the parallelism
test obtained by the critical values listed above. Note that those pair-wise p-values do
not suffer from multiple testing problems as is a joint test of parallelism. Clearly,
the overall test of parallelism is rejected with a very strong evidence. A closer look at
Table |p| shows that Hamilton, London, Kitchener, Toronto and Windsor can be grouped
together in term of temperature parallelism. And another group of cities with parallel
temperature patterns is Quebec, Ottawa and Montreal. The first group of cities are all in
the area of southeast Ontario surrounded by the great lakes. The second group of cities are
located near the St. Lawrence River in the St. Lawrence Lowlands. On the other hand,
we also observe at some close cities significantly different temperature patterns. Two such
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Figure 3: 95% JSCB for the Canadian temperature data. The solid lines represent the
upper and lower bounds of the JSCB in with the functions defined in (4.3). The dotted
lines in the middle represent the fitted harmonic curves g;(u) = ¢; + Z?Zl(am cos(2mju) +
b, ;sin(2mju)), i =1,2,---,15.
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Ham Lon Kit Tor Win Que Ott Mon Cal Edm Cha Hal Vic Van Sas
Ham
Lon 0.2
Kit < 0.1 0.3
Tor > 10 3.6 1.8
Win > 10 > 10 > 10 > 10
Que < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Ott < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 5
Mon < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 > 10 < 0.1
Cal 0.6 < 0.1 0.3 0.1 0.4 < 0.1 < 0.1 < 0.1
Edm < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.5 < 0.1 < 0.1
Cha < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Hal < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Vic < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Van < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Sas < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Table 5: Table of pairwise parallelism test p-values (in percentage) for the Canadian tem-

perature data.

interesting pairs are Vancouver and Victoria and Calgary and Edmonton.

In order to carry out a further investigation, the 95% JSCB for the mean temperature
differences of the two pairs of cities are plotted in Figure 4l Vancouver and Victoria are
both on the southern Pacific coast of Canada and are within 100 kilometers in distance.
However, Figure 4| shows that Victoria is 1-2 degrees Celsius warmer than Vancouver in
the winter and 1.5 to 2.5 degrees Celsius cooler than Vancouver in the summer. Therefore
the two cities are significantly different in yearly temperature pattern. This may be due
to the fact that Victoria is located in the Vancouver Island and the island adjusts the
temperature significantly. Calgary and Edmonton are major cities of Alberta. Both cities
are in the Prairies with Edmonton about 300 kilometers north of Calgary. Figure 4| shows
that Edmonton is significantly colder than Calgary in the winter but significantly warmer
in the summer. Interestingly, we observe from Table [5| that the temperature pattern of
Edmonton has some similarities (highest p-value around 0.5%) to that of the St. Lawrence
Lowland group while the temperature pattern of Calgary has some similarities (highest
p-value around 0.5%) to that of the great lakes group. It is unknown why this is the case
and further investigations with geography and climatology knowledge are needed.
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Figure 4: 95% JSCB for the mean yearly temperature differences between Victoria and
Vancouver (left panel) and Edmonton and Calgary (right panel).
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Abstract

This supplemental material contains proofs of the theoretical results of the paper.

In this supplemental material, the symbol C' denotes a positive finite constant which may

vary from place to place.

Proof of the results in Section [2

Proof of Proposition [2.1} Using integration by parts, we have for the Fourier coeffi-
cients in (2.5) and k > 1,

- %( _ /0 X0 () cos(ku) du + X!(1) cos(r) — X/(0)).

Note that || X/(1)]], < ||X{(O)||q—|—f01 |1 X! (u)]], du < oco. As a result ||a; .||, < C/k*. Hence
la;llg < C/k* as a;y and aj, are identically distributed. On the other hand,

1

laie — aiplly < /0 [ H (u, Fi) — H(u, F}) ||| cos(kmu)| du
< sup HH(U,E) - H(U,E*)Hq = 5X(i7Q),

u€[0,1]
and the proposition follows. &

Proof of Proposition [2.2} Let A, =" a;x/+/n. Observe that E(a;;) = 0. For any
J € Z and a random variable Z, let

Pi(2) = E(Z|F;) = E(Z]Fj-).

We have

1Anile < C Y IPolary)lg

=0



132/#)

- CZ [ azk,qu < O[ Z j72 4 Z l—ﬁ} < sz(l_g)/g
1=0 =0

I=152/8 | +1

by Proposition[2.1} Theorem 1 (i), (ii) of[Wul (2005) and Theorem 1(iii) of[Wul (2007), where
we utilized the facts that ¢ > 2 and »7° ||a;; — aj ;]I < co. Observing the representation

Sp(u) = Sp(k,u) = Z A, j cos(jmu)

j=k+1

we obtain

sup | S, (u) — Sn(k,u)|Hq <Y Anglly 0D PO < ORI,

u€e(0,1] j=k+1 j=k+1
and the assertion of the proposition follows. &

Proof of Proposition 2.3l Observe that S,(k,u) — S,(k,tin) = [, Sh(k,s)ds, where
S! (k, s) is the derivative of S, (k, s) with respect to s. Therefore

titi,n

sup  |Sp(k,u) — Sp(k,tin)| < / |5 (K, s)|ds,
uE[tiyn,tile’n] tin

which implies

tit1,n

sup [Sy(k) = Syt < [ IS 9l ds )

ue[ti,nyt'H»l,n}

ti,n

Now for any s € [0,1], =S/ (k,s) = WZ?:l A, jjsin(jmrs). By the same calculations as
those in the proof of Proposition [2.2] we have

k k
1830k )l < 3 il Auglly < €75 200 < P, ©)

Jj=1 Jj=1

Combining and , we obtain that

sup | Sp(k,u) — Sp(k,tin)|

UE[ti m,tit1,n]

< CK*%/1,
q

for any i. Hence

H max sup  |Sp(k,u) — Sp(k, tin)]

0<isIn—Lug(t; p,tit1,n]

< C/fZ/B/l}z—l/q
q

by an L? maximum inequality. &



Proof of the results in Section [3]

Recall the definition (3.3)) and define

S, (k,u) = \/_ZXk;u

where .
u) = Z a; j cos(jmu)
j=1

and a; ; = 2 [ X;(u) cos(jru) du for j > 1; a0 = [ Xi(u) du. Let
i 0 , 0

SN (k, u) ZN”J cos(jmu) (3)

7=0
and denote the j-th entry of S,,(k,u) (resp. S (k,u)) by Sy ;(k,u) (resp. S}Y;(k,u)).

Lemma 0.1. Denote the dependence measure of {X;(k,-)}jez by 0mi(i,q). If 6u(i,q) =
O(i=?), then
Sun(i,q) = O™ P*7)  for any e > 0.

Proof. By definition, we have

)
q

ki, q) = H Z aij — aj ;) cos(jmu)

and Proposition implies that [ja;; — a
for an arbitrarily small @ > 0. We obtain

ll < Cmin(j2,i%) < Cj-20/2+-A01/2-0)

k k
O k(i,q) Z l|la;; — u ZC] 2(1/2+0);=B(1/2—0a) < Cy=B/2+ab
7=0 j=0
As « can be made arbitrarily small, the lemma follows. o

Lemma 0.2. Under the assumptions of Theorem we have

sup [P s s Sua(htin)| < o] B o o 13k tea)| < ]| =0



Proof. Let
Xi,k - (X;r(k7 th), T 7X;r(k7 tln,n)>—r (4)

denote the vector of length r[, in which the [-th block contains the coordinates of the
vector X;(k,t;,,) and define

- 1 < -
Skn=—F7=) Xik
Vi 2

as the corresponding standardized sum.
Finally, recall the notation of SY(k,-) in , define

gﬁn = ([Sg(k, tl,n)]Tv T [Srjy(h tln,n)]T)T

and note that Skn and Sfcvn share the same covariance structure. By Proposition ﬁ, we
have ||S,j(u) — S, ;(k,u)||2 — 0 uniformly in j and w if k& — co. Observing assumption
(3.8) we conclude that, uniformly in j and u, E(S} ;(k,u)) > 6/2 for sufficiently large n.
Now pick [, < n? and k < n% with positive constants 8, and 5. By assumption , we
can choose 65 and 63 such that

01 + 05 <Q/2—1,
01/q+ (2= B)/Blos <0,
00+ (1/q — 1)+ (2/5)3 < 0.

Let A = Z;’;_OO ]E()N(lkf(l]k) denote the long-run-covariance of the time series {Xi,k}iez
defined by . Then as 61 + 6 < ¢/2 — 1 and maxi<k<, 0p, (i, q) = O(i~#/2T) for an
arbitrarily small positive € (see Lemma , we can easily check that the assumptions of
part (i) of Theorem 3.2 of Zhang and Wu| (2017)) hold (define « therein as 8/2 — 1 — ¢
and note that a > 1/2 — 1/q since 8 > 3). To provide more details, we denote by X,
the j-th component process of )N(Z-,k, 7 =1,2,---,rl,, and check the magnitudes of the
quantities 52'7%]' Amﬂd’? HX-qu@m \I]q,ow Tq,a? Wi,q> Qm,q? H|X-’00Hq,aa 6(1,047 Ly, Ly, N1, Na,
W, and W, defined in Zhang and Wul (2017). By Lemma (0.1} §;,; = O(i=%/?*) for any
j which implies A,,,; = O(m=#/2+1+e),

assumptions of Theorem yield that

Elementary but tedious calculations using the

Xl = O1) , Wga=0(1), YTya=O0p")

(note that here p = O(nf1+%)),

Wig O(pl/qi_ﬁ/2+6) ’ Qm,q _ O(pl/qm—ﬁ/2+1+e) 7 @q,a — O(pl/q) :
Ly = o(l), Ly=0(0g”*p) , 1 X|scllga = O(@"") |
Wi = O(log'(pn)) , Wa = O(log" (pn)),

4



and Ny > c(n/logp)¥?/p, Ny > cn/log®p, where c is a positive constant. Therefore
the assumptions of part (i) of Theorem 3.2 of Zhang and Wu (2017)) hold provided that
01 + 03 < q/2 — 1 and € is sufficiently small. Thus we obtain

sup |P[|Sk.nloo < 2] — P[|AY2G|y < 2]| — 0, (5)
T€R
where | - |, denotes the maximum norm on R™" and G is a standard rl, dimensional

Gaussian vector. In fact, Theorem 3.2 in [Zhang and Wu| (2017) performs a normalization
and it requires that the long-run variance of each S, ;(k,t;,) equals 1, j = 1,2,--- |1,
1=1,2,--- 1,. But their arguments easily apply to the case of arbitrary marginal long-

run variances with a positive lower bound. Now observe that

n

Ay = E([SkaSiul) = D (1= Lil/mEXaX L),

j=-n

and that Lemma 6 of |Zhou| (2014) and Lemma [0.1] yield
|E[Xi,p,kXi—j,s,k‘]| S Cj_5/2+67 1 S p S Tlna 1 S S S rln

for any € > 0, where X ,,  is the p-th entry of sz Hence simple calculations yield for the
entries of the matrices A,, and A that

max |An<l,j) — A(’L,j)‘ = O(n—ﬁ/2+e+1)'

1<4,j<lry,

By the Gaussian comparison inequality in Lemma 3.1 of |Chernozhukov et al. (2013)), we

have

sug P[|§Jk\fn]oo <z]-— ]P’HA}L”G]OO < x]‘ < C’(n(*ﬁ/2+e+1)/3[1Og(7nln/n*,3/2+e+l}2/3 0,
FAS

which implies (observing ()

sup |IP’[|Skn|OO <zl - P[gﬁnbo <z||—=0.
z€R

And this is exactly the claim of the lemma. &

Proof of Theorem [3.1l. Proposition 2.2/ and an application of an L? maximal inequality
yield

max sup |Sy;(u) — Sn,j(kauﬂH < Ort/ag(2=P)/B,
q

1<j<r o<u<1

5



Since 61 /q + [(2 — 5)/5]05 < 0, the right hand side of the above inequality converges to
0 faster than n~*! for some positive a;. By the triangular and Markov inequalities, for

01 = Vrl/akC=B/B  we have

IP’( max sup |S,;(u)| < 93) < ]P’< max sup |S,;(k,u)| < :Jc—|—517n>

1<j<7r p<u<i 1<G<7r o<u<i

+ ]P’( max sup |S,;(u) — S, ;(k,u)| > (51,,1)

1<j<r o<u<t

< ]P’( max sup |S,;(k,u)| <z + 51,n) + €1,
1<i<r o<u<t

where €, = Crki=5/5 /01, — 0 with some polynomial rate. Similarly, since 0;/q +
(1/q — 1)65 + (2/8)65 < 0, it follows that r/9k2/3 /1,717 converges to 0 faster than n~—°2

for some positive a,. By Proposition , we have, for ds,, := \/rl/qu/ﬁ/lylfl/q,

IP’( max sup |S,;(k,u)| <z + 517n> < IP( max sup |Sy;(k,tin)| <z 461, + 52771) + €2,

1<j<r o<u<i 1<5<r1<i<iy,

where €3, = 0{52,,1/[7“1/‘1]{:2/5/[711_1/61]}*q — 0 with some polynomial rate. Now by Lemma
0.2, we obtain

IP’( max sup |S,;(k,tin)| <z + 8, + (527n> — ]P’( max sup |S,ij(k,ti,n)| <x+ 01, +02,) =0

1<5<r 1<i<1,, Isjsri<i<iy,

uniformly in z. Denote the latter uniform convergence rate by €3,. Furthermore, by
Nazarov’s anti-concentration inequality (Nazarov| (2003)),

IP’( max sup ]Sé\jj(k,ti,n)] <z+d,+ (52,11) — ]P’( max sup \Sij(k,tl’n)\ < IL’)

1sjsri<i<i, 1sjsri<i<iy,

< C(d1n + 2,0) v/ 10g(rln).

Following the same arguments as above, we have

P( max sup |SY(k,tin)| < [E) — IP’( max sup |S7]lvj(u)| < x)

: ,J :
1<j<ri<i<i, 1<j<r o<u<i

< €1n + €2.n + 0(51,n + 52,71) \% log(?“ln)

Therefore we conclude that

Pl g 5w <] P 5301
Joax. sup [Sn (W) < @ joax sup 1S (W) <@

< Clern + €20 + €30 + (01,0 + 2,0)V/log(rl,)] — 0



uniformly in z. Similarly, we also obtain the lower bound

P| max sup |S <x] — P[max su <x}
1<J<TO<uEl| nylu)] < 1<]<7‘0<u81| ( )=

Z _O[El,n + €2n + €3.n + ((51771 + 52,n) IOg(T‘ln)] — 0
uniformly in x. Hence we conclude that Theorem holds. &

Recall the definition of the vector T; ,,(u) in (3.11) and denote its j-th entry by T; ;. ().
Similarly define @,, ;(u) as the j-th component of the vector ®,, in (3.12]).

Lemma 0.3. Under the assumptions of Theorem there exists a sequence of events
E,,, such that P(E,,,) — 1. On Ey,, we have

sup P(max sup | P, ;(tin) |<$‘{X v 1>—]P’(max sup |SY (m)|§x>‘—>0.

2R 1<j<r 1<i<1,, 1<i<ri<i<i,

Proof. By Theorem 4 of Zhou| (2013)), we have, for each ¢;,,, 1 <1 <[, and j, 1 <j <7,

< CW/mn+1/m),

where ¢ = ¢q/2, Zi,j denotes the (i, j)-th entry of the matrix 3

2 ~
H Z " — z]m tl n) - Sﬂ,j(tlﬂ)/\/ﬁ} - Z(l—l)r—i—j,(l—l)r—i-j

Z X; - EX)][X]; - EX/ ],

and X; = (X (1), ,XI(tlmn)) .

Let ¥, = E(SY[SN]T), where SN = ([SN(t1,)]", -+, [SN(t, )] T)". Observe that for each
fixed [ and j, the k-th dependence measure of the sequence {X; ;(¢;,)}, decays at the
rate O(k=?). Hence by similar arguments as those given in the proof of Lemma , we
obtain

max [¥,;; — X[ < Cn~ !
1<i,5<rln

and we conclude that

HZTL— zymtln)_ nj(tln)/\/_] J(A=1)r+5,(1-1)r+5

y < C(v/m/n+1/m).

From these considerations and by arguments similar to those in the proof of Theorem 4 of
Zhou (2013)), we also obtain that

(S m Sn j tln) Sn h(tw n) d
ﬂmtn_ S ,—sztwn_ 7 7 _Zn—r'w—r
|3 2 Fismttn) = 22 Tonntun) = 222 = Sorstus

q/



C(v/m/n+1/m),

forany 1 < j,h <rand 1 <[, w <1I,. Therefore, an LY maximum inequality yields

max [Cov(@ (X ()} )lup — Suaal | < LI/ 1fm) =

1<a,b<rl,

where ®,, = (®, (t1n), -, @ (t;,»))". By the assumption §; < ¢'¢*/[2(q + 1)], we can
choose 1,, = n% such that

Gl/q—eg <0
2(01 +02)/q < Qb/

Since 2(0; + 62)/q < ¢, we conclude that v, converges to zero at a polynomial rate.
Hence the event
El,n = 1<I§l£l<}§ﬂl HCOV( m|{X( ) = 1) - nab‘ < vV 1n

has probability at least 1 — ’yl 'n- On event Fy,, we have by Lemma 3.1 of Chernozhukov
et al. (2013) that

sup ]P’(max sup \@mj(m]<x‘{X n 1) — ]P’( max sup ]S S(t, )|§x)‘

z€R 1<i<r 1<i<i, 1<i<r1<i<i,

C’Vl,n log(rl,. 711/2)2/3 — 0,

IN

which completes the proof of Lemma &

Lemma 0.4. Assume m/n — 0. Then under the assumptions of Theorem , we have

s

Proof. Without loss of generality, we assume E(X; ;(u)) = 0. First we write X} ;(u) :=
> 7o bijkcos(kmu). Then, similar to the proof of Proposition utilizing || X7 ;(u) —
X7 ;) < Clu — ], it follows

z]m ) _S;L,j(u)/\/ﬁ]z

1Bk — b xllg < Cmin(1/k%,i77).

Let Bjy = i, bijx/v/n. Then by the proof of Proposition 2.2, we have ||Bjll, <
Ck*>(1=P/B which implies

su S B
I sup 105 e < Zn i)’



Similarly, we have for any 1,

m|| S |T,Jm( w)*lly2 < C.

As a result the lemma follows. O

Lemma 0.5. Assume m/n — 0. Then under the assumptions of Theorem and the
choice of 0y in Lemma there exists a sequence of events Es, such that P(Es,) — 1,

and on E,, we have the conditional Orlicz norm

‘max max  sup @) — Bpy(tin)

. . I
j 1<isin-l UE[ts mstit1,n]

Proof. Note that, for any u € [t; ., tit1.1]

titi,n
|(I)m7j(u) - mj zn | = |/ d5| </ |(I);717j(8)|d8. (7)
t

i,n
For each j and s, we have for the conditional variance

n—m

Var(@), () [{Xn()Fimr) = Do [T (s) = Shs(9)/ VP,

and Lemma implies (using a maximal inequality) that

H maxsup Z o ,]m( u) — S;](U)/\/E]Q

< Or¥a,
/2

Let vz, = r2/4t for an arbitrarily small positive constant 7, and define the event

By — maxsupz T () = i () /AP < Yo

" —
By Markov’s inequality P(Es,) > 1 — r~"9/2. On the event Es ,,, we have that, conditional
on {Xp(u) th—y, Std(®;,, ;(s)) < /Y3, uniformly in j and s, where Std stands for “standard
deviation”. Note that the Orcliz norm is proportional to the standard deviation for centered
Gaussian random variables. Therefore, on the event Es,, and conditional on {X,(u)}_;,
we have ||}, :(s)|lw, < /73, uniformly in j and s. Hence it follows by a maximal inequality
that, on the event E,, and conditional on {Xp(u)}_,, the Orlicz norm

max max sup By (1) — Do (i
‘ J 1§i§ln71u€[ti,n7ti+l,n}’ mj( ) mj( )

9



IN

sup [Py j(u) — P j(tin)

UE[ts notit1,n]

< log(rl,) mjax sup [|®7, () lw/In < /30 10g(rln) /1

log(rl,) max
Z’]

The right-hand side converges to zero polynomially fast for sufficiently small 7 since 6y /g —
92‘< 0.
¢

Proof of Theorem [3.2l. Note that, for each fixed 7,

|

where we have used the fact that the Orcliz norm is proportional to the standard deviation

k k k
sup 1527k, )| <D UNasslhes <€D UNasslle < €D Ux BN < O,
> =0 1=0

0<s<1

for centered Gaussian random variables. Hence we obtain that

< Ck*P\/logr. (8)

Hmax sup |[S,)]'
J 0<s<1

On the other hand, we have

| sup 82500 = SY k)|, <€ S Nasglles < ORI
v I=k+1

which implies
< Ck¥P=1\/logr. (9)
Combining and @ and by the triangular inequality, we obtain that

v < ClE*P /1, + k¥%1\/log . (10)

| massup |52, (u) -
J u

gN
max max su (u) —

‘ J 1<i<ln g, <u<It)l+1 | n’]( )
Choose k diverging to infinity with a slowly enough polynomial rate such that the right
hand side of converges to 0 with a polynomial rate n™" for some 7, > 0. We have
that, for any x € R,

< — . < r—_

Plas o, 1835001 < <] P[fﬁ%&iﬁ' ] €=
> —P Sy i) = S5 (tin)| >
© TR LA ) Sl
> —n

10



for some constant Cp > 0, where 71, = n~"y/logn and we have used Markov’s inequality
in the second inequality above. Similarly, by Lemma [0.5] we have that, on the event Ej,,,

| 3 N ()] < i }ie
P lrgjagxr 02521 |(I)m,] (U)| < x ‘{XZ}I:I} P[lréljagxr 121%}1(” |q>m,] (tz,n)| <z+ Ton {Xz}z:1i|
< Plmax max  sup [P j(u) = Proi(tin)| = 20 {XGH]
Jo1<i<n ¢ <u<tifin
< n @

for some constant C; > 0, where 7»,, = n™"?y/logn for some constant 17, > 0. Therefore,
by Lemma and on the event Ey ,, N Es,,, we have

P, = P[max sup |®,,.i(u <$‘ X; ”,}—P[max sup |SY.(u <x]
1§j§7"0§u1§)1| ,]( )l — { }171 1§j§7’0§u21| n,]( )| —=

IN

{Xi}?zl} — IP’[ max max ]S,]L\]](tm)\ <x—Tin|+ O(n—c)’

IP’[ max max [P, ;(tin)] <o+ Top 1<j<r 1<i<l
>~J> ~t>tn

1<j<r 1<i<lin
v =
< M3n+ P[m — T1n < max max S5 (ti,)] <z + Tz,n] +0(n™9),
1<j<r 1<i<t, | ™

where C = min(Cyp, Cy) and 73, is the approximation error in Lemma By Nazarov’s
Inequality (Nazarov| (2003)),

— Nt )] < ] <
P[:v Tin < gja;ﬂ 121%)1(” 1Sy i(tin)| S @+ 7o | < CO(1on + T10) v/ log(rly)

which converges to 0 at a polynomial rate. Hence, it follows
Py < g+ O((ram + 110)V/10g(rl,)) + O(n =)

uniformly with respect to x € R. Note that the right hand side of the above inequality
converges to 0 at a polynomial rate. By a similar argument, we obtain on the event
El,n N E27n that

Py > —[n3n + O((ron + 11.2)V108(rln)) + O(n~%)]

uniformly with respect to x € R, which implies

sup P[ max sup |Pp,;(u)| <z ’{Xz}le} —IP’[ max sup |S,]1vj(u)| < x” — 0.

z€R 1<5<r o<u<1 1<ji<ro<u<1
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Proofs of the results in Section [4]

Proof of Proposition [4.1} Observe that Xi,j (u) is a centered process. Hence this propo-
sition follows from Theorem if we can show that v;(u) is twice continuously differen-
tiable on [0, 1] for all j. Observe that g;(u) = E(X; j(u)). By the assumption that X, ;(u)
is twice continuously differentiable, and a version of the Dominated Convergence
Theorem (c.f. Theorem 1.6.8 of Durrett| (2010])), we have that g;(u) is twice continuously
differentiable. As a result X, ;(u) — g;(u) is twice continuously differentiable a.s.. Since
vi(u) = E[X;;(u) — g;(u)]?, and the above mentioned version of the Dominated

J
Convergence Theorem imply that v;(u) is twice continuously differentiable for all j. <&

Proof of Lemma [4.1] Recall the notation (4.2]) and observe that

X N . 1,
P(0) () = + SR () — BXZ ()] — - 82,). (1)
i=1
Let Z;;(u) = X2;(u) — EX?;(u). Then {Z;;(u)}, is a centered functional time series
with dependence measures

0z,,(k:q/2) = sup [ Zi;(u) = Zii;(w)llgy2 < sup || Xi(u) + X7 (u)lgl| X () — X35 (u)llq

u€l0,1] u€(0,1]

< Cég,(k,q) < CE7.

Therefore, by the arguments in the proof of Lemma [0.4] we obtain that

sup —(Z ~EXZ || <c/va

uel0,1] T

and an L9? maximal inequality yields

< CTQ/Q/\/H.

q/2

max sup ’ Z ]Eij (u)]

1<5<r uE[O 1] n

Similarly, we also obtain that

max sup Sij(u) < Cr¥/n.

1<]<rue[0 1nn ’ Hq/Z

The Lemma follows by these two inequalities and . &
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Proof of Proposition [4.3] Recalling the Fourier expansion X;(u) = > &, cos(kmu).
It follows that W ;(u) admlts the following cosine representation

u) = Z a; ;i cos(kmu), (12)
k=1

where a; ;5 is the j-th component of a;j, j = 1,2,--- ,r. As a result, W, ;x(u) can be
represented in the form

Wi i( Z fijkccos(cmu), (13)
where f; ke = @ije — Qie. From the proof of Proposition 2.1] it follows
max I figke = fijnells < Cmin(1/¢%,i77), (14)

for all ¢ > 1, where ¢ > 0 is a constant. Furthermore, the dependence measures of
{Win(u)}i, satisfy

uniformly in j, k, where the second inequality is derived from the fact that

ow,(h,q) = supHXh /Xh )du — [ X} (u /Xh ) dul

IN

sup 0 = Xl + [ 1X0) = X 0y
< 25 X (0) = X3, = 2(he ).

A

Recall that W;(u) is the 7(r — 1) /2-dimensional vector with entries Wi jk(u). The proof of
Proposition now follows from applying the same arguments as those given in the proof
of Theorem [3.1] and Proposition [4.1] to W;(u). o

Proof of Proposition @.5. Recall the definition of S, Gk In (4.8) and define
"= max Sup (S (1) = BSp () /01 ().

Then following the proof of Propositions [4.3] and [4.4] it follows

P(T* > é_4) = 1 —a. (16)

13



Meanwhile, from the proofs of Propositions [4.3]and 4.4 we observe that T is asymptotically
equivalent to the L> norm of a r(r —1)/2 dimensional Gaussian random function and the
Orcliz norm of each Gaussian random function is O(1). Hence it is straightforward to

conclude by a maximal inequality that the Orcliz norm of the latter L°* norm is of order
O(y/logn) in view of r < n%. Therefore ¢, , = Op(y/logn). On the other hand, it is
straightforward to conclude that, under Hy,

max  sup |[ES,x(u)|/vjx(w)]/+/logn — co.

1<G<k<r o]

Together with equation , we conclude that P(7/v/logn > d,) — 1 for any divergent
sequence d,. Hence the result follows in view of the fact that ¢;_, = Op(y/logn). &
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