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A DISTRIBUTION FREE TEST FOR CHANGES IN THE TREND
FUNCTION OF LOCALLY STATIONARY PROCESSES

FLORIAN HEINRICHS AND HOLGER DETTE

Abstract. In the common time series model Xi,n = µ(i/n)+εi,n with non-stationary
errors we consider the problem of detecting a significant deviation of the mean function
µ from a benchmark g(µ) (such as the initial value µ(0) or the average trend

∫ 1
0 µ(t)dt).

The problem is motivated by a more realistic modelling of change point analysis, where
one is interested in identifying relevant deviations in a smoothly varying sequence of
means (µ(i/n))i=1,...,n and cannot assume that the sequence is piecewise constant.
A test for this type of hypotheses is developed using an appropriate estimator for
the integrated squared deviation of the mean function and the threshold. By a new
concept of self-normalization adapted to non-stationary processes an asymptotically
pivotal test for the hypothesis of a relevant deviation is constructed. The results are
illustrated by means of a simulation study and a data example.
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1. Introduction

Within the last decades, the detection of structural breaks in time series has become a
very active area of research with many applications in fields like climatology, economics,
engineering, genomics, hydrology, etc. (see Aue and Horváth, 2013; Jandhyala et al.,
2013; Woodall and Montgomery, 2014; Sharma et al., 2016; Chakraborti and Graham,
2019; Truong et al., 2020, among many others). In the simplest case, one is interested
in detecting structural breaks in the sequence of means (µi)i=1,...,n = (µ(i/n))n∈N of a
time series (Xi,n)i=1,...,n corresponding to a location model of the form

Xi,n = µ(i/n) + εi,n , i = 1, . . . , n . (1.1)

A large part of the literature considers the problem of detecting changes in a piecewise
constant mean function µ : [0, 1] → R, where early references assume the existence of
at most one change point (see, e. g. Priestley and Subba Rao, 1969; Wolfe and Schecht-
man, 1984; Horváth et al., 1999, among others) and more recent literature investigates
multiple change points (see, e.g. Frick et al., 2014; Fryzlewicz, 2018; Dette et al., 2020;
Baranowski et al., 2019, among many others). The errors (εi,n)i=1,...,n in model (1.1) are
usually assumed to form at least a stationary process and many theoretical results for de-
tecting multiple change points are only available for independent identically distributed
error processes. These assumptions simplify the statistical analysis of structural breaks
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2 FLORIAN HEINRICHS AND HOLGER DETTE

substantially, as - after removing the piecewise constant trend - one can work under the
assumption of a stationary or an independent identically distributed error process and
smoothing is not necessary to estimate the trend function.
On the other hand, the assumption of a strictly piecewise constant mean function might
not be realistic in many situations and it might be more reasonable to assume that µ
varies smoothly rather than abrupt. A typical example is temperature data (see, e. g.
Karl et al., 1995; Collins et al., 2000) where it might be of more interest to investigate
whether the mean function deviates fundamentally from a given benchmark denoted by
g(µ). Here g is a functional of the mean function, such as the value at the point 0, that
is g(µ) = µ(0), or an average over a certain time period, that is

g(µ) = 1
t1 − t0

∫ t1

t0
µ(x)dx for some 0 ≤ t0 < t1 ≤ 1 (1.2)

(see Section 2 for more details). Moreover, there also exist many time series exhibiting
a non-stationary behaviour in the higher order moments and dependence structure (see
Stărică and Granger, 2005; Elsner et al., 2008; Guillaumin et al., 2017, among others),
and the detection of fundamental deviations from a benchmark in a sequence of gradually
changing means under the assumption of a location model with a stationary error process
might be misleading.
In this paper we propose a distribution free test for relevant deviations of the mean
function µ from a given benchmark g(µ) in a location scale model of the form (1.1) with
a non-stationary error process. More precisely, for some pre-specified threshold ∆ > 0
we are interested in testing the hypotheses

H0 : d0 =
( ∫ 1

0

(
µ(x)− g(µ)

)2
τ(dx)

)1/2
≤ ∆ vs. H1 : d0 > ∆, (1.3)

where τ is an appropriate measure on the interval [0, 1] chosen by the statistician. This
means that we are looking for “substantial” deviations of the mean function from a given
benchmark g(µ) in an L2-sense. The choice of the threshold depends on the particular
application and is related to a balance between bias and variance as the detection of
deviations from a (constant) mean often results in an adaptation of the statistical anal-
ysis (for example in forecasting). As such an analysis is performed “locally”, resulting
estimators will have a smaller bias but a larger variance. However, if the changes in the
signal are only weak, such an adaptation might not be necessary because a potential
decrease in bias might be overcompensated by an increase of variance.
In principle, a test for the hypotheses in (1.3) could be developed using a nonparametric
estimate of the mean function µ to obtain an estimate, say d̂0, of the distance d0. The
null hypothesis in (1.3) is then rejected for large values of d̂0. However, the distribution
of the test statistic will depend in an intricate way on the dependence structure of the
non-stationary error process in model (1.1), which is difficult to estimate. To address
this problem we will introduce a new concept of self-normalization and construct an
(asymptotically) pivotal test statistic for the hypotheses in (1.3). The basic idea of our
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approach is to permute the data and consider the partial sum process of this permu-
tation, thus, taking into account observations over the whole interval rather than only
the first observations. The new concept and the asymptotic properties of the standard-
ized statistic can be found in Section 3, while some details on the testing problem and
mathematical background on locally stationary processes are introduced in Section 2. In
Section 4 we investigate the finite sample properties of the proposed testing procedure
by means of a simulation study and provide an application to temperature data. Finally,
in Section A, the proofs of the theoretical results in Section 3 are presented.

1.1. Related literature. Despite of its importance the problem of detecting relevant
deviations in a sequence of gradually changing means has only been considered by a
few authors. Dette and Wu (2019) investigate a mass excess approach for this problem.
More precisely, these authors measure deviations from the benchmark by the Lebesgue
measure of the set {t ∈ [0, 1] : |µ(t) − g(µ)| > ∆} and test whether this quantity
exceeds a certain threshold c > 0. Their approach requires estimation of the local
long-run variance and multiplier bootstrap. More recently, Bücher et al. (2020) propose
the maximal distance to measure relevant deviations from the benchmark and consider
the null hypothesis H0 : supt∈[0,1] |µ(t) − g(µ)| ≤ ∆. While the maximum deviation
might be easy to interpret for practitioners, the asymptotic analysis of a corresponding
estimate is challenging. In particular it requires an estimation of the long-run variance
and additionally the estimation of the sets, where the absolute difference |µ(t) − g(µ)|
attains its sup-norm. The methodology proposed here avoids the problem of estimating
tuning parameters of this type using an L2-norm in combination with a new concept of
self-normalization.
Ratio statistics or self-normalization have been introduced by Horváth et al. (2008) and
Shao (2010) in the context of change point detection in stationary processes and avoid
a direct estimation of the long-run variance through a convenient rescaling of the test
statistic. The currently available self-normalization procedures are based on partial sum
processes (see Shao, 2015, for a recent review), which usually (under the assumption of
stationarity) have a limiting process of the form {σW (λ)}λ∈[0,1], where {W (λ)}λ∈[0,1]
is a known stochastic process and σ an unknown factor encapsulating the dependency
structure of the underlying process. In this case the factorisation of the limit into the
long-run variance and a probabilistic term is used to construct a pivotal test statistic
by forming a ratio such that the factor σ in the numerator and denominator cancels.
However, in the case of non-stationarity, the situation is more complicated, because
the limiting process is of the form

{ ∫ λ
0 σ(u)dW (u)

}
λ∈[0,1] such that the probabilistic

and the part representing the dependence structure cannot be separated. Zhao and
Li (2013) and Rho and Shao (2015) discuss in fact these problems in the context of
locally stationary time series, but the proposed self-normalizations need to be combined
with a wild bootstrap. In this paper, we present a full self-normalization procedure for
non-stationary time series, which might be also useful for testing classical hypotheses.
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2. The testing problems and mathematical Preliminaries

Throughout this paper L2([0, 1]) denotes the space of real-valued square-integrable func-
tions on [0, 1] and L2([0, 1]) the corresponding normed vector space of equivalence classes.
Let 〈f, g〉 =

∫ 1
0 f(x)g(x)dx denote the scalar product in L2([0, 1]) and ‖f‖2 = 〈f, f〉1/2

the corresponding norm, for f, g ∈ L2([0, 1]). Further, 〈f, g〉τ =
∫ 1

0 f(x)g(x)τ(dx) and
‖f‖2,τ = 〈f, f〉1/2τ , for f, g ∈ L2([0, 1], τ). Finally, for the sake of readability, for functions
in L2([0, 1]), we denote the integral

∫ 1
0 f(x)g(x)dx by 〈f, g〉. Finally, if X is a real-valued

random variable we use the notation (in the case of existence) ‖X‖q,Ω =
(
E[|X|q]

)1/q,
for q ≥ 1.

2.1. Relevant deviations in a sequence of gradually changing means. Recall
the definition of model (1.1) and the hypotheses (1.3). Different benchmarks may be of
interest in applications. For example, if one is interested in deviations from the value of
the mean function at a given time, say t ∈ [0, 1], one could choose g(µ) = µ(t), while
relevant deviations from an average over a certain time period are obtained for the choice
(1.2). In particular if t0, t1 and τ are chosen 0, 1 and the Lebesgue measure, respectively,
one compares the local mean µ(x) with the overall mean g(µ) = µ̄ =

∫ 1
0 µ(y)dy and the

hypotheses in (1.3) read as follows

H0 :
( ∫ 1

0

(
µ(x)− µ̄

)2dx
)1/2

≤ ∆ vs.
( ∫ 1

0

(
µ(x)− µ̄

)2dx
)1/2

> ∆.

The tests which will be developed in this paper are based on an appropriate estimate of
the quantity

d0 =
( ∫ 1

0

(
µ(x)− g(µ)

)2
τ(dx)

)1/2
(2.1)

for which we require precise estimates of the mean function µ and the threshold g(µ).
Note that the measure τ in (2.1) is chosen by the statistician and therefore known.
Throughout this paper, we assume that τ is absolutely continuous with respect to the
Lebesgue measure and has a piecewise continuous density, say fτ . Further, we assume
that the mean function µ is sufficiently smooth, as specified in the following assumption.

Assumption 2.1. The function µ : [0, 1] → R is twice differentiable with Lipschitz
continuous second derivative. In particular, this implies that the integrals

∫ 1
0 µ

2(x)dx
and

∫ 1
0 µ

2(x)τ(dx) are finite, thus, µ ∈ L2([0, 1]) and µ ∈ L2([0, 1], τ).

A natural idea for the construction of a test of the hypotheses (1.3) is to estimate the
L2-distance d0 as defined in (2.1) and to reject the null hypothesis for large values of the
corresponding estimate. For this purpose one can use the local linear estimator, which
is defined as the first coordinate of the vector(

µ̂hn(t), µ̂′hn(t)
)

= argmin
b0,b1

n∑
i=1

(
Xi,n − b0 − b1(i/n− t)

)2
Khn(i/n− t), (2.2)
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to estimate the mean function µ locally (see, for example Fan and Gijbels, 1996). In
order to reduce the bias we consider the Jackknife estimator

µ̌hn(t) = 2µ̂hn/
√

2(t)− µ̂hn(t) (2.3)

as proposed by Schucany and Sommers (1977) and obtain an estimate ǧn = g(µ̂hn) of the
threshold g(µ) (other estimates could be used as well). Here hn is a positive bandwidth
satisfying hn = o(1) as n→∞, Kh(·) = K( ·h) and K denotes a kernel function satisfying
the following assumption.

Assumption 2.2. The kernel K is non-negative, symmetric, supported on the interval
[−1, 1]. It is twice differentiable, satisfies

∫
[−1,1]K(x)dx = 1 and Lipschitz continuous in

an open interval containing the interval [−1, 1].

The estimate of d0 can then be defined as

‖µ̌hn − ǧn‖2,τ =
( ∫ 1

0

(
µ̌hn(x)− ǧn

)2
τ(dx)

)1/2
. (2.4)

To study the asymptotic properties of the statistic defined in (2.4) and alternative esti-
mates proposed in this paper (see Section 3 for more details) we require several assump-
tions regarding the dependency structure of the error process in model (1.1), which will
be discussed next.

2.2. Locally stationary processes. For the proofs of our main results we require
several assumption on the dependence structure of the non-stationary time series defined
in (1.1). In the following, we work with the notion of local stationarity as introduced
by Zhou and Wu (2009). To be precise, let η = (ηi)i∈Z be a sequence of independent
identically distributed random variables and let (η′) = (η′i)i∈Z be an independent copy
of η. Further, define Fi = {ηk : k ≤ i} and F∗i = (. . . , η−2, η−1, η

′
0, η1, . . . , ηi). Let

G : [0, 1] × R∞ → R denote a filter, such that G(t,Fi) is a properly defined random
variable for all t ∈ [0, 1].

A triangular array {(εi,n)1≤i≤n}n∈N is called locally stationary, if there exists a filter G,
which is continuous in its first argument, such that

εi,n = G(i/n,Fi)

for all i ∈ {1, . . . , n}, n ∈ N. The physical dependence measure of a filter G with
supt∈[0,1] ‖G(t,Fi)‖q,Ω <∞ with respect to ‖ · ‖q,Ω is defined by

δq(G, i) = sup
t∈[0,1]

‖G(t,Fi)−G(t,F∗i )‖q,Ω.

A filter G is called Lipschitz continuous with respect to ‖ · ‖q,Ω, if

sup
0≤s<t≤1

‖G(t,Fi)−G(s,Fi)‖q,Ω/|t− s| <∞.

The filter G models the non-stationarity of (εi,n). The quantity δq(G, i) measures the
dependence of (εi,n) and plays a similar role as mixing coefficients. We now state some
assumptions regarding the error terms in model (1.1).
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Assumption 2.3. Let the triangular array {(εi,n)1≤i≤n}n∈N in (1.1) be centered and
locally stationary with filter G, such that the following conditions are satisfied:

(1) There exists a constant γ ∈ (0, 1) such that δ4(G, i) = O(γi), as i→∞.
(2) The filter G is Lipschitz continuous with respect to ‖ · ‖4,Ω and

sup
t∈[0,1]

‖G(t,F0)‖4,Ω <∞.

(3) The (local) long-run variance of G, defined as

σ2(t) =
∞∑

i=−∞
Cov

(
G(t,Fi), G(t,F0)

)
, (2.5)

for t ∈ [0, 1], is Lipschitz continuous and bounded away from zero, i. e.,

inf
t∈[0,1]

σ2(t) > 0.

(4) The moments of order 8 are uniformly bounded, i. e., max1≤i≤n Eε8
i,n <∞.

2.3. Testing for relevant differences - the problem of estimating the variance.
Continuing the discussion in Section 2.1 it follows from the results given in Section 3
that the estimator (2.4) is asymptotically normal distributed if Assumptions 2.1, 2.2, 2.3
and an additional assumption on the consistency of the statistic ǧn are satisfied. More
precisely, it can be shown (see Remark 3.7) that

√
n
(
‖µ̌hn − ǧn‖22,τ − ‖µ− g(µ)‖22,τ

)
 N

(
0, 4‖dωσ‖22

)
, (2.6)

where the symbol  denotes weak convergence, σ2(·) is the local long-run variance
defined in (2.5) and dω(·) denotes an unknown function, that depends on the function
µ and the error process. In principle, if σ̂2

n and d̂2
ω are estimators of the local long-run

variance and the function dω, respectively, a reasonable strategy would be to reject the
null hypothesis in (1.3) if

‖µ̌hn − ǧn‖22,τ > ∆2 + z1−α
2‖d̂ωσ̂n‖2√

n
, (2.7)

where z1−α denotes the (1− α)-quantile of the standard normal distribution. It will be
shown in Remark 3.7 below, that this decision rule provides a consistent and asymptotic
level α-test for the hypotheses in (1.3). However, it turns out that this decision rule
does not provide a stable test because local estimators of the long-run variance have a
rather large variability.
In order to avoid the intricate estimation of the local long-run variance we will re-define
the local linear estimator in (2.2) permuting the data and consider the partial sum
process of the new estimators in the following section. This approach will enable us to
construct an (asymptotically) pivotal test statistic for the hypotheses in (1.3).
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3. A pivotal test statistic

3.1. Self-normalization. A common technique to avoid estimating the long-run vari-
ance are ratio statistics or self-normalization as first introduced by Horváth et al. (2008)
and Shao (2010), which are based on a convenient rescaling of the test statistic. However,
these concepts are not easy to transfer to non-stationary time series as they rely on the
asymptotic properties of a corresponding partial sum process. To illustrate the problems
of these concepts in non-stationary time series consider the simplest case of model (1.1),
where the mean function is constant and the error process is stationary. In this case the
estimate of the constant mean function µ from the partial sample X1,n, . . . , Xbλnc,n is
its mean and under the assumptions stated in Section 2 we have the weak convergence

{Bn(λ)}λ∈[0,1] =
{
n−1/2

bλnc∑
i=1

(
Xi,n − µ

)}
λ∈[0,1]

 {σW (λ)}λ∈[0,1],

where
{
W (λ)

}
λ∈[0,1] denotes a standard Brownian motion and the long-run variance σ2

is defined in (2.5) and does not depend on t (because of the stationarity assumption).
In this case, the factorisation of the limit into the long-run variance and a probabilistic
term is used to construct a test statistic in the form of a ratio, such that σ occurs in
the nominator and denominator, and therefore cancels out. On the other hand, if the
error process in model (1.1) is non-stationary (but the mean function is still constant)
we have the weak convergence

{Bn(λ)}λ∈[0,1]  
{∫ λ

0
σ(u)dW (u)

}
λ∈[0,1].

In this case, the limiting distribution does not factorise and it is no longer possible to use
the common self-normalization approach. Zhao and Li (2013) and Rho and Shao (2015)
discuss locally stationary time series, but the proposed self-normalization procedures
have to be combined with a wild bootstrap.
In this work, we present an alternative self-normalization procedure for non-stationary
time series which does not require resampling to obtain (asymptotically) pivotal statis-
tics. Our approach is based on the idea that in a locally stationary setting, observations
from the whole interval [0, 1] need to be taken into account. Therefore, let bn denote a
sequence with bn → ∞ and bn/n → 0, as n → ∞, and let `n = bn/bnc. We define a
(fixed) permutation of the set {1, . . . , n} by

T :


{1, . . . , n} → {1, . . . , n}

k 7→ Tk =
{

(k − 1 mod `n)bn + dk/`ne, if k ≤ `nbn
k, if k > `nbn

Note that for k = i`n + j it holds Tk = (j − 1)bn + i + 1, where i ∈ {0, . . . , bn} and
j ∈ {1, . . . , `n}.
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Roughly speaking, the mapping T splits the set {1, . . . , n} into `n blocks with block
length bn, that is

{T1, . . . , T`n} = {1, bn + 1, 2bn + 1, . . . , (ln − 1)bn + 1}
{T`n+1, . . . , T2`n} = {2, bn + 2, 2bn + 2, . . . , (ln − 1)bn + 2}
{T2`n+1, . . . , T3`n} = {3, bn + 3, 2bn + 2, . . . , (ln − 1)bn + 3}

...
...

...

where the blocks correspond to the columns in the above display.
With this notation, for ζ > 0 and λ ∈ [ζ, 1], we define the sequential local linear estimator
of the mean function µ from the sample XT1,n, . . . , XTbλnc,n as the first coordinate of the
vector(

µ̂hn(λ, t), µ̂′hn(λ, t)
)

= argmin
b0,b1

bλnc∑
i=1

(
XTi,n − b0 − b1(Ti/n− t)

)2
Khn(Ti/n− t). (3.1)

In the following we will work with a bias corrected version of µ̂hn(λ, t) and consider the
sequential Jackknife estimator

µ̃hn(λ, t) = 2µ̂hn/
√

2(λ, t)− µ̂hn(λ, t). (3.2)

With the notation
d(x) := µ(x)− g(µ)

we can rewrite the distance in (2.1) as d0 = ‖d‖2,τ . In order to estimate d0 let ĝn(λ) be a
suitable sequential estimator of the benchmark g(µ) from the sample XT1,n, . . . , XTbλnc,n

and define
d̂n(λ, x) = µ̃hn(λ, x)− ĝn(λ)

and
d̂2,n(λ) = ‖d̂n(λ, ·)‖2,τ .

Note that all estimates are calculated from a part of the permuted sample and that the
statistic d̂2,n(1) estimates d0 from the full sample X1,n, . . . , Xn,n and therefore coincides
with the estimator defined in (2.4). For the proofs of our main results we need an as-
sumption regarding the precision of the estimator ĝn(·) of the benchmark, the bandwidth
hn and the block length bn, which are given next.

Assumption 3.1. The sequential estimator ĝn(λ) of the benchmark g(µ) admits a
stochastic expansion

λ
√
n
(
ĝn(λ)− g(µ)

)
= 1√

n

bλnc∑
i=1

εTi,nωn(Ti/n) + oP(1),

uniformly with respect to λ ∈ [ζ, 1] for some constant ζ ∈ (0, 1) and functions ωn, ω ∈
L4([0, 1]) such that ωn is Riemann-integrable for any n ∈ N, ‖ωn − ω‖4 → 0 and

`n∑
j=1

bn∑
r=1

∣∣ωn( jbnn )− ωn( r+jbnn

)∣∣ = O(bnh−1
n ), (3.3)
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where ‖ωn − ω‖4 =
( ∫ 1

0 ‖ωn(x)− ω(x)‖4dx
)1/4.

Assumption 3.2. There exist constants α, β > 0 such that the sequence of bandwidths
hn → 0 satisfies nhn → ∞, nh6

n → 0, nβ = O(nh4
n) and the sequence bn → ∞ satisfies

b3n/n→ 0, b2
n

nhn
→ 0, nα = O(bn).

Remark 3.3.
(1) Assumption 3.1 is rather mild and satisfied for many functionals as explained below.
Proofs of the following statements can be found in Section A.3 of the Appendix.

(i) Condition (3.3) is satisfied for all Lipschitz continuous functions and all step
functions on the interval [0, 1].

(ii) The assumption holds for g(µ) = c with some known c ∈ R , for ĝn(λ) =
g(µ̃hn(λ, ·)).

(iii) Assumption 3.1 is satisfied for the functional defined in (1.2) and the estimator

ĝn(λ) = 1
(t1 − t0)λn

bλnc∑
i=1

XTi,n1(t0 ≤ Ti/n ≤ t1).

(iv) Let g : L2([0, 1]) → R be a linear, bounded operator. By the Riesz-Fréchet
representation theorem, there exists h̄g ∈ L2([0, 1]) such that g(·) = 〈·, h̄g〉. If
there exists a continuous function hg in the equivalence class corresponding to
h̄g, the estimator ĝn(λ) = g(µ̃hn(λ, ·)) satisfies Assumption 3.1.

(v) The functional g(µ) = µ(t) (for some fixed t ∈ [0, 1]) is not covered by Assump-
tion 3.1. Nevertheless a corresponding pivotal test can be developed as well - see
Remark 3.5 for more details.

(2) Assumption 3.2 is satisfied, if hn = n−1/5, bn = n1/4. In this case, the constants α
and β can be chosen as 1

4 and 1
5 , respectively.

Theorem 3.4. Let Assumptions 2.1, 2.2, 2.3, 3.1 and 3.2 be satisfied. For any ζ ∈ (0, 1),
the process

{Gn(λ)}λ∈[ζ,1] = {λ
√
n(d̂2

2,n(λ)− d2
0)}λ∈[ζ,1] (3.4)

converges weakly to the process

{G(λ)}λ∈[ζ,1] = {2
∥∥dωσ∥∥2W (λ)}λ∈[ζ,1] (3.5)

in `∞([ζ, 1]), where dω(·) = fτ (·)d(·) + ω(·)
∫ 1

0 d(x)τ(dx) and {W (λ)}λ∈[0,1] denotes a
standard Brownian motion. In particular, G(λ) = 0 if d0 = 0.

Remark 3.5. If g(µ) = µ(t), for some fixed t ∈ [0, 1], the benchmark g(µ) needs to
be estimated locally and there is no estimator satisfying Assumption 3.1. However,
an analogous result as stated in Theorem 3.4 can be shown with the same arguments
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given in the proof of the latter theorem. More precisely, if g(µ) = µ(t) we can use
ĝn(λ) = µ̃hn(λ, t) and under Assumptions 2.1, 2.2, 2.3 and 3.2, the process

{G′n(λ)}λ∈[ζ,1] = {λ
√
nhn(d̂2

2,n(λ)− d2
0)}λ∈[ζ,1]

converges weakly to

{G′(λ)}λ∈[ζ,1] =
{

2σ(t)κ(t)
∫ 1

0
d(x)τ(dx)W (λ)

}
λ∈[ζ,1]

in `∞([ζ, 1]), where the constant κ is defined by κ2(t) =
∫ 1
−1
(
K∗(x)

)2dx if t ∈ (0, 1) and
by

κ2(t) = 1
(κt,0κt,2 − κ2

t,1)2

∫ 1−t

−t

{(
κt,2√

2
− κt,1x

)
K∗(x) +

( 1√
2
− 1

)
κt,2K(x)

}2
dx,

with κt,j =
∫ 1−t
−t xjK(x)dx, for j ∈ {0, 1, 2} and t ∈ {0, 1}, and K∗ is defined by

K∗(x) = 2
√

2K(
√

2x)−K(x).

In the following, we will develop a pivotal test for the hypotheses (1.3) on the basis of
Theorem, 3.4 or Remark 3.5. For this purpose let ν be a probability measure on the
interval [ζ, 1] with ν({1}) = 0. We propose to reject the null hypothesis if

d̂2
2,n(1) > ∆2 + q1−α

∫ 1

ζ
λ|d̂2

2,n(λ)− d̂2
2,n(1)|dν(λ), (3.6)

where q1−α denotes the (1− α)-quantile of the distribution of the random variable
W (1)∫ 1

ζ |W (λ)− λW (1)|dν(λ)
.

Corollary 3.6. Let the assumptions of either Theorem 3.4 or of Remark 3.5 be satisfied.
If ∆ > 0, the decision rule (3.6) defines a consistent and asymptotic level α-test for the
hypotheses (1.3) of a relevant deviation of the mean function µ from the threshold g(µ),
that is

P
(
the null hypothesis (1.3) is rejected by (3.6)

) n→∞−−−→


0, if d0 < ∆
α, if d0 = ∆
1, if d0 > ∆.

Remark 3.7. Note that the Jackknife estimator defined in (2.3) coincides with µ̃hn(1, ·)
and ǧn = g(µ̃hn(1, ·)). Consequently, the continuous mapping theorem and Theorem 3.4
yield the weak convergence stated in equation (2.6) of Section 2.3. Consequently, if the
estimators σ̂2

n and d̂2
ω are consistent, the decision rule in (2.7) defines a consistent and

asymptotic level α test for the hypothesis (1.3), that is

P
(
the null hypothesis (1.3) is rejected by (2.7)

) n→∞−−−→


0, if d0 < ∆
α, if d0 = ∆
1, if d0 > ∆.
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4. Finite Sample Properties

4.1. Monte Carlo simulation study. A large scale Monte Carlo simulation study was
performed to analyse the finite-sample properties of the proposed test (3.6). The local
linear estimator in (3.1) requires the specification of the kernel K and the bandwidth hn.
We used the quartic kernelK(x) = 15

16(1−x2)2, but other kernels will yield similar results.
The choice of the bandwidth hn for the estimator µ̃hn is crucial to avoid both overfitting
and oversmoothing, and we employ the following k-fold cross-validation procedure with
k = 10 (as recommended by Hastie et al., 2009, page 242).

Algorithm 4.1 (Cross-Validation for the Choice of hn).
(1) Split the observed data randomly in k = 10 sets S1, . . . , S10 of equal length.
(2) For hn = 1

n and each set Si, calculate the Jackknife estimator µ̃(i)
hn

based on the
data in the remaining sets.

(3) Based on the Jackknife estimators µ̃(i)
hn

from Step (2), compute the mean squared
prediction error

MSEhn = 1
1− hn

10∑
i=1

∑
j∈Si

{
Xj,n − µ̃(i)

hn
(j/n)

}2
.

(4) Repeat Steps (2) and (3) for the bandwidths hn = 2
n , . . . ,

bn/2c
n

(5) Choose the bandwidth hn that minimises the mean squared prediction error
MSEhn .

As block width we chose bn = 20 and as measure ν on [0, 1] in (3.6) we used the
uniform distribution on the set {1/5, . . . , 4/5}. Preliminary simulation studies showed
that different choices of bn and the measure ν lead to similar results.
We considered two types of mean functions µ, three different error processes and four
different choices of the time-dependent variance. The first class of models is based on
the mean function

µ(1)
a (x) = 10 + 1

2 sin(8πx) + a
(
x− 1

4
)2
1
(
x > 1

4
)
, (4.1)

which is displayed in the left part of Figure 1 for various choices of the parameter a. We
considered the testing problem

H0 : d0 :=
∥∥∥µ(1)

a − g(µ)
∥∥∥

2,τ
≤ 1/2 vs. H1 :

∥∥∥µ(1)
a − µ̄(1)

a

∥∥∥
2,τ

> 1/2, (4.2)

where

g(µ) = µ̄(1)
a = 2

∫ 1/2

0
µ(1)
a (x)dx,

and τ(·) = 2λ[1/2,1](·) is the Lebesgue measure on the interval [1
2 , 1]. Such a scenario

might for instance be encountered and of interest in the context of analyzing climate data
where measurements for a recent period are compared with an average from previous
years.
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Figure 1. Left: The mean function µ(1)
a for three choices of a. Right:

The mean function µ(2).

Note that
∥∥µ(1)

a − µ̄(1)
a

∥∥
2,τ = 1/2 for a∗ ≈ 1.43. We call this situation (i.e. when there

is equality in (4.2)) the boundary of the hypotheses. On the other hand for a < a∗ and
a > a∗ the null hypothesis and alternative in (4.2) are satisfied, respectively.
The second model has the mean function

µ(2)(x) =


9 for x ≤ 1

4
−3

2 sin(2πx) + 10.5 for 1
4 < x ≤ 3

4
12 for 3

4 < x

(4.3)

which is displayed in the right part of Figure 1. For models involving this mean function,
we considered the testing problem

H0 : d0 = ‖µ(2) − g(µ)‖2,τ ≤ ∆ vs. H1 : ‖µ(2) − g(µ)‖2,τ > ∆ (4.4)

for various choices of the threshold ∆ > 0, where g(µ) ≡ 10 and τ(·) = λ[0,1](·) is the
Lebesgue measure on the interval [0, 1]. Such a setting might be encountered in quality
control, where deviations from a target value might occur gradually due to wear and tear
(and eventual failure) of a component of a complex system. Note that ‖µ(2)−10‖2,τ ≤ ∆
for ∆ ≥ 1.392, whereas ‖µ(2) − 10‖2,τ > ∆ for ∆ < 1.392.
We consider four different choices of time-dependent variance σ̃2(t) = E[G2(t,F0)], that
is

σ̃2
0(t) = 1, σ̃2

1(t) = 1
2 + t,

σ̃2
2(t) = 1− 1

2 cos(2πt), σ̃2
3(t) = 1

2 + 1(t ≥ 1/2) ,

and three classes of error processes {εi,n : 1 ≤ i ≤ n}n∈N in model (1.1), that is

(IID) εi,n = σ̃k(i/n)ηi
(MA) εi,n = σ̃k(i/n)

(
ηi + 1

2ηi−1
)
/2

(AR) εi,n = σ̃k(i/n)
(
ηi + 1

2εi−1,n
)
/2,

for k ∈ {0, 1, 2, 3}, where (ηi)i∈Z is an i.i.d. sequence of standard normal distributed
random variables.
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µ
(1)
a σ̃2

0 σ̃2
1 σ̃2

2 σ̃2
3

a d0 − 1
2 200 500 1000 200 500 1000 200 500 1000 200 500 1000

Panel A: iid errors
0.37 -0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
0.89 -0.10 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.1
1.18 -0.05 0.2 0.9 0.6 0.0 1.0 0.3 0.0 1.4 0.4 0.1 0.9 0.6
1.43 0.00 0.7 3.9 4.5 0.4 2.8 3.4 0.5 5.5 4.6 0.3 2.7 3.4
1.86 0.10 2.7 23.6 43.1 2.1 21.6 33.5 3.0 32.2 47.0 1.0 13.4 26.5
2.26 0.20 7.4 54.6 83.9 8.2 46.3 73.0 9.5 66.5 88.6 3.5 33.4 61.4
2.64 0.30 14.1 76.6 95.8 12.1 68.7 91.8 19.5 88.8 98.0 6.2 51.1 83.1

Panel B: MA errors
0.37 -0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.89 -0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.18 -0.05 0.1 0.4 0.2 0.0 0.8 0.1 0.0 0.2 0.2 0.1 0.2 0.4
1.43 0.00 0.3 4.8 4.9 0.1 4.1 4.2 0.5 7.0 5.3 0.1 4.4 4.1
1.86 0.10 4.3 38.3 58.7 3.7 30.9 53.3 5.5 45.4 69.0 3.0 21.9 39.2
2.26 0.20 12.6 76.8 94.8 11.6 69.3 91.4 16.3 83.8 97.8 9.4 52.5 79.5
2.64 0.30 29.5 93.7 99.9 28.6 87.6 98.8 33.4 97.4 99.7 21.4 75.4 94.0

Panel C: AR errors
0.37 -0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
0.89 -0.10 0.0 0.3 0.0 0.2 0.1 0.0 0.1 0.3 0.0 0.3 0.6 0.1
1.18 -0.05 0.4 1.3 1.1 0.1 1.5 0.9 0.0 2.3 1.3 0.4 2.4 1.3
1.43 0.00 1.3 8.6 6.5 1.2 7.1 7.5 1.0 7.8 7.0 0.8 5.6 5.8
1.86 0.10 5.3 36.3 52.8 5.4 29.5 47.9 6.8 41.1 57.0 3.9 22.6 35.4
2.26 0.20 16.4 67.8 90.0 14.6 59.9 85.7 18.0 78.2 92.6 10.0 45.0 70.1
2.64 0.30 30.6 86.6 98.9 24.1 80.1 96.1 35.4 92.9 99.4 18.7 65.6 89.5

Table 1. Empirical rejection rates of the test (3.6) for the hypotheses
(4.2). The mean function is given by (4.1), where different values for the
parameter a, different error processes, and sample sizes are considered.
The lines in boldface correspond to the boundary of the hypotheses.

The empirical rejection rates of the test (3.6) for the hypotheses H0 : d0 ≤ ∆ vs.
H0 : d0 > ∆ are calculated by N = 1000 simulation runs and displayed in Table 1
and Table 2. The sample size is chosen as n = 200, 500 and 1000 and the nominal
level is 5%. Table 1 shows the rejection probabilities for different values of a in the
function µ

(1)
a defined in (4.1), which yields to different values of d0 in the hypotheses

(4.2). On the other hand, in Table 2 the function µ(2) and therefore the value d0 is
fixed and the threshold ∆ in the hypotheses is varied. The lines marked in boldface
indicate the boundary of the null hypothesis, that is, the parameter where d0 = ∆.
More precisely, note that the null hypothesis in (4.2) holds if and only if d0 ≤ 0.5 and
we display exemplary results for the cases d0 = 0.35, 0.4, 0.45 and 0.5 in Table 1, where
the last case corresponds to the boundary of the null hypotheses. The remaining cases
d0 = 0.6, 0.7 and 0.8 represent three scenarios of the alternative in (4.2). Similarly,
in Table 2 the function µ(2) is fixed with d0 = 1.39. Therefore, the null hypothesis in
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µ(2) σ̃2
0 σ̃2

1 σ̃2
2 σ̃2

3
∆ ∆ − d0 200 500 1000 200 500 1000 200 500 1000 200 500 1000

Panel A: iid errors
1.30 -0.09 13.8 41.8 62.8 12.5 36.3 59.4 14.8 47.0 68.4 9.1 23.4 44.3
1.34 -0.05 6.8 20.8 34.3 6.9 19.1 29.8 7.2 22.8 37.6 4.8 11.7 23.3
1.38 -0.01 2.1 8.9 11.2 4.0 8.2 8.3 3.1 8.4 11.2 2.7 4.8 7.9
1.39 0.00 2.0 5.0 5.1 2.2 5.2 5.4 2.4 5.1 5.8 2.4 3.3 4.5
1.41 0.02 1.0 2.6 1.1 1.8 3.0 1.0 1.2 2.6 1.5 1.8 2.0 2.4
1.48 0.09 0.3 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.5 0.5 0.0
1.55 0.16 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

Panel B: MA errors
1.30 -0.09 27.3 58.0 84.6 20.7 54.4 79.7 32.5 67.6 86.3 15.8 40.2 66.1
1.34 -0.05 12.6 30.7 52.3 9.5 26.9 45.9 15.2 37.2 55.7 7.2 18.8 34.5
1.38 -0.01 5.5 11.1 13.7 3.8 8.5 12.6 5.3 11.1 14.8 2.8 7.6 11.7
1.39 0.00 3.0 5.0 7.7 3.4 5.1 6.2 3.6 6.9 7.5 2.2 4.4 5.9
1.41 0.02 1.6 2.0 1.5 1.3 1.2 0.9 1.0 2.0 0.8 1.3 2.3 1.5
1.48 0.09 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.55 0.16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Panel C: AR errors
1.30 -0.09 23.8 52.2 75.0 20.7 43.5 67.8 26.6 58.6 79.2 15.1 36.7 53.6
1.34 -0.05 13.9 28.3 42.8 11.8 23.2 39.3 13.2 32.8 50.1 9.3 22.0 31.1
1.38 -0.01 7.9 10.1 15.3 6.3 8.9 12.8 5.8 12.7 16.8 6.0 10.1 12.5
1.39 0.00 5.7 7.5 9.0 4.5 7.5 8.6 6.3 8.0 9.6 4.2 7.3 9.9
1.41 0.02 3.2 2.6 2.5 2.9 2.4 2.1 2.2 3.3 2.1 3.5 3.7 3.0
1.48 0.09 0.6 0.0 0.0 0.2 0.0 0.0 0.3 0.1 0.0 0.8 0.3 0.1
1.55 0.16 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

Table 2. Empirical rejection rates of the test (3.6) for the hypotheses
(4.4). The mean function is given by (4.3), where different values for the
threshold ∆, different error processes, and sample sizes are considered.
The lines in boldface correspond to the boundary of the hypotheses.

(4.4) holds if and only if the threshold satisfies ∆ ≥ 1.39. We observe in most cases
a good approximation of the nominal level at the boundary of the hypotheses and the
test is also able to detect alternatives with reasonable power. These empirical findings
corresponds with the theoretical results derived in Section 3.
We conclude this section with a comparison of the new test (3.6) with the test (2.7)
which relies on the estimation of the (local) long-run variance. For this purpose we use
the long-run variance estimator as proposed in equation (4.7) of Dette and Wu (2019)
with bandwidths as suggested in this reference. In Table 3 and 4 we display the rejection
probabilities for both tests for some of the models considered in Table 1 and Table 2,
where we use the Lebesgue measure on the interval [0, 1] for the calculation of the L2-
distances and the benchmark is given by g(µ) =

∫ 1
0 µ(x)dx. For the sake of brevity

we restrict ourselves to the sample size n = 500 and the variance function σ̃2
0(t) = 1.
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errors i.i.d MA AR
a d0 − ∆ (3.6) (2.7) (3.6) (2.7) (3.6) (2.7)
0.13 -0.15 0.0 0.0 0.0 0.0 0.0 0.0
1.60 -0.10 0.0 0.0 0.0 0.0 0.0 0.0
2.13 -0.05 0.0 0.0 0.1 0.0 0.1 0.0
2.57 0.00 2.2 0.0 1.6 0.0 4.3 0.4
2.97 0.05 14.0 3.0 20.1 0.9 22.6 3.5
3.35 0.10 35.0 24.2 58.1 20.5 46.3 26.8
3.71 0.15 61.9 67.1 84.8 75.7 72.9 71.7

Table 3. Empirical rejection rates of tests (3.6) and (2.7) for the hy-
potheses (4.2). The mean function is given by (4.1), where different val-
ues for the parameter a and different error processes are considered. The
variance is σ̃2

0(t) = 1, the sample size is n = 500 and the line in boldface
corresponds to the boundary of the hypotheses.

errors i.i.d MA AR
∆ ∆ − d0 (3.6) (2.7) (3.6) (2.7) (3.6) (2.7)
1.15 -0.15 73.8 83.9 90.3 93.1 81.8 86.2
1.20 -0.10 48.0 45.0 69.3 51.7 58.3 50.4
1.25 -0.05 22.9 10.5 32.1 6.7 31.3 12.4
1.30 0.00 5.5 0.5 4.9 0.1 8.0 0.7
1.35 0.05 0.5 0.0 0.1 0.0 1.4 0.1
1.40 0.10 0.0 0.0 0.0 0.0 0.1 0.0
1.45 0.15 0.0 0.0 0.0 0.0 0.0 0.0

Table 4. Empirical rejection rates of tests (3.6) and (2.7) for the hy-
potheses (4.4). The mean function is given by (4.3), where different val-
ues for the threshold ∆ and different error processes are considered. The
variance is σ̃2

0(t) = 1, the sample size is n = 500 and the line in boldface
corresponds to the boundary of the hypotheses.

We observe that the test (2.7) is conservative at the boundary of the hypotheses. As a
consequence the proposed test (3.6) based on self-normalization is usually more powerful.

4.2. Case Study. Time series with possibly smoothly varying mean naturally arise in
the field of meteorology. To illustrate the proposed methodology, we consider the mean
of daily minimal temperatures (in degrees Celsius) over the month of July for a period of
approximately 120 years in eight different places in Australia. At each station we tested
for relevant deviations of the temperature from the mean temperature calculated for an
historic reference period ranging from the late 19th century to 1925 at that station. As
a threshold ∆, we chose 0.25, 0.5 and 0.75 degrees Celsius. Exemplary, the observed
temperature curves at the weather station in Cape Otway, Gayndah and Melbourne and
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Figure 2. Raw data of the temperature (light grey), estimated bench-
mark (dark grey) and estimated smooth mean function for different
weather stations. Top left: Cape Otway. Top right: Gayndah. Bottom
left: Melbourne. Bottom right: Australia (mean).

the mean over all weather stations are plotted in Figure 2, alongside with their estimated
smooth mean curves µ̃ and the estimated benchmarks ĝ.
The results for all stations under consideration can be found in Table 5. For test (3.6),
most p-values are significant for ∆ = 0.25 degrees Celsius. Further, two p-values for
∆ = 0.5 are significant. The test (2.7) does not yield a significant p-value below 0.05 at
any station. Test (3.6) based on the proposed self-normalization procedure seems to be
more powerful than (2.7), which confirms the numerical findings of the simulation study.
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Appendix A. Proofs of main results

In this section we will provide proofs of the theoretical statements in this paper. We begin
with some preliminary results regarding the uniform approximation of the sequential
estimators of the regression function, which are of own interest and required for the
proofs of the main results in Section 3, which will be given in Section A.3 and A.2.

A.1. Sequential estimators of the regression function. Recall the definition of the
sequential Jackknife estimator µ̃hn(λ, t) in (3.2) and define

K∗(x) = 2
√

2K(
√

2x)−K(x) (A.1)

as the corresponding kernel. The following two results provide stochastic expansions for
the difference µ̃hn −µ uniformly with respect to λ and t. Lemma A.1 considers the case
where the argument t stays away from the boundary, while a stochastic expansion for
the other case is derived in Lemma A.2 below.

Lemma A.1. Let hn → 0 and bn → ∞ be sequences with bn = o(nhn) and define
In = [hn, 1− hn]. If Assumptions 2.1, 2.2 and 2.3 are satisfied, we have

sup
t∈In,λ∈[ζ,1]

∣∣∣λ(µ̃hn(λ, t)− µ(t)
)
− 1
nhn

bλnc∑
i=1

εTi,nK
∗
hn(Ti/n− t)

∣∣∣ = O
(
h3
n + bn

nhn

)
,

where K∗hn(·) = K∗(·/hn) and K∗ is defined in (A.1)

Proof. Define

Sn,j(λ, t) =
bλnc∑
i=1

(Ti−nt
nhn

)j
Khn

(Ti
n − t

)
and Rn,j(λ, t) =

bλnc∑
i=1

XTi,n

(Ti−nt
nhn

)j
Khn

(Ti
n − t

)
,

for j ∈ {0, 1, 2}. Note that for the calculation of the local linear estimator µ̂hn(λ, t) in
(3.1) we have to minimize the function

f(b0, b1) =
bλnc∑
i=1

(
XTi,n − b0 − b1(Ti/n− t)

)2
Khn(Ti/n− t),

which is differentiable with partial derivatives
∂f

∂bj
(b0, b1) = −2hjn

(
Rn,j(λ, t)− b0Sn,j(λ, t)− b1hnSn,j+1(λ, t)

)
,

for j ∈ {0, 1} and Hessian matrix

Hf = 2
(

Sn,0(λ, t) hnSn,1(λ, t)
hnSn,1(λ, t) h2

nSn,2(λ, t)

)
. (A.2)

In the following discussion we will show that

sup
λ∈[ζ,1]

∣∣∣∣ 1
nhn

Sn,j(λ, t)− λ
∫ 1

−1
xjK(x)dx

∣∣∣∣ = O
( bn
nhn

)
, (A.3)
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for j ∈ {0, 1, 2}. If this result is true, the proof follows by arguments similar to those
used in the proof of Lemma B.1 of Dette et al. (2019). To be precise, note that

Sn,0(λ, t)Sn,2(λ, t)− S2
n,1(λ, t) > 0

for any λ ∈ [ζ, 1] and almost every n ∈ N. This means, that the Hessian matrix Hf is
positive definite and both partial derivatives vanish if any only if(

b0
b1

)
=
(
Sn,0(λ, t) hnSn,1(λ, t)
Sn,1(λ, t) hnSn,2(λ, t)

)−1(
Rn,0(λ, t)
Rn,1(λ, t)

)
. (A.4)

By (A.3) and a Taylor expansion, it follows that

sup
t∈In,λ∈[ζ,1]

∣∣∣λ(µ̂hn(λ, t)−µ(t)
)
− 1
nhn

bλnc∑
i=1

εTi,nKhn(Ti/n− t)−
λ

2h
2
nµ
′′(t)

∫ 1

−1
x2K(x)dx

∣∣∣
= O

(
h3
n + bn

nhn

)
.

The statement of Lemma A.1 now follows from the definition of the Jackknife estimator
µ̃hn in (3.2).
To finish the proof, we now show the remaining estimate (A.3). For this purpose let
λ ∈ [ζ, 1] and define B(λ) =

⋃`n
j=1Bj(λ), where the sets Bj(λ) are defined by

Bj(λ) =
{

(j − 1)bn + 1, . . . , (j − 1)bn + bλn−1
`n
c+ 1(j − 1 ≤ bλnc − 1 mod `n)

}
.

Note that (by Assumption 2.2) the kernel K is Lipschitz continuous with support [−1, 1],
which implies

K
(
i−nt
nhn

)
=
{
K
( jbn−nt

nhn

)
+O

( bn
nhn

)
if
∣∣i− nt∣∣ ≤ nhn,

0 else,

for i ∈ Bj(λ), where the error term O( bn
nhn

) only depends on the function K and, in
particular, does not depend on λ. Thus, if follows that

Sn,k(λ, t) =
bλnc∑
i=1

(Ti−nt
nhn

)k
Khn

(Ti
n − t

)
=

∑
i∈B(λ)

(
i−nt
nhn

)j
Khn

(
i
n − t

)

=
`n∑
j=1

∑
i∈Bj(λ)

(
i−nt
nhn

)k
Khn

(
i
n − t

)

=
`n∑
j=1

(
bλn−1

`n
c+ 1

(
j − 1 ≤ bλnc − 1 mod `n

))( jbn−nt
nhn

)k
Khn

( jbn
n − t

)
+O(bn),

uniformly in λ. As the kernel K has support [−1, 1] the only non-zero summands in the
last expression are those with index j ∈ [n(t−hn)

bn
, n(t+hn)

bn
]. Moreover, it holds that

sup
λ∈[ζ,1]

∣∣∣∣ λ

`nhn

b`nhnc∑
j=−b`nhnc

( jbn
nhn

)j
K
( jbn
nhn

)
− λ

∫ 1

−1
xjK(x)dx

∣∣∣∣ = O
( bn
nhn

)
,
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which implies (A.3). �

Lemma A.2. Let Icn = [0, 1] \ In, κj,hn(t) =
∫ (1−t)/hn
−t/hn xjK(x)dx, for j ∈ N0, and

chn,i(t) =
κ2,hn(t)− κ1,hn(t)

(
Ti−nt
nhn

)
κ0,hn(t)κ2,hn(t)− κ2

1,hn(t)
,

for i ∈ {1, . . . , n}. If the assumptions of Lemma A.1 are satisfied, it holds

sup
t∈Icn,
λ∈[ζ,1]

∣∣∣λ(µ̃hn(λ, t)−µ(t)
)
− 1
nhn

bλnc∑
i=1

εTi,n
{

2chn√
2
,i(t)Khn√

2

(Ti
n − t

)
− chn,i(t)Khn

(Ti
n − t

)}∣∣∣
= O

(
h2
n + bn

nhn

)
. (A.5)

Proof. By similar arguments as given for the approximation in (A.3) it follows that

sup
t∈Icn

sup
λ∈[ζ,1]

∣∣∣∣ 1
nhn

Sn,j(λ, t)− λκj,hn(t)
∣∣∣∣ = O

(
bn
nhn

)
, (A.6)

for j ∈ {0, 1, 2}. Note that Sn,0(λ, t)Sn,2(λ, t) − S2
n,1(λ, t) > 0 for any λ ∈ [ζ, 1] and

almost every n ∈ N since, by Assumption 2.2,∫
A
K(x)dx

∫
A
x2K(x)dx−

(∫
A
xK(x)dx

)2
= 1

2

∫
A2

(x− y)2K(x)K(y)d(x, y),

is positive for any set A ⊂ [−1, 1] with positive Lebesgue measure. Thus, the Hessian
matrix Hf , as defined in (A.2), is positive definite and the partial derivatives vanish if
and only if (A.4) holds true. Therefore, by (A.6) and similar arguments as given in the
proof of Lemma B.2 in Dette et al. (2019) we obtain that

sup
t∈Icn,λ∈[ζ,1]

∣∣∣λ(µ̂hn(λ, t)− µ(t)
)
− 1
nhn

bλnc∑
i=1

εTi,nchn,i(t)K∗hn(Ti/n− t)
∣∣∣ = O

(
h2
n + bn

nhn

)
Finally the statement (A.5) follows from the definition of the Jackknife estimator in
(3.2).

�

A.2. Proof of Theorem 3.4. The following two Lemmas A.3 and A.4 establish the
convergence of the finite dimensional distributions and equicontinuity of the process
{Gn(λ)}λ∈[ζ,1] in (3.4) (for any ζ > 0). The assertion of Theorem 3.4 then follows
directly from Theorems 1.5.4 and 1.5.7 of van der Vaart and Wellner (1996).

Lemma A.3. Let Assumptions 2.1, 2.2, 2.3, 3.1 and 3.2 be satisfied and ζ ≤ λ1 ≤ · · · ≤
λp ≤ 1.Then, (

Gn(λ1), . . . , Gn(λp)
)>
 
(
G(λ1), . . . , G(λp)

)>
in Rp, where the Gaussian process {G(λ)}λ∈[ξ,1] is defined in (3.5)
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Proof. First observe that

Gn(λ) = λ
√
n
(
‖d̂n(λ, ·)− d‖22,τ + 2〈d, d̂n(λ, ·)− d〉τ

)
,

and note that
ĝn(λ)− g(µ) = OP(n−1/2) (A.7)

by Assumptions 2.3 and 3.1. Recall the definition of the interval In = [hn, 1 − hn] and
denote 〈f, g〉In =

∫
In
f(x)g(x)τ(dx) and ‖f‖2,In = 〈f, f〉1/2In

, for any f, g ∈ L2([0, 1], τ).
In the following let

G̃n(λ) = λ
√
n
(
‖d̂n(λ, ·)− d‖22,In + 2〈d, d̂n(λ, ·)− d〉In

)
, (A.8)

then the assertion follows from the statements

(G̃n(λ1), . . . , G̃n(λp))>  (G(λ1), . . . , G(λp))> (A.9)
sup
λ∈[ζ,1]

|G̃n(λ)−Gn(λ)| = oP(1) (A.10)

For a proof of (A.9) note that by the Cramér-Wold device, it is sufficient to prove
p∑
i=1

aiG̃n(λi) 
p∑
i=1

aiG(λi)

for all a1, . . . , ap ∈ R. Define Sk =
∑k
i=1 εi,n and S̃k =

∑k
i=1 ε̃i,n with

ε̃i,n = E[εi,n|ηi, . . . , ηi−mn ] (A.11)

for mn ∈ N and k = 1, . . . , n. By Assumption 2.3 (1), Assumption 3.2 and equation
(3.2) of Wu and Zhou (2011) we have∥∥ max

1≤k≤n
|S̃k − Sk|

∥∥
8,Ω = O(n1/2m−cn ), (A.12)

where mn = nγ with γ < min{β/4, α/2} and the constant c is given by c = 5
6γ . In

particular, the sequences m4
n

nh4
n
, m

2
n

bn
and bnn1/2

mcn
are all of order o(1) as n tends to infinity.

From Lemma A.1 it follows that

sup
t∈[hn,1−hn],λ∈[ζ,1]

∣∣∣λ(µ̃hn(λ, t)− µ(t)
)
− 1
nhn

bλnc∑
i=1

εTi,nK
∗
hn(Ti/n− t)

∣∣∣ = O
(
h3
n + bn

nhn

)
.

(A.13)
Observe that by Assumption 3.1, (A.7), (A.12) and (A.13)

λ
√
n‖d̂n(λ, ·)− d‖22,In =

√
n

λ

∥∥∥∥( 1
n

bλnc∑
j=1

εTj ,n
1
hn
K∗hn(Tj/n− ·)

)
+ λ(ĝn(λ)− g(µ))

∥∥∥∥2

2,In
+ oP(1)

≤ 2
√
n

λ

∥∥∥∥ 1
n

bλnc∑
j=1

εTj ,n
1
hn
K∗hn(Tj/n− ·)

∥∥∥∥2

2,In
+ 2
√
nλ(ĝn(λ)− g(µ))2 + oP(1)

= 2
√
n

λ

∥∥∥∥ 1
n

bλnc∑
j=1

ε̃Tj ,n
1
hn
K∗hn(Tj/n− ·)

∥∥∥∥2

2,In
+ oP(1) (A.14)
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uniformly with respect to λ ∈ [ζ, 1], where the random variables ε̃Tj ,n are defined
in (A.11) and mn-dependent in the sense that ε̃Tj1 ,n and ε̃Tj2 ,n are independent if
|Tj1 − Tj2 | > mn. For the estimation of the first term, let Ki,j denote the integral∫
In
K∗hn(Ti/n− x)K∗hn(Tj/n− x)τ(dx). By the Cauchy-Schwarz inequality and absolute

continuity of τ , Ki,j can be bounded from above by Chn. Tith implies

E
[

sup
λ∈[ζ,1]

n2
∥∥∥∥ 1
nhn

bλnc∑
j=1

ε̃Tj ,nK
∗
hn(Tj/n− ·)

∥∥∥∥8

2,In

]

≤
n∑
k=1

n2

n8h8
n

E
[∥∥∥∥ k∑

j=1
ε̃Tj ,nK

∗
hn(Tj/n− ·)

∥∥∥∥8

2,In

]

=
n∑
k=1

1
n6h8

n

k∑
j1,...,j8=1

E
[ 8∏
r=1

ε̃Tjr ,n

]
Kj1,j2Kj3,j4Kj5,j6Kj7,j8 = O( m

4
n

nh4
n

),

(A.15)

where the last estimate follows observing max1≤i≤n Eε8
i,n < ∞ by Assumption 2.3 (4)

and the fact that only O(n4m4
n) summands of the inner sum are non-zero due to the

mn-dependency of the random variables ε̃j,n. Thus, by (A.14),

λ
√
n‖d̂n(λ, ·)− d‖22,In = oP(1) (A.16)

uniformly with respect to λ ∈ [ζ, 1]. If

d0 =
∫ 1

0
d2(x)dx = 0,

it follows that Gn(λ) = oP(1) and therefore we assume d0 > 0 in the following discussion.
In this case we have from (A.8) and (A.13) that

p∑
i=1

aiG̃n(λi) = 2
p∑
i=1

aiλi
√
n〈d, d̂n(λ, ·)− d〉In + oP(1) = Zn + oP(1), (A.17)

where

Zn = 2√
n

p∑
i=1

ai

bλinc∑
j=1

ε̃Tj ,n〈d, h−1
n K∗hn(Tj/n− ·) + ωn(Tj/n)〉In .

By Lipschitz continuity of d and supp(K) = [−1, 1] it follows that∫
In
d(x)K∗hn(Tj/n− x)τ(dx) =

(
d
(Tj
n

)
+O(hn)

) ∫
In
K∗hn(Tj/n− x)τ(dx).

We obtain for any point of continuity y of the piecewise continuous density fτ of the
measure τ that

1
hn

∫
In
K∗hn(y − x)τ(dx) = 1

hn

∫ 1−hn

hn
K∗hn(y − x)fτ (x)dx

=
∫ 1/hn−1−y/hn

1−y/hn
K∗(x)fτ (xhn + y)dx

=
{
fτ (y) + o(1), if y ∈ [2hn, 1− 2hn],
O(1), else.



STRUCTURAL BREAKS IN LOCALLY STATIONARY PROCESSES 25

Therefore, for Tj ∈ {2nhn, . . . , n− 2nhn}, it holds
1
hn

∫
In
d(x)K∗hn(Tj/n− x)τ(dx) = fτ (Tj/n)d(Tj/n) + o(1), (A.18)

which leads to

Zn =
n∑
j=1

Yj + oP(1) (A.19)

where the random variables Y1, . . . , Yn are defined by

Yj = 2√
n

( p∑
i=1

ai1
(
j ≤ bλinc

))
ε̃Tj ,ndωn(Tj/n) (j = 1, . . . , n)

and

dωn(Tj/n) = fτ (Tj/n)d(Tj/n) + ωn(Tj/n)
∫ 1

0
d(x)τ(dx).

Observe that Y1, . . . , Yn centred and mn-dependent random variables in the sense that
Yj1 and Yj2 are independent if |Tj1 − Tj2 | > mn. Define the big blocks Bj = {k ∈ N :
(j−1)bn+1 ≤ k ≤ jbn−mn} and the small blocks Sj = {k ∈ N : jbn−mn+1 ≤ k ≤ jbn},
for j = 1 . . . , `n, and the remainder R = {k ∈ N : `nbn + 1 ≤ k ≤ n}. In the following,
we will show that the small blocks and the remainder are negligible and the asymptotic
behaviour of Zn is determined by the big blocks. First observe that ε̃Tk1 ,n

∈ Sj1 and
ε̃Tk2 ,n

∈ Sj2 are independent for j1 6= j2. Thus,

E
[( `n∑

j=1

∑
k:Tk∈Sj

Yk

)2]

=
`n∑
j=1

∑
k1:Tk1∈Sj

∑
k2:Tk2∈Sj

E[Yk1Yk2 ]

= 4
n

`n∑
j=1

p∑
i1,i2=1

ai1ai2

bλi1nc∑
k1=1

bλi2nc∑
k2=1

1(Tk1 , Tk2 ∈ Sj)E[ε̃Tk1 ,n
ε̃Tk2 ,n

]dωn(Tk1/n)dωn(Tk2/n).

(A.20)

Further, Tk ∈ Sj for some k ≤ bλnc, if and only if k = r`n + j for some r ≥ bn−mn and
r ≤ bλn−j`n

c and we obtain

E
[( `n∑

j=1

∑
k:Tk∈Sj

Yk

)2]

=
p∑

i1,i2=1
ai1ai2

4
n

`n∑
j=1

b
λi1n−j
`n

c∑
r1=bn−mn

b
λi2n−j
`n

c∑
r2=bn−mn

dωn
( (j−1)bn+r1+1

n

)
dωn

( (j−1)bn+r2+1
n

)
× E[ε̃(j−1)bn+r1+1,nε̃(j−1)bn+r2+1,n].
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For λ < 1, it holds that λ n
bn`n

→ λ and 1 − mn
bn
→ 1, so for almost every n ∈ N,

bn −mn ≥ bλn−j`n
c. Thus, if λi1 < 1 or λi2 < 1, the sums indexed by r1 and r2 on the

right-hand side of the previous display are empty sums for almost every n ∈ N. For
λ = 1, there are mn summands in both sums, thus, the right-hand side of the previous
display is of order O(m2

n/bn) which vanishes by assumption. Thus the small blocks are
asymptotically negligible, and analogously,

E
[(∑

k∈R̄

Yk

)2]
= O

(b2n
n

)
.

The sums over the big blocks are independent, and we have analogously to (A.20),
`n∑
j=1

E
[( ∑

k:Tk∈Bj
Yk

)2]
=

p∑
i1,i2=1

ai1ai2
4
n

`n∑
j=1

∑
r1∈B̄i1,j

∑
r2∈B̄i2,j

dωn
( r1
n

)
dωn

( r2
n

)
E[ε̃r1,nε̃r2,n]

where

B̄i,j = {(j − 1)bn + 1, . . . , (j − 1)bn + 1 + bλin−j`n
c ∧ (bn −mn − 1)},

for λi ∈ [ζ, 1]. Note that, for almost every n ∈ N, B̄i,j = {(j − 1)bn + 1, . . . , (j − 1)bn +
1 + bλin−j`n

c}, if λ < 1 and B̄i,j = {(j − 1)bn + 1, . . . , jbn −mn}, if λ = 1. By Lipschitz
continuity of d and Assumption 3.1,
`n∑
j=1

E
[( ∑

k:Tk∈Bj
Yk

)2]
=

p∑
i1,i2=1

ai1ai2
4
n

`n∑
j=1

d2
ωn

( jbn
n

) ∑
r1∈B̄i1,j

∑
r2∈B̄i2,j

E[ε̃r1,nε̃r2,n]+O
( b2

n
nhn

)
.

(A.21)
Now, by (A.12),

max
1≤r1,r2≤n

∣∣E[ε̃r1,nε̃r2,n]− E[εr1,nεr2,n]
∣∣ = O(n1/2m−cn ). (A.22)

Applying Assumption 2.3 (2), yields

E[εr1,nεr2,n] = E
[
G
( jbn
n ,Fr1

)
G
( jbn
n ,Fr2

)]
+O(bn/n),

for any r1 ∈ B̄i1,j , r2 ∈ B̄i2,j . By the same arguments as in the proof of Theorem 1 in
Wu and Pourahmadi (2009) and Assumption 2.3 (1), it follows that

E
[
G
(
i
n ,Fr1

)
G
(
i
n ,Fr2

)]
= O(γ|r2−r1|),

for any 1 ≤ i ≤ n, in particular i = jbn. Let b := |B̄i1,j ∩ B̄i2,j |, then,∑
r1∈B̄i1,j

∑
r2∈B̄i2,j

E[εr1,nεr2,n] = b
b∑

k=−b

(
1− |k|b

)
E
[
G
( jbn
n ,F0

)
G
( jbn
n ,Fk

)]
+O(b3n/n+ bnγ

bn + 1)

= (λi1 ∧ λi2)bnσ2
(
jbn
n

)
+O(b3n/n+ bnγ

bn + 1).

(A.23)

Thus, by (A.22),
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∑
r1∈B̄i1,j

∑
r2∈B̄i2,j

E[ε̃r1,nε̃r2,n] =
(
λi1 ∧ λi2

)
bnσ

2
(
jbn
n

)
+O

(
b3n
n

+ bnγ
bn + 1 + b2nn

1/2

mc
n

)
.

Plugging this into (A.21) and observing `n = bn/bnc leads to

`n∑
j=1

E
[( ∑

k:Tk∈Bj
Yk

)2]
=

p∑
i1,i2=1

4ai1ai2(λi1 ∧ λi2)‖dωσ‖22 + o(1) (A.24)

= Var
( p∑
i=1

aiG(λi)
)

+ o(1).

Finally, observe that by Jensen’s inequality and Assumption 2.3 (4), for some constant
C > 0,

`n∑
j=1

E
[( ∑

k:Tk∈Bj
Yk

)4]
≤

`n∑
j=1

b3nE
[ ∑
k:Tk∈Bj

Y 4
k

]
≤ C b

3
n

n

nmax
k=1

E ε̃4
Tk,n

= O(b3n/n).

By Lyapunov’s central limit theorem, it follows that

Zn  N
(

0,Var
( p∑
i=1

aiG(λi)
))

D=
p∑
i=1

aiG(λi)

and the statement (A.9) is a consequence of (A.17), (A.19) and the Cramér-Wold device.
For the proof of the remaining statement (A.10) we note that this assertion is a conse-
quence of the estimate

sup
λ∈[ζ,1]

∫
Icn

λ
√
n
(
µ̃hn(λ, t)− µ(t)

)jdt = oP(1) j ∈ {1, 2}. (A.25)

To prove this statement, we note that by Lemma A.2

sup
λ∈[ζ,1]

∫
Icn

λ
√
n
(
µ̃hn(λ, t)− µ(t)

)jdt =

sup
λ∈[ζ,1]

∫
Icn

1
λj−1

√
n

( 1
nhn

bλnc∑
i=1

εTi,n
(
2chn√

2
,i(t)Khn√

2

(Ti
n −t

)
−chn,i(t)Khn

(Ti
n −t

)))j
dt+o(1),

for j ∈ {1, 2}. The case j = 2 follows by similar arguments as given in (A.15). For
the case j = 1 recall from the previous discussion that the random variables εi,n can be
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approximated by mn-dependent random variables ε̃i,n. Thus,

sup
λ∈[ζ,1]

∫
Icn

λ
√
n
(
µ̃hn(λ, t)− µ(t)

)
dt

= sup
λ∈[ζ,1]

∫
Icn

1√
nhn

bλnc∑
i=1

ε̃Ti,n
(
2chn√

2
,i(t)Khn√

2

(Ti
n − t

)
− chn,i(t)Khn

(Ti
n − t

))
dt+ oP(1)

= sup
λ∈[ζ,1]

1√
n

bλnc∑
i=1

ε̃Ti,n

∫
Icn

1
hn

(
2chn√

2
,i(t)Khn√

2

(Ti
n − t

)
− chn,i(t)Khn

(Ti
n − t

))
dt+ oP(1)

= sup
λ∈[ζ,1]

1√
n

∑
j∈B

bλbnc∑
i=1

ε̃(j−1)bn+i,n

×
∫
Icn

1
hn

(
2chn√

2
,i(t)Khn√

2

( (j−1)bn+i
n − t

)
− chn,i(t)Khn

( (j−1)bn+i
n − t

))
dt+ oP(1),

(A.26)

where B denotes the set {1, . . . , b2`nhnc}∪{b`n(1−2hn)c, . . . , `n}. Note that the integral
on the right-hand side of (A.26) is bounded and by similar arguments as used in the
proof of (A.15), the right-hand side of (A.26) is of order O(bnh4

nm
4
n), which converges

to 0 by the definition of mn and Assumption 3.2.

Therefore (A.25) follows and the proof of Lemma A.3 is completed. �

Lemma A.4. Let Assumptions 2.1, 2.2, 2.3, 3.1 and 3.2 be satisfied. Then,

lim
ρ↘0

lim
n→∞

P( sup
|λ1−λ2|≤ρ

|Gn(λ1)−Gn(λ2)| > ε) = 0,

for any ε > 0.

Proof. By (A.10), it follows that

Gn(λ1)−Gn(λ2) = G̃n(λ1)− G̃n(λ2) + oP(1).

uniformly with respect to λ ∈ [ζ, 1], where G̃n(λ) is defined in (A.8). Therefore the
assertion of the Lemma follows from

lim
ρ↘0

lim
n→∞

P( sup
|λ1−λ2|≤ρ

|G̃n(λ1)− G̃n(λ2)| > ε) = 0, (A.27)

To prove this statement note that we obtain from (A.16)

G̃n(λ1)− G̃n(λ2) = 2
√
n〈λ1

(
d̂n(λ1, ·)− d

)
− λ2

(
d̂n(λ2, ·)− d

)
, d〉In + oP(1)

uniformly with respect to λ1, λ2 ∈ [ζ, 1]. By Lemma A.1, Assumption 3.1 and (A.18) we
have the expansion

G̃n(λ1)− G̃n(λ2) = 2√
n

b(λ1∨λ2)nc∑
i=b(λ1∧λ2)nc+1

εTi,n

〈 1
hn
K∗hn

(
Ti
n
− ·
)

+ ωn

(
Ti
n

)
, d

〉
In

+ oP(1)
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= 2√
n

b(λ1∨λ2)nc∑
i=b(λ1∧λ2)nc+1

εTi,ndωn(Ti/n) + oP(1),

uniformly in λ1, λ2 ∈ [ζ, 1], where dωn is defined in the proof of Lemma A.3. Further,
recalling the definition of ε̃i,n in (A.11), it follows by (A.12), that

G̃n(λ1)− G̃n(λ2) = 2√
n

b(λ1∨λ2)nc∑
i=b(λ1∧λ2)nc+1

ε̃Ti,ndωn(Ti/n) + oP(1)

uniformly in λ1, λ2 ∈ [ζ, 1]. In particular, we obtain

P
(

sup
|λ1−λ2|≤ρ

|G̃n(λ1)− G̃n(λ2)| > ε
)

= P
(

sup
|λ1−λ2|≤ρ

∣∣∣∣ 2√
n

b(λ1∨λ2)nc∑
i=b(λ1∧λ2)nc+1

ε̃Ti,ndωn(Ti/n)
∣∣∣∣ > ε

)
+ o(1). (A.28)

Now, for some ζ ≤ λ1 ≤ λ2 ≤ 1, define the sets B̃j = B̃j(λ1, λ2) by{
i ∈ N : (j − 1)bn +

⌊λ1n

`n

⌋
+ 1(j < bλ1nc mod `n) + 1

≤ i ≤ (j − 1)bn +
⌊λ2n

`n

⌋
− 1(bλ2nc mod `n < j) + 1

}
,

for j = 1, . . . , `n. In particular, |B̃j | ≤ bλ2n
`n
c − bλ1n

`n
c + 1 ≤ b |λ2−λ1|n

`n
c + 2. With this

notation, it holds

Rn = E
[∣∣∣∣ 1√

n

b(λ1∨λ2)nc∑
i=b(λ1∧λ2)nc+1

ε̃Ti,ndωn(Ti/n)
∣∣∣∣4] = 1

n2E
[∣∣∣∣ `n∑
j=1

∑
i∈B̃j

ε̃i,ndωn
(
i/n
)∣∣∣∣4].

Observe that the distance between two blocks B̃j and B̃j−1 is larger than bn−
⌊

(λ2−λ1)n
`n

⌋
>

mn. Thus, the sums over these blocks are independent and we obtain the representation

Rn = 1
n2

`n∑
j=1

∑
i1,i2,i3,i4∈B̃j

( 4∏
r=1

dωn
(
ir/n

))
E
[ 4∏
r=1

ε̃ir,n
]

+ 3
n2

`n∑
j1,j2=1
j1 6=j2

∑
i1,i2∈B̃j1

∑
i3,i4∈B̃j2

( 4∏
r=1

dωn
(
ir/n

))
E[ε̃i1,nε̃i2,n]E[ε̃i3,nε̃i4,n].

(A.29)

We first consider the first term of (A.29). Recall that the random variables ε̃i,n are mn-
dependent and that |B̃j | ≤ b |λ1−λ2|n

`n
c+2. Therefore, the number of non-zero summands

in the inner sum can be bounded from above by
(
b |λ1−λ2|n

`n
c + 2

)2
m2
n. By Assumption

2.3 (4), Assumption 3.1 and Lipschitz continuity of d, the first term in (A.29) can be
bounded from above by C|λ1 − λ2|2m

2
n
`n
≤ C|λ1 − λ2|2.
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The second term of (A.29) is bounded by

Sn = C

( 1
n

`n∑
j=1

∑
i1,i2∈B̃j

dωn
(
i1/n

)
dωn

(
i2/n

)
E[ε̃i1,nε̃i2,n]

)2

for some constant C. The inner sum in this term can be rewritten as |λ1−λ2|n
`n

d2
ωn

( jbn
n

)
σ2( jbn

n

)
+

o(1), analogously to (A.23). Thus, Sn converges to C|λ1−λ2|2‖dωσ‖42. Combining these
arguments we obtain

Rn ≤ C|λ1 − λ2|2.
Therefore, by Theorem 2.2.4 of van der Vaart and Wellner (1996) it follows that

E
[

sup
|λ1−λ2|≤ρ

∣∣∣∣ 1√
n

b(λ1∨λ2)nc∑
i=b(λ1∧λ2)nc+1

ε̃Ti,ndωn(Tj/n)
∣∣∣∣4]

≤ K4
{∫ η

0
D1/4(ε)dε+ ρ1/2D1/2(η)

}4
≤ K4

(
2η1/2 + ρ1/2

η

)4
,

for some constant K and any η > 0, where D(ε) denotes the packing number of the space
([0, 1], | · |1/2) and can be bounded from above by ε−2. Thus, by (A.28) and Markov’s
inequality,

lim
ρ↘0

lim
n→∞

P( sup
|λ1−λ2|≤ρ

|G̃n(λ1)− G̃n(λ2)| > ε) ≤ 16K4

ε4 η
2,

for any η > 0, which proves (A.27) and completes the proof of the lemma. �

A.3. Proof of the statements in Remark 3.3. Part (i) is obvious. Part (ii) of the
statement follows with g(µ) = c and ω ≡ 0. For a proof of part (iii) note that

λ

(
ĝn(λ)− 1

t1 − t0

∫ t1

t0
µ(t)dt

)

= 1
(t1 − t0)

{ 1
n

bλnc∑
i=1

εTi,n1(t0 ≤ Ti/n ≤ t1) + 1
n

bλnc∑
i=1

µ
(Ti
n

)
1(t0 ≤ Ti/n ≤ t1)− λ

∫ t1

t0
µ(t)dt

}

= 1
(t1 − t0)n

bλnc∑
i=1

εTi,n1(t0 ≤ Ti/n ≤ t1) +O(bn/n) .

Consequently Assumption 3.1 holds with ω(x) = (t1 − t0)−11(t0 ≤ x ≤ t1).

Finally, for a proof of part (iv) note that it follows from Lemma A.1 and A.2 that

λ
√
n
(
ĝn(λ)− g(µ)

)
= g

(
λ
√
n
(
µ̃hn(λ, ·)− µ

))
= 1√

n

bλnc∑
i=1

εTi,ng
(
ω′(Ti/n, ·)/hn

)
+ oP(1),

by linearity of g, where the function ω′ is defined by

ω′(Ti/n, t) = K∗hn
(Ti
n − t

)
1[hn,1−hn](t)
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+
{

2chn√
2
,i(t)Khn√

2

(Ti
n − t

)
− chn,i(t)Khn

(Ti
n − t

)}
1[0,hn)∪(1−hn,1](t).

Note Khn and K∗hn are Lipschitz continuous with constant Ck/hn where CK is the
Lipschitz constant of K and K∗. In particular, if supp(K) ⊂ [−1, 1], it holds∣∣∣ω′( jbnn , t)− ω′( jbn+r

n , t
)∣∣∣ ≤ Ck r

nhn
1
(
t ∈ [ jbnn − hn,

jbn
n + hn] ∪ [ jbn+r

n − hn, jbn+r
n + hn]

)
≤ Ck

r

nhn
1
(
t ∈ [ jbnn − hn,

(j+1)bn
n + hn]

)
= Ck

r

nhn
1
(
(t− hn) nbn − 1 ≤ j ≤ (t+ hn) nbn

)
,

(A.30)

for any j ∈ {1, . . . , `n} and r ∈ {1, . . . , bn}. Since g is bounded, the function ωn(x) :=
g
(
ω′(x, ·)/hn

)
therefore satisfies (3.3), that is

`n∑
j=1

bn∑
r=1

∣∣ω( jbnn )− ω( r+jbnn

)∣∣ ≤ `n∑
j=1

bn∑
r=1

‖g‖op
hn

∥∥ω′( jbnn , ·)− ω′( r+jbnn , ·
)∥∥

2 = O(bnh−1
n ).

To complete the argument, note that the assumption ‖ωn − ω‖4 → 0 is only needed in
the proof of Theorem 3.4 to establish the convergence in (A.24). However, with ω = hg,
this argument can now be obtained directly noting that the continuity of hg implies for
any j ∈ {d2`nhne, . . . , b`n(1− 2hn)c}

ωn(j/`n) = 〈hg, ω′(j/`n, ·)/hn〉 = 1
hn

∫
In
hg(x)ω′(j/`n, x)dx+ o(1)

= 1
hn

∫
In
hg(x)K∗hn(j/`n − x)dx+ o(1)

= hg(j/`n)
∫
In

1
hn
K∗hn(j/`n − x)dx+ o(1)

= hg(j/`n)
∫ 1

−1
K∗(x)dx+ o(1) = hg(j/`n) + o(1).

This gives

1
`n

`n∑
j=1

σ2(j/`n)d2
ωn(j/`n) = 1

`n

`n∑
j=1

σ2(j/`n)
(
fτ (j/`n)d(j/`n) + ωn(j/`n)

∫ 1

0
d(x)τ(dx)

)2

= 1
`n

`n∑
j=1

σ2(j/`n)
(
fτ (j/`n)d(j/`n) + hg(j/`n)

∫ 1

0
d(x)τ(dx)

)2
+ o(1),

which converges to ‖dωσ‖22.

A.4. Proof of Corollary 3.6. If ‖dωσ‖2 > 0 the corollary follows immediately from
Theorem 3.4 or Remark 3.5 since

P
(

d̂2
2,n(1)−∆2∫ 1

ζ λ|d̂2
2,n(λ)− d̂2

2,n(1)|dν(λ)
> q1−α

)
→


0, if d0 < ∆
α, if d0 = ∆
1, if d0 > ∆.
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If ‖dσ‖2 = 0 , it follows d ≡ 0 by Assumption 2.3 (3), and in this case the probability
to reject the null hypothesis by the decision rule (3.6) converges to P(0 > ∆2) = 0.
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