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Abstract 

Modern power systems are undergoing a transformation process where distributed energy re-

sources together with complex load technologies are increasingly integrated. This, in addition 

to a sustained growth in electricity consumption and a lack of significant investment in trans-

mission infrastructure, leads power systems to face with new stochastic operating behavior and 

dynamics and to operate under stressed conditions. Under such operating conditions, the occur-

rence of a potential disturbance may cause a partial or a total collapse. Therefore, in order to 

minimize the risk of collapses and their impact, new monitoring tools must be adopted, capable 

of providing the right conditions for dynamic wide-area monitoring. 

The thesis presents a hybrid state estimator, that is a monitoring tool that combines fast syn-

chronized phasor measurements with traditional measurements into a single scheme. It has the 

ability to estimate at high speed power system dynamics associated to slow and fast transient 

phenomena considering a reduced amount of phasor measurement units (PMUs). The devel-

oped scheme consists of two phases depending on the power system operating regime. In phase 

one the system is in stationary regime and bus voltages (magnitude and angle) together with 

related variables like power flows, current through lines, etc. are estimated by a static estimator 

at a low speed, which is determined by the supervisory control and data acquisition (SCADA) 

system. When a physical disturbance happens and the system is in transient regime phase two 

comes into operation. This time, two estimators work in sequence at high speed. First, a static 

state estimator is used to estimate bus voltages as soon as the synchronized phasor measurement 

set arrives. Then, a dynamic estimator is in charge of estimating dynamic states of all generators 

and motors in the system, even if the unit is not observed by a PMU. Full observability is re-

stored through a novel data-mining based methodology, which defines, first, a PMU topology 

that allows monitoring the post-contingency bus voltage dynamics of the entire power system 

and, second, generates a number of bus voltage pseudo-measurements to extend the observa-

bility to the whole system. 
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1 Introduction 

Integrated energy systems (IESs) based on renewable energy resources are considered to be the 

future of energy systems [1]. Sector coupling is of particular interest because it suggests sup-

plying heat and mobility sectors with non-conventional energy. Heat pumps are increasing in 

the heat sector. Mobility will rely on alternative energy sources such as batteries. Simultane-

ously, photovoltaic is being deployed in great amounts [2]. This will lead to a radical change in 

the nature of the electrical grid behavior bringing more uncertainties to the operation of trans-

mission systems [3]. The variable and uncontrollable nature of renewable energy sources rep-

resents a challenge to the secure operation of power systems [4]. In addition, there is a sustained 

growth in electricity demand and a lack of investment in transmission infrastructure that leads 

power systems to operate close to their limits. A contingency occurring in the system under 

such conditions can lead to more complex dynamics, which increases the dynamic insecurity 

risk and even blackout risk. Experts around the world agree that one of the primary causes of 

cascading outages that led to blackouts in the past “was due to a lack of information on system 

conditions and a lack of readiness to take action” [5]. 

In order to improve the power system stability and security during and after disturbances, new 

strategies for enhancing operator situational awareness and power grid global and local con-

trollers must be developed. The enhancement of the system stability using new control schemes 

implies having access to information on system dynamics to perform online dynamic security 

assessment (DSA) at high speed [6]. However, the system monitoring tool of the Energy Man-

agement Systems (EMS) in charge of delivering such information, i.e. the state estimator, is 

based on a steady state system model, which can only capture very slow dynamics of power 

systems. This is mainly because the EMS depends on slow update rates of Remote Terminal 

Units (RTUs) from the Supervisory Control and Data Acquisition (SCADA) system [7]. The 

sampling rate is too low (2 to 5 seconds) to reveal the electromechanical dynamics in power 

systems. In addition, RTU-SCADA data are not synchronized [8]. That is why, only local states 

are used for controlling electromechanical phenomena. “Without global objectives and system-

atic coordination over wide areas, the influence of local controllers at the grid level may have 

adverse effects” [9, 10]. 
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Phasor measurement units (PMUs) are the means to improve conventional estimators or even 

change the paradigm of the estimation process. These devices have been developed since the 

beginning of the 80s and now they are widely accepted as an additional source of information 

by most systems around the world [11]. 

Recent research into wide area monitoring, protection and control schemes has shown that 

PMUs could significantly increase the performance of state estimators [12] by improving their 

accuracy and reliability as well as the bad data identification [13, 14]. Their accuracy, reporting 

speed and synchronization capacity by means of the global positioning system (GPS) make 

them suitable for global monitoring of the power system dynamics and open-up the possibility 

of developing distributed state estimation approaches, which have been an active research topic 

for the last past few years [15]. 

If enough PMUs could be deployed in the system so that to achieve a PMU-only state estimator, 

it would be possible to remove the issues related to the slow update rate and time skew. Under 

such conditions the static assumption would be dismissed. Because voltage and current are lin-

ear functions of the state, the estimation problem becomes linear and can be solved in just one 

iteration. Since PMU data is reported at high speed (60 times a second), a truly dynamic esti-

mate would be available. However, the deployment of such an approach for a large transmission 

system is still very expensive, where the average overall costs per PMU range between $40,000 

and $180,000. Here, communication systems and upgrades are the most significant factor fol-

lowed by cybersecurity requirements, installation and commission of the unit. The PMU hard-

ware cost represents less than 5% of the total cost [16]. A more viable and economically alter-

native to exploit the benefits offered by PMUs is a hybrid state estimator that combines syn-

chronized phasor measurements with the existing conventional measurements [12, 17, 18]. Un-

fortunately, state estimators with a few synchronized measurements usually have the same lim-

itations as conventional estimator regarding dynamics monitoring. That is, they only provide 

information in the form of a sequence of steady states or quasi-steady states (defined as a set of 

bus voltage magnitudes and angles). PMU high speed is usually not considered, and thus no 

benefit is derived from it with respect to dynamics monitoring. Besides, the dynamic state is 

completely ignored by such schemes. 

Therefore, it is required to develop a hybrid state estimator capable of capturing power system 

dynamics using measurements from RTU-SCADA as well as measurements from a limited 

number of PMUs installed in the power grid. 
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Additionally, some challenges that usually must be faced when combining PMU measurements 

with conventional RTU-SCADA measurements into a hybrid algorithm to obtain an optimal 

estimated state [17]: 

 Numerical stability issues: Current measurements from PMUs tend to provoke ill-condi-

tioning problems in the gain matrix. 

 Increased computational burden and data-tsunami: The dimensions of vectors and matrices 

are increased due to the additional PMU data. In addition, the deployment of PMUs will 

lead to huge amount of data to be transmitted to control centers. 

 Time skewness: Conventional and synchronized phasor measurements are reported at dif-

ferent rates and are not synchronized with each other. 

1.1 Research questions 

Previously, a number of issues that require further research in the field of hybrid state estimation 

applied to power system dynamics monitoring were presented. This thesis addresses these is-

sues by answering the following research questions: 

i. The number of PMUs to be installed in current power grids is one of the main obstacles 

when trying to get a hybrid state estimator capable of monitoring power system dynamics. 

A reduced number of units results in electric networks partially observed by such devices. 

Under such circumstances: Can full PMU observability be restored so that power system 

dynamics can be accurately estimated? If that is the case: How many units would be needed 

and where should they be located (PMU topology)? 

ii. How should synchronized phasor measurements be incorporated into a hybrid estimator 

considering aspects like time skewness and numerical issues? 

iii. Which algorithm/s is/are appropriate for solving the dynamic state estimation problem con-

sidering the ratio speed-accuracy? In case of needing more than one algorithm: How should 

they be integrated together in one methodology considering aspects like speed requirements, 

accuracy and convergence properties? 

iv. Which variables should be estimated from a stability and security point of view? 

v. In case of adopting a model-based estimator: how should the system be modelled to achieve 

an acceptable degree of accuracy of results? 
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vi. It is well known that additional data provided by PMUs together with their high reporting 

speed contribute to an increase in the computational burden and a saturation of the commu-

nication and data processing systems. What measures could be taken to counteract such 

effects? 

1.2 Objectives 

Main objective 

The main objective of this thesis is to develop a new hybrid state estimator capable of accurately 

monitoring the power system dynamics associated to slow and fast transient events considering 

a limited amount of PMUs. 

Specific objectives 

 To study and analyze with the assistance of data-mining tools the time evolution of bus 

voltage magnitudes and angles associated to transient events in order to: 

a) Identify groups of buses with similar voltage behavior (coherent areas) in magnitude and 

angle. 

b) Define the number of PMUs and their location in the grid (topology) using the knowledge 

gained in a) so that post-contingency bus voltage dynamics of the entire system can be 

observed by such units. 

c) Define a new methodology for generating voltage pseudo-measurements with the aim of 

extending the observability to the whole system. 

 To study and analyze the estimation algorithms proposed by the scientific community con-

sidering accuracy, speed and convergence properties with the aim of defining a feasible 

option to be used in the proposed estimator. 

 To define the state variables that must be estimated considering their potential use in future 

online dynamic security assessment functions. 

 To define the mathematical models to be used by the estimator to represent the behavior of 

the power system components so that to achieve an acceptable degree of accuracy of esti-

mated results. 

 To design an architecture so that the estimator can handle measurements at different report-

ing rates. 
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 To merge the hybrid state estimator with the methodology for generating voltage pseudo-

measurements into a single methodology. 

1.3 Thesis outline 

This thesis has been organized as follows: 

Chapter 2 presents the theoretical framework of this thesis. A new monitoring tool that informs 

the power system dynamics will lead to an improvement of the stability and therefore the secu-

rity as well. For this reason, these two attributes are addressed in first place. Next, the state 

estimation function and related concepts such as estimation methods and algorithms, observa-

bility, bad data processing and multi-area state estimation are defined. After that, an analysis of 

the state of the art on state estimation with PMUs is carried out. Finally, mathematical defini-

tions and tools used in this thesis are presented. 

Chapter 3 presents the approach for defining the number of PMUs and their location and the 

methodology for generating bus voltage pseudo-measurements. In first place, a data-mining 

based approach for identifying group of buses with similar post-contingency voltage behavior 

is presented. Next, the approach that determines the PMU topology in the grid using the 

knowledge gained before is described. Finally, a classifier capable of predicting coherent areas 

and the methodology for generating voltage pseudo-measurements are explained in detail. 

Chapter 4 presents the hybrid state estimator developed in this thesis for estimating power sys-

tem dynamics. First, an overview of it is given. Each component is described in detail, their 

functions and the variables that are estimated. A detailed description of the mathematical mod-

els used to represent the behavior of power grid elements such as lines, transformers, synchro-

nous and asynchronous machines and loads is also provided. 

In Chapter 5 the proposed hybrid state estimator, the approach that defines the PMU topology 

and the methodology for generating the pseudo-measurements are evaluated in the New Eng-

land benchmark system. Several operating scenarios which entail different kind of contingen-

cies are simulated. Results and analysis are given in detail. 

Chapter 6 summarizes the conclusions of this thesis, highlights its main contributions and pro-

vides an outlook on potential follow-up research topics. 
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2 Theoretical framework 

Current power systems are characterized by a growing uncertainty of their dynamic behavior 

in response to disturbances. Sector coupling, i.e. the use of electricity in other sectors aiming at 

eliminating the need for fossil fuels, is leading to a large-scale integration of renewable energy 

resources and to the use of more sophisticated electronics-based components. Because of that, 

power systems are becoming more complex. Additionally, electricity consumption is increasing 

rapidly. Under such circumstances, results delivered by conventional security assessment func-

tions are not reliable enough. A new scheme to perform an online dynamic security analysis is 

needed and therefore a new monitoring tool that provide accurate information about system 

dynamics. Hence, this chapter addresses first power system security concepts. The traditional 

approach for assessing the power system security and the changes that should be carried out to 

make an improvement in this sense are presented. Power system stability, as an essential com-

ponent of power system security, is defined and classified. 

Improved analysis tools require new and better monitoring functions. In a second step, the state 

estimation function for monitoring the system state is addressed. The traditional state estimator 

is first introduced and its limitations are identified. After that, a review of alternative estimation 

methods and algorithms as well as related concepts such as observability, bad data processing 

and multi-area state estimation are performed. Next, the PMU technology and its potential ben-

efits and current limitations for practical use are introduced. An analysis of the state of the art 

on state estimation using PMU measurements is carried out. 

The proposed approaches for defining the PMU topology and the pseudo-measurements involve 

an analysis of post-contingency bus voltage behavior aiming to gain useful knowledge from it. 

In this thesis, data-mining techniques capable of performing such tasks are used. In the last part 

of this chapter such techniques are introduced and explained. 

2.1 Security concepts 

This subsection reviews the main concepts involved in power system security. The term dy-

namic security assessment is explained. Besides, the relationship between security and stability 

is discussed. Here, the different categories of power system instability together with the devices 

and the electrical quantities involved in of each of them are identified and described. 
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2.1.1 Security assessment 

Power system security is related to the probability of supplying the energy demand without 

interruption. The more secure the system, the lower the probability of loss of load [19]. Security 

analysis aims at determining the robustness of the power system under imminent disturbances. 

According to [20] there are two main components in the security analysis: “For a power system 

subjected to changes (small or large), it is important that when the changes are completed, the 

system settles to new operating conditions such that no physical constraints are violated. This 

implies that, in addition to the next operating conditions being acceptable, the system must 

survive the transition to these conditions”. Dynamic security assessment will find out if the 

system can meet certain security specifications in dynamic and steady state and for all credible 

contingencies. A secure system complies with pre-defined operating specifications before and 

after the contingency. Because of this, an analysis involving all aspects of the system security 

is mandatory. Line loadings, bus voltages, frequency deviations and all kind of stability must 

be assessed. Security assessment involves high computational resources. That is why, it has 

been carried out in “an offline operation-planning environment” where the system performance 

(in static and dynamic condition) considering short-term forecasted scenarios is evaluated by 

means of power flow calculations and time-domain simulations [21]. 

Power systems were more secure in times of regulated and vertically integrated electricity mar-

kets. This was due to the fact that those systems were designed, built and operated only by one 

entity (monopoly). Integrated system planning allowed generation and transmission systems to 

keep up with the load increase, thereby avoiding overloading and equipment failures that could 

lead to system disturbances. System maintenance were also more strict. Forecasting system 

conditions was simpler because there were fewer market players involved in the generation and 

transmission sectors and they “were operating in a carefully planned and cooperative manner” 

[21]. As a result, systems were more robust when being subjected to disturbances and were 

more predictable in their behavior. Nevertheless, the evolution of electricity markets over the 

last decade has introduced a number of factors that increases the possible sources for system 

disturbances, reduced the system robustness and predictability [21]. 
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In today’s competitive markets, the uncertainty about future operating conditions leads to the 

need for an online approach in order to evaluate the system security: the online dynamic security 

assessment. This new method analyzes the system stability for the current operating condition 

with enough speed so that automatic control actions can be performed if the contingency under 

analysis is found to be insecure. Because the evaluation is performed on the current system 

operating condition, the uncertainty of the offline analysis using forecasted scenarios is re-

moved. Such an approach would provide early warning to operators so that remedial actions 

can be taken [21]. The quality of the online dynamic security assessment and system operation 

is directly affected by the speed, accuracy and reliability of the state estimator [22]. Thus, power 

system state estimation constitutes the core of the online dynamic security analysis function. 

2.1.2 Power system stability 

Stability analysis is an integral component of system security assessment. A Task Force, set up 

jointly by the CIGRE Study Committee 38 and the IEEE Power System Dynamic Performance 

Committee, has defined the power system stability as ”the ability of an electric power system, 

for a given initial operating condition, to regain a state of operating equilibrium after being 

subjected to a physical disturbance, with most system variables bounded so that practically the 

Table 2.1 Factors that currently contribute to a reduction in the system security [21] 

Factor Potential consequence 
Aging transmission infrastructure  Increased probability of component failures and 

malfunction leading to system disturbance 
Lack of new transmission facilities  Overloading of transmission facilities leading to 

protection operation or contributing to phenom-
ena such as voltage collapse 

 Bottlenecks in key transmission corridors leading 
to congestion 

Increased dependence on controls 
and special protection systems 

 Increased probability of inadvertent/incorrect op-
eration of protections 

 Increased unpredictability of cascading events 
Large number of small distributed 
generators 

 Increased difficulty in adequate system design 
due to uncertainty generation plans 

 Uncertainty in dispatch 
New technologies such as advanced 
control systems, wind power, fuel 
cells, etc. 

 Lack of operating experience with technologies 
which may have unique dynamics characteristics 

 Unpredictable behaviors during disturbances 
Trend toward interconnection  Exposure to cascading disturbances brought on 

by events in neighboring systems 
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entire system remains intact”. This definition does not take into consideration the different types 

of stability. The analysis can be simplified when power system stability is classified into ap-

propriate categories [23]. 

Stability can be classified by focusing on only one variable (i.e. voltage, frequency or rotor 

angle). Such a classification is known as partial stability and is based on the following assump-

tions [20, 23]: 

 The nature of the resulting mode of instability as indicated by the main variable in which 

instability can be detected. 

 The size of the disturbance, which defines the method of calculation. 

 The devices, processes, and the time span that must be considered in order to evaluate sta-

bility. 

Rotor angle stability 

Rotor angle stability is the ability of synchronous machines to remain in synchronism after 

being subjected to a disturbance. It is defined by the ability to conserve/restore the balance 

between electromagnetic and mechanical torque. The system becomes unstable when the 

angular swings of some generators increase until reaching loss of synchronism [20]. 

In stationary regime, the mechanical and electromagnetic torque of each generator are equal, 

and the speed remains constant. When the system is disturbed, this balance is upset, which leads 

to acceleration or deceleration of the machine shaft according to the laws of motion of a rotating 

body. The rotor angular position of the faster generators will advance the position of the slower 

machines. This angular difference causes part of the load to be transferred from the slow 

generator to the fast one, depending on the power-angle relationship (highly nonlinear), which 

reduces the speed difference and hence the angular distance. From a certain limit, an increase 

in the angular distance leads to a decrease of power transfer so that the angular separation rises 

even more. Instability will occur when the system is not capable of absorbing the kinetic energy 

related to the rotor speed differences. Thus, stability depends on whether or not deviations in 

angular positions provoke sufficient restoring torques [20]. 

According to [20], angle stability can be classified in the following two subcategories  

 Small-disturbance angle stability is concerned with the ability of the system to remain in 

synchronism under small disturbances. The disturbances are considered to be small enough 
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to linearize the system of equations for analysis purposes. The time frame of interest is in 

the order of 10 to 20 seconds following the disturbance [20]. 

 Large-disturbance angle stability or transient stability is concerned with the ability of the 

system to remain in synchronism after the occurrence of a large system upset, such as a 

short circuit. “The system response involves large excursions of generator rotor angles and 

is influenced by the nonlinear power-angle relationship”. The time frame of interest goes 

from 3 to 5 seconds after the disturbance [20]. 

Voltage Stability 

Voltage stability is defined as the power system ability to keep acceptable voltage levels under 

normal operating conditions and following a disturbance. Imbalance between load demand and 

load supply may lead to voltage instability. Voltage drops through the inductances in transmis-

sion grids contribute to voltage stability issues. Power flowing through inductive reactance lim-

its the power transfer capacity of the network and the voltage support. Reactive power limits of 

generators and loads and compensation devices characteristics represent also a key factor that 

contributes to voltage instability [20, 23, 24]. Some measures that may help to restore the volt-

age level and to prevent the voltage collapse are load shedding, transformer tap changing, gen-

erator excitation forcing, etc. Voltage can be controlled by means of reactive power support. 

As stated by [23], “the voltage stability conditions are met if the reactive power injection in-

crease in one bus will lead to voltage increase in the same bus. In other words, a system is 

voltage stable if the V-Q sensitivity is positive for every bus and voltage unstable if the V-Q 

sensitivity is negative for at least one bus”. 

According to [20], voltage stability can be classified into the following subcategories: 

 Large-disturbance voltage stability is defined by the system’s ability to maintain voltage 

levels within boundaries after large disturbances. Its analysis involves the evaluation of the 

system nonlinear response over a certain period of time so that the performance and inter-

actions of devices such as motors can be detected. The time frame of interest goes from a 

few seconds to tens of minutes. 

 Small-disturbance voltage stability is defined by the system’s ability to maintain voltage 

levels within limits when subjected to small upsets such as small changes in the system 

load. Under such circumstances, the system equations can be linearized for analysis pur-

poses. 
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Voltage stability may be either a short-term or a long-term phenomenon [20]: 

 Short-term voltage stability “involves dynamics of fast acting load components such as in-

duction motors, electronically controlled loads, and HVDC converters”. The time frame of 

interest is in the order of seconds and its assessment entails the solution of differential equa-

tions. The load behavior must be represented in detail using dynamics models. 

 Long-term voltage stability “involves slower acting equipment such as tap-changing trans-

formers and thermostatically controlled loads”. The time frame of interest may cover sev-

eral minutes. Its analysis entails long-term simulations. Static analysis can be employed for 

defining the stability margins. 

Frequency stability 

Frequency stability is defined by the system ability to maintain steady frequency after the oc-

currence of a large disturbance that leads to an important imbalance between generation and 

demand. Frequency stability can be ensured if the system is capable of keeping the balance 

between generation and load, with minimum amount of load being unintentional disconnected. 

When the system becomes unstable the frequency either suddenly drops or swings permanently. 

This phenomenon will lead eventually to generation outage and/or load curtailment [20]. As 

stated in [20], “frequency stability problems are generally associated with inadequacies in 

equipment responses, poor coordination of control and protection equipment, or insufficient 

generation reserve”. 

Times behind the processes and equipment involved in frequency stability goes from fraction 

of seconds (under frequency load shedding and generator controls and protections) to several 

minutes (response of equipment such as prime mover systems). That is why, frequency stability 

may be either a short-term or a long-term phenomenon [20]. 

2.2 Power system monitoring: state estimation 

At the beginning, power systems were monitored only by supervisory control systems. They 

basically monitor and control circuit breakers, generator outputs and the system frequency. 

Then, these systems were improved with real-time wide-data acquisition capabilities, which 

allowed control centers to collect all measurements from the power system. This led to the 

creation of the first SCADA system. The main goal behind this development was the possibility 

of performing a security analysis. Nevertheless, errors in the measurement set and communica-

tion noises, to name a few examples, may result in unreliable information from the SCADA 
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system. In addition, the system state may not be accessible from the set of measurements. For 

example, voltage angles are not usually measured, and transmission line flows are only known 

in some lines. Metering all possible measurements is not economically feasible. Professor 

Schweppe was the one who identified all these limitations and proposed the state estimation 

function. The state estimation function augmented the capabilities of the SCADA system and 

led to the creation of the EMS, a system that would now be equipped with a number of specific 

applications, one of them is the state estimator [25]. 

State estimator allow identifying the current operating state by monitoring with efficiency quan-

tities such voltage magnitudes and line loadings. The security assessment function uses this 

information in order to analyze contingencies and to determine any remedial actions [25]. State 

estimator usually include the following functions [25]: 

 Topology processor: it collects data on the circuit breakers and defines the single line dia-

gram of the system. 

 Observability analysis: it defines if the estimation problem for the entire system can be 

solved using the available set of measurements. 

 State estimation: it finds the system state, i.e. bus voltages in magnitude and angle for the 

entire power system, based on the network model and the available set of measurements. In 

addition, it finds the line flows, loads, transformer taps, and generator outputs. 

 Bad data processing: it detects and identifies gross errors in the measurement set in order to 

remove them. 

Limitations on current state estimators 

Traditional state estimators currently in use do not meet the necessary requirements for the 

implementation of an online dynamic security assessment. This is mainly due to the following 

reasons [15]: 

 Measurements used by traditional estimators are delivered by SCADA systems from RTUs 

at a low update rates (2 to 5 seconds) to capture the dynamics associated with transient 

events. Besides, “they are not accurately time-stamped, in a unified way, independent of the 

measurement location, and thus are not synchronized”. This can lead to “significant biases 

in the estimation, and may even be practically useless in a dynamic estimation framework”. 
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 “No dynamics are included in the models, since most of even the slower system dynamics 

have time scales of the order of milliseconds or at most seconds, and usually a very limited 

amount of system dynamic data is available by electric utilities”. 

Conventional approaches for estimating the power system state are not capable of capturing the 

system dynamics (with the exception of some slow system changes). They only give infor-

mation “in the form of a sequence of steady states, or quasi-steady states” (bus voltage magni-

tudes and angles). That is why, wide area control actions are limited to slow steady state control 

that is manually executed by system operators. Fast automatic control in transient regime is 

provided only locally without considering the wide area system behavior [15]. 

From recent major power system outages emerged the need for more efficient methods of mon-

itoring the state of power systems and in particular the stability of the system. Experts from 

around the world agree that one of the primary causes of cascading outages on recent blackouts 

“was due to a lack of information on system conditions and a lack of readiness to take action”. 

This particular issue can be addressed with a better monitoring tool. The concept of a dynamic 

wide-area monitoring scheme will provide additional real-time information. Besides, it will 

help to understand the reason for the blackout and will enable a postmortem analysis. Having 

access to real-time information about the actual conditions of the electrical grid would allow 

detecting and recognizing more easily emergency conditions. Then, a better analysis could be 

carried out and remedial actions could be taken in a “quicker and more controlled fashion” [5]. 

2.2.1 Methods 

Thinking about the term “state”, one can imagine that it gives a “complete summary” about the 

system condition at a given time instant. By conventional estimators, it is supposed that the 

power system is working under normal condition, known as quasi-stationary regime. This 

means that the system is subjected to variations coming from small and smooth load changes 

and the corresponding adjustments in generation. Under these assumptions, the system operat-

ing condition is fully defined at a certain time instant by variables such as bus voltages and 

related variables like power flows, generator outputs, etc. This state is known as static-state and 

its time evolution (a sequence of stable steady-state conditions) is usually observed through 

measurements acquired by RTUs. “From the dynamic point of view, these devices have intrin-

sic limitations (no time stamps and low sampling rates)” [26]. Methods used to solve the prob-

lem in such a cases are known as static state estimation methods. “This mean that, whenever a 
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new measurement set is processed by the estimator, previously estimated states are not consid-

ered to obtain an estimate of the current system state. In other words, estimated states are ex-

tracted from a single scan of measurements viewed as a true snapshot of the system state” [26]. 

The following nonlinear measurement model is used: 

 z = h(x) + e (2.1) 

where z is the measurement, x is the true state, h is a nonlinear vector function relating meas-

urements to states, and e is the measurement error [19] whose components are commonly as-

sumed to have Gaussian (Normal) distribution with zero mean and variance σ2. 

The dynamic state estimation method gets information not only from current measurements but 

also from past measurements. It is assumed that the system may experience a sudden disturb-

ance. Such a condition is known as transient-regime and electromechanical transients are con-

sidered. Hence, the system is mathematically modelled by the following differential algebraic 

equations (DAEs) [27]: 

 ẋ=f (x(t), y(t), u(t), p) (2.2) 

 0=g(x(t), y(t), u(t), p) (2.3) 

where x represents the dynamic-state, such as the internal states of a machine or a dynamic 

load, etc.; y represents the algebraic state, such as bus voltages and currents; u is the system 

input; p represent model parameters; and f and g are nonlinear functions. Through discretization 

of the continuous-time model and considering the equality constraints in (2.3) as pseudo-meas-

urement and processing them with the incoming measurements, a “more general state space 

model for dynamic state estimation” is [27]: 

 xk=f (xk-1, yk-1,uk, p)+wk (2.4) 

 zk=h(xk, uk, p)+ek (2.5) 

where wk is an error that includes discretization and model approximation errors, zk is the meas-

urement, including pseudo-measurements, measured algebraic variables, etc.; h is the nonlinear 

function of measurements; and ek is the measurement error. 

The forecasting-aided state estimation method is a particular application of the dynamic esti-

mator concept to quasi-stationary state regime, “in which the state-transition model is driven 

only by slow enough stochastic changes in the power injections and the dynamics of xk are 
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sufficiently small to be neglected” [27]. In the forecasting-aided method, the state-transition 

model in (2.4) is assumed linear, which leads to [27]: 

 yk = Ak yk-1 + ζk-1 + wk (2.6) 

 zk = h (yk, p) + ek (2.7) 

where yk “represents algebraic state variables that specifically refer to the bus voltage magni-

tudes and angles”. The transition matrix Ak and the trend vector ζk-1 are defined from historical 

time series data. When the input or trend vector changes smoothly, the forecasting-aided 

method delivers good results. Nevertheless, its performance can be degraded in presence of 

abrupt changes as “the state transitions coefficients take a while to adapt to the new situation” 

[27]. 

Assuming that the state transition matrix Ak is an identity matrix and the change in the state 

vector from one time instant to the next one is small enough, the forecasting-aided method 

simplifies to the tracking state estimation method. In this case the model used is [27]:  

 yk=yk-1+wk (2.8) 

 zk=h(yk, p)+ek (2.9) 

The tracking approach “assumes a quasi-stationary state regime, where the system state remains 

unchanged other than an additive Gaussian noise wk”. One main drawback of the tracking 

method is “the lack of an appropriate model to represent the system dynamics”. This becomes 

more relevant in today’s power system where the large deployment of renewable energy sources 

leads to unpredictable behavior of the power system. Hence, adopting tracking methods for 

practical applications is far from becoming real [27]. 

2.2.2 Algorithms 

This section introduces and explains some of the most commonly used state estimation algo-

rithms. 

Weighted least squares 

According to [25], “most conventional state estimators in practical use are formulated as over-

determined systems of nonlinear equations and solved as weighted least square (WLS) prob-

lems”. Considering the nonlinear measurement model (2.1) and assuming m measurements and 

n state variables, where n<m, the WLS algorithm will minimize the following objective func-

tion [25]: 
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 J(x)= �
(zi - hi (x))2

Rii

m

i=1

=[z - h(x)]T R-1 [z - h(x)] (2.10) 

It is assumed that measurement errors are independent from each other and they follow a Gauss-

ian distribution with zero mean and variance σ2. Under such assumptions the error covariance 

is: 

 Cov(e)=R=diag �σ1
2, σ2

2, …, σm
2 � (2.11) 

The standard deviation σi of each measurement error i is calculated to reflect the expected ac-

curacy of the corresponding meter. At the minimum, the first order optimality must be satisfied. 

These can be expressed as follows: 

 g(x)=
∂J(x)

∂x
=-HT(x) R-1[z - h (x)]=0 

(2.12) 

 H(x)=
∂h(x)
∂x

 

Expanding the nonlinear function g(x) into its Taylor series around the state vector xk yields: 

 g(x)=g(xk)+G(xk)(x - xk)+ … = 0 (2.13) 

Neglecting the higher order terms leads to an iterative solution scheme known as the Gauss-

Newton method: 

 xk+1=xk- �G(xk)�-1
g(xk) 

(2.14)  G(xk)=
∂g(xk)

∂x
=HT(xk)R-1H(xk) 

 g(xk)=- HT(xk)R-1�z - h(xk)� 

G(x) is called the gain matrix. It is sparse, positive definite and symmetric if the system is fully 

observable. It is decomposed into its triangular factors and the following sparse linear set of 

equations are solved using forward/back substitutions at each iteration k: 

 �G(xk)�Δxk+1=HT(xk)R-1[z-h(xk)] 
(2.15) 

 Δxk+1=xk+1-xk 

The set of equations given by (2.15) is known as the normal equations. The WLS algorithm is 

used to estimate the static state of the system. 
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M-Estimators 

The solution obtained with the WLS method will be affected under the presence of bad data 

(outliers). The objective function is a proof of this (residuals have a quadratic influence in the 

objective function) [19]. In this sense, the WLS is not robust and the accuracy will be degraded 

even in the presence of a single outlier. Hence, the estimation process is followed by a post-

estimation bad data processor that will detect, identify, and correct any existing outlier [28]. 

M-Estimators involve a number of robust estimators. They can automatically detect measure-

ments with growing residuals and remove their influence on the result. An M-Estimator is a 

maximum likelihood estimator that minimizes a non-quadratic objective function subjected to 

constraints given by the measurements equations [25]: 

 Minimize  � ρ(ri)
m

i=1

 
(2.16) 

 Subject to       z=h(x)+r 

where ρ(ri) is a function of the measurement residual, z is the measurement, x is the state and 

h(x) is the measurement function. As stated in [25], “the influence of bad data on the estimated 

state and methods of their suppression can be addressed by changing the estimation algorithm 

in such a way that the bad measurements will be screened during the iterative process”. This 

concept produced several M-estimators. The Least Absolute Value (LAV) estimator represents 

an option among them. 

Considering the following linear regression model [25]: 

 zi=di
Tx+ei (2.17) 

where, a set of observations {zi, i=1,…,m} are assumed to be linearly related to a set of vectors 

{di ∈ Rn, i=1,…,m} and an unknown vector x ∈ Rn, and each observation i contains some ran-

dom error ei. Then, the LAV estimate x� for the unknown vector x will be obtained by the solu-

tion of the following optimization problem [25]: 

 Minimize cT|r| 
(2.18) 

 Subject to z-Dx=r 

where, D is a m x n matrix with di
T being its i-th row, c ∈ Rm is a vector with all of its entries 

equal to 1, and r ∈ Rm is the observation residual. 
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LAV estimators can be applied using linear programming solvers and they can automatically 

process large errors and remove them in the same estimation process. Despite these qualities, 

LAV estimators have not been implemented in the past for two reasons: in the first place, the 

estimation problem is nonlinear and computationally inefficient when using conventional meas-

urements and, secondly, leverage points in measurements make the LAV estimator fail to au-

tomatically remove big errors [29]. A measurement is called a “leverage point if it lies far away 

from bulk of the rest of the measurements in the sample space”. They are similar to critical 

measurements in the sense they “force the estimated state to closely satisfy their values and thus 

biasing the estimated state if they carry gross errors” [29]. As in the case of the WLS, LAV 

estimators are employed to estimate the static state. 

Discrete-time Kalman filter 

Kalman filters (KFs) are the right choice for systems in change. Their efficiency and high speed 

make them appropriate for solving real-time problems and embedded systems. KFs are recur-

sive estimators, which means they only use the estimated state at the previous time and the 

current measurement to estimate the system state [30]. They are employed to estimate the dy-

namic state of a system. 

The KF consists of two phases: “Predict” and “Update”. The predict phase uses the estimated 

state from the previous time step to get an estimate at the current time step. This state is known 

as the “a priori estimated state” since the measurement set from the current time step is not 

considered. In the update phase, the a priori estimated state is combined with the current meas-

urement set to “refine” the estimated state. This improved solution is known as the “a posteriori 

estimated state” [30]. “The KF operates by propagating the mean and covariance of the state 

through time” [31]. 

The standard KF assumes that the state x at time k evolves from time k-1 according to the 

following linear discrete-time equation [30]: 

 xk = Fk-1 xk-1 + Uk-1 uk-1 + wk-1 (2.19) 

where xk  is the true state at time k, Fk-1 and Uk-1 are the transition and input matrices respec-

tively at time k-1 (considering time-variant system), uk-1 is the input at time k-1 and wk-1 is a 

Gaussian zero-mean white noise with covariance Qk-1 . At time k, a measurement zk is obtained 

with the following equation: 

 zk = Hk xk + ek (2.20) 
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where Hk is the measurement matrix and ek is a noise measurement, which follows a Gaussian 

zero-mean distribution with covariance Rk. Both noises wk and ek are assumed uncorrelated. 

The filter is initialized defining the initial estimated state x0. It is named x�0
+, where the “+” 

superscript denotes that the estimated state is “a posteriori”, despite not having any available 

measurement yet, since the first one is taken at t = k. The covariance of the initial estimated 

state P0
+ it is also defined here [30, 31]: 

 x�0
+ = E(x0) 

(2.21) 
 P0

+=E �(x0 - x�0
+) (x0 - x�0

+)
T

� 

If the initial state is perfectly known, then P0
+ = 0, otherwise P0

+ ≫I. When time k arrives, before 

processing the measurements, covariance and state are predicted using the following general 

time-update equations [30, 31]: 

 x�k
- =Fk-1x�k-1

+ +Uk-1 uk-1 
(2.22) 

 Pk
- =Fk-1Pk-1

+ Fk-1
T +Qk-1 

where the “-“ superscript denotes that the estimate is a priori. Because in this step there is not 

any additional measurement, the state is defined using the knowledge from the system dynam-

ics. Next, when the measurements at time k are finally available, the estimated state and its 

covariance are updated using the measurement-update equations, which are obtained from the 

recursive least squares estimator [30, 31]: 

 Kk=Pk
- Hk

T(HkPk
- Hk

T+Rk)
-1

 

(2.23)  x�k
+=x�k

- +Kk(zk-Hkx�k
- ) 

 Pk
+=(I-KkHk)Pk

-  

The matrix Kk in the above equations is called the Kalman filter gain. 

The standard KF assumes that the system model is linear and well known, the process and  

measurement noises are unrelated, they follow a Gaussian distribution with zero mean and 

known covariance matrices. Nevertheless, in the reality these assumptions are seldom fulfilled 

[30]. That is why, some variants have been proposed in the literature. For instance, the extended 

Kalman filter (EKF) represents a suitable alternative to nonlinear problems based on the Taylor 

expansion. Unscented Kalman filter (UKF) and particle filter (PF) are appropriate for nonlinear 

and non-Gaussian systems [30]. 
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Since the EKF is one of the algorithms used in this thesis, it will be briefly introduced and 

explained below. For further information regarding UKF and PF, readers can refer [30, 31]. 

Discrete-time extended Kalman filter 

In case of nonlinear system models, the EKF can be used to estimate the dynamic state of the 

system. To achieve this, “the system is linearized around the nominal state trajectory, which is 

obtained from the KF estimate. This is a sort of a bootstrap method. The nonlinear system is 

linearized around the KF estimate, and the KF estimate is based on the linearized system” [31]. 

Assuming the following general and nonlinear discrete-time system model [31]: 

 xk=fk-1(xk-1,uk-1,wk-1) 

(2.24) 
 zk=hk(xk,ek) 

 wk~(0, Qk) 

 vk~(0, Rk) 

The filter is initialized as follows [31]: 

 x�0
+=E(x0) 

(2.25) 
 P0

+=E �(x0-x�0
+) (x0-x�0

+)
T

� 

Then, for k = 1, 2,…, the following operations are performed [31]: 

1) Matrices from partial derivatives 

 Fk-1=
∂fk-1

∂x
 �

a
x�k-1

+  
(2.26) 

 Lk-1=
∂fk-1

∂w
 �

a
x�k-1

+  

2) Time update of the state estimate and its covariance 

 x�k
- =fk-1(x�k-1,uk-1,0) 

(2.27) 
 Pk

- =Fk-1Pk-1
+ Fk-1

T +Lk-1Qk-1Lk-1
T  
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3) Matrices from partial derivatives 

 Hk=
∂hk

∂x
 �

a
x�k

-  
(2.28) 

 Mk=
∂hk

∂e
 �

a
x�k

-  

4) Measurement update of the state estimate and its covariance 

 Kk=Pk
-  Hk

T(Hk Pk
-  Hk

T+Mk Rk Mk
T)

-1
 

(2.29)  x�k
+=x�k

- +Kk (zk - hk( x�k
- ,0)) 

 Pk
+=(I-KkHk) Pk

-  

2.2.3 Observability 

As stated in [27], “observability is defined as the ability to determine uniquely the system state 

from available measurements”. Depending on the system to be estimated and the estimation 

method adopted observability analysis will be different in nature. 

Observability analysis for static state estimation 

In relation to traditional estimators, a network observability analysis is usually performed prior 

to state estimation with the aim of determining if the number of measurements and their location 

make state estimation possible. When there are not enough measurements, observability anal-

ysis allows finding which parts of the network contain states that can still be estimated, as well 

as where pseudo-measurements can be added to improve observability. 

The relationship between the number of measurements and the number of the states is known 

as measurement redundancy. In practice, its value usually is in the range 1.7 - 2.2. A critical 

measurement is a non-redundant measurement and will make the system unobservable if it is 

removed [32]. 

There are three main types of approaches to perform observability analysis for static state esti-

mation problems: topological, numerical and hybrid [32]: 

a) The topological observability method was thought for networks represented by bus/branch 

models and is based on the concept of maximal spanning tree. A maximal spanning tree 

contains every node in the graph representing a network. This method does not necessarily 

ensure that the estimation problem can be solved [32]. 
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b) Numerical approaches can be based on fully coupled or decoupled models. They operate by 

factorizing the measurement Jacobian or the gain matrices and are formulated using either 

branch or nodal variables [25]. 

c) Hybrid approaches benefit from the best of both, topological and numerical methods. As 

stated in [32], “a basic topological algorithm with simple injection conversion to obtain one 

or more islands, which are as large as possible, and a numerical algorithm for application 

to the reduced system”. 

Observability analysis for dynamic state estimation 

A dynamic system may be highly or poorly observable. Since the problem is nonlinear and 

time-dependent, observability will be also time-dependent. As regards linear time-invariant dy-

namic system, observability can be determined according to the rank of the observability matrix 

(a full rank matrix denotes an observed system). In relation to nonlinear system, the system 

response can be linearized around a given operating point and then observability can be locally 

evaluated. Despite such an approach may be computationally efficient, it will be inaccurate 

under “highly nonlinear operating conditions” [27]. The following methods do not perform any 

linearization: 

a) Lie derivatives: a nonlinear dynamic system is observable at x0 if the observability matrix 

obtained by using Lie derivatives at x = x0 has a full rank [27]. 

b) Empirical observability Gramian: the empirical observability Gramian allows analyzing the 

output behavior of a nonlinear system. It is defined over an operating region and gives the 

observability of the full nonlinear dynamics in the given domain [27]. 

2.2.4 Bad data processing 

One main function of the state estimator is to detect errors and to identify and eliminate them 

if possible. Errors in measurements are generally due to the “finite accuracy” of the meters. If 

the measurement redundancy is enough, such errors will be filtered by the estimator. Big errors 

can occur because the meters have “biases, drifts or wrong connections” [25]. 

When using the WLS algorithm, detection and identification of errors are performed only after 

the estimation approach by processing the measurement residuals [25]. 

Bad data can be classified as [25]: 

a) Single bad data: only one measurement is affected by a large error. 
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b) Multiple bad data: more than one measurement is affected by a large error. 

Bad data processing involves two processes: detection and identification. The detection process 

defines whether or not the measurement set contains any error. The identification process finds 

which specific measurements actually have bad data. Bad data can be detected as long as their 

removal does not make the system unobservable. This means, bad data in critical measurements 

cannot be detected [25, 33]. 

Next, some of the most known methods to detect and identify bad data in conventional estima-

tors will be introduced and briefly explained. 

Detection 

An approach used for detecting bad data is the Chi-squares test based on the properties of the 

χ2 distribution. The method involves the following steps [25]: 

1) Solve the WLS problem and compute the objective function J(𝒙𝒙�) in (2.10) 

2) Obtain the value corresponding to a detection confidence with probability p (e.g. 95 %) and 

m-n degree of freedom from a table containing χ2 cumulative distribution function values 

for different degree of freedom, where m is the number of measurements and n is the num-

ber of states. The value will be χ(m-n), p
2  

3) Test if J(x�) ≥ χ(m-n), p
2 . If yes, then bad data will be suspected. Else, measurements will be 

assumed free of bad data 

Normalized residuals can also be used for detecting bad data. The normalized residual r for the 

measurement i can be obtained by dividing its absolute value by the corresponding diagonal 

entry in the residual covariance matrix [25]: 

 ri
N = 

|ri|

�Ωii
 

(2.30) 

 Ω = RS 

Where S is called sensitivity matrix and represents the sensitivity of the measurement residuals 

to the measurement errors [25]: 

 S = I - (HG-1HTR-1) (2.31) 

The largest element in rN can be compared against a statistical threshold to decide on the exist-

ence of bad data [25]. 
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Identification 

Bad data can be identified in the measurement set by further processing of the residuals. The 

largest normalized residual test can be used for this purpose. The method consists on the fol-

lowing steps [25]: 

1) Solve the WLS estimation and obtain the elements of the measurement residual vector: 

 ri = zi  - hi(x�),      i = 1, . . . , m (2.32) 

2)  Compute the normalized residuals in (2.30) 

3) Find k such that rk
N is the largest among all the ri

N 

4) If rk
N>c, then the k-th measurement will be suspected as bad data. Else, stop, no bad data 

will be suspected. Here, c is a identification threshold 

5) Eliminate the k-th measurement from the measurement set and go to step 1) 

2.2.5 Multi-area state estimation 

Deregulation of electricity markets can lead companies to monitor network across large geo-

graphical areas. As a result, a large number of meters should be available, and with it an im-

portant number of measurements, which prevents a centralized estimator to operate with effi-

ciency. In this sense, multi-area state estimation (MASE) represents an alternative, where a 

power system is divided into smaller areas and local estimators are run in each area in order to 

obtain the global estimated state (distributed state estimator). Multi-area approach reduces the 

amount of data that each estimator processes (hence reduces complexity) and this allows im-

proving the computing performance [17, 34]. 

Two processing techniques are used by multi-area state estimation methods [35]: 

a) Parallel: it uses a number of closely coupled processors inside a physical reduced space. 

This technic speeds up the solution process [35]. 

b) Distributed: it uses a number geographically distributed computers. For a large power sys-

tem, distributed processing can be a more flexible and reliable option for performing mon-

itoring and controlling tasks. In addition, it can save large investment in communication 

networks [35]. 
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Two computer architectures have been proposed [35]: 

a) Hierarchical: a master computer assigns the work among slave computers performing local 

estimation and then it coordinates the local results [35]. 

b) Decentralized: there is no central coordinator computer. Each local computer “communi-

cates only with processors of neighboring areas, exchanging border information” [35]. 

2.3 PMU and its application in state estimation: State of the Art 

A PMU is a meter that provides synchronized voltage and current phasor measurements. PMU 

features were first implemented in stand-alone units (the first one was built in 1990 at Virginia 

Tech). Currently, Intelligent Electronic Devices (IEDs) have been upgraded to produce syn-

chronized phasor measurements in addition to their own function. About two decades ago, the 

PMU deployment was scarce but after a number of successive blackouts it became more fre-

quent all around the globe [36, 37]. 

The phasor estimation technique allows obtaining the phasor representation of a sinusoid quan-

tity. Samples of the wave are taken over a data window which is usually one period of the 

fundamental frequency. The phasor is estimated using the Discrete Fourier Transform (DFT) 

[37]. 

PMUs use GPS to achieve a common reference for the synchronized phasor acquisition process. 

By synchronizing the sampling processes for signals that can be far away from each other, it is 

possible to assign their phasors to the same diagram. This allows the measurements to be com-

pared directly and facilitates the analysis [37]. Measurements taken at one location are globally 

valid and can be used together with data collected at different locations [15]. Other estimates 

of interest are frequency and rate of change of frequency. 

Phasor measurements are transmitted using digital communication networks to higher level ap-

plications at high speed (rate up to 60 samples per second in 60 Hz networks). Phasor data from 

different PMUs are then collected by a computer called Phasor Data Concentrator (PDC). It 

correlates the data using time-stamps with the aim of obtaining a system-wide measurement set 

[36]. 

Synchronized phasor measurements are usually more precise than conventional measurements. 

PMU measurements are time tagged with precision better than 1 microsecond. Their accuracy 

in magnitude is above 0.1% [36]. 
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One of the applications that can be improved with the use of the PMU technology is the power 

system state estimator. The state estimator is one of the most critical EMS functions [38]. PMUs 

allow improving state estimation: both algorithmic and architectural [37]. If enough PMUs are 

deployed, the measured voltage and current phasors can make the network observable, thus 

making state estimation feasible. Such PMU-only state estimator is linear and can run at PMU 

speed. Thus the linear estimator can observe the dynamics associated to slow and fast phenom-

ena of the entire power system. A linear PMU-only state estimator is possible, but is still ex-

pensive and far from becoming real in large scale applications. Besides, conventional measure-

ments provide useful information that should not be discarded. Therefore, a more realistic and 

feasible option entails the use of both kind of measurements in a hybrid state estimator [39].  

2.3.1 PMU based state estimators 

Two kind of state estimators based on PMUs are found in the literature: PMU-only state esti-

mators and hybrid state estimators. In this thesis both kinds are analyzed considering the fol-

lowing aspects: estimation method, reporting speed, variable/s to be estimated, algorithm used 

to find the solution and approach employed to detect and identify bad data. 

PMU-only state estimators 

A PMU-only state estimator may rely on static [28, 29, 40–42], forecasting-aided [43] or dy-

namic methods [6, 7, 10, 15, 44–54]. For either of the first two methods previously mentioned 

bus voltages (magnitude and angle) are chosen as state variables to be estimated (static state). 

This task can be performed at PMU speed [29, 40, 43], which allows observing fast phenomena, 

like transient events after a fault or switching, which is not possible to do with traditional ap-

proaches or at SCADA speed [28, 41, 42]. Algorithms commonly used by static estimators are 

WLS (linear and non-iterative) and LAV (solved with linear programming). In the first case a 

separate post-estimation bad data processing function based on the Chi-square test and normal-

ized residuals is performed. In the second case, the LAV allows processing gross errors and 

remove them automatically as a part of the estimation process. In the forecasting-aided ap-

proach first the state is predicted through a linear technique and then a filtering process is per-

formed using predictions and measurements. The problem is initially formulated based on the 

WLS technique and then adapted to be solved using Mixed-Integer Programming (MIP). Pre-

dictions are discarded when a sudden change takes place by using the normalized residual test 

concept and adding a binary variable to the prediction residual. Bad data detection and identi-

fication could be implemented following the same rule. Redundancy enhancement provided by 
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this method permits increasing the robustness of the estimator. With regard to dynamic state 

estimation, either only the dynamic state related to electromechanical dynamics (e.g. rotor angle 

and speed of generators) [6, 7, 10, 15, 44–49, 51, 52, 54, 55] or both type of states (static and 

dynamic in sequence) [50, 53] are estimated at PMU speed. Two kinds of approaches are      

identified. The first one is the model-based approach [6, 7, 10, 15, 45–53, 55] where the system 

to be estimated is mathematically modelled by DAEs and the problem is solved by recursive 

filters (e.g. least square, Kalman filters and Particle Filters). Approaches used to detect and 

identify large errors include in [7] the normalized innovation vector-based test, which detects 

observation outliers and is based on the ratio between the deviation of actual measurement from 

the predicted one and the expected standard deviation of the predicted measurement, the nor-

malized residual test is employed in [15, 53] to find measurements with gross errors and in [55] 

a projection statistics-based multiple hypothesis approach is presented. It is capable of finding 

three kinds of outliers, namely the observation, innovation and structural outliers. Observation 

outliers refer to the received measurements providing unreliable metered values due to gross 

errors, innovation outliers are caused by system process noise, whereas structural outliers are 

induced by incorrect parameters of generators or its associated controllers. Model-based ap-

proaches work well under the validity of certain assumptions. First, the system process and 

observation noise are assumed to have at each time instant zero means and known covariance 

matrices; second, they are assumed to follow a Gaussian distribution and, finally, the system 

model is assumed to be known with good accuracy [27]. When the chosen models do not match 

the actual system behavior, and/or the PMU measurements contain significant errors, the esti-

mated state may deviate from the true state rapidly and the estimator may not converge [27, 

50]. The second approach is known as data-driven approach [44, 54]. In this case the non-linear 

behavior of the system is described without needing a mathematical model. The problem is 

solved using artificial intelligence (AI) methods, e.g. artificial neural networks (ANN). These 

are trainable dynamical systems capable of estimating input-output functions by learning from 

experience with numerical sample data. Model-free approaches have the advantages of fast 

parallel computation and fault tolerance characteristics. The research in this field demonstrated 

that these estimators can lead to improved performance, being robust to parameter variation, 

adaptive and easy to extend, and not computationally demanding. However, the performance 

greatly depends on the training set, making the selection crucial. The training data must repre-

sent all possible transient and steady state characteristics of the machine under consideration. 

The model used needs to be updated when major changes occur in the system, such a new 

transmission or generation equipment. 
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All the works analyzed assume that the power system is fully observed by PMUs, which repre-

sents a strong assumption. Although the number of installed PMUs in large interconnected sys-

tems is gradually increasing, there is still a long way to equip all buses of a large system with 

PMUs [48]. 

Hybrid state estimators 

Hybrid state estimators focus on the static state of the network, i.e. bus voltages and related 

variables. They may be based on static, tracking or forecasting-aided methods. In the first case, 

most of the works analyzed [12–14, 35, 56–64] do not take into consideration the fact that 

PMUs update rate is remarkably higher than SCADA. Different ways for including phasor 

measurements and how they impact on accuracy, convergence properties and bad data detection 

capabilities is mostly studied. In distributed approaches [61, 63, 64], PMUs are mostly used to 

coordinate angles between subsystems thanks to their synchronization capacity. The optimal 

state is found by means of the conventional WLS technique and bad data are detected and iden-

tified by the largest normalized residual test. Unlike most of its counterparts, the paper in [65] 

proposes a hybrid estimator based on a static method that runs at PMU speed. The solution is 

found using a modified WLS formulation. Voltages at non-observed buses are calculated from 

phasor measurements and an interpolation matrix, which is obtained from network admittances 

as a function of voltages and power injections at non-observed buses and is updated whenever 

conventional measurements arrive or in contingencies that provoke a line outage or a significant 

load change. The author achieves good results regarding accuracy and computing time. Never-

theless, in the construction of the interpolation matrix loads are represented by static models 

when actually in real systems approximately 60-70 % of loads are dynamic. The normalized 

residual test is used to detect and identify large errors. In relation to forecasting-aided methods, 

it has been found a few interesting works which propose hybrid estimators running at PMU 

speed [66, 67]. In [66] an estimator that has been though to work in large systems using parallel 

computing by means of a graphic processing unit (GPU) is presented. Since the number of 

PMUs is not enough to observe the entire system, those buses without units are predicted using 

previous data. A data collation method extrapolates SCADA measurements to update them as 

fast as PMU measurements arrive. The estimation procedure is based on the EKF. Its perfor-

mance is evaluated under both normal and contingency conditions. Despite the author claims 

that the approach can accurately perform under steady and dynamic conditions, results do not 

permit verifying the latter due to the chosen time scale. The state-transition model is linear. 

Therefore, the lack of an appropriate dynamic model to represent the behavior of the system in 
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the presence of sudden changes can represent a major source of error. Paper [67] proposes a 

multi-area hybrid estimator that operates at PMU speed. It estimates the state by using a cuba-

ture Kalman filter (CKF). The approach is run in different areas in parallel. A multi-agent based 

software is used to exchange information and to run the estimator for SCADA and PMU meas-

urements separately and then integrate their results to get the final estimated state in each area. 

The method is evaluated regarding its accuracy and computing time. Results prove that the 

method can run fast in large systems using all the available measurements. It is capable of 

estimating with accuracy and quite fast the static state under steady or quasi-steady conditions. 

Bad data analysis is not performed in either of the two works previously mentioned. Papers [18, 

68] propose hybrid estimators using tracking methods at PMU speed. In [18] a two-stage esti-

mator capable of tracking bus voltages is presented. Both stages are WLS based. Second stage 

is solved in one iteration using a linear state estimator. PMU observability is ensured by adding 

current pseudo-measurements from previous estimated states. The method is prone to errors in 

the presence of sudden changes and presents limitations when the electrical distance between 

PMUs and non-observed buses is greater than two buses. Paper [68] introduces another hybrid 

scheme to track bus voltages at high sampling rate. Between two consecutive SCADA scans a 

limited number of phasor measurements are received. To maintain full observability a set of 

old SCADA measurements are used. A conventional WLS is employed at instances when both 

kind of measurements are refreshed simultaneously. When only PMU measurements are re-

freshed, a weighted least absolute value estimator (LAV) is utilized. The last algorithm allows 

gaining robustness against gross errors and therefore post-estimation bad data processing meth-

ods can be avoided. The proposed approach can monitor voltage collapses, sags and swells but 

is not designed to follow large disturbances like faults, generator outages, etc. 

From the works presented above, it can been seen that the integration of a few synchronized 

phasor measurements into an existing nonlinear estimator results mostly in a hybrid estimator 

that has most of the limitations of the original conventional estimator when trying to estimate 

the dynamics of the power system, i.e. only steady state models are employed and the high 

PMU speed is not exploited. The most significant assumption that is made by traditional esti-

mators, i.e. the system does not change during scan, remains valid. Only a few papers propose 

schemes at PMU speed with the aim of tracking the time evolution of the static states. Never-

theless, they may not perform well in the presence of sudden disturbances (transient-regime) 

like faults. Besides the power system dynamic is completely ignored. The proposed estimators 
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does not deliver information regarding those variables which have a great meaning in stability 

analysis, that is, the dynamic states, e.g. speed and rotor angle of generators. 

2.4 Mathematical tools 

2.4.1 Monte Carlo method 

Security assessment is generally carried out by means of a deterministic approach. Power sys-

tems are designed and operated to cope with a number of contingencies whose probability of 

occurrence is significantly high [20]. 

The deterministic approach worked well in the past since it led to high security levels and min-

imum study effort. One main limitation, however, is the fact it assumes all security-limiting 

scenarios as having the same risk. In addition, it does not define how likely or unlikely various 

contingencies are [20] and it dismisses the stochastic nature of real systems. Under such condi-

tions, some severe events that could lead the system to insecure conditions may be ignored [69]. 

In today’s electricity markets with a number of participants and different business interests, the 

deterministic approach may not be suitable. The stochastic nature of the system should be taken 

into account [20]. Monte Carlo based simulation represents a possibility of obtaining more re-

alistic results by considering the uncertainties that influence the system dynamic response [69]. 

The Monte Carlo method allows simulating stochastic phenomena, such those associated with 

power system operating conditions. It is a repetitive procedure that evaluates at each iteration 

the system response by means of an uncertainty function and using a set of input variables 

which are generated randomly from their probability distribution functions (PDFs) [69]. 

In this thesis, Monte Carlo method is used to obtain post-contingency dynamic data taking into 

account probable operating scenarios and contingencies. Some of the simulated scenarios result 

in unstable operating conditions. The obtained data will be later analyzed by means of data-

mining techniques with the aim of defining a PMU topology and the methodology for generat-

ing pseudo-measurements. 

2.4.2 Data-mining techniques 

As stated in [70], “Data mining is the process of discovering meaningful new correlations, pat-

terns and trends by sifting through large amounts of data stored in repositories, using pattern 

recognition technologies as well as statistical and mathematical techniques”. 

Other terms that are also generally used to describe this process are: analytics, predictive ana-

lytics, big data, machine learning, and knowledge discovery in databases. All of them share the 
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same main goal, to obtain knowledge from large data sets [70]. The knowledge discovery pro-

cess is an “iterative sequence” that involves the following steps [71]: 

1) Data cleaning: noise and inconsistent data are removed 

2) Data integration: multiple data sources can be combined 

3) Data selection: data that is relevant to the analysis are obtained from the database 

4) Data transformation: data are transformed into forms appropriate for mining 

5) Data mining: essential process where intelligent methods are applied to extract data patterns 

6) Pattern evaluation: interesting patterns representing knowledge are identified 

7) Knowledge presentation: visualization and knowledge representation techniques are used 

Data objects and attributes 

Data sets are composed of data objects. A data object represents an entity and is described by 

attributes. Data objects are also samples, examples, instances, data points, or objects. If data 

objects are located in a database, they are data tuples. The rows of a database are data objects 

and the columns are attributes. An attribute is a feature of the data object. The terms attribute, 

feature, and variable are usually synonyms [71]. 

Similarity and dissimilarity 

In data mining applications, such as clustering and classification, there is the need to assess how 

alike or unalike objects are in relation to one another. Similarity and dissimilarity are measures 

of proximity. Two objects with similarity equal to 0 will be different. The higher the similarity 

vale, the more similar the objects are. The dissimilarity measure works in the opposite way. If 

the objects are the same the dissimilarity value will be 0. The higher the dissimilarity value, the 

more different the objects are [71]. 

Data preprocessing 

Real-world databases are highly vulnerable to noise, missing and inconsistent data. This is 

mainly because their big size and their heterogeneous origin from multiple sources. Low-quality 

data will result in low-quality mining results [71]. 

High quality data satisfy the requirements of the intended use. Among the factors affecting the 

data quality are: accuracy, completeness, consistency, timeliness, believability, and interpreta-

bility [71]. 
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Data quality can be improved using the following data preprocessing techniques [71]: 

 Data cleaning: 

Real data tend to be incomplete, noisy, and inconsistent. Data cleaning techniques are intended 

to correct these imperfections by filling in missing values, smoothing out noise, and removing 

data inconsistencies [71]. 

 Data integration 

Data integration involves the merging of data from multiple data sources. Data integration rep-

resents a means of reducing and avoiding data redundancy and inconsistency. As a result, the 

accuracy and speed of the data mining process can be improved [71]. 

Redundancy is not a minor issue in data integration. An attribute may be redundant if it can be 

obtained from other attribute. Some redundancies can be detected using correlation analysis. 

Such analysis can measure the degree of relationship between attributes based on the available 

data. For nominal data, the χ2 (chi-square) test is used. For numeric attributes, the correlation 

coefficient and covariance can be employed to this end [71]. 

 Data reduction 

Data reduction techniques allows obtaining a reduced representation of the data set that is 

smaller in size but still keeps the integrity of the original data. Data mining methods applied on 

the reduced database should be more efficient and produce the same (or almost the same) results 

[71]. 

Data reduction approaches include dimensionality reduction. This approach reduces the number 

of variables or attributes. Principal Component Analysis (PCA) is a dimensionality reduction 

method employed in this thesis. Assuming that the data to be reduced consist of tuples described 

by n attributes or dimensions, principal components analysis searches for k n-dimensional or-

thogonal vectors that can be used to represent the data, where k ≤ n. The original data are 

projected onto a smaller space, resulting in dimensionality reduction [71]. The basic procedure 

is the following [71]: 

1) The input data are normalized so that each attribute is in the same range. 

2) PCA defines k orthonormal vectors (principal components) that provide a basis for the nor-

malized input data. These are unit vectors perpendicular to each other. The input data are a 

linear combination of the principal components. 
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3) The principal components are ranked in order of decreasing importance. The principal com-

ponents provide information about the variance. The first axis shows the most variance 

among the data, the second axis shows the next highest variance, and so on. 

4) The data size can be reduced by removing those components with less importance, that is, 

those with low variance. The strongest principal components should allow obtaining a good 

approximation of the original data. 

 Data Transformation 

In data transformation, the data are transformed into forms that are appropriate for mining. 

Next, some techniques for data transformation [71]: 

a) Smoothing: it removes noise from the data. Some techniques include binning, regression, 

and clustering 

b) Attribute construction: new attributes are built and added from the given set of attributes to 

improve the mining process 

c) Aggregation: aggregation operations are applied to the data 

d) Normalization: the attribute data are scaled 

e) Discretization: the values of a numeric attribute are replaced by interval labels or conceptual 

labels 

f) Concept hierarchy generation for nominal data: attributes can be classified to higher-level 

concepts 

Data-mining tasks 

In this thesis two data-mining tasks are used for defining the PMU topology and generating the 

pseudo-measurements that will make PMU full observability restoration possible. These two 

tasks are: classification and clustering. 

 Classification 

Classification is a data analysis approach that build models describing data classes. The models 

(called classifiers) predict categorical (discrete, unordered) class labels. Classification involves 

two steps: a learning step (where the classification model is built) and, a classification step 

(where the model is used to predict class labels) [71]. 
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First, a classifier capable of describing a predetermined set of data classes is built. This is the 

learning step (or training phase), where a classification algorithm creates the classifier by ana-

lyzing (“learning from”) a training set. A tuple, t, is an n-dimensional attribute vector t=(at1, 

at2,…, atn). Each tuple, t, belongs to a predefined class according to the class label attribute. 

The class label attribute is discrete and unordered. It is categorical in the sense that each value 

serves as a category or class. The tuples that are part of the training set are randomly sampled 

from the database under analysis. Since the class label of each training tuple is known, this step 

is also named supervised learning [71].  

The accuracy of the classifier is determined by means of a test set that consists of test tuples 

and their associated class labels. They are independent of the training tuples, i.e. they were not 

used to build the classifier. The accuracy of a classifier is defined as the percentage of test set 

tuples that are correctly classified [71]. 

In this thesis two classification methods are used: Random Forest and k-Nearest-Neighbor. The 

Random Forest is an ensemble method. An ensemble method is a composite model that consists 

of a combination of classifiers. The individual classifiers vote and the result will be obtained 

from the ensemble method based on the collection of votes. Ensemble methods tend to be more 

accurate than the individual classifiers [71]. 

In the case of the Random Forest method, it is formed by a number of Decision Tree classifiers. 

A decision tree is a chart or diagram with a shape similar to a tree that is used to make decisions. 

Internal nodes represent tests on attributes or variables and branches constitute the outputs for 

such tests. Classes will be included in the terminal nodes (leaf node). The node at the top in a 

tree is known as root node. Given a tuple, t, for which the class is unknown, the attributes of 

the tuple are evaluated against the decision tree so that “a path is traced from the root to a leaf 

node, which holds the class prediction for that tuple”. Decision trees can be used to build clas-

sification rules. No domain knowledge is needed for building a decision tree. That is why, it is 

suitable for “exploratory knowledge discovery”. Besides, they can work with multidimensional 

data. Decision trees are intuitive and easy to assimilate by humans and the process behind it is 

simple and fast [71]. 

Nearest-neighbor classifiers learn by comparing a certain test tuple with similar training tuples. 

Each tuple denotes a point in an n-dimensional space. Training tuples are stored in an n-“di-

mensional pattern space”. The k-nearest-neighbor classifier finds in the pattern space those k 
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training tuples (k nearest neighbors) that are closest to the unknown tuple. The proximity be-

tween tuples is determined using a distance metric such as the Euclidean distance [71]. Consid-

ering the following points or tuples, t1=(at11, at12,…, at1n) and t2=(at21, at22,…, at2n), the Eu-

clidean distance is defined as [71]: 

 dist (t1,t2)=�� (at1i-at2i)
2

n

i=1

 (2.33) 

Usually, the values of each attribute are normalized before using (2.33). By doing this the same 

weight is assigned to each attribute regardless of their initial ranges. The k-nearest-neighbor 

assigns to the unknown tuple the most common class among its k-nearest neighbors. If k=1, the 

nearest training tuple defines the class of the unknown tuple [71]. 

 Clustering 

Clustering is a process that splits a set of data objects into subsets. Each subset is a cluster. 

Objects that belong to the same cluster are similar to each other and dissimilar to objects in 

other clusters. Different clustering methods may lead to different results on the same data set. 

Clustering can be used to find groups within the data which were previously unknown [71]. 

Since a cluster is a group of objects that are similar to each other and dissimilar to objects in 

other clusters, a cluster can be seen as “an implicit class”. That is why, clustering is sometimes 

called “automatic classification”. “Unsupervised learning” is another term used for clustering 

since the class label is not known. “Clustering is a form of learning by observation, rather than 

learning by examples”. It can be used for detecting outliers [71]. 

Clustering methods can be classified into partitioning or hierarchical methods. A partitioning 

method splits the data into k groups so that each group contain at least one object. The clusters 

are built to optimize a dissimilarity function based on distance so that the objects in a cluster 

are similar to each other and dissimilar to objects in other clusters. A hierarchical clustering 

method groups data objects into a hierarchical way. Hierarchical representation of the data ob-

jects is useful for “data summarization and visualization”. However, there may be inconven-

iences related to the selection of merge or split points. This is a key aspect by hierarchical 

methods, because once a group is split, the process at the next step will operate on the new 

generated clusters. There is no way to undo what was done or to exchange objects between 

clusters. “Thus, merge or split decisions, if not well chosen, may lead to low-quality clusters” 

[71]. 
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In this thesis, two partitioning methods are selected: the k-means and the k-medoids, respec-

tively. The k-means algorithm is a iterative method that splits a certain data set into a pre-

specified number of clusters k. The algorithm works on a set of d-dimensional objects, 

O={oi,…,oN}, where oi ∈ ℜ𝑑𝑑. The algorithm is initialized by choosing k objects in ℜ𝑑𝑑 as the 

initial k cluster representatives or “centroids”. These initial seeds can be obtained by randomly 

sampling the dataset, by clustering a small subset of the data and using the solution for defining 

the seeds or by perturbing the global mean of the data k times [72]. Then, the algorithm iterates 

between the following two steps [72]: 

1) Data Assignment. Each object is assigned to its closest centroid based on the Euclidean 

distance. “This results in a partitioning of the data”. 

2) Relocation of “means”. Each centroid is “relocated to the center (mean) of all objects as-

signed to it”. 

The quality of cluster clj can be determined using the within sum of squares, which is the sum 

of squared error between all objects in clj and the centroid cej, defined as [71]: 

 WSS= � � dist (oi,cej)
2

oi∈clj

k

j=1

 (2.34) 

where dist (oi, oj) is the Euclidean distance between two points oi and  oj. The k-means algo-

rithm improves the within sum of squares. The algorithm runs until the assignment is stable, 

i.e. the clusters determined in the current iteration are the same as those from the previous one 

[71]. 

The k-means method often reaches a local optimum. The initial random selection of centroids 

can influence the “quality” of the results. Running the algorithm multiple times with different 

initial centroids is common practice when trying to get good results [71]. 

The k-medoid algorithm is similar to k-means with the exception that the centroids have to 

belong to the data set being clustered. This change makes the k-medoids more robust than k-

means under the presence of noise and outliers because a medoid is less susceptible to outliers 

than a mean. However, a bigger complexity in each iteration makes the k-medoids computa-

tionally less efficient than its counterpart [71]. 
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2.5 Summary 

At the beginning of the preceding chapter power system security and power system stability are 

defined. Following, the state estimation function for power system monitoring is presented. An 

analysis of the current situation in this regard allows identifying the limitations of the current 

monitoring functions and the impact that such limitations have on power system security. A 

review and analysis of the state of the art on alternative PMU based monitoring functions was 

also performed. The solutions offered by each of them and the conditions and challenges to be 

met in their implementation were given in detail. In the last part, data-mining techniques used 

in this thesis are presented and explained. 

The changes that power systems have experienced lately have a negative effect on stability and 

therefore on dynamic security as well. In this context, the occurrence of a disturbance may 

provoke a cascading failure and eventually a system outage. In order to improve power system 

stability, a new monitoring tool capable of informing system dynamics must first be developed. 

Thus, online dynamic security assessment will become a reality. 

Traditional state estimators are not able to inform power system dynamics (except maybe for 

some very slow system changes). They are based on steady state models. The main reason 

behind this is the slow update rate of RTUs-SCADA. Besides, traditional measurements are not 

synchronized which means that they are not globally valid. 

The arrival of PMUs represents an opportunity to improve the existing estimators. Their high 

speed, accuracy and synchronization capacity make them suitable for global monitoring of 

power system dynamics. An estimator based only on PMUs would be capable of solving the 

estimation problem at high speed in just one iteration. This would allow removing the static 

assumption and the dynamic state could be estimated. However, such an estimator would need 

a power system fully observed by such units, which is financially and technically unviable in 

the near future. That is why, the current trend is to incorporate PMUs gradually into the grid 

together with conventional RTUs-SCADA. 

The state of the art on state estimators using PMUs is analyzed. Hybrid state estimators as well 

as PMU only state estimators are considered. The analysis focuses on aspects like algorithms, 

working speed, estimation methods and estimated variables. 

PMU only state estimators are able to work at high speed and to deliver the time evolution of 

static (network bus voltage magnitudes and angles) and dynamic states (speed and rotor angle 
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of generators) when a dynamic method is employed. Here, two different approaches are pro-

posed. The model based approach and the data-driven approach. The first one works well as 

long as certain assumptions are satisfied: process and measurement noises follow a Gaussian 

distribution with zero mean and the system model is well known. The data-driven approach 

depends to a great extent on how well the training data represents the system response regard-

less of the transient event that is happening. As mentioned before, all works analyzed here 

assume that there are PMUs in a number enough to achieve full observability. 

Since only PMU based power system monitoring represents a remote reality this thesis focuses 

on a nearer future which involves the use of mixed measurement technologies such as RTUs-

SCADA and PMUs applied together in hybrid state estimators. Nevertheless, hybrid estimators 

result mostly in approaches that have most of the limitations of the conventional estimators. 

Only steady state models are used and the PMU speed is not considered. This is mainly due to 

the reduced number of units. A few works propose schemes capable of operating at high speed 

and getting the time evolution of the static state but without taking into account those variables 

which have great meaning in stability analysis and therefore a significant influence in power 

system dynamic security, i.e. the dynamic state (for instance speed and rotor angle of genera-

tors). 

That is why, this thesis will develop a hybrid state estimator capable of accurately monitoring 

power system dynamics associated to slow and fast transient events considering a limited 

amount of PMUs. 

Since the lack of PMUs is the main obstacle when trying to get a hybrid estimator capable of 

monitoring the system dynamics, this issue will be addressed first. Initially, an analysis of the 

time evolution of post-contingency bus voltages will be performed in order to define the PMU 

topology, that is, number of units and their location in the grid so that bus voltage dynamics of 

the whole system can be observed by such units. Then, a data-mining based methodology for 

generating pseudo-measurements aiming at restoring the PMU full observability will be           

developed. 

The development of the hybrid state estimator includes the study and analysis of the following 

aspects: 

1. Incorporation of PMU measurements in traditional estimators: this is one of the main 

concerns regarding the design of a hybrid estimator. Their high accuracy and speed 
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provokes numerical stability problems in the first case and time skewness between both 

kinds of measurements in the second one. 

2. Estimation algorithm: several algorithms have been proposed in the international liter-

ature depending on the estimation method adopted. In this thesis, an analysis of all of 

them is performed in order to find an adequate option for estimating the static and dy-

namic states considering aspects like accuracy, speed and convergence. 

3. Estimated variables: the development of a new monitoring tool aims to improve the 

power system dynamic security. Therefore, power system stability will be studied and 

analyzed in order to find those variables of great importance in stability assessment. 

4. Architecture of the estimator: aspects 1) and 2) will allow defining the structure of the 

hybrid estimator, their components and how they relate each other. 

Finally, the hybrid state estimator will be coupled together with the methodology for generating 

pseudo-measurements.
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3 Methodology for generating bus voltage pseudo-

measurements 

As mentioned earlier, most of the hybrid estimators proposed in the international literature es-

timate only the static state. Dynamic characteristics of power system are left aside and only 

models that represent the system behavior in stationary regime are considered. This is mainly 

because there are not enough PMUs to observe the entire electrical grid. Thus, certain charac-

teristics of this equipment, such as its high reporting speed, which would allow operators to 

monitor the power system as a whole in transient regime, are not taken into consideration. 

Aiming to remove this obstacle, this thesis proposes a data-mining based methodology that 

generates bus voltage pseudo-measurements, thereby restoring full PMU observability. First, 

the PMU topology, i.e. the number of units and their location, is defined with the help of data-

mining techniques so that dynamics of post-contingency bus voltages are fully monitored. 

Then, with the help of a classifier, bus voltage pseudo-measurements are generated and observ-

ability is extended to the entire network. 

This chapter presents and explains the methodology for generating bus voltage pseudo-meas-

urements. First, an overview of the methodology is given. Next, the probabilistic approach that 

defines the PMU topology is given in detail. Then, the classifier in charge of predicting bus 

voltage coherency is explained. Finally, the procedure for generating bus voltage pseudo-meas-

urements is presented and explained. 

3.1 Overview 

The methodology for generating bus voltage pseudo-measurements that is proposed in this the-

sis is based on the concept of bus voltage coherency. Buses that are coherent with each other 

show similar voltage behavior during a transient event and, therefore, the behavior in one of 

these buses represents approximately the behavior of the remaining buses. The proposed ap-

proach relies on this idea to define bus voltage pseudo-measurements by means of voltage mag-

nitudes and angles at PMU observed buses, the pre-contingency system loading condition and 

information regarding the contingency (kind of fault, affected device and time of occurrence), 

which is assumed to be known. 
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Nevertheless, coherency depends mainly on the last two characteristics mentioned before [73]. 

That is why, a PMU topology, that is, number of units and their location, must be defined first 

so that all the coherent areas are observed with high probability. This is accomplished by means 

of an offline data-mining based knowledge discovery process which consists of three steps. In 

the first step, a large set of scenarios that are representative of normal, during fault and post-

fault behavior in a broad range of conditions is obtained from numerical simulations using 

Monte Carlo simulation and afterwards bus voltage coherency is determined for each simulated 

scenario using clustering technique. In the second step, a data transformation process takes 

place in order to facilitate data analysis. Finally, coherency analysis is performed with the aim 

of defining the PMU topology which allows observing all bus voltage coherent areas (magni-

tude and angle) in a large number of simulated scenarios. This tool constitute a contribution of 

this work in the sense that it focuses on observing coherent areas in voltage magnitude and 

angle instead of observing the whole network, as is often the case with approaches proposed in 

the literature [74–77]. One main advantage is the reduction in the amount of equipment re-

quired. 

Once PMU topology has been defined, a classifier based on the k-nearest neighbors algorithm 

that is designed offline will forecast coherency at high speed whenever a contingency happens 

and with that an assignment vector that shows the connection between observed and non-ob-

served buses. The classifier is supported by a classification matrix that is generated offline from 

the pre-processed data during the definition of the PMU topology. Finally, bus voltage pseudo-

measurements will be obtained using information about the estimated static state at the previous 

time, the assignment vector predicted by the classifier and PMU measurements at observed 

buses. The proposed approach for generating bus voltage pseudo-measurements represents an-

other important contribution of this thesis. In the literature few are the papers working on this 

topic and getting promising results. In [65] voltages at non-observed buses are calculated from 

phasor measurements and an interpolation matrix, which is obtained from network admittances 

as a function of voltages and power injections at non-observed buses and is updated whenever 

conventional measurements arrive or in contingencies that provoke a line outage or a significant 

load change. A main drawback of this methodology is that in the construction of the interpola-

tion matrix loads are represented by static models. In paper [18] pseudo-measurements are ob-

tained from estimated currents in the previous time. A major drawback here is the loss of accu-

racy in transient regime. 
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The following flowchart gives an overview of the methodology explained before.

 

Fig. 3.1. Methodology for generating bus voltage pseudo-measurements. 

3.2 Probabilistic approach for defining the PMU topology 

The PMU topology is defined offline and the process behind it essentially consists of three steps 

as mentioned before: in the first one with the help of simulation software and the Monte Carlo 

method, several operating scenarios for evaluating the dynamics of post-contingency bus volt-

age and coherency are generated. The Monte Carlo method is an iterative procedure that eval-

uates the response of the system in each iteration, using input variables randomly generated 

from their probability density function [73]. 

The database is generated from the dynamic model considering a large number of operating 

conditions with uncertainties in: the type of contingency (following the N-1 criterion commonly 

used by the EMS in control centers for real-time security analysis [78]), the failed component 

and fault location (line, load or generator and percentage of line in which the fault occurs) and 

the load-generation scenario. The procedure for generating the database is as follows: a random 

load scenario is constructed using probability distribution functions and short-term demand 

forecasting; the optimal power flow is calculated, and the dispatch of generators is determined; 

N-1 contingency (three-phase short circuit in transmission line, load curtailment or generator 

outage) and the affected device (line, load or generator) are randomly selected; the time-domain 

simulation is performed and time series of voltage magnitudes and angles are stored. This is a 

procedure in which are simulated the different scenarios that a power system can face during 

the operation, see flowchart in Figure 3.2. 
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The obtained dataset is composed of input and output variables. Inputs are the kind of contin-

gency, the failed element, the fault location or amount of load disconnected and the pre-contin-

gency system loading condition. Outputs are the time series of bus voltages in magnitude and 

angle. For each scenario, bus voltage coherency, i.e. the class to be predicted, is determined by 

means of an iterative clustering procedure that operates on time series of post-contingency bus 

voltages (magnitude and angle) in each scenario and is based on the partitioning algorithm k-

medoids (see subsection 2.4.2, Data-mining techniques). The algorithm organizes a number of 

objects “n” from a data set “D” into “k” partitions where each partition represents a cluster. 

Conceptually, the medoid is an object that represents the center point of the cluster. The method 

is performed based on the principle of minimizing the sum of the dissimilarities between each 

object and its corresponding medoid. Bus voltage coherency is defined by means of an iterative 

process where the number of clusters evolves from a minimum of two to a maximum predefined 

value. For each “k”, the partitioning algorithm runs a certain number of times and solutions are 

evaluated employing cluster validity indices (CVIs) [79]. This double-loop routine aims, first, 

to obtain the optimal cluster from a voting matrix (which reduces uncertainties associated with 

the initial solution that is randomly chosen) and, second, to find the optimal “k” through the 

 

Fig. 3.2. First step: database generation. 
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Elbow rule [80] by analyzing the evolution of the total intra-cluster variance while varying the 

number of clusters, see Figure 3.3.

 

Fig. 3.3. First step: determination of bus voltage coherency. 
 

In the second step, data pre-processing techniques are carried out. The main goal here is to 

make data analysis and comprehension easier and to obtain data that is suitable for creating 

good predictive models. These techniques work on input variables (features) and involve the 

following operations:  

1) Variable normalization and dimensionality reduction without loss of information aiming to 

reduce the number of features under consideration through Principal Component Analysis 

(subsection 2.4.2, Data-mining techniques) of the pre-contingency system loading condition 

and data clustering according to principal components. 
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2) The distribution of coherent scenarios or classes and their boundaries are analyzed due to 

two problems that frequently arise in multi-class classification tasks, which are data imbal-

ance and class overlapping. 

Traditional learning models assume that data classes are well distributed. Nevertheless, in 

many real-world data domains this does not happen. If the numbers of scenarios for each 

class are similar there is no problem. However, if at least one of the classes has many more 

examples than the other classes, the model tends to favor the class with more examples [81]. 

Moreover, objects from minority classes located in overlapping regions of the data attribute 

space makes things even more complex for learning models [82]. In reality, data from dif-

ferent classes may have similar attributes. In such cases, boundaries may not be clearly 

defined, being quite complicated to be correctly learned [83]. In order to overcome these 

problems a three-step filtering process takes place. This procedure alters the original data 

with the aim of reducing the impact of class imbalance and overlapping in the classifier 

performance and consists of three stages: a) in stage one, “boundary” scenarios that belong 

to different classes (coherent scenarios) but have similar feature values are identified. Next, 

the degree of dissimilarity between such scenarios is determined by the number of buses 

that do not match between equivalent coherent areas. Scenarios whose degree of dissimi-

larity falls below a predetermined threshold are “forced” to belong to the same class (same 

bus voltage coherency); b) in stage two, scenarios whose frequency of class is equal to one 

are recognized. Then, such “individuals” are matched in class to groups of scenarios as long 

as the distance between the individual and the group under analysis falls below a predefined 

threshold or if one of them is enclosed by the other. Here, the Euclidean distance is used for 

this purpose and; c) the last stage consists of a filter that removes from the dataset those 

scenarios whose frequency of class falls below a threshold, which is defined by the kind 

and size of the dataset. 

The last step involves the definition of the PMU topology. The number of units and their loca-

tion in the grid are determined by means of an iterative exploring process in which the number 

of PMUs increases from a pre-defined minimum to a maximum that is equal to the largest 

number of coherent areas in the dataset. At each iteration and for a given number of units, 

candidate topologies are found through a combinatorial process so that a certain pre-defined 

portion of the grid is observed. Here, buses that are medoids a number of times over the total 

amount of simulated scenarios will be the candidate buses under consideration. Each candidate 

topology is evaluated with respect to voltage coherency over the dataset in order to obtain the 
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number of simulated scenarios whose voltage coherent areas (in magnitude and angle) include 

at least one PMU bus, like in the example shown in Figure 3.4. The developed methodology 

takes into account the fact that for a given loading condition and kind of contingency coherency 

in voltage magnitude and angle may be different. The use of data-mining tools to find the PMU 

location under such condition represents a contribution of this thesis. 

 

 

 
Fig. 3.4. Example of post-contingency bus voltage coherent areas. PMU location 

(a) Voltage magnitude, (b) Voltage angle 
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The candidate who observes all coherent areas (magnitude and angle simultaneously) in most 

scenarios is stored. The process is repeated iteratively while increasing the amount of PMUs 

until the maximum is reached. The final solution will be the best between all the stored topol-

ogies considering the relationship between amount of units and number of observed scenarios. 

This final step is represented with the flowchart in Figure 3.5. 

 

Fig. 3.5. PMU topology: iterative exploring process. 
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3.3 Classifier and generation of bus voltage pseudo-measurements 

The classifier based on the k-nearest neighbors algorithm presented in this work is capable of 

operating at high speed and founds its performance on a classification matrix that is generated 

offline from the preprocessed dataset in the PMU topology approach. 

The construction of the classification matrix involves two steps: first, scenarios are selected so 

that the sample includes all the classes. Second, for each scenario an assignment vector that 

shows the connection between observed and non-observed buses is defined. Here, class and 

PMU location are involved. In cases where there is the possibility of assigning more than one 

observed bus, the final solution will be the one with the minimum electrical distance. Finally, 

the classification matrix is built from the selected scenarios and the assignment vectors. 

In the presence of a new and unknown scenario, the classifier is able to predict the class and the 

assignment vector at high speed. To achieve this, it uses the pre-contingency system loading 

condition provided by the estimator and the type of contingency (inputs). This information is 

pre-processed following the same rules as in the second step of the PMU topology approach, 

i.e. variables are normalized, dimension is reduced and the scenario is classified according to 

the pre-contingency system loading condition with a previously trained Random Forest classi-

fier. Then, once the information that belongs to the new scenario has been adjusted, it is com-

pared with the information inside the classification matrix to identify the element with highest 

similarity by means of the Euclidean distance between inputs. The chosen element defines the 

class and the assignment vector for the new scenario, see Figure 3.6.

 

Fig. 3.6. Classifier. 
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Finally, the bus voltage pseudo-measurements at PMU non-observed buses are obtained from 

results delivered by the classifier, the information provided by PMUs and the estimated states 

at previous time using the following expression: 

 vps� i
U=x�k-1

U +∆V� PMU
O∈U (3.1) 

where vps� i
U is the calculated bus voltage pseudo-measurement at the non-observed bus U at 

time i, x�k-1
U  is the estimated static state at non-observed bus U at time k-1 and ∆V� PMU

O∈U is the 

voltage deviation registered from the PMU measurements at the observed bus O that is assigned 

to the non-observed bus U according to the assignment vector. 

Since bus voltage pseudo-measurements are calculated from PMU measurements at coherent 

buses and the estimated state at previous time, they are considered less accurate than real meas-

urements. Therefore, a standard deviation equal to ten times the standard deviation of phasor 

measurements is considered. 

3.4 Summary 

This chapter presents the methodology for generating bus voltage pseudo-measurements that 

allows the hybrid state estimator to monitor the power system behavior in transient regime. This 

approach is based on the concept of bus voltage coherency. Because coherency changes all the 

time depending on the kind of contingency and the system loading condition, the first part of 

this chapter focuses on defining the number and location of PMUs so that all coherent areas in 

voltage magnitude and angle can be observed regardless the kind of contingency and the system 

loading condition. This is achieved through an offline data-mining based approach and a large 

set of scenarios that is obtained from numerical simulation by means of the Monte Carlo tech-

nique. Then, a classifier based on the k-nearest neighbors algorithm will predict bus voltage 

coherency at high speed and with that an assignment vector that dictates the relation between 

observed and non-observed buses. The classifier relies on a classification matrix that is created 

offline from the data used to define the PMU topology. Finally, bus voltage pseudo-measure-

ments are generated using bus voltage measurements (magnitude and angle) from PMUs, the 

system loading condition before the contingency that is obtained from the previous estimated 

static state and the assignment vector predicted by the classifier. 
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4 Proposed hybrid state estimator 

This chapter presents the hybrid state estimator developed in this thesis. First, an overview of 

the estimation procedure is given. Next, its operation is explained in detail. Algorithms em-

ployed and mathematical models used by the estimator to represent the static and dynamic be-

havior of the power system are described. The approach used for detecting and identifying large 

errors is presented. 

4.1 Overview 

The hybrid state estimation procedure described below consists of two phases depending on the 

system operating conditions as shown in the flowchart of the Figure 4.1. When the power sys-

tem is in stationary regime only phase one takes place and the static state together with all the 

variables that come from it such as line currents, power flows and power injections, are esti-

mated at SCADA speed by a WLS based static state estimator. Conventional as well as PMU 

measurements (phasor of current and voltage) are used together in one single estimation run. 

Once the estimation is completed, a post-estimation method is carried out in order to detect and 

identify bad measurements. Weights corresponding to bad measurements are decreased in order 

to minimize their effect on the result and the estimation is rerun. Input in phase one includes 

the grid topology, parameters of lines and transformers, mathematical models that represent the 

network behavior in stationary regime and both kind of measurements. 

Phase two is activated when a physical disturbance happens and the system is in transient re-

gime. In this case, two estimators work in sequence at PMU speed making use of voltage and 

current measurements (magnitude and angle) provided by such units. This allows estimating 

the power system dynamics associated with any kind of transient event. The kind of transient 

event will define how long stage two will be active. First, a static state estimator is used to 

estimate bus voltages as soon as the PMU measurement set arrives. Here, a major drawback is 

the lack of available PMUs that makes full grid observability unfeasible. This issue is solved 

through the novel data-mining based methodology for restoring full PMU observability ex-

plained in chapter 3. This approach uses as input the estimated static state at the previous time, 

phasors of bus voltage provided by PMUs and information regarding the contingency such as 

failed element and kind of fault and generates voltage pseudo-measurements. Since a post-es-

timation bad data processing technique is unfeasible at fast scan rates such as those of PMU 
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measurements, the static estimator in phase two uses the information provided by the bad data 

processor from phase one to adjust the measurement weights if needed. Additionally, in order 

to make phase two robust against PMU’s gross errors, a WLAV based linear estimator is used. 

Second, dynamic variables such as rotor angle and speed of generators and speed of motors are 

estimated by means of an EKF based dynamic state estimator. The estimator uses as input the 

estimated static state, mathematical models that represent the dynamic behavior of the systems 

under consideration and their parameters. Phase two will run until the power system reaches 

the stationary regime again. 

The hybrid state estimation approach proposed in this work was thought and designed under 

the following assumptions: 

 Measurement and process errors follow a normal distribution, with standard deviation σ and 

mean μ = 0. 

 Uncertainty of networks parameters is considered and modelled by using a uniform distri-

bution function with specified lower and upper bounds. 

 In stationary regime (phase one in the estimation procedure) conventional measurements as 

well as phasor synchronized measurements are used together in the same estimation run. 

The time-skew between measurements is usually tolerated due to the slowly varying oper-

ating conditions of power systems under normal operating conditions [25]. 

 The contingency together with its time of occurrence is known. Despite the fact this as-

sumption represents an appreciable simplification of the problem, advances in computer 

science have lately led to several promising works [84–86] in the field. 

 The power system operates under balanced condition and the load composition at each bus 

(static–dynamic load ratio) is known. 

The sequence of operation of the proposed estimation methodology is shown in Figure 4.2. 
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Fig. 4.1. Estimation procedure followed by the proposed hybrid state estimator. 
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Fig. 4.2. Sequence of operation of the proposed hybrid state estimator. 
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4.2 Static state estimation 

This subsection describes the static state estimation approaches used by the hybrid estimator in 

both operating phases. 

Firstly, mathematical models used by the estimation algorithms to represent the network be-

havior are presented and described. Then, static estimators employed in each phase are pre-

sented and explained in detail. 

4.2.1 Component modeling 

It is considered that the power system operates under balanced conditions. Loads and branch 

power flows are three phase and balanced, all transmission lines are fully transposed, and com-

pensation devices are symmetrical in the three phases. Such assumptions allow the use of single 

phase positive sequence equivalent circuit for modeling purpose [25]. 

Transmission lines 

Transmission lines are represented by a two-port pi-model whose parameters correspond to the 

positive sequence equivalent circuit of transmission lines. A transmission line with a positive 

sequence series admittance of 𝑦𝑦�ij = gij+jbij and a shunt admittance between bus i and the ground 

of 𝑦𝑦�sij = gsij+jbsij, will be modelled by the following equivalent circuit [25]:

 

Fig. 4.3: Equivalent circuit for a transmission line. 
 
Shunt capacitors or reactors 

Shunt capacitors or reactors which may be used for voltage and/or reactive power control, are 

represented by their per phase susceptance at the corresponding bus. 
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Tap changing and phase shifting transformers 

Transformers with off-nominal but in-phase taps, can be modeled as series impedances in series 

with ideal transformers [25]: 

 

Fig. 4.4: Equivalent circuit of an in-phase tap changer transformer. 
 

where 𝑦𝑦�ij is the positive series admittance of the branch i-j and a is the in-phase tap ratio. For a 

phase shifting transformer where the off-nominal tap value is complex, the admittance matrix 

will not be longer symmetrical. Therefore, a passive equivalent circuit can no longer be realized 

for the phase shifting transformer [25]. The following set of nodal equations is used to model 

the transformer behavior in such case [25]: 

 � 
ĩij
ĩji

 � = � 

y�
|a|2

-y�
a*

-y�
a

y�
 � � 

v�i
v�j

 � (4.1) 

Loads 

Loads models are traditionally classified into two categories: static models and dynamic mod-

els. In this thesis a composite load model which includes both kind of models is taken into 

consideration for load modeling. 

In phase one (stationary regime) loads and generators are modeled as constant power injections. 

When the system is in phase two (transient regime) generators are dynamically modelled and 

loads are represented using a composite load model which involves a static and a dynamic 

component (motor). Since dynamic models are employed by the dynamic estimator they will 

be introduced and explained later in detail. 

The static component of the composite model represents the dependency at a given time of the 

active and reactive powers on the connection bus voltage and the system frequency in quasi-
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static state. This state is characterized by slow modifications of the operating conditions, and 

the transition from one state to another can be considered a series of steady states. The modeling 

of these characteristics involves only algebraic equations. 

The polynomial or ZIP model is the one used in phase two to represent the voltage and fre-

quency dependency of loads. It is composed of constant power (V�o), constant current (V�1) and 

constant impedance (V�2) components [24]: 

 pst=pst0[p1V�2+p2V�+p3](1+KpfΔf) 

(4.2)  qst=qst0[q1V�2+q2V�+q3](1+KqfΔf) 

 where V�=
v
v0

, Δf=f-f0 

where pst0, qst0, v0 and f0 represent power consumption of the static load (active and reactive 

power respectively), bus voltage magnitude and frequency at the initial operating condition. 

Coefficients p1 to p3 and q1 to q3 define the proportion of each component in the model. Typi-

cally, Kpf ranges from 0 to 0.3, and Kqf ranges from -0.2 to 0 [24]. The bus frequency f̂ is 

obtained either directly from PMUs when the bus is measured by such devices or computed as 

follows: 

 f̂=
Δθ

2π ΔtPMU
+fPMU_next (4.3) 

where Δθ=θ-θ0 is the bus voltage angle deviation and ΔtPMU is the PMU refresh rate. fPMU_next 

is the frequency reported by the closest PMU to the bus under analysis. 

Network model 

The described component models can be used to make the static network model for the entire 

system. This is done by writing a set of nodal equations which are obtained using Kirchhoff’s 

current law at each bus [25]: 

 I = 
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where ĩk is the current injection at bus k, v�k is the voltage at bus k and 𝑦𝑦�km is the (k,m)-th 

element of the bus admittance matrix Y. Admittance matrix is in general complex and symmet-

ric. The use of nodal equations facilitates the modification of equations in case of topology 

changes [25]. 

4.2.2 Phase one 

In phase one the static state, i.e. bus voltage magnitudes and angles, and all the algebraic vari-

ables that come from it such as power flows, power injections and current magnitudes and an-

gles by branches, will be estimated at SCADA speed using a WLS based static state estimator 

(see subsection 2.2.2, Weighted least squares). Despite the fact the non-linear WLS method is 

iterative, it performs quite fast thanks to its efficient implementation [28, 68]. 

The estimator employed in this case has been modified in order to include PMU measurements 

together with conventional measurements. This allows, first, improving the accuracy of the es-

timated state [14] and, second, detecting and identifying bad PMU data so that this information 

can be used later in phase two. Time-skew errors will not be an issue here since the system is 

assumed in stationary regime. 

The measurement vector consists of conventional measurements of power injection s̃inj, power 

flow s̃fl and voltage magnitude v, PMU voltage measurements v�PMU(M<θ) in polar coordinates, 

virtual measurements s̃virt (zero injection), and power flow pseudo-measurements s̃ps: 

 z𝟏𝟏=�v v�PMU(M<θ) s̃inj s̃fl s̃virt s̃ps �
T
 (4.5) 

The incorporation of current measurements in traditional estimators introduces ill-conditioning 

problems. That is why, PMU current measurements are replaced by power flow pseudo-meas-

urements, which are obtained as follows: 

 s̃ps. i-j = v�PMU(M<θ) i×iPMU(M<α)  i-j
*  (4.6) 

where s̃ps. i-j is the power flow pseudo-measurement by branch i-j, v�PMU(M<θ) i is the PMU volt-

age measurement at bus i and iPMU(M<α)  i-j
*  is the conjugate of the PMU current measurement 

by branch i-j. 
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Standard deviations of power flow pseudo-measurements are calculated using the following 

expression: 

 uP_Qps. i-j
=�� �

∂P_Qps. i-j

∂pk
�

24

k=1

× upk
2  

(4.7) 

 p = (v�PMU(M<θ) i, iPMU(M<α)  i-j
* ) 

in (4.7) uP_Qps. i-j
 is the standard deviation of power flow pseudo-measurement (active or reactive 

power) by branch i-j, p is a vector that contains the PMU measurements of voltage and current 

involved in the calculation of power flow pseudo-measurements, pk represents the k-th element 

of such vector, and upk is the standard deviation of the element pk. 

Considering the measurement model in (2.1) and the network model given above (subsection 

4.2.1 Component modeling), power injection and power flow measurements can be expressed 

in terms of state variables as follows: 

 pi=vi
2 � (gij+gsij)

j∈ϑ(i)

 - vi � vjαij
j∈ϑ(i)

 

(4.8) 

 qi=-vi
2 � (bij+bsij)

j∈ϑ(i)

-vi � vjβij
j∈ϑ(i)

 

 pij = vi
2(gij+gsij) - vivjαij 

(4.9) 
 qij = -vi

2(bij+bsij) - vivjβij 

where  ϑ(i) is the set of buses connected to bus i. Elements αij and βij are defined as follows: 

 αij = gij cos(θi-θj)+bij sin(θi-θj) 
(4.10) 

 βij = gij sin(θi-θj)-bij cos(θi-θj) 

The static state is estimated iteratively using the Normal equations in (2.15) (subsection 2.2.2, 

Weighted least squares). 

Despite its efficiency, the WLS approach is non-robust and will be biased even in the presence 

of a single bad measurement. That is why, the estimation process is followed by a bad data 

processor method. Error detection is performed by assessing the target function J(𝒙𝒙�) by means 

of the Chi-square test. Then, the measurement with the largest normalized residual is identified 
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and its weight is modified in order to reduce its effect on the result, after which the estimator 

reruns (see subsection 2.2.4, Bad data processing). 

The static estimator in phase one is depicted by the following flowchart:

 

Fig. 4.5. Static state estimator (phase one) 
 
4.2.3 Phase two 

During stage one static states are estimated by a WLS based estimator at SCADA speed when-

ever conventional measurements arrive. However, unlike phase one, in phase two only PMU 

measurements together with bus voltage pseudo-measurements are processed since the system 

is no longer in stationary regime and therefore the use of measurements non-synchronized and 

at different reporting rate could constitute a source of error. Pseudo-measurements are obtained 

by means of the data-mining based approach presented and explained in the previous chapter. 

The problem is transformed from polar to rectangular coordinates in order to get a constant and 

numerical Jacobian (H) of the functions h. The measurement vector can be expressed as fol-

lows: 

 z2= �v�PMU(x,y) ĩPMU(x, y) vps� (x, y)�
T
 (4.11) 
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Current by branch i-j can be written in rectangular coordinates as a function of state variables 

as follows: 

 ii-j,r=vi �(gij+gsij) cosθi-(bij+bsij) sinθi� -vj �gijcosθj-bijsinθj� 
(4.12) 

 ii-j,i=vi �(bij+bsij) cosθi-(gij+gsij) sinθi� -vj �bijcosθj-gijsinθj� 

where subscripts “r” and “i” represent the real and imaginary parts of the current phasor. Stand-

ard deviations of the measurements which initially are expressed in polar coordinates must be 

also adapted to rectangular coordinates. This is accomplished using the classical theory of prop-

agation of uncertainty [56]: 

 uVi,r=�(cosθi)
2uVi

2 +(visinθi)
2uδi

2  

(4.13) 

 uVi,i=�(sinθi)
2uVi

2 +(vicosθi)
2uδi

2  

where uVi,r  and uVi,i are standard deviations of voltage measurement at bus i real and imaginary 

part and, uVi
2  and uδi

2  are standard deviations of voltage measurement at bus i magnitude and 

angle respectively. 

As mentioned before, despite the WLS technique is computationally efficient, it does not pro-

vide any robustness against gross errors. As a result, a post-estimation bad data processing 

method for detecting, identifying and eliminating bad data when using WLS approaches be-

comes mandatory. The main drawback of such a technique when applied into stage two is its 

high computational cost, which makes it inefficient and unfeasible at fast scan rates. That is 

why, aiming at improving the algorithm robustness in transient regime when PMUs are affected 

by large errors, a robust weighted least absolute value (WLAV) based linear estimator is used 

instead of the conventional WLS to estimate grid bus voltages since it can automatically reject 

bad measurements during the estimation process [29, 87] without any additional post-estima-

tion processing. 

This method has not been implemented in the past mainly for two reasons: first, when using 

RTU-SCADA measurements the problem becomes nonlinear and computationally slow and 

second, the existence of “leverage points” causes the algorithm fail to automatically eliminate 

large errors. However, it has been recently shown that these disadvantages could be removed if 

the network were fully observed only by PMUs. Under such condition, the problem becomes 

linear eliminating the need for repeated solutions and the vulnerability of leverage points can 
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be fixed by simple use of scaling [29]. Scaling can be carried out by dividing each column of 

the Jacobian matrix, H, by the largest entry of that column, then the same procedure is applied 

to the rows [88]. 

When only phasor measurements are available the measurement equation takes the following 

form [28]: 

 z=Hx�+r (4.14) 

where r is the measurement residual and the Jacobian H is a constant matrix. The state estimated 

x� will be given by the solution of the following optimization problem [28]: 

 Min. mT |r| 
(4.15) 

 s.t. z-Hx�=r 

where m is a weight vector. The optimization problem shown above is expressed as an equiva-

lent linear programming (LP) problem [28] and solved using the interior point solver [89].  

4.3 Dynamic state estimation 

So far the proposed hybrid estimator is able to provide information about power system static 

state in stationary as well as in transient regime at high speed. However, nothing has been said 

in relation to dynamic variables that play a major role in power system stability and dynamic 

security assessment.  

This subsection focus on the proposed dynamic estimation approach in charge of estimating 

dynamic variables. In first place, the models used to represent the behavior of dynamic grid 

components such as generators and motors are presented and described. Next, the dynamic es-

timator used in the second phase of the proposed hybrid estimator is explained in detail. 

4.3.1 Component modeling 

The definition of power system stability and its classification presented above (see subsection 

2.1.2, Power system stability) allows identifying those components whose operating conditions 

affect power system stability at most. Since power systems rely mostly on synchronous ma-

chines for generation of electrical power, a necessary condition for satisfactory system opera-

tion is that all synchronous machines remain in synchronism. This aspect is influenced by the 

dynamics of generator rotor angles and power-angle relationships. 

Nevertheless, instability may also occur without loss of synchronism. A system based on syn-

chronous machine supplying an induction motor through transmission line can become unstable 
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due to the collapse of load voltage. Keeping machines in synchronism is not an issue in such a 

case; instead the concern is stability and control of voltage [24]. Even though voltage instability 

is a local phenomenon, its consequences have a great effect on the system operation, leading 

sometimes to a voltage collapse. Voltage collapse is usually associated to the reactive power of 

load not being met because of limitations on the provision and transmission of reactive power. 

Voltage stability is “strongly influenced by the static characteristics and the dynamic response 

of the load” [23]. Furthermore, when motors are subjected to low voltage, they tend to stall and 

consume excessive reactive power from the network. As a result, the equilibrium between sup-

ply and demand cannot be kept, causing voltage stability problems. Thus, induction motors are 

usually “the driven force for voltage instability”. Their rotation speed can be used as indicator 

of short-term voltage stability. Usually, conventional under voltage load shedding schemes used 

to mitigate short-term voltage stability problems do not take into account the dynamics of mo-

tors. The triggering signal for load shedding is the voltage magnitude alone, which is not always 

a reliable indicator [90]. 

That is why, in this thesis generators and motors are dynamically modelled with the aim of 

estimating dynamic variables that are of interest in power system stability assessment such as 

rotor angle and speed of generators and speed of induction motors. 

Synchronous generator 

For stability analysis of large systems the stator transients of generators are usually neglected. 

By doing this, the stator quantities contain only fundamental frequency components and the 

stator voltage equations appear as algebraic equations. This allows the use of steady-state rela-

tionships for representing the interconnecting transmission network. The transients associated 

with the network decay very rapidly and there is little justification for modeling their effects in 

stability studies. “The network transients cannot be neglected unless machine stator transients 

are also neglected; otherwise equations representing various elements of the power system will 

be inconsistent” [24]. 

In addition, it is assumed that speed changes are small and do not have significant effect on 

voltage. This assumption “counterbalances the effect of neglecting the stator transients so far 

as the low-frequency rotor oscillations are concerned” [24]. 
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Based on the assumptions made before, the fourth-order model in d-q reference frame is used 

by the dynamic state estimator to represent the synchronous machine behavior which can be 

expressed by means of the following differential-algebraic system of equations in per unit [23]: 

 td0
' deq

'

dt
=-eq

' -(xd-xd
' )id+efd 

(4.16) 

 tq0
' ded

'

dt
=-ed

' -(xq-xq
' )iq 

 dδ
dt

=ω0ω 

 2H
dω
dt

=pm-pe-Dω 

 vd=v sin(δ-θ), vq=v cos(δ-θ) 

 id=
eq

' -vq

xd
' , iq=

vd-ed
'

xq
'  

 pe=vdid+vqiq, qe=-vdiq+vqid 

where td0
'  and tq0

'  are the open-circuit transient time constants. ed
' , eq

'  and efd are the transient 

voltages along the d and q axes and the field voltage. xd, xq, xd
' , and xq

'  are synchronous and 

transient reactance. id and iq are the d and q axis current. 𝛿𝛿 is the angle giving the position of 

rotor, ω0 is the nominal synchronous speed and 𝜔𝜔 is the speed deviation. H is the inertia constant 

and D is the damping coefficient. pm, pe and qe are the mechanical and electrical power (active 

and reactive) of the generator. v and θ are the terminal bus voltage magnitude and phase angle 

and vd and vq are the terminal bus voltage in the d and q axes. 

Dynamic load model (induction motor) 

Typically, motor consumption represents 60 to 70 % of the total energy supplied by a power 

system. Therefore, the dynamics attributable to motors are usually the most significant aspects 

of dynamic characteristics of system loads.  

The acceleration of the induction motor can be represented in per unit by [90]: 

 2H 
dω
dt

=te-tm (4.17) 
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where: 

 tm=tm0 �
𝜔𝜔
ω0

�
2
 

(4.18) 

 pmot=
te �rs+

rr
s�

�rr
s�

, s=1-ω 

in equations (4.17) and (4.18) ω is the rotation speed; H is the inertia constant; te and tm are the 

electromagnetic and mechanical torque; pmot is the power consumption of the motor; rs and rr 

are the stator and rotor resistance; s is the slip; pmot0, tm0, and ω0 are active power, mechanical 

torque and rotation speed under nominal condition. te is assumed to be equal to tm in steady 

state. 

4.3.2 EKF based dynamic state estimator in phase two 

In the second phase of the hybrid estimator an EKF based dynamic state estimator is in charge 

of estimating dynamic variables of generators and motors. The algorithm is chosen from differ-

ent alternatives for nonlinear systems (such as UKF, PF and ensemble KF) because its high 

computational efficiency makes it suitable for use in real-time monitoring and control functions 

of transient phenomena, since it is required that the estimation of current states must be finished 

before the next set of measurement arrives. In other words, the state estimation algorithm must 

be able to keep up with the measurement data flow. 

On the contrary, when a system is highly nonlinear, EKF tends to have poor estimation accuracy 

and even diverge. This is because first order Taylor approximation used in this algorithm intro-

duces too much error [9]. However, it has been shown that increasing the measurement sam-

pling rate through interpolation methods can improve the estimation accuracy but at the expense 

of increasing the computation time [9, 91]. 

The dynamic estimator is implemented in the hybrid scheme using a model decoupling tech-

nique called “event play back”, which has the potential to decouple the EKF problem to better 

use of the measurement data at terminal buses. Measurement data, which in the proposed hybrid 

scheme are the estimated static state (WLAV estimator in phase two), are separated in two 

groups. One group is treated as input signals to the dynamic model and the other group is treated 

as measurements or output in the estimation problem. Using such a technique, there is no longer 

the need to deal with the dynamic model of an entire power system [45]. Rather, small-scale 
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dynamic models of generators and motors will be used in the EKF in parallel. Estimators and 

measurements involved in phase two are depicted in the flowchart in Figure 4.6.

 

Fig. 4.6. Static and dynamic state estimators (phase 2). 
 
The dynamic model of generator in (4.16) can be represented on state-space model following 

the structure in (2.4) and (2.5) as follows: 

 x=[x1 x2 x3 x4]t=[δ ω ed
'  eq

' ]t 

(4.19) 

 u=[u1 u2 u3 u4]t=[efd v θ pm]t 

 ẋ1=ω0x2 

 
ẋ2=

 pm-v sin(δ-θ) x4-v cos(δ-θ)
xd

' -v cos(δ-θ) v sin(δ-θ)-x3
xq

' -Dx2

2H
 

 ẋ3=
-x3-(xq-xq

' ) v sin(δ-θ)-x3
xq

'

tq0
'  
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 ẋ4=
-x4-(xd-xd

' ) x4-v cos(δ-θ)
xd

'

td0
'  

 z=[𝑧𝑧1 𝑧𝑧2 ]t=[pe  qe]
t 

 𝑧𝑧1= v sin(δ-θ)
x4-v cos(δ-θ)

xd
' +v cos(δ-θ)

v sin(δ-θ)-x3

xq
'  

 𝑧𝑧2=-v sin(δ-θ)
v sin(δ-θ)-x3

xq
' +v cos(δ-θ)

x4-v cos(δ-θ)
xd

'  

In equation (4.19) the bus voltage at terminal bus (magnitude v and angle θ) together with 

measurements of electrical power (active pe  and reactive  qe) are obtained from the linear static 

estimator. The field voltage (efd ) and the mechanical power (pm) are assumed measurable and 

therefore known. Nevertheless, in practice these quantities may not be accessible. In such case 

alternative approaches could be used so that the solution can be reached even if the inputs are 

not given. Among possible alternatives, the following can be mentioned:  

a) The inclusion of the governor and the automatic voltage regulator (AVR) models in the 

machine formulation. Under such condition, the unknown inputs become internal vari-

ables and the reference values for voltage and power, which are known, will be the new 

inputs 

b) The use of alternative estimation algorithms that consider unknown inputs, such the one 

proposed in [46] 

To derive the discrete-time EKF algorithm, the system of equations presented above must be 

discretized and rewritten properly as follows: 

 xk=fk-1(xk-1,uk-1,wk-1) 
(4.20) 

 zk=hk(xk,uk,ek) 

In equation (4.20) k and k-1 indicate the instant of time t=k∆t and t=(k-1)∆t respectively; xk is 

the state vector; uk is the input vector; fk is the system function; zk the measurable output; hk 

the output function; wk represents either the process noise or inaccuracies in the system model 

and ek is the measurement noise. Both noises as mentioned before are supposed white, Gaussian 

with zero mean and independent of each other. The dynamic state in generators is estimated 

following the two-step prediction-correction process given in detail in equations (2.26)-(2.29) 
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(subsection 2.2.1, Discrete-time extended Kalman Filter). The overall structure of the estima-

tion process in generators is illustrated in Figure 4.7. Variables with a hat operator represents 

estimated quantities.

 

Fig. 4.7. Dynamic state estimation process for generators (phase two). 
 

The dynamic model of the motor in equations (4.17) and (4.18) can be represented on state-

space model as follows: 

 x=x1=ω 

(4.21) 

 u=u1=te  

 ẋ1=
te -tm0 �x1

ω0
�

2

2H
 

 z1=pmot  

 𝑧𝑧1=te 

rs+
rr

1-x1
rr

1-x1

 

As mentioned before, in this work a composite load model is considered. It is made up of two 

parts: an induction motor and a static load. The power contribution of each one in stationary 

state regime is assumed known. During a transient event, the power consumption of the static 

load (active pst  and reactive  qst) is approximated from the estimated static state and the PMU 
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measurement of frequency using the expressions (4.2) and (4.3). The power injection at termi-

nal bus (active pe  and reactive  qe) is estimated by the static estimator. Then, outputs, i.e. the 

power demanded by motors during a transient event, can be determined as the difference be-

tween power injection and power consumption of the static load as follows: 

 pmot=pe-pst 
(4.22) 

 qmot=qe-qst 

As with generators the system of equations must be discretized in order to derive the discrete-

time EKF algorithm. After that, the dynamic variable is estimated following the two-step pre-

diction-correction process given in detail in equations (2.26)-(2.29) (subsection 2.2.1, Discrete-

time extended Kalman Filter). 

The estimation process of motors is depicted by the flowchart in Figure 4.8. Variables with a 

hat operator represents estimated quantities.

 

Fig. 4.8. Dynamic state estimation process for motors (phase two). 

4.4 Summary 

This chapter presents the hybrid state estimator developed in this thesis for monitoring the 

power system dynamics associated to slow and fast transient events. First a short description 

about the estimation procedure is given. Then, the features of the estimator are presented and 

described according to the kind of variable to be estimated, either static or dynamic. Models 

used by the estimator to represent the behavior of the power system on static and dynamic 

condition as well as the estimation algorithms employed in each phase are explained in detail. 
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The hybrid estimator basically consists of two phases. In stationary regime phase one takes 

place and the static state is estimated at SCADA using a WLS approach. Conventional as well 

as PMU measurements are used together in one single estimation run. Once the estimation is 

completed, a post-estimation method based on residuals is carried out with the aim of filtering 

gross measurement errors. Phase two occurs when the system operates in transient regime. This 

time, two estimators work in sequence at PMU speed. First, a WLAV estimator is used to esti-

mate bus voltages as soon as the PMU measurement set arrives. Since a post-estimation bad 

data processing technique is unfeasible at fast scan rates, the static estimator in phase two uses 

the information provided by the bad data processor from phase one to adjust the measurement 

weights. Finally, dynamic variables such as rotor angle and speed of generators and speed of 

motors are estimated by means of an EKF based dynamic state estimator. 

Unlike the PMU-only state estimators proposed in the literature, the hybrid approach developed 

in this thesis does not require a PMU installed at each generator or motor terminal bus to esti-

mate the dynamic state in such buses. The WLAV based linear estimator in phase two is in 

charge of delivering the necessary information to the EKF so that it can carry out its work 

regardless of local PMU availability. 
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5 Test results and analysis 

In this chapter the performance of the proposed hybrid state estimator together with the meth-

odology for generating bus voltage pseudo-measurements are tested and assessed. The New 

England benchmark system is used to this end. Performance parameters such as accuracy, com-

puting time, convergence and robustness are evaluated. In addition, it is analyzed how the re-

dundancy of pseudo-measurements and the use of different estimation algorithms in phase two 

affects the estimated result. The analysis of results highlights the ability of the proposed esti-

mator to accurately monitor power system dynamics associated to slow and fast transient 

events. 

5.1 Description of the test system 

The hybrid state estimator together with the methodology for generating bus voltage pseudo-

measurements are tested on the New England benchmark system. It consists of 39 buses and 10 

generators. The nominal frequency is 60 Hz and the main voltage level is 345 kV. Some changes 

were introduced into the grid with the aim of satisfying the N-1 security criterion [69]. In addi-

tion, motors have been included together with static loads [69]. The test system single-line di-

agram is depicted in Figure 5.1 and its data is presented in detail in Appendix A. 

The software “PowerFactory” is used to generate simulation data that imitate responses of a 

real system. Dynamic simulations are run using an integration step size of 10 ms. An update 

rate of 2.4 s for conventional measurements and 40 ms for synchronized measurements is con-

sidered. 

In order to obtain more realistic scenarios and to test the estimator under more real conditions, 

model inadequacy and process noises are considered. This is accomplished by using more com-

plex models to generate the simulation data in relation to the models used by the hybrid state 

estimator to estimate the states. Generators are represented in detail using a full sixth-order 

electromechanical model including transient and sub-transient dynamics in addition to governor 

and excitation systems. Motors are modelled with a seventh-order double cage rotor model. 

Static loads are represented using a polynomial model where voltage and frequency dependen-

cies are considered (details can be found in Appendix A). 
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Measurements are obtained by adding a random error with normal distribution and zero mean 

to results from simulation. Standard deviations are computed from the maximum uncertainty 

for each kind of measurement (see Table 5.1). 

Transmission line parameters are usually assumed to be exact and known. However, in practice 

this assumption do not hold true. In this work, the uncertainty of line parameters is considered 

and modelled using a uniform distribution function with typical upper and lower bounds of 

± 2%. 

Table 5.1 Maximum measurement uncertainties [13] 

Conventional measurements PMU measurements 
pi qi pfl qfl v v i θ α f 

2 % 0.5 % 0.02° 0.02 % 

 

Fig. 5.1. New England benchmark system. 
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5.2 Measurement topology 

In this work it is assumed that the conventional measurement system ensures the estimation 

problem solution in phase one, i.e. the power grid is observable. Location and amount of con-

ventional measurements are defined in order to get a maximum spanning tree (topological ap-

proach). A measurement redundancy of 1.2 is achieved. 

In order to determine the PMU topology, a database made up of 10,800 operating scenarios is 

generated from numerical simulations using the Monte Carlo method. As mentioned before, 

three kinds of N-1 contingencies are simulated: three-phase fault, load curtailment and genera-

tor outage. The database comprises stable and unstable scenarios. A fault clearing time of 80 

ms and a simulation time of 10 s are considered. 

Then, coherency is evaluated in each scenario using the k-medoids based double-loop routine 

explained above (subsection 3.2, Probabilistic approach for defining the PMU topology), which 

is applied to time series of voltage magnitude and angle. Similarity is calculated through the 

Euclidean distance between Wavelet coefficients. The choice of the clustering method and the 

distance metric used in this work is based on an appropriate robustness-processing time ratio. 

As an example, Figures 5.2 and 5.3 depict the clusters of voltage magnitude and angle defined 

by the proposed approach when a three-phase fault on line 23-24 occurs. Bus voltage magni-

tudes and angles are grouped together in 5 and 4 clusters respectively. 

Each coherent scenario for bus voltage magnitude and angle is identified through the use of 

integers. The clustering routine determines 4,419 different coherent scenarios for voltage angle 

and 6,019 different coherent scenarios for voltage magnitude over the total 10,800 simulated 

scenarios. It is found that the great majority of classes or coherent scenarios (71.7% and 77.2% 

for voltage angle and magnitude respectively) have just one example, namely the rate of occur-

rence is one, which clearly conducts to an imbalanced multi-class dataset. Besides, most sce-

narios are grouped in 4 and 5 clusters. The class distribution as a function of the number of 

coherent areas before adapting the dataset is depicted in Figure 5.4. 

Pre-processing techniques are applied on the dataset with the aim of making them appropriate 

for analysis and mining: 

1) First, the data dimension is reduced by means of PCA considering the pre-contingency sys-

tem loading condition. The number of principal components is chosen so that to achieve a 

cumulative proportion of variance explained of at least 90%. This means that the new set of 
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variables will represent the variability of the original dataset in the above mentioned pro-

portion. This is achieved by using the first four principal components (see Figure 5.5); 

 

  

  

 

Fig. 5.2. Coherent areas under a three-phase fault on line 23-24. 
Voltage magnitude 
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Fig. 5.3. Coherent areas under a three-phase fault on line 23-24. 
Voltage angle 

 
2) Next, variables are normalized with the aim of adjusting values measured on different scales 

to a common scale and scenarios are grouped together according to the system loading con-

dition. The k-means with Euclidean distance is used to this end. The number of clusters is 

defined by plotting the change of the intra-cluster variance as a function of the number of 

clusters and then choosing that point from where there is no significant change in variance. 

Scenarios are grouped into eight clusters. Figure 5.6 shows the clusters obtained as a func-

tion of the three first components; 

3) An analysis on the reduced and normalized dataset reveals scenarios with similar feature 

values but belonging to different classes or coherent scenarios, which constitutes a clear 

symptom of overlapping classes. Further investigation into classes allows detecting small 

differences between coherent areas in each of them. Here, the three-step filtering process 

explained above is implemented. First, “boundary” scenarios with similar feature values but 

different classes are identified. Then, the degree of dissimilarity between pairs of boundaries 

scenarios is calculated by measuring the number of buses that contribute to having different 



75 5. Test results and analysis 

 

 
 

  
Fig. 5.4. Class distribution before filtering process. 

(a) Voltage magnitude, (b) Voltage angle 

 
Fig. 5.5. Variance explained (PCA) 

 
Fig. 5.6. Clustering according to pre-contingency system loading condition 

 
coherent areas in both scenarios. When the number of buses falls below 10% of the total 

amount of buses in the grid under analysis both scenarios adopt the same class. This process 
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is carried out until all the scenarios that meet this condition are “absorbed” by their corre-

sponding pairs. The direction of absorption is defined so that the larger clusters absorb sce-

narios from the smaller ones. As a result of this first filtering stage the number of classes 

(coherent scenarios) is reduced by 71.8% and 70.8% for voltage angle and magnitude re-

spectively. The second stage operates only on coherent scenarios with a rate of occurrence 

of one. The main idea here is to approximate these scenarios to clusters with similar feature 

values found in the immediate vicinity of the scenario under analysis. This time, the number 

of classes is further reduced by 5.5% and 5.2% for voltage angle and magnitude respec-

tively. Finally, the last stage dismisses coherent scenarios whose rate of occurrence is equal 

to one, two and/or three. As a result, 1,804 simulated scenarios (16.7%) are dismissed. The 

last filter reduces the number of classes by another 11.7% and 14.5% for voltage angle and 

magnitude respectively. Figure 5.7 depicts using a bar plot the evolution of the number of 

classes according to each of the filtering steps mentioned above. In addition, Figure 5.8 

shows the new distribution of classes. As can be seen, the filtering process leads to a more 

uniform distribution of class avoiding the well-known class imbalance problem. Figure 5.9 

depicts the dataset distribution as a function of the pre-contingency system loading condi-

tion and the kind of contingency before and after the last step of the filtering process. From 

the histograms it can be noticed that the removal of scenarios performed in the last step of 

the filtering process does not significantly affect the distribution of the original data. More-

over, the removed scenarios are less likely to occur. 

 
Fig. 5.7. Effect of the filtering process on the number of classes (coherent scenarios) 
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Fig. 5.8. Class distribution after filtering process. 

(a) Voltage magnitude, (b) Voltage angle 
 

  
Fig. 5.9. Dataset distribution according to the kind of contingency. 

Load curtailment. (a) before and (b) after filtering process 

 

  
Fig. 5.10. Dataset distribution according to the kind of contingency. 

Three-phase fault (a) before and (b) after filtering process 
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Fig. 5.11. Dataset distribution according to the kind of contingency. 

Generator outage (a) before and (b) after filtering process 
 
Finally, the number of PMUs and their location is found through the iterative exploring process 

explained in subsection 3.2. Buses that are medoids simultaneously in voltage magnitude and 

angle in at least 10% of the total simulated scenarios are taken into consideration when gener-

ating the PMU candidate topologies by means of combinatorics. According to the class distri-

bution shown in Figure 5.8 topologies ranging from a minimum of 3 to a maximum of 9 PMUs 

are analyzed. In order to speed up the process, only topologies that offer a higher degree of 

network observability are considered. Configurations for which the degree of observability falls 

by 10% or more of its maximum value are discarded from the analysis. Table 5.2 shows a 

summary of the results obtained. It contains the number of candidate topologies according to 

the amount of installed PMUs and the best solution for each case defined as the one with the 

least number of non-observed scenarios over the total amount of simulated scenarios. The so-

lution chosen in this work for the New England system involves 7 PMUs at buses 2, 6, 9, 14, 

20, 23 and 29. This decision is based on the fact that from 7 units an increase in the number of 

PMUs does not lead to an appreciable improvement in the number of observed scenarios. The 

solution results in 18% of measured buses, 72% of observed buses and 28% of non-observed 

buses. The PMU topology adopted allows observing all the coherent areas in voltage magnitude 

and angle simultaneously in 92.8% of all simulated scenarios. A key aspect to be emphasized 

from the obtained results and the selected PMU topology is that the number of units involved 

in it represents a reduction of 40% in the minimum amount of units required to observe the 

whole system if only PMU measurements were considered. This is not a minor issue when 

trying to find a way of dealing with overload on communication and data processing systems 

in large-scale applications due to the incorporation of PMUs. Figure 5.12 depicts the measure-

ment topology (PMU and SCADA measurements) adopted in the New England system. 
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Fig. 5.12. Measurement topology adopted in the New England system 

 
Table 5.2 Summary of results (iterative exploring process) 

No. of 
PMUs 3 4 5 6 7 8 9 

No. of 
candidate  
topologies 

13 131 137 325 376 1100 1698 

Best can-
didate 
[Buses] 

2, 16, 
29 

2, 6, 
19, 29  

2, 6, 
19, 22, 

29 

2, 6, 14, 
20, 23, 

29 

2, 6, 9, 
14, 20, 
23, 29 

2, 6, 9, 13, 
14, 20, 23, 

29 

2, 5, 6, 9, 
13, 16, 20, 

23, 29 
Success 
rate [%] 9.5 66.9 78.7 86.7 92.8 93.7 94.6 
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5.3 Coherency forecasting and accuracy analysis of bus voltage pseudo-

measurements 

First, a classification matrix is built from a sample that includes approximately 60% of simu-

lated scenarios, i.e. 5,188 out of 8,996 scenarios. Scenarios are selected so that the sample in-

cludes all the classes or coherent scenarios (420 classes for voltage angle and 489 classes for 

voltage magnitude). For each scenario in the matrix, an assignment vector is determined. After 

that, a Random Forest classifier is trained using data from the classification matrix with the aim 

of predicting the cluster associated to the pre-contingency system loading condition of a new 

and unknown scenario. Test scenarios used to assess the classifier performance are obtained 

from data that have not been used before in the classification matrix. Almost 90% of test data 

are correctly predicted considering voltage magnitude and angle simultaneously. The average 

computing time for each scenario is 12 ms. As can be seen in Figure 5.13, misclassified scenar-

ios are usually scenarios with a low frequency of class in the training sample. The classifier 

fails in these cases because the class imbalance, which, despite having been partially solved by 

the three-step filtering process explained above, is still present. 

  
Fig. 5.13 Data distribution. Training scenarios vs test scenarios incorrectly predicted (a) 

voltage magnitude, (b) voltage angle 
 
The mean absolute deviation is used as a measure to evaluate the accuracy of voltage pseudo-

measurements: 

 ErrVps=
∑ �vpsi-vi�i=N

i=1

N
 (5.1) 
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where ErrVps is the voltage pseudo-measurement error (magnitude or angle), N is the number 

of time periods under analysis, vpsi and vi are the voltage pseudo-measurement and the real 

voltage (magnitude or angle) at time i. 

Figures 5.14, 5.15 and 5.16 depict with the help of box-plots the distribution of the voltage 

pseudo-measurement error at each non-observed bus and group the results together according 

to whether the coherent scenario is correctly or incorrectly predicted. From the point of view of 

the kind of contingency, pseudo-measurements are less accurate in those events that result in a 

system response with a higher degree of nonlinearity, such three-phase faults or generator out-

ages. In this case the error remains in most scenarios below 1.5 % and 1º for voltage magnitude 

and angle respectively. When analyzing scenarios according to the classifier performance, in 

most cases pseudo-measurement errors from misclassified scenarios show a higher degree of 

dispersion reaching higher maximum values, which indicates they are less accurate. Neverthe-

less, the difference of accuracy between both kind of scenarios is minor. 

As an example, Figure 5.17 shows the bus voltage pseudo-measurement at the non-observed 

bus 35 considering the three kind of contingencies under analysis, i.e. three-phase fault, gener-

ator outage and load curtailment. Bus voltage pseudo-measurements approach the real value. 

 

Fig. 5.14 Distribution of the voltage pseudo-measurement error at non-observed buses 
when a generator outage takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.15 Distribution of the voltage pseudo-measurement error at non-observed buses 
when a three-phase fault takes place (a) voltage angle, (b) voltage magnitude 

 

 

Fig. 5.16 Distribution of the voltage pseudo-measurement error at non-observed buses 
when a load curtailment takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.17 Pseudo-measurement vs true voltage at non-observed bus 35 (a) three-phase fault 
on line 25-26, (b) generator outage at bus 38 (G9), (c) load curtailment at bus 24 (load step 

of -37.3%)  
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5.4 Analysis of performance of the proposed hybrid state estimator 

In this section the performance of the hybrid state estimator is investigated by means of four 

case studies. The main goal is to characterize the algorithm capacity with respect to its accuracy, 

processing time and robustness. The estimator is tested under different operating conditions 

regarding the classifier response, the redundancy of bus voltage pseudo-measurements, the al-

gorithm employed in phase two for estimating the static state and the grid parameters and PMU 

measurement errors. 

Static estimator in phase one initializes assuming flat start condition. The initial dynamic state 

vector is set from the estimated static state in phase one. In addition, speed of machines will 

likely be close to its nominal value when the power system is in stationary regime and under 

normal operating conditions. The initial covariance matrix for generators and motors is set to 

be P0=diag([5 5 5 5]) and P0=5 respectively. 

As mentioned before, in this work measurement as well as structure (line parameters) uncer-

tainties are taken into consideration. Furthermore, process noises from model inadequacy and 

linearization are also included. The process and measurement covariance matrices for genera-

tors are defined as Q=0.062×(I4x4) and Robs=0.062×(I4x4) or Runobs=0.62×(I4x4) respectively de-

pending on whether the bus associated with the machine is observable by a PMU or not. Process 

and measurement variances for motors are set to be wk=0.92 and vk =0.062 respectively. Uncer-

tainties of measurable inputs in generators (field voltage and mechanical power) are modelled 

in the same way as conventional measurements. 

The mean absolute deviation is employed as a measure of error to evaluate the estimation ac-

curacy, see equation (5.3.1). 

Because in phase two estimators operate in sequence, computing times introduce a delay of the 

order of a few tens or milliseconds. In order to take this aspect into consideration, the dynamic 

estimator in phase two uses as input the estimated static state at the previous PMU time step, 

i.e. the dynamic estimator uses estimated data from 40 ms ago. 

Case I (base case) 

The first case is also defined as base case because the algorithm operates following the assump-

tions made above as regards noises, algorithms involved in the estimation process and number 

of bus voltage pseudo-measurements. 
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The estimator accuracy is statically characterized and classified according to whether the co-

herency of the simulated scenario has been properly or misclassified. Figures 5.18 to 5.23 show 

the distribution of the estimated static state error according to the kind of contingency and the 

kind of bus from a PMU observability point of view. In addition, Figures 5.24 to 5.27 depict 

the error distribution of the estimated dynamic state for generators at buses 33, 34 and 37 and 

motors at buses 4 and 20. Because bus 34 is observed by PMUs the degree of dispersion of the 

estimation error at this bus is remarkably smaller. As expected, misclassified scenarios tend to 

present a higher degree of dispersion of the estimation error reaching higher values. Neverthe-

less, the difference between both cases is rather small and what is more, in some cases the error 

distribution for misclassified scenarios is slightly less dispersed, as it is the case with scenarios 

that entail three-phase fault at buses 33, 34 and 37 (see Figures 5.22 and 5.25). This is due, first, 

to the fact that the algorithm for voltage coherency definition is prone to error when dealing 

with scenarios whose coherent areas exhibit almost the same bus voltage behavior but still re-

main as individual areas, and second, to an uneven number of scenarios with strong nonlinear-

ities in each of the test samples under analysis, which contributes to higher estimation errors 

and eventually to more dispersed error distributions. 

Considering only properly classified scenarios and according to the kind of contingency and 

the kind of bus, as expected, the estimator is less accurate in scenarios that entail stronger non-

linearities and at non-observed buses. Considering only PMU-non observed buses, the median 

of the estimated static state error is in the range of 0.01 to 0.7º and 0.2 to 0.7% for voltage 

magnitude and angle respectively. In relation to the dynamic state, the median of the error goes 

from 0.5 to 3.8º for rotor angle of generators and from 0.006 to 0.07% for rotation speed of 

generators. Regarding motors, the median of the error is about 0.4% for rotation speed. 

Convergence is analyzed by measuring the time evolution of the estimation error. The dynamic 

estimator based on the EKF fails to find a solution in about 11% of the test scenarios. This 

amount is reduced to 4% if the time delay between static and dynamic estimators in phase two 

is removed. In addition, it was found that most cases with convergence problems imply unstable 

scenarios. 

The average computing time is determined in order to check whether the proposal can keep up 

with PMUs’ update rate of 25 samples per second. Tests are performed in a computer with an 

Intel Core i7 2.3 GHz processor and 16 GB RAM. Results in table 5.3 prove that the execution 

time in phase two is lower than the PMU sampling period, enabling the proposed scheme to 

track fast dynamics. Although a centralized approach like the one proposed in this thesis might 
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not work in large scale power grids due to the higher computing time involved, it can be ex-

tended to a decentralized scheme typically employed for monitoring and controlling of large 

scale systems, where the system is divided into smaller areas and local estimators run in each 

of them. In addition, the problem can be adapted to be solved by means of parallel computing 

methods. Successful applications in this field can be found in [29, 53]. 

Figures 5.28 and 5.29 depict the time series of the estimated static and dynamic state at buses 

37 and 24 respectively. The first scenario involves a three-phase fault on line 3-18. The error 

of the estimated static state in such case is close to the median (0.5% and 0.3º for voltage mag-

nitude and angle respectively). The second scenario is a generator outage at bus 39. As in the 

case before, the error of the estimated static state is close to the median (0.17% and 0.04º for 

voltage magnitude and angle respectively). In both scenarios the bus voltage coherency and the 

assignment vector that dictates the relation between PMU observed and non-observed buses 

have been correctly predicted. 

Table 5.3 Average computational time (ms) 

WLS WLAV EKF 

330 15 0.2 
 

 
Fig. 5.18 Distribution of the estimated static state error at observed buses when a generator 

outage takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.19 Distribution of the estimated static state error at observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.20 Distribution of the estimated static state error at observed buses when a load cur-
tailment takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.21 Distribution of the estimated static state error at non-observed buses when a gen-
erator outage takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.22 Distribution of the estimated static state error at non-observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.23 Distribution of the estimated static state error at non-observed buses when a load 
curtailment takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.24 Distribution of the estimated dynamic state (generators) error when a generator 
outage takes place (a) rotor angle of generator, (b) rotation speed of generator 
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Fig. 5.25 Distribution of the estimated dynamic state (generators) error when a three-phase 
fault takes place (a) rotor angle of generator, (b) rotation speed of generator 

 

Fig. 5.26 Distribution of the estimated dynamic state (generators) error when a load curtail-
ment takes place (a) rotor angle of generator, (b) rotation speed of generator 
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Fig. 5.27 Distribution of the estimated dynamic state error (rotation speed of motor) (a) 
generator outage, (b) three-phase fault, (c) load curtailment 
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Fig. 5.28 Estimated static and dynamic state at bus 37 under a three-phase fault on line 3-18 
(a) voltage magnitude, (b) voltage angle, (c) rotor angle of generator, (d) rotation speed of 

generator 
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Fig. 5.29 Estimated static and dynamic state at bus 24 under a generator outage at bus 39 
(a) voltage magnitude, (b) voltage angle, (c) rotation speed of motor, (d) frequency of bus 

voltage 
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Results presented above prove that the proposed scheme is able to inform the system operating 

conditions with reasonable accuracy. Nevertheless, the performance of the estimator is severely 

degraded in the presence of gross PMU errors. The main reason behind this issue lies in the 

lack of a post-estimation bad data processor. Such a scheme becomes unfeasible at high scan 

rates. For this reason, estimators in phase two use the information provided by the bad data 

processing step in phase one to adapt the measurement weights in phase two. Nevertheless, and 

as it will be shown below, this does not solve large error issues when there is no redundancy 

among measurements. The developed methodology for generating bus voltage pseudo-meas-

urements assigns only one voltage pseudo-measurement (magnitude and angle) to each non-

observed bus. 

With the aim of enhancing the measurement redundancy in phase two and thus the algorithm 

filtering capacity and its robustness against large errors, a modified version of the already pro-

posed estimator is proposed. The alternative employs an ancillary set of bus voltage pseudo-

measurements, which is obtained using the same coherency concept explained before, but this 

time without considering the criterion of minimum electrical distance employed when assigning 

observed to non-observed buses. Because of that, the additional set of pseudo-measurements is 

considered even more inaccurate with a standard deviation 10% greater than its counterpart 

used in the initial approach. 

Case II 

The second case attempts to prove the advantages that an additional set of bus voltage pseudo-

measurements at the observed buses gives to the performance of the proposed hybrid state es-

timation approach in the presence of large PMU errors. A large error is simulated by adding a 

constant signal to the voltage magnitude of the PMU measurement at bus 20 on t = 0 s with a 

value equal to 30 % of the bus nominal value. Both alternatives are analyzed and compared 

with each other regarding their accuracy. 

Figure 5.30 to 5.36 shows the estimated static and dynamic state at buses 33, 34 and 20 when 

the generator at bus 37 goes out. Here can be noticed that, although the inclusion of additional 

pseudo-measurements in some cases may result in a slight loss of performance, as is the case 

with the voltage angle at bus 20 (see Figure 5.35b), the estimator gains the ability to filter out 

the large error. This is visible in the estimated voltage magnitudes at buses 34 and 20 and power 

injections at buses 33 and 34 (see Figures 5.33-a, 5.35-a, 5.31-a-b and 5.33-c-d). In the presence 

of a PMU failure, the filtering capacity results in a remarkable improvement of the algorithm 



95 5. Test results and analysis 

 

 
 

accuracy not only when estimating the static but also the dynamic state (see Figures 5.32-a-b, 

5.34-a-b and 5.36). 

Figures 5.37 to 5.42 depict distribution of the estimated static state error for observed and non-

observed buses. Results are grouped together according to the kind of contingency. As ex-

pected, the large error affects to a larger extent buses that are near the failed PMU. This can be 

easily observed in the distribution of the estimated static state error at buses 19, 20, 33 and 34. 

In addition, it can be seen that the ancillary set of pseudo-measurements results in a loss of 

performance that becomes more evident in voltage angles, but it gives the algorithm the ability 

to filter the large error. This leads eventually to better results as regards the dynamic state, as is 

the case with generators at buses 33 and 34 and the motor at bus 20 (as can be seen in boxplots 

depicted in Figures 5.43 to 5.45). 

 

 

Fig. 5.30 Estimated static state at bus 33 under a generator outage at bus 37 (a) voltage 
magnitude, (b) voltage angle 
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Fig. 5.31 Estimated static state at bus 33 under a generator outage at bus 37 (a) active 
power injection, (b) reactive power injection 

 

Fig. 5.32 Estimated dynamic state at bus 33 under a generator outage at bus 37 (a) rotor an-
gle of generator, (b) rotation speed of generator 
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Fig. 5.33 Estimated static state at bus 34 under a generator outage at bus 37 (a) voltage 
magnitude, (b) voltage angle, (c) active power injection, (d) reactive power injection 
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Fig. 5.34 Estimated dynamic state at bus 34 under a generator outage at bus 37 (a) rotor an-
gle of generator, (b) rotation speed of generator 

 

Fig. 5.35 Estimated static state at bus 20 under a generator outage at bus 37 (a) voltage 
magnitude, (b) voltage angle 
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Fig. 5.36 Estimated dynamic state (rotation speed of motor) at bus 20 under a generator out-
age at bus 37 

 

Fig. 5.37 Distribution of the estimated static state error at observed buses when a generator 
outage takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.38 Distribution of the estimated static state error at observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.39 Distribution of the estimated static state error at observed buses when a load cur-
tailment takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.40 Distribution of the estimated static state error at non-observed buses when a gen-
erator outage takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.41 Distribution of the estimated static state error at non-observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.42 Distribution of the estimated static state error at non-observed buses when a load 
curtailment takes place (a) voltage angle, (b) voltage magnitude 

   

Fig. 5.43 Distribution of the estimated rotor angle and rotation speed error (generator at bus 
33) according to the kind of contingency (a) generator outage, (b) three-phase fault, (c) load 

curtailment 
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Fig. 5.44 Distribution of the estimated rotor angle and rotation speed error (generator at bus 
34) according to the kind of contingency (a) generator outage, (b) three-phase fault, (c) load 

curtailment 

   

Fig. 5.45 Distribution of the estimated rotation speed error (motor at bus 20) according to 
the kind of contingency (a) generator outage, (b) three-phase fault, (c) load curtailment 
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Case III 

As mentioned before, despite the WLS method is computationally efficient, it does not provide 

any robustness against large errors. A post-estimation bad data processing step becomes man-

datory for such a technique. The main drawback of this method when applied in phase two is 

its high computational cost that makes it unfeasible at high scan rates. That is why, a robust 

WLAV based linear estimator is proposed instead the conventional WLS to estimate grid bus 

voltages in phase two. 

This case aims to demonstrate the improvement in the algorithm performance that comes from 

such alternative. Both options, i.e. the WLS based scheme and its more robust alternative based 

on the WLAV, are evaluated under different operating scenarios. In the first place, no PMU 

gross error is considered. Then, as in the previous case, a malfunction of the PMU at bus 20 is 

assumed and simulated by adding a constant signal equal to 30% of the reported value on t = 0 

s. 

Figures 5.46 to 5.51 depict the distribution of the estimated bus voltage error at observed and 

non-observed buses and according to the kind of contingency. As can be noticed, at some buses 

the estimation error is slightly more dispersed and reaches higher values in the WLAV variant 

than in its counterpart based on the WLS technique. This difference is more pronounced in 

voltage magnitudes. Thus, the WLS based option is a little more accurate when PMUs do their 

job without any inconvenience. Figures 5.52 to 5.55 show the estimated dynamic states at buses 

4, 32, 33, 34 and 20. There is no appreciable difference in performance between both options 

when dealing with dynamic states. This situation is reversed when having a PMU malfunction. 

Under such a circumstance, the alternative based on the WLAV is more effective than its coun-

terpart to filter out the large error. This can be observed in the distribution of the estimated static 

state error at buses that are located in the immediate vicinity of the bus with the failed PMU, as 

happens with buses 19, 20, 33 and 34 (see boxplot in Figures 5.56 to 5.61). As expected, this 

difference in performance between both options is also reflected in the estimated dynamic states 

(see Figures 5.62 and 5.63). 

As an example, Figures 5.64 to 5.70 depict the estimated static and dynamic state at buses 33, 

34 and 20 when almost 60% of the load at bus 24 is suddenly removed from the grid. Results 

from both options are plotted together for comparative purposes. As can be seen, the WLAV 

based variant outperforms the WLS based option when assuming a large error in the reported 

PMU measurement at bus 20. 
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Fig. 5.46 Distribution of the estimated static state error at observed buses when a generator 
outage takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.47 Distribution of the estimated static state error at observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.48 Distribution of the estimated static state error at observed buses when a load cur-
tailment takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.49 Distribution of the estimated static state error at non-observed buses when a gen-
erator outage takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.50 Distribution of the estimated static state error at non-observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.51 Distribution of the estimated static state error at non-observed buses when a load 
curtailment takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.52 Distribution of the dynamic state (generators at buses 32, 33 and 34) error when a 
generator outage takes place (a) rotor angle of generator, (b) rotation speed of generator 

 

Fig. 5.53 Distribution of the dynamic state (generators at buses 32, 33 and 34) error when a 
three-phase fault takes place (a) rotor angle of generator, (b) rotation speed of generator 
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Fig. 5.54 Distribution of the dynamic state (generators at buses 32, 33 and 34) error when a 
load curtailment takes place (a) rotor angle of generator, (b) rotation speed of generator 

   

Fig. 5.55 Distribution of the estimated rotation speed error (motors at buses 4 and 20) ac-
cording to the kind of contingency (a) generator outage, (b) three-phase fault, (c) load cur-

tailment 
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Fig. 5.56 Distribution of the estimated static state error at observed buses when a generator 
outage takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.57 Distribution of the estimated static state error at observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.58 Distribution of the estimated static state error at observed buses when a load cur-
tailment takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.59 Distribution of the estimated static state error at non-observed buses when a gen-
erator outage takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.60 Distribution of the estimated static state error at non-observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.61 Distribution of the estimated static state error at non-observed buses when a load 
curtailment takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.62 Error distribution of the estimated rotor angle and rotation speed (generators at 
buses 33 and 34) according to the kind of contingency (a) generator outage, (b) three-phase 

fault, (c) load curtailment 

   

Fig. 5.63 Error distribution of the estimated rotation speed (motors at bus 20) according to 
the kind of contingency (a) generator outage, (b) three-phase fault, (c) load curtailment 
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Fig. 5.64 Estimated static state at bus 33 under a load curtailment at bus 24 (a) voltage 
magnitude, (b) voltage angle, (c) active power injection, (d) reactive power injection 
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Fig. 5.65 Estimated dynamic state (generator at bus 33) under a load curtailment at bus 24 
(a) rotor angle of generator, (b) rotation speed of generator 

 

Fig. 5.66 Estimated static state at bus 34 under a load curtailment at bus 24 (a) voltage 
magnitude, (b) voltage angle 
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Fig. 5.67 Estimated static state at bus 34 under a load curtailment at bus 24 (a) active power 
injection, (b) reactive power injection 

 

Fig. 5.68 Estimated dynamic state (generator at bus 34) under a load curtailment at bus 24 
(a) rotor angle of generator, (b) rotation speed of generator 
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Fig. 5.69 Estimated static state at bus 20 under a load curtailment at bus 24 (a) voltage 
magnitude, (b) voltage angle 

 

Fig. 5.70 Estimated dynamic state (rotation speed of motor at bus 20) under a load curtail-
ment at bus 24 
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Case IV 

This case aims to test the estimator performance against higher noise levels. For this purpose 

measurement variances and noise boundaries in grid parameters are increased one at a time by 

a factor of five with respect to their initial values. Convergence and estimation accuracy are 

evaluated under the new operating conditions. 

In relation to convergence, higher noise levels lead to an increase in the number of cases where 

the algorithm does not approach a finite value. It has been found that a noise level growth in 

the measurement variance by a factor of 5 increases by about 8% the number of scenarios where 

the EKF fails to converge. This amount falls to 2% if the additional noise affects only the grid 

parameters. 

Figures 5.71 to 5.76 show the distribution of the estimated static state error at observed and 

non-observed buses. Results are grouped together according to the kind of contingency and 

kind of noise under consideration. It can be observed from the error distribution depicted by the 

boxplots that measurement noises have a major impact on the estimated voltage magnitude. On 

the other hand, parameter noises have a greater influence on the estimated voltage angle. 

Figures 5.77 to 5.80 depict the distribution of the dynamic state error at buses 4, 20, 33, 34 and 

35. As before, results are grouped together according to the kind of contingency and the kind 

of noise under analysis. The distribution of the estimation error becomes usually a little more 

dispersed and reaches higher values when adding additional noise in measurements. This is 

consistent with the increases in the number of scenarios for both cases, i.e. 8% when having 

higher noise levels in measurements and 2% for higher noise levels in grid parameters, where 

the EKF fails to converge. 

As expected, higher noise levels leads to greater estimation errors, either in static or dynamic 

variables. Nevertheless, the increase in the median of the estimated static and dynamic error is 

minor. Then, it can be affirmed that the estimator remains robust under such new operating 

conditions. 

In addition, it can be observed that there is a clear relationship between the degree of dispersion 

of the estimation error and it highest value at a certain bus and the bus location relative to a 

PMU bus. The greater the distance between a certain bus and a PMU bus, the greater the degree 

of dispersion of the estimation error and its maximum value. 

As an example, Figures 5.81 to 5.104 show the estimated static and dynamic states at buses 4, 

20, 33, 34 and 35 when a generator outage at bus 39 occurs and considering higher noise levels 
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in measurements and grid parameters as well. As can be observed, under any of the assumed 

conditions the algorithm is capable of estimating the static and dynamic state with an adequate 

accuracy. 

 

Fig. 5.71 Distribution of the estimated static state error at observed buses when a generator 
outage takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.72 Distribution of the estimated static state error at observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.73 Distribution of the estimated static state error at observed buses when a load cur-
tailment takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.74 Distribution of the estimated static state error at non-observed buses when a gen-
erator outage takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.75 Distribution of the estimated static state error at non-observed buses when a three-
phase fault takes place (a) voltage angle, (b) voltage magnitude 

 

Fig. 5.76 Distribution of the estimated static state error at non-observed buses when a load 
curtailment takes place (a) voltage angle, (b) voltage magnitude 
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Fig. 5.77 Distribution of the estimated dynamic state error (generator at buses 33, 34, and 
35) when a generator outage takes place (a) rotor angle of generator, (b) rotation speed of 

generator 

 

Fig. 5.78 Distribution of the estimated dynamic state error (generator at buses 33, 34, and 
35) when a three-phase fault takes place (a) rotor angle of generator, (b) rotation speed of 

generator 
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Fig. 5.79 Distribution of the estimated dynamic state error (generator at buses 33, 34, and 
35) when a load curtailment takes place (a) rotor angle of generator, (b) rotation speed of 

generator 

   

Fig. 5.80 Distribution of the estimated rotation speed error (motors at buses 4 and 20) ac-
cording to the kind of contingency (a) generator outage, (b) three-phase fault, (c) load cur-

tailment 
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Fig. 5.81 Estimated static state at bus 33 under a generator outage at bus 39 (a) voltage 
magnitude, (b) voltage angle 

 

Fig. 5.82 Estimated dynamic state (generator at bus 33) under a generator outage at bus 39 
(a) rotor angle of generator, (b) rotation speed of generator 
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Fig. 5.83 Estimated static state at bus 34 under a generator outage at bus 39 (a) voltage 
magnitude, (b) voltage angle 

 

Fig. 5.84 Estimated dynamic state (generator at bus 34) under a generator outage at bus 39 
(a) rotor angle of generator, (b) rotation speed of generator 
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Fig. 5.85 Estimated static state at bus 35 under a generator outage at bus 39 (a) voltage 
magnitude, (b) voltage angle 

 

Fig. 5.86 Estimated dynamic state (generator at bus 35) under a generator outage at bus 39 
(a) rotor angle of generator, (b) rotation speed of generator 
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Fig. 5.87 Estimated static state at bus 4 under a generator outage at bus 39 (a) voltage mag-
nitude, (b) voltage angle 

 

Fig. 5.88 Estimated speed of rotation (motor at bus 4) under a generator outage at bus 39 
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Fig. 5.89 Estimated static state at bus 20 under a generator outage at bus 39 (a) voltage 
magnitude, (b) voltage angle 

 

Fig. 5.90 Estimated speed of rotation (motor at bus 20) under a generator outage at bus 39 
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6 Conclusion and outlook 

Nowadays, power systems are operating close to their capacity limits due to the increasing 

electricity demand and deregulated electricity market. This situation becomes even worse due 

to the large-scale integration of distributed energy resources and new technologies in the de-

mand. Such a change results in more uncertainties over the system dynamics leading to new 

stochastic operating behaviors and dynamics. If the system is subjected to a disturbance under 

such stressed conditions, instability is more likely to occur. 

In order to increase the system stability and security a new monitoring tool capable of informing 

the system dynamics and enhancing the power system situational awareness is needed. An evo-

lution in this sense will allow carrying out an online dynamic security assessment clearing the 

way for new and more effective local and global control schemes aimed at improving system 

stability and security. Nevertheless, the conventional monitoring system of the Energy Man-

agement System, i.e. the state estimator, is unable to provide such information, mainly because 

it depends on data from Remote Terminal Units whose sampling rate is too low to reveal elec-

tromechanical dynamic responses. In addition, this data is not well synchronized, thus making 

global monitoring and controlling tasks unfeasible.  

The arrival of PMUs has opened up the possibility for a new dynamic wide-area monitoring 

function. Their high accuracy, reporting speed and synchronization capacity make them suitable 

for global monitoring of power system dynamics. In addition, if enough PMUs were deployed, 

the measured voltage and current phasors could make the entire network observable, thus mak-

ing state estimation feasible. Issues like low data scan and time skew could be eliminated. Such 

PMU-only state estimator is linear and can run at PMU speed since no iterations are involved. 

A truly dynamic state would be available under such conditions. However, the deployment of 

such a scheme is expensive and far from becoming real in large scale. The major limiting factor 

for the wide-scale deployment of PMUs is the cost and availability of the associated communi-

cation and data storage infrastructure. A more realistic and feasible deployment of PMUs in 

state estimation is using a hybrid approach that combines synchronized phasor measurements 

with conventional measurements. That is why, this thesis focuses on the development of a hy-
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brid state estimator capable of monitoring power system dynamics related to slow and fast phe-

nomena but without leaving aside the current limitation as regards the reduced amount of PMUs 

that can be installed in power grids. 

6.1 Summary of results 

The proposed hybrid state estimator together with the methodology for restoring full PMU ob-

servability were tested in the New England benchmark system under several operating condi-

tions. Results are summarized as follows: 

 The proposed approach for defining the PMU topology, i.e. the number of units and their 

location, found for the New England benchmark system that a topology involving only 7 

PMUs at buses 2, 6, 9, 14, 20, 23 and 29 allows observing all the coherent areas in voltage 

magnitude and angle simultaneously with 92.8 % of probability. This amount of units rep-

resents a reduction of 40% in the minimum amount of units required to observe the whole 

system if only PMU measurements were considered. Such a reduction in the amount of 

necessary equipment will undoubtedly contribute to mitigate the effects of large amounts 

of additional data coming from PMUs on communication, data storage and processing sys-

tems. 

 The classifier developed in this thesis for predicting bus voltage coherency is capable of 

working at high speed with an average computing time of 12 ms per scenario. Additionally, 

90% of simulated test scenarios are well predicted considering voltage angle and magnitude 

simultaneously. It was found that misclassified scenarios are usually scenarios with a low 

frequency of class in the training sample. This is a clear symptom of class imbalance. 

 The accuracy of bus voltage-pseudo measurements is evaluated by using as indicator the 

mean absolute deviation. Considering the kind of contingency, pseudo-measurements are 

less accurate in events that result in a system response with a higher degree of nonlinearity, 

such three-phase faults or generator outages. In such cases, the error remains in most sce-

narios below 1.5 % and 1º for voltage magnitude and angle respectively. When analyzing 

scenarios according to the classifier performance, in most cases pseudo-measurement errors 

from misclassified scenarios show a higher degree of dispersion reaching higher maximum 

values, which indicates they are less accurate. However, the difference of accuracy between 

both kind of scenarios is minor. 

 The performance of the hybrid estimator has been investigated by means of four case stud-

ies. Measurements as well as structure uncertainties have been taken into consideration. 

What is more, process noises from model inadequacy and linearization are also included. 
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Computing times in the second phase introduce a delay of order of a few milliseconds. This 

is because in phase two static and dynamic estimators operate in sequence. This issue is 

taken into consideration. Next, the results from the four case studies are briefly presented: 

i. In the first case the estimator operates following base guidelines as regards initializa-

tion, number of bus voltage pseudo-measurements and algorithms involved in the es-

timation process. The estimator is capable of estimating with accuracy the static and 

dynamic state, even in those buses where there is no PMU. 

In addition, it was found that the EKF in phase two fails to find a solution in about 

11% of the test scenarios. This amount is reduced to 4% if the time delay between 

static and dynamic estimators in phase two is removed. Most cases with convergence 

problems imply unstable scenarios. 

The average computing time of 15 ms in phase two makes the proposed scheme ca-

pable of keeping up with the PMU update rate and tracking fast dynamics. 

Although a centralized approach like the one proposed in this thesis might not work 

in large scale power grids due to the higher computing times involved, it can be ex-

tended to a decentralized scheme typically employed for monitoring and controlling 

of large scale systems. 

The performance of the estimator is severely degraded in the presence of gross PMU 

errors. The main reason behind this issue lies in the lack of a post-estimation bad data 

processor in phase two. 

ii. The second case study introduces a modified version of the hybrid estimator presented 

in the first case study. This time, an ancillary set of bus voltage pseudo-measurements 

is included in the formulation. The main goal behind this change aims at improving 

the estimator performance under the presence of large PMU errors. Results show that, 

although the inclusion of additional pseudo-measurements in some cases may result 

in a slight loss of performance, the estimator gains the ability to filter out large errors. 

iii. The third case study investigates the effect on the estimator performance of using in 

phase two a robust WLAV estimator instead the conventional WLS. Both options are 

evaluated under several operating conditions. First, no gross PMU error is considered. 

Then, as in the second case study, a malfunction of a PMU is assumed and simulated. 

The WLS based option is a little more accurate when PMUs work well. This situation 

is reversed when having a PMU malfunction. Under such a circumstance, the alterna-

tive based on the WLAV is more effective than its counterpart to filter out the large 

error. 
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iv. In the last case study the robustness of the hybrid state estimator is assessed. Meas-

urement variances and noise boundaries in grid parameters are increased one at a time 

by a factor of five with respect to their initial values. It was found that higher noise 

levels lead to an increase in the number of cases where the algorithm does not ap-

proach a finite value. A noise level growth in the measurement variance by a factor 

of 5 increases by about 8% the number of scenarios where the EKF fails to converge. 

This amount falls to 2% if the additional noise affects only the grid parameters. 

As expected, higher noise levels leads to greater estimation errors, either in static or 

dynamic variables. Nevertheless, the increase in the median of the estimated static 

and dynamic error is minor. Then, it can be affirmed that the estimator remains robust 

under such new operating conditions. 

6.2 Contributions 

The main contributions of this thesis are: 

 A data-mining based methodology for defining a PMU topology, i.e. number of units and 

their location in the grid, so that all the coherent areas are observed with high probability. 

This is accomplished by means of an offline data-mining based knowledge discovery pro-

cess which consists of three steps. First, a large set of scenarios that are representative of 

normal, during fault and post-fault behavior in a broad range of conditions is obtained from 

numerical simulations. Then, data pre-processing techniques are carried out. The main goal 

here is to make data analysis and comprehension easier and to obtain data that is suitable 

for creating good predictive models. Finally, the number of PMUs and their location is de-

termined through an iterative exploring process where candidates topologies are evaluated 

with respect to bus voltage coherency. Candidates who observe all coherent areas in most 

scenarios are stored. The final solution will be the best one between all the stored topologies 

considering the relationship between amount of units and number of observed scenarios. 

 A classifier based on the k-nearest neighbors algorithm that is designed offline and forecast 

coherency at high speed whenever a contingency happens and with that an assignment vec-

tor that shows the connection between observed and non-observed buses. The classifier is 

supported by a classification matrix that is generated offline from the pre-processed data 

during the definition of the PMU topology. 

 A novel methodology for generating bus voltage pseudo-measurements that is based on the 

concept of bus voltage coherency and allows restoring the PMU observability. Buses that 

are coherent with each other show similar voltage behavior during a transient event and, 
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therefore, the behavior in one of these buses represents approximately the behavior of the 

remaining buses. The proposed approach relies on this idea to define bus voltage pseudo-

measurements by means of voltage magnitudes and angles reported by PMUs, the pre-con-

tingency system loading condition and the assignment vector predicted by the classifier 

proposed in this thesis. 

 A novel hybrid state estimator that is capable of accurately monitoring the power system 

dynamics associated to fast and slow phenomena using a reduced number of PMUs. The 

proposed can estimate with accuracy even the dynamic states of units which are not 

equipped with a PMU at their terminal. To circumvent the problem of inadequate PMU 

observability, it uses the information provided by the methodology for generating bus volt-

age pseudo-measurements.  

It consists of two phases: when the power system is in stationary regime phase one takes 

place and the static state is estimated at SCADA speed by a WLS based estimator. Conven-

tional as well as PMU measurements are used together in one single estimation run. Once 

the estimation is completed, a post-estimation method based on residuals is carried out in 

order to detect and identify bad measurements. Phase two is activated when a physical dis-

turbance happens and the system is in a transient regime. In this case, two estimators work 

in sequence making use of all the information provided by the PMUs. First, a static state 

estimator is used to estimate bus voltages as soon as the PMU measurement set arrives. 

Since a post-estimation bad data processing technique is unfeasible at fast scan rates, the 

static estimator in phase two uses the information provided by the bad data processor from 

phase one to adjust the measurement weights. Additionally, in order to make phase two 

robust against PMU gross errors, a WLAV based linear estimator is used. Finally, dynamic 

variables such as rotor angle and speed of generators and speed of motors are estimated by 

means of an EKF based dynamic state estimator. 

6.3 Future work 

For follow-up research, the following extensions and directions of additional research have 

been found to be promising: 

 The proposed approach has been evaluated in a small benchmark system. Its implementa-

tion in large scale interconnected power grids represents a challenge due to the increased 

size and complexity of the system model and measurement volume. Nevertheless it can be 

adapted to work in a decentralized scheme. In addition, high performance computing and 

parallel computing techniques could be employed to make possible its application in large 
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systems. In this regard, delays associated to communication systems, which have not been 

considered in this thesis, should also be taken into account. 

 The performance of the EKF is degraded when the system behavior becomes unstable. The 

strongly nonlinear behavior of the system could be the reason behind the convergence is-

sues. However, a detailed analysis should be perform on this point with the aim of discard-

ing other causes. More robust options like the Unscented Kalman Filter (UKF) and the Par-

ticle Filter (PF) to cite a few should be tested and evaluated. Data driven methods represent 

another direction for further research in this sense. 

 In the proposed approach, measurement and process errors were assumed to have zero mean 

with known covariance matrices and to follow Gaussian distribution. Algorithms used by 

the hybrid estimator to estimate the state perform well under such conditions. However, in 

the reality, for most practical power systems, these assumptions do not hold true. Even 

though additional source of errors, like model inadequacy and noises in grid parameters, 

have been taken into account in this thesis, the Kalman filter performance could be greatly 

degraded in the presence of non-Gaussian system uncertainties. Therefore, future research 

about enhancing the robustness of the dynamic estimator in the presence of non-Gaussian 

noise is required. 

 In the proposed hybrid state estimator mechanical power and field voltage of the synchro-

nous machine are assumed to be measurable when estimating the dynamic state. Neverthe-

less, in reality these signals may not be accessible. Alternative approaches, like the Ex-

tended Kalman Filter with unknown inputs (EKF-UI) developed in the field of civil engi-

neering for earthquake damage estimation studies must be considered and analyzed. An-

other option with potential in this regard entails the inclusion of the governor and the AVR 

models in the generator formulation. By doing this the unknown inputs become internal 

variables and reference quantities will be the new inputs. 

 In this work, dynamic state estimation in motors demands knowing in detail the load com-

position at each bus, i.e. the static-dynamic load ratio. In this sense, load composition needs 

to be reliably estimated. A proposal with potential in this regard may involve the use of 

artificial intelligence together with dynamic post-contingency data from the hybrid state 

estimator in order to approximate the bus load composition. Such an approach would be of 

great interest for load modelling and stability analysis purposes. 
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Appendix A. Test system data 

This appendix contains details about the IEEE New England benchmark system used in this 

thesis for developing and testing the proposed hybrid state estimator and the methodology for 

generating voltage pseudo-measurements. The parameters were extracted from [69] and are 

used to perform simulations in stationary and transient regime. 

Table A.1. Buses 

Bus Type 
Voltage 

(kV) 

LOAD GEN 

MW MW MVAr Type Motor 

01 PQ 345 - - - - - 
02 PQ 345 - - - - - 
03 PQ 345 322 2.4 C - - 
04 PQ 345 500.0 184.0 I 40% - 
05 PQ 345 - - - - - 
06 PQ 345 - - - - - 
07 PQ 345 233.8 84.0 C - - 
08 PQ 345 522.0 176.0 R 25% - 
09 PQ 345 - - - - - 
10 PQ 345 - - - - - 
11 PQ 345 - - - - - 
12 PQ 69 7.5 88.0 I - - 
13 PQ 345 - - - - - 
14 PQ 345 - - - - - 
15 PQ 345 320.0 153.0 C 30% - 
16 PQ 345 329.0 32.3 R - - 
17 PQ 345 - - - - - 
18 PQ 345 158.0 30.0 R - - 
19 PQ 345 - - - - - 
20 PQ 69 628.0 103.0 R 25% - 
21 PQ 345 274.0 115.0 C - - 
22 PQ 345 - - - - - 
23 PQ 345 247.5 84.6 I - - 
24 PQ 345 308.6 92.2 I 40% - 
25 PQ 345 224.0 47.2 R - - 
26 PQ 345 139.0 17.0 C - - 
27 PQ 345 281.0 75.5 R - - 
28 PQ 345 206.0 27.6 R 25% - 
29 PQ 345 283.5 26.9 I - - 
30 PV 13.8 - - - - 250 
31 SL 13.8 9.2 4.6 I - - 
32 PV 13.8 - - - - 650 
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Table A.1. Continued* 

Bus Type 
Voltage 

(kV) 

LOAD GEN 

MW MW MVAr Type Motor 

33 PV 13.8 - - - - 632 
34 PV 13.8 - - - - 508 
35 PV 13.8 - - - - 650 
36 PV 13.8 - - - - 560 
37 PV 13.8 - - - - 540 
38 PV 13.8 - - - - 830 
39 PV 345 1104.0 250.0  - 1000 

 

Table A.2. Lines* 

Bus i Bus j Resistance Reactance Susceptance 
Rated Power 

(MVA) 

01 02 0.0035 0.0411 0.6987 1,000 
01 39 0.0010 0.0250 0.7500 1,000 
02 03 0.0013 0.0151 0.2572 1,200 
02 25 0.0070 0.0086 0.1460 1,000 
03 04 0.0013 0.0213 0.2214 1,000 
03 18 0.0011 0.0133 0.2138 1,000 
04 05 0.0008 0.0128 0.1342 1,000 
04 14 0.0008 0.0129 0.1382 1,000 
05 06 0.0002 0.0026 0.0434 1,000 
05 08 0.0008 0.0112 0.1476 1,000 
06 07 0.0006 0.0092 0.1130 1,000 
06 11 0.0007 0.0082 0.1389 1,000 
07 08 0.0004 0.0046 0.0780 1,000 
08 09 0.0023 0.0363 0.3804 1,000 
09 39 0.0010 0.0250 1.2000 1,000 
10 11 0.0004 0.0043 0.0729 1,000 
10 13 0.0004 0.0043 0.0729 1,000 
13 14 0.0009 0.0101 0.1723 1,000 
14 15 0.0018 0.0217 0.3660 1,000 
15 16 0.0009 0.0094 0.1710 1,200 
16 17 0.0007 0.0089 0.1342 1,200 
16          19** 0.0032 0.0390 0.1520 1,200 
16 21 0.0008 0.0135 0.2548 1,000 
16 24 0.0003 0.0059 0.0680 1,000 
17 18 0.0007 0.0082 0.1319 1,000 
17 27 0.0013 0.0173 0.3216 1,000 
21 22 0.0008 0.0140 0.2565 1,200 
22 23 0.0006 0.0096 0.1846 1,000 
23 24 0.0022 0.0350 0.3610 1,000 
25 26 0.0032 0.0323 0.5130 1,000 
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Table A.2. Continued* 

Bus i Bus j Resistance Reactance Susceptance 
Rated Power 

(MVA) 

26 27 0.0014 0.0147 0.2396 1,000 
26 28 0.0043 0.0474 0.7802 1,000 
26 29 0.0057 0.0625 1.0290 1,000 
28 29 0.0014 0.0151 0.2490 1,000 

*Parameters in pu (100 MVA base) 
**Double circuit 

 

Table A.3. Transformers* 

Bus i Bus j Resistance Reactance Transformer Ratio 
Rated Power 

(MVA) 

02 30 0.0000 0.0181 1.0250 1,000 
06 31 0.0000 0.0250 1.0700 1,200 
10 32 0.0000 0.0200 1.0700 1,200 
12 11 0.0016 0.0435 1.0060 1,000 
12 13 0.0016 0.0435 1.0060 1,000 
19 20 0.0007 0.0138 1.0060 1,000 
19 33 0.0007 0.0142 1.0700 1,000 
20 34 0.0009 0.0180 1.0090 1,000 
22 35 0.0000 0.0143 1.0250 1,200 
23 36 0.0005 0.0272 1.0000 1,000 
25 37 0.0006 0.0232 1.0250 1,000 
29 38 0.0008 0.0156 1.0250 1,200 

*Parameters in pu (100 MVA base) 
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Load models 

Three kind of consumers were considered by load modeling: Residential, Industrial and Com-

mercial. Their behavior is represented using a combination of static load and dynamic loads at 

50% each as shown in [92]. The dynamic load is represented using the nonlinear voltage and 

linear frequency dependence model. Table A.4 shows the parameters used in such a model [69]. 

Table A.4. Parameters (dynamic load) 

Kind of consumer Frequency dependence Voltage dependence 
kpf kqf aP e_aP aQ e_aQ 

Commercial 1.3 -1.9 1.0 0.7 1.0 2.5 
Industrial 2.6 1.6 1.0 0.1 1.0 0.6 

Residential 0.7 -2.3 1.0 1.2 1.0 2.8 
 
In addition, it is considered that a percentage of the load is composed by motors. The standard 

seventh-order model presented in [93] is used. The motor parameters are given in Table A.5 

[69]. 

Table A.5. Motors 

Parameter Value 

Rated power (kVA) 400 
No. of pole pairs 4 

Rotor Double cage 
Stator resistance 0.0358222 
Stator reactance 0.01 

Magnitude reactance 1.554626 
Operating rotor resistance 0.01080755 
Operating rotor reactance 0.4210244 
Starting rotor resistance 0.06276684 
Starting rotor reactance 0.2291248 

Inertia (kg.m2) 21.62247 
*Parameters without unit are in pu (the base is the unit nominal power and voltage) 
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Generator models 

The dynamic behavior of generators is represented with the standard sixth-order model of the 

synchronous machine as shown in [94]. In addition, classic models of AVR and GOV have 

been considered. The data associated with the parameters is given below [69].

Table A.6. Generators 

Unit 
 
Parameter 

01 02 03 04 05 06 07 08 09 10 

No. of units 10 20 20 20 20 20 20 20 20 20 
Rated power 

(MVA) 114.1 49.25 40.75 38.3 32.7 43.1 40.05 37.7 51.75 26.1 

Rated volt-
age (kV) 345 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 

Power factor 0.876 0.964 0.920 0.914 0.917 0.928 0.936 0.928 0.918 0.958 
Pmax (MW) 100 47.5 37.5 35.0 30.0 40.0 37.5 35.0 47.5 25.0 
Pmin (MW) 30.0 7.5 2.5 6.0 7.5 8.0 3.5 5.0 9.0 4.0 

Qmax 
(MVAr) 55.0 13.0 16.0 15.5 13.0 16.0 14. 14.0 20.5 7.5 

Qmin 
(MVAr) -40.0 -10.0 -12.5 -12.5 -10.0 -12.5 -10.0 -10.0 -15.0 -5.0 

H (s) 43.82 3.08 4.39 3.73 3.98 4.04 3.30 3.22 3.33 8.05 
Ra 0 0 0 0 0 0 0 0 0 0 
Xd 0.228 2.906 2.033 2.007 2.747 2.189 2.363 2.187 2.180 0.522 
Xq 0.217 2.778 1.932 1.976 2.616 2.077 2.339 2.111 2.122 0.360 
Xd

'  0.068 0.687 0.433 0.334 0.523 0.431 0.392 0.430 0.590 0.162 
Xq

'  0.091 1.675 0.714 1.272 1.086 0.702 1.490 0.687 0.608 0.042 
Xd

''  0.055 0.512 0.310 0.245 0.262 0.302 0.304 0.324 0.445 0.115 
Xq

''  0.055 0.512 0.310 0.245 0.275 0.302 0.304 0.324 0.445 0.151 
Xl 0.034 0.345 0.248 0.226 0.229 0.193 0.258 0.211 0.308 0.065 

Td0
'  (s) 7.00 0.656 5.70 5.69 5.40 7.30 5.66 6.70 4.79 10.20 

Tq0
'  (s) 0.70 1.50 1.50 1.5 0.44 0.40 1.50 0.41 1.96 0.00 

Td0
''  (s) 0.035 0.033 0.029 0.028 0.027 0.037 0.028 0.034 0.024 0.050 

Tq0
''  (s) 0.035 0.033 0..029 0.028 0.027 0.037 0.028 0.034 0.024 0.090 

SG10 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
SG12 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

*Parameters without unit are in pu (the base is the unit nominal power and voltage) 
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Table A.7. AVR ESDC1A 

Unit 
 

Par. 
01 02 03 04 05 06 07 08 09 10 

Tr 0.02 0 0 0 0 0 0 0 0 0 
Ka 200.0 6.2 5.0 5.0 40.0 5.0 40.0 5.0 40.0 5.0 
Ta 0.005 0.05 0.06 0.06 0.02 0.02 0.02 0.02 0.02 0.06 
Tc 3.1 0 0 0 0 0 0 0 0 0 
Tb 40.0 0 0 0 0 0 0 0 0 0 
Te 0.05 0.405 0.5 0.5 0.785 0.471 0.73 0.528 1.4 0.25 
Kf 0.01 0.057 0.08 0.08 0.03 0.075 0.03 0.085 0.03 0.04 
Tf1 0.3 0.5 1.0 1.0 1.0 1.246 1.0 1.26 1.0 1.0 
Ke 0.5 -0.633 -0.02 -0.053 1.0 -0.042 1.0 -0.047 1.0 -0.049 
E1 3.9 3.036 2.342 2.868 3.927 3.587 2.802 3.191 4.257 3.546 
Se1 0.0001 0.66 0.13 0.08 0.07 0.064 0.53 0.072 0.62 0.08 
E2 5.2 4.049 3.123 3.824 5.236 4.782 3.736 4.255 5.676 4.728 
Se2 0.001 0.88 0.34 0.314 0.91 0.251 0.74 0.282 0.85 0.26 

Vrmin -5.0 -5.0 -10.0 -1.0 -10.0 -1.0 -6.5 -1.0 -10.5 -1.0 
Vrmax 9.0 5.0 10.0 1.0 10.0 1.0 6.5 1.0 10.5 1.0 

 

Table A.8. HYGOV 

Unit 
 

Parameter 
10 

r 0.1 
Tr 10.0 
Tf 0.05 
Tg 0.3 
Tw 0.51 
At 1.15 

cosn 0.9579 
Dturb 0 

qnl 0.08 
R 0.04 

Gmax 0.1533 
Velm 0.29 
Gmin 0.9579 
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Table A.9. TGOV1 

Unit 
 

Par. 
02 03 04 05 06 07 08 09 

T3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 
T2 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 
At 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Dt 0 0 0 0 0 0 0 0 
R 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
T1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

cosn 0.964 0.920 0.914 0.917 0.928 0.936 0.928 0.867 
Vmin 0.152 0.061 0.157 0.229 0.186 0.087 0.133 0.174 

Vmax* 0.159 0.068 0.914 0.917 0.928 0.936 0.928 0.867 
 

Table A.10. Generation cost 

Unit c2 c1 c0 

01 0.0042 32.950 4,403.431 
02 0.0109 89.702 10,948.005 
03 0.0109 89.702 10,948.005 
04 0.0109 16.298 1,948.189 
05 0.0109 16.298 1,948.189 
06 0.0109 16.298 1,948.189 
07 0.0109 16.298 1,948.189 
08 0.0044 32.956 4,181.673 
09 0.0044 32.956 4,181.673 
10 0 0 0 

*Cost function: f(p)=c2p2+c1p+c0, f �$
h
� , p(MW) 
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List of symbols 

General notation rules as follows. 

 Scalar functions, variables and parameters expressed in p.u. are in lower case Latin fonts. 

 Function and variable vectors are in lower case, bold fonts. 

 Matrices are in upper case, bold fonts. 

 The subscript 0 indicates initial value. 

 A hat operator indicates an estimated quantity. 

 A tilde operator indicates a phasor. 

 A superscript asterisk indicates the conjugate of complex quantities. 

 A superscript T indicates transpose. 

 A superscript + denotes a posteriori. 

 A superscript O denotes PMU observed bus. 

 A superscript U denotes PMU non-observed bus. 

 A subscript - denotes a priori. 

 A subscript k indicates time instant. 

 Time derivatives appear with dot or 𝜕𝜕. 

 Subscripts (M<θ) and (M<α) denotes polar coordinates. 

 A subscript (x,y) denotes rectangular coordinates. 

z Measurement 
x System state (also y) 
e Measurement error 
h Measurement function (matrix is D) 
r Measurement residual 

σ2  Variance 

μ  Mean 

p  Model parameter 

u  System input 

f, g  Nonlinear functions (system model) 

A  Transition matrix 

ζ  Trend vector 
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w  Model error 

J  Objective function for the weighted least square problem 

R  Covariance of measurement error 

G  Gain Matrix 

H  Jacobian of measurement function 

C  Unit vector 

F Transition matrix (Kalman filter) 
Q Covariance of model error (Kalman filter) 
P Covariance of the estimated state 

K  Kalman filter gain 

L, M Partial derivatives of nonlinear functions f and h (Kalman filter) 
I Identity matrix 

χ2  Chi-square distribution 

S  Sensitivity matrix 

t Tuple vector (classification) 
B, at Attribute matrix and element (classification) 

clj  Cluster j 

cej  Centroid of cluster j 

oi  Object i (clustering) 

WSS Within sum of squares 
v Bus voltage magnitude 

θ  Bus voltage angle 

f Bus voltage frequency 
I Current magnitude 

α  Current angle 

vps�   Calculated bus voltage pseudo-measurement 

∆VPMU  Bus voltage deviation registered from PMU measurements 

Y Admittance matrix 

ΔtPMU  PMU refresh rate 

pst, qst Active and reactive power consumption (static load) 

fPMU_next  Frequency reported by the closes PMU to the bus under analysis 

pi, qi Active and reactive power injection at bus i 

s̃inj  Conventional measurement of power injection 
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s̃fl  Conventional measurement of power flow 

v�PMU  Voltage PMU measurement 

ĩPMU  Current PMU measurement 

s̃virt  Virtual measurement (zero injection) 

s̃ps  Power flow pseudo-measurement 

td0
' , tq0

'  Open-circuit transient constants 

ed
' , eq

' , efd Transient voltages along the d and q axes and the field voltage 

xd, xq, xd
' , xq

'  Synchronous and transient reactance 

𝛿𝛿, 𝜔𝜔 Rotor angle and speed deviation 

H, D Inertia constant and damping factor 

pm, pe, qe Mechanical and electrical power (active and reactive) of the generator 

vd, vq Terminal bus voltage in the d and q axes 

te, tm Electromagnetic and mechanical torque 

pmot  Power consumption of motor 

rs, rr Stator and rotor resistance 

s slip 
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List of acronyms 

AI Artificial Intelligence 
ANN Artificial Neural Network 
CIGRE International Council on Large Electric Systems 
CKF Cubature Kalman Filter 
CVI Cluster Validity Index 
DAE Differential Algebraic Equations 
DFT Discrete Fourier Transform 
DSA Dynamic Security Assessment 
EKF Extended Kalman Filter 
EMS Energy Management System 
GPS Global Positioning System 
HVDC High Voltage Direct Current 
IED Intelligent Electronic Device 
IEEE Institute of Electrical and Electronics Engineers 
IES Integrated Energy Systems 
LAV Least Absolute Value 
MASE Multi-area State Estimation 
MIP Mixed-Integer Programming 
PCA Principal Component Analysis 
PDC Phasor Data Concentrator 
PDF Probability Distribution Function 
PF Particle Filter 
PMU Phasor Measurement Unit 
RTU Remote Terminal Unit 
SCADA Supervisory Control Data Acquisition System 
UKF Unscented Kalman Filter 
WLAV Weighted Least Absolute Value 
WLS Weighted Least Square 
WSS Within Sum of Squares 
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