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The purpose of this study was to measure and describe students’ learning 

development in mental computation of mixed addition and subtraction tasks 

up to 100. We  used a learning progress monitoring (LPM) approach with 

multiple repeated measurements to examine the learning curves of second-

and third-grade primary school students in mental computation over a 

period of 17 biweekly measurement intervals in the school year 2020/2021. 

Moreover, we investigated how homogeneous students’ learning curves were 

and how sociodemographic variables (gender, grade level, the assignment 

of special educational needs) affected students’ learning growth. Therefore, 

348 German students from six schools and 20 classes (10.9% students with 

special educational needs) worked on systematically, but randomly mixed 

addition and subtraction tasks at regular intervals with an online LPM tool. 

We  collected learning progress data for 12 measurement intervals during 

the survey period that was impacted by the COVID-19 pandemic. Technical 

results show that the employed LPM tool for mental computation met the 

criteria of LPM research stages 1 and 2. Focusing on the learning curves, 

results from latent growth curve modeling showed significant differences in 

the intercept and in the slope based on the background variables. The results 

illustrate that one-size-fits-all instruction is not appropriate, thus highlighting 

the value of LPM or other means that allow individualized, adaptive teaching. 

The study provides a first quantitative overview over the learning curves 

for mental computation in second and third grade. Furthermore, it offers a 

validated tool for the empirical analysis of learning curves regarding mental 

computation and strong reference data against which individual learning 

growth can be compared to identify students with unfavorable learning curves 

and provide targeted support as part of an adaptive, evidence-based teaching 

approach. Implications for further research and school practice are discussed.
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Introduction

Mental computation can be defined as a person’s ability to 
perform basic arithmetic operations correctly and quickly in their 
mind by using adequate solution strategies without resorting to 
external resources such as paper and pencil or a calculator (e.g., 
Maclellan, 2001; Varol and Farran, 2007). Focusing on current 
curricula, mental computation has an essential place in primary 
school mathematics education (e.g., the Standing Conference of 
the Ministers of Education and Cultural Affairs of the Länder in 
the Federal Republic of Germany (KMK), 2005; Seeley, 2005; 
National Council of Teachers of Mathematics (NCTM), 2022). 
This importance can be  explained by the fact that mental 
computation has a high value in everyday life (e.g., Reys, 1984). 
Moreover, previous research has pointed to the great influence of 
mental computation for higher-order mathematical thinking (e.g., 
Blöte et  al., 2000; Hickendorff et  al., 2019; Pourdavood et  al., 
2020). In particular, mental computation can support students in 
understanding the concept of numbers, in discovering 
computational strategies, in making reasonable estimates and in 
developing a flexible and adaptive handling of these when solving 
mathematical problems. Furthermore, mental computation is a 
basis for written computation and its mastery.

Research findings indicate that most students improve their 
mental computation skills during primary school years and are 
able to solve multi-digit addition and subtraction tasks adequately 
in grades 3 or higher (e.g., Heirdsfield and Cooper, 2004; 
Karantzis, 2011). However, empirical research also shows that a 
large number of students struggle with mental computation 
throughout and beyond primary school (e.g., Reys et al., 1993; 
Miller et  al., 2011; Hickendorff et  al., 2019). Recent research 
findings (e.g., Peltenburg et al., 2012; Gebhardt et al., 2015; Rojo 
and Wakim, 2022) suggests, that the acquisition of multi-digit 
mental computation is particularly challenging for students with 
special educational needs (SEN). For example, students with SEN 
in the area of learning (SEN-L) mostly exhibit a lack of solid basic 
arithmetic skills, which is often responsible for difficulties and 
missing learning success in secondary school mathematics (e.g., 
Gebhardt et al., 2014; Rojo and Wakim, 2022). Studies focusing on 
the mathematical learning development of students with and 
without SEN conclude that students with SEN not only show a 
lower mathematical achievement, but also have a slower learning 
growth than their peers without SEN (e.g., Wei et  al., 2013; 
Gebhardt et al., 2015).

In light of the importance of mental computation for further 
mathematical achievement and the high number of students who 
have difficulties developing adequate mental computation skills, 
there is great need for providing information about students’ 
learning growth in educational research and practice (e.g., 
Salaschek et  al., 2014). For teachers in particular, summative 
assessments at the beginning or end of the school year are often 
insufficient in identifying struggling students at an early stage. An 
alternative are formative assessments, which provide diagnostic 
information during the learning process and allows for 

instructional adjustment (e.g., Cisterna and Gotwals, 2018). One 
formative approach is learning progress monitoring (LPM) which 
is discussed as an appropriate method to provide teachers with 
ongoing feedback on students’ learning development (e.g., Deno 
et al., 2009). To evaluate learning growth with LPM tools, teachers 
regularly administer short parallel tests and assess students’ 
individual learning curves using LPM graphs. The evaluation of 
these individual learning curves is the basis for decisions about 
maintaining or adjusting educational instructions. For example, 
within the Response to Intervention (RTI) approach, LPM tools 
are used to identify struggling students who would benefit from 
additive educational instruction or to evaluate the effectiveness of 
learning offers (e.g., Stecker et al., 2008).

In order to address the need for information on student 
learning development and learning growth in mental computation 
in educational research and practice, the purpose of the present 
study was to examine the latent learning curves as mean learning 
growth of the individual learning curves of second and third grade 
students in mental computation of mixed addition and subtraction 
tasks. Therefore, we used a recently developed computation test 
(Anderson et al., 2022). The present study first investigated the 
psychometric quality of this test for LPM. This included how the 
measures are related to student performance on standardized 
arithmetic tests and whether the LPM tool can sensitively measure 
student’s learning and progress at different ability levels. 
Subsequently, we used the data to describe students’ latent learning 
curves regarding mental computation skills in addition and 
subtraction over a period of 17 biweekly measurement intervals. 
Based on this, we  examine differential developments using 
sociodemographic characteristics such as gender and grade level 
as well as the assignment of SEN.

Mental addition and subtraction 
and its differential development

Mental computation skills regarding basic arithmetic are an 
important prerequisite for the acquisition of mathematical literacy 
as measured in international school performance studies such as 
the Programme for International Student Assessment (PISA; 
Organisation for Economic Co-operation and Development 
(OECD), 2018). Moreover, these competencies are inherent to the 
primary school mathematics curricula. In particular, mastering 
mental computation of multi-digit addition and subtraction tasks 
is an important learning goal in primary school all over the world. 
According to primary school mathematics curricula of all federal 
states in Germany or in the United  States (e.g., KMK, 2005; 
NCTM, 2022), students should have developed profound mental 
addition and subtraction skills in the number range up to 100 by 
the end of grade 2. Based on a spiral approach, mental addition 
and subtraction skills are extended to three-digit numbers at the 
beginning of grade 3. By the end of primary school, students 
should be able to transfer these skills to higher number ranges. 
Subsequently, in the second half of grade 3, students learn the 
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written algorithms for addition and subtraction of three-digit 
numbers (Selter, 2001). Considering the curricular requirements, 
third graders should therefore be  able to routinely carry out 
two-digit mental addition and subtraction tasks whereas this may 
be more challenging for second graders.

The results of previous studies (e.g., Bryant et  al., 2008; 
Karantzis, 2011) indicate that some students’ performance in 
mental addition and subtraction is at a low level even at higher 
grades, implying urgent need for educational means to address 
this issue. Weak performance in in this area in primary school is 
attributed to different task characteristics that contribute to task 
difficulty (e.g., Benz, 2003, 2005) and the use of inefficient solving 
strategies (e.g., Beishuizen, 1993; Cooper et al., 1996; Beishuizen 
et al., 1997; Heirdsfield and Cooper, 2004; Varol and Farran, 2007).

Regarding the task characteristics, the construction of the 
numbers, whose sum value or difference value needs to 
be calculated, plays an important role. Research has shown that 
multi-digit addition and subtraction tasks vary in their difficulty 
and probability of solving them correctly (e.g., Benz, 2003, 2005). 
This is explained by the fact that there are multiple difficulty-
generating item characteristics (DGICs) that have an influence on 
task difficulty (e.g., the number of digits of a term or the necessity 
of crossing ten). Knowledge about the influence of different 
DGICs is particularly important for rule-based item design of 
school achievement tests (e.g., for statistical word problems see 
Holling et al., 2009). For mathematical word problems, Daroczy 
et al. (2015) provide a review of DGICs that contribute to the 
difficulty of such tasks. Anderson et  al. (2022) discuss the 
advantages of rule-based item design and the identification of 
DGICs for constructing a pool of items for a mixed addition and 
subtraction test for LPM.

Besides that, the flexible and adequate use of different solution 
strategies for solving multi-digit addition and subtraction tasks is 
relevant (for an overview, e.g., Torbeyns et al., 2009; Hickendorff 
et al., 2019). While solving single-digit addition and subtraction 
tasks is based on the retrieval of the solution from long-term 
memory as an arithmetic fact, the outcome of multi-digit addition 
and subtraction tasks must be computed based on the adaptive 
application of known solution strategies. With the use of inefficient 
solution strategies such as counting strategies, multi-digit addition 
and subtraction tasks are solved slowly and often incorrectly. In 
addition to the flexibility in choosing appropriate solution 
strategies in correspondence with the requirement of a specific 
task, hurdles for struggling students include a lack of the 
conceptual understanding of numbers and a lack of fluency in 
using computation procedures (e.g., Verschaffel et al., 2007).

With regard to students’ solving strategies of multi-digit 
addition and subtraction tasks, two complementary dimensions 
can be  distinguished respecting number-based strategies: the 
operation that is necessary for the solution process and the way 
the numbers are used in the solution process (Hickendorff et al., 
2019). Concerning the first dimension, multi-digit addition only 
allows direct addition, while multi-digit subtraction allows several 
options (direct subtraction, indirect addition, indirect 

subtraction). Concerning the second dimension, there are 
different strategies to manipulate numbers to successfully master 
the computation process. In sequencing strategies, numbers are 
interpreted as objects on a mental number line and addition is 
seen as moving forward and subtraction as moving backward on 
it. For example, the addition task 44 + 38 is given. The direct 
addition with the sequencing strategy would be  computed as 
44 + 30 = 74; 74 + 8 = 82. In decomposition strategies, numbers are 
interpreted as objects with a decimal structure and the operations 
require splitting or portioning the numbers. With the 
decomposition strategy it would be  computed as 40 + 30 = 70; 
4 + 8 = 12; 70 + 12 = 82. In varying situations, different strategies are 
used that adaptively consider both the numbers and the operations 
in the solution process. These two complementary dimensions can 
be  used to categorize students’ problem-solving strategies. 
Students with mathematical difficulties often have problems 
acquiring the different strategies and using them in an adaptive 
and flexible way. These students use inefficient solution strategies 
(e.g., counting strategies) and are often unable to accurately solve 
single-digit addition and subtraction, which is a prerequisite for 
successful acquisition of multi-digit strategy skills (e.g., Varol and 
Farran, 2007; Verschaffel et al., 2007).

Despite the high curricular importance, previous qualitative 
studies already indicate a large heterogeneity in the development 
of two-digit addition and subtraction computation skills during 
the second school year (e.g., Benz, 2003, 2007). Previous research 
has also shown that students with SEN have difficulty acquiring 
adequate computation skills (Gersten et al., 2005; Evans, 2007; 
Bryant et  al., 2008; Wei et  al., 2013; Soares et  al., 2018). For 
example, at the end of primary school, many students with SEN-L 
have acquired lower competencies in the development in 
mathemtics in general (e.g., Gebhardt et al., 2014, 2015) and in the 
development of mental arithmetic computation for numbers up 
to 100 compared to their peers without SEN-L (Peltenburg et al., 
2012; Rojo and Wakim, 2022).

While research findings on the difficulties for students with 
SEN-L are consistent, this is not the case for gender-based 
performance differences in mental computation (e.g., 
Winkelmann et al., 2008; Wei et al., 2013; Pina et al., 2021). Wei 
et  al. (2013) reported significant and persistent gender 
performance differences in favor of boys among students with 
different SEN that persisted from primary to secondary school. 
For regular primary education, Pina et  al. (2021) found no 
significant gender differences in mathematics achievement in 
computation. Results from international large-scale assessments 
such as the Trends in International Mathematics and Science 
Study (TIMSS) indicated gender-based differences in average 
mathematics achievement between girls and boys at the end of 
primary school. In TIMSS 2019, fourth grade boys showed a 
higher average performance than girls in almost half of the 58 
participating countries. In four countries, girls had a higher 
average achievement than boys. In 27 countries, gender equity of 
average performance in mathematics was reported. For the 
arithmetic domain, boys achieved higher test scores than girls in 
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almost all countries and for more than half of the countries’ 
differences are even significant (Mullis et al., 2020). In Germany, 
the differences in this domain are significant (Nonte et al., 2020).

In contrast, in a study of third-through eighth-graders with 
and without SEN, Yarbrough et  al. (2017) found statistically 
significant differences between boys and girls in favor of girls in 
grades 5, 7, and 8 for learning growth in mental computation. The 
tests included mathematical computation tasks on the four basic 
arithmetic operations. The difficulty of the tasks varied according 
to the respective curricular requirements of the respective grade. 
However, the knowledge about students’ differential latent 
learning curves when acquiring mental computation skills is 
limited. For example, the results on learning growth by Yarbrough 
et al. (2017) were based on only three measurement time points. 
As noted above, there is only a small number of longitudinal 
surveys, including a large number of measures for the valid 
assessment of latent learning curves.

Learning progress monitoring

Due to heterogeneous student learning, there is an increasing 
need for teachers to use data about individual student’s learning 
development for their instructional decision-making (e.g., Espin 
et  al., 2017). In this regard, LPM is a promising method that 
provides data on individual students’ learning development and 
assists teachers identifying learning problems in early stages as 
well as in evaluating the achievement of learning goals. One 
approach of LPM is curriculum-based measurement (CBM; e.g., 
Deno, 1985; Stecker et  al., 2005): a set of procedures that can 
be used frequently and quickly to assess student learning progress 
and the effectiveness of instruction in academic domains such as 
reading, spelling, writing, or computation (e.g., Hosp et al., 2016). 
CBM procedures consist of short parallel tests that require only a 
few minutes (e.g., 1–5 min) and items are typically based on the 
identification of robust indicators or on curriculum sampling 
(Fuchs, 2004). Finding robust indicators includes identifying tasks 
that best represent the various subskills of a specific domain or 
that correlate strongly with them. For reading, oral reading fluency 
is regarded as a robust indicator of general reading competence 
and comprehension (Deno et  al., 1982). In the domain of 
mathematics, number sense is considered a robust indicator for 
mathematics performance in kindergarten and first grade primary 
school (e.g., Lembke and Foegen, 2009). Curriculum sampling 
involves selecting exemplary tasks that asses curricular learning 
goals. Each CBM test is then aligned with curricular objectives 
that are relevant to the entire assessment period (e.g., Fuchs, 
2004). With regard to highly heterogeneous learning groups, for 
example in inclusive classrooms, strictly curriculum-based LPM 
are of limited use because students with SEN (e.g., SEN-L) are 
often not taught according to the regular class curriculum 
(Gebhardt et al., 2016).

Results of LPM usually output a sum score (e.g., number of 
correctly solved tasks) and the learning development is 

represented in a graph. To represent individual learning 
development, linear trends at the student level are often estimated. 
Therefore, the parameters intercept and slope are relevant. The 
slope represents the mean learning growth of a student (e.g., the 
proportion of additional tasks that were solved correctly in the 
comparison of the measurement points). The intercept contains 
information about the approximated individual learning level at 
the beginning of LPM. For reliable and valid conclusions about 
learning development, Christ et al. (2013) recommend using data 
from at least six measurements. Based on these data, teachers can 
then decide whether the instruction used promotes learning 
success as intended (individual learning curve is as expected), 
whether the instruction used should be  adjusted (individual 
learning curve is lower than expected), or whether the learning 
goal can be  adjusted because the individual learning curve is 
higher than initially expected (e.g., Espin et al., 2017).

Since the 1970s, a large body of LPM research has focused on 
the development and application of instruments for different 
domains with a focus on reading (for an overview see Tindal, 
2013). Until 2008, LPM research mostly focused on the domain of 
reading and not mathematics (e.g., Van Der Heyden and Burns, 
2005; Foegen et  al., 2007). In a review of the literature 
concentrating on the development of LPM in mathematics, 
Foegen et al. (2007) found that only a small part of the studies 
focused on mathematics and here primarily on preschool and 
elementary mathematics. In German-speaking countries, LPM 
research has advanced in recent years, especially in educational 
psychology and special education, addressing several academic 
domains, including reading and math (for an overview see 
Breitenbach, 2020; Gebhardt et al., 2021).

Learning progress monitoring of 
mathematics computation

Regarding different types of LPM in mathematics, Hosp et al. 
(2016) differentiate between tests for number sense (early 
numeracy), for computational skills (computation), and for the 
application of mathematical skills such as interpreting 
measurements, tables, or graphs (concepts and applications). For 
LPM in the area of computational skills, there are differences in 
how the tasks are intended to be solved (e.g., in a mental or written 
way) and how large the assessment domain is in each case 
(assessment of a single skill or multiple skills). According to Christ 
et al. (2008), the domain of mathematics computation is especially 
suitable for a frequently used LPM tool that can be  used in 
research as well as data-based instructional decision-making. 
Instruments for this domain are usually constructed to provide 
very brief measurements of a relatively narrow arithmetic 
performance range and LPM tasks corresponding to the curricular 
level or individual learning objectives. There is also evidence that 
teachers can use the data of computation LPM to improve the 
performance of students with SEN (for an overview see Foegen 
et al., 2007).
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LPM of (mental) computational skills does not aim to 
measure mathematical literacy as in PISA (OECD, 2018), and it 
does not address the language requirements of number word 
problems, which can also play a role in understanding 
mathematics. In contrast, it focuses on (mental) computation 
skills as an important prerequisite for solving word problems as 
well as mathematical literacy in general (e.g., Varol and Farran, 
2007). Still, this narrow focus must be  considered when 
selecting potential criterion measures for the evaluation of 
criterion validity. According to Christ et  al. (2008), the 
coefficients of criterion validity between LPM tools and 
standardized mathematical achievement tests that measure 
overall performance in mathematics can therefore only 
be interpreted to a limited extent, whereas criterion validity is 
understandably much higher for procedures that relate 
exclusively to arithmetic tasks or include subtests in the domain 
of computation.

A variety of LPM tools for computation and mental 
computation have been developed in the past decades, especially 
in the United  States (for an overview, e.g., Christ et  al., 2008; 
Tindal, 2013). In German-speaking countries, some tools have 
been established for LPM (mental) computation. For example, 
Sikora and Voß (2017) have developed and empirically validated 
a curriculum-based LPM tool for the four basic arithmetic skills 
for grades 3 and 4. In composing the LPM tests, they considered 
item characteristics that may influence item difficulty (e.g., 
number range, arithmetic operation, digits to be computed in item 
solution, place value, and standard form tasks). The LPM tests of 
Strathmann and Klauer (2012) or Salaschek and Souvignier (2014) 
have integrated mental computation tasks as part of a broader 
curriculum-based LPM tool. These are usually a subset of a few 
items, each testing one of the four basic arithmetic competencies 
at the respective curricular level. Anderson et al. (2022) developed 
a test based on an item-generating system for mixed addition and 
subtraction tasks for numbers up to 100. This test is built on 
multiple difficulty-generating item characteristics (DGICs). First, 
three DGICs were deduced from prior mathematics education 
research (arithmetic operation, necessity of crossing ten, the 
number of second term digits) and varied within the item design 
process so that all possible combinations were adequately 
represented in an item pool. Subsequently the Rasch model (RM) 
and the Linear Logistic Test Model (LLTM) were used to estimate 
and predict the influence of the DGICs. The results of the LLTM 
approach indicate that all three suspected difficulty-generating 
characteristics were significant predictors of item difficulty and 
explain about 20% of the variance in the item difficulty parameters 
of the RM. Results suggest that DGICs can influence item 
difficulty across grade levels and ensure long-term use across 
multiple grade levels. Thus, identified curriculum-independent 
DGICs have the potential to be used to construct LPM tests for 
classes with curriculum-independent learners. In test 
development, the present study follows the item generation system 
reported by Anderson et al. (2022) and extends it to include an 
additional DGIC.

Requirements for learning progress 
monitoring

In order to validly assess learning progress, frequent and 
regular use of LPM requires a large number of parallel tests that 
should be mostly consistent in difficulty and are sufficiently 
sensitive to measure learning. Therefore, LPM tools have to 
address a variety of psychometric properties. This includes 
classical test quality criteria (e.g., validity, reliability) as well as 
psychometric criteria such as one-dimensionality, 
homogeneous test difficulty, sensitivity to change, and test 
fairness (e.g., Wilbert and Linnemann, 2011; Schurig et  al., 
2021). For example, identifying characteristics that have an 
influence on task difficulty can support the development of 
parallel tests with homogeneous test difficulty (e.g., Wilbert, 
2014; Anderson et al., 2022). In this regard, LPM tests should 
be constructed under the assumptions of item response theory 
(IRT), which features sample independence, non-linear 
dependencies between trait and response, and the ability to test 
multiple parameters of response behavior (e.g., Schurig et al., 
2021). For the practical purpose of data-based decision-
making, the results should also be  as easy as possible for 
teachers to interpret and use to choose or adapt instruction 
(e.g., Espin et al., 2017). In particular, computer-or web-based 
LPM tools can contribute to improving the usability in schools 
through a high degree of automation of test generation and 
evaluation (e.g., Mühling et al., 2019).

As evidence for its use in progress measurement, Fuchs (2004) 
proposed a three-stage systematization of LPM research. Research 
at stage 1 includes studies that aim to test the psychometric 
adequacy of the tool as a status diagnostic. Stage 2 includes all 
research that provides evidence that a LPM tool can sensitively 
and validly represent learning growth over time. Research at stage 
3 involves studies that examine whether the use of LPM data for 
instructional decisions improves student performance. For all 
academic domains, a large part of the prior research has focused 
on stage 1 and adressed the psychometric adequacy of LPM tool 
as a status diagnostic (Fuchs, 2017).

Purpose of the study

The purpose of the present study was to examine the latent 
learning curves of second and third grade primary school students 
in mental addition and subtraction with a newly developed 
web-based LPM tool. Our study thus addresses stages 1 and 2 
outlined by Fuchs (2004). Therefore, we  examined the 
psychometrical adequacy of the LPM tool at an individual 
measurement point as well as its sensitivity to learning growth 
over time by addressing the following research questions:

Research question 1.1: How do the LPM test scores at different 
measurement time points relate to standardized school achievement 
test results at the beginning and the end of the survey period?
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Research question 1.2: How reliable are the results of our LPM 
tool in terms of correlations between different measurement 
time points?

Research question 1.3: Is the LPM tool sensitive to student 
learning at different ability levels?

Building on these analyses, we  subsequently examined 
students’ latent learning curves regarding mental addition and 
subtraction in second and third grade over a period of 17 biweekly 
measurement intervals, focusing on the overall learning 
development over time as well as interindividual heterogeneity 
therein. As prior results have highlighted that sociodemographic 
characteristics can influence learning and learning development, 
we  additionally examined, if gender and grade level as central 
sociodemographic characteristics as well as the assignment of SEN 
lead to empirically distinguishable learning curves. Research 
questions are as follows:

Research question 2.1: How homogeneous are students’ latent 
learning curves over a period of 17 biweekly measurement intervals?

Research question 2.2: Do students’ latent learning curves 
differ between groups with different sociodemographic 
characteristics such as gender and grade level?

Research question 2.3: What influence does the assignment of 
SEN have on students’ latent learning curves in mental computation?

Materials and methods

Participants and setting

A total of 348 students from nine second-grade and nine 
third-grade inclusive education classes and two third-grade special 
education classes1 of six schools participated in the study. The 
schools were located in urban as well as rural areas of North 
Rhine-Westphalia as state of the Federal Republic of Germany. The 
six schools were recruited by convenience sampling. Therefore, it 
was taken into account that a similar number of second and third 
graders participated in the survey, as well as students in a special 
school and students in inclusive schools. Of the participating 
students, 162 (46.55%) were in the second grade, 186 (53.45%) in 
the third grade. The average age of students at the start of the study 
was 8.43 years (SD = 0.80). Further sociodemographic 
characteristics of the participating students at the start of the study 
are reported in Table 1. A number of 38 students (10.92%) had the 
assignment of SEN, most of them in the area of learning (SEN-L: 

1 In inclusive education classes in Germany, students with and without 

SEN are taught together. Students with SEN sometimes have individual 

learning goals that do not have to correspond to the curricular goals of 

classmates without SEN. In special education classes, only students with 

SEN are taught. The learning goals can follow curricular or individual 

learning objectives, depending on the type of SEN.

19; 50.00% of the SEN students) or in the area of communication 
and interaction (SEN-CI: 17; 44.74% of the SEN students).

Measures and procedure

The study was conducted from November 2020 to July 2021 
and covered a period of 17 biweekly measurement intervals. At the 
beginning and at the end of the survey period, arithmetic subscales 
of the standardized German paper-pencil test DEMAT 2+ (German 
Mathematics Test for Second Grade and for the beginning of Third 
Grade; Krajewski et al., 2020) were administered. The DEMAT 2+ 
is representative of all German regular second-grade mathematics 
curricula and is suitable as a norm-based test for the last months of 
the second and the first months of the third school year. The test 
contains tasks for numbers up to 100. For this study, we selected 
subscales of the DEMAT 2+ that included computation tasks 
without mathematics word problems. These included tasks for 
number properties, addition and subtraction place values tasks, 
tasks for doubling and halving numbers, and tasks for calculating 
with money (see Table 2). The use of DEMAT 2+ subscales at the 
beginning were followed by LPM every 2 weeks. At the end of the 
survey period, DEMAT 2+ subscales were administered a second 
time. Credit was given only for completely correct answers.

The used LPM tool included mixed addition and subtraction 
tasks for numbers up to 100, which required students to enter the 
correct solution (for addition tasks the sum value; for subtraction 
tasks the difference value) into a blank field. We designed the 
items using a rule-based approach that considered several DGICs 
derived in advance from mathematics education research and 
evaluated in Anderson et  al. (2022). Extending the results of 
Anderson et  al. (2022) four DGICs were used to model the 
difficulty of the items: the arithmetic operation (addition versus 
subtraction; DGIC 1), the necessity of crossing ten (no crossing 
versus with crossing; DGIC 2), the number of second term digits 
(one-digit numbers versus two-digit numbers; DGIC 3), and the 
necessity to add up to the next full ten (not necessary versus 
necessary; DGIC 4). Based on these four DGICs, we created a pool 
of 3,027 items. The four DGICs were varied within the item design 

TABLE 1 Sociodemographic of students at the start of the study.

Personal 
characteristics

Full sample Grade 2 Grade 3

n % n % n %

Gender

Female 176 50.57 85 52.47 91 48.92

Male 172 49.43 77 47.53 95 51.08

SEN

Yes 38 10.92 2 1.23 36 19.35

No 310 89.08 160 98.77 150 80.65

Migration background

Yes 96 27.59 46 71.60 50 26.88

No 252 72.41 116 28.40 136 73.12
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process so that all possible combinations were adequately 
represented in the item pool (see Table 3).

The item pool was implemented on an online platform2 
(Gebhardt et al., 2016; Mühling et al., 2019). Based on an equal 
distribution of the 10 possible item categories in the item 
selection, a fixed order was established for the baseline test. 
Starting at the second measurement, items were drawn from 
the total item pool in a randomized, however equally 
distributed manner according to the 10 item categories. 
Students could not skip any drawn items during the test time. 
We  assume that an equal distribution of the items on the 
described item categories causes a harmonization of the 
difficulties of the tests. Based on this, an individual test was 
created for each student by the online platform for each 
additional measurement. Accordingly, from the second 
measurement on, we assume missing completely at random 
(MCAR) for all non-drawn items.

Trained administrators tested students in their classrooms in 
groups of 5–10 during class time. To perform the test, each 
participating student used a tablet device. Testing time was 5 min. 
The students had to mentally compute the tasks without external 
support. At the beginning of each measurement, students received 
a short technical briefing, sample tasks were solved, and students 
had the opportunity to ask the test administrator questions. 
Students could then start the test themselves by clicking on a start 
button. Tests ended automatically after 5 min testing time. In the 
time allotted, students were instructed to answer as many 
mathematics computation tasks as possible. Each probe contains 
a substantial number of tasks, making it unlikely that a student 
could finish within the time limit. No partial credit was given for 
partially correct answers.

All students who participated in at least one LPM test were 
included in the following analyses. Not all students participated 
in LPM at each measurement. The main reasons for this were 
home schooling periods during the survey due to the COVID-19 
pandemic, a staggered start to the surveys within the participating 
schools, individual absence of students, or technical problems. In 
order to compute the latent mean-growth and comparable, time-
dependent norms across the survey time, 17 equidistant 
measurement intervals were derived from the raw data. In order 

2 www.levumi.de

to establish reasonable distance interval lengths to observe 
change, 2 weeks were chosen as the length of the interval. Due to 
practical reasons within the schools, some children were tested 
twice within one interval and not within another. When students 
were tested twice, only the first observation within a measurement 
interval was used. Data are available for 12 of the 17 biweekly 
measurement intervals, the other intervals are missing due to 
homeschooling and holidays.

Statistical analyses

Participation
The individual number of participation related to the LPM 

measurement intervals in this study varied (M = 5.98; SD = 2.20). 
The range of participation is 10, with 24 students (6.90%) of the 
total sample participating in the surveys only once and 5 students 
(1.44%) participating 11 times. 282 students (81.03%) participated 
in at least five, 222 students (63.79%) in at least six LPM 
measurement intervals.

Analyses
The presentation of descriptive statistics is followed by the 

results on the research questions. To address research question 1.1, 
criterion and predictive validity were analyzed by examining how 

TABLE 2 Subscales of the DEMAT 2+ (Krajewski et al., 2020) used for this study.

Subscale DEMAT 2+ Requirement Example No. of items

Number properties Identification of even and odd two-digit numbers Identify the even numbers! 25|44|8|19|8|38|17 2

Addition place value Identification of the correct first/second summand Calculate! … + 15 = 34 4

Subtraction place value Identification of the correct subtrahend/minuend Calculate! 56 - … = 36 4

Doubling numbers Doubling of a two-digit number (with and without crossing ten) Take the double! 70 ➔ … 3

Halving numbers Halving of a two-digit number (with and without crossing ten) Take the half! 24 ➔ … 3

Calculating with money Calculation of a two-digit cent amount to get  

1 € (1 € = 100 cents)

How many cents are missing if you want 1€? At 45 

cents missing …

4

TABLE 3 Sample items illustrating different types of items based on 
the four DGICs.

Category Example DGIC 1 DGIC 2 DGIC 3 DGIC 4

1 27 + 2 Addition No One No

2 23 + 13 Addition No Two No

3 21 + 9 Addition No One Yes

4 52 + 38 Addition No Two Yes

5 78 + 9 Addition Yes One No

6 67 + 27 Addition Yes Two No

7 48–3 Subtraction No One No

8 98–24 Subtraction No Two No

9 65–7 Subtraction Yes One No

10 91–16 Subtraction Yes Two No

DGIC 1: Arithmetic operation; DGIC 2: Crossing ten; DGIC 3: No. of 2nd term digits; 
DGIC 4: Add up to the next full ten.
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FIGURE 1

Graphical representation of a LGCM for 17 measurement intervals without covariates. The three dots represent the intervals 3–15, which were not 
included in this representation for greater clarity. The graphical representation of the growth model was created with Ωnyx (von Oertzen et al., 
2015).

LPM scores relate to the employed arithmetic subscale scores of 
the standardized paper-pencil mathematics test DEMAT 2+. To 
answer research question 1.2, a RM was fitted for every single 
LPM test. Due to the high number of missing data by design, the 
item fit was evaluated using a conditional pairwise item category 
comparison implemented in the R package pairwise (Heine and 
Tarnai, 2015). The pairwise approach is able to handle (completely) 
random missing data by design. Subsequently, alternate form test–
retest reliability for adjacent and more distant tests was calculated. 
Regarding research question 1.3, performance is assessed by the 
continuous norming method using the R package cNorm (Lenhard 
et al., 2018) to evaluate how sensitive the test measures at different 
ability levels at different measurement intervals. In cNorm, norm 
values and percentiles are estimated as a function of time and 
possibly covariates using Taylor polynomials. To identify adequate 
test norms, a polynomial regression model needs to be found that 
describes the norming sample as accurately as possible with the 
minimum number of predictors. Lenhard and Lenhard (2021) 
emphasized that higher numbers of terms do often lead to overfit. 
Therefore, cNorm used 𝑘 = 4 terms by default. In the modeling 
process the stopping criterion is 𝑅2 = 0.99.

In our case, the explanatory variable represents the different 
measurement intervals over the LPM survey period of 17 biweekly 
measurement intervals Thus, the cNorm approach addresses some 
disadvantages of traditional norming methods such as a high 
sample size, the consideration of sampling errors or any 
distributional assumptions. Moreover, gaps between discrete levels 
of the explanatory variable can be closed (Gary et al., 2021). This 
can be particularly advantageous for LPM, since norm tables can 
be generated not only for the discrete measurement point of the 

survey, but also for each subsequent measurement point, even if 
no measurement has occurred. In our case, this means that norm 
values could also be derived for the measurement intervals where 
no LPM tests were conducted due to homeschooling.

In order to address research questions 2.1–2.3, latent learning 
curves and the modeling of individual differences in learning 
growth over time including sociodemographic characteristics 
such as gender or grade and assignment of SEN are examined via 
latent growth curve modeling (LGCM; e.g., Muthen and Khoo, 
1998). In educational and psychological contexts, this approach is 
often used to determine learning growth and the influence of 
background variables in LPM longitudinal data (e.g., Salaschek 
and Souvignier, 2014; Johnson et al., 2020). The lavaan package 
(Rosseel, 2012) in was used to estimate latent growth curve models.

The LGCM illustrates the use of slope and intercept as two latent 
variables to model differences over time. The student’s initial 
performance in solving mixed addition and subtraction tasks for 
numbers up to 100 is represented as a scale score (intercept). 
Similarly, the rate of linear growth in the student’s competences 
across all measurement intervals is represented as a scale score 
(slope). The initial LGCM (Model 1) represented in Figure  1, 
includes each biweekly administration of LPM, except for 
measurement intervals 4–7 and 11 when no measurements could 
be taken in schools due to the COVID-19 pandemic and the switch 
to home schooling. Furthermore, it was analyzed if sociodemographic 
variables such as gender or grade level or the assignment of SEN 
influence learning growth. For this, the LGCM was extended to 
include group differences (Model 2). We used gender (0 = male, 
1 = female), grade level (0 = grade 2, 1 = grade 3), and special 
educational need (0 = no, 1 = yes) as dummy coded variables across 
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the 12 measurement intervals. In Model 2, the intercept and slope 
variables are predicted while considering these background variables.

Results

Descriptive statistics for the LPM tests at each of the 12 
measurement intervals are presented in Table 4 for the full sample 
and separately for both grade levels. With regard to the 
measurement intervals 1–3 and 14–17, regular mathematics 
instruction took place at school. In contrast, the measurement 
intervals in between were often characterized by home schooling 
due to the COVID-19 pandemic when mathematical instruction 
often took place via distance learning and not all students were 
able to regularly participate in LPM testing.

Research question 1.1: Criterion validity

For reliability analysis, Cronbach’s alpha and Mc Donald’s 
omega were calculated to assess the internal consistency of the 

subscales of the selected DEMAT 2+ at the first and last 
measurement time point separately for grades 2 and 3 and the full 
sample. The internal consistency of the subscales of the DEMAT 
2+ are satisfactory (see Tables 5, 6). Correlations of LPM sum 
scores with the overall sum scores of the subscales of the DEMAT 
2+ at the first measurement time point were strong with a mean 
correlation of r = 0.73 (95%CI [0.68; 0.78]). For the full sample, the 
correlations of the various subscales of the DEMAT 2+ ranged 
from 0.39 (subscale number properties) to 0.67 (subscale 
calculating with money) with M = 0.57 and SD = 0.10.

At the last measurement time point, correlations of LPM sum 
scores with the overall sum scores of the DEMAT 2+ subscales 
were moderate with a mean correlation of r = 0.57 (95%CI [0.49; 
0.64]). For the full sample, the correlations of the various DEMAT 
2+ subscales ranged from 0.22 (subscale number properties) to 
0.57 (subscale addition place value) with M = 0.42 and SD = 0.12 
(for further information separately by grade level see Table 7).

To test the predictive validity of LPM measures, the correlation 
of the LPM sum scores at the first measurement time point with 
the overall sum scores of the DEMAT 2+ subscales at the last 
measurement time point were calculated. Correlations were 

TABLE 4 Descriptive statistics of LPM scores for each measurement interval.

Time of measurement
Full sample Grade 2 Grade 3

n M (SD) n M (SD) n M (SD)

Measurement interval 1 194 11.01 (7.80) 85 5.62 (4.00) 109 15.20 (7.46)

Measurement interval 2 256 10.24 (8.09) 131 6.00 (5.28) 125 14.69 (8.15)

Measurement interval 3 108 13.46 (9.46) 43 7.79 (6.59) 65 17.22 (9.23)

[…] […] […] […] […] […] […]

Measurement interval 8 150 12.21 (9.30) 89 9.47 (8.01) 61 16.20 (9.66)

Measurement interval 9 225 13.30 (10.02) 109 9.03 (7.91) 116 17.32 (10.17)

Measurement interval 10 152 15.11 (10.38) 81 11.27 (8.20) 71 19.49 (10.92)

[…] […] […] […] […] […] […]

Measurement interval 12 43 16.16 (11.27) 31 13.52 (10.33) 12 23.00 (11.10)

Measurement interval 13 46 16.91 (11.96) 34 13.56 (10.16) 12 26.42 (11.91)

Measurement interval 14 232 15.44 (9.46) 88 11.19 (7.90) 144 18.04 (9.41)

Measurement interval 15 291 15.65 (9.99) 133 11.97 (8.42) 158 18.75 (10.18)

Measurement interval 16 275 15.65 (10.26) 108 10.68 (6.65) 167 18.87 (10.90)

Measurement interval 17 107 17.42 (10.26) 59 14.59 (7.65) 48 20.90 (11.95)

LPM tests were canceled due to the COVID-19 pandemic in measurement intervals 4–7 and 11. Square brackets with three dots represent the canceled measurement intervals.

TABLE 5 Cronbach’s Alpha and Mc Donald’s Omega coefficients at first measurement time point.

DEMAT 2+ subscale
Full sample Grade 2 Grade 3

α ω α ω α ω

Number properties (2 items) 0.78 0.78 0.78 0.78 0.77 0.77

Addition place value (4 items) 0.80 0.80 0.71 0.73 0.76 0.77

Subtraction place value (4 items) 0.73 0.74 0.70 0.71 0.69 0.70

Doubling numbers (3 items) 0.88 0.89 0.81 0.83 0.90 0.91

Halving numbers (3 items) 0.72 0.73 0.62 0.65 0.72 0.73

Calculating w. money (4 items) 0.90 0.90 0.86 0.87 0.89 0.89

α = Cronbach’s Alpha; ω = Mc Donald’s Omega; Full sample = 328 students (grade 2 = 155; grade 3 = 173).

https://doi.org/10.3389/fpsyg.2022.944702
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Anderson et al. 10.3389/fpsyg.2022.944702

Frontiers in Psychology 10 frontiersin.org

TABLE 6 Cronbach’s Alpha and Mc Donald’s Omega coefficients at last measurement time point.

DEMAT 2+ subscale
Full sample Grade 2 Grade 3

α ω α ω α ω

Number properties (2 items) 0.76 0.76 0.66 0.66 0.82 0.82

Addition place value (4 items) 0.80 0.80 0.73 0.74 0.78 0.78

Subtraction place value (4 items) 0.61 0.62 0.57 0.58 0.58 0.63

Doubling numbers (3 items) 0.84 0.86 0.82 0.85 0.86 0.88

Halving numbers (3 items) 0.78 0.80 0.74 0.75 0.80 0.83

Calculating w. money (4 items) 0.89 0.89 0.86 0.86 0.89 0.89

α = Cronbach’s Alpha; ω = Mc Donald’s Omega; Full sample = 302 students (grade 2 = 130; grade 3 = 172).

moderate to strong with a mean correlation of r = 0.63 (95%CI 
[0.56; 0.70]; for grade 2: r = 0.40, for grade 3: r = 0.66). Correlations 
of DEMAT 2+ sum scores at the first and at the last measurement 
time point were strong with a mean correlation of r = 0.80 (95%CI 
[0.75; 0.84]; for grade 2: r = 0.61, for grade 3: r = 0.86).

Research question 1.2: Reliability

The reliability of the resulting Weighted Maximum Likelihood 
Estimation (WLE) person parameters ranged from 0.80 to 0.85 
(M = 0.82; SD = 0.02) for the measurement intervals. Furthermore, 
the alternate form test–retest reliability was calculated for each 
pair of adjacent and more distant tests (e.g., LPM interval 1 scores 
to LPM interval 2 scores, LPM interval 1 scores to LPM interval 
17 scores, …, LPM interval scores 16 to LPM interval scores 17; 
see Table 8). Correlation indices between scores from adjacent 
measurement intervals ranged from 0.73 to 0.93. With reference 
to the COTAN review system for evaluating test quality (Evers 

et al., 2015), we interpret this as sufficient alternate form test–
retest reliability.

Research question 1.3: Generating 
continuous tests norms

As mentioned above, the procedure is robust to different or 
small sample sizes. The modeling procedure of the LPM scores 
from interval 1 to interval 17 reached an adjusted R2 = 0.98 with 5 
terms and an intercept. It must be taken into account that at five 
measurement intervals no data collection could be conducted due 
to homeschooling and therefore R2 = 0.99 was not reached. To 
achieve this value, the number of terms would have to be increased 
further, which we have refrained to avoid an overfit. The norms in 
the upper range vary strongly. Figure 2 shows the assignment of 
the raw test values at the various levels to a specific percentile. 
Students with high raw scores at the beginning also have a higher 
slope over the survey period. The clustering of percentiles in the 

TABLE 7 Correlations of LPM scores at the beginning and end of the survey with subscales of the DEMAT 2+.

Variables of DEMAT 2+
Full sample Grade 2 Grade 3

LPM Begin. LPM End LPM Begin. LPM End LPM Begin. LPM End

Beginning of survey

  Number properties 0.39** 0.23** 0.27** 0.10 0.41** 0.22**

  Addition place value 0.63** 0.47** 0.49** 0.28** 0.53** 0.43**

  Subtraction place value 0.57** 0.52** 0.38** 0.37** 0.56** 0.51**

  Doubling numbers 0.54** 0.42** 0.37** 0.40** 0.54** 0.34**

  Halving numbers 0.63** 0.45** 0.44** 0.34** 0.62** 0.41**

  Calculation w. money 0.67** 0.53** 0.46** 0.40** 0.63** 0.48**

  Overall sum score subscales 0.73** 0.56** 0.55** 0.44** 0.70** 0.53**

End of survey

  Number properties 0.36** 0.22** 0.22* 0.10 0.41** 0.24**

  Addition place value 0.58** 0.57** 0.22* 0.38** 0.60** 0.60**

  Subtraction place valuea 0.47** 0.45** 0.28** 0.39** 0.47** 0.43**

  Doubling numbers 0.36** 0.33** 0.28** 0.33** 0.39** 0.31**

  Halving numbers 0.52** 0.47** 0.30** 0.32** 0.61** 0.51**

  Calculation w. money 0.52** 0.47** 0.35** 0.44** 0.52** 0.42**

  Overall sum score subscales 0.63** 0.57** 0.40** 0.49** 0.66** 0.55**

* indicates p < 0.5. ** indicates p < 0.01. aThe subscale did not reach an acceptable internal consistency (see Table 6).
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TABLE 8 Correlations of LPM sum scores.

MI 1 MI 2 MI 3 […] MI 8 MI 9 MI 10 […] MI 12 MI 13 MI 14 MI 15 MI 16

MI 1

MI 2 0.80***

[0.73, 0.86]

MI 3 0.83*** 0.86***

[0.71, 0.90] [0.79, 0.91]

[…]

MI 8 0.83*** 0.85*** 0.89***

[0.67, 0.91] [0.79, 0.89] [0.82, 0.93]

MI 9 0.77*** 0.78*** 0.79*** 0.84*** .

[0.67, 0.84] [0.72, 0.83] [0.68, 0.86] [0.79, 0.89]

MI 10 0.89*** 0.85*** 0.86*** 0.87*** 0.83***

[0.78, 0.94] [0.79, 0.89] [0.77, 0.91] [0.82,0.91] [0.76, 0.87]

[…]

MI 12 0.87*** 0.89*** 0.93*** 0.95*** 0.90***

[0.77, 0.93] [0.77, 0.95] [87, 0.96] [0.90, 0.97] [0.82, 0.95]

MI 13 0.86*** 0.88*** 0.86*** 0.90*** 0.88*** 0.87***

[0.74, 0.92] [0.75, 0.94] [0.75,0.92] [0.82, 0.94] [0.79, 93] [0.77, 0.93]

MI 14 0.76*** 0.80*** 0.79*** 0.84*** 0.86*** 0.90*** 0.86*** 0.87***

[0.68, 0.82] [0.73, 0.85] [0.70, 0.86] [0.76, 0.89] [0.81, 0.89] [0.84,0.93] [0.76, 0.93] [0.77,0.93]

MI 15 0.66*** 0.74*** 0.72*** 0.82*** 0.78*** 0.86*** 0.91*** 0.87*** 0.86***

[0.56, 0.74] [0.68, 0.79] [0.60, 0.80] [0.76, 87] [0.72, 0.83] [0.81, 0.90] [0.83, 0.95] [0.78, 0.93] [0.82, 0.89]

MI 16 0.70*** 0.70*** 0.76*** 0.74*** 0.71*** 0.76*** 0.94*** 0.88*** 0.77*** 0.81***

[0.61, 0.77] [0.63, 0.76] [0.65, 0.84] [0.64, 0.81] [0.63, 0.78] [0.67, 0.83] [0.75, 0.99] [0.60, 0.97] [0.70, 0.82] [0.76, 0.85]

MI 17 0.64** 0.79*** 0.74*** 0.74*** 0.70*** 0.85*** 0.91*** 0.85*** 0.81*** 0.85*** 0.81***

[0.29, 0.84] [0.71, 0.86] [0.49, 0.87] [0.64, 0.82] [0.59, 79] [0.79, 0.90] [0.67, 0.98] [0.54, 0.96] [0.67, 0.90] [0.78, 0.89] [0.73, 0.87]

MI is the acronym for the term measurement interval. LPM tests were canceled due to the COVID-19 pandemic in measurement intervals 4–7 and 11. Values in square brackets indicate the 95% confidence interval for each correlation. Square brackets with 
three dots represent the canceled measurement intervals.*indicates p < 0.05; **indicates p < 0.01; ***indicates p < 0.001. The correlation of MI 1 to M 12 and MI 1 to MI 13 cannot be reliably calculated due to a low sample size.
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lower ranges (roughly up to the 25th percentile) do indicate a low 
separability. In other words: the test is probably still too difficult 
for as many as 25% of the students.

Research questions 2.1–2.3: Sensitivity to 
learning

The investigation of students’ latent learning curves in mental 
addition and subtraction is presented in two steps. In a first step, 
we report the model fit of Model 1 (model without covariates) and 
Model 2. In a second step, we evaluate the latent learning curves 
regarding each of the research questions 2.1–2.3.

To estimate the model fit, we used the chi-square test, the root 
mean square error of approximation (RMSEA), the Tucker-Lewis 
Index (TLI), the Comparative fit index (CFI), and the standardized 
root mean square residual (SRMR). TLI and CFI values close to 
0.95 indicate an adequate fit to the data. RMSEA values close to 
0.06 and SRMR values close to 0.08 generally are recommended 
(Hu and Bentler, 1999).

A first LGCM was estimated (Model 1) to investigate the 
changes in the means of the test scores over the measurement 
intervals. Model estimation terminated successfully for Model 1, 
χ2 (73) = 195.116. The RMSEA for model 1 is 0.069, 90%CI [0.058, 
0.081] which implies an adequate fit. The TLI for Model 1 is 0.953 
and above the value for determining a good fit for model 
acceptability. The Comparative fit index (CFI) for Model 1 is 
0.949. The standardized root mean square residual (SRMR) 
is 0.068.

The slope, as a measure of linear growth in mental addition 
and subtraction competence over time, is positive for Model 1 

(estimate = 0.342; SE = 0.024; p < 0.001), indicating that mental 
computation skills have improved over the survey period (see also 
Figure 3). On average, the students solved roughly one more task 
correctly every three measurement intervals. Considering the 
grade level, second grade students solved roughly one more task 
correctly every two measurement intervals (estimate = 0.439; 
SE = 0.030; p < 0.001), for third grade students this was about every 
four measurement intervals (estimate = 0.249; SE = 0.033; 
p < 0.001). Data thus suggest a slightly steeper learning curve for 
second graders, implying faster learning.

The variance of the slope is also statistically significant for 
Model 1 (p < 0.001), indicating that learning growth did not 
change at the same rate for all students (see also Figure 3). Of the 
222 students who completed the minimum six measurement time 
points required by Christ et al. (2013), 213 students (95.95%) had 
an individual positive slope, indicating that they exhibited 
learning growth over time. Positive slope values ranged from 0.001 
to 1.176, indicating that some students were able to solve up to one 
more task per interval on average.

In the previous LGCM model (Model 1), individual change 
over time was indicated by intercept and slope, including only 
grade as covariate. In a further step, we extend the LGCM model 
to include group differences according to the research questions 
2.2 and 2.3.

Model estimation terminated successfully for Model 2, χ2 
(113) = 236.477. The RMSEA for model 2 is 0.056, 90% CI [0.046, 
0.066] which implies a close to adequate fit. The TLI for model 2 
is 0.952 and is also above the value for determining a good fit for 
the model acceptability. For Model 2, CFI is 0.952 and the SRMR 
is 0.057. In comparison to Model 1, the indices suggest a slightly 
better fit of Model 2.

FIGURE 2

Percentile curves based on the sample of the mixed addition and subtraction LPM test. The curves show, which raw score (y-axis) is assigned to a 
specific ability level (each represented by a percentile curve) at a certain LPM measurement interval (x-axis).
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The intercept of the latent learning curves in model 2 differed 
based on gender (estimate gender = −3.313, p < 0.001). Data 
revealed a higher intercept for males in comparison to females at 
the beginning of the measurement, that is male participants were 
able to solve approximately three tasks more correctly than 
females. The intercept also differed based on grade level (estimate 
grade level = 10.311, p < 0.001), indicating that third graders solved 
~10 tasks more than second graders at the beginning of the 
measurement. Furthermore, the intercept differed based on the 
assignment of SEN (estimate SEN-L = −9.385, p < 0.001; estimate 
SEN-CI = −4.015, p = 0.009). This indicates that students with 
special educational needs in the area of learning solved ~9 tasks 
less than students without such special need, whereas students 
with a special need in the area of communication and interaction 
solved ~4 tasks less. All results are reported in Table 9.

Focusing on the impact of the factors on the learning slope, 
only grade level led to a significantly differing learning slope 
(estimate = −0.178, p < 0.001), indicating that third graders 
learning was slightly slower than second graders learning. The 
learning slope did not significantly differ for males versus females 
(estimate = −0.073, p = 0.105) or for students with and without 
SEN-L (estimate = −0.150, p = 0.139) or with and without SEN-CI 
(estimate = −0.017, p = 0.868).

Discussion

The present study used a newly developed LPM tool to 
investigate the latent learning growth curves in mental addition and 
subtraction of second and third graders and the influence of 
sociodemographic characteristics such as grade level, gender, and 
the assignment of SEN on these curves. Thus, this study addressed 

the research stages 1 and 2 outlined by Fuchs (2004) to classify LPM 
research, both of which are prerequisites for the valid interpretation 
of the gathered data regarding individual learning curves.

LPM research at stage 1

In order to address research stage 1, we used a number of 
reliability and validity tests to examine the psychometric quality 

FIGURE 3

Jitter plot with the distribution of scores in the 12 LPM measurement intervals. The red line illustrates the general learning growth. The light dashed 
lines illustrate the growth for grade 2 and grade 3. The blue dots show the mean value as well as the confidence intervals of the respective 
measurement intervals for the overall sample.

TABLE 9 Parameter estimates for linear latent growth model  
(Model 2).

Estimate Estimate 
(Std. all) p

Mean

Intercept 3.644 0.478 0.187

Slope 1.077 3.503 ≤0.001

Variance

Intercept 29.758 0.512 ≤0.001

Slope 0.083 0.879 ≤0.001

Covariances

Intercept–slope 0.531 0.338 ≤0.001

Regressions

Intercept SEN-L −9.385 −0.280 ≤0.001

SEN-CI −4.015 −0.114 0.009

Grade level 10.311 0.675 ≤0.001

Gender −3.313 −0.217 ≤0.001

Slope SEN-L −0.150 −0.111 0.139

SEN-CI −0.017 −0.012 0.868

Grade level −0.178 −0.289 ≤0.001

Gender −0.073 −0.119 0.105
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of the LPM tool as a static score. Correlations between sum 
scores of adjacent measurement intervals were strong, while sum 
scores of measurement intervals more distant in time showed the 
expected, somewhat lower correlations. As measured criterion 
validity, correlations between the LPM sum scores at the first and 
last measurement point with the arithmetic subscales of the 
DEMAT 2+ were moderate to strong. As expected, the 
correlations were lower at the last measurement time point. In 
this regard, it should be kept in consideration that the DEMAT 
2+ reflects requirements of the mathematics curriculum of the 
second grade (Krajewski et al., 2020). By the end of grade 3, most 
students without SEN should be able to solve the items of the 
DEMAT 2+. Furthermore, as a measure of predictive validity, the 
association between the LPM sum scores at the first measurement 
and sum scores of the DEMAT 2+ arithmetic subscales were 
moderate to strong and are an indication of the important role of 
a mental computation in the solution of further arithmetic 
problems. Thus, even a single measurement in winter with the 
LPM tool can be a solid predictor of arithmetic performance at 
the end of the school year.

LPM research at stage 2

Over and above the psychometric characteristics at stage 1, 
significant positive linear growth in LGCM analyses indicates 
that the LPM tool is sensitive to students learning (Stage 2). 
Both, the slopes and the variance in slopes were significant, 
showing that meaningful learning has occurred over the 17 
measurement intervals and that students significantly differ in 
their learning growth. This is also reflected in the broad range of 
individual slope values. These findings are consistent with the 
results of the study by Salaschek and Souvignier (2014). In their 
study, they reported significant differences in learning growth in 
second grade students’ computation skills. In their study, second 
graders on average solved just under one more item per 3-week 
measurement interval, whereas in our study students solved one 
more item correctly every 4 weeks. Nevertheless, the results are 
only comparable to a limited extent as the LPM computation 
tests by Salaschek and Souvignier (2014) included tasks with all 
four basic arithmetic operations and reflected second-grade 
curriculum goals. In contrast, the LPM test employed in this 
study included mixed addition and subtraction tasks with varing 
difficulty based on the underlying DGICs. Moreover, the LPM 
test in this study required students to write the correct solution 
in a blank field, which allows a qualitative analysis of errors and 
eliminates guessing, the LPM computation tests by Salaschek 
and Souvignier (2014) were presented in a multiple-
choice format.

Regarding the comparison of learning growth for weaker and 
stronger students, based on the continous norming approach, 
we observed that students in the upper percentiles have higher 
learning growth than students in the lower percentiles, who 
barely improved over the measurement intervals. This highlights 

prior longitudinal or crossed-lagged findings regarding the high 
impact of prior knowledge on future learning in mathematics 
(e.g., Star et  al., 2009) and underlines the relevance of this 
research. However, analyses also highlight a positive result: 
Almost 96% of the students achieved an individual positive slope 
even though the positive slope values were relatively 
heterogeneous ranging from 0.001 to 1.176 (i.e., an average 
improvement between 0.001 and 1.176 items over the whole 
measurement period of 17 biweekly measurement intervals). 
Nonetheless, the results for the growth curves show a significant 
floor effect for students at the lower end of the distribution. These 
findings are of particular practical relevance, as it highlights the 
benefit of close use of LPM tools to identify learners with small or 
no learning growth at an early stage and provide appropriate 
learning support to prevent learning stagnation and ongoing 
mathematical difficulties. Therefore, heterogeneity in classes 
should be increasingly reflected in instructional decisions (e.g., 
Stecker et al., 2008).

In addition to these results, our study also provides 
information on the influence of sociodemographic characteristics 
such as gender and grade or the assignment of SEN on learning 
growth in mental computation. In our study, we found significant 
differences in participants’ prior achievement in favor of students 
in higher grades and students without SEN. Moreover, there are 
also differences in students learning growth development. In 
particular, the higher learning growth for second graders is 
consistent with curricular expectations and results of previous 
research (e.g., Selter, 2001; Benz, 2005; Karantzis, 2011). In the 
second grade, mental addition and subtraction with one-and 
two-digit numbers is curricular established and taught, whereas 
in the third grade, there is already an emphasis on the written 
computational algorithm and some students already have a fairly 
high level of mental computational skills. We  found gender 
differences for the intercept, but not for the slope. Students with 
SEN had a significantly lower intercept value. This result is 
consistent with the findings that especially students with SEN-L 
often do not master the basic arithmetic operations taught in 
primary school even in secondary school (e.g., Peltenburg et al., 
2012; Gebhardt et al., 2014; Rojo and Wakim, 2022).

Limitations

There are some limitations to consider in our study. First, the 
COVID-19 pandemic played an important role even before the 
survey began (e.g., home schooling as early as the 2019/2020 
school year), which implies that the results should not 
be  interpreted free of these home schooling influences. The 
COVID-19 pandemic also resulted in the cancelation of scheduled 
measurements due to homeschooling during this survey. As a 
result, it was not possible to carry out all the planned 
measurements at all six participating schools. This resulted in a 
smaller than expected amount of data being available for some 
measurement intervals. Moreover, the observed latent learning 
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curves may be somewhat less steep than expected with regular 
teaching. Thus, future longitudinal surveys will need to confirm 
our findings.

Second, only few students with the assignment of SEN 
participated in the study and they were unevenly distributed 
across the grades. This is mainly due to the fact that in Germany, 
SEN, especially SEN-L, is often not allocated until the 
third grade.

Third, while mental computation is an important domain of 
overall mathematics competence, it is also a relatively narrow 
focus in regard of mathematics skills. Therefore, it is not 
appropriate to interpret the results in such a way that they provide 
valid information about the overall performance in mathematics 
(e.g., see Christ et al., 2008).

Fourth, the influence of other important individual 
characteristics on mathematics performance such as working 
memory or language skills were not addressed in our study, 
although these could have an influence on task processing (e.g., 
Purpura and Ganley, 2014).

Fifth, our mental computation test consisted of visually 
administered items. Previous research (e.g., Reys et  al., 1995) 
suggests that students’ mental computation performance may 
be influenced by the mode of task presentation (e.g., visually or 
orally). This cannot be investigated in our study as the test did not 
contain orally administered items.

Sixth, the results show that the tasks are suitable for measuring 
learning development, but do not yet cover all performance 
domains. In particular, more simple computation tasks are needed 
to more accurately measure learning development in the lower 
skill range in the future. For this purpose, the used DGICs can 
provide valuable information about the obstacles to solving tasks 
correctly and for the construction of easier tests that can more 
sensitively measure mental computation skills at the lower 
performance levels.

Seventh, our study does not provide information about 
solution strategies that students used when completing the multi-
digit addition and subtraction tasks. Accordingly, no statements 
can be made about the adequacy and flexibility of the students’ use 
of solution strategies. Nevertheless, we assume that a higher sum 
value of correct items over time implies a more elaborate use of 
solution strategies.

Future research

Future studies need to further investigate how LPM tests can 
be  systematically used by teachers to improve the mental 
computation skills of their students. Identifying where differences 
in mental computation occur can support teachers develop 
appropriate educational instruction to meet the needs of 
individual students (e.g., Yarbrough et al., 2017). Our item design 
based on four DGICs will allow us to make statements that are 
even more concrete about areas that were specifically challenging 
for students, possibly pointing to student misconceptions and thus 

area that need specific teacher attention and support. In this 
regard, we will be able to offer not only a general performance 
score, but also differentiated scores according to the four DGICs. 
This allows us to provide teachers with more specific qualitative 
feedback on students’ mental computational performance. In the 
context of DGIC-focused analyses, there are several questions of 
relevance: A first important question would be  whether the 
influence of DGICs changes over time (e.g., whether the DGIC 
necessity of crossing ten loses influence over time). For example, 
in order to provide tailored math instruction, for teachers it would 
be useful to know which hurdles in the learning process students 
have already successfully mastered and which they have not. 
Following on from this, a second important question is which 
students have longer-term difficulties in mastering specific 
hurdles. Our results show that in particular students with SEN 
have lower skills and less learning growth over time. A further 
investigation could be  to examine the reasons for these 
performance differences and apparent stagnation of some 
low-achieving students, which for example might be related to 
insufficient knowledge or ineffective use of specific 
computation strategies.

Furthermore, future studies should examine trajectories in 
mental computation to describe how students differ in their skills 
and what characterizes different groups of learners. This 
information can both help identify students with learning 
difficulties in mental computation and provide trajectory-specific 
instructions (e.g., Salaschek et al., 2014).

Another issue arises from the construction of the parallelized 
tests that we used. While they were parallel in item selection based 
on the DGICs and should thus be comparable regarding their 
difficulty, there is no specific way to test this hypotheses. However, 
we assume, that the randomization by item category harmonize 
the difficulties enough to observe substantial inference.

In conclusion, we  developed an LPM tool for mental 
computation that meets the criteria of LPM research stages 1 and 
2. This lays important foundations for its future use as an LPM 
instrument in general as well as in regard of its use in 
computerized adaptive testing approaches (e.g., Frey and Seitz, 
2009). However, to normalize scores that address a broader 
proficiency range by computerized adaptive testing, the scoring 
mechanism (e.g., sum scores) has to be modified and the item 
parameters have to be fixed. We believe that the current study is 
a step in this direction.

The results of our study underline the high variability of 
mental computation skills and illustrate that one-size-fits-all 
instruction is not appropriate. Instead, teachers need to obtain 
insight into the different learning growth curves based on LPM 
data and provide individualized learning offers (e.g., Hickendorff 
et al., 2019). Otherwise, a lack of mental computation skills can 
be a hurdle for future learning success in mathematics. The study 
provides a strong reference against which individual growth can 
be  compared to identify struggling students in mental 
computation and provide targeted support based on qualitative 
error analysis.
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