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Abstract

Modeling text data is becoming increasingly popular. Topic models and in particular
the latent Dirichlet allocation (LDA) represent a large field in text data analysis. In
this context, the problem exists that running LDA repeatedly on the same data yields
different results. This lack of reliability can be improved by repeated modeling and a
reasonable choice of a representative. Further, updating existing LDA models with new
data is another common challenge. Many dynamic models, when adding new data, also
update parameters of past time points, thus do not ensure the temporal consistency of the
results.

In this cumulative dissertation, I summarize in particular my methodological papers from
the two areas of improving the reliability of LDA results and updating LDA results in a
temporally consistent manner for use in monitoring scenarios. For this purpose, I first
introduce the state of research for each of the two areas. After explaining the idea of the
corresponding method, I give examples of applications in which the method has already
been used and explain the implementation as an R package. Finally, for both fields I
provide an outlook on potential further research.
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VIII Abstract

Zusammenfassung

Die Modellierung von Textdaten erfährt wachsende Popularität. Einen großen Bereich
in der Textdatenanalyse bilden Topic Modelle und dabei im Speziellen das Modell latent
Dirichlet allocation (LDA). Dabei existiert die Problematik, dass sich bei einer wiederholten
Ausführung der LDA auf denselben Daten verschiedene Resultate ergeben. Dieser Mangel
an Reliabilität lässt sich durch eine wiederholte Modellierung und eine sinnvolle Wahl
eines Repräsentanten verbessern. Eine weitere Herausforderung stellt das Aktualisieren
von bestehenden LDA-Modellen anhand neuer Daten dar. Viele dynamische Modelle aktu-
alisieren im Falle einer Hinzunahme neuer Daten auch Parameter vergangener Zeitpunkte
und verletzen damit die zeitliche Konsistenz der Ergebnisse.

In dieser kumulativen Dissertation fasse ich insbesondere meine methodischen Paper aus
den beiden Themenbereichen der Verbesserung der Reliabilität von LDA-Ergebnissen und
der zeitlich konsistenten Aktualisierung von LDA-Ergebnissen zur Nutzung in Monitoring-
Szenarien zusammen. Dafür stelle ich zunächst jeweils den Forschungsstand dar. Nach
einer Erläuterung der Idee der Methode, werden jeweils Beispiele gegeben, in denen die
Methode bereits Anwendung fand und die Implementierung als R Paket erläutert. Zuletzt
gebe ich für beide Themenbereiche einen Ausblick auf mögliche weitere Forschung.
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1 Introduction

In January 2009, Google’s chief economist Hal Varian expressed in The McKinsey Quarterly
the famous quote, “I keep saying the sexy job in the next ten years will be statisticians.
People think I’m joking, but who would’ve guessed that computer engineers would’ve been
the sexy job of the 1990s?”. While in fact the designation Data Scientist turned out to
be the sexy one in the following ten years, it can be argued that he actually was right
about the content of his statement. One year after this quote, in 2010, there was already
a total volume of 2 zettabytes of data created, captured, copied, and consumed globally,
according to Statista. They report huge growth over ten years with a volume of already
64.2 zettabytes for 2020, which they estimate to nearly triple again until 2025.1 While
these numbers do not provide any direct indication of a possible increase in the relevance
of the Data Scientist job, it is certainly clear that these data must be, or have been, given
meaning and interpretation through analysis and processing. After all, it is evident that
the analysis of existing data in turn generates new amounts of data.

Thereby the attention for what are actual (new) findings, what is only another form
of representation of already known facts, and what are possibly no newly discovered
systematics, but coincidental dependencies, which are wrongly interpreted as nature-given
relations due to our in the last years newly acquired - and partly not mastered - abilities
and resources; the sensitivity for these relations must not be lost. It is a challenge of our
time to use the power of the resources available to us for gaining knowledge and deriving
from it facilitations of (human) (co)life. Possible discrimination, exclusion and exploitation
as a result of technical progress at the expense of others should always be evaluated and
corrected accordingly, because data analytics, whether flawed or not, have become an
important tool for decision makers.

Due to the rapid change, alternative data formats are gaining in relevance over tabular
data. In 1998, Merrill Lynch already said, “Unstructured data comprises the vast majority
of data found in an organization, some estimates run as high as 80%.” (Shilakes and
Tylman, 1998, p. 15), Gandomi and Haider (2015) even speak of a share of 95%. Basically,
it seems as if the share of unstructured data in the total amount of data is increasing,
especially in the last years. These new forms of data require the development of new

1https://www.statista.com/statistics/871513/worldwide-data-created/, 02/25/2022
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2 1 Introduction

statistical and analysis methods; or rather the dependence exists the other way around.
By the relatively more recently developed ability for the utilization of these data forms,
unstructured data are more comprehensively collected and used for knowledge gains. Text
data, which are generated in masses worldwide on a daily basis, by, e.g., newspapers,
form a large proportion of this unstructured data. Digital connectivity and the resulting
elimination of the need for printing have also reduced the cost of distributing text. Taking
journalistic texts as an example, the increasing use of computer-generated texts, e.g., in
sports coverage, shows that the supposedly largest remaining cost in text generation, the
author himself, lacks existential immunity. In this loop of automated text data analysis
and automated text generation, the complexity and directions of existing dependencies
must be continuously examined in the long run.

1.1 Text as data

Text data are used in many domains, so there are also many research fields related to
text data (Gentzkow et al., 2019). One application area that is clear to the general public
is machine translation (Dabre et al., 2020). Many people are familiar with the machine
translators Google Translate and, since a few years, DeepL. In addition to these (partially)
commercial translators, there are a large number of open source machine translation
systems developed by researchers, which are mainly evaluated using the bilingual evaluation
understudy (BLEU) score (Papineni et al., 2002) because intensive human studies are too
expensive. The score measures the precision of automated translation compared to human
translations. This is the point at which critics have continually addressed the issue, that
even for an individual person, a score of 1 would not be possible because of the inherent
uncertainty in translations. Mathur et al. (2020) show that due to this uncertainty, an
improvement in the BLEU score of one to two points, an order of magnitude which state
of the art paper are able to achieve, comes with a real improvement in translation quality
only in half of the cases. Various alternative measures have already been developed (e.g.,
Kocmi et al., 2021 for an extensive evaluation of automatic metrics), but these have other
weaknesses, so that the BLEU score is still the established measure to be optimized in
automated machine translation tasks.

The machine translation task is a special one in the field of natural language processing
(NLP), because although it is a generative task, it aims at a kind of 1:1 relationship. Text
summarization, in contrast, aims at condensing the information of a longer text into a
shorter one. For these tailored text abstraction tasks as well as for many other NLP tasks,
the corresponding leaderboards are mostly dominated by pre-trained language models
based on bidirectional encoder representations from transformers (BERT, Devlin et al.,
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2019) or similar transformer models. BERT is trained with the so-called masked language
model. In practice, this means in the original form 15% of the words in the sentence are
masked, of which again 80% are actually masked, 10% are replaced by a random word
and 10% of the masked word remains original. Then, to predict the masked word, simply
spoken, the model learns a kind of local sentence embedding. Typically, BERT is used in
a pre-trained manner to learn basic language representations and fine-tuned to a specific
wording to be used for very different NLP problems.

One of the many fundamental NLP problems on which other broader problems are built
on is stance detection. In practice, this field of application is often connected to social
media data (ALDayel and Magdy, 2021). In this case, for replies to tweets, the goal is
to determine the writer’s stance with respect to the initial tweet: Does the responder
agree or disagree with the writer of the initial tweet? It turns out that there is a lot
of variability in judgment for this task even among humans (Joseph et al., 2021), so
evaluation is often subject to a large amount of uncertainty here as well. Reasons for the
difficulty of the task, both for machines and for humans, are, e.g., irony, metaphors or fast
changing word or phrase neologisms, which enjoy popularity in a strongly temporal way.
An application based on stance detection is, e.g., fake news detection (Oshikawa et al.,
2020). In recent years, this discipline gained attention at the latest due to rumors about
intentional spreading of fake news or disinformation to manipulate elections as well as
strategic information dissemination in conflicts (Jankowicz, 2020), such as happened during
Russia’s invasion of Ukraine in February 2022. The aim of the field of fake news detection
(and closely related problems) is, on the one hand, to classify texts or statements into truth
or fake, but on the other hand, it can also aim to classify seriousness, e.g., on a [0, 1] scale.
The combination of stance detection and rumor detection can also serve as an important
desirable feature for recommender systems based on text data. As Wieland et al. (2021)
show, the evaluation for news recommenders is multilayered. (Optimal) recommendations
depend on the user’s preferences or on the characteristics of the recommended news. Many
content-based news recommenders are based on similarities of potential texts, and thus
in the end aim at the creation of filter bubbles (Yao and Hauptmann, 2018). In practice,
however, apart from the ethical question of whether recommender should favor filter
bubbles, there are also those users who are interested in an alternative point of view on
the same topic for further reading. The same applies to book recommendations, which
are usually not intended to recommend exactly the same book from a different publisher.
Therefore, recommender systems, just like many other NLP techniques, should not be
evaluated method-based, but task-based: Most of the mentioned NLP fields have more or
less established evaluation measures that need to be optimized; and mostly, the approach
that the methods are evaluated task independently still dominates, although, as indicated,
task specific evaluation would be more appropriate (cf. Hoyle et al., 2021).
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In addition to applications primarily related to political issues, text data analysis is also
useful in an economic context. Economic key indicators are published in cycles, often
quarters. In the interim period between the publication of the last data and new data,
there is a level of uncertainty: An uncertainty that is captured by the way of reporting in
daily newspapers that can be used to predict economic indicators, or for exploration of
sources of uncertainty (cf. EPU by Baker et al., 2016 and Section 3.4). A common task
for the use of text data to bridging the release cycles of, in particular, survey data, is, e.g.,
nowcasting the gross domestic product (GDP, Garnitz et al., 2019; Thorsrud, 2020).

Topic models are used in many of the mentioned application fields. These have the
advantage that the modeling idea can be explained intuitively: A set of texts is clustered
into topics, whereby each text is seen as a mixture of several topics. Each topic is in turn
characterized by its word distribution. This basic model idea has a natural justification
without being too complex. Based on this basic idea, there are several approaches to
probabilistic topic models (Blei, 2012), which in turn have been and are being adapted
and optimized for many specific problems.

1.2 Latent Dirichlet allocation

The probably most well-known topic model is the classical latent Dirichlet allocation (LDA,
Blei et al., 2003). In the chronology of LDA-like models, it can be understood as a further
development of the probabilistic latent semantic analysis/indexing (PLSA/PLSI, Hofmann,
1999), which itself is a refinement of the latent semantic indexing (LSI, Deerwester et al.,
1990). In addition, LDA can be seen as the basis for the development of the correlated
topic model (CTM, Blei and Lafferty, 2007).

For the definition of the different topic models, let an observed corpus of texts be given
by {D(1), . . . , D(M)}, where a single document of length N (m), m = 1, . . . M can be
represented as D(m) = {W

(m)
1 , . . . W

(m)
N(m)} and each observed word W (m)

n ∈ W , n =
1, . . . N (m) represents a realization from the set of vocabulary W = {W1, . . . , WV } of
size V . In terms of topic models, for each of these observable W (m)

n , an unobservable
explanatory variable T (m)

n ∈ T is modeled. This latent variable characterizes the topics.
The user specifies a number of topics K, such that T = {T1, . . . , TK}. The model then
assigns a topic to each word in a document. With respect to the LDA, this procedure
yields estimates for the latent word distributions ϕk for each topic k = 1, . . . , K and
topic distributions θm for each document m = 1, . . . , M . The probabilistic model of LDA
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(Griffiths and Steyvers, 2004) is thus given by

W (m)
n | T (m)

n , ϕk ∼ Discrete(ϕk), ϕk ∼ Dirichlet(η),
T (m)

n | θm ∼ Discrete(θm), θm ∼ Dirichlet(α),

where α and η are Dirichlet priors that control the shape of the word and topic distributions.
Higher values for α and η lead to a more heterogeneous mixture whereas lower values are
more likely to produce more skewed distributions. Although the LDA permits these priors
to be vector valued (Blei et al., 2003), they are usually chosen symmetric because typically
the user would have no a-priori information about the topic and word distributions.

In comparison to the more advanced methods, the LSI calculation only requires a frequency
table of the observed words. This matrix is called document-term matrix (DTM) and
indicates the M documents in the rows, the V words in the columns and the corresponding
occurrence frequencies in the cells of the matrix, i.e., DTM ∈ NM×V . In practice, the
frequencies are adjusted by a term frequency-inverse document frequency (tf-idf) weighting
before the LSI is performed, so that frequent but low-discriminant words do not get
too much weight in the calculation. The tf-idf scores are calculated by multiplying the
frequency values by the logarithm of the quotient of the number of documents divided
by the number of documents containing this word. Based on the (mostly tf-idf weighted)
DTM, the LSI is estimated by a truncated version of the singular value decomposition
(SVD) by

DTM = USQT ≈ UKSKQT
K ,

where U ∈ RM×M , S ∈ RM×V
+ , Q ∈ RV ×V and UK ∈ RM×K , SK ∈ RK×K

+ , QK ∈ RV ×K .

Thereby, only the K largest eigenvalues and the corresponding columns of the matrices U

and Q from the SVD are considered. In comparison to LSI, PLSA uses a probabilistic
approach instead of SVD to tackle the problem of dimensionality reduction.

In Figure 1, five selected topic models are shown in a schematic comparison. In addition
to the models PLSA, LDA and CTM, the structural topic model (STM, Roberts et
al., 2013) and the author-topic model (ATM, Rosen-Zvi et al., 2004) are shown. As a
refinement of the LDA, the CTM enables the modeling of correlations between topics
that are simplistically treated as independent of each other in the LDA. While an LDA
model predicts a word based on the latent topic that the observation suggests, CTM has
the ability to predict a word associated with another topic that is correlated with the
conditionally probable topic. STM can be seen as a further generalization of LDA, in
the sense that it allows correlations between topics as well as the possibility to include
metadata in the modeling of topic and word distributions. ATM represents the class of
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Figure 1: Schematic (plate) representation of PLSA, LDA, CTM, STM and ATM. Observable variables
are marked by nodes with gray background, latent variables by plain nodes and constants are not encircled.
The plates with labels M , N , K and A indicate roughly the size of the loop over which the contained
variables must be iterated. In addition, parameter names are intended to indicate similar influences across
models, but the relationships between the parameters are not necessarily the same as in LDA; for example,
T in CTM is given by a log distribution involving the parameter θ rather than a discrete distribution as
in LDA. The CTM features as an extension of the parameters of the LDA a covariance matrix Σ and a
“mean” vector µ of the topics, while for the STM also the covariance matrix Σ, but here in combination
with coefficients γ, as well as observed metadata X and Y affect the distributions. In the author-topic
model, α denotes the prior for the topic distributions of the A authors and τ denotes the observed set of
authors per document from which an author a is uniformly determined at random for each word.

task specialized topic models introduced as LDA extensions. It allows to model topic
distributions per author by adding the information about the authorship of the documents
and thus allows related analyses.

A major part of current research on the development of new topic models deals with
neural topic models (NTM), which can be understood as a symbiosis between deep neural
networks and topic models (Zhao et al., 2021). There are also approaches of combining
embedding methods, such as, e.g., word2vec (Mikolov et al., 2013), with topic models, as
for example the embedded topic model (ETM, Dieng et al., 2020), which aims to include
word similarities in the modeling process to make the topics more coherent. Nguyen et al.
(2015) show ways in which conventional topic models can be enhanced by adding word
embeddings or latent feature word representations learned on external corpora, especially
when modeling on smaller corpora, to improve the evidence of topics.

Each of the introduced models provides a solution in its own use cases, so that no general
superiority of one of the models can be deduced. In practice, however, it can be seen that
LDA, as a less complex and therefore easier to understand model, as well as flexible with
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regard to the model assumptions, appears to be the most well-known and most frequently
used topic model.

LDA inference is often performed using the collapsed Gibbs sampler (CGS, Griffiths
and Steyvers, 2004) from the class of Markov chain Monte Carlo (MCMC) methods.
Alternative estimation methods are mostly based on variational Bayes (VB), which was
also proposed in the original LDA paper (Blei et al., 2003) and can be understood as an
expectation-maximization (EM) algorithm. Collapsed variational Bayes inference (CVB,
Teh et al., 2006), maximum likelihood estimation (ML) for PLSA (Hofmann, 2001), and
maximum a posteriori estimation (MAP, Chien and Wu, 2008) are other inference methods.
As a further development of the VB-based estimation methods, there is also the online
variational Bayes method, which allows data not to be modeled as a whole, but to update
the model for new data (Hoffman et al., 2010). In comparing the inference methods -
although Blei et al. (2003) were able to show the superiority of VB over ML, as well as
Teh et al. (2006) claimed the superiority of CVB over VB - Asuncion et al. (2009) discuss
the different algorithms more elaborately across different parameter choices and conclude
that the estimation algorithm does not have a decisive influence on the fit of the models.
Rather, the authors emphasize the importance of the parameter choice and show that an
appropriate choice causes the differences between the estimation algorithms in the fit to
largely disappear.

In the following two sections, on the one hand an overview of different ways of evaluating
topic models, especially the evaluation of LDA results (Section 2), and on the other hand
the challenge of dynamic modeling of texts, mainly focusing on update algorithms for LDA
(Section 3), are presented. Both sections are structured analogously: After the presentation
of the current state of research, I present and explain my contributions, which I have
developed together with corresponding co-authors. In this context, the corresponding
implemented R package is introduced as well. After a summary of example applications
in which publications I have contributed as a co-author, each section concludes with a
thematically specific outlook for the corresponding discipline as a whole as well as with
respect to my own research.





2 Evaluating LDA results

Evaluation of topic models is subject to intensive and continuous research. The peculiarity
is that it is usually not possible to compare the models’ results with “the truth”. Topic
models in the first place belong to the class of unsupervised methods, or might also be
considered as purely descriptive methods, as they do not require a target variable for
modeling. This is due to the nature of the problem that a target variable is usually not
available. In the case that task-independent target variable(s) for topic models had to
be defined, then there would be most likely even two, namely the true word and topic
distributions of the topics and documents, respectively. Even if these were available,
the definition of an evaluation measure would not be trivial due to the multi-objective
optimization. In practice, however, it is still the case that not even the true distributions
are available; topic models are mostly used for a way of dimension-reducing descriptive
analysis of text corpora. In this case, the “target variable” to be mimicked corresponds
to the human mind: A topic model should reflect as accurately as possible the human
understanding of the topic structure of the corpus. This poses another problem for
evaluation. The human mind is subject to variance, i.e., the same person will have different
ideas of an appropriate topic structure in repeated experimental setups. In addition, there
are fundamentally different opinions of an appropriate topic structure, i.e., different people
can - and usually do - differ in how they perceive documents, regardless of the existing
variance. For this reason, currently the most common aim in evaluating topic models is to
find a measure with the highest possible correlation to the human perception of proper
corpus and topic structures.

In the early years of LDA, mostly the likelihood of the models was optimized, i.e., how well
the fit is with respect to the model assumptions. Perplexity as proposed in the original
LDA paper (Blei et al., 2003) has been and is still widely used for this purpose. As a
holdout variant, perplexity indicates how well the model can predict the words for test
documents based on the modeled distributions on the training documents. Since the exact
probability of held-out documents is intractable, there are other likelihood-based measures
besides perplexity that can estimate this probability. Wallach et al. (2009) present two
further methods, namely Chib-style estimator and left-to-right algorithm, which can
predict the probability of held-out documents better and equivalently efficiently, resulting
in a somewhat more accurate selection of models. However, since in the same year Chang

9
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et al. (2009) show in a seminal work that likelihood-based measures correlate poorly, or
even negatively, with human perception of “well-separated” topics, these alternatives could
not gain decisive acceptance in practice. Instead, in addition to the popular perplexity,
coherence-based measures, which correlate better with human judgments, have been used
increasingly for the evaluation of topics, as suggested by Chang et al. (2009). For the
evaluation of topic quality measures, the authors propose a human assisted procedure
called “word intrusion”, in which human coders are given six words, five of which have a
high probability for the corresponding topic according to the topic model, and a sixth that
has a low probability for the topic to be evaluated, but at the same time a high probability
for one of the other topics of the model. If coders can reliably detect this “intruder word”
in repeated trials, this indicates good topic quality. On this basic idea of coherent topics
there are further works (e.g., Aletras and Stevenson, 2013; Mimno et al., 2011; Newman et
al., 2011, 2010), in which coherence based measures are proposed, improved and evaluated,
and slight adaptations of the LDA methodology are presented, which already include the
new topic quality measure in the modeling. In particular, pointwise mutual information
(PMI) emerges from this works as a proposal of the measure to be optimized. For two
words x and y PMI is defined as

PMI(x, y) = log p(x, y)
p(x) p(y) = log p(x|y)

p(x) = log p(y|x)
p(y) ∈

[︂
−∞, min{− log p(x), − log p(y)}

]︂
,

which quantifies the difference between the probability of their joint occurrence p(x, y)
and the probability of their individual occurrence p(x) and p(y), assuming independence.
In different variants the actual probability is estimated differently, e.g., via the occurrence
in a sliding window, or simply via the joint occurrence in documents. Both versions have
in common that they need a smoothing factor in the numerator because otherwise too
many estimators would not be defined or, in practice, would produce −∞ as an estimator.
Stevens et al. (2012) provide a benchmark study for a number of those different coherence
based topic quality measures and show that the smoothing factor has a large impact on
the calculation of topic qualities. Moreover, they show that the original value, which was
often selected as 1, leads to worse results and recommend much lower values instead.

As a refinement of PMI, Lau et al. (2014) propose the use of a normalized PMI (NPMI)

NPMI(x, y) = PMI(x, y)
− log p(x, y) ∈ [−1, 1],

for which the authors show in their comparative study that it performs best on the task
of emulating human judgment on topic quality. Röder et al. (2015) address the results
and show the superiority of NPMI in a comprehensive benchmark study with a number
of different coherence measures. Furthermore, Xing et al. (2019) were able to confirm
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that NPMI is the best performing coherence measure. In their study, they also propose
a new posterior based measure named variability, which measures the variability of the
estimated topic distributions across Gibbs iterations. This measure has not been used
prominently in the literature, but it promises to measure another dimension of topic quality
complementary to perplexity and NPMI.

Besides the quality of the resulting topics, there is (at least) one other evaluation aspect
for topic models, in particular for the LDA. A weakness of the LDA is that the estimation
of the model with the collapsed Gibbs sampler is stochastic and strongly depends on
the initialization. Therefore, the user will get different results when running it multiple
times on the same data, but different initializations. The stability of the method LDA is
mostly measured by differences in the topics from different runs. These differences can
be quantified with topic similarity measures. For this purpose, Aletras and Stevenson
(2014) compare different topic similarity approaches, including Kullback-Leibler divergence
(KLD), Jaccard coefficient (JC), cosine similarity and Jensen-Shannon divergence (JSD).
In addition, the authors also consider a PMI based approach in which topic similarity
is determined by computing the average pairwise PMI between the topic words in two
topics. Accordingly, the authors show that the aforementioned classical word probability
measures perform weaker in terms of correlation to the human perception of topic similarity
(measured on a scale from 0 to 5) than, in particular, the PMI based approach. However,
the literature still mainly uses probability based measures. Greene et al. (2014) use an
average Jaccard coefficient (AJC) that considers top word sets up to different depths
and averages the different resulting values. The authors use this measure for tuning the
number of topics based on the stability of the models over multiple runs. Similarly, Su et
al. (2016) use the same definition of AJC to quantify the stability of LDA models on noisy
texts. While Agrawal et al. (2018) compute stability as the median of JCs of the top 9
words, Mantyla et al. (2018) use the so-called rank-biased overlap (RBO) to compute the
stability of LDA models over replicated runs. Thereby, similar to the AJC, it compares
top word lists of different depths and additionally weights deeper lists less strongly using a
hyperparameter. In addition, Maier et al. (2018) use cosine similarity in their best practice
guide and match topics that exceed a threshold, and Morstatter and Liu (2018) propose a
measure that is supposed to optimize interpretability complementary to coherence and
refer to it as consensus. Each of these measures can be used in different variations to
measure LDA stability.

In order to not only measure the weakness of the LDA, the instability, but to improve it,
Nguyen et al. (2014) propose to average Gibbs iterations. For this purpose, after a burn-in
period, for example, the Markov chain is stored every 20 iterations; let us assume for a
total of 200 iterations, which results in 10 states. Starting from these 10 chains, states are
stored every 10 iterations and these Markov chains run for a total of 50 iterations. In total,
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using these hyperparameters, this results in 10 × 5 = 50 estimated probability matrices ϕ

and θ, which can be averaged. This reduces the variance of the result because not only a
single state (usually the last one after a fixed number of iterations) is used, but movements
between topics are captured by the means. One disadvantage of this method is that the -
to be honest highly uncertain - assignments of each token to topics are lost. In addition,
this method is also based on only a single initialization. This problem could be solved if
models of different initializations could be averaged. However, this is not trivial, since it
is not clear how topics of models of different initializations can be - and to what extent
can be - matched. Among others, this task has been addressed by Maier et al. (2018).
The authors propose to perform the initialization reasonably using the co-occurrences
and to make the results of the LDA more reliable by using cosine similarity and topic
matching of topics that realize a pairwise similarity above a threshold. Topics that do not
achieve similarity above this threshold are classified as unstable and are not considered
further. This method is again based on a single initialization and manipulates the results
of the LDAs to a degree that it is unclear how this restriction to stable topics affects
conclusions drawn from these results. An attempt to stabilize the model of the LDA
by adapting the modeling was made by Koltcov et al. (2016) with the granulated LDA
(GLDA). Here, the authors consider sliding windows with typical kernel functions (step,
triangular, Epanechnikov) within which the assignments to topics are set identically. This
adaptation of the Gibbs sampler makes the results more stable, but was only presented by
the authors on one (small) dataset and a publication of the implementation is pending.

One procedure that, to the best of my knowledge, has not yet been used to overcome the
instability of LDA is to select a model from a set of repeated runs that differ only in their
initialization, using a criterion that measures the extent to which the different outcomes
are similar to a potential median outcome. The selection algorithm LDAPrototype, which
I present in the following, builds on this approach.

2.1 Contributed publications

Methods

Rieger, Jonas (2020). “ldaPrototype: A method in R to get a Prototype of multiple Latent Dirichlet
Allocations”. In: Journal of Open Source Software 5.51, p. 2181. doi: 10.21105/joss.02181.

Rieger, Jonas, Carsten Jentsch, and Jörg Rahnenführer (2020a). “Assessing the Uncertainty
of the Text Generating Process Using Topic Models”. In: ECML PKDD 2020 Workshops.
Vol. 1323. CCIS. Springer, pp. 385–396. doi: 10.1007/978-3-030-65965-3_26.

https://doi.org/10.21105/joss.02181
https://doi.org/10.1007/978-3-030-65965-3_26
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Rieger, Jonas, Carsten Jentsch, and Jörg Rahnenführer (2022a). “LDAPrototype: A Model
Selection Algorithm to Improve Reliability of Latent Dirichlet Allocation”. In: Preprint
available at Research Square. doi: 10.21203/rs.3.rs-1486359/v1.

Rieger, Jonas, Jörg Rahnenführer, and Carsten Jentsch (2020b). “Improving Latent Dirichlet
Allocation: On Reliability of the Novel Method LDAPrototype”. In: Natural Language Pro-
cessing and Information Systems, NLDB 2020. Vol. 12089. LNCS. Springer, pp. 118–125. doi:
10.1007/978-3-030-51310-8_11.

Applications

Jentsch, Carsten, Enno Mammen, Henrik Müller, Jonas Rieger, and Christof Schötz (2021).
“Text mining methods for measuring the coherence of party manifestos for the German federal
elections from 1990 to 2021”. In: DoCMA Working Paper #8. doi: 10.17877/de290r-22363.

von Nordheim, Gerret and Jonas Rieger (2020). “Im Zerrspiegel des Populismus – Eine com-
putergestützte Analyse der Verlinkungspraxis von Bundestagsabgeordneten auf Twitter”. In:
Publizistik 65. German. [Distorted by Populism – A computational analysis of German parlia-
mentarians’ linking practices on Twitter], pp. 403–424. doi: 10.1007/s11616-020-00591-7.

von Nordheim, Gerret, Jonas Rieger, and Katharina Kleinen-von Königslöw (2021). “From the
Fringes to the Core – An Analysis of Right-Wing Populists’ Linking Practices in Seven EU
Parliaments and Switzerland”. In: Digital Journalism, pp. 1–19. doi: 10.1080/21670811.

2021.1970602.

2.2 Model selection via LDAPrototype

As described in Section 2, there are different criteria for model evaluation for a set of LDA
models. Stability describes the similarity of R repeated runs of the model, while reliability
does not measure the stability of the model, but the similarity of the results of H repeated
executions of a procedure on different sets of LDA models of size R. The quality of an
LDA result, in contrast, can usually only be assessed with external knowledge combined
with a choice of an optimization criterion. In Figure 2, the different terms, and their
determination, are shown schematically.

Instead of avoiding the instability of LDA by adapting the method or via optimization,
the instability can also be understood as an algorithmic variable that can be averaged out
in a statistical sense. The LDAPrototype method follows the classical statistical approach
of running the procedure repeatedly and, in a sense, using the mean run. In Rieger et al.
(2022a, cf. page 71) we explain step by step the motivation and definition of the similarity
measure similarity of multiple sets by clustering with local pruning (S-CLOP) with which
we measure similarities between LDA models. In this case, two LDA models are completely

https://doi.org/10.21203/rs.3.rs-1486359/v1
https://doi.org/10.1007/978-3-030-51310-8_11
https://doi.org/10.17877/de290r-22363
https://doi.org/10.1007/s11616-020-00591-7
https://doi.org/10.1080/21670811.2021.1970602
https://doi.org/10.1080/21670811.2021.1970602
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Figure 2: Schematic explanation of terms stability, reliability and quality.
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Figure 3: Schematic representation of the determination of a prototype based on a set of LDA models.

similar if, for each topic from one LDA, the clustering procedure finds a matching topic
from the other LDA that is not more similar to any topic from its own LDA than to the
potential partner topic from the other LDA. Thus, a similarity of 1 says nothing more
about the matched topics than that each of the topics from the one LDA run finds a
reliable counterpart in the other run, but in particular not how similar the matched topics
actually are. The similarity measure captures more the similarity of the models’ topic
structures than the similarity of the actual topics.

For this reason, the measure is well suited for selecting from a set of potential candidates the
LDA that is on average most similar to all others in terms of structure. The LDAPrototype
selection algorithm determines a kind of medoid of the models, which is shown schematically
Figure 3. Thus, from the pairwise similarities sij, i ≠ j, the mean similarities s̄i are
calculated for all runs i = 1, . . . , R and the maximum is determined. The LDA that
realizes the largest similarity then becomes the PrototoypeLDA. In Rieger et al. (2020b,
cf. page 123) we show that this procedure strongly improves the reliability of the selected
LDAs compared to random selection - which is still commonly performed in the literature.
In the study, we use the almost 3500 non-empty texts from April 2019 in the Süddeutsche
Zeitung with three different numbers of topics K = 20, 35, 50 and 25 000 LDAs for each
K, i.e., 75 000 LDAs in total. We show that the similarity of LDAs selected using the
LDAPrototype algorithm are considerably higher than those of random selected LDAs.
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Figure 4: Increase of reliability in dependence of the number of replications R on a dataset of all articles
in the newspaper USA Today from June to November 2016: ecdfs of the mean similarities calculated on
R = 100 replications of randomly selected LDA runs (black) and on the H = 100 most representative
prototype LDA runs (red) based on subsamples of R = 10, 20, 30, 40, 50 or all 100 LDA runs. For
comparison, the ecdfs of the 100 selected LDA runs using perplexity (blue) and NPMI (green) based on
the subsamples of 10 runs and all 100 runs are given.

In a broad study, we demonstrate in Rieger et al. (2022a) that the use of LDAPrototype
increases reliability - measured as mean LDA similarity - more than selection by perplexity
or NPMI. This is shown in Figure 4 visualizing a comparison of the empirical cumulative
distribution functions (ecdfs) of the calculated mean LDA similarities. The selection
via LDAPrototype highers the basis reliability score of 0.84 to a reliability score of 0.89,
while perplexity and NPMI realizes scores of 0.87 and 0.85, respectively. It is noticeable
that the LDAPrototype method already provides higher reliability for K = 20 candidate
models than selection via perplexity from R = 100 models. In the study, we intensively
compare different choices of R = 10, 20, 30, 40, 50, 100, and different similarity measures for
determining topic similarities (cosine, thresholded JC, JSD, RBO); and we also evaluate
the increase in reliability for five different datasets of different origins (e.g., Twitter and
newspapers). We were able to show that the method highly increases the reliability for
all datasets considered. Using a dataset of nearly two million articles from the New York
Times and K = 100, we demonstrate computability and usability even for large corpora.
Nevertheless, we see the greatest practical relevance in applying the method in the case
of smaller datasets. We were able to show that for large datasets the variability of the
models is basically not that great, so that such a high increase in reliability as for smaller
datasets is not possible for larger ones.

The application of the LDAPrototype method leads in practice to the fact that users
do not have to worry about the suitable choice of an LDA model for a fixed parameter
combination {K, α, η}, as, e.g., by manual coding or eyeballing. Instead, the selection
algorithm automatically selects a reliable representative LDA, the medoid from a set
of R LDAs. Usually, the reliability increases strongly already for R = 50. In general,
we recommend the use of 100 candidate models, as far as computability is given. For
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particularly small corpora, it may be reasonable to choose a significantly larger number,
e.g., R = 500.

2.3 R package ldaPrototype

The methodology of determining a PrototypeLDA is implemented in the R package
ldaPrototype. In Rieger (2020, cf. page 43), the package is briefly described and set in
context to other common text processing tools in R. The package has been tested for desired
functionality and peer-reviewed, as well as published via CRAN, and provides extensive
documentation on GitHub and via its help pages. The computation of the LDA models
is based on the implementation of the R package lda (Chang, 2015). Parallel calculation
is achieved by linking to parallelMap (Bischl et al., 2020) and for cluster calculations by
linking to batchtools (Lang et al., 2017).

Usability and robustness are enhanced by object-oriented programming. For example,
the package provides classes - and, for instance, corresponding print functions - for LDA,
LDARep, LDABatch, and PrototypeLDA objects. By means of suitably implemented getter
functions, the results of the calculations can also be used for further processing in the
package tosca (Koppers et al., 2020).

2.4 Example: Political parties’ linking practice

The LDAPrototype selection algorithm has already been applied in several publications.
In von Nordheim and Rieger (2020), we analyze over half a million tweets, namely the
tweets of all parliamentarians of the corresponding legislative period. We visited all of
the more than 132 thousand shared URLs and used a tool to extract the texts of links to
journalistic content. The results show that individual AfD politicians apparently share
thematically more broadly than the average parliamentarian, but at the same time the
overall agenda of all AfD parliamentarians is less diverse compared to the other parties.

In a further study (von Nordheim et al., 2021), we extended the analysis to eight European
parliaments. In Figure 5, parties are indicated by their party abbreviations and color-coded
by country. In addition, the far-right parties are marked according to their integrity in
the respective parliament. It can be seen that source and topic insularity do not measure
the same thing. In many studies today, however, topic diversity is still quantified by the
number of different sources. Our analysis shows that this approach is not appropriate. The
different dimensions measure different patterns and can be interpreted appropriately. A
positive deviation from the mean topic insularity, i.e., an increased topic insularity, occurs

https://github.com/JonasRieger/ldaPrototype
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Figure 5: Scatter plot of deviations from topic and source insularity from their countries’ mean value for
all parties. Negative integrated right-wing populist parties (Neg.-integr. RWP) are shown as a triangle,
non-integrated right-wing parties (non-integr. RWP) as a rectangle; all other parties as a circle. Only
those parties are shown that received more than 9.5% of the LDA assignments in the respective country.
The parties are colored according to their country and sized according to their share of assignments in
that country. For a list of all party abbreviations, see the appendix of von Nordheim et al. (2021).

mainly for right-wing parties. Six out of eight observed parties with a deviation greater
than zero are right-wing parties and the threshold only misses VOX as Spanish right-wing
party. In addition, the source insularity can then be used as an indicator of how well
such a right-wing party is integrated into parliament. The non-integrated parties PVV
and AfD have a positive source insularity, i.e., they refer to more content from kind of
partizan media than other parties. In the study, we were able to show that even right-wing
parties that are solidly integrated in their countries, such as the FPÖ in Austria, tend to
share content in a more insular fashion on Twitter compared to other parties in the same
country.

In addition, in the working paper by Jentsch et al. (2021), we use the LDAPrototype
to examine which topics are addressed in the party programs of the German Bundestag
parties for the 2021 federal elections. More specifically, we investigate the intensity with
which the parties discuss issues and which vocabulary they use for it. It turns out that,
measured by the written documents in the run-up to the election, the Kenya and Traffic
Lights coalitions are the ones with the highest matching agendas.

In the three example applications described, an analysis without the LDAPrototype
method would have involved intensive extra work in selecting a suitable LDA. Even if the
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presented applications of the method are mainly in the field of political sciences so far, an
application in other areas is equally conceivable.

2.5 Outlook: Task based topic model evaluation

As shown in Figure 2, there are different ways of topic model evaluation. Besides the
quality of the results, reliability and stability are of interest. We distinguish between
reliability and stability to make clear that an imposed procedure for similarizing the
results of a workflow that does not manipulate the methodology itself does not affect
the stability of the model, but in this case improves the reliability of the results. Just
looking at the stability of the models, there are already differences which uncertainty to
measure. Besides the algorithmic uncertainty, which is often of interest, there is also the
aleatoric uncertainty, which results from the text generating process of the model (Benoit
et al., 2009). In Rieger et al. (2020a), we investigate the influence of the latter uncertainty,
whereas Section 2 offers an outline of methods that address the instability of the LDA.

It has been shown that the selection algorithm via LDAPrototype improves the reliability
of the results. To what extent this improvement represents a qualitative improvement
of the results compared to random selection, remains unanswered so far. In principle, it
can be assumed that a medoid model selected by LDAPrototype tends to be less prone
to artifacts and mismodeling than a single randomly selected model. Thus, selection by
LDAPrototype is likely to improve the quality in terms of robustness of the results.

Further, it is not entirely clear how quality can be interpreted in the context of topic
models. On the one hand, it is certainly true that there are application areas in which
a particularly high correlation of the model with the human perception of well-divided
topics is the criterion of interest to be optimized. This could be of particular relevance in
the context of recommender systems. Human coder experiments are necessary for this
type of evaluation. Proxy methods that correlate particularly well with human sentiment
can be applied, but require ongoing monitoring that they continue to provide the desired
proxy properties (cf. Hoyle et al., 2021). On the other hand, there are many application
areas in which evaluation based on the mentioned approach is certainly not the criterion
to be optimized. An example is the use of topic models in the workflow of a classification
problem. In this case, the variable to be optimized is the evaluation measure of the
classification problem, often the misclassification rate. Already in 2013, Grimmer and
Stewart (2013) suggest in their guideline that a task-specific evaluation might be useful.
In their “four principles of quantitative text analysis”, they point out that first, “all
quantitative models of language are wrong - but some are useful”, second, “quantitative
methods augment humans, not replace them”, third, “there is no globally best method for
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automated text analysis”, and fourth, they encourage “validate, validate, validate”. These
principles suggest that there is no generic way of evaluating topic models. Rather, the
evaluation needs to be appropriately adapted to the problem and the resulting optimality
criterion for each individual task.

Ding et al. (2018) show, for example, that while many topic models optimize perplexity,
topic coherence measured by NPMI does not correlate strongly with perplexity, but rather
the optima are already achieved in earlier iterations of the modeling. For this reason, the
authors give an example of the potential of integrating coherence awarenes into NTMs so
that during modeling itself, the corresponding optimality criterion - in this case NPMI -
is optimized directly. Nguyen et al. (2015) also show that the addition of latent feature
representations, which can be learned on external corpora, can improve the coherence of
the topics of conventional topic models.

Regarding multi-objective optimization of topic models, Ethayarajh and Jurafsky (2020)
note that the typical NLP leaderboards generate optimal results to some extent, but that
practical utility is more important than an artificially generalized optimality criterion. In
this context, there is often a discrepancy with the leaderboards and, in particular, there is
no one-fits-it-all solution, but the authors also favor task-specific optimization. Doogan
and Buntine (2021) show in this context that coherence measures can be unreliable for
specific tasks. The authors show this with the example of Twitter data. Hoyle et al. (2021)
confirm the results and note that new models like NTMs need new coherence measures.
The existing measures are aligned with the architecture of conventional topic models and
therefore do not provide good proxy properties for substituting human coder experiments.
Hence, the authors emphasize that the evaluation of topic models understanding them
as proxies of human judgments as well as the evaluation of human judgments themselves
need to be reassessed and they suggest a task-based evaluation instead of a model-based
evaluation.

Furthermore, model parameter tuning is a field of research that can be explored more
intensively and reliably based on mature evaluation methods. Thus, if the criterion/criteria
for measuring model goodness is/are clearly defined, parameter tuning of the set {K, α, η}
can be performed for LDA, for example. Accordingly, criteria for assessing model goodness
should not be systematically biased in the choice of “best” parameters.

Based on this, my goal for further research is to create a set of criteria for automated
and human assisted topic model evaluation, which are to be optimized at the same time
and to normalize and weight them appropriately, so that for each type of task a linear
combination of the criteria becomes the evaluation measure to be optimized in the sense
of task-based leaderboards. For specific applications in practice, the weighting of the
criteria should, of course, be adapted individually. However, a comparison on leaderboards
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requires a clear ranking, so that an unweighted side-by-side comparison of the different
criteria does not seem satisfactory and viable in practice.



3 Updating and monitoring LDA results

Information from text is often used, among other scenarios, when other data sources are
not available until a later point in time. In these cases, the models must be able to be
calculated fast. It is helpful if the model has the possibility to update previous statuses
with new data in such a way that the modeling of the earlier documents is not influenced
and thus a temporal consistency of the results is ensured. In addition, there are many
applications for monitoring text corpora, for which update algorithms that allow temporal
changes of modeled topics are also essential. There are some methods that already aim to
model temporal topics or allow updates of the model.

With topics over time (TOT), Wang and McCallum (2006) propose a continuous generative
model that assigns timestamps to every single word in all documents. Thus, a prediction
of the publication time of each document is possible. In particular, the model is capable of
creating temporally narrow topics based on the knowledge that specific word co-occurrences
appear very frequently in a short period of time. For modeling the past, this model also
uses the future. Furthermore, updating the model with new data is not possible or
reasonable without adapting the existing model. Therefore, TOT must be understood as
a snapshot model that can be updated in a meaningful way only by recalculation. The
continuous time dynamic topic model (cDTM) by Wang et al. (2008) implements a very
similar modeling idea. It is a continuous version of the discrete time dynamic topic model
(dDTM) by Blei and Lafferty (2006), which also does not implement a classical update
algorithm. Instead, the topic evolution is integrated into the modeling with the help of
parameters, so that future texts have an influence on the modeling of previous texts in
dDTM as well. Using the outbreak of Covid-19 in early 2020 as an example, it can be
shown that even a few months before the first occurrence of the word covid in the dataset,
the estimated probability of its occurrence increases sharply. In particular, this means
that when new data are added, this model also changes for past time points, violating
the temporal consistency of the result. Rather, dDTM and cDTM are appropriate for a
setting in which smoothing the temporal topic distributions as part of a single snapshot
model is of interest.

Hong et al. (2011) propose a model with local and shared topics in text streams. The
authors include the prevalence of the different topics in the modeling and focus on

21
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simultaneous modeling of tweets and news texts to identify local topics. This model is also
not explicitly built as an updating algorithm, but as a snapshot model that incorporates
temporal structures. With temporal LDA (TM-LDA), Wang et al. (2012) present an
approach to model text streams - especially many short texts by the same author - using
transition matrices. The authors themselves consider the main application of the model
to be in the area of social media posts because a large number of texts per user over the
entire time period should be available for (meaningful) modeling. The focus is on temporal
modeling of topics per author instead of global changes of topics. In contrast, Streaming-
LDA (Amoualian et al., 2016) models dependencies between consecutive documents based
on Dirichlet distributions or copula based. Consecutive modeling means that the order in
which documents are considered has a large impact. Dependencies between documents
that do not occur consecutively can thus only be modeled implicitly via the intervening
documents. Due to the repetition of Gibbs iterations, information of subsequent documents
is used to model previous documents in this model as well. As mentioned, this is an
unrealistic situation in many practical application fields that are based on monitoring.

All described models can only deal with fixed vocabularies or do not address how they
could deal with new vocabularies. This is a disadvantage for real monitoring scenarios in
which the existing model is updated over a longer period of time repeatedly, but old states
of the model - as well as, e.g., time series based on the results of the topic model - are to
be kept consistent. Thus, a recalculation of the model is neither intended nor practicable
in this application scenario. Zhai and Boyd-Graber (2013), in contrast, propose a variant
of an online LDA that considers an infinite vocabulary, i.e., allows adding new as well as
deleting no longer used vocabularies. The model considers documents in minibatches, so
it models new documents with the knowledge of the entire past. Due to this design, the
model is suitable for use in a monitoring context, but it is likely that abrupt changes in
topics cannot be modeled, and even new topics cannot be created, since online LDA, as a
relatively static model, takes the entire past into account.

For this reason, there is an ongoing need for research in the area of update algorithms
for LDA. In particular, flexible and at the same time simple models that can be used
in the monitoring domain are of special interest to users. In Section 3.2, I present our
RollingLDA method, which uses minibatches to ensure that adding new data do not
change the assignments of old documents. In addition, the method provides possibilities
for intuitive parameter customization, allows the addition of new vocabularies and the
evolution of existing topics. Thus, the method is well applicable in the monitoring
context.

In the field of monitoring, the goal is often to identify events, structural changes, narrative
shifts, or changes in topic or word distributions. For this purpose, topic similarity measures
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are mostly used. In contrast to the stability measurement of LDA models (cf. Section 2),
where mostly similarities between different topics from different models are calculated,
in this scenario the similarity of the same topic at different points in time is determined.
For this purpose, often other similarity measures than those mentioned in Section 2 are
appropriate.

Keane et al. (2015) use cosine similarity to determine so-called eventy topics. The authors
model a single LDA model for each day of interest, which also contains the data of the
last nine days. Then, topics at different points in time are matched using the maximum
cosine similarity. The authors use the time series of similarities of a single topic to infer
whether it is an eventy topic based on noticeably low cosine similarities or a non-eventy
topic. They also note that identification work similarly well with JSD in their scenario.
The assumption that for each topic there is a matching counterpart in the next day’s LDA
model is already bold, but could still be justified by the rolling data processing. However,
it seems unlikely that the same topic can be reliably found in every daily LDA model
over a longer period of time. Thus, the impact on the interpretation of the results of the
identified eventy topics is difficult to assess. Similarity calculation via JSD is also used
by Xu et al. (2019) in their study on the evolution of topics in news data. They show
that LDA is well suited as a method to detect structural changes in topics of news data.
Wang and Goutte (2018) also use LDA models and compare cosine similarity and JSD in
combination with different change point algorithms as well as standard LDA and online
LDA in their study. They found out that online LDA (cf. Zhai and Boyd-Graber, 2013)
performs on par with standard LDA for the task of detecting change points.

A lot of methods are limited to identifying often only one single change point in the offline
scenario. For example, Bose and Mukherjee (2021) propose the use of LDA to determine
offline changes in the topic distribution of texts. At the same time, there are works
based on Bayesian online monitoring. Kim and Choi (2015) present a method they name
document-based Bayesian online change point detection, in which they present a generative
model for word frequencies and word impacts. They improve the detection algorithm using
a regression approach, so that the model learns which words frequently show conspicuous
behavior close to identified changes, i.e., which words seem to be responsible for changes.
While in the mentioned methods changes in the global topic distributions of documents are
considered as changes, Frermann and Lapata (2016) consider changes in topic distributions
of words. For this, they use a dynamic Bayesian model to localize diachronic meaning
change. Liang and Wang (2019), however, investigate changes of sentiment in topics.

In comparison to the previously mentioned related methods, some of which consider global
changes in topic distributions of texts (cf. Bose and Mukherjee, 2021; Keane et al., 2015;
Kim and Choi, 2015), sentiments in topics (cf. Liang and Wang, 2019) or changes in
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topic distributions of words (cf. Frermann and Lapata, 2016), I will briefly explain in
Section 3.5 how we use RollingLDA to detect changes in word distributions of topics
over time. Thus, we show that RollingLDA can also be applied well in the context of
monitoring. In addition, in Section 3.4 I will explain how we use the method to create
time consistent time series of indicators based on newspaper articles.

3.1 Contributed publications

Methods

Rieger, Jonas (2021). rollinglda: Construct Consistent Time Series from Textual Data. R package
version 0.1.0. doi: 10.5281/zenodo.5266717. url: https://github.com/JonasRieger/

rollinglda.
Rieger, Jonas, Carsten Jentsch, and Jörg Rahnenführer (2021). “RollingLDA: An Update Al-

gorithm of Latent Dirichlet Allocation to Construct Consistent Time Series from Textual
Data”. In: Findings Proceedings of the 2021 EMNLP-Conference. ACL, pp. 2337–2347. doi:
10.18653/v1/2021.findings-emnlp.201.

Rieger, Jonas, Kai-Robin Lange, Jonathan Flossdorf, and Carsten Jentsch (2022b). “Dynamic
change detection in topics based on rolling LDAs”. In: Proceedings of the Text2Story’22
Workshop. Vol. 3117. CEUR-WS, pp. 5–13. url: http://ceur-ws.org/Vol-3117/.

Applications

Müller, Henrik, Jonas Rieger, and Nico Hornig (2022a). “Vladimir vs. the Virus – a Tale of
two Shocks. An Update on our Uncertainty Perception Indicator (UPI) to April 2022 – a
Research Note”. In: DoCMA Working Paper #11. Previous versions: “Riders on the Storm”
(Q1 2021), “We’re rolling” (Q4 2020), “For the times they are a-changin’” (Q3 2020). doi:
10.17877/DE290R-22780.

Müller, Henrik, Jonas Rieger, Tobias Schmidt, and Nico Hornig (2022b). “Pressure is high
– and rising: The Inflation Perception Indicator (IPI) to 30 April 2022 – a Research Note
Analysis”. In: DoCMA Working Paper #10. Previous versions: “A German Inflation Narrative”
(02/28/2022). doi: 10.17877/DE290R-22769.

3.2 Rolling approach via RollingLDA

The demand for update algorithms from the area of application, especially in the field of
monitoring, is high (cf. Section 3). At the same time, models in this field should satisfy
some properties to be practically applicable. First, the model should be updatable without
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https://github.com/JonasRieger/rollinglda
https://github.com/JonasRieger/rollinglda
https://doi.org/10.18653/v1/2021.findings-emnlp.201
http://ceur-ws.org/Vol-3117/
https://doi.org/10.17877/DE290R-22177
https://doi.org/10.17877/DE290R-22177
https://doi.org/10.17877/DE290R-21974
https://doi.org/10.17877/DE290R-21878
https://doi.org/10.17877/DE290R-22780
https://doi.org/10.17877/de290r-22632
https://doi.org/10.17877/de290r-22632
https://doi.org/10.17877/DE290R-22769


3.2 Rolling approach via RollingLDA 25

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Prototype
· · ·

· · ·
memory chunks

(a) Rolling strategy for modeling newspaper articles to extract the UPI (Müller et al., 2022a); chosen parameters:
chunks = "quarter", memory = "3 quarter", init = "2005-12-31", type = "ldaprototype". Note: Since the
beginning of 2022, the UPI is updated monthly, i.e., chunks = "month".

01/22/20 01/31/20 02/07/20 02/14/20 02/21/20 02/28/20 03/06/20

Prototype
· · ·

· · ·

memory chunks

(b) Rolling strategy for modeling online articles to monitor changes in Covid-19 related news (Rieger et al., 2022b);
chosen parameters: chunks = "week", memory = "week", init = "2020-01-31", type = "ldaprototype".

Figure 6: Schematic representations for different rolling strategies.

recalculation. On the one hand, this is because updating needs to be computed quickly in
many cases. On the other hand, previous results should remain valid and thus a temporal
consistency of the results derived from the LDA models should be ensured. Moreover,
an update algorithm should be easy to use and allow flexibility of the model by intuitive
parameters while preserving a high reliability of the model.

RollingLDA (Rieger et al., 2021, cf. page 59) implements an update algorithm of classical
LDA that allows the construction of temporally consistent time series. The method
considers the texts to be modeled in chunks or minibatches and models them in a sequential
manner. First, a comparatively large starting batch is used as the initial chunk. All texts
within this initialization period are modeled by default via LDAPrototype (cf. Section 2.2)
to create the starting topics as reliably as possible. Initialization via classical LDA is also
possible. After initialization, the texts are modeled sequentially in chunks and a proportion
of the modeled previous texts is used as initialization for the topics in the corresponding
chunk. Pseudocode of the implementation can be seen in Algorithm 1 on page 62.

The method offers the user the possibility to flexibly adapt the modeling via parameter
settings. The choice of the parameters can be made intuitively by a-priori knowledge
or practical experience. The most important parameters are chunks, memory and init.
In Figure 6 the parameter choices of two example applications (cf. Section 3.4 and 3.5)
are shown schematically. By specifying chunks, the frequency of modeling can be set,
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i.e., how often new texts are integrated. In Figure 6 these texts are displayed in orange.
If this parameter is chosen as "week", for example, seven consecutive days of texts are
always collected and then modeled together as a minibatch. In doing so, not the complete
knowledge of the model is used for initialization of the topics of the minibatch, but only
texts that are within a time period specified by memory (highlighted in blue in Figure 6).
Specifically, a choice of "3 week" means that the last three weeks before the start of the
current minibatch will be used to initialize the topics. The memory parameter should be
chosen with respect to prior knowledge of seasonally existing topics, as the model will
completely lose awareness of a topic if it does not appear in the entire memory. In addition,
init determines the date up to which the first initial chunk lasts. Up to this date all
texts are modeled together. In Figure 6 this complete period is colored gray. For this, a
(usually much) larger time period than chunk is chosen to ensure reliable starting topics
for further modeling. The method offers the possibility of integrating further parameters,
but these are not specific for RollingLDA, but usually have to be chosen in some way in
LDA oriented modeling (cf. Section 3.3).

RollingLDA allows a simple use without tuning due to the possibility of intuitive parameter
choices and is also well suited for the monitoring context due to the non-necessary
recalculation of the model. By including the LDAPrototype method, a reliable modeling of
the topics can be ensured, while the rolling approach makes the modeling flexible enough
to allow for an evolution of the topics. Thus, the model allows new topics to evolve and is
able to discard non-prevalent topics. At the same time, a time consistent mapping of the
same topic is guaranteed, so that based on this, monitoring of changes within the topics
becomes possible - without the need to perform a matching of topics from different LDA
runs beforehand.

3.3 R package rollinglda

The R package rollinglda (Rieger, 2021) implements the RollingLDA methodology. The
code for modeling is based on the C code of the R package lda. The code has been cleaned
up and modified to enable updates by appropriate parameter setting according to the
systematic explained in Section 3.2. Furthermore, the object-oriented programming builds
on the objects from ldaPrototype (cf. Section 2.3) and adds getter and print functions
for RollingLDA objects. Within the object, the preprocessed documents are automatically
stored in a way that is safe for the user, so that in each case a direct mapping to the
corresponding publication date, chunk association and topic assignments is easily possible.
Using getChunks the user obtains information about the modeled chunks in a tabular
form. In addition to the start date, end date and the start date of the memory period,
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the number of modeled documents in the corresponding chunk, the number of discarded
documents within the preprocessing (due to different thresholds) as well as the number of
documents in the memory and the size of the vocabulary in this chunk are given. Here, the
size of the vocabulary is monotonously increasing, since words once included are always
taken into account in later chunks.

The package provides plausible default parameters, such as for the thresholds for the size
of documents and frequencies of vocabularies to be included, to allow for fast and easy
usage. Moreover, the two main method parameters chunks and memory, which do not
have a default, can be passed in a user-friendly and flexible way, that is as a vector of
dates, a single integer or a single character (e.g., "week" or "2 month"). Furthermore,
by linking to the object-oriented style of ldaPrototype, the objects are also directly usable
for the functions of tosca by means of respective getter functions.

3.4 Example: Text based indicators

The rolling approach of the method offers a broad range of possible usage in true application
areas, especially in the field of monitoring. An example application is the uncertainty
perception indicator (UPI, Müller et al., 2022a), which is used to measure the proportion
of coverage of various uncertainties in the three German newspapers Die Welt, Handelsblatt
and Süddeutsche Zeitung. For this purpose, we build a subcorpus of the complete set of
all 2.9 million published articles from 01/01/2001 to 04/30/2022. This is created by a
proper search term combination to find those articles dealing with economic uncertainty
which results in 39 058 texts. The resulting subcorpus is modeled using RollingLDA. The
initialization period is chosen to end on 12/31/2005; all articles published up to that
date are modeled using the LDAPrototype method. From then on, the model is updated
monthly with the newly published articles using the articles from the three quarters before
as memory. In Figure 6a, a modeling scheme of an earlier version of the UPI is shown as
an example. It differs only in the parameter chunks as until 2022 the UPI was updated
quarterly instead of monthly.

Uncertainty and its economic impacts have gained plenty of attention in recent years,
especially after the financial crisis of 2008 and again since the rise of populist politics.
The best-known indicator for measuring uncertainty and making its economic impact
more predictable is the economic policy index (EPU, Baker et al., 2016). An advantage
of the UPI compared to the EPU is the possibility to also specify the topical sources of
uncertainty and to observe their trend over time. We model a total of 14 topics for the
UPI using RollingLDA. One of the topics is composed mainly of the false positives of the
search term, i.e., the articles that satisfy the search term but are not about economic
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Figure 7: The temporal course of the 13 topics of the UPI split by their association to the three subindices
as a monthly share of the total coverage of the newspapers Die Welt, Handelsblatt and Süddeutsche Zeitung
from 01/01/2001 until 04/30/2022.

uncertainty. In addition, it may happen that some (long) articles are correctly included in
the subcorpus, but also contain thematically inappropriate sections. It is also likely for this
case that many assignments from LDA are made to the corresponding topic Miscellaneous.
By manual coding, we assign the 13 meaningful topics to three subindices Financial
Markets, Politics, and Real Economy. This topic is not considered for the calculation of
the total UPI and any subindices. Every single index is calculated as the share of the
topic measured by the number of words of the total coverage in the complete corpus.

In Figure 7, the indices of the 13 topics of the UPI are shown according to their association
with one of the three subindices. By some examples you can see that the method provides
plausible results - in an automated way. The financial crisis of 2008 can be identified
by an increased share in all three subindices; in Real Economy the share remains at
a higher level for a longer period of time. The euro crisis of 2010/11 is particularly
characterized by a sharp rise of the Central banks topic. The clearest peak is caused by
the discussions about the United Kingdom’s exit (Brexit) from the European Union (EU)
in 2016, observed in the EU Conflicts topic. The Covid-19 pandemic had the greatest
impact on the overall UPI so far. At the beginning of 2020, many topics are rising rapidly;
the topics Leisure & Hospitality (Real Economy) and Society (Politics) are most notable.
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Figure 8: The temporal course of the nine topics of the IPI split by their rough type of relation to inflation
as a monthly share of the total coverage of the newspapers Die Welt, Handelsblatt and Süddeutsche Zeitung
from 01/01/2001 until 04/30/2022.

In the topic Geopolitics, which was previously only triggered by the Brexit, the effect of
the war in the Ukraine on the coverage can also clearly be seen. While this topic’s share
already peaked in February and March, it decreases slightly in April, while the topics
involving consequences for Germany, i.e., German Economy and Energy & Climate rise
sharply at the current boundary in April. In general, it can be observed that peaks in the
Financial Markets subindex are usually short-lived, while the other two subindices remain
at a higher level for a longer period of time and slowly decline. This could be because of
longer attention cycles due to the transition of attention through the different topics that
make up the two subindices.

In addition to the general uncertainty, there is an increased interest in inflation reporting
not only among economists, but also among the population as a whole, in particular due
to the unexpected post-Covid inflation. Analogously to the UPI, the inflation perception
indicator (IPI, Müller et al., 2022b) reflects the intensity of the various facets of inflation
reporting given by the share of nine topics (ten modeled topics). The model is updated
monthly and the last three months are used as memory, so that changes in the topics
are allowed to occur more quickly and temporary narratives in topics are forgotten more
quickly than in the thematically broader UPI. In Figure 8, the shares of the nine IPI
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topics to the total corpus are shown until the end of April. The subcorpus contains 51 910
articles up to this point. The plausibility of the IPI modeling can also be justified by a few
examples. The financial crisis in 2008 is reflected in particular in the four Consequences
topics. Within the four Causal topics, however, the effects on the share of reporting are
less strong and less sudden. Already in 2010, high shares become apparent in the Central
banks topic; in 2011, the Financial Markets, Private Investment and News topics from the
Consequences topics also show an increase. These increases are likely to be caused by the
euro crisis. In 2018, the trade war between China and the United States of America can be
seen in a sudden increase in the Raw Materials (Causal) topic, and the European Central
Bank’s (ECB) decision to continue quantitative easing is reflected in an increase in the
Central banks (Causal) topic over at least three months in 2019. At the current boundary
of the modeling, a clear trend can be observed. All nine curves reached their all-time high
within the last three months, and further increases are plausible or even likely for some of
them. The Financial Markets (Consequences) topic already shows spikes at the end of
2020, which are followed by a sharp and sudden increase in the share of reporting in all
nine topics by mid-2021 at the latest.

When interpreting the UPI curves, it is important to keep in mind that both, an increase
in existing uncertainty may lead to more reporting of it and, vice versa, more attention to
uncertainty may lead to just that, as part of a self-fulfilling prophecy. The relationship of
IPI to actual inflation should also be analyzed under these constraints.

3.5 Outlook: Dynamic parameter adjustment and temporal topics

In extension to monitoring time series resulting from the model, topics should also be
monitored for consistency over time to ensure interpretability. In Rieger et al. (2022b),
we monitor similarities of topics to themselves across time points. We also propose a
methodology for automated detection of changes in topics. For this, using cosine similarity,
we compare the realized similarity of the topic sequence with the similarity between the
past and expected subsequent word vectors under semi-stable conditions. If the actual
similarity is below the expected stability, the method detects a change. We demonstrate
the plausibility of the results by applying the method to a sample dataset of Covid-19
related online news from CNN. Due to the properties of news, we chose a weekly update
rhythm and use the texts from the previous week as memory in each chunk. In Figure 6b
on page 25, the modeling procedure using RollingLDA is shown schematically.

Based on the results of detected changes, one can think of further approaches to develop
extensions of the modeling procedure. A substantial change in a topic suggests that the
content has changed significantly or that the previous topic is no longer represented at all.
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In such cases, post-processing of the time series of topics becomes useful, so that clearly
temporally defined topics within one modeled topic are split into several model topics.
This kind of lifetime determination of the topics extends the possibilities of visualization
and utilization of the LDA results and thus the interpretability for end users. An advanced
further approach is then the implementation of time-constrained topics during the modeling
process. This is possible, for example, by model flexibilization towards time-dependent
model parameters. Detected changes in topics can then - depending on the type of detected
change - e.g., result in the termination of the topic or the creation of a new topic, so
that in particular the parameter K, which specifies the number of topics in the model,
is not rigid, but may vary time-dependently in an appropriate range around the global
value K.

In addition, there are many fields of application of the presented methodology. As a
side effect of the digitalization and the fast consumption of news, these seem to result in
shorter attention cycles. Lorenz-Spreen et al., 2019 were able to show this using seven
different online text datasets as examples. Following this study, the question arises whether
narratives in newspapers also tend to have shorter life cycles as time passes. To be able to
research this, it is essential to first define the narrative term precisely and reasonably. The
four elements of a media frame according to Entman (1993) a) a problem definition, b) a
problem diagnosis, c) a moral judgment, and d) possible remedies as well as the findings
from the work of Matthes and Kohring (2008) and DiMaggio et al. (2013), who propose
under which conditions topics from topic models can also be interpreted as frames, should
be considered and might be extended to a definition of a narrative concept (cf. Müller et
al., 2018).

In the monitoring context, I aim to incorporate temporal topics by integrating a dynamic
adjustment of the model parameters - especially the number of topics K - within the
modeling. Furthermore, it seems quite realistic and plausible to be able to show with the
help of the presented methodology that the narrative cycles in newspapers have become
shorter in the last years/decades, i.e., that media coverage has become more fast-paced.
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Summary

Topic Modeling (Blei, 2012) is one of the biggest subjects in the field of text data analysis.
Here, the Latent Dirichlet Allocation (Blei, Ng, & Jordan, 2003) takes a special position. A
large part of scientific text data analyses are based on this model (LDA). The LDA method has
a far-reaching disadvantage. Random initialization and conditional reassignments within the
iterative process of the Gibbs sampler (Griffiths & Steyvers, 2004) can result in fundamentally
different models when executed several times on the same data and with identical parameter
sets. This fact greatly limits the scientific reproducibility.
Up to now, the so-called eye-balling method has been used in practice to select suitable
results. From a set of models, subjective decisions are made to select the model that seems
to fit the data best or, in the worst case, the result that best supports one’s hypothesis
is chosen. The latter contradicts basically good scientific practice. A different method of
objective and automated selection has also become established. A model from a set of LDAs
can be determined optimizing the log-likelihood using the perplexity on held-out data. The R
(R Core Team, 2020) package topicmodels (Grün & Hornik, 2011) provides a workflow for
this procedure. As an extension, Nguyen, Boyd-Graber, & Resnik (2014) proposed to average
different iterations of the Gibbs sampling procedure to achieve an increase of perplexity. The
averaging technique has the weakness, that the user does not get token specific assignments
to topics, but only averaged topic counts or proportions per text. In addition, Chang, Boyd-
Graber, Gerrish, Wang, & Blei (2009) were able to show that selection mechanisms aiming
for optimizing likelihood-based measures do not correspond to the human perception of a
well-adapted model of text data. Instead, the authors propose a so-called intruder procedure
based on human codings. The corresponding methodology is implemented in the package
tosca (Koppers, Rieger, Boczek, & von Nordheim, 2019).
The R package ldaPrototype on the other hand determines a prototypical LDA by automated
selection from a set of LDAs. The method improves reliability of findings drawn from LDA
results (Rieger, Koppers, Jentsch, & Rahnenführer, 2020), which is achieved following a typical
statistical approach. For a given combination of parameters, a number of models is calculated
(usually about 100), from which that LDA is determined that is most similar to all other LDAs
from a set of models. For this purpose pairwise model similarities are calculated using the
S-CLOP measure (Similarity of Multiple Sets by Clustering with Local Pruning), which can be
determined by a clustering procedure of the individual topic units based on topic similarities of
the two LDA results considered. The package offers visualization possibilities for comparisons
of LDA models based on the clustering of the associated topics. Furthermore, the package
supports the repetition of the modeling procedure of the LDA by a simple calculation of the
repeated LDA runs.
In addition to the possibility of local parallel computation by connecting to the package
parallelMap (Bischl & Lang, 2019), there is the possibility to calculate using batch systems
on high performance computing (HPC) clusters by integrating helpful functions from the
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package batchtools (Lang, Bischl, & Surmann, 2017). This is especially helpful if the text
corpora contains several hundred of thousands articles and the sequential calculation of 100 or
more LDA runs would extend over several days. The modeling of single LDA runs is done with
the help of the computation time optimized R package lda (Chang, 2015), which implements
the calculation in C++ code. In general, the package ldaPrototype is based on S3 objects
and thus extends the packages lda and tosca by user-friendly display and processing options.
Other R packages for estimating LDA are topicmodels and mallet (Mimno, 2013), whereas
stm (Roberts, Stewart, & Tingley, 2019) offers a powerful framework for Structural Topic
Models and quanteda (Benoit et al., 2018) is a popular framework for preprocessing and
quantitative analysis of text data.
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Abstract. Latent Dirichlet Allocation (LDA) is one of the most popular
topic models employed for the analysis of large text data. When applied
repeatedly to the same text corpus, LDA leads to different results. To
address this issue, several methods have been proposed. In this paper,
instead of dealing with this methodological source of algorithmic uncer-
tainty, we assess the aleatoric uncertainty of the text generating process
itself. For this task, we use a direct LDA-model approach to quantify
the uncertainty due to the random process of text generation and pro-
pose three different bootstrap approaches to resample texts. These allow
to construct uncertainty intervals of topic proportions for single texts
as well as for text corpora over time. We discuss the differences of the
uncertainty intervals derived from the three bootstrap approaches and
the direct approach for single texts and for aggregations of texts. We
present the results of an application of the proposed methods to an ex-
ample corpus consisting of all published articles in a German daily quality
newspaper of one full year and investigate the effect of different sample
sizes to the uncertainty intervals.

Keywords: Aleatoric Uncertainty · Topic Model · Machine Learning ·

Stochastic · Text Data

1 Introduction

Modeling unstructured data is a big challenge in the field of machine learning.
Due to an increase of volume of unstructured data the need for appropriate
analytical methods also increases. Text data covers a large share of unstructured
data and is often organized in a collection of texts called corpus.

We consider each text to be a sequence of sentences, where each sentence
consists of a sequence of tokens of words. The set of all words are denoted as
vocabulary, where a token is given by a word at a specific place in a single text.
Observed text data is generally subject to a certain degree of aleatoric uncer-
tainty, since an author uses a slightly different choice of words when writing
repeatedly the same text. We provide a mechanism to quantify the uncertainty
of the text generation directly and by bootstrap simulation based on topic mod-
els. For the bootstrap we distinguish between different implementations of the
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2 J. Rieger et al.

procedure, that is, we rely on resampling words, sentences or a combination of
both. All approaches are compared regarding uncertainty estimation on an ex-
ample dataset consisting of all 51 026 articles published in the German quality
newspaper Süddeutsche Zeitung in 2018.

1.1 Related Work

In the field of text data analysis it is very common to model a corpus of text
data using probabilistic topic models [3]. Latent Dirichlet Allocation [5] is clearly
one of the most commonly used topic models and numerous extensions of it
have been proposed in the literature that are specialized to certain applications
including e.g. the Author-Topic Model [22], Correlated Topics Model [4], or the
more generalized Structural Topic Model [21]. However, for illustration we will
stick to the classical LDA, but our procedure can be easily extended to other
topic models as well.

The modeling procedure of LDA using a Gibbs sampler is stochastic in the
sense that it depends on initial topic assignments and reassigns tokens based
on conditional distributions. This fact is rarely discussed in applications [1],
although several approaches have been proposed to overcome this weakness of
algorithmic uncertainty: approaches that optimize perplexity [16] or the semantic
coherence of topics [6,14,23] and those, that stabilize the results by initializing
the topic assignments reasonably [13,15]. In this paper, for the analysis we will
use a new method to select a model of a set of LDAs that is named LDAPrototype
[19,20], which will be explained in detail in Sect. 2.1.

µ : World Affairs

π : Author’s Message

τ : Observed Text

δ : LDAPrototype Model

λ : Results

M : Publisher

T : Text Generating Process

I, C: Method LDAPrototype

S: Statistics, e.g. for Aggregation

In
fe

re
n
c
e

Fig. 1: The stochastic process of text generation: various sources of uncertainty
and possible options to do inference on it. Adapted scheme from [2].

When analyzing the evolution of text content over time, it is important to con-
sider various sources of uncertainty in the analysis. Benoit et al. [2] proposed
an “Overview of the positions to text to coded data process” visualized in an
adapted version in Figure 1. The diagram relates the following components:
– µ, the true unobservable world affairs researched by journalists and effected

by strategic decisions by the publisher M , leading to
– π, the underlying intention of a single text’s author,
– τ , the observed text generated by a process T , which is often coded by hu-

mans based on a coding scheme that someone devised stochastically, denoted
with I. In conjunction with the coding process C itself this leads to
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– δ, a table of codings, which are modeled using a preliminarily selected mod-
eling procedure S, resulting in

– λ, values for the coded text, which can be used to do inference on
– the observed text τ , the intended message π and the true preference µ.

The uncertainty of C is well known and can be quantified using intercoder re-
liability measures like Krippendorff’s α [12], which offers the opportunity to do
inference on the observed text τ . If we can quantify the uncertainty in T or
both, T and M , we can do inference on π or µ, respectively. In fact, there are
few works (e.g. [2]) that mention the uncertainty in T or M , respectively.

1.2 Contribution

In the following, we take care especially of the aleatoric uncertainty of the text
generating process T . Quality newspapers in general claim to reflect the world
affairs, which corresponds to µ in Figure 1. Besides the fact that the set of
world events is not fully observable, we also cannot infer about them objectively
from the published newspaper articles. Publishing companies are influenced by a
number of (economic and social) factors to select their contents sensibly and to
control their quantity. Moreover, the publishers themselves are not even aware
of all the world’s incidents. This process is condensed in M and it leads to the
unobservable messages of the authors π per event or text, respectively. This is
the variable about which we want to make a statement. Therefore, we need to
know about the text generating process T that maps the author’s message to
the observed text τ , the articles of the corpus from the Süddeutsche Zeitung.

We show that three natural variants of bootstrap resampling strategies lead
to different degrees of captured uncertainty of the text generating process. In
addition, we show that these methods lead to uncertainty intervals for aggre-
gations of articles that are considerably different to the model-based one. Our
results suggest that this type of aleatoric uncertainty should be considered in
particular for small sample sizes, whereas it becomes negligible for larger sample
sizes. In our application, it turns out that the simplest approach of resampling
words tends to underestimate the uncertainty of T .

2 Methods

For capturing the aleatoric uncertainty in the text generating process, we make
use of topic modeling as the measurement instrument I and the coding process
C in the inference scheme of Benoit et al. [2] in Figure 1. That is, in contrast
to controlling the stochastic component of the coding process, which is based on
manual coding, we need to rule out the algorithmic uncertainty in the modeling
process of the topic model.

2.1 Latent Dirichlet Allocation

The topic model we use is a version of the Latent Dirichlet Allocation [5] esti-
mated by a Collapsed Gibbs sampler [10], as a probabilistic topic model that is
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widely used in text data analysis. The LDA assumes that there is a topic distri-
bution for every text, and it models them by assigning one topic from the set of
topics T = {T1, ..., TK} to every token in a text, where K ∈ N is a user-defined
parameter, the number of modeled topics. We denote a text (or document) of a
corpus consisting of M texts by D(m), where N (m) is the size of text m, while
W = {W1, ...,WV } is the set of words and V = |W | ∈ N the vocabulary size.
Then, the topic assignments of every text m are given by T (m):

D(m) =
(
W

(m)
1 , ...,W

(m)

N(m)

)
, m = 1, ...,M, W (m)

n ∈W , n = 1, ..., N (m),

T (m) =
(
T

(m)
1 , ..., T

(m)

N(m)

)
, m = 1, ...,M, T (m)

n ∈ T , n = 1, ..., N (m).

That is, T
(m)
n contains the information of topic assignment of the corresponding

token W
(m)
n in text m. Let n

(mv)
k , k = 1, ...,K, v = 1, ..., V denote the number of

assignments of word v in text m to topic k. Then, we define the cumulative count

of topic k over all words in document m by n
(m•)
k and the vectors of topic counts

for the m = 1, ...,M texts by t(m) = (n
(m•)
1 , ..., n

(m•)
K )T . Using these definitions,

the underlying probability model of LDA [10] can be written as

W (m)
n | T (m)

n ,φk ∼ Discrete(φk), φk ∼ Dirichlet(η),

T (m)
n | θm ∼ Discrete(θm), θm ∼ Dirichlet(α),

where α and η are Dirichlet distribution hyperparameters and must be set by
the user. The topic distribution parameters θm = (θm,1, ..., θm,K)T ∈ (0, 1)K

can be estimated based on the topic counts t(m). Therefore, Griffiths et al. [10]
proposed an estimator including a correction for underestimated topics

θ̂m,k =
n

(m•)
k + α

N (m) +Kα
.

LDAPrototype Modeling LDAs using a Gibbs sampler is sensitive to the ran-
dom initialization of topic assignments as mentioned in Sect. 1.1. To control the
stochastic nature of LDA we use a recently proposed method to select the “best”
model of a set of LDAs. This version of LDA named LDAPrototype [19] leads
to an increase of reliability of the conclusions drawn from the prototype model
[20]. The increase is obtained by choosing a prototype model as the most central
model in the set of all LDA runs, usually from about 100 LDA runs applied
to the same dataset. This choice is comparable to the median in the univariate
case. The approach is implemented in the R [17] package ldaPrototype [18].

2.2 Text Generating Process

The stochastic component in the process of text generation T in Figure 1 can be
quantified model-based or by bootstrap simulation. For the latter case we will
use bootstrap resampling of texts.
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Model-Based Uncertainty Estimation To estimate the aleatoric uncer-
tainty of the random process of text generation we can use our chosen topic
model. That is, we assume the underlying text generating process of the LDA
model to represent the truth. We estimate topic proportions by θ̂m,k. For the ex-

pected value it holds E(θ̂m,k) = θm,k, if θ̂m,k is unbiased, that is on average θ̂m,k
reproduces the true unobservable θm,k. Then, if

∑K
k=1 θm,k = 1 ∀m = 1, ...,M

and (θm,k)k=1,...,K are the true, but unobservable topic proportions of the in-
tended message of text m, we obtain from the multinomial distribution

E
(
n

(m•)
k

)
= N (m)θ̂m,k and Var

(
n

(m•)
k

)
= N (m)θ̂m,k

(
1− θ̂m,k

)
,

where n
(m•)
k ∼ Binomial

(
N (m), θm,k

)
and t(m) ∼ Multinomial

(
N (m),θm

)
.

The binomial distribution offers the possibility to calculate an approximate con-
fidence interval for θm,k based on the normal distribution [24] given by

Var
(
θ̂m,k

)
=
θ̂m,k

(
1− θ̂m,k

)

N (m)
⇒ CIθm,k

=


θ̂m,k ± z1−α/2

√
θ̂m,k(1− θ̂m,k)

N (m)


 ,

where z1−α/2 denotes the (1−α/2)-quantile of the standard normal distribution.
This enables us to quantify the uncertainty of the text generating process of a
single text in our corpus based on the chosen topic model LDA. The requirement
of a large sample size for an adequate construction of approximate confidence
intervals will be not always satisfied for individual texts, but certainly will ap-
ply to a (large) number of aggregated texts. Furthermore, it is often of interest
to consider those aggregations of texts, especially stratified by time intervals,
as for example daily newspaper editions. In Sect. 3, we consider daily newspa-
per editions of the Süddeutsche Zeitung. However, due to the fact that gener-

ally Cov(n
(m1•)
k , n

(m2•)
k ) 6= 0 holds for two selected texts m1,m2 ∈ {1, ...,M},

the analytic derivation of Var(n
(m1•)
k + n

(m2•)
k ) is complicated. In this case, the

bootstrap approach provides a remedy.

Bootstrap-Based Uncertainty Estimation The seminal idea of the boot-
strap [7,8] is that a random sample x relates to its population in the same manner
as a random sample x∗ drawn independently with replacement from x relates
to the random sample x itself. We will use the bootstrap idea to estimate the
uncertainty of the text generating process using resampled texts. There are sev-
eral natural ways how to bootstrap texts. We will propose and investigate three
versions:
1. BWord: The text is understood as one bag of words and these words are

bootstrapped. The BWord approach corresponds to the model-based assess-
ment and is equivalent to it for a large number of bootstrap replications.

2. BSentence: The text is split into sentences and these sentences are put in a
imaginary bag of sentences to create new texts generated by resampled sen-
tences. This approach takes more natural structure of the texts into account.
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6 J. Rieger et al.

3. BSentenceWord: This approach is a kind of intermediate of both. At first
the BS approach is executed, that is, sentences are resampled. Afterwards,
every resampled sentence is resampled with respect to its words. The second
step corresponds to a BW approach for sentences.

In the present case we replicate every text 25 000 times using each of the three
introduced methods. For aggregation statistics we resample R = 100 000 combi-
nations based on each set of resampled texts. The words in each bootstrapped
text are assigned to the corresponding topics from the LDAPrototype model
according to the tokens of the original texts. To save computation time, if a
text contains less than ten words, in BW we determine all possible combina-
tions of words. The number of possible combinations is given by

(
2n−1
n−1

)
, where

n denotes the number of individuals. That is, for n = 9 we have 24 310 combina-
tions and for n = 5 there are only 126 possibilities to combine these five words
with replacement. We proceed analogously for the BS approach; for BSW, only
if the according text contains one single sentence consisting of less than ten
words. Then, we build bootstrap intervals for θ reaching from the 0.025%- to
the 0.975%-quantile of θ̂r, r = 1, ..., R.

As we investigate a daily newspaper, we also calculate daily aggregation
statistics using a rolling window approach for 7, 15 and 29 days. That is, for
every single day and topic we calculate the mean of the daily count of topic
assignments for ±3,±7 or ±14 days. The estimator is denoted by p̂ and is defined
as the simple proportion of topic assignments for each topic at the given day.
We determine bootstrap intervals for the real topic proportion p in the style of
those for θ. In addition, we measure the relative standard deviation of p̂ by the
coefficient of variation defined as the ratio of empirical standard deviation and
the sample mean ¯̂p of the p̂r, r = 1, ..., R, which is given by

CV(p̂) =
1
¯̂p

√√√√ 1

R− 1

R∑

r=1

(
p̂r − ¯̂p

)2
.

This allows us to make uncertainty statements not only in dependence of single
topics’ proportions but more general depending on the level of p̂.

3 Analysis

For the following analysis we refer to a corpus of newspaper articles. We con-
sider the complete set of texts published in the daily German quality newspaper
Süddeutsche Zeitung in 2018. It consists of 51 026 articles. We perform classical
preprocessing steps for text corpora as removal of numbers, punctuation and
distinct German stopwords. In addition, all words that occur ten times or less
are deleted from the corpus. The corpus results to consist of M = 48 753 non-
empty texts with a vocabulary size of V = 76 499 words. Preprocessing is done
with the R packages tosca [11] and tm [9].

Table 1 gives an overview of the resulting number of words or sentences
per text and the number of words per sentence. We can conclude that after
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Table 1: Statistics of the number of words per text, sentences per text and words
per sentence in the preprocessed corpus of Süddeutsche Zeitung in 2018.

Min 25% Median Mean 75% Max

Words per Text 2 59 164 217 321 2 220
Sentences per Text 1 7 20 28 37 752
Words per Sentence 1 4 7 8 10 171

preprocessing there is a large proportion of rather short texts of less than 300
words, while there is a small number of clearly longer texts with up to 2 220
words. We observe around 28 sentences per text and 8 words per sentence in
mean. Mainly due to enumerations of sports results and similar, there is a single
text containing 752 sentences and there are 17 sentences with more than 100
words.

3.1 Study Design

We analyze the presented corpus using the proposed methods to quantify the
aleatoric uncertainty resulting from the stochastic text generating process T
regarding to Figure 1. For this purpose, we assign each word of a text to a
topic using the LDAPrototype approach. This corresponds to the coding scheme
I (selection of the model) and coding process C (modeling procedure itself).
Based on the resulting model of the prototype method δ, the calculation of
estimators for topic proportions per document and aggregation statistics lead to
the final results λ. These are used to draw conclusions about the observed text τ
as well as about the author’s message π. In addition, we once generate stratified
subcorpora containing 10, 20, 30 or 50% of the articles per day.

Due to the high combinatorial possibility of parameter selection, some pa-
rameters have to be chosen arbitrarily but sensibly. We select K = 50 and
α = η = 1/K = 1/50 as parameters for the LDA which implies that we assume
50 topics to be present in the corpus. The mixture parameters α and η are se-
lected rather small to create relatively disjoint topics and to meet the intuitive
assumption of few but dominant topics per article. In addition, the Gibbs sam-
pler is supposed to iterate 200 times to the final LDA result. The LDAPrototype
parameters are all taken from the default setting [18]. Data and scripts can be re-
trieved from the GitHub repository https://github.com/JonasRieger/edml2020.

3.2 Results

We analyze the corpus in dependence of the different bootstrap approaches
and sample sizes. The topic assignment for a specific token is considered to
be constant determined by the LDAPrototype to eliminate the algorithmic un-
certainty. Hence, the sample size does not effect the estimation for a single doc-
ument.
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Fig. 2: Estimated topic proportions and corresponding confidence intervals for
the article “Wochenchronik vom 30. Juni bis 6. Juli 2018” (weekly chronicle) in
Süddeutsche Zeitung published on 7th of July in 2018.

For the analysis of topic proportions on a document level θ̂, we select one article
at random. Figure 2 shows the estimation of topic proportions of this random
article, which is about a summary of the previous week from the department of
politics. The article deals with the topics Migration, Parties, EU & Brexit and
Police & Crimes at most. This is plausible because the text is mainly about the
so-called asylum package that the government parties in Germany adopted on
5th of July. Figure 2 shows that all three bootstrap approaches overall match
the model-based confidence interval. Only the intervals resulting from the BS
approach differ for some topic proportions slightly from the model-based interval.
A reason could be that a certain sentence often consists of one dominating topic,
which results in wider intervals for those topics and smaller intervals for topics
that are spread over many sentences. The latter is true for the topic Stopwords
& Education, which appears in almost every sentence because of its composition
of stopwords, so that the corresponding uncertainty is rather low. Despite the
removal of stopwords there are still stopword topics where less distinct stopwords
can be found that were not excluded from the outset.

In the following, we focus on the topic Migration for an exemplary analysis of
the history of media coverage for a single topic. The proportion of the selected

p̂

Sample Size

0
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0
0
.0

3

10% 20% 30% 50% 100%

MB BW BS BSW

Fig. 3: Estimated topic proportions
and corresponding confidence intervals
for the topic Migration on 7th of July
in 2018 for different sample sizes of ar-
ticles.
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Fig. 4: Smoothed estimated topic propor-
tions and corresponding confidence inter-
vals for the topic Migration using the
BSW approach and a sample size of 30%
from 1st of June to 31st of July in 2018.
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Fig. 5: Smoothed estimated topic proportions and corresponding confidence in-
tervals for the topic Migration and for different bootstrap approaches and sample
sizes in 2018 using a rolling window over 7 (black), 15 (blue) and 29 days (red).

topic p̂ on 7th of July in 2018, corresponding confidence intervals of the bootstrap
approaches and the model-based interval in dependence of the sample size can be
seen in Figure 3. The LDA-based interval differs from its bootstrap counterpart
BW because the implicit assumption that the covariance of two texts equals
zero is not fulfilled here (see 2.2). Instead, the uncertainty balances itself out
over a large number of articles. The BS intervals are the second widest, while
the BSW approach adds some additional uncertainty to it leading to slightly
larger intervals. There are 229 articles published at the 7th of July, that is, the
sample sizes of 10, 20, 30 and 50% correspond to 22, 45, 68 and 114 articles,
respectively. Apparently, a higher number of articles is able to balance itself
better, the monotony of the drop in level results from the monotonous selection
of articles from the complete data set.

It is common to consider visualizations of topic proportions over time in topic
model analysis. Daily topic counts or proportions fluctuate frequently. To over-
come this issue, we make use of the rolling window method with window widths
of 7, 15 and 29. Figure 5 displays a selection of combinations of those smoothed
curves for the topic Migration. It is clear that the larger the window size, the
smoother the associated curves become and the lower the sample size is, the
wider are the intervals that characterize the uncertainty of the text generating
process. The topic proportions of the BS and BSW approaches are subject to
greater uncertainty than BW. This matches the findings regarding Figure 3.

Figure 4 makes the uncertainty of the topic proportion even more visible. It
zooms into the months June and July in 2018 and considers 30% of the articles
for the BSW approach. It shows that larger window widths lead to narrower
intervals, which can be explained by the better balance through multiple values.

To generalize the results in a proper way, Figure 6 visualizes the standard
deviations of topic proportions in dependence of the topic proportion itself. It
compares the resampling approaches BW and BSW (results for BS and BSW are
similar) and the five sample sizes. For BW the uncertainty is easier to estimate,
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Fig. 6: Coefficient of variation of the daily topic proportion for all topics at all
days in 2018, for the BW and BSW approach and for different sample sizes.

the points are not as scattered as for BSW. The estimated uncertainty in depen-
dence of p̂ is for BW less pronounced. For example, for p̂ = 0.1 one should add
about 0.001 in uncertainty, while BSW suggest almost 0.002. For smaller sample
sizes the effect increases (10%: BW ≈ 0.004, BS ≈ 0.006, BSW > 0.007).

4 Discussion

We have found that for a single article the aleatoric uncertainty of the text
generating process can be well quantified by the presented LDA-based confidence
interval. The estimator θ̂m,k is not unbiased, but it shifts the estimator for each
topic towards K−1 for small sample sizes to represent the usually symmetric
chosen a-priori distribution. This robustness property leads to slightly smaller
confidence intervals, that matches the more computational-intensive bootstrap
intervals to a sufficient extent for all considered articles.

However this intuitive way of calculating confidence intervals is not suit-

able for aggregated texts as implicitly the covariances Cov(n
(m1•)
k , n

(m2•)
k ) are

assumed to be zero for the calculation of the LDA-based confidence intervals.
Obviously, this is not true in general, leading to intervals that are too small and
do not represent appropriately the aleatoric uncertainty of the text generating
process for aggregated texts.

For a large number of texts the uncertainty regarding aggregated values be-
comes negligibly small. On the other hand, especially for small sample sizes, the
aleatoric uncertainty of the text generating process should be considered. The
three bootstrap methods presented are suitable for this purpose, whereby BW
ignores potential dependencies and thus seems to slightly underestimate the un-
certainty and BS and BSW are usually very similar. The more intuitive approach
of the two seems to be BSW. One can well imagine that authors make use of cer-
tain sentence bodies, but these sentences vary slightly. This corresponds exactly
to the BSentenceWord approach, which we therefore recommend for assessing
the aleatoric uncertainty of the text generating process for aggregated values in
small sample size scenarios.
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Abstract

We propose a rolling version of the Latent
Dirichlet Allocation, called RollingLDA. By
a sequential approach, it enables the construc-
tion of LDA-based time series of topics that
are consistent with previous states of LDA
models. After an initial modeling, updates can
be computed efficiently, allowing for real-time
monitoring and detection of events or struc-
tural breaks. For this purpose, we propose suit-
able similarity measures for topics and provide
simulation evidence of superiority over other
commonly used approaches. The adequacy of
the resulting method is illustrated by an ap-
plication to an example corpus. In particular,
we compute the similarity of sequentially ob-
tained topic and word distributions over con-
secutive time periods. For a representative
example corpus consisting of The New York
Times articles from 1980 to 2020, we analyze
the effect of several tuning parameter choices
and we run the RollingLDA method on the full
dataset of approximately 4 million articles to
demonstrate its feasibility.

1 Introduction

Text data is increasingly used in contexts where
structured data is either not available at all or only
available with much delay. Hence, text data is often
used for the timely detection of events or structural
breaks in the context of monitoring over time. This
requires first an appropriate modeling methodol-
ogy and second a suitable analysis methodology.
Our new sequential method is based on the well-
known and popular model Latent Dirichlet Alloca-
tion (LDA, Blei et al., 2003), while assuring that by
adding new data the allocations of previously mod-
eled documents do not change. Thus, time series
based on the new model are consistent with previ-
ous states. We propose the RollingLDA method
for modeling consistent and reliable time series on
textual data such as topic frequencies on news data.
The method uses for each update of new sequential

data a previously determined set of documents as
a memory. Thus, the method acts like a backward-
looking rolling window. In comparison to a lot
of existing methods, the presented method does
not require recalculation of the whole model when
adding new data, which makes it computationally
more efficient.

1.1 Related Work

For the selection of suitable tuning parameters, sim-
ilarity measures for topics are needed. In numerous
studies, no clear superiority of one specific mea-
sure could be found. Aletras and Stevenson (2014)
found out that in most cases the similarity measure
using Jensen-Shannon divergence (Lin, 1991) per-
forms as the best similarity measure based on word
distributions considering correlation with human
judgments. However, they found out that in some
cases a Jaccard coefficient (Jaccard, 1912) is able
to realize higher correlations to human judgments
than other common similarity measures. In accor-
dance, Kim and Oh (2011) showed that Jaccard
coefficients perform on par with Jensen-Shannon
similarity and outperform a number of other popu-
lar similarity measures like cosine similarity, which
is commonly used to measure topic similarities
(Maier et al., 2018). All of these studies primar-
ily consider similarities of different topics to each
other, rather than the similarity of one topic to itself
at different points in time.

In contrast, Keane et al. (2015) used cosine simi-
larity for identifying topics characterized by events
in daily LDA models. They mention the symmetric
Kullback-Leibler divergence (Kullback and Leibler,
1951), that is, the Jensen-Shannon divergence, as
a good alternative for computing similarities. The
latter is also used by Xu et al. (2019) for studying
the evolution of topics in news data. Their study
suggests that LDA is a good method for this type
of detecting structural breaks in topics. Wang and
Goutte (2018) also used LDA models and compare
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cosine similarity and Jensen-Shannon similarity
with different change point algorithms on a self-
annotated corpus. They found out that online LDA
(Zhai and Boyd-Graber, 2013) performs on par
with standard LDA for this task. Since no evidence
for the consistent superiority of any of the simi-
larity measures could be shown in the available
studies, we use and compare different similarity
measures for self-similarity of topics.

The calculation of topic similarities should be
based on a reliable topic model. For modeling
temporal text data, there is the Topics over Time
model by Wang and McCallum (2006) or the Dy-
namic Topic Models by Blei and Lafferty (2006),
which was also extended to Continuous Time Dy-
namic Topic Models by Wang et al. (2008). These
methods model the collection of all documents to-
gether, so that for new data a recalculation of the
whole model is necessary. Besides the computa-
tional demand, this may also change previous re-
sults depending on how much future text data is
added. Hoffman et al. (2010) extended the clas-
sical LDA to an online approach, but focused on
batches of documents with fixed size rather than
time-stamped documents. In addition, Temporal
LDA (Wang et al., 2012) is an approach for model-
ing text streams with LDA using transition matrices.
The model is mainly specialized for social media
posts, as it assumes streamed texts to be written by
the same set of authors. Amoualian et al. (2016)
proposed a method called Streaming-LDA. They
model dependencies between consecutive docu-
ments based on Dirichlet distributions or copula
based.

1.2 Contribution

We present a model that is updated when new data
is received in a way that ensures consistent time
series without the need of recalculation. We com-
bine this update algorithm with classical LDA. To
reduce the dependence of LDA results from the ini-
tial randomization we use LDAPrototype (Rieger
et al., 2020). Another approach would be to aver-
age multiple Gibbs iterations (Nguyen et al., 2014).
However, as the concrete assignments are lost due
to averaging, their approach is not suitable for the
RollingLDA method. We do not select a reliable
model using likelihood-based measures, e.g., using
the package topicmodels (Grün and Hornik, 2011)
because Chang et al. (2009) were able to show
that these measures are negatively correlated with

human perception of good models. An alternative
to LDAPrototype for a reliable selection criterion
could also be defined based on topic’s semantic co-
herence (Mimno et al., 2011; Stevens et al., 2012).

Our model takes a slightly different approach
than the ones mentioned in Sect. 1.1. It consid-
ers the set of articles split into intervals or chunks
based on its time stamp rather than a real stream.
The method focuses on the possibility of evolving
topics and the simultaneous monitoring of these
changes in a real world scenario of updating an ex-
isting LDA model with newly releasing documents.
In addition to the proposal of our novel method
RollingLDA, we also compare six commonly used
similarity measures for topics with respect to their
suitability for event detection within topics. Fur-
thermore, these measures can be used as criteria
for an individual appropriate choice of the memory
parameter in the RollingLDA method.

2 Methodological Framework

The RollingLDA method we propose is based on
the classical LDA (Blei et al., 2003) estimated by
a collapsed Gibbs sampler (Griffiths and Steyvers,
2004) and we combine it with the method LDAPro-
totype (Rieger et al., 2020), which selects the most
reliable LDA from a set of models.

2.1 Latent Dirichlet Allocation
The classical LDA assumes distributions of la-
tent topics for each text. If K denotes the to-
tal number of modeled topics, the set of topics
is given by T = {T1, . . . , TK}. We define W (m)

n

as a single token at position n in text m. The
set of possible tokens is given by the vocabulary
W = {W1, . . . ,WV } with V = |W |, the vocabu-
lary size. Then, let

D(m) =
(
W

(m)
1 , . . . ,W

(m)

N(m)

)
,

be text (or document) m = 1, . . . ,M, of a corpus
consisting of M texts. Each text in turn consists of
N (m) word tokens W (m)

n ∈W , n = 1, . . . , N (m).
Topics are referred to as T (m)

n ∈ T for the topic
assignment of token W (m)

n . Then, analogously the
topic assignments of every text m are given by

T (m) =
(
T
(m)
1 , . . . , T

(m)

N(m)

)
.

When n
(mv)
k , k = 1, . . . ,K, v = 1, . . . , V de-

scribes the number of assignments of word v in
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text m to topic k, we can define the cumulative
count of word v in topic k over all documents by
n
(•v)
k and, analogously, the cumulative count of

topic k over all words in document m by n(m•)k ,
while n(••)k indicates the total count of assignments
to topic k.

Using these definitions, the underlying proba-
bility model (Griffiths and Steyvers, 2004) can be
written as

W (m)
n | T (m)

n ,φk ∼ Discrete(φk),

φk ∼ Dirichlet(η),

T (m)
n | θm ∼ Discrete(θm),

θm ∼ Dirichlet(α).

For a given parameter set {K,α, η}, LDA assigns
one of the K topics to each token. Here K denotes
the number of topics and α, η are parameters of a
Dirichlet distribution defining the type of mixture
of topics in every text and the type of mixture of
words in every topic.

Estimators for topic distributions per text θm =
(θm,1, . . . , θm,K)T ∈ (0, 1)K and word distribu-
tions per topic φk = (φk,1, . . . , φk,V )

T ∈ (0, 1)V

can be derived through the Collapsed Gibbs Sam-
pler procedure (Griffiths and Steyvers, 2004) by

θ̂m,k =
n
(m•)
k + α

N (m) +Kα
, φ̂k,v =

n
(•v)
k + η

n
(••)
k + V η

.

2.2 LDAPrototype

The Gibbs sampler in the modeling procedure of
LDA is sensitive to the random initialization of
topic assignments. To overcome this issue, the se-
lection algorithm LDAPrototype can be used. The
method selects the LDA as prototype model of a set
of LDAs that maximizes its mean pairwise similar-
ity to all other models (Rieger et al., 2020). Thus,
the LDAPrototype method increases the reliability
of conclusions drawn from the resulting prototype
model. The approach is implemented in the R
package ldaPrototype (Rieger, 2020).

3 Methods

We propose the method RollingLDA that uses pre-
ceding LDA results as an initialization for subse-
quent time intervals. The method builds on an
existing implementation of LDA (Chang, 2015)
and aims to ensure consistent time series based on

textual data. The method provides a memory pa-
rameter to use a different number of time units of
the past as initialization to find a good trade-off of
consistency and flexibility of topics. Different val-
ues for the memory parameter can be investigated
quantifying topic-self-similarities over time. The
method is implemented and published as R pack-
age rollinglda (Rieger, 2021) and its source code
can be retrieved at https://github.com/
JonasRieger/rollinglda.

3.1 RollingLDA

A pseudocode of the general method RollingLDA
can be found in Algorithm 1. The method has
the usual parameters of an LDA: the corpus to
be modeled, the number of topics modeled K, the
Dirichlet parameters α, η and the number of itera-
tions iter. In addition, there are method specific
parameters chunks, memory, and limit. Ad-
ditionally, in line 4 it is recommended to choose a
reliable method for the initial LDA, e.g. LDAProto-
type described in Sect. 2.2. In line 9, and through-
out this paper, we distinguish between the two pos-
sibilities that the assignments to previous docu-
ments remain fixed or, alternatively, that they are
able to change. In the latter case, the assignments to
previous documents are changed only for this spe-
cific sequential fitting, but not for the final model.

The parameter chunks is used to cut the data
into intervals. It is a vector of dates that contains
in the first entry the date of the first day of the
sequential fitting, i.e. the last day of the initial fit-
ting plus one day. The next entries specify the first
days of the corresponding sequential chunks, and
the last entry specifies the day of the last observed
document plus one day. In the analysis, we choose
these dates on an equidistant monthly or quarterly
basis. The vector memory allows flexible choices
of the method’s memory in the context of sequen-
tial fitting. It determines how much knowledge
from modeled texts from the previous chunk(s) is
used to model the new chunk/subcorpus. The corre-
sponding vector specifies from which date previous
documents are (equally weighted) considered for
the current chunk. All We also choose this parame-
ter in this paper on an equidistant basis, considering
a fixed number of one to four quarters as memory.
The method’s implementation also allows to set
these date vectors explicitly.

The parameter limit consists of a combination
of rules for determining the sequential vocabulary.
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Algorithm 1: Fitting a RollingLDA model.
Input : corpus, K, α, η, iter, chunks, memory, limit
Output : RollingLDA model

1 begin
2 determine subcorpus: filter corpus to documents published before chunks[1];
3 determine vocab: words that occur more than limit times in subcorpus;
4 fit LDA on subcorpus with parameters K, α, η, iter, vocab;
5 for i=1 to length(chunks)-1 do
6 determine subcorpus: filter corpus to documents published on or after chunks[i]

and before chunks[i+1];
7 update vocab: add words that occur more than limit times in subcorpus;
8 determine init: tabulate assignments of words to topics for fitted documents published

on or after memory[i] and before chunks[i]; sample assignments of words to topics
for new documents in subcorpus;

9 fit LDA on subcorpus with parameters K, α, η, iter, vocab and init;
10 end
11 determine result: combine sequential fittings to one object;
12 return result
13 end

For the initial LDA as well as for each subcorpus of
documents the vocabulary exceeding a given com-
bination of thresholds is determined (see Sect. 5.2).
The vocabulary is monotonically increasing, i.e.
previously considered words remain included, such
that no information is lost, when time evolves.

In Sect. 5, the RollingLDA method is applied to
an example dataset.

3.2 Similarity Measures
Self-similarities of topics over time are useful as
indicators for the stability of topics. They can
also be used as criteria for the individual choice
of the memory parameter of the RollingLDA to
ensure flexible and reliable topics. Using the nota-
tion from Sect. 2.1 the word count vector for topic
k = 1, . . . ,K is given by

nk =
(
n
(•1)
k , . . . , n

(•V )
k

)T
∈ NV

0 .

Extending the notation to account for different tem-
poral aggregations t leads to nk|t. We do not con-
sider the similarity of two different topics (different
k) in this paper, but always similarities of the same
topic (same k) at different times. Since k is con-
stant within our similarity calculations, we simplify
the notation for clarity to

nk|t = nt = (nt,1, . . . , nt,V )
T ,

pt = (nt,1, . . . , nt,V )
T /
∑

v

nt,v.

We consider two different types of similarity mea-
sures: one based on word count vectors ni,nj , one
based on word distribution vectors pi,pj . Then,
cosine similarity and a thresholded version of the
Jaccard coefficient, respectively, are defined as

cos =

∑
v ni,vnj,v√∑

v n
2
i,v

√∑
v n

2
j,v

, (1)

TJ =

∑
v 1{ni,v>ci ∧ nj,v>cj}∑
v 1{ni,v>ci ∨ nj,v>cj}

. (2)

The distributional similarity measures based on the
Manhattan, χ2 and Hellinger distance and Jensen
Shannon divergence, respectively, are given by

MH = 1− 1

2

∑

v

|pi,v − pj,v|, (3)

χ2 = 1− 1

2

∑

v

(pi,v − pj,v)2
pi,v + pj,v

, (4)

HL = 1−
√

1

2

∑

v

(√
pi,v −√pj,v

)2
, (5)

JS = 1−
∑

v

pi,v log
2pi,v

pi,v + pj,v

−
∑

v

pj,v log
2pj,v

pi,v + pj,v
. (6)

The thresholds ci, cj for TJ may be chosen as an
absolute, relative or as combination of both lower
bounds. In this paper, we use the default value
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crel = 0.002 as proposed by Rieger et al. (2020).
For numerical reasons a small value ε = 10−6 is
added to the word counts nt before calculating pt
to determine the similarity using χ2 and JS.

4 Stability and Sensitivity Analysis

For a brief demonstration of which of the presented
similarity measures is particularly well suited for
the present case of comparing topics at different
points in time, we use Zipf’s law (Piantadosi, 2014).
This states that for an ordered list of V entries, such
as words in this example, the relative frequency of
the element with rank r can be written as

1/rs
∑V

v=1(1/v
s)
.

We consider how stable the similarity measures are
in the uncertainty scenario and how sensitive they
are to detect strong changes in the topics.

4.1 Simulation Setup
In the present case, we choose s = 1 for simplicity,
we assume the vocabulary size to be V = 10 000
and observe a total number of 7 500 word appear-
ances. Then, with respect to Zipf’s law, we set the
absolute frequencies of the ten most frequent words
as 766, 383, 255, 191, 153, 128, 109, 96, 85, 76.

Taking these frequencies as a snapshot of a
topic’s assignments at one time interval, we mod-
ify certain parts of these frequencies to simulate
different events or structural breaks in this topic:

a) A new topic like the Covid pandemic is at-
tached to an existing topic,

b) the frequency of a previously prominent
subtopic in a topic de-/increases,

c) the frequency of one previously prominent
word in a topic de-/increases.

In addition, we compare various idealistic and
rather technical modifications to the frequency vec-
tor, namely

d) resampling the frequency vector based on the
relative frequencies,

e) shuffling the whole frequency vector,
as well as shuffling only the frequencies of the

f) top 10 words,
g) top 50 words,
h) top 100 words,
i) words ranked at position 11 to 20,
j) words ranked at position 21 to 50.

In this setup, we expect scenario e) to result in the
lowest similarity for each similarity measure, be-
cause it corresponds to comparing two completely

different word frequency vectors, i.e. topics. In
contrast, scenarios d), i) and j) should lead to mini-
mal to modest differences (at less important ranks)
of the frequency vector and therefore should result
in the highest similarities, assuming a well suited
similarity measure.

4.2 Findings

In Figure 1, in the first row, we set the last (i.e.
least mentioned) 1 to 20 words to an increased
frequency (up to 750), and study the effect on the
self-similarity of the topic. This fits to scenario a).
In the second and third row, the frequencies of
the top-ranked words are changed. While in the
second row, the first x words are considered, in
the third row only the x-th single word’s frequency
changes. Note that these two rows are scaled on
a logarithmic axis: a value of −6 is equivalent to
setting the word’s frequency to zero, while a value
of 4 means multiplying it by exp(4) ≈ 54.6.

For the addition of new words, the behavior of
all measures is comparable. The Jensen-Shannon
similarity shows a slightly lower sensitivity. Man-
hattan and χ2 similarities show higher similarities
for the addition of only one word than cosine and
Hellinger, which already show a stronger effect on
the similarity by adding a few words. The most
striking characteristic in scenario b) is shown by
the cosine similarity. In Figure 1, in the second row,
it can be seen that the cosine similarity strongly de-
pends on the top words frequencies. Specifically,
by setting the ten most frequent words to zero, the
cosine similarity decreases very strongly (to about
0.25), while increasing these top ten words frequen-
cies has almost no effect (similarity close to 1).

At the same time, for all other similarity mea-
sures, we observe that increasing the top word fre-
quencies leads to a stronger decrease in similarity
than eliminating these top words. In general, all
similarity measures show a similar trend for the
change of single top ranked words. However, the
top word has a particularly strong influence using
the cosine similarity. This is plausible, since cosine
similarity can be interpreted as the angle between
the compared frequency vectors and this angle also
strongly depends on the top word’s frequency under
consideration of Zipf’s law.

In Figure 2, the similarity measures for the other
introduced scenarios are shown comparatively. The
scenarios d), i), j), f), g), h) and e) are shown
from left to right for each similarity measure as
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Figure 1: Comparison of similarity measures regarding the effect on topic-self-similarity obtained by modifications
of the original word frequency vector with respect to scenario a), b) and c).

this should correspond to the natural decreasing
order of the values. Each scenario is based on 500
replications.

Since scenario e) generates strongly different
topics, the similarity among them should be as low
as possible. This requirement is met by all mea-
sures except Jensen-Shannon similarity, but this
could made to behave similar as χ2 or Manhat-
tan by re-scaling. Another desired property is that
the uncertainty in word frequencies does not result
in dissimilarity. Only cosine similarity satisfies
this. For all other measures, statistical uncertainty
largely results in greater dissimilarities than mod-
ifications from scenarios f), g), i) and j). In real
problems, this property can lead to events being
masked by variation or, conversely, variation being
interpreted as events.

4.3 Use Case and Conclusion

Figure 3 shows the self-similarities of a topic from
a RollingLDA model with selected parameters. The
topic is about health, so the similarity remains sta-
ble in the long term, but has a few shocks in the
self-similarity that result from sudden events, such
as the Covid outbreak at the beginning of 2020.
In Table 1, the five most informative words for
selected quarters that realize a quarterly cosine self-
similarity less than 0.9 are given. Based on the
evolving topwords within the different quarters,
events in the corresponding topic can be antici-
pated, which in particular map the corresponding
time series of quarterly cosine self-similarites. The
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Figure 2: Comparison of similarity measures concern-
ing the effect on self-similarity obtained by applying
scenarios d) to j) to the original word frequency vector.

values of the other similarity measures run mostly
in parallel, but do not show large differences at key
events. In contrast, the Jaccard coefficient seems
too sensitive and leads to similarity values that are
unstable over time.

In conjunction with the findings from Figures 1
and 2 we recommend to use cosine similarity for
the use case of monitoring topic stability or topic-
self-similarities, respectively. In addition, in Sect. 5
we mostly stick to quarterly self-similarities as the
most appropriate unit.

5 Analysis

In the following, the proposed method RollingLDA
is applied to an example dataset. The calculations
were performed using R (R Core Team, 2021).
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Overall 1982/Q4 2001/Q4 2002/Q1 2003/Q2 2003/Q3 2014/Q4 2020/Q1

1 dr dr anthrax anthrax sars sars ebola coronavirus
2 patients clark mail cloning disease fasting duncan virus
3 disease tylenol cipro aventis cases dr quarantine outbreak
4 health clarks spores ovarian respiratory anemia sierra quarantine
5 cancer capsules bioterrorism mammograms heymann brain west health

Table 1: Time varying topwords of the topic Health in the scenario of quarterly modeling with three quarters
memory and starting with the rolling approach in 1985 for selected quarters.

Yearly Quarterly Monthly
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Figure 3: Unit-to-unit self-similarities of the topic Health in the scenario of quarterly modeling with three quarters
memory and starting with the rolling approach in 1985 for the six different similarity measures.

5.1 Data

The dataset consists of all published articles from
The New York Times from June 1, 1980 to Decem-
ber 31, 2020. It was retrieved through the Nexis ser-
vice (LexisNexis, 2021) and consists of 4 287 928
documents. After applying common natural lan-
guage processing (NLP) steps such as changing all
words to lowercase and stopword removal using
the R packages tosca (Koppers et al., 2020) and
tm (Feinerer et al., 2008), as well as duplicate re-
moval, 3 767 047 non-empty documents remain in
the relevant dataset.

Maier et al. (2020) showed that for datasets of
230 000 documents or more already using at least
10% of the articles results in sufficiently similar
topics to the complete dataset. Thus, for a faster
calculation, we use a partial dataset for the study.
To do this, we draw 15% of all articles stratified
by week. This results in a dataset of 566 050 doc-
uments with an average of 267 (min: 106, max:
584) documents per week. We also prove the com-
putability on the complete dataset with an exem-
plary parameter combination.

5.2 Scenarios

Different scenarios are compared to investigate the
effects on topic stability and sensitivity. For all
cases, we choose as parameters for LDA K = 80,
α = η = 1/K and iterate the Gibbs sampler for
200 iterations. For initial modeling, we use the
LDAPrototype method described in Sect. 2.2 with
default setting (Rieger, 2020), i.e., in particular,

start mem- non-changing changing
ory quarter year quarter year

1981 4 7.95 4.75 60.57 23.21
3 7.78 4.67 48.65 19.98
2 7.55 4.76 37.56 17.32
1 7.43 4.58 26.37 14.72

1985 4 7.66 4.43 54.66 21.37
3 7.37 4.40 44.86 20.87
2 7.20 4.39 34.64 18.08
1 7.01 4.30 24.53 15.47

2000 4 5.45 3.22 36.46 16.15
3 5.35 3.20 29.96 14.29
2 5.58 3.17 23.28 12.40
1 5.22 3.21 16.67 10.65

Table 2: Runtime of the RollingLDA models in hours.

the prototype is chosen from n = 100 models. In
addition, we consider three different time horizons
for the initial model: all documents from 1980,
1980–1984, or 1980–1999.

For the parameter chunks, we distinguish be-
tween quarterly or annual intervals, and for the
parameter memory between one to four quarters
as memory. We choose a combination of relative
and absolute threshold as (fixed) limit parame-
ter to minimize the disadvantages of both. Words
that occur more than five times and cover more than
10ppm of the total word count in a chunk are added,
as well as words that simply occur more than 100
times. In addition, we consider the two variants of
sequential LDA in line 9 of Algorithm 1, one with
fixed, and one with changing previous assignments.

In Table 2 the runtimes of the resulting 48 dif-
ferent models are given. The RollingLDA model
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Figure 4: Cosine self-similarities of the topic Health for all parameter combinations of the memory and the rolling
starting date in the quarterly modeling scenario (topic’s scaled share is multiplied by 7 and visualized in black).
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Figure 5: Cosine self-similarities and scaled share of the topic Health for non-changing and changing previous
assignments. The scenario of quarterly and yearly modeling with three quarters memory and starting with the
rolling approach in 1985 is considered.

on the complete dataset in the scenario of quarterly
modeling with unchanging previous assignments,
three quarters memory and starting in 1985 lasts
around 48 hours, which meets the assumption of a
linear runtime depending on the number of docu-
ments. In all analyses, unless explicitly mentioned,
the RollingLDA method with non-changing previ-
ous assignments is considered.

5.3 Findings

Figure 4 shows the cosine topic-self-similarities
for a selected topic Health depending on different
parameters. A strong topic-self-similarity is no-
ticeable until the start of the sequential modeling.
In common applications this is a desired property.
In the present case, however, one would like to
detect dissimilarities over time. The time series
suggest that our method is suitable for this purpose.
While the topic seems to remain basically similar,
it changes sufficiently from unit to unit and over
longer periods of time, which allows the detection
of events (cf. Table 1 and Figure 3). The choice of

the memory parameter seems to have an intuitive
effect, i.e., larger memory tends to lead to stronger
anchoring to the past.

As a complement, both the quarterly and annual
modeling intervals with non-changing and chang-
ing previous assignments are shown in Figure 5
for the special case of three quarters of memory
and sequential start in 1985. Here it can also be
seen that simultaneous modeling of larger intervals
leads to more similar topics over time. In addition,
we could not find a substantial difference between
changing and non-changing previous assignments
(also when looking at other models and topics).

Finally, Figure 6 shows different plausible pat-
terns of topic-self-similarity in the data. There are
topics that are very stable overall, but show events
(for example Health), topics that are very stable
overall, show no clear events, but undergo gradual
steady change (for example Technology), and topics
that are taken over by other topics, such as in this
case a stopword topic that almost completely dis-
appears. The latter may happen, e.g. when topics

66 Contributed methodological publications



2345

Health Technology Stopword

S
h

a
re

C
o

s
in

e

1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020

0.00
0.02
0.04
0.06

0.00

0.25

0.50

0.75

1.00

Similarity Type

Quarterly

First

Last

Figure 6: Different patterns of topic’s cosine self-similarity for the topics Health, Technology and a Stopword topic
in the scenario of quarterly modeling with three quarters memory and starting with the rolling approach in 1985.
In addition, the quarterly share of the respective topic is shown in the upper row.

that are sufficiently similar gain in similarity by
restricting texts to short(er) intervals, because mi-
nor differences (e.g., choice of stopwords in sports
articles, choice of stopwords in politics articles)
in individual intervals may become so marginal
that merging the topics becomes useful in terms of
optimizing likelihood in the fitting procedure.

In addition to the mentioned results, we were
also able to identify some other patterns in the
data, such as seasonal sports topics, which can be
found - along with additional analyses - in the as-
sociated GitHub repository https://github.
com/JonasRieger/emnlp2021.

6 Discussion

We presented a method RollingLDA to model con-
sistent time series from textual data, which is also
suitable for monitoring applications due to its effi-
ciency. In particular, it is possible to choose very
frequent update intervals and thus to keep the run-
time of each update very short.

Apparently, the specific parameterization is not
that important, the model seems relatively robust.
It is less sensitive with respect to its parameter
choice, so that even for more inappropriate param-
eter choices, the model produces plausible results.
Our study has shown, for example, that there is no
strong difference between changing previous as-
signments and fixing previous assignments. How-
ever, the latter has a considerable runtime advan-
tage, because the Gibbs sampler does not have to
iterate over the previous assignments (the memory)
in each time step. For runtime reasons, we there-
fore recommend the version with non-changing
previous assignments.

We also recommend to choose the memory pa-
rameter reasonably. It is an important and intuitive
parameter, which specifies how much (modeled)

past the model takes into account for modeling the
next chunk. For example, three quarters of mem-
ory in a quarterly modeling scenario means the
consideration of one year for each modeling step.
When choosing this parameter, one should consider
seasonalities, because a topic that only appears in
summer, for example, could disappear repeatedly
due to a memory that only lasts for one quarter. In
case of reappearance it is then not ensured that it
receives the same index. Instead, it joins the most
similar topic, so that the coherent interpretation of
the topic can not be guaranteed.

In addition, the initial LDA should cover a time
horizon as short as reasonable, so that a large part
of the time series is covered by the rolling approach
and can be interpreted accordingly. We also tested
sequential prototypes instead of sequential LDAs
(cf. line 9 in Algorithm 1). However, it turned out
that the set of possible LDAs is very similar such
that we observed no further practical gain using the
LDAPrototype for each sequential LDA step.

Further research could include weighting the pre-
vious documents for the memory or looking at a
random sample of those. For the latter case, the con-
sideration of reliable methods for the determination
of the update states then again could be interesting.
In the long term, one goal is to extend the method
to varying numbers of topics per time interval.
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Ethical Considerations

In Sect. 5.1, we explain how we draw a representa-
tive sample of the full data for the method compar-
ison. We do this without losing the validity of the
results and in order to consider resource efficiency
in the context of climate change (Strubell et al.,
2019). We also show the efficient feasibility of the
method on the full data set as an example.

Reproducibility

All described methods and analyses are provided
in the associated GitHub repository https://
github.com/JonasRieger/emnlp2021
together with further graphics for all models.
As far as legally possible, the data sets used are
also available in this repository. The proposed
method is implemented and published as R
package, the source code can be retrieved at
https://github.com/JonasRieger/
rollinglda.
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Abstract

For understanding large text corpora, a widely used method is Latent
Dirichlet Allocation (LDA). The topic assignments from LDA usually
rely on a (random) initialization such that the outcome is also to some
extent random. In particular, replicated runs on the same text data lead
to different results such that the LDA is not fully reproducible. This
instability of the LDA approach is often neglected in practice, where text
data analysis is commonly based only on a single LDA run. We propose a
new method called LDAPrototype for selecting the most representative
run from a set of replicated LDA runs on the same dataset. We improve
the reliability of conclusions drawn from LDA results, since replications
of LDAPrototype are more similar to each other than replications of
single LDA runs, or even as models selected by perplexity or NPMI.
For this purpose, we propose a reliability score based on a new tailored
model similarity measure S-CLOP. For the quantification of topic sim-
ilarities, we compare a thresholded version of the Jaccard coefficient to
cosine similarity, Jensen-Shannon divergence and Rank Biased Overlap.
Our results of an application to six real datasets consisting of newspa-
per articles or tweets show that the reproducibility of LDA results using
LDAPrototype increases, and so does the reliability of empirical findings
based on topic modeling. Overall, the new approach is justified in view

1
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of its application, comprehensibility, easy implementation and computa-
tional feasibility. The algorithm’s concept is generalizable to other topic
modeling procedures with topics characterized by word distributions.

Keywords: topic model, stability, similarity, medoid, clustering, replications

1 Introduction

Understanding unstructured data is generally a big challenge due to their
complicated and typically non-standard forms. In particular, when dealing
with text data, this is also the case due to the increasingly large volumes
collected steadily these days. Text data is clearly one of the most frequent data
types in the world today, and text mining tools have become very popular to
analyze such data with the goal to address research questions from various
fields of research.

Text data are often analyzed using so called probabilistic topic models [1]
and the Latent Dirichlet Allocation [2] in particular. In the context of proba-
bilistic topic models, the Latent Dirichlet Allocation (LDA) can be described
as a successor to the Probabilistic Latent Semantic Indexing [3] and a prede-
cessor to the Correlated Topic Models [4]. The LDA model has been extended
by numerous features in the past years. Many of the implementations aim at
the integration of meta variables such as author names in the Author-Topic
Model [5]. Other models have attempted to integrate the temporal component
of the modeled texts, e.g. the Continuous Time Dynamic Topic Models [6]. In
addition to the further development of the LDA, the Structural Topic Model
[7] has proven to be another reliable model for the analysis of text corpora.
Nevertheless, LDA still enjoys the highest popularity due to its simple imple-
mentation, flexible assumptions, and competitive results compared to other
more refined, but also more complex methods.

In this paper, we propose the method LDAPrototype to improve the reli-
ability of LDA results. In several use cases we show that single models are
prone to misinterpretation because of potentially large differences in the results
of LDA runs executed for the same text data. To do this, we define a sim-
ilarity measure for LDA models, which we call S-CLOP. This measure can
be used to determine pairwise similarities of LDA models. To overcome the
mentioned issue of reproducibility, which in turn leads to lower reliability, the
method LDAPrototype selects the most representative run out of a set of LDA
runs according to the novel S-CLOP criterion. This criterion is not based on
likelihood-based measures as it is often the case. Instead, our goal is to deter-
mine the medoid of the models to increase the reliability of conclusions drawn
from LDA results. In this context, we understand reliability as a measure to
quantify the reproducibility of the results. That is, a highly reliable method
should produce results that are as reproducible as possible. We refer to the
medoid as the model that agrees most on average with all other models. We
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call the resulting model the prototype, which is most similar to all other runs
taken from the same modeling procedure obtained from he same text data.

A few approaches exist to make LDA results more reliable, but all of them
have weaknesses, which are discussed in detail in Section 2.2. Often the mod-
eling procedure itself is influenced in a way such that LDA loses its flexibility.
Other methods do not search in the whole space of possible models, which may
lead to non-optimal results. To address these weaknesses, our approach does
explicitly not affect the modeling procedure itself and is exclusively based on
replicated runs of the same topic model.

We do not use likelihood-based measures, because there is already good
comparative work in this field, e.g. by [8], and [9], who showed that these
measures do not correlate well with the human perception of consistent topics.
Nevertheless, we evaluate the ability of our method to find reliable models
in comparison to the relatively popular measure of perplexity and the well-
known coherence measure NPMI. However, the quality of a topic model, which
is mainly argued from a high interpretability of the results, is not within the
scope of this paper. Subsequent studies with human judgments are needed
for this. Instead, the main goal is to address the issue of reliability caused
by the instability inherent to the LDA through a model selection criterion to
increase the reliability of the results. For this purpose, we define reliability as
a measure of the degree of reproducibility. We call a model highly reliable if it
produces very similar results under the same model parameter settings, such
that the resulting models are only differing due to the random initializations.
In Section 3, we formally define a measure of reliability, for which we then
show that our new method LDAPrototype achieves higher scores than common
selection methods based on perplexity or NMPI.

High reliability can be considered as the basis and crucial prerequisite to
also obtain good results in terms of quality. Thus, we do not follow the clas-
sical information retrieval approach, but focus first on increasing reliability of
results in order to finally obtain topics that can be interpreted particularly
well, which then would correspond to model’s quality. We intentionally do not
speak of an improvement in stability here, because the LDA method, which is
intrinsically depending on a random initialization, is not changed, and thus is
just as (in)stable as before. Our proposed selection algorithm based on repli-
cated runs on the same text data to obtain the most representative LDA run,
on the contrary, provides an improvement of the reliability, which is measured
by the degree of reproducibility quantified by our reliability score.

2 Related Work

Text data are usually organized in large corpora, where each corpus consists
of a collection of texts, often also denoted as documents or articles. Each text
can be considered as a sequence of tokens of words of the same length as the
given text. In common notation token means an individual word at a specific
place in the text and the set of words is used synonymously with vocabulary.
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We refer to these terms in the following to introduce the methodology of LDA
as basis for our novel method LDAPrototype.

2.1 Latent Dirichlet Allocation

The method we propose is based on the LDA [2] estimated by a collapsed
Gibbs sampler [8]. The LDA assumes distributions of latent topics for each
text. If K denotes the total number of modeled topics, the set of topics is given

by T = {T1, . . . , TK}. We define W
(m)
n as a single token at position n in text

m. The set of possible tokens is given by the vocabulary W = {W1, . . . ,WV }
with V = |W |, the vocabulary size. Then, let

D(m) =
(
W

(m)
1 , . . . ,W

(m)

N(m)

)
, m = 1, . . . ,M, W (m)

n ∈W , n = 1, . . . , N (m)

be text (or document) m of a corpus consisting of M texts, each text of length

N (m). Topics are referred to as T
(m)
n for the topic assignment of token W

(m)
n .

Then, analogously the topic assignments of every text m are given by

T (m) =
(
T

(m)
1 , . . . , T

(m)

N(m)

)
, m = 1, . . . ,M, T (m)

n ∈ T , n = 1, . . . , N (m).

When n
(mv)
k , k = 1, . . . ,K, v = 1, . . . , V describes the number of assignments

of word v in text m to topic k, we can define the cumulative count of word v

in topic k over all documents by n
(•v)
k and, analogously, the cumulative count

of topic k over all words in document m by n
(m•)
k , while n

(••)
k indicates the

total count of assignments to topic k. Then, let

wk =
(
n

(•1)
k , . . . , n

(•V )
k

)T
∈ NV

0 , k = 1, . . . ,K

denote the vector of word counts for topic k.
Using these definitions, the underlying probability model [8] can be written

as

W (m)
n | T (m)

n ,φk ∼ Discrete(φk),

φk ∼ Dirichlet(η),

T (m)
n | θm ∼ Discrete(θm),

θm ∼ Dirichlet(α).

For a given parameter set {K,α, η}, LDA assigns one of the K topics to each
token. Here K denotes the number of topics and α, η are parameters of a
Dirichlet distribution defining the type of mixture of topics in every text and
the type of mixture of words in every topic. Higher values for α lead to a
more heterogeneous mixture of topics whereas lower values are more likely to
produce less but more dominant topics per text. Analogously, η controls the
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mixture of words in topics. Although the LDA permits α and η to be vector
valued [2], they are usually chosen symmetric because typically the user has no
a-priori information about the topic distributions θ and word distributions φ.

Topic distributions per text θm = (θm,1, . . . , θm,K)T ∈ (0, 1)K and word
distributions per topic φk = (φk,1, . . . , φk,V )T ∈ (0, 1)V can be estimated
through the collapsed Gibbs sampler procedure [8] by

θ̂m,k =
n

(m•)
k + α

N (m) +Kα
and φ̂k,v =

n
(•v)
k + η

n
(••)
k + V η

.

2.2 Methods and modifications of LDA to address the
random initialization instability

Inferring LDA using Gibbs sampling is sensitive to the initial assignments, that
are often chosen as random, and the reassignment is based on the conditional
distributions, which leads to different results in multiple LDA runs for fixed
parameters. This instability of LDA leads to a lack of reliability of the model-
ing results. This fact is rarely discussed in applications [10], although several
approaches have been proposed to encounter this problem as discussed in the
following.

Parameter tuning

[10] propose a new algorithm LDADE (LDA Differential Evolution) which
automatically tunes the parameters of LDA in order to optimize topic simi-
larity in replications using a differential evolution algorithm. This results in
a set of input parameters K,α and η which perform best on the given data
with respect to reliability. This procedure does not increase the reliability for
a given parameter set, but tries to find the parameter set that produces the
most reliable results. So this method aims for parameter optimization. How-
ever, it is likely that the tuning algorithm is biased to select parameters that
result in systematically better reliability values independent of the underlying
dataset, e.g. for low α and η parameters. In many applications, it is of interest
to choose the parameters of the LDA reasonably based on external knowledge.
Accordingly, our method focuses on the optimization of the reliability for fixed
parameter sets instead of parameter optimization as performed by LDADE.

Selection and averaging algorithms

Another option is to apply a selection criterion to a set of models [11]. The
selection can be done by optimizing perplexity [2], a performance measure
for probabilistic models to estimate how well new data fit into the model [5].
Alternatively, [12] proposed to average stages of the Gibbs sampling procedure.
They present different variations to average iteration steps and show that their
approach leads to an increase of perplexity. Averaging LDA models comes with
the drawback that one only receives averaged topic proportions, but no specific
topic assignment per token. In addition, it was shown that likelihood-based
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measures like perplexity are negatively correlated with human judgments on
topic quality [9]. Instead, optimizing the semantic coherence of topics should
be the aim for a selection criterion. [9] provide a validation technique called
Word/Topic Intrusion [implemented in 13] which depends on a human coding
process. Automated measures to select the best LDA regarding coherence can
be transferred from the topic coherence measure [14, 15], but there is no sta-
ble and validated aggregation technique of this type of topic quality measure
for the results of LDA runs. Instead, [16] introduce some other measures for
quantifying topic quality based on coherence measures, such as the normalized
pointwise mutual information (NPMI), for which [17] show, that it outper-
forms other automatically calculated quality measures regarding correlation
to human scores for topic quality. For this reason in Section 6.2, we compare
the still most popular selection measure perplexity and the coherence measure
NPMI in terms of improving the reliability of the selected LDA models.

Manual approaches and reasonable initialization

[18] aim for increasing both, reliability and interpretability of the final model
simultaneously. Therefore, they maximize topic similarity as well as topic
coherence, but discover that standard metrics in general do not perform well
in increasing interpretability. Instead, manual approaches as the mentioned
intruder validation technique proposed by [9] are essential. [18] propose to
increase reliability of LDA by initializing topic assignments of the tokens rea-
sonably, e.g. using co-occurrences of words [19]. This initialization technique
has the drawback that the model is restricted to a subset of possible results.

Model modifications

There is also a modification of the implementation of LDA that aims to reduce
instability. GLDA (Granulated LDA) was proposed by [20] and is based on
a modified Gibbs Sampler. The idea of the algorithm is that tokens that are
closer to each other are more likely to be assigned to the same topic. The
authors show that their algorithm performs comparably well with standard
LDA regarding interpretability. Moreover, it leads to more stable results. How-
ever, their study is based on only three LDA runs and the implementation is
not publicly available. Thus, a validation of this method on other datasets or
with larger numbers of replications is pending.

2.3 Contributions

In this work, we propose the novel selection algorithm LDAPrototype based
on the tailored similarity measure S-CLOP for LDA models. Thus, our con-
tribution is two-fold. The S-CLOP measure is able to assess the stability of
LDA with clustering techniques applied to replicated LDA runs. High stabil-
ity corresponds to high reliability of findings based on stable models in the
sense of improving reproducibility. We introduce a new automated method of
clustering topics, more precisely a pruning algorithm for results of hierarchi-
cal clustering, based on the optimality criterion that for clustered results of

76 Contributed methodological publications



Springer Nature 2021 LATEX template

LDAPrototype: Improving Reliability of LDA 7

replicated LDA runs, in the ideal case each cluster should contain exactly one
topic of every replication of the modeling procedure. This results in our novel
tailored similarity measure S-CLOP (Similarity of multiple sets by Clustering
with LOcal Pruning) for LDA runs. We demonstrate the potential of this mea-
sure to improve reliability by applying it to example corpora. Based on the
newly proposed similarity measure S-CLOP, we propose a combination of a
repetition strategy and selection criterion to increase the reliability of findings
from LDA models leading to the LDAPrototype algorithm. We show, that it
outperforms perplexity and NPMI regarding a reliability measure that is based
on LDA similarities.

3 Methods

We introduce the new method LDAPrototype that selects the medoid of a
number of LDA runs. The selection is achieved by choosing the model that
maximizes the mean pairwise S-CLOP value to all other LDA runs. For assess-
ing similarities of LDA models using our novel S-CLOP measure, also an
adequate similarity measure for topics is required. We define a more robust
version of the Jaccard coefficient in the sense that not all words are considered
as relevant for each topic. In Section 6, the selection algorithm LDAProto-
type is applied to six example corpora to assess the increase in reliability of
findings from LDA models. In Section 6.3, we also present other implemented
similarity measures, which are compared to our thresholded Jaccard coefficient
regarding reliability gain and computation time.

The introduced methods have been implemented as R package [21] on
CRAN and are available at https://github.com/JonasRieger/ldaPrototype as
continuously developing GitHub repository.

3.1 LDAPrototype: a new selection algorithm for LDA
models

We propose the novel selection algorithm LDAPrototype to improve the reli-
ability of LDA results. For this, we define the reliability score rs for a set of L
LDAs based on their mean similarities s̄1, . . . , s̄L as

rs (s̄1, . . . , s̄L) :=
1

L

L∑

l=1

s̄l, s̄l ∈ [0, 1], (1)

where the mean similarities s̄l, l = 1, . . . , L have to be determined by a model
similarity measure yet to be defined. Our selection algorithm aims for maxi-
mizing this reliability score rs, which measures how reproducible LDA results
are in a given setting with fixed parameters. Our algorithm is motivated by
an increase in reliability (cf. Section 1) and selects from a set of LDA models
the model that is most similar on average to all other runs. The approach is
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Algorithm 1 Selecting the medoid of a number of LDA runs

Input: A set of R LDA models
Output: The LDA with maximal mean pairwise similarity to all other LDA

runs
1: for i = 1 to R− 1 do
2: for j = i+ 1 to R do
3: Calculate pairwise similarity of LDAs ldai and ldaj using a similarity

measure sim: sij = sim(ldai, ldaj)
4: end for
5: end for
6: Determine s̄i = 1

R−1

∑
j 6=i

sij , i = 1, . . . , R

7: Determine proto = ldaopt with opt = arg max
i∈{1,...,R}

s̄i

8: return proto

similar to the choice of the median in the one-dimensional space. In the mul-
tidimensional space, this choice is called medoid and differs from a centroid in
the sense that it is not obtained by model averaging, but by model selection.
There are methods of model averaging for LDA (cf. Section 2.2), but these
have the disadvantage that properties of a single run, such as the assignments
of individual tokens to topics, are lost. The proposed selection algorithm pre-
serves this information because it does not influence the modeling itself. The
LDAPrototype procedure selects one single model from the set of candidate
models.

Figure 1 shows schematically the determination of the prototype, and the
corresponding procedure is presented in Algorithm 1. The main idea of the
method is to calculate all pairwise similarities of the R LDAs and determine
the model that maximizes this similarity. Besides the candidate set of LDAs
{LDA1, . . . ,LDAR}, a similarity measure for LDA models is needed to obtain
the symmetric model similarity scores sij = sji in Figure 1 and Algorithm 1.
For this, in Section 3.3, we propose a novel tailored model similarity measure
called S-CLOP, which in turn requires the choice of a topic similarity mea-
sure. In the following Section 3.2, we propose a default measure for computing
these topic similarities. Through these definitions, we are then able to deter-
mine the prototype with respect to Figure 1. In Appendix A, we discuss other
popular measures for computing topic similarities, which we also compare to
our proposed Jaccard coefficient from Section 3.2 in Section 6.3.

3.2 Thresholded version of the Jaccard coefficient: a
similarity measure for topics

A similarity between two topics can be calculated based on the corresponding
vectors of counts or set of words. We build on the well established Jaccard
coefficient [22] and introduce a more robust thresholded version. Its general
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s12 s13 . . . s1R
s23 . . . s2R

s3R
. . .

...

sR−1;R

LDA2 LDA3 . . . LDAR

LDA1

LDA2

LDA3...

LDAR−1

s̄1 = 1
R−1

∑R
j=2 s1j

s̄2
s̄3...

...

s̄R = 1
R−1

∑R−1
j=1 sRj

opt := arg max
i∈{1,...,R}

s̄i

⇒ proto = LDAopt

1

Fig. 1 Schematic representation of the determination of a prototype based on a set of LDA
models.

form is given by

Jaccard(A,B) =
|A ∩B|
|A ∪B| , (2)

where A,B are sets of words.
Suppose we have a text corpus and we estimate a topic model with LDA,

with parameters α, η and K topics. This is done R times independently leading
to a set of N = RK topics in total. Then, referring to Section 2.1,

w(r) =
(
w

(r)
1 , . . . ,w

(r)
K

)
∈ NV×K

0 , r = 1, . . . , R

denotes the matrix of word counts per topic in the r-th replication. Then, for
a given lower bound c = (c1, . . . , cN ) and for two topics (i, j) represented by
their word count vectors

wi,wj ∈
{
w

(1)
1 , . . . ,w

(1)
K ,w

(2)
1 , . . . ,w

(2)
K , . . . ,w

(R)
1 , . . . ,w

(R)
K

}

our thresholded version of the Jaccard coefficient is calculated by

tJacc(wi,wj) =

V∑
v=1

1{
n
(•v)
i >ci ∧ n

(•v)
j >cj

}

V∑
v=1

1{
n
(•v)
i >ci ∨ n

(•v)
j >cj

}
. (3)

Reasonable choices for the threshold vector c = (c1, . . . , cN )T ∈ NN are an
equal absolute lower bound cabs for all words, or a topic-specific relative lower
bound crel (see also Table 1). A combination of both can be defined by

cl = max{cabs, creln
••
l },

where l = 1, . . .K, . . . , 2K, . . . RK = N and cabs ∈ N0, crel ∈ [0, 1]. To ensure
that always enough words per topic are taken, the similarity measure is addi-
tionally implemented with a parameter that controls that at least a fixed
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Table 1 Toy example: Assignment counts of two topics and calculation of thresholded
version of the Jaccard (tJacc) coefficient for crel = 0.002

w1 w2 ∧ ∨

trump 1 668 2 860 1 1
trumps 446 854 1 1

president 91 876 1 1
donald 259 693 1 1

news 695 0 0 1
said 500 0 0 1

election 8 474 0 1
will 0 462 0 1

women 397 53 1 1
debate 394 11 0 1

sarcastic 1 4 0 0

Σ 4 459 6 287 5 10

vocabulary size V = 11,

relative limit crel = 1/500

⇒ c = (n••
1 , n••

2 )T /500

= (4 459, 6 287)T /500

= (8.92, 12.57)T .

tJacc(w1,w2) =
5

10
.

user-defined number of the most frequent words assigned to the topic are
considered.

The interpretation of this tJacc coefficient is the following. It is defined
as the ratio of the numbers of the intersection and the union of the words of
two topics, but a word is only considered if the number of its occurrences in
the texts exceeds the topic-specific threshold. In other words, we first restrict
ourselves to the most relevant words per topic with respect to the number of
assignments, to get rid of heavy tailed word lists. Then the resulting subsets
of words are used to measure similarity of topics using the standard Jaccard
coefficient. To be clear: even for a choice of crel = 0, the similarities of the
topics would not (necessarily) all equal 1. That is because for the calculation

not the estimators φ̂k,v, but the numbers of actual assignments n
(•v)
i are used.

We demonstrate how the measure is calculated with a small toy example.
In Table 1, for eleven selected words the counts of assignments over all arti-

cles for the two topics w1 and w2 are given. We use the relative lower bound
with crel = 1/500. In the analysis presented in Section 6, we mainly also use
crel = 1/500, which leads to around 100 important words per topic in the
setting of the usatoday dataset. The last two columns indicate whether the cor-
responding word belongs to the thresholded intersection or union, respectively.
For example, the word election does not belong to the intersection because its
count is below the topic-specific (relative) threshold of at least nine assign-
ments to the topic belonging to w1. The ratio of the number of entries in the
third and the fourth column results in the similarity tJacc(w1,w2) = 5

10 = 0.5
of the two given topics.

3.3 S-CLOP: a new similarity measure for LDA models

We introduce the new similarity measure S-CLOP for comparing different
LDA runs consisting of topics that are represented by word count vectors. The
pairwise distances are calculated with the tJacc coefficient in Equation (3).
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However, the measure can be applied using any appropriate distance respec-
tively similarity measure, see Appendix A. We use S-CLOP as pairwise model
similarity measure in the LDAPrototype procedure, see also Figure 1 and
Algorithm 1.

The general idea of the measure S-CLOP is the following. First, join all
considered LDA runs to one overall set, then cluster the topics with subsequent
local pruning, and then check how many members of the original different
LDA runs are contained in the resulting clusters. Then the deviation from the
perfect situation of one representative from each LDA run is quantified. In our
selection algorithm always two LDA models are compared. Two models are
very similar, if always one topic of the first model is clustered together with
one topic from the other model. High S-CLOP similarity values suggest that
many topics can be identified that have a representative in each LDA run.

For the initial clustering step, we use hierarchical clustering with complete
linkage [23, pp. 520–525]. According to [24] average linkage or Ward’s method
obtain superior results for the case of text clustering. We also tried single
linkage, average linkage and Ward’s method in the present case, and in the
package the user is also offered, in principle, the possibility of calculation using
these link methods. In fact, for the selection algorithm presented here, there is
little difference in which of the linkage methods is used due to the character-
istic of combining pairwise comparison with local-optimal pruning. We prefer
complete linkage over single or average linkage because it uses the maximum
distance between topics to identify clusters. This is consistent with our aim of
identifying highly homogeneous groups. Of course, topic similarities must first
be transformed to distances to apply hierarchical clustering.

Measuring disparity of LDA runs

Consider a cluster (respectively a group) g of topics, after clustering R LDA
runs in one joint cluster analysis, using all R · K topics from all runs. The
goal is to quantify the deviation from the desired situation that each run is

represented exactly once in g. The vector t(g) = (t
(g)
1 , . . . , t

(g)
R )T ∈ NR

0 contains
the number of topics that belong to the different LDA runs. Then, we define
the disparity measure

U(g) :=
1

R

R∑

r=1

|t(g)
r − 1| ·

R∑

r=1

t(g)
r . (4)

The first factor |t(g)
r − 1| measures the deviation from the best case of exactly

one topic per run in g. The second factor determines the number of members in
the cluster and is required to penalize large clusters. Without this adjustment,
the algorithm presented below for minimizing the sum of disparities would
prefer one large cluster over a number of small clusters. In particular, without
the second term, joining two perfect clusters as well as splitting one perfect
cluster in two clusters would result in the same value for the mean disparity
(R/R = 1), and we prefer the second situation, where two different topics
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Algorithm 2 Determining the minimal sum of disparities U∗(g) of a cluster g

Input: A node of a dendrogram
Output: The minimal possible sum of disparities for this node

1: if is.leaf(node) then
2: return (R− 1)/R
3: else
4: return min{U(node),Recall(node.left) + Recall(node.right)}
5: end if

from one run are not clustered together. The disparity of one overall cluster
g containing all topics, e.g. defined by the root of a dendrogram, is given by
U(g) = (K − 1) ·N .

Finding the best cluster result by minimizing average disparity

The goal is to minimize the sum of disparities U(g) over all groups g ∈ G of a
cluster result. Hierarchical clustering of all N objects (topics) provides cluster
results with 1, . . . , N clusters. A common approach is to globally cut the den-
drogram according to a target value. Here, we propose to prune the resulting
dendrogram locally to obtain the final clusters. The pruning algorithm requires
as input a hierarchical clustering result and minimizes the sum of disparities,
with respect to the dendrogram structure, i.e.

UΣ(G) :=
∑

g∈G
U(g)→ min, (5)

where G is a set of clusters (of topics), and the set of all topics is a disjoint
union of the members of the single clusters g ∈ G.

Denote by G∗ the optimal set of clusters resulting from splits identified
from the dendrogram, and by U∗ := UΣ(G∗) the corresponding minimal sum
of disparities. The root of the dendrogram contains as a disjoint union the
members of the two nodes obtained by the first split. Likewise, iteratively,
each node contains as a disjoint union the members of the two nodes on a
clustering level one step below this specific node, as denoted in Algorithm 2
by node.left and node.right. The optimal sum U∗ can be calculated recursively
with Algorithm 2.

For a node in the dendrogram, we denote by U(node) the disparity of the
corresponding cluster and by U∗(node) the minimal sum of disparities of the
dendrogram induced by (or below) this node. Algorithm 3 can now be used
to find the best set of clusters. A cluster is added to the list of final clusters,
if its disparity is lower than every sum of disparities obtained when further
splitting this node.
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Algorithm 3 Finding the optimal set of clusters G∗

Input: A dendrogram with a root
Output: A list correponding to the optimal set of clusters G∗, obtained by

local pruning of the dendrogram node = root
1: if U(node) == U∗(node) then
2: Add all objects belonging to the cluster corresponding to node as one

cluster to list
3: else
4: Recall(node.left)
5: Recall(node.right)
6: end if
7: return list

Measuring similarity with aggregated disparities

Finally, we can calculate the similarity of a set of LDA runs using the optimized
set of clusters. We normalize the sum of disparities of the optimal cluster-
ing, such that its values lie in the interval [0, 1], where 0 corresponds to the
worst case and 1 to the best case. The worst case is a pruning state with R
clusters, each consisting of all topics from one LDA run. Then the pruning of
Algorithm 3 would lead to a set G̃ of N single topic clusters, resulting in the
highest possible value for the sum of disparities

UΣ,max :=
∑

g∈G̃
U(g) = N · R− 1

R
. (6)

The similarity measure S-CLOP (Similarity of multiple sets by Clustering with
LOcal Pruning) then is defined by

S-CLOP(G) := 1− 1

UΣ,max

∑

g∈G
U(g) ∈ [0, 1] (7)

and S-CLOP(G∗) = maxg∈G S-CLOP(G) defines the similarity of replicated
LDA runs based on the identified optimal set of clusters G∗.

3.4 Using S-CLOP for LDAPrototype

As described in Section 3.1, the LDAPrototype algorithm (cf. Algorithm 1)
relies on finding the medoid using a suitable similarity measure for LDA mod-
els. For this purpose, we use the S-CLOP measure from Section 3.3. In terms
of the LDAPrototype selection procedure, to compute the S-CLOP similarities
we always compare only two LDA runs, so that the clustering and the measur-
ing of disparities aims at matching pairs of topics from the two different runs.
Note that in this special case of comparing just two LDA runs with the same
number of topics K, the normalization factor is UΣ,max = 2 ·K · 1

2 = K. With
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Table 2 Specifications of the six considered datasets

Dataset Type Time M V (Limit) K Source

reuters Newspaper 1987 91 2141 5–15 [21]
economy Wikinews 2004–2018 1855 7099 (5) 20 [13]
politics Wikinews 2004–2009 4178 12 138 (5) 30 [13]
usatoday Newspaper 06–11/2016 7453 25 486 (5) 50 [26]
tweets Twitter 03–06/2020 3 706 740 17 208 (250) 25 [27]
nyt Newspaper 1999–2019 1 993 182 74 218 (250) 100 [26]

respect to the definition of U we can simplify (7) to get

S-CLOP(G) = 1− 1

2K

∑

g∈G
|g|
(
||g|1| − 1|+ ||g|2| − 1|

)
∈ [0, 1], (8)

where g|1 and g|2 denote groups of g restricted to topics of the corresponding
LDA run. By using the described pruning algorithm (cf. Section 3.3) in the two-
LDA case, we obtain a set consisting of groups of size two or one. This means
that a topic either has a directly similar counterpart topic in the other LDA, or
that it forms a cluster itself. A topic always forms a cluster itself if it is either
most similar to another topic from the same LDA, or if the complete linkage
distance to one of the already found clusters of matched topics is smaller
than to all remaining single topics of the other LDA run. Then, the medoid is
determined by the run that maximizes the average pairwise S-CLOP value to
all other LDA runs from the same set, namely s̄i, i = 1, ..., R in Figure 1 and
in Algorithm 1.

4 Data

In Section 6 we consider six different datasets, three of which are freely avail-
able through R packages [25]. Table 2 gives an overview of the datasets.
Among them are three corpora consisting of traditional newspaper articles.
The dataset reuters contains 91 articles from 1987 and is included in the pack-
age ldaPrototype [21]. The datasets usatoday and nyt are available to us via
the paid service of [26], with more than 7000 articles and almost two million
texts, respectively. They offer a good possibility to test the method on datasets
of common and large size. For the latter, we consider all articles from the
New York Times from 01/01/1999 to 12/31/2019. From the R package tosca
[13], we also use the economy and politics datasets, which consist of nearly
2000 and just over 4000 Wikinews articles from 2004 – 2018 and 2004 – 2009,
respectively. Also, in contrast to the other datasets, we consider a collection of
nearly four million German-language tweets from March 19 – June 27, 2020,
the first 101 days after then-German Chancellor Merkel’s TV address on the
coronavirus outbreak. For this purpose, 50 000 tweets with keywords related
to the coronavirus were scraped every hour over the mentioned period using
the Twitter API and duplicates were removed [27].
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All six corpora are preprocessed in R with the packages tosca and tm
[28], using common procedures in natural language processing (NLP). That is,
duplicates from articles that occur more than once are removed, so that every
unique article remains once. As an example, 204 articles were removed from
the usatoday dataset, which previously contained 7 657 articles. As common in
practice, characters are formatted to lowercase; numbers and punctuation are
removed. In addition, a trusted stopword list [28] is applied to remove words
that do not help in classifying texts in topics. Moreover, the texts are tokenized
and words with a total count less or equal to a given limit are neglected. For
example, for the usatoday dataset we choose this limit to be 5. This reduces
the vocabulary size from 79 734 to V = 25 486. For the larger datasets tweets
and nyt we have set the limit higher to 250.

For all corpora, we heuristically choose a reasonable number of topics to
model. We choose a higher number for larger and more general datasets. As
can be seen in Section 6.4, for the reuters dataset we try different numbers
of topics, namely K = 5, . . . , 15, and investigate them with respect to the
effects on modeling and runtime behavior. Other well known and widely used
packages for preprocessing and/or modeling of text data are quanteda [29],
topicmodels [30] and stm [31].

5 Study Design

In the following section, we apply the previously defined methods on the six
presented datasets in different comparisons. For this purpose, the statistical
programming software R 4.0.2 [25] and in particular the package ldaPrototype
are used. This is based on an effective implementation in C/C++ of the LDA
from the package lda [32]. For computation on a batch system or local paral-
lelization, we use the packages batchtools [33] or parallelMap [34]. For modeling
we always use the default parameters unless otherwise specified. For the num-
ber of topics K to be modeled, the methods deliberately do not provide a
default. Our chosen parameters depending on the dataset are given in Table
2. The parameters α and η are chosen by default as alpha = eta = 1/K,
the Gibbs sampler runs for num.iterations = 200 iterations each time. For
the computation using the thresholded version of the Jaccard coefficient tJacc
defined in Equation (3), we choose limit.abs = 10, atLeast = 0, and, unless
otherwise specified, limit.rel = 0.002. In addition, R = 100 runs of LDAs
are modeled by default.

The general procedure is as follows: We select a prototypical LDA from
a set of R LDAs using the presented method LDAPrototype. We repeat this
procedure H times. Thus, we obtain the pairwise S-CLOP values of all com-
binations of R LDAs, H times each. The pairwise similarity of the H most
representative LDAs, each selected from R LDAs, can then be evaluated using
the S-CLOP measure. Then, the distributions of mean similarities of the simple
replications s̄r

(h), r = 1, . . . , R, h = 1, . . . ,H are compared to the distribution
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{(
LDA(1)

r , s̄r
(1)
)
| r = 1, . . . , R

}

...{(
LDA(H)

r , s̄r
(H)
)
| r = 1, . . . , R

}
{(

LDA
(h)
opt, s̄

(h)
opt

)
| h = 1, . . . ,H

}

Fig. 2 Sets of tuples consisting of LDA models and their mean LDA similarity values to all
other LDAs from the same set. Schematic representation of the repetition strategy with H
repetitions of the LDAPrototype method, each based on R basic LDAs. The H repetitions
result in H prototypes (on the right), which in turn can be compared by pairwise model
similarities.

of mean similarities of the prototypical LDAs s̄
(h)
opt. Figure 2 gives a represen-

tation of the sets of tuples consisting of LDAs and their mean similarity to
the other LDAs from the same set. A location shift between the distributions
represents an increase in reliability due to the use of the selection mechanism.
We compute the reliability score rs for a set of LDAs based on their mean
similarities s̄1, . . . , s̄L for a L that is equal to R or H as the arithmetic mean
of the similarities (cf. Equation (1)), which can visually be interpreted as the
area between x = 0 and the empirical cumulative distribution function (ecdf),
naturally bounded on the y-axis by 0 and 1. Then, we are able to quantify
the gain in reliability for a specific selection criterion comparing the reliability

scores rs (s̄r
(h) | r = 1, . . . , R) for h = 1, . . . ,H and rs (s̄

(h)
opt | h = 1, . . . ,H).

For a better (visual) comparability of ecdfs and scores, we use H = R = 100
in the following, unless otherwise stated.

Figure 3 shows a schematic diagram of the study design. The order corre-
sponds to the subsections of Section 6. In Section 6.1, we first show a minimal
example of the application of the S-CLOP measure to R = 4 runs. In doing
so, we analyze the clustering behavior of the topics and exemplify the insta-
bility and thus limited reproducibility and reliability of the LDA results. We
then show in Section 6.2 the improvement in reliability on the same dataset
(usatoday) in dependence of the parameter R, the number of candidate LDAs.
In addition, we show that LDAPrototype outperforms perplexity and NPMI
regarding the gain in reliability measured by rs defined in (1). This is fol-
lowed by a comparison of the use of the presented Jaccard coefficient tJacc
in (3) with the other similarity measures (cf. Section A) cosine (A5), Jensen-
Shannon (A4) and Rank Biased Overlap (A6), in Section 6.3. For this, we also
use the usatoday dataset and also compare the similarity measures in terms of
their runtime and parallelizability. Then in Section 6.4, on a smaller dataset
(reuters), we compare the runtime and reliability gains for different numbers
of topics K and different numbers of modeled LDA runs R. Finally, we analyze
all six datasets in Section 6.5 and show that the method yields an increase in
reliability regardless of the dataset and at the same time remains computable
for large datasets.

86 Contributed methodological publications



Springer Nature 2021 LATEX template

LDAPrototype: Improving Reliability of LDA 17

usatoday

usatoday LDA Example dendrogram with R = 4

usatoday

usatoday LDAPrototype tJacc
R = 10, 20, 30, 40, 50, 100

H = 100

Perplexity

NPMI

usatoday

usatoday LDAPrototype tJacc Cos
different parameters

for topic similarity measures

JS RBO R = H = 100

usatoday

reuters LDAPrototype tJacc
R = 50, 100, 200, 500

H = 100
K = 5, . . . , 15

usatoday

economy LDAPrototype tJacc R = H = 100

politics R = H = 100

tweets R = H = 100

nyt R = 50, H = 1

6.1 Motivation

6.2 Superiority

6.3 Influence of topic similarity measure

6.4 Influence of R and K

6.5 General applicability

Fig. 3 Study overview: Illustration of the datasets, comparative methods, topic similarity
measures, and parameters compared.

6 Results

Table 3 shows the runtimes for determining the LDAPrototype depending on
the different datasets. Due to the size of the nyt dataset, only one prototype
was determined, and only on R = 50 modeled LDAs. In addition, the calcula-
tion was not parallelized due to the required memory, so that it lasts around
130 days. For all other datasets R×H = 100× 100 LDAs, and thus H = 100
LDAPrototypes were calculated. The runtimes are observed under paralleliza-
tion on 4 cores and range from less than a minute for the reuters dataset to
just over a day for the tweets dataset.

In Figure 4, the reliability gain of results from the LDAPrototype method
can be seen in comparison to the reliability of basic LDA replications. The (red)
curves, indicating the ecdfs of the mean pairwise similarities of the LDAPro-
toypes, differ significantly from the (black) ecdfs corresponding to the mean
pairwise similarities of the simple LDA replications.
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Table 3 Runtimes for determining the LDAPrototype on the six different datasets

Dataset M R K Cores Min. Mean Max. Unit

reuters 91 100 5 4 43.38 43.81 45.30 secs
economy 1855 100 20 4 8.25 8.33 8.69 mins
politics 4178 100 30 4 27.21 27.32 27.76 mins
usatoday 7453 100 50 4 3.33 3.42 3.56 hours
tweets 3 706 740 100 25 4 28.15 28.64 30.67 hours
nyt 1 993 182 50 100 1 - 130 - days

reuters (R=100, K=5)

economy

politics

usatoday

tweets

nyt
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Fig. 4 Increase of reliability for five of the six different datasets and reliability of a sin-
gle LDAPrototype for the nyt dataset; black: empirical cumulative distribution functions
(ecdf) of the mean pairwise LDA similarites, red: ecdf of the mean pairwise LDAPrototype
similarities

6.1 Cluster analysis and similarity calculation

In this section, we present an example analysis of a clustering result of four
independent LDA runs based on newspaper articles from USA Today. We run
the basic LDA four times, such that the number of runs to be compared is
R = 4 and the total number of topics to be clustered isN = R·K = 4·50 = 200.
To demonstrate how dissimilar replicated LDA runs can be, we cluster the
N = 200 topics from the R = 4 independent runs with K = 50 topics each
using the tJacc coefficient from Equation (3), complete linkage and the new
introduced algorithm for pruning. The four runs were selected from 10 000
total runs. In fact, the runs Run1 and Run2 were chosen as the top two models

88 Contributed methodological publications



Springer Nature 2021 LATEX template

LDAPrototype: Improving Reliability of LDA 19

in mean similarity of the 100 prototypes, which means their points lie at the
top of the very right (red) curve in the plot from usatoday in Figure 4. Their
similarity values are 0.902 and 0.898 in the set of prototypes or 0.877 and
0.871 in the original sets, respectively. The model Run3 was chosen as the
worst of the 100 prototype models with a similarity value of 0.872 in the set of
prototypes and 0.863 in its original set. Run4 was chosen randomly as one of
the worst models realizing a mean similarity to all other models in its original
set of 0.807.

We apply hierarchical clustering with complete linkage to the 200 topics.
The topics are labeled with meaningful titles (words or phrases). These labels
were obtained by hand, based on the ranked list of the 20 most important
words per topic. For this, the importance of a word v = 1, . . . , V in topic
k = 1, . . . ,K [32] is calculated by

I(v, k) =
n

(•v)
k

n
(••)
k

[
log

(
n

(•v)
k

n
(••)
k

+ ε

)
− 1

K

K∑

l=1

log

(
n

(•v)
l

n
(••)
l

+ ε

)]
, (9)

where ε is a small constant value which ensures numerical computability, which
we choose as ε = 10−5. The importance measure is intuitive, because it gives
high scores to words which occur often in the present topic, but less often in
average in all other topics.

Figure 5 shows a snapshot of the two dendrograms visualizing the result
of clustering the 200 topics and of Algorithm 3 for clustering with local prun-
ing. The vertical axes describe the complete linkage distance based on our
tJacc coefficient with limit.rel = 0.002. In the lower dendrogram, the topic
labels are colored with respect to the LDA run (Run1 : grey, Run2 : green,
Run3 : orange, Run4 : purple). In the upper dendrogram, topic labels are col-
ored according to the clusters obtained with our proposed pruning algorithm.
In addition, every topic label is prefixed by its run number.

Looking at the upper dendrogram, we see that there are a number of clus-
ters with identical labels for topics. This demonstrates that the four LDA runs
produce a number of similar topics that are represented by similar word dis-
tributions. Examples for such stable topics are Trump vs Clinton Campaign
colored yellow and Olympics Medals colored green.

However, there are also considerable differences visible. In the lower dendro-
gram in Figure 5, strikingly, there are several topics from Run4, highlighted in
red, where no other topic is within a small distance. It is remarkable that Run4
creates such a great number of individual topics, e.g. Video Games, Gender
Debate, TV Sports (which includes words for describing television schedules of
sport events) and Terrorism. Also, Run4 leads to six explicit stopword topics,
which is the maximum number compared to the other runs with four to six
stopword topics.

In the upper dendrogram, the color depends on cluster membership. We
measure combined stability of these four LDAs by applying the proposed
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Fig. 5 Detail of dendrograms displaying 59 of the N = 200 topics from R = 4 selected
LDA runs on the usatoday dataset with K = 50 topics each; bottom: colored by runs; top:
colored by cluster membership. Complete dendrogram in Figure B1.
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pruning algorithm (Algorithm 3) to the dendrogram. This leads to 61 clus-
ters and a S-CLOP score of 0.83. The normalization factor is given by
UΣ,max = K · (R − 1) = 50 · 3 = 150, and the minimization of the sum of dis-
parities yields U∗ = UΣ(G∗) = 25, resulting in S-CLOP = 1− 25/150 = 0.83.
There are seven single topics, one from each of the first three runs and four
from Run4. The eleven clusters, which consist of exactly three topics, contain
ten times a topic from Run1. Topics from Run2 and Run3 are represented
nine times each, whereas only five of the mentioned clusters contain a topic
from Run4. This shows that LDA run Run4 strongly differs from the others.
There are a lot of cases, where only one topic from this run is missing to obtain
perfect topic clusters with exactly one topic from each run.

For comparison to the proposed local pruning algorithm, we once applied
an established global criterion. Since 50 topics were originally modeled for
each run, it is not reasonable to determine less than 50 clusters. Therefore,
we try the global criterion with 50, . . . , 70 as the target cluster count. The
largest similarity value according to S-CLOP based on the resulting clusters
is obtained as 0.3 for 59 clusters. However, considering the dendrogram, we do
not observe such large differences in the topic structures between the runs to
justify such a low similarity. This shows the necessity of the presented local
pruning method.

In addition, the dendrograms illustrate that random selection can lead to a
poor model regarding interpretability and especially to some kind of an outlier
model as Run4. This means that random selection can indeed lead to low
reliability.

6.2 Increase of reliability

As an improvement for LDA result selection, we recommend to use the
introduced approach based on prototyping of replications. It increases mean
similarity, which comes along with an increase in reliability. We demonstrate
how to determine a prototype LDA run as the most representative run out of
a set of runs, based on our novel pruning algorithm. We show that this tech-
nique leads to systematically higher LDA similarities, which suggests a higher
reliability of LDA findings from such a prototype run. This is indeed the case
in comparison to basic LDA replications, but also in comparison to the well
known selection criteria perplexity and NPMI. We calculate perplexity [30] by

exp



−

∑M
m=1

∑V
v=1 n

(mv)
• log

(∑K
k=1 θ̂m,kφ̂k,v

)

∑M
m=1N

(m)



 , n

(mv)
• =

K∑

k=1

n
(mv)
k (10)

and NPMI with respect to the definition from [16]. The authors offer a web
service (see https://github.com/dice-group/Palmetto) to retrieve NPMI scores
using the English Wikipedia as reference corpus. The score indicates a normal-
ized pointwise mutual information for one topic using co-occurrences of the
first 10 top words of the topic, determined using the score in (9). The NPMI
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Fig. 6 Increase of reliability in dependence of the number of replications R on the usatoday
dataset: ecdfs of the mean similarities calculated on R = 100 replications of randomly
selected LDA runs (black) and on the H = 100 most representative prototype LDA runs
(red) based on subsamples of R = 10, 20, 30, 40, 50 or all 100 LDA runs. For comparison, the
ecdfs of the 100 selected LDA runs using perplexity (blue) and NPMI (green) based on the
subsamples of 10 runs and all 100 runs are given.

score for one LDA model is then defined as the mean NPMI scores of all topics
from the model.

The introduced similarity measure S-CLOP (7) quantifies pairwise similar-
ity of two LDA runs by

1− 1

50

∑

g∈G∗

U(g) = 1− 1

100

∑

g∈G∗

|g|
(
||g|1| − 1|+ ||g|2| − 1|

)
,

where K = 50 is the number of topics per model and G∗ an optimized set
of topic clusters identified by our proposed pruning algorithm. We investigate
the mean S-CLOP scores per LDA on the corpus from USA Today newspaper
articles.

We propose to select the LDA run with highest mean pairwise similarity to
all other runs. The following study shows that this is a suitable way to identify
a stable prototype LDA, thus leading to improved reliability of LDA findings
based on this particular run. We fit R = 100 LDA models and select the model
with highest mean similarity as prototype. This procedure is repeated H = 100
times, which results in 100 prototype models. Then, for the 100 prototypes,
also mean pairwise similarities to the other prototypes are calculated according
to the schema in Figure 2. The results are visualized in Figure 6. The very right
curve describes the empirical cumulative distribution function of the mean
similarities obtained for the 100 prototypes. At the very left there are the
H = 100 curves of the 100× 100 original runs. In addition, we also determine
100 prototypes from subsamples. For this, only 10, 20, 30, 40 or 50 runs from
each original set of R = 100 runs are randomly selected and are used for the
following calculation steps. The resulting curves are plotted and labeled in
Figure 6, the aggregated reliability scores are given in Table 4.

The minimum of the mean similarities from the original 100 sets of 100
models is 0.796, while the maximum is 0.877. It turns out that NPMI does not
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Table 4 Reliability scores according to Figure 6. Comparison of the minimum, mean, and
maximum reliability scores based on the H = 100 sets of basic LDA replications and the
reliability scores after selection by LDAPrototype, perplexity, or NPMI in dependence of
the number R of candidate models used.

R 10 20 30 40 50 100

Replications

Min. 0.8338 0.8356 0.8378 0.8368 0.8359 0.8374
Mean 0.8429 0.8428 0.8426 0.8425 0.8425 0.8425
Max. 0.8515 0.8496 0.8483 0.8490 0.8487 0.8477

Selection
LDAPrototype 0.8622 0.8703 0.8750 0.8774 0.8816 0.8858

Perplexity 0.8578 0.8612 0.8629 0.8629 0.8655 0.8674
NPMI 0.8485 0.8502 0.8519 0.8502 0.8493 0.8493

show a good ability to increase the reliability of LDA runs. For the reliabil-
ity score of NPMI-selected runs, it makes little difference whether 10 or 100
models are available to the selection procedure. This suggests that the mea-
sure is better suited for other optimization goals than for increasing reliability.
The perplexity does a relatively good job in the task of improving the relia-
bility. For R = 100 candidate models, the relative reduction in the remaining
improvement to the maximum reliability of 1 in comparison to random selec-
tion is 38% for our method LDAPrototype, namely (1−0.8425)/(1−0.8858) =
0.1575/0.1142 = 1.38, and 19% (0.1575/0.1326) for selection by perplexity.
Therefore, the improvement in reliability for R = 100 is half that achieved
by LDAPrototype. Overall, it can be seen that our method outperforms the
other two popular and well-known selection methods in terms of increasing
reliability.

Based on the findings from Figure 6 and Table 4, we recommend to fit at
least 50 replications because this leads to an increase of similarity to 0.862
at the minimum and 0.895 at the maximum, or a reliability score (mean) of
0.8816, respectively. This corresponds to a relative reduction of the remaining
possible improvement of 33%. Higher values for the number of repetitions are
desirable. In general, the choice depends on the complexity of the corpus.
Encapsulated topics or certain complicated dependency structures make the
modeling procedure more prone to a larger span of possible fits and therefore
to smaller mean similarity values. However, if computational power is limited,
already taking the prototype model from 10 candidates considerably increases
the reliability. Here, the minimum and maximum of mean similarity are 0.842
and 0.880 (rs = 0.8622), considerably higher values than these associated with
random selection and 14% relative reduction of remaining improvement.

6.3 Comparison of the implemented similarity measures

Up to this point, we have performed all calculations with our tJacc (3) in
Section 3.2. Now we study differences in reliability with different choices
of measures of topic similarity. For this we compare cosine similarity (A5),
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Fig. 7 Correlation matrix of pairwise LDA similarity values calculated using the four
similarity measures with selected parameter combinations for 5000 topics on the usatoday
dataset

Jensen-Shannon similarity (A4) and Rank Biased Overlap (RBO) (A6) with
the tJacc coefficient. We consider, where applicable, effects of different param-
eter constellations on the correlation of the similarities. We show that the
tJacc coefficient is a good choice for the topic similarity measure, because it
improves reliability while not having a disproportionate runtime.

We again consider the usatoday dataset for the comparison. For the tJacc
coefficient we set limit.abs = 10 and atLeast = 0 and vary limit.rel ∈
{0, 0.001, 0.002, 0.005}, for the RBO we choose eight combinations of k ∈
{10, 20, 50} and p ∈ {0.1, 0.5, 0.8, 0.9}. We compute all pairwise topic similari-
ties of the total R ·K = 5000 topics using the given measures and first consider
the correlation of the pairwise LDA similarities based on these. In Figure 7 all
pairwise correlations of the similarity values are given.

Thereby, clear patterns can be identified. The similarities obtained with
cosine and Jensen-Shannon are correlated with a value of 0.50. The similar-
ity values based on the tJacc coefficient correlate with the cosine similarity
depending on the parameter in the range from 0.40 to 0.47. It is noticeable that
the correlation initially increases from 0.41 to 0.47 when considering a longer
tail of words belonging to a topic, but drops to 0.40 when considering the com-
plete tail. In contrast, the correlation with Jensen-Shannon LDA similarities
increases steadily from 0.38 for limit.rel = 0.005 to 0.66 when considering
the complete tail, or these words that were assigned to that topic at least 11
times (limit.abs = 10). It is interesting to note that even the different ver-
sions of the tJacc coefficient are mostly less correlated with each other than
the tJacc LDA similarities are with the Jensen-Shannon LDA similarities. This
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Table 5 Runtime and parallelizability comparison of the four similarity measures
computing pairwise similarities of R ·K = 5000 topics on the usatoday dataset; all
runtimes refer to hours on 4 cores, a measure is better implemented in parallel for a larger
parallelizability score ∈ [0.25, 1].

Measure Cos tJacc JS RBO RBO RBO RBO
k - - - 10 20 50 100

Parallel
(4 Cores)

Min. 0.26 0.65 1.33 4.54 9.09 22.47 47.15
Mean 0.29 0.68 1.39 5.05 11.40 24.75 51.62
Max. 0.31 0.76 1.48 6.07 12.13 29.37 59.05

Serial Time 0.86 2.49 4.58 - 27.26 - -

Parallelizability Score 0.75 0.93 0.83 - 0.60 - -

illustrates that there can be significant differences between different choices
for the threshold based on limit.rel.

As mentioned in Section 3.2, choosing the parameter limit.rel as 0.002
determines around 100 words per topic as relevant. Thus, one could assume
that the corresponding similarities should correlate strongly with those of the
RBO with k = 100. In fact, we see that the RBO is rather weakly correlated
with the other three measures overall; in particular, for low values of k ≤ 50
and p ≤ 0.8. The corresponding correlations are all below 0.30. However, it is
also noticeable that for increasing k and p, the RBO similarities appear to be
increasingly correlated with the other three similarity measures. This is due
to the fact that for larger values of k and p the RBO converges to a measure
very similar to the Jaccard coefficient or for p 6= 1 to the AverageJaccard
defined in Equation (A1) in Appendix A. This means that RBO similarities
calculated with parameters k = 100 and p = 1 should be very close to tJacc
similarities with limit.rel = 0.002. In the present case, however, even with
0.9, p is still much smaller than 1. Note that 0.9100 ≈ 0 and thus the 100th
word in the ranked list gets practically no weight, which is exactly the idea
of the RBO. Therefore it is not recommended to choose the parameter p close
to 1. Alternatively, a better approach would be to choose an implementation
based on Jaccard, e.g. AverageJaccard, because it is faster to implement. These
findings show that k and p should always be chosen dependent on each other.
One can also see in Figure 7 that words from rank 50 onwards no longer have
a significant influence with a choice of p = 0.9. The correlation between the
LDA similarities based on RBO with k = 50, p = 0.9 and k = 100, p = 0.9 is 1.

The four measures considered have different complexities in terms of their
implementations. While the cosine similarity can be computed very quickly,
the tJacc coefficient and the Jensen-Shannon similarity require computation-
ally intensive precomputations, which increases the runtime. Cosine similarity
and Jensen-Shannon similarity have no parameters to be set. For the tJacc
coefficient, the calculations do not depend on the chosen parameters. The
calculation of the RBO is generally time-consuming, since values must be cal-
culated individually for all considered depths up to the maximum rank, which
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also means that the runtime for the calculation of the RBO strongly depends
on the parameter k.

The runtimes are documented in Table 5. The times here are in hours, the
calculations were run on four cores in parallel and are based on at least 100
different values. For each measure, a serial calculation was performed once in
each case in order to be able to give a value for estimating the parallelizability
of the calculations or implementations. It can be seen that the cosine simi-
larity is the fastest to calculate with well under one hour. The thresholded
Jaccard coefficient requires slightly more than twice as much time, while the
Jensen-Shannon similarity computes with 83 and 275 minutes, respectively,
again almost twice as long as the tJacc coefficient. The Rank Biased Overlap
with k = 100 takes even over 2 days in parallel computation. This is also due to
the fact that the implementation is only parallelized with a score of 0.6, i.e. one
achieves only 60% of the maximum possible time saving through paralleliza-
tion. With a maximum score of 1, the calculation would only take 30.97 hours
instead of 51.62. The cosine similarity is also not implemented maximally par-
allelized. This is due to the overall low runtime. The tJacc coefficient, instead,
is implemented in parallel with an approximate maximum time saving of 0.93.

After comparing the measures in terms of runtime and correlation of the
resulting pairwise S-CLOP values, we restrict the analysis to one parameter
combination per measure and compare the increase in reliability in depen-
dence of the measure. In Figure 8, these are plotted against each other. We
compare the cosine similarity, Jensen-Shannon similarity, the tJacc coefficient
with limit.rel = 0.002 and the RBO with k = 20, p = 0.9. On the diago-
nal of the plot matrix, the known ecdfs of the LDA similarities are shown in
black and the ecdf of the LDAPrototypes in red, respectively. In addition, we
calculated - using the same measure - the similarities of the LDAPrototypes,
that were determined based on the other three topic similarities. The colors of
the ecdfs correspond to the color of the box of similarity measures. This allows
the different measures to be analyzed in terms of their selection behavior tak-
ing into account the level differences of the similarity values. Table 6 gives the
corresponding reliability scores of the ecdfs on the diagonal. The lower trian-
gular plot matrix provides the LDA similarities as pairwise correlation plots,
the upper matrix the corresponding correlations themselves. Determining the
pairwise LDA similarities based on 100 experiments with R = 100 replications
each yields 100 · (R− 1)R/2 = 495 000 values per similarity measure, on which
the heatmaps and correlations are both based.

It can be seen that the LDA similarities according to the tJacc coefficient
and according to the Jensen-Shannon similarity are most highly correlated with
each other. The point cloud is least circular, but rather narrow and elliptical
in shape. It can also be seen that the RBO LDA similarities are very different
from the others. In the lower right plot (outlined in blue), the three ecdfs
of different colors show significant differences from the red curve, with the
cosine curve showing even slightly more similarity than the curves of the other
two measures. Similarly, the blue curve is in the Jensen-Shannon (purple)
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Fig. 8 Comparison of four selected similarity measures regarding their increase of the relia-
bility of LDA results: on the diagonal the ecdfs of the LDA similarities based on the different
similarity measures are shown in black, in addition the similarities of the LDAPrototypes
are shown in red or in further colors for the LDAPrototypes determined on the basis of the
other measures (green for cosine, purple for Jensen-Shannon, orange for tJacc and blue for
RBO); below the diagonals correlation plots of the LDA similarities according to the sim-
ilarity measure are shown as heatmap, above the diagonals the corresponding correlations
are given.

and tJacc (orange) windows far behind the other colored ecdfs. The cosine
LDA similarities (top left, green) differ barely for all the foreign-determined
LDA prototypes, but the red curve sets itself apart from the others. Thus,
the selection by cosine similarity obviously also differs significantly from the
others.

The plots from Figure 8 suggest that all four measures differ with regard
to their selection criteria. However, a qualitative ranking which of the mea-
sures increases the reliability of the results the most is difficult because for
this question the true evaluation measure has to be identified first, which is a
vicious circle. For this reason, all these measures have their justification to be
used within the procedure. We prefer to use the thresholded Jaccard (tJacc)
coefficient because it has plausible heuristics and reasonable runtime. Its selec-
tion of the LDAPrototype strongly correlates with that of the Jensen-Shannon
similarity, for which, according to Appendix A, besides the tJacc coefficient
itself, the best results in terms of correlations with human perceptions could
be obtained.
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Table 6 Reliability scores according to Figure 8. Comparison of the topic similarity
measures with respect to the increase in reliability. Each column shows the reliability
measures depending on the used topic similarity measure, the lower four rows indicate
which similarity measure is used for the selection of the H = 100 prototypes based on the
respective R = 100 basic LDAs.

Comparison of LDA runs based on

Cos tJacc JS RBO

Replications

Min. 0.8364 0.8374 0.8587 0.8039
Mean 0.8413 0.8425 0.8634 0.8101
Max. 0.8459 0.8477 0.8666 0.8155

LDAPrototype

Cos 0.8878 0.8764 0.8951 0.8487
tJacc 0.8748 0.8859 0.8970 0.8403

JS 0.8778 0.8811 0.9019 0.8410
RBO 0.8771 0.8700 0.8884 0.8642

6.4 Comparison of different values for the parameters R
and K

In addition to the choice of the similarity measure, the choice of the parameters
K, number of topics to be modeled, and R, number of replications, also has
a large influence on the runtime of the method. In Section 6.2 it has already
been shown that larger values for R result in a larger increase in reliability. We
will confirm these findings based on the reuters dataset on the one hand and
on the other hand bring them into a combined comparison with the number
of modeled topics.

In Table 7 the runtimes for the determination of the LDAPrototypes based
on the calculations of the topic similarities by the tJacc coefficient are given.
Obviously, the runtime increases more than linear in both in the number of
topics K to be modeled and in the number of replications R. This is due to the
fact that the computation of the matrices of topic similarities have a quadratic
complexity, since pairwise similarities are computed. The runtime for modeling
the LDAs is linear in the parameters R and K.

Figure 9 shows the corresponding plots for the increase in reliability for
all combinations of R = 50, 100, 200, 500 and K = 5, . . . , 15 and Table B1
the corresponding reliability scores. Consistent with expectations, for fixed K,
increasing the replication number from 50 to 500 does not change the location
parameter for the ecdfs of the mean pairwise LDA similarities. However, the
variance of the similarities decreases due to the higher replication number.
It can be seen that for fixed R and increasing topic number K the level of
similarities decreases. From an average similarity of 0.90 for K = 5 for the
LDA replications, the value decreases to 0.75 for K = 10 and 0.65 for K = 15.
The increase in reliability is marked by the red ecdfs and is clearly pronounced
for all parameter combinations. The gain is larger for higher topic numbers,
so the level of LDAPrototype similarity does not decrease quite as much with
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Table 7 Runtime comparison of LDAPrototypes on the reuters dataset for choices of R
and K; all runtimes refer to minutes on 4 cores.

R 50 100 200 500

K = 5
Min. 0.25 0.72 2.46 16.01

Mean 0.26 0.73 2.49 16.31
Max. 0.31 0.76 2.77 17.16

K = 10
Min. 0.47 1.43 5.47 36.45

Mean 0.48 1.47 5.57 37.03
Max. 0.53 1.64 5.84 38.25

K = 15
Min. 0.79 2.57 9.81 69.28

Mean 0.80 2.65 10.03 70.03
Max. 0.82 2.81 10.37 71.58

increasing parameter K. The gain is also larger for increasing R. This is an
expected behavior because then each prototype is determined from a larger set
of individual LDAs and thus each LDAPrototype becomes even more reliable.
For K = 5, the similarities of the prototypes thus increase from 0.97 for R = 50
to close to 1 for R = 500 (with LDA similarities around 0.90). For K = 9 they
increase from 0.91 to 0.95 (0.78) and for K = 14 from 0.84 to 0.90 (0.67).

The findings from Figure 6 are confirmed here. With increasing R the
reliability gain increases. However, already for small values of R a clear increase
is recognizable. Accordingly, R should be chosen as large as possible depending
on the available computing power.

6.5 Comparison of the introduced datasets

For the corpus of 7453 newspaper articles from the USA Today from 01/06
to 11/30/2016 and the reuters dataset with M = 91, an increase in reliability
could clearly be shown. Lastly, we show that this increase results independently
of the dataset, so that the LDAPrototype method can be reasonably applied
to many different types of text data.

Figure 10 and Table 8 in particular show the increase in reliability for the
datasets tweets, politics, and economy that have not yet been considered so far.
For comparison, the corresponding plots for the usatoday dataset are shown,
for reuters with K = 10 and the four different values for R = 50, 100, 200, 500
(cf. Section 6.4). Figure 4 already showed the computability for large datasets
on the example of the nyt dataset. We did not repeat the computation of
the LDAPrototype 100 times for this dataset due to the comparatively higher
runtime. The tweets dataset, with 3 706 740, does consist of a larger number of
individual documents than the nyt dataset (1 993 182, cf. Table 2). However,
due to the more specific topic structure, we chose a smaller topic number for
this dataset. Together with the fact that the modeled tweets are much shorter
than journalistic texts from the New York Times, this leads to a significantly
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Fig. 9 Increase of reliability for the reuters dataset for R = 50, 100, 200, 500 and K =
5, . . . , 15.
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Fig. 10 Increase of reliability for the datasets tweets, usatoday, politics, and economy with
R = 100 and for reuters with R = 50, 100, 200, 500

lower runtime of just over one day per LDAPrototype than for the nyt dataset
with about 130 days (cf. Table 3).

The plots show a lower gain in reliability for tweets than for the dataset
economy, for example. This might surprise because the similarities of the basic
LDA repelications are already somewhat higher for the latter. To be concrete,
the similarities increase from about 0.88 to 0.94 for economy and from 0.87 to
0.91 for the dataset consisting of tweets. This reduced gain could be due to the
shorter texts and the resulting higher uncertainty in the modeling. As a result,
the instability of the LDA on this dataset is more pronounced, so that higher
reliability increases are only possible with larger values for R. On the right
side of Figure 10 the results from the Sections 6.2 and 6.4 are recapitulated.
The increase of reliability increases steadily with an increasing number of LDA
replications R.
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Table 8 Reliability scores according to Figure 4 and 10. Comparison of the increase in
reliability obtained by using LDAPrototype on the datasets tweets, politics and economy
(R = H = 100). In addition, the reliability score of the basic LDA replications for the nyt
dataset is given (R = 50).

tweets politics economy nyt

Replications

Min. 0.8683 0.8711 0.8885 -
Mean 0.8735 0.8759 0.8963 0.7982
Max. 0.8790 0.8809 0.9029 -

Selection
LDAPrototype 0.9108 0.9224 0.9453 -

7 Discussion

Topic modeling is popular for understanding text data, though the analysis
of the reliability of topic models is rarely part of applications. This is caused
by plenty of possibilities for measuring stability, but missing strategies for
increasing reliability without touching the original fitting procedure.

We have presented a novel method to address the reliability issue caused
by the inherent instability of the LDA procedure. For this purpose, we want
to improve the reproducibility of the results and we talk about highly reliable
results if they can be reproduced very well. The presented method is based
on the idea of modeling a set of LDAs and then selecting the best, in this
case the most central, model through a selection mechanism. We call this
medoid of several LDA runs LDAPrototype. We deliberately choose not the
best-fit model according to one of the well-known - mostly likelihood-based -
measures [8, 30], but the LDA that agrees most with all other LDAs obtained
from the same text data using the same parameter settings. We were able to
show that the selection of the LDA using our LDAPrototype method strongly
increases the reliability. In comparison, for the datasets under consideration
in this paper, the improvement turns out to be about twice as large as that
obtained from a selection based on perplexity. Moreover, model selection with
the optimal NPMI does not significantly improve the reliability compared to
the basic LDAs, regardless of the number of candidate models.

In various analyses, we have shown that the presented method increases
the reliability of the results. By applying it to different datasets, we have first
shown its feasibility due to the implemented R package and at the same time
that it produces the desired increase in reliability irrespective of the dataset.
We also investigated the influence of the parameters of the number of modeled
topics K and number of LDA replications R on this increase. Furthermore, we
presented differences in the determination of the LDAPrototype based on the
presented similarity measures. All four measures under consideration resulted
in an increase in reliability. No clear ranking could be obtained. The decision for
the thresholded Jaccard (tJacc) coefficient as the default measure is based on
the combination of visible increase in reliability, interpretability of the measure,
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fast implementation, and supporting arguments from studies [35, 36] regarding
correlation with human perception.

One limitation of the method is that the repetition strategy could be com-
putationally demanding on large datasets with a large number of topics. This
can be seen in the example computation on the New York Times dataset (nyt).
However, the results on larger datasets are naturally more stable due to the
large size of the dataset. In fact, the study showed that LDAPrototype basi-
cally has a larger effect in terms of increasing the reliability of the results on
small datasets. For this reason, we see the main application of the method
in scenarios with small to medium sized datasets, where computability - also
through parallelization and easy interfacing to high performance clusters - is
thus not a concern.

The quality of the results of LDAPrototype in terms of correlation with
human perception was not in the scope of the paper, but we plan to inves-
tigate it in further studies. For this, a study with human coders is necessary
and different models like the basic LDA, LDAPrototype, Structural Topic
Model, perplexity or NPMI optimized and potentially other models are eval-
uated regarding their quality by human coders. For this purpose, we focus on
meaningful and distinct topics.

In several application examples - for example in communication studies
- our proposed method has already produced well interpretable topics in an
automated way [e.g. 37]. A side effect from our method is that LDAPrototype
prevents a human ”selection algorithm” that chooses the LDA model that
best supports the hypothesis. The LDAPrototype methodology also forms the
basis for a new LDA method RollingLDA [38], which was developed for the
construction of time-consistent time series using LDA.

The presented idea of selecting a prototypical LDA from a set of LDA runs
can be transferred to other topic models as well. For example, the Structural
Topic Model offers not only pre-initialized topics, but also the possibility of ran-
dom initialization. This causes the issue of limited reliability of interpretations
due to the lack of reproducibility of the results. At this point, the reliability
may also increase using an analogous procedure to the method LDAPrototype.
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Appendix A Additionally implemented
similarity measures for topics

For our selection procedure LDAPrototype, we choose the tJacc coefficient
from Section 3.2 as main similarity measure for comparing topics based on
their word count vectors. In the literature, several alternatives are discussed,
from which we compare the three most promising to our thresholded version
of the Jaccard coefficient in Section 6.3.

While [10] determine topic similarity with a Jaccard coefficient of the top 9
words per topic across multiple runs and measure stability with the median of
the topic similarities, [18] use the cosine similarity (see below). For repetitions
of the same modeling procedure they match topics with the highest cosine
similarity, which additionally has to be greater than an arbitrarily selected
threshold 0.7. Then, for two models the similarity is calculated as the share
of topic matches, and for more than two models by the mean of all pairwise
shares.

[39] and [40] determine topic similarities with an average Jaccard coefficient

AverageJaccard(A,B) =
1

N

N∑

n=1

|An ∩Bn|
|An ∪Bn|

, (A1)

where An and Bn define the sets of the first n words of the ordered lists from
the word sets A and B. They choose N = 5 and find the best matching topics
of different LDA runs based on this measure with the hungarian method [41].
The authors try to encounter the problem that more than two runs of topics
have to be matched by learning a reference model. They calculate the similarity
of one LDA to the reference LDA as the mean average Jaccard coefficient over

all matched topics, characterized by their word sets Zk∗ to the topics Z
(ref)
k

of the reference model. Here Zk∗ denotes the reordered topics’ word lists Zk

of the LDA run, so that matched topics have the same index. Analogously,
they calculate stability over a number of R replications as the mean over
the pairwise similarities against the topics’ word lists of the (predetermined)

reference model Z
(ref)
k by

1

R

R∑

r=1

(
1

K

K∑

k=1

AverageJaccard
(
Z

(ref)
k , Z

(r)
k∗

))
. (A2)

One drawback of this approach is the specification of the reference model,
which should be a good representative of all other LDAs. It is non-trivial to
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determine this representative model. Therefore, our approach follows an oppo-
site strategy. We first calculate similarities between models and then determine
the prototype model, i.e. the most representative LDA run, based on these
values.

[35] argue that Jensen-Shannon divergence [42] is one of the best similar-
ity measures based on word distributions considering correlation with human
judgments. It is a symmetric version of the Kullback-Leibler divergence [43]

KLD (q1, q2) =

V∑

v=1

q1,v log
q1,v

q2,v
, q1, q2 ∈ (0, 1]V (A3)

and treated as similarity measure defined as

JS(wi,wj) = 1−
(

KLD

(
pi,
pi + pj

2

)
+ KLD

(
pj ,

pi + pj
2

))
/2

= 1−KLD(pi,pi + pj)/2−KLD(pj ,pi + pj)/2− log(2), (A4)

pl = (pl,1, ..., pl,V ) =
(
n

(•1)
l , ..., n

(•V )
l

)
/n

(••)
l .

[44] use a normalized variant of the Jensen-Shannon divergence (they refer to
it as the Kullback-Leibler divergence) to measure topic stability, and suggest
using the measure to identify stable topics in repeated runs. In our study in
Section 6.3, we compare the Jensen-Shannon divergence to other approaches
for topic similarity measures. Moreover, [35] found out that a standard Jaccard
coefficient is able to realize higher correlations to human judgments than other
common similarity measures on specific datasets.

[36] showed that Jaccard coefficients perform on par with Jensen-Shannon
divergence and outperform a number of other popular similarity measures like
cosine similarity, which is defined as

cos(wi,wj) =

V∑
v=1

n
(•v)
i n

(•v)
j

√
V∑

v=1

(
n

(•v)
i

)2

√
V∑

v=1

(
n

(•v)
j

)2
. (A5)

and the mentioned Kullback-Leibler divergence. To quantify the quality of the
similarity measures they compare the negative log-likelihood of the model as an
indicator how well the model explains the data. They swap the best matching
topics from models of two time slices and interpret an increase of the negative
log-likelihood as deficiency of the specific similarity measure.

Another option for measuring topic similarity introduced by [45] is the
Rank Biased Overlap (RBO) [46] for comparing ranked lists. The similarity is
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defined as

RBO(A,B) = 2pk
|Ak ∩Bk|
|Ak|+ |Bk|

+
1− p
p

k∑

d=1

2pd
|Ad ∩Bd|
|Ad|+ |Bd|

(A6)

with parameters k ∈ N setting the maximum depth of evaluation and p ∈ (0, 1)
controlling the influence of higher ranked words. While the measure seems to be
useful because it implements a more flexible form of a Jaccard coefficient, the
authors do not investigate stability of LDA models based on RBO. Moreover,
the calculation of the measure is very time consuming.

For our analysis we prefer the thresholded version of the Jaccard coeffi-
cient tJacc as defined in Equation (3), because in Section 6.3 we show that it
performs on par with the others. In addition, it is calculated faster than the
Jensen-Shannon divergence and especially than the RBO. In comparison to the
cosine similarity, calculation of the tJacc is computationally more demanding,
but may lead to an increased interpretability. In view of the large computation
demand for the LDA modeling in big data scenarios, this runtime increase is
acceptable and rather minor. Our R package ldaPrototype offers the possibility
of calculating the prototype based on topic similarities calculated using the
cosine, tJacc, Jensen-Shannon or RBO similarity measure.

Appendix B Additional Figures and Tables
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Fig. B1 Dendrograms of N = 200 topics from R = 4 selected LDA runs on the usatoday
dataset with K = 50 topics each; left: colored by runs; right: colored by cluster membership.
Detail can be found in Figure 5.
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Table B1 Reliability scores according to Figure 9. Comparison of different choices of R
and K on the reuters dataset for the increase in reliability obtained by using LDAPrototype.

Replications Selection

K Min. Mean Max. LDAPrototype

R = 50
5 0.8754 0.8988 0.9205 0.9657
6 0.8456 0.8696 0.9026 0.9626
7 0.8091 0.8394 0.8623 0.9542
8 0.7763 0.8043 0.8370 0.9340
9 0.7397 0.7740 0.8000 0.9157

10 0.7167 0.7473 0.7806 0.8967
11 0.7000 0.7220 0.7466 0.8784
12 0.6798 0.7029 0.7288 0.8707
13 0.6615 0.6844 0.7116 0.8596
14 0.6321 0.6625 0.6900 0.8369
15 0.6045 0.6415 0.6639 0.8066

R = 100
5 0.8806 0.8975 0.9098 0.9834
6 0.8521 0.8689 0.8933 0.9688
7 0.8123 0.8376 0.8541 0.9681
8 0.7832 0.8035 0.8362 0.9490
9 0.7572 0.7752 0.7952 0.9313

10 0.7279 0.7479 0.7660 0.9189
11 0.7022 0.7224 0.7430 0.9129
12 0.6815 0.7019 0.7240 0.9018
13 0.6543 0.6832 0.7014 0.8788
14 0.6439 0.6647 0.6849 0.8626
15 0.6233 0.6436 0.6641 0.8407

R = 200
5 0.8878 0.8975 0.9067 0.9861
6 0.8565 0.8684 0.8832 0.9780
7 0.8189 0.8372 0.8544 0.9771
8 0.7849 0.8065 0.8226 0.9613
9 0.7564 0.7752 0.7913 0.9351

10 0.7370 0.7473 0.7587 0.9242
11 0.7070 0.7229 0.7399 0.9303
12 0.6832 0.7017 0.7140 0.9204
13 0.6666 0.6828 0.6962 0.9005
14 0.6497 0.6645 0.6778 0.8768
15 0.6263 0.6431 0.6545 0.8498

R = 500
5 0.8910 0.8985 0.9042 0.9912
6 0.8578 0.8699 0.8814 0.9857
7 0.8290 0.8375 0.8449 0.9799
8 0.7959 0.8053 0.8146 0.9679
9 0.7656 0.7745 0.7849 0.9492

10 0.7394 0.7483 0.7577 0.9334
11 0.7136 0.7240 0.7322 0.9360
12 0.6950 0.7025 0.7127 0.9538
13 0.6755 0.6825 0.6900 0.9209
14 0.6541 0.6635 0.6711 0.8942
15 0.6356 0.6429 0.6511 0.8739
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Dynamic change detection in topics based on rolling
LDAs
Jonas Rieger1, Kai-Robin Lange1, Jonathan Flossdorf1 and Carsten Jentsch1

1Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany

Abstract
Topic modeling methods such as e.g. Latent Dirichlet Allocation (LDA) are popular techniques to analyze
large text corpora. With huge amounts of textual data that are collected over time in various fields of
applied research, it becomes also relevant to be able to automatically monitor the evolution of topics
identified from some sort of dynamic topic modeling approach. For this purpose, we propose a dynamic
change detection method that relies on a rolling version of the classical LDA that allows for coherently
modeled topics over time that are able to adapt to changing vocabulary. The changes are detected by
assessing the intensity of word change in the LDA’s topics over time in comparison to the expected
intensity of word change under stable conditions using resampling techniques. We apply our method to
topics obtained by applying the RollingLDA to Covid-19 related news data from CNN and illustrate that
the detected changes in these topics are well interpretable.

Keywords
change point, event, shift, narrative, story, evolution, monitoring, Latent Dirichlet Allocation

1. Introduction

While change detection is an active field in modern research, the application for text data
poses even further obstacles due to its unstructured nature. And yet, an effective method for
change detection would have many use cases. Particularly, when dealing with large text corpora
collected over time, an online detection approach will be useful to analyze the evolution of
narratives or to spot a shift in a discourse about certain topics. For this purpose, we propose an
online change detection method for text data by analyzing the change of word distributions
within topics of Latent Dirichlet Allocation (LDA) models. As we are dealing with time series
of textual data, we make use of a rolling version of the classical LDA, called RollingLDA [1].
The method is designed to construct coherently interpretable topics modeled over time that are
allowed to adapt to a changing vocabulary. The changes are detected by dynamically assessing
the change intensity in word usage in the LDA’s topics over time in comparison to the change
intensity expected in stable periods using resampling techniques.
The main goal of change detection is to identify possible anomalies in a process. Typically,
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there are the two perspectives towards this issue: offline and online applications. Our approach
is applicable for both tasks, but, for each time point, it relies exclusively on the text data that has
already been observed. Hence, we focus on the usually more relevant task of online monitoring.
In traditional schemes for change detection [2, 3], control charts are applied to visualize the
monitoring procedure using a control statistic which is successively calculated for each time
point. An alarm is triggered whenever the statistic lies outside of some control limits. In practice,
there are a variety of different control charts including memory-free setups (e.g. Shewhart
charts) and memory-based charts (e.g. EWMA, CUSUM), However, these traditional procedures
can not be applied to textual data off the shelf because of the high dimensionality of large text
corpora. In addition, an in-control state to reliably calculate the control limits is frequently
not available due to the strong dynamics in text data, e.g. newspaper articles. To overcome
these issues, we propose to use a control statistic based on a similarity metric that represents
the resemblance of topic’s word distributions over consecutive time points. Control limits
are derived by a resampling procedure using word count vectors based on time-variant topics
modeled by RollingLDA [1].
In a similar context, the usage of LDA was proposed for change point detection for topic

distributions in texts [4], which is based on a modified version of the wild binary segmentation
algorithm [5] designed for offline detection setups. There is also work considering Bayesian
online monitoring [6] for textual data using a document-based model [7] and an approach based
on similarity metrics, which aims to detect global events in topics in offline settings [8]. There
is also work which analyzes the transitions of narratives between topics [9]. In contrast, the
rolling window approach of RollingLDA constructs coherently interpretable topics modeled
over time and allows the resulting dynamic change detection method to become applicable
in online settings. Compared to the mentioned related methods, our method is designed to
detect changes in word distributions of topics over time rather than global changes in topic
distributions (of sets) of documents [e.g. 4, 7, 8] or sentiments in topics [e.g. 10] or (in contrast)
changes in topic distributions of words [e.g. 11]. This results in a more refined monitoring
procedure that allows for the detection of narrative shifts that are changing the word usage
within a certain topic instead of measuring the frequency of a topic over time within the whole
corpus. Building on this, we aim that our proposed method can provide groundwork for the
extraction and temporal localization of narratives in texts.

2. Methodological framework

For the proposed change detection algorithm, we make use of the existing method of a rolling
version of the classical LDA (RollingLDA) to construct coherent topics over time and measure
similarities of topics for consecutive time points using the well-established cosine similarity.

2.1. Latent Dirichlet Allocation

The classical LDA [12] models distributions of 𝐾 latent topics for each text. Let𝑊 (𝑚)
𝑛 be a single

word token at position 𝑛 = 1, …𝑁 (𝑚) in text 𝑚 = 1,… ,𝑀 of a corpus of 𝑀 texts. Then, a single
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text is given by

𝐷(𝑚) = (𝑊 (𝑚)
1 , … ,𝑊 (𝑚)

𝑁 (𝑚)) , 𝑊 (𝑚)
𝑛 ∈ 𝑊 = {𝑊1, … ,𝑊𝑉}, 𝑉 = |𝑊|

and the corresponding topic assignments for each text are given by

𝑇 (𝑚) = (𝑇 (𝑚)1 , … , 𝑇 (𝑚)𝑁 (𝑚)) , 𝑇 (𝑚)𝑛 ∈ 𝑇 = {𝑇1, … , 𝑇𝐾}.

From this, let 𝑛(𝑚𝑣)𝑘 , 𝑘 = 1, … , 𝐾, 𝑣 = 1, … , 𝑉 denote the number of assignments of word 𝑣 in text

𝑚 to topic 𝑘. Then, we define the cumulative count of word 𝑣 in topic 𝑘 over all texts by 𝑛(•𝑣)𝑘 and

denote the total count of assignments to topic 𝑘 by 𝑛(••)𝑘 . Using these definitions, the underlying
probability model [13] can be written as

𝑊 (𝑚)
𝑛 ∣ 𝑇 (𝑚)𝑛 , 𝜙𝑘 ∼ Discr(𝜙𝑘), 𝜙𝑘 ∼ Dir(𝜂), 𝑇 (𝑚)𝑛 ∣ 𝜃𝑚 ∼ Discr(𝜃𝑚), 𝜃𝑚 ∼ Dir(𝛼).

For a given parameter set {𝐾, 𝛼, 𝜂}, with the Dirichlet priors 𝛼 and 𝜂 defining the type of mixture
of topics in every text and the type of mixture of words in every topic, LDA assigns one of the
𝐾 topics to each token. A word distribution estimator per topic for 𝜙𝑘 = (𝜙𝑘,1, … , 𝜙𝑘,𝑉)𝑇 ∈ (0, 1)𝑉
can be derived through the collapsed Gibbs sampler procedure [13] by

̂𝜙𝑘,𝑣 =
𝑛(•𝑣)𝑘 + 𝜂

𝑛(••)𝑘 + 𝑉𝜂
. (1)

2.2. RollingLDA

RollingLDA [1] is a rolling version of classical LDA. New texts are modeled based on existing
topics of the previous model. Thereby, not the whole knowledge of the entire past of the model
is used, but only the information of the topics from more recent texts based on a user-chosen
memory parameter. For each time point, based on the topic assignments within this memory
period, the topics are initialized and modeled forward. This form of modeling preserves the topic
structure of the model so that topics remain coherently interpretable over time. At the same
time, constraining the knowledge of the model to the user-chosen memory period allows for
changes in topics based on new vocabulary or word choices. There are other dynamic variants
of the LDA approach [14, 15, 16, 17, 18] deliberately designed to model gradual changes, and
therefore not as well suited to detect abrupt changes. We use the update algorithm RollingLDA
to make our proposed change detection method applicable in an online manner. Thereby, a text
is assigned to a time point on the basis of its publication date. The step size of the and is chosen
on a weekly basis in the present case as this seems natural for journalistic texts.

2.3. Similarity

Our change detection algorithm builds on a similarity measure for word count vectors. Following
up on the notation from Section 2.1 the word count vector for topic 𝑘 ∈ {1, … , 𝐾} at one time
point 𝑡 ∈ {0, … , 𝑇 } is given by

𝑛𝑘|𝑡 = (𝑛(•1)𝑘|𝑡 , … , 𝑛(•𝑉 )𝑘|𝑡 )
𝑇
∈ ℕ𝑉

0 = {0, 1, 2, …}𝑉.
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Then, monitoring the similarity of topics over time for (consecutive) time points 𝑡1 and 𝑡2 is
done using the cosine similarity

cos (𝑛𝑘|𝑡1 , 𝑛𝑘|𝑡2) =
∑𝑣 𝑛

(•𝑣)
𝑘|𝑡1

𝑛(•𝑣)𝑘|𝑡2

√∑𝑣 (𝑛
(•𝑣)
𝑘|𝑡1 )

2

√∑𝑣 (𝑛
(•𝑣)
𝑘|𝑡2 )

2
. (2)

The choice of cosine similarity is common in the context of change point detection for text
data [e.g. 8, 19]. Compared to other similarity measures such as the Jaccard coefficient, Jensen-
Shannon Divergence, 𝜒2-, Hellinger and Manhattan Distance, the cosine similarity fulfills some
typical conditions required for monitoring a similarity measure [1].

3. Change detection

In combination with the existing method RollingLDA and cosine similarity, our contributed
method for change detection relies on classical resampling approaches to identify changes
within topics. We estimate the realized change in a topic based on the similarity between the
current and previous count vectors of word assignments and compare the resulting similarity
score to resampling-based similarity scores which are generated under stable conditions, such
that no extraordinary changes occurred in the topic.

3.1. Set of changes

Suppose we consider 𝐾 topics over 𝑇 time points to be monitored. If the actual observed
similarity of the word vector of some topic 𝑘 ∈ {1, … , 𝐾} at some time 𝑡 ∈ {0, 1, … , 𝑇 } given
by 𝑛𝑘|𝑡, compared to the frequency vector of the topic over a predefined reference time period
𝑡 − 𝑧𝑡𝑘, … , 𝑡 − 1, given by

𝑛𝑘|(𝑡−𝑧 𝑡𝑘)∶(𝑡−1) =
𝑧𝑡𝑘
∑
𝑧=1

𝑛𝑘|𝑡−𝑧, (3)

is smaller than a threshold 𝑞𝑡𝑘 which is calibrated based on similarities under stable conditions
(see Section 3.2), then we identify a change within topic 𝑘 at time 𝑡. The set of identified changes
in topic 𝑘 up to time point 𝑡 can then be defined as

𝐶 𝑡𝑘 = {𝑢 ∣ 0 < 𝑢 ≤ 𝑡 ≤ 𝑇 ∶ cos (𝑛𝑘|𝑢, 𝑛𝑘|(𝑢−𝑧𝑢𝑘 )∶(𝑢−1)) < 𝑞𝑡𝑘} ∪ 0, (4)

where the time point 𝑡 = 0 is always included for technical reasons, to compute the current run
length without a change 𝑧𝑡𝑘 = min {𝑧max, 𝑡 −max 𝐶 𝑡−1𝑘 }. Thus, the reference period spans the
last 𝑧max time points if no change was detected during that time, and spans the time that has
passed since the last change, otherwise. The parameter 𝑧max is to be chosen by the user and is
intended to smooth the similarities to prevent from detecting false positives.
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3.2. Dynamic thresholds

For the calculation of the threshold 𝑞𝑡𝑘, the estimated word distribution of a topic 𝑘 at some time
point 𝑡, as well as over the corresponding reference period 𝑡 − 𝑧𝑡𝑘, … , 𝑡 − 1 are needed. For this,

let ̂𝜙𝑡𝑘 and ̂𝜙(𝑡−𝑧
𝑡
𝑘)∶(𝑡−1)

𝑘 be defined by

̂𝜙𝑡𝑘,𝑣 =
𝑛(•𝑣)𝑘|𝑡 + 𝜂

𝑛(••)𝑘|𝑡 + 𝑉𝜂
and ̂𝜙(𝑡−𝑧

𝑡
𝑘)∶(𝑡−1)

𝑘,𝑣 =
𝑛(•𝑣)𝑘|(𝑡−𝑧 𝑡𝑘)∶(𝑡−1)

+ 𝜂

𝑛(••)𝑘|(𝑡−𝑧𝑡𝑘)∶(𝑡−1)
+ 𝑉𝜂

(5)

analogously to Equation (1).
The application of the change point detection algorithm is designed for text data, more

precisely for empirical word distributions of 𝐾 topics modeled by LDA in a given text corpus.
Since word choice - especially in journalistic texts - varies considerably over time, a situation in
which there is no change in the word distribution within topics across consecutive time points
does not reflect the expected situation. Rather, it is to be expected that topics change gradually
on an ongoing basis. Accordingly, our method aims to identify not the numerous customary
changes in the topics, but the unexpectedly large ones. To do so, we define an expected word
distribution ̃𝜙(𝑡)𝑘 for time point 𝑡 under stable conditions that include the customary changes
as a convex combination of the two estimators of the word distribution of topic 𝑘, one for the
reference time period 𝑡 − 𝑧𝑡𝑘, … , 𝑡 − 1 and one for the current time point 𝑡. Using the mixture
parameter 𝑝 ∈ [0, 1], which can be tuned based on how substantial the detected changes should
be, the intensity of the expected change is considered in the determination of this estimator by

̃𝜙(𝑡)𝑘 = (1 − 𝑝) ̂𝜙(𝑡−𝑧
𝑡
𝑘)∶(𝑡−1)

𝑘,𝑣 + 𝑝 ̂𝜙(𝑡)𝑘,𝑣. (6)

Our method uses the estimator ̃𝜙(𝑡)𝑘 to simulate 𝑅 expected word count vectors �̃�𝑟𝑘|𝑡, 𝑟 = 1, … , 𝑅
based on a parametric bootstrap approach. In this process, each word is drawn according to its
estimated probability of occurrence regarding ̃𝜙(𝑡)𝑘 and each sample 𝑟 consists of 𝑛(••)𝑘|𝑡 draws, the
number of words assigned to topic 𝑘 at time point 𝑡. Then, we calculate the cosine similarity

cos (�̃�𝑟𝑘|𝑡, 𝑛𝑘|(𝑡−𝑧𝑡𝑘)∶(𝑡−1)) (7)

for each of the 𝑟 = 1, … , 𝑅 bootstrap samples and set the threshold 𝑞𝑡𝑘 equal to the 0.01 quantile
of these simulated similarity values generated under stable conditions. Combinations of topics
and time points for which the observed similarity is smaller than the corresponding quantile
are classified as change points according to Equation (4).

4. Analysis

For conducting the real data analysis, the data set under study was created with Python,
whereas the preprocessing, the modeling, all postprocessing steps and analyses are performed
using R. The scripts for all analysis steps can be found in the associated GitHub repository
github.com/JonasRieger/topicalchanges.
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4.1. Data and study design

To assess the quality of our change point algorithm, we use the TLS-Covid19 data set [20]. It is
generated using Covid-19 related liveblog articles of CNN, collected from January 22nd 2020 up
until December 12th 2021. Each liveblog is interpreted to belong to a topic and comprises texts
and key moments. The texts form a time line containing events, which are summarized by its
key moments. The resulting corpus consists of 27,432 texts and 1,462 key moments. Although
the data set contains multiple key moments per day on average, we do not consider all them a
change point as our aim is to detect larger changes based on aggregated weekly texts. However,
these key moments serve well as indicators, which enable us to check whether the detected
changes are actually related to real events or if they are false positives.
We use common NLP preprocessing steps for the texts, i.e. characters are formatted to

lowercase, numbers and punctuation are removed. Moreover, a trusted stopword list is applied
to remove words that do not help in classifying texts in topics, we use a lemmatization dictionary
(github.com/michmech/lemmatization-lists) and neglect words with less than two characters.

We model the CNN data set using RollingLDA on a weekly basis, starting on Saturday of
each week, and we consider the previous week as initialization for the model’s topics. The first
10 days of modeling, Wednesday, January 22nd 2020 until Friday, January 31st 2020, serve as
the initial chunk corresponding to 𝑡 = 0. During this period, 605 texts were published. In the
data set, there are weeks that do not contain any texts. In this case, the corresponding time
point is omitted. Then, to model the texts of the following chunk, at least the last 10 texts
are used, as well as all other texts published on the same date as the oldest of these 10 texts.
As parameters, we assume 𝐾 = 12 topics, define the reference period of the topics to the last
𝑧max = 4 weeks, and choose 𝑝 = 0.85, since these values are accountable by plausibility and
seem to yield reasonable results. For other parameter choices, i.e. 𝐾 = 8,… , 20, 𝑧max = 1,… , 20,
𝑝 = 0.5, … 0.8, 0.81, … , 0.90, results can be found in our associated repository.

4.2. Findings

The results of our chosen model are displayed in Figure 1. Fig. 1a shows the detected changes
by vertical gray lines, which are the weeks in which the observed similarity (blue curve) is
lower than the expected one (red curve). Furthermore, for two changes we show which words
are mainly causing the detection of the change. The score of a word in a topic at a given time
point is calculated by the topic’s similarity without considering this word and subtracting it
from the actual realized similarity. These leave-one-out cosine impact scores for the words with
the five most negative scores are shown in Fig. 1b and 1c. In general, most of the changes we
detect occur within the first four months of 2020. This is because the wording was constantly
changing, as the Covid-19 epidemic turned into a pandemic over the course of these months.
New people and organizations were associated with Covid-19, which is why we detect a bunch
of consecutive changes in every topic. As the pandemic reached out into further countries,
the detected changes became less frequent for most topics. In the following we share our
interpretation of some exemplary detected changes.
The third topic, containing information about vaccination and testing procedures, shows

a change in the week starting on the 13th of March 2021. In this week, the AstraZeneca
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Figure 1: Similarity values, thresholds, and detected changes over the observation period for all 𝐾 = 12
topics, as well as the five most influential words for two selected change points in topics 2 and 9.

vaccination process in several EU-states was stopped due the risk of causing blood clots.1

The sixth topic, a topic about medical studies and research, shows a change in the following
week, in which AstraZeneca presented a study about the effectiveness of its vaccine.2 Another
interesting detection is the change in the vaccination-related topic 10 in December 2020, just as
the vaccination process started in the US.3

Political changes are also detected in several topics, such as the start of Joe Biden’s presidential
era in late January 2021 in topic 11, the return of Donald Trump to office after his Covid-19
infection in October 20204 in topic 9 (cf. Fig. 1c) or the discussion about the origin of the virus
after a WHO report in late March 2021 in topic 9.5 A Covid-19 outbreak in the South Korean
Sarang-jeil church in August 20206 is detected in topic 2 (cf. Fig. 1b).

While these topics detect changes across the entire time span, the twelfth topic, representing
the report of the current number of Covid cases, does not detect a single change after March

1CNN online, 2021-03-15 3:03 p.m. ET, “Spain joins Germany, France and Italy in halting AstraZeneca Covid-
19 vaccinations”, https://edition.cnn.com/world/live-news/coronavirus-pandemic-vaccine-updates-03-15-21/h_
d938057f2ef588f74565bdbb01f12387, visited on 2022-01-20.

2CNN online, 2021-03-25 2:48 a.m. ET, “New AstraZeneca report says vaccine was 76% effective in preventing
Covid-19 symptoms”, https://edition.cnn.com/world/live-news/coronavirus-pandemic-vaccine-updates-03-25-21/h_
9f01e2e53b62873f1c742254d27fbf5f, visited on 2022-01-20.

3CNN online, 2020-12-14 10:08 p.m. ET, “The first doses of FDA-authorized Covid-19 vac-
cine were administered in the US. Here’s what we know”, https://edition.cnn.com/world/live-news/
coronavirus-pandemic-vaccine-updates-12-15-20/h_32be1a72dc05f874eda167c95c8f1bba, visited on 2022-01-20.

4CNN online, 2020-10-12 12:01 a.m. ET, “Trump says he tested ‘totally negative’ for Covid-19”, https://edition.
cnn.com/world/live-news/coronavirus-pandemic-10-12-20-intl/h_7570d53b184a5b1d6ec97ce67330e4c9, visited on
2022-01-20.

5CNN online, 2021-03-29 11:22 a.m. ET, “Upcoming WHO report will deem Covid-19 lab leak extremely un-
likely, source says”, https://www.cnn.com/world/live-news/coronavirus-pandemic-vaccine-updates-03-29-21/h_
1f239fee1b0584ca9a5b6085357ac907, visited on 2022-01-20.

6CNN online, 2020-08-20 12:55 a.m. ET, “South Korea’s latest church-linked coronavirus outbreak is turning
into a battle over religious freedom”, https://edition.cnn.com/world/live-news/coronavirus-pandemic-08-20-20-intl/
h_288a15acd1b29e732c4e10693641088a, visited on 2022-01-20.
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2020. This is most likely because, after the pandemic had reached the US and Europe in early
2020, the number of cases was consistently reported and the interpretations and implication of
those case numbers are detected as changes in other topics. Even in the last months of the data
set, in which the number of texts decreased and the results thus show a lower similarity, the
twelfth topic retained a rather high similarity of above 0.75.

5. Discussion

In this paper, we presented a novel change detection method for text data. To construct
coherently interpretably topics, we used RollingLDA to model a time series on textual data and
compared the model’s word distribution vectors with those of texts resampled under stable
conditions. We applied our model on the TLS-Covid19 data set consisting of Covid-19 related
news articles from CNN between January 2020 and December 2021.
Our method detects several meaningful changes in the evolving news coverage during the

pandemic, including e.g. the start of vaccinations and several controversies over the course of
the vaccination campaign as well as political changes such as the start of Joe Biden’s presidential
era. Out of 78 detected changes, we were instantly able to judge 55 (71%) as plausible ones based
on manual labeling using the leave-one-out cosine impacts (cf. Fig. 1b, 1c and repository). The
share increases to 78% if we exclude the turbulent initial phase of the Covid-19 pandemic and
only consider changes since April 2020. While we cannot tell how many changes were missed
out that could be considered as important as the ones mentioned above, our model contains a
mixture parameter to calibrate the detection for general change of topics within a usual news
week. If more, but less substantial or less, but more substantial changes are to be detected,
this parameter 𝑝 can be tuned accordingly. In combination with the maximum length of the
reference period 𝑧max, the set {𝑝, 𝑧max} forms the model’s hyperparameters to be optimized.
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Abstract. A large number of applications in text data analysis use the
Latent Dirichlet Allocation (LDA) as one of the most popular methods
in topic modeling. Although the instability of the LDA is mentioned
sometimes, it is usually not considered systematically. Instead, an LDA
is often selected from a small set of LDAs using heuristic means or hu-
man codings. Then, conclusions are often drawn based on the to some
extent arbitrarily selected model. We present the novel method LDAPro-
totype, which takes the instability of the LDA into account, and show
that by systematically selecting an LDA it improves the reliability of the
conclusions drawn from the result and thus provides better reproducibil-
ity. The improvement coming from this selection criterion is unveiled by
applying the proposed methods to an example corpus consisting of texts
published in a German quality newspaper over one month.

Keywords: Topic Model · Machine Learning · Similarity · Stability ·

Stochastic

1 Introduction

Due to the growing number and especially the increasing amount of unstructured
data, it is of great interest to be able to analyze them. Text data is an example
for unstructured data and at the same time it covers a large part of them. It is
organized in so-called corpora, which are given by collections of texts.

For the analysis of such text data topic models in general and the Latent
Dirichlet Allocation in particular is often used. This method has the weakness
that it is unstable, i.e. it gives different results for repeated runs. There are
various approaches to reduce this instability. In the following, we present a new
method LDAPrototype that improves the reliability of the results by choosing
a center LDA. We will demonstrate this improvement of the LDA applying the
method to a corpus consisting of all articles published in the German quality
newspaper Süddeutsche Zeitung in April 2019.

1.1 Related Work

The Latent Dirichlet Allocation [3] is very popular in text data analysis. Nu-
merous extensions to Latent Dirichlet Allocation have been proposed, each cus-
tomized for certain applications, as the Author-Topic Model [18], Correlated
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2 J. Rieger et al.

Topics Model [2] or the more generalized Structural Topic Model [17]. We fo-
cus on LDA as one of the most commonly used topic models and propose a
methodology to increase reliability of findings drawn from the results of LDA.

Reassigning words to topics in the LDA is based on conditional distributions,
thus it is stochastic. This is rarely discussed in applications [1]. However, several
approaches exist to encounter this problem based on a certain selection crite-
rion. One of these selection criteria is perplexity [3], a performance measure for
probabilistic models to estimate how well new data fit into the model [18]. As
an extension, Nguyen et al. [13] proposed to average different iterations of the
Gibbs sampling procedure to achieve an increase of perplexity. In general, it was
shown that optimizing likelihood-based measures like perplexity does not select
the model that fits the data best regarding human judgements. In fact, these
measures are negatively correlated with human judgements on topic quality [5].
A better approach should be to optimize semantic coherence of topics as Chang
et al. [5] proposed. They provide a validation technique called Word or Topic
Intrusion which depends on a coding process by humans. Measures without hu-
man interaction, but almost automated, and also aiming to optimize semantic
coherence can be transferred from the Topic Coherence [12]. Unfortunately, there
is no validated procedure to get a selection criterion for LDA models from this
topic’s ”quality” measure. Instead, another option to overcome the weakness of
instability of LDA is to start the first iteration of the Gibbs sampler with reason-
ably initialized topic assignments [11] of every token in all texts. One possibility
is to use co-occurences of words. The initialization technique comes with the
drawback of restricting the model to a subset of possible results.

1.2 Contribution

In this paper, we propose an improvement of the Latent Dirichlet Allocation
through a selection criterion of multiple LDA runs. The improvement is made
by increasing the reliability of results taken from LDA. This particular increase
is obtained by selecting the model that represents the center of the set of LDAs
best. The method is called LDAPrototype [16] and is explained in Section 3. We
show that it generates reliable results in the sense that repetitions lie in a rather
small sphere around the overall centered LDA, when applying the proposed
methods to an example corpus of articles from the Süddeutsche Zeitung.

2 Latent Dirichlet Allocation

The method we propose is based on the LDA [3] estimated by a Collapsed Gibbs
sampler [6], which is a probabilistic topic model that is widely used in text data
analysis. The LDA assumes that there is a topic distribution for every text, and
it models them by assigning one topic from the set of topics T = {T1, ..., TK} to
every token in a text, where K ∈ N denotes the user-defined number of modeled
topics. We denote a text (or document) of a corpus consisting of M texts by

D(m) =
(
W

(m)
1 , ...,W

(m)

N(m)

)
, m = 1, ...,M, W (m)

n ∈W , n = 1, ..., N (m).
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On Reliability of the LDAPrototype 3

We refer to the size of text m as N (m); W = {W1, ...,WV } is the set of words
and V ∈ N denotes the vocabulary size. Then, analogously the topic assignments
of every text m are given by

T (m) =
(
T

(m)
1 , ..., T

(m)

N(m)

)
, m = 1, ...,M, T (m)

n ∈ T, n = 1, ..., N (m).

Each topic assignment T
(m)
n corresponds to the token W

(m)
n in text m. When

n
(mv)
k , k = 1, ...,K, v = 1, ..., V describes the number of assignments of word v in

text m to topic k, we can define the cumulative count of word v in topic k over

all documents by n
(•v)
k . Then, let wk = (n

(•1)
k , ..., n

(•V )
k )T denote the vectors of

word counts for the k = 1, ...,K topics. Using these definitions, the underlying
probability model of LDA [6] can be written as

W (m)
n | T (m)

n ,φk ∼ Discrete(φk), φk ∼ Dirichlet(η),

T (m)
n | θm ∼ Discrete(θm), θm ∼ Dirichlet(α),

where α and η are Dirichlet distribution hyperparameters and must be set by
the user. Although the LDA permits α and η to be vector valued [3], they are
usually chosen symmetric because typically the user has no a-priori information
about the topic distributions θ and word distributions φ. Increasing η leads to
a loss of homogenity of the mixture of words per topic. In contrast, a decrease
leads to a raise of homogenity, identified by less but more dominant words per
topic. In the same manner α controls the mixture of topics in texts.

3 LDAPrototype

The Gibbs sampler in the modeling procedure of the LDA is sensitive to the ran-
dom initialization of topic assignments as mentioned in Section 1.1. We present
a method that reduces the stochastic component of the LDA. This adaption
of the LDA named LDAPrototype [16] increases the reliability of conclusions
drawn from the resulting prototype model, which is obtained by selecting the
model that seems to be the most central of (usually around) 100 independently
modeled LDA runs. The procedure can be compared to the calculation of the
median in the univariate case.

The method makes use of topic similarities measured by the modified Jaccard
coefficient for the corresponding topics to the word count vectors wi and wj

Jm(wi,wj) =

V∑
v=1

1{
n
(•v)
i >ci ∧ n

(•v)
j >cj

}

V∑
v=1

1{
n
(•v)
i >ci ∨ n

(•v)
j >cj

}
,

where c is a vector of lower bounds. Words are assumed to be relevant for a
topic if the count of the word passes this bound. The threshold c marks the
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modification to the traditional Jaccard coefficient [8] and can be chosen in an
absolute or relative manner or as a combination of both.

The main part of LDAPrototype is to cluster two independent LDA replica-
tions using Complete Linkage [7] based on the underlying topic similarities of
those two LDA runs. Let G be a pruned cluster result composed by single groups
g consisting of topics and let g|1 and g|2 denote groups of g restricted to topics
of the corresponding LDA run. Then, the method aims to create a pruning state
where g|1 and g|2 are each build by only one topic for all g ∈ G. This is achieved
by maximizing the measure for LDA similarity named S-CLOP (Similarity of
Multiple Sets by Clustering with Local Pruning) [16]:

S-CLOP(G) = 1− 1

2K

∑

g∈G
|g|
(
||g|1| − 1|+ ||g|2| − 1|

)
∈ [0, 1].

We denote the best pruning state by G∗ = arg max{S-CLOP(G)} for all possible
states G and determine similarity of two LDA runs by S-CLOP(G∗). The proto-
type model of a set of LDAs then is selected by maximizing the mean pairwise
similarity of one model to all other models.

The methods are implemented in the R [14] package ldaPrototype [15]. The
user can specify the number of models, various options for c including a minimal
number of relevant words per topic as well as the necessary hyperparameters for
the basic LDA α, η,K and the number of iterations the Gibbs sampler should
run. The package is linked to the packages lda [4] and tosca [10].

4 Analysis

We show that the novel method LDAPrototype improves the Latent Dirichlet
Allocation in the sense of reliability. To prove that, the following study design is
applied to an example corpus from the German quality newspaper Süddeutsche
Zeitung (SZ). The corpus consists of all 3 718 articles published in the SZ in April
2019. It is preprocessed using common steps for cleaning text data including
duplicate removal leading to 3 468 articles. Moreover, punctuation, numbers and
German stopwords are removed. In addition, all words that occur ten times or
less are deleted. This results in M = 3 461 non-empty texts and a vocabulary
size of V = 11 484. The preprocessing was done using the R package tosca [10].

4.1 Study Design

The study is as follows: First of all, a large number N of LDAs is fitted. This set
represents the basic population of all possible LDAs in the study. Then we repeat
P times the random selection of R LDAs and calculate their LDAPrototype. This
means, finally P prototypes are selected, each based on R basic LDAs, where
each LDA is randomly drawn from a set of N LDAs. Then, a single prototype is
determined based on a comparison of the P prototypes. This particular prototype
forms the assumed true center LDA. In addition, we establish a ranking of all
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Population of
25 000 LDAs

Prototype 1

Prototype 2

Prototype 500

...
LDAPrototype:
true center LDA

500 LDAs

500 LDAs

500 LDAs

Fig. 1: Schematic representation of the study design for N = 25 000 LDAs in
the base population and P = 500 selected prototypes, each based on R = 500
sampled LDAs from the base population.

other prototypes. The order is determined by sequentially selecting the next best
prototype which realizes the maximum of the mean S-CLOP values by adding
the corresponding prototype and simultaneously considering all higher ranked
LDAPrototypes.

For the application we choose three different parameter combinations for the
basic LDA. In fact, we want to model the corpus of the SZ with K = 20, 35, 50
topics. We choose accordingly α = η = 1/K and let the Gibbs sampler iterate
200 times. We choose the size of the population as N = 25 000, so that we
initially calculate a total of 75 000 LDAs, which is computationally intensive but
bearable. We use the R package ldaPrototype [15] to compute the models on batch
systems. We set the parameters of the study to a sufficiently high and at the same
time calculable value of P = R = 500. That is, we get 500 PrototypeLDAs, each
based on 500 basic LDAs, that are sampled without replacement from the set of
25 000 basic LDAs. The sampling procedure is carried out without replacement
in order to protect against falsification by multiple selection of one specific LDA.
Figure 1 represents this particular study design schematically.

Then, we inspect the selection of the P prototypes. On the one hand, we
quantify the goodness of selection by determining how many LDAs, that were
available in the corresponding run, are ranked before the corresponding LDAPro-
totype. On the other hand, the analysis of the distance to the best available
LDA run in the given prototype run provides a better assessment of the reliabil-
ity of the method. We compare the observed values with randomized choices of
the prototype. This leads to statements of the form that the presented method
LDAPrototype selects its prototypes only from a sufficiently small environment
around the true center LDA, especially in comparison to random selected LDAs.

4.2 Results

For the analysis we first determine the true center LDA and a ranking for all 500
prototypes as described in Section 4.1 for each K = 20, 35, 50. The corresponding
mean S-CLOP value at the time of addition is assigned to each prototype in the
ranking as a measure of proximity to the true center LDA. To visualize the
rankings, we use so-called beanplots [9] as a more accurate form of boxplots, as
well as empirical cumulative distribution functions (ECDF) and bar charts.
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(c) Number of LDAs that are closer to the center LDA than the selected LDAPrototype.

Fig. 2: Analysis of the improvement of reliability by using the LDAPrototype
for K = 20, 35, 50 modeled topics. Every single value corresponds to one of the
P = 500 prototype runs resulting in the corresponding LDAPrototype.

For K = 20, 35, 50 each of the 25 000 LDAs is included at least once in the 500
times 500 selected LDAs. Nevertheless, only 169, 187 and 186 different LDAs are
chosen as prototypes. The LDAPrototype method thus differs significantly from
a random selection, whose associated simulated 95% confidence interval suggests
between 490 and 499 different prototypes.

Figure 2 summarizes the analysis of the increase of reliability for 20, 35 and
50 topics, respectively. The beanplots in Figure 2a indicate the distance of each
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LDA actually selected from the LDAPrototype method to the supposedly most
suitable LDA from the identical prototype run with respect to the values from the
ranking. For comparison, the distribution of the distances for random selection
of the prototype is given besides. The corresponding values were generated by
simulation with permutation of the ranking. The ECDFs in Figure 2b show the
relative number of LDAs, in each of the P = 500 prototype runs, that according
to the ranking would represent a better choice as prototype. Finally, the bar
charts in Figure 2c show the corresponding distribution of the absolute numbers
of available better LDAs in the same run in accordance to the determined ranking
of prototypes. In addition, simulated 95% confidence intervals for frequencies
realized by the use of random selection are also shown.

For K = 20, many randomly selected LDAs have a rather large distance of
about 0.07 at a total mean value of just below 0.04, while the presented method
realizes distances that are on average below 0.01. For increasing K the dis-
tances seem to increase as well. While the random selection produces an almost
unchanging distribution over an extended range, the distribution of LDAProto-
type shifts towards zero. Higher values become less frequent. The ECDFs look
very similar for all K, whereby for K = 35 slightly lower values are observed
for small proportions. This is supported by the only major difference in the bar
charts. Modeling 20 or 50 topics, for 50% of the prototype runs there is no bet-
ter available LDA to choose, while for the modeling of 35 topics this scenario
applies for just over 40%. The corresponding confidence intervals in Figure 2c
are lowered as well. This is an indication that for K = 35 it is easier to find a
result that is stable to a certain extent for the basic LDA. This is supported by
the fact that the distribution of distances in Figure 2a does not seem to suffer.

5 Discussion

We show that the LDAPrototype method significantly improves the reliability
of LDA results compared to a random selection. The presented method has
several advantages, e.g. the automated computability, as no need of manual
coding procedures. In addition, besides the intuitive statistical approach, the
proposed method preserves all components of an LDA model, especially the
specific topic assignments of each token in the texts. This means that all analyses
previously carried out on individual runs can be applied to the LDAPrototype
as well. The results suggest that K = 35 topics produces more stable results
and might therefore be a more appropriate choice for the number of topics than
K = 20 or 50 on the given corpus. Further studies to analyze the observed
differences in the number of better LDAs as well as the distances to the best
LDA between different choices of the numbers of topics, may lead to progress in
the field of hyperparameter tuning for the LDA.
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