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Abstract

In this paper, we study a semiparametric multiplicative volatility model, which

splits up into a nonparametric part and a parametric GARCH component. The

nonparametric part is modelled as a product of a deterministic time trend com-

ponent and of further components that depend on stochastic regressors. We

propose a two-step procedure to estimate the model. To estimate the nonpara-

metric components, we transform the model in order to apply the backfitting

procedure used in Vogt and Walsh (2019). The GARCH parameters are esti-

mated in a second step via quasi maximum likelihood. We show consistency

and asymptotic normality of our estimators. Our results are obtained using

mixing properties and local stationarity. We illustrate our method using finan-

cial data. Finally, a small simulation study illustrates a substantial bias in the

GARCH parameter estimates when omitting the stochastic regressors.
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1 Introduction

Given the ever-changing economic and financial environment, it is quite plausible that

many financial time series behave in a nonstationary way. Especially over longer hori-

zons, structural changes may occur. Thus, the technical assumption of stationarity is

likely to be violated in many cases. This issue has been pointed out by numerous au-

thors in recent years. In particular, it has been claimed that many interesting stylized

facts of financial return and volatility series can be neatly explained by employing

nonstationary models (see e.g. Mikosch and Stărică (2000, 2003, 2004)).

One way to deal with nonstationarities in financial time series is the theory on lo-

cally stationary processes. The latter has been introduced in a series of papers by

Dahlhaus (1996a,b, 1997). Intuitively speaking, a process is locally stationary if over

short periods of time (i.e. locally in time) it behaves approximately stationary, even

though it is globally nonstationary. In recent years, many locally stationary models

have been proposed in the financial time series context. Usually, these models are

extensions of parametric time series models allowing for the parameters to change

smoothly over time. An example is the class of ARCH processes with time-varying

parameters introduced by Dahlhaus and Subba Rao (2006) and further investigated

by Fryzlewicz et al. (2008) and Truquet (2017) among others.

A simple locally stationary volatility model which has been explored in a number of

studies is given by the equation

Yt,T = τ
( t
T

)
εt for t = 1, . . . , T, (1)

where Yt,T are log-returns, τ is a smooth deterministic function of time and {εt}

is a standard stationary GARCH process with E[ε2t ] = 1. As usual in the litera-

ture on locally stationary models, the time-varying parameter τ does not depend

on real time t, but on rescaled time t
T
. We comment on this feature in more de-

tail in Section 2. Model (1) has been considered for example in Feng (2004), where
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the τ -function is estimated nonparametrically. Engle and Rangel (2008) work with a

closely related model, where the τ -component is modelled parametrically as a flexible

exponential spline function. A multivariate generalization of model (1) is studied in

Hafner and Linton (2010).

Model (1) can be considered as a GARCH process with time-varying parameters,

with certain restrictions imposed on the parameter functions. In particular, the un-

conditional volatility level E[Y 2
t,T ] is given by the time-dependent function τ 2(t/T ),

which is allowed to vary smoothly over time. In reality, the volatility level is unlikely

to change deterministically over time. Instead it reflects and varies with changes in

the economic and financial environment. Therefore, the τ -function should depend on

certain economic and financial variables. In model (1), these dependencies are not

modelled explicitly. Instead, rescaled time serves as a catch-all for omitted explana-

tory variables.

These considerations show that in a more realistic version of model (1), the τ -function

should depend on economic and financial influences. However, there is clearly no way

to come up with a model that incorporates all relevant variables. One way to deal

with this is to use rescaled time as a proxy for the omitted variables. To formalize

these ideas, we propose the model

Yt,T = τ
( t
T
,Xt

)
εt, (2)

where Yt,T are log-returns, Xt = (X1
t , . . . , X

d
t ) is an R

d-valued random vector of eco-

nomic or financial covariates and τ is a smooth function of time and the variables Xt.

As before, {εt} is a standard GARCH process. To countervail the curse of dimen-

sionality, we split up the τ -function into multiplicative components, thus yielding the

model

Yt,T = τ0

( t
T

) d∏

j=1

τj(X
j
t )εt, (3)

where τ0 and τj for j = 1, . . . , d are smooth functions of time and of the regressors
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Xj
t , respectively. As will be seen in Section 2, the multiplicative specification of the

τ -function in (3) not only avoids the curse of dimensionality but also allows for a

direct interpretation of the various components.

In the following sections, we give an in-depth theoretical treatment of model (3). The

complete formulation of the model together with its assumptions is given in Section 2.

In Section 3, we propose a two-step procedure to estimate both the nonparametric and

the parametric components of the model. To estimate the nonparametric functions

τj for j = 0, . . . , d, we use results from Vogt and Walsh (2019) in order to extend

the smooth backfitting procedure of Mammen et al. (1999) to our locally stationary

stetting. Having estimates τ̃j of the functions τj , we can construct approximate

expressions ε̃t of the GARCH variables εt. This allows us to estimate the GARCH

parameters of the model via approximate quasi maximum likelihood methods in a

second step. Consistency and asymptotic normality of our estimators are shown in

Section 4.

The contribution in this paper is twofold. From a technical point of view, we ex-

tend the asymptotic results for model (1) to a more general framework in which the

τ -function depends both on rescaled time and stationary stochastic regressors. This

vastly complicates both steps of the asymptotic analysis and as a result, we can-

not extend existing proving techniques as provided in Hafner and Linton (2010) in

a straightforward manner. In particular, novel and intricate arguments are required

to derive the asymptotic behaviour of the GARCH estimates obtained in the second

estimation step. In terms of volatility modelling, we introduce a flexible framework

which allows to capture both nonstationarities and influences from the economic and

financial environment. As the component functions τj in our model are completely

nonparametric, we are able to explore the form of the relationship between volatility

and its potential sources. Therefore, our model allows us to extend existing paramet-

ric studies on the sources of volatility as conducted e.g. in Engle and Rangel (2008)

and Engle et al. (2013).
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In the literature other extensions to GARCH models have been proposed that allow

the incorporation of exogenous variables. For instance, Han and Kristensen (2014)

linearly include a covariate in the GARCH equation and derive the asymptotic re-

sults for a quasi-maximum likelihood estimator of the unknown parameters in the

stationary case and a particular nonstationary case. In order to incorporate effects

of economic variables on stock market volatility a popular model class is given by

GARCH-MIDAS models used for instance in Engle et al. (2013), Conrad and Loch

(2014) and Asgharian et al. (2013). Typically, these models have a decomposition

into two components, similarly to the decomposition in (1). One component is mod-

elled as a GARCH process that captures short term fluctuations of volatility around

a time varying long run component. The long run component is modelled as a para-

metric function of a finite history of realized stock market variances or some other

covariate measured on a lower frequency. The number of included covariates is limited

to one or two due to issues with parameter identification and stability of the proposed

estimation procedure. Although these models allow for a nice interpretation of short

run and long run components of volatility, the effect of an individual covariate on

stock market volatility is not as easily interpreted. Furthermore, theoretical results

seem to be limited to those derived in Wang and Ghysels (2015) using realized vari-

ance as the sole covariate. Finally, economic variables have been successfully used to

improve predictions of stock market volatility. This has mainly been done by aug-

menting autoregressive models of monthly stock market realized variance with linear

functions of the covariates of interest as in Christiansen et al. (2012) and Paye (2012).

Mittnik et al. (2015) allow for covariates to enter an exponential ARCH model in a

nonparametric way. Although their approach allows for the effect of the covariates

to be flexible and interpretable, their paper is methodological and solely focused on

out of sample predictive performance. In particular, they do not have any theoretical

results concerning the estimated nonparametric functions.

To illustrate the usefulness of our model and to complement the technical analysis, we

5



present an empirical example in Section 5. There, the model is applied to S&P 500

log return data using various economic and financial explanatory variables that have

been deemed significant drivers of stock market volatility in previous studies. A small

simulation study designed to mimic certain aspects of the application investigates the

behaviour of the proposed estimation procedure in Section 6. It will be seen there, that

omitting explanatory variables can lead to substantially biased GARCH parameter

estimates.

2 The Model

Suppose we observe a sample of daily log-returns Yt,T of a financial time series and a

sequence of daily R
d-valued random stationary covariate vectors Xt = (X1

t , . . . , X
d
t )

for t = 1, . . . , T . We assume the log-return series follows the process

Yt,T = τ0

( t
T

) d∏

j=1

τj(X
j
t )εt for t = 1, . . . , T (4)

with

εt = σtηt

σ2
t = w0 + a0ε

2
t−1 + b0σ

2
t−1.

Here, τ0 and τj (j = 1, . . . , d) are smooth nonparametric functions of time and the

stochastic regressors, respectively. Furthermore, {εt} is a strictly stationary GARCH

process with parameters (w0, a0, b0), which is assumed to be independent of the co-

variate process {Xt}. The residuals of the GARCH process, {ηt}, are assumed to be

i.i.d. with zero mean and unit variance. For simplicity, we restrict attention to the

GARCH(1,1) specification.

In order to conduct meaningful asymptotics, we let the function τ0 depend on rescaled

time t/T rather than on real time t. Thus, τ0 is defined on (0, 1] rather than on
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{1, . . . , T}. In the remainder of this paper, we denote rescaled time by x0 ∈ (0, 1]. It

relates to observed time t ∈ {0, . . . , T} through the mapping t = ⌊x0T ⌋, where the

floor function ⌊x⌋ denotes the largest integer weakly smaller than x. If we defined

the function τ0 in terms of observed time, we would not get additional information

on the structure of τ0 around a particular time point t as the sample size T increases.

Within the framework of rescaled time, in contrast, the function τ0 is observed on

a finer and finer grid on the unit interval as T grows. Thus, we obtain more and

more information on the local structure of τ0 around each point x0 in rescaled time.

This is the reason why we can make meaningful asymptotic considerations within

this framework. A detailed discussion of the concept of rescaled time can be found

in Dahlhaus (1996a).

For a sufficiently smooth trend function τ0, we have

∣∣Yt,T − Yt(x0)
∣∣ ≤ C

∣∣∣ t
T

− x0

∣∣∣Ut, (5)

where C is a constant independent of x0, t and T , Yt(x0) = τ0(x0)
∏d

j=1 τj(X
j
t )εt,

and Ut =
∏d

j=1 τj(X
j
t )εt. Note that both {Yt(x0)} and {Ut} are strictly stationary

processes due to the stationarity of Xt and εt. As Ut = Op(1), we obtain from (5)

that
∣∣Yt,T − Yt(x0)

∣∣ = Op

(∣∣∣ t
T

− x0

∣∣∣
)
. (6)

Therefore, if t/T is close to x0, then Yt,T is close to Yt(x0) at least in a stochastic

sense. Put differently, locally in time, the process {Yt,T} is close to the stationary

process {Yt(x0)}. In this sense, the process {Yt,T} is locally stationary.

We close this section with a remark on the interpretation of the nonparametric compo-

nents of model (4). First, note that the functions τ0, . . . , τd and the GARCH residual

εt are only identified up to a multiplicative constant in model (4). Thus we are

free to rescale them in a suitable way. Given the independence between Xt and εt,
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normalizing the components such that E[ε2t ] = 1 yields

E[Y 2
t,T | Xt] = τ 20

( t
T

) d∏

j=1

τ 2j (X
j
t ). (7)

Thus, the product of the τ -components gives the volatility at time t conditional

on the covariates Xt. If we additionally scale the model components to satisfy

E[
∏d

j=1 τ
2
j (X

j
t )] = 1, we obtain that

E[Y 2
t,T ] = τ 20

( t
T

)
, (8)

i.e. the deterministic function of time τ 20 (t/T ) gives the time-varying unconditional

volatility level. In (7), τ 20 (t/T ) thus specifies the unconditional volatility level and

the product of the remaining components
∏d

j=1 τ
2
j (X

j
t ) is the multiplicative factor by

which the volatility conditional on Xt deviates from the unconditional level.

3 Estimation Procedure

Next, we provide details on the two-step estimation procedure outlined in the intro-

duction. The first step provides estimators of the nonparametric functions τ0, . . . , τd.

In the second step, we use the nonparametric estimates to obtain estimators of the

GARCH parameters.

3.1 Estimation of the Nonparametric Model Components

In order to estimate the nonparametric functions τ0, . . . , τd, we first transform the

multiplicative model (4) into an additive one. Given the resulting estimators of the

additive model we retrieve the estimates of the components in the multiplicative

model by applying the reverse transform. Under the assumptions in Section 4, we

8



can square the model equation (4) and take logarithms yielding

Zt,T = m0

( t
T

)
+

d∑

j=1

mj(X
j
t ) + ut, (9)

where Zt,T := log Y 2
t,T , mj := log τ 2j for j = 0, . . . , d, and ut := log ε2t . The model

structure in (9) corresponds to the one used in Vogt and Walsh (2019) without a

periodic component. Note that the functions m0, . . . , md in (9) are only identified up

to an additive constant. To identify them, we assume that

∫ 1

0

m0(x0)dx0 = 0 and

∫

R

mj(xj)pj(xj)dxj = 0 for j = 1, . . . , d, (10)

where pj is the marginal density of Xj
t . Furthermore, we normalize the error to have

zero mean, E[ut] = 0, which introduces a constant mc to (9), and we are left with

Zt,T = mc +m0

( t
T

)
+

d∑

j=1

mj(X
j
t ) + ut. (11)

The formulation in (11) corresponds to the model setup in Vogt and Walsh (2019),

where the model constant was subsumed into the periodic component. Thus, using

the degenerate periodic component estimate m̃c =
1
T

∑T
t=1 Zt,T , we can apply their

smooth backfitting approach to estimate the nonparametric components m0, . . . , md.

Denote the resulting estimators by m̃0, . . . , m̃d. We refer the reader to section 3.2 in

Vogt and Walsh (2019) for a precise definition of the estimators. In Section 4, we will

give a set of sufficient conditions ensuring that the assumptions in Vogt and Walsh

(2019) are fulfilled, thus allowing us to appeal directly to the asymptotic results for

m̃c, m̃0, . . . , m̃d derived there. Finally, to get the estimators of the multiplicative

components we apply the reverse transform to get

τ̃j =
√
exp(m̃j) (12)
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for j = 0, . . . , d.

3.2 Estimation of the Parametric Model Components

In order to estimate the parametric model components, suppose initially that the

nonparametric components τ 20 , ..., τ
2
d were known. If this were the case, the GARCH

variables given by

ε2t =
Y 2
t,T

τ 20 (
t
T
)
∏d

j=1 τ
2
j (X

t
j)

(13)

would be observable and the parameters φ0 := (w0, a0, b0) could be estimated by

standard quasi maximum likelihood methods using the quasi log-likelihood

lT (φ) = −
T∑

t=1

(
log v2t (φ) +

ε2t
v2t (φ)

)
(14)

for the parameter vector φ = (w, a, b) with

v2t (φ) =





w
1−b for t = 1

w + aε2t−1 + bv2t−1(φ) for t = 2, . . . , T

(15)

denoting the conditional volatility of the GARCH process with starting value v21(φ) =

w/(1− b). The resulting estimator from maximizing the quasi log-likelihood over the

parameter space Φ is denoted by φ̂ = argmaxφ∈Φ lT (φ).

As the functions τ 20 , . . . , τ
2
d are not observed, the estimator φ̂ is infeasible. However,

given the estimates τ̃ 20 , . . . , τ̃
2
d from the first estimation step, we can replace the ε2t by

the terms

ε̃2t =
Y 2
t,T

τ̃ 20 (
t
T
)
∏d

j=1 τ̃
2
j (X

t
j)

(16)

and use these as approximations to ε2t in the quasi maximum likelihood estimation.
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The quasi log-likelihood then becomes

l̃T (φ) = −
T∑

t=1

(
log ṽ2t (φ) +

ε̃2t
ṽ2t (φ)

)
, (17)

where analogously to (15),

ṽ2t (φ) =





w
1−b for t = 1

w + aε̃2t−1 + bṽ2t−1(φ) for t = 2, . . . , T

(18)

is the approximate conditional volatility. Our estimator φ̃ of the true parameter

values φ0 is now defined as

φ̃ = argmax
φ∈Φ

l̃T (φ), (19)

where the parameter space Φ is assumed to be compact.

4 Asymptotics

Asymptotic properties for the estimators of the nonparametric components, τ̃0, . . . , τ̃d,

are stated in Section 4.1. The corresponding results on the asymptotic behaviour of

the estimator of the GARCH parameters, φ̃, are given in Section 4.2. In order to

establish the asymptotic properties of our nonparametric estimators we make the

following assumptions.

(A1) The process {Xt, εt, σt} is strictly stationary and strongly mixing with mixing

coefficients α satisfying α(k) ≤ ak for some 0 < a < 1.

(A2) The functions τj (j = 0, . . . , d) are twice (continuously) differentiable, strictly

positive, and bounded away from zero with Lipschitz continuous second deriva-

tives.

(A3) The processes {Xt} and {εt} are independent and the error process is normalized
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s.t. E[log ε2t ] = 0.

(A4) The conditional volatility σ2
t is bounded away from zero and the GARCH resid-

uals ηt have a density with respect to Lebesgue measure which is bounded in a

neighbourhood of zero.

(A5) The variables Xt have compact support, say [0, 1]d.

(A6) The kernel K is bounded, has compact support ([−C1, C1], say) and is symmetric

about zero. Moreover, it fulfills the Lipschitz condition that there exists a positive

constant L such that |K(u)−K(v)| ≤ L|u− v|.

(A7) The density p of Xt and the densities p(0,l) of (Xt, Xt+l), l = 1, 2, . . . , are

uniformly bounded. Furthermore, p is bounded away from zero on [0, 1]d. The

first partial derivatives of p exist and are continuous.

(A8) There exists a constant C such that E[|ut|θ] := E[| log(ε2t )|θ] < ∞ for some

θ > 8
3
.

(A9) The bandwidth h satisfies either of the following:

(A9a) T
1

5h→ ch for some constant ch.

(A9b) T
1

4
+δh→ ch for some constant ch and some small δ > 0.

The assumptions (A1) to (A9) ensure that the transformation used to derive the

additive model in (9) is admissible and that the components in the additive model

(11) satisfy the assumptions made in Vogt and Walsh (2019). Assumption (A1) re-

stricts the nonstationarity in the model to result from the time-varying component

τ0. Assumption (A2) ensures that the nonparametric functions in (11) satisfy the

smoothness conditions in Vogt and Walsh (2019). The independence assumption and

normalization of the error process in (A3) ensures that the regression error in (11),

ut, is (conditionally) mean zero. Assumption (A4) along with the boundedness as-

sumption in (A2) allows us to use the transform leading to the additive model (9).
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(A5) is only needed for the second estimation step. For the first step, we could allow

the support of Xt to be unbounded and estimate the functions τ0, . . . , τd uniformly

over compact subsets of the support. However, for ease of notation, we assume (A5)

throughout the paper. The remaining assumptions are restatements of the corre-

sponding assumptions made in Vogt and Walsh (2019).

The exponentially decaying mixing rates assumed in (A1) are not necessary and

could be replaced by sufficiently high polynomial rates. We nevertheless make the

stronger assumption (A1) to keep the notation and structure of the proofs as clear as

possible. Furthermore, at the expense of additional complications in the proofs, given

some modifications to assumption (A8) the independence condition in (A3) could be

weakened to the requirement that almost surely E[ε2t |Xt] = E[ε2t ] and E[log ε2t |Xt] = 0,

which would be satisfied if Xt and εt were contemporaneously independent.

In order to prove that our GARCH parameter estimators in the second estimation

step are consistent and asymptotically normal, we will require the following additional

assumptions.

(A10) The parameter space Φ is a compact subset of {φ ∈ R
3 | φ = (w, a, b) with 0 <

κ ≤ w, a ≤ κ <∞ and 0 ≤ b < 1} with constants κ and κ. The true parameter

φ0 = (w0, a0, b0) is an interior point of Φ and a0 + b0 < 1.

(A11) E[ε8+δt ] <∞, for some δ > 0.

Assumption (A10) is standard in the estimation theory for GARCHmodels. Note that

it also implies that σ2
t is bounded away from zero, which was assumed in (A4). The

moment condition in (A11) is needed to show asymptotic normality of the GARCH

estimates.

4.1 Asymptotics for the Nonparametric Model Components

As we are mainly interested in the squared version of the estimates τ̃0, . . . , τ̃d in our

multiplicative model, we will restrict ourselves to reporting results for these.
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Theorem 4.1. Suppose that conditions (A1) – (A8) hold.

(a) Assume that the bandwidth h satisfies either (A9a) or (A9b). Then, for Ih =

[2C1h, 1− 2C1h] and I
c
h = [0, 2C1h) ∪ (1− 2C1h, 1],

sup
xj∈Ih

∣∣τ̃ 2j (xj)− τ 2j (xj)
∣∣ = Op

(√ log T

Th

)
(20)

sup
xj∈Ich

∣∣τ̃ 2j (xj)− τ 2j (xj)
∣∣ = Op(h) (21)

for all j = 0, . . . , d.

(b) Assume that the bandwidth h satisfies (A9a). Then, for any x = (x0, . . . , xd)

with x0, . . . , xd ∈ (0, 1),

T
2

5




τ̃ 20 (x0)− τ 20 (x0)

...

τ̃ 2d (xd)− τ 2d (xd)




d−→ N(Bτ2(x), Vτ2(x))

with the bias term Bτ2(x) = [τ 20 (x0)c
2
h(β0(x0) − γ0), . . . , τ

2
d (xd)c

2
h(βd(xd) − γd)]

′

and the covariance matrix Vτ2(x) = diag(τ 40 (x0)v0(x0), . . . , τ
4
d (xd)vd(xd)). Here,

v0(x0) = c−1
h cK

∑∞
l=−∞ γu(l) and vj(xj) = c−1

h cKσ
2/pj(xj) for j = 1, . . . , d with

cK =
∫
K2(u)du, γu(l) = Cov(ut, ut+l) and σ2 = Var(ut) for ut = log ε2t .

Furthermore, the functions βj(xj) for j = 0, . . . , d as well as the constants γj

for j = 0, . . . , d are defined exactly as in theorem 2 of Vogt and Walsh (2019).

To derive the above results, we first obtain the asymptotic properties of the estima-

tors m̃0, . . . , m̃d for the components of the additively transformed model (11) and

then use the smoothness of the transform τ̃ 2j = exp(m̃j) for j = 0, . . . , d. Our as-

sumptions ensure that we can appeal to theorem 2 of Vogt and Walsh (2019) to get

the asymptotics of the estimators m̃0, . . . , m̃d. The main idea of the proof there is

to exploit the fact that rescaled time behaves similarly to a random variable which
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has a uniform distribution on (0, 1] and is independent of the other covariates. Some

details are given in Appendix A.

The rates of convergence given in Theorem 4.1(a) differ for the interior and boundary

regions of the support of the covariates. In particular, the rate near the boundary

in (21) is slower than in the interior (20). However, the slow convergence at the

boundary does not pose a problem for the second estimation step as the size of the

boundary region shrinks sufficiently fast as T → ∞.

4.2 Asymptotics for the Parametric Model Components

Given the estimators for τ 20 , . . . , τ
2
d from the first step, the GARCH parameters φ0 are

estimated by φ̃ as outlined in Section 3.2. In this subsection, we look at consistency

and asymptotic normality of φ̃. The following theorem establishes consistency.

Theorem 4.2. Suppose that the bandwidth h satisfies (A9a) or (A9b). In addition,

let assumptions (A1) – (A8) and (A10) be fulfilled. Then φ̃ is a consistent estimator

of φ0, i.e. φ̃
P−→ φ0.

We next give a result on the limiting distribution of the GARCH estimates which

shows that these are asymptotically normal.

Theorem 4.3. Suppose that the bandwidth h satifies (A9b) and let assumptions (A1)

– (A8) together with (A10) – (A11) be fulfilled. Then it holds that
√
T (φ̃ − φ0)

d−→

N(0,Σ). Details on the covariance matrix Σ can be found in Appendix B.

The proof of asymptotic normality is the theoretically most challenging part of the

paper. The details are postponed to the appendices. For now we will be content with

providing an outline. By the usual Taylor expansion argument, we arrive at

√
T (φ̃− φ0) = −

[( 1
T

∂2 l̃T (φ̄i,j)

∂φi∂φj

)
1≤i,j≤3

]−1
1√
T

∂l̃T (φ0)

∂φ
,
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where the term in brackets is the matrix with (i, j)-th element as stated in parenthesis

and all φ̄i := (φ̄i,1, . . . , φ̄i,3)
′ are between φ̃ and φ0. The term in brackets can be shown

to converges in probability to a nonsingular deterministic matrix. The asymptotic

distribution is thus determined by the term 1√
T

∂l̃T (φ0)
∂φ

, which we rewrite as

1√
T

∂l̃T (φ0)

∂φ
=

1√
T

∂lT (φ0)

∂φ︸ ︷︷ ︸
=:A1

+
( 1√

T

∂l̃T (φ0)

∂φ
− 1√

T

∂lT (φ0)

∂φ

)
.

︸ ︷︷ ︸
=:A2

We will prove that this term is asymptotically normal. Asymptotic normality of A1

can be shown by well-known results from estimation theory for GARCH models. The

main challenge is to derive a stochastic expansion of the term A2. This requires rather

involved and nonstandard arguments which are presented in detail in Appendix B.

In particular, we cannot just extend the arguments presented in Hafner and Linton

(2010) to fit our setting. Once we have provided the expansion of A2, we are in

a position to apply a central limit theorem to the sum A1 + A2, which completes

the proof. We will see that the term A2 is itself asymptotically normal and thus

contributes to the limit distribution. As a consequence, we obtain an additional term

in the asymptotic variance compared to the case where we observe the GARCH errors

and would only have the term A1, thereby reflecting the additional uncertainty that

results from not knowing the functions τ0, . . . , τd.

The expression for the limiting variance in Theorem 4.3, Σ, involves functions ob-

tained from a higher order expansion of the stochastic part of the backfitting estimates

m̃0, . . . , m̃d (see Theorem A.1 in Appendix A.1). Not only is it very complicated to

calculate the exact form of these functions, it is even more challenging to give con-

sistent estimates for them making the construction of a consistent estimate of Σ a

difficult and yet unresolved problem beyond the scope of the present manuscript.
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5 Application

To illustrate our model, we apply it to a sample of daily financial data spanning the

period from 2nd January 1986 until 21st March 2019. The model to be estimated is

given by

Yt,T = τ0

( t
T

) 3∏

j=1

τj(X
j
t−1)εt, (22)

where {εt} is a GARCH(1,1) process, Yt,T are S&P 500 log-returns and the covariates

are three different lagged interest rate spreads constructed from data obtained from

the FRED database of the Federal Reserve bank of St. Louis.1 The data used in the

application are plotted in Figure 1. The top left hand panel shows the log return

series. The remaining panels depict the regressor series. The top right hand panel

contains the series of differences between the yields, also called the yield or credit

spread, of Moody’s seasoned Baa and Aaa corporate bonds. This spread can be

interpreted as the risk premium of low investment grade over high investment grade

corporate debt or as a measure of the credit risk of investing in low investment grade

corporate debt versus high investment grade corporate debt. The regressor in the

lower left hand panel is the yield spread of Moody’s seasoned Aaa corporate bonds

over the interest rate of 10 year constant maturity U.S. treasuries, which can similarly

be interpreted as a measure of the credit risk of high investment grade corporate debt

over U.S. sovereign debt. Finally, in the lower right hand corner is a measure of the

slope of the yield curve given by the difference in the interest rates of 10 year and 1

year constant maturity U.S. treasuries. Although it can be argued that some of these

series may be modelled as nonstationary processes, we will consider them as samples

from highly persistent yet stationary processes.

The component functions τ0, . . . , τ3 as well as the GARCH parameters (ω, a, b) are

estimated following the procedure given in Section 3. The bandwidths of the pro-

1The historical prices of the S&P 500 are from Yahoo! Finance available at finance.yahoo.com.
The Federal Reserve data can be obtained from https://fred.stlouisfed.org/.
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Figure 1: Data used in the application. Dependent variable: S&P 500 log returns
(top left). Regressors: Yield difference between Baa and Aaa bonds (top right); Aaa
bonds and 10 year Treasuries (bottom left); 10 year and 1 year Treasuries (bottom
right). Sample period: 3rd January 1986 until 21st March 2019. Frequency: Daily.

cedure are selected based on iterating the plugin formula given in section of 5.2 of

Vogt and Walsh (2019). In our application the iteration procedure terminated after 37

iterations with a bandwidth vector of approximately h = (0.168, 0.192, 0.230, 0.180)′.

The estimation results for the nonparametric model components are presented in

Figures 2 and 4. The solid line in Figure 2 gives (a scaled version of) the estimate τ̃ 20 .

The dashed lines are the pointwise 95% confidence intervals. As τ̃ 20 has been scaled

in accordance with the normalization of the other component estimates discussed

later on, it only estimates the time varying unconditional volatility level in (8) up to

a multiplicative constant. Comparing the estimate in Figure 2 with the log return

series of the S&P 500 in the top left hand panel of Figure 1 we see that the estimate

captures the periods of increased log return variance around the events of Black

Monday in 1987 as well as the dot-com crash in the early 2000s. Interestingly though
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the turbulences surrounding the recent financial crisis is not picked up by the estimate,

which already suggests that the regressors have more explanatory power in the recent

financial crisis. This is further exemplified in Figure 3 by comparing the estimates of

time varying unconditional volatility in our model and the simpler model (1) without

covariates. The solid line in Figure 3 is a rescaled version of τ̃ 20 that estimates the

unconditional volatility level in our model, whereas the dashed line is the estimated

unconditional volatility obtained from the simpler model (1). The main difference

between the two curves in Figure 3 is that the estimated unconditional volatility level

for the model without regressors does not tail off so much during the recent financial

crisis. During the earlier crises, however, the difference in shape between the two

curves is not so striking. Thus, indeed our regressors seem to be primarily good at

explaining the recent financial crisis, which is quite plausible as our regressors mainly

capture aspects of credit risk in the U.S.

Estimates of the squared components τ 2j for j = 1, 2, 3 are given as solid lines in

Figure 4. The dashed lines are again the pointwise 95% confidence intervals. The

estimates τ̃ 2j have been normalized such that τ̃ 2j (x
m
j ) = 1, where xmj is the median

1990 2000 2010 2020

2
4

6
8

1
0

Time

τ~ 02

Figure 2: Estimate of squared trend component τ 20 .
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Figure 3: Time-varying unconditional volatilities for our model and the simpler model
(1) without regressors.
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Figure 4: Estimates of τ 2j for j = 1, 2, 3 normalized to one at median value of regressors
(▽). Spreads measured in percentage points.
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observed realization of the j-th covariate Xj
t over the modelling period, the value of

which is indicated by the triangle (▽) on the x-axis. Thus, the multiplicative effect

of the j-th covariate on volatility is normalized to 1, given by the dotted line in the

figure, if it takes a “normal” (i.e., its median) value. As

E[Y 2
t,T |Xt] = τ0

( t
T

) 3∏

j=1

τj(X
j
t−1), (23)

the normalization allows for the estimates τ̃ 2j for j = 1, 2, 3 to be interpreted as the

multiplicative effect of the covariate Xj
t−1 on S&P 500 volatility. To illustrate this, let

us compare volatility between two different settings: Hold all the covariates except

the j-th fixed at some value x−j and change the j-th regressor Xj
t−1 from its median

xmj to some value xj . From (23), one can then see that the conditional volatility is

changed by the factor τ 2j (xj)/τ
2
j (x

m
j ) = τ 2j (xj) if τ

2
j (x

m
j ) has been normalized to one.

Consequently, the fits τ̃ 2j (xj) estimate the factor by which the volatility level gets

increased or dampened, when the j-th covariate changes from a normal value (i.e. its

median) to some other more extreme value. The upper two panels in Figure 4 can

be interpreted as the estimated multiplicative effect of credit risk of low over high

investment grade corporate debt in the top left hand panel and of high investment

grade corporate debt over U.S. sovereign debt in the top right hand panel. For ease

of comparison the scale of the y-axis in both panels is the same. Both estimated

effects are clearly increasing and highly nonlinear. The estimates are less precise for

large regressor values as seen by the fanning out of the confidence bands. In terms

of the shape of the two estimated effects, the main difference is that in the left hand

panel for very large regressor values, above approximately 2 pp, the estimated effect

increases quite sharply and then remains at a higher level. Although the range of

the effects in both panels is quite similar it should be pointed out that the values

of the credit spread between low and high investment grade corporate debt above

2 pp all occur in one burst during the recent crisis, see Figure 1. Thus, firstly, the
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credit risk of low over high investment grade corporate bonds seems to have been

particular important in the recent crisis. Secondly, outside the recent crisis the credit

risk of high investment grade corporate bonds compared to U.S. sovereign bonds has

a larger effect than that of low to high investment grade corporate bonds. Finally,

the lower panel in Figure 4 contains the estimate of the effect of the slope of the

yield curve on volatility. The estimation precision is much more homogeneous than

for the other two components. The estimated effect is also nonlinear. Somewhat

surprisingly, the main deviation from linearity is due to a decrease in the estimated

effect for negative regressor values, which corresponds to a so-called inverted yield

curve, typically interpreted as a predictor of a recession. For upward sloping yield

curves the estimates are decreasing. Thus, the steeper the upward sloping yield curve

the lower the volatility. Finally, note that the scale of the y-axis in the lower panel

is substantially smaller than in the upper panels. Hence the effect of the slope of the

yield curve on volatility is not nearly as large as that of the measures of credit risk

discussed before.

We finish our application with the estimation results for the parametric model com-

ponents. In Table 1, we compare the GARCH estimates of our model with the ones

obtained from the simpler model (1) and from a standard GARCH(1,1) model. The

w̃ ã b̃ ã+ b̃ H̃L

Standard GARCH(1,1) 0.000002 0.101 0.885 0.986 50

Model with trend 0.026 0.104 0.869 0.973 26

Model with trend and covariates 0.047 0.103 0.847 0.951 15

Table 1: GARCH parameter estimates for GARCH(1,1) and for models (1) and (22),

sum of the two estimated parameters ã + b̃ reported in the penultimate column of

Table 1 measures the persistence of shocks to volatility. One can see that this per-

sistence measure decreases from 0.986 to 0.973 when accounting for time-varying

unconditional volatility. This is in line with previous findings in the literature (com-
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pare e.g. Feng (2004)). Including our covariates in the model further decreases the

estimated persistence to 0.951. Note that the reported decrease in persistence is quite

dramatic even though it may seem rather small at first sight (compare the discussion

in Lamoureux and Lastrapes (1990) and Mikosch and Stărică (2000) on this issue).

To give some meaning to the numerical values of the persistence we will consider the

half life of variance as in Lamoureux and Lastrapes (1990), which for a GARCH(1,1)

model with parameters (ω, a, b) is defined by HL = 1 − [log(2)/ log(a + b)]. The

half life of volatility for the GARCH component gives the number of days it takes

for a shock to the GARCH component to diminish to half its initial value. The last

column of Table 1 provides the estimated half lifes for the three competing models.

Allowing for time varying unconditional volatility leads to a substantial decrease of

the estimated half life from 50 trading days (roughly 10 weeks) to 26 trading days.

Additionally including our regressors leads to a further decrease of the estimated half

life to 15 trading days, which corresponds to 3 weeks.

To sum up, our results suggest that we can explain a good deal of S&P 500 log return

volatility by our model. We have also seen that the regressors we included were

more important in the recent financial crisis, especially the credit spread between

low and high investment grade corporate debt. The estimated effects are all highly

nonlinear. Over the entire sample period the yield spread between high investment

grade corporate debt and U.S. sovereign debt can be argued to have the largest effect

on volatility. The effect of the slope of the yield curve shows that the volatility is lower

for more upwardly sloping yield curves and sufficiently inverted yield curves. Finally,

by including our regressors the persistence remaining in the GARCH component is

substantially lower than in the simpler model containing only a trend component.
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Figure 5: The distribution over the 200 simulations of the selected bandwidths. The
left hand boxplot h0 corresponds to the bandwidth associated with the estimation of
the trend component. The right hand boxplot h1 corresponds to the bandwidth for
the component of the stochastic regressor.

6 Simulation

To illustrate the behaviour of our estimation method, we report the results of a small

simulation study designed to mirror certain aspects of the application. The underlying

data generating process we consider is given by

Yt,T = τcτ0

(
t

T

)
τ1(Xt)εt, (24)

where {εt} is a GARCH(1,1) process with standard normal innovations and param-

eters (ω, a, b) = (0.05, 0.1, 0.85), thus ensuring that E[ε2t ] = 1. Note that the pa-

rameters are close to the estimates in the application, see Table 1. The component

τ1(·) is chosen such that τ1,cτ
2
1 (x) = 1 + 50(x − 0.5)1(x ≥ 0.5) is piecewise linear

with τ1,c = exp(E[log(τ 21 (Xt)]). The covariate process {Xt} is a highly persistent

centred AR(1) process with standard normal innovations and AR(1) coefficient of

0.98, that is rescaled to the unit interval. The trend component τ0(·) is set equal

to the estimated trend component from the application as given in (12). A (scaled)

version of the trend component was displayed in Figure 2. Finally, τc =
√
τ0,cτ1,c with

τ0,c =
1
T

∑T
t=1 log(τ

2
0 (t/T )) is a normalization constant. Note that by construction,
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the transformed component functions given by mj(·) = log(τ 2j (·)) for j ∈ {0, 1} fulfill

the normalization constraints in (10).

We simulate 200 data sets of length T = 8000, which is close to the number of

observations in the application. We run our estimation procedure on each simulated

data set. In 3.5% of the cases the iterative bandwidth selection procedure had not

converged within a limit of 100 iterations and the current value within the iteration

was used for the estimation. Figure 5 shows that over the 200 simulations there is less

variation in the chosen bandwidth for the trend function than for the other component

function. Figure 6 shows the estimates of the nonparametric trend function over the
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Figure 6: Each grey line is the estimate of τ 20 for one of the simulations. The pointwise
mean of these estimates is given by the solid black line. The dashed black line is the
true squared trend component.

200 simulations. We can see that the true trend function is estimated quite well as

the mean over the simulations is close to the true trend. Furthermore the uncertainty

of the estimate seems to be quite homogenous.

In Figure 7, we can see that the mean estimate for the stochastic regressor component

is nonlinear, increasing and convex. Moreover, the shape as well as the increase in

estimation uncertainty for large values of the regressor are reminiscent of the fits for
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Figure 7: Each grey line is the estimate of τ 21 for one of the simulations. The pointwise
mean of these estimates is given by the solid black line. The dashed black line is the
true squared component.

the first two regressors in the application as depicted in the top panel of Figure 4.

The underestimation of the increasing part of τ 21 can be explained by the fact that the

slope of a linear regression function is underestimated by a local constant smoother

when the bandwidth is increased. Support for this explanation is provided by the

disappearance of the understimation, when the bandwidth for the second component

is fixed at a value of 0.1.

Finally, we take a look at how well the GARCH parameters are estimated and illus-

trate that neglecting a nonparametric component may severely affect the parameter

estimates. In comparing the estimates, we consider four settings. In the oracle model

we fit a GARCH(1,1) to the actual innovation process {εt}, which corresponds to the

case that we know the nonparametric components. In the full model case we estimate

the nonparametric components τ0 and τ1 and fit a GARCH(1,1) process to the resid-

uals ε̃t =
Yt,T

τ̃0(t/T )τ̃1(Xt)
. In the trend only case, we fit a model that erroneously omits

the τ1 component. Thus, we fit a GARCH(1,1) process to the residuals ε̌t =
Yt,T

τ̌0(t/T )

with τ̌0 denoting the estimator of the nonparametric trend component τ0. The last
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Figure 8: The distribution of the estimates for ω, a, b and the persistence a+b over all
200 simulations for four different models. “Oracle” refers to the infeasible case, where
the functions in the full model of (24) are known. “Full Model” is the feasible version
of the model in (24). “Trend Only” refers to a model without a component function
for the stochastic regressor. Lastly, “Simple” refers to the standard GARCH(1,1)
without any nonparametric components.

setting is the simple model that omits both nonparametric components and fits a

GARCH(1,1) process to the Yt,T . Figure 8 provides the distribution of the estimates

over the 200 simulations. We can see that in terms of estimating ω and the persis-

tence a+ b the estimates from the full model are nearly as good as in the oracle case

when the nonparametric components are known. Although the persistence is well

estimated, the fitted GARCH model places more weight on the squared past returns

and less weight on the past volatility than the true process. Lastly, in our particular

setting we can see that omitting the component τ1 leads to severely biased GARCH

parameter estimates. Most notably the estimated persistence of the GARCH innova-

tion is substantially larger, though still below that for the simple model. In fact, for
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some cases the bias is so severe, that the resulting estimated GARCH process is no

longer covariance stationary.

7 Conclusion

We have proposed a new semiparametric volatility model, which generalizes the class

of models Yt,T = τ( t
T
)εt, as for example considered in Feng (2004) and Engle and Rangel

(2008). These models are able to account for nonstationarities in the volatility pro-

cess. In addition, we are able to include covariates in a nonparametric way, hence

allowing us to flexibly capture the effects of the financial and economic environment.

We have derived the asymptotic theory both for the nonparametric and the paramet-

ric part of the model. To estimate the nonparametric model components, we have

adapted the smooth backfitting approach of Mammen et al. (1999) to our nonsta-

tionary setting. Given the backfitting estimators, we were able to construct GARCH

parameter estimates and to show that they are asymptotically normal. In particular,

they converge at the fast parametric rate even though the nonparametric smoothers

from the first step have slower nonparametric convergence rates. We concluded by

illustrating the strengths of our model by applying it to financial data. In particu-

lar, our semiparametric approach allows us to estimate the form of the relationship

between volatility and its potential sources. Therefore, we manage to go beyond

existing parametric approaches such as in Engle and Rangel (2008) and Engle et al.

(2013). Finally, we have provided simulation based evidence showing that misspecifi-

cation in terms of omitting a nonparametric component can severely bias the GARCH

parameter estimates.
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A Appendix - results of additive model estimators

This section deals with the asymptotics for the estimators in the additive model (11).

First, we will restate some results on uniform expansions for the estimators in the

additive model (11) established in Vogt and Walsh (2019). These expansions will be

needed to establish the asymptotic properties of the GARCH parameter estimators.

Secondly, we give a brief statement on how to prove Theorem 4.1.

A.1 Stochastic expansion of estimators in the additive model

Using the modified kernel

Kh(v, w) =
Kh(v − w)∫ 1

0
Kh(s− w)ds

,

where Kh(v) = 1
h
K( v

h
) and the kernel function K(·) integrates to one, the kernel

density estimators of the marginal density pj of Xj
t and of the joint density pj,k of

(Xj
t , X

k
t ) are given by

p̂j(xj) =
1

T

T∑

t=1

Kh(xj , X
j
t ) (25)

p̂j,k(xj , xk) =
1

T

T∑

t=1

Kh(xj , X
j
t )Kh(xk, X

k
t ). (26)

Furthermore, the Nadaraya Watson pilot estimators for the components of the addi-

tive model (11) are given by

m̂j(xj) =
1

T

T∑

t=1

Kh(xj , X
j
t )(Zt,T − m̃c)/p̂j(xj), (27)

where m̃c =
1
T

∑T
t=1 Zt,T . The above are for j = 1, . . . , d as well as for j = 0 by writing

X0
t = t

T
. The components of the smooth backfitting estimator, m̃ = m̃0 + · · ·+ m̃d,
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are characterised as the solutions to the integral equations

m̃j(xj) = m̂j(xj)−
∑

k 6=j

∫ 1

0

m̃k(xk)
p̂k,j(xk, xj)

p̂j(xj)
dxk − m̃c

with
∫ 1

0
m̃j(xj)p̂j(xj)dxj = 0 for j = 0, . . . , d. In Vogt and Walsh (2019) it is shown

that the backfitting estimators m̃j can be decomposed into a stochastic part m̃A
j and

a bias part m̃B
j according to m̃j(xj) = m̃A

j (xj) + m̃B
j (xj). The two components are

defined by

m̃S
j (xj) = m̂S

j (xj)−
∑

k 6=j

∫ 1

0

m̃S
k (xk)

p̂k,j(xk, xj)

p̂j(xj)
dxk − m̃S

c (28)

for S = A, B. Here, m̂A
k and m̂B

k denote the stochastic part and the bias part of the

Nadaraya-Watson pilote estimates in (27) defined as

m̂A
j (xj) =

1

T

T∑

t=1

Kh(xj , X
j
t )ut/p̂j(xj) (29)

m̂B
j (xj) =

1

T

T∑

t=1

Kh(xj , X
j
t )
[
(mc − m̃c) +m0

( t
T

)
+

d∑

j=1

mj(X
j
t )
]
/p̂j(xj) (30)

for j = 0, . . . , d, again setting X0
t = t

T
to shorten the notation. Furthermore, m̃A

c =

1
T

∑T
t=1 ut and m̃

B
c = 1

T

∑T
t=1{mc − m̃c +m0(

t
T
) +

∑d
j=1mj(X

j
t )}.

The first result provides a higher order expansion of the stochastic part m̃A
j . The

second then provides the corresponding expansion for the bias part m̃B
j .

Theorem A.1. Suppose that assumptions (A1) – (A8) apply and that the bandwidth

h satisfies (A9a) or (A9b). Then uniformly for 0 ≤ xj ≤ 1,

m̃A
j (xj) = m̂A

j (xj) +
1

T

T∑

t=1

rj,t(xj)ut + op

( 1√
T

)
,

30



where rj,t(·) := rj(
t
T
, Xt, ·) are absolutely uniformly bounded functions with

|rj,t(x′j)− rj,t(xj)| ≤ C|x′j − xj |

for a constant C > 0.

Theorem A.2. Suppose that (A1) – (A8) hold. If the bandwidth h satisfies (A9a),

then

sup
xj∈Ih

|m̃B
j (xj)−mj(xj)| = Op(h

2) (31)

sup
xj∈Ich

|m̃B
j (xj)−mj(xj)| = Op(h) (32)

for j = 0, . . . , d. If the bandwidth satisfies (A9b), we have

sup
xj∈Ih

∣∣∣m̃B
j (xj) +

1

T

T∑

t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h
2) (33)

sup
xj∈Ich

∣∣∣m̃B
j (xj) +

1

T

T∑

t=1

mj(X
j
t )−mj(xj)

∣∣∣ = Op(h) (34)

for j = 0, . . . , d.

For the proofs of Theorems A.1 and A.2 see Vogt and Walsh (2019).

A.2 Proof of Theorem 4.1

The results on the convergence rates and the asymptotic normality for the estimators

of the additive components m̃0, . . . , m̃d are given in Vogt and Walsh (2019). Since

τ̃ 2j = exp(m̃j), Theorem 4.1(a) is an immediate consequence of these results. The

joint asymptotic normality in Theorem 4.1(b) follows from the asymptotic normality

of the m̃j upon applying the delta method with g(m̃j) = exp(m̃j) and the Cramér-

Wold device.
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B Appendix - Proofs of Theorems 4.2 and 4.3

This appendix contains the proofs of Theorems 4.2 and 4.3, which show consistency

and asymptotic normality of our estimator for the GARCH parameters. Especially

the proof of the asymptotic normality is rather involved. The major challenge is the

derivation of a stochastic expansion for 1√
T

∂l̃T (φ0)
∂φ

from which we get the asymptotic

normal limit. Although the general approach is as in Vogt and Walsh (2019), the

arguments are substantially more difficult due to the complexity of the GARCH error

in comparison to the much simpler autoregressive type error considered there. In

particular, arguments from empirical process theory are needed now. The detailed

arguments are collected in a series of lemmas in the supplementary material to the

paper. Throughout this appendix, C denotes a finite real constant which may take a

different value on each occurrence.

B.1 Auxiliary Results

To start with, we state some facts about the behaviour of the approximate GARCH

variables ε̃t and of the conditional volatilities ṽ2t (φ), which were defined in Subsection

3.2. For ease of notation, we use the shorthand τ(x) =
∏d

j=0 τj(xj) in what follows.

(G1) We can express ε̃2t − ε2t as

ε̃2t − ε2t = ε2t

[τ 2( t
T
, Xt)− τ̃ 2( t

T
, Xt)

τ 2( t
T
, Xt)

+Rε

( t
T
,Xt

)]

with supx∈[0,1]d+1 |Rε(x)| = Op(h
2).

(G2) The conditional volatility v2t (φ) has the expansion

v2t (φ) = w

t−1∑

k=1

bk−1 + a

t−1∑

k=1

bk−1ε2t−k + bt−1 w

1− b
,
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which yields that ṽ2t (φ)− v2t (φ) =
t−1∑
k=1

abk−1(ε̃2t−k − ε2t−k).

(G3) It holds that max1≤t≤T supφ∈Φ
∣∣ṽ2t (φ)− v2t (φ)

∣∣ = Op(h).

(G4) It holds that 1
ṽ2t (φ)

− 1
v2t (φ)

=
v2t (φ)−ṽ2t (φ)
v2t (φ)v

2
t (φ)

+Rt(φ) with max1≤t≤T supφ∈Φ |Rt(φ)| =

Op(h
2).

(G5) The derivatives of v2t (φ) with respect to the parameters w, a, and b are given

by

∂v2t (φ)

∂w
=

t−1∑

k=1

bk−1 +
bt−1

1− b

∂v2t (φ)

∂a
=

t−1∑

k=1

bk−1ε2t−k

∂v2t (φ)

∂b
= w

( t−1∑

k=1

(k − 1)bk−2 +
(t− 1)bt−2

1− b
+

bt−1

(1− b)2

)
+ a

t−1∑

k=1

(k − 1)bk−2ε2t−k.

The above facts are straightforward to verify. We thus omit the details.

B.2 Proof of Theorem 4.2

Let lT (φ) and l̃T (φ) be the likelihood functions introduced in (14) and (17) and define

l(φ) = E

[
1
T
lT (φ)

]
. By the triangle inequality,

sup
φ∈Φ

∣∣ 1
T
l̃T (φ)− l(φ)

∣∣ ≤ sup
φ∈Φ

∣∣ 1
T
l̃T (φ)−

1

T
lT (φ)

∣∣+ sup
φ∈Φ

∣∣ 1
T
lT (φ)− l(φ)

∣∣.

From standard theory we know that supφ∈Φ
∣∣ 1
T
lT (φ)− l(φ)

∣∣ = op(1) and that l(φ) is a

continuous function of φ with a unique maximum at φ0. If we can further show that

sup
φ∈Φ

∣∣ 1
T
l̃T (φ)−

1

T
lT (φ)

∣∣ = op(1), (35)

then standard theory on M-estimation implies φ̃
P−→ φ0.
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We will show (35) by decomposing 1
T
l̃T (φ)− 1

T
lT (φ) into the sum of three uniformly

op(1) terms.

1

T
l̃T (φ)−

1

T
lT (φ) = − 1

T

T∑

t=1

(
log ṽ2t (φ) +

ε̃2t
ṽ2t (φ)

)
+

1

T

T∑

t=1

(
log v2t (φ) +

ε2t
v2t (φ)

)

=
1

T

T∑

t=1

(
log v2t (φ)− log ṽ2t (φ)

)
+

1

T

T∑

t=1

ε2t

( ṽ2t (φ)− v2t (φ)

ṽ2t (φ)v
2
t (φ)

)
+

1

T

T∑

t=1

1

ṽ2t (φ)
(ε2t − ε̃2t )

=: (A) + (B) + (C).

In order to prove that the three terms (A), (B), and (C) are indeed uniformly op(1),

it suffices to show that

max
1≤t≤T

sup
φ∈Φ

∣∣ṽ2t (φ)− v2t (φ)
∣∣ = op(1) (36)

1

T

T∑

t=1

∣∣ε̃2t − ε2t
∣∣ = op(1) (37)

v2t (φ) ≥ vmin > 0 and ṽ2t (φ) ≥ vmin > 0 for some constant vmin. (38)

(36) is implied by (G3). For the proof of (37), we use (G1) together with Theorem

4.1 to obtain

1

T

T∑

t=1

∣∣ε̃2t − ε2t
∣∣ ≤ 1

T

T∑

t=1

ε2t

∣∣∣
τ 2( t

T
, Xt)− τ̃ 2( t

T
, Xt)

τ 2( t
T
, Xt)

+Rε

( t
T
,Xt

)∣∣∣

= Op(h)
1

T

T∑

t=1

ε2t = Op(h).

Finally, (38) is automatically satisfied, as by (A10)

v2t (φ) = w

t−1∑

k=1

bk−1 + a

t−1∑

k=1

bk−1ε2t−k + bt−1 w

1− b
≥ w ≥ κ > 0.

The same holds true for ṽ2t (φ).
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B.3 Proof of Theorem 4.3

By the usual Taylor expansion argument, we obtain

0 =
1

T

∂l̃T (φ̃)

∂φ
=

1

T

∂l̃T (φ0)

∂φ
+
( 1
T

∂2 l̃T (φ̄i,j)

∂φi∂φj

)
1≤i,j≤3

(φ̃− φ0),

where the matrix of second order partial derivatives has (i, j)-th term as stated in

the parenthesis with φ̄i = (φ̄i,1, . . . , φ̄i,3)
′ between φ0 and φ̃ for all i = 1, . . . , 3. Rear-

ranging and premultiplying by
√
T yields

√
T (φ̃− φ0) = −

[( 1
T

∂2 l̃T (φ̄i,j)

∂φi∂φj

)
1≤i,j≤3

]−1
1√
T

∂l̃T (φ0)

∂φ
.

The proof will be completed upon showing that

1√
T

∂l̃T (φ0)

∂φ
d−→ N(0, Q) (39)

1

T

∂2 l̃T (φ̄i,j)

∂φi∂φj

P−→ J(i, j) for all 1 ≤ i, j ≤ 3, (40)

where Q is some covariance matrix to be specified later on and J(i, j) is the (i, j)-th

element of an invertible deterministic matrix J . Thus we see that the asymptotic

covariance matrix given in Theorem 4.3 is Σ = J−1QJ−1.

Proof of (39). Let v2t = v2t (φ0) and ṽ
2
t = ṽ2t (φ0) in order to lighten notation. Writing

out the i-th element of the left hand side of (39) we get

1√
T

∂l̃T (φ0)

∂φi
= − 1√

T

T∑

t=1

(
1− ε̃2t

ṽ2t

)∂ṽ2t
∂φi

1

ṽ2t
.

Thus, we obtain

1√
T

∂l̃T (φ0)

∂φi
=

1√
T

∂lT (φ0)

∂φi
+

(
1√
T

∂l̃T (φ0)

∂φi
− 1√

T

∂lT (φ0)

∂φi

)
(41)
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with

1√
T

∂l̃T (φ0)

∂φi
− 1√

T

∂lT (φ0)

∂φi
= − 1√

T

T∑

t=1

(
1− ε2t

v2t

) 1

v2t

(∂ṽ2t
∂φi

− ∂v2t
∂φi

)
(A)

+
1√
T

T∑

t=1

(
1− ε2t

v2t

)∂ṽ2t
∂φi

( 1

v2t
− 1

ṽ2t

)
(B)

− 1√
T

T∑

t=1

1

ṽ2t

∂ṽ2t
∂φi

(
(1− ε̃2t

v2t
)− (1− ε2t

v2t
)
)

(C)

+
1√
T

T∑

t=1

(
(1− ε̃2t

v2t
)− (1− ε̃2t

ṽ2t
)
) 1

ṽ2t

∂ṽ2t
∂φi

. (D)

In what follows, we show that (A) and (B) are asymptotically negligible, whereas (C)

and (D) contribute to the limiting distribution. First we establish the negligibility of

the terms (A) and (B). We will only give the arguments for (A) as it is slightly more

complicated. The steps to show the negligibility of (B) are analogous.

To begin, replace the truncated conditional volatilities v2t by σ2
t to obtain

(A) =− 1√
T

T∑

t=1

(
1− ε2t

v2t

) 1

v2t

(∂ṽ2t
∂φi

− ∂v2t
∂φi

)

= − 1√
T

T∑

t=1

(
1− ε2t

σ2
t

) 1

σ2
t

(∂ṽ2t
∂φi

− ∂v2t
∂φi

)

− 1√
T

T∑

t=1

[(∂ṽ2t
∂φi

− ∂v2t
∂φi

)( 1

v2t
− 1

σ2
t

)
− ε2t

(∂ṽ2t
∂φi

− ∂v2t
∂φi

)( 1

(v2t )
2
− 1

(σ2
t )

2

)]
.

Using (G2), we can show that |σ2
t − v2t | = bt−1|σ2

1 − w
1−b |, from which it follows that

(A) = − 1√
T

T∑

t=1

(
1− ε2t

σ2
t︸ ︷︷ ︸

=(1−η2t )

) 1

σ2
t

(∂ṽ2t
∂φi

− ∂v2t
∂φi

)
+ op(1). (42)

Using results from empirical process theory and exploiting that (1−η2t ) is a martingale

difference we will show in Lemma C.4 that (A) = op(1).

Next we consider the terms (C) and (D). We restrict attention to (D), as this is the
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more complicated term. (C) can be treated analogously. Successively replacing the

approximate expressions ε̃2t and ṽ2t in (D) by the exact terms and using (G1) and

(G3) to eliminate the resulting error yields

(D) =
1√
T

T∑

t=1

ε2t

(v2t − ṽ2t
v2t v

2
t

)∂v2t
∂φi

1

v2t
+ op(1).

By analogous arguments as for (A) and (B), we can further replace some of the

occurrences of v2t by σ2
t to get

(D) =
1√
T

T∑

t=1

ε2t
σ2
t

(v2t − ṽ2t
σ2
t σ

2
t

)∂v2t
∂φi

+ op(1).

Writing this as

(D) = − 1√
T

T∑

t=1

(
1− ε2t

σ2
t

)(v2t − ṽ2t
σ2
t σ

2
t

)∂v2t
∂φi

+
1√
T

T∑

t=1

(v2t − ṽ2t
σ2
t σ

2
t

)∂v2t
∂φi

+ op(1),

one can follow analogous arguments to those used for (A) based on empirical process

theory and the martingale difference structure of (1− ε2t
σ2t
) = (1− η2t ) to get

(D) =
1√
T

T∑

t=1

(v2t − ṽ2t
σ2
t σ

2
t

)∂v2t
∂φi

+ op(1).

Defining G
[i]
t :=

∂v2t
∂φi

1
σ2t σ

2
t
, using (G1) – (G3) and writing m(x) = mc +m0(x0) + . . .+
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md(xd) for short, we can infer that

(D) =
1√
T

T∑

t=1

G
[i]
t

t−1∑

k=1

abk−1(ε2t−k − ε̃2t−k) + op(1)

=
1√
T

T∑

t=1

G
[i]
t

t−1∑

k=1

abk−1ε2t−k

[τ 2( t−k
T
, Xt−k)− τ̃ 2( t−k

T
, Xt−k)

τ 2( t−k
T
, Xt−k)

+Op(h
2)
]
+ op(1)

=
1√
T

T∑

t=1

G
[i]
t

t−1∑

k=1

abk−1ε2t−k

[exp(ξt−k)[m( t−k
T
, Xt−k)− m̃( t−k

T
, Xt−k)]

exp(m( t−k
T
, Xt−k))

]
+ op(1)

=
1√
T

T∑

t=1

G
[i]
t

t−1∑

k=1

abk−1ε2t−k

[
m
(t− k

T
,Xt−k

)
− m̃

(t− k

T
,Xt−k

)]
+ op(1),

where the third equality is by a first order Taylor expansion with an intermediate

point ξt−k between m( t−k
T
, Xt−k) and m̃( t−k

T
, Xt−k). We are now in a position to use

the stochastic expansion of our estimators in the additive model, which were given

in Appendix A.1. To do so, split up the difference m( t−k
T
, Xt−k)− m̃( t−k

T
, Xt−k) into

its additive components and decompose the various components into their bias and

stochastic parts. This yields (D) = (Dc)−
d∑
j=0

(DV,j) +
d∑
j=0

(DB,j) + op(1) with

(Dc) =
1√
T

T∑

t=1

G
[i]
t

t−1∑

k=1

abk−1ε2t−k

[
(mc − m̃c) +

d∑

j=0

1

T

T∑

s=1

mj(X
j
s )
]

(DV,j) =
1√
T

T∑

t=1

G
[i]
t

t−1∑

k=1

abk−1ε2t−km̃
A
j (X

j
t−k)

(DB,j) =
1√
T

T∑

t=1

G
[i]
t

t−1∑

k=1

abk−1ε2t−k

[
mj(X

j
t−k)− m̃B

j (X
j
t−k)−

1

T

T∑

s=1

mj(X
j
s )
]

for j = 0, . . . , d, where for ease of notation we have used the shorthand X0
t−k = t−k

T
.

As in Appendix A, m̃A
j denotes the stochastic part of the backfitting estimate m̃j and

m̃B
j denotes the bias part.
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In Lemmas C.1 – C.3, we will show that

(Dc) =
1√
T

T∑

t=1

gc,Dut + op(1) (43)

(DV,j) =
1√
T

T∑

t=1

gj,D

( t
T
,Xt

)
ut + op(1) (44)

(DB,j) = op(1) (45)

for all j = 0, . . . , d with ut = log(ε2t ). Here, gc,D is a constant which is specified in

Lemma C.2 and gj,D for j = 0, . . . , d are functions whose exact forms are given in

Lemma C.1. Using (A11), these functions are easily seen to be absolutely bounded

by a constant independent of T . To summarize, we obtain that

(D) =
1√
T

T∑

t=1

[
gc,D +

d∑

j=0

gj,D

( t
T
,Xt

)]
ut + op(1).

Repeating the arguments from above, we can derive an analogous expression for (C).

We thus get that

(C) + (D) =
1√
T

T∑

t=1

g
( t
T
,Xt

)
ut + op(1)

with a function g( t
T
, Xt) = gc +

∑d
j=0 gj(

t
T
, Xt) whose additive components are ab-

solutely bounded. Recalling that (A) = op(1) and (B) = op(1), we finally obtain

that

1√
T

∂l̃T (φ0)

∂φi
− 1√

T

∂lT (φ0)

∂φi
=

1√
T

T∑

t=1

g
( t
T
,Xt

)
ut + op(1) (46)

with an absolutely bounded function g.

We next consider the term 1√
T

∂lT (φ0)
∂φi

more closely. W.l.o.g. we can take φi = a. (The

case φi = b runs analogously and the case φi = w is much easier to handle.) By

similar arguments to before,

1√
T

∂lT (φ0)

∂φi
= − 1√

T

T∑

t=1

(
1− ε2t

v2t

)∂v2t
∂φi

1

v2t
= − 1√

T

T∑

t=1

(1− η2t
σ2
t

) t−1∑

k=1

bk−1ε2t−k + op(1).
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Furthermore,

1√
T

T∑

t=1

(1− η2t
σ2
t

) t−1∑

k=1

bk−1ε2t−k =

T−1∑

k=1

bk−1 1√
T

T∑

t=k+1

(1− η2t
σ2
t

)
ε2t−k

=

C2 log T∑

k=1

bk−1 1√
T

T∑

t=k+1

(1− η2t
σ2
t

)
ε2t−k + op(1)

=
1√
T

T∑

t=1

(mint,T∑

k=1

bk−1ε2t−k

)(1− η2t
σ2
t

)
+ op(1),

where C2 > 0 is a sufficiently large constant and mint,T := min{t− 1, C2 log T}. For

the second equality, we have used the fact that the weights bk converge exponentially

fast to zero as k → ∞. This implies that only the sums up to C2 log T with some

constant C2 are asymptotically relevant. Summing up, we have that

1√
T

∂lT (φ0)

∂φi
= − 1√

T

T∑

t=1

(mint,T∑

k=1

bk−1ε2t−k

)(1− η2t
σ2
t

)
+ op(1). (47)

Combining (46) and (47) yields

1√
T

∂l̃T (φ0)

∂φi
=

1√
T

∂lT (φ0)

∂φi
+

1√
T

T∑

t=1

g
( t
T
,Xt

)
ut + op(1)

=
1√
T

T∑

t=1

{
g
( t
T
,Xt

)
ut −

(mint,T∑

k=1

bk−1ε2t−k

)(1− η2t
σ2
t

)}
+ op(1)

=:
1√
T

T∑

t=1

Ut,T + op(1),

i.e. the term of interest can be written as a normalized sum of random variables Ut,T

plus a term which is asymptotically negligible.

We now apply a central limit theorem for mixing arrays to the term 1√
T

∑T
t=1 Ut,T .

In particular, we employ the theorem of Francq & Zaköıan (2005), which allows the

mixing coefficients of the array {Ut,T } to depend on the sample size T . Verifying the
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conditions of this theorem, we can conclude that 1√
T

∂l̃T (φ0)
∂φi

→ N(0, σ2) with

σ2 = E

[
λ2(X0)u0

]
− 2E

[
λ1(X0)u0

( ∞∑

k=1

bk−1ε2−k

)(1− η20
σ2
0

)]

+ E

[( ∞∑

k=1

bk−1ε2−k

)2(1− η20
σ2
0

)2]
+ 2E

[
λ1,1(X0, Xl)u0ul

]

− 2E
[
λ1(X0)u0

( ∞∑

k=1

bk−1ε2l−k

)(1− η2l
σ2
l

)]

− 2E
[
λ1(Xl)ul

( ∞∑

k=1

bk−1ε2−k

)(1− η20
σ2
0

)]
,

where we use the shorthand λ1(x) =
∫ 1

0
g(w, x)dw, λ2(x) =

∫ 1

0
g2(w, x)dw, and

λ1,1(x, x
′) =

∫ 1

0
g(w, x)g(w, x′)dw. Using the Cramer-Wold device, it is now easy

to show that 1√
T

∂l̃T (φ0)
∂φ

→ N(0, Q). The entries of the matrix Q can be calculated

similarly to the expression σ2. We omit the details as the formulas are rather lengthy

and complicated.

Proof of (40). By straightforward but tedious calculations it can be seen that for

all i, j = 1, . . . , 3, supφ∈Φ

∣∣∣ 1T
∂2 l̃T (φ)
∂φi∂φj

− 1
T
∂2lT (φ)
∂φi∂φj

∣∣∣ = op(1). From standard estimation

theory for GARCH models, we further know that for all i, j = 1, . . . , 3 with φ̄i =

(φ̄i,1, . . . , φ̄i,3)
′ between φ̃ and φ0, it holds that

1
T

∂2lT (φ̄i,j)

∂φj∂φj

P−→ J(i, j) with J(i, j) the

(i, j)-th element of some invertible deterministic matrix J . This yields (40).

C Appendix - Auxiliary results

In order to complete the proof of Theorem 4.3, we still need to show that equations

(43) – (45) are fulfilled for the terms (Dc), (DV,j) and (DB,j) and that (A) given in

(42) is asymptotically negligible. In what follows, we establish these results in a series

of lemmas.
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Lemma C.1. It holds that

(DV,j) =
1√
T

T∑

s=1

gj,D

( s
T
,Xs

)
us + op(1)

with

gj,D

( s
T
,Xs

)
= gNWj,D (Xj

s ) + gSBFj,D

( s
T
,Xs

)

for j = 0, . . . , d. The functions gNWj,D and gSBFj,D are absolutely bounded. Their exact

form is given in the proof (see (52) and (55) – (57)).

Proof. We start by giving a detailed exposition of the proof for j 6= 0. By Theorem

A.1, the stochastic part m̃A
j of the smooth backfitting estimate m̃j has the expansion

m̃A
j (xj) = m̂A

j (xj) +
1

T

T∑

s=1

rj,s(xj)us + op

( 1√
T

)

uniformly in xj , where m̂
A
j is the stochastic part of the Nadaraya-Watson pilot es-

timate and the function rj,s(·) = rj(
s
T
, Xs, ·) is Lipschitz continuous and absolutely

bounded.

With this result, we can decompose (DV,j) as follows:

(DV,j) =
1√
T

T∑

t=1

∂v2t
∂φi

1

σ2
t σ

2
t

t−1∑

k=1

abk−1ε2t−km̃
A
j (X

j
t−k)

=
1√
T

T∑

t=1

t−1∑

k=1

abk−1ε2t−k
∂v2t
∂φi

1

σ2
t σ

2
t

m̂A
j (X

j
t−k)

+
1√
T

T∑

t=1

t−1∑

k=1

abk−1ε2t−k
∂v2t
∂φi

1

σ2
t σ

2
t

[ 1
T

T∑

s=1

rj,s(X
j
t−k)us

]
+ op(1)

=: (DNW
V,j ) + (DSBF

V,j ) + op(1).

In the following, we will give the exact arguments needed to treat (DNW
V,j ). The line

of argument for (DSBF
V,j ) is essentially identical although some of the steps are easier

due to the properties of the rj,s functions.
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W.l.o.g. set φi = a and let mi,k = max{k + 1, i + 1}. Using ∂v2t /∂a =
∑t−1

i=1 b
i−1ε2t−i

and m̂A
j (xj) =

1
T

∑T
s=1Kh(xj , X

j
s )us/

1
T

∑T
v=1Kh(xj , X

j
v), we get

(DNW
V,j ) =

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

Kh(X
j
t−k, X

j
s )

1
T

∑T
v=1Kh(X

j
t−k, X

j
v)

ε2t−kε
2
t−i

σ2
t σ

2
t

us

]
.

(48)

In a first step, we replace the sum 1
T

∑T
v=1Kh(X

j
t−k, X

j
v) in (48) by a term which only

depends on Xj
t−k and show that the resulting error is asymptotically negligible. Let

qj(xj) =
∫ 1

0
Kh(xj , w)dw pj(xj). Furthermore define

Bj(xj) =
1

T

T∑

v=1

E[Kh(xj , X
j
v)]− qj(xj)

Vj(xj) =
1

T

T∑

v=1

(
Kh(xj , X

j
v)− E[Kh(xj , X

j
v)]
)
.

Notice that supxj∈[0,1] |Bj(xj)| = Op(h) and supxj∈[0,1] |Vj(xj)| = Op(
√
log T/Th).

From the identity 1
T

∑T
v=1Kh(xj , X

j
v) = qj(xj) + Bj(xj) + Vj(xj) and a second order

Taylor expansion of (1 + x)−1 we arrive at

1
1
T

∑T
v=1Kh(xj , X

j
v)

=
1

qj(xj)

(
1 +

Bj(xj) + Vj(xj)

qj(xj)

)−1

(49)

=
1

qj(xj)

(
1− Bj(xj) + Vj(xj)

qj(xj)
+Op(h

2)
)

uniformly in xj . Plugging this decomposition into (48), we obtain

(DNW
V,j ) =

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

Kh(X
j
t−k, X

j
s )

qj(X
j
t−k)

1

σ2
t σ

2
t

ε2t−kε
2
t−ius

]

− (DNW,B
V,j )− (DNW,V

V,j ) + op(1)
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with

(DNW,B
V,j ) =

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

Kh(X
j
t−k, X

j
s )
Bj(X

j
t−k)

q2j (X
j
t−k)

1

σ2
t σ

2
t

ε2t−kε
2
t−ius

]

(DNW,V
V,j ) =

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

Kh(X
j
t−k, X

j
s )
Vj(X

j
t−k)

q2j (X
j
t−k)

1

σ2
t σ

2
t

ε2t−kε
2
t−ius

]
.

As supxj∈Ih |Bj(xj)| = Op(h
2) and supxj∈Ich |Bj(xj)| = Op(h), we can proceed similarly

to the proof of Lemma C.3 later on to show that (DNW,B
V,j ) = op(1). Next we will show

that (DNW,V
V,j ) = op(1). Let Ev[·] denote the expectation with respect to the variables

indexed by v, then

∣∣(DNW,V
V,j )

∣∣ =
∣∣∣
T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

Kh(X
j
t−k, X

j
s )

q2j (X
j
t−k)

1

σ2
t σ

2
t

ε2t−kε
2
t−i

×
( 1
T

T∑

v=1

(Kh(X
j
t−k, X

j
v)− Ev[Kh(X

j
t−k, X

j
v)])
)
us

]∣∣∣

≤
T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
( 1√

T

T∑

t=mi,k

∣∣∣ 1

q2j (X
j
t−k)

1

σ2
t σ

2
t

ε2t−kε
2
t−i

∣∣∣

× sup
xj∈[0,1]

∣∣∣ 1
T

T∑

v=1

(Kh(xj , X
j
v)− Ev[Kh(xj , X

j
v)])
∣∣∣

× sup
xj∈[0,1]

∣∣∣ 1
T

T∑

s=1

Kh(xj , X
j
s )us

∣∣∣
)

= Op

( log T
Th

) T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
( 1√

T

T∑

t=mi,k

∣∣∣ 1

q2j (X
j
t−k)

1

σ2
t σ

2
t

ε2t−kε
2
t−i

∣∣∣
)

︸ ︷︷ ︸
=Op(

√
T ) by Markov’s inequality

= Op

( log T
Th

√
T
)
= op(1).

Together with the fact that (DNW,B
V,j ) = op(1), this yields

(DNW
V,j ) =

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

Kh(X
j
t−k, X

j
s )µ

i,k
t us

]
+ op(1), (50)
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where we use the shorthand µi,kt = (qj(X
j
t−k)σ

2
t σ

2
t )

−1ε2t−kε
2
t−i.

In the next step, we replace the inner sum over t in (50) by a term that only depends

on Xj
s and show that the resulting error can be asymptotically neglected. Define

ξ(Xj
t−k, X

j
s ) := ξi,kt (Xj

t−k, X
j
s ) := Kh(X

j
t−k, X

j
s )µ

i,k
t − E−s[Kh(X

j
t−k, X

j
s )µ

i,k
t ],

where E−s[·] is the expectation with respect to all variables except for those depending

on the index s. With the above notation at hand, we can write

(DNW
V,j ) =

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

E−s[Kh(X
j
t−k, X

j
s )µ

i,k
t ]us

]

+ (RNW
V,j ) + op(1),

where

(RNW
V,j ) =

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

ξ(Xj
t−k, X

j
s )us

]
(51)

=

C2 log T∑

k=1

abk−1

C2 log T∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

ξ(Xj
t−k, X

j
s )us

]
+ op(1)

for some sufficiently large constant C2 > 0. Once we show that (RNW
V,j ) = op(1), we

are left with

(DNW
V,j ) =

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

E−s[Kh(X
j
t−k, X

j
s )µ

i,k
t ]us

]
+ op(1)

=
1√
T

T∑

s=1

( T−1∑

k=1

abk−1
T−1∑

i=1

bi−1T −mi,k

T
E−s[Kh(X

j
−k, X

j
s )µ

i,k
0 ]
)
us + op(1).

As the terms with i, k ≥ C2 log T are asymptotically negligible, we can expand the i
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and k sums to infinity, which yields

(DNW
V,j ) =

1√
T

T∑

s=1

( ∞∑

k=1

abk−1

∞∑

i=1

bi−1
E−s[Kh(X

j
−k, X

j
s )µ

i,k
0 ]
)
us + op(1) (52)

=:
1√
T

T∑

s=1

gNWj,D (Xj
s )us + op(1)

with

µi,k0 =
1

qj(X
j
−k)

1

σ2
0σ

2
0

ε2−kε
2
−i

qj(X
j
−k) =

∫ 1

0

Kh(X
j
−k, w)dw pj(X

j
−k).

Thus it remains to show that (RNW
V,j ) = op(1), which requires a lot of care. We will

prove that the term in square brackets in (51) is op(1) uniformly over i, k ≤ C2 log T ,

which yields the desired result. It is easily seen that

P := P

(
max

i,k≤C2 log T

∣∣∣ 1√
T

T∑

s=1

1

T

T∑

t=mi,k

ξ(Xj
t−k, X

j
s )us

∣∣∣ > δ
)

≤
C2 log T∑

k=1

C2 log T∑

i=1

P

(∣∣∣ 1√
T

T∑

s=1

1

T

T∑

t=mi,k

ξ(Xj
t−k, X

j
s )us

∣∣∣ > δ
)

︸ ︷︷ ︸
=:Pi,k

for a fixed δ > 0. Then by Chebychev’s inequality

Pi,k ≤
1

T 3δ2

T∑

s,s′=1

T∑

t,t′=mi,k

E

[
ξ(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]

=
1

T 3δ2

∑

(s,s′,t,t′)/∈Γi,k

E

[
ξ(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]

+
1

T 3δ2

∑

(s,s′,t,t′)∈Γi,k

E

[
ξ(Xj

t−k, X
j
s )usξ(X

j
t′−k, X

j
s′)us′

]
=: P 1

i,k + P 2
i,k,

where Γi,k is the set of tuples (s, s′, t, t′) with 1 ≤ s, s′ ≤ T and mi,k ≤ t, t′ ≤ T such

that one index is separated from the others. We say that an index, for instance t, is
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separated from the others if min{|t− t′|, |t− s|, |t− s′|} > C3 log T , i.e. if it is further

away from the other indices than C3 log T for a constant C3 to be chosen later on.

We now analyse P 1
i,k and P 2

i,k separately.

(a) First consider P 1
i,k. If a tuple (s, s′, t, t′) is not an element of Γi,k, then no index

can be separated from the others. Since the index t cannot be separated, there

exists an index, say t′, such that |t − t′| ≤ C3 log T . Now take an index different

from t and t′, for instance s. Then by the same argument, there exists an index,

say s′, such that |s − s′| ≤ C3 log T . As a consequence, the number of tuples

(s, s′, t, t′) /∈ Γi,k is smaller than CT 2(log T )2 for some constant C. Using (A11),

this suffices to infer that

∣∣P 1
i,k

∣∣ ≤ 1

T 3δ2

∑

(s,s′,t,t′)/∈Γi,k

C

h2
≤ C

δ2
(log T )2

Th2
.

Hence, |P 1
i,k| ≤ Cδ−2(log T )−3 uniformly in i and k.

(b) The term P 2
i,k is more difficult to handle. We start by taking a cover {Im}MT

m=1 of

the compact support [0, 1] of Xj
t−k. The elements Im are intervals of length 1/MT

given by Im = [m−1
MT

, m
MT

) for m = 1, . . . ,MT − 1 and IMT
= [1 − 1

MT
, 1]. The

midpoint of the interval Im is denoted by xm. With this, we can write

Kh(X
j
t−k, X

j
s ) =

MT∑

m=1

I(Xj
t−k ∈ Im) (53)

×
[
Kh(xm, X

j
s ) + (Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))
]
.
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Using (53), we can further write

ξ(Xj
t−k, X

j
s ) =

MT∑

m=1

{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µ

i,k
t

− E−s[I(X
j
t−k ∈ Im)Kh(xm, X

j
s )µ

i,k
t ]
}

+

MT∑

m=1

{
I(Xj

t−k ∈ Im)(Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s ))µ

i,k
t

− E−s[I(X
j
t−k ∈ Im)(Kh(X

j
t−k, X

j
s )−Kh(xm, X

j
s ))µ

i,k
t ]
}

=: ξ1(X
j
t−k, X

j
s ) + ξ2(X

j
t−k, X

j
s )

and

P 2
i,k =

1

T 3δ2

∑

(s,s′,t,t′)∈Γi,k

E
[
ξ1(X

j
t−k, X

j
s )usξ(X

j
t′−k, X

j
s′)us′

]

+
1

T 3δ2

∑

(s,s′,t,t′)∈Γi,k

E
[
ξ2(X

j
t−k, X

j
s )usξ(X

j
t′−k, X

j
s′)us′

]
=: P 2,1

i,k + P 2,2
i,k .

We first consider P 2,2
i,k . Set MT = CT (log T )3h−3 and exploit the Lipschitz conti-

nuity of the kernel K to get that |Kh(X
j
t−k, X

j
s )−Kh(xm, X

j
s )| ≤ C

h2
|Xj

t−k − xm|.

This gives us

∣∣ξ2(Xj
t−k, X

j
s )
∣∣ ≤ C

h2

MT∑

m=1

(
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

µi,kt (54)

+ E
[
I(Xj

t−k ∈ Im)|Xj
t−k − xm|︸ ︷︷ ︸

≤I(Xj
t−k∈Im)M−1

T

µi,kt
])

≤ C

MTh2
(
µi,kt + E[µi,kt ]

)
.

48



Plugging (54) into the expression for P 2,2
i,k , we arrive at

∣∣P 2,2
i,k

∣∣ ≤ 1

T 3δ2

∑

(s,s′,t,t′)∈Γi,k

E

[∣∣ξ2(Xj
t−k, X

j
s )
∣∣∣∣usξ(Xj

t′−k, X
j
s′)us′

∣∣
]

≤ 1

T 3δ2
C

MTh2

∑

(s,s′,t,t′)∈Γi,k

E
[
(µi,kt + E[µi,kt ])|usξ(Xj

t′−k, X
j
s′)us′|︸ ︷︷ ︸

≤Ch−1

]
≤ C

δ2
1

(log T )3
.

We next turn to P 2,1
i,k . Write

P 2,1
i,k =

1

T 3δ2

∑

(s,s′,t,t′)∈Γi,k

( MT∑

m=1

Sm

)

with

Sm = E

[{
I(Xj

t−k ∈ Im)Kh(xm, X
j
s )µ

i,k
t − E−s[I(X

j
t−k ∈ Im)Kh(xm, X

j
s )µ

i,k
t ]
}

× usξ(X
j
t′−k, X

j
s′)us′

]

and assume that an index, w.l.o.g. t, can be separated from the others. Choosing

C3 ≫ C2, we get

Sm = Cov
(
I(Xj

t−k ∈ Im)µ
i,k
t − E[I(Xj

t−k ∈ Im)µ
i,k
t ], Kh(xm, X

j
s )usξ(X

j
t′−k, X

j
s′)us′

)

≤ C

h2
(α([C3 − C2] log T ))

1− 2

p ≤ C

h2
(a(C3−C2) log T )1−

2

p ≤ C

h2
T−C4

with some C4 > 0 by Davydov’s inequality, where p is chosen slightly larger

than 2. Note that the above bound is independent of i and k and that we can

make C4 arbitrarily large by choosing C3 large enough. This shows that |P 2,1
i,k | ≤

Cδ−2(log T )−3 uniformly in i and k with some constant C.

Combining (a) and (b) yields that P → 0 for each fixed δ > 0. This implies that

(RNW,V
V,j ) = op(1),
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which completes the proof for the term (DNW
V,j ).

As stated at the beginning of the proof, the term (DSBF
V,j ) can be treated in ex-

actly the same way. Following analogous arguments as above and writing ζ i,kt =

(σ2
t σ

2
t )

−1ε2t−kε
2
t−i, one obtains

(DSBF
V,j ) =

T−1∑

k=1

abk−1
T−1∑

i=1

bi−1
[ 1√

T

T∑

s=1

1

T

T∑

t=mi,k

E−s[rj,s(X
j
t−k)ζ

i,k
t ] us

]
+ op(1) (55)

=
1√
T

T∑

s=1

( ∞∑

k=1

abk−1
∞∑

i=1

bi−1
E−s[rj,s(X

j
−k)ζ

i,k
0 ]
)
us + op(1)

=:
1√
T

T∑

s=1

gSBFj,D

( s
T
,Xs

)
us + op(1).

Finally, the proofs for j = 0 are very similar but somewhat simpler and are thus

omitted here. For completeness we provide the functions gNW0,D and gSBF0,D :

gNW0,D

( s
T

)
=
( ∞∑

k=1

abk−1
∞∑

i=1

bi−1
E
[ 1

σ2
0σ

2
0

ε2−kε
2
−i
]) ∫ 1

0

Kh(
s
T
, v)

∫ 1

0
Kh(v, w)dw

dv (56)

gSBF0,D

( s
T
,Xs

)
=
( ∞∑

k=1

abk−1
∞∑

i=1

bi−1
E
[ 1

σ2
0σ

2
0

ε2−kε
2
−i
]) ∫ 1

0

r0,s(w)dw. (57)

Lemma C.2. It holds that

(Dc) =
1√
T

T∑

s=1

gc,Dus

with

gc,D =
∞∑

k=1

abk−1
∞∑

i=1

bi−1
E

[ 1

σ2
0σ

2
0

ε2−iε
2
−k

]
.

Proof. Using the fact that

m̃c =
1

T

T∑

s=1

Zs,T = mc +
1

T

T∑

s=1

m0

( s
T

)
+

d∑

j=1

1

T

T∑

s=1

mj(X
j
s ) +

1

T

T∑

s=1

us,
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we arrive at

(Dc) = −
( 1
T

T∑

t=1

Gt

t−1∑

k=1

abk−1ε2t−k

)( 1√
T

T∑

s=1

us

)

with Gt =
∂v2t
∂φi

(σ2
t σ

2
t )

−1. Now let mi,k = max{k + 1, i + 1} and assume w.l.o.g. that

φi = a. Then

1

T

T∑

t=1

Gt

t−1∑

k=1

abk−1ε2t−k =
1

T

T∑

t=1

( t−1∑

i=1

bi−1ε2t−i

) 1

σ2
t σ

2
t

t−1∑

k=1

abk−1ε2t−k

=

C2 log T∑

k=1

abk−1

C2 logT∑

i=1

bi−1 1

T

T∑

t=mi,k

1

σ2
t σ

2
t

ε2t−iε
2
t−k + op(1)

with some sufficiently large constant C2. Using Chebychev’s inequality and exploiting

the mixing properties of the variables involved, one can show that

max
i,k≤C2 log T

1

T

T∑

t=mi,k

( 1

σ2
t σ

2
t

ε2t−iε
2
t−k − E

[ 1

σ2
t σ

2
t

ε2t−iε
2
t−k

])
= op(1).

This allows us to infer that

1

T

T∑

t=1

Gt

t−1∑

k=1

abk−1ε2t−k =

C2 log T∑

k=1

abk−1

C2 log T∑

i=1

bi−1 1

T

T∑

t=mi,k

E

[ 1

σ2
t σ

2
t

ε2t−iε
2
t−k

]
+ op(1)

=

∞∑

k=1

abk−1

∞∑

i=1

bi−1
E

[ 1

σ2
0σ

2
0

ε2−iε
2
−k

]
+ op(1),

which completes the proof.

Lemma C.3. It holds that

(DB,j) = op(1)

for j = 0, . . . , d.
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Proof. We start by considering the case j = 0: Define

Jh = {t ∈ {1, . . . , T} : C1h ≤ t

T
≤ 1− C1h}

Juh,c = {t ∈ {1, . . . , T} : 1− C1h <
t

T
}

J lh,c = {t ∈ {1, . . . , T} :
t

T
< C1h},

where [−C1, C1] is the support of K. Using the uniform convergence rates from

Theorem A.2 and assuming w.l.o.g. that φi = a, we get

|(DB,0)| =
∣∣∣ 1√
T

T∑

t=1

∂v2t
∂a

1

σ2
t σ

2
t

t−1∑

k=1

abk−1ε2t−k

[
m0

(t− k

T

)
− m̃B

0

(t− k

T

)
− 1

T

T∑

s=1

m0

( s
T

)]∣∣∣

≤ Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1

t−1∑

k=1

abk−1ε2t−iε
2
t−kI(t− k ∈ J lh,c)

+Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1
t−1∑

k=1

abk−1ε2t−iε
2
t−kI(t− k ∈ Juh,c)

+Op(h
2)
C√
T

T∑

t=1

t−1∑

i=1

bi−1

t−1∑

k=1

abk−1ε2t−iε
2
t−kI(t− k ∈ Jh)

=: (D
J l
h,c

B,0 ) + (D
Ju
h,c

B,0 ) + (DJh
B,0).

By Markov’s inequality, (DJh
B,0) = Op(h

2
√
T ) = op(1). Recognizing that

(i) I(t− k ∈ Juh,c) ≤ I(t ∈ Juh,c) for all k ∈ {0, . . . , t− 1}

(ii)
∑T

t=1 I(t ∈ Juh,c) ≤ C1Th,

we get (D
Ju
h,c

B,0 ) = Op(h
2
√
T ) = op(1) by another appeal to Markov’s inequality. This
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just leaves (D
J l
h,c

B,0 ), which is a bit more tedious. By a change of variable j = t− k,

(D
J l
h,c

B,0 ) ≤ Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1ε2t−i

t−1∑

j=1

abt−j−1ε2jI(j ∈ J lh,c)

= Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1ε2t−iI
([ t

2

]
∈ J lh,c

) t−1∑

j=1

abt−j−1ε2jI(j ∈ J lh,c)

+Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1ε2t−iI
([ t

2

]
/∈ J lh,c

) t−1∑

j=1

abt−j−1ε2jI(j ∈ J lh,c)

=: (A) + (B),

where [x] denotes the smallest integer larger than x. Realizing that [t/2] ∈ J lh,c only

if t < 2C1hT , we get (A) = Op(h
2
√
T ) = op(1) once again by Markov’s inequality. In

(B) we can truncate the summation over j at [t/2]−1, as I(j ∈ J lh,c) = 0 for j ≥ [t/2]

if [t/2] /∈ J lh,c. We thus obtain

(B) ≤ Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1ε2t−i

[t/2]−1∑

j=1

abt−j−1ε2j

= Op(h)
1√
T

T∑

t=1

b[t/2]
t−1∑

i=1

bi−1

[t/2]−1∑

j=1

abt−j−1−[t/2]ε2t−iε
2
j .

By a final appeal to Markov’s inequality we arrive at

(B) = Op(h)Op

( 1√
T

)
= op(1),

thus completing the proof for j = 0.

53



Next consider the case j 6= 0. Similarly to before, we have

|(DB,j)| ≤ Op(h
2)

1√
T

T∑

t=1

t−1∑

i=1

bi−1

t−1∑

k=1

abk−1ε2t−iε
2
t−kI(X

j
t−k ∈ Ih)

+Op(h)
1√
T

T∑

t=1

t−1∑

i=1

bi−1
t−1∑

k=1

abk−1ε2t−iε
2
t−kI(X

j
t−k /∈ Ih)

= Op(h
2
√
T ) + Op

( h√
T

) T∑

t=1

t−1∑

i=1

bi−1

t−1∑

k=1

abk−1ε2t−iε
2
t−kI(X

j
t−k /∈ Ih)

︸ ︷︷ ︸
=:RT

with Ih = [2C1h, 1− 2C1h] as defined in Theorem 4.1. Using (A11), it is easy to see

that RT = Op(h), which yields the result for j 6= 0.

Lemma C.4. It holds that

(A) = − 1√
T

T∑

t=1

(
1− ε2t

σ2
t︸ ︷︷ ︸

=(1−η2t )

) 1

σ2
t

(∂ṽ2t
∂φi

− ∂v2t
∂φi

)
+ op(1) = op(1).

Proof. W.l.o.g. let φi = a. With the help of (G1) and a simple Taylor expansion, we
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get that

∂ṽ2t
∂φi

− ∂v2t
∂φi

=
t−1∑

k=1

bk−1
(
ε̃2t−k − ε2t−k

)

=
t−1∑

k=1

bk−1ε2t−k

[
τ 2
(
t−k
T
, Xt−k

)
− τ̃ 2

(
t−k
T
, Xt−k

)

τ 2
(
t−k
T
, Xt−k

) +Rε

(t− k

T
,Xt−k

)]

=
t−1∑

k=1

bk−1ε2t−k

[
exp(ξt−k)

(
m
(
t−k
T
, Xt−k

)
− m̃

(
t−k
T
, Xt−k

))

exp
(
m
(
t−k
T
, Xt−k

))
]
+Op(h

2)

=
t−1∑

k=1

bk−1ε2t−k

[
m
(t− k

T
,Xt−k

)
− m̃

(t− k

T
,Xt−k

)]
+Op(h

2)

=
t−1∑

k=1

bk−1ε2t−k

{
(mc − m̃c)− m̃A

0

(t− k

T

)
− . . .− m̃A

d

(
Xd
t−k
)

+

(
m0

(t− k

T

)
− m̃B

0

(t− k

T

))
+ . . .+

(
md

(
Xd
t−k
)
− m̃B

d

(
Xd
t−k
))}

+Op(h
2),

where ξt−k is an intermediate point between m( t−k
T
, Xt−k) and m̃( t−k

T
, Xt−k). Using

this together with arguments similar to those for Lemma C.3 yields that

(A) = −
T−1∑

k=1

bk−1

(
1√
T

T∑

t=k+1

(
1− η2t

) ε2t−k
σ2
t

×
{
(mc − m̃c)− m̃A

0

(t− k

T

)
− . . .− m̃A

d

(
Xd
t−k
)})

+ op(1)

=: (Ac)− (A0)− (A1)− . . .− (Ad) + op(1).

It is straightforward to see that (Ac) = op(1). In what follows, we further prove that

(Aj) = op(1) for j = 0, . . . , d as well, which completes the proof.

Consider a fixed j ∈ {0, . . . , d} and let δ > 0 be an arbitrarily small but fixed constant.

Write

(Aj) =
T−1∑

k=1

bk−1

(
1√
T

T∑

t=k+1

(
1− η2t

) ε2t−k
σ2
t

m̃A
j (X

j
t−k)

)
=: (A≤

j ) + (A>j ),
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where

(A≤
j ) =

T−1∑

k=1

bk−1

(
1√
T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t

m̃A
j (X

j
t−k)

)

(A>j ) =

T−1∑

k=1

bk−1

(
1√
T

T∑

t=k+1

W>
t

ε2t−k
σ2
t

m̃A
j (X

j
t−k)

)

with

W≤
t =

(
1− η2t

)
I(|ηt| ≤ T 1/48+δ)− E[(1 − η2t )I(|ηt| ≤ T 1/48+δ)]

W>
t =

(
1− η2t

)
I(|ηt| > T 1/48+δ)− E[(1− η2t )I(|ηt| > T 1/48+δ)].

We now consider the two terms (A≤
j ) and (A>j ) separately. We start with (A>j ). Stan-

dard arguments for kernel estimators show that supxj∈[0,1]
∣∣m̂A

j (xj)
∣∣ = Op(

√
log T/Th).

This together with Theorem A.1 implies that supxj∈[0,1]
∣∣m̃A

j (xj)
∣∣ = Op(

√
log T/Th)

as well. As
√

log T/Th ≤ T−3/8+δ, we can infer that

∣∣(A>j
)∣∣ ≤ Op

(√
log T

Th

)
·
T−1∑

k=1

bk−1 1√
T

T∑

t=k+1

|W>
t |
ε2t−k
σ2
t

≤ Op(1)

T−1∑

k=1

bk−1 1

T 7/8−δ

T∑

t=k+1

|W>
t |
ε2t−k
σ2
t

︸ ︷︷ ︸
:=(∗)

.

Moreover, since

E
[∣∣1− η2t

∣∣ I(|ηt| > T 1/48+δ)
]
≤ E

[∣∣1− η2t
∣∣ η6t
T 6(1/48+δ)

I(|ηt| > T 1/48+δ)

]
≤ C

T 1/8+6δ
,

we get that E|W>
t | ≤ C/T 1/8+6δ. From this and Markov’s inequality, it follows that

(∗) = op(1) and thus (A>j ) = op(1).

We next turn to the term (A≤
j ). Splitting (A≤

j ) into two parts with the help of the

indicators I(ε2t−k ≤ T 1/48+δ) and I(ε2t−k > T 1/48+δ) and applying a similar truncation
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argument as above, we can show that

(
A≤
j

)
=

T−1∑

k=1

bk−1
( 1√

T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t

I(|εt−k| ≤ T 1/48+δ) m̃A
j

(
Xj
t−k
))

+ op(1).

Since the weights bk−1 decay exponentially fast to zero, we further obtain that

(
A≤
j

)
=

C2 log T∑

k=1

bk−1
( 1√

T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t

I(|εt−k| ≤ T 1/48+δ) m̃A
j

(
Xj
t−k
))

+ op(1)

with some sufficiently large constant C2. By Theorem A.1, it holds that uniformly in

xj ,

m̃A
j (xj) =

1

T

T∑

s=1

(
Kh(xj , X

j
s )

1
T

∑T
v=1Kh(xj , X

j
v)

+ rj,s(xj)

)
us + op

(
1√
T

)
.

By the same arguments as used in the proof of Lemma C.1, we can replace the term

1
T

∑T
v=1Kh(xj , X

j
v) by qj(xj) =

∫ 1

0
Kh(xj , w)dw pj(xj), which yields that

(
A≤
j

)
=

C2 log T∑

k=1

bk−1
( 1√

T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t

I(|εt−k| ≤ T 1/48+δ) m̌A
j

(
Xj
t−k
))

+ op(1)

with

m̌A
j (xj) =

1

T

T∑

s=1

(
Kh (xj , X

j
s )

qj(xj)
+ rj,s(xj)

)
us.

We can thus write (A≤
j ) =

∑C2 logT
k=1 bk−1 · (A≤

j,k) + op(1) with

(A≤
j,k) =

1√
T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t

I(|εt−k| ≤ T 1/48+δ) m̌A
j (X

j
t−k).

In what follows, we prove that for any fixed ε > 0,

max
1≤k≤C2 log T

P
(∣∣(A≤

j,k)
∣∣ > ε

)
≤ T−κ (58)

with some κ > 0. This implies that P(max1≤k≤C2 log T |(A≤
j,k)| > ε) ≤∑C2 log T

k=1 P(|(A≤
j,k)| >
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ε) = o(1), that is, max1≤k≤C2 log T |(A≤
j,k)| = op(1). Since (A

≤
j ) =

∑C2 log T
k=1 bk−1 ·(A≤

j,k)+

op(1) ≤ Cmax1≤k≤C2 log T |(A≤
j,k)|+ op(1), we can conclude that (A≤

j ) = op(1).

It remains to prove (58). To do so, we embed the stochastic function m̌A
j into a class

of Hölder functions: For any η > 0 and xj 6= x′j ,

∣∣m̌A
j (xj)− m̌A

j (x
′
j)
∣∣
/ ∣∣xj − x′j

∣∣1/2+η

≤
∣∣∣∣∣
1

T

T∑

s=1

1

qj(xj)

(
Kh

(
xj , X

j
s

)
−Kh

(
x′j , X

j
s

))
us

∣∣∣∣∣
/ ∣∣xj − x′j

∣∣1/2+η

+

∣∣∣∣∣
1

T

T∑

s=1

Kh

(
x′j , X

j
s

) qj(x′j)− qj(xj)

qj(x′j)qj(xj)
us

∣∣∣∣∣
/ ∣∣xj − x′j

∣∣1/2+η

+

∣∣∣∣∣
1

T

T∑

s=1

(
rj,s(xj)− rj,s(x

′
j)
)
us

∣∣∣∣∣
/ ∣∣xj − x′j

∣∣1/2+η

=: β1(xj , x
′
j) + β2(xj , x

′
j) + β3(xj , x

′
j).

By standard arguments to derive uniform convergence rates for kernel estimators

which can be found for example in Bosq (1998), Masry (1996) or Hansen (2008), we

can show that

P

(
sup

xj ,x′j∈[0,1],xj 6=x′j

∣∣βk(xj , x′j)
∣∣ > MaT

6

)
= O(T−κ)

for all k = 1, 2, 3 and some κ > 0, where aT =
√
log T/Th2+ς for some small ς > 0

and M is a sufficiently large constant. From this, it immediately follows that

P

(
sup

xj ,x′j∈[0,1],xj 6=x′j

∣∣m̌A
j (xj)− m̌A

j (x
′
j)
∣∣

∣∣xj − x′j
∣∣1/2+η >

MaT
2

)
= O(T−κ). (59)

Similarly, it can be verified that

P

(
sup

xj∈[0,1]

∣∣m̌A
j (xj)

∣∣ > MaT
2

)
= O(T−κ). (60)

From (59) and (60), we can conclude that with probability 1− O(T−κ), the random
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function 1
MaT

m̌A
j is contained in the Hölder space F := C

1/2+η
1 ([0, 1]) which is defined

as follows: For any α ∈ (0, 1],

Cα
1 ([0, 1]) = {f : [0, 1] → R : f is continuous with ‖f‖α ≤ 1}

with

‖f‖α = sup
x∈(0,1)

|f(x)|+ sup
x,y∈(0,1),x 6=y

|f(x)− f(y)|
|x− y|α .

Let N (δ, Cα
1 ([0, 1]), ‖ · ‖∞) be the δ-covering number of Cα

1 ([0, 1]) endowed with the

supremum norm ‖ · ‖∞. By Theorem 2.7.1 in van der Vaart and Wellner (1996), we

have the bound

logN (δ, Cα
1 ([0, 1]), ‖ · ‖∞) ≤ Kδ−1/α (61)

for any δ > 0 with some fixed constant K > 0. We next define

ZT,k(f) :=
MaT√
T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t

I(|εt−k| ≤ T 1/48+δ) f
(
Xj
t−k
)

and note that (A≤
j,k) = ZT,k(

1
MaT

m̌A
j ). Since

1
MaT

m̌A
j is contained in the Hölder space

F = C
1/2+η
1 ([0, 1]) with probability 1−O(T−κ), it follows that

P
(∣∣(A≤

j,k)
∣∣ > ε

)
≤ P

(
sup
f∈F

|ZT,k(f)| > ε

)
+O(T−κ)

and it remains to show that

P

(
sup
f∈F

|ZT,k(f)| > ε

)
≤ CT−κ. (62)
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To do so, define Zγ
T,k := T γZT,k with γ > 0 small and write

P

( ∣∣Zγ
T,k(f)− Zγ

T,k(g)
∣∣ > ε ||f − g||∞

)

= P

(
T γ
∣∣∣∣
MaT√
T

T∑

t=k+1

W≤
t

ε2t−k
σ2
t

I(|εt−k| ≤ T 1/48+δ)
(
f
(
Xj
t−k
)
− g
(
Xj
t−k
))

︸ ︷︷ ︸
=:ψt,j,k

∣∣∣∣ > ε ||f − g||∞
)
.

Using the trivial bound |ψt,j,k| ≤ CT 1/12+4δ||f − g||∞ and noting that {ψt,j,k : t ∈ Z}

is a martingale difference sequence for any k ≥ 1, we can show that the process

Zγ
T,k = (Zγ

T,k(f))f∈F has subgaussian increments. More specifically, we can apply an

exponential inequality for martingale differences such as theorem 15.20 in Davidson

(1994) to obtain that

P
(∣∣Zγ

T,k(f)− Zγ
T,k(g)

∣∣ > ε ||f − g||∞
)

≤ 2 exp


− ε2

2
∑T

t=k+1

(
T γMaT√

T
CT 1/12+4δ

)2




≤ 2 exp

(
− ε2

2(CM)2 (T γaT )
2 T 1/6+8δ

)
≤ 2 exp

(
−ε

2

2

)

for T large enough. Next, let ‖ · ‖ψ0
denote the Orlicz norm corresponding to

ψ0(x) = exp(x2) − 1. Applying a maximal inequality such as theorem 2.2.4 in

van der Vaart and Wellner (1996) along with the metric entropy bound (61), we ob-

tain that

∥∥∥ sup
f∈F

|Zγ
T,k(f)|

∥∥∥
ψ0

≤
∫ C

0

√
Kε

− 1

1/2+η dε =
√
K

∫ C

0

ε−
1

1+2η dε

=
√
K

1

1− 1
1+2η

ε1−
1

1+2η

∣∣∣
C

0
≤ r0 <∞
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with some sufficiently large C. Hence, by Markov’s inequality,

P

(
sup
f∈F

|ZT,k(f)| > ε

)
= P

(
T−γ sup

f∈F
|Zγ

T,k(f)| > ε

)

≤
E
[
ψ0

(
supf∈F |Zγ

T,k(f)|/r0
)]

ψ0(εT γ/r0)
≤ 1

exp(ε2T 2γ/r20)− 1
,

which completes the proof of (62).
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