Generation of Domain-Specific
Language-to-Language Transformation
Languages

Dissertation
zur Erlangung des Grades eines
DOKTORS DER INGENIEURWISSENSCHAFTEN
der Technischen Universitat Dortmund

an der Fakultat fiir Informatik

VoIl

Dawid Kopetzki

Dortmund

2019

Tag der miindlichen Priifung:
16.09.2019

Dekan:
Prof. Dr.-Ing. Gernot A. Fink

Gutachter:

Prof. Dr. Bernhard Steffen
Prof. Dr. Sven Jorges

1

Abstract

The increasing complexity of software systems entailed by the imposed requirements
and involved stakeholders creates new challenges towards software development and
turns it into a complex task. Nowadays, sophisticated development approaches and
tools are needed to handle this complexity. Model-Driven Engineering (MDE) pro-
vides means to abstract from the details of a software system during the development
phase by using models. Domain-Specific Modeling (DSM), a branch of MDE, tackles
the complexity by proposing to use modeling languages which are restricted towards
the solution space of the targeted problem domain. These Domain-Specific Visual
Languages (DSVLs) are used in the DSM approach to create models in the restricted
design space making the generation of modeled solutions feasible and providing a
basis for the communication between various stakeholders. Since for each of the
targeted domains a DSVL is needed, language workbenches emerged which support
the development of DSVLs. During the development of a DSVL the semantics of the
language has to be defined and, if the DSVL changes, existing models created using
the DSVL have to be migrated. Furthermore, models are represented in a specific
format hindering the application of, e.g., mature verification methods and tools.
To solve these tasks, model transformations are promoted to transform models into
different representations conforming to other DSVL.

This thesis presents a new kind of model transformation languages, which can be
used to handle the arising tasks during the development of DSVLs. These transfor-
mation languages are tailored towards the domain of “computational model trans-
formations between DSVLs”. The presented transformation languages are based on
graph-transformation approaches and simplify the specification of computations by
utilizing Plotkin’s Strucural Operation Semantics (SOS), and thereby facilitate the
definition of computation steps in a declarative way. This approach suffers from
the versatility in the scope of DSVLs and thereby requires techniques to reduce the
development costs of the transformation languages for different source and target
languages.

The key to reduce the development costs is the application of the Domain-specific,
Full-generation, Service orientation (DFS) approach for the domain of model trans-
formation languages. The application of domain-specifc concept results in graph-
based, domain-specific two-level transformation languages. The essence of those
languages is captured in a pattern describing possible two-level transformation lan-
guages. This pattern is used as the basis for the definition of a generator for those
kind of transformation languages making full-generation feasible. The semantics of
pattern matching and rewriting rules in the context of graph-based transformations
are defined by the utilization of existing graph-transformation tools.

11

v

Attached Publications

I

IT

I1I

IV

S. NauJokAT, M. LYyBECAIT, D. KOPETZKI & B. STEFFEN. CINCO: A
Simplicity-Driven Approach to Full Generation of Domain-Specific
Graphical Modeling Tools. In. Int. J. on Software Tools for Technology
Transfer (STTT), 2017.

The presented concepts were discussed among all authors. Stefan Naujokat was
main author of all sections. The Cinco implementation has been primarily done
by Michael Lybecait and myself.

M. LYBECAIT, D. KOPETZKI, P. ZWEIHOFF, A. FUHGE, S. NAUJOKAT & B.
STEFFEN. A Tutorial Introduction to Graphical Modeling and Meta-
modeling with CINCO. In: Proc. of the 8th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation, Part I Modeling
(ISoLA 2018), volume 11244 of LNCS, pages 519-538. Springer, 2018.

The presented concepts and technologies were discussed among all authors. I
co-authored section 4. Implementation of the GCS tool was primarily done
by Annika Fuhge under my supervision and implementation of Pyro was done
by Philip Zweihoff, both building on concepts and technologies developed by
Stefan Naujokat, Michael Lybecait and myself.

S. BOSSELMANN, M. FrouME, D. KopPETzKI, M. LYBE- CAIT, S. NAU-
JOKAT, J. NEUBAUER, D. WIRKNER, P. ZWEIHOFF & B. STEFFEN. DIME:
A Programming-Less Model-ing Environment for Web Applications.
In Proc. of the 7th Int. Symp. on Leveraging Applications of Formal Methods,
Verification and Validation, Part IT (ISoLA 2016), volume 9953 of LNCS, pages
809-832. Springer, 2016.

The presented concepts and technologies were discussed among all authors.
Imple- mentations of Dime have been done primarily by Steve Bofelmann,
Markus Frohme, Stefan Naujokat, Johannes Neubauer, Dominic Wirkner and
Philip Zweihoff. En- hancements in Cinco required for the implementation of
Dime have been done primarily by Michael Lybecait and myself.

M. LyBEcAIT, D. KOPETZKI & B. STEFFEN. Design for ‘X’ through
Model Transformation. In: Proc. of the 8th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation, Part I Modeling
(ISoLA 2018), volume 11244 of LNCS, pages 381-398. Springer, 2018.

The presented concepts were discussed among all authors. I co-authored all
sections and I am main author of section 5.

V D. KopPETzKI, M. LYBECAIT, S. NAUJOKAT & B. STEFFEN. Towards
Language-to-Language Transformation. In. Int. J. on Software Tools for
Technology Transfer (STTT), 2020

The presented concepts were discussed among all authors. I co-authored all
sections and I am main author of sections 3, 4 and 5

vi

Contents

1 _Introductionl 1
(1.1 My Contribution|, 3
(.2 Related Workl oo 12
(1.3 Organization of this Thesis|. 13
(1.4 Context of Attached Publications| 14

2 Background| 17
2.1 CINCO Meta Tooling Suitel 17
2.2 The WebStory Language| 19
2.3 Model Transformations oo 20

[2.3.1 Categorization of Model Transformations/ 21
[2.3.2 Graph Transformations|. 21

3 Towards Graph-Based Model Transtormations in the Cinco Framework| 25

8.1 Model Transformations in CINCO| 27
B.1.1 Model Semanticsfo oo 27
3.1.2 Meta Model and Model Co-Eivolutionl 31
[3.1.3 Validation and Verification 34

[3.2 "The Need tor Domain-Specific Transformation Tools|. 34
3.2.1 Code Generation in CINCOl. 35
(3.2.2 Model-to-Model Transformationsl 35

4 Generation of Language-to-Language Transformation Languages| 43
4.1 'Two-Level Transtormation Languages 43
4.2 Generation of Two-Level Transtormation Languages 45

[4.2.1 Source Language Pattern|. 47
[4.2.2 Target Language Pattern|. 48
[4.2.3 The Auxiliary Rule Language] 48
[4.2.4 Generator Configuration| 50

Vil

[4.2.5 The WebStory to Kripke Transition System Transtormation

5 Future Workl

| Languagel 52
55

[(>.1 Application| 55
[>.2 Higher-Order Transformations| 55
[>.3 Auxiliary Languagel 56

57

6 Conclusionl

viil

Introduction

The increasing complexity of software systems imposes large problems on their de-
velopment. To handle this complexity, one has to abstract from technical details
and focus on the solution design for the given problem. Model-based development
approaches reinforce the abstraction process by providing means to capture the main
concepts of a solution in a formal model, abstracting from implementation details.
In Model-Driven Engineering (MDE) [Sch06, HRW11| models are the main artifacts
during the development process from which code is generated (semi-)automatically.
The Object Management Group (OMG) [10] introduced the Model-Driven Architec-
ture (MDA) [BCTO05, [Poo01], a set of standards to facilitate the creation of models
and transformations between them down to the actual system’s implementation.
Those models are usually created using general purpose-modeling languages.

Despite the increase of productivity resulting from model-driven development
techniques, one intrinsic problem still persists: The semantic gap between technical
experts and business experts, i.e., what the business experts expect and what the
technical experts understand and realize. In [MS09|, Margaria and Steffen propose
eXtreme Model-Driven Design (XMDD) as a development paradigm to reduce this
gap by including the business experts in the development process of the software
system. XMDD is a combination of service orientation and model-driven design. In
this approach, a business expert models his own solution using predefined building
blocks, which are based on services implementing basic functionalities. The building
blocks can in turn be composed to new ones, providing more powerful functionali-
ties. The model is the main development artifact, from which the whole system is
generated.

Domain-Specific Modeling (DSM) [KTO08| follows the same goals, but problem
solutions are created using Domain-Specific Languages (DSL) [EP1I] and tools,
tailored specifically for the problem domain. These tools reduce the possible de-
sign space by limiting language constructs towards the target domain. Kelly and
Tolvanen report in [KTO8| on the advantages of DSM, e.g., a vast increase in the
productivity and a better quality of applications, achieved by a restricted design
space and code generation. Furthermore, the domain-specialization of the language

Figure 1.1: Overview of domain-specific visual languages developed using CIN-
co. (1) Piping & Instrumentation diagram [WMNI6| (2) Flow
Graph [WMNTI6] (3) Probabilistic Times Automata [NTI™14] (4) Hi-
erarchical Scheduling Systems |[CKL™17] (5) OMG’s Case Management
Notation (CMMN) [Wecl6| (6) Easy Delta Pick&Place DSL [BDG™ 15|
(7) Petri net [NLKS17|. (reprinted from [SGNM19])

enhances the comprehensibility of created solutions for domain experts and even
enables them to create their own solutions.

Models and their meta models require subsequent processing steps introduced
by typical activities in model-driven engineering, i.a., refactoring, migration, verifi-
cation, and simulation [Menl3|. These activities are realized by model transforma-
tions, which, e.g., change the models’ structure to meet specific structural constraints
(refactoring), transform them into an existing semantic domain, or translating them
to formats suitable for, e.g., verification tools.

In the last seven years, we developed the CINCO meta-tooling suite [NLKS17], a
language workbench [Fow05| easing the development of graph-based, domain-specific
visual languages (DSVL). CINCO is used in many industrial and academic projects
yielding several DSVLs. Figure[I.T]shows exemplary models of DSVLs created using
CINcO. These DSVLs are developed, with simplicity in mind, to provide business
experts the possibility to model their solutions. Of course, these DSVLs and the
associated models are subject to model transformations targeting different goals.
Ideally, these transformations should be defined using transformation languages fol-
lowing the same concepts as the underlying DSVLs, i.e., in a graph-based visual

way, utilizing the abstract and concrete syntax of the involved DSVLs. But due to
the large number of DSVLs, the manual development of dedicated transformation
tools for those languages is not feasible. Furthermore, one transformation language
is not necessarily appropriate to specify model transformations for different pur-
poses. This thesis presents the results of my efforts towards specialized graph-based
model transformation languages for DSVLs, which should provide an easy way for
the specification of transformations.

1.1 My Contribution

Stefan Naujokat introduced in his Ph.D. thesis [Naul7| the Domain-specific, Full-
generation, and Service orientation (DFS) approach for modeling languages and then
applied this approach reflexively to the domain “development of graphical domain-
specific visual languages” resulting in the CINCO meta-tooling suite. CINCO is used
to create graph-based DSVLs by specifying their abstract and concrete syntax. But
the development of DSVLs does not end at this point. I consider three major activ-
ities arising during the development of DSVLs, each targeting a different purpose.

1. Semantics definition: Given the abstract syntax of a DSVL, one has to specify
the meaning of models expressed in this language, i.e., define the language’s
semantics. Usually, this can be done by generating executable code in a high-
level programming language (e.g., Java), or by providing translational seman-
tics mapping the concepts of the source language to a semantic domain.

2. Model Migration and Model Co-FEvolution: Models expressed in a DSVL con-
form to the language’s meta model (abstract syntax). Small changes in the
meta model can invalidate the conformance of existing models, thus the con-
formance has to be “repaired”.

3. Validation and Verification: Even if models conform to the meta model of a
DSVL, it is not guaranteed that the models represent reasonable solutions or
satisfy desired properties posed to a solution. The design space of a DSVL
can be further restricted towards reasonable solutions by validating the static
semantics of a language. To verify desired properties of a solution, one can
use existing formal verification methods and thereby benefit from various ad-
vantages resulting from the research in that area. Those verification methods
require their input models to conform to a specific format (meta model). Gen-
erally, models expressed in DSVLs do not satisfy this requirement and have to
be transformed into a suitable format for a verification tool.

All three activities can be performed by transforming the models into models (1.)
expressed in a language with existing semantics, (2.) conforming to a modified meta
model, or (3.) conforming to the expected format of a verification tool. Thus, model
transformations provide excellent means to perform these tasks.

General-Purpose Domain-Specific

. Metamodel-Generated DSL-Generated
Imperative AP AP
- Graph-based
Declarative Graph-based . Model
Model Transformation |transformation

Figure 1.2: Categorization of model-to-model transformation approaches studied in
the context of this thesis.

The majority of existing approaches for graph-based transformations usually con-
sider transformations where the required information is represented statically in the
model. In [KLNS20|, we present model transformations, concerning the migration
and verification activity, in which the required information is not statically repre-
sented in the model but has to be computed. Although the aspect of computation
is a mature topic in computer science, graph-based approaches do not address it
specifically in their rule definition languages. In this thesis, I present a transfor-
mation language supporting the specification of computations in a declarative way.
This language is inspired by Plotkin’s Structural Operation Semantics [Plo81], which
facilitates the definition of a programming language’s semantics in a very elegant
way.

I studied how the concepts of the DFS approach can be applied to the domain of
model transformation languages, and thereby ease the development of model trans-
formations for DSVLs. The resulting transformation languages hide the complexity
of the definition of model transformations and consider the involved DSVLs in their
rule definition language. Thereby, the languages provide a less error-prone develop-
ment process. These languages are used to implement the described activities in the
scope of DSVLs. Figure[l.2lcompares common approaches for model transformation
languages with the ones I studied. The DFS approach is reflected as follows:

e Domain-specific: Transformation languages should respect the abstract and
concrete syntax of the DSVLs involved in a transformation (Approaches in
the Domain-Specific column of Fig. |1.2). Additionally, the purpose of a
transformation is considered as a domain-specific aspect for the transforma-
tion language (cf. Graph-based Domain-Specific Model Transformation

in Fig. [1.2)).

e Full-generation: Due to the amount of possible transformation languages re-
sulting from the application of the domain-specific aspect of DFS, these lan-
guages should be generated to fully executable transformation languages.

o Service orientation: The Declarative/Domain-Specific approaches facili-
tate the specification of transformations using graph patterns. Finding matches
of these patterns in the input model is not trivial, thus existing matching al-
gorithms are used.

The first application of domain-specificity for transformation languages resulted in a
CINCO-generated domain-specific APT for each DSVL (cf. Fig.[1.2] DSL-Generated
APTI). This allowed for a more convenient implementation of model transformations
in an imperative manner, i.e., a developer specified how to transform models of the
source language to target language models. Using this generated API, the three
described activities can be defined by:

1. Translating models expressed in a new DSVL into a DSVL with an existing
semantics definition or to executable code in a high-level programming lan-
guage.

2. Transforming models which do not conform to a modified meta model to a
model conforming to it.

3. Translating models expressed in a DSVL to models suitable for verification
tools.

The disadvantages of this approach are that the logic of the transformation engine is
implemented in each transformation anew and the transformation rules for DSVLs
are implemented using an imperative textual programming language.

To allow for a declarative specification of what the transformation should achieve,
i.e., the relation between source and target language types, I employed graph-
based model transformation languages for DSVLs (cf. Fig. Graph-based Model
Transformation). These transformation languages allow for the specification of the
relation between structures of the source language and structures of the target lan-
guage using the concrete syntax of the corresponding DSVLs. The transformation
logic is part of the language and does not have to be specified by the transformation
developer.

Using the specialized graph-based transformation languages allows for a more con-
venient definition of transformations to realize the introduced activities. However,
some of these transformations are more intricate and result in complex transfor-
mation rules, even if the graph-based transformation languages tailored towards
the DSVLs are used. For instance, model migration or verification may require
the aggregation of information, leading to the specification of rules that simulate a
computation. A solution for this problem is to consider the purpose of the trans-
formation as domain-specificity, leading to Graph-based Domain-Specific Model
Transformation languages. These languages provide an additional auxiliary lan-
guage tailored towards the domain of computation.

The highlighted parts of Fig. represent two of my contributions. The light gray
part represents a technical contribution, i.e., the realization of existing approaches

in our meta-tooling suite CINCO. The dark-gray part represents my contribution
towards a new kind of model transformation languages. My third contribution
consists of the generator for graph-based domain-specific visual languages.

1. Graph-based Model Transformation In graph-based model transformations,
rules are specified using graph patterns which relate to structures in the source and
target language, meaning that the target pattern is created if the source pattern is
present in the source model (cf. Sect. . The transformation language facilitates
the specification of patterns using the concrete syntax of the involved DSV Ls, leading
to more comprehensible rules than, e.g., in an imperative textual approach. Users
who are familiar with the languages involved in the transformation, recognize the
elements used for pattern definition at first glance. For instance, the transformations
depicted in Fig. and Fig. specify similar rules, but the rules in Fig. use
the concrete syntax of the underlying DSVL (cf. Fig. [2.2).

The derivation of pattern languages for domain-specific languages is described
in, e.g., [KMS™10, [HRW15|. Thus, my first contribution is a technical one, which
paved the way towards graph-based transformation languages for DSVLs in CINCO.
Given a DSVL specification, a graph pattern language is generated which satisfies
the requirements described above. Furthermore, to execute a transformation, the
semantics of pattern matching and graph rewriting were defined by means of trans-
lational semantics. Pattern matching consists of finding sub-structures in a graph
on which rewrite rules can be applied. Thus, pattern matching relates to the graph
isomorphism problem and constitutes a complex task. To prevent the implemen-
tation of pattern matching algorithms for DSVLs, I utilized the general-purpose
graph transformation tool Groove. Groove facilitates the specification of transfor-
mation rules for attributed typed graphs. To use Groove’s capabilities, the DSVL,
its models, and the defined rules are transformed to Groove graphs.

e The meta model of a DSVL is transformed to a type graph in Groove.

e The models expressed in a DSVL are transformed to host graphs in Groove,
which are typed by the corresponding type graph.

e The rules are transformed to rule graphs in Groove, which are typed by the
corresponding type graph.

I supervised the master thesis of Marius Feltmann [Fel19], in which he implemented
a generator for graph-based transformation languages for DSVLs.

A drawback of transformation languages typed towards DSVLs is their inflexibility.
Each concept that does not belong to source or target language has to be explicitly
added as a new type in the transformation language.

For the computation required for the transformations described in [KLNS20],
several additional concepts are needed to model the components of an interpreter.

These concepts have to be represented by means of node and edge types. Addi-
tionally, the ezxecution of the interpreter has to be specified using rules that only
facilitate for graph rewriting. Thus, a transformation developer is left alone with the
specification of the interpreter’s execution by means of finding, deleting, and creating
model elements. Using these basic functionalities, the following aspects have to be
specified which introduce the complexity in the corresponding transformation rules.

e Explicit modeling of runtime information: The computed data is represented
by special data nodes and the current position in the input model is represented
by, e.g., a special node type which refers to the current node using a dedicated
edge type.

e Defining a computation step by finding the special edge representing the cur-
rent position in the graph, deleting and creating it at the next position.

e Extending the transformation rules with new types that can be used to spec-
ify conditions determining when a computation should start or when it has
finished. This allows to realize a scheduling for the application of the actual
transformation rules and thereby create elements in the target language at the
correct moment.

e Definition of rules determining if a target element representing the current
state of the computation was already created.

e Modeling of a global termination condition for the transformation.

I modeled the transformation incorporating these components using a general-purpose
graph transformation language. Some of the resulting rules are represented in

Fig. and Fig. [[.6] The complexity of the transformation rules introduced by

the computation is tremendous, although the needed concepts are well-known and

mastered in computer science.

2. Graph-based Domain-Specific Model Transformation My second contribu-
tion is the definition of languages, that are used to define computational transforma-
tions. To overcome the problems introduced by modeling computation concepts by
means of node and edge structures, I considered the required concepts as domain-
specific aspects themselves and extracted the relevant parts in form of the following
design decisions.

e SOS-based Auziliary Rules: To handle needed computations for a transforma-
tion, I introduce an auxiliary language based on Plotkin’s Structural Operation
Semantics (SOS) [Plo81]. It encapsulates the specification of individual com-
putation steps allowing to separate the computation rules from the rules that
are responsible for the creation of the target model.

e Additive Transformation System: Constraining the source and target pattern
languages by preventing the deletion of elements in the target model, and
preventing the deletion and creation of elements in the source model, results
in an additive transformation system. With a proper identification of tar-
get elements, the transformation can be executed until a fix-point is reached.
Thereby, a transformation developer does not have to explicitly specify a global
termination condition. Defining such a condition would require to enhance
transformation rules by bookkeeping newly created elements and checking for
their existence before the application of subsequent rules.

e Separation of Source Language and Target Language: To focus on the con-
stituents of a transformation and reduce the complexity implied by explicitly
defining the relations between source, target, and computation concepts in one
representation the transformation language separates the definition of source
and target language pattern. Additional to the separation of the computation
concepts, this results in a modular language.

These design decisions are manifested in a two-level transformation language pat-
tern, which is tailored to support computations. The resulting languages provide
specialized means for handling the computation aspects as follows.

e A two-level transformation language providing two types of rules, distinguish-
ing between computation and transformation rules.

e The first rule type defining the relation between source and target language
elements using pattern languages, restricted as described in the Additive Trans-
formation System design decision.

e The second rule type defining individual computation steps in the source model
using SOS. Individual steps are specified by transitions between states that
represent configurations of a computation.

Those languages allow for the specification of the actual transformation rules in a
declarative way, by relating source and target language elements. Even the spec-
ification of computation steps is realized in a declarative way by relating source
language elements with SOS configurations. Fig. and Fig. exemplify the
transformation rules for the WebStory to KTS transformation [KLNS20]. The
relation between source and target elements is described by the rule in Fig. [1.4]
where a source language pattern is defined in the upper part on the left-hand side,
a target language pattern in the lower part. The upper part on the right-hand side
represents the start and end configuration of a computation. This allows for the
definition of a start configuration for the computation. The end configuration serves
as basis for the derivation of attribute values for target language elements. The
computation steps are defined by the rules in Fig.[I.4 Source language patterns are
defined in the upper part, a transition between two SOS configurations is defined
in the lower part. Relations between source language elements and configurations

Macro Rule: Multi Step Screen2Screen

CD I. (I,g) -~ (L",0")

Condition:

C
(L,g) ————— > (L',0")

Figure 1.3: First-level rule defining the transformation of WebStory elements into
states of a K'TS.

Micro Rule: Modify Variable

O Hm—e

(m,o) - (L,o{IlmI](o) / v})

Micro Rule: ConditionTT Micro Rule: ConditionFF
v c ﬁ’; v c !—"
fffffffffff A %
[vl(o)==tt IvI(o)==ff
(C,O) > (T’o') (C,O) ,(F’o')

Figure 1.4: Second-level rules defining the aggregation of information in a WebStory.

are defined using identifiers. The meaning of those rules is detailed in Sect. [but
here I want to emphasize that none of these rules require the explicit modeling of
element deletion or creation to simulate the computation aspects.

In contrast, Figure [1.5| shows the rules of Fig. encoded in the general-purpose
graph-transformation tool Groove. Furthermore, Fig. [I.6] explicitly models the com-
parison of two K'T'S states. This rule requires for advanced transformation concepts,
such as the matching of sub-graphs using quantified rules. The comparison mech-
anism is a domain-specific aspect of the two-level transformation language and has
not to be addressed explicitly by a transformation developer.

The rules represented in Fig. [[.3]and Fig. [I.4] are specialized towards the involved
source and target languages and the purpose of the transformation. Thus, for each
combination of source and target language, and the transformation’s purpose, a
dedicated two-level transformation language is required. This leads to my third
contribution.

Phase
P compute compute
| Bool | | Bool Bool
value := m.value value == true value == false

* ¥

map map map

modify input

input

: ModifyVariable it L
*/ﬂ —_— .

current current
‘ current "y e current false

—current};D current>1:]
(a (b) (c)

~—

Figure 1.5: Computational rules from the transformation shown in Fig. en-
coded in Groove: (a) Modify Variable, (b) ConditionTT, and (c)
ConditionFF. In the rules green elements will be created after rule ap-
plication, blue elements are matched and deleted after rule application.

3. Generation of Graph-Based Domain-Specific Model Transformation Lan-
guages My third contribution is the definition of a generator for the described
two-level SOS-based transformation languages. It is implemented under my super-
vision by Phillip Goldap in the context of his master thesis [Gol19].

The main task during the extraction of a generator for two-level transformation
languages facilitating the specification of rules as shown in Fig. and Fig. is the
generalization of concepts constituting the transformation language. Of course, this
generalization should not cause a loss of the domain-specific aspects described above.
In this process, I studied the constituents of the transformation and the interrelations
between them. Having identified the interrelations, I extracted the information
which entailed the interrelations and provided means to define this information
on a higher specification level, making the generation of two-level transformation
languages feasible.

Clearly, the constituents for a computational two-level transformation language
are the source language (Lg), target language (Lr), and the SOS-based computation
language (L¢). Fig. shows the interrelations between them.

e Memory Initialization: The auxiliary language facilitates the computation of
information. The data that serves as the basis for the computation is defined
in the source language. Therefore, a mapping from the source language to
the data component of the computation language is required to initialize the
memory for the actual computation.

e Semantics: The required data for the transformation is not necessarily repre-
sented locally in a source model and has to be retrieved by traversing struc-
tures of the model. In combination with the memory initialization, the SOS-

10

Phase
initap

,,,,,,,,,,,,,,,,,,,,,

bookkeep bookkeep
I
ap22 : AP

apll : AP
apll.name == ap22.name -
Q
= i oo

Figure 1.6: Rule for the identification and merging of equivalent K'T'S states.

language has to be coupled with the source language to allow for the definition
of the source language’s semantics.

e Data derivation: Attribute values of target language elements can depend on
information represented in the source model and the computed information
provided by the auxiliary language. Therefore, a mapping from source and
auxiliary language to the target language is required.

Analyzing these interrelations resulted in the observation that the major parts of
the transformation language can be generated, i.e., without the knowledge of the
actual source and target language.

The two-level structure of the transformation language is static. The first rule
type encapsulates the Data derivation between Lg, Lo and Ly, the second one
the Semantics dependency between Lg and Le. Furthermore, the structure of the
individual rule types is also static. The interrelations between the languages and
the design decision to separate the source, target, and auxiliary language imply the
segmentation of the rule types. The first rule type is divided into three parts: Source
language part, target language part, and computation part. The computation part
is used to represent the start configuration of a computation and its result (cf.
Sect. . The second rule type is divided into two parts. One allowing to define a
traversal step using the computation language and one for the definition of source
language patterns.

The next observations consider the actual causes for the interrelations between
the languages. The means to define the Semantics interrelation between source and
computation language can be generated independent of the actual source language.
It is realized by using identifiers in both languages to relate corresponding elements.
The extension of source language types by an attribute representing this identifier is

11

Figure 1.7: Interrelation between the languages involved in a computational trans-
formation.

independent of the actual source language. Consequently, this feature can be added
to the specification of an arbitrary source language. The computation language’s
purpose is to ease the traversal of structures, hence we assume the identification
concept as part of the computation language.

The Memory Initialization depends on the purpose of the transformation, and
thereby on the actual source language. Consequently, the transformation developer
has to define which data of the source model should be considered for the transfor-
mation before the transformation language can be generated.

The Data Derivation depends on the source and auxiliary language (especially
on its memory component). Consequently, to derive required data for target ele-
ments, the memory initialization has to be given.

To support the developer in the specification of these two interrelations, I provide
specification languages tailored towards the concepts of source, target and compu-
tation language. l.e, these languages ease the access to the concepts defined in the
corresponding languages and support the specification of their relations.

1.2 Related Work

The generation of transformation languages is researched for textual and visual
DSL. In [Weil2, HRW15|, the authors consider textual domain-specific languages.
They describe how transformation languages which re-use the concrete syntax of
the base language can be automatically generated. In this approach only one DSL
is considered, yielding an endogenous transformation language (cf. Sect. .
For visual DSL, the authors in [KMS™10, SGV13| describe the (semi-)automatic
generation of transformation languages, considering the abstract and static syntax of
the involved DSLs. The pattern languages are derived from the DSLs by relaxation,
augmentation, and modification. The relaxation, e.g., decreases lower bounds for
references defined by the meta model of the DSL to 0, and changes abstract types

12

to concrete ones, to prevent the enumeration of all possible concrete sub types in a
transformation rule. The augmentation adds attributes to types allowing for their
identification and adds concepts which do not belong to the DSLs in form of “generic
nodes and links”. The modification changes all attribute types to “constraints” and
“actions” to specify constraints on pattern elements or derive element values.

The need for model transformations for specific purposes was already recognized
by several researchers. Agrawal et al. describe in [AKNT06| a possible design
of model transformation languages. They use the concrete syntax of UML class
diagrams to specify rule patterns. Cuadraro proposes in [Cual2| to realize transfor-
mations by families of transformation languages. Thereby, the individual languages
should be designed to provide relevant features to realize a specific aspect or task
of the desired transformation. The main focus of this research is the composition
and interoperability of the involved languages. The composition of transformation
languages creates a new transformation language, the interoperability defines how
to process transformation results gained by applying individual transformations of
the transformation family. This approach resembles Language-Driven Engineering
(LDE) [SGNM19], in which several DSLs are employed allowing to involve stake-
holders from different domains in the system’s development process. The interplay
between the DSLs is realized in a service-oriented fashion. Changing the purpose
from “systems” to “transformation languages” and providing DSLs capturing differ-
ent tasks of transformation language development facilitates their development in a
similar fashion as described by Cuadraro.

In [SGV13| and [SVL15], Syriani et al. present the Transformation Core (T-Core)
framework. In [SV10|, Syriani and Vangheluwe identified a set of primitive con-
structs needed to develop model transformation languages and encapsulated them
in the T-Core framework. For instance, Matcher and Rewriter provide interfaces
to define preconditions and rewrite rules, which can be combined to transformation
rules. Using T-Core, a transformation language can be realized by implementing
the primitive constructs. Each construct defines how a matching is computed, in
which order a set of matchings is processed, or how conflicts between rewrite rules
should be resolved.

To the best of my knowledge, the existing graph-based transformation approaches
hold on to the traditional rule definition style of left-hand side and right-hand
side pattern specification. All further aspects are handled specifically by, e.g., rule
scheduling definitions, or by falling back to imperative textual specifications (hybrid
approaches).

1.3 Organization of this Thesis

Section describes the context of the attached publications. In Chapter [2 I
describe the technical framework in which the transformation languages were imple-
mented (Sect. , the DSVL used to exemplify the generation of a two-level trans-
formation language (Sect. [2.2)), and briefly explain the concepts of model and graph

13

transformations and exemplify graph transformations by means of a transformation
for the WebStory language (Sect.[2.3). Chapter [3| describes the need for graph-based
domain-specific transformation languages by listing several projects in which the se-
mantics definition, model migration and model co-evolution, and validation and
verification are realized using model transformations (Sect. . The improvements
towards domain-specific transformation languages are described in Sect. conclud-
ing with graph-based transformation languages for DSVL. Chapter 4| describes my
second and third contribution, i.e., the two-level transformation language pattern
and the generation of two-level transformation languages. Thereby, Sect. reca-
pitulates the pattern for two-level transformation languages and explains the link
to Plotkin’s SOS. The generation of two-level transformation languages is described

in Sect. [4.2

1.4 Context of Attached Publications

This section gives an overview of the publications belonging to this cumulative dis-
sertation. They exemplify the application of domain-specific approaches in several
areas. At a meta-level the domain-specific approach is applied to the domain “de-
velopment of domain-specific visual languages” [NLKS17| yielding the CINCO lan-
guage workbench. CINCO is used to develop domain-specific modeling languages
(CiNcO products) [BEK™16, ILKZ 18| and specifically tailored transformation lan-
guages [KLNS20, LKS18].

CINCO: A Simplicity-Driven Approach to Full Generation of
Domain-Specific Graphical Modeling Tools

This paper introduces the CINCO meta tooling suite. CINCO constitutes the foun-
dation of this thesis by providing a fully functional generation of domain-specific
graphical modeling tools from abstract specifications described using a text-based
DSL. It provides a technical framework to realize all ideas presented in this thesis
in the context of DSVL. The motivation for the development of CINCO — the de-
sire for domain-specific, full-generation, and service-orientation — quickly expanded
on the accompanying tasks such as the realization of code generators, definition of
specific DSVL functionalities which can not be expressed using CINCO’s specifica-
tion languages, and model transformations for the considered DSVL. This desire has
driven my research towards the concepts and tools easing the definition of solutions
to accomplish the mentioned tasks and resulted in the transformation languages
presented in this thesis.

14

A Tutorial Introduction to Graphical Modeling and
Metamodeling with CINCO

This paper shows the capabilities of CINCO using a simple educational example lan-
guage called WebStory. The specification and extension of the WebStory language is
described using the Graphical CINCO Specification language (GCS) [Fuhl8|, which
is a CINCO product (a DSVL) facilitating a WYSIWYG-driven definition of CIN-
CO product specifications. Using the GCS language for the development of CINCO
products enables the application of the concepts presented in this thesis, i.e., graph-
based domain-specific model transformation languages, on a higher meta-level, i.e.,
for CINCO product specifications. Consequently, for instance, required preprocessing
steps on CINCO product specifications for CINCO’s code generator can be defined in
an declarative way.

DIME: A Programming-Less Modeling Environment for Web
Applications

The DyWA Integrated Modeling Environment (DIME) is the largest CINCO product
developed thus far. It is used for modeling of single-page web-applications providing
three languages for data, user interface, and business process modeling. During
the development of DIME the need for mechanisms supporting activities such as
model migration, model co-evolution, and model-checking arose, which motivates
the research towards model transformations as a possible solution.

The development of DIME establishes an additional way for the semantics defi-
nition of new DSVLs. The concepts presented in this thesis can be used to define
languages’ semantics by means of translational semantics, i.e., transformations be-
tween new DSVLs and DIME.

Design for 'X’ Through Model Transformation

The first ideas of the two-level transformation language are introduced in this pa-
per. It motivates transformations as main tool to achieve X-by-Construction, a
generalization of Correctness-by-Construction. Properties, ’X’, are learnability, per-
formance, and model-checkability.

Towards Language-to-Language Transformation

This paper is the extension of [LKSI18|. It presents the the connection of CINCO
models to the algebraic graph transformation approach. It describes the model
transformation needed for verification and compares the two-level transformation
language with the traditional graph transformation approaches.

15

16

Background

This dissertation targets the practical scope of software development, i.e., model-
driven engineering and model transformations. The ideas presented in this thesis
are independent from a concrete technical framework, but of course are also im-
plemented. In this chapter, I present the technologies used as the basis for the
realization and introduce the relevant languages and formalism to get a basic un-
derstanding for the topics addressed in this thesis.

2.1 Cinco Meta Tooling Suite

In DSM, for every problem domain a DSVL is required. Instead of implementing
the DSVL manually, language workbenches [Fow05| are used. These are specialized
tools supporting the construction of DS(V)Ls, and thereby help to reduce their
development costs.

The CINCO meta-tooling suite is the result of applying the Domain-specificity,
Full code generation, and Service-orientation (DFS) [Naul7] approach to the do-
main “development of graphical domain-specific visual languages”. Figure shows
an abstract overview on the artifacts incorporated in the development of CINCO
and DSVLs developed using CINCO (called CINCO products). CINCO is build
on the basis of Eclipse [I] technologies, mainly the Eclipse Modeling Framework
(EMF) [SBPMOS§| and Xtexzt [6]. EMF is an implementation of the Meta Object Fa-
cility (MOF) [11], a standard defined by the Object Management Group (OMG) [10]
for the realization of modeling languages. EMF facilitates the creation of (meta)
models using Ecore. On the basis of Ecore (meta) models, textual languages are
developed using Xtext. The abstract and concrete syntax of a DSL is represented
by Ecore meta models and Xtext grammars, respectively.

CINCO provides the Meta Graph Language (MGL) and Meta Style Language
(MSL) for abstract and concrete syntax specification of graph-based visual mod-
eling languages. Both languages are realized using Ecore and Xtext and thereby
conform to Ecore’s meta model (cf. Fig MGL.ecore and Style.ecore conform

17

Eclipse Ecore.ecore | &

Developers /ﬂ \7\ (GraphitiDiagram.ecore)<P-
Cinco : Cinco Product

Developers [MGL.ecore) (Style.:core)

Cinco Product 5 PetriNetModeler (Cinco Product)
INCO Froauct J -) 4
Developers (PetriNet.mgl) (PetnNet.style) DGODQ PetnNet — PetnNetE dtorjava
High-Level PetriNetModeler Specification () (Graphiti APl impl.)
/%d.fy\

Cinco Product [(Mode‘l() (Dia;;ram)} --------------

Users
BusStop.pn

Figure 2.1: High-level view on CiNnco [NLKS17].

to Ecore.ecore). In Figure the CINCO product Developers level exemplifies
the realization of a DSVL on the basis of Petri nets [Mur89]. The PetriNet.mgl
and PetriNet.style define the abstract and concrete syntax for Petri nets. The
specifications conform to MGL.ecore and Style.ecore and serve as input for the
CINCO product generator, which generates a fully functional modeling tool on the
basis of Ecore and Graphiti [4]. Models created by the generated modeling tool
(cf. BusStop.pn on the CINCO Product Users level) conform to the Petri net meta
model (PetriNet.ecore).

The main specification constructs in MGL are node and edge types, which are de-
fined in a dedicated graph model type. Additionally, CINCO provides the notion of
container types which can in turn contain node and container types. Furthermore,
one can specify user defined types and enumerations. Types can contain primitive
attributes, e.g., Integer, Boolean, String or complex attributes, e.g. a user defined
types (compositions of primitive attributes and types), enumeration, or other node,
edge, and container types. In CINCO, service orientation is realized by prime refer-
ences. A prime reference points to an instance of a previously defined typel[l] To de-
fine the concrete syntax (visual appearance of elements specified in an MGL model)
of a DSVL, the MSL is used. The main elements are nodeStyles and edgeStyles. The
former are used to define a (hierarchical) representation using geometric figures, e.g.,
ellipse, (rounded) rectangle, polygon, text and image elements. The latter specify
the appearance of edges, i.e. attributes like line style, line width etc. Edges can be
decorated by specific elements to allow for, e.g. the labeling of edges. For detailed
information on CINCO we refer the reader to [NLKS17, ILKZ 718, [Lyb19).

I Additional to types defined with CINCO, prime references can refer to arbitrary types conforming
to Ecore’s meta model.

18

Figure 2.2: A WebStory language model, representing a small gold-hunt adventure
from |[KLNS20].

2.2 The WebStory Language

To present the capabilities of CINCO we developed the WebStory language. In work-
shops we want to teach students the advantages of model-driven development and
domain-specific languages, wherefore the WebStory language is easy to understand
and intentionally uses only a small set of different types. It facilitates the cre-
ation of web-based point&click adventure games providing modeling elements such
as Screens, Click Areas, Text Areas, Condition, and Boolean Variables which can
be modified using Modify Variable nodes. Fig. shows a model of an adventure
in which the player has to find a key to get hold of a treasure. The typing of nodes
(and containers) is given as follows:

e 1-6 are Screens,
e A-H are Click Areas,
e c, cl are Conditions,

e m, ml are Modify Variables,

19

e v, vl are Variables,
e ais a Start Marker and
e Screen 3 contains a Text Area
Furthermore, the edges are typed as follows:
e Outgoing edges of Click Area nodes are Transitions,

e outgoing solid edges of Condition nodes are True Transitions, outgoing dashed
edges are False Transitions, and

e gray edges, e.g. m—v1 (writing) and vi—c1 (reading), are Data edges.

2.3 Model Transformations

Kleppe et al. provide in [KWB03| the following definition of model transformations:

“A transformation is the automatic generation of a target model from a source
model, according to a transformation definition. A transformation definition is a set
of transformation rules that together describe how a model in the source language
can be transformed into a model in the target language. A transformation rule is a
description of how one or more constructs in the source language can be transformed
into one or more constructs in the target language.”

With the introduction of model-driven engineering approaches a need for model
transformations has arisen. For instance, in MDA model refinement is applied
to transform Platform Independent Models (PIMs) to Platform Specific Models
(PSMs) eventually resulting in a full-fledged implementation. Tom Mens justifies
the need of model transformations listing eight activities in MDE which require
“languages, formalisms, techniques, processes, tools and standards that support
model transformations” [Menl3]. “Model migration and co-evolution” and “Model
checking, verification and validation” are two of these activities which we use as
motivation in [LKSI8, [KLNS20]. Regarding the definition of Kleppe et al. it is
not surprising that various approaches emerged to support model transformations.
In [MVGO06, [CHOG], the authors propose several categories to classify existing model
transformation approaches. In [KBRC™ 18|, Kahani et al. identified 60 model trans-
formation toolsP| They classified them regarding, i.a., the type of transformation
rule specification. Among the 60 tools, 15 are graph-based. The categories into
which the tools are classified have a large overlap with the categories identified
in [CHO6, MVGO06|, Men13].

In this section, I will give a brief overview of the categorization, that has driven
my research in this area. Afterwards, I briefly recapture graph transformations, to
provide a basic understanding for the ideas presented in this dissertation.

2The authors consider Model-to-Model and Model-to-Text transformation tools.

20

2.3.1 Categorization of Model Transformations

Endogenous vs Exogenous A model transformation is categorized depending on
the source and target language(s). An endogenous transformation transforms mod-
els within the same language. A typical example for an endogenous transformation
is refactoring: A model is transformed to meet syntactical properties without chang-
ing its behavior. A transformation between different languages is exogenous. The
transformations given in [KLNS20], from the WebStory language to the language of
Kripke Transition Systems (KTS) [MSS99] is exogenous.

In-place vs Out-place An in-place transformation is executed within the same
model, whereas an out-place transformation creates a new target model. A typical
example of in-place transformations is refactoring, where the model is usually up-
dated in-place to meet particular syntactic conditions. The compilation process is
a typical out-place transformation. The source code of a high-level programming
language is transformed to assembler. Thereby, the source model is not altered, but
a new model is created.

Rule Definition Transformation rules describe how constructs in the source lan-
guage are transformed to constructs in the target language. They can be spec-
ified in different ways. For instance, a model can be represented internally and
directly manipulated using an API. This way, transformation rules are implemented
in a high-level programming language and executed in the context of an imperative
transformation implementation. I.e., the transformation developer describes how to
transform models and not what should be transformed.

More specialized transformation languages provide means to specify rules focus-
ing on the relationship between elements of the source and target model. The Atlas
Transformation Language (ATL) [JABKOS] is a textual DSL for model transforma-
tions. The language supports declarative rule specification with the possibility to
include imperative parts.

Rules in model-to-text transformations are usually specified using a dedicated
template-based language, instead of programming string concatenations directly in
e.g. Java. Templates consist of static and dynamic parts. The static parts are
independent from the source model and describe, e.g., the constant text in a class
definition. The dynamic parts define the traversal and value evaluation of the source
model.

For model-to-model transformations in MDE, a natural way to specify transfor-
mation rules is to use a graph-based approach. Graph transformations are detailed
in the following section.

2.3.2 Graph Transformations

In model-driven engineering, graph transformations are suggested as the natural
choice for the specification of model transformations. Ehrig et al. provide in [EEGHI15|

21

a mapping for notions between meta modeling and the algebraic graph terminology,
implying a strong interrelationship between both areas. A graph transformation
consists of a set of transformation rules, where a rule is defined by a Left-Hand Side
(LHS) and a Right-Hand Side (RHS) graph. The LHS and RHS of a rule represent
graph patterns. Given an input graph, a rule is applied by searching the pattern
defined in the LHS of the rule in the input graph and replacing the LHS by the RHS.
Finding the LHS in the input graph is called matching. The occurrence of nodes in
the LHS and/or the RHS defines the following meaning. A node is

e created, if it is not in the LHS, but RHS of the rule,
e deleted, if it is in the LHS, but not in the RHS of the rule,
e matched, if it is in LHS and RHS of the rule.

In practice, a more accurate control of rule application is desired. Therefore, rule
application conditions are used, e.g., constraints for type attributes or Negative
Application Condition (NAC). A rule is applicable, if the LHS is matched in the
input graph, the defined conditions are satisfied by the match and the structure
described in the NAC is not matched in the input graph.

I exemplify graph transformations specifying two transformation rules based on
the WebStory language. The transformation’s purpose is to make a story “traceable”.
After a Screen node is visited more than once, a Tezt element showing the String
“Visited” should be displayed. Figure [2.3|shows the transformation rules modeled in
Groove [Ren04]. Please note, that Groove is a general-purpose graph transformation
tool. Hence, the types in the rules for the WebStory transformation are not defined
using the concrete syntax of the WebStory language, but using a generic one. Node
types are displayed in bold font inside the nodes. In addition, Groove does not
comprise the concept of Container types. Consequently, containment is expressed
by a “contains™labeled edge, pointing from the container to the contained element.
In Groove, rules are not specified explicitly in LHS, RHS, and NAC, but in one
representation using a color encoding to express the membership of elements to
LHS, RHS, and NAC. Let e be a node or an edge type, then the affiliation of e to
LHS, RHS, an NAC is represented as follows.

Match: Creator: Eraser: Embargo: Conditional Create:
EdgeType EdgeType <[~ EdgeType 7 e EdgeTyper==» EdgeType
N ’ L4
\ \ / \\\ //// ‘Q" "0
RN’:....k.-)
TypeName| [TypeName| — {TypeName, i TypeName
e € LHSA e ¢ LHSA e€ LHSA e ¢ LHSA e ¢ LHSA
e € RHSA e € RHSA e ¢ RHSA e ¢ RHSA e € RHSA
e¢ NAC eg¢ NAC eg¢ NAC e€ NAC e€ NAC

The names used in Groove for the rule types are depicted above their graphical
representation (Creator, Eraser, Embargo, Conditional Create). The rule depicted

22

in Fig [2.3(a)| creates a Screen node if no Screen with the same backgroundImage
exists, and adds a Text Area element to the newly created Screen node. The Text
Area element’s value is set to “Visited”. Additionally, the rule creates a Variable,
Modify Variable, and Condition node and connects them in the following way. If the
Screen node was not visited yet (the Variable node’s value equals false) the False
Transition edge defines the next node in the control flow. Thus, the Variable node’s
value is set to true by the Modify Variable node and in the next step the original
Screen node is displayed. Reaching the created Condition a second time will result
in displaying the Screen node containing the Text Area element. The second rule
(cf. Fig. [2.3(b)) redirects an incoming Transition edge of the original Screen node
to the Condition node, by deleting the original Transition edge (dashed blue) and
creating a new Transition edge connecting the source node of the original transition
and the Condition node. Furthermore, for Click Area nodes in the original Screen
node, a Click Area in the new Screen node is created and connected to the same
target.

23

s2 . Screen .
151.backgroundlmage == backgroundlmagei

ModifyVariable .
value = true

modify T
p false
Variable
name = sl.backgroundlmage[~!nput
true
Screen
backgroundlmage = sI.backgroundimage
contains
Text
value = "Visited"
(a)
ModifyVariable .
»% Cickares
. L transition
modify false transition
Variable . o . ‘
name == sl.backgroundlmage%Input transmon—(j
true transition
Screen
L backgroundimage == sl.backgroundlmageLContains ClickArea
I
contains
Text
value == "Visited"
(b)

Figure 2.3: “Traceability” transformation of a WebStory model specified in two rules.
Rule (a) creates the required logic structure, Rule (b) updates the control
flow.

24

Towards Graph-Based Model Transformations in
the Cinco Framework

As described by Mens in [Men13|, model transformations are used for several activ-
ities in MDE. These activities comprise semantics definition, model migration and
model co-evolution [HBJ09, [CREPOQS|, and wvalidation and verification. They arise
during the development of CINCO and CINCO products, therefore they are the main
motivation for the development of transformation languages in this context. The
individual activities are characterized as follows.

Semantics Definition In programming language theory, the semantics of a pro-
gramming language defines the meaning of programs written in the corresponding
language. Plotkin described the semantics of the While language by rules defined in
Structural Operational Semantics [Plo81]. The meaning of a While-program is its
effect on an initial memory configuration.

Model Migration and Model Co-Evolution The conformance relation between
models and their meta model [Bé05| can be destroyed by changes made to the meta
model [Fav05]. It is repaired by migrating the models to conform to the modified
meta model. The required model changes can be specified by model transformations.
For some meta model changes the corresponding models can be co-evolved, i.e., the
transformations repairing the conformance can be automatically generated.

Validation and Verification Often, the conformance of a model to its meta model
does not imply the model’s plausibility. Providing model validations for a DS(V)L
supports the development of meaningful models. For instance, undesired loops in
the control flow of a model expressed in a DSVL can be identified by defining a
pattern representing the loop. The transformation engine can be used to find the
pattern in the models. Formal verification methods like Model Checking [CGL94] are
used to check desired model properties. Given a (formal) model M of a system and
a property (formula) ¢ defined in Linear Time Logic (LTL) or Computation Tree

25

Logic (CTL), a model checker verifies if the model satisfies the property, written
as M = ¢. Usually, the formal model M is represented by a finite state transition
system which serves as input for a model checker.

The model transformations for the described tasks can be realized in different ways
(cf. Sect. . However, following the simplicity approach, CINCO should support
an easy way to define those transformations without the need of knowing technical
details of the technologies on which CINCO is based. For DSVL, graph-based model
transformations are perfectly suited for these needs [CHO6, IKMS™10, [AKS03].

On the CINCO Product Developers level, the mentioned tasks reflect themselves
as follows.

e Semantics definition: Given the abstract and concrete syntax of a CINCO
product specified in MGL and MSL, respectively, the developer has to define
the semantics of the language. For this purpose, model-to-text and model-to-
model transformations are applied (cf. Sect. [3.1.1).

e Model Migration and Model Co-FEvolution: Changing a CINCO product’s spec-
ification leads to the problem of model migration. This problem was targeted
by Till Schallau in his master thesis [Sch19]. He (semi-) automatically gener-
ates transformation rules to repair the conformance relations between models

and the DSVL (cf. Sect. [3.1.2)).

o Verification: The application of model checking on models expressed in a
DSVL is not possible without previously transforming them into an appropri-
ate input format for a model checker (cf. Sect. [3.1.3).

The area of application of model transformations is not limited to the development
of CINCO products, but also to CINCO itself, since CINCO is a domain-specific
tool. One major task is the semantics definition for MGL and MSL. Similar to
the semantics definition of CINCO products, this is realized using model-to-model
and model-to-text transformations. Additionally, model migration also plays an
important role in the development process of CINCO. Changing the meta model of
the MGL or MSL could invalidate existing CINCO product specifications. Currently,
these tasks are solved by hand (model migration) or by imperatively implemented
model transformations (semantics definition). To allow for graph transformations
on the CINCO Developers level, a graph-based representation of MGL and MSL is
needed. The first step towards this goal was realized by Annika Fuhge in her bachelor
thesis [Fuh18] developing the Graphical CINCO Specification language (GCS), a CIN-
co product for modeling of MGL and MSL in a graphical model (cf. Sect [3.1.1).

In the following, I will present several projects, bachelor, and master theses in
which model transformations are used to handle the described task (cf. Sect. [3.1)).
In Sect. [3.2] T describe the improvements to support the specification of model-to-
text and model-to-model transformations in CINCO.

26

3.1 Model Transformations in Cinco

This section gives an overview of projects and theses realized in the recent years,
which used model transformations to solve a specific task.

3.1.1 Model Semantics

The definition of semantics is crucial in the development of CINCO and its prod-
ucts. They can be defined by means of code generators translating models into
executable programs written in, e.g., a high-level programming language, which is a
typical model-to-text transformation. Their realization can be supported by model-
to-model transformations, e.g., through the refactoring of the source model. For
instance, flattening the inheritance hierarchy reduces the complexity of the genera-
tion logic, by previously moving the attributes of super-types to their sub-types.

Alternative to code generators, the semantics can be specified utilizing an existing
DSVL. Thereby, models expressed in the new DSVL are translated to models of a
DSVL with existing semantics.

During the recent years, we had several bachelor and master theses, as well as
Projektgruppeﬂ in which both approaches were applied to develop new DSVLs.

CINCO and Pyro Stefan Naujokat described in his Ph.D. thesis the Domain-
specific, Full generation, and Service orientation (DFS) approach “for tools to facil-
itate simplicity-driven model-based software development” [Naul7]. Furthermore,
he argued to “... apply the very same DFS concepts to the domain of modeling tool
development itself”. The result of this application is CINCO. The domain-specificity
is reflected in the languages provided by CINCO which facilitate the development
of modeling tools for models that can be represented as graph structures. Thus,
the semantics of a specification written in CINCO is given by a code generator
yielding a fully functional modeling tool. In Fig. 2.1} this generation is depicted
on the CINCO Product Developers level. An MGL model (PetriNet.mgl) and an
MSL model (PetriNet.msl) are transformed into a meta model for the CINCO
product (PetriNet.ecore) conforming to Ecore’s meta-meta model (Ecore.ecore)
and a Graphiti API implementation. The generator is implemented on the CINCO
Developer level and realizes the former transformation as a model-to-model trans-
formation, since an Ecore meta model is created using the EMF API. The latter is
a model-to-text transformation, realized as a code generator whose output is Java
code, implementing the Graphiti API. Using Ecore as target language allowed us
to build on the existing Ecore code generators and take advantage of the numer-
ous features provided by EMF, such as the persistence mechanisms of EMF and
the notification system using the EMF-generated Java classes. Furthermore, using
the Graphiti API as framework for the modeling editor eased the generation pro-

L Projektgruppen are courses at the TU Dortmund University, where up to 12 students develop a
more ambitious project during one year.

27

DIME High-Level Specification Running Web Application
(Models) (Source Code)

Business User
> T
REST + JSON
\ 1 DIME Code

Figure 3.1: High-level view on the DIME code generation from [BEK™16].

Frontend
(Angular 2 + Dart)

Generator

DyWA

Database

cess, since the API provides an abstraction from the Graphical Editing Framework
(GEF) [2] and Draw2D [3], hiding the technical details behind a plain Java API.

With Pyro [Zwel5l [ZNS19], Philip Zweihoff implemented in his master thesis a
generator, which, given a CINCO product specification, generates a corresponding
web-based modeling tool. This corresponds to the exchange of the generation target
in Fig. Instead of generating EMF models and a Graphiti implementation,
he generated a meta-schema for the Dynamic WebApplication (DyWA) [NFSM14,
Frol3] and a model editor based on the JointJS framework [9].

DIME DiMmE [BEKT16| is the most complex CINCO product developed at our
chair. Its purpose is the development of single-page web-applications. It consists of
languages for data, business logic, and user interface modeling, and employs service-
oriented development using service libraries. Fig. shows a high-level view on the
generation process in DIME. The target of the generation is a web application em-
ploying several technologies. DyWA forms the back-end of the generated application.
A meta data schema is generated from DIME data models and constitutes the per-
sistence layer of the web-application. The front-end is built on Angular 2 and Dart
and is mainly generated from the user interface models. As the name says, the busi-
ness logic defines the application logic, i.e., what data should be displayed /collected
on which pages and how to process it.

WebStory The semantics of the WebStory language (cf. Sect. is defined by
a code generator producing the adjacency matrix of nodes in a WebStory model. A
static framework evaluates the generated matrix to determine the next Screen node
in the model. Therefore, it implements the semantics of the types defined in the
WebStory language, e.g., Condition types have to evaluate their connected Variable
node to determine the next element in the control flow.

In [Kuel§|, Dennis Kiihn describes an approach to transform DSVLs implemented
in CINCO to DIME models, enabling their execution in a web-based environment.

28

StartMarke

D [}

Screen

Select Background
Image in Properties

ClickArea

TextArea

ex)
eeeeee ds { s
i

RectangleC] ! EllipseClickd
| |Eipsechck]
!

Figure 3.2: Specification of the WebStory language using the Graphcial CINCO Spec-
ification tool.

"y

vy
L/

o] [o o) —

L.

He uses the WebStory language as an example for this transformation.

Graphical Cinco Specification (GCS) In her bachelor thesis [Fuhl8|, Annika
Fuhge developed under my supervision a modeling tool, which enables the graphical
specification of MGL and MSL models in a WYSIWYG manner. Figure [3.2] shows
the WebStory language specification created in GCS. The abstract and concrete
syntax of the WebStory is defined in one model. Node and container types are
depicted as boxes defining the type name at the top of the box and including their
concrete syntax in the bottom part. Edge types are specified by a box containing
two circles connected by an edge that represents the edge type’s concrete syntax
(cf. Fig|3.3). The name of the edge type is specified above its concrete syntax
representation.

<TypeName> O <TypeName>O

=

Figure 3.3: Node type (left) and edge type (right) definition in the GCS.

Figure[3.4]illustrates the development process of the GCS tool, and the generation
process for CINCO products defined in GCS. The modeling tool itself was developed
using CINCO, i.e., it is a CINCO product which can be used to graphically specify
CINcO products. The top part of Fig. [3.4] illustrates the development of the GCS

29

Cinco Cinco Product
Developers (MGL.ecore] (Style.ecore] M
GCSModeler (Cinco Product)

C&Tiiﬁ,’,‘}g”j‘ (Cecsmgl) ((ecsstyle) [GCSEditorjava]
Ve I g
High-Level GCS Specification (Graphiti API impl.)
T
! ‘/m/udlfy\
Cinco Product =

WebStory.gcs

Cinco Cinco Product
Developers (MGL ecore) (Style ecore) @

GCSModeler (Cinco Product) GCS 8
[D L (WebStory ng ﬁNebStory style)
=

WebStoryModeler (Cinco Product)
GCSEditor.java WebStoryEdltor java
m (Gvaphm APl impl.) igh-Level WebStoryModeler Specification| WebStory EEE (Graphm APl impl.)

Cinco Product 3 0°B

WebStory gcs GoIdHunt ws

Cinco Product
Developers

Figure 3.4: Development of the Graphical CINCO Specification tool (top) and spec-
ification of the WebStory modeling tool using GCS (bottom) [Fuhl18].

tool, consisting of GCS.mgl and GCS.style which are generated to a fully functional
modeling tool (cf. Sect.[2.1)P| The generation process of GCS models consists of
two steps. The bottom part of Figure [3.4] exemplifies those steps for the Web-
Story language. In the first step, the GCS specification of the WebStory language
(WebStory.gcs) is transformed to the CINCO specifications for a CINCO product,
namely WebStory.mgl and WebStory.style. Afterwards, the existing CINCO gen-
erators are used to generate the resulting WebStory modeling tool. Fuhge realized
the transformation from GCS models to CINCO specifications as a model-to-text
transformation, generating the corresponding textual representations of MGL and
MSL models. Of course, this transformation can be realized as a model-to-model
transformation between GCS models and an in-memory representation of MGL and
MSL models.

CMMN In his master thesis, Jan Weckwerth developed a Case Management and
Modeling Notation (CMMN) [7] tool on the basis of CINCO. He specified the se-
mantics through a transformation from CMMN models to XML files, which are
interpreted by the Camunda [12] engine. In a subsequent thesis, Todor Nikolov
developed a model transformation from CMMN to DIME, enabling the execution of
CMMN models in a web-application context.

2The Eclipse Developer level is omitted in the figure.

30

Aggregated Condition Guarded Assignments
WebStory Language WebStory Langauage WebStory Language

WSL AC-WSL GA-WSL

Evolution

Model Checking

AL /F\\
2.0 B.op (4,00 Lo
Ff B Bf F
/h\

{100 (4,00 (6,04 {2,004
D D E GT
Gop —E> o0 Qop —2> Gow
\B_/

Figure 3.5: Overview of language evolution and the required transformations to fa-
cilitate formal verification for the evolved languages.

3.1.2 Meta Model and Model Co-Evolution

A major challenge during model-driven development using DSLs is that not only
models conforming to a language evolve, but the language itself is a target to
changes [Fav05]. Some of these changes may break the model conformance of existing
models to their meta models. For instance, deleting a type from the language results
in the invalidation of models containing an instance of this type. A central challenge
is to restore the conformance between models and their meta models [MWDT05].

Figure shows evolution steps of the WebStory language (orange arrows), and
the transformations to Kripke Transition Systems (KTS) represented by green ar-
rows. The Evolution from the WebStory Language (WSL) to the Aggregated Con-
dition WebStory Language (AC-WSL) invalidates the conformance of models ex-
pressed in WSL, by removing the Condition, Variable and Modify Variable types.
Conditions modeled in WSL are represented by Boolean expression labels on an aug-
mented Transition edge type in AC-WSL (blue edges in AC-WSL model). Variable
modifications are expressed using a new Assignment type (orange nodes in AC-WSL
model).

31

CiNco Cinco Product
Developers (MGL.Z}core) (Style.Aecore)

Cineo Product . WebStoryModeler (Cinco Product)
INco Produc S 4
Developers [WebStory.ng (WebStory.stylej DOODQ WebStorv.ecore WebStoryEditor.java
High-Level PetriNetModeler Specification (Graphiti API impl.)
<
029 /

PetriNet Serialization
[\NebStoryGratext.ecore) (WebStoryGratext.xtext)

Figure 3.6: Generation process of the GraText serialization format for CINCO prod-
ucts.

In the early days of CINCO, opening models in the generated model editor, which
did not conform to the updated specification, raised an exception. This was caused
by the persistence mechanism of EMF: Given an Ecore meta model, EMF gen-
erates an XML Schema Definition describing this meta model. Trying to open a
model which does not conform to the editor’s supported schema definition leads
to an exception. Consequently, the invalidated models had to be migrated to re-
pair the conformance relation. We encountered this problem in the development
of several CINCO products. It had the largest impact during the development of
DIME, since in parallel, DIME applications were also modeled. The first migrations
of DIME models were performed by manually repairing their XML representations,
which was a very tedious task. To ease the migration process, Steve Bofelmann
developed a textual representation for CINCO product models (graphs), called Gra-
Text. Figure shows the generation of the serialization format. Given a CINCO
specification, an additional meta model (WebStoryGratext.ecore) and grammar
specification (WebStoryGratext.xtext) forming the basis for an Xtext-generated
textual editor are generated. Using this serialization format allows for a more com-
fortable manual migration process.

Of course, the migration for the Evolution of WSL to AC-WSL (cf. Fig can
be described by a model transformation. Instantiating the transformation language
presented in this thesis using WSL and AC-WSL as source and target language
of the transformation, results in a language facilitating the definition of rules as
shown in Fig. 3.7 The two rules at the bottom of the figure represent the re-
quired computation for the migration: they compute the Boolean expression (b.y)
by constructing a conjunction of Variable nodes which are evaluated by Condition
nodes. The four rules at the top of Fig. represent the relation between WSL and
AC-WSL elements.

Till Schallau implemented in his master thesis [Sch19] a DSL to describe changes
in an MGL model. The changes can be non-breaking, breaking and resolvable, and
breaking and non-resolvable [GKPOT7|. Non-breaking changes in the meta model do
not require model migration. Using his DSL, the rules to repair breaking and re-
solvable changes can be derived automatically. Breaking and non-resolvable changes

32

Macro Rule: Screen to Screen
n

C

[

o (atrue)->(n'bg,,)

Condition:

,.ll

[n] [n']

bexp

Macro Rule: Screen to Assignment
n

C

(1

a. (a,true) """ ’*(nlybexp) Condition:

[n]] Q -
[l n'

P (emame =

Macro Rule: Assignment to Screen

X n a * 1
O -—'. (a,true)~(n 'beXP) Condition:

n

[n']
[n]

Coromeze)

Macro Rule: Assignment to Assignment

X n * 1
O - a. (a,true) ’(n,bexp) Condition:

[n] Bexs [n']

Micro Rule: ConditionTT Micro Rule: ConditionFF

OX
M
OX
M

(cbgg) oo > (ay, b, A X) (C,Deyp) e > (&g, bey AX)

exp

Figure 3.7: Two-level transformation for the migration of WSL models to the mod-
ified AC-WSL.

33

have to be manually repaired. In his thesis, he describes how the two-level trans-
formation language could be used to derive breaking and resolvable rules and the
migration for breaking and non-resolvable changes can be conveniently modeled us-
ing the two-level transformation language.

Furthermore, the green arrows in Fig. represent the transformations to Kripke
Transition Systems, which facilitate the application of model checking. After the
language evolution represented in Fig. 3.5] these transformation are also invalid.
Consequently, these transformations have to be provided to allow for model checking
of models expressed in the evolved language. This can be achieved by modeling the
transformation anew or transforming the existing transformation rules (cf. Sect .

3.1.3 Validation and Verification

An important part of language workbenches is the capability to implement valida-
tions for the static semantics of the DSVL. For instance, the Xtext [6] framework
provides interfaces and annotations that ease the development of Checks for a tex-
tual DSL. In CiNCcO, Dominic Wirkner developed the Model Compare and Merge
framework (MCaM) [Wirl5], originally to enable merging of graphical models using
Git [Spil2]. One of MCaMs capabilities is the annotation of MGL types by a class
implementing validations for that type, which are automatically executed in the
generated CINCO product.

An alternative to the implementation of validations is the usage of formal ver-
ification methods, like Model Checking |[CGL94|. Usually, the formal model M
is represented by a finite state transition system which serves as input for a model
checker. Modeling languages containing a notion of control flow already imply a kind
of transition system, but their representation is not appropriate for a model-checker.
Therefore, transforming the models into a representation that can be interpreted by
a model-checker is an obvious solution |[LKS18| KLNS20].

3.2 The Need for Domain-Specific Transformation
Tools

In [SVLI5, [Cual2| the authors argue that for different kinds of model transforma-
tions, different tools are suited to specify the transformations.

As illustrated in the previous section, model transformations are required in sev-
eral areas during the development of CINCO and CINCO products. In this section, I
explain how we improved CINCO to support CINCO product developers in the defi-
nition of model transformations. Our studies and efforts led to the realization, that
domain-specific model transformation languages are desirable for different scopes of
application of model transformations.

In the following, I distinguish between the ideas to support the development of
code generators (Sect. and model-to-model transformations (Sect. with
a focus on the latter.

34

3.2.1 Code Generation in Cinco

The first version of the code generator yielding the Graphiti API implementation,
was modeled by me during my masters thesis [Kop14] using the Java Application
Building Center (JABC) [MS09] and GeneSys [J611] in a process-oriented manner.
Le., the models reflected the generation logic [Jor13l, [CE00] and the output descrip-
tion was created using special building blocks, which allowed for the definition of
code templates. In spite of the advantages of this approach, legacy libraries forced
us to rewrite the generators. We decided to use Xtend [5], due to its integrated
template DSL, the support for lambda expressions and compatibility to Java.

In several projects, we experienced that the code for the management of Eclipse
projects was duplicated and slightly changed. This motivated Steve Bofselmann to
create a DSL, abstracting the technical details of the Eclipse project creation process,
and thereby providing a standard for the development of code generators for CIN-
co and CINCO products. The DSL was implemented as an internal DSL [Fow(5] in
Xtend. With the growing complexity of CINCO products (i.e. the number of involved
MGL models and the models created using CINCO products) the time consumed
by code generators increased to a point, at which the development process was
hindered. The problem resulted from the full generation approach: Since models
are the main development artifacts the common development strategy is to modify a
model and generate the whole application anew. In CINCO, this occurred during the
development of DIME. Michael Lybecait reports in his Ph.D. thesis [Lyb19] about
an optimization to reduce the generation time of CINCO products by analyzing
updated models and only generate the subset of changed models.

The described features could be provided by a DSL supporting the development of
efficient code generators. First steps in this direction were made by the Projektgruppe
NeztGen [BCKT19| and the bachelor thesis of Joel Tagoukeng Dongmo [Donl9).

3.2.2 Model-to-Model Transformations

To ease the development of model-to-model transformations, we enhanced CIN-
CO to improve the support for their specification. Figure shows an overview
of the approaches for model transformations employed in CINCO, categorized in
imperative / declarative and general-purpose/domain-specific approaches.

In the declarative, domain-specific category, I distinguish between Graph-based
Model Transformations and Graph-based Domain-Specific Model Transformations.
With the former I relate to languages facilitating the definition of transformations
which incorporate the domain-specificity of the underlying DSLs. This approach is
realized in, i.a., AtomPM [SGV13|, ISVM™13| for domain-specific visual languages.
Weisemoller described in [Weil2, [HRW15| the generation of a transformation lan-
guage for textual DSLs defined by a grammar. With Graph-based Domain-Specific
Model Transformations, I want to emphasize the purpose of a transformation, which
I consider as a domain-specific aspect. Consequently, these transformation languages
are specializations of Graph-based Model Transformations.

35

Ideally, developing a model-to-model transformation between DSLs should only
presume the familiarity with the involved languages. With each Ecore meta model
specification, EMF generates an API to manipulate instances conforming to the
meta model. This API is already a specialization towards the involved languages in
the domain of Ecore models (cf. Fig. Metamodel-Generated API). Since CINCO
is developed using EMF and the meta models of CINCO products are expressed in
Ecore, the EMF-generated APIs can be used to implement model transformations.
Unfortunately, the APIs do not consider the domain-specific concepts introduced
by CINCO. The definition of node, container, and edge types provide more de-
tailed information towards the structure of meta models expressed in CINCO. This
information can be used to prevent the creation of syntactically incorrect models.

Consequently, as a first specialization towards a domain-specific transformation
language we generate domain-specific APIs along with each specification of a CIN-
co product (cf. Fig. [1.2] DSL-Generated API). The generator was implemented
by Michael Lybecait and me. The generated domain-specific APIs have two mayor
advantages:

1. The generated APIs prevent the creation of models which do not conform to
the meta model of the DSVL or do not represent a valid graph structure.

2. Hiding the complexity of the EMF-generated APIs and thereby decreasing the
lines of code needed to implement specific actions.

These advantages are exemplified by two listings. Listing shows an implementa-
tion of the rule depicted in Fig. using the API provided by EMF. Lines 7-10
represent the search for a Screen node with the same backgroundImage as the con-
sidered Screen (given as method parameter in Line 2). If such an element does not
exist (cf. Line 12), the new elements are created (cf. Lines 14-25). In Lines 27-40
the connections between those elements are established. Afterwards, the new ele-
ments’ attribute values are assigned (cf. Lines 43-46) and the containment structure
is defined (cf. Lines 49-54).

In contrast, Lst. shows the creation of the same structure using the CIN-
cO-generated domain-specific API. Since it is generated on the basis of the Web-
Story.mgl and the knowledge that models are graph-based, it provides, e.g., specific
create methods of the form

<ContainerType>.new<ContainedType>()

exploiting the knowledge about the containable elements (cf. Lines 13-17). Conse-
quently, the new nodes are created directly in the corresponding valid containers.
Additionally, the API provides edge create methods of the form

<SourceType>.new<EdgeType>(<TargetType>)

according to the MGL specification. l.e., only methods representing valid combi-
nations of source, target, and edge types are generated. This domain-specification

36

reduces the amount of code and the error-proneness in the transformation develop-
ment. In Lines 28-40 or Lines 49-54 of Lst. the developer can accidentally create
models that do not conform to the MGL specification, and even invalid graph-
structures by creating, e.g., dangling edges.

Using the generated domain-specific APIs, a transformation developer is sup-
ported in the creation of model transformations, but still requires to have program-
ming skills. The next specialization enables the definition of model transformations
for people that do not have the required technical background. In his master the-
sis [Fel19], Marius Feltmann developed a generator, which, given a CINCO product
specification, generates a graph-based transformation language, providing a similar
rule definition language as in Groove (cf. Sect . Thereby, the concrete syn-
tax defined in the MSL is re-used in the transformation language. The generated
transformation language can be used to define endogenous in-place model transfor-
mations. Fig[3.8 depicts the transformation rules from the example transformation
introduced in Sect. , where Fig. [3.8(a)| models the rule implemented in Lst.
and Lst. 3.2l

37

1| @0verride

2| public void execute(Screen sc) {

3 WebstoryFactory factory = WebstoryFactory.eINSTANCE;

4 WebStory ws = sc.getContainer ();

5

6

7 Stream<ModelElement > screens = ws.getModelElements () .stream().filter(e -> {

8 return (e instanceof Screen) &&

9 e != sc && (sc.getBackgroundImage ().equals(((Screen)e).getBackgroundImage
0O)

| B

11

12 if (screemns.count() == 0) {

13

14 Screen newScreen = factory.createScreen();

15 Variable variable = factory.createVariable();

16 Condition condition = factory.createCondition();

17 ModifyVariable modifyVar = factory.createModifyVariable();

18 TextArea text = factory.createTextArea();

19

20

21 DataFlow modify = factory.createDataFlow();

22 DataFlow input = factory.createDataFlow();

23 Transition transition = factory.createTransition();

24 TrueTransition trueTransition = factory.createTrueTransition();

25 FalseTransition falseTransition = factory.createFalseTransition();

26

27

28 input.setSourceElement (variable) ;

29 input.setTargetElement (condition) ;

30

31 modify.setSourceElement (modifyVar) ;

32 modify.setTargetElement (condition) ;

33

34 falseTransition.setSourceElement (condition) ;

35 falseTransition.setTargetElement (modifyVar) ;

36 trueTransition.setSourceElement (condition);

37 trueTransition.setTargetElement (newScreen) ;

38

39 transition.setSourceElement (modifyVar) ;

40 transition.setTargetElement (sc);

41

42

43 newScreen.setBackgroundImage (sc.getBackgroundImage ()) ;

44 variable.setName (sc.getBackgroundImage ());

45 modifyVar.setValue (true);

46 text.setText ("Visited");

47

48

49 newScreen.getModelElements () .add (text);

50 ws.getModelElements () .add (newScreen) ;

51 ws.getModelElements () .add (variable) ;

52 ws.getModelElements () .add (condition);

53 ws.getModelElements () .add (modifyVar) ;

54 ws.getModelElements () .add (text);

55 }

56| }

Listing 3.1: Rule from Fig. 2.3(a)|implemented using the EMF-generated API.

38

= e
H O © 00 N O Otk W N =

W W W W W NN NNDNDNDDNNN DN = e e e e e
B W N H O O N30 WN O © 00N O0 0 R W N

@0verride
public void execute(Screen sc) {
WebStory ws = sc.getContainer();

// Find existing screen node
Stream<Screen> screens = ws.getScreens().stream().filter(s -> {

return (s != sc) && (s.getBackgroundImage ().equals(sc.getBackgroundImage()));
5D 8

if (screens.count() == 0) {
// Create node and container types
Screen newScreen = ws.newScreen(100,100);
TextArea text = newScreen.newTextArea (0, 0);
Condition condition = ws.newCondition(O, 0);
ModifyVariable modifyVariable = ws.newModifyVariable (0, 0);
Variable variable = ws.newVariable (0, 0);

// Connect elements
variable.newDataFlow (condition) ;
modifyVariable.newDataFlow(variable) ;

modifyVariable.newTransition(newScreen) ;
condition.newFalseTransition(modifyVariable);
condition.newTrueTransition(newScreen) ;

// Set attribute values

newScreen.setBackgroundImage (sc.getBackgroundImage ());
variable.setName (sc.getBackgroundImage ());
modifyVariable.setValue (true);

text.setText ("Visited");

Listing 3.2: Rule from Fig. [2.3(a)|implemented using the CINCO-generated API.

39

name s2
check sl.backgroundimage == s2.backgroundimage

is.value = true
: name sl

O

this.name = sl.backgroundimage TextArea
this.text = "Visited!"

this.backgroundimage =sl.backgroundimage
(a)

this.valu!l == true
5 name’sl @
O < e

check this.name == sl.backgroundlnge TextArea

check this.text == "Visitgd!"

(.
O

check sl.backgroundimage == this.backgroundimage

(b)

Figure 3.8: Transformation rules from Fig. modeled using the concrete syntax of
the WebStory language.

40

The syntax is comparable to the example shown in Fig. 2.3} but using the concrete
syntax of the WebStory language. As in Groove, the rule types are encoded by the
elements’ border colors.

In [LKS18, [KLLNS20], one motivating example is the transformation from the
WebStory language to the language of K'T'Ss, which requires the computation of
information. This kind of transformation is usually realized using a hybrid ap-
proach: The relation between source and target model elements are described using
a declarative specification, the computation is implemented using an imperative lan-
guage |[CHO6|]. This again would demand programming skills of the transformation
developer. Since we want to prevent this, we strive for fully model-driven solutions
using graph transformations. We described in [KLNS20| how such a transformation
could be modeled using Groove. Schematically, this solution is shown in Fig.
where the Computation model is added as third part of the transformation.

In general-purpose graph transformation languages, the elements required to model
the computation can be easily added to the rule definition. This approach is very
powerful, but suffers from the same problems as general-purpose languages compared
to DSLs: Due to the lack of specialized computation concepts in general-purpose
transformation languages, the modeler has to take care of how to specify the trans-
formation (e.g. stepping function, memory allocation, memory update etc.) instead
of focusing on what should be accomplished by the transformation. Consequently,
we propose in [LKS18|, [KLNS20| specialized transformation languages in the context
of DSVLs. Transformations involving a computation represent one of the domains
for transformation languages. We consider the computation as a domain-specificity
and provide transformation languages for these kind of transformations. This allows
for a declarative specification of the computation process by introducing a second
rule level which focuses on the computation definition.

Summarizing, model transformations are required to solve different problems in
model-driven engineering. One possibility is to develop model transformations in
a general-purpose transformation language. In the context of DSVL, we suggest
to apply the DFS approach on the domain of model transformations and generate
tailored languages, facilitating the modeling of specialized transformation rules. In
the next chapter, I describe a pattern for the generation of domain-specific trans-
formation languages in the context of DSVL. The computation part is specified in
this language using an SOS-like [Plo81] approach. Individual computation steps are
modeled by a transition between states, representing the current configuration of
the computation.

41

Source Model

Target Model

Computation Model

Figure 3.9: Schematic representation of the relevant components for the computation

during a graph transformation [KLNS20].

42

Generation of Language-to-Language
Transformation Languages

In [KLNS20], we presented applications for model transformation languages utilizing
an SOS-like [Plo81] auxiliary rule system to aggregate information. Transformation
languages transforming between models of domain-specific visual languages suffer
from the same problems as DSVL themselves: The manual realization of model-
ing tools for the domain-specific transformation language comprises tedious and
repetitive activities [Naul7, Lyb19, INLKS17|. For each combination of source and
target language a transformation language has to be developed. Thus, the ability
to generate the transformation languages is of major importance, since the manual
implementation of these languages would exceed their value.

This chapter represents the main contribution of this dissertation by detailing on
the generation of those transformation languages. In Sect. [4.1], I will shortly recapitu-
late the pattern of the two-level transformation language presented in [KLNS20| and
afterwards describe in Sect. how the transformation language can be generated
utilizing a previous configuration. Thereby, I focus on the single parts constituting
the transformation process.

4.1 Two-Level Transformation Languages

One of the main ideas presented in [KLNS20] is the explicit separation of the con-
stituents of a model transformation. Since the considered transformations involve
the aggregation of information, the transformation language consists of three parts:
The source, target, and auxiliary language. Computation steps are modeled sepa-
rately using specialized rules. This prevents the pollution of the transformation rules
describing the relation between elements of source and target language, and results
in a two-level transformation language. First-level rules conform to the following

43

schematic representation.

‘Source Langauge Pattern || Auxiliary (--+*)

Condition

’ Target Language Pattern‘

They facilitate the specification of patterns in the source and the target language,
and thereby define the relation between elements of the languages. The optional
auxiliary part indicates a computation consisting of an arbitrary number of steps
(--+*). The rules specifying individual computation steps are schematically repre-
sented as follows.

Source Language Pattern‘

Condition

Auziliary Language Step Pattern (--+)

These rules allow for the definition of the relation between source language elements
and auxiliary language elements which describe a computation step.

In the next section, I use a Structural Operational Semantics (SOS)-based aux-
iliary language to describe the generation process for the presented transforma-
tion language. Therefore, I will shortly describe the main concepts of Plotkin’s
SOS [Plo81] and how this approach is used in second-level rules to provide a basic
understanding of the transformation language. The SOS is used to specify semantics
for programming languages. The semantics of a program written in a programming
language is defined by the program’s effect on the processed data. The effect is
defined for statements of the programming language using rules of the following
form.

Pre_w Condition

Conclusion
These rules describe how the residual program and the data are derived executing a
statement. Applying the specified rules on a program results in a transition system,
which represents the program’s execution. A state of the transition system, also
called configuration, consists of

1. the residual program and
2. the current data valuation.

Thus, one transition in the transition system represents the execution of one state-
ment in the program, defining the effect on the data. In the remainder of this thesis,
I will refer to the structure managing the data as store.

In the two-level transformation language, SOS is utilized in the Auziliary Language
Step pattern in second-level rules, which is used to model a transition between two
SOS configurations. The source language pattern in second-level rules corresponds
to the Premise in an SOS rule and the condition is used to define constraints over

44

the store, which manages data in form of primitive variables. Consequently, the
source language pattern and the condition define the application condition of the
rule.

In contrast to SOS, the input for the transformation language is a graph. To
decouple SOS from the actual input model, the “residual program” is not explicitly
represented in a configuration, but indicated by a pointer which refers the current
model element in the computation. The meaning of second-level rules is the fol-
lowing: If the element referred by the source configuration of the SOS transition
satisfies the precondition, i.e., it conforms to the type referred in the pattern, the
execution continues at the element in the input model, which is represented in the
target configuration of the transition, resulting in the store represented by the target
configuration.

4.2 Generation of Two-Level Transformation
Languages
Figure gives an overview of the generation process for two-level transformation

languages. In this section, the generation process is exemplified using the SOS-based
auxiliary language.

45

Source Target

Source Pattern Target Pattern SOS-Auxiliary
Language Language Language

< Q Partial
Configuration DOD Evaluation
Source pattern: Auxiliary computation: Source pattern:
i oy =P oy L t<‘ I
.QJ (Condition(o) i Condition(o)
Target pattern: Type(t') Auxiliary transition:

-_/- (5 @) == » (t', 0"

Figure 4.1: Overview of the generation process of the SOS-based transformation
language.

The generator is parameterized by the source, target, and auziliary language and
the generation process consists of three parts.

e The generation of source pattern language and target pattern language is
a static extension of the corresponding original languages. Based on those
pattern languages, source model queries and target model modifications are
specified in the corresponding parts of first-level and second-level rules (cf.

Sect [4.2.1]).

e The major parts of the SOS-based auxiliary language are either static or re-
stricted by the domain of source and target language. This allows for a partial
evaluation of the auxiliary language by the generator (cf. Sect. 4.2.3)).

46

e The dynamic parts of the auxiliary language are defined by the generator con-
figuration. It provides an initialization of the store and defines how elements
in the target model are identified (cf. Sect. [4.2.4)).

4.2.1 Source Language Pattern

One of the key aspects for transformation languages is the possibility to query the
source model and create elements in the target model. I will first describe the static
extensions of the source language allowing for the definition of patterns to specify
model queries. The extensions are oriented at the concepts presented in [KMST10].

Language Types and Attribute Constraints The pattern language should allow
for the definition of rules based on the types defined in the source language. Con-
sequently, it has to include all types and their interrelations defined in the source
language. Additionally, the source pattern language has to allow for the definition of
conditions over type attributes. Considering the WebStory language as source lan-
guage, one could desire to find, for instance, Modify Variable nodes, whose Boolean
attribute wvalue is set to true.

Inheritances and Abstract Types Type inheritance and abstract types are used
in DSLs (and programming languages like Java) to accumulate similar behavior
shared among several types in their super-type. This behavior is then propagated
using inheritance. Addressing a possibly abstract type is crucial in transformation
rules. It prevents the replication of transformation rules entailed by enumerating
all non-abstract sub-types of an abstract type. Therefore, abstract types in the
source language are made available in a transformation language by changing them
to concrete ones in the specification of the transformation tool.

Type Wildcards Sometimes the specific type of an element is not relevant in a
rule. The WebStory pattern in the upper left part of the rule displayed in Fig
exemplifies this situation. It is only relevant that the Click Area node modeled in the
pattern has a successor connected by a Transition edge. Therefore, wildcard types
are introduced in the pattern language. In CINCO-based transformation languages
three wildcard types for the node, container, and edge meta type are introduced.

Relaxing Static Semantics The relaxation of a DSVL’s static semantics is a basic
requirement to allow for, e.g., the usage of type wildcards. In the generated DSVL,
the wildcard is also represented as a type. Thus, edge types’ constraints have to be
relaxed to allow wildcard nodes to be an edge’s source or target node. Similarly,
node types have to be modified to allow for incoming and outgoing edge wildcard
types and the containment constraints of container types are relaxed to facilitate
the containment of wildcard elements.

47

Rule Types One characteristic of the transformation language presented in [KLNS20]
is the additive transformation system, i.e., the target model is built from scratch,
and the source model is only used to retrieve information for the transformation.
Thus, we constrain the rule type of an element x defined in the source pattern as
follows.

e ©v € LHS < x € RHS, meaning that x should be matched in the input model.
It is neither deleted nor created.

e © € NAC, preventing the matching of model structures in which x occurs.

4.2.2 Target Language Pattern

Resulting from the design decisions of the transformation language (separation of
source language and target language and additive transformation system [KLNS20])
the target pattern languages are not as complex as the source pattern languages.
Essentially, they facilitate the modeling of structures that also can be modeled in
the target language. Types in the target pattern language represent an enhanced
creator semantics: If they do not exist in the target model, they are created, and
updated otherwise. The usage of wildcards or abstract types in a target pattern
rule is pointless, because it is not determinable which concrete type is represented
by the wildcard or abstract type. The target language is extended by an expression
language allowing for the derivation of attribute values of created elements.

4.2.3 The Auxiliary Rule Language

The SOS-based auxiliary language should facilitate the definition of rules by which
the aggregation process is defined. More precisely, the transformation developer has
to define a step function, which, for each type of the source language, defines how
to retrieve its successor. Furthermore, the function has to describe the step’s effect
on the store. The definition of the step function depends on the current position in
the input graph and the current store. Even without the configuration (cf. Fig. ,
the major parts of the auxiliary language can be generated.

To explain the ability to generate the language, I will provide the static parts of
the abstract syntax of the SOS-based auxiliary language, and subsequently describe
the parts of the concrete syntax which can be generated. Thereby, I will focus
on the requirements and the knowledge implied by the domain-specificity of the
transformation language.

Abstract Syntax Without the prior configuration of the store, it is not known
what kind of data will be processed during the execution of the transformation.
Although the data types can be complex (composed of primitive data types), even-
tually it has to be defined how to evaluate and modify complex data types. This
usually is realized by a mapping from the complex type to one of its primitive com-
ponents. As a consequence, we restrict the types of variables which can be defined in

48

the store to primitive ones, allowing us to generate the evaluation and modification
function, independent of the actual store.

Definition 1 Let Var be a set of named, primitive variables and Value a set of
possible values[] The store o assigns each variable a corresponding value.

o Var — Value
The set of all possible variable valuations is defined by
Y ={o | o:Var = Value}
To modify the values of variables we define a substitution function on the store.

Definition 2 Let X, Y € Var, v € Value, and o € ¥. The substitution function on
o 1s defined by

v L if X =Y

oY) , otherwise

o{X = v}(Y) = {

With this notion of the store, we can now define the domain of the step function,
that is the main artifact to be modeled (defined) by the transformation developer.

Definition 3 Let T, be the set of types in the source language and ¥ as defined in
Def. [l The domain of the step function is defined as follows.

step i (Tsre X X) = (Tore X X)

Please note, as the source language is a parameter of the generator (it is not the result
of the configuration) the domain of the step function can be restricted to the types
specified in the source language. The defined domain of the step function represents
the abstract syntax of the SOS-based auxiliary language. To model an executable
transformation, the function definition has to be provided by the transformation
developer. Therefore, we generate a concrete syntax for the SOS-based auxiliary
language to ease the definition of the introduced function.

Concrete Syntax Given the abstract syntax of a two-level transformation lan-
guage, the goal is to provide a modeling language, which eases the specification
of rules defining the step function. In the scope of visual languages, the concrete
syntax of the two-level transformation language is also realized by a DSVL. The
resulting concrete syntax is shown at the bottom of Figure [4.1 where a first-level
rule is depicted on the left-hand side, a second-level rule on the right-hand side.
As mentioned in Sect. queries and element creations are specified by patterns.
Consequently, the concrete syntax of first-level and second-level rules should provide
areas in which the corresponding patterns can be specified

"We consider Boolean, character, integer, string etc. as primitive types.

49

Therefore, the rules are realized as containers, separated in different areas. First-
level rules consist of four parts, providing areas for the definition of Source pattern,
Target pattern, Auxiliary aggregation, and a Condition. Second-level rules
consist of three parts facilitating the specification of Source pattern, Auxiliary
step pattern, and a Condition. The rule areas are typed by the corresponding
languages, forcing a strict separation between the constituents.

The step function should be defined by the specification of a transition between
two configurations, i.e., given the type t € T, of the currently processed node in
the source model and a variable valuation o € 3, the modeler has to specify the
successor t' € T, and the possibly modified variable valuation ¢’ € 3:

(t,o) --+ (t',0")

This notation represents the concrete syntax for the transition system. It consists
of an identifier (¢,¢') and a representation of the store (o,0’). In first-level rules,
an aggregation process can be indicated by the definition of its start state and end
state, connected by a transition which is marked by the Kleene Star (cf. Fig. ,
Auxiliary computation). The individual steps are defined in second-level rules
in the Auxiliary transition area. In both cases, the identifier in a transition
system’s state ((t, o)), has to be related to a type of the source language. Therefore,
the source pattern language is additionally extended to allow for the definition of
labels in the pattern, and the relation is defined by string comparison.

Of course, determining the next element during the aggregation can depend on the
current store. Therefore, conditions can be defined in the Condition parts of first-
level and second-level rules. Resulting from the restriction of the store to primitive
variables, a simple expression language suffices for this purpose. This language is
independent of the configuration (and the generator parameters) and is generated
as static part of the concrete syntax. Additional to the specification of Boolean
conditions, the Condition part in first-level rules can be used to define patterns in
the source language to, e.g., specify a termination condition for the computation.
For instance, the node’s type identified in the end state of the indicated aggregation
can determine the termination of a computation.

4.2.4 Generator Configuration

To generate the transformation language, the generator has to be configured by an
initialization of the store o, and an identification function for elements of the target
language.

Store Initialization The store variables used during an aggregation process depend
on the desired transformations. In one case, a transformation may require one
variable per node of a specific type from the source domain. In another case, one
local variable managing some information may be sufficient for the aggregation.
Consequently, the generator has to be configured with an initialization of the store,

20

© 00 N O U e W N =

i.e., an explicit specification of the set of variables Var and their initial values.
Furthermore, on the one hand the domain of the store is restricted to variables
of primitive data types. On the other hand, DSVL usually allow for the usage of
complex types. Therefore, the initialization has to map types and their attributes
to primitive variables. The domain of the store initialization function init is defined
as follows.

Definition 4 Let T,,.. be the set of types of the source language and 3 the set all
variable valuations. The domain of the store initialization function init is given by

it Tope — 2

To define the init function, we provide a text-based language which allows for the
definition of primitive variables, as well as a mapping from types (and their at-
tributes) to primitive variables. Listing shows the EBNF of the language to
configure the store. The grammar facilitates to create single primitive typed vari-
ables (Line 3), as well as a variable for each occurrence of an element typed by
t € Tore (Lines 5-7). In the latter case, variable names can be generated or specified
by referencing an attribute of the corresponding type (Line 6). Initial variable values
can be statically set or derived from the type’s attribute (Line 7).

Target Identification The enhanced creator semantics of a first-level rule appli-
cation is to create elements defined in the target pattern, if they do not exists and
update them otherwise. The easiest way to identify the elements is to consider their
type and attribute valuation, i.e., two elements are equal, if they have the same type
and all their attribute values are equal.

In some cases this kind of identification is too detailed. In model-checking, this
leads to the state explosion problem [CKNZ12]. This problem is tackled by, e.g.,
abstraction: Instead of verifying properties on the actual model, an abstraction of
the model is considered. The abstraction is defined through a mapping from the
actual state space to a subset of states by abstracting irrelevant information.

In a similar way, a mapping is specified to define what information a target element
should be identified by. Since, target elements may be related by source language

<AbstractVariable> :== <PrimitiveVariable> | <Variable>

<PrimitiveVariable> :== <VariableType> <Identifier> (’=’ <String>)?

<Variable> :== ’forall’ <TypeReference> ’create’ <VariableType>
(’>generateName ’ |<TypeReferenceAttribute >)

("=" (<DerivedValue> | String))?

<VariableType> :== ’int’ | ’boolean’ | ’string’

Listing 4.1: EBNF for the store initialization language.

51

types and information aggregated by second-level rules, the mapping function is
defined as follows.

Definition 5 Let Ty (Tirg) be the set of types of the source (target) language, and
let Var be a set of primitive variables. The domain of the mapping function map is
defined by

map : (P(Tere) X PVar)) = Tirg

Since the map function’s domain involves the set of variables Var, the store config-
uration has to be specified previous to the mapping.

4.2.5 The WebStory to Kripke Transition System
Transformation Language

In this section, I will exemplify the generation process by means of the WebStory
to KTS transformation language incorporating the SOS-based auxiliary language.
Thus, the WebStory specification serves as source language parameter, the KTS
language as target language parameter. In the following, I will emphasis on the
configuration, since its definition is the main task of the developer.

The purpose of the transformation is to verify properties of WebStory models
by model-checking [KLNS20]. We want to define CTL properties over the Variable
nodes used in a WebStory model. Variable nodes are manipulated by Modify Vari-
able nodes. With this information, we can define the store initialization as follows.

mat : TWebStory — X , with
init: v+ (bool — false) Vv € Variable (4.1)
init: m— (bool +— m.value) ,¥Ym € Modify Variable (4.2)

Definition specifies that for each element of type Variable a Boolean variable
should be created and initialized with the value false. Similar, Def. creates
a Boolean variable for each element of type Modify Variable but initializes it with
the value of the Modify Variable’s attribute value. Applying this definition on the
WebStory model depicted in Fig. results in the following store:

o[v > false,
vl > false,
m +— true,
ml > true

Now, we can specify the identification for target model elements.

map - (P(Twebstory) X P(init(TWebStory))) — TKTS
map : ({Screen}, init(Variable)) — Skrs

92

We use init(X) for a set X to describe the image of the init function. Consequently,
we identify the state in a KT'S by the Screen type and the variables in the store which
originate from Variable nodes. The generated SOS-based transformation language

can be used to model the rules shown in Figure (first-level rule) and Figure
(second-level rules).

23

o4

Future Work

5.1 Application

In Sect. [3.1] T presented several projects, bachelor and master theses in which model
transformations were defined using the CINCO-generated API. It would be interest-
ing to model these transformations using the presented approaches in this thesis and
compare the resulting transformation systems. For instance, the semantics defini-
tion of the CMMN language by means of the transformation to DIME models would
be an interesting application, since the transformation has to consider three DSVLs
which constitute DIME.

Furthermore, it would be interesting to investigate the usability of the model
transformations in the context of code generators, since their development is usually
based on textual template-based languages.

5.2 Higher-Order Transformations

During the development of DSVLs, several model transformations are created, e.g.,
for the purposes described in Sect. [3] These transformations can involve different
kinds of DSVLs. Using graph-based, domain-specific transformation languages to
model these transformations entails many advantages. However, since the transfor-
mation languages are designed to conform to the languages involved in the trans-
formation, changing one of these languages can result in the invalidation of models
and, additionally, all transformations involving the modified language. Consider-
ing the transformation from WebStory to KTS, the modification of the WebStory
language would invalidate the modeled transformation. To enable the verification
of models conforming to the modified WebStory language, one has to model the
transformation anew, or migrate the existing transformation rules.

Higher-Order Transformations (HOTs) are “model transformations that analyze,
produce or manipulate other model transformations” [TCJ10]. These kind of trans-
formations could be used to, e.g., transform the model transformations from the

95

WebStory language to K'TS into transformations of a modified WebStory language
to KTS.

5.3 Auxiliary Language

I believe that the two-level transformation languages represent powerful tools to
specify computational model transformations. It would be interesting to investigate
if other kinds of auxiliary languages exist which support the definition of different
aspects in model transformation languages. For instance, the transformation from
truth tables to binary decision diagrams, as proposed in this year’s transformation
tool contest [8], represents an interesting challenge. The transformation requires
the identification of columns in the truth table satisfying special conditions, before
transforming them to elements in the binary decision diagram.

o6

Conclusion

In this thesis, I presented the tasks and problems during the development of domain-
specific visual languages, alongside three specific activities. To handle those activ-
ities, I described how the domain-specific, full-generation, and service-orientation
(DFS) approach can be applied to the domain of model transformation languages.
The resulting transformation languages provide means to define model transfor-
mations in a declarative way. Furthermore, I explained model transformations, in
which the information required for the transformation is not statically or locally
represented in the source languages. These transformations need to compute the
required information. I sketched how such transformations can be specified using
existing graph transformation approaches. To reduce the complexity introduced by
the computation, I additionally considered the computation during a transformation
as a domain-specific aspect and applied the DFS approach on the domain of “compu-
tational model transformations”. I introduced a language pattern for transformation
languages which impose restrictions on the traditional way to define graph-rewrite
rules, separate the concerns of these transformations, and provide domain-specific
capabilities to define the individual concerns of the transformations. I employed
Plotkin’s Structural Operation Semantics (SOS) to create a domain-specific lan-
guage for the specification of computations during a transformation. This way, I
facilitate the definition of computations in a declarative, elegant way that allows
business experts without programming skills to specify the computation.

Resulting from the amount of possible combinations of source and target lan-
guages, and the purpose of the actual transformation, I showed how the trans-
formation languages can be generated by analyzing the interrelations between the
involved languages, generalizing them, and providing means to specify the interre-
lations which can not be generated. I used the two-level WebStory to KTS trans-
formation language to exemplify the required specification.

I believe, that these types of transformation languages are a powerful tool for
the considered transformation. It would be interesting to research if other auxiliary
languages exist, which can be utilized to specify different aspects of a transformation
languages.

o7

o8

[AKNT06]

[AKS03]

[BCK*19]

[BCTO5|

[BDGT15]

[BFK*16]

References

Aditya Agrawal, Gabor Karsai, Sandeep Neema, Feng Shi, and Attila
Vizhanyo. The design of a language for model transformations. Software
€9 Systems Modeling, 5(3):261-288, 2006.

Aditya Agrawal, Gabor Karsai, and Feng Shi. Graph Transformations
on Domain-Specific Models. Journal on Software and Systems Model-
ing, 37:1-43, 2003.

Daniel Busch, Beka Chkopoia, Sascha Kiesow, Niclas Miiller, Johannes
Mundorf, Alnis Murtovi, Benedikt Oesing, Soéren Ohlsen, Andreas
Sitta, Robin Weisbauer, and Jonas Wielage. neXtGen - Model-based
Code Generation, 2019.

Alan W. Brown, Jim Conallen, and Dave Tropeano. Introduction:
Models, Modeling, and Model-Driven Architecture (MDA), pages 1-16.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

Agata Berg, Cedric Perez Donfack, Julian Gaedecke, Eike Ogkler, Stef-
fen Plate, Katharina Schamber, David Schmidt, Yasin Sénmez, Florian
Treinat, Jan Weckwerth, Patrick Wolf, and Philip Zweihoff. PG 582 -
Industrial Programming by Example. Technical report, TU Dortmund,
2015.

Steve Boftelmann, Markus Frohme, Dawid Kopetzki, Michael Lybe-
cait, Stefan Naujokat, Johannes Neubauer, Dominic Wirkner, Philip
Zweihoff, and Bernhard Steffen. DIME: A Programming-Less Model-
ing Environment for Web Applications. In Proc. of the 7th Int. Symp.
on Leveraging Applications of Formal Methods, Verification and Vali-
dation, Part II (ISoLA 2016), volume 9953 of LNCS, pages 809-832.
Springer, 2016.

29

[B&05)

[CE00]

[CGLO4|

[CHO6|

[CKL*17]

[CKNZ12]

[CREPOS]

[Cual2]

[Don19]

[EEGH15]|

[Fav05]

60

Jean Bézivin. On the unification power of models. Software € Systems
Modeling, 4(2):171-188, 2005.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative program-
ming: methods, tools, and applications. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Check-
ing and Abstraction. ACM Trans. on Programming Languages and
Systems, 16(5):1512-1542, September 1994.

Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45:621-645, 2006.

Mounir Chadli, Jin H. Kim, Kim G. Larsen, Axel Legay, Stefan Nau-
jokat, Bernhard Steffen, and Louis-Marie Traonouez. High-level frame-
works for the specification and verification of scheduling problems. Soft-
ware Tools for Technology Transfer, 20(4):397-422, 2017.

Edmund M. Clarke, William Klieber, Milos Novacek, and Paolo Zuliani.
Model Checking and the State Fxplosion Problem, pages 1-30. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. Automating co-evolution in model-driven engineering. In
12th International IEEE Enterprise Distributed Object Computing Con-
ference, ECOC 2008, 15-19 September 2008, Munich, Germany, pages
222-231, 2008.

Jests Sanchez Cuadrado. Towards a family of model transformation
languages. In International Conference on Theory and Practice of
Model Transformations, pages 176—191. Springer, 2012.

Joal Tagoukeng Dongmo. A domain-specific management framework
for environment independent, partial code generation. Bachelor thesis,
Technische Universitdt Dortmund, Fakultat fiir Informatik, Lehrstuhl
fiir Programmiersysteme, 2019.

Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann.
Graph and Model Transformation - General Framework and Applica-
tions. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2015.

J-M Favre. Languages evolve too! changing the software time scale.
In Eighth International Workshop on Principles of Software Evolution
(IWPSE’05), pages 33-42. IEEE, 2005.

[Fel19]

[Fow05]

[FP11]

[Frol3|

[Fuh18]

[GKPO07]

[Gol19]

[HBJ09)

[HRW11]

[HRW15]

[JABKOS]

[Jor13|

[J511]

Marius Feltmann. Generierung von doménenspezifischen Modell-zu-
Modell-Transformationsumgebungen in Cinco. Master thesis, TU Dort-
mund University, 2019.

Martin Fowler. Language workbenches: The killer-app for domain spe-
cific languages. 2005.

Martin Fowler and Rebecca Parsons. Domain-specific languages.
Addison-Wesley / ACM Press, 2011.

Markus Frohme. Agile Doménenmodellierung fiir prozessgesteuerte
Webanwendungen. Bachelor thesis, TU Dortmund, 2013.

Annika Fuhge. Graphische Modellierung von Cinco Produktspezifika-
tionen. BSc thesis, TU Dortmund, 2018.

Boris Gruschko, Dimitrios Kolovos, and Richard Paige. Towards syn-
chronizing models with evolving metamodels. In Proceedings of the
International Workshop on Model-Driven Software Evolution, page 3.
IEEE, 2007.

Phillip Goldap. Multi-Level Transformation Framework for the Cinco
Framework. Master thesis, TU Dortmund University, 2019.

Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Jiirgens. COPE
- automating coupled evolution of metamodels and models. In
ECOOP 2009 - Object-Oriented Programming, 23rd FEuropean Confer-
ence, Genoa, Italy, July 6-10, 2009. Proceedings, pages 52—76, 2009.

John Hutchinson, Mark Rouncefield, and John Whittle. Model-Driven
Engineering Practices in Industry. In Proc. of the 33rd Int. Conf. on
Software Engineering (ICSE ’11), pages 633-642. ACM, 2011.

Katrin Holldobler, Bernhard Rumpe, and Ingo Weisemoller. System-
atically Deriving Domain-Specific Transformation Languages. In 2015
ACM/IEEE 18th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS), pages 136-145. IEEE, 2015.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL:
A model transformation tool. Science of Computer Programming, 72(1-
2):31-39, 2008.

Sven Jorges. Construction and evolution of code generators: A model-
driven and service-oriented approach, volume 7747. Springer, 2013.

Sven Jorges. Genesys: A Model-Driven and Service-Oriented Approach
to the Construction and Fvolution of Code Generators. PhD thesis,
Technische Universitdt Dortmund, 2011.

61

[KBRC*18] Nafiseh Kahani, Mojtaba Bagherzadeh, James R. Cordy, Juergen Din-

[KLNS20]

[KMS+10]

[Kop14|

[KT08]

[Kuel§]

[KWBO03]

[LKS18]

[LKZ*18]

[Lyb19]

62

gel, and Daniel Varro. Survey and classification of model transformation
tools. Software and Systems Modeling, 03 2018.

Dawid Kopetzki, Michael Lybecait, Stefan Naujokat, and Bernhard
Steffen. Towards Language-to-Language Transformation. International
Journal on Software Tools for Technology Transfer (STTT), 2020. Ac-
cepted.

Thomas Kiihne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and
Manuel Wimmer. Explicit transformation modeling. In Proceedings of
the 2009 International Conference on Models in Software Engineering,
MODELS’09, pages 240-255, Berlin, Heidelberg, 2010. Springer-Verlag.

Dawid Kopetzki. Model-based generation of graphical editors on the
basis of abstract meta-model specifications. Master thesis, TU Dort-
mund, June 2014.

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. Wiley-IEEE Computer Society Press,
Hoboken, NJ, USA, 2008.

Dennis Kuehn. Model-to-model transformation in meta-modeled cinco
domains. FElectronic Communications of the EASST, 75, 2018.

Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA FExplained:
The Model Driven Architecture: Practice and Promise. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

Michael Lybecait, Dawid Kopetzki, and Bernhard Steffen. Design for
‘X’ through Model Transformation. In Proc. of the 8th Int. Symp. on
Leveraging Applications of Formal Methods, Verification and Valida-
tion, Part I Modeling (ISoLA 2018), volume 11244 of LNCS, pages
381-398. Springer, 2018.

Michael Lybecait, Dawid Kopetzki, Philip Zweihoff, Annika Fuhge, Ste-
fan Naujokat, and Bernhard Steffen. A Tutorial Introduction to Graph-
ical Modeling and Metamodeling with Cinco. In Proc. of the 8th Int.
Symp. on Leveraging Applications of Formal Methods, Verification and
Validation, Part I Modeling (ISoLA 2018), volume 11244 of LNCS,
pages 519-538. Springer, 2018.

Michael Lybecait. Meta-Model Based Generation of Domain-Specific
Modeling Tools. Dissertation, TU Dortmund University, Dortmund,
Germany, 2019.

[Men13]

[MS09)

[MSS99)]

[Mur89|

[MVGO06]

[MWD*05]

[Naul7|

[NFSM14]

[NLKS17]

[NTI+14]

Tom Mens. Model transformation: A survey of the state of the art.
Model-Driven Engineering for Distributed Real-Time Systems: MARTE
Modeling, Model Transformations and their Usages, pages 1-19, 03
2013.

Tiziana Margaria and Bernhard Steffen. Business Process Modelling in
the JABC: The One-Thing-Approach. In Jorge Cardoso and Wil van der
Aalst, editors, Handbook of Research on Business Process Modeling. 1GI
Global, 2009.

Markus Miiller-Olm, David Schmidt, and Bernhard Steffen. Model-
Checking - A Tutorial Introduction. In Proceedings of the 6th Interna-
tional Symposium on Static Analysis (SAS ’99), pages 330-354, 1999.

T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEFE, 77(4):541-580, April 1989.

Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.
volume 152, 03 2006.

Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer,
Robert Hirschfeld, and Mehdi Jazayeri. Challenges in software evolu-
tion. In 8th International Workshop on Principles of Software Fvolution
(IWPSE 2005), 5-7 September 2005, Lisbon, Portugal, pages 13-22,
2005.

Stefan Naujokat. Heavy Meta. Model-Driven Domain-Specific Genera-
tion of Generative Domain-Specific Modeling Tools. Dissertation, TU
Dortmund, Dortmund, Germany, August 2017.

Johannes Neubauer, Markus Frohme, Bernhard Steffen, and Tiziana
Margaria. Prototype-Driven Development of Web Applications with
DyWA. In Proc. of the 6th Int. Symp. on Leveraging Applications of
Formal Methods, Verification and Validation, Part I (ISoLA 2014),
number 8802 in LNCS, pages 56-72. Springer, 2014.

Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard
Steffen. CINCO: A Simplicity-Driven Approach to Full Generation of
Domain-Specific Graphical Modeling Tools. Software Tools for Tech-
nology Transfer, 20(3):327-354, 2017.

Stefan Naujokat, Louis-Marie Traonouez, Malte Isberner, Bernhard
Steffen, and Axel Legay. Domain-Specific Code Generator Modeling:
A Case Study for Multi-faceted Concurrent Systems. In Proc. of the
6th Int. Symp. on Leveraging Applications of Formal Methods, Veri-
fication and Validation, Part I (ISoLA 2014), volume 8802 of LNCS,
pages 463-480. Springer, 2014.

63

[Plo81]

[Poo01]

[Ren04]

[SBPMOS]

[Sch06]

[Sch19]

[SGNM19)]

[SGV13]

[Spi12]

[SV10]

[SVL15]

[SVM*13]

64

Gordon D. Plotkin. A Structural Approach to Operational Semantics.
Technical report, University of Aarhus, 1981. DAIMI FN-19.

John D Poole. Model-driven architecture: Vision, standards and emerg-
ing technologies. In Workshop on Metamodeling and Adaptive Object
Models, ECOOP, volume 50. Citeseer, 2001.

Arend Rensink. The GROOVE Simulator: A Tool for State Space
Generation. In John L. Pfaltz, Manfred Nagl, and Boris Bohlen, edi-
tors, Applications of Graph Transformations with Industrial Relevance,
pages 479-485, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework (2nd Edition). Addison-Wesley,
Boston, MA, USA, 2008.

Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven En-
gineering. IEEE Computer, 39(2):25-31, 2006.

Till Schallau. Co-Evolution of Metamodels and Models in Cinco. Mas-
ter thesis, Technische Universitdt Dortmund, Fakultat fiir Informatik,
Lehrstuhl fiir Programmiersysteme, 2019.

Bernhard Steffen, Frederik Gossen, Stefan Naujokat, and Tiziana
Margaria. Language-Driven Engineering: From General-Purpose to
Purpose-Specific Languages. In Bernhard Steffen and Gerhard Woeg-
inger, editors, Computing and Software Science: State of the Art and
Perspectives, volume 10000 of LNCS. Springer, 2019.

Eugene Syriani, Jeff Gray, and Hans Vangheluwe. Modeling a Model
Transformation Language, pages 211-237. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

Diomidis Spinellis. Git. IEEE Software, 29(3):100-101, May 2012.

Eugene Syriani and Hans Vangheluwe. De-/re-constructing model
transformation languages. FElectronic Communications of the EASST,
29, 2010.

Eugene Syriani, Hans Vangheluwe, and Brian LaShomb. T-core: a
framework for custom-built model transformation engines. Software €
Systems Modeling, 14(3):1215-1243, Jul 2015.

Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner
Hansen, Simon Van Mierlo, and Hiiseyin Ergin. Atompm: A web-
based modeling environment. In Joint Proceedings of MODELS’13 In-
vited Talks, Demonstration Session, Poster Session, and ACM Student

[TCJ10]

[Wec16]

[Weil2]

[Wirl5]

[WMN16]

[ZNS19]

[Zwel5)

Research Competition co-located with the 16th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS
2013), Miami, USA, September 29 - October 4, 2013., pages 21-25,
2013.

Massimo Tisi, Jordi Cabot, and Frédéric Jouault. Improving higher-
order transformations support in atl. In Laurence Tratt and Martin
Gogolla, editors, Theory and Practice of Model Transformations, pages
215-229, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Jan Weckwerth. Cinco Evaluation: CMMN-Modellierung und -
Ausfithrung in der Praxis. Master’s thesis, TU Dortmund, 2016.

[. Weisemdéller. Generierung domdnenspezifischer Transformation-
ssprachen. Aachener Informatik-Berichte, Software-Engineering.
Shaker, 2012.

Dominic Wirkner. Merge-Strategien fiir Graphmodelle am Beispiel von
JABC und Git. Diploma thesis, TU Dortmund, February 2015.

Nils Wortmann, Malte Michel, and Stefan Naujokat. A Fully Model-
Based Approach to Software Development for Industrial Centrifuges.
In Proc. of the 7th Int. Symp. on Leveraging Applications of Formal
Methods, Verification and Validation, Part II (ISoLA 2016), volume
9953 of LNCS, pages 774-783. Springer, 2016.

Philip Zweihoff, Stefan Naujokat, and Bernhard Steffen. Pyro: Gen-
erating Domain-Specific Collaborative Online Modeling Environments.
In Proc. of the 22nd Int. Conf. on Fundamental Approaches to Software
Engineering (FASE 2019), 2019.

Philip Zweihoft. Cinco Products for the Web. Master thesis, TU Dort-
mund, November 2015.

65

66

Online References

[1] The eclipse foundation. https://www.eclipse.org/. [Online; last accessed
08-January-2019].

[2] GEF (Graphical Editing Framework). http://www.eclipse.org/gef/. |On-
line; last accessed 08-February-2019|.

[3] Graphical Editing Framework - Draw2d. http://www.eclipse.org/gef/
draw2d/index.php. [Online; last accessed 08-February-2019].

[4] Graphiti - a Graphical Tooling Infrastructure. http://www.eclipse.org/
graphiti/. |Online; last accessed 13-February-2019].

[5] Xtend - Modernized Java. http://xtend-lang.org. [Online; last accessed
08-February-2019].

[6] Xtext - Language Engineering Made Easy! http://www.eclipse.org/Xtext/.
[Online; last accessed 13-February-2019].

[7] Case management and modeling notation. https://www.omg.org/cmmn/, 2019.
[Online; last accessed 11-August-2019).

[8] Transformation Tool Contest. https://www.
transformation-tool-contest.eu/solutions_tt2bdd.html, 2019. [Online;
last accessed 28-August-2019).

[9] client IO. Joint API. http://www.jointjs.com/api. [Online; last accessed
13-February-2019].

[10] Object Management Group (OMG). Object Management Group. www . omg. org.
[Online;last accessed 20-May-2014].

67

https://www.eclipse.org/
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/draw2d/index.php
http://www.eclipse.org/gef/draw2d/index.php
http://www.eclipse.org/graphiti/
http://www.eclipse.org/graphiti/
http://xtend-lang.org
http://www.eclipse.org/Xtext/
https://www.omg.org/cmmn/
https://www.transformation-tool-contest.eu/solutions_tt2bdd.html
https://www.transformation-tool-contest.eu/solutions_tt2bdd.html
http://www.jointjs.com/api
www.omg.org

[11] Object Management Group (OMG). OMG Meta Object Facility (MOF) Core
Specification Version 2.4.1. http://www.omg.org/spec/MOF/2.4.1/PDF. |On-
line; last accessed 23-April-2014].

[12] Nico Rehwaldt. Element Templates in the Camunda Modeler | Ca-
munda Team Blog. https://blog.camunda.org/post/2016/05/
camunda-modeler-element-templates/. [Online; last accessed 23-November-
2016].

68

http://www.omg.org/spec/MOF/2.4.1/PDF
https://blog.camunda.org/post/2016/05/camunda-modeler-element-templates/
https://blog.camunda.org/post/2016/05/camunda-modeler-element-templates/

	Introduction
	My Contribution
	Related Work
	Organization of this Thesis
	Context of Attached Publications

	Background
	Cinco Meta Tooling Suite
	The WebStory Language
	Model Transformations
	Categorization of Model Transformations
	Graph Transformations

	Towards Graph-Based Model Transformations in the Cinco Framework
	Model Transformations in Cinco
	Model Semantics
	Meta Model and Model Co-Evolution
	Validation and Verification

	The Need for Domain-Specific Transformation Tools
	Code Generation in Cinco
	Model-to-Model Transformations

	Generation of Language-to-Language Transformation Languages
	Two-Level Transformation Languages
	Generation of Two-Level Transformation Languages
	Source Language Pattern
	Target Language Pattern
	The Auxiliary Rule Language
	Generator Configuration
	The WebStory to Kripke Transition System Transformation Language

	Future Work
	Application
	Higher-Order Transformations
	Auxiliary Language

	Conclusion

%\documentclass[10pt,a4paper]{book}
\documentclass[a4paper,twoside,openright,BCOR=1cm,idxtotoc,cleardoublepage=plain,12pt]{scrreprt}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{todonotes}
\usepackage{semantic}
\usepackage{stmaryrd}
\usepackage{bussproofs}
\usepackage{url}
\usepackage{semantic}
\usepackage{listings}
\usepackage{csquotes}
\usepackage{subfigure}
\usepackage{placeins}
\usepackage{enumerate}
 \usepackage[Bjornstrup]{fncychap}

\usepackage{pdfpages}
\usepackage{bibentry}

\usepackage{tikz}
\usepackage{groove2tikz}
\usetikzlibrary{shapes.geometric}

\usepackage{multibbl}

\usepackage[german,english]{babel}
%\usepackage[headsepline]{scrpage2}
%\usepackage[utf8]{inputenc}
%\usepackage[T1]{fontenc}
%\usepackage{graphicx}
%\usepackage{url}
%
%% My usepackages...
%\usepackage{listings}
%\usepackage{graphicx}
%\usepackage{xcolor}
%\usepackage{textcomp}
%\usepackage{csquotes}
%\usepackage{framed, color}
%\usepackage{hyperref}
\usepackage{float}

\author{Dawid Kopetzki}
%\title{Generation of Domain-Specific Language-to-Language Transformation
%Languages}
%\subject{Dissertation zur Erlangung des Grades eines Doktors der
%Ingenieurwissenschaften der Technischen Universität Dortmund an der Fakultät
%für Informatik}
%\key{DSL, Multi-Level Transformations, Model-to-Model Transformation,
%(Typed) Structural Operational Semantics, Abstraction, Structural Aggregation,
%Rule Systems, Meta Language, Model Checking, Graph Pattern}
%\subtitle{Dissertation}

\include{macros}

\usepackage[pdfa,
%	pdfauthor={Dawid Kopetzki},
	pdftitle={Generation of Domain-Specific Language-to-Language Transformation
		Languages},
	pdfsubject={Dissertation zur Erlangung des Grades eines Doktors der
		Ingenieurwissenschaften der Technischen Universität Dortmund an der
		Fakultät für Informatik},
	pdfkeywords={DSL, Multi-Level Transformations, Model-to-Model
	Transformation, (Typed) Structural Operational Semantics, Abstraction,
	Structural 	Aggregation, Rule Systems, Meta Language, Model Checking,
	Graph Pattern}]{hyperref}
\usepackage{hyperxmp}[2020/03/01]
\usepackage{embedfile}[2020/04/01]

\hypersetup{%
	pdflang=la,
	pdfapart=1, %set to 1 for PDF/A-1
	pdfaconformance=B
}

\embedfile[afrelationship={/Source},ucfilespec={\jobname.tex},mimetype={application/x-tex}]{\jobname.tex}

%Create an OutputIntent in order to correctly specify colours
\immediate\pdfobj stream attr{/N 3} file{sRGB.icc}
\pdfcatalog{%
	/OutputIntents [
	<<
	/Type /OutputIntent
	/S /GTS_PDFA1
	/DestOutputProfile \the\pdflastobj\space 0 R
	/OutputConditionIdentifier (sRGB)
	/Info (sRGB)
	>>
]
}

\begin{document}

\pagenumbering{roman}

\newbibliography{pub}
\bibliographystyle{pub}{alpha}
\newbibliography{web}
\bibliographystyle{web}{plain}

\input{titlepage.tex}

\input{achnowledgement}

\section*{Abstract}
\input{abstract}

\newpage
\cleardoublepage
\input{publications/attached-publications.tex}

\tableofcontents

\input{listings.tex}

\newpage
\pagenumbering{arabic}

\chapter{Introduction}
The increasing complexity of software systems imposes large problems on their
development. To handle this complexity, one has to abstract from technical details and
focus on the solution design for the given problem.
Model-based development approaches reinforce the abstraction process by
providing means to capture the main concepts of a solution in a formal
model, abstracting from implementation details.
In Model-Driven Engineering
(MDE)~\cite{pub}{Schmid2006,HuRoWh2011} models are the main
artifacts during the development process from which code is generated
(semi-)automatically. The Object Management Group (OMG)~\cite{web}{wwwomg}
introduced the Model-Driven Architecture (MDA)~\cite{pub}{Brown2005,Poole2001},
a set of standards to facilitate the creation of models and transformations
between them down to the actual system's implementation. Those models are
usually
created using general purpose-modeling languages.

Despite the increase of productivity resulting from model-driven development
techniques, one intrinsic problem still persists: The semantic gap between
technical
experts and business experts, i.e., what the business experts expect and what
the technical experts understand and realize. In~\cite{pub}{MarSte2009},
Margaria and
Steffen propose eXtreme Model-Driven Design (XMDD) as a development paradigm to
reduce this gap by including the business experts in the development process of
the software system. XMDD is a combination of \emph{service orientation} and
\emph{model-driven design}. In this approach, a business expert models his own
solution using predefined building blocks, which are based on services
implementing basic functionalities. The building blocks can in turn be composed
to new ones, providing more powerful functionalities. The model is the main
development artifact,
from which the whole system is generated.

Domain-Specific Modeling (DSM)~\cite{pub}{KelTol2008} follows the same goals,
but problem solutions are created using Domain-Specific Languages
(DSL)~\cite{pub}{FowPar2011} and tools,
tailored specifically for the problem domain. These tools reduce the possible
design space by limiting language constructs towards the target domain.
Kelly and Tolvanen report in~\cite{pub}{KelTol2008} on the advantages of DSM,
e.g., a vast increase in the productivity and a better quality of applications,
achieved by a restricted design space and code generation.
Furthermore, the domain-specialization of the language enhances the
comprehensibility of created solutions for domain experts and even enables them
to create their own solutions.

Models and their meta models require subsequent processing
steps introduced by typical activities in model-driven engineering, i.a.,
refactoring, migration, verification, and simulation~\cite{pub}{Mens2013}.
These activities are realized by model transformations, which, e.g., change the
models' structure to meet specific structural constraints (refactoring),
transform them into an existing semantic domain, or translating them to formats
suitable for, e.g., verification tools.

In the last seven years, we developed the \cinco{} meta-tooling
suite~\cite{pub}{NaLyKS2017}, a
language workbench~\cite{pub}{Fowler2005}
easing the development of graph-based, domain-specific visual languages (DSVL).
\cinco{} is used in many industrial and academic projects yielding several
DSVLs.
Figure~\ref{fig:cinco-products} shows exemplary models of DSVLs created
using \cinco{}.
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=\textwidth]{figures/collage.pdf}
	\caption{Overview of domain-specific visual languages developed using
	\cinco{}. (1) Piping \& Instrumentation diagram~\cite{pub}{WoMiNa2016}
	(2) Flow Graph~\cite{pub}{WoMiNa2016} (3)
	Probabilistic Times Automata~\cite{pub}{NaTISL2014} (4) Hierarchical
	Scheduling Systems~\cite{pub}{CKLLNS2017} (5) OMG's
	Case Management Notation (CMMN)~\cite{pub}{Weckwe2016}
	(6) Easy Delta Pick\&Place DSL~\cite{pub}{BDGOPS2015} (7) Petri
	net~\cite{pub}{NaLyKS2017}. (reprinted from~\cite{pub}{StGoNM2019})
		\label{fig:cinco-products}}
\end{figure}
%
These DSVLs are developed, with simplicity in mind, to provide business experts
the possibility to model their solutions.
Of course, these DSVLs and the associated models are subject to model
transformations targeting different goals.
Ideally, these transformations should be defined using transformation languages
following the same concepts as the underlying DSVLs, i.e., in a graph-based
visual way, utilizing the abstract and concrete syntax of the involved DSVLs.
But due to the large number of
DSVLs, the manual development of dedicated transformation tools for those
languages is not feasible. Furthermore, one transformation language is not
necessarily appropriate to specify model transformations for different purposes.
This thesis presents the results of my efforts towards specialized graph-based
model transformation languages for DSVLs, which should provide an easy way for
the specification of transformations.

%The restriction of the design space of a DSVL results in a modeling language
%for each addressed domain.
%In the last years, we developed the \cinco{} meta-tooling suite, a
%language workbench~\cite{pub}{Fowler2005}
%easing the development of graph-based, domain-specific visual languages.
%Figure~\ref{fig:cinco-products} shows some models of DSVLs created using
%\cinco{} in industrial and academic scopes.
%%
%\begin{figure}[tb]
%	\centering
%	\includegraphics[width=\textwidth]{figures/collage.pdf}
%	\caption{Overview of domain-specific visual languages developed using
%	\cinco{}. (1) Piping \& Instrumentation diagram~\cite{pub}{WoMiNa2016}
%	\cite{pub}{StGoNM2019} (2) Flow Graph~\cite{pub}{WoMiNa2016} (3)
%	Probabilistic Times Automata~\cite{pub}{NaTISL2014} (4) Hierarchical
%	Scheduling Systems~\cite{pub}{CKLLNS2017} (5) OMG's
%	Case Management Notation (CMMN)~\cite{pub}{Weckwe2016}
%	(6) Easy Delta Pick\&Place DSL~\cite{pub}{BDGOPS2015} (7) Petri
%	net~\cite{pub}{NaLyKS2017}
%		\label{fig:cinco-products}}
%\end{figure}
%%
%DSVLs and their models are often subject to changes introduced by typical
%activities in model-driven engineering. They comprise i.a.,
%refactoring, migration, verification and simulation~\cite{pub}{Mens2013} and
%are realized by model transformations.

%These models are often the subject of model transformations. Typical reasons
%are, i.a., code generation, model migration and
%refactoring~\cite{pub}{Mens2013}.
%
%The importance of model transformations is reflected by the amount of existing
%transformation tools. In \cite{pub}{KBCDV2018}, Kahani et al. identified 60
%model
%transformation tools of
%which 33\% are regularly and 35\% are sometimes updated. 92\% of these tools
%are used in academy, illustrating their relevance in the scientific area.

%DSLs can be realized in several ways. \todo{rephrase the following}In visual
%DSLs models are
%represented as graphical elements on a modeling canvas. They consist of nodes
%which are related by (directed) edges. Xtext is a language workbench targeting
%textual DSLs. Using Xtext 'you get a full infrastructure, including
%parser, linker, typechecker, compiler as well as editing support for Eclipse,
%any editor that supports the Language Server Protocol and your favorite web
%browser'~\cite{web}{wwwxtext}. The Meta
%Programming System (MPS)~\cite{web}{wwwmps} supports projectional
%editing: Given the abstract syntax tree (AST) of a DSL it is possible to
%define
%non-textual projections on the AST, i.e. math notation, diagrams and forms.
%During the years at the chair for programming systems at the TU Dortmund
%University,
%I could contribute to the \cinco{} Meta Tooling Suite~\cite{pub}{NaLyKS2017},
%a language workbench~\cite{languageWorkbench} for domain-specific, graph-based
%languages, in many discussions with Stefan Naujokat and Michael Lybecait.
%After the
%development of the first domain-specific modeling tools using \cinco{},
%called \cps{}
%(CP), especially the \emph{Dywa Integrated Modeling Environment} (\dime{}) it
%became clear that in the context of typed, graph-based modeling languages the
%a
%proper handling of model is needed. For instance, the definition of semantic
%for a
%DSVL

%Motivation for DSLs and model transformations~\cite{pub}{KBCDV2018, CzaHel2006}
%
%Application of DFS for model transformation languages.

\section{My Contribution}
Stefan Naujokat introduced in his Ph.D. thesis~\cite{pub}{Naujokat2017}
the
Domain-specific, Full-generation, and Service orientation (DFS) approach for
modeling
languages and then applied this approach reflexively to the domain
\enquote{development
of graphical domain-specific visual languages} resulting in the \cinco{}
meta-tooling suite. \cinco{} is used to create graph-based DSVLs by
specifying their
abstract and concrete syntax. But the development of DSVLs does not end
at this
point.
I consider three major activities arising during the development of DSVLs,
each
targeting a different purpose.
%
\begin{enumerate}
	\item \emph{Semantics definition}: Given the
	abstract syntax of a DSVL, one has to specify the meaning
	of models expressed in this language, i.e., define the language's
	semantics. Usually, this can be done by generating executable code in a
	high-level programming language (e.g., Java), or by providing translational
	semantics mapping the
	concepts of the source language to a semantic domain.
	
	\item \emph{Model Migration and Model Co-Evolution}: Models expressed
	in a
	DSVL conform to the language's meta model (abstract syntax).
	Small changes in the meta model can invalidate the conformance of
	existing
	models, thus the conformance has to be \enquote{repaired}.
	
	\item \emph{Validation and Verification}: Even if models conform to the
	meta model of a DSVL, it is not guaranteed that the models represent
	reasonable solutions or satisfy desired properties posed to a solution.
	The
	design space of a DSVL can be further restricted towards reasonable
	solutions by validating the static 	semantics of a language.
	To verify desired properties of a solution, one can use existing formal
	verification methods and thereby benefit from various advantages
	resulting
	from the research in that area. Those verification methods
	require
	their input models to conform to a specific format (meta model).
	Generally,
	models expressed in DSVLs do not satisfy this requirement and have to
	be
	transformed into a suitable format for a verification tool.
\end{enumerate}
%
All three activities can be performed by transforming the models into models
(1.) expressed in a language with existing semantics,
(2.) conforming to a modified meta model, or
(3.) conforming to the expected format of a verification tool. Thus, model
transformations provide excellent means to perform these tasks.

The majority of existing approaches for graph-based transformations usually consider
transformations where the required information is represented statically in the model.
In~\cite{pub}{KoLyNS2020}, we present model transformations, concerning the
migration and
verification activity, in which the required information is not
statically represented in the model but has to be computed. Although
the aspect of computation is a mature topic in computer science, graph-based
approaches do not address it specifically in their rule definition languages.
In
this thesis,
I present a transformation language
supporting the specification of computations in a declarative way. This language is inspired by
Plotkin's Structural Operation Semantics~\cite{pub}{Plotki1981}, which facilitates the definition of a
programming language's semantics in a very elegant way.

I studied how the concepts of the DFS approach can be applied to the domain of
model
transformation languages, and thereby ease the development of model
transformations for DSVLs. The resulting transformation languages hide
the complexity of the definition of model transformations and consider the
involved DSVLs in their rule definition language. Thereby, the languages
provide a less error-prone development process. These
languages are used to implement the described activities in the scope of
DSVLs.
Figure~\ref{fig:improve-modeltomodel} compares common approaches for model
transformation languages with the ones I studied.
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=\textwidth]{figures/DSTL-PathToSimplicity-NoHybrid.pdf}
	\caption{Categorization of model-to-model transformation approaches studied
	in the context of this thesis.
		\label{fig:improve-modeltomodel}}
\end{figure}
%
The DFS approach is reflected as follows:
\begin{itemize}
	\item \emph{Domain-specific}: Transformation languages should respect the
	abstract and concrete syntax of the DSVLs involved in a transformation
	(Approaches in the \texttt{Domain-Specific} column of
	Fig.~\ref{fig:improve-modeltomodel}). Additionally, the purpose of a
	transformation is considered as a domain-specific aspect for the
	transformation language (cf. \texttt{Graph-based Domain-Specific Model
	Transformation} in Fig.~\ref{fig:improve-modeltomodel}).
	
	\item \emph{Full-generation}: Due to the amount of possible transformation
	languages resulting from the application of the \emph{domain-specific}
	aspect of DFS, these languages should be generated to fully executable
	transformation languages.
	
	\item \emph{Service orientation}: The \texttt{Declarative/Domain-Specific}
	approaches facilitate the specification of transformations using graph
	patterns. Finding matches of these patterns in the input model is not
	trivial, thus existing matching algorithms are used.
\end{itemize}
The first application of domain-specificity for transformation languages
resulted
in a \cinco{}-generated domain-specific API for each DSVL (cf.
Fig.~\ref{fig:improve-modeltomodel}, \texttt{DSL-Generated API}).
This allowed for a more convenient implementation of model transformations
in an
imperative manner, i.e., a developer specified \emph{how} to transform
models of the source language to target language models. Using this
generated API,
the three described activities can be defined by:
\begin{enumerate}
	\item Translating models expressed in a new DSVL into a DSVL with an
	existing semantics definition or to executable code in a high-level
	programming language.
	\item Transforming models which do not conform to a modified meta
	model to a model conforming to it.
	\item Translating models expressed in a DSVL to models suitable for
	verification
	tools.
\end{enumerate}
%
The disadvantages of this approach are that the logic of the transformation
engine is implemented in each transformation anew and the transformation
rules for DSVLs are implemented using an imperative textual programming
language.
%

To allow for a declarative specification of \emph{what} the transformation
should achieve, i.e., the relation between source and target language types, I
employed graph-based model transformation languages for DSVLs (cf.
Fig.~\ref{fig:improve-modeltomodel}
\texttt{Graph-based Model Transformation}).
These transformation languages allow for the specification of the relation
between structures of the source language and structures of the target
language using the concrete syntax of the corresponding DSVLs. The
transformation logic is part of the language
and does not have to be specified by the transformation developer.
%

Using the specialized graph-based transformation languages allows for a more
convenient definition of transformations to realize the introduced activities.
However, some of these transformations are more intricate and result in complex
transformation rules, even if the graph-based transformation languages tailored towards the DSVLs are
used.
For instance, model migration or verification may require the aggregation of
information, leading to the specification of rules that simulate a computation.
%
A solution for this problem is to consider the purpose of the transformation
as domain-specificity, leading to \texttt{Graph-based
Domain-Specific Model Transformation} languages. These languages
provide an additional auxiliary language tailored towards the domain of
computation.
%==

The highlighted parts of Fig.~\ref{fig:improve-modeltomodel} represent two of
my contributions. The light gray part represents a
technical contribution, i.e., the realization of existing approaches in our
meta-tooling suite \cinco{}. The dark-gray part represents my contribution
towards a new kind of model transformation languages.
My third contribution consists of the generator for graph-based domain-specific
visual languages.

\paragraph{1. Graph-based Model Transformation}
In graph-based model transformations,
rules are specified using graph patterns which relate to structures in the
source and target language, meaning that the target pattern is created if the
source pattern is present in the source model (cf.
Sect.~\ref{subsec:prelim:graphtransformation}).
The transformation language facilitates the specification of patterns using
the concrete syntax of the involved DSVLs, leading to more comprehensible
rules than, e.g., in an imperative textual approach. Users who are familiar
with the languages involved in the transformation, recognize the elements
used for pattern definition at first glance.
For instance, the transformations
depicted in Fig.~\ref{fig:graphtransformation-wslexample}
and Fig.~\ref{fig:wsl-transformation} specify similar rules, but the rules in
Fig.~\ref{fig:wsl-transformation} use the concrete syntax of the underlying
DSVL (cf. Fig.~\ref{fig:wsl-goldhunt}).
%Additionally, considering the abstract syntax of the DSVLs, the transformation
%language supports the development of transformation rules by, e.g., preventing
%patterns which describe model structures that do not conform to the abstract
%syntax (metamodel) of the corresponding DSVL. For instance, a transformation
%language for
%Place/Transition nets (Petri nets) would not allow to define a pattern which
%results in connecting two Place nodes or two Transition nodes, if the
%bipartite
%structure of a Petri net is specified in the DSVL's meta model.

The derivation of pattern languages for domain-specific languages is described
in, e.g., \cite{pub}{KuMSVW2009,HoRuWe2015}.
Thus, my first contribution is a technical one, which paved the way towards
graph-based transformation languages for DSVLs in \cinco{}.
Given a DSVL specification, a graph pattern language is generated which
satisfies the requirements described above. Furthermore, to execute a
transformation, the semantics of pattern matching and graph rewriting were defined by means of
translational semantics.
Pattern matching consists of finding sub-structures in a graph on which rewrite rules can be applied.
Thus, pattern matching relates to the graph isomorphism problem and constitutes a complex task.
To prevent the implementation of pattern matching algorithms for DSVLs, I
utilized the general-purpose graph
transformation tool \emph{Groove}. Groove facilitates the specification of
transformation rules for attributed typed graphs. To use Groove's capabilities,
the DSVL, its models, and the defined rules are transformed to Groove graphs.
%
\begin{itemize}
	\item The meta model of a DSVL is transformed to a type graph in Groove.
	\item The models expressed in a DSVL are transformed to host graphs in
	Groove, which are typed by the corresponding type graph.
	\item The rules are transformed to rule graphs in Groove, which are
	typed by the corresponding type graph.
\end{itemize}
%
I supervised the master thesis of Marius Feltmann~\cite{pub}{Feltma2018}, in
which he implemented a generator for graph-based transformation languages for DSVLs.
\ \\ \ \\
A drawback of transformation languages typed towards DSVLs is their
inflexibility. Each concept that does not belong to source or target language
has to be explicitly added as a new type in the transformation language.

For the computation required for the transformations described
in~\cite{pub}{KoLyNS2020},
several additional concepts are needed to model the components of an
interpreter. These concepts have to be represented by means of node and edge types.
Additionally, the
\emph{execution} of the interpreter has to be
specified using rules that only facilitate for graph rewriting. Thus, a
transformation developer is left alone with the specification of the
interpreter's execution by means of \emph{finding}, \emph{deleting}, and
\emph{creating} model elements.
Using these basic functionalities, the following aspects have to be specified
which introduce the complexity in the corresponding transformation rules.
\begin{itemize}
	\item Explicit modeling of runtime information: The computed data is represented by special data
	nodes
	and the current position in the input model is represented by, e.g., a special node type
	which refers to the current node using a dedicated edge type.
	\item Defining a computation step by finding the special edge representing
	the current position in the graph, deleting and creating it at the next
	position.
	\item Extending the transformation rules with new types that can be used to
	specify conditions determining when a computation should start or when it
	has	finished. This allows to realize a scheduling for the application of
	the actual transformation rules and
	thereby create elements in the target language at the correct moment.
	\item Definition of rules determining if a target element representing the
	current state of the computation was already created.
	\item Modeling of a global termination condition for the transformation.
\end{itemize}
%
I modeled the transformation incorporating these components using a
general-purpose graph transformation language. Some of the resulting rules are
represented in Fig.~\ref{fig:ws2kts-microrules-groove} and
Fig.~\ref{fig:ws2kts-groove-mergerule}. The complexity of the transformation
rules introduced by the computation is tremendous, although the needed concepts
are well-known and mastered in computer science.

%I present a transformation language to reduce the introduced complexity driven
%by the following design decisions:
%%
%\begin{itemize}
%	\item \emph{SOS-based Auxiliary Rules}: To handle needed computations for
%	a transformation, I introduce an auxiliary language based on Plotkin's
%	SOS.
%	It encapsulates the specification of individual computation steps
%	allowing to separate the computation rules from the rules that are
%	responsible for the creation of the target model.
%	
%	\item \emph{Additive Transformation System}:
%	Constraining the source and target pattern languages by preventing the
%	deletion of
%	elements in the target model, and preventing the deletion and creation of
%	elements in the source model, results in an additive transformation
%	system. With a proper identification of target elements, the transformation
%	can be executed until a fix-point is reached. Thereby, a transformation
%	developer does not have to explicitly specify a global termination
%	condition. Defining such a condition would require to enhance
%	transformation 	rules by
%	bookkeeping newly created elements and checking for their existence
%	before the application of subsequent rules.
%	
%	\item \emph{Separation of Source Language and Target Language}:
%	To focus on the constituents of a transformation and reduce the complexity
%	implied by
%	explicitly defining the relations between source, target, and computation
%	concepts in one representation the transformation language separates the
%	definition of source and target language pattern. Additional to the
%	separation of the computation concepts, this results in a modular
%	language.
%\end{itemize}
%%
%This design decisions are manifested in a two-level transformation language
%pattern,
%which is designed to support computations.
%===
%Some
%concepts are commonly used in graph-based model transformations and can be
%considered as a static part of the transformation language. \emph{Trace links}
%represent such a concept. They are used to identify the origin of a
%created element by connecting the new elements and its origin through a trace
%link which can be used to prevent a subsequent creation of the target element.

\paragraph{2. Graph-based Domain-Specific Model Transformation}
My second contribution is the definition of languages, that are used to
define computational transformations.
To overcome the problems introduced by modeling computation concepts by means
of node and edge structures, I considered the required concepts as
domain-specific aspects themselves and extracted the relevant parts in form of
the following design decisions.
%
\begin{itemize}
	\item \emph{SOS-based Auxiliary Rules}: To handle needed computations for
	a transformation, I introduce an auxiliary language based on Plotkin's
	Structural Operation Semantics (SOS)~\cite{pub}{Plotki1981}.
	It encapsulates the specification of individual computation steps
	allowing to separate the computation rules from the rules that are
	responsible for the creation of the target model.
	
	\item \emph{Additive Transformation System}:
	Constraining the source and target pattern languages by preventing the
	deletion of
	elements in the target model, and preventing the deletion and creation of
	elements in the source model, results in an additive transformation
	system. With a proper identification of target elements, the transformation
	can be executed until a fix-point is reached. Thereby, a transformation
	developer does not have to explicitly specify a global termination
	condition. Defining such a condition would require to enhance
	transformation 	rules by
	bookkeeping newly created elements and checking for their existence
	before the application of subsequent rules.
	
	\item \emph{Separation of Source Language and Target Language}:
	To focus on the constituents of a transformation and reduce the complexity
	implied by
	explicitly defining the relations between source, target, and computation
	concepts in one representation the transformation language separates the
	definition of source and target language pattern. Additional to the
	separation of the computation concepts, this results in a modular
	language.
\end{itemize}
%
These design decisions are manifested in a two-level transformation language
pattern, which is tailored to support computations.
The resulting languages provide specialized means for handling the computation
aspects as follows.
%
\begin{itemize}
	\item A two-level transformation language providing two types of rules,
	distinguishing between computation and transformation rules.
	\item The first rule type defining the relation between source and target
	language elements using pattern languages, restricted as described in the
	\emph{Additive Transformation System} design decision.
	\item The second rule type defining individual computation steps in the
	source 	model using SOS. Individual steps are specified by transitions
	between states that represent configurations of a computation.
\end{itemize}
%
Those languages allow for the specification of the actual transformation rules
in a declarative way, by relating source and target language elements. Even
the specification of computation steps is realized in a declarative way
by relating source language elements with SOS configurations.
Fig.~\ref{fig:ws2kts-clicktoscreen1} and Fig.~\ref{fig:ws2kts-mircorules1}
exemplify the transformation rules for the \webstory{} to KTS
transformation~\cite{pub}{KoLyNS2020}.
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=0.6\textwidth]{figures/ws2kts-clickToScreen.pdf}
	\caption{First-level rule defining the transformation of \webstory{}
		elements into states of a \kts{}.\label{fig:ws2kts-clicktoscreen1}}
\end{figure}
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=\linewidth]{figures/ws2kts-microrules.pdf}
	\caption{Second-level rules defining the aggregation of information in a
		\webstory{}.\label{fig:ws2kts-mircorules1}
		%	\todo[inline]{$ \sigma $ gehampel durch instanzen der textuellen sprachen
		%	ersetzen.}
	}
\end{figure}
%
The relation between source and target elements is described by the rule
in Fig.~\ref{fig:ws2kts-mircorules1}, where a source language pattern is defined in the upper part on
the left-hand side, a target language pattern in the lower part. The upper part on the right-hand side
represents the start and end configuration of a computation. This allows for
the definition of a start
configuration for the computation. The end configuration serves as basis for
the derivation of attribute
values for target language elements.
The computation steps are defined by the rules in
Fig.~\ref{fig:ws2kts-mircorules1}. Source language patterns are defined in the upper part, a transition
between two SOS configurations is defined in the lower part. Relations
between
source language elements and configurations are defined using identifiers.
The meaning of those rules is detailed in
Sect.~\ref{mt:generation}, but here I want to emphasize that none of these
rules require the explicit modeling of element deletion or
creation to simulate the computation aspects.

In contrast, Figure~\ref{fig:ws2kts-microrules-groove} shows the rules of
Fig.~\ref{fig:ws2kts-mircorules1} encoded in the general-purpose
graph-transformation tool \emph{Groove}.
%
\begin{figure}[tb]
	\centering
%	\begin{minipage}{0.45\textwidth}
		\centering
		\subfigure[]{
			\label{fig:ws2kts-groove-modifyvariable}
			\resizebox{0.3\textwidth}{!}{
			\input{figures/tikz/ModifyVariable.tikz}
			}
		}
%	\end{minipage}
%	\begin{minipage}{\textwidth}
		\subfigure[]{
			\label{fig:ws2kts-groove-conditiontt}
			\resizebox{0.3\textwidth}{!}{
				\input{figures/tikz/ConditionTT.tikz}
			}
		}
		\subfigure[]{
			\label{fig:ws2kts-groove-conditionff}
			\resizebox{0.3\textwidth}{!}{
				\input{figures/tikz/ConditionFF.tikz}
			}
		}
%	\end{minipage}
	\caption{Computational rules from the transformation shown in
		Fig.~\ref{fig:ws2kts-mircorules1} encoded in
		Groove:
		(a) \texttt{Modify Variable},
		(b) \texttt{ConditionTT}, and
		(c) \texttt{ConditionFF}. In the rules
		green elements will be created after rule application, blue
		elements are matched and deleted after rule
		application.\label{fig:ws2kts-microrules-groove}}
\end{figure}
%
Furthermore, Fig.~\ref{fig:ws2kts-groove-mergerule} explicitly models the
comparison of two KTS states.
%
\begin{figure}[tb]
	\centering
%	\subfigure[]{
		\label{fig:ws2kts-groove-mergestates}
		\resizebox{0.45\textwidth}{!}{
			\input{figures/tikz/MergeStates.tikz}
		}
%	}
	\caption{Rule for the identification and merging of equivalent KTS states.
	\label{fig:ws2kts-groove-mergerule}}
\end{figure}
%
This rule requires for advanced transformation concepts, such as the matching
of sub-graphs using quantified rules. The comparison mechanism is a
domain-specific
aspect of the two-level transformation language and has not to be addressed
explicitly by a transformation developer.

The rules represented in Fig.~\ref{fig:ws2kts-clicktoscreen1} and Fig.~\ref{fig:ws2kts-mircorules1} are
specialized towards the involved source and target languages and the purpose of the transformation.
Thus, for each combination of
source and target language, and the transformation's purpose, a dedicated two-level
transformation language is required. This leads to my third contribution.
%In~\cite{pub}{KoLyNS2020}, we present transformations
%which require the \emph{aggregation of information} to create elements of the
%target language. This demands for the extension of the transformation language
%by types which are used to model the
%aggregation process. The resulting transformation rules contained parts
%modeling an interpreter for the source language. They consisted of
%%
%\begin{itemize}
%	\item a node type referencing the current position in the input model
%	during the aggregation by an outgoing edge,
%	\item explicit data nodes to represent the memory component expressing the
%	configuration at runtime, and
%	\item a type describing the current phase of the transformation.
%\end{itemize}
%%
%I modeled the transformation using the general-purpose graph transformation
%language \emph{Groove}~\cite{pub}{Rensin2004} and observed that
%the definition of the actual transformation rules, i.e., the rules
%describing the relation of source and target language elements and
%even the definition of rules which specify the stepping through the
%source model are straightforward. However, the specification of the following
%aspects is quite complex:
%%
%\begin{itemize}
%	\item The representation of runtime information, i.e., the current memory
%	state.
%	\item Checking if an element was already created, since target elements are
%	derived depending on the information represented by the memory component.
%	\item The scheduling of the transformation's phase, i.e., determining if
%	target elements are created or the aggregation of information is still in
%	progress.
%\end{itemize}
%%
%Obviously, providing a transformation language that eases the development of
%the rules explained above reduces the complexity of the transformation and
%lets
%one focus on the actual problem to be solved.

\paragraph{3. Generation of Graph-Based Domain-Specific Model Transformation
Languages}
My third contribution is the definition of a generator for
the described two-level SOS-based transformation languages. It is
implemented under my supervision by Phillip Goldap in the context of his
master thesis~\cite{pub}{Goldap2019}.

The main task during the extraction of a generator for two-level transformation languages facilitating
the specification of rules as shown in
Fig.~\ref{fig:ws2kts-clicktoscreen1} and Fig.~\ref{fig:ws2kts-mircorules1}, is
the
generalization of concepts constituting the transformation language. Of course, this generalization
should not cause a loss of the domain-specific aspects described above.
In this process, I studied the constituents of the transformation and the interrelations between them.
Having identified the interrelations, I extracted the
information which entailed the interrelations and provided means to define this information on a higher
specification level, making the generation of two-level transformation languages
feasible.

Clearly, the constituents for a computational two-level transformation language are the source
language ($ L_{S} $), target
language ($ L_{T} $), and the SOS-based computation language ($ L_{C} $).
Fig.~\ref{fig:two-levelinterrelation} shows the interrelations between them.
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=0.45\textwidth]{figures/Two-Level-interrelation.pdf}
	\caption{Interrelation between the languages involved in a computational transformation.
	\label{fig:two-levelinterrelation}}
\end{figure}
%
\begin{itemize}
	\item \emph{Memory Initialization}: The auxiliary language facilitates the
	computation
	of information. The data that serves as the
	basis for the computation is defined in the source language. Therefore, a mapping from the source
	language to the data component of the computation language is required to initialize the memory
	for the actual computation.
	
	\item \emph{Semantics}: The required data for the transformation is not
	necessarily represented locally in a source
	model and has to be retrieved by traversing structures of the model. In
	combination with the memory initialization, the SOS-language has to be
	coupled with the source language to allow for the definition of the source
	language's semantics.
%	This is the domain-specific
%	aspect provided by the computation language. Therefore, the capability to
%traverse
%	structures has to be mapped to the source language.

	\item \emph{Data derivation}: Attribute values of target language elements can
	depend on information represented in
	the source model and the computed information provided by the auxiliary language. Therefore, a
	mapping from source and auxiliary language to the target language is required.
\end{itemize}
%
Analyzing these interrelations resulted in the observation that the major parts of the transformation
language can be generated, i.e., without the knowledge of the actual source and target language.

The two-level structure of the transformation language is static. The first rule type encapsulates the
\texttt{Data derivation}
between $ L_{S}, L_{C} $ and $ L_{T} $, the second one the \texttt{Semantics}
dependency between $
L_{S} $ and $ L_{C} $.
Furthermore, the structure of the individual rule types is also static. The interrelations between the
languages and the design decision to separate the source, target, and auxiliary language imply the
segmentation of the rule types.
The first rule type is divided into three parts: Source
language part, target language part, and computation part. The computation part is used to represent
the start configuration of a computation and its result (cf. Sect.~\ref{mtgen:twolevellanguage}).
The second rule type is divided into two parts. One allowing to define a traversal step using the
computation language and one for the definition of source language patterns.

The next observations consider the actual causes for the interrelations between the languages.
The means to define the \texttt{Semantics} interrelation between source and
computation language can
be generated independent of the actual source language. It is realized by using identifiers in both
languages to relate
corresponding elements. The extension of source language types by an attribute representing this
identifier is independent of the actual source language. Consequently, this feature can be added to the
specification of an arbitrary source language. The computation language's purpose is to ease the
traversal of structures, hence we assume the identification concept as part of the computation
language.

The \texttt{Memory Initialization} depends on the purpose of the transformation, and thereby on the
actual source language. Consequently, the transformation developer has to define which data of the
source model should be considered for the transformation before the transformation language can be
generated.

The \texttt{Data Derivation} depends on the source and auxiliary language (especially on its memory
component). Consequently, to derive required data for target elements, the memory initialization
has to be given.

To support the developer in the specification of these two interrelations, I
provide specification
languages tailored towards the concepts of source, target and computation language. I.e, these
languages ease the access to the concepts defined in the corresponding languages and support the
specification of their relations.

\section{Related Work}
The generation of transformation languages is researched for textual and visual DSL.
In~\cite{pub}{Weisem2012,HoRuWe2015}, the authors consider textual
domain-specific languages. They describe how transformation languages which
re-use
the concrete syntax of the base language can be automatically generated. In this
approach only one DSL is considered, yielding an endogenous transformation
language (cf. Sect.~\ref{prelim:categorization}).
For visual DSL, the authors in~\cite{pub}{KuMSVW2009,SyGrVa2013} describe the
(semi-)automatic generation of transformation languages, considering the
abstract and
static syntax of the involved DSLs. The pattern languages are derived from the
DSLs by relaxation, augmentation, and modification. The relaxation, e.g.,
decreases
lower bounds for references defined by the meta model of the DSL to 0, and changes
abstract types to concrete ones, to prevent the enumeration of all
possible concrete sub types in a transformation rule.
The augmentation adds attributes to types allowing for their identification and
adds concepts which do not belong to the DSLs in form of \enquote{generic nodes
and links}.
The modification changes all attribute types to \enquote{constraints} and
\enquote{actions} to specify constraints on pattern elements or derive element values.

The need for model transformations for specific purposes was already recognized
by several researchers.
Agrawal et al. describe in~\cite{pub}{AgKNSV2006} a possible design of model
transformation
languages. They use the concrete syntax of UML class diagrams to specify rule patterns.
Cuadraro proposes in~\cite{pub}{Cuadra2012} to realize transformations by
families of transformation languages. Thereby, the individual languages should
be designed to provide relevant features to realize a specific aspect or task of the
desired transformation. The main focus of this research is the composition and interoperability of the
involved languages. The composition of transformation languages creates a new transformation
language, the interoperability defines how to process transformation results gained by applying
individual transformations of the transformation family.
This approach resembles Language-Driven Engineering
(LDE)~\cite{pub}{StGoNM2019}, in which several DSLs are employed allowing to
involve stakeholders from different domains
in the system's development process. The interplay between the DSLs is realized
in a
service-oriented fashion. Changing the purpose from \enquote{systems} to
\enquote{transformation languages} and providing DSLs capturing different tasks
of transformation language development facilitates their development in a
similar
fashion as described by Cuadraro.

In~\cite{pub}{SyGrVa2013} and~\cite{pub}{SyVaLa2015}, Syriani et al. present
the
Transformation Core (\emph{T-Core}) framework. In~\cite{pub}{SyrVan2010},
Syriani and Vangheluwe identified a set of primitive constructs needed to
develop model transformation languages and encapsulated them in the T-Core
framework. For instance, \emph{Matcher} and \emph{Rewriter} provide interfaces
to define preconditions and rewrite rules, which can be combined to
transformation rules.
Using T-Core, a transformation language can be realized by implementing the
primitive constructs. Each construct defines how a matching is computed, in
which order a set of matchings is processed, or how conflicts between rewrite
rules should be resolved.

To the best of my knowledge, the existing graph-based transformation approaches
hold on to the traditional rule definition style of left-hand side and
right-hand side pattern specification. All further aspects are handled
specifically
by, e.g., rule scheduling definitions, or by falling back to imperative
textual specifications (hybrid approaches).

\section{Organization of this Thesis}
Section~\ref{intro:contextofpublications} describes the context of the
attached publications. In Chapter~\ref{background}, I describe the technical
framework in which the transformation languages were implemented
(Sect.~\ref{subsec:premlim:cinco}), the DSVL used to exemplify the generation
of a two-level transformation language~(Sect.~\ref{subsec:prelim:webstory}),
and briefly explain the concepts of
model and graph transformations and exemplify graph transformations by means of
a transformation for the \webstory{}
language~(Sect.~\ref{sec:prelim:modeltransformations}).
Chapter~\ref{mt:towardsgraphbasedtransformationsincinco} describes the need
for graph-based domain-specific transformation languages by listing several
projects in which the semantics definition, model migration and model
co-evolution, and validation and verification are realized using model
transformations (Sect.~\ref{mt:examples}). The improvements towards
domain-specific transformation languages are described in
Sect.~\ref{mt:motivation} concluding with graph-based transformation languages
for DSVL.
Chapter~\ref{mt:generation} describes my second and third contribution, i.e.,
the two-level transformation language pattern and the generation of two-level
transformation languages. Thereby, Sect.~\ref{mtgen:twolevellanguage}
recapitulates the pattern for two-level
transformation languages and explains the link to Plotkin's SOS. The
generation of two-level transformation languages is described in
Sect.~\ref{mtgen:twolevellanguage:generation}.

%\section{My Contribution}
%In this section, I present my contributions alongside the following activities
%required during the development of DSVLs with \cinco{}:
%\begin{itemize}
%	\item \emph{Semantics definition}: Given the abstract and
%	concrete syntax of a \cinco{}
%	product specified in \mgl{} and MSL, respectively, the developer has to
%	define
%	the semantics of the language. For this purpose, model-to-text and
%	model-to-model transformations are applied (cf.
%	Sect.~\ref{sec:modelsemantics}).
%	\item \emph{Model Migration and Model Co-Evolution}: Changing a \cinco{}
%	product's 	specification entails the problem of model migration. This
%	problem was targeted by Till Schallau in his
%	master 	thesis~\cite{pub}{Schall2019}. He (semi-) automatically generates
%	transformation rules to repair the conformance relations between models
%	and the DSVL (cf.
%	Sect.~\ref{sec:modelmigration}).
%	\item \emph{Verification}: The application of model checking on DSVL
%	models is not possible without previously transforming them into an
%	appropriate input format for a 	model checker
%	(cf. Sect.~\ref{sec:modelvalidation}).
%\end{itemize}
%\todo[inline]{Warum diese activities. Einsatz der Transformationen genau
%erklären.
%Erlärungen aus dem zugehörigen Kapitel hier rein?}
%The right-hand side of Figure~\ref{fig:improve-modeltomodel} shows the
%developed
%approaches to tackle the needs for model transformations in \cinco{}.
%%
%\begin{figure}[tb]
%	\centering
%	\includegraphics[width=\textwidth]{figures/DSTL-PathToSimplicity.pdf}
%	\caption{Categorization of model-to-model transformation development
%		methods in the context of \cinco{}.
%		\label{fig:improve-modeltomodel}}
%\end{figure}
%%
%Sect.~\ref{subsec:improve-modeltomodel} details all parts of
%Fig.~\ref{fig:improve-modeltomodel}, but here I focus on my contribution.
%The highlighted parts represent the approaches which are described in this
%thesis.
%%The \texttt{\cinco{}-Generated API} is detailed in Michael Lybecait's Ph.D.
%%thesis~\cite{pub}{Lybeca2019}.
%For DSVLs, we want to provide transformation languages, which follow the
%simplicity
%approach. Transformations created using these languages should be easy to
%understand and the languages should not demand for a long familiarization
%phase.
%Ideally, users of a DSVL with no technical background like programming skills
%should be
%able to create model transformations using the transformation languages.
%To meet this requirements, DFS is applied to the domain of model
%transformation
%languages for DSVL.
%
%Transformations like webstory to kts can be modeled by GP-transformation
%language,
%but it is not easy. The runtime information has to be explicitally modeled in
%a graphical
%way.

%Graph-based model transformations are promoted as an intuitive way of model
%refinements and model translations in Model-Driven Engineering
%(MDE)~\cite{pub}{StVoEH2007}. Generally, model transformations are studied by a
%scientific
%community, yielding plenty of tools~\cite{pub}{KBCDV2018}.
%In~\cite{pub}{SyGrVa2013,Weisem2012}, model transformations were also studied
%in
%the
%context of domain-specific (graph-based) languages.
%In this thesis, I show how graph transformations are employed in the context of
%domain-specific visual languages, by describing the three
%contributions of this thesis.

%\paragraph{Graph-based Model Transformation}
%The first contribution is the introduction of graph-based model transformation
%languages for DSVLs. To satisfy the requirements described above, the
%transformation
%language should respect the specialization of the languages involved in the
%transformation, i.e.,
%\begin{itemize}
%	\item the concrete syntax should be used to define transformation rules,
%	\item
%\end{itemize}
%
%For each source and target language combination: New transformation language!
%The typing of DSVL poses a big problem. Concepts like traceability links are
%already
%"domain-specific" since they are not part of source and target languages.
%
%In
%contrast to general-purpose modeling languages, DSVL are strictly typed.
%To facilitate graph-based
%transformations, one has to either abandon the domain-specificity of the
%underlying language and use a general-purpose graph transformation tool, or
%provide specialized transformation tools supporting
%the creation of transformations using the DSVL's concepts.
%%
%\begin{itemize}
%	\item[$ 1. $] I show how specialized transformation languages for DSVLs are
%	generated, reusing the language's concrete syntax and respecting (with some
%	relaxations) the defined abstract syntax and static semantics.
%\end{itemize}
%%
%Due to the specialization towards a DSVL, the generated transformation
%languages do not allow for the use of types which do not belong to the DSVL.
%Consequently, concepts used in general-purpose graph transformations, such as
%traceability links or other useful structures can only be used by extending
%the
%transformation language.
%\begin{itemize}
%	\item[$ 2. $] I describe a computation structure which is used in graph
%	transformations for the aggregation of information. This idea is
%	extracted in a visual two-level transformation language
%	pattern for transformation languages that allow for a declarative
%	definition of transformation rules and a declarative definition of the
%	incorporated computation.
%\end{itemize}
%The pattern for two-level transformation languages has to be instantiated by
%the transformation's source and target DSVL. Manually instantiating a
%two-level language by implementing it by hand is not a solution.
%\begin{itemize}
%	\item [$ 3. $] I show how two-level transformation languages can be
%	generated for different kinds of source and target DSVLs with a minimal
%	effort for the transformation language developer.
%\end{itemize}
%%
%The third contribution represents the main contribution of this thesis and
%therefore is detailed in Chapter~\ref{mt:generation}
%The focus
%lies on the generation of graph-base transformation languages. More precisely,
%given the specification (meta model) of a DSVL, tailored transformation
%languages for the DSL, reusing its concrete syntax.

%The main contribution is the introduction of a pattern for
%the generation of language-to-language transformation languages targeting
%model
%transformations involving computations.

\section{Context of Attached Publications}
\label{intro:contextofpublications}
This section gives an overview of the publications belonging to this cumulative
dissertation. They exemplify the application of domain-specific approaches in several
areas. At a meta-level the domain-specific approach is applied to the domain
\enquote{development of domain-specific visual
languages}~\cite{pub}{NaLyKS2017}
yielding the \cinco{} language workbench. \cinco{} is used to develop domain-specific
modeling languages (\cinco
{} products)~\cite{pub}{BFKLNN2016,LKZFNS2018} and specifically tailored
transformation languages~\cite{pub}{KoLyNS2020,LyKoSt2018}.

\subsection*{CINCO: A Simplicity-Driven Approach to Full Generation of
Domain-Specific Graphical Modeling Tools}
This paper introduces the \cinco{} meta tooling suite. \cinco{} constitutes the
foundation of this thesis by providing a fully functional generation of
domain-specific graphical modeling tools from abstract specifications
described using a text-based DSL. It
provides a technical framework to realize all ideas presented in this thesis in
the context of DSVL.
The motivation for the development of \cinco{} -- the desire for
domain-specific, full-generation, and service-orientation -- quickly
expanded
on the accompanying tasks such as the
realization of code generators, definition of specific DSVL functionalities
which can not be expressed using \cinco{}'s specification languages, and model
transformations for the considered DSVL. This desire has driven my research
towards the concepts and tools easing the definition of solutions to accomplish
the mentioned tasks and resulted in the transformation languages presented in
this thesis.

\subsection*{A Tutorial Introduction to Graphical Modeling and Metamodeling
with
CINCO}
This paper shows the capabilities of \cinco{} using a simple educational
example language called \webstory{}. The specification and extension of the
\webstory{} language is described using the \emph{Graphical \cinco{}
Specification} language
(GCS)~\cite{pub}{Fuhge2018}, which is a \cinco{} product (a DSVL) facilitating
a WYSIWYG-driven definition of \cinco{} product specifications. Using the GCS
language for the development of \cinco{} products enables the application of
the concepts presented in this thesis, i.e., graph-based domain-specific model
transformation languages, on a higher meta-level, i.e., for \cinco{} product
\emph{specifications}. Consequently, for
instance, required preprocessing steps on \cinco{} product specifications for
\cinco{}'s code generator can be defined in an declarative way.

\subsection*{DIME: A Programming-Less Modeling Environment for Web Applications}
%\ \\ \ \\
The \emph{DyWA Integrated Modeling Environment} (\dime{}) is the largest \cp{} developed thus far. It
is used for modeling of
single-page web-applications providing three languages for \emph{data}, \emph{user interface}, and
\emph{business process} modeling.
During the development of \dime{} the need for mechanisms
supporting activities
such as model migration, model co-evolution, and model-checking arose, which
motivates the research towards model transformations as a possible solution.

The development of \dime{} establishes an additional way for the semantics
definition of new DSVLs. The concepts presented in this thesis can be used to
define languages' semantics by means of translational semantics, i.e.,
transformations between new DSVLs and \dime{}.

\subsection*{Design for 'X' Through Model Transformation}
%\ \\ \ \\
The first ideas of the two-level transformation language are introduced in
this paper. It motivates transformations as main tool to achieve
\emph{X-by-Construction}, a generalization of
\emph{Correctness-by-Construction}. Properties, 'X', are
learnability, performance, and model-checkability.

\subsection*{Towards Language-to-Language Transformation}
%\ \\ \ \\
This paper is the extension of~\cite{pub}{LyKoSt2018}. It presents the
the connection of \cinco{} models to the algebraic graph transformation
approach. It describes the model transformation needed for verification and
compares the two-level transformation language with the traditional graph
transformation approaches.

\chapter{Background}
\label{background}
This dissertation targets the practical scope of software development, i.e.,
model-driven engineering and model transformations.
The ideas presented in this thesis are independent from a concrete technical
framework, but of course are also implemented. In this chapter, I present the
technologies used as the basis for the realization and introduce the relevant
languages and formalism to get a basic understanding for the topics addressed
in this thesis.

\section{\cinco{} Meta Tooling Suite}
\label{subsec:premlim:cinco}
In DSM, for every problem domain a DSVL is required. Instead of implementing
the
DSVL manually, language
workbenches~\cite{pub}{Fowler2005} are used. These are specialized tools
supporting the construction of DS(V)Ls, and thereby help to reduce their
development costs.

The \cinco{} meta-tooling suite is the result of applying the
Domain-specificity, Full code generation, and Service-orientation
(DFS)~\cite{pub}{Naujokat2017} approach to the domain
\enquote{development of graphical domain-specific visual languages}.
Figure~\ref{fig:cinco-concept}
shows an abstract overview on the artifacts incorporated in the development of
\cinco{} and DSVLs developed using \cinco{} (called \cp{}s).
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=\linewidth]{figures/generatedArtifacts.pdf}
	\caption{High-level view on
	\cinco{}~\cite{pub}{NaLyKS2017}.\label{fig:cinco-concept}}
\end{figure}
%
\cinco{} is build on the basis of \emph{Eclipse}~\cite{web}{wwweclipse}
technologies, mainly the \emph{Eclipse Modeling Framework}
(EMF)~\cite{pub}{StBuPM2008}
and \emph{Xtext}~\cite{web}{wwwxtext}. EMF is an implementation of the
\emph{Meta
Object Facility} (MOF)~\cite{web}{wwwmof}, a standard defined by the
\emph{Object Management Group}
(OMG)~\cite{web}{wwwomg} for the realization of modeling languages. EMF
facilitates the creation of (meta)
models using \emph{Ecore}. On the basis of Ecore (meta) models, textual
languages are developed using Xtext. The abstract and
concrete syntax of a DSL is represented by Ecore meta models and Xtext
grammars, respectively.

\cinco{} provides the \emph{Meta Graph Language} (\mgl{}) and \emph{Meta Style
Language} (\msl{}) for abstract and concrete syntax specification of
graph-based visual modeling languages. Both languages are realized using
Ecore and Xtext and thereby conform to Ecore's meta model
(cf. Fig~\ref{fig:cinco-concept} \texttt{\mgl{}.ecore} and \texttt{Style.ecore}
conform to \texttt{Ecore.ecore}).
In Figure~\ref{fig:cinco-concept} the \emph{\cp{} Developers} level exemplifies the
realization of a DSVL on the basis of Petri nets~\cite{pub}{Murata1989}. The
\texttt{PetriNet.mgl} and
\texttt{PetriNet.style} define the abstract and concrete syntax for Petri nets.
The specifications conform to \texttt{\mgl{}.ecore} and \texttt{Style.ecore} and
serve as input for the \emph{\cp{} generator}, which generates a
fully functional modeling tool on the basis of Ecore and
\emph{Graphiti}~\cite{web}{wwwgraphiti}. Models created by the generated
modeling
tool (cf. \texttt{BusStop.pn} on the \emph{\cinco{} Product Users} level) conform to
the
Petri net meta model (\texttt{PetriNet.ecore}).

%A DSVL specification consists of two descriptions (cf. \emph{PetriNet.mgl} and
%\emph{PetriNet.style} on \cp{} Developers) conforming to the \emph{Meta
%Graph Language} (\mgl{}) and the Meta Style Language (\msl{}), respectively.
%\mgl{} and \msl{} are textual domain-specific languages developed using
%Xtext~\cite{web}{wwwxtext}. Their abstract syntax
%is defined in Ecore, the meta modeling language of
%EMF. Thus, \emph{MGL.ecore} and \emph{Style.ecore} (cf. \emph{\cinco{}
%Developers} level in Fig.~\ref{fig:cinco-concept}) in turn conform to the
%\emph{Ecore.ecore} metamodel
%(\emph{Eclipse Developers} level). The MGL and MSL, in turn
%are used to define the abstract and concrete syntax of a DSVL. Thus, the
%\emph{PetriNet.mgl} and
%\emph{PetriNet.style} conform to the MGL.ecore and MSL.ecore. The
%\emph{\cinco{} Product
%Generator} takes the MGL and MSL specification of the Petri net language and
%generates the \emph{\cinco{} Product} (CP), i.e. a fully functional graphical
%modeling language for Petri nets (cf. \emph{\cinco{} Product Developers}
%level). Models created with this CP conform to the
%generated \emph{PetriNet.ecore} metamodel.

The main specification constructs in \mgl{} are \emph{node} and \emph{edge}
types, which are defined in a dedicated \emph{graph model} type.
Additionally, \cinco{} provides the notion of \emph{container} types which can
in turn contain node and container types. Furthermore, one can
specify \emph{user defined} types and \emph{enumerations}. Types can contain
primitive attributes, e.g., Integer, Boolean, String or
complex attributes, e.g. a user defined types (compositions of primitive
attributes and types), enumeration, or other
node, edge, and container types.
In \cinco{}, service orientation is realized by \emph{prime references}.
A prime reference points to an instance of a previously defined
type.\footnote{Additional to types defined with \cinco{}, prime references can
refer to arbitrary types conforming to Ecore's meta model.}
To define the concrete syntax (visual appearance of elements specified in an
\mgl{} model) of a DSVL, the MSL is used. The main elements are
\emph{nodeStyle}s
and
\emph{edgeStyle}s. The former are used to define a (hierarchical)
representation using geometric figures, e.g., \emph{ellipse}, (\emph{rounded})
\emph{rectangle}, \emph{polygon}, \emph{text} and \emph{image} elements. The
latter specify the appearance of edges, i.e. attributes like line style, line
width etc. Edges can be decorated by specific elements to allow for, e.g. the
labeling of edges.
For detailed information on \cinco{} we refer the reader
to~\cite{pub}{NaLyKS2017,LKZFNS2018,Lybeca2019}.

\section{The \webstory{} Language}
\label{subsec:prelim:webstory}
To present the capabilities of \cinco{} we developed the \webstory{}
language.
In workshops we want to teach students the advantages of model-driven
development and domain-specific languages, wherefore the \webstory{} language
is easy to understand and intentionally uses only a small set of different
types. It
facilitates the creation of web-based point\&click adventure games providing
modeling
elements such as \screen{}s, \clickArea{}s, \textArea{}s, \condition{}, and Boolean
\variable{}s which can be modified using \modifyVariable{} nodes.
Fig.~\ref{fig:wsl-goldhunt} shows a model of an adventure in which
the player has to find a key to get hold of a treasure.
%
\begin{figure}
	\centering
	\includegraphics[width=\textwidth]{figures/wsl-goldhunt.pdf}
	\caption{A \webstory{} language model, representing a small gold-hunt
		adventure from~\cite{pub}{KoLyNS2020}.\label{fig:wsl-goldhunt}}
\end{figure}
%
The typing of nodes (and containers) is given as follows:
\begin{itemize}
	\item \texttt{1-6} are \screen{}s,
	\item \texttt{A-H} are \clickArea{}s,
	\item \texttt{c, c1} are \condition{}s,
	\item \texttt{m, m1} are \modifyVariable{}s,
	\item \texttt{v, v1} are \variable{}s,
	\item \texttt{a} is a \startmarker{} and
	\item \screen{} 3 contains a \textArea{}
\end{itemize}
Furthermore, the edges are typed as follows:
\begin{itemize}
	\item Outgoing edges of \clickArea{} nodes are \transition{}s,
	\item outgoing solid edges of \condition{} nodes are \ttransition{}s,
	outgoing dashed
	edges are \ftransition{}s, and
	\item gray edges, e.g. \texttt{m$ \rightarrow $v1} (writing) and \texttt{v1$
	\rightarrow $c1} (reading), are \data{} edges.
\end{itemize}

\section{Model Transformations}
\label{sec:prelim:modeltransformations}
Kleppe et al. provide in~\cite{pub}{KlWaBa2003} the following definition of
model
transformations:

\enquote{A transformation is the automatic generation of a target model from a
	source model, according to a transformation definition. A transformation
	definition is a set of transformation rules that together describe how a
	model
	in the source language can be transformed into a model in the target
	language.
	A transformation rule is a description of how one or more constructs in the
	source language can be transformed into one or more constructs in the
	target
	language.}

With the introduction of model-driven engineering approaches a need for model
transformations has arisen. For instance, in MDA model refinement is
applied to transform Platform Independent Models (PIMs)
to Platform Specific Models (PSMs) eventually resulting in a full-fledged
implementation.
Tom Mens justifies the need of model transformations
listing eight activities in MDE which require
\enquote{languages, formalisms, techniques, processes, tools and standards that
support model transformations}~\cite{pub}{Mens2013}. \enquote{Model migration
and
co-evolution} and
\enquote{Model checking, verification and validation} are two of these
activities
which we use as motivation in~\cite{pub}{LyKoSt2018,KoLyNS2020}.
Regarding the definition of Kleppe et al.
%, which was generalized by Mens and Van Gorp in~\cite{pub}{MenGor2006} to
%allow for
%multiple source and/or target models,
it is not surprising that various approaches emerged to support model
transformations. In~\cite{pub}{MenGor2006,CzaHel2006}, the authors propose
several
categories to classify existing model transformation approaches.
In~\cite{pub}{KBCDV2018},
Kahani et al. identified 60 model transformation tools.\footnote{The 	authors
consider
Model-to-Model and Model-to-Text transformation tools.}
They classified them regarding, i.a., the type of transformation rule specification.
Among the 60 tools, 15 are graph-based. The
categories into which the tools are classified have a large overlap with
the categories identified in~\cite{pub}{CzaHel2006,MenGor2006,Mens2013}.

In this section, I will give a brief overview of the categorization, that has
driven my research in this area. Afterwards, I briefly recapture graph
transformations, to provide a basic understanding for the
ideas presented in this dissertation.

\subsection{Categorization of Model Transformations}
\label{prelim:categorization}
%After his diploma thesis, Michael Lybecait developed the Meta Graph Language
%(MGL), which is used to specify the abstract syntax of a domain-specific
%visual
%language. The details of the development of the MGL (and other DSL used in
%\cinco{}) can be found in his dissertation~\cite{pub}{Lybeca2019}.
%During my master thesis~\cite{pub}{Kopetz2014} I developed the
%MSL, a domain specific language which allowed for the specification of the
%visual appearance of types defined in the MGL. Thus the first model
%transformation Michael and I knowingly developed, were the generators for our
%DSLs. I developed a Java code generator, whose code was an implementation of
%the \emph{Graphiti}~\cite{web}{wwwgraphiti} API producing a graphical
%modeling tool based on the Eclipse IDE~\cite{web}{wwweclipse}. The MGL
%generator
%produced an Ecore~\cite{web}{wwwemf} meta model which was used as AST for
%the
%specified \cp{}.

\paragraph{Endogenous vs Exogenous}
A model transformation is categorized depending on the source and target
language(s). An \emph{endogenous} transformation
transforms models within the same language.
A typical example for an endogenous transformation is refactoring: A model is
transformed to meet syntactical properties without changing its behavior.
A transformation between different languages is \emph{exogenous}.
The transformations given in~\cite{pub}{KoLyNS2020}, from the
\webstory{} language to the language of Kripke Transition Systems
(KTS)~\cite{pub}{MuScSt1999} is exogenous.

\paragraph{In-place vs Out-place}
An \emph{in-place} transformation is executed within the same model, whereas an
\emph{out-place} transformation creates a new target model. A typical example
of in-place transformations is refactoring, where the model is usually updated
in-place to meet particular syntactic conditions. The compilation process is a
typical out-place transformation. The source code of a high-level programming
language is transformed to assembler. Thereby, the source model is not altered,
but a new model is created.

\paragraph{Rule Definition}
Transformation rules describe how constructs in the source language are
transformed to constructs in the target language.
They can be specified in different ways. For instance, a model
can be represented internally and \emph{directly manipulated} using an API.
This way,
transformation rules are implemented in a high-level programming language
and executed in the context of an imperative transformation implementation.
I.e., the transformation developer describes \emph{how} to transform models and
not \emph{what} should be transformed.

More specialized transformation languages provide means to specify rules
focusing on the relationship between
elements of the source and target model. The \emph{Atlas Transformation
	Language} (ATL)~\cite{pub}{JoAlBK2008} is a textual DSL for model
	transformations. The
language supports declarative rule specification with the possibility to
include imperative parts.

Rules in model-to-text transformations are usually specified using a dedicated
template-based language, instead of programming string concatenations directly
in e.g. Java. Templates consist of static and dynamic parts. The static parts are
independent from the source model and
describe, e.g., the constant text in a class definition. The dynamic parts
define the traversal and value evaluation of the source model.

For model-to-model transformations in MDE, a
natural way to specify transformation rules
is to use a graph-based approach. Graph transformations are detailed in the
following section.

\subsection{Graph Transformations}
\label{subsec:prelim:graphtransformation}
In model-driven engineering, graph transformations are suggested as the natural
choice for the specification of model transformations.
Ehrig et al. provide in~\cite{pub}{EhErGH2015}
a mapping for notions between meta modeling and the algebraic graph terminology,
implying a strong interrelationship between both areas.
A graph transformation consists of a set of transformation rules, where a rule
is defined by a \emph{Left-Hand Side} (LHS) and a \emph{Right-Hand Side} (RHS)
graph. The LHS and RHS of a rule represent graph \emph{patterns}.
Given an input graph, a rule is applied by searching the pattern defined in the
LHS of the rule in the input graph and replacing the LHS by the RHS. Finding the LHS in
the input graph is called \emph{matching}. The occurrence of
nodes in the LHS and/or the RHS defines the following meaning. A node is
\begin{itemize}
	\item created, if it is not in the LHS, but RHS of the rule,
	\item deleted, if it is in the LHS, but not in the RHS of the rule,
	\item matched, if it is in LHS and RHS of the rule.
\end{itemize}
In practice, a more accurate control of rule application is desired. Therefore,
rule application conditions are used, e.g., constraints for type
attributes or \emph{Negative Application Condition} (NAC).
A rule is applicable, if
the LHS is matched in the input graph, the defined conditions are satisfied by the
match and the structure described in the NAC is not matched in the input graph.

I exemplify graph transformations specifying two transformation rules based on
the \webstory{} language. The transformation's purpose is to make a story
\enquote{traceable}. After a \screen{} node is visited more than once, a
\emph{Text} element showing the String \enquote{Visited} should be displayed.
Figure~\ref{fig:graphtransformation-wslexample} shows the transformation rules
modeled in Groove~\cite{pub}{Rensin2004}.
Please note, that Groove is a general-purpose graph transformation tool. Hence,
the
types in the rules for the \webstory{} transformation are not defined using the
concrete syntax of the \webstory{}
language, but using a generic one. Node types are displayed in bold
font inside the nodes.
In addition, Groove does not comprise the concept of \emph{Container}
types. Consequently, containment is expressed by a \enquote{contains}-labeled
edge, pointing from the container to the contained element.
In Groove, rules are not specified explicitly in LHS, RHS, and NAC, but in one
representation using a color encoding to express the membership of elements to
LHS, RHS, and NAC. Let $ e $ be a node or an edge type, then the affiliation of
$ e $ to LHS, RHS, an NAC is represented as follows.

\[\input{figures/tikz/RuleTypes.tikz}\]
The names used in Groove for the rule types are depicted above their graphical
representation (\textit{Creator, Eraser, Embargo, Conditional Create}).
%If an element $ e $ is represented by
%\begin{itemize}
%	\item solid black lines then $ e\in \textit{LHS} \wedge e \in \textit{RHS}
%$ (match)
%	\item dashed blue lines then $ e\in \textit{LHS} \wedge e \notin
%\textit{RHS} $
%	(delete)
%	\item solid green lines then $ e\notin \textit{LHS} \wedge e \in
%\textit{RHS} $
%	(create)
%	\item dashed red lines then $ e \in \textit{NAC}$ (forbid)
%\end{itemize}
%
%
\begin{figure}[tb]
	\centering
\begin{minipage}{\textwidth}
	\centering
	\subfigure[]{
		\label{fig:graphtransformation-wslexample1}
		\resizebox{\textwidth}{!}{
		\input{figures/tikz/WebStoryExample1.tikz}
		}
	}
\end{minipage}
\begin{minipage}{\textwidth}
	\centering
	\subfigure[]{
		\label{fig:graphtransformation-wslexample2}
		\resizebox{\textwidth}{!}{
		\input{figures/tikz/WebstoryExample2.tikz}
		}
}
\end{minipage}
	\caption{\enquote{Traceability} transformation of a \webstory{} model
	specified in two rules. Rule (a)
	creates the required logic structure, Rule (b)
	 updates the control flow.
		\label{fig:graphtransformation-wslexample}}
\end{figure}
%
The rule depicted in Fig~\ref{fig:graphtransformation-wslexample1} creates a
\screen{} node if no \screen{} with the same \texttt{backgroundImage}
exists,
and adds a \textArea{} element to the newly created \screen{} node. The
\textArea{} element's value is set to \enquote{Visited}. Additionally, the
rule creates a \variable{}, \modifyVariable{}, and \condition{} node and
connects them in the following way. If the \screen{} node was not visited yet
(the \variable{} node's value equals \texttt{false}) the \ftransition{} edge
defines the next node in the control flow. Thus, the \variable{}
node's value is set to \texttt{true} by the \modifyVariable{} node and in the next step
the original \screen{} node is displayed. Reaching the created \condition{} a second
time
will result in displaying the \screen{} node containing the \textArea{} element.
The second rule (cf. Fig.~\ref{fig:graphtransformation-wslexample2}) redirects
an incoming \transition{} edge of the original \screen{} node to the
\condition{} node, by deleting the original \transition{} edge (dashed blue)
and creating a new \transition{} edge connecting the source node of the original
transition and the \condition{} node. Furthermore, for \clickArea{} nodes in
the original \screen{} node, a \clickArea{} in the new \screen{} node is
created and connected to the same target.

%\paragraph{Rule Application Control}
%In general, graph transformations are not confluent. This results from the
%non-determinism of transformation rules, where several rules may be applicable
%in one situation. The applied rule may be relevant
%for the outcome of the transformation. Therefore, some transformations tools
%provide means to control the execution of rules. For instance,
%\emph{AtomPM}~\cite{SyGrVa2013} rules can be scheduled using a
%graphical-modeling language. In \emph{Groove}~\cite{Rensin2004},
%transformation
%rules can be classified in different priority groups. Furthermore, it provides
%an textual control language for rule scheduling.

\chapter{Towards Graph-Based Model Transformations in the \cinco{}
Framework}
\label{mt:towardsgraphbasedtransformationsincinco}
As described by Mens in ~\cite{pub}{Mens2013}, model transformations are used
for
several activities in MDE. These activities comprise
\emph{semantics definition}, \emph{model migration and model
co-evolution}~\cite{pub}{HeBeJu2009,CiRuEP2008}, and \emph{validation and
verification}. They arise during the development of \cinco{} and \cinco{}
products, therefore they are the main
motivation for the development of transformation languages in this context.
The individual activities are characterized as follows.
%\todo[inline]{Die Punkte verwenden, anstatt Inhalt aus den paragraphen}
%\begin{itemize}
%	\item \emph{Semantics definition}: Quite early in the development phase
%	of
%	DSVLs a semantics definition for the language is required. Given the
%	abstract and concrete syntax of a DSVL, one has to provide the meaning
%	of
%	models expressed in this language. Therefore, model transformations are
%	used to transform the language's models to a semantic domain by
%	translating
%	them into programs in, e.g., a high-level programming language, or
%	to models expressed in a DSVL with an existing semantics
%	definition.
%	
%	\item \emph{Model Migration and Model Co-Evolution}: Models expressed
%	in a
%	DSVL conform to the meta model (abstract syntax) specified by the DSVL.
%	Since DSVLs define a restricted design space, e.g., the abstract and
%	concrete syntax is tailored towards a specific domain, even small
%	changes
%	in their meta model can invalidate this conformance. Model
%	transformations
%	can be used to describe rules by which the conformance of invalidated
%	models can be repaired. These rules describe how types of the old meta
%	model relate to types of the modified one.
%	
%	\item \emph{Validation and Verification}: Even if models conform to the
%	meta model of a DSVL, it is not guaranteed that the models represent
%	reasonable solutions or satisfy desired properties posed to a solution.
%	The
%	design space of a DSVL can be further restricted towards reasonable
%	solutions by validating the static
%	semantics of a language. For instance, undesired loops in the control
%	flow of a DSVL can be identified by defining a pattern representing the
%	loop. The transformation engine can be used to find the pattern in
%	the models.
%	
%	To verify desired properties of a solution, one can use existing formal
%	verification method and thereby benefit from various advantages
%	resulting
%	of the conducted research in that area. Those verification methods
%	require
%	their input models to conform to a specific format (meta model).
%	Generally,
%	DSVLs do not satisfy this requirement. Consequently their models have to
%	be
%	transformed to models conforming to a language which is suitable for the
%	verification tool.
%\end{itemize}

\paragraph{Semantics Definition}
In programming language theory, the semantics of a programming language defines
the meaning of programs written in the corresponding language. Plotkin
described the semantics of the \emph{While} language by rules
defined in Structural Operational Semantics~\cite{pub}{Plotki1981}. The meaning
of a \emph{While}-program is its effect on an initial memory configuration.

\paragraph{Model Migration and Model Co-Evolution}
The conformance relation between models and their meta
model~\cite{pub}{Bezivi2005} can be destroyed
by changes made to the meta model~\cite{pub}{Favre2005}. It is repaired by
migrating
the models to conform to the modified meta model. The required model changes
can be specified by model transformations. For some meta model changes
the
corresponding models can be co-evolved, i.e., the transformations repairing the
conformance can be automatically generated.

\paragraph{Validation and Verification}
Often, the conformance of a model to its meta model does not imply the model's
plausibility. Providing model validations for a DS(V)L supports the development of
meaningful models. For instance, undesired loops in the control
flow of a model expressed in a DSVL can be identified by defining a pattern representing the
loop. The transformation engine can be used to find the pattern in
the models.
Formal verification methods like \emph{Model Checking}~\cite{pub}{ClGrLo1994}
are
used to check desired model properties.
Given a (formal) model $ M $ of a system and a property (formula) $ \varphi $
defined in \emph{Linear Time Logic} (LTL) or \emph{Computation Tree Logic}
(CTL), a model checker verifies if the model satisfies the property, written as
$ M \models \varphi $.
Usually, the formal model $ M $ is represented by a finite state transition
system which serves as input for a model checker.
\ \\ \ \\
The model transformations for the described tasks can be realized in different
ways (cf. Sect.~\ref{sec:prelim:modeltransformations}). However, following the
simplicity approach, \cinco{}
should support an easy way to define those transformations without the need of
knowing technical details of the technologies on which \cinco{} is based.
For DSVL, graph-based model transformations are perfectly
suited for these needs~\cite{pub}{CzaHel2006,KuMSVW2009,AgKaSh2003}.

On the \emph{\cinco{} Product Developers} level, the mentioned tasks reflect
themselves as follows.
%
\begin{itemize}
	\item \emph{Semantics definition}: Given the abstract and
	concrete syntax of a \cinco{}
	product specified in \mgl{} and MSL, respectively, the developer has to
	define
	the semantics of the language. For this purpose, model-to-text and
	model-to-model transformations are applied (cf.
	Sect.~\ref{sec:modelsemantics}).
	\item \emph{Model Migration and Model Co-Evolution}: Changing a \cinco{}
	product's specification leads to the problem of model migration. This
	problem was targeted by Till Schallau in his
	master 	thesis~\cite{pub}{Schall2019}. He (semi-) automatically generates
	transformation rules to repair the conformance relations between models
	and the DSVL (cf.
	Sect.~\ref{sec:modelmigration}).
	\item \emph{Verification}: The application of model checking on models
	expressed in a DSVL is not possible without previously transforming them
	into an
	appropriate input format for a 	model checker
	(cf. Sect.~\ref{sec:modelvalidation}).
\end{itemize}
%
The area of application of model transformations
is not limited to the development of \cinco{} products, but also to \cinco{}
itself, since \cinco{} is a domain-specific tool.
One major task is the semantics definition for MGL and MSL. Similar to the
semantics definition of
\cps{}, this is realized using model-to-model and model-to-text
transformations.
Additionally, model migration also plays an important role in the development
process of \cinco{}. Changing the meta model of the MGL or MSL could invalidate
existing \cinco{} product specifications. Currently, these tasks are solved
by hand (model migration) or by imperatively implemented model transformations
(semantics definition).
To allow for graph transformations on the \cinco{} Developers level, a
graph-based representation of MGL and
MSL is needed. The first step towards this goal was realized by Annika Fuhge in
her bachelor thesis~\cite{pub}{Fuhge2018} developing the \emph{Graphical
\cinco{}
Specification} language (GCS), a \cp{} for modeling of MGL and MSL in
a graphical model (cf. Sect~\ref{mt:examples:gcs}).
%The GCS tool shifts the
%development of \cinco{} to the \emph{\cinco{} Product Developers} level,
%enabling the usage of graph transformations for the described tasks.

In the following, I will present several projects, bachelor, and master theses
in which model transformations are used to handle the described task (cf.
Sect.~\ref{mt:examples}). In Sect.~\ref{mt:motivation}, I describe the
improvements to support the
specification of model-to-text and model-to-model
transformations in \cinco{}.

%\begin{itemize}
%	\item refexiv argumentieren, cinco mit cinco
%	\item to-code matching bleibt erhalten
%	\item concept, modelle für die transformation vorverarbeiten
%	\item leser vorbereiten
%	\item top down beschreiben
%	\item 3.4 als 3.2, die anderen zusammenfassen.
%\end{itemize}
%In this chapter, I will reference several bachelor and master theses, of which
%I supervised \cite{pub}{Fuhge2018,Feltma2018,Schallau,Goldap}
%(\cite{pub}{Tegeler}?),
%gave technical support in ~\cite{pub}{Nikolov,Joel}.

\section{Model Transformations in \cinco{}}
\label{mt:examples}
This section gives an overview of projects and theses realized in the recent
years, which used model transformations to solve a specific task.

\subsection{Model Semantics}
\label{sec:modelsemantics}
The definition of semantics is crucial in the development of \cinco{} and its
products.
They can be defined by means of code generators translating models into
executable programs written in, e.g., a high-level programming language, which is a
typical model-to-text transformation. Their realization can be supported by
model-to-model
transformations, e.g., through the refactoring of the source model. For
instance, flattening the inheritance hierarchy reduces the complexity of the
generation logic, by previously moving the attributes of super-types to their
sub-types.

Alternative to code generators, the semantics can be specified utilizing an
existing DSVL. Thereby, models expressed in the new DSVL are translated to
models of a DSVL with existing semantics.

During the recent years, we had several bachelor and
master theses, as well as \emph{Projektgruppen}\footnote{\emph{Projektgruppen}
are courses at the TU Dortmund University, where up to 12 students develop a more
ambitious project during one year.} in which both approaches were applied to
develop new DSVLs.

\paragraph{CINCO and Pyro}
Stefan Naujokat described in his Ph.D. thesis the
\emph{{Domain-specific}, {Full generation}, and {Service
orientation}} (DFS)
approach \enquote{for tools to facilitate simplicity-driven model-based software
development}~\cite{pub}{Naujokat2017}. Furthermore, he argued to \enquote{...
apply
the very same DFS concepts to the domain of modeling tool development itself}.
The result of this application is \cinco{}. The domain-specificity is reflected in the
languages provided by \cinco{} which facilitate the development of modeling
tools for
models that can be represented as graph structures. Thus, the
\emph{semantics} of a specification written in \cinco{} is given by a code
generator
yielding a fully functional modeling tool. In Fig.~\ref{fig:cinco-concept}, this
generation is depicted on the
\emph{\cinco{} Product Developers} level. An \mgl{} model
(\texttt{PetriNet.mgl})
and an
MSL model (\texttt{PetriNet.msl}) are transformed into a meta model for the
\cinco{} product (\texttt{PetriNet.ecore}) conforming to
Ecore's meta-meta model (\texttt{Ecore.ecore}) and a \emph{Graphiti} API
implementation. The generator is implemented on the \cinco{} Developer level and
realizes the former transformation as a model-to-model transformation, since an
Ecore meta
model is created using the EMF API. The latter is a model-to-text
transformation, realized as a code generator whose output is Java code,
implementing the Graphiti API.
Using Ecore as target language allowed us to build on the existing
Ecore code generators and take advantage of the
numerous features provided by EMF, such as the persistence
mechanisms of EMF and the notification system using the EMF-generated Java
classes. Furthermore, using the Graphiti API as framework for the
modeling editor eased the generation process, since the API provides an
abstraction from the \emph{Graphical Editing Framework}
(GEF)~\cite{web}{wwwgef} and
\emph{Draw2D}~\cite{web}{wwwgefdraw2d}, hiding the technical details behind a
plain
Java API.

With \emph{Pyro}~\cite{pub}{Zweiho2015,ZwNaSt2019}, Philip Zweihoff implemented
in
his master
thesis a generator, which, given a \cp{} specification, generates a
corresponding web-based modeling tool. This corresponds to the exchange of the
generation target in Fig.~\ref{fig:cinco-concept}. Instead of generating EMF
models
and a Graphiti implementation, he generated a meta-schema for the
\emph{Dynamic WebApplication} (DyWA)~\cite{pub}{NeFrSM2014,Frohme2013}
and a model editor based on the \emph{JointJS}
framework~\cite{web}{wwwjointapi}.

\paragraph{DIME}
\dime{}~\cite{pub}{BFKLNN2016} is the most complex \cp{} developed at our
chair. Its
purpose is the development of single-page web-applications.
It consists of languages for \emph{data, business logic}, and \emph{user interface}
modeling, and employs service-oriented development using \emph{service
libraries}. Fig.~\ref{fig:dime-highlevel} shows a high-level view on the
generation process in \dime{}.
\begin{figure}
	\centering
	\includegraphics[width=\textwidth]{figures/dime-highlevelview.pdf}
	\caption{
		High-level view on the \dime{} code generation
		from~\cite{pub}{BFKLNN2016}.
		\label{fig:dime-highlevel}}
\end{figure}
The target of the generation is a web application employing several
technologies. DyWA
forms the back-end of the generated application. A meta data schema is
generated from \dime{} \emph{data} models and constitutes the persistence layer
of the web-application. The front-end is built on \emph{Angular 2} and
\emph{Dart} and is
mainly generated from the \emph{user interface} models. As the name says, the
\emph{business logic} defines the application logic, i.e.,
what data should be displayed/collected on which pages and how to process
it.

\paragraph{\webstory{}}
The semantics of the \webstory{} language (cf.
Sect.~\ref{subsec:prelim:webstory}) is defined by a code generator producing
the adjacency matrix of nodes in a \webstory{} model. A static framework
evaluates the generated matrix to determine the next \screen{}
node in the model. Therefore, it implements the semantics of the
types defined in the \webstory{} language, e.g., \condition{} types have to
evaluate their connected \variable{} node to determine the next element in the
control flow.

In~\cite{pub}{Kuehn2018}, Dennis Kühn describes an approach to transform DSVLs
implemented in \cinco{} to \dime{} models, enabling their execution in a
web-based environment. He uses the \webstory{} language as an example for this
transformation.

\paragraph{Graphical \cinco{} Specification (GCS)}
\label{mt:examples:gcs}
In her bachelor thesis~\cite{pub}{Fuhge2018}, Annika Fuhge developed under my
supervision a modeling
tool, which enables the graphical specification of \mgl{} and MSL models in a
WYSIWYG manner.
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=\textwidth]{figures/gcs-webstory.pdf}
	\caption{Specification of the \webstory{} language using the
		\emph{Graphcial \cinco{} Specification} tool.
		\label{fig:gcs-webstory}}
\end{figure}
%
Figure~\ref{fig:gcs-webstory} shows the \webstory{} language specification
created in GCS.
The abstract and concrete syntax of the \webstory{} is defined in one model.
Node and container types are depicted as boxes defining the type name at the
top of the box and
including their concrete syntax in the bottom part. Edge types are specified by
a box containing two circles connected by an edge that represents the edge
type's concrete syntax (cf. Fig~\ref{fig:gcs:node-edge-specification}).
The name of the edge type is specified above its concrete syntax representation.
%
\begin{figure}[ht]
	\centering
	\includegraphics[width=0.45\textwidth]{figures/gcs-node-edgetypes.pdf}
	\caption{Node type (left) and edge type (right) definition in the GCS.
		\label{fig:gcs:node-edge-specification}}	
\end{figure}
%

Figure~\ref{fig:gcs-generation} illustrates the development process of the GCS
tool, and the generation process for \cps{} defined in GCS.
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=\textwidth]{figures/gcs-generation-webstory.pdf}
	\caption{Development of the \emph{Graphical \cinco{} Specification} tool
	(top) and specification of the \webstory{} modeling tool using GCS
	(bottom)~\cite{pub}{Fuhge2018}.
		\label{fig:gcs-generation}}
\end{figure}
%
The modeling tool itself was developed using \cinco{}, i.e., it is a \cp{}
which can be used to graphically specify \cps{}. The top part of
Fig.~\ref{fig:gcs-generation} illustrates the development of the GCS
tool, consisting of \texttt{GCS.mgl} and \texttt{GCS.style} which are generated
to a fully functional modeling tool (cf.
Sect.~\ref{subsec:premlim:cinco}).\footnote{The
Eclipse Developer level is omitted in the figure.}
The generation process of GCS models consists of two steps.
The bottom part of Figure~\ref{fig:gcs-generation} exemplifies those steps for
the \webstory{} language.
In the first step, the GCS specification of the \webstory{} language
(\texttt{\webstory{}.gcs}) is transformed to the \cinco{} specifications for a \cp{},
namely
\texttt{\webstory{}.mgl} and \texttt{\webstory{}.style}. Afterwards, the
existing
\cinco{} generators are used to generate the resulting \webstory{} modeling
tool.
Fuhge realized the transformation from GCS models to \cinco{}
specifications
as a model-to-text transformation, generating the corresponding textual
representations of \mgl{} and MSL models. Of course, this transformation can be
realized as a model-to-model transformation between GCS models and an in-memory
representation of MGL and MSL models.

\paragraph{CMMN}
In his master thesis, Jan Weckwerth developed a \emph{Case Management and
Modeling Notation} (CMMN)~\cite{web}{wwwcmmn} tool on the basis of \cinco{}. He
specified the semantics through a transformation from CMMN models to XML
files, which are interpreted by the \emph{Camunda}~\cite{web}{wwwcamundaet}
engine.
In a subsequent thesis, Todor Nikolov developed a model transformation from
CMMN to \dime{}, enabling the execution of CMMN models in a web-application
context.

%\paragraph{PetriNets}
%
%For instance, the semantic of a PetriNet can be specified using an in-place
%transformation. Given a Single Token PetriNet \todo{Definition} a simple
%semantic to express the triggering of a \emph{Transition} can be given as
%follows:
%\begin{itemize}
%	\item[Precondition:] All preceding \emph{Place} must have one \emph{Token}
%	\item[Postcondition:] Tokens are deleted for all preceding \emph{Place}
%	nodes. Each successor \emph{Place} retrieves a \emph{Token}.
%\end{itemize}
%This rule can be modeled using a transformation language allowing for nested
%rules

\subsection{Meta Model and Model Co-Evolution}
\label{sec:modelmigration}
A major challenge during model-driven development using DSLs is that not only
models conforming to a language evolve, but the language itself is a target to
changes~\cite{pub}{Favre2005}. Some of these changes may break the model
conformance of existing models to their meta models.
For instance, deleting a type from the language results in the
invalidation of models containing an instance of this type.
A central challenge is to restore the conformance between models and their meta
models~\cite{pub}{MWDDHJ2005}.

Figure~\ref{fig:languagetolanguagetransformations} shows evolution
steps of the \webstory{} language (orange arrows), and the transformations to
Kripke Transition Systems (KTS) represented by green arrows.
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=\textwidth]
	{figures/Language-to-Language-Transformations-Overview.pdf}
	\caption{Overview of language evolution and the required transformations to
	facilitate formal verification for the evolved languages.
		\label{fig:languagetolanguagetransformations}}
\end{figure}
%
The \texttt{Evolution} from the \textit{\webstory{} Language} (WSL) to the
\textit{Aggregated Condition \webstory{} Language} (AC-WSL) invalidates the
conformance of models expressed
in WSL, by removing the \condition{}, \variable{} and \modifyVariable{} types.
Conditions modeled in WSL are represented by Boolean expression
labels on an augmented \transition{} edge type in AC-WSL (blue edges in
AC-WSL model). Variable
modifications are expressed using a new \textit{Assignment} type (orange nodes
in AC-WSL model).

In the early days of \cinco{}, opening models in the generated model editor,
which did not conform to the updated specification, raised an exception. This
was caused by the persistence mechanism of EMF: Given an Ecore meta
model, EMF generates an XML Schema Definition describing this meta model. Trying
to open a model which does not conform to the editor's supported schema
definition leads to an exception.
Consequently, the invalidated models had to be migrated to repair the
conformance relation.
We encountered this problem in the development of several \cp{}s. It had
the largest impact during the development of \dime{}, since in parallel,
\dime{}
applications were also modeled.
The first migrations of \dime{} models were performed by manually
repairing their XML representations, which was a very tedious task.
To ease the migration process, Steve Boßelmann developed a textual
representation for \cinco{} product models (graphs), called \emph{GraText}.
Figure~\ref{fig:gratext-generation} shows the generation of the serialization format.
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=\textwidth]{figures/gratext-generation.pdf}
	\caption{Generation process of the GraText serialization format for
	\cinco{} products.
		\label{fig:gratext-generation}}
\end{figure}
%
Given a \cinco{} specification, an additional meta model
(\texttt{\webstory{}Gratext.ecore}) and grammar specification
(\texttt{\webstory{}Gratext.xtext}) forming the basis for an Xtext-generated
textual editor are generated. Using this serialization format allows for a more
comfortable manual migration process.

Of course, the migration for the \texttt{Evolution} of WSL to AC-WSL (cf.
Fig~\ref{fig:languagetolanguagetransformations}) can be
described by a model transformation.
Instantiating the transformation language presented in this thesis using WSL
and AC-WSL as source and target language of the transformation,
results in a language facilitating the definition of rules as shown in
Fig.~\ref{fig:wsl2acwsl}.
%
\begin{figure}
	\centering
	\includegraphics[width=\textwidth]{figures/MigrationRules.pdf}
	\caption{Two-level transformation for the migration of WSL models to the
	modified AC-WSL.
	\label{fig:wsl2acwsl}}
\end{figure}
%
The two rules at the bottom of the figure represent the required
computation for the migration: they compute the Boolean expression ($
b_{\textit{exp}} $) by constructing a conjunction of \variable{} nodes
which are evaluated by \condition{} nodes. The four rules at the top of
Fig.~\ref{fig:wsl2acwsl} represent the relation between WSL and AC-WSL elements.

Till Schallau implemented in his
master thesis~\cite{pub}{Schall2019} a DSL to describe changes in an \mgl{}
model.
The changes can be \emph{non-breaking}, \emph{breaking and
resolvable}, and \emph{breaking and non-resolvable}~\cite{pub}{GrKoPa2007}.
Non-breaking
changes in the meta model do not require model migration. Using his DSL, the
rules to repair breaking and resolvable changes can be derived automatically.
Breaking and non-resolvable changes have to be manually repaired.
In his thesis, he describes how the two-level transformation language could be
used to derive breaking and resolvable rules and the migration for breaking and
non-resolvable changes can be conveniently modeled using the two-level
transformation language.

Furthermore, the green arrows in
Fig.~\ref{fig:languagetolanguagetransformations} represent
the transformations to Kripke Transition Systems, which facilitate the
application of model checking. After the language evolution represented in
Fig.~\ref{fig:languagetolanguagetransformations}, these transformation are also
invalid. Consequently, these transformations have to be provided to allow for
model checking of models expressed in the evolved language. This can be
achieved by modeling the transformation anew or transforming the existing
transformation rules (cf. Sect~\ref{fw:hot}).

\subsection{Validation and Verification}
\label{sec:modelvalidation}
An important part of language workbenches is the capability to implement
validations for the static semantics of the DSVL. For
instance, the Xtext~\cite{web}{wwwxtext} framework provides interfaces and
annotations that ease the development of \emph{Checks} for a textual DSL.
In \cinco{}, Dominic Wirkner developed the \emph{Model Compare and Merge}
framework
(MCaM)~\cite{pub}{Wirkne2015}, originally to enable merging of graphical models
using \emph{Git}~\cite{pub}{Spinel2012}. One of MCaMs capabilities is the
annotation
of
\mgl{} types by a class implementing validations for that type, which are
automatically executed in the generated \cp{}.

An alternative to the implementation of validations is the usage of formal
verification methods, like \emph{Model Checking}~\cite{pub}{ClGrLo1994}.
Usually, the formal model $ M $ is represented by a finite state transition
system which serves as input for a model checker. Modeling languages containing a
notion of control flow already imply a kind of transition system,
but their representation is not appropriate for a model-checker. Therefore,
transforming the models into a representation that can be interpreted by a
model-checker is an obvious solution~\cite{pub}{LyKoSt2018,KoLyNS2020}.

\section{The Need for Domain-Specific Transformation Tools}
\label{mt:motivation}
In~\cite{pub}{SyVaLa2015,Cuadra2012} the authors argue that for different kinds
of model transformations, different tools are suited to specify the
transformations.

As illustrated in the previous section, model transformations are required in
several areas during the development of \cinco{} and \cps{}. In this section, I
explain how we improved \cinco{} to support \cp{} developers in the definition
of model transformations.
Our studies and efforts led to the realization, that domain-specific model
transformation languages are desirable for
different scopes of application of model transformations.

In the following, I distinguish between the ideas to support the development of
code generators
(Sect.~\ref{subsec:improve-codegeneration}) and model-to-model transformations
(Sect.~\ref{subsec:improve-modeltomodel}) with a focus on the latter.

\subsection{Code Generation in \cinco{}}
\label{subsec:improve-codegeneration}
The first version of the code generator yielding the Graphiti API
implementation, was modeled by me during my masters
thesis~\cite{pub}{Kopetz2014}
using the \emph{Java Application Building Center} (jABC)~\cite{pub}{MarSte2009}
and
\emph{GeneSys}~\cite{pub}{Joerges2011} in a
process-oriented manner. I.e., the models
reflected the generation logic~\cite{pub}{Joerge2013,CzaEis2000} and the output
description was created using special building blocks, which allowed for the
definition of code templates.
In spite of the advantages of this approach, legacy libraries forced us to
rewrite the generators. We decided to use \emph{Xtend}~\cite{web}{wwwxtend},
due to
its integrated template DSL, the support for lambda
expressions and compatibility to Java.
%The former
%was realized as a model-to-model transformation by Michael Lybecait, the latter
%as a model-to-text transformation during my master
%thesis~\cite{pub}{Kopetz2014}.
%Both transformations were modeled using the \emph{jABC}
%framework~\cite{pub}{jABC}
%and \emph{Genesys}~\cite{pub}{Joerges2011} and
%\emph{TransEm}~\cite{pub}{Lybeca2012}.

In several projects, we experienced that the code for the management of Eclipse
projects was duplicated and slightly changed. This motivated Steve Boßelmann to
create a DSL, abstracting the technical details of the Eclipse
project creation process, and thereby providing a standard for the development
of code generators for \cinco{} and \cp{}s. The DSL was implemented as an
\emph{internal DSL}~\cite{pub}{Fowler2005} in \emph{Xtend}.
%This approach is used by the \cinco{} and \cp{} developers, until
%the time this dissertation was written.
With the growing complexity of \cps{} (i.e. the number of involved \mgl{}
models
and the models created using \cps{}) the time consumed by code generators
increased to a point, at
which the development process was hindered. The problem resulted from the full
generation approach: Since models are the main development artifacts the common
development strategy is to modify a model and generate the whole application
anew. In \cinco{}, this
occurred during the development of \dime{}. Michael Lybecait reports
in his Ph.D. thesis~\cite{pub}{Lybeca2019} about an optimization to reduce the
generation time of
\cps{} by analyzing updated models and only generate the subset of
changed models.

The described features could be provided by a DSL supporting the development of
efficient code generators. First steps in this direction were made by the
\emph{Projektgruppe} \emph{NextGen}~\cite{pub}{nextgen2019} and the bachelor
thesis of Joel Tagoukeng Dongmo~\cite{pub}{Tagouk2019}.

\subsection{Model-to-Model Transformations}
\label{subsec:improve-modeltomodel}
To ease the development of model-to-model transformations, we enhanced \cinco{}
to improve the support for their specification. Figure~\ref{fig:improve-modeltomodel}
shows an overview of the approaches for model transformations employed in
\cinco{}, categorized in \emph{imperative}/\emph{declarative} and
\emph{general-purpose}/\emph{domain-specific} approaches.

In the declarative, domain-specific category, I distinguish
between \emph{Graph-based Model Transformations} and \emph{Graph-based
Domain-Specific Model Transformations}.
With the former I relate to languages facilitating the definition of
transformations which incorporate the domain-specificity of the underlying DSLs.
This approach is realized in, i.a.,
\emph{AtomPM}~\cite{pub}{SyGrVa2013,SVMHVE13} for
domain-specific visual languages. Weisemöller described
in~\cite{pub}{Weisem2012,HoRuWe2015}
the generation of a transformation language for textual DSLs defined by a
grammar.
With \emph{Graph-based Domain-Specific Model Transformations}, I want to
emphasize the purpose of a transformation, which I consider as a
domain-specific aspect. Consequently, these transformation languages are
specializations of \emph{Graph-based Model Transformations}.

Ideally, developing a model-to-model transformation between DSLs should only
presume the familiarity with the involved languages.
With each Ecore meta model specification, EMF generates an API to
manipulate instances conforming to the meta model. This API is already a
specialization towards the involved languages in the domain of Ecore
models (cf. Fig.~\ref{fig:improve-modeltomodel}, \texttt{Metamodel-Generated
API}).
Since \cinco{} is developed using EMF and the meta models of \cinco{} products
are expressed in Ecore, the EMF-generated APIs can be used to
implement model transformations. Unfortunately, the APIs do not
consider the domain-specific concepts introduced by \cinco{}. The definition
of node, container, and edge types provide more detailed information towards
the structure of meta models expressed in \cinco{}. This information can be
used to prevent the creation of syntactically incorrect models.

Consequently, as a first specialization
towards a domain-specific transformation language we generate domain-specific
APIs along with each specification of a \cp{} (cf.
Fig.~\ref{fig:improve-modeltomodel}, \texttt{DSL-Generated API}).
%\cinco{}-generated APIs
%reflect the graph-based model structure by offering methods that enforce
%the creation of syntactically correct models.
The generator was implemented by Michael Lybecait and me. The generated
domain-specific APIs have two mayor
advantages:
\begin{enumerate}
	\item The generated APIs prevent the creation of models which do not
	conform to the meta model of the DSVL or do not represent a valid graph
	structure.
	
	\item Hiding the complexity of the EMF-generated APIs and thereby decreasing
	the lines 	of code needed to implement specific actions.
\end{enumerate}
These advantages are exemplified by two listings. Listing~\ref{lst:emfAPIExample}
shows an implementation of the rule depicted in
Fig.~\ref{fig:graphtransformation-wslexample1} using the API provided by EMF.
%
\includejava{listings/emfAPI-webstoryexample.java}{Rule from
Fig.~\ref{fig:graphtransformation-wslexample1} implemented using the
EMF-generated API.}{lst:emfAPIExample}
%
Lines 7-10 represent the search for a \screen{} node with the same
\texttt{backgroundImage} as the considered \screen{} (given as method parameter
in Line 2). If such an element does not exist (cf. Line 12), the new elements
are
created (cf. Lines 14-25). In Lines 27-40 the connections between those
elements are established. Afterwards, the new elements' attribute values are
assigned (cf. Lines 43-46) and the containment structure is defined (cf. Lines
49-54).

In contrast, Lst.~\ref{lst:webstoryAPIExample} shows the creation of the same
structure using the \cinco{}-generated domain-specific API.
%
\includejava{listings/webstoryAPI-webstoryexample.java}{Rule from
Fig.~\ref{fig:graphtransformation-wslexample1} implemented using the
\cinco{}-generated API.}{lst:webstoryAPIExample}
%
Since it is generated on the basis of the WebStory.mgl and the
knowledge that models are graph-based, it provides, e.g.,
specific create methods of the form
\[\texttt{<ContainerType>.new<ContainedType>()} \]
exploiting the knowledge about
the containable elements (cf. Lines~13-17).
Consequently, the new nodes are created directly in the corresponding valid
containers. Additionally, the API provides edge create
methods of the form \[\texttt{<SourceType>.new<EdgeType>(<TargetType>)}\]
according to
the MGL specification. I.e., only methods representing valid combinations of source,
target, and edge types are generated.
This domain-specification reduces the amount of code and the error-proneness in
the transformation development. In Lines~28-40 or Lines~49-54 of
Lst.~\ref{lst:emfAPIExample} the developer can
accidentally create models that do not conform to the MGL
specification, and even invalid graph-structures by creating, e.g., dangling
edges.

Using the generated domain-specific APIs, a transformation developer is
supported in the creation of model transformations, but still requires to have
programming skills. The next specialization enables the definition of model
transformations for people that do not have the required technical background.
In his master thesis~\cite{pub}{Feltma2018},
Marius Feltmann developed a generator, which, given a \cp{}
specification, generates a graph-based transformation language, providing a
similar rule definition language as in \emph{Groove} (cf.
Sect~\ref{subsec:prelim:graphtransformation}). Thereby, the concrete
syntax defined in the \msl{} is re-used in the transformation language. The
generated transformation language can be used to define endogenous in-place
model transformations.
Fig~\ref{fig:wsl-transformation} depicts the transformation rules from the example
transformation introduced in Sect.~\ref{subsec:prelim:graphtransformation},
where Fig.~\ref{fig:wsl-transformation1} models the rule implemented
in Lst.~\ref{lst:emfAPIExample} and Lst.~\ref{lst:webstoryAPIExample}.
%
\begin{figure}[tb]
\centering
\subfigure[]{	
	\label{fig:wsl-transformation1}
		\resizebox{\textwidth}{!}{
		\includegraphics[width=\textwidth]{figures/wsl-cinco-trace-transformation.pdf}
}}
\subfigure[]{
	\label{fig:wsl-transformation2}
	\resizebox{\textwidth}{!}{
		\includegraphics[width=\textwidth]{figures/wsl-cinco-trace-transformation2.pdf}
}}

\caption{Transformation rules from
Fig.~\ref{fig:graphtransformation-wslexample} modeled using the concrete syntax
of the \webstory{} language.
	\label{fig:wsl-transformation}}
\end{figure}
\FloatBarrier
%
The syntax is comparable to the example shown in
Fig.~\ref{fig:graphtransformation-wslexample}, but using the concrete
syntax of the \webstory{} language.
As in Groove, the rule types are encoded by the elements' border colors.

In~\cite{pub}{LyKoSt2018,KoLyNS2020}, one motivating example is the
transformation
from the \webstory{} language to the language of KTSs, which requires the
computation of information.
This kind of transformation is usually realized using a hybrid approach: The
relation between source and target model elements are described using a
declarative specification, the computation is implemented using an imperative
language~\cite{pub}{CzaHel2006}. This
again would demand programming skills of the transformation developer.
Since we want to prevent this, we strive for fully
model-driven solutions using graph transformations. We described
in~\cite{pub}{KoLyNS2020} how such a transformation could be modeled using
\emph{Groove}. Schematically, this solution is shown in
Fig.~\ref{fig:langaugetolanguagecomputation}, where the \texttt{Computation}
model is added as third part of the transformation.
%
\begin{figure}[tb]
\centering
\includegraphics[width=\textwidth]{figures/languagetolanguagecomputation.pdf}
	\caption{Schematic representation of the relevant
		components for the computation during a graph
		transformation~\cite{pub}{KoLyNS2020}.
		\label{fig:langaugetolanguagecomputation}}
\end{figure}

%
In general-purpose graph transformation languages, the elements
required to
model the computation can be easily added to the rule definition.
This approach is very powerful, but suffers from the same problems as
general-purpose languages compared to DSLs: Due to the lack of specialized
computation concepts in general-purpose transformation languages, the modeler
has to take care of
\emph{how} to specify the transformation (e.g. stepping function, memory
allocation, memory update etc.)
instead of focusing on \emph{what} should be accomplished by the transformation.
Consequently, we propose in \cite{pub}{LyKoSt2018,KoLyNS2020} specialized
transformation languages in the context of DSVLs.
Transformations involving a computation represent one of the domains for
transformation languages. We consider the computation as a domain-specificity
and provide transformation languages for these kind of
transformations. This allows for a declarative specification of the computation
process by introducing a second rule level which focuses on the computation
definition.

Summarizing, model transformations are required to solve different problems in
model-driven engineering. One possibility is to develop model transformations
in a general-purpose transformation language. In the context of DSVL, we
suggest to apply the DFS approach on the domain of
model transformations and generate tailored languages, facilitating the
modeling of specialized transformation rules.
In the next chapter, I describe a pattern for the generation of
domain-specific transformation languages in the context of DSVL. The
computation part is specified in this language using an
SOS-like~\cite{pub}{Plotki1981} approach.
Individual computation steps are modeled by a transition between states,
representing the current configuration of the computation.

%Therefore, we presented in~\cite{pub}{KoLyNS2020} a pattern for the
%specification
%of
%such
%languages incorporating an \emph{auxiliary rule system} (cf.
%Equation~\ref{equation:macroschematic} and
%\ref{equation:microschematic}) and exemplified this pattern by using an
%SOS-like~\cite{pub}{Plotki1981} auxiliary rule language.
%\\
%Summarizing, model transformations are required to solve different problems in
%model-driven engineering. One possibility is to develop model transformations
%in a general-purpose transformation language. In the context of DS(V)L, we
%suggest in~\cite{pub}{LyKoSt2018} to apply the DSL approach on the domain of
%model transformations and generate tailored languages, facilitating the
%modeling of specialized transformation rules.

%Since, we do not want to simulate general-purpose graph transformations in
%\cinco{},
%but recognized the need for specific transformations, like the ones including
%computation of information, this led us to the idea for a Domain-Specific
%Model Transformation
%Language for the domain of computational transformations. Therefore, we
%presented in~\cite{pub}{KoLyNS2020} a pattern for the specification of such
%languages incorporating an \emph{auxiliary rule system} (cf.
%Equation~\ref{equation:macroschematic} and
%\ref{equation:microschematic}) and exemplified this pattern by using an
%SOS-like~\cite{pub}{Plotki1981} auxiliary rule language.

\chapter{Generation of Language-to-Language Transformation Languages}
\label{mt:generation}
In \cite{pub}{KoLyNS2020}, we presented applications for model
transformation
languages utilizing an SOS-like~\cite{pub}{Plotki1981} auxiliary rule system to
aggregate information. Transformation languages transforming between models of
domain-specific visual languages suffer from the same problems as DSVL
themselves: The manual realization of modeling tools for the domain-specific
transformation language comprises tedious and repetitive
activities~\cite{pub}{Naujokat2017,Lybeca2019,NaLyKS2017}. For each combination
of
source and target language a transformation language has to be developed.
Thus, the ability to generate the transformation languages is of major
importance, since the manual implementation of these languages would exceed
their value.

This chapter represents the main contribution of this
dissertation by detailing on the generation of those transformation languages.
In Sect.~\ref{mtgen:twolevellanguage}, I will
shortly recapitulate the pattern of
the two-level transformation language presented in~\cite{pub}{KoLyNS2020} and
afterwards describe in Sect.~\ref{mtgen:twolevellanguage:generation} how the
transformation language can be generated utilizing a previous configuration.
Thereby, I focus on the single parts constituting the transformation process.

%\section{Transformation Languages for DSLs}
%The aim of DSLs is to restrict the design space of a programming language and
%thereby moving the focus during the development process to the actual problem.
%The restriction of the design space is usually accomplished by providing
%dedicated editors, supporting the syntax of a DSL. Either by error markers in
%an editor (textual or model-based) or preventing invalid models enforcing
%static semantics, e.g., upper bounds of container/edges.
%\cp{} enforce some static semantic constraints. Consequently, a \emph{new}
%transformation DSL has to be generated, relaxing constraints of the original
%language.
%Feltmann implementation of a \emph{Groove}-like transformation language.
%\begin{figure}
%	\missingfigure{Petri Net transformation example violating static semantic
%	of PetriNet DSL.}
%\end{figure}
%Explanation of the example.
%The generation of transformation tools for domain-specific languages was
%already studied by, e.g., Weisemöller in~\cite{pub}{Weisem2012}. He describes
%how
%to
%generate a (textual) transformation language for domain-specific languages
%specified by a grammar. AtomPM~\cite{pub}{SyGrVa2013,SVMHVE13} synthesizes
%domain-specific transformation languages, given the abstract and concrete
%syntax of the sources and target DSL.

\section{Two-Level Transformation Languages}
\label{mtgen:twolevellanguage}
One of the main ideas presented in~\cite{pub}{KoLyNS2020} is the explicit
separation
of the constituents of a model transformation. Since the considered
transformations involve the aggregation of information, the transformation
language consists of three parts: The source,
target, and auxiliary language. Computation steps are modeled separately using
specialized rules. This prevents the pollution of the
transformation rules describing the relation between elements of source and
target language, and results in a two-level transformation language. First-level rules
conform
to the following schematic representation.
%
\begin{equation}
\label{equation:macroschematic}
\inference
{
	\framebox{\textit{Source Langauge} Pattern}, \framebox{Auxiliary
		$ (\dashrightarrow^{*}) $}
}
{\framebox{\textit{Target Language} Pattern}} \mbox{ Condition} \nonumber
\end{equation}
%
They facilitate the specification of patterns in the source and
the target language, and thereby define the relation between elements of the
languages.
The optional auxiliary part indicates a computation consisting of an arbitrary
number of steps ($ \dashrightarrow^{*}
$). The rules specifying individual computation steps are schematically
represented as follows.
%
\begin{equation}
\label{equation:microschematic}
\inference
{\framebox{\textit{Source Language} Pattern}}
{
%	\langle \textit{Configuration}\rangle \dashrightarrow \langle
%	\textit{Configuration} \rangle
	\framebox{\textit{Auxiliary Language Step }Pattern ($
	\dashrightarrow $)}
} \mbox{ Condition} \nonumber
\end{equation}
%
These rules allow for the definition of the relation between source language
elements and auxiliary
language elements which describe a computation step.

In the next section, I use a Structural Operational Semantics (SOS)-based
auxiliary language to describe the
generation process for the presented transformation language. Therefore, I will
shortly describe the main concepts of Plotkin's SOS~\cite{pub}{Plotki1981} and
how this approach is used in second-level rules to
provide a basic understanding of the transformation language.
The SOS is used to specify semantics for programming languages.
The semantics of a program written in a programming language
is defined by the program's effect on the processed data.
The effect is defined for statements of the programming language using rules of
the
following form.
%
\begin{eqnarray}
\frac{Premise}{Conclusion}\mbox{ Condition} \nonumber
\end{eqnarray}
%
These rules describe how the residual program and the data are derived
executing a statement.
Applying the specified rules on a program results in a transition system, which
represents the program's execution. A state of the transition system, also
called \emph{configuration}, consists
of
\begin{enumerate}
	\item the residual program and
	\item the current data valuation.
\end{enumerate}
Thus, one transition in the transition system represents the execution of one
statement in the program, defining the effect on the data. In the remainder of
this thesis, I will refer to the structure managing the
data as \emph{store}.

In the two-level transformation language, SOS is utilized in the
\emph{Auxiliary Language Step} pattern in second-level
rules, which is used to model a transition between two SOS configurations.
The \emph{source language pattern} in second-level rules corresponds
to the \emph{Premise} in an SOS rule and the condition is used to define
constraints over the store, which manages data
in form of primitive variables.
Consequently, the source language pattern
and the condition define the application condition of the rule.

In contrast to SOS, the input for the transformation language
is a graph. To decouple SOS from the actual input model, the
\enquote{residual program} is not explicitly represented in a configuration,
but indicated by a pointer which refers the current model
element in the computation.
The meaning of second-level rules is the following: If the element referred by
the source configuration of the SOS transition satisfies the precondition,
i.e., it conforms to the type referred in the pattern, the
execution continues at the element in the input model, which is represented in
the target configuration of the transition, resulting in the store represented
by the target configuration.

%\section{Structural Operational Semantics}
%Plotkin introduced Structural Operational Semantics (SOS) in
%\cite{pub}{Plotki1981}
%as
%a formalism to specify semantics for programming languages. The semantics are
%defined by rules of the form pre/post:
%\begin{eqnarray}
%\frac{Premise}{Conclusion}\mbox{ Condition} \nonumber
%\end{eqnarray}
%We consider the \while{} language \cite{pub}{whileLanguage} defined by the
%following
%BNF:
%\begin{eqnarray}
%S &::=& x := a\ |\ \textbf{skip}\ |\ S;S\ |\ \ifstmt{b}{S}{S}\ |\
%\whilestmt{b}{S} \nonumber \\
%a &::=& \mathcal{N}\ |\ \mathcal{V}\ |\ a+a\ |\ a\cdot a\ |\
%a-a\ \nonumber \\
%b &::=&	\texttt{true}\ |\ \texttt{false}\ |\ a == a\ |\ a \leq a\ |\
%\neg b\ |\ b \wedge b\ \nonumber
%\end{eqnarray}
%where $ \mathcal{N} $ is a set of numbers and $ \mathcal{V} $ a set of
%variables. We use the meta-variables:
%\begin{itemize}
%	\item $ x $ ranging over variables,
%	\item $ a $ ranging over arithmetic expressions,
%	\item $ b $ ranging over Boolean expressions and
%	\item $ S $ ranging over statements.
%\end{itemize}
%Clearly, the semantic of a \while{}-program is the effect on the
%data (memory), which is modeled by the state space $ \Sigma =\{
%\sigma\ |\ \sigma: \mathcal{V} \rightarrow \mathcal{N} \} $ of all possible
%variable configurations.\footnote{We call $ \sigma \in \Sigma $ a
%\textit{store} to avoid name ambiguity of \textit{state} in SOS and a
%\textit{state} in a Kripke Transition System.}
%The semantics of statements is defined by a transition system $ TS_{SOS} =
%(
%\{(S\times \Sigma) \cup \Sigma\}, \dashrightarrow)$, where the states
%describe
%configurations.
%The semantic of a \while{}-statement is defined by the transition between
%configurations: \[\langle S, \sigma\rangle \dashrightarrow \gamma\],
%with $ \gamma \in (S\times \Sigma) \cup \Sigma $ and $ \sigma \in \Sigma $.
%The
%transition relation $ \dashrightarrow $ is given by the SOS rules depicted in
%Table~\ref{tab:soswhile}. We use the notation $ \sigsub{a}{x} $ for the
%substitution of the variable $ x $ by $ a $ and $ \sigeval{b} $ as semantic
%evaluation of the value $ b $ considering the store $ \sigma $
%%
%\begin{table}
%\begin{tabular}{|rc|}
%	\hline
%	\mbox{Assignment:} &$ \frac{-}{
%		\configtranssigma{x:=a}{\sigma}{\sigsub{a}{x}}} $\\[10pt]
%	
%	\mbox{Skip:} & $ \frac{-}{
%		\configtranssigma{\textbf{skip}}{\sigma}{\sigma}} $\\[10pt]
%	
%	\mbox{Comp$_1$:} & $ \frac{
%		\configtrans{S_1}{\sigma}{S_1'}{\sigma'}
%	}{	\configtrans{S_1;S_2}{\sigma}{S_1',S_2}{\sigma'}} $\\[10pt]
%	\mbox{Comp$_2$:}
%	 &$\frac{\configtranssigma{S_1}{\sigma}{\sigma}}{	
%		\configtrans{S_1;S_2}{\sigma}{S_2}{\sigma'}} $ \\[10pt]
%	\mbox{If$_t$:} &$ \frac{-}{	
%		\configtrans{\ifstmt{(b)}{S_1}{S_2}}{\sigma}{S_1}{\sigma}} \llbracket b
%	\rrbracket(\sigma) = \textbf{tt} $\\[10pt]
%	\mbox{If$_f$:} &$ \frac{-}{	
%		\configtrans{\ifstmt{(b)}{S_1}{S_2}}{\sigma}{S_2}{\sigma}} \llbracket b
%	\rrbracket(\sigma) = \textbf{ff} $\\[10pt]
%	\mbox{While:} & $ \frac{-}{
%		\configtrans{\whilestmt{(b)}{S}}{\sigma}
%		{\ifstmt{(b)}{S;\whilestmt{b}{S}}{\textbf{skip}}}{\sigma}} $\\
%	\hline
%\end{tabular}
%\caption{SOS rules for the \while{}-language.} \label{tab:soswhile}
%\end{table}
%%
%Rules with no premise are called axioms. For the \while{}-program
%\[z:=x; x:=y; y:= z \]
%in the initial state $ \sigma $ which maps $ x := 5, y := 7 $ and all other
%variables to $ 0 $ we derive the execution sequence, where we substitute by
%the
%variable values:
%%
%\begin{eqnarray}
%\label{eq:assignment}
%\config{(z:=x; x:=y); y:= z}{\sigma}
%&\dashrightarrow&\config{x:=y; y:= z}{\sigsub{5}{z}} \\
%&\dashrightarrow&\config{y:= z}{\sigsub{7}{x}\circ\sigsub{5}{z}}\\
%&\dashrightarrow&\sigsub{7}{x}\circ\sigsub{5}{z}\circ\sigsub{5}{y}
%\label{eq:derivation}
%\end{eqnarray}
%%
%Each of the steps can be justified by the rules given in
%Table~\ref{tab:soswhile} constructing a proof tree, e.g. for the first
%transition~(\ref{eq:assignment}) we can derive the following tree:
%\begin{prooftree}
%	\AxiomC{$ \configtranssigma{(z:=x)}{\sigma}{\sigsub{\sigeval{x}}{z}} $}
%	\UnaryInfC{$\configtrans{(z:=x;
%			x:=y)}{\sigma}{x:=y}{\sigsub{\sigeval{x}}{z}} $}
%	\UnaryInfC{$ \configtrans{(z:=x; x:=y); y:=
%			z}{\sigma}{x:=y;y:=z}{\sigsub{\sigeval{x}}{z}} $}
%\end{prooftree}

\section{Generation of Two-Level Transformation Languages}
\label{mtgen:twolevellanguage:generation}
Figure~\ref{fig:transformationlanguage-generation} gives an overview of the
generation process for two-level transformation languages. In this section,
the generation process is exemplified using the SOS-based auxiliary language.
%
\begin{figure}[tb]
	\centering
	\includegraphics[width=0.9\textwidth]{figures/SOS-LanguageGeneration.pdf}
	\caption{Overview of the generation process of the SOS-based transformation
		language.
		\label{fig:transformationlanguage-generation}}
\end{figure}
\FloatBarrier \ \\
%
The generator is parameterized by the \emph{source}, \emph{target}, and
\emph{auxiliary} language and the generation process
consists of three parts.

\begin{itemize}
	

\item The generation of source pattern language and target
pattern language is a static extension of the corresponding original languages.
Based on those pattern languages, source model queries and target model
modifications are specified in the corresponding parts of first-level and
second-level rules (cf. Sect~\ref{subsec:generation:extendedpatternlanguage}).

\item The major parts of the SOS-based auxiliary language are either static or
restricted by the domain of source and target language. This allows for a
partial evaluation of the auxiliary language by the generator (cf.
Sect.~\ref{subsec:generation:partialeval}).

\item The dynamic parts of the auxiliary language are defined by the generator
configuration. It provides an initialization of the store and defines how elements
in the target model are identified (cf.
Sect.~\ref{subsec:generation:configuration}).
\end{itemize}

%In the remainder of this section,
%I will explain the generation focusing the source and target
%pattern languages
%(cf. Sect~\ref{subsec:generation:extendedpatternlanguage}), the \emph{partial
%evaluation} of the SOS-based auxiliary language (cf.
%Sect.~\ref{subsec:generation:partialeval}), and the
%\emph{configuration} of the generator, to define the domain of the auxiliary
%language (cf. Sect.~\ref{subsec:generation:configuration}).

\subsection{Source Language Pattern}
\label{subsec:generation:extendedpatternlanguage}
One of the key aspects for transformation languages is the possibility to
query the source model and create elements in the target model. I
will first describe the static extensions of the source language allowing for
the definition of patterns to specify model queries. The extensions are
oriented at the concepts presented in~\cite{pub}{KuMSVW2009}.

\paragraph{Language Types and Attribute Constraints}
The pattern language should allow for
the definition of rules based on the types defined in the source language.
Consequently, it has to include all types and their
interrelations defined in the source language. Additionally, the
source pattern language has to allow for the
definition of conditions over type attributes. Considering the \webstory{}
language as source language, one could desire to find, for instance, \modifyVariable{}
nodes, whose Boolean attribute \emph{value} is set to \texttt{true}.

\paragraph{Inheritances and Abstract Types}
Type inheritance and abstract types are used in DSLs (and programming languages
like Java) to accumulate similar behavior shared among several types in their
super-type. This behavior is then propagated using inheritance. Addressing a
possibly abstract type is crucial in transformation rules. It prevents the
replication of transformation rules entailed by enumerating all non-abstract sub-types
of an abstract type.
Therefore, abstract types in the source language are made available in a
transformation language by changing them to concrete ones in the
specification of the transformation
tool.

\paragraph{Type Wildcards}
Sometimes the specific type of an element is not relevant in a rule. The
\webstory{} pattern in the upper left part of the rule displayed in
Fig~\ref{fig:ws2kts-clicktoscreen1} exemplifies this situation. It is only
relevant that the \clickArea{} node modeled in the pattern has a successor
connected by a \transition{} edge. Therefore, wildcard types are
introduced in the pattern language.
In \cinco{}-based transformation languages three wildcard
types for the node, container, and edge meta type are introduced.

\paragraph{Relaxing Static Semantics}
The relaxation of a DSVL's static semantics is a basic requirement to allow
for, e.g., the usage of type wildcards. In the generated DSVL, the wildcard is
also represented as a type. Thus, edge types' constraints have to be relaxed to
allow wildcard nodes to be an edge's source or target node. Similarly, node
types have to be modified to allow for incoming and outgoing edge wildcard
types and the containment constraints of container types are relaxed to facilitate the
containment of wildcard elements.

\paragraph{Rule Types}
One characteristic of the transformation language presented
in~\cite{pub}{KoLyNS2020} is the additive transformation system, i.e., the
target
model is built from scratch, and the source model is only used to retrieve
information for the transformation. Thus, we constrain the rule type of an
element $ x $ defined in the source pattern as follows.
\begin{itemize}
	\item $ x \in \textit{LHS} \Leftrightarrow x \in \textit{RHS}$, meaning
	that $ x $ should be matched in the input model. It is neither deleted
	nor created.
	\item $ x \in \textit{NAC} $, preventing the matching of model structures
	in which $ x $ occurs.
\end{itemize}
%In the source pattern language, types can be used as \emph{readers} or
%\emph{embargoes}.

\subsection{Target Language Pattern}
%As the target pattern language should just facilitate the creation of valid
%structures of the target language, it does not require all the modifications
%described in Sect~\ref{subsec:generation:extendedpatternlanguage}.
Resulting from the design decisions of the transformation language
(\emph{separation of source language and target language} and \emph{additive
transformation system}~\cite{pub}{KoLyNS2020}) the target pattern languages are
not as complex as the source pattern languages.
Essentially, they facilitate the modeling of structures that also can
be modeled in the target language.
Types in the target pattern language represent an \emph{enhanced creator
semantics}: If they do not exist in the target model, they are created, and
updated otherwise.
The usage of wildcards or abstract types in a target pattern rule is pointless,
because it is not determinable which concrete type is represented by the
wildcard or abstract type.
The target language is extended by an expression language allowing for the derivation
of attribute values of created elements.

%\subsection{\cinco{} Specific Extensions}
%
%\paragraph{Meta Plugins}
%A \cinco{} product developer can customize the specified tool by using
%meta plugins. For instance, \cinco{} provides the concept of \emph{hooks} to
%define
%behavior before or after a specific action is executed in the modeling tool.
%Supported hooks are
%\emph{postCreate}, \emph{preMove}, \emph{postMove} etc.\footnote{For more
%details please refer to
%	the \cinco{} manual~\url{https://gitlab.com/scce/cinco/wikis/Meta-plugins}.}
%Unfortunately, most of the meta plugins defined for a \cinco{} product can not
%be adopted for the
%transformation language, since the behavior of meta plugins is given by java
%methods and
%consequently can have unintentional side-effects concerning the transformation
%language.
%Some meta plugins have to be reused in the transformation language, e.g., the
%\emph{style} meta
%plugin, which is a core meta plugin in \cinco{} to define the concrete syntax
%of types.
%
%\paragraph{Prime References}
%To facilitate concepts of sub-models and provide allow for service oriented
%modeling, \cinco{} provides \emph{prime references}. These are node types,
%which reference an existing instance of an arbitrary type defined in
%Ecore. Thus, sub-models are realized by prime referencing an instance
%of
%a \cinco{} \emph{graphModel}. As a consequence, hole models conforming to that
%graphModel type can be used in another model as sub-models.\footnote{Prime
%	references are explained in detail in~\cite{pub}{NaLyKS2017}.}
%\todo{Rule application on sub-models?}

\subsection{The Auxiliary Rule Language}
\label{subsec:generation:partialeval}
%Currently, the generation of the SOS-based auxiliary language is driven by the
%configuration (cf.~Fig.~\ref{fig:transformationlanguage-generation}) and
%partial evaluation of the language by the generator.
The SOS-based auxiliary language should facilitate the definition of rules by
which the
aggregation process is defined. More precisely, the transformation developer
has to define a \emph{step} function, which, for each
type of the source language, defines how to retrieve its successor.
Furthermore, the function has to describe the step's effect on the store. The
definition of the step function depends on the current position in the input graph
and the current store.
Even without the configuration
(cf.~Fig.~\ref{fig:transformationlanguage-generation}), the major parts of the
auxiliary language can be generated.

To explain the ability to generate the language, I will
provide the static parts of the abstract syntax of the SOS-based auxiliary
language, and subsequently describe the parts of the concrete syntax which can
be generated.
Thereby, I will focus on the requirements and the knowledge implied by the
domain-specificity of the transformation language.

\paragraph{Abstract Syntax}
Without the prior configuration of the store, it is not known what kind of data
will be processed during the execution of the transformation. Although the data
types can be complex (composed of primitive data types), eventually it has to
be defined how to evaluate and modify complex data types. This usually
is realized by a mapping from the complex type to one of its primitive components.
As a consequence, we restrict the types of variables which can be defined in
the store to primitive ones, allowing us to generate the evaluation and
modification function, independent of the actual store.
%
\begin{mydef}
	\label{def:store}
	Let $ \var{} $ be a set of named, primitive variables and $ \val $ a set of
	possible \emph{values}.\footnote{We consider
	\emph{Boolean, character, integer, string} etc. as primitive types.}
	The \emph{store} $ \sigma $ assigns each variable a corresponding value.
	\[\sigma: \var \to \val\]
	The set of all possible variable valuations is defined by
	\[\Sigma = \{\sigma\ |\ \sigma: \var \to \val\} \]
\end{mydef}
%
To modify the values of variables we define a substitution function on the
store.
%
\begin{mydef}
	Let $ X,Y \in \var $, $ v \in \val $, and $ \sigma \in \Sigma $. The
	substitution function on $ \sigma $ is defined by
	\[
	\sigma \{X \to v\}(Y) =
	\begin{cases}
	v & \textit{, if X = Y} \\
	\sigma(Y) & \textit{, otherwise}
	\end{cases}
	\]
\end{mydef}
%
With this notion of the store, we can now define the domain of the step
function, that is the main artifact to be modeled (defined) by the
transformation developer.
\begin{mydef}
	Let	$ \types_{src} $ be the set of types in the
	source language and $ \Sigma $
	as defined in Def.~\ref{def:store}. The domain of the step function is
	defined as follows.
	\[\textit{step}: (\types_{src} \times \Sigma) \to (\types_{src} \times
	\Sigma)\]
\end{mydef}
Please note, as the source language is a parameter
of the generator (it is not the result of the configuration) the domain of the
\emph{step} function can be restricted to the types specified in the source
language.
The defined domain of the step function represents the abstract syntax of the
SOS-based auxiliary language.
To model an executable transformation, the function definition has
to be provided by the transformation developer.
Therefore, we generate a concrete syntax for the SOS-based auxiliary language
to ease the definition of the introduced function.

\paragraph{Concrete Syntax}
%%
%\begin{figure}[tb]
%	\centering
%	\includegraphics[width=\textwidth]{figures/PartialEval.pdf}
%	\caption{Description of the domain-specific knowledge partially evaluated
%		by the code generator.
%		\label{fig:partialevaluationdetail}}
%\end{figure}
%\FloatBarrier
%%
%I explain the generation of the concrete syntax starting at the top of
%Fig~\ref{fig:partialevaluationdetail}, refining the syntax resulting in the
%rules at the bottom of Fig.~\ref{fig:partialevaluationdetail}, where
%Fig~\ref{fig:partialevaluationdetail} 3.(a) and
%Fig~\ref{fig:partialevaluationdetail} 3.(b) depict a first-level rule and
%second-level rule, respectively.
Given the abstract syntax of a two-level transformation language, the goal is
to provide a modeling
language, which eases the specification of rules defining the step function.
%The definition is based on the source and target language.
In the scope of visual languages, the
concrete syntax of the two-level transformation language is also realized
by a DSVL.
The resulting concrete syntax is shown at the bottom of
Figure~\ref{fig:transformationlanguage-generation}, where a first-level rule is
depicted on the left-hand side, a second-level rule on the right-hand side.
As mentioned in Sect.~\ref{subsec:generation:extendedpatternlanguage}, queries
and element creations are specified by patterns. Consequently, the concrete
syntax of first-level and second-level rules should provide areas in which the
corresponding patterns can be specified

Therefore, the rules are realized as containers, separated in different areas.
First-level rules consist of four parts, providing areas for the definition of
\texttt{Source pattern},
\texttt{Target pattern}, \texttt{Auxiliary aggregation}, and a \texttt{Condition}.
Second-level rules consist of three parts facilitating the specification of
\texttt{Source
pattern}, \texttt{Auxiliary step pattern}, and a \texttt{Condition}.
The rule areas are typed by the corresponding languages, forcing
a strict separation between the constituents.
%The source and target language are parameters of the generator. Therefore, the
%corresponding pattern parts allow for the definition of graph structures in
%the
%given extended pattern language.
%Figure~\ref{fig:auxiliary-partialeval} shows the concrete syntax of a
%first-level rule (cf.~Fig~\ref{fig:auxiliary-partialeval-first-level}) and a
%second-level rule (cf.~Fig~\ref{fig:auxiliary-partialeval-second-level}).
%%
%\begin{figure}[tb]
%\centering
%\begin{minipage}{0.45\textwidth}
%	\centering
%	\subfigure[]{
%		\label{fig:auxiliary-partialeval-first-level}
%		\includegraphics[width=\textwidth]{figures/PartialEval-first-level.pdf}
%	}
%\end{minipage}
%\begin{minipage}{0.45\textwidth}
%	\subfigure[]{
%		\label{fig:auxiliary-partialeval-second-level}
%		\includegraphics[width=\textwidth]{figures/PartialEval-second-level.pdf}
%	}
%\end{minipage}
%\caption{Schematic representation of the concrete syntax of first-level and
%second-level rules derivable from the domain knowledge of the transformation
%language.
%	\label{fig:auxiliary-partialeval}}
%\end{figure}
%%
%\begin{figure}[tb]
%	\centering
%	\
%	\includegraphics[width=\textwidth]{figures/PartialEval.pdf}
%	\caption{Partial evaluation of the SOS-auxiliary language.
%		\label{fig:auxiliary-partialeval}}
%\end{figure}
%

The \emph{step} function should be defined by the specification of a transition
between two configurations, i.e., given the type $ t \in \types_{src} $ of the
currently
processed node in the source model and a variable valuation $ \sigma \in \Sigma $, the
modeler has to specify the successor $ t^{\prime} \in \types_{src}$ and the possibly
modified variable valuation $ \sigma^{\prime} \in \Sigma $:
%
\[\langle t, \sigma \rangle \dashrightarrow \langle
	t^{\prime},\sigma^{\prime} \rangle\]
%
This notation represents the concrete syntax for the transition system. It
consists of an identifier ($ t, t^{\prime} $) and a representation of the
store ($ \sigma, \sigma^{\prime} $). In first-level rules, an aggregation
process can be indicated by the definition of its start state and end state,
connected by a transition which is marked by the Kleene Star (cf.
Fig.~\ref{fig:transformationlanguage-generation}, \texttt{Auxiliary
computation}). The individual steps are defined in second-level rules in the
\texttt{Auxiliary transition} area.
In both cases, the identifier in a transition system's state ($ \langle t,
\sigma \rangle $), has to be related to a type of the source language.
Therefore, the source pattern language is additionally extended to allow for
the definition of labels in the pattern, and the relation is defined by string
comparison.

Of course, determining the next element during the aggregation can depend on
the current store. Therefore, conditions can be defined in the
\texttt{Condition} parts of first-level and second-level rules. Resulting from
the restriction of the store to primitive variables, a simple expression
language suffices for this purpose. This language is independent of the
configuration (and the generator parameters) and is generated as static part of the
concrete syntax. Additional to the specification of Boolean conditions, the
\texttt{Condition} part in first-level rules can be used to define patterns in
the source language to, e.g., specify a termination condition for the
computation. For instance, the node's type identified in the end state of the
indicated aggregation can determine the termination of a computation.

\subsection{Generator Configuration}
\label{subsec:generation:configuration}
To generate the transformation language, the generator has to be
configured by
%\begin{enumerate}
%	\item
	an initialization of the store $ \sigma $, and
%	\item
	an identification function for elements of the target language.
%\end{enumerate}
\paragraph{Store Initialization}
The store variables used during an aggregation process depend on the desired
transformations. In one case, a transformation may require one variable per
node of a specific type from the source domain. In another case, one local
variable managing some information may be sufficient for the aggregation.
Consequently, the generator has to be configured with an
initialization of the store, i.e., an explicit specification of the set of
variables $ \var $ and their initial values.
Furthermore, on the one hand the domain of the store is restricted to variables
of primitive data types. On the other hand, DSVL usually allow for the usage of
complex types. Therefore, the initialization has to map types and their
attributes to primitive variables.
%%
%\begin{mydef}
%	Let $ \types_{src} $ be the set of types of the source language. For $ t
%	\in \types_{src} $ we define $ \attr_{t} $ as the set of attributes of the
%	type $ t $.
%%	By $ \attr_{src} = \bigcup_{t \in \types_{src}} \attr_{t}$ we denote all
%%	attributes of the source language.
%\end{mydef}
%%
The domain of the store initialization function \emph{init} is defined as
follows.
%
\begin{mydef}
	Let $ \types_{src} $ be the set of types of the source language and $ \Sigma
	$ the set all variable valuations. The domain of the store initialization
	function \emph{init} is given by
	\[\textit{init}: \types_{src} \to \Sigma \].
\end{mydef}
%
To define the \emph{init} function, we provide a text-based language which
allows for the definition of primitive variables, as well as a mapping from
types (and their attributes) to primitive variables.
Listing~\ref{lst:storeinitgrammar} shows the EBNF of the language to
configure the store.
%
\includestoregrammar{listings/StoreInitGrammar}{EBNF for the store
initialization language.}{lst:storeinitgrammar}
%
%%
%\includestoregrammar{listings/StoreInitWebstoryExample}{Store initialization
%for \webstory{} to KTS transformation.}{lst:storeinit:example}
%%
The grammar facilitates to create single primitive typed variables (Line~3),
as well as a variable for each occurrence of an element typed by $ t \in
\types_{src} $
(Lines~5-7). In the latter case, variable names can be generated or specified
by referencing an attribute of the corresponding type (Line~6). Initial
variable values can be statically set or derived from the type's attribute
(Line~7).

\paragraph{Target Identification}
The \emph{enhanced creator semantics} of a first-level rule application is to
create elements defined in the target pattern, if they do not exists and update
them otherwise.
The easiest way to identify the elements is to consider their
type and attribute valuation, i.e., two elements are equal, if they have the
same type and all their attribute values are equal.

In some cases this kind of identification is too detailed. In model-checking,
this leads to the \emph{state explosion} problem~\cite{pub}{Clarke2012}. This
problem is tackled by, e.g., abstraction: Instead of verifying properties on
the actual model, an abstraction of the model is considered. The abstraction is
defined through a mapping from the actual state space to a subset of states by
abstracting irrelevant information.

In a similar way, a mapping is specified to define what information a target
element should be identified by. Since, target elements may be related
by source language types and information aggregated by second-level rules, the
mapping function is defined as follows.
%
\begin{mydef}
	Let $ \types_{src} $ ($ \types_{trg} $) be the set of types of the source
	(target) language, and let $ \var $ be a set of primitive variables. The
	domain of the mapping function \emph{map} is defined by
	\[map: (\mathcal{P}(\types_{src}) \times \mathcal{P}(\var)) \to
	\types_{trg} \].
\end{mydef}
%
Since the \emph{map} function's domain involves the set of variables $ \var $,
the store configuration has to be specified previous to the mapping.

\subsection{The \webstory{} to Kripke Transition System Transformation
Language}
\label{sec:generation:example}
In this section, I will exemplify the generation process by means of the
\webstory{} to KTS transformation language incorporating the SOS-based auxiliary
language. Thus, the \webstory{} specification serves as source language
parameter, the KTS language as target language parameter.
In the following, I will emphasis on the configuration, since its definition is
the main task of the developer.

The purpose of the transformation is to verify properties of \webstory{}
models by model-checking~\cite{pub}{KoLyNS2020}.
We want to define CTL properties over the \variable{} nodes used in
a \webstory{} model. \variable{} nodes are manipulated by \modifyVariable{} nodes.
With this information, we can define the store initialization as follows.
\begin{eqnarray}
\label{eq:example:storeinit}
	\textit{init}:& \types_{\textit{\webstory{}}} \to \Sigma &\text{, with}
	\nonumber \\
	\label{eq:example:variable}
	\textit{init}:& v \mapsto (bool\ \mapsto \texttt{false}) &, \forall v\in
	\variable
	\\
	\label{eq:example:modifyvariable}
	\textit{init}:& m \mapsto (bool\ \mapsto \textit{m.value}) &, \forall m\in
	\modifyVariable
\end{eqnarray}
Definition~(\ref{eq:example:variable}) specifies that for each element of type
\variable{} a Boolean variable should be created and initialized with the value
\texttt{false}. Similar, Def.~\ref{eq:example:modifyvariable} creates a Boolean
variable for each element of type \modifyVariable{} but initializes it with the
value of the \modifyVariable{}'s attribute \emph{value}. Applying this definition
on the \webstory{} model depicted in Fig.~\ref{fig:wsl-goldhunt} results
in the following store:
\begin{eqnarray}
	\sigma
	[&\textit{\textbf{v}} &\mapsto \texttt{false}, \nonumber\\
	 &\textit{\textbf{v1}} &\mapsto \texttt{false}, \nonumber\\
	 &\textit{\textbf{m}} &\mapsto \texttt{true}, \nonumber\\
	 &\textit{\textbf{m1}} &\mapsto \texttt{true}\nonumber]
\end{eqnarray}
Now, we can specify the identification for target model elements.
\begin{eqnarray}
map:& (\mathcal{P}(\types_{\webstory}) \times
\mathcal{P}(\textit{init}(\types_{\webstory}))) &\to \types_{\textit{KTS}}
\nonumber\\
map:&(\{\screen\},{\textit{init}(\variable)}) &\mapsto S_{\textit{KTS}}
\nonumber
\end{eqnarray}
We use $ \emph{init}(X) $ for a set $ X $ to describe the image of the
\emph{init} function.
Consequently, we identify the state in a KTS by the \screen{} type and the
variables in the store which originate from \variable{} nodes.
The generated SOS-based transformation language can be used to model the rules
shown in Figure~\ref{fig:ws2kts-clicktoscreen1}
(\emph{first-level} rule) and
Figure~\ref{fig:ws2kts-mircorules1} (\emph{second-level} rules).
%%
%\begin{figure}[tb]
%	\centering
%	\includegraphics[width=\textwidth]{figures/ws2kts-clickToScreen.pdf}
%	\caption{First-level rules defining the transformation of \webstory{}
%		elements into states of a \kts{}.\label{fig:ws2kts-clicktoscreen}}
%\end{figure}
%%
%\begin{figure}[tb]
%	\centering
%	\includegraphics[width=\linewidth]{figures/ws2kts-microrules.pdf}
%	\caption{Second-level rules defining the aggregation of information in a
%		\webstory{}.\label{fig:ws2kts-mircorules}
%}
%\end{figure}
%
%The generation of the transformation language was
%implemented by a student within the scope of his masters thesis, which I
%supervised.

\chapter{Future Work}

\section{Application}
In Sect.~\ref{mt:examples}, I presented several projects, bachelor and master
theses in which model
transformations were defined using the \cinco{}-generated API. It would be
interesting to model these transformations using
the presented approaches in this thesis and compare the resulting
transformation systems.
For instance, the semantics definition of the CMMN language by means of the
transformation to \dime{} models would be an interesting application, since the
transformation has to consider three DSVLs which constitute \dime{}.

Furthermore, it would be interesting to investigate the usability of the
model transformations in the context of code generators, since their
development is usually based on textual template-based languages.

\section{Higher-Order Transformations}
\label{fw:hot}
During the development of DSVLs, several model transformations are created,
e.g., for the purposes described in
Sect.~\ref{mt:towardsgraphbasedtransformationsincinco}. These transformations
can involve different kinds of DSVLs.
Using graph-based,
domain-specific transformation languages to model these transformations entails
many advantages. However, since the transformation languages are designed to
conform to the languages involved in the transformation, changing one of these
languages can result in the invalidation of models and, additionally, all
transformations involving the modified language.
Considering the transformation from \webstory{} to KTS, the modification of the
\webstory{} language would invalidate the modeled transformation. To enable
the verification of models conforming to the modified \webstory{} language, one
has to model the transformation anew, or migrate the existing transformation
rules.

Higher-Order Transformations (HOTs) are \enquote{model
transformations that analyze, produce or manipulate other model
transformations}~\cite{pub}{TiCaJo2010}. These kind of transformations could be
used to, e.g., transform the model transformations from the \webstory{}
language to KTS into transformations of a modified \webstory{} language to KTS.

\section{Auxiliary Language}
I believe that the two-level transformation languages represent powerful tools
to specify computational model transformations. It would be interesting to
investigate
if other kinds of auxiliary languages exist which support the definition of
different aspects in model transformation languages. For instance, the
transformation from truth tables to binary decision diagrams, as proposed in
this year's transformation tool contest~\cite{web}{wwwttc}, represents an
interesting challenge.
The transformation requires the identification of columns in the truth table
satisfying special conditions, before transforming them to elements in the
binary decision diagram.

%Higher-order transformations (HOTs) are transformations, whose parameters are
%in turn transformation rules.
%Given two transformation languages ($ TL_{1}, TL_{2} $), a HOT language can be
%generated using the presented approaches, if $ TL_{1}, TL_{2} $ are used as
%parameters for the language generator. The resulting HOT can be used to
%transform transformations modeled in $ TL_{1} $ into transformations modeled
%in
%$ TL_{2} $.
%
%Since HOTs are employed to transform transformation rules, this approach might
%be handy in the context of model migration and model co-evolution.
%Figure~\ref{fig:hot} shows a
%possible scenario of HOTs during model migration.
%%
%\begin{figure}[tb]
%	\centering
%	\includegraphics[width=0.5\textwidth]{figures/MigrationEvolution.pdf}
%	\caption{Application of higher-order transformations for model migrations.
%	\label{fig:hot}}
%\end{figure}
%%
%We assume that the source language ($ L_{S} $), verification language ($
%L_{V} $) and the
%corresponding model transformations from $ L_{S} $ to $ L_{V} $ (for
%verification) and the
%transformation from $ L_{S} $
%to $ L_{S^{\prime}} $ (for migration) are given.
%To provide a verification method for models expressed in the evolved language
%$L_{S^{\prime}} $, the models expressed in $ L_{S^{\prime}} $ have to be
%translated to $ L_{V} $. Therefore, the transformation from \enquote{$
%L_{S^{\prime}} $ to $ L_{V} $} is required.
%Using a HOT, one can model the migration of the transformation \enquote{$
%L_{S} $ to $ L_{V} $} to
%\enquote{$
%L_{S^{\prime}} $ to $ L_{V} $}
%(cf. Fig.~\ref{fig:hot}, \enquote{$ L_{S} $ to $ L_{V} \rightarrow
%L_{S^{\prime}} $ to $ L_{V} $}).
%To retrieve the transformation language for the higher-order
%transformations, the language generator presented in this thesis can be
%parameterized by the
%transformation languages used to define \enquote{$ L_{S} $ to $ L_{V} $} (as
%source languages of the
%HOT) and \enquote{$ L_{S^{\prime}} $ to $ L_{V} $} as target language of the
%HOT.
%
%Furthermore, it would be interesting to study if the knowledge about the
%language evolution can be exploited to derive the required HOTs.
%Figure~\ref{fig:hot-example} shows a possible application for the migration
%presented in~\cite{pub}{KoLyNS2019a}.
%%
%\begin{figure}[tb]
%	\centering
%	\includegraphics[width=\textwidth]{figures/HOT-example.pdf}
%	\caption{Utilizing the language evolution knowledge to adapt patterns in
%	transformation rules using HOTs.
%	\label{fig:hot-example}}
%\end{figure}
%%
%This example represents a language evolution of the \webstory{} language. In
%this evolution, i.a., the \modifyVariable{} and \variable{} types are removed
%from the
%language and replaced by an \textit{Assignment} type. Models expressed in the
%old language should by migrated transforming structures of \modifyVariable{}s
%and \variable{}s into \textit{Assignment}s, as indicated by the \enquote{$
%L_{S} $ to $ L_{S^{\prime}} $} arrow in Fig.~\ref{fig:hot-example}.
%The \enquote{$ L_{S} $ to $ L_{V} $} arrow shows how the pattern consisting of
%\modifyVariable{} and \variable{} types is transformed in the transformation
%from
%\webstory{} to KTS. The \texttt{Higher-Order Transformation} represents how the
%\enquote{$ L_{S} $ to $ L_{V} $} transformation rule can be transformed to the
%corresponding \enquote{$ L_{S^{\prime}} $ to $ L_{V} $} transformation rule.
%In
%this case, the knowledge of the relation between \modifyVariable{},
%\variable{}
%and the \textit{Assignment} type could be utilized to derive the relation
%between the rules which parameterize the HOT.

\chapter{Conclusion}
In this thesis, I presented the tasks and problems during the development of domain-specific visual
languages, alongside three specific activities. To handle those activities, I described how the
domain-specific, full-generation, and service-orientation (DFS) approach can be applied to the domain
of model transformation languages. The resulting transformation languages provide means to define
model transformations in a declarative way.
Furthermore, I explained model transformations, in which
the information required for the transformation is not statically or locally represented in the source
languages. These transformations need to compute the required information. I
sketched how such
transformations can be specified using existing graph transformation approaches.
To reduce the complexity introduced by the computation, I additionally considered the computation
during a transformation as a domain-specific aspect and applied the DFS
approach on the domain of \enquote{computational model transformations}.
I introduced a language pattern for transformation languages which impose
restrictions on the traditional way to define graph-rewrite rules, separate the
concerns of these transformations, and
provide domain-specific capabilities to define the individual concerns of the transformations.
I employed Plotkin's Structural Operation Semantics (SOS) to create a domain-specific language for the
specification of computations during a transformation. This way, I facilitate the definition of
computations in a declarative, elegant way that allows business experts without programming skills to
specify the computation.

Resulting from the amount of possible combinations of source and target
languages, and the purpose of the actual transformation, I showed how the
transformation languages can be generated by analyzing the interrelations
between the involved languages, generalizing them, and providing means to
specify the interrelations which can not be generated. I used the two-level
\webstory{} to KTS transformation language to exemplify the required
specification.

%In this thesis, I presented the two-level transformation language
%explicitly using the SOS-based auxiliary language.
I believe, that these types of transformation
languages are a powerful tool for the considered transformation. It
would be interesting to research if other auxiliary languages exist, which
can be utilized to specify different aspects of a transformation languages.

%This dissertation motivated the importance of model transformations in the
%scope of domain-specific visual languages. Regarding \cinco{}, model
%transformations are used in different areas, for different purposes and are
%currently implemented using the \cinco{}-generated API.
%The employment of graph-based transformation approaches is motivated and first
%transformation languages were implemented in~\cite{pub}{Feltma2018,Goldap2019}
%and
%used in~\cite{pub}{Schall2019}.
%
%The attached publications~\cite{pub}{KoLyNS2020,LyKoSt2018} introduce the idea
%of
%transformation languages, tailored towards their application area. Depending on
%the source and target languages, the tailored transformation languages should
%be domain-specific respecting the concepts defined in source and target DSVL.
%Therefore, this dissertation describes an approach for generating tow-level
%transformation languages facilitating a declarative description of the actual
%transformation and required computations.
%
%
%\section{Using Graph-Based Transformations in the Development of \cinco{}}
%As suggested in Sect.~\ref{mt:towardsgraphbasedtransformationsincinco},
%graph-based model transformations could be applied in the development of
%the \cinco{} meta-tooling suite. Therefore, a graphical representation of MGL
%and MSL is required. The GCS tool paves the way towards this goal providing
%a DSVL for the definition of \cinco{} specifications.
%
%Given the GCS specification, employing the approaches
%presented in ~\cite{pub}{Feltma2018} or Chapter~\ref{mt:generation},
%graph-based transformation languages can be generated, which can be used to,
%e.g., describe the pre-processing of a \cinco{} product specification previous
%to the \cinco{} product generation. Furthermore, based on the GCS language a
%DSVL counterpart to the language developed by Mr.
%Schallau~\cite{pub}{Schall2019} for meta model evolution can be generated.
%Sprinkle and Karsai present in~\cite{pub}{SprKar2004} a similar approach and
%highlight the migration of the dynamic semantics during the evolution of a DSVL
%as a major problem. They propose sequenced \texttt{Transform} operations to
%describe the migration process. Using our approach, the transformation of the
%dynamic semantics could be described utilizing the computation rule
%language~\cite{pub}{KoLyNS2020}.
%%%
%%\begin{figure}[tb]
%%	\centering
%%	\includegraphics[width=0.45\textwidth]{figures/gcsspecificationingcs.pdf}
%%	\caption{Specification of GCS types in GCS.
%%		\label{fig:gcs:gcs-specification}}
%%\end{figure}
%%%
%
%\section{Truth Tables to Binary Decision Diagrams}
%The transformation of Truth Tables (TT) to Binary Decision Diagrams (BDD),
%proposed as assignment of the Transformation Tool Contest
%2019~\cite{web}{wwwttc}, constitutes an interesting transformation. Entries
%used in a TT are defined by the set $ \{\texttt{true}, \texttt{false},
%\texttt{dontCare}\} $, where \texttt{dontCare} specifies the irrelevance of
%this value for the result. The BDD language allows for rooted acyclic graph
%structures. The solutions should be easy to understand, complete, correct,
%optimal.
%A simple approach for the transformation is to identify a column with the most
%specified values, i.e., \texttt{true} or \texttt{false}, and transform the
%corresponding variable to an inner node (sub-tree) in the BDD.
%%
%\begin{enumerate}
%	\item Identify a column $ c $ with most specified entries
%	\item Create an inner node for column $ c $.
%	\item Create sub-trees for the \texttt{false} and \texttt{true} branch for
%	column $ c $ by executing step 1.
%\end{enumerate}
%%
%Based on the computed information in the first step, the actual transformation
%has to be executed.
%
%
%\section{Generator Configuration vs. Runtime Configuration}
%The generation of
%two-level transformation languages described in
%Sect.~\ref{mtgen:twolevellanguage:generation} is based on a generator
%configuration. For fixed source and target languages, this approach demands
%the generation of a transformation language for each kind of store
%characterization or target element identification.
%Alternatively to the generator configuration, the information can be provided
%at runtime, i.e., during the modeling of transformation rules. This approach
%enhances the prototyping of transformations, since the generation process is
%executed just once and the configurations can be changed during rule modeling.
%A prerequisite to provide a language allowing for the definition of a mapping,
%is the knowledge about the possible design space of source (and target)
%languages. All modeling languages implementing the MOF standard satisfy this
%prerequisite. Thus, instead of generating static code representing the
%knowledge implied by the generator configuration an interpreter for the store
%initialization and target identification functions can provided in a two-level
%transformation language.

%\section{Higher-Order Rule Application}
%Since DS(V)Ls are often subject to changes, the migration problem does not
%only
%affect the models expressed in the DS(V)L, but also model transformations
%involving the changed language. Consequently, for existing transformations the
%conformance relation to the corresponding meta model has to be repaired.

%\begin{itemize}
%	\item Migration: both specifications have to be in one workspace
%	\item Rule scheduling in 2-level language
%	\item (Implementation of Transformation Tool Contest assignment)
%%	\item Generator config vs Runtime Config.
%\end{itemize}
%Describe the most similar tools from the survey papers
%e.g.\cite{pub}{KBCDV2018}.
%In~\cite{pub}{SyVaLa2015} the \emph{T-Core} is presented as a framework to
%implement
%the relevant parts for model transformations. It consists of...

%\input{categorization}

\bibliography{pub}{world,local}{References}
\bibliography{web}{worldurls,local}{Online References}

%\includepdf[pages=-]{publications/NaLyKS2017.pdf}
%\includepdf[pages=-]{publications/BFKLNN2016.pdf}
%\includepdf[pages=-]{publications/LKZFNS2018.pdf}
%\includepdf[pages=-]{publications/LyKoSt2018.pdf}
%\includepdf[pages=-]{publications/cinco-sos.pdf}

\end{document}

