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Abstract

In this paper we develop statistical inference tools for high dimensional func-

tional time series. We introduce a new concept of physical dependent processes in

the space of square integrable functions, which adopts the idea of basis decomposi-

tion of functional data in these spaces, and derive Gaussian and multiplier bootstrap

approximations for sums of high dimensional functional time series. These results

have numerous important statistical consequences. Exemplarily, we consider the de-

velopment of joint simultaneous confidence bands for the mean functions and the

construction of tests for the hypotheses that the mean functions in the spatial di-

mension are parallel. The results are illustrated by means of a small simulation study

and in the analysis of Canadian temperature data.

AMS Subject Classification: G2M10, G2G10, G2G09

Key words: high dimensional functional time series, physical dependence, Gaussian ap-

proximation, simultaneous confidence bands, hypotheses tests, spatio-temporal data

1 Introduction

In many fields of statistics data, say Xi,j, are recorded in time (denoted by the index i) at

different locations (denoted by the index j). This type of data is called panel or spatio-

temporal data and appears in numerous applications. For example, in economics data

are often collected for different firms or regions over several years, or in geo-statistics and

climate research data are recorded over a period of time at different locations. Statistical

methods for this type of data are meanwhile well developed, in particular in the field

of econometrics and spatial statistics, and we refer to the monographs of Hsiao (2003),

Baltagi (2005), Wooldridge (2010), Cressie and Wikle (2015) and Haining and Li (2020)

among many others. In recent years there has also been substantial interest in statistical

inference tools for high dimensional time series and we mention exemplarily the work of

Cressie and Johannesson (2008), Galvao and Montes-Rojas (2010), Belloni et al. (2016),

Banerjee (2017) and Kock and Tang (2019) who developed methodology for various high

dimensional spatio-temporal models.
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A common feature of most of the literature on statistical methodology in this context

consists in the fact that the data Xi,j are real valued or multivariate. However in many

modern applications more and more data are recorded continuously during a time interval

or intermittently at a very dense grid of time points. In such circumstances it is often

reasonable to use a high-dimensional functional time series model, where the data Xi,j

observed at time i in panel j is a function. Throughout this paper we call this type of data

functional panel data or high-dimensional functional time series. For example, Xi,j could

represent the (smoothed) curve of the price of a stock for a day, where i denotes the index

for the different days and j is the index for the different stocks. For another example,

Xi,j could represent the (smoothed) temperature or precipitation curve for a year i at a

location j.

Although functional data analysis is nowadays a rather well developed and very broad field

[see for example the monographs of Bosq (2000), Ramsay and Silverman (2005), Ferraty

and Vieu (2010), Horváth and Kokoszka (2012) and Hsing and Eubank (2015)], there does

not exist much literature for panels of functional data, in particular for high dimensional

panels. Several authors have developed statistical methodology for spatio-temporal data

[see Delicado et al. (2010), Gromenko et al. (2017), Kokoszka and Reimherr (2019) among

others], but this literature usually does not consider the high-dimensional case, where the

spatial dimension is increasing with the sample size. High dimensional functional time

series have been investigated in the context of forecasting and factor analysis [see Gao

et al. (2019) or Nisol et al. (2019)]. Other authors considered statistical inference tools

for longitudinal functional data with a general hierarchical structure, where independent

subjects or units are observed at repeated times and at each time, a functional observation

(curve) is recorded [see for example, Greven et al. (2010), Park and Staicu (2015) or Chen

et al. (2017) among others].

The goal of this paper is to develop statistical methodology for high-dimensional functional

panel data, which exhibits dependencies in the time and spatial directions. In Section 2

we introduce a new concept of physical dependent processes in the space of square in-

tegrable functions on the interval [0, 1]. Our approach is similar in spirit to the model

of m-approximable functional time series introduced by Hörmann and Kokoszka (2010),

but our formulation further adopts the idea of basis decomposition of functional data and

consequently separates the functional index and time index in the mathematical represen-

tation of the functional processes. We also refer to the work of Bosq (2002), Bradley (2007)

or Panaretos and Tavakoli (2013) for other concepts modelling functional dependent data

such as mixing conditions or autocorrelations and cumulants. It is found in our theoretical

investigations that it is simpler and more efficient to establish Gaussian approximation,
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chaining and bootstrap results for high dimensional functional time series using our phys-

ical representation. In Section 3 we provide some probabilistic results which are useful for

the statistical analysis of high dimensional functional pane data. In particular we derive

a Gaussian approximation for sums (with respect to time) of high dimensional panels,

which is used for the construction of a multiplier bootstrap procedure to approximate the

distribution of sums uniformly with respect to the spatial dimension. These results have

numerous applications in the statistical inference of high-dimensional functional time series

and we illustrate the potential of our approach in Section 4. Here we derive joint simulta-

neous confidence bands for the mean functions of a high-dimensional functional time series

and construct a test to check the hypothesis of parallelism of the mean functions. Section

5 is devoted to a small simulation study to illustrate the finite sample properties of the new

methodology. We also present a data example analyzing yearly temperature curves from

from different Canadian cities. Finally, all proofs are deferred to the online supplemental

material of the paper.

2 Physical representation of functional time series

In this section we introduce the basic functional time series model considered in this paper.

To be precise, let L2[0, 1] denote the set of all real-valued square integrable functions defined

on the interval [0, 1] and let {Xi}i∈Z be a stationary functional time series in L2[0, 1]. We

begin with a motivating example for the general model defined below.

Example 2.1. Let B = {Bj}∞j=0 be a basis of L2[0, 1], then the i-th element Xi of a time

series {Xi}i∈Z in L2[0, 1] can be represented as

Xi(u) =
∞∑
j=0

Li,jBj(u) (i ∈ Z) , (2.1)

where Li,j =
∫ b
a
Xi(u)Bj(u)du is the jth Fourier coefficient of Xi with respect to the basis

B. If Li = (Li,0, Li,1, · · · )> denotes the infinite-dimensional vector of Fourier coefficients

of Xi, one can use any dependence concept for the infinite dimensional stationary time

series {Li}i∈Z to describe the dependence structure of the functional time series {Xi}i∈Z
in L2[0, 1]. Following Wu (2005), a general model for the infinite dimensional stationary

time series {Li}i∈Z is given by

Li = G(Fi), i ∈ Z,
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where G : SN → RN is a given filter, Fi = (· · · , ηi−1, ηi) and {ηi}i∈Z is a sequence of

independent and identically distributed random variables taking values in some space S. In

this case each element Xi of the time series can be written in the form Xi(u) = H(u,Fi) for

an appropriate function H mapping a sequence of Fourier coefficients to its corresponding

function in L2[0, 1].

Using Example 2.1 as motivation, we now introduce the following formulation of a station-

ary functional time series and the associated dependence concept, which will be considered

in this paper.

Definition 2.1. A stationary functional time series {Xi(u)}i∈Z in L2[0, 1] has a physical

representation, if there exists a measurable function H : [0, 1]× SN → R such that

Xi(u) = H(u,Fi), ∀u ∈ [0, 1], (2.2)

where Fi = (· · · , ηi−1, ηi) and {ηi}i∈Z is a sequence of independent identically distributed

random elements in S.

Note that a functional time series {Xi}i∈Z ⊂ L2[0, 1] of the form (2.2) is strictly stationary

by this definition. In order to specify its dependence, we define for a real valued random

variable Z and a constant q ≥ 1 (in the case of existence) its norm ||Z||q =
(
E[|Z|q|

)1/q
and introduce the following measure of physical dependence.

Definition 2.2. Let {Xi}i∈Z denote a functional time series in L2[0, 1] of the form (2.2),

such that ‖Xi(u)‖q <∞. The dependence measures of {Xi}i∈Z are defined by

δH(k, q) = sup
u∈[0,1]

‖H(u,Fk)−H(u,F∗k )‖q, k ≥ 0, (2.3)

where F∗k = (· · · , η−2, η−1, η∗0, η1, · · · , ηk−1, ηk) and η∗0 is identically distributed as η0 and is

independent of the sequence {ηi}i∈Z.

In (2.2) the representation H can be viewed as a filter or data generating function of

a stochastic system and {ηi}i∈Z can be viewed as random shocks or innovations of the

system. Adopting the latter point of view, the physical dependence measures δH(k, q)

quantify the influence of the innovations k steps ahead on the current output of the system.

Weak dependence is characterized by the fast decay of δH(k, q) as k grows. Note that our

definition of a functional time series and their dependence measures are different from the

popular concept of Lp-m-approximability (see, for example, Hörmann and Kokoszka (2010)

and Horváth and Kokoszka (2012)), where Xi(u) is expressed as G(εi(u), εi−1(u), · · · ) with
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{εi(u)}i∈Z i.i.d. random functions and the dependence is measured by the changes in

Xi(u) when certain εj(u) in the past are replaced with i.i.d. copies. Both formulations are

based on Bernoulli shifts and coupling to quantify and control the dependence strength of

functional time series. However, the formulation considered in this paper further adopts

the idea of basis decomposition of functional data and hence separates the functional index

u and time index i in (2.2). It is found in our theoretical investigations that it is simpler

and more efficient to establish Gaussian approximation and bootstrap results for high

dimensional functional time series using the representation (2.2), conditions on the decay

of the dependence measure (2.3) and the associated basis decomposition.

We continue giving two examples on how to check the rate of decay of δH(k, q) for linear

and nonlinear functional time series models.

Example 2.2. Consider the following MA(∞) functional linear model

Xi(u) =
∞∑
j=0

∫ 1

0

aj(u, v)εi−j(v) dv,

where {aj}j≥0 is a sequence of square integrable functions aj : [0, 1]2 → R satisfying∑∞
j=0 supu,v∈[0,1] |aj(u, v)| < ∞, and {εi}i∈Z is a sequence of i.i.d. random functions in

L2[0, 1]. Writing εi(u) =
∑∞

j=0 ηi,jBj(u) with ηi = (ηi,j)
>
j≥0, we see that Xi can be repre-

sented in the form of (2.2). Assume that, for some q > 1, supu∈[0,1] ‖εi(u)‖q < ∞, then

simple calculations using Definition 2.3 show that the physical dependence measures in

(2.3) satisfy

δH(k, q) = O
(

sup
u∈[0,1]

∫ 1

0

|ak(u, v)| dv
)
.

Example 2.3. In this example we continue our investigation of the nonlinear model in-

troduced in Example 2.1. Recall the representation (2.1) and let bj = supu∈[0,1] |Bj(u)|
and lj = E|Li,j|. The rate of decay of lj is determined by the smoothness of the functions

Xi as well as the basis functions Bj used in the decomposition (2.1). See Proposition 2.1

below for the calculation of lj when Xi(u) is twice continuously differentiable and Bj is

the cosine basis. Now write

Xi(u) =
∞∑
j=0

ljL̃i,jBj(u),

with L̃i,j = Lij/lj = G̃j(Fi). Denote the physical dependence measure of {L̃i,j}i∈Z by (cf.

Wu (2005)) θj(k, q) := ‖G̃j(Fk)− G̃j(F∗k )‖q. Then using (2.3), we obtain that

δH(k, q) = O
( ∞∑
j=0

ljbjθj(k, q)
)
. (2.4)
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For a wide class of nonlinear time series models, Wu (2005) contains detailed calculations

of the rate of decay of their physical dependence measures. As lj and bj can be calculated

as discussed above, the estimate (2.4) can be used to bound the dependence measures

of a wide class of functional time series. A further simplification can be carried out if∑∞
j=0 ljbj <∞. In this case we have δH(k, q) = O(θ(k, q)), where θ(k, q) = supj≥0 θj(k, q).

Throughout this paper we will work with the basis {cos(kπu)}k=0,1,... of L2[0, 1]. If {Xi}i∈Z
is a functional time series in L2[0, 1] such that (2.2) holds for some filter H, it can be

represented as a Fourier series

Xi(u) =
∞∑
k=0

ai,k cos(kπu),

where

ai,k = 2

∫ 1

0

cos(kπu)Xi(u)du, (2.5)

k ≥ 1 and ai,0 =
∫ 1

0
Xi(u)du are random variables which can be written in the form

ai,k = Gk(Fi) = 2

∫ 1

0

cos(kπu)H(u,Fi)du

for some filter Gk. The following result specifies the rate of decay of the Fourier coefficients

under smoothness conditions on the function Xi.

Proposition 2.1. Suppose that {Xi}i∈Z is a time series in L2[0, 1] such that (2.2) is

satisfied and ‖Xi(u)‖q <∞ for some q ≥ 2. Assume Xi is twice continuously differentiable

on the interval [0,1] a.s. and that

‖X1(0)‖q + ‖X ′1(0)‖q + sup
u∈[0,1]

‖X ′′1 (u)‖q <∞. (2.6)

Then the Fourier coefficients in (2.5) satisfy

‖ai,k‖q ≤
Cq
k2

for some constant Cq which is independent of i, k. Furthermore,

‖ai,k − a∗i,k‖q = O(min(δH(i, q), 1/k2)),

where a∗i,k = Gk(F∗i ) =
∫ 1

0
cos(kπu)H(u,F∗i )du.
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Proposition 2.1 establishes the rate of decay of ai,k as a function of k as well as the

dependence measure of ai,k when viewed as a time series indexed by i. In the following we

will consider the standardized sum

Sn(u) =
1√
n

n∑
i=1

Xi(u)

and its approximation

Sn(k, u) =
1√
n

n∑
i=1

Xi(k, u),

where Xi(k, u) =
∑k

j=1 ai,j cos(jπu) is the kth Fourier sum of Xi(u).

Proposition 2.2. If the assumptions of Proposition 2.1 are satisfied, E(Xi(u)) = 0 and

δH(i, q) = O(i−β) for some β > 2, we have∥∥∥ sup
u∈[0,1]

|Sn(u)− Sn(k, u)|
∥∥∥
q
≤ Ck(2−β)/β,

where C is a finite constant which does not depend on k or n.

Proposition 2.2 establishes that Sn(u) can be well approximated by Sn(k, u) if k is suf-

ficiently large. The latter is an important result due to the fact that the theoretical

investigation of Sn(k, u) is much easier as it can be written as a linear combination of

finitely many random variables.

We conclude this section with a result on chaining of functional time series. To be precise

define a grid Un = {ti,n}lni=0 where ti,n = i/ln and ln is a positive integer that diverges to

infinity. The following proposition establishes that supu∈[0,1] |Sn(k, u)| can be well approx-

imated by maxu∈Un |Sn(k, u)| for a sufficiently dense grid (that is ln →∞).

Proposition 2.3. If the assumptions of Proposition 2.2 are satisfied, we have∥∥∥ max
0≤i≤ln−1

sup
u∈[ti,n,ti+1,n]

|Sn(k, u)− Sn(k, ti,n)|
∥∥∥
q
≤ C

k2/β

l
1−1/q
n

,

where C is a finite constant which does not depend on k or n.

3 Main results

In this section we derive a Gaussian approximation for partial sums of high dimensional

functional time series which can be used to define a multiplier bootstrap procedure.
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Throughout this paper {Xi}ni=1 denotes an r-dimensional stationary functional times with

Xi = (Xi,1, . . . , Xi,r)
>, where each component Xi,j of the vector Xi is an element of L2[0, 1]

satisfying (2.2) for some filter Hj, that is Xi,j(u) = Hj(u,Fi) (j = 1, 2, · · · , r). Conse-

quently, the r-dimensional vector can be represented as

Xi(u) = H(u,Fi) (3.1)

(i = 1, . . . , n, u ∈ [0, 1]), where the r-dimensional filter is defined by H = (H1, . . . , Hr)
>.

We assume that the dimension

r � nθ1 (3.2)

increases at a polynomial rate with the sample size n, where θ1 > 0 is a given constant.

We are interested in the probabilistic properties of the sums of high-dimensional vectors

Sn(u) =
1√
n

n∑
i=1

Xi(u) (3.3)

as n, r →∞, and denote by

Sn,j(u) =
1√
n

n∑
i=1

Xi,j(u) (j = 1, . . . , r) (3.4)

the j-th component of the vector Sn = (Sn,1, . . . , Sn,r)
T .

3.1 Gaussian approximation

Consider the component-wise Fourier expansion of the r-dimensional function Xi

Xi(u) =
∞∑
j=0

ai,j cos(jπu)

and define the vector

An,j = (An,j,1, . . . An,j,r)
> =

1√
n

n∑
i=1

ai,j. (3.5)

For n ∈ N let {Nn,k}∞k=0 be a sequence of independent centered r-dimensional Gaussian ran-

dom variables that preserves the covariance structure of {An,k}∞k=0, i.e. Cov(An,k) =Cov(Nn,k),

define

SNn (u) =
(
SNn,1(u), . . . , SNn,r(u)

)>
=
∞∑
k=0

Nn,k cos(kπu) (3.6)
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and denote by SNn,j(u) the j-th entry of the vector SNn (u) = (SNn,1(u), . . . , SNn,r(u))>. By the

proof of Proposition 2.2, we have for l-th coordinates An,j,l of the vectors An,j in (3.5)

∞∑
j=0

‖An,j,l‖q <∞ ,

and therefore the random variable SNn (u) in (3.6) is well defined (almost surely).

Theorem 3.1. Let {Xi}i∈Z denote a stationary r-dimensional time series satisfying (3.1).

For each j, suppose that Xi,j is twice continuously differentiable on the interval [0, 1] a.s.;

satisfies ‖Xij‖q <∞ and (2.6) for some q ≥ 4. Assume E(Xi(u)) = 0 and

max
1≤j≤r

δHj
(i, q) = O(i−β) (3.7)

for some β > 3. If there exists a positive constant δ such that

min
1≤j≤r

inf
u∈[0,1]

E[S2
n,j(u)] ≥ δ (3.8)

for sufficiently large n and the exponent θ1 in (3.2) satisfies

θ1 < f(β, q) :=
q − 2

2[1 + β/[(q − 1)(β − 2)]]
, (3.9)

we have as n, r →∞

sup
x∈R

∣∣∣P[ max
1≤j≤r

sup
0≤u≤1

|Sn,j(u)| ≤ x
]
− P

[
max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)| ≤ x
]∣∣∣→ 0. (3.10)

It is easy to show that, under assumptions of Theorem 3.1, the weak convergence

Sn,j(u)⇒ N (0, σ2(j, u))

holds for any j = 1, . . . , r and u ∈ [0, 1], where the symbol N (µ, σ2) denotes a normal

distribution with mean µ and variance σ2. Consequently, assumption (3.8) is rather mild

and means that, uniformly in u and j, Sn,j(u) will not converge to a degenerate limit.

3.2 Bootstrapping panel functional time series

Theorem 3.1 provides an approximation (in distribution) of max1≤j≤r supu∈[0,1] |Sn,j(u)|
by a corresponding expression using normally distributed random variables. The latter

distribution can be easily simulated if the dependence structure of the process {Nn,k}∞k=0
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would be known. In order to mimic the dependencies, we propose a multiplier bootstrap

method. To be precise, define for a block size m the local (r-dimensional) mean

Ti,m(u) =
1

m

i+m∑
j=i

Xj(u) (3.11)

and consider the vector

Φm(u) =

√
m

n−m

n−m∑
i=1

[Ti,m(u)− Sn(u)/
√
n]Ni, (3.12)

where Ni are i.i.d. one-dimensional standard normal random variables. Let Φm,j(u) be the

j-th entry of Φm(u), then we have the following result.

Theorem 3.2. Let {Xi}i∈Z denote a stationary r-dimensional time series satisfying (3.1).

For each j, suppose that Xi,j is twice continuously differentiable on the interval [0, 1] a.s.

satisfying ‖Xij‖q <∞ and (2.6) for some q > 2 and assume that

‖X ′′i,j(u)−X ′′i,j(v)‖q ≤ C|u− v| (3.13)

holds for all u, v ∈ [0, 1] for sufficiently large n. Further assume that and (3.8) holds and

that

max
1≤j≤r

[δHj
(i, q) + δH′

j
(i, q)] = O(i−β) (3.14)

for some β > 2 and q > 4, where H ′j(u,Fi) is the filter corresponding to the derivative

X ′i,j(u) of the process of Xi,j(u) = Hj(u,Fi). If the block size m satisfies m � nφ with

0 < φ < 1 and the exponent θ1 in (3.2) satisfies θ1 < φ′q2/[2(q+1)] where φ′ = −max{(φ−
1)/2,−φ}, then on a sequence of events En such that P(En)→ 1 if r, n→∞, we have

sup
x∈R

∣∣∣P[ max
1≤j≤r

sup
0≤u≤1

|Φm,j(u)| ≤ x
∣∣∣{Xi}ni=1

]
− P

[
max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)| ≤ x
]∣∣∣→ 0.

4 Some statistical applications

The results of Section 3 can be used for statistical inference of high-dimensional time series,

if the statistical analysis is based on a vector of sums of the form (3.4). Typical appli-

cations are tests for parametric assumptions on the mean function, two (or more) sample

comparisons, the construction of confidence regions for parameters of interest, change point

analysis, to name just a few. Exemplarily, we illustrate in this section two applications,

namely the construction of joint simultaneous confidence bands for the mean functions

and the development of a test that the mean functions at different spatial locations are

parallel.
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4.1 Joint simultaneous confidence bands (JSCB)

let C2[0, 1] denote the space of twice continuously differentiable functions on the interval

[0, 1], let {Xi}ni=1 be an r-dimensional stationary functional time series in (C2[0, 1])r satis-

fying (3.1) and denote by g(u) := E(Xi(u)) = (g1(u), . . . , gr(u))> the expectation of Xi.

This subsection is devoted to the construction of joint (asymptotic) simultaneous confi-

dence bands (JSCB) for the components of the vector g if the sample size n and dimension

r converge to infinity. More precisely, we aim to find (random) functions c1, d1, . . . , cr, dr
defined on the interval [0, 1], such that cj(u) ≤ dj(u) for all u ∈ [0, 1] and such that the

subset

Cn,α =
{

h ∈ (C2[0, 1])r | cj(u) ≤ hj(u) ≤ dj(u) ∀u ∈ [0, 1] ∀j = 1, . . . , r
}
. (4.1)

of the set of r-dimensional functions h = (h1, . . . , hr)
> on the interval [0, 1] satisfies

lim
n,r→∞

P(g ∈ Cn,α) = 1− α

for some pre-specified constant α ∈ (0, 1). To this end, we denote by

vj(u) =
√

Var(Xi,j(u)), j = 1, 2, · · · , r,

the variance of Xi,j(u) and make the following assumption.

(V) There exists a positive constant δ > 0 such that

inf
u∈[0,1]

min
1≤j≤r

vj(u) ≥ δ

Proposition 4.1. Let {Xi}i∈Z denote a stationary r-dimensional time series satisfying

(3.1). For each j, suppose that Xi,j is twice continuously differentiable on the interval

[0, 1] a.s. satisfies ‖Xij‖q <∞ and (2.6) for some q > 2. Assume that (3.7), (3.8), (3.9)

and condition (V) hold. Let X̌i,j(u) = (Xi,j(u)− gj(u)) and define

Šn,j(u) =
1√
n

n∑
i=1

X̌i,j(u) j = 1, 2, · · · , r. (4.2)

Then, as r, n→∞, we have

sup
x∈R

∣∣∣P[ max
1≤j≤r

sup
0≤u≤1

|Šn,j(u)/vj(u)| ≤ x
]
− P

[
max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)/vj(u)| ≤ x
]∣∣∣→ 0,

where SNn,j(u) is the jth component of the vector SNn = (SNn,1(u), . . . , SNn,r(u))> defined in

(3.6).
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Proposition 4.1 implies that if one can find a critical value cn1−α such that

lim
r,n→∞

P
[

max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)/vj(u)| ≤ cn1−α

]
= 1− α,

then a 100(1 − α)% JSCB for the vector g = (g1, . . . , gr)
> is obtained by (4.1) using the

functions

cj(u) =
Sn,j(u)− cn1−αvj(u)√

n
, j = 1, . . . , r, (4.3)

dj(u) =
Sn,j(u) + cn1−αvj(u)√

n
, j = 1, . . . , r, (4.4)

where Sn,j(u) is defined in (3.4). As the standard deviation vj and the quantile cn1−α are

not known, we have to estimate these from the data. In particular v2j is estimated by the

sample variance of {Xi,j(u)}ni=1 defined as

v̂2j (u) =
1

n

n∑
i=1

(
Xi,j(u)− Sn,j(u)/

√
n
)2
.

The following lemma establishes that v̂2j is a uniformly consistent estimator.

Lemma 4.1. For each j, suppose Xi,j is twice continuously differentiable on the interval

[0,1] a.s. and satisfies (2.6) for some q > 2. Assume that (3.7) holds and that θ1 < q/4.

Then we have r, n→∞∥∥∥ max
1≤j≤r

sup
0≤u≤1

|v̂2j (u)− v2j (u)|
∥∥∥
q/2

= O(r2/q/
√
n) = o(1).

In order to obtain the critical value cn1−α, we now utilize the multiplier bootstrap procedure

established in Theorem 3.2. Detailed steps for the implementation are listed as follows.

(a) Select block size m such that m→∞, m = o(n).

(b) For a large integer B generate independent standard normal distributed random

variables {N j
i }n−mi=1 , j = 1, 2, · · · , B. For each j, calculate

Φj
m(u) =

√
m

n−m

n−m∑
i=1

[Ti,m(u)− Sn(u)/
√
n]N j

i

and

Φ̃j
m = max

1≤k≤r
sup

0≤u≤1
[|Φj

m,k(u)|/v̂j(u)],

where Φj
m,k(u) is the k-th component of the vector Φj

m(u) = (Φj
m,1(u), . . . ,Φj

m,r(u))>.
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(c) Let Φ̃
(1)
m ≤ · · · ≤ Φ̃

(B)
m be the ordered statistics of {Φ̃j

m}Bj=1. Then the quantile cn1−α
is estimated by Φ̃

(b(1−α)Bc)
m .

(d) The JSCB is then defined by (4.1) using the functions in (4.3) and (4.4) with these

estimates, that is

cj(u) =
Sn,j(u)− Φ̃

(b(1−α)Bc)
m v̂j(u)√
n

,

dj(u) =
Sn,j(u) + Φ̃

(b(1−α)Bc)
m v̂j(u)√
n

.

j = 1, . . . , r, (4.5)

A data driven rule for the choice of the block length in step (a) will be given in Section

4.3. The following proposition establishes that these definitions yield an asymptotically

correct JSCB.

Proposition 4.2. Under the conditions of Theorem 3.2 and Proposition 4.1, we have for

the JSCB defined in (4.1) with the functions cj and dj defined in (4.5)

lim
n,r→∞

lim
B→∞

P(g ∈ Cn,α) = 1− α.

Proposition 4.2 follows directly from Theorem 3.2, Proposition 4.1 and Lemma 4.1. The

details are omitted for the sake of brevity. The finite coverage probabilities of these joint

simultaneous confidence bands are investigated in Section 5.1 by means of a simulation

study.

4.2 Test of parallelism

Suppose we observe a panel of functional time series {Xi}ni=1 of dimension r satisfying (3.1).

Adopting the same notation as in Section 4.1, for j = 1, 2, · · · , r, let gj(u) = E[Xi,j(u)] be

the mean function of panel j. Denote by goj =
∫ 1

0
gj(u) du the average of gj(u) with respect

to u, j = 1, 2, · · · , r. In this subsection, we are interested in testing the null hypothesis

that the mean functions in the different panels are parallel, that is

H0 : g1(·) ‖ g2(·) ‖ · · · ‖ gr(·), (4.6)

versus the alternative that at least two mean functions are not parallel. Here the symbol ‖
denotes parallelism of two functions; that is, gi ‖ gj if and only if the difference gi(u)−gj(u)

is a constant function.

13



Now let

ĝj(u) =
1

n

n∑
i=1

Xi,j(u) and ĝoj =

∫ 1

0

ĝj(u) du

be the corresponding sample estimates of gj(u) and goj , respectively, and define

νj(u) = gj(u)− goj ; ν̂j(u) = ĝj(u)− ĝoj .

To test the hypothesis (4.6) we consider the following statistic

Tn =
√
n max

1≤j<k≤r
sup

0≤u≤1
|ν̂j(u)− ν̂k(u)|/vj,k(u), (4.7)

where vj,k(u) > 0 is a measure of scale for ν̂j(u) − ν̂k(u) which will be defined below.

Observe that the null hypothesis in (4.6) is satisfied if and only if νj(u) = νk(u) for all

u ∈ [0, 1] and all pairs k and j, 1 ≤ j < k ≤ r. As a result, the test statistic Tn should

be large if there exists at least one pair of non-parallel functions. Furthermore, Tn can

be viewed as a family-wise-error-controlled pair-wise test of parallelism among the curves

g1, . . . , gr and one can use the test Tn to decide which curves are parallel to each other

and which ones are not with a given family-wise error (asymptotically). Consequently, the

statistic Tn can be used to cluster curves with similar shapes together.

In order to obtain the critical values for a test, which rejects the null hypothesis (4.6) for

large values of Tn, we define the quantities

Wi,j(u) = Xi,j(u)−
∫ 1

0

Xi,j(u) du

Wi,j,k(u) = Wi,j(u)−Wi,k(u)

and

S̊n,j,k(u) =
1√
n

n∑
i=1

Wi,j,k(u), 1 ≤ j < k ≤ r. (4.8)

With these notations it is easy to see that the statistic Tn in (4.7) can be represented as

Tn = max
1≤j<k≤r

sup
0≤u≤1

|S̊n,j,k(u)|/vj,k(u). (4.9)

From this representation we observe immediately that Theorems 3.1 and 3.2 can be used to

determine its critical values. Furthermore, it is easy to see from the above representation

that a natural choice for the scaling factors is

vj,k(u) =
√

Var[Wi,j,k(u)],
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where in practice, one replaces vj,k(u) with its sample version, that is

v̂j,k(u) =
{ 1

n

n∑
i=1

[
Wi,j,k(u)− 1

n

n∑
s=1

Ws,j,k(u)
]2}1/2

.

Let W̊i(u) be the vector of dimension r(r − 1)/2 with entries Wi,j,k(u), 1 ≤ j < k ≤ r,

consider its (coordinate-wise) Fourier expansion

W̊i(u) =
∞∑
j=0

åi,j cos(jπu)

and define the r(r − 1)/2-dimensional vector

Ån,j =
1√
n

n∑
i=1

åi,j .

For n ∈ N let {Nn,k}∞k=0 be a sequence of independent centered r(r − 1)/2-dimensional

Gaussian vectors that preserves the covariance structure of {Ån,k}∞k=0, i.e.

Cov({Ån,k}∞k=0) = Cov({Nn,k}∞k=0),

and define the vector

S̊Nn (u) =
∞∑
l=0

N̊n,l cos(lπu) =
(
S̊Nn,j,k(u)

)
1≤j<k≤r,

where the random variables S̊Nn,j,k(u) denote the entries of S̊Nn (u). By the proof of Propo-

sition 2.2, we have
∑∞

k=0 ‖Ån,k,a,b‖q < ∞ where the random variables Ån,k,a,b denote the

entries of the vector Ån,k (1 ≤ a < b ≤ r). Hence the random variable S̊Nn (u) is well

defined almost surely.

Proposition 4.3. For each j, suppose that Xi,j is twice continuously differentiable on the

interval [0,1] a.s. and satisfies (2.6) for some q > 2. Assume that (3.7) holds; that (3.8)

holds with S2
n,j(u) therein replaced by S̊2

n,j,k; that (3.9) holds with θ1 therein replaced by 2θ1;

and that condition (V) hold with vj therein replaced by vj,k, 1 ≤ j < k ≤ r. If n, r → ∞,

we have, under the null hypothesis (4.6) of parallelism

sup
x∈R

∣∣∣P[ max
1≤j<k≤r

sup
0≤u≤1

∣∣∣ S̊n,j,k(u)

vj,k(u)

∣∣∣ ≤ x
]
− P

[
max

1≤j<k≤r
sup

0≤u≤1

∣∣∣ S̊Nn,j,k(u)

vj,k(u)

∣∣∣ ≤ x
]∣∣∣→ 0.
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Proposition 4.3 reveals that under the null hypothesis of parallel mean functions g1, . . . , gr
the distribution of the statistic Tn in (4.7) can be well approximated by the law of the L∞

norm of a high-dimensional vector of Gaussian random functions. Theorem 3.2 implies

that the multiplier bootstrap can be used to approximate this L∞ norm. A combination

of these results motivates the following bootstrap test for the hypothesis (4.6).

(i) Select a block size m, such that m→∞, m = o(n).

(ii) For a large integer B generate independent standard normal distributed random

variables {Nh
i }n−mi=1 , h = 1, 2, · · · , B. For each h and pair (j, k), 1 ≤ j < k ≤ r,

calculate

Φ̊h
m,j,k(u) =

√
m

n−m

n−m∑
i=1

[T̊i,m,j,k(u)− S̊n,j,k(u)/
√
n]Nh

i /v̂j,k(u),

where T̊i,m,j,k(u) =
∑i+m

a=i Wa,j,k(u)/m, and define

Φ̆h
m = max

1≤j<k≤r
sup

0≤u≤1
|Φ̊h

m,j,k(u)|.

(iii) Let Φ̆
(1)
m ≤ · · · ≤ Φ̆

(B)
m be the ordered statistics of {Φ̆j

m}Bj=1 and estimate the quantile

c̊1−α,n of the distribution of Tn in (4.9) by Φ̆
(b(1−α)Bc)
m .

(iv) Reject the null hypothesis (4.6) of parallel mean functions, whenever

Tn > Φ̆(b(1−α)Bc)
m . (4.10)

A data driven rule for the choice of the block size in step (a) will be given in Section 4.3.

The asymptotic validity of the above multiplier bootstrap procedure is established in the

following two propositions.

Proposition 4.4. Suppose that (3.13) and (3.14) hold and that θ1 < φ′q2/[4(q + 1)].

Further assume that the conditions of Proposition 4.3 are satisfied. Then, under the null

hypothesis (4.6) of parallel mean functions we have

lim
n,r→∞

lim
B→∞

P
(
Tn > Φ̆(b(1−α)Bc)

m

)
= α.

Proposition 4.4 follows directly from Theorem 3.2, Proposition 4.3 and Lemma 4.1. The

details are omitted for the sake of brevity. Next, we study the power of the test considering

the local alternative
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Ha : There exists a pair (j, k), 1 ≤ j < k ≤ r, such that

inf
c∈R

sup
u∈[0,1]

|gj(u)− gk(u)− c|
√
n/ log n→∞. (4.11)

The following proposition shows that the test (4.10) achieves asymptotic power 1 under

alternatives of the form (4.11). Hence this test is able to detect alternatives that deviate

from the null hypothesis of parallel mean functions at the rate
√

log n/n.

Proposition 4.5. If the conditions of Proposition 4.4 are satisfied, we have under alter-

natives of the form (4.11) that

lim
n,r→∞

lim
B→∞

P
(
Tn > Φ̆(b(1−α)Bc)

m

)
= 1.

4.3 Tuning parameter selection

To implement the multiplier bootstrap, one needs to choose the block size m. Observe that

the quality of the bootstrap depends on how well the conditional covariance operator of

Φm in (3.12) approximates the covariance operator of SNn in (3.6). The tuning parameter

m controls the accuracy for the latter approximation. When m is too large, the variance

of the conditional covariance operator of Φm will be too large; while if m is too small, then

the latter conditional covariance operator will have too much bias. In this paper, we adopt

the minimum volatility (MV) method proposed in Politis et al. (1999) to select the block

size m. The idea behind the MV method is that the conditional covariance operator of

Φm should behave stably as a function of m when m is in an appropriate range. Therefore

one could select m that minimizes the variability of the conditional covariance operator of

Φm as a function of m. We refer the readers to Politis et al. (1999) and Zhou (2013) for

more detailed discussions of the MV method and its applications in time series analysis.

Specifically, one first determines a sequence of equally-spaced candidate block sizes m1 <

m2 < · · · < mk and defines m0 = 2m1 − m2 and mk+1 = 2mk − mk−1. For each i ∈
{0, . . . , k + 1}, one calculates

Ξ
(i)
j (u) :=

√
mi

n−mi

n−mi∑
k=1

[Ti,j,m − Sn,j(u)/
√
n]2, j = 1, 2, · · · , r,

where Ti,j,m denotes the jth component of Ti,m. Note that Ξ
(i)
j (u) is an estimator of the

marginal variance operator of SNn,j(u). Next, one calculates for i = 1, 2, · · · , k

Ξ(i) :=
r∑
j=1

∫ 1

0

sd({Ξ(l)
j (u)}i+1

l=i−1) du,
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where sd denotes standard deviation. Observe that Ξ(i) measures the overall variability

of Ξ
(i)
j (u) (with respect to i) at candidate block size mi. We finally recommend selecting

the block size mi such that i = argmin1≤i≤k Ξ(i). The MV method performs well in our

simulation studies, which are presented in the following section.

5 Numerical experiments

In this section we illustrate the application of the methodology by means of a small simu-

lation study and by the analysis of a real data example.

5.1 Simulation study

In the Monte Carlo simulations, we consider the following two types of simple panel time

series models:

The PAR(a)-model is defined as the panel autoregressive functional model

Xi(u) = g(u) + Arei(u),

where Ar is an r× r tridiagonal matrix with 1’s on the diagonal and 1/2’s on the off-

diagonal, ei(u) = (ei,1(u), · · · , ei,r(u))> is an r-dimensional vector with independent

entries satisfying the AR-equation

ei,j(u) = aei−1,j(u) + εi,j(u) , j = 1, . . . , r . (5.1)

and a ∈ [0, 1) denotes the auto-regressive (AR) coefficient that controls the strength

of the temporal dependence. The innovations in (5.1) are given by i.i.d. random

functions

εi,j(u) =
∞∑
k=1

k−3[cos(2πku)εi,j,k + sin(2πku)εi,j,k], i = 1, 2, . . . , j = 1, . . . , r ,

where the infinite-dimensional vector εi,j := (εi,j,1, εi,j,2, · · · )> satisfies εi,j = A∞ε
′
i,j,

A∞ is the infinite-dimensional tridiagonal matrix with 1’s on the diagonal and 1/2’s

on the off-diagonal and

ε′i,j := (ε′i,j,1, ε
′
i,j,2, · · · )> (5.2)

are i.i.d. infinite-dimensional random vectors with i.i.d. entries at each component.
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The PMA(a)-model is defined as the panel moving average functional model. The

setup is the same as that of PAR-model except that equation (5.1) is replaced by a

moving average (MA) representation

ei,j(u) = εi,j(u) + aεi−1,j(u),

where a is the MA-coefficient that controls the temporal dependence.

Observe that the functions Xi in the PAR(a)- and PMA(a)-model are twice but not

three times differentiable and that the components Xi,j1(u) and Xi,j2(u) are independent

if |j1 − j2| > 1. By construction, the Fourier coefficients εi,j,k as a sequence of k are

correlated. In the simulation studies, the entries ε′i,j,k in the vector (5.2) are either i.i.d.

standard normal distributed random variables (denoted by N (0, 1)) or i.i.d. standardized

t-distributed random variables with 6 degrees of freedom (denoted by
√

2/3t6) to repre-

sent light tailed and heavy tailed cases, respectively (note that the standard deviation of

a
√

2/3t6-distributed random variable is 1). Throughout the simulations, the block size is

selected by the MV method described in Section 4.3.

5.1.1 Coverage accuracy of JSCB

In order to investigate the approximation of the confidence level of the JSCB for finite

sample sizes, we consider the function g(u) = 0 in the PAR(a)- and PMA(a)-model. The

sample size n is chosen as 200 and 400 and the dimension r varies from 5 to 80 in order to

investigate the impact of the dimensionality on the coverage probability. The number of

bootstrap replications is chosen as B = 1000 and for each scenario 1000 simulation runs

are performed. The simulated coverage probabilities of the JSCB under both light and

heavy tailed errors and various levels of time series dependence are reported in Tables 1

and 2.

We observe that the performances of the JSCB under light and heavy tailed errors are

similar. When n = 200, the JSCB is reasonably accurate for all dimensions when the

time series dependence is moderate. Under stronger time series dependence, such as for

the PAR(0.5)-model, the coverage probabilities of the JSCB are slightly smaller than the

nominal confidence level. However, the approximation improves significantly if the sample

size increases to n = 400. In this case, the coverage of the JSCB is reasonably accurate

in all cases under consideration. The impact of the dimension on the accuracy of the

approximation of the confidence level is hardly visible, but we observe a slightly better

performance of the JSCB for smaller dimensions r = 5, 10 compared to the cases r =

20, 40, 80.
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n = 200

1− α = 0.95 1− α = 0.9

r PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1) PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1)

5 .941 .944 .907 .939 .942 .893 .878 .830 .878 .875

10 .940 .934 .916 .934 .941 .891 .870 .824 .881 .878

20 .938 .943 .919 .945 .936 .884 .890 .817 .887 .869

40 .942 .942 .914 .943 .941 .885 .871 .818 .873 .873

80 .943 .941 .912 .944 .934 .902 .889 .808 .871 .867

n = 400

1− α = 0.95 1− α = 0.9

r PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1) PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1)

5 .948 .947 .941 .945 .944 .892 .880 .887 .899 .893

10 .948 .957 .934 .939 .939 .898 .890 .862 .877 .872

20 .954 .953 .946 .943 .943 .897 .891 .878 .885 .891

40 .955 .944 .947 .949 .940 .905 .885 .873 .885 .888

80 .956 .946 .942 .955 .943 .903 .908 .857 .896 .880

Table 1: Simulated coverage probabilities of the JSCB in the PAR- and PMA-model. The

errors in (5.2) are N (0, 1)-distributed and 1−α represents the nominal coverage probability.

5.1.2 Accuracy and power of parallelism test

In order to investigate the finite sample accuracy of the test for parallelism, we consider

the functions

gi(u) = u2 − u+ ci, i = 1, 2, · · · , r,

in the PAR(a) and PMA(a)-model, where ci are i.i.d. standard normal distributed random

variables. Observe that the mean functions gi(u), 1 ≤ i ≤ r are parallel. Various values

for the dimension r from 5 to 30 and various values of the parameter a are selected to

investigate the impact of the dimension and temporal dependence on the accuracy of the

test, respectively. Since the parallelism test compares mean curves for every pair of the r

component functional time series, the effective dimensionality of the test is
(
r
2

)
. Hence when

r = 30, we are effectively testing a 435 dimensional function. Throughout this subsection,

the number of bootstrap replications is chosen as B = 1000 and for each scenario, 500

simulations are used for the calculation of the rejection probabilities.

The simulated Type I error rates of the test for parallelism under light and heavy tailed

20



n = 200

1− α = 0.95 1− α = 0.9

r PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1) PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1)

5 .941 .944 .919 .939 .937 .884 .887 .83 .873 .874

10 .942 .943 .918 .938 .943 .895 .880 .827 .873 .878

20 .942 .944 .911 .936 .945 .892 .880 .803 .876 .883

40 .934 .943 .916 .937 .944 .877 .888 .812 .877 .885

80 .944 .954 .925 .935 .940 .877 .871 .814 .872 .868

n = 400

1− α = 0.95 1− α = 0.9

r PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1) PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1)

5 .952 .939 .939 .948 .940 .906 .889 .883 .885 .888

10 .947 .945 .936 .944 .943 .898 .899 .875 .883 .874

20 .955 .952 .923 .946 .950 .904 .886 .857 .881 .890

40 .946 .944 .941 .950 .942 .896 .887 .861 .887 .885

80 .947 .956 .929 .954 .945 .893 .901 .856 .902 .886

Table 2: Simulated coverage probabilities of the JSCB in the PAR- and PMA-model. The

errors in (5.2) are
√

2/3t6-distributed and 1−α represents the nominal coverage probability.

errors are reported in Tables 3 and 4, respectively. We observe similar results as in Section

5.1.1. There are no significant differences in the approximation of the nominal level for

light and heavy tails, and the test (4.10) is reasonably accurate when the time series

dependence is not too strong. Moreover, the test becomes also reasonably accurate under

stronger temporal dependence for larger sample size (here n = 400). The approximation of

the nominal level by the test (4.10) is only slightly better for lower dimensions (r = 5, 10)

compared with higher dimensions (r = 20, 30).

Next, we investigate the finite sample performance of the test (4.10) under the alternative.

To this end, we let

g1(u) = u2 + (b− 1)u+ c1 and gi(u) = u2 − u+ ci, i = 2, 3, · · · , r,

where ci, i = 1, 2, · · · , r are i.i.d. standard normal random variables, b ≥ 0 is a constant

that controls the magnitude of deviation from the null hypothesis. In particular the choice

b = 0 corresponds to parallel mean functions and larger values for b indicate a more

substantial deviation from the null hypothesis. Further observe that there is only one
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n = 200

α = 0.05 α = 0.1

r PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1) PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1)

5 .042 .062 .076 .052 .066 .114 .130 .142 .102 .120

10 .058 .054 .078 .062 .060 .124 .118 .164 .110 .110

20 .060 .050 .080 .066 .058 .126 .122 .202 .132 .152

30 .066 .064 .094 .056 .066 .128 .140 .190 .134 .140

n = 400

α = 0.05 α = 0.1

r PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1) PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1)

5 .052 .048 .056 .052 .052 .108 .100 .124 .106 .110

10 .048 .052 .066 .052 .056 .100 .122 .134 .116 .102

20 .058 .058 .068 .054 .048 .114 .110 .138 .120 .114

30 .050 .048 .072 .038 .060 .102 .110 .124 .106 .136

Table 3: Simulated type I errors of the test (4.10) for parallelism of the mean functions in

the PAR- and PMA-model. The errors in (5.2) are N (0, 1)-distributed and α represents

the nominal level of the test.

curve that is not parallel to the rest. For the simulations of the rejection probabilities

under the alternative, we investigate a PAR(0.2) model with n = 200 observations. The

simulated rejection rates as a function of b are plotted in Figure 1 for dimensions r = 20

and 30, respectively. We observe from Figure 1 that the simulated power of the test

(4.10) increases very fast as b increases. In particular, the simulated power of the test

becomes reasonably high when b is larger than 0.15. This observation is consistent with

our theoretical finding that the parallelism test is able to detect alternatives converging to

the null hypothesis with a rate
√

log r/n. Additionally, we find that the simulated power

for the dimension r = 20 is higher than for dimension r = 30. This observation is also

consistent with the theoretical
√

log r/n rate for the detection of local alternatives.

5.2 Analysis of Canadian temperature data

In this section we analyze daily mean temperature records from 1902 to 2018 in 15 rep-

resentative Canadian cities as an empirical illustration of our methodology. The cities

chosen are Calgary, Charlottetown, Edmonton, Halifax, Hamilton, Kitchener, London,
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n = 200

α = 0.05 α = 0.1

r PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1) PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1)

5 .050 .054 .070 .050 .058 .098 .118 .166 .116 .122

10 .050 .056 .086 .058 .054 .104 .124 .172 .128 .134

20 .048 .058 .088 .054 .066 .108 .108 .196 .116 .140

30 .064 .054 .102 .066 .042 .112 .118 .222 .134 .124

n = 400

α = 0.05 α = 0.1

r PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1) PAR(0) PAR(.2) PAR(.5) PMA(.5) PMA(1)

5 .058 .058 .062 .052 .062 .112 .104 .124 .110 .112

10 .050 .046 .060 .054 .050 .100 .112 .130 .124 .124

20 .056 .058 .056 .064 .056 .106 .108 .126 .112 .128

30 .056 .048 .068 .064 .046 .108 .104 .133 .126 .116

Table 4: Simulated type I errors of the test (4.10) for parallelism of the mean functions in

the PAR- and PMA-model. The errors in (5.2) are
√

2/3t6-distributed and α represents

the nominal level of the test.

Montreal, Ottawa, Quebec, Saskatoon, Toronto, Vancouver, Victoria, and Windsor. The

data are publicly available from the government of Canada website: https://climate.

weather.gc.ca/historical_data/search_historic_data_e.html. The daily tempera-

ture records of each year are smoothed using local linear kernel smoothing to represent

the overall yearly functional pattern of the temperature records. As a result, we obtain

a panel functional time series with temporal dimension n = 117 and spatial dimension

r = 15. Figure 2 below shows 3D plots of the functional time series of mean temperature

in Toronto from two different angles. It can be seen that the yearly mean temperature

curves are of similar shape which depicts clear seasonal variation. Additionally, substantial

temperature variability can be seen from the curves among different years.

Note that we expect spatial correlation among the panels as some selected cities are

close in distance. We are interested in constructing JSCB of the overall yearly pattern of

temperature for the 15 cities across Canada. Additionally, we are interested in identifying

which cities are similar in yearly temperature patterns in the sense that their temperature

curves are parallel to each other. As the cities chosen in the study are scattered across

four climate zones: Atlantic Canada, Great Lakes/St. Lawrence Lowlands, Prairies, and
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Figure 1: Simulated rejection rates of the test (4.10) for the hypothesis of parallel mean

functions with r = 20 and 30. Solid and dashed lines represent the rejection rates under

nominal levels 0.05 and 0.1, respectively.

Pacific Coast, we are also interested in checking whether the temperature patterns of the

cities can be grouped according to their climate zones.

The 95% JSCB of the yearly temperature pattern of the 15 cities are plotted in Figure

3. This JSCB is based on 10,000 bootstrap replications with block size m = 10 which

was selected by the MV method. We can see from the plots that all yearly temperature

patterns reflect clear seasonal variation of winter lows and summer highs. A closer look at

the plots shows that Calgary, Edmonton and Saskatoon have significantly wider bands in

winter than the other cities. Therefore we conclude that the winter mean temperature in

cities of the Prairies zone has more year-to-year variation than the other zones.

As all temperature curves are similar in shape to the sinusoidal functions, we would like

to test the hypothesis

Hk
0 : gi(u) = ci +

k∑
j=1

(ai,j cos(2πju) + bi,j sin(2πju)) , i = 1, 2, · · · , 15.

Observe that one will encounter multiple testing problems if the cities are tested separately.

Here we perform the tests by fitting the harmonic functions to the mean temperature curves

and then checking whether all fitted functions can be fully embedded into the 95% JSCB.

When k = 1, most fitted harmonic curves are not covered by the JSCB. When k = 2,

the fitted harmonic curves are plotted in Figure 3. It can be seen that all 15 harmonic

curves are fully covered by the 95% JSCB. These results suggest that one can use the
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Figure 2: 3D functional time series plots from two different angles for the mean temperature

curves of Toronto (1902-2018).

parametric mean model gi(u) = ci +
∑2

j=1(ai,j cos(2πju) + bi,j sin(2πju)), i = 1, 2, · · · , 15

for the Canadian temperature data.

For the test of parallelism, we follow the implementation steps in Section 4.2 with block

sizes m = 10 and B = 10, 000 bootstrap replications. Observe that there are 105 pairs to

be compared and that the sample size is n = 117. Therefore the dimensionality here is

almost as large as the sample size. The resulted pairwise test statistics range from 3.0 to

93 and the critical values of the test at 0.1%, 0.5%, 1%, 5% and 10% are 7.9, 7.04, 6.61,

5.50 and 5.04, respectively. In Table 5 we display the pairwise p-values of the parallelism

test obtained by the critical values listed above. Note that those pair-wise p-values do

not suffer from multiple testing problems as (4.10) is a joint test of parallelism. Clearly,

the overall test of parallelism is rejected with a very strong evidence. A closer look at

Table 5 shows that Hamilton, London, Kitchener, Toronto and Windsor can be grouped

together in term of temperature parallelism. And another group of cities with parallel

temperature patterns is Quebec, Ottawa and Montreal. The first group of cities are all in

the area of southeast Ontario surrounded by the great lakes. The second group of cities are

located near the St. Lawrence River in the St. Lawrence Lowlands. On the other hand,

we also observe at some close cities significantly different temperature patterns. Two such
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Figure 3: 95% JSCB for the Canadian temperature data. The solid lines represent the

upper and lower bounds of the JSCB in (4.1) with the functions defined in (4.5). The dotted

lines in the middle represent the fitted harmonic curves gi(u) = ci +
∑2

j=1(ai,j cos(2πju) +

bi,j sin(2πju)), i = 1, 2, · · · , 15.
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Ham Lon Kit Tor Win Que Ott Mon Cal Edm Cha Hal Vic Van Sas

Ham

Lon 0.2

Kit < 0.1 0.3

Tor > 10 3.6 1.8

Win > 10 > 10 > 10 > 10

Que < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Ott < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 5

Mon < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 > 10 < 0.1

Cal 0.6 < 0.1 0.3 0.1 0.4 < 0.1 < 0.1 < 0.1

Edm < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.5 < 0.1 < 0.1

Cha < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Hal < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Vic < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Van < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Sas < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Table 5: Table of pairwise parallelism test p-values (in percentage) for the Canadian tem-

perature data.

interesting pairs are Vancouver and Victoria and Calgary and Edmonton.

In order to carry out a further investigation, the 95% JSCB for the mean temperature

differences of the two pairs of cities are plotted in Figure 4. Vancouver and Victoria are

both on the southern Pacific coast of Canada and are within 100 kilometers in distance.

However, Figure 4 shows that Victoria is 1-2 degrees Celsius warmer than Vancouver in

the winter and 1.5 to 2.5 degrees Celsius cooler than Vancouver in the summer. Therefore

the two cities are significantly different in yearly temperature pattern. This may be due

to the fact that Victoria is located in the Vancouver Island and the island adjusts the

temperature significantly. Calgary and Edmonton are major cities of Alberta. Both cities

are in the Prairies with Edmonton about 300 kilometers north of Calgary. Figure 4 shows

that Edmonton is significantly colder than Calgary in the winter but significantly warmer

in the summer. Interestingly, we observe from Table 5 that the temperature pattern of

Edmonton has some similarities (highest p-value around 0.5%) to that of the St. Lawrence

Lowland group while the temperature pattern of Calgary has some similarities (highest

p-value around 0.5%) to that of the great lakes group. It is unknown why this is the case

and further investigations with geography and climatology knowledge are needed.
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Abstract

This supplemental material contains proofs of the theoretical results of the paper.

In this supplemental material, the symbol C denotes a positive finite constant which may

vary from place to place.

Proof of the results in Section 2

Proof of Proposition 2.1. Using integration by parts, we have for the Fourier coeffi-

cients in (2.5) and k ≥ 1,

ai,k =
2

(kπ)2

(
−
∫ 1

0

X ′′i (u) cos(kπu) du+X ′i(1) cos(kπ)−X ′i(0)
)
.

Note that ‖X ′i(1)‖q ≤ ‖X ′i(0)‖q +
∫ 1

0
‖X ′′i (u)‖q du <∞. As a result ‖ai,k‖q ≤ C/k2. Hence

‖a∗i,k‖q ≤ C/k2 as ai,k and a∗i,k are identically distributed. On the other hand,

‖ai,k − a∗i,k‖q ≤
∫ 1

0

‖H(u,Fi)−H(u,F∗i )‖q| cos(kπu)| du

≤ sup
u∈[0,1]

‖H(u,Fi)−H(u,F∗i )‖q = δX(i, q),

and the proposition follows. ♦

Proof of Proposition 2.2. Let An,k =
∑n

i=1 ai,k/
√
n. Observe that E(aj,k) = 0. For any

j ∈ Z and a random variable Z, let

Pj(Z) = E(Z|Fj)− E(Z|Fj−1).

We have

‖An,j‖q ≤ C
∞∑
l=0

‖P0(al,j)‖q

1



≤ C
∞∑
l=0

‖al,j − a∗l,j‖q ≤ C
[ bj2/βc∑

l=0

j−2 +
∞∑

l=bj2/βc+1

l−β
]
≤ Cj2(1−β)/β

by Proposition 2.1, Theorem 1 (i), (ii) of Wu (2005) and Theorem 1(iii) of Wu (2007), where

we utilized the facts that q ≥ 2 and
∑∞

l=0 ‖al,j − a∗l,j‖q <∞. Observing the representation

Sn(u)− Sn(k, u) =
∞∑

j=k+1

An,j cos(jπu)

we obtain∥∥∥ sup
u∈[0,1]

|Sn(u)− Sn(k, u)|
∥∥∥
q
≤

∞∑
j=k+1

‖An,j‖q ≤ C
∞∑

j=k+1

j2(1−β)/β ≤ Ck(2−β)/β,

and the assertion of the proposition follows. ♦

Proof of Proposition 2.3. Observe that Sn(k, u) − Sn(k, ti,n) =
∫ u
ti,n

S ′n(k, s) ds, where

S ′n(k, s) is the derivative of Sn(k, s) with respect to s. Therefore

sup
u∈[ti,n,ti+1,n]

|Sn(k, u)− Sn(k, ti,n)| ≤
∫ ti+1,n

ti,n

|S ′n(k, s)| ds,

which implies∥∥∥ sup
u∈[ti,n,ti+1,n]

|Sn(k, u)− Sn(k, ti,n)|
∥∥∥
q
≤
∫ ti+1,n

ti,n

‖S ′n(k, s)‖q ds. (1)

Now for any s ∈ [0, 1], −S ′n(k, s) = π
∑k

j=1An,jj sin(jπs). By the same calculations as

those in the proof of Proposition 2.2 we have

‖S ′n(k, s)‖q ≤
k∑
j=1

j‖An,j‖q ≤ C
k∑
j=1

j · j2(1−β)/β ≤ Ck2/β. (2)

Combining (1) and (2), we obtain that∥∥∥ sup
u∈[ti,n,ti+1,n]

|Sn(k, u)− Sn(k, ti,n)|
∥∥∥
q
≤ Ck2/β/ln

for any i. Hence∥∥∥ max
0≤i≤ln−1

sup
u∈[ti,n,ti+1,n]

|Sn(k, u)− Sn(k, ti,n)|
∥∥∥
q
≤ Ck2/β/l1−1/q

n

by an Lq maximum inequality. ♦

2



Proof of the results in Section 3

Recall the definition (3.3) and define

Sn(k, u) =
1√
n

n∑
i=1

Xi(k, u),

where

Xi(k, u) =
k∑
j=1

ai,j cos(jπu)

and ai,j = 2
∫ 1

0
Xi(u) cos(jπu) du for j ≥ 1; ai,0 =

∫ 1

0
Xi(u) du. Let

SNn (k, u) =
k∑
j=0

Nn,j cos(jπu) (3)

and denote the j-th entry of Sn(k, u) (resp. SNi (k, u)) by Sn,j(k, u) (resp. SNn,j(k, u)).

Lemma 0.1. Denote the dependence measure of {Xj(k, ·)}j∈Z by δH,k(i, q). If δH(i, q) =

O(i−β), then

δH,k(i, q) = O(i−β/2+ε) for any ε > 0.

Proof. By definition, we have

δH,k(i, q) =
∥∥∥ k∑
j=0

(ai,j − a∗i,j) cos(jπu)
∥∥∥
q
,

and Proposition 2.1 implies that ‖ai,j − a∗i,j‖q ≤ C min(j−2, i−β) ≤ Cj−2(1/2+α)i−β(1/2−α)

for an arbitrarily small α > 0. We obtain

δH,k(i, q) ≤
k∑
j=0

‖ai,j − a∗i,j‖q ≤
k∑
j=0

Cj−2(1/2+α)i−β(1/2−α) ≤ Ci−β/2+αβ.

As α can be made arbitrarily small, the lemma follows. ♦

Lemma 0.2. Under the assumptions of Theorem 3.1, we have

sup
x∈R

∣∣∣P[ max
1≤j≤r

max
1≤i≤ln

|Sn,j(k, ti,n)| ≤ x
]
− P

[
max
1≤j≤r

max
1≤i≤ln

|SNn,j(k, ti,n)| ≤ x
]∣∣∣→ 0.

3



Proof. Let

X̃i,k = (X>i (k, t1,n), · · · ,X>i (k, tln,n))> (4)

denote the vector of length rln in which the l-th block contains the coordinates of the

vector Xi(k, tl,n) and define

S̃k,n =
1√
n

n∑
j=1

X̃i,k

as the corresponding standardized sum.

Finally, recall the notation of SNn (k, ·) in (3), define

S̃Nk,n =
(
[SNn (k, t1,n)]>, · · · , [SNn (k, tln,n)]>

)>
and note that S̃k,n and S̃Nk,n share the same covariance structure. By Proposition 2.2, we

have ‖Sn,j(u) − Sn,j(k, u)‖2 → 0 uniformly in j and u if k → ∞. Observing assumption

(3.8) we conclude that, uniformly in j and u, E(S2
n,j(k, u)) ≥ δ/2 for sufficiently large n.

Now pick ln � nθ2 and k � nθ3 with positive constants θ2 and θ3. By assumption (3.9), we

can choose θ2 and θ3 such that
θ1 + θ2 < q/2− 1,

θ1/q + [(2− β)/β]θ3 < 0,

θ1/q + (1/q − 1)θ2 + (2/β)θ3 < 0.

Let ∆ =
∑∞

j=−∞ E(X̃i,kX̃
>
i−j,k) denote the long-run-covariance of the time series {X̃i,k}i∈Z

defined by (4). Then as θ1 + θ2 < q/2 − 1 and max1≤k≤r δHj ,k(i, q) = O(i−β/2+ε) for an

arbitrarily small positive ε (see Lemma 0.1), we can easily check that the assumptions of

part (i) of Theorem 3.2 of Zhang and Wu (2017) hold (define α therein as β/2 − 1 − ε

and note that α > 1/2 − 1/q since β > 3). To provide more details, we denote by X·j
the j-th component process of X̃i,k, j = 1, 2, · · · , rln, and check the magnitudes of the

quantities δi,q,j ∆m,q,j, ‖X·j‖q,α, Ψq,α, Υq,α, ωi,q, Ωm,q, ‖|X·|∞‖q,α, Θq,α, L1, L2, N1, N2,

W1 and W2 defined in Zhang and Wu (2017). By Lemma 0.1, δi,q,j = O(i−β/2+ε) for any

j which implies ∆m,q,j = O(m−β/2+1+ε). Elementary but tedious calculations using the

assumptions of Theorem 3.1 yield that

‖X·j‖q,α = O(1) , Ψq,α = O(1) , Υq,α = O(p1/q)

(note that here p = O(nθ1+θ2)),

ωi,q = O(p1/qi−β/2+ε) , Ωm,q = O(p1/qm−β/2+1+ε) , Θq,α = O(p1/q) ,

L1 = o(1) , L2 = O(log2/α p) , ‖|X·|∞‖q,α = O(p1/q) ,

W1 = O(log7(pn)) , W2 = O(log4(pn)),
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and N1 ≥ c(n/ log p)q/2/p, N2 ≥ cn/ log2 p, where c is a positive constant. Therefore

the assumptions of part (i) of Theorem 3.2 of Zhang and Wu (2017) hold provided that

θ1 + θ2 < q/2− 1 and ε is sufficiently small. Thus we obtain

sup
x∈R

∣∣∣P[|S̃k,n|∞ ≤ x]− P[|∆1/2G|∞ ≤ x]
∣∣∣→ 0, (5)

where | · |∞ denotes the maximum norm on Rrln and G is a standard rln dimensional

Gaussian vector. In fact, Theorem 3.2 in Zhang and Wu (2017) performs a normalization

and it requires that the long-run variance of each Sn,j(k, ti,n) equals 1, j = 1, 2, · · · , r,
i = 1, 2, · · · , ln. But their arguments easily apply to the case of arbitrary marginal long-

run variances with a positive lower bound. Now observe that

∆n := E([S̃k,nS̃
>
k,n]) =

n∑
j=−n

(1− |j|/n)E(X̃i,kX̃
>
i−j,k),

and that Lemma 6 of Zhou (2014) and Lemma 0.1 yield

|E[Xi,p,kXi−j,s,k]| ≤ Cj−β/2+ε, 1 ≤ p ≤ rln, 1 ≤ s ≤ rln

for any ε > 0, where Xi,p,k is the p-th entry of X̃i,k. Hence simple calculations yield for the

entries of the matrices ∆n and ∆ that

max
1≤i,j≤lrn

|∆n(i, j)−∆(i, j)| = O(n−β/2+ε+1).

By the Gaussian comparison inequality in Lemma 3.1 of Chernozhukov et al. (2013), we

have

sup
x∈R

∣∣∣P[|S̃Nk,n|∞ ≤ x]− P[|∆1/2
n G|∞ ≤ x]

∣∣∣ ≤ C(n(−β/2+ε+1)/3[log(rln/n
−β/2+ε+1]2/3 → 0,

which implies (observing (5))

sup
x∈R
|P[|S̃k,n|∞ ≤ x]− P[S̃Nk,n|∞ ≤ x]| → 0.

And this is exactly the claim of the lemma. ♦

Proof of Theorem 3.1. Proposition 2.2 and an application of an Lq maximal inequality

yield ∥∥∥ max
1≤j≤r

sup
0≤u≤1

|Sn,j(u)− Sn,j(k, u)|
∥∥∥
q
≤ Cr1/qk(2−β)/β.
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Since θ1/q + [(2 − β)/β]θ3 < 0, the right hand side of the above inequality converges to

0 faster than n−α1 for some positive α1. By the triangular and Markov inequalities, for

δ1,n :=
√
r1/qk(2−β)/β, we have

P
(

max
1≤j≤r

sup
0≤u≤1

|Sn,j(u)| ≤ x
)
≤ P

(
max
1≤j≤r

sup
0≤u≤1

|Sn,j(k, u)| ≤ x+ δ1,n

)
+ P

(
max
1≤j≤r

sup
0≤u≤1

|Sn,j(u)− Sn,j(k, u)| ≥ δ1,n

)
≤ P

(
max
1≤j≤r

sup
0≤u≤1

|Sn,j(k, u)| ≤ x+ δ1,n

)
+ ε1,n,

where ε1,n = Crkq(2−β)/β/δq1,n → 0 with some polynomial rate. Similarly, since θ1/q +

(1/q − 1)θ2 + (2/β)θ3 < 0, it follows that r1/qk2/β/l
1−1/q
n converges to 0 faster than n−α2

for some positive α2. By Proposition 2.3, we have, for δ2,n :=

√
r1/qk2/β/l

1−1/q
n ,

P
(

max
1≤j≤r

sup
0≤u≤1

|Sn,j(k, u)| ≤ x+ δ1,n

)
≤ P

(
max
1≤j≤r

sup
1≤i≤ln

|Sn,j(k, ti,n)| ≤ x+ δ1,n + δ2,n

)
+ ε2,n,

where ε2,n = C{δ2,n/[r
1/qk2/β/l

1−1/q
n ]}−q → 0 with some polynomial rate. Now by Lemma

0.2, we obtain

P
(

max
1≤j≤r

sup
1≤i≤ln

|Sn,j(k, ti,n)| ≤ x+ δ1,n + δ2,n

)
− P

(
max
1≤j≤r

sup
1≤i≤ln

|SNn,j(k, ti,n)| ≤ x+ δ1,n + δ2,n)→ 0

uniformly in x. Denote the latter uniform convergence rate by ε3,n. Furthermore, by

Nazarov’s anti-concentration inequality (Nazarov (2003)),

P
(

max
1≤j≤r

sup
1≤i≤ln

|SNn,j(k, ti,n)| ≤ x+ δ1,n + δ2,n

)
− P

(
max
1≤j≤r

sup
1≤i≤ln

|SNn,j(k, t1,n)| ≤ x
)

≤ C(δ1,n + δ2,n)
√

log(rln).

Following the same arguments as above, we have

P
(

max
1≤j≤r

sup
1≤i≤ln

|SNn,j(k, ti,n)| ≤ x
)
− P

(
max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)| ≤ x
)

≤ ε1,n + ε2,n + C(δ1,n + δ2,n)
√

log(rln).

Therefore we conclude that

P
[

max
1≤j≤r

sup
0≤u≤1

|Sn,j(u)| ≤ x
]
− P

[
max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)| ≤ x
]

≤ C[ε1,n + ε2,n + ε3,n + (δ1,n + δ2,n)
√

log(rln)]→ 0

6



uniformly in x. Similarly, we also obtain the lower bound

P
[

max
1≤j≤r

sup
0≤u≤1

|Sn,j(u)| ≤ x
]
− P

[
max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)| ≤ x
]

≥ −C[ε1,n + ε2,n + ε3,n + (δ1,n + δ2,n)
√

log(rln)]→ 0

uniformly in x. Hence we conclude that Theorem 3.1 holds. ♦

Recall the definition of the vector Ti,m(u) in (3.11) and denote its j-th entry by Ti,j,m(u).

Similarly define Φm,j(u) as the j-th component of the vector Φm in (3.12).

Lemma 0.3. Under the assumptions of Theorem 3.2, there exists a sequence of events

E1,n such that P(E1,n)→ 1. On E1,n, we have

sup
x∈R

∣∣∣P( max
1≤j≤r

sup
1≤i≤ln

|Φm,j(ti,n)| ≤ x
∣∣∣{Xi(u)}ni=1

)
− P

(
max
1≤j≤r

sup
1≤i≤ln

|SNn,j(ti,n)| ≤ x
)∣∣∣→ 0.

Proof. By Theorem 4 of Zhou (2013), we have, for each tl,n, 1 ≤ l ≤ ln and j, 1 ≤ j ≤ r,∥∥∥ n−m∑
i=1

m

n−m
[
Ti,j,m(tl,n)− Sn,j(tl,n)/

√
n
]2 − Σ̃(l−1)r+j,(l−1)r+j

∥∥∥
q′
≤ C(

√
m/n+ 1/m),

where q′ = q/2, Σ̃i,j denotes the (i, j)-th entry of the matrix Σ̃

Σ̃ =
∞∑

j=−∞

E[X̄i − EX̄i][X̄
>
i−j − EX̄>i−j],

and X̄i = (X>i (t1,n), · · · ,X>i (tln,n))>.

Let Σ̃n = E(SNn [SNn ]>), where SNn = ([SNn (t1,n)]>, · · · , [SNn (tln,n)]>)>. Observe that for each

fixed l and j, the k-th dependence measure of the sequence {Xi,j(ti,n)}ni=1 decays at the

rate O(k−β). Hence by similar arguments as those given in the proof of Lemma 0.2, we

obtain

max
1≤i,j≤rln

|Σ̃n,i,j − Σ̃i,j| ≤ Cn−β+1,

and we conclude that∥∥∥ n−m∑
i=1

m

n−m
[Ti,j,m(tl,n)− Sn,j(tl,n)/

√
n]2 − Σ̃n,(l−1)r+j,(l−1)r+j

∥∥∥
q′
≤ C(

√
m/n+ 1/m). (6)

From these considerations and by arguments similar to those in the proof of Theorem 4 of

Zhou (2013), we also obtain that∥∥∥ n−m∑
i=1

m

n−m
[Ti,j,m(tl,n)− Sn,j(tl,n)√

n
][Ti,h,m(tw,n)− Sn,h(tw,n)√

n
] − Σ̃n,(l−1)r+j,(w−1)r+h

∥∥∥
q′
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≤ C(
√
m/n+ 1/m),

for any 1 ≤ j, h ≤ r and 1 ≤ l, w ≤ ln. Therefore, an Lq
′

maximum inequality yields∥∥∥ max
1≤a,b≤rln

|[Cov(Φ̄m|{Xi(u)}ni=1)]a,b − Σ̃n,a,b|
∥∥∥
q′
≤ [rln]2/q(

√
m/n+ 1/m) := γ1,n,

where Φ̄m = (Φ>m(t1,n), · · · ,Φ>m(tln,n))>. By the assumption θ1 < φ′q2/[2(q + 1)], we can

choose ln = nθ2 such that {
θ1/q − θ2 < 0

2(θ1 + θ2)/q < φ′

Since 2(θ1 + θ2)/q < φ′, we conclude that γ1,n converges to zero at a polynomial rate.

Hence the event

E1,n := max
1≤a,b≤rln

∣∣[Cov(Φ̄m|{Xi(u)}ni=1)]a,b − Σ̃n,a,b

∣∣ ≤ √γ1,n

has probability at least 1− γq/21,n . On event E1,n, we have by Lemma 3.1 of Chernozhukov

et al. (2013) that

sup
x∈R

∣∣∣P( max
1≤j≤r

sup
1≤i≤ln

|Φm,j(ti,n)| ≤ x
∣∣∣{Xi(u)}ni=1

)
− P

(
max
1≤j≤r

sup
1≤i≤ln

|SNn,j(ti,n)| ≤ x
)∣∣∣

≤ Cγ
1/6
1,n log(rlnγ

−1/2
1,n )2/3 → 0,

which completes the proof of Lemma 0.3. ♦

Lemma 0.4. Assume m/n→ 0. Then under the assumptions of Theorem 3.2 , we have∥∥∥ sup
u

n−m∑
i=1

m

n−m
[T ′i,j,m(u)− S ′n,j(u)/

√
n]2
∥∥∥
q/2
≤ C.

Proof. Without loss of generality, we assume E(X ′i,j(u)) = 0. First we write X ′i,j(u) :=∑∞
j=0 bi,j,k cos(kπu). Then, similar to the proof of Proposition 2.1 utilizing ‖X ′′1,j(u) −

X ′′1,j(v)‖q ≤ C|u− v|, it follows

‖bi,j,k − b∗i,j,k‖q ≤ C min(1/k2, i−β).

Let Bj,k =
∑n

i=1 bi,j,k/
√
n. Then by the proof of Proposition 2.2, we have ‖Bj,k‖q ≤

Ck2(1−β)/β which implies

‖ sup
0≤u≤1

|S ′n,j(u)|2‖q/2 ≤
( ∞∑
j=0

‖Bj,k‖q
)2 ≤ C.
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Similarly, we have for any i,

m‖ sup
0≤u≤1

|T ′i,j,m(u)|2‖q/2 ≤ C.

As a result the lemma follows. ♦

Lemma 0.5. Assume m/n → 0. Then under the assumptions of Theorem 3.2 and the

choice of θ2 in Lemma 0.3, there exists a sequence of events E2,n such that P(E2,n) → 1,

and on E2,n we have the conditional Orlicz norm∥∥∥max
j

max
1≤i≤ln−1

sup
u∈[ti,n,ti+1,n]

|Φm,j(u)− Φm,j(ti,n)|
∥∥∥

Ψ2

→ 0.

Proof. Note that, for any u ∈ [ti,n, ti+1,n]

|Φm,j(u)− Φm,j(ti,n)| = |
∫ u

ti,n

Φ′m,j(s) ds| ≤
∫ ti+1,n

ti,n

|Φ′m,j(s)| ds. (7)

For each j and s, we have for the conditional variance

Var(Φ′m,j(s)|{Xh(u)}nh=1) =
n−m∑
i=1

m

n−m
[T ′i,j,m(s)− S ′n,j(s)/

√
n]2,

and Lemma 0.4 implies (using a maximal inequality) that∥∥∥max
j

sup
u

n−m∑
i=1

m

n−m
[T ′i,j,m(u)− S ′n,j(u)/

√
n]2
∥∥∥
q/2
≤ Cr2/q.

Let γ3,n = r2/q+η for an arbitrarily small positive constant η, and define the event

E2,n = max
j

sup
u

n−m∑
i=1

m

n−m
[T ′i,j,m(u)− S ′n,j(u)/

√
n]2 ≤ γ3,n.

By Markov’s inequality P(E2,n) ≥ 1− r−ηq/2. On the event E2,n, we have that, conditional

on {Xh(u)}nh=1, Std(Φ′m,j(s)) ≤
√
γ3,n uniformly in j and s, where Std stands for “standard

deviation”. Note that the Orcliz norm is proportional to the standard deviation for centered

Gaussian random variables. Therefore, on the event E2,n and conditional on {Xh(u)}nh=1,

we have ‖Φ′m,j(s)‖Ψ2 ≤
√
γ3,n uniformly in j and s. Hence it follows by a maximal inequality

that, on the event E2,n and conditional on {Xh(u)}nh=1, the Orlicz norm∥∥∥max
j

max
1≤i≤ln−1

sup
u∈[ti,n,ti+1,n]

|Φm,j(u)− Φm,j(ti,n)|
∥∥∥

Ψ2
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≤
√

log(rln) max
i,j

∥∥∥ sup
u∈[ti,n,ti+1,n]

|Φm,j(u)− Φm,j(ti,n)|
∥∥∥

Ψ2

≤
√

log(rln) max
j

sup
s
‖Φ′m,j(s)‖Ψ2/ln ≤

√
γ3,n

√
log(rln)/ln.

The right-hand side converges to zero polynomially fast for sufficiently small η since θ1/q−
θ2 < 0.

♦

Proof of Theorem 3.2. Note that, for each fixed j,

∥∥∥ sup
0≤s≤1

|[SNn,j]′(k, s)|
∥∥∥

Ψ2

≤
k∑
l=0

l‖Nn,l,j‖Ψ2 ≤ C
k∑
l=0

l‖Nn,l,j‖2 ≤ C
k∑
l=0

l × l2(1−β)/β ≤ Ck2/β,

where we have used the fact that the Orcliz norm is proportional to the standard deviation

for centered Gaussian random variables. Hence we obtain that∥∥∥max
j

sup
0≤s≤1

|[SNn,j]′(k, s)|
∥∥∥

Ψ2

≤ Ck2/β
√

log r. (8)

On the other hand, we have∥∥∥ sup
u
|SNn,j(u)− SNn,j(k, u)|

∥∥∥
Ψ2

≤ C
∞∑

l=k+1

‖Nn,l,j‖Ψ2 ≤ Ck2/β−1,

which implies ∥∥∥max
j

sup
u
|SNn,j(u)− SNn,j(k, u)|

∥∥∥
Ψ2

≤ Ck2/β−1
√

log r. (9)

Combining (8) and (9) and by the triangular inequality, we obtain that∥∥∥max
j

max
1≤i≤ln

sup
ti≤u≤ti+1

|SNn,j(u)− SNn,j(ti,n)|
∥∥∥

Ψ2

≤ C[k2/β/ln + k2/β−1]
√

log r. (10)

Choose k diverging to infinity with a slowly enough polynomial rate such that the right

hand side of (10) converges to 0 with a polynomial rate n−η1 for some η1 > 0. We have

that, for any x ∈ R,

P
[

max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)| ≤ x
]
− P

[
max
1≤j≤r

max
1≤i≤ln

|SNn,j(ti,n)| ≤ x− τ1,n

]
≥ −P[max

j
max

1≤i≤ln
sup

ti,n≤u≤ti+1,n

|SNn,j(u)− SNn,j(ti,n)| ≥ τ1,n]

≥ −n−C0
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for some constant C0 > 0, where τ1,n = n−η1
√

log n and we have used Markov’s inequality

in the second inequality above. Similarly, by Lemma 0.5, we have that, on the event E2,n,

P
[

max
1≤j≤r

sup
0≤u≤1

|Φm,j(u)| ≤ x
∣∣∣{Xi}ni=1

]
− P

[
max
1≤j≤r

max
1≤i≤ln

|Φm,j(ti,n)| ≤ x+ τ2,n

∣∣∣{Xi}ni=1

]
≤ P[max

j
max

1≤i≤ln
sup

ti,n≤u≤ti+1,n

|Φm,j(u)− Φm,j(ti,n)| ≥ τ2,n|{Xi}ni=1]

≤ n−C1

for some constant C1 > 0, where τ2,n = n−η2
√

log n for some constant η2 > 0. Therefore,

by Lemma 0.3 and on the event E1,n ∩ E2,n, we have

Pn := P
[

max
1≤j≤r

sup
0≤u≤1

|Φm,j(u)| ≤ x
∣∣∣{Xi}ni=1

]
− P

[
max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)| ≤ x
]

≤ P
[

max
1≤j≤r

max
1≤i≤ln

|Φm,j(ti,n)| ≤ x+ τ2,n

∣∣∣{Xi}ni=1

]
− P

[
max
1≤j≤r

max
1≤i≤ln

|SNn,j(ti,n)| ≤ x− τ1,n

]
+O(n−C̃),

≤ η3,n + P
[
x− τ1,n < max

1≤j≤r
max

1≤i≤ln
|SNn,j(ti,n)| ≤ x+ τ2,n

]
+O(n−C̃),

where C̃ = min(C0, C1) and η3,n is the approximation error in Lemma 0.3. By Nazarov’s

Inequality (Nazarov (2003)),

P
[
x− τ1,n < max

1≤j≤r
max

1≤i≤ln
|SNn,j(ti,n)| ≤ x+ τ2,n

]
≤ C(τ2,n + τ1,n)

√
log(rln)

which converges to 0 at a polynomial rate. Hence, it follows

Pn ≤ η3,n +O((τ2,n + τ1,n)
√

log(rln)) +O(n−C̃)

uniformly with respect to x ∈ R. Note that the right hand side of the above inequality

converges to 0 at a polynomial rate. By a similar argument, we obtain on the event

E1,n ∩ E2,n that

Pn ≥ −
[
η3,n +O((τ2,n + τ1,n)

√
log(rln)) +O(n−C̃)

]
uniformly with respect to x ∈ R, which implies

sup
x∈R

∣∣∣P[ max
1≤j≤r

sup
0≤u≤1

|Φm,j(u)| ≤ x
∣∣∣{Xi}ni=1

]
− P

[
max
1≤j≤r

sup
0≤u≤1

|SNn,j(u)| ≤ x
]∣∣∣→ 0.

♦
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Proofs of the results in Section 4

Proof of Proposition 4.1. Observe that X̌i,j(u) is a centered process. Hence this propo-

sition follows from Theorem 3.1 if we can show that vj(u) is twice continuously differen-

tiable on [0, 1] for all j. Observe that gj(u) = E(Xi,j(u)). By the assumption that Xi,j(u)

is twice continuously differentiable, (2.6) and a version of the Dominated Convergence

Theorem (c.f. Theorem 1.6.8 of Durrett (2010)), we have that gj(u) is twice continuously

differentiable. As a result Xi,j(u) − gj(u) is twice continuously differentiable a.s.. Since

v2
j (u) = E[Xi,j(u) − gj(u)]2, (2.6) and the above mentioned version of the Dominated

Convergence Theorem imply that vj(u) is twice continuously differentiable for all j. ♦

Proof of Lemma 4.1. Recall the notation (4.2) and observe that

v̂2
j (u)− v2

j (u) =
1

n

n∑
i=1

[X̌2
i,j(u)− EX̌2

i,j(u)]− 1

n
Š2
n,j(u). (11)

Let Zi,j(u) = X̌2
i,j(u) − EX̌2

i,j(u). Then {Zi,j(u)}ni=1 is a centered functional time series

with dependence measures

δZi,j(k, q/2) = sup
u∈[0,1]

‖Zk,j(u)− Z∗k,j(u)‖q/2 ≤ sup
u∈[0,1]

‖X̌k,j(u) + X̌∗k,j(u)‖q‖Xk,j(u)−X∗k,j(u)‖q

≤ CδGj(k, q) ≤ Ck−β.

Therefore, by the arguments in the proof of Lemma 0.4, we obtain that∥∥∥ sup
u∈[0,1]

1

n

∣∣∣ n∑
i=1

[X̌2
i,j(u)− EX̌2

i,j(u)]
∣∣∣∥∥∥
q/2
≤ C/

√
n

and an Lq/2 maximal inequality yields∥∥∥ max
1≤j≤r

sup
u∈[0,1]

1

n

∣∣∣ n∑
i=1

[X̌2
i,j(u)− EX̌2

i,j(u)]
∣∣∣∥∥∥
q/2
≤ Cr2/q/

√
n.

Similarly, we also obtain that∥∥∥ max
1≤j≤r

sup
u∈[0,1]

1

n
Š2
n,j(u)

∥∥∥
q/2
≤ Cr2/q/n.

The Lemma follows by these two inequalities and (11). ♦
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Proof of Proposition 4.3. Recalling the Fourier expansion Xi(u) =
∑∞

k=0 ai,k cos(kπu).

It follows that Wi,j(u) admits the following cosine representation

Wi,j(u) =
∞∑
k=1

ai,j,k cos(kπu), (12)

where ai,j,k is the j-th component of ai,k, j = 1, 2, · · · , r. As a result, Wi,j,k(u) can be

represented in the form

Wi,j,k(u) =
∞∑
c=1

fi,j,k,c cos(cπu), (13)

where fi,j,k,c = ai,j,c − ai,k,c. From the proof of Proposition 2.1, it follows

max
j,k
‖fi,j,k,c − f ∗i,j,k,c‖q ≤ C min(1/c2, i−β), (14)

for all c ≥ 1, where c > 0 is a constant. Furthermore, the dependence measures of

{Wi,j,k(u)}ni=1 satisfy

δWj,k
(h, q) ≤ δWj

(h, q) + δWk
(h, q) ≤ 4δH(h, q) ≤ Ch−β (15)

uniformly in j, k, where the second inequality is derived from the fact that

δWj
(h, q) = sup

u

∥∥∥Xh(u)−
∫ 1

0

Xh(u) du− [X∗h(u)−
∫ 1

0

X∗h(u) du]
∥∥∥
q

≤ sup
u
‖Xh(u)−X∗h(u)‖q +

∫ 1

0

‖Xh(u)−X∗h(u)‖q du

≤ 2 sup
u
‖Xh(u)−X∗h(u)‖q = 2δH(h, q).

Recall that W̊i(u) is the r(r− 1)/2-dimensional vector with entries Wi,j,k(u). The proof of

Proposition 4.3 now follows from applying the same arguments as those given in the proof

of Theorem 3.1 and Proposition 4.1 to W̊i(u). ♦

Proof of Proposition 4.5. Recall the definition of S̊n,j,k in (4.8) and define

T ∗ = max
1≤j<k≤r

sup
0≤u≤1

|S̊n,j,k(u)− ES̊n,j,k(u)|/vj,k(u).

Then following the proof of Propositions 4.3 and 4.4 it follows

P(T ∗ > c̊1−α)→ 1− α. (16)
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Meanwhile, from the proofs of Propositions 4.3 and 4.4 we observe that T ∗ is asymptotically

equivalent to the L∞ norm of a r(r− 1)/2 dimensional Gaussian random function and the

Orcliz norm of each Gaussian random function is O(1). Hence it is straightforward to

conclude by a maximal inequality that the Orcliz norm of the latter L∞ norm is of order

O(
√

log n) in view of r � nθ1 . Therefore c̊1−α = OP(
√

log n). On the other hand, it is

straightforward to conclude that, under Ha,

max
1≤j<k≤r

sup
u∈[0,1]

|ES̊n,j,k(u)|/vj,k(u)|/
√

log n→∞.

Together with equation (16), we conclude that P(T/
√

log n > dn) → 1 for any divergent

sequence dn. Hence the result follows in view of the fact that c̊1−α = OP(
√

log n). ♦
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