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Abstract

Novel information technologies have the potential to improve decision making. In
the context of smart metering, we investigate the impact of providing households with
appliance-level electricity feedback. In a randomized controlled trial, we find that the pro-
vision of appliance-level feedback creates a conservation effect of an additional 5% relative
to a group receiving standard (aggregate) feedback. Consumers with poor knowledge of
appliance wattage respond most strongly to appliance-level feedback, consistent with the
mechanism in our model. We estimate that a smart-meter rollout will yield much larger
gains in consumer surplus if appliance-level feedback can be provided.
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1 Introduction

Novel information technologies enable consumers to make better informed decisions. For

example, navigation systems assist car drivers in improving their travel planning (Chorus

et al., 2006), text message reminders increase patients’ adherence to medical treatments (Pop-

Eleches et al., 2011), and fitness trackers help athletes to sustain higher levels of physical

exercise (Cadmus-Bertram et al., 2015). In the context of resource conservation, informa-

tion technologies have the potential to correct misperception of energy intensities. It is well-

documented that individuals tend to underestimate the energy use of energy-intensive appli-

ances, and overestimate the energy use of low-intensity applications (Attari et al., 2010). This

bias in the perception of energy intensity can increase the energy use beyond the level a per-

fectly informed consumer would choose. If so, it would also exacerbate externalities associated

with the use of energy, such as carbon emissions and local air pollution.

In this paper, we explore the potential of providing appliance-level feedback to correct

households’ misperceptions of energy intensities and to provide a new mechanism to foster

energy conservation. We also develop a framework to investigate the impact of disaggregate

feedback on consumer welfare and derive sufficient statistics to quantify it, thus providing

a novel tool for regulatory impact analysis. The context of our study is the deployment of

advanced metering infrastructure throughout the world, which involves multi-billion invest-

ments into so-called smart electricity meters.1

A core rationale for the deployment of smart meters is that these devices can provide house-

holds with consumption feedback. Feedback may foster awareness about the cost and envi-

ronmental impact of electricity usage, and hence lead to energy conservation (EC, 2014b). To

date, smart meters typically provide information about household-level electricity consump-

tions. Previous evidence suggests that such feedback leads to modest conservation effects of

2% to 5% (Degen et al., 2013; McKerracher and Torriti, 2013; Schleich et al., 2017; Houde et al.,

2013). One potential reason for these moderate effect sizes is that aggregate consumption data

does not correct misperceptions of energy intensities of individual appliances. Indeed, studies

that installed additional hardware to provide appliance-specific feedback found much larger

effects of 10% to 20% (Asensio and Delmas, 2015; Bruelisauer et al., 2018; Tiefenbeck et al.,

1For example, 79 million households in the United States and 472 million households in China have been outfit-
ted with smart meters by 2017 (IEA, 2017). In addition, the European Union has committed to installing 200 million
smart meters at an estimated cost of 45 billion Euro (EC, 2014a).

1



2018, 2019). Our study builds on a novel smart meter technology that leverages the potential

of appliance-level feedback without installing additional costly infrastructure. The technol-

ogy exploits the distinct signature that every appliance leaves in the electricity consumption

data. These signatures can be used to estimate appliance-level electricity use from aggregate,

high-frequency electricity data (for details, see Hart 1992; Gupta et al. 2017, and Appendix A3).

We conduct a field experiment with 700 participants and provide electricity use feedback

through a smartphone app. Participants in the experimental control group obtain aggregate

feedback as traditionally provided by smart metering interventions. Participants in our first

treatment group additionally receive information on their appliance-level electricity use. We

also implement three further treatment groups that complement appliance-level feedback with

incentives to encourage the conservation of energy. Participants in the second treatment group

receive a bonus based on their absolute reduction in electricity use for a given appliance. In

the third group, we inform participants how their electricity savings compare to the savings of

other study households. In the fourth group, participants receive a bonus if their savings are

high relative to the savings of others.

Based on a conceptual model of household service demand, we characterize the condi-

tions under which appliance-level feedback triggers reductions in consumers’ total electricity

use. In our model, consumers correctly assess their overall electricity consumption, but inac-

curately perceive the energy intensity of different appliances, as found by Attari et al. (2010)

and recently formalized by Graeber and Enke (2019). Appliance-specific feedback corrects this

misperception. As we show, if energy intensities are sufficiently different or price elasticities

of energy demand sufficiently similar across appliances, correcting the misperceptions leads

to lower overall electricity use. Beyond providing hypotheses on the sign of the average treat-

ment effect of appliance-level feedback, we use our model to derive sufficient statistics for

evaluating its impact on consumer surplus. We derive how these statistics can be identified as

simple functions of the appliance-level treatment effects. To explore beliefs, we conduct sur-

veys and find that households are poorly informed about the wattage of their appliances.2 We

also show that treatment effects are strongest for households with particularly low levels of

knowledge about appliance wattage.

2By contrast, we find that perceptions of aggregate electricity use are very accurate, leaving little room for
aggregate-level inattention to increase electricty use in our sample.
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Our contribution to the literature is threefold. First, we disentangle the effects of appliance-

level information from the effects of aggregate information in a tailored randomized controlled

trial, which allows for a clean identification of the additional savings induced by appliance-

level feedback. Our results show that the provision of appliance-level feedback reduces elec-

tricity consumption strongly by around 5%, compared to an experimental condition in which

individuals receive ‘standard’ aggregate smart metering feedback. Previous studies on the ef-

fectiveness of standard smart metering find conservation effects ranging from 2% to 3% (Car-

roll et al., 2014; Degen et al., 2013; Martin and Rivers, 2017), up to 5% (Schleich et al., 2017;

Houde et al., 2013).3 Thus, our estimates suggest that providing disaggregate feedback adds

considerably to the effectiveness of smart meter interventions. Furthermore, Asensio and Del-

mas (2015) find that appliance-level feedback is only effective when combined with a health

frame that highlights the adverse impacts of electricity generation on air pollution. Our results

broaden that perspective on appliance-level feedback by showing that information provision

without a health frame also substantially changes consumer behavior.

Second, we contribute to a literature that has investigated how smart meter technologies

can reduce electricity consumption during times of high demand. Previous studies have

shown that households reduce their electricity consumption during peak hours when fac-

ing time-of-use pricing (e.g., Allcott 2011a and Burkhardt et al. 2019). Consumers’ price re-

sponsiveness to time-of-use prices increases when consumers obtain aggregate real-time feed-

back (Jessoe and Rapson, 2014) and automation technology such as programmable thermostats

(Bollinger and Hartmann, 2019). Furthermore, Ito et al. (2018) find that monetary incentives

trigger persistent reductions in consumption during peak period, whereas the effect of moral

appeals is only short-lived.

We complement this literature by investigating the time-of-use pattern of electricity sav-

ings from appliance-level feedback. We detect a conservation pattern that is closely, but not

perfectly, aligned with peak periods. In particular, the overall treatment effect is driven by a

reduction in electricity consumption during hours where individuals are at home. This finding

suggests that the conservation effects in our study stem primarily from appliances that also re-

quire active usage. During these hours, we estimate large conservation effects of about 10%.

3Further studies have shown that feedback via more frequent billing can even lead to an increase in resource
use (Wichman, 2017). With respect to consumption feedback, Gosnell et al. (2019) find that providing information
on social comparisons and demand disaggregation via an advanced app is more effective than providing aggregate
information via inhome displays and a basic app, but only for one of two smart meter installers.
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These magnitudes are similar to findings from feedback provision in the context of showering

(e.g., Tiefenbeck et al., 2018). We also test whether the effectiveness of appliance-level feedback

can be amplified by monetary incentives and information about savings of other participants.

We do not find that any of these strategies increases the response to appliance-level feedback.

This result demonstrates that additional monetary incentives do not necessarily improve the

degree to which consumers engage with informational interventions.

Third, our study relates to the literature on welfare analysis under optimization errors by

consumers (see Farhi and Gabaix 2020 for an overview). One strand of this literature has pri-

marily focused on the implications of tax misperceptions (e.g., Chetty et al. 2009; Rees-Jones

and Taubinsky 2019). Another strand has derived optimal corrective taxes and subsidies for

behaviorally biased consumers (e.g., Allcott and Taubinsky 2015; Gerster and Kramm 2019;

O’Donoghue and Rabin 2006). By contrast, we analyze informational instruments when con-

sumers misperceive product attributes and the cost of household services. We derive formulas

for evaluating consumer surplus that can be used for policy analysis of informational inter-

ventions to overcome such misperceptions.

The formulas are simple variants of those currently used in regulatory cost benefit assess-

ments. In particular, we find that changes in consumer surplus can be calculated as the weighted

sum over appliance-level cost savings. The weights are given by consumers’ relative bias, i.e.,

the perceived energy intensity divided by the actual intensity. Because these weights are typi-

cally smaller than one (in absolute value), approximating changes in consumer surplus by the

realized energy cost savings – as currently done in regulatory impact analyses in the U.S. and

the EU, for example (Faruqui et al., 2011; Giordano et al., 2012) – strongly overestimates the

welfare gains of smart meters. In our study, we find that consumer surplus is overestimated

by a factor of about three. Nevertheless, the welfare gains we calculate are substantial: we find

that appliance-level feedback increases consumer surplus by about 12 – 15 Euro per household

and annum, which scales to an increase in total consumer surplus of about 500 – 620 million

Euro for all German households every year.

The relevance of our findings extends beyond the context of smart meter feedback. Con-

sumers hold misperceptions not only about the electricity consumption of appliances, but

also about the effectiveness of fitness activities, the caloric content of foods, and benefits from

schooling returns, for example (e.g., Attari et al. 2010; Bollinger et al. 2011; Jensen 2010). Our

theoretical model and our empirical estimates indicate that eliminating biases via feedback
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will reduce energy spending and potentially extend into other applications such as improving

the effectiveness of physical exercise and the nutrional quality of diets. Our paper also de-

velops a method for evaluating how misperceptions affect consumer surplus, which provides

policy makers with a tool for weighting the cost of policy interventions against their benefits.

Such tools are particularly important as progresses in digitilization will likely raise the policy

relevance of informational interventions in the future.

The remainder of the paper is structured as follows. Section 2 introduces a conceptual

model that clarifies how disaggregate consumption feedback reduces the total use of an input

for household services, such as electricity. Based on that model, we also derive the sufficient

statistics needed for quantifying changes in consumer surplus. Section 3 presents the experi-

mental design and the data. In Section 4, we estimate the impact of appliance-level feedback

on energy consumption and analyze treatment effect heterogeneity. Section 5 quantifies the

impact of appliance-level feedback on consumer surplus. Section 6 concludes.

2 Conceptual Model

We start by investigating the effects of providing appliance-level feedback to consumers

based on the following household services model (Becker, 1965). Let consumers have the fol-

lowing quasi-linear utility function:

U(x, z) = u(x) + z,

where u(x) is quasi-concave and denotes the utility from consuming J household services de-

noted by the vector x = (x1, . . . , xJ)
′ and z represents the numeraire good, whose price is

normalized to 1. The consumption of household service j requires inputs of yj = xjej, where ej

denotes the input intensity of service xj. In our application, households consume energy ser-

vices by using a particular appliance, such as a dish-washer or dryer, and the input intensity

refers to the amount of electricity that is needed to operate an appliance. Consumers maximize

their utility subject to the budget constraint w = z + ∑j yj p, where w denotes their exogenous

income and p denotes the price of the input, in our case electricity.

In line with the literature (Attari et al., 2010), let consumers have biased perceptions of

input intensities ẽj = ej + bj, where bj is a bias term that decreases in absolute terms when
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beliefs become more accurate. Consumers maximize their utility under the beliefs ẽj, which

yields the following first-order condition:

uj = p(ej + bj),

where uj denotes the first derivative of u(x) with respect to the service xj. This condition

shows that, in optimum, consumers equate the marginal benefits of consuming a service j

with its perceived marginal cost, which differs from the actual marginal cost (pej) by the term

pbj.

We now assess the impact of a technology that increases the accuracy of beliefs by, for ex-

ample, providing appliance-level feedback. To provide intuition, we totally differentiate the

first-order condition of consumers’ utility maximization problem with respect to α. For sim-

plicity, we approximate consumers’ utility by an additively separable utility function, which

yields:

∆yj = ej∆xj = ej
p

ujj
∆bj, (1)

where ujj denotes the second derivative of u(x) with respect to xj, while ∆yj and ∆bj denote

the change in the use of the input for appliance j and the change in the belief biases bj, re-

spectively, in response to the increase in belief accuracy. As concavity of u(x) implies that ujj

is negative, Equation (1) shows that consumption of an energy service j decreases (∆yj < 0)

when consumers underestimate ej prior to the intervention (∆bj > 0). Equation (1) clarifies

that learning that the marginal cost of using a household service is higher than anticipated

has the same effects as a price increase and reduces consumption of that service. The opposite

holds true when consumers learn about lower cost.

When does appliance-level feedback reduce total input use? For the purpose of illustra-

tion, consider the case of two appliances and let subscript 1 denote the more input intensive

appliance, i.e., e1 > e2. Following the literature on cognitive uncertainty and noisy Bayesian

cognition models (Gabaix, 2017; Graeber and Enke, 2019), let consumers have input intensity

beliefs ẽj = αej + (1− α)e, where α ∈ [0, 1) is the weight that individuals put on the correct

intensity and e denotes a naive belief that is consistent with the total input use, but does not

distinguish between different appliances, thus satisfying x1e1 + x2e2 = (x1 + x2)e. Further-

more, let consumers’ bias, defined by bj = ẽj − ej, be zero when appliance-level feedback is

provided. In Appendix A1, we derive sufficient conditions for a decrease in the total input use
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in response to the provision of appliance-level feedback (∆y = ∆y1 + ∆y2 < 0). We find that

input use decreases if the following inequality holds:

e1

e2

η1(ẽ1)

η2(ẽ2)
> 1, (2)

where ηj(ẽj) denotes the price elasticity of demand for service j under the belief ẽj, i.e, ηj(ẽj) =

(∂xj(ẽj)/∂p)/(xj(ẽj)/p). A sufficient condition for Inequality (2) to hold is that e2 is sufficiently

small, which follows from letting e2 approach zero. Another sufficient condition is that the

price elasticity of the more input intensive service 1 is at least as large as the price elasticity of

service 2, i.e., (η1(ẽ1)/(η2(ẽ2)) ≥ 1. In Appendix A1, we show that the same intuition holds

true when we analyze the case of n appliances.

To understand the main mechanism for reductions in total input use, let us consider the

special case where preferences for both services are identical and consumers hold fully naive

beliefs (ẽj = e). In that case, consumption choices are the same for both appliances (x1(ẽ1) =

x2(ẽ2)). Furthermore, the change in the bias in response to a higher belief accuracy has the

same magnitude for both appliances as the naive belief e lies at the midpoint between e1 and e2,

which implies that ∆b1 = −∆b2. As preferences for both services are identical in our example,

eliminating the bias increases and decreases household service demand for appliance 1 and 2

by the same margin (∆x1 = −∆x2). Yet, total input use reduces (∆y = e1∆x1 + e2∆x2 < 0), as

appliance 1 is more input intensive than appliance 2 (e1 > e2) by definition. When consumers’

beliefs are only partly biased (α > 0), the same intuition holds true as all behavioral responses

are scaled by a common factor, which reduces the change in total input use, but not its sign

(for details, see Appendix A1).

As derived in Appendix A2, we can express the response of consumer surplus to an inter-

vention that increases belief accuracy as follows:

∆ConsSurplus = ∑
j

bj

ej
∆Ej, (3)

where ∆ConsSurplus denotes the change in consumer surplus and ∆Ej = p∆yj gives the av-

erage treatment effect of the intervention on the input expenditures for household service j.

Equation (3) shows that we can estimate changes in consumer surplus based on few sufficient

statistics: the relative bias (bj/ej), as well as the appliance-specific average treatment effects of

the intervention on electricity expenditures (∆Ej). The intuition for Equation (3) is that a be-
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lief bias bj > 0 creates a wedge between consumers’ perceived and actual marginal cost from

consuming an energy service j, which induces first-order distortions of consumption choices.

Consumer surplus increases when beliefs become more accurate. The increase is proportional

to the size of the relative belief bias (bj/ej) and the behavioral response to an increase in belief

accuracy, as captured by the change in input expenditures (∆Ej).

Equation (3) demonstrates a fundamental flaw of current cost benefit analyses that approx-

imate changes in consumer surplus by the sum of expenditure savings (e.g., Faruqui et al.

2011; Giordano et al. 2012). In fact, the change in consumer surplus equals the weighted sum

of changes in expenditures, where the weights are given by the relative biases bj/ej. These

weights are typically less than one in absolute value, and thus influence consumer surplus es-

timates. Equation (3) also clarifies that expenditure savings are not a necessary condition for

increases in consumer surplus, as implicitly assumed in current cost benefit analyses. If con-

sumers overestimate the cost of using an energy service j (bj/ej > 0), their welfare increases if

they use that service more, thereby increasing expenditures (∆Ej > 0).

All sufficient statistics for evaluating consumer surplus can be estimated from our data.

First, our appliance-level consumption measures allow us to estimate the average treatment

effects of disaggregate feedback for each appliance category. Second, under additive separa-

bility and a pure nudge assumption (e.g. Allcott and Taubinsky 2015), we can identify the rela-

tive bias from our data as (bj/ej) = −(∆yj/yj)/ηj, where (∆yj/yj) denotes the ATE on energy

consumption of appliance j, expressed as a percentage of the input use yj, and ηj is the price

elasticity of energy service demand j (for derivations, see Appendix A2). To obtain estimates

for price elasticities, we follow a double-pronged strategy. First, we draw upon estimates from

the literature. Second, we estimate them from our data by exploiting cross-sectional price vari-

ation across German regions (details are provided in Section 5). This variation partly stems

from differences in grid surcharges, which are higher in regions with substantial electricity

generation from renewable energy sources.

3 Experimental Design and Data

3.1 Study Implementation

We conducted the randomized controlled trial with customers of a large German utility.

Customers were invited to take part in a smart meter study via an email that did not men-

8



tion appliance-level feedback as the purpose of the study. To be eligible for participation in

the experiment, customers had to have a smartphone and wireless internet access. Further-

more, participants who own solar photovoltaic panels were excluded. Out of around 50,000

customers we invited, 800 participants agreed to take part in the study and met our eligibility

criteria.

As shown by Table A1 in the Appendix, sociodemographic characteristics of study par-

ticipants are comparable to German averages. In terms of age, employment status, sex, and

household net income, our experimental sample is similar to the German population. Partici-

pating households consist of slightly more occupants (2.5 vs. 2.0 in Germany), which is mostly

driven by a smaller percentage of single-person households (12% vs. 42% in Germany). For

households of a given size, electricity consumption levels are similar in our study and the

German population. The larger average number of occupants per household in our sample

translates into larger average electricity consumption levels compared to the German average

(10.4 vs. 8.6 kWh per day). Furthermore, households in our sample live more often in their

own property than the average German household (76% vs. 44% in Germany).4

All participating households obtained a high-resolution smart meter, an internet gateway

that connected the smart meter with the internet, and access to a smartphone app. After the

smart meter had been installed by professionals, the utility sent participants the internet gate-

way along with instructions how to install the app. As soon as participants had activated the

gateway and installed the app, they shared their smart meter data and our study started. More

than 90% of our study participants entered the field test between November, 2016, and January,

2017, and the remaining few participants joined afterwards. The core study period extended

for 6 months, when consumers had access to the full functionality of the app in their respec-

tive treatment group. From month 7 onwards, households were free to continue to use the app

for another three months, but add-on functionalities beyond disaggregation were stopped in

three treatment groups. As the number of participants declined considerably during that pe-

riod, our analysis focuses on the core study period. We also conduct complementary analyses

to estimate treatment effects in the subsequent months.

4When we test for differences in the effectiveness of treatments by the number of occupants in a household and
the ownership status of the house, we cannot detect statistically significant differences (Table A15 in the Appendix).
The point estimates indicate that the response is somewhat larger for single-person households, but lower for
households who do not own their apartment or house.
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The smart meters measure electricity consumption at a high frequency, typically every sec-

ond. This results in a rich dataset of several billion observations over the entire study period.

The high granularity of our data allows us to use load disaggregation techniques that disen-

tangle the total electricity use into appliance-level uses. It sets our study apart from earlier

attempts to analyze and disaggregate smart meter data, such as Google PowerMeter or Mi-

crosoft Hohm, which were discontinued in 2011 and 2012, respectively. A main reason for the

failure of these services was insufficient access high-granular smart meter data (Donnal and

Leeb, 2015).

The smart meter data is saved online in real-time and processed daily to detect appliance

usages based on a so-called nonintrusive appliance load monitoring (NALM) algorithm, which

employs machine learning techniques for load disaggregation. The algorithm exploits the fact

that appliances have characteristic electricity use signatures. These signatures can be used to

disaggregate high-resolution smart meter data into appliance-specific electricity uses (see Ap-

pendix A3 for details). For example, a dryer first heats up the wet laundry, thereby consuming

much electricity, and then iterates between periods of allowing the laundry cool down and

heating it up again. This produces a characteristic signature in the high-resolution smart me-

ter data that the algorithm uses to detect appliance use events, i.e. the start/end date and the

amount of electricity used by individual appliances (see Figure A4 in the Appendix for exem-

plary signatures). Detection of appliance events is possible for the major appliances of a typical

household, including the categories Dishwasher, Washing Machine, Dryer, and Oven, as well as

a Refrigeration category that captures refrigerators and freezers. The algorithm also identifies

an Always-on category as the typical consumption at 3 a.m. In addition to the appliance cate-

gories that we can directly measure, we construct a residual category Other Appliances, which

captures the electricity consumptions of all other appliances. Table A5 in the Appendix gives

descriptive statistics on the more than 300.000 appliance events that we observe during the

core study period.

Based on the appliance use events, we determine participants’ monthly electricity con-

sumption for every appliance category. To facilitate the assessment of appliance consumptions,

we also use participants’ electricity prices to calculate monthly operating cost by appliance.

Furthermore, we transform monthly appliance-level consumptions into an appliance score that
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informs households about their usage intensity.5 In the app, households can click on a button

that provides a detailed description of the meaning of the appliance scores. The score is 100 if a

household’s appliance use is very low and 0 if it is very high, compared to typical usage behav-

iors and energy intensities of the respective appliance. More specifically, the score is calculated

as follows: Appliance Score = 100× (Monthly Appliance Consumption - Benchlow)/(Benchhigh

- Benchlow), where Benchlow and Benchhigh correspond to pre-determined benchmark values

for high and low appliance uses, respectively. We construct these benchmarks from survey

data on typical appliance uses as well as product data sheets on the technical efficiency of

appliances currently used in German households (for details, see Table A3 in the Appendix).

In Figure A5 in the Appendix, we display the distributions of the appliance scores by ap-

pliance category. As we determined the appliance score benchmarks prior to the experiment,

assessing the range of the appliance scores is a good test to evaluate the plausibility of the de-

tected appliance use events. For all appliance categories, the vast majority of appliance scores

lies between 0 and 100, which supports the credibility of the disaggregation. For the categories

Dishwasher, Dryer and Oven, there is bunching at indices of 100, which indicates that some

participants have not used these appliances at all in some months.

In addition, we benchmark the appliance-level measurements by comparing our data from

2017 with the average appliance uses in Germany, which is only available for 1996 and 2011.

As Figure A6 in the Appendix shows, the percentage of electricity used for cooking (9.6%) and

for washing, drying, and dish-washing (9.7%) aligns with German averages in 1996 and 2011

(about 9.6 – 9.8% and 10.4 – 12.4%, respectively). In our study, refrigeration accounts for 9.9%,

which is less than German averages for 1996 and 2011 (22.6% in 1996 and 16.7% in 2011). This

divergence likely reflects a gradual increase in energy efficiency of refrigerators and freezers

over time, not least owing to ever increasing minimum standards (see, e.g., Andor et al. 2020b).

The percentage of the category Other Appliances amounts to 71%, which is slightly larger than

the German averages (57.5% in 1996 and 61.1% in 2011). This deviation is likely driven by

the general trend that households use more electric devices, such as smart TVs, computers,

smartphones, and robotic vaccuum cleaners. By contrast, air conditioning is not prevalent in

German households and thus cannot explain that increase.

5After consulting with the app designers, we denoted this score as an “efficiency score”, as this term has intuitive
appeal to an average household.
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Table 1: Overview of Experimental Conditions

EC T1 T2 T3 T4

AF: Aggregate Feedback 3 3 3 3 3

D: Disaggregation - 3 3 3 3

C: Challenges - - 3 3 3

Type of Challenge:
M: Monetary Incentives - - 3 - 3

R: Ranking - - - 3 3

We conducted three surveys to elicit participants’ sociodemographic characteristics, their

household characteristics and beliefs. The first survey took place in November 2016 prior to

the start of the field test, followed by two additional surveys in March 2017 and July 2017.

Furthermore, we obtained participants’ most recent yearly electricity use before the field test

started, which serves as our baseline. Of the 800 participants, information on baseline elec-

tricity use is missing for 27 participants.6 Furthermore, 73 households experienced technical

difficulties that prevented them from connecting their smart meter to the internet. As a result,

the final sample used for our analyses consists of 700 participants.

3.2 Experimental Design

We randomly assigned participants into one of five experimental conditions, which are

summarized in Table 1 (for screenshots of the smartphone app, see Figures A2 and A3 in the

Appendix). Participants in our Experimental Control (EC) group get access to an app that pro-

vides information about their household-level electricity use. On the start screen, participants

see whether the cost of their current monthly electricity consumption exceeds the value of their

monthly advance payment.7 Furthermore, participants can observe a real-time power meter

that visualizes their current wattage. Beyond that, participants can compare their electricity

consumption with their own history, as well as with other study participants, at a monthly,

weekly, daily, and hourly frequencies.

Participants in our first treatment group T1 have access to an additional app page that pro-

vides feedback on appliance-level usages, cost and appliance scores. In the three treatment

6For 18 participants, baseline electricity use is missing. In addition, we set electricity baseline to missing when
the difference between the baseline and the experimental period is in the top or bottom percentile of its distribution
within each treatment group (e.g. above +126% and -64% for the experimental control group) or larger than 25 kWh
per day in absolute terms, which concerns 9 participants.

7In Germany, typically, billing occurs annually and monthly advance payments are intended to smooth electric-
ity costs over the year. Exceeding the monthly advance payment has no financial consequence, but indicates that
households may face additional payments when the next yearly billing occurs.
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groups T2-T4, participants receive the same appliance-level feedback and are additionally in-

vited to take part in appliance challenges. With these challenges, we test whether comple-

mentary interventions increase the effectiveness of appliance-level feedback (for research on

multiple interventions, see e.g. Brandon et al., 2019). The challenges start at the beginning of

the second month after installation of the app and require participants to increase one of the

appliance scores by as much as they can within a month. At the end of the month, the change

in the appliance score relative to the previous month is evaluated as follows.

In group T2, participants obtain 1 EUR per appliance score improvement, capped at a maxi-

mum of 20 EUR per monthly challenge. This treatment is motivated by studies that have found

stronger conservation effects when monetary incentives are provided (e.g., Ito et al. 2018). In

group T3, participants receive a ranking that compares their score improvement with those of

other study participants, but do not obtain a financial reward. A participant within the top

percentile of monthly score improvements is classified as rank one, and similarly for all other

percentiles. With this treatment, we test the impact of relative performance feedback, which

has been found to be effective in educational (Azmat and Iriberri, 2010; Tran and Zeckhauser,

2012) and workplace settings (Mas and Moretti, 2009; Blanes i Vidal and Nossol, 2011). In

group T4, we implement the same ranking, but reward participants according to their rank:

rank one translates into 10 EUR, rank two into 9.9 EUR, etc., and rank 100 into 0 EUR. This

treatment allows us to explore the effectiveness of combining relative performance feedback

with monetary incentives.

Participants take part in a maximum of five challenges. The first challenge is always tar-

geted towards the appliance with the lowest appliance score, followed by the appliance with

the second-lowest score, etc. If less than five appliances are detected for a household, chal-

lenges can target the same appliances more than once, given that all other appliances have

been targeted already. At the end of our study, participants in T2 and T4 receive an Amazon

voucher to the amount of their earnings from taking part in the challenges. We designed our

reward scheme to yield similar average payments in both treatment groups. As shown in Table

A7 of the Appendix, the average realized payments per monthly efficiency challenge amount

to 6.3 EUR in T2 and to 4.5 EUR in T4.8 The timing in our experiment is as follows: In the first

month after app installation, participants in T1–T4 obtain appliance-level feedback but chal-

8The average payment in group T4 does not exactly equal 5 EUR as we have less than 100 challenge participants
in that group for some months.
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Table 2: Descriptives

EC T1 T2 T3 T4 P-value

a) Sociodemographics (n=700)
Baseline consumption, in kWh/day 10.2 10.5 10.1 10.5 10.5 0.90
No. of occupants 2.4 2.5 2.4 2.5 2.6 0.17
Net income, in EUR 3,004 3,188 3,030 3,194 3,091 0.63
Own property, in % 73.6 79.7 73.8 77.5 73.2 0.67
Employed, in % 50.2 53.1 50.9 55.4 46.0 0.23
Share of females, in % 44.8 49.0 48.7 46.9 47.5 0.40
Age, in years 47.6 44.8 47.6 45.9 43.4 0.29

b) Baseline Aggregate Consumption Beliefs (n=466)
Yearly consumption (belief), in kWh 3,643 3,650 3,616 3,496 3,727 0.81
Yearly consumption (actual), in kWh 3,524 3,551 3,497 3,467 3,589 0.97

c) Wattage Ranking Task (n=598)
At least one mistake (0=no, 1=yes) 0.50 0.62 0.60 0.58 0.56 0.48
Share of mistakes in all comparisons 0.11 0.12 0.11 0.11 0.12 0.90

Number of households 140 136 143 143 138 ∑=700

Notes: P-values are from F-tests of mean equality in all experimental conditions (clustered at the household level).
Variables are measured at the household level, except for employed, share of females, and age, which we mea-
sure at the household member level. The wattage ranking task refers to a task in the baseline survey that asked
respondents to assess the wattage of a typical laptop, dish-washer, tumble dryer, and fanheater, relative to a 100 W
lightbulb on a five point Likert scale (“much lower”, “lower”, “about the same”, “higher”, “much higher”). “Share
of mistakes in all comparisons” gives the total number of mistakes, divided by the number of all binary compar-
isons implied by that task. Aggregate consumption beliefs are elicited in the same survey. We drop observations
beyond the 95 percentile of the belief distribution as well as those with extreme relative errors (below the 2.5 and
above the 97.5 percentile).

lenges have not yet started. In the months 2-6, participants in T2-T4 take part in challenges.

After month 6, challenges do not occur any more, but T1–T4 participants continue to receive

appliance-level feedback.

3.3 Data and Balancing

In Table 2, we show that sociodemographic variables are balanced across our experimental

groups, as expected from randomization. When we conduct F-tests of mean equality across

our five groups, we cannot reject the null hypothesis that the variable means are equal at the

5% level for any covariate, as shown in the last column of Table 2. The same holds true for

various dwelling characteristics and the possession of household appliances (for details, see

Appendix Table A2).

The survey that we conducted prior to the field test allows us to assess the extent to which

households misjudge their aggregate and appliance-level electricity use. We elicited house-
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holds’ annual electricity consumption beliefs and compare them to their annual consumption

values from the latest annual bill prior to the field test. This comparison does not provide any

evidence that households underestimate their aggregate electricity consumption. On average,

annual consumption beliefs are virtually on par with baseline consumption levels (Panel b of

Table 2). In addition, we find that beliefs closely match the actual consumption values. A one-

unit increase in baseline electricity use is associated with an increase in baseline beliefs by 0.93

units (Std. Err.: 0.026; see Table A6 and Figure A11 in the Appendix). As shown in Byrne et al.

(2020), this estimate is a measure of the salience of aggregate consumption. Hence, our finding

that it is only slightly below one indicates that lack of salience is unlikely to cause excessive

resource use in our context. Taken together, this evidence suggests that correcting aggregate

beliefs and increasing the salience of household-level electricity consumption through aggre-

gate feedback may not lead to substantial behavioral change.

To assess appliance-level beliefs, our baseline survey contained a wattage ranking task that

asked households to assess the wattage of a laptop, dish-washer, tumble dryer, and fanheater

relative to a 100 watt lightbulb on a five point Likert scale (“much lower”, “lower”, “about

the same”, “higher”, “much higher”).9 We find that more than half of all respondents make at

least one mistake in assessing appliance-level wattage. Furthermore, respondents make mis-

takes in about 11% of all the binary appliance-level wattage comparisons that are implicitly

incorporated in the task. Both finding show that households’ knowledge of appliance-level

energy intensities is limited, as formalized by our model. In the following, we explore the im-

plications of providing households with appliance-level feedback and introduce our empirical

approach.

4 Empirical Strategy and Results

4.1 Treatment Effects on Total Electricity Use

To identify the average treatment effect (ATE) of our four treatment groups T1-T4, we esti-

mate the following equation via ordinary least squares (OLS):

9Inspired by Attari et al. (2010), the wattage ranking task also included three further appliances: desktop com-
puter, hifi system, and air conditioning. Depending on the configuration of these devices, their wattage varies to an
extent that prevents us from establishing a clear wattage ranking. We thus exclude these devices from our analysis.
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Ynorm
it = αYb

i + β′Ti + νt + µb
m + εit, (4)

where Ynorm
it denotes the electricity use of participant i at day t, divided by the average daily

electricity use in the experimental control group during the core study period (10.5 kWh). This

normalization expresses treatment effects as a percentage of the average consumption level

in the absence of treatment and is common in the literature (e.g., Allcott 2015).10 Yb
i denotes

the average daily consumption during the baseline period, which we normalize in the same

way as the outcome variable. Households in our four treatment groups are denoted by the

vector Ti = (T1i, T2i, T3i, T4i). The ATEs of the respective treatment group are thus identified

by the parameter estimates β̂. We also estimate a specification with a disaggregation dummy

variable Di that equals one if a household is in one of the four treatment groups (T1–T4) that

obtained appliance-level feedback. Our model includes fixed effects for every day (νt) and

an error term εit. In order to increase the precision of our estimates, we also include a set of

month-of-baseline fixed effects (µb
m) that equal one if the baseline metering period includes

a given calendar month and zero otherwise. These fixed effects absorb variation in baseline

electricity consumption that originates from seasonality and any month-specific shocks during

the baseline period. We cluster standard errors at the household level, thereby accounting for

serial correlation in the error terms. In Appendix A10, we demonstrate that our results remain

unchanged when we estimate Equation 4 using hourly data and hour-by-day fixed effects.

As shown in Panel a) of Table 3, the ATE estimate for participants in the four treatment

groups T1-T4 amounts to −4.8% and is statistically significant at all conventional levels. When

we estimate the ATEs separately for each treatment groups (Column 2), we do not find sizable

differences in their magnitude, with point estimates ranging from −3.9% in T2 to −6.6% in

T3.11 Our ATE estimates increase slightly when we consider only a balanced panel, i.e., when

we include only participants with complete data transmission during the entire time span of

the core study period (Table A11 of the Appendix).

10The treatment effects in kWh can be obtained by simply multiplying our estimates with the experimental
control group mean (10.5 kWh).

11When we conduct pairwise comparisons between the ATEs in the treatment groups T1 − T4, we cannot reject
the null hypothesis that they are the same.
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Table 3: ATEs on Daily Electricity Consumption, Relative to Exp. Control

(a) Effect of Experimental Conditions

(1) (2)

D: T1-T4 −0.048***
(0.016)

T1 −0.044**
(0.019)

T2 −0.039**
(0.019)

T3 −0.066***
(0.020)

T4 −0.043**
(0.021)

Yb: Baseline elec. use 0.895*** 0.895***
(0.022) (0.022)

Day fixed effects (FE) 3 3

Month-of-baseline FE 3 3

R2 0.5586 0.5589
Number of obs. 106,283 106,283
Number of households 700 700

(b) Effects of App Elements

(3) (4) (5)

D: Disaggregation −0.048*** −0.047*** −0.043**
(0.016) (0.018) (0.019)

M: Monetary incentives 0.014 0.003
(0.013) (0.016)

R: Ranking −0.015 −0.026
(0.013) (0.018)

M: Monet. inc. × R: Rank. 0.023
(0.026)

Yb: Baseline elec. use 0.895*** 0.895*** 0.895***
(0.022) (0.022) (0.022)

Day fixed effects (FE) 3 3 3

Month-of-baseline FE 3 3 3

R2 0.5720 0.5722 0.5722
Number of obs. 106,283 106,283 106,283
Number of households 700 700 700

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in paran-
theses and clustered at the household-match level. The outcome variable is daily electricity consumption, divided
by the mean in the EC group (10.5 kWh). AF equals one for the households in the groups EC and T1 − T4, while
being zero for households in MC. D equals one for households in the groups T1− T4, M equals one for households
in the groups T2 and T4, and R equals one for households in the groups T3 and T4, while being zero for the other
participants, respectively.

Next, we disentangle the differential impact of the app elements by estimating the follow-

ing equation:

Ynorm
it = αYb

i + β1Di + β2Mi + β3Ri + β4MiRi + νt + µb
w + εit, (5)

where the scalar Di equals one if a household is in any one of the four treatment groups

(T1i, T2i, T3i, T4i), so that β̂1 identifies the conservation effect of providing appliance-level feed-

back, compared to providing aggregate feedback only. Furthermore, Mi equals one for the

treatment groups T2i and T4i, where participants receive monetary rewards for saving electric-

ity. Similarly, Ri equals one for the treatment groups T3i and T4i, where participants obtain

information on their savings relative to those of other participants. All three groups T2-T4

also receive appliance-level feedback. Hence, the parameter estimates β̂2 and β̂3 identify by

how much the effectiveness of appliance-level feedback changes when monetary incentives

and rank information are provided additionally. We also interact Mi and Ri to test whether the

effectiveness of monetary incentives increases when they are tied to a relative ranking rather
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than an absolute appliance score improvement. This interaction effect is identified by param-

eter β4.

Our results from Panel b) of Table 3 show that the provision of appliance-level feedback

in T1-T4 is the main driver of the electricity conservation we observe. Households that ob-

tain such feedback reduce their consumption by almost 5 percent compared to households

with aggregate feedback (Column 3). In Column (4), we test whether the provision of mone-

tary incentives and rankings intensify the response to appliance-level feedback. We find that

the point estimates are close to zero and not statistically significant at any conventional level.

Hence, neither monetary incentives nor rankings trigger higher electricity savings compared

to appliance-feedback alone. Thus, we do not find support for the conjecture that monetary

incentives become more effective when information about participants’ rank is also provided,

as shown by the small and statistically insignificant interaction effect between M and R in

Column (5).12

At least two explanations can rationalize our finding that the additional challenges did not

increase conservation effects. First, the rank information and the monthly financial incentives

of about 5 EUR on average may not have sparked households’ interest to actively take part

in the challenges. Second, the high effectiveness of providing appliance-level feedback may

not have left much further potential for conserving electricity without large utility losses. As

we cannot detect statistically significant differences between the ATEs of the treatment groups

T1 − T4, we pool them and use the disaggregation dummy D for our subsequent analyses.

To identify the overall conservation effect, we additionally obtain data from a sample of

households with smart meters that are served by the same utility. In Appendix A4, we ex-

plain how we use this sample to construct a matched control group of households that did not

receive any feedback. Our results are consistent with previous studies that have found only

small savings from aggregate feedback (e.g., Degen et al. 2013). As shown in Appendix Table

A12, our ATE estimate for households who obtain only aggregate feedback amounts to −0.9%

(Std. Err.: 2.2%).

Furthermore, we use the additional observations after the core study period to estimate

how treatment effects evolve in that time period. We estimate conservation effects between

12Given the standard error of 1.3% for the coefficient on monetary incentives in Table 3, we have sufficient power
to detect interaction effects of 3.6%. Thus, we are sufficiently powered to reject negative interaction effects of
monetary framings such as those found in Asensio and Delmas 2015, which are around 10%. Our study is also
sufficiently powered to identify the overall disaggregation effect, where the minimal detectable effect is 4.4%.
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−1.4% (Std. Err.: 1.7%) and −4.7% (Std. Err.: 2.2%), depending on the specification and es-

timation sample we use (for details, see Appendix Section A6 and Table A13). In particular,

we cannot reject the null hypothesis that the average treatment effects during and after the

core study period are equal at any conventional significance level (Difference: 0.038 percent-

age points, Std. Err.: 0.023 percentage points, see Appendix Section A6 and Table A14). Taken

together, these findings indicate that the treatment effect from appliance-level feedback persist

after the study period. Yet, we lack the statistical power to precisely pin down the evolution of

treatment effects over time.

4.2 Treatment Effects by Hour-of-the-Day and Appliance Category

In this subsection, we investigate two sources of treatment effect heterogeneity. First, we

exploit the high granularity of our data to investigate how treatment effects vary by hour-of-

the-day. This analysis allows us to explore the timing of households’ responses to appliance-

level feedback. We estimate the following equation:

Ynorm
ith = αYb

i +
24

∑
h=1

βhDi + νt + µh + µb
m + εith, (6)

where all variables are defined as in Equation (1), except that we now investigate the hourly

electricity consumption of participant i on day t and hour h, and additionally include 24 fixed

effects µh for every hour of the day. We normalize our outcome variable by the average hourly

consumption in the EC group, so that our estimates β̂h capture the ATE in hour h, expressed

as a percentage of the average consumption in that hour. Again, we cluster standard errors at

the household level.

Figure 1 shows that treatment effects are large during late morning hours and late evening

hours. During these hours, they reach about 10% of the average control group consumption.13

Furthermore, we find that the magnitude of electricity conservation cannot be predicted by

baseline electricity consumption levels alone. Electricity reductions are particularly strong

in the late morning hours between 8 a.m. and 1 p.m., which coincide with large electricity

consumption levels. However, during 4 and 8 p.m., consumption levels are similar, but house-

holds save considerably less. We also detect strong savings in late evening hours between 9

and 11 p.m., when consumption levels are rather low.

13The time pattern is slightly more pronounced when we consider absolute rather than relative electricity savings
(Figure A9 of the Appendix).
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Figure 1: ATE of Disaggregation (D) relative to Experimental Control (EC), by Hour of the Day
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Notes: The outcome variable is hourly electricity consumption, divided by the EC group mean in the respective
hour. Shaded bars indicate that treatment effects are statistically significant at the 1% (blue shaded) or 5% (light
blue shaded) level. Whiskers indicate a range of +/- 1 standard error (clustered at the household level). Based
on conducting an F-test, we can reject the null hypothesis that all hourly point estimates are zero: F(24, 699) =
1.88, p-value = 0.007.

In the following, we investigate whether the time pattern of conservation effects originates

from heterogeneous appliance-level responses. To determine the appliance-specific ATEs, we

estimate the following equation separately for every appliance j:

Ynorm
itj = αjYb

i + β jDi + γjCi + νt + µb
m + εitj, (7)

which closely resembles Equation (4), but substitutes the outcome variable by the average daily

consumption of each appliance category, normalized by the respective control group average.

To analyze how our challenges affect appliance-level consumptions, we also include a variable

C, which equals one if a household is in one of the treatment groups T2-T4 and zero otherwise.

In this specification, β̂ j captures the average treatment effect of disaggregate feedback, while

γ̂j identifies by how much this effect changes when challenges are implemented in addition.

As shown in Table 4, we find that the conservation effects from appliance-level feedback

are close to zero for appliance categories which are typically used throughout the day, such
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Table 4: ATE on Daily Appliance-Level Electricity Consumption

(1) (2) (3) (4) (5) (6) (7)
Always-On Refrigeration Dish−Washer Washing Dryer Oven Other appl.

D: Disaggregation 0.031 0.001 −0.071 −0.026 −0.434** −0.095 −0.075**
(0.055) (0.052) (0.100) (0.076) (0.173) (0.169) (0.031)

C: Challenges −0.049 −0.012 −0.029 −0.003 −0.006 0.178 0.005
(0.045) (0.044) (0.078) (0.056) (0.117) (0.130) (0.022)

Yb: Baseline elec. use 1.156*** 0.460*** 0.746*** 0.637*** 1.064*** 1.355*** 0.851***
(0.065) (0.086) (0.103) (0.072) (0.166) (0.197) (0.033)

Day fixed effects (FE) 3 3 3 3 3 3 3

Month-of-baseline FE 3 3 3 3 3 3 3

R2 0.368 0.152 0.046 0.028 0.035 0.040 0.356
Number of obs. 93,187 93,185 84,511 91,473 65,852 93,187 93,187
Number of households 700 700 635 686 499 700 700

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors in parantheses,
clustered at the household level. The outcome variable is daily electricity consumption of an appliance, divided by
the mean for the same appliance in the EC group (2.30, 0.97, 0.29, 0.47, 0.16, 0.20, and 5.6 kWh for Columns 1 to 7,
respectively). The dummy variable C equals one if participants are invited to take part in challenges (T2, T3, T4).

as Refrigeration and Always-On. The low response may partly reflect that consumers’ demand

for refrigeration is largely constant, irrespective of (perceived) cost. By contrast, we detect

considerable conservation effects for appliances that are only used during daytime, which

can explain the time pattern of conservation effects from Figure 1. In particular, we find that

appliance-level feedback triggers a substantial reduction in the electricity consumption of dry-

ers (Column 5 of Table 4). As dryers are an electricity intensive appliance, it is plausible that

consumers underestimate it (Attari et al., 2010) and hence reduce their energy consumption

after receiving appliance-level feedback. In addition, substitutes for using the dryer are often

available as dry-hanging clothes is common for German households. We also find some evi-

dence that participants have reduced their use of the washing machine, the dish-washer, and

the oven, yet these effects are not statistically significant at any conventional level. In Figure

A10 of the Appendix, we present conservation effects for every hour-of-the-day and show that

energy conservation for dryers, washing-machines, and dish-washers primarily occurs around

midday. This finding suggests that the first peak in conservation effects from Figure 1 can be

attributed to these appliances.

In addition, we find that households reduce consumption for the category Other Appliances,

an effect that is statistically significant at the 5% level. This category encompasses a variety of

electric appliances, such as televisions, hi-fi systems, vaccuum-cleaners, computers, as well as

lighting. While no direct feedback is given for these appliances, participants can update their
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beliefs by exploiting the feedback on other appliances to learn about residual consumption.

For example, if a consumer learns that all large appliances are energy-efficient, he or she may

also figure out which of the remaining appliances are particularly electricity-intensive. The

fact that many of the Other Appliances, such as televisions, serve entertainment purposes can

explain the second peak in conservation effects in the late evening hours (Panel d of Figure

A10 in the Appendix).

Next, we disentangle changes in the frequency of use from changes in utilization (Table A16

in the Appendix). We find that the reduction in electricity use for dryers stems from a lower

frequency of use rather than a decrease in the electricity intensity per utilization. Reducing the

frequency of use can for example be achieved by dry-hanging clothes or by washing only full

loads. For dish-washers, we detect a decrease in the electricity intensity, which typically stems

from choosing washing programs that use lower temperatures and thus energy, but need more

time.

As shown by the small and statistically insignificant estimates for the dummy variable C in

Table 4, we cannot detect that the appliance challenges in our treatment groups 3-5 triggered

additional savings beyond the effects of appliance-level feedback. This finding is consistent

with our results from Section 4.1 and indicates that additional financial incentives or relative

performance feedback did neither increase nor decrease the effectiveness of appliance-level

information.

4.3 Appliance-Level Beliefs

To investigate the mechanisms that underlie households’ responses to appliance-level feed-

back, we first explore whether treatment effects are particularly large for households who

make mistakes in the wattage ranking task. This test is closely linked to our model, which pre-

dicts that households who misjudge the relative wattage of appliances should respond most

strongly to the provision of appliance-level information. We define two groups of households:

those who made at least one mistake in the wattage ranking task and those who did not. We

then estimate our main specification (Equation 4) and interact the dummy variable D with both

group indicators, which yields the the average treatment effect of appliance-level information

in these groups. As shown in Column (1) of Table 5a, we find that the effect size amounts to

−4.3% for households who make at least one mistake and is statistically significant at the 5%

level. For households with no errors in the wattage ranking task, the effect size amounts to
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Table 5: Effect Heterogeneity and Appliance-Level Beliefs

(a) Effect Heterogeneity by Wattage Ranking Task Results

(1) (2) (3)
Estimate Std. err. Estimate Std. err. Estimate Std. err.

1(At least one mistake) 0.028 (0.021) 0.031 (0.022)
1(No wattage ranking) 0.169** (0.068)
D × 1(No mistake) −0.014 (0.019) −0.010 (0.020)
D × 1(At least one mistake) −0.043** (0.018) −0.043** (0.018)
D × 1(No wattage ranking) −0.155** (0.069)
D: Disaggregation −0.012 (0.017)
Share of mistakes 0.125* (0.067)
D × Share of mistakes −0.156* (0.085)
Yb: Baseline elec. use 0.888*** (0.024) 0.893*** (0.022) 0.889*** (0.024)

Day fixed effects (FE) 3 3 3 3 3 3

Month-of-baseline FE 3 3 3 3 3 3

R2 0.5613 0.5613 0.5615
Number of obs. 91,638 106,283 91,638
Number of participants 598 700 598

(b) Appliance-Level Rank Differences between Beliefs and Measured Uses

(1) (2) (3) (4) (5) (6)
Mean rank diff. (B) Mean rank diff. (E) Change (E−B) Std. err. P-value N

EC 1.81 1.79 −0.02 0.07 0.757 66
T1−T4 1.76 1.56 −0.19 0.04 0.000 296
T1 1.75 1.57 −0.18 0.10 0.077 61
T2 1.75 1.42 −0.32 0.08 0.000 62
T3 1.69 1.47 −0.22 0.10 0.031 54
T4 1.79 1.54 −0.26 0.09 0.009 53

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in paranthe-
ses and clustered at the household level. “1(At least one mistake)” and “1(No wattage ranking)” denote dummy
variables that equal one if a household made at least one mistake in the wattage ranking task or did not take part
in that task, respectively. “Mean rank diff.” denotes the mean of the absolute rank differences between the rank
of appliance consumptions (measured during the study period) and the rank of electricity consumption beliefs,
which we elicited for every appliance category before (baseline, B) and during the study period (endline, E).

only−1.4% and is not statistically significant at any conventional level. In Column (2), we also

consider a third group of households who did not indicate appliance-level beliefs in the base-

line survey. The effect size that we estimate for this group of households is even larger that for

those households who indicate beliefs and make at least one mistake. As not expressing be-

liefs may indicate particularly poor knowledge of appliance wattages, this finding is consistent

with our previous results.

In addition, we explore the intensive margin of making mistakes by interacting the dummy

variable D with the share of mistakes in all binary comparisons implied by the wattage rank-

ing task (Column 3). The estimate of the main effect (D) shows that households who make no
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mistakes save only about 1.2% in response to appliance-level feedback. By contrast, we find

that an increase in the share of mistakes from 0 to 1 increases conservation effects by 15.6 per-

centage points (p-value: 0.069), which supports the idea that households with poor knowledge

of appliance wattage have particuarly large treatment effects. Furthermore, the regression re-

sults from Column 3 demonstrate that households who make mistakes in the wattage ranking

task tend to have higher consumption levels overall. Taken together, these findings suggest

that lack of energy-related knowledge among households with high consumption levels could

explain why many previous feedback studies have detected particularly large treatment effects

for these households (e.g., Allcott, 2011b; Andor et al., 2020a; Tiefenbeck et al., 2018).14

As a complementary test for the role of beliefs, we explore whether participants’ appliance-

level beliefs align more closely with the appliance-level uses that we measure during the exper-

iment. We elicited appliance-level beliefs in a baseline survey that took place prior to the study

period (November 2016) and an endline survey towards the end of the study period (July 2017).

In particular, we asked participants to estimate their monthly electricity consumption for the

appliance categories always-on, washing machine, dryer, refrigeration, and dish-washer. A

limitation of our data is that we observe appliance-level uses only once our field experiment

started. Hence, we cannot assess the accuracy of households’ appliance-level beliefs before

obtaining appliance-level feedback. Yet, we can test whether beliefs during the field tests align

more closely with measured appliance-level uses for households in the treatment groups T1-T4

than for households in the experimental control group.

To circumvent difficulties that may arise from noisy appliance-level belief measurements,

we first translate all consumption beliefs into ranks.15 We assign rank 1 if a participant believes

that the monthly consumption of an appliance was highest among all of his or her appliances.

Similarly, rank 2 corresponds to a belief that the appliance consumption occupies the second

rank, etc. We also calculate the same ranks based on the appliance-level data that we can

observe. This allows us to calculate a rank difference as the absolute difference between the
14In our study, we also find evidence for such treatment effect heterogeneity (see Appendix Section A5 for de-

tails).
15The elicitation of appliance-level energy consumption beliefs is subject to vivid controversy and a methodolog-

ical consensus has not been reached so far (Frederick et al., 2011; Attari et al., 2010, 2011). To help consumers who
are not familiar with energy consumption units, some researchers provide reference points and inform households
about the energy consumption of a reference appliance prior to asking participants about energy consumption be-
liefs (Attari et al., 2010). While this approach can reduce excessive variance in participants’ answers, providing a
reference point has been shown to also bias belief estimates towards that reference point. In addition, changing the
unit of measurement from watts to kilowatts, for example, can induce framing effects that also bias belief elicitation
(Frederick et al., 2011). For these reasons, we chose not to provide reference points.
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ranks implied by participants’ belief and those based on the appliance-level data during the

study period. Averaging over these absolute differences across all appliances yields a measure

of the accuracy of beliefs that is robust to differences in the unit of measurement used by

participants when expressing their beliefs. For this measure to be comparable, we drop all

participants who have not stated beliefs for all appliances in one of the two surveys. The

mean rank difference is zero if a consumer is correct about the rank of all appliances and can

reach up to 3 if the estimated consumption ranks are exactly opposite to the ranks from our

appliance-level measurements.

Table 5b displays the average absolute rank difference for the baseline survey that we con-

ducted prior to the experiment (B) and the survey after the core study period (E), as well as

the change in the rank difference (E-B). The baseline rank difference amounts to about 1.8 for

all experimental groups. It reflects poor knowledge of energy intensities as it is only slightly

lower than the expected rank difference of randomly determined ranks, which amounts to

70/36 ≈ 1.94. For the EC group, we cannot reject the null hypothesis that the mean differences

in the rank difference (E-B) equals zero at any conventional significance level. This finding

is consistent with the absence of an conservation effect for that group (for details, see Section

A4 in the Appendix). By contrast, for each of the treatment groups T1-T4 with appliance-level

feedback, we observe a decrease in the absolute rank difference that is statistically significant

at the 5% level. Accordingly, participants in these groups adjusted their beliefs in response to

obtaining appliance-level feedback.

5 Consumer Surplus

In this section, we go beyond estimating conservation effects and quantify the impact of

appliance-level feedback on consumer surplus. In Section 2, we have identified the relative

bias (bj/ej) and the appliance-level treatment effects (∆yj/yj) as sufficient statistics to estimate

changes in consumer surplus. We retrieve a quantitative measure of the relative bias bj/ej from

our data. In particular, we exploit that (bj/ej) = −(∆yj/yj)/ηj, where ηj is a price elasticity of

energy service demand j and (∆yj/yj) denotes the ATE on electricity consumption of appliance

j, expressed as a percentage of baseline electricity use yj (for derivations, see Section 2).

To approximate the price elasticities of appliance-level energy service demand ηj, we follow

two strategies. First, we employ cross-sectional variation in our dataset that stems from the fact
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that similar households in terms of observable characteristics pay different electricity prices,

in particular owing to transmission charges that vary strongly by region. Second, we draw

upon estimates by Frondel et al. (2019), who use instrumental variable techniques to estimate

a price elasticity of aggregate electricity consumption of German households, and proxy our

appliance-level elasticities by their estimate (−0.44).16

To identify ηj from our data, we estimate the following regression separately for every

appliance category j:

ln yij = ηj ln pi + β′jXi + εij,

where X denotes a vector of socio-demographic variables for household i such as its income

and size, as well as the annual consumption level in the year prior to the experiment. Cross-

sectional identification faces some challenges that we discuss in the following. A typical con-

cern for identification is non-linear pricing, where marginal prices change with the level of

electricity consumption. As households in our sample face constant marginal prices, non-

linear pricing does not threaten the consistency of our estimates. Another concern is omitted

variable bias. Electricity suppliers offer tariffs with lower marginal prices to households with

higher consumption levels, which could negatively bias our elasticity estimates. To circumvent

such bias, we control for baseline electricity consumption, as well as for household income and

size. While controlling for additional covariates reduces concerns from omitted variable bias,

it may still be present to some degree. As an indirect test of its magnitude, we calculate the

household-level elasticity implied by our appliance-level estimates and compare it to the find-

ings by Frondel et al. (2019). If our appliance-level elasticity estimates systematically suffered

from omitted variable bias, we would expect to find that the implied household-level elasticity

is biased as well.

Our point estimates, depicted in Column (4) of Table 6, show that appliance-level consump-

tions are particularly elastic for the categories dryer and oven, where the elasticity estimates

reach −3.42 and −1.07 respectively. This finding reflects that consumers can easily substi-

tute these energy services by, for example, dry-hanging clothes. For the categories always-

on, washing, and refrigeration, we obtain much smaller elasticities of −0.29 to −0.55. Our

appliance-level elasticity estimates imply a household-level elasticity of −0.39, which is close

16The mean (short-run) price elasticities reported in the literature amounts to -0.35, with estimates ranging up
to -2.01 (Espey and Espey, 2004). As a lower bound, some studies find that households do not respond to varying
prices at all (e.g., Byrne et al. 2020).
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Table 6: Changes in Consumer Surplus from Appliance-Level Feedback

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Estimated ηj Uniform ηj

∆yj/yj Avg. use ∆Ej ηj bj/ej ∆ConsSurplus ηj bj/ej ∆ConsSurplus
in kWh/a in EUR/a in EUR/a in EUR/a

Always-On 0.031 885.35 6.59 −0.31 0.10 0.66 −0.44 0.07 0.47
Refrigeration 0.001 372.88 0.06 −0.40 0.00 0.00 −0.44 0.00 0.00
Dish-Washer −0.071 117.69 −2.00 −0.40 −0.18 0.36 −0.44 −0.16 0.32
Washing −0.026 184.07 −1.13 −0.55 −0.05 0.05 −0.44 −0.06 0.07
Dryer −0.434 69.10 −7.16 −3.42 −0.13 0.91 −0.44 −0.99 7.07
Oven −0.095 85.47 −1.93 −1.07 −0.09 0.17 −0.44 −0.22 0.41
Other appl. −0.075 2,145.96 −38.55 −0.29 −0.26 10.05 −0.44 −0.17 6.60

Total 3,860.51 −44.12 −0.39 12.20 14.94

Notes: ∆yj/yj correspond to the point estimate for D: Disaggregation from Table 4, which gives the ATE of providing
appliance-level feedback, divided by the respective EC group mean of daily electricity consumption. The change
in Expenditures, ∆Ej, is calculated as the product of ∆yj/yj (Column 1), the average annual electricity use in the
experimental control group (Column 2), and the average electricity price in our sample (0.238 EUR per kWh). ηj
denotes the price elasticity of energy service demand with respect to the electricity price, which we estimate as
described in Section 5. bj/ej denotes the relative bias, which we calculate as bj/ej = −(∆yj/yj)/ηj (for derivations,
see Appendix A2). Changes in consumer surplus are calculated as ∆ConsSurplus = ∑j(bj/ej)∆Ej (see Equation 3).
Uniform ηj are drawn from Frondel et al. (2019).

to the estimate of −0.44, taken from Frondel et al. (2019).17 This finding reduces concerns that

our cross-sectional identification strategy yields strongly biased estimates.

Based on the appliance-level elasticities and ATEs, we estimate how consumer surplus re-

sponds to the provision of appliance-level feedback. Column (1) of Table 6 reproduces the

appliance-level ATEs in response to disaggregate feedback from Table 4, which correspond to

∆yj/yj in our model. Using these ATEs, as well as the estimated appliance-level price elas-

ticities from Columns (4), we estimate the relative bias as bj/ej = −(∆yj/yj)/ηj, which is

depicted in Column (5). We find that relative biases are negative for all appliance categories,

except for Always-On and Refrigeration. Negative biases are most pronounced for the categories

Dish-Washer and Other Appliances, where consumers underestimate energy intensities by 18%

and 26%, respectively. For the categories Washing, Dryer, and Oven, we obtain less pronounced

biases of −5% to −13%. The bias for the Refrigeration is close to zero, which may reflect that

the electricity use of fridges and freezers is largely independent of usage behaviors and thus

relatively easy to assess.

To determine the change in consumer surplus, we calculate the appliance-level change in

expenditures (∆Ej = p∆yj) as the product of the relative ATE, ∆yj/yj (Column 1 of Table 6),

17The elasticity of total consumption can be calculated as follows: η = ∏j ηj(yj/y), where ηj and yj denote the
elasticity and the consumption level for appliance j, respectively, and y = ∑j yj denotes total consumption.
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and the average consumption level, yj (Column 2). We then multiply the change in expen-

ditures with the the relativ bias (bj/ej) to obtain the change in consumer surplus that can be

attributed to every appliance category (Column 6). Summing over all categories, we find that

total consumer surplus increases by 12.2 EUR per annum (last row of Column 6), which is sub-

stantially less than the 44.1 EUR decrease in expenditures (last row of Column 3). There are

two main reasons why changes in total expenditures are an incorrect measure for changes in

consumer surplus. First, less consumption of an energy service not only reduce expenditures,

but also utility. The reduction in utility is proportional to the relative bias bj/ej, which explains

why this term is crucial for determining consumer welfare. Second, consumer surplus can also

rise when more accurate beliefs lead to higher consumption of an energy service, despite the

fact that expenditures increase. In our setting, this occurs for the category Always-on, where

our estimates imply that consumers overestimate energy intensity.

As a robustness check, Columns (7)-(9) present our findings when we estimate changes in

consumer surplus based on a uniform price elasticity of −0.44. In that case, we conclude that

consumer surplus increases by 14.9 EUR per annum, which closely matches our findings from

Column (6). While the total change in consumer surplus is almost identical, we obtain slight

differences in the contributions of the different appliances. Based on our elasticities estimates,

we find that the largest increase in consumer surplus stems from the category Other Appli-

ances (Column 6). The contribution of the category Dryer to the change in consumer surplus

increases, owing to a larger implied bias in that category, while the reverse holds true for the

category Other Appliances (Column 9).

For cost-benefit analyses, it is crucial to take into account that changes in consumer surplus

are equal to the weighted sum of appliance-specific expenditures savings. The official cost-

benefit analysis for Germany assumes that smart meter feedback achieves annual electricity

savings of 1.2% (EC, 2014c), which translates into annual expenditure savings of 10.4 EUR

for the average household in our sample. Following the EU methodology (Giordano et al.,

2012), all expenditure savings are considered as a measure for how much consumers benefit

from smart metering. Yet, our results have shown that only 28% (12.2 EUR / 44.1 EUR) of the

estimated expenditure savings translate into changes in consumer surplus (Column 6 of Table

6). Hence, consumer benefits are considerably smaller and would reach only 2.9 EUR for an

conservation effects of 1.2%. This back-of-the-envelope calculation illustrates that traditional

cost-benefit analyses overestimate consumer benefits by a factor of about three. However,
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our study also demonstrates that the provision of appliance-level feedback yields larger effect

sizes. Using the effect sizes found in our study, we find that consumer surplus increases by

about 12 EUR, which demonstrates the potential of appliance-level feedback.

6 Discussion and Conclusion

In this paper, we investigate the effects of providing households with appliance-specific

feedback. Based on a field experiment among some 700 participants, we randomize informa-

tion provision on a smartphone app. Participants in our control group obtain aggregate elec-

tricity consumption feedback, while treatment group participants additionally receive infor-

mation on appliance-level consumptions. Furthermore, we test whether monetary incentives

or information about the electricity savings relative to other households foster the effectiveness

of appliance-level feedback.

Our results show that the provision of appliance-level feedback reduces electricity con-

sumption by around 5% compared to a control group that receives aggregate feedback, i.e.,

feedback as provided by conventional smart meters. We find that appliance-level feedback

helps consumers to reduce the electricity consumption of energy-intensive appliances, such

as tumble dryers. The behavioral response to appliance-level feedback is particularly large in

the late morning hours between 8 a.m. – 1 p.m. and in the late evening hours between 9 –

11 p.m., when it reaches about 10%. Our experimental evidence also demonstrates that the

effectiveness of appliance-level feedback is not further increased by monetary incentives or

information about the conservation efforts of others.

Based on a conceptual model, we investigate the consequences of providing informa-

tion to consumers who underestimate the energy use of energy-intensive appliances as docu-

mented in Attari et al. (2010). Our model demonstrates that correcting consumers’ beliefs via

appliance-level feedback leads to lower energy consumption if energy intensities of different

appliances are sufficiently different, or the respective demand elasticities sufficiently similar.

We also use our model to develop sufficient statistics to assess the gains in consumer surplus

from correcting this bias. We find that such gains can be calculated as the weighted sum of

appliance-level energy cost savings, where the weights are given by a measure of consumers’

bias. Hence, current cost-benefit analyses used by policy makers in the U.S. and the EU (Gior-

dano et al., 2012; Faruqui et al., 2011) that approximate changes in consumer surplus by the
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realized aggregate energy cost savings are fundamentally flawed. Implicitly, this approach

weights appliance-level savings by the relative consumption shares rather than the measure of

consumers’ bias. As the correct weights typically add up to less than one, current cost-benefit

analyses tend to overestimate the gains in consumer surplus substantially.

When we estimate the sufficient statistics from our experimental data, we find that

appliance-level feedback increases consumer surplus by 12.2 – 14.9 Euro per household and

annum. Extrapolating to the entire German population of 41.3 million households (destatis,

2017), we obtain an annual increase in consumer surplus by about 500 – 620 million Euro.

These estimates illustrate that appliance-level feedback is crucial for raising consumer surplus.

By contrast, the additional cost of providing appliance-level feedback based on load decompo-

sition, as in our study, are only small when smart meter infrastructure is available. Hence, the

installation of smart meters without providing such feedback would forgo large welfare gains.

By reducing electricity consumption, appliance-level feedback also mitigates externalities

associated with the generation of electricity. Using the German average carbon intensity of

electricity generation of about 486 g per kWh (Icha and Kuhs, 2019), we extrapolate that carbon

emissions from residential electricity consumption in Germany would reduce by 3.7 megatons

per annum. Using the range of estimates for the social cost of carbon of 11 – 105 USD (10 –

93 EUR) per ton of CO2 equivalents (IAWG, 2016), this reduction in emissions translates into a

decrease in total external costs from carbon emissions by 42 – 401 Mio. EUR per year. While this

range reflects the uncertainties in estimating the social cost of carbon, it clearly demonstrates

that co-benefits from emission reductions are non-negligible.18

Future research should investigate the external validity of our results along two dimen-

sions. First, evaluating a roll-out of appliance-level feedback would allow to assess the scala-

bility of this intervention. While we do not find large differences in observable characteristics

between our study participants and the average German population, differences in unobserv-

able characteristics or in program implementation might change the effectiveness of the in-

tervention at scale (e.g., Al-Ubaydli et al. 2017b,a). Second, evidence on the effectiveness of

appliance-level feedback in other countries would be valuable. The average electricity con-

sumption of U.S. households, for example, exceeds the consumption of German households

by more than a factor of three, which may imply larger conservation potentials (Andor et al.,

18A caveat of these extrapolations is that the presence of cap-and-trade schemes, such as the European Union
Emissions Trading Scheme, could undermine the effectiveness of additional conservation efforts. Yet, policy mak-
ers could circumvent such offsetting effects by adjusting the emission cap accordingly.
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2020a). In particular, air conditioning use is widespread in the U.S., but not in Germany. It is

easily captured by NALM algorithms and could be part of disaggregated feedback. Previous

studies, measuring air conditioning use directly, have found that air conditioning use reduces

in response to application-specific feedback (Bruelisauer et al., 2018). Hence, appliance-level

feedback may in fact be more effective in countries such as the U.S.

More broadly, our study advances the understanding of how disaggregate consumption

feedback changes consumer behavior and welfare. Our experiment used smart meter feedback

to correct consumer misperceptions about the energy intensity of household appliances, but

the relevance of our findings extends beyond that context. For example, biased beliefs about

the caloric content of food (Bollinger et al., 2011) compromise consumers’ ability to choose a

healthy diet. Providing disaggregate feedback solves this problem by informing consumers

about the relative benefits and costs of their food choices. Similar applications arise when

consumers are unaware of the returns to education (Jensen, 2010), the carbon footprint of con-

sumption alternatives, and the effectiveness of protective measures against natural disasters or

a pandemic, for example. As digitilization progresses, novel interventions to reduce such mis-

perceptions will likely develop. The conservation effects we detect in our experiment showcase

the potential of such interventions to change behaviors. In addition, our method for evaluating

consumer surplus provides a framework for policy makers to evaluate their benefits.
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A1 Effect of Appliance-Level Feedback on Energy Consumption

We illustrate the impact of providing appliance-level feedback based on the following con-

ceptual model. Let consumers have the following quasi-linear utility function:

U(x1, x2, z) = u1(x1) + u2(x2) + z, (8)

where u1(x1) and u(x2) denote the utility from consuming two energy services x1 and x2,

which we assume to be additively separable (for simplicity). The variable z denotes the

numeraire good, whose price is normalized to 1. The consumption of energy services re-

quires energy inputs of xjej, ∀j ∈ {1, 2}, where ej denotes the energy intensity of energy

service xj. Without loss of generality, let the subscript 1 denote the more energy intensive

appliance, i.e. e1 > e2. Consumers maximize their utility subject to the budget constraint

w = z + x1ẽ1 p + x2ẽ2 p, where w denotes their endowment, p denotes the price of energy, and

ẽj denotes the energy intensity belief for appliance j.

Substituting the budget constraint into Equation (8), consumers’ utility function can be

written as:

U(x1, x2; e1, e2) = u1(x1) + u2(x2) + w− p(x1ẽ1 + x2ẽ2).

Let consumers’ naive belief on the energy intensity of both appliances be denoted by e. It

is consistent with the available aggregate information on total energy consumption and thus

implicitly defined by x1e1 + x2e2 = (x1 + x2)e. Rewriting this equation yields:

e =
x1

x1 + x2
e1 +

x2

x1 + x2
e2.

In the absence of appliance-level feedback, households’ energy intensity beliefs are biased

towards the naive belief e, i.e. ẽj = αej + (1− α)e, where α ∈ [0, 1) denotes the belief accuracy.

Hence, we obtain that:

b1 = ẽ1 − e1 = αe1 + (1− α)e− e1 = (1− α)(e− e1) = (1− α)
x2

x1 + x2
(e2 − e1),

which implies that:
b1

b2
= − x2

x1
. (9)
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Under belief ẽj, the first-order condition of utility maximization yields uj = pẽj for j ∈ {1, 2}.

Totally differentiating it with respect to the price of energy p gives:

ujj
∂xj(ẽj)

∂p
= ẽj

⇔ ujj =
ẽj

∂xj(ẽj)/∂p
. (10)

We now investigate how feedback that reduces belief biases from bj to zero for j ∈ {1, 2}

changes total energy consumption. Consumers reduce total energy consumption if:

∆y = ∆y1 + ∆y2 < 0.

Under a pure nudge assumption (∆bj = −bj) and using that ∆yj =
p ej
ujj

∆bj, we obtain:

∆y = − p e1

u11
b1 −

p e2

u22
b2 < 0.

After some rearrangements (taking into account that u22 < 0, b2 > 0, and e2 > 0), this inequal-

ity holds if:

− e1

e2

u22

u11

b1

b2
> 1.

Using Equations (9) and (10), and expanding by p, we can rewrite this inequality as:

e1

e2

ẽ2

ẽ1

∂x1(ẽ1)/∂p
∂x2(ẽ2)/∂p

(x2(ẽ2)/p)
(x1(ẽ1)/p)

> 1

⇔ e1

e2

ẽ2

ẽ1

η1(ẽ1)

η2(ẽ2)
> 1, (11)

where ηj(ẽj) denotes the price elasticity of demand for energy service j under the naive belief

e, i.e, ηj(ẽj) = (∂xj(e)/∂p)/(xj(e)/p). Using that:

ẽ2

ẽ1
=

αe2 + (1− α)e
αe1 + (1− α)e

,

and that e1 > e2 by definition, we immediately obtain that:

e1

e2

ẽ2

ẽ1
> 0.
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One consequence of this finding is that Inequality (11) holds when the price elasticity of energy

service demand of the more energy intensive appliance 1 is at least as large as the price elastic-

ity of the less energy intensive appliance 2, i.e., η1(ẽ1)/η2(ẽ2) ≥ 1. Furthermore, Inequality (11)

holds when e2 is sufficiently small. This finding immediately follows from taking the limits to

both sides of the inequality, which yields:

lim
e2→0

e1

e2

ẽ2

ẽ1

η1(ẽ1)

η2(ẽ2)
= lim

e2→0

α + (1− α)(e/e2)

α + (1− α)(e/e1)

η1(ẽ1)

η2(ẽ2)
= ∞ > 1.

As e1, η1, and η2 are finite, and α weakly smaller than one, there always exists a sufficiently

small e2 so that Inequality (11) holds.

Extension to n appliances

Let i ∈ {1, ..., N} denote a particular appliance and assume that e1 > e2 > ... > en without

loss of generality. Furthermore, let j ∈ {1, ..., J} denote appliances where consumers hold

negative biases (bj < 0), i.e. underestimate energy intensities, while the k ∈ {J + 1, ..., N}

denotes appliances where consumers hold positive biases.

Using that ∆bj = −bj and that ∆yj =
p ej
ujj

∆bj, we obtain:

∆y < 0

⇔∑
j

∆yj + ∑
k

∆yj < 0

⇔ −∑
j

p ej

ujj
bj −∑

k

p ek

ukk
bk < 0.

We can rearrange as follows (using that bN > 0, uNN > 0, en > 0):

−∑
j

ej

eN

uNN

ujj

bj

bN
− ∑

k 6=N

ek

eN

uNN

ukk

bk

bN
> 1. (12)

From Equation 10, we obtain that:

uNN

ujj
=

ẽN

ẽj

ηj(ẽj)

ηN(ẽN)

xj

xN
. (13)
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Furthermore, given that e = ∑i(xi/ ∑k xk)ei = ∑i(xi/x̄)ei, we have that:

bl = ẽl − e = (1− α)(e− el)

⇔ e− el = (1− α)

(
el

( xl

x̄
− 1
)
+ ∑

i 6=l

xi

x̄
ei

)

⇔ = (1− α)

(
−el

∑i 6=l xi

x̄
+ ∑

i 6=l

xi

x̄
ei

)

⇔ = (1− α)

(
∑
i 6=l

xi

x̄
(ei − el)

)
,

where x̄ = ∑i xi. Accordingly:
bl

bN
=

∑i 6=l xi(ei − el)

∑i 6=N xi(ei − eN)
. (14)

Using Equation (13), we can rewrite Equation (12) as follows:

−∑
j

ej

eN

ẽN

ẽj

ηj(ẽj)

ηN(ẽN)

xj

xN

bj

bN
> 1 + ∑

k 6=N

ek

eN

ẽN

ẽk

ηk(ẽk)

ηN(ẽN)

xk

xN

bk

bN
, (15)

where we obtain the two appliance-case as a special case after inserting Equation (14). Rear-

ranging Equation (15) yields:

−∑
j

ej

ẽj
ηj(ẽj)xjbj < ∑

k

ek

ẽk
ηk(ẽk)xkbk

⇔ −∑
j

ej

ẽj

∂xj(ẽj)

∂p
bj < ∑

k

ek

ẽk

∂xk(ẽk)

∂p
bk. (16)

The sufficient conditions for Inequality (16) to hold closely resemble the two-appliance

case. First, the inequality holds when all ek are sufficiently small for all k ∈ {J + 1, ..., N}.

Second, it holds when the demand response to a price change, |∂xk(ẽk)/∂p|, is sufficiently

small for all k ∈ {J + 1, ..., N}.

A2 Sufficient Statistics for Evaluating Consumer Surplus

Let consumers have the following quasi-linear utility function:

U(x, z) = u(x) + z, (17)
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where u(x) denotes the utility from consuming J energy services denoted by the vector

x = (x1, . . . , xJ)
′, and z denotes the numeraire good, whose price is normalized to 1. The

consumption of energy service j requires energy inputs of yj = xjej, where ej denotes the en-

ergy intensity of energy service xj. Consumers maximize their utility subject to the budget

constraint w = z + ∑j yj p, where w denotes their exogenous income and p denotes the price

of energy. Let consumers have biased perceptions of energy intensities ẽj = ej + bj(α), where

bj(α) is a bias term that decreases (in absolute terms) in the accuracy of beliefs, denoted by α.

Following the reduced-form approach to behavioral public finance (Mullainathan et al.,

2012), we can write decision utility as:

Ud(α) = u(x(α))−∑
j

p(ej + bj(α))xj(α).

Utility maximization yields the FOCs:

uj(α) = p(ej + bj(α)) ∀ j ∈ {1, . . . , J}. (18)

Furthermore, normative utility is:

Un(α) = Ud(α) + ∑
j

p bj(α)xj(α).

We are interested in the welfare effect of a change in α. We find that:

dUn

dα
=

dUd

dα
+ ∑

j
pxj

∂bj

∂α
+ ∑

j
bj p

∂xj

∂α

= ∑
j

∂Ud

∂xj︸︷︷︸
=0

∂xj

∂α
−∑

j
pxj

∂bj

∂α
+ ∑

j
pxj

∂bj

∂α
+ ∑

j
bj p

∂xj

∂α

= ∑
j

bj p
∂xj

∂α
.

We can approximate a change in consumer surplus by ∆CS ≈ Un

∂α dα, which gives:

∆CS ≈∑
j

bj p
∂xj

∂α
dα

= ∑
j

bj

ej
· p · ∆yj,
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where ∆yj = ∆xjej is the average treatment effect of providing disaggegate information on the

electricity consumption of appliance category j, and bj/ej denotes the relative bias.

Totally differentiating Equation 18 with respect to α yields the system of equations:


∂x1
∂α

...
∂xJ
∂α

 dα = p H−1


∂b1
∂α

...
∂bJ
∂α

 dα,

where H is the Hessian matrix of consumers’ maximization problem. Under the assumption of

a diagonal Hessian, i.e., that utilities from different services are additively separable, we get:

∆xj =
p ∆bj

ujj
, (19)

where ∆xj = (∂xj/∂α)dα and ∆bj = (∂bj/∂α)dα.

Totally differentiating Equation (18) with respect to p (when bj = 0) yields:


∂x1
∂p
...

∂xJ
∂p

 = H−1


e1
...

eJ


Under additive separability, we obtain for all j ∈ {1, . . . , J}:

∂xj

∂p
=

ej

ujj
. (20)

Substituting for ujj in Equation (19) and (20) and rearranging yields:

∆bj

ej
=

∆xj
∂xj
∂p p

.

Under a pure nudge assumption, ∆bj = −bj, and after some rearrangements, we get:

bj

ej
= −

∆xjej
xjej

∂xjej
∂p

p
xjej

= −
∆yj
yj

∂yj
∂p

p
yj

= −
(∆yj/yj)

ηj
,

where (∆yj/yj) is the ATE, expressed as a percentage of the mean of actual consumption, and

ηj =
∂yj/∂p

yj/p denotes the price elasticity of energy consumption for appliance category j.
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A3 Nonintrusive Appliance Load Monitoring

In this section, we describe the so-called nonintrusive appliance load monitoring (NALM)

algorithm, which is employed in our study to determine appliance-level consumptions from

high-frequency measurements of total electricity consumption of a household. Based on Hart

(1992), we first introduce the general approach of NALM algorithms and then present the

structure of the algorithm employed in our study (see Gupta et al. 2017 for details).

NALM algorithms exploit that applianced are typically wired in parallel, so that the power

they consume is additive. The fact that appliances are switched on and off creates distinct

patterns in high frequency data, which can be used to decode appliance-level consumptions.

This decoding process is simplified by the fact that every appliance has a distinct signature, i.e.

a characteristic pattern of the power it consumes, during use. For example, washing machines

use different amounts of power when they heat water, wash, and spin. NALM algorighms

represent appliances as so-called finite state machines (FSMs), i.e., model appliances as having

a finite set of states (e.g. off, heating, washing, spinning) and transitions between states (e.g.

off → heating → washing → spinning → off). These FSM models are then mapped with

observable shifts in electricity usage to determine appliance-level consumptions. While the

methodology has already been proposed almost 30 years ago (e.g. Hart 1992), the mapping

between FSMs and empirical transitions has been facilitated by recent advances in machine

learning.

The structure of the NALM algorighm used in our study is depicted in Figure A1. A meter-

ing device records both the electric power consumed and the voltage at a high-frequency (in

our case, every few seconds), thus measuring the “whole house composite load signal”. This

signal is analyzed in order to detect so-called transitions in the data, i.e., changes in consump-

tion levels.

A core element of NALM algoritms is a signature repository, which collects appliance sig-

natures. To construct this repository, the algorighm uses a comprehensive collection of elec-

trical load signature patterns of common appliances. For example, the load signature of an

electric clothes dryer typically consists of three states (off, high heat, cool down) and of typical

power consumptions for each of these states (e.g. 0 W, 4500-6000 W, 200-300 W, respectively).

Another input is the non-electric signature repository which includes typical behavioral pa-

rameters of appliance usages (e.g. that a clothes dryer is typically used for 30-75 min). Based
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Figure A1: Schematic Representation of the NALM Algorighm

Metering Device
Electrical Signal

Repository

Whole House
Composite Load

Signal

Signature
Generator

Signature
Repository

Load
Disaggregator

Disaggregated
Appliance Level
Information

Non/Electrical
Signature
Repository

Notes: The representation is based on Gupta et al. (2017).

on these inputs, the household specific signature repository is constructed as follows. First, the

NALM algorighm uses methods from cluster analysis to define clusters of shifts in electricity

consumption. In a subsequent step, it classifies these clusters by comparing them to the typical

states and transitions of a particular appliance. This classification step is typically performed

via supervised machine learning techniques based on training data.

In a subsequent step, a load disaggregator uses the whole house composite load signal as

well as the signal repository to decompose the entire signal into appliance-specific consump-

tions. In our case, load disaggregation was performed once a day, so that households could

access appliance-level information always on day following appliance usage.

We depict exemplary signatures from our data for the appliances dish washer, washing

machine, dryer, and oven in Figure A4. The figures show that appliances leave a distinct

pattern in high-frequency electricity consumption data, which allows to determine the start

and end date of an appliance, as well as the electricity consumed by it. For the dryer, for

example, it is easy to spot the pattern of a long heating period after switching on the appliance,

followed by an iteration between periods for letting cool down the laundry and heating it up

again.
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A4 Non-Experimental Control Group

To identify the overall conservation effect, we additionally obtain data from a non-

experimental sample of smart meter households that are served by the same utility. These

households have agreed to report their electricity consumption to the grid operator who uses

the data to forecast load profiles. We obtain smart meter data in 15 minute invervals for 577

households, starting from November 1, 2016, which is when our field test started. This data al-

lows us to identify the effect sizes for all experimental conditions relative to obtaining no feed-

back at all. To ensure that observable household characteristics are balanced across our exper-

imental and non-experimental sample, we select a control group using a propensity matching

method.

As the left panel of Figure A7 in the Appendix shows, the baseline consumption in the non-

experimental sample is slightly larger than in the experimental sample. To account for such

differences, we follow a matching approach to determine the subset of control households that

we use in our analyses, denoted henceforth as matched control (MC) households. For every

participant in the EC group, we determine the nearest neighbor in the non-experimental sam-

ple by implementing a 1:1 matching algorithm without replacement, based on two covariates.

First, we match on the average per day electricity consumption in the baseline period. Second,

we control for differences in the timing of billing periods by matching on the end day of the

billing period before the start of the field test. As a result, we obtain a group of 140 matched

households.

The right panel of Figure A7 shows that, after matching, participants in the EC and in

the non-experimental MC group have about the same baseline electricity use distribution. In

Table A8, we additionally assess the balance in terms of further billing information. We find

that the average end date of the bill is not statistically different for both groups, as expected

from matching. Yet, the average start of the billing period starts about one month earlier in

the experimental control group, compared to the matched non-experimental observations. To

account for such differences in the baseline billing period, we include month-of-baseline fixed

effects in our post-matching regressions.
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Based on the Matched Control (MC) group and our experimental sample, we estimate the

average total conservation effects of our five experimental conditions by estimating the follow-

ing equation via ordinary least squares (OLS):

Ynorm
it = αYb

i + βECi + γ′Ti + νt + µb
m + εit, (21)

where Ynorm
it denotes the electricity use of participant i at day t, divided by the average daily

electricity use in the experimental control group, and ECi denotes households in the experi-

mental control group. νt and µb
m denote day and month-of-baseline fixed effects. To account

for serial correlation in the error terms, we cluster standard errors at the household-match

level, where households in the Matched Control group obtain the same id as their matched

counterparts (Abadie and Spiess, 2019). In addition, we estimate the followinig specification,

which allows us to identify the impact of the app elements:

Ynorm
it = αYb

i + βAFi + β1Di + β2Mi + β3Ri + β4MiRi + νt + µb
m + εit, (22)

where AFi denotes that household i has access to aggregate feedback, which is the case for all

households in our experimental sample.

Panel a) of Table A12 presents the average conservation effects in the treatment groups,

relative to the MC group. It shows that we do not detect statistically significant electricity

savings for households in the EC group, which obtain only aggregate feedback (Column 1).

This finding is supported when we investigate hourly treatment effects (see Figure A8 in the

Appendix). Using our hourly estimates, we cannot reject the null hypothesis that all hourly

point estimates are zero: F(24, 277) = 1.15, p-value: 0.2938.

Hence, the total conservation effects that we estimate align closely with the electricity con-

servation effects relative to the experimental control group from Table 3. The ATE estimate

for participants in the four treatment conditions T1 − T4 amounts to −5.5% and is statisti-

cally significant at all conventional levels. When we estimate the ATEs separately for all treat-

ment groups (Column 2), we do not find sizable differences, with point estimates ranging from

−4.7% in T2 to −7.3% in T3. As shown in Panel b), the total conservation effects can be clearly

attributed to disaggregate feedback, which yields a 4.7% reduction in electricity use, relative

to the MC group. Again, we do not find that additional app features significantly increase

conservation effects.
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A5 Heterogeneity in Treatment Effects by Baseline Consumption

To investigate treatment effect heterogeneity in more detail, we estimate two equations.

First, we estimate the following equation by OLS, using only our experimental sample:

Ynorm
it = αYb,dm

i + βECiY
b,dm
i + νt + µb

w + εit,

where Yb,dm
i denotes the baseline consumption of household i, expressed as a percentage of

the average daily consumption in the EC group. We also demean this variable, so that we can

interpret β̂ as the average treatment effect at the mean of baseline consumption (10.5 kWh). In

addition, we estimate the following equation using the experimental and the matched control

groups:

Ynorm
it = αYb,dm

i + β0ECi + β1ECiY
b,dm
i + γ0Di + γ1DiY

b,dm
i + νt + µb

w + εit.

Using the experimental sample, the estimates for the interaction term between the disaggrega-

tion dummy D and baseline electricity consumption amounts to −0.66, but is not statistically

significant (Panel a of Table A9). When using data from the experimental sample and matched

control observations, we find that the interaction effect reaches -0.124 and is statistically signif-

icant at the 1% level. Furthermore, we cannot reject the null hypothesis that both the main ef-

fect of EC and its interaction with the baseline electricity use are zero (F-test stat.: 1.35, p-value:

0.26), while we can reject the corresponding null hypothesis for the disaggregation groups D

(F-test stat: 7.47, p-value: 0.001).
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A6 Conservation Effects after Core Study Period

After our core study period of 6 months, participants continued to have access to the app,

but with limited functionality in treatment group T2 − T4. In particular, participants were

not invited to take part in efficiency challenges any longer, but still received appliance-level

consumption feedback.

To investigate the treatment effects after the core study period, we estimate Equation (4)

and (5), but restrict the sample to the time period from month 7 of the field test onwards.

Panel a) of Table A13 gives the average conservation effect relative to the EC group and

shows that the point estimate for the treatment effect in the disaggregation groups T1 − T4

amounts to −1.4%, but is not statistically significant at any conventional level. When we re-

strict our analysis to a balanced panel, the treatment effect amounts to −3.3%, but is not sta-

tistically significant at any conventional level. Using the non-experimental sample to identify

the total conservation effect (Panel b of Table A13), we find that disaggregate feedback yields

a persistent reduction by −4.7% when using the full sample (Column 3) and of −2.7% when

restricting our sample to a balanced panel of households (Column 4).

We test for differences in the average treatment effect between the core study period and the

period thereafter by estimating the following regressions based on our experimental sample,

as well as on our experimental sample and our matched control group, respectively:

Ynorm
it = αYb

i + τ A f terCSPt + β1Di + β2Di · A f terCSPt + νt + µb
m + εit,

Ynorm
it = αYb

i + τ A f terCSPt +γ1ECi +γ2ECi A f terCSPt + δ1Di + δ2Di A f terCSPt + νt +µb
m + εit,

where A f terCSPt equals one if day t occurs after the beginning of study month 7 and zero oth-

erwise. To avoid that differences in average treatment effects arise from changes in the sample

composition over time, we use a balanced panel for both regressions. The estimate β̂2 identi-

fies the difference in the average treatment effect from appliance-level feedback relative to the

experimental control group: ATEAfterCSP-ATECSP, where ATECSP denotes the ATE during the

core study period. The estimate δ2 has the same interpretation, but gives the change in the

ATEs relative to the matched control group, i.e., relative to obtaining no feedback at all. As

shown in Table A14, we find that that β̂2 and δ̂2 are positive, but not statistically significant

from zero at any conventional level.
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A7 Appliance-Level Treatment Effects by Hour of the Day

To identify the hourly average treatment effects at the appliance-level, we estimate the

following model separately for every appliance:

Ynorm
ithj = αYb

i +
24

∑
h=1

βh
j Di + νt + µh + εihdj.

In Figure A10, we show how appliance-level consumptions change in response to appliance-

level feedback over the hours of a day. For dish-washers, dryers, and washing machines, we

find a distinct pattern that savings occur only during the day, between 7 a.m. and 15 p.m.,

which coincides with typical usage patterns of these appliances. By contrast, consumption

reductions in the category Other Appliances occur particularly during late morning hours, as

well as during late evening hours, between 8 p.m. and 4 a.m. As the categories Refrigeration

and Always-On are measured daily, we cannot estimate hourly treatment effects for them.
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Supplementary Figures

Figure A2: Visualization of Screens I

Start Screen (by Experimental Condition)

Experimental Control (EC) T1 T2-T4

Treatment-Specific Screens

appliance-level feedback (T1-T4) Efficiency Challenge (T2-T4)
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Figure A3: Visualization of Screens II

Further Screens (EC and T1-T4)

Comparison with Others Comparison with own History Current Power
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Figure A4: Appliance Signatures

(a) Washing Machine (b) Dryer

(c) Dish Washer (d) Oven

Notes: The graphs depict exemplary appliance signatures as detected by the nonintrusive appliance load monitor-
ing (NALM) algorithm in our study. Periods highlighted in green correspond to a detected appliance use event for
the respective appliance.
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Figure A5: Distribution of Appliance Scores
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Notes: Appliance Scores are calculated as follows: Appliance Score = 100 × (Monthly Appliance Consumption -
Benchlow)/(Benchup - Benchlow), where Benchlow and Benchhigh correspond to pre-determined benchmark values
for high and low appliance uses, respectively. These benchmarks are based on survey data on typical appliance
uses and product data sheets on the technical efficiency of appliances currently used in German households (for
details, see Table A3).
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Figure A6: Decomposition of Electricity Uses, by Appliance Category
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wirtschaft. Values from our study are calculated for the Experimental Control group. As we do not have data on
hobs, we extrapolate their consumption based on the rule-of-thumb that a hob accounts for 77.5% (75-80%) of total
electricity consumption for cooking, as stated by the energy efficiency advocacy HEA (www.hea.de/fachwissen/
herde-backoefen/betriebswerte-und-energieverbrauchskennzeichnung, last access: February 27, 2020).

xviii

www.hea.de/fachwissen/herde-backoefen/betriebswerte-und-energieverbrauchskennzeichnung
www.hea.de/fachwissen/herde-backoefen/betriebswerte-und-energieverbrauchskennzeichnung


Figure A7: Balancing in Terms of Basline Electricity Consumption between Study Participants
and the Non-Experimental Sample

(a) Prior to Matching
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xix



Figure A8: ATE of Experimental Control (EC) on Hourly Electricity Consumption (relative to
Matched Control)
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Notes: Shaded bars indicate that treatment effects are statistically significant at the 1% (blue shaded) or 5% (light
blue shaded) level. Whiskers indicate a range of +/- 1 standard error (clustered at the household-match level).
The outcome variable is daily electricity consumption, divided by the mean in the EC group. Using participants in
the MC and the EC groups, we estimate the following equation: Ynorm

ith = αYb
i + ∑24

h=1 βhECi + νt + µh + εihd. We
cannot reject the null hypothesis that all hourly point estimates are zero: F(24, 277) = 1.15, p-value: 0.2938.
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Figure A9: ATE of Disaggregation (D) relative to Experimental Control (EC), by Hour of the
Day
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are statistically significant at the 1% (blue shaded) or 5% (light blue shaded) level. Whiskers indicate a range of +/-
1 standard error (clustered at the household level). Based on conducting an F-test, we can reject the null hypothesis
that all hourly point estimates are zero: F(24, 699) = 1.82, p-value = 0.0096.
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Figure A10: ATE of Disaggregation (D) on Hourly Electricity Consumption, by Appliance
Category (Relative to Exp. Control)
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(b) Washing
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Notes: Shaded bars indicate that treatment effects are statistically significant at the 1% (blue shaded) or 5% (light
blue shaded) level. Whiskers indicate a range of +/- 1 standard error (clustered at the household level). The
outcome variable is hourly electricity consumption at the appliance level, divided by the hourly mean in the EC
group. The categories Refrigeration and Always-On are measured daily, so that we cannot estimate hourly treatment
effects for them.
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Figure A11: ATE of Experimental Control (EC) on Hourly Electricity Consumption (relative to
Matched Control)
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T1 − T4, D. We elicited beliefs about the baseline electricity consumption in a survey that we conducted prior to
the field experiment. Actual baseline consumption corresponds to the consumption of a household from the last
(annual) bill prior to the field experiment. We drop outliers, defined as all observations above the 95 percentile of
the actual baseline consumption distribution, as well as below the 2.5 or above the 97.5 percentile of the distribution
of consumption beliefs, divided by the respective actual consumption.
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Supplementary Tables

Table A1: Comparison of Experimental Sample with German Population

Experimental sample German population

Baseline cons., in kWh/day 10.4 8.6
# of occupants 2.5 2.0
# of refrigeration appliances 2.2 2.4
Net income, in EUR per month 3,103 3,314
Own property, in % 75.6 44.0
Employed, in % 51.2 57.8
Share of females, in % 47.4 50.7
Age, in years 45.8 44.3
Baseline cons., in kWh/day (1 person household) 6.2 5.5
Baseline cons., in kWh/day (2 person household) 9.8 8.8
Baseline cons., in kWh/day (3+ person household) 11.6 13.3
1 person household, in % 12.0 41.8
2 person household, in % 51.1 33.5
3+ person household, in % 36.9 24.7

Notes: German averages are taken from the following German Statistical Office publications (for the year
2017): Populalation Statistics (Mikrozensus); Environmental-Economic Accounting; Income, Receipts, and
Expenditures; Consumption Expenditures. The average electricity consumption is for the baseline year 2016
(https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Materialfluesse-Energiefluesse/
Tabellen/stromverbrauch-haushalte.html, last access: March 9, 2020).
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Table A2: Descriptives: Appliance Possessions and House Characteristics

All EC T1 T2 T3 T4 P-value N

Appliance Possession
# of cooling appliances 2.27 2.23 2.24 2.27 2.27 2.33 0.82 700
# of dish washers 0.92 0.91 0.91 0.95 0.93 0.91 0.87 700
# of washing machines 1.02 1.00 1.04 1.00 1.01 1.04 0.61 700
# of tumble dryers 0.72 0.74 0.71 0.69 0.69 0.77 0.68 700
# of ovens 0.98 0.98 0.99 0.98 0.99 0.98 0.76 700
# of hobs 0.99 0.99 0.99 0.98 0.99 0.99 0.84 700

HH lives in detached house (1: yes, 0: no) 0.45 0.46 0.42 0.48 0.43 0.44 0.83 700
HH lives in semi-detached house (1: yes, 0: no) 0.14 0.13 0.16 0.10 0.16 0.16 0.37 700
HH lives in an apartment (1: yes, 0: no) 0.24 0.22 0.26 0.23 0.24 0.23 0.94 700
# of bedrooms 3.03 3.06 3.01 3.00 3.00 3.08 0.88 686
Water heating via gas (1: yes, 0: no) 0.62 0.59 0.63 0.64 0.60 0.64 0.83 700
Space heating via gas (1: yes, 0: no) 0.58 0.53 0.68 0.57 0.55 0.57 0.07 700

Notes: P-values are from F-tests of mean equality in all experimental conditions: EC, T1, T2, T3, T4
(heteroscedasticity-robust standard errors).
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Table A3: Benchmarks for the Calculation of Efficiency Scores

1 person 2 persons 3 persons 4 persons 5 persons

Always on 0.0 0.0 0.0 0.0 0.0
90.7 125.7 158.7 174.1 190.5

Refrigeration (1 appliance) 4.8 4.8 5.7 5.9 6.3
39.9 44.3 49.3 54.2 59.6

Refrigeration (2 appliances) 8.3 11.5 11.5 12.4 12.5
66.5 73.9 82.1 90.3 99.3

Refrigeration (3+ appliances) 8.3 11.5 11.5 12.4 12.5
94.1 103.1 112.1 121.6 132.0

Washing machine 1.2 1.8 2.3 2.8 3.4
14.0 23.9 36.4 43.6 44.6

Dishwasher 0.0 0.0 0.0 0.0 0.0
17.7 27.7 34.0 43.6 54.6

Dryer 0.0 0.0 0.0 0.0 0.0
31.9 62.7 68.8 70.5 72.2

Oven 0.0 0.0 0.0 0.0 0.0
6.3 12.6 19.0 25.3 31.6

Notes: The benchmarks were calculated taking the technical energy efficiencies of appliances on the market into
account(energy efficient – energy inefficient), as well as typical usage behaviors (rare user – heavy user). The
main sources for technical efficiency are product data sheets for efficient appliances from EcoTopTen, an online
platform for energy efficient products (URL: https://www.ecotopten.de/), as well as product data sheets of in-
efficient appliances from product tests by Stiftung Warentest, a renowned German consumer organisation (URL:
www.test.de). In addition, we use information on typical usage behaviors from surveys such as the German Resi-
dential Energy Consumption Survey (RWI-GRECS, URL: http://www.rwi-essen.de/forschung-und-beratung/
fdz-ruhr/datenangebot/mikrodaten/rwi-grecs). For the category Always-On, we calculate the upper bench-
mark based on the stand-by electricity use for a range of appliances, including TVs, hifi systems, PCs, routers, tele-
fones, coffee machines, washing machines, and microwaves (using energy inefficient appliance varieties). These
calculations take typical appliance possessions by household size into account. We set the lower benchmark to
zero, assuming that always-on consumption can be avoided. For the category Refrigeration, we calculate bench-
marks based on the number of appliances (1, 2, and more than 2). For each of them, we consider the most energy
efficient and inefficient appliances available on the market, whose cooling volume is as recommended for the re-
spective household size. For the categories Washing machine, we use data on the energy consumption per use for
energy efficient and inefficient appliances and consider the typical frequency of use for heavy users and rare users
(for every household size). We proceed in the same manner for the categories Dish washer, Dryer, and Oven, but
assume that the lower benchmark is zero as households can substitute these energy services with hand-washing,
dry-hanging and eating-out, for example. Details on the calculations can be obtained from the authors upon re-
quest.
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Table A4: Distribution of Daily Use, in kWh/day

Mean Std. dev. Min Max p1 p25 p50 p75 p99 N

Total electricity 10.16 5.36 0.00 100.07 1.72 6.56 9.27 12.75 27.03 106,283
Always on 2.47 1.97 0.00 47.49 0.14 1.10 2.01 3.30 9.33 93,187
Refrigeration 1.02 0.66 0.00 11.12 0.07 0.63 0.88 1.24 3.29 93,185
Dishwasher 0.30 0.63 0.00 14.15 0.00 0.00 0.00 0.00 2.64 84,511
Washing mach. 0.49 1.11 0.00 40.30 0.00 0.00 0.00 0.60 5.08 91,473
Dryer 0.14 0.59 0.00 36.06 0.00 0.00 0.00 0.00 2.88 65,852
Oven 0.24 0.81 0.00 20.57 0.00 0.00 0.00 0.00 3.86 93,187
Other appliances 5.56 3.89 0.00 56.58 0.00 3.01 4.74 7.15 19.07 93,187

Notes: p1 denotes the first percentile, p25 the 25th percentile, etc. N denotes the number of daily appliance-level
observations.

Table A5: Distribution of Use per Utilization, in kWh

Mean Std. dev. Min Max p1 p25 p50 p75 p99 N

Always-On 2.47 1.97 0.000 47.49 0.13 1.10 2.01 3.30 9.32 93,664
Refrigeration 1.02 0.66 0.000 11.12 0.07 0.63 0.88 1.24 3.29 93,659
Dishwasher 1.08 0.42 0.002 10.98 0.34 0.79 1.04 1.32 2.37 23,643
Washing mach. 1.00 0.75 0.001 18.54 0.05 0.53 0.81 1.27 3.65 45,270
Dryer 1.02 1.02 0.004 38.46 0.03 0.38 0.74 1.37 4.51 8,979
Oven 0.80 1.11 0.001 20.09 0.01 0.19 0.47 0.95 5.55 28,362

Notes: In the categories Always-On and Refrigeration, the unit of utilization is one day. For all other appliances,
average use is given per utilization event. p1 denotes the first percentile, p25 the 25th percentile, etc. N denotes the
number of appliance-use events.

xxvii



Table A6: Beliefs vs. Actual Baseline Consumption (at the Household-Level)

(a) Mean Annual Baseline Consumption, Beliefs vs. Actual

Belief (in kWh) Actual (in kWh) Mean Diff. (in kWh) Std. Err. P-value n

Pooled 3,627.6 3,539.4 -88.29 (27.74) 0.002 497
EC 3,611.6 3,491.5 -120.06 (60.51) 0.048 92
T1 3,675.8 3,614.0 -61.80 (63.01) 0.327 100
T2 3,642.4 3,561.0 -81.34 (75.86) 0.284 99
T3 3,531.8 3,483.0 -48.77 (44.84) 0.277 106
T4 3,681.3 3,547.1 -134.30 (64.29) 0.037 100

(b) Alignment Between Beliefs and Actual Baseline Consumption

(1) (2)
Estimate Std. Err. Estimate Std. Err.

Yb: Baseline elec. use 0.928*** (0.026) 0.948*** (0.058)
D: T1-T4 48.891 (205.672)
D × Yb -0.024 (0.065)
Constant 342.923*** (82.470) 300.114 (184.225)

R2 0.7878 0.7879
Number of obs. 497 497

Notes for both Panels: Beliefs about the electricity consumption in the baseline period were elicited in a survey that
we conducted prior to the field experiment. Actual baseline consumptions were obtained from billing data. ***,
**,* denote statistical significance at the 1%, 5%, 10% level, respectively. Robust standard errors are in parantheses.
EC equals 1 for households in the experimental control group. D equals one for households in the groups T1 − T4.
We drop outliers, defined as all observations above the 95 percentile of the actual baseline consumption, as well as
below the 2.5 or above the 97.5 percentile of the consumption belief, divided by the actual consumption.
Notes for Panel b): In Column 1), we pool all experimental groups and estimate the model: Yb,belie f = α + βYb +
ε, where Yb,belie f and Yb denotes the belief and the actual consumption of household i in the baseline period,
respectively (and ε denotes an error term). In Column (2), we interact βYb with the disaggregation dummy D that
equals one for the groups T1-T4: Yb,belie f = α + βYb + γD · Yb + ε. The estimate β̂ gives the average change in
beliefs as the actual consumption increases by one unit (for the EC group). The estimate γ̂ gives the the change of
this slope for the households in the treatment groups T1-T4 (relative to the EC group).
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Table A7: Distribution of Payoffs from Appliance Challenges, in EUR

Mean Std. dev. Min Max p1 p25 p50 p75 p99 N

T3 6.3 7.6 0.0 20.0 0.0 0.0 2.0 12.0 20.0 4,554
T5 4.5 2.9 0.1 9.8 0.1 1.9 4.5 7.0 9.6 4,068

Notes: Statistics refer to monthly payoffs from the appliance challenges in the treatment groups T3 and T5. p1
denotes the first percentile, p25 the 25th percentile, etc. N denotes the number of month-appliance challenge
observations.

Table A8: Balance Experimental Sample vs. Matched Non-Experimental Sample

Difference EC-MC Std. Err. P-val. N

Baseline elec. cons., in kWh/day 0.23 0.27 0.40 280
End of baseline billing, in days −10.04 11.58 0.39 280
Start of baseline billing, in days −33.75 13.28 0.01 280

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors in parantheses,
clustered at the household level.
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Table A9: Heterogeneity in ATE, by Baseline Consumption

(a) Experimental Sample

Estimate Std. Err.

D: Disaggregation −0.051*** (0.017)
D×Yb,dm −0.066 (0.052)
Yb,dm: Baseline elec. use (demeaned) 0.939*** (0.045)

Day fixed effects 3

Month-of-baseline FE 3

R2 0.5480
Number of obs. 106,283
Number of households 700

(b) Sample Including Matched Controls

Estimate Std. Err.

D: Disaggregation −0.047*** (0.015)
D×Yb,dm −0.134*** (0.044)
Yb,dm 1.007*** (0.035)
EC: Exp. Control 0.008 (0.021)
EC×Yb,dm −0.068 (0.058)

Day fixed effects 3

Month-of-baseline FE 3

R2 0.5542
Number of obs. 127,342
Number of households 840

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in paranthe-
ses and clustered at the household and the household-match level for Panel a) and b), respectively. The outcome
variable is daily electricity consumption, divided by the mean in the EC group. Baseline electricity use Yb,dm is
demeaned.
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Table A10: ATEs on Daily Electricity Consumption, Relative to Exp. Control

(a) Daily Aggregation, Day Fixed-Effects

(1) (2)
D: T1-T4 −0.048***

(0.016)
T1 −0.044**

(0.019)
T2 −0.039**

(0.019)
T3 −0.066***

(0.020)
T4 −0.043**

(0.021)
Day fixed effects (FE) 3 3

Month-of-baseline FE 3 3

R2 0.5586 0.5589
Number of obs. 106,283 106,283
Number of households 700 700

(b) Hourly Aggregation, Hour-by-Day Fixed-Effects

(1) (2)
D: T1-T4 -0.047***

(0.016)
T1 -0.044**

(0.019)
T2 -0.038**

(0.019)
T3 -0.066***

(0.020)
T4 -0.043**

(0.021)
Hour-by-Day fixed effects (FE) 3 3

Month-of-baseline FE 3 3

R2 0.2217 0.2218
Number of obs. 2,543,261 2,543,261
Number of households 700 700

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in paran-
theses and clustered at the household-match level. The outcome variable is daily electricity consumption, divided
by the mean in the EC group (9.86 kWh). AF equals one for the households in the groups EC and T1 − T4, while
being zero for households in MC. D equals one for households in the groups T1− T4, M equals one for households
in the groups T2 and T4, and R equals one for households in the groups T3 and T4, while being zero for the other
participants, respectively.
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Table A11: ATEs on Daily Electricity Consumption, Relative to Exp. Control (Balanced Panel)

(a) Effect of Experimental Conditions

(1) (2)

D: T1 − T4 -0.064***
(0.019)

T1 -0.065***
(0.023)

T2 -0.048**
(0.022)

T3 -0.087***
(0.024)

T4 -0.056**
(0.027)

Yb: Baseline elec. use 0.878*** 0.879***
(0.028) (0.028)

Day fixed effects (FE) 3 3

Month-of-baseline FE 3 3

R2 0.5373 0.5380
Number of obs. 79,562 79,562
Number of households 460 460

(b) Effects of App Elements

(3) (4) (5)

D: Disaggregation -0.064*** -0.068*** -0.064***
(0.019) (0.021) (0.022)

M: Monetary incentives 0.025 0.015
(0.015) (0.017)

R: Ranking -0.016 -0.026
(0.015) (0.020)

M: Monet. inc. × R: Rank. 0.021
(0.030)

Yb: Baseline elec. use 0.878*** 0.880*** 0.879***
(0.028) (0.028) (0.028)

Day fixed effects (FE) 3 3 3

Month-of-baseline FE 3 3 3

R2 0.5373 0.5379 0.5380
Number of obs. 79,562 79,562 79,562
Number of households 460 460 460

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. The regressions are based on
a balanced panel for the core study period (months 1-6). Standard errors are in parantheses and clustered at the
household-match level. The outcome variable is daily electricity consumption, divided by the mean in the EC
group. D equals one for households in the groups T1 − T4, M equals one for households in the groups T2 and T4,
and R equals one for households in the groups T3 and T4, while being zero for the other participants, respectively.
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Table A12: ATEs on Daily Electricity Consumption, Relative to Matched Control

(a) Effect of Experimental Conditions

(1) (2)
EC: Exp. Control -0.009 -0.009

(0.022) (0.022)
D: T1 − T4 -0.055***

(0.016)
T1 -0.053***

(0.019)
T2 -0.049**

(0.020)
T3 -0.073***

(0.021)
T4 -0.047**

(0.021)
Yb: Baseline elec. use 0.910*** 0.910***

(0.020) (0.020)

Day fixed effects 3 3

Month-of-baseline FE 3 3

R2 0.5687 0.5689
Number of obs. 127,790 127,790
Number of households 840 840

(b) Effects of App Elements

(3) (4) (5)
AF: Aggregate feedback -0.009 -0.009 -0.009

(0.022) (0.022) (0.022)
D: Disaggregation -0.047*** -0.049*** -0.045**

(0.016) (0.018) (0.018)
M: Monetary incentives 0.016 0.005

(0.013) (0.016)
R: Ranking -0.010 -0.021

(0.013) (0.018)
M: Monet. inc. × R: Rank. 0.023

(0.027)

Yb: Baseline elec. use 0.910*** 0.910*** 0.910***
(0.020) (0.020) (0.020)

Day fixed effects 3 3 3

Month-of-baseline FE 3 3 3

R2 0.5687 0.5689 0.5690
Number of obs. 127,790 127,790 127,790
Number of households 840 840 840

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. These regressions include
observations from our matched control group, as described in Section A4. Standard errors are in parantheses and
clustered at the household-match level. The outcome variable is daily electricity consumption, divided by the mean
in the EC group. AF equals one for the households in the groups EC and T1 − T4, while being zero for households
in MC. D equals one for households in the groups T1 − T4, M equals one for households in the groups T2 and T4,
and R equals one for households in the groups T3 and T4, while being zero for the other participants, respectively.
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Table A13: ATE on Daily Electricity Consumption (After the Core Study Period), Only Main
Effects

(a) Experimental Sample

(1) (2)
Full Sample Balanced Panel

D: Disaggregation -0.014 -0.033
(0.017) (0.022)

Yb: Baseline elec. use 0.759*** 0.732***
(0.022) (0.034)

Day fixed effects 3 3

Month-of-baseline FE 3 3

R2 0.4978 0.4909
Number of obs. 54,603 29,330
Number of households 586 321

(b) Experimental and Matched Control Samples

(3) (4)
Full Sample Balanced Panel

EC: Experimental Control -0.036 -0.026
(0.026) (0.035)

D: Disaggregation -0.047** -0.027
(0.022) (0.023)

Yb: Baseline elec. use 0.781*** 0.760***
(0.024) (0.032)

Day fixed effects 3 3

Month-of-baseline FE 3 3

R2 0.5112 0.5004
Number of obs. 66,084 35,765
Number of households 708 391

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in paranthe-
ses and clustered at the household level in Columns (1) and (2), and at the household-match level for Columns (3)
and (4). The outcome variable is daily electricity consumption, divided by the mean in the EC group. D equals one
for households in the groups T1 − T4, while being zero for other participants.
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Table A14: Difference in ATEs During and After the Core Study Period

(1) (2)
Experimental Sample Experimental and

Matched Control Samples
1(After Core Study Period) -0.052* -0.008

(0.031) (0.034)
EC : Experimental Control -0.010

(0.032)
EC : Exp. Control × 1(After Core Study Period) -0.025

(0.033)
D: Disaggregation -0.063** -0.060**

(0.025) (0.026)
D: Disaggregation × 1(After Core Study Period) 0.038 0.038

(0.023) (0.023)
Yb: Baseline elec. use 0.840*** 0.866***

(0.032) (0.028)
R2 0.5280 0.5450
Number of obs. 84,891 103,411
Number of participants 321 321

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in paran-
theses and clustered at the household and at the household-match level for Columns (1) and (2), respectively. The
outcome variable is daily electricity consumption, divided by the mean in the EC group. 1(After Core Study Pe-
riod) is a dummy variable that equals one when an observation occurs from month 7 onwards, while being zero
otherwise. D equals one for households in the groups T1 − T4, while being zero for other participants.
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Table A15: Difference in ATEs, by Subgroups

(1) (2)
D: Disaggregation -0.040 -0.019

(0.028) (0.028)
1(Two Occupant) 0.071**

(0.030)
1(Three+ Occupants) 0.128***

(0.036)
1(Own Property) 0.056*

(0.029)
D: Disaggregation × 1(Two Occupant) 0.003

(0.035)
D: Disaggregation × 1(Three+ Occupants) -0.035

(0.039)
D: Disaggregation × 1(Own Property) -0.040

(0.034)
Yb: Baseline elec. use 0.864*** 0.888***

(0.024) (0.024)
R2 0.5614 0.5598
Number of obs. 106,283 105,846
Number of participants 700 696

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in paran-
theses and clustered at the household level. The outcome variable is daily electricity consumption, divided by the
mean in the EC group. 1(Two Occupants) is a dummy variable that equals one when a household consists of two
occupants, while 1(Three+ Occupants) is one for households with at least three occupants. 1(Own Property) equals
one if a household lives in his own property. D equals one for households in the groups T1 − T4, while being zero
for other participants.
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Table A16: ATE on Appliance-Level Consumption, Frequency of Use, and Electricity Use In-
tensity

(a) ATE on appliance-level electricity consumption, in % of control group

(1) (2) (3) (4) (5) (6) (7)
Always-On Refrigeration Dish-Washer Washing Dryer Oven Other appl.

D: Disaggregation 0.031 0.001 −0.071 −0.026 −0.434** −0.095 −0.075**
(0.055) (0.052) (0.100) (0.076) (0.173) (0.169) (0.031)

C: Challenges −0.049 −0.012 −0.029 −0.003 −0.006 0.178 0.005
(0.045) (0.044) (0.078) (0.056) (0.117) (0.130) (0.022)

Yb: Baseline elec. use 1.156*** 0.460*** 0.746*** 0.637*** 1.064*** 1.355*** 0.851***
(0.065) (0.086) (0.103) (0.072) (0.166) (0.197) (0.033)

Day fixed effects (FE) 3 3 3 3 3 3 3

Month-of-baseline FE 3 3 3 3 3 3 3

R2 0.368 0.152 0.046 0.028 0.035 0.040 0.356
Number of obs. 93,187 93,185 84,511 91,473 65,852 93,187 93,187
Number of households 700 700 635 686 499 700 700

(b) ATE on appliance-level frequency of use, in % of control group

Always-On Refrigeration Dish-Washer Washing Dryer Oven Other appl.

D: Disaggregation - - -0.023 -0.002 -0.398** -0.036 -
- - (0.091) (0.058) (0.189) (0.156) -

C: Challenges - - -0.050 0.041 -0.010 0.307** -
- - (0.070) (0.046) (0.122) (0.124) -

Yb: Baseline elec. use - - 0.723*** 0.459*** 1.097*** 0.543*** -
- - (0.094) (0.058) (0.181) (0.131) -

Day fixed effects (FE) 3 3 3 3 3 3 3

Month-of-baseline FE 3 3 3 3 3 3 3

R2 - - 0.046 0.027 0.056 0.036 -
Number of obs. - - 84,511 91,473 65,852 93,187 -
Number of participants - - 635 686 499 700 -

(c) Appliance-level electricity consumption per use, in % of control group

Always-On Refrigeration Dish-Washer Washing Dryer Oven Other appl.

D: Disaggregation - - -0.058* -0.035 -0.038 -0.081 -
- - (0.031) (0.043) (0.126) (0.087) -

C: Challenges - - 0.032 -0.032 -0.020 -0.019 -
- - (0.025) (0.029) (0.106) (0.071) -

Yb: Baseline elec. use - - 0.065** 0.231*** 0.052 0.769*** -
- - (0.027) (0.037) (0.086) (0.093) -

Day fixed effects (FE) 3 3 3 3 3 3 3

Month-of-baseline FE 3 3 3 3 3 3 3

R2 - - 0.056 0.042 0.082 0.106 -
Number of obs. - - 20,314 29,290 6,721 21,088 -
Number of households - - 599 673 257 525 -

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors in parantheses,
clustered at the household level. The outcome variable is daily electricity consumption (Panel a), frequency of use
(Panel b), and energy use per utilization (Panel c) at the appliance level, divided by the respective mean in the EC
group. We do not present estimates for Always-On and Refrigeration as consumptions are measured by day, so that
there is no extensive margin effect.
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Table A17: Appliance-Level Elasticity Estimates

(1) (2) (3) (4) (5) (6) (7)
Always-On Refrigeration Dish-Washer Washing Dryer Oven Other appl.

ln p -0.310 -0.400* -0.401 -0.552 -3.423*** -1.067 -0.289
(0.355) (0.226) (0.722) (0.418) (1.233) (1.024) (0.252)

# of occupants = 2 0.113 0.129*** 0.872*** 0.843*** -0.012 0.694*** 0.278***
(0.069) (0.043) (0.192) (0.129) (0.359) (0.200) (0.055)

# of occupants = 3 0.038 0.116** 1.099*** 0.937*** 0.104 0.970*** 0.301***
(0.084) (0.052) (0.201) (0.140) (0.396) (0.229) (0.058)

# of occupants = 4 0.126 0.098* 1.178*** 1.019*** 0.135 1.104*** 0.321***
(0.087) (0.058) (0.227) (0.144) (0.406) (0.245) (0.062)

# of occupants = 5 -0.071 0.212*** 1.460*** 0.692*** 0.508 0.947*** 0.264***
(0.106) (0.074) (0.287) (0.191) (0.422) (0.325) (0.081)

Hh. net income 0.048*** -0.017* -0.001 0.026 -0.026 -0.042 -0.001
(0.013) (0.009) (0.035) (0.021) (0.052) (0.037) (0.008)

1(Hh. net income missing) 0.208** -0.100 -0.038 0.126 -0.419 -0.032 0.031
(0.091) (0.064) (0.241) (0.140) (0.363) (0.252) (0.061)

Yb: Baseline elec. use 0.106*** 0.030*** 0.049*** 0.059*** 0.044*** 0.072*** 0.082***
(0.006) (0.004) (0.011) (0.009) (0.014) (0.013) (0.005)

Constant -1.230** -0.986*** -3.728*** -3.338*** -7.236*** -4.725*** 0.058
(0.507) (0.326) (1.066) (0.616) (1.879) (1.504) (0.356)

R2 0.489 0.169 0.154 0.288 0.092 0.151 0.635
Number of participants 700 700 610 677 259 527 700

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. The outcome variable is the av-
erage daily electricity consumption in the study period (in logs). The regressors are net income, baseline electricity
use, as well as a set of dummy variables for the number of occupants and missings for the variable net income.
Heteroskedasticity robust standard errors in parantheses.
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