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Abstract

This thesis deals with quadratic forms and quasilinear p-forms in positive
characteristic. In this setting, there are three well-known equivalence rela-
tions – similarity, birational equivalence, and stable birational equivalence.
Inspired by an algebraic characterization of motivic equivalence of quadratic
forms over fields of characteristic other than two, this thesis defines a new
equivalence relation – the Vishik equivalence.

The thesis is divided into chapters based on the kind of forms treated:
quasilinear p-forms (over fields of characteristic p), totally singular quadratic
forms, nonsingular quadratic forms, and singular quadratic forms (all of
them over fields of characteristic 2). The main goal is to compare the four
above-mentioned equivalences for each of those kinds of forms. We also
derive some consequences of two forms being equivalent for each of the four
equivalences separately. In particular, we give a new characterization of
the stable birational equivalence for quadratic forms. Moreover, we provide
some new results regarding the isotropy of quasilinear p-forms over field
extensions.
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Introduction
All students of mathematics meet quadratic forms right in their first year
in a course on linear algebra. They will learn that any quadratic form can
be expressed by a symmetric matrix, and, working over a field, this matrix
can be diagonalized. But there is a small catch, an assumption: The field
must not be of characteristic two. It is in the nature of a mathematician to
ask what happens over the “forbidden” fields.

As we will see in Definition 1.2, there is no problem in defining quadratic
forms over fields of characteristic two. The only difference to the usual defi-
nition (next to the unimportance of the signs, of course) is that when defin-
ing the polar form in part (2) of the definition, we have to drop the factor
1
2 . Unfortunately, this destroys the usual bijection between quadratic and
symmetric bilinear forms; there is no such bijection in characteristic two,
quadratic and bilinear forms build two mostly separate theories. Moreover,
the impossibility to divide by two also causes that not all quadratic forms
can be diagonalized. The best that can be achieved in general (if we view a
quadratic form as a polynomial in the variables Xi, Yi, Zj) is a polynomial
of the form

r∑︂
i=1

(aiX2
i +XiYi + biY

2
i ) +

s∑︂
j=1

cjZ
2
j (l)

with r, s ∈ N∪{0} and coefficients ai, bi, cj from the base field F . Depending
on the (non)zeroness of r and s, we distinguish between nonsigular, singular
and totally singular quadratic forms (see Subsection 1.1.2). Nonsingular and
totally singular quadratic forms have very different properties, and hence
they are usually treated separately; singular forms are a mixture of both of
these kinds, and so they are the most difficult to handle.

Even though the diagonalization, and quadratic forms in characteristic
two in general, were already studied by Arf in 1941, the study of quadratic
forms over fields of characteristic two is struggling, in a sense, to keep up
with the study of the usual case. There is commonly a certain analogy be-
tween the two theories. In a certain sense, the case of characteristic two can
be even viewed as the more general one; if you have a proof for an arbitrary
quadratic form in characteristic two, you can often adjust it to the case
of characteristic other than two. The other way around, starting with the
usual case and translating the theorems and their proofs into characteristic
two, is usually more complex and sometimes quite tricky. There are gen-
erally two problems: First, one has to deal with various kinds of quadratic
forms, each of them having very different properties. Second, the theory
of quadratic forms in characteristic two is less developed than in the usual
case, so some of the necessary tools may not be available in characteristic
two (yet).

Next to the quadratic forms in characteristic two, we will also devote
a significant part of the thesis to the so-called quasilinear p-forms. These
are a generalization of the totally singular quadratic forms – the ones with
r = 0 in the representation (l): We pick a field F of characteristic p > 0
and consider diagonal homogeneous polynomials of degree p over F , i.e.,
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polynomials of the form
s∑︂
j=1

cjZ
p
j

with cj ∈ F . These forms have been studied even less than quadratic forms
in characteristic two so far.

In this thesis, we are particularly focused on equivalences of forms (that
is, quadratic forms and quasilinear p-forms) and relations between them.
We will properly define the equivalences in Section 1.2. For now, we only
say that in the case of characteristic other than two, there are four equiv-
alences we are interested in: similarity (sim), birational equivalence (bir),
stable birational equivalence (stb) and motivic equivalence (mot). It is an
easy observation that the similarity is the strongest equivalence between
these four – two similar forms are also birationally, stably birationally and
motivically equivalent. We depict these trivial relations in Figure 1.

bir

sim stb

mot

Figure 1: Trivial relations between the equivalences in characteristic ̸= 2

Regarding the remaining relations between these four equivalences in
characteristic other than two, a few more implications are known to hold,
there are counterexamples for other ones, and some of them remain un-
solved; see Figure 2.

We would like to point out that the motivic equivalence has a known
criterion, called Vishik’s criterion (Vishik), which is also depicted in Fig-
ure 2. This fact is important for us: Unlike the similarity, the birational
and the stable birational equivalence, the motivic equivalence cannot be
directly translated into characteristic two (at least not with the currently
known tools). However, Vishik’s criterion, being purely algebraic, has a
natural transcription into the characteristic two case; we will call it Vishik
equivalence.

The main goal of this thesis is to compare the similarity, the birational
equivalence, the stable birational equivalence, and the Vishik equivalence in
the case of quadratic forms over fields of characteristic two and in the case of
quasilinear p-forms over fields of characteristic p. To our knowledge, there
are few results known, and most of them consider the birational and the
stable birational equivalence of quasilinear p-forms. The Vishik equivalence
is a new concept (although arising naturally from the case of characteristic
not two, where it is a characterization for the motivic equivalence); the
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bir

sim stb

mot

Vishik

NO

NO

?

NONO

?

Figure 2: Equivalence relations in characteristic ̸= 2

main question, which will accompany us throughout the whole thesis, is the
following:

Question Q. Are Vishik equivalent forms necessarily similar?

Of course, we can conclude from Figure 2 that this question has a neg-
ative answer in characteristic other than two; however, we will see that in
characteristic two, the answer is not clear.

Since the characteristic two case of quadratic forms is far less known than
the usual one, we start the thesis with a quite comprehensive introduction to
the topic in Section 1.1 of Chapter 1. The second part of Chapter 1, namely
Section 1.2, is devoted to the definitions of the four equivalences and some
of their properties. We would like to mention that from Subsection 1.1.3
further on, we include the quasilinear p-forms; in this sense, the content
of this chapter is fairly unique in treating all kinds of quadratic forms and
quasilinear p-forms uniformly.

One more chapter which treats all the forms uniformly can be found at
the end of the thesis. In Appendix A, we look at the behavior of quadratic
forms and quasilinear p-forms over fields with a discrete valuation. This
chapter contains results that are easy to prove but are difficult (or even
impossible) to be found in the current literature.

Each of the remaining chapters of the thesis is devoted to one specific
kind of forms.

In Chapter 2, we look at the quasilinear p-forms. We start with a deeper
introduction to the theory. Then we look at their isotropy properties and
deduce some results on splitting patterns. Regarding the birational and
the stable birational equivalence, we mostly just summarize known results.
Finally, we look at the Vishik equivalence: We prove that Question Q has
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a negative answer if p > 3. Moreover, we draw some other interesting
consequences of the Vishik equivalence of two quasilinear p-forms.

Setting p = 2, i.e., considering only totally singular quadratic forms,
Chapter 2 gives an answer to all the relations between the equivalences
except for Question Q. Therefore, that is the topic of Chapter 3. Unfor-
tunately, we find neither a counterexample nor a proof applicable to all
totally singular quadratic forms. However, we do give a positive answer for
some families of totally singular quadratic forms. In particular, this chapter
demonstrates the difficulty of the question.

In Chapter 4, we move on to a completely different kind of quadratic
forms, the nonsingular ones. This kind of quadratic forms behave most anal-
ogously to the quadratic forms in characteristic other than two; hence, we
make an exception for this chapter and do not impose any general assump-
tion on the characteristic. Many of the results of this chapter are indeed
independent of the characteristic.

Finally, Chapter 5 arch over all kinds of quadratic forms (but not the
quasilinear p-forms). Since we could give a conclusive answer to Question Q
neither for totally singular nor for nonsingular quadratic forms, we cannot
expect to get an answer in this general case. Instead of that, we focus
on the stable birational equivalence and provide a characterization of this
phenomenon.

At this point should appear an acknowledgement. But to be honest,
my biggest thanks belong (quite paradoxically) to the global pandemic of
Covid-19, which provided so much life insecurity that continuing my doc-
toral studies seemed easier than giving up.

4



1. Preliminaries
If not said otherwise, F is an arbitrary field of characteristic 2, resp. of
characteristic p in the case of quasilinear p-forms. Let k ≥ 1; throughout
the thesis, we denote:

• F ∗ = F \ {0},
• F k = {ak | a ∈ F}, and
• F ∗k = {ak | a ∈ F ∗}.

Note that if charF = p, then (a+ b)p = ap + bp for any a, b ∈ F , and hence
F p is a subfield of F .

1.1 Basic notions
We start by presenting the basic definitions and notations which will be used
throughout the thesis. The standard literature for bilinear and quadratic
forms is [EKM08], but we would like to point out that our notation some-
times differs from the one in this book, and follows rather [HL04]. The
main source for an introduction to quasilinear p-forms is [Hof04]. If not
said otherwise, any statements in this section are taken from these sources.

1.1.1 Bilinear forms
Definition 1.1. Let V be a finite-dimensional vector space over F . A
bilinear form b on V is a map b : V ×V → F satisfying for all v, v′, w, w′ ∈ V
and a ∈ F

b(v + v′, w) = b(v, w) + b(v′, w),
b(v, w + w′) = b(v, w) + b(v, w′),

b(av, w) = ab(v, w) = b(v, aw).

For a bilinear form b on a vector space V , we define the dimension of b
by dim b = dim V . We say that b is symmetric if b(v, w) = b(w, v) for any
v, w ∈ V . We define the radical of a symmetric bilinear form b by

rad b = {v ∈ V | b(v, w) = 0 ∀ w ∈ V }.

We call a symmetric bilinear form b nondegenerate if rad b = {0}.

If there exists a basis {e1, . . . , en} of V such that the Gramm matrix Gb

of b with respect to this basis (i.e., the matrix (b(ei, ej))ni,j=1) is diagonal,
then we call the bilinear form b diagonalizable. In that case, we write
b ∼= ⟨c1, . . . , cn⟩b, where diag(c1, . . . , cn) = Gb.

1.1.2 Quadratic forms
Definition 1.2. Let V be a finite-dimensional vector space over F . We
define a quadratic form over F as a map φ : V → F such that

(1) φ(av) = a2φ(v) for any a ∈ F and v ∈ V ,
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(2) bφ : V × V → F , defined by

bφ(v, w) = φ(v + w) + φ(v) + φ(w)

for any v, w ∈ V , is a bilinear form.
We define the dimension of φ as dim V , denoted dimφ.

For a quadratic form φ, the bilinear form bφ defined above is called the
polar form of φ. On the other hand, if a bilinear form b is given, then we
can define its associated quadratic form φb by φb(v) = b(v, v), v ∈ V . Note
that

φbφ(v) = φ(v + v) + φ(v) + φ(v) = 0
for any v ∈ V . Similarly, for any v, w ∈ V ,

bφb
(v, w) = φb(v + w) + φb(v) + φb(w)

= b(v + w, v + w) + b(v, v) + b(w,w) = b(v, w) + b(w, v);

hence, if b is symmetric, then we get bφb
(v, w) = 0 for any v, w ∈ V .

Therefore, there is no correspondence between quadratic and bilinear forms
in characteristic two. We will focus on quadratic forms.

Definition 1.3. Let φ and ψ be two quadratic forms on the vector spaces
Vφ and Vψ. We say that φ and ψ are isometric, and write φ ∼= ψ, if there
exists an F -linear isomorphism f : Vφ → Vψ such that φ(v) = ψ(f(v)) for
any v ∈ Vφ.

Let φ be a quadratic form on V over F , and let W be an F -linear
subspace of V . We denote by φ|W the quadratic form given by the restriction
of the map φ to W ; the polar form of φ|W is bφ|W = (bφ)|W . If U is another
F -linear subspace of V such that V = U ⊕ W and bφ(u,w) = 0 for any
u ∈ U and w ∈ W , then φ ∼= φ|U ⊥ φ|W .

For a positive integer n, we define

n× φ = φ⊥ . . . ⊥ φ⏞ ⏟⏟ ⏞
n-times

.

Let us write [a, b] for the quadratic form which corresponds to the poly-
nomial aX2 + XY + bY 2 and ⟨c⟩ for the one corresponding to cZ2. Then
any quadratic form φ can be written as

φ ∼= [a1, b1] ⊥ . . . ⊥ [ar, br] ⊥ ⟨c1, . . . , cs⟩ (1.1)

with ai, bi, cj ∈ F , where ⟨c1, . . . , cs⟩ is a short way to write ⟨c1⟩⊥ . . . ⊥⟨cs⟩.
We call the pair (r, s) the type of the form φ; it is invariant under isometry.
Note that dimφ = 2r + s. We say that the form φ is

• the zero form if r = s = 0,
• nonsingular if r > 0 and s = 0,
• semisingular if r > 0 and s > 0,
• totally singular (or quasilinear) if r = 0 and s > 0,
• and singular if s > 0 (this term covers both semisingular and totally

singular forms).
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In (1.1), we have ⟨c1, . . . , cs⟩ ∼= φ|rad bφ , and hence ⟨c1, . . . , cs⟩ is determined
uniquely up to isometry; it is called the quasilinear part and denoted by
ql(φ).

Note that if φ is totally singular, i.e., φ ∼= ⟨c1, . . . , cs⟩, then it can be
viewed as a quadratic form associated to the bilinear form b ∼= ⟨c1, . . . , cs⟩b;
it follows that bφ ∼= s × ⟨0⟩b, i.e., the polar form of a totally singular
quadratic forms is the zero map.

There are some isometries of small dimensional forms, called standard
relations, which we will use implicitly; for any a, b, c, d ∈ F and x ∈ F ∗, the
following hold:

[a, b] ∼= [b, a], ⟨a, b⟩ ∼= ⟨b, a⟩,
[a, b] ∼= [ax2, bx−2], ⟨a⟩ ∼= ⟨x2a⟩,
[a, b] ∼= [a, b+ ax2 + x], ⟨a, b⟩ ∼= ⟨a, a+ b⟩,
[a, b] ⊥ [c, d] ∼= [a+ c, b] ⊥ [c, b+ d], [a, b] ⊥ ⟨c⟩ ∼= [a, b+ c] ⊥ ⟨c⟩.

(1.2)

In particular, note that for any x ∈ F ∗, we have

H ∼= [0, x].

It can be proved that any isometry of quadratic forms can be obtained
by successive applications of the standard relations (1.2).

Additionally to the standard relations, we will also often use scalar mul-
tiples of quadratic forms, and it will be useful to have some explicit expres-
sions: For any a, b, c ∈ F and λ ∈ F ∗, we have

λ[a, b] ∼= [λa, λ−1b] and λ⟨c⟩ ∼= ⟨λc⟩. (1.3)

Together with (1.1), it follows that any quadratic form φ can be written as

φ ∼= a1[1, b1] ⊥ . . . ⊥ ar[1, br] ⊥ ⟨c1, . . . , cs⟩ (1.4)

for some ai ∈ F ∗ and bi, cj ∈ F .

The question arises if there is some kind of cancellation possible when
the same quadratic form appears as an orthogonal summand on the left- and
right-hand side of an isometry relation. The answer is “not always”, as one
can see from

[1, 1] ⊥ ⟨1⟩ ∼= [0, 0] ⊥ ⟨1⟩ whereas [1, 1] ̸∼= [0, 0] over F2.

But a cancellation is possible under some additional assumptions:

Theorem 1.4 ([HL04, Prop. 2.5 and Lemma 2.6]). Let φ, ψ, τ be quadratic
forms and j ≥ 0.

(i) If φ⊥ j × ⟨0⟩ ∼= ψ ⊥ j × ⟨0⟩, then φ ∼= ψ.
(ii) (Witt Cancellation Theorem) Let τ be nonsingular. If φ⊥ τ ∼= ψ⊥ τ ,

then φ ∼= ψ.
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We say that a quadratic form φ on V is isotropic if there exists a nonzero
vector v ∈ V such that φ(v) = 0. A subspace U ⊆ V such that φ(u) = 0 for
each u ∈ U is called totally isotropic. If the quadratic form is not isotropic,
then it is called anisotropic.

For example, the quadratic form [0, 0], called hyperbolic plane and de-
noted by H, is isotropic; so is the one-dimensional quadratic form ⟨0⟩. By
Witt Decomposition Theorem [HL04, Prop. 2.4], any quadratic form φ can
be written as

φ ∼= i× H ⊥ φr ⊥ φs ⊥ j × ⟨0⟩ (1.5)
with φr nonsingular, φs totally singular and φr ⊥ φs anisotropic. In this
decomposition, the form φr ⊥ φs is unique up to isometry, it is called the
anisotropic part of φ and denoted by φan. The form φs is also unique up
to isometry. The form φr is generally not unique. Moreover, the numbers i
and j are determined uniquely; we define

• the Witt index of φ as iW(φ) = i,
• the defect (or quasilinear index) of φ as id(φ) = j,
• and the total isotropy index of φ as it(φ) = i+ j.

We call the form φ nondefective if id(φ) = 0. For totally singular forms,
being nondefective is equivalent to being anisotropic, whereas all nonsin-
gular forms are nondefective. We define the nondefective part of φ as
φnd ∼= i × H ⊥ φr ⊥ φs. Quadratic forms isometric to k × H for some
k ≥ 1 are called hyperbolic. Note that it(φ) is the dimension of a maximal
isotropic subspace (i.e., a totally isotropic subspace of maximal dimension)
of V .

Definition 1.5. We say that quadratic forms φ and ψ are Witt equivalent,
denoted by φ Witt∼ ψ, if φan ∼= ψan.

In the following example, we look at the isotropy of binary quadratic
forms.

Example 1.6. Let a, b ∈ F , and we consider the binary quadratic forms
⟨1, a⟩ and [1, b]. Obviously, the form ⟨1, a⟩ is isotropic if and only if a ∈ F 2;
in such case, we have ⟨1, a⟩ ∼= ⟨1, 0⟩. On the other hand, the form [1, b] is
isotropic if and only if there exists x ∈ F such that b = x2 + x; moreover,
note that if [1, b] is isotropic, then necessarily [1, b] ∼= H.

Inspired by the previous example, we define the Artin–Schreier map:

℘ : F → F, x ↦→ x2 + x.

It follows that the quadratic form [1, b] is isotropic if and only if b ∈ ℘(F ).

Let φ and σ be quadratic forms over F . We say that σ is dominated by
φ, denoted by σ ≼ φ, if σ ∼= φ|U for some vector space U ⊆ V . Moreover, we
say that σ is a subform of φ, denoted by σ ⊆ φ, if there exists a quadratic
form ψ (possibly the zero form) such that φ ∼= σ ⊥ ψ. Note that any
subform of φ is dominated by φ. If σ is nonsingular or both φ and σ are
totally singular, then the notions of subform and dominance are equivalent,
but not so in general: For example, ⟨0⟩ ≼ H, but ⟨0⟩ ⊥ ⟨a⟩ ≁= H for any
a ∈ F , because isometry preserves the type.
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Proposition 1.7 ([HL04, Lemma 3.1]). Let σ, φ be quadratic forms over
F . Then the following are equivalent:

(i) σ ≼ φ,
(ii) there exist nonsingular forms σr and τ over F , nonnegative integers

s′ ≤ s ≤ s′′ and ci, dj ∈ F (with 1 ≤ i ≤ s′′ and 1 ≤ j ≤ s′) such that

σ ∼= σr ⊥ ⟨c1, . . . , cs⟩, and
φ ∼= σr ⊥ τ ⊥ [c1, d1] ⊥ . . . ⊥ [cs′ , ds′ ] ⊥ ⟨cs′+1, . . . , cs′′⟩.

For a symmetric bilinear form b on V and a quadratic form φ on W ,
we define the tensor product of b and φ as the unique quadratic form b⊗φ
that satisfies

(b ⊗ φ)(v ⊗ w) = b(v, v)φ(w)
for any v ∈ V and w ∈ W , and with the polar form of b ⊗ φ defined as
b ⊗ bφ. For example, if a ∈ F , then ⟨a⟩b ⊗ φ ∼= aφ.

Consider now totally singular quadratic forms φ and ψ. We can find
a bilinear form b such that φ is the associated quadratic form to b: for
φ ∼= ⟨c1, . . . , cs⟩ set b ∼= ⟨c1, . . . , cs⟩b. We define the tensor product φ ⊗ ψ
as b ⊗ ψ, i.e.,

⟨c1, . . . , cs⟩ ⊗ ψ ∼= c1ψ ⊥ . . . ⊥ csψ.

Let φ, ψ be quadratic forms over F . We say that φ is divisible by ψ if
there exists a bilinear form b (or a totally singular quadratic form γ) over
F such that φ ∼= b ⊗ ψ (or φ ∼= γ ⊗ ψ).

1.1.3 Quasilinear p-forms
Definition 1.8. Let F be a field of characteristic p > 0 and V a finite-
dimensional vector space over F . A quasilinear p-form is a map φ : V → F
with the following properties:

(1) φ(av) = apφ(v) for any a ∈ F and v ∈ V ,
(2) φ(v + w) = φ(v) + φ(w) for any v, w ∈ V .

We define the dimension of φ as dimφ = dimV .
Note that if p = 2 and σ is a totally singular quadratic form, then

it satisfies property (1). Moreover, recall that the polar form of σ is the
zero map; hence, property (2) is fulfilled as well. So any totally singular
quadratic form is a quasilinear 2-form.

On the other hand, since the polar form of a totally singular quadratic
form is the zero map, we can, in this sense, also talk about a polar form of
a quasilinear p-form. So, to avoid case distinction, we define the polar form
bφ of a quasilinear p-form φ as bφ = dimφ × ⟨0⟩b. With this definition, it
follows that the quasilinear 2-forms are exactly the totally singular quadratic
forms.

Let F be a field of characteristic p > 0, V a vector space over F with a
basis {e1, . . . , en}, and φ a quasilinear p-form on V . Let ai = φ(ei); then,
for a vector v = ∑︁n

i=1 xiei ∈ V , we have

φ(v) =
n∑︂
i=1

aix
p
i ,

9



and hence we can associate φ with the “diagonal” homogeneous polynomial∑︁n
i=1 aiX

p
i ∈ F [X1, . . . , Xn]. Analogously as in the case of totally singular

quadratic forms, we denote such a quasilinear p-form by ⟨a1, . . . , an⟩.

The notions of being isometric, (an)isotropic or nondefective, the no-
tion of defect and of being a subform are completely analogous to the ones
for totally singular quadratic forms. In particular, as in the case of to-
tally singular quadratic forms, it holds for any quasilinear p-form φ that
φ ∼= φan ⊥ id(φ) × ⟨0⟩ and φan ∼= φnd. The Witt cancellation works as in
the case of totally singular quadratic forms, namely only ⟨0⟩’s can be can-
celed.

The standard relations for quasilinear p-forms are also analogous to the
ones for totally singular quadratic forms; namely, for a, b, λ ∈ F and x ∈ F ∗,
we have

⟨a⟩ ∼= ⟨axp⟩, ⟨a, b⟩ ∼= ⟨a, a+ b⟩, λ⟨a⟩ ∼= ⟨λa⟩.

In particular, note that −1 = (−1)p, and hence ⟨−a⟩ ∼= ⟨a⟩ for any a ∈ F .
The tensor product of two quasilinear p-forms φ ∼= ⟨a1, . . . , an⟩ and ψ

over F is defined as

φ⊗ ψ ∼= a1ψ ⊥ . . . ⊥ anψ.

In the following, we write p-form for short instead of quasilinear p-form
and use forms as a common term for both quadratic forms and p-forms.

1.1.4 Field extensions
Let b be a bilinear form on the vector space V over F . If E/F is a field exten-
sion, then we write bE for the bilinear form on the vector space VE = E ⊗F V
that satisfies bE(e ⊗ v, f ⊗ w) = efb(v, w) for any e, f ∈ E and v, w ∈ V .
Furthermore, if φ is a form on the vector space V over F with the polar
form bφ, then we write φE for the form on the vector space VE that satisfies
φE(a ⊗ v) = apφ(v) for any a ∈ E and v ∈ V , and with the polar form
bφE

= (bφ)E.

We start with a few basic observations from linear algebra which have
some important effects on quadratic forms over field extensions.

Lemma 1.9. Let V be a vector space over F , and let E/F be a field ex-
tension. Let v1, . . . , vn ∈ V be F -linearly independent vectors. Then the
vectors 1 ⊗ v1, . . . , 1 ⊗ vn are linearly independent over E. In particular,
dimE VE = dimF V .

Proof. Let {αj | j ∈ J} for a suitable index set J be a basis of E as an
F -vector space. Assume that

0 =
n∑︂
i=1

γi(1 ⊗ vi)
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for some γi ∈ E, and for each i write

γi =
∑︂
j∈J

xijαj

with xij ∈ F , such that xij = 0 for almost all j ∈ J . Then we have

0 =
n∑︂
i=1

γi(1 ⊗ vi) =
n∑︂
i=1

∑︂
j∈J

xijαj ⊗ vi =
∑︂
j∈J

αj ⊗
(︃ n∑︂
i=1

xijvi⏞ ⏟⏟ ⏞
∈V

)︃
.

Since {αj | j ∈ J} is linearly independent over F , we get ∑︁n
i=1 xijvi = 0 for

each j ∈ J . But now we are in V , where v1, . . . , vn are linearly independent;
therefore, xij = 0 for each i and j. It follows that γi = 0 for each i, and
hence the vectors 1 ⊗ v1, . . . , 1 ⊗ vn are linearly independent over E.

It is easy to see that if we have spanF{v1, . . . , vn} = V , it follows that
spanE{1 ⊗ v1, . . . , 1 ⊗ vn} = VE. Together with the first part of the lemma,
we get dimF V = dimE VE.

Lemma 1.10. Let b be a symmetric bilinear form on an F -vector space
and E/F a field extension. Then E ⊗ rad b ≃ rad bE.

Proof. First of all, note that

E ⊗ rad b =
{︄∑︂

i

ei ⊗ vi ∈ VE

⃓⃓⃓⃓
b(vi, u) = 0 ∀ i, ∀u ∈ V

}︄
,

rad bE =
⎧⎨⎩∑︂

i

ei ⊗ vi ∈ VE

⃓⃓⃓⃓ ∑︂
i,j

eifjb(vi, wj) = 0 ∀
∑︂
j

fj ⊗ wj ∈ VE

⎫⎬⎭ .
Thus, the inclusion E ⊗ rad b ⊆ rad bE is trivial. Let v ∈ rad bE with
v = ∑︁n

i=1 ei ⊗ vi for some n > 0, ei ∈ E and vi ∈ V . Let {αj | j ∈ J} for a
suitable index set J be an F -basis of E, and for each i, write

ei =
∑︂
j∈J

xijαj

with xij ∈ F and xij = 0 for almost all j ∈ J . Then

v =
n∑︂
i=1

ei ⊗ vi =
n∑︂
i=1

∑︂
j∈J

xijαj ⊗ vi =
∑︂
j∈J

αj ⊗
(︄

n∑︂
i=1

xijvi

)︄
. (1.6)

Thus, for each u ∈ V , we have

0 = bE

(︄
n∑︂
i=1

ei ⊗ vi, 1 ⊗ u

)︄
=
∑︂
j∈J

αjb

(︄
n∑︂
i=1

xijvi, u

)︄
.

From the linear independence of {αj | j ∈ J}, it follows b (∑︁i xijvi, u) = 0
for each j ∈ J . Therefore, ∑︁i xijvi ∈ rad b. Hence, using (1.6) again, we
obtain v ∈ E ⊗ rad b.

Note that the previous lemma implies that the bilinear form bE is non-
degenerate if and only if b is nondegenerate.
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Corollary 1.11. The type of a quadratic form is invariant under field ex-
tensions.

Proof. Let φ be a quadratic form over F and let E/F be a field extension.
The dimension of ql(φE) equals the dimension of the E-vector space rad bφE

,
which is by Lemma 1.10 isometric to the vector space E ⊗ rad bφ. Thus,

dim ql(φE) = dimE E ⊗ rad bφ = dimF rad bφ = dim ql(φ),

where the second equality follows from Lemma 1.9. By the same lemma,
we have dimφ = dimφE. The claim follows.

Corollary 1.12. Let φ be a form over F and E/F a field extension. Then
iW(φE) ≥ iW(φ), id(φE) ≥ id(φ) and it(φE) ≥ it(φ).

Proof. We prove the statement only for the Witt index, the other cases are
analogous. Let V be the underlying F -vector space of φ and U ⊆ V be
such that V ≃ U ⊥ rad bφ. Let W ⊆ U be a maximal isotropic subspace of
U , and denote WE = E ⊗W . Let ∑︁n

i=1 ei ⊗wi ∈ WE with wi ∈ W for each
i. Then φ(wi) = 0, and also

bφ(wi, wj) = φ(wi + wj) + φ(wi) + φ(wj) = 0

for all i, j. Thus, we have

φ

(︄
n∑︂
i=1

ei ⊗ wi

)︄
=

n∑︂
i=1

e2
iφ(wi) +

n∑︂
i,j=1
i ̸=j

eiejbφ(wi, wj) = 0,

and hence WE is a totally isotropic subspace of φE, which means that
it(φE) ≥ dimEWE. Moreover, we have

WE ∩ rad bφE
≃ E ⊗ (W ∩ rad bφ) = E ⊗ {0} ≃ {0};

therefore, the form (φE)|WE
is nonsingular, and so iW(φE) ≥ dimEWE.

Since we know from Lemma 1.9 that dimEWE = dimF W , we get the
desired inequality iW(φE) ≥ iW(φ).

At this point, let us recall some basic algebra about field extensions in
finite characteristic.

We call a field extension E/F purely transcendental if there exists a
subset S ⊆ E of algebraically independent elements such that E = F (S).
The typical example is the extension E = F (X1, . . . , Xn) over F with
Xi variables; in that case, we call n the transcendence degree and denote
trdegF E = n.

Purely transcendental extensions do not change the isotropy of forms.

Lemma 1.13 ([EKM08, Lemma 7.15] and [Hof04, Prop. 5.3]). Let φ be a
form over F and E/F a purely transcendental extension. Then it holds that
iW(φE) = iW(φ) and id(φE) = id(φ). In particular, φ is isotropic over E if
and only if φ is isotropic over F .
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An algebraic extension E/F is called separable if the minimal polynomial
over F of any element of E is separable; it is called inseparable otherwise.

Lemma 1.14 ([Hof04, Prop.5.3] and [EKM08, Lemma 22.13]). Let E/F be
a separable extension.

(i) If charF = p and φ is a p-form over F , then id(φE) = id(φ). In par-
ticular, if φ is anisotropic over F , then it remains anisotropic over E.

(ii) Let charF = 2 and ψ be a quadratic form over F . Then we have
id(ψE) = id(ψ). In particular, if ql(ψ) is anisotropic over F , then it
remains anisotropic over E.

However, a singular quadratic form can become isotropic over a separable
field extension, as we will see in Subsection 1.1.5.

We call an extension L/F purely inseparable if for each α ∈ L there
exists n(α) ≥ 0 such that αpn(α) ∈ F ; the minimal n(α) with this property
is called the exponent of α over F . If there exists the maximum of exponents
of all elements of L, then it is called the exponent of L over F . The degree
of any finite purely inseparable extension is a power of p.

Lemma 1.15 ([Pic39, Th. 4 on pg. 220]). Let L/F be a finite purely insep-
arable field extension. Then there exist a1, . . . , ar ∈ F and n1, . . . , nr ≥ 0
such that

L ≃ F
(︂

pn1√
a1, . . . ,

pnr√
ar
)︂
.

In that case, [L : F ] ≤ pn1+···+nr .

Any algebraic field extension L/F can be realized as a separable exten-
sion K/F followed by a purely inseparable extension L/K. Here we have

K = {α ∈ L | α separable over F},

and K is called a separable closure of F in L ([Bos20, Th. 4 on pg. 161]).
If L ≃ L, i.e., L is algebraically closed, then we call K simply a separable
closure of F .

Lemma 1.16. Let charF = 2. Let φ be a quadratic form over F and ψ a
nonsingular quadratic form over F such that φ ∼= ψ ⊥ ql(φ). Moreover, let
K be a separable closure of F . Then ψ is hyperbolic over K; in particular,
iW(φK) = 1

2 dimψ.

Proof. Let

ψ ∼=
n

⊥
i=1

ai[1, bi]

for some n ≥ 0 and ai, bi ∈ F . Then, for each i, we have ℘−1(bi) ∈ K, and
hence [1, bi]K ∼= HK . It follows that ψK is hyperbolic.

1.1.5 Function fields
Let f ∈ F [X0, . . . , Xn] be a homogeneous irreducible polynomial; if n ≥ 1,
then the polynomial f(1, X1, . . . , Xn) ∈ F [X1, . . . , Xn] is also irreducible.
So, we define the function field F (f) as

F (f) = Quot (F [X1, . . . , Xn]/f(1, X1, . . . , Xn)) .
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If g ∈ F [X1, . . . , Xn] is irreducible, but not homogeneous, then we define
its function field F (g) as

F (g) = Quot (F [X1, . . . , Xn]/g(X1, . . . , Xn)) .

Note that this is consistent with the definition for homogeneous polynomials:
Indeed, we could consider the homogenization ˜︁g of g, i.e., the homogeneous
polynomial ˜︁g(X0, . . . , Xn) = Xdeg g

0 g
(︂
X1
X0
, . . . , Xn

X0

)︂
, and then construct the

field F (˜︁g) as above. But we have ˜︁g(1, X1, . . . , Xn) = g(X1, . . . , Xn), and
hence F (˜︁g) = F (g).

For a quadratic form φ of dimension n+1, the polynomial φ(X0, . . . , Xn)
is reducible if and only if the nondefective part φnd of φ is either of the
type (0, 1), or of the type (1, 0) and φnd ∼= H, see [Ahm97]. If φ is an
(n+ 1)-dimensional p-form, then the polynomial φ(X0, . . . , Xn) is reducible
if and only if dimφan = 1, see [Hof04, Lemma 7.1].

We say that the form φ is irreducible if the polynomial φ(X0, . . . , Xn)
is irreducible; in that case, we have n ≥ 1 and we can define the function
field F (φ) as for irreducible homogeneous polynomials; we will see in Subsec-
tion 1.1.10 that this definition agrees with the function field of the projective
scheme given by φ. If φ is reducible, then we define F (φ) = F (X1, . . . , Xj),
where j = id(φ); in particular, F (H) = F and F (⟨a⟩) = F for any a ∈ F ∗.
This definition is consistent with the following lemma:

Lemma 1.17. Let φ be a form over F . Then F (φ) ≃ F (φnd)(Y1, . . . , Yj),
where j = id(φ). In particular, the extension F (φ)/F (φnd) is purely tran-
scendental.

Proof. Let dimφnd = n and write X = (X1, . . . , Xn) and Y = (Y1, . . . , Yj).
Then φ(X,Y ) = φnd(X) as polynomials; hence, F (φ) ≃ F (φnd)(Y ).

A slightly different situation occurs for nondefective forms; recall that
only nonsingular and semisingular quadratic forms can be nondefective and
isotropic at once.

Lemma 1.18 ([EKM08, Prop. 22.9]). Let φ be a nondefective quadratic
form. Then the field extension F (φ)/F is purely transcendental if and only
if φ is isotropic.

Note that it follows from the definition of a function field that φF (φ) is
isotropic for any form φ over F with dimφnd > 1.

The following lemma follows directly from the definitions.

Lemma 1.19. Let φ be a form (or, more generally, an irreducible polyno-
mial) over F , and let c ∈ F ∗. Then F (cφ) = F (φ).

Let us look at function fields of anisotropic binary forms; with the lemma
above, we can assume that φ ∼= ⟨1, a⟩ or φ ∼= [1, a] for some a ∈ F .

First, let φ ∼= ⟨1, a⟩ be a p-form. In order for φ to be anisotropic, we
must have a /∈ F p. Then

F (⟨1, a⟩) = Quot (F [X]/(1 + aXp)) = F [X]/(1 + aXp) ≃ F ( p
√
a).
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Let φ ∼= [1, a], so in particular charF = 2 for now. Recall that this form
is anisotropic if and only if a /∈ ℘(F ). For such a, we have

F ([1, a]) = Quot
(︂
F [X]/(X2 +X + a)

)︂
= F [X]/(X2+X+a) ≃ F (℘−1(a)),

where under ℘−1(a), we understand an element α from an algebraic closure
F of F such that ℘(α) = a.

More generally, one can prove the following lemma:

Lemma 1.20. Let φ be an irreducible form. Then F (φ) can be realized as
a purely transcendental extension K/F of transcendence degree dimφ − 2,
followed by an algebraic extension L/K of degree p.

(i) If φ is a semisingular or a nonsingular quadratic form, then L/K is
separable; in particular, if we have φ ∼= a0[1, b0] ⊥ . . . ⊥ ar[1, br] with
a0, . . . , ar ̸= 0, then

F (φ) ∼= F (X1, Y1, . . . , Xr, Yr)
(︂
℘−1(α)

)︂
where

α = a−1
0

(︂
a1(X2

1 +X1Y1 + b1Y
2

1 ) + · · · + ar(X2
r +XrYr + brY

2
r )
)︂

+ b0.

(ii) If φ is a p-form, then L/K is purely inseparable; in particular, if
φ ∼= ⟨c0, . . . , cs⟩ with c0 ̸= 0, then

F (φ) ∼= F (X2, . . . , Xs)
(︃

p
√︂
c−1

0 (c1 + c2X
p
2 + · · · + csX

p
s )
)︃
.

Note that if ψ is a quadratic form over F which is not totally singular,
then by Lemma 1.20, the extension F (ψ)/F is separable. By Lemma 1.14,
any totally singular form anisotropic over F remains anisotropic over F (ψ).
Thus, we get the following lemma.

Lemma 1.21 ([Lag02, Cor. 3.3]). Let φ, ψ be anisotropic quadratic forms
over F . If φ is totally singular and ψ is not totally singular, then φF (ψ) is
anisotropic.

Finally, the following lemma will be useful when dealing with more than
one form.

Lemma 1.22 ([EKM08, Ex. 22.3], [Scu16b, Sec. 7.2]). Let φ, ψ be forms
over F . Then F (φ)(ψF (φ)) ≃ F (ψ)(φF (ψ)).

1.1.6 Sets and groups generated by the represented
elements

For a form φ on V over F , we denote

DF (φ) = {φ(v) | v ∈ V },

i.e., DF (φ) is the set of all elements of F represented by φ (including zero).
Furthermore, we set D∗

F (φ) = DF (φ)\{0}. If E/F is a field extension, then
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we write DE(φ) (resp. D∗
E(φ)) for short instead of DE(φE) (resp. D∗

E(φE)).
Note that DF (φ) = DF (φnd) and D∗

F (φ) = D∗
F (φnd).

Let φ ∼= ⟨a1, . . . , an⟩ be a p-form over F . Recall that F p is a field; then
the set

DF (φ) = {a1x
p
1 + · · · + anx

p
n | xi ∈ F, 1 ≤ i ≤ n}

is a vector space over F p generated by {a1, . . . , an}. It follows that

⟨a, b⟩ ∼= ⟨a, a+ b⟩

for any a, b ∈ F ; this is one of the standard relations we have seen. In
particular, as −1 = (−1)p, we have

⟨a, a⟩ ∼= ⟨a,−a⟩ ∼= ⟨a, 0⟩,

and hence the form ⟨a, a⟩ is isotropic for any a ∈ F . It is actually easy to see
that φ is anisotropic if and only if dimφ = dimF p DF (φ). More precisely,
we have the following lemma:

Lemma 1.23 ([Hof04, Prop. 2.6]). Let φ be a p-form over F , and let
{c1, . . . , ck} be any F p-basis of the vector space DF (φ). Then we have
φan ∼= ⟨c1, . . . , ck⟩.

For k ≥ 1 and forms φ1, . . . , φk over F , we define

DF (φ1) · · ·DF (φk) =
{︄

k∏︂
i=1

ai

⃓⃓⃓⃓
⃓ ai ∈ DF (φi), 1 ≤ i ≤ k

}︄
.

If φ1 = · · · = φk = φ, then we write DF (φ)k for short; analogously for
D∗
F (φ1) · · ·D∗

F (φk) and D∗
F (φ)k. In particular,

D∗
F (φ)k =

{︄
k∏︂
i=1

ai

⃓⃓⃓⃓
⃓ ai ∈ D∗

F (φ), 1 ≤ i ≤ k

}︄
.

Finally, by ⟨D∗
F (φ)k⟩, we denote the multiplicative subgroup of F ∗ generated

by D∗
F (φ)k, i.e.,

⟨D∗
F (φ)k⟩ =

{︄
n∏︂
i=1

bi

⃓⃓⃓⃓
⃓ n ≥ 0, b1, . . . , bn ∈ D∗

F (φ)k
}︄
.

1.1.7 Pfister forms and Pfister neighbors
Let n ≥ 0 and a1, . . . , an ∈ F ∗, b ∈ F . We define:

• the n-fold bilinear Pfister form for n = 0 as ⟨1⟩b, and for n > 0 by

⟨⟨a1, . . . , an⟩⟩b = ⟨1, a1⟩b ⊗ · · · ⊗ ⟨1, an⟩b;

• the (n+ 1)-fold quadratic Pfister form by

⟨⟨a1, . . . , an; b]] = ⟨⟨a1, . . . , an⟩⟩b ⊗ [1, b];
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• the n-fold quasi-Pfister form for n = 0 as ⟨1⟩, and for n > 0 by

⟨⟨a1, . . . , an⟩⟩ = ⟨1, a1, a
2
1, . . . , a

p−1
1 ⟩ ⊗ · · · ⊗ ⟨1, an, a2

n, . . . , a
p−1
n ⟩.

We will use Pfister form as a common name for all three kinds. Note that,
in all cases, the dimension of an n-fold Pfister form is equal to pn.

A form φ over F is called a (quadratic/quasi-) Pfister neighbor if there
exists a (quadratic/quasi-) Pfister form π over F such that cφ ≼ π for some
c ∈ F ∗ and dimφ > 1

p
dim π. If such a form π is anisotropic or nonsingular,

then it is determined uniquely up to isometry (see [EKM08, Rem. 23.11]
and [Hof04, Prop. 4.14]).

Lemma 1.24. Let V be a vector space over F and π be a Pfister form on
V . If E/F is an extension such that πE is isotropic, then there exists a
totally isotropic subspace U ⊆ VE such that dimU ≥ p−1

p
dim V .

Proof. Bilinear Pfister forms: [EKM08, Cor. 6.3]; quadratic Pfister forms:
[EKM08, Cor. 9.10]; quasi-Pfister forms: [Hof04, Cor. 4.10].

Corollary 1.25. A quadratic Pfister form is either anisotropic or hyper-
bolic.

Lemma 1.26. Let π be a Pfister form over F and φ a Pfister neighbor of
π. Then:

(i) φF (π) is isotropic;
(ii) for any field extension E/F , φE is isotropic if and only if πE is

isotropic.

Proof. Since πF (π) is isotropic, (i) is a consequence of (ii). To prove (ii),
assume that dim π = pn, let V be the underlying vector space of π, W
the one of φ, and let c ∈ F ∗ be such that cφ ≼ π. Obviously, if φE is
isotropic, then πE is also isotropic. Thus, assume that πE is isotropic. By
Lemma 1.24, there exists a subspace U ⊆ VE such that dimU ≥ (p−1)pn−1

and πE(u) = 0 for any u ∈ U . Since φ is a Pfister neighbor of π, we have
dimW > pn−1. For dimension reasons, U ∩ WE ̸= {0}. Therefore, there
exists a nonzero vector w ∈ U ∩WE, and so φE(w) = 0. It follows that φE
is isotropic.

1.1.8 Excellent forms
Let E/F be a field extension and φ be a form over E. We say that φ is
defined over F if there exists a form ψ over F such that ψE ∼= φ.

Let ψ be a form over F ; we say that ψ is excellent if, for any field
extension E/F , the form (ψE)an is defined over F .

Lemma 1.27. All p-forms are excellent.

Proof. Let φ ∼= ⟨a1, . . . , an⟩ be a p-form over F , and consider a field ex-
tension E/F . Then DE(φ) is a vector space over Ep generated by the
set {a1, . . . , an}, and hence we can pick i1, . . . , ik ∈ {1, . . . , n} such that
{ai1 , . . . , aik} is a basis of DE(φ). By Lemma 1.23, (φE)an ∼= ⟨ai1 , . . . , aik⟩E,
and hence it is defined over F .
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Lemma 1.28. Quadratic Pfister forms are excellent.
Proof. Let π be a quadratic Pfister form over F and E/F a field extension.
By Corollary 1.25, πE is either anisotropic or hyperbolic; in both cases,
(πE)an is defined over F .

1.1.9 Splitting patterns
For a form φ over F , we define the standard (sometimes also called Kneb-
usch) splitting tower of φ as follows: We put F0 = F and φ0 ∼= φan, and then
inductively for n ≥ 1, we set Fn = Fn−1(φn−1) and φn ∼= ((φn−1)Fn)an. The
standard height h(φ) of φ is the smallest integer h such that dimφh ≤ 1.
For 1 ≤ k ≤ h(φ), we call the form φk the k-th kernel form. Moreover, we
set ik(φ) = it(φFk

), and define the standard splitting pattern of φ as

sSP(φ) = (dim(φF0)an, dim(φF1)an, . . . , dim(φFh(φ))an).

Proposition 1.29 ([HL04, Prop. 4.6]). Let φ be an anisotropic quadratic
form over F of type (r0, s0), and let (ri, si) be the type of the i-th kernel
form φi in the standard splitting tower F = F0 ⊆ F1 ⊆ · · · ⊆ Fh of φ with
h = h(φ). Let E/F be any field extension and (r, s) be the type of (φE)an.
Then there exists i ∈ {0, . . . , h} such that r = ri.

In other words, the standard splitting tower produces all possible Witt
indices of the given form. But not so for the possible defects: For example,
let charF = 2 and φ ∼= ⟨⟨a, b⟩⟩ ⊥ ⟨c⟩ be an anisotropic totally singular
quadratic form over F . Note that it is a quasi-Pfister neighbor of the quasi-
Pfister form ⟨⟨a, b, c⟩⟩, and hence sSP(φ) = (5, 4, 2, 1) by [HL04, Th. 8.11].
On the other hand, we have (φF (

√
a))an ∼= ⟨⟨b⟩⟩ ⊥ ⟨c⟩, i.e., dim(φF (

√
a))an = 3.

As shown above, the standard splitting pattern does not carry all the
information about the isotropy of a given form. Hence, we define the full
splitting pattern of a form φ over F as

fSP(φ) = {dim(φE)an | E/F a field extension}.
Note that by Proposition 1.29, the standard and full splitting pattern

coincide for nonsingular quadratic forms.

1.1.10 Some algebraic geometry
Two out of the four equivalence relations we are going to define have their
origin in algebraic geometry. Hence, in this subsection, we define a scheme
given by a form and rational maps. But we avoid most of the details since we
will translate the geometric conditions into algebraic ones and work almost
exclusively with them. A much more detailed background on algebraic
geometry can be found, e.g., in [Vak17] or [Har77].

Let φ be a form over F (or, more generally, a homogeneous polyno-
mial) of dimension n + 1; let us view φ as a homogeneous polynomial
φ ∈ F [X0, . . . , Xn]. Set

S(φ) = F [X0, . . . , Xn]/(φ);
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we will apply the Proj construction on S(φ): Since S(φ) is a graded ring
(with respect to the total degree), we can write S(φ) = ⨁︁

k≥0 S(φ)k; denote
S(φ)+ = ⨁︁

k>0 S(φ)k.
First, we define ProjS(φ) as a set by

ProjS(φ) = {P | P ⊆ S(φ) a homogeneous prime ideal s.t. S(φ)+ ̸⊆ P}.

Second, we can define on ProjS(φ) a topology, called the Zariski topol-
ogy: The closed sets are of the form

V (I) = {P ∈ ProjS(φ) | I ⊆ P} (1.7)

where I ⊆ S(φ) is a homogeneous ideal.
Finally, to make ProjS(φ) into a scheme, we construct a structure sheaf

on ProjS(φ): For an open subset U ⊆ ProjS(φ), we define the ring

OX(U) =
{︂
f : U →

⋃︂
P∈U

S(φ)(P )

⃓⃓⃓
∀P ∈ U cond. (1) and (2) hold

}︂
1 (1.8)

where
(1) f(P ) ∈ S(φ)(P ),
(2) there exists an open subset V ⊆ U containing P , and s, t ∈ S(φ)

homogeneous of the same degree, such that for each Q ∈ V , we have
t /∈ Q and f(Q) = s

t
.

We have obtained the scheme

Xφ = ProjS(φ);

we callXφ a quadric if φ is a quadratic form, and a quasilinear p-hypersurface
if φ is a p-form.

The following lemma explains why some quadratic forms are called sin-
gular, resp. totally singular.
Lemma 1.30 ([EKM08, Prop. 22.1]). Let φ be a nonzero quadratic form
of dimension at least 2. Then the quadric Xφ is smooth if and only if
dim rad bφ ≤ 1, i.e., if and only if dim ql(φ) ≤ 1.
Example 1.31. (i) Suppose that φ ∼= (n+ 1) × ⟨0⟩ for some n ≥ 1. Then,
with the notation from the construction above, S(φ) = F [X0, . . . , Xn] and
Xφ ≃ Pn, the n-dimensional projective space.

(ii) Let φ ∼= ψ ⊥ n× ⟨0⟩ for some irreducible form ψ over F and n ≥ 0.
Then S(ψ) = S(φ)[Y1, . . . , Yn], and Xφ ≃ Xψ ×Pn (the fibre product of the
schemes Xψ and Pn).

The scheme Xφ is called irreducible if it is irreducible as a topological
space: If Xφ = Y1 ∪ Y2 for some closed subsets Y1, Y2 ⊆ Xφ, then Xφ = Yi
for some i ∈ {1, 2}.

If the scheme Xφ is irreducible, then it is equidimensional of dimension
dimXφ = dimφ− 2.

Note that for any irreducible form φ, the ring OX(U) defined in (1.8) is
reduced (contains no nonzero nilpotent elements) for each nonempty open
subset U ⊆ Xφ; hence, the scheme Xφ is reduced. Moreover, a scheme is
called integral if it is irreducible and reduced.

1Here, S(φ)(P ) =
{︁

s
t

⃓⃓
s, t ∈ S(φ) homogeneous of the same degree, t /∈ P

}︁
.
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Lemma 1.32 ([EKM08, Sec. 22] and [Scu13, Sec. 4]). The form φ is irre-
ducible if and only if Xφ is an integral scheme.

Proof of the “if” part. Suppose that φ is reducible, and write φ = fg for
some polynomials f, g ∈ F [X0, . . . , Xn]; necessarily, f and g must be homo-
geneous. Consider the closed sets V (f) = V ((f)), V (g) = V ((g)) defined as
in (1.7). Obviously, it holds that V (f) ∪ V (g) ⊆ ProjS(φ). On the other
hand, for any P ∈ ProjS(φ), we have (φ) ⊆ P , i.e., fg = φ ∈ P . Since P
is a prime ideal, we must have f ∈ P or g ∈ P ; thus, P ∈ V (f) ∪ V (g).
Therefore, Xφ = V (f) ∪ V (g). It follows that for reducible φ, the scheme
Xφ is also reducible.

Let φ, ψ be forms over the same field F with φ irreducible. A rational
map between the schemesXφ andXψ, denoted byXφ ‧‧➡ Xψ, is a morphism
(of schemes) on a dense open set, with the following equivalence relation:
If U, V are dense open subsets of Xφ and f : U → Xψ, g : V → Xψ

morphisms, then (f : U → Xψ) ∼ (g : V → Xψ) if there exists a dense open
set W ⊆ U ∩ V such that f |W = g|W .

The rational map Xφ ‧‧➡ Xψ is dominant if for some representative
U → Xψ, the image is dense in Xψ.

Next to the rational map, we could define a rational function on Xφ;
then the set of all rational functions on Xφ forms a ring, and if Xφ is
integral, then this ring is actually a field, called the function field of Xφ

and denoted by F (Xφ). Since this field happens to be isomorphic to the
function field F (φ) defined in Subsection 1.1.5, we omit the definition of
a rational function and set simply F (Xφ) = F (φ).

If φ is an irreducible form over F , it can be shown that Xφ is a projective
F -variety, and in particular, that Xφ is of finite type ([Vak17, Ex. 5.3.E(b)]).
For those “nice” schemes, there is a correspondence between rational maps
and homomorphisms of their function fields.

Lemma 1.33 ([Vak17, Ex. 6.5.B and Prop. 6.5.7]). Let φ, ψ be irreducible
forms over F . There exists a dominant rational map Xψ ‧‧➡ Xφ if and only
if there exists an F -homomorphism F (φ) ↪→ F (ψ).

As it is well known, we can translate the geometric condition on the
existence of a rational map into an algebraic one. The translation will be
crucial for this thesis.

Lemma 1.34 ([EKM08, Sec. 22.A]). Let φ, ψ be irreducible forms over
F . The form φF (ψ) is isotropic if and only if there exists a rational map
Xψ ‧‧➡ Xφ.
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1.2 Equivalence relations
One of the goals of this thesis is to compare different equivalence relations of
forms. We devote this section to their definitions and some basic properties.

1.2.1 Similarity
We have seen in Lemma 1.19 that for a form φ over F and c ∈ F ∗, the
function fields of φ and cφ coincide. It is also clear that φ is isotropic if
and only if cφ is isotropic. These are two examples of situations, where we
are interested in forms not up to isometry but only up to scalar multiples.
This leads to the following definition.
Definition 1.35. Let φ, ψ be forms over F . We say that they are similar
and write φ sim∼ ψ if there exists c ∈ F ∗ such that φ ∼= cψ.

We start with an obvious lemma.
Lemma 1.36. If φ sim∼ ψ, then φ and ψ are of the same type; in particular,
dimφ = dimψ.

Let c ∈ F ∗. Looking back at (1.3), we get c⟨0⟩ ∼= ⟨0⟩ and cH ∼= H. With
this information at hand, we can prove:
Lemma 1.37. Let φ, ψ be quadratic forms of the same type or p-forms of
the same dimension over F . Then φ

sim∼ ψ if and only if φan
sim∼ ψan.

Proof. If φ sim∼ ψ, then also φan
sim∼ ψan by Witt Decomposition Theorem.

We illustrate the proof of the opposite implication in the case of semisin-
gular quadratic forms. Since φan

sim∼ ψan, the quadratic forms φan and ψan
must be of the same type by Lemma 1.36. As φ and ψ are also of the
same type, we get by Witt Decomposition Theorem that iW(φ) = iW(ψ)
and id(φ) = id(ψ). Let c ∈ F ∗ is such that φan ∼= cψan. Since cH ∼= H and
c⟨0⟩ ∼= ⟨0⟩, it follows that φ ∼= cψ.

The forms H and ⟨0⟩ are not the only ones that can “absorb” some
scalars; for example, let a ∈ F ∗, then

a⟨1, a⟩ ∼= ⟨a, a2⟩ ∼= ⟨a, 1⟩ ∼= ⟨1, a⟩.

This example leads us to the following definition.
Definition 1.38. Let φ be a form over F . We call x ∈ F ∗ a similarity
factor if xφ ∼= φ. The set of all similarity factors of φ over F is denoted by
G∗
F (φ). Furthermore, we set GF (φ) = G∗

F (φ) ∪ {0}.
Lemma 1.39. Let φ be a form over F . Then G∗

F (φ) is a multiplicative
group.
Proof. Obviously 1 ∈ G∗

F (φ). Let x, y ∈ G∗
F (φ); then

(xy)φ ∼= x(yφ) ∼= xφ ∼= φ,

and hence xy ∈ G∗
F (φ). Furthermore,

φ ∼= x−1xφ ∼= x−1φ;
thus, x−1 ∈ G∗

F (φ).
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The proof of the following lemma is trivial.

Lemma 1.40. Let φ, ψ be forms over F . If φ sim∼ ψ, then G∗
F (φ) = G∗

F (ψ).

A form φ over F is called round if D∗
F (φ) = G∗

F (φ).

Lemma 1.41 ([EKM08, Cor. 9.9] and [Hof04, Prop. 4.6]).
(i) Quadratic Pfister forms are round.
(ii) A p-form φ is round if and only if φan is isometric to a quasi-Pfister

form.

Lemma 1.42. Let π be a (quadratic/quasi-) Pfister form over F .
(i) If c ∈ F ∗ is such that 1 ∈ D∗

F (cπ), then c ∈ G∗
F (π).

(ii) Let φ be a quadratic form over F such that φ sim∼ π. If 1 ∈ D∗
F (φ),

then φ ∼= π.

Proof. (i) If 1 ∈ DF (cπ), then c−1 ∈ D∗
F (π) = G∗

F (π) (where the equality
follows from Lemma 1.41). Since G∗

F (π) is a group by Lemma 1.39, it follows
that c ∈ G∗

F (π).
(ii) Let x ∈ F ∗ be such that xφ ∼= π. Then x ∈ D∗

F (xφ) = D∗
F (π), and

hence x ∈ G∗
F (π) by Lemma 1.41. Then φ ∼= xπ ∼= π.

1.2.2 Birational equivalence
The birational equivalence is the first one with geometric flavor.

Definition 1.43. Let φ, ψ be irreducible forms.
(i) A rational map f : Xφ ‧‧➡ Xψ is said to be birational if it is dominant,

and there exists a dominant rational map g : Xψ ‧‧➡ Xφ such that
g ◦ f is in the same equivalence class as the identity on Xφ and f ◦ g
is in the same equivalence class as the identity on Xψ.

(ii) The schemes Xφ and Xψ are birational, denoted by Xφ
bir∼ Xψ, if there

exists a birational map Xφ ‧‧➡ Xψ.
(iii) The forms φ, ψ are called birationally equivalent, denoted by φ bir∼ ψ,

if Xφ and Xψ are birational.

Let us translate the definition into more algebraic terms.

Proposition 1.44. Let φ, ψ be irreducible forms over F . Then φ
bir∼ ψ if

and only if F (φ) ≃F F (ψ).

Idea of the proof. Essentially Lemma 1.33 but a concrete dependence of the
map F (φ) ↪→ F (ψ) on the rational map Xψ ‧‧➡ Xφ is needed.

Lemma 1.45. Let φ, ψ be irreducible forms over F . If φ bir∼ ψ, then
dimφ = dimψ.

Proof. If φ bir∼ ψ, then we have F (φ) ≃F F (ψ) by Proposition 1.44; in
particular, we have trdegF F (φ) = trdegF F (ψ). Invoking Lemma 1.20, we
get dimφ = dimψ.
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To avoid case distinctions, we extend the definition of the birational
equivalence to reducible forms.

Definition 1.46. Let φ, ψ be forms over the same field F (possibly re-
ducible). We say that they are birationally equivalent, denoted by φ

bir∼ ψ,
if dimφ = dimψ and F (φ) ≃F F (ψ).

By Proposition 1.44 and Lemma 1.45, the Definitions 1.43 and 1.46 are
equivalent for irreducible forms. For reducible forms, we have set F (H) = F
and F (⟨a⟩) = F but the requirement on the dimension guarantees that
H ̸bir∼ ⟨a⟩ for any a ∈ F .

Having defined two equivalence relations, we can start with their com-
parison.

Lemma 1.47. If φ sim∼ ψ, then φ
bir∼ ψ.

Proof. Let c ∈ F ∗ be such that φ ∼= cψ. Then dimφ = dimψ, and by
Lemma 1.19, F (φ) = F (ψ). Hence, φ bir∼ ψ.

The other implication does not hold in general, as we will see later for
p-forms in Remark 2.73.

1.2.3 Stable birational equivalence
Also the stable birational equivalence has its origin in algebraic geometry.

Definition 1.48. Let φ, ψ be irreducible forms over F .
(i) The schemes Xφ and Xψ are called stably birational if there exist

m,n ≥ 0 such that Xφ × Pn bir∼ Xψ × Pm. We denote this fact by
Xφ

stb∼ Xψ.
(ii) We say that the forms φ and ψ are stably birationally equivalent,

denoted by φ stb∼ ψ, if the schemes Xφ and Xψ are stably birational.

As a direct consequence of the definitions, we get:

Lemma 1.49. Let φ, ψ be irreducible forms. If φ bir∼ ψ, then φ
stb∼ ψ.

The opposite direction, that is, the question of whether stable bira-
tionally equivalent forms are birationally equivalent, is, in general, a difficult
problem; in the case of quadratic forms and under the additional assump-
tion that the forms are of the same dimension, this is called the Quadratic
Zariski problem.

The Lemma 1.49 together with Lemma 1.47 gives the following:

Lemma 1.50. Let φ, ψ be irreducible forms. If φ sim∼ ψ, then φ
stb∼ ψ.

Similarly as for the birational equivalence, we translate the geometric
definition into algebraic terms.
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Proposition 1.51. Let φ, ψ be irreducible forms over F . Then φ
stb∼ ψ if

and only if F (φ)(T1, . . . , Tn) ≃F F (ψ)(T1, . . . , Tm) for some m,n ≥ 0.

Proof. We have φ stb∼ ψ if and only if Xφ×Pn bir∼ Xψ ×Pm for some m,n ≥ 0
if and only if F (Xφ×Pn) ≃F F (Xψ ×Pm) for some m,n ≥ 0. Since it holds
F (Xφ × Pn) ≃F F (φ)(T1, . . . , Tn) and F (Xψ × Pm) ≃F F (ψ)(T1, . . . , Tm),
the claim follows.

Let φ ∼= φnd⊥n×⟨0⟩ be an irreducible form over F ; then, by Lemma 1.17,
F (φ) ≃F F (φnd)(T1, . . . , Tn). Invoking Proposition 1.51, we get:
Lemma 1.52 ([Scu16b, Rem. 4.2(ii)] for p-forms). Let φ be an irreducible
form over F . Then φ

stb∼ φnd.
The previous lemma allows us to produce an easy example showing

that stably birationally equivalent forms are not necessarily birationally
equivalent: Consider an irreducible isotropic p-form φ; then φ

stb∼ φan but
φ ̸bir∼ φan by Lemma 1.45, because dimφan < dimφ.

Lemma 1.53. Let φ, ψ be irreducible forms. If φ stb∼ ψ, then φF (ψ) and
ψF (φ) are isotropic.
Proof. We have F (φ)(T1, . . . , Tn) ≃F F (ψ)(T1, . . . , Tm) for some m,n ≥ 0
by Proposition 1.51. Since φ is isotropic over F (φ), it is also isotropic
over F (φ)(T1, . . . , Tn), and hence over F (ψ)(T1, . . . , Tm). Since the field
extension F (ψ)(T1, . . . , Tm)/F (ψ) is purely transcendental, it follows from
Lemma 1.13 that φ must be isotropic over F (ψ). The proof of the isotropy
of ψF (φ) is analogous.
Proposition 1.54. Let φ, ψ be nondefective irreducible quadratic forms
over F . Then the following are equivalent:

(i) φ
stb∼ ψ;

(ii) there exist m,n ≥ 0 such that F (φ)(T1, . . . , Tn) ≃F F (ψ)(T1, . . . , Tm);
(iii) φF (ψ) and ψF (φ) are isotropic;
(iv) there exist dominant rational maps Xφ ‧‧➡ Xψ and Xψ ‧‧➡ Xφ.

Proof. (i) ⇔ (ii) is covered by Proposition 1.51. (iii) ⇔ (iv) is an application
of Lemma 1.34. (i) ⇒ (iii) follows from Lemma 1.53.

Finally, we show (iii) ⇒ (i). If φ were totally singular and ψ not, then
φF (ψ) would be anisotropic by Lemma 1.21, a contradiction. Vice versa,
if ψ were totally singular and φ not, then ψF (φ) would be anisotropic, a
contradiction again. Therefore, we have two possibilities: Either both φ
and ψ are totally singular, or both φ and ψ are not totally singular. In the
former case, we are done by [Tot08, Theorem 6.5]. Therefore, consider the
latter case. Then, again by Lemma 1.21, ql(φ) is anisotropic over F (ψ),
and hence we must have iW(φF (ψ)) > 0; analogously, iW(ψF (φ)) > 0. Denote
by K = F (φ)(ψF (φ)); by Lemma 1.22, we have K ≃ F (ψ)(φF (ψ)). It follows
that both K/F (φ) and K/F (ψ) are purely transcendental extensions, i.e.,

F (φ)(T1, . . . , Tn) ≃F K ≃F F (ψ)(T1, . . . , Tm)

for some m,n ≥ 0. Thus, (ii) holds, and (i) follows by the previous part of
the proof.
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We provide a counterexample to implication (iii) ⇒ (i) in the case of
defective quadratic forms.

Example 1.55. Let τ be an anisotropic totally singular quadratic form
over F of dimension 2n for some n ≥ 1, and set φ ∼= τ⊥⟨0⟩ and ψ ∼= τ⊥⟨T ⟩
over the rational function field E = F (T ). As φ is isotropic over F , it is
also isotropic over E(ψ). Moreover, since ψ is obviously isotropic over E(τ)
and E(φ) is a purely transcendental extension of E(τ), it follows that ψ is
isotropic over E(φ).

Suppose that φ stb∼ ψ; as we have φ stb∼ τ by Lemma 1.52, we must have
ψ

stb∼ τ . Hence, τE(ψ) is isotropic by Lemma 1.53; but that contradicts the
Separation theorem (see Theorem 4.6). Therefore, φ is not stably birational
to ψ.

Remark 1.56. The implication (iii) ⇒ (i) of Proposition 1.54 also holds
for nondefective p-forms in the case of p = 3; see [Scu13, Theorem 7.7].
However, it is not known whether this implication holds for p > 3.

1.2.4 Vishik equivalence
At this point, one could expect the motivic equivalence. But as it is not
available in our case, we take its algebraic characterization from the case
of characteristic other than two, called Vishik’s criterion (see [Hof15]), and
adjust it to quadratic forms in arbitrary characteristic, resp. to p-forms in
characteristic p. Here we include characteristic zero because we will use it
in Chapter 4.

Definition 1.57. Let φ, ψ be forms over a field F of any characteristic
(including zero). We say that they are Vishik equivalent and write φ v∼ ψ
if dimφ = dimψ and the following holds:

iW(φE) = iW(ψE) & id(φE) = id(ψE) ∀ E/F. (v)

At the first glance, it may seem that the equality of the dimensions
follows from the conditions (v), but it is not necessarily so: Consider the
forms φ ∼= H ⊥ ⟨1, 0⟩ and ψ ∼= H ⊥ ⟨0⟩. Then (v) is fulfilled but obviously
dimφ ̸= dimψ.

Since we are working with different kinds of forms, and the important
information is carried by another part of the definition for each of them, we
provide a table with an overview, see Table 1.1. We also include a transla-
tion from isotropy indices to the dimension (or type when necessary) of the
anisotropic part.

Remark 1.58. Instead of (v), we could have used for the definition of the
Vishik equivalence the condition

it(φE) = it(ψE) ∀ E/F, (v′)

i.e., the equality of the dimensions of maximal totally isotropy subspaces
over any field. But we would have to strengthen the assumption on the
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charF Form Condition on the
isotropy ∀E/F

Condition on the
dimension ∀E/F

p > 0 Quasilinear
p-forms id(φE) = id(ψE) dim(φE)an = dim(ψE)an

2 Totally singular
quadratic forms id(φE) = id(ψE) dim(φE)an = dim(ψE)an

2 Semisingular
quadratic forms

iW(φE) = iW(ψE)
& id(φE) = id(ψE)

(φE)an and (ψE)an are
of the same type

2 Nonsingular
quadratic forms iW(φE) = iW(ψE) dim(φE)an = dim(ψE)an

̸= 2 Quadratic
forms iW(φE) = iW(ψE) dim(φE)an = dim(ψE)an

Table 1.1: Conditions on φ
v∼ ψ, assuming dimφ = dimψ.

equality of dimensions to the equality of types: For φ ∼= H and ψ ∼= ⟨1, 0⟩,
we have dimφ = dimψ and it(φE) = it(ψE) for any field E, but φ ̸ v∼ ψ.

Of course, if we consider only nonsingular quadratic forms or only quasi-
linear p-forms (including totally singular quadratic forms), then there is no
difference between (v) and (v′). So, let us focus on semisingular quadratic
forms. We know from Lemma 1.14 that the defect does not change over
separable field extension while such extension can change the Witt index.
It means that we can compute the defect (and hence also the Witt index)
from the knowledge of the total isotropy index: Let φ be a semisingular
form over F of type (r, s). Let E/F be a field extension, and denote Es
the separable closure of E. Then (φEs)an is totally singular by Lemma 1.16,
and we know that id(φEs) = id(φE). Thus, we get

it(φEs) = iW(φEs) + id(φEs) = r + id(φE),

and then of course iW(φE) = it(φE)− id(φE). Therefore, under the assump-
tion that φ and ψ are of the same type, the conditions (v) and (v′) are
equivalent even for semisingular quadratic forms.

Lemma 1.59. Let φ, ψ be forms over F such that φ v∼ ψ, and E/F a field
extension. Then (φE)an

v∼ (ψE)an and (φE)nd
v∼ (ψE)nd. In particular,

φan
v∼ ψan and φnd

v∼ ψnd.

Proof. Denote φ′ = (φE)nd and ψ′ = (ψE)nd. Let K/E be another field
extension. It holds that id(φK) = id(ψK) and id(φE) = id(ψE). Thus,

id(φ′
K) = id(φK) − id(φE) = id(ψK) − id(ψE) = id(ψ′

K).
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Moreover,

iW(φ′
K) = iW(φK) = iW(ψK) = iW(ψ′

K).

Thus, φ′ v∼ ψ′. The proof of (φE)an
v∼ (ψE)an is analogous.

Since similar forms must be of the same dimension and have the same
Witt indices and defects over any field, we get:

Lemma 1.60. If φ sim∼ ψ, then φ
v∼ ψ.

Among others, the Vishik equivalence implies that a form is isotropic
over the function field of any Vishik equivalent form. Recall that this con-
dition is closely connected to the stable birational equivalence.

Lemma 1.61. Let φ, ψ be forms over F of dimension at least two. If
φ

v∼ ψ, then φF (ψ) and ψF (φ) are isotropic.

Proof. Since φF (φ) is isotropic and we know that it(ψF (φ)) = it(φF (φ)), we
get that ψF (φ) is isotropic. Symmetrically, φF (ψ) is isotropic.

Now we can apply the previous lemma on quadratic forms to see that
the Vishik equivalence is stronger than the stable birational equivalence:

Lemma 1.62. Let φ, ψ be quadratic forms over F . If φ v∼ ψ, then φ
stb∼ ψ.

Proof. If one of the forms is reducible, then the other one must be reducible,
too, and the equality of the Witt indices and the defects implies that φ sim∼ ψ.
Therefore, assume that φ and ψ are irreducible. By Lemma 1.59, we have
φnd

v∼ ψnd. By Lemma 1.61, we get that (ψnd)F (φnd) and (φnd)F (ψnd) are
isotropic. Therefore, φnd

stb∼ ψnd by Proposition 1.54. Invoking Lemma 1.52,
we get φ stb∼ ψ.

Remark 1.63 (Vishik equivalence on bilinear forms). We could define the
Vishik equivalence on bilinear forms analogously as in the case of quadratic
forms. As DF (b) = DF (φb) for any bilinear form b defined over F , so
asking about the isotropy of b is the same as asking about the isotropy of
its associated quadratic form φb.

So, let F = F2(a, b) with a, b algebraically independent over F2, and
consider the bilinear forms b1 ∼= ⟨a, b⟩b and b2 ∼= ⟨a, a + b⟩b. Note that
φb1

∼= ⟨a, b⟩ ∼= ⟨a, a+ b⟩ ∼= φb2 , and so, for any field extension E/F , (φb1)E
is isotropic if and only if (φb2)E is isotropic. Therefore, (b1)E is isotropic
if and only if (b2)E is isotropic. Since the only possible values of the Witt
index of a two-dimensional bilinear form are zero and one, it follows that
b1

v∼ b2. But by comparing the determinants, we get that b1 ̸sim∼ b2.
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1.2.5 Summary
So far, we have proved the following relations between the equivalences:

bir

sim stb

Vishik quadratic
forms

Figure 1.1: Trivial relations between the equivalences
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2. Quasilinear p-forms
All the fields in this chapter are of characteristic p > 0 (including the
possibility p = 2) and all the forms are quasilinear p-forms which have been
defined in Subsection 1.1.3.

We devote this chapter to the p-forms. Some of the statements presented
here will not be used until the next chapter, which will treat the special
case of p = 2; however, we prefer to provide them in their full strength. In
Section 2.1, we recall many known properties of p-forms and add a few new
ones. In particular, we define a new class of p-forms, the so-called minimal
p-forms (see Subsection 2.1.3).

Section 2.2 diverts a bit from the main goal of the thesis, and examines
isotropy properties of p-forms, mainly over purely inseparable field exten-
sions. We would like to point out Theorem 2.28, in which we show that
the defect of a p-form φ over a purely separable field extension L/F equals
the defect of φ over the maximal purely inseparable subfield K of L which
has exponent one over F . Later in this section, we provide the full splitting
pattern of a few families of p-forms; the most interesting and ingenious one
is a special type of quasi-Pfister neighbors; see Theorem 2.42.

Section 2.3 looks at the birational and the stable birational equivalence;
it mostly just summarizes known results from [Scu13].

In Section 2.4, we examine the Vishik equivalence and, above all, its
relation to the similarity. In particular, we provide examples of p-forms,
which are Vishik equivalent but not similar; see Examples 2.65 and 2.66.
However, we prove in Proposition 2.68 that Vishik equivalent p-forms have
the same similarity factors, which will allow us in the next chapter to reduce
the problem to forms that are not divisible by any nontrivial quasi-Pfister
form. Moreover, in Example 2.72, we provide a pair of p-forms which are
birationally equivalent but not Vishik equivalent; this, in its consequence,
rejects three of the unknown implications from Figure 1.1.

Finally, in Section 2.4, we summarize what we know about the relations
between the four studied equivalences, and by doing so, we complete the
diagram from Figure 1.1.
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2.1 Preliminaries
As we have already mentioned before, the peculiar property of a field F of
characteristic p is that F p is a field, too. Recall that for a p-form φ on V
over F , the set DF (φ) is a vector space over F p. Conversely, any finite-
dimensional vector space over F p inside F corresponds to a unique (up to
isometry) anisotropic p-form over F (see [Hof04, Prop. 2.12]). Moreover,
the set W = {v ∈ V | φ(v) = 0} is also an F p-vector space, because for any
v, w ∈ W , we have φ(v + w) = φ(v) + φ(w) = 0; it follows that W is the
unique maximal isotropic subspace of V .

As a consequence of Lemma 1.23, we get:

Lemma 2.1. Let φ be a p-form over F . If a1, . . . , am ∈ DF (φ), then
⟨a1, . . . , am⟩an ⊆ φ.

The following lemma is just a reinterpretation of Lemma 1.27.

Lemma 2.2. Let τ = ⟨a1, . . . , an⟩ be a p-form defined over F and E/F
a field extension. Then there exist {i1, . . . , im} ⊆ {1, . . . , n} such that
(τE)an ∼= ⟨ai1 , . . . , aim⟩E. In this situation, ak ∈ spanEp{ai1 , . . . , aim} for
every 1 ≤ k ≤ n.

2.1.1 Field theory
Since F p is a field, we can compare extensions of F and of F p. We will use
the following lemma in this chapter repeatedly.

Lemma 2.3 ([Hof04, Lemma 7.5]). Let charF = p.
(i) Let E/F be a field extension and α ∈ E. Then α is algebraic over F

if and only if αp is algebraic over F p. Moreover, it holds that

[F (α) : F ] = [F p(αp) : F p].

(ii) If a1, . . . , ar ∈ F , then

[F ( p
√
a1, . . . , p

√
ar) : F ] = [F p(a1, . . . , ar) : F p].

We say about a finite set {a1, . . . , an} ⊆ F that it is p-independent over
F if [F p(a1, . . . , an) : F p] = pn; otherwise, we call the set (or the elements
of the set) p-dependent over F . We say that a set S ⊆ F is p-independent
over F if any finite subset of S is p-independent over F .

Lemma 2.4 ([Pic50, pg. 27]). Let a1, . . . , an ∈ F . The following are equiv-
alent:

(i) The set {a1, . . . , an} is p-independent over F ,
(ii) for any 1 ≤ i ≤ n, we have ai /∈ F p(a1, . . . , ai−1, ai+1, . . . , an),
(iii) the system

(︂
ai11 · · · ainn

⃓⃓⃓
(i1, . . . , in) ∈ {0, . . . , p − 1}n

)︂
is F p-linearly

independent.
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Example 2.5. (i) It is clear directly form the definition that {a} ⊆ F is
p-independent if and only if a /∈ F p.

(ii) Let a, b ∈ F \ F p. Then, by Lemma 2.4, a, b are p-dependent if and
only if a ∈ F p(b) if and only if b ∈ F p(a).

(iii) Let X1, . . . , Xn be variables (i.e., algebraically independent) over F .
Then {X1, . . . , Xn} is p-independent not only over F (that is obvious), but
also over F (X1, . . . , Xn): Assume that

p−1∑︂
i1=0

· · ·
p−1∑︂
in=0

fpi1,...,inX
i1
1 · · ·X in

n = 0 (2.1)

for some fi1,...,in ∈ F (X1, . . . , Xn). We can assume fi1,...,in ∈ F [X1, . . . , Xn].
Then we can rewrite (2.1) as

p−1∑︂
i1=0

⎛⎝ p−1∑︂
i2=0

· · ·
p−1∑︂
in=0

fpi1,...,inX
i1
2 · · ·X in

n

⎞⎠
⏞ ⏟⏟ ⏞

gi1

X i1
1 = 0;

note that gi1 ∈ F (X1, . . . , Xn)p[X2, . . . , Xn]. Considering the expression
in (2.1) as a polynomial in X1 over F (X1)p(X2, . . . , Xn), we conclude that
gi1 = 0 for each 0 ≤ i1 ≤ p − 1. Iterating this process, we get fpi1,...,in = 0
for each 0 ≤ ij ≤ p− 1, 1 ≤ j ≤ n. The claim follows by Lemma 2.4.

Corollary 2.6. Let a1, . . . , an ∈ F ∗. The set {a1, . . . , an} is p-independent
over F if and only if the quasi-Pfister form ⟨⟨a1, . . . , an⟩⟩ is anisotropic over
F .

Proof. First of all, note that

⟨⟨a1, . . . , an⟩⟩ ∼= ⊥
(i1,...,in)∈{0,...,p−1}n

⟨ai11 · · · ainn ⟩.

Now {a1, . . . , an} is p-independent over F if and only if (by Lemma 2.4) the
system (ai11 · · · ainn | (i1, . . . , in) ∈ {0, . . . , p− 1}n) is F p-linearly independent
if and only if dimF p DF (⟨⟨a1, . . . , an⟩⟩) = pn if and only if ⟨⟨a1, . . . , an⟩⟩ is
anisotropic over F .

Let E be a field with F p ⊆ E ⊆ F . Note that the extension E/F p is
purely inseparable of exponent one. We call a set B ⊆ E a p-basis of E over
F if B is p-independent over F and F p(B) = E.

Lemma 2.7 ([GS06, Cor. A.8.9]). Let E be a field with F p ⊆ E ⊆ F . Then
the following hold:

(i) There exists a p-basis of E over F .
(ii) Assume that E/F p is finite and B is a p-basis of E over F . Then

|B| = logp[E : F p].
(iii) If {a1, . . . , an} ⊆ E is p-independent over F , then there exists a set

A ⊆ E which is p-independent over F and such that {a1, . . . , an} ∪ A
is a p-basis of E over F .

(iv) Let A ⊆ E be such that F p(A) = E. Then there exists B ⊆ A which
is a p-basis of E over F .
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Proof. Parts (i), (iii), and (iv) are easy exercises on Zorn’s lemma: We seek
a maximal element of S, where:

(i) S = {A | A ⊆ E, A p-independent over F} ,
(iii) S = {A | {a1, . . . , an} ⊆ A ⊆ E, A p-independent over F} ,
(iv) S = {A | A ⊆ A, A p-independent over F} .

To prove (ii), note that for any {a1, . . . , an} ⊆ E, we have F p ⊆
F p(a1, . . . , an) ⊆ E. Therefore, any subset of E which is p-independent
over F can have at most logp([E : F p]) elements. The rest follows.

Let E be as above and B = {bi | i ∈ I} be a p-basis of E over F . Then,
by Lemma 2.4,

ˆ︁B =
{︄∏︂
i∈I
b
λ(i)
i

⃓⃓⃓⃓
λ : I → {0, . . . , p− 1}, λ(i) = 0 for almost all i ∈ I

}︄

is an F p-linear basis of E, i.e., any a ∈ E can be expressed uniquely as

a =
∑︂
λ

xpλ
∏︂
i∈I
b
λ(i)
i

for some xλ ∈ F , almost all of them zero. By abuse of notation, we say that
a can be expressed uniquely with respect to B.

2.1.2 Quasi-Pfister forms and norm forms
Let φ be a p-form over F . We define the norm field of φ over F as the field

NF (φ) = F p
(︃
a

b

⃓⃓⃓⃓
a, b ∈ D∗

F (φ)
)︃
.

Note that NF (φ) is a finite field extension of F p; we define the norm degree
of φ over F as ndegF φ = [NF (φ) : F p].

It is obvious from the definition that NF (φ) = NF (φan) and also that
NF (φ) = NF (cφ) for any c ∈ F ∗. Moreover, if ψ is another p-form over
F such that ψ ∼= φ, then NF (ψ) = NF (φ). Finally, if τan ⊆ cφan for some
p-form τ over F and c ∈ F ∗, then NF (τ) ⊆ NF (φ).

Note that the norm degree is always a p-power. Let us assume that
NF (φ) = F p(b1, . . . , bn) for some bi ∈ F ; then {b1, . . . , bn} is p-independent
over F if and only if ndegF φ = pn. By Lemma 2.7, such a p-basis of NF (φ)
over F always exists.

Lemma 2.8 ([Hof04, Lemma 4.2 and Cor. 4.3]). Let φ be a p-form over F .
(i) If φ ∼= ⟨a0, . . . , an⟩ for some n ≥ 1 and ai ∈ F , 0 ≤ i ≤ n, with

a0 ̸= 0, then NF (φ) = F p
(︂
a1
a0
, . . . , an

a0

)︂
.

(ii) Suppose NF (φ) = F p(b1, . . . , bm) for some bi ∈ F ∗, 1 ≤ i ≤ m, and
let E/F be a field extension. Then NE(φ) = Ep(b1, . . . , bm).

Recall that, by Lemma 2.7, any p-generating set contains a p-basis.
Therefore, part (i) of the previous lemma implies the following:
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Corollary 2.9. Let φ ∼= ⟨a0, . . . , an⟩ for some n ≥ 1 and a0, . . . , an ∈ F
with a0 ̸= 0. Moreover, suppose that ndegF φ = pk. Then there exists
a subset {i1, . . . , ik} ⊆ {1, . . . , n} such that

{︂
ai1
a0
, . . . ,

aik

a0

}︂
is a p-basis of

NF (φ) over F .
In particular, if 1 ∈ D∗

F (φ), then there exist b1, . . . , bn ∈ F such that
φ ∼= ⟨1, b1, . . . , bn⟩ and NF (φ) = F p(b1, . . . , bk).

The following proposition provides an alternative possibility for a deter-
mination of the norm field.

Proposition 2.10. Let φ = ⟨1, a1, . . . , an⟩ be a p-form over F , and let
b1, . . . , bm ∈ F . Then(︂

φF ( p√b1,...,
p√bm)

)︂
an

∼= ⟨1⟩ ⇐⇒ NF (φ) ⊆ F p(b1, . . . , bm).

If, moreover, {b1, . . . , bm} ⊆ {a1, . . . , an}, then(︂
φF ( p√b1,...,

p√bm)

)︂
an

∼= ⟨1⟩ ⇐⇒ NF (φ) = F p(b1, . . . , bm).

In particular, if m is minimal with this property, then ndegF φ = pm.

Proof. We set E = F
(︂

p
√
b1, . . . ,

p
√
bm
)︂
.

First, (φE)an ∼= ⟨1⟩ is equivalent to spanEp{1} = spanEp{1, a1, . . . , an},
which holds if and only if ai ∈ Ep for all 1 ≤ i ≤ n. As Ep = F p(b1, . . . , bm),
the latter condition is equivalent to F p(a1, . . . , an) ⊆ F p(b1, . . . , bm). But
F p(a1, . . . , an) = NF (φ), so we are done.

If {b1, . . . , bm} ⊆ {a1, . . . , an}, then F p(b1, . . . , bm) ⊆ NF (φ), and the
claim follows by the previous case.

Note that it follows from Lemma 2.8 that DF (φ) ⊆ cNF (φ) for any
c ∈ D∗

F (φ); in particular, if 1 ∈ DF (φ), then DF (φ) ⊆ NF (φ). The forms,
for which an equality holds, are precisely the quasi-Pfister forms:

Proposition 2.11 ([Hof04, Prop. 4.6]). Let F be a field.
(i) Let φ ∼= ⟨⟨a1, . . . , an⟩⟩ be a quasi-Pfister form over F . Then we have

DF (φ) = F p(a1, . . . , an) = NF (φ).
(ii) There is a natural bijection between anisotropic n-fold quasi-Pfister

forms over F and purely inseparable field extensions E of F p inside
F with [E : F p] = pn. This bijection is given by

⟨⟨a1, . . . , an⟩⟩ ↔ F p(a1, . . . , an).

Combining the previous proposition with Lemma 2.7, we get an inter-
esting statement about changing “slots” in a quasi-Pfister form.

Corollary 2.12. Let π ∼= ⟨⟨a1, . . . , an⟩⟩ be an anisotropic quasi-Pfister form
over F . If {b1, . . . , bm} is a p-basis of F p(a1, . . . , an), then we have m = n
and π ∼= ⟨⟨b1, . . . , bm⟩⟩. In particular, if x ∈ DF (π) \ F p, then there exist
b2, . . . , bn ∈ D∗

F (π) such that π ∼= ⟨⟨x, b2, . . . , bn⟩⟩.
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Roughly said, any p-form is contained in its norm field, and this norm
field corresponds to a quasi-Pfister form. Hence, any (now necessarily
anisotropic) p-form φ is contained in an anisotropic quasi-Pfister form of
dimension ndegF φ; in particular dimφ ≤ ndegF φ. It is also easy to see
that if the norm form of a p-form is generated over F p by n elements, then
the dimension of this p-form must be at least n+ 1.

Proposition 2.13 ([Hof04, Prop. 4.8]). Let φ be a nonzero p-form with
ndegF φ = pn.

(i) It holds n+ 1 ≤ dimφan ≤ pn.
(ii) Let a1, . . . , an ∈ F ∗ be such that NF (φ) = F p(a1, . . . , an), and let

c ∈ D∗
F (φ). Then φan ⊆ c⟨⟨a1, . . . , an⟩⟩. Furthermore, if there is

m ≤ n and b1, . . . , bm ∈ F ∗ such that φan ⊆ c⟨⟨b1, . . . , bm⟩⟩, then
m = n and ⟨⟨a1, . . . , an⟩⟩ ∼= ⟨⟨b1, . . . , bm⟩⟩; moreover, this quasi-Pfister
form is anisotropic.

Let φ be a p-form over F with ndegF φ = pn and NF (φ) = F p(a1, . . . , an)
(so, in particular, {a1, . . . , an} is p-independent over F ). Then we define
the norm form of φ over F , denoted by ν̂F (φ), as the quasi-Pfister form
⟨⟨a1, . . . , an⟩⟩. Note that if φ is a quasi-Pfister form itself, then we have
ν̂F (φ) ∼= φan. In general, by Proposition 2.13, we have φan ⊆ c ν̂F (φ) for
any c ∈ D∗

F (φ).

Lemma 2.14. Let φ be a p-form.
(i) It holds that ν̂F (φ) ∼= ν̂F (φan).
(ii) Let E/F be a field extension. Then ν̂E(φ) ∼= (ν̂F (φ)E)an.

Proof. Part (i) follows from the fact that NF (φ) = NF (φan). For (ii), see
[Scu16b, Lemma 3.2].

Norm fields and norm forms can be used to characterize anisotropic
quasi-Pfister forms.

Proposition 2.15. Let φ be a p-form over F . Then the following are
equivalent:

(i) φan is a quasi-Pfister form;
(ii) DF (φ) = GF (φ);
(iii) DF (φ) = NF (φ);
(iv) ν̂F (φ) ∼= φan;
(v) ndegF φ = dimφan and 1 ∈ D∗

F (φ).

Proof. (i) ⇔ (ii) follows by Lemma 1.41, and (i) ⇔ (iv) is trivial.
(i) ⇒ (iii) follows from Proposition 2.11. For the opposite direction,

let {a1, . . . , an} be p-independent over F such that NF (φ) = F p(a1, . . . , an).
Then ai11 · · · ainn ∈ DF (φ) for any (i1, . . . , in) ∈ {0, . . . , p − 1}n. Since these
elements are linearly independent over F p by Lemma 2.4, the form

ψ ∼= ⊥
(i1,...,in)∈{0,...,p−1}n

⟨ai11 · · · ainn ⟩ ∼= ⟨⟨a1, . . . , an⟩⟩

is anisotropic over F , and hence ψ ⊆ φan by Lemma 2.1. Since we have
dimφan ≤ ndegF φ = dimψ by Proposition 2.13, we get ψ ∼= φan, and hence
(iii) ⇒ (i).
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The implication (iv) ⇒ (v) follows from the facts dim ν̂F (φ) = ndegF φ
and 1 ∈ DF (ν̂F (φ)). To prove the opposite direction, recall that we have
φan ⊆ cν̂F (φ) for any c ∈ D∗

F (φ); hence, in particular, φan ⊆ ν̂F (φ). Now
we have dimφan = dim ν̂F (φ) by the assumption, and so (iv) follows.

We can analogously characterize quasi-Pfister neighbors. To be able to
say a bit more, we need to recall some notation from Subsection 1.1.9: Let φ
be a p-form over F . Then Fk denotes the k-th field in the standard splitting
tower of φ, and φk ∼= (φFk

)an is the k-th kernel form. We write ik(φ) for
it(φFk

). Finally, h(φ) is the height of the p-form φ, i.e., the smallest integer
h for which dim(φFh

)an ≤ 1.

Proposition 2.16 ([Scu16a, Cor. 3.11]). Let φ be an anisotropic p-form of
dimension ≥ 2 over F and let n be the smallest nonnegative integer such
that dimφ ≤ pn+1. Then the following are equivalent:

(i) φ is a quasi-Pfister neighbor,
(ii) dim(ν̂F (φ)) < p dimφ,
(iii) φF (ν̂F (φ)) is isotropic,
(iv) ndegφ = pn+1,
(v) h(φ) = n+ 1,
(vi) i1(φ) = dimφ− pn and i2(φ) = pn − pn−1,
(vii) sSP(φ) = (dimφ, pn, pn−1, . . . , p, 1),
(viii) φ1 is similar to a quasi-Pfister form.

Note in particular that if φ is a quasi-Pfister neighbor, then it is a
quasi-Pfister neighbor of ν̂F (φ).

Let us now look at quasi-Pfister forms and norm forms over field exten-
sions.

Proposition 2.17 ([Hof04, Prop. 5.2]). Let φ be an anisotropic p-form
over F with ndegF (φ) = pn, and let NF (φ) = F p(a1, . . . , an) for some
a1, . . . , an ∈ F ∗. Let E/F be any field extension such that the p-form
φE is isotropic. Then ndegE(φ) = pk < pn and there exists a subset
{ai1 , . . . , aik} ⊆ {a1, . . . , an} such that NE(φ) = Ep(ai1 , . . . , aik). In par-
ticular, for each c ∈ D∗

E(φ), we have c(φE)an ⊆ ⟨⟨ai1 , . . . , aik⟩⟩E.

Combining Propositions 2.11 and 2.17, we get:

Lemma 2.18. Let π be a quasi-Pfister form over F and E/F a field ex-
tension. Then (πE)an is a quasi-Pfister form.

We can ask when an anisotropic quasi-Pfister form becomes isotropic
after “adding a new slot”.

Lemma 2.19. Let φ be an anisotropic quasi-Pfister form or an anisotropic
quasi-Pfister neighbor over F , and let x ∈ F ∗. Then φ⊗ ⟨⟨x⟩⟩ is isotropic if
and only if x ∈ NF (φ).

Proof. First, we prove the lemma in the case when φ ∼= π is a quasi-Pfister
form. Assume that π ∼= ⟨⟨a1, . . . , an⟩⟩, i.e., NF (π) = F p(a1, . . . , an). Then
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the form π ⊗ ⟨⟨x⟩⟩ is isotropic if and only if (π ⊗ ⟨⟨x⟩⟩)an ∼= π if and only if
F p(a1, . . . , an) = F p(a1, . . . , an, x) if and only if x ∈ NF (π).

Now suppose that φ is a quasi-Pfister neighbor. Then, by Proposi-
tion 2.16, cφ ⊆ π for π ∼= ν̂F (φ) and some c ∈ F ∗. It follows that cφ⊗ ⟨⟨x⟩⟩
is a quasi-Pfister neighbor of π⊗⟨⟨x⟩⟩, and hence cφ⊗⟨⟨x⟩⟩ is isotropic if and
only if π ⊗ ⟨⟨x⟩⟩ is isotropic (Lemma 1.26). By the first part of the proof,
the latter is equivalent to x ∈ NF (π). Since NF (π) = NF (cφ) = NF (φ), the
claim follows.

The above lemma cannot be generalized to a product of quasi-Pfister
forms of higher norm degrees: Consider a p-independent set {a1, a2, x1, x2}
over F and the p-forms ⟨⟨a1, a2, a1x1 + a2x2⟩⟩ and ⟨⟨x1, x2⟩⟩. Then one
can show that F p(a1, a2, a1x1 + a2x2) ∩ F p(x1, x2) = F p. But the form
⟨⟨a1, a2, a1x1 + a2x2⟩⟩ ⊗ ⟨⟨x1, x2⟩⟩ is isotropic by Corollary 2.6 since we have
F p(a1, a2, a1x1 + a2x2, x1, x2) = F p(a1, a2, x1, x2).

However, we can at least state a condition, under which a product of
two anisotropic p-forms remains anisotropic.

Lemma 2.20. Let φ, ψ be two anisotropic p-forms over F . If we have
ndegF (φ⊗ ψ) = ndegF φ · ndegF ψ, then φ⊗ ψ is anisotropic.

Proof. We have φ ⊗ ψ ⊆ ν̂F (φ) ⊗ ν̂F (ψ), where ν̂F (φ) ⊗ ν̂F (ψ) is a quasi-
Pfister form. As ν̂F (φ ⊗ ψ) is the smallest quasi-Pfister form containing
φ ⊗ ψ, we have ν̂F (φ ⊗ ψ) ⊆ ν̂F (φ) ⊗ ν̂F (ψ). By the assumption, we have
dim ν̂F (φ⊗ψ) = dim ν̂F (φ) · dim ν̂F (ψ); thus, ν̂F (φ⊗ψ) ∼= ν̂F (φ) ⊗ ν̂F (ψ),
and this form is in particular anisotropic. Therefore, its subform φ ⊗ ψ is
anisotropic as well.

Remark 2.21. The other implication in the previous lemma does not hold
in general: Let {a, b, c} ⊆ F ∗ be a p-independent set over F , and consider
the p-forms φ ∼= ⟨1, a, b, c⟩ and ψ ∼= ⟨1, abc⟩. Then

φ⊗ ψ ∼= ⟨1, a, b, c, abc, a2bc, ab2c, abc2⟩ ⊆ ⟨⟨a, b, c⟩⟩,

and hence φ⊗ ψ is anisotropic. But

ndegF (φ⊗ ψ) = p3 < p3 · p = ndegF φ · ndegF ψ.

However, if φ is a quasi-Pfister form and ψ a quasi-Pfister neighbor, then
the other implication holds as well: Since in this situation φ ∼= ν̂F (φ) and
dimψ > 1

p
dim ν̂F (ψ), it follows that dim(φ ⊗ ψ) > 1

p
dim(ν̂F (φ) ⊗ ν̂F (ψ)),

and hence φ⊗ ψ is a quasi-Pfister neighbor of ν̂F (φ) ⊗ ν̂F (ψ). Then φ⊗ ψ
is anisotropic if and only if ν̂F (φ) ⊗ ν̂F (ψ) is anisotropic if and only if the
union of the p-bases of NF (φ) and NF (ψ) over F is a p-independent set
over F .

2.1.3 Minimal p-forms
In this subsection, we introduce a new class of p-forms, so-called minimal
p-forms. These are the p-forms of minimal dimension with respect to their
norm degree (cf. Proposition 2.13(i)):
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Definition 2.22. Let φ be an anisotropic p-form over F . We call φ minimal
over F if ndegF φ = pdimφ−1.

According to [Scu13, Th. 4.2], minimal p-forms of dimension at least two
are exactly those p-forms φ, for which Xφ is a regular scheme.

First, we state some rather obvious properties of minimal p-forms.

Lemma 2.23. Let φ, ψ be p-forms over F of dimension at least two.
(i) The p-form ⟨1, a1, . . . , an⟩ is minimal over F if and only if the set

{a1, . . . , an} is p-independent over F .
(ii) Minimality is not invariant under field extensions.
(iii) If φ is minimal over F and ψ sim∼ φ, then ψ is minimal over F .
(iv) If φ is minimal over F and ψ ⊆ cφ for some c ∈ F ∗, then ψ is

minimal over F .
(v) If ndegF φ = pk with k ≥ 1, then φ contains a minimal subform of

dimension k + 1.

Proof. (i) The p-form φ = ⟨1, a1, . . . , an⟩ is minimal over F if and only
if ndegF (φ) = pn if and only if [F p(a1, . . . , an) : F p] = pn if and only if
{a1, . . . , an} is p-independent over F (Corollary 2.6).

(ii) Let {a, b, c} ⊆ F be a p-independent set over F . Let E = F ( p
√
c) and

consider φ = ⟨1, a, b, abc⟩. Then NF (φ) = F p(a, b, abc) = F p(a, b, c), and
hence φ is minimal over F . Nevertheless, φE ∼= ⟨1, a, b, ab⟩ is anisotropic
but not minimal over E, because ndegE φ = p2.

(iii) This is a consequence of the fact that similar forms have the same
dimension (Lemma 1.36) and the same norm field.

(iv) Invoking (iii), we can assume ψ ⊆ φ and 1 ∈ DF (ψ). So, there
exist a1, . . . an ∈ F ∗ and some m ≤ n such that ψ ∼= ⟨1, a1, . . . , am⟩ and
φ ∼= ⟨1, a1, . . . , an⟩; see Lemma 2.1. By (i), {a1, . . . , an} is p-independent
over F ; thus, {a1, . . . , am} has to be p-independent over F , and the claim
follows by applying (i) again.

(v) Note that by Proposition 2.13, it follows from the assumption on k
that dimφan ≥ 2. There exists c ∈ F ∗ such that 1 ∈ D∗

F (cφan); then, by
Corollary 2.9, cφan ∼= ⟨1, b1, . . . , bn⟩ for some b1, . . . , bn ∈ F ∗ with n ≥ k
and {b1, . . . , bk} p-independent over F . It follows that c−1⟨1, b1, . . . , bk⟩ is a
subform of φ which is minimal over F by parts (i) and (iii).

The following lemma characterizes elements represented by a given min-
imal p-form.

Lemma 2.24. Let φ be a minimal p-form over F with 1 ∈ DF (φ). Let
n ≥ 2 and {b1, . . . , bn} ⊆ DF (φ) be p-independent over F . Denote

S =
{︂
λ : {1, . . . , n} → {0, . . . , p− 1}

}︂
,

and consider
β =

∑︂
λ∈S

xpλ

n∏︂
i=1

b
λ(i)
i

with xλ ∈ F for all λ ∈ S. Then the following are equivalent:
(i) β ∈ DF (φ),
(ii) xλ = 0 for all λ ∈ S such that ∑︁n

i=1 λ(i) ≥ 2, i.e., β = yp0 +∑︁n
i=1 biy

p
i

for some yi ∈ F , 0 ≤ i ≤ n.
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Proof. Write τ ∼= ⟨1, b1, . . . , bn⟩. Then (ii) holds if and only if β ∈ DF (τ).
Since τ ⊆ φ by the assumptions, the implication (ii) ⇒ (i) is obvious.

To prove (i) ⇒ (ii), suppose that (ii) does not hold (e.g., β = b1b2).
Then we can see that β /∈ DF (τ). Hence, the p-form τ ⊥ ⟨β⟩ is anisotropic.
On the other hand, β ∈ F p(b1, . . . , bn), so τ ⊥ ⟨β⟩ is not minimal over F
by part (i) of Lemma 2.23. If β ∈ DF (φ), then τ ⊥ ⟨β⟩ ⊆ φ, in which case
φ could not be minimal over F by part (iv) of the same lemma, which is a
contradiction; therefore, β /∈ DF (φ).
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2.2 Isotropy and splitting patterns
The main goal of this section is to determine the full splitting pattern at
least of some families of p-forms. On the way, we look at some properties
of the isotropy of p-forms over field extensions in general.

2.2.1 Isotropy over purely inseparable field extensions
Recall that we define the full splitting pattern of a p-form φ over F as

fSP(φ) = {dim(φE)an | E/F a field extension}.

Thus, the goal of this section is to look at isotropy properties of p-forms
over different kinds of field extensions.

First of all, the purely transcendental extensions are not interesting at
all from the point of view of isotropy by Lemma 1.13. Furthermore, we
know from Lemma 1.14 that anisotropic p-forms also remain anisotropic
over any separable field extension. But the situation gets more interesting
when we consider purely inseparable field extensions. The easiest one is a
simple purely inseparable extension of exponent one (that is, an extension
E/F such that Ep ⊆ F ); such an extension is of the form F ( p

√
a)/F for

some a ∈ F \ F p. In the following lemma, we take a closer look at the
behavior of p-forms over such extensions.
Lemma 2.25 ([Scu16a, Lemma 2.27]). Let φ be a p-form over F and let
a ∈ F \ F p. Then:

(i) DF ( p√a)(φ) = DF (⟨⟨a⟩⟩ ⊗ φ) = ∑︁p−1
i=0 a

iDF (φ).
(ii) id(φF ( p√a)) = 1

p
id(⟨⟨a⟩⟩ ⊗ φ).

(iii) ndeg(φF ( p√a)) =
⎧⎨⎩

1
p

ndegφ if a ∈ NF (φ),
ndegφ if a /∈ NF (φ).

(iv) If φ is anisotropic and φF ( p√a) is isotropic, then a ∈ NF (φ).
(v) dim(φF ( p√a))an ≥ 1

p
dimφan.

(vi) Equality holds in (v) if and only if there exists a p-form γ over F such
that φan ∼= ⟨⟨a⟩⟩ ⊗ γ.

We want to point out that NF (φ) is the smallest field extension of F p

with property (iv) of Lemma 2.25. More precisely, we have the following:
Proposition 2.26. Let φ be an anisotropic p-form over F and E/F p be a
field extension such that the following holds for any a ∈ F ∗:

id(φF ( p√a)) > 0 =⇒ a ∈ E. (l)

Then NF (φ) ⊆ E.
Proof. Let ndegF φ = pk. Since neither the isotropy nor the norm field
depends on the choice of the representative of the similarity class, we can
assume 1 ∈ D∗

F (φ). Invoking Corollary 2.9, we find b1, . . . , bn ∈ F with
n ≥ k such that φ ∼= ⟨1, b1, . . . , bn⟩ and {b1, . . . , bk} is a p-basis of NF (φ)
over F . Since φF ( p√bi) is obviously isotropic for each 1 ≤ i ≤ k, we get by
the assumption (l) that b1, . . . , bk ∈ E. Since E is a field containing F p, it
follows that NF (φ) = F p(b1, . . . , bk) ⊆ E.

39



Non-simple purely inseparable extensions of exponent one, i.e., exten-
sions of the form F ( p

√
a1, . . . , p

√
ar)/F , are basically covered by repeated

application of Lemma 2.25. So we are interested in fields of higher expo-
nents, and how to compare them with an appropriate field of exponent one.
The following is known.

Proposition 2.27 ([Hof04, Prop. 5.7]). Let r ≥ 1. For each 1 ≤ i ≤ r,
let ai ∈ F , ni ≥ 1, and αi, βi be such that αpi = βp

ni

i = ai. Furthermore,
set K = F (α1, . . . , αr), L = F (β1, . . . , βr), and assume that [K : F ] = pr.
Then [L : F ] = pn1+···+nr and the quasi-Pfister form π = ⟨⟨a1, . . . , ar⟩⟩ is
anisotropic.

Let φ be an anisotropic p-form. Then the following statements are equiv-
alent.

(i) φ⊗ π is isotropic,
(ii) φK is isotropic,
(iii) φL is isotropic.

Note that the previous proposition does not cover all purely inseparable
extensions of exponent higher than one; only those extensions L/F are con-
sidered, for which L = F ( pn1√a1, . . . , pnr

√
ar) with ⟨⟨a1, . . . , ar⟩⟩ anisotropic

(i.e., the set {a1 . . . , ar} is p-independent; this follows from the assump-
tion [K : F ] = pr). Purely inseparable field extensions for which such
elements a1, . . . , ar can be found are called modular. A known example of
a non-modular extension is E/F with F = F2(a, b, c) for some algebraically
independent elements a, b, c, and E = F ( 4

√
a, 4

√
b2a+ c2), see [Wei65].

However, we can strengthen the results by comparing the values id(φ⊗π),
id(φK) and id(φL); it turns out that we can prove id(φK) = id(φL) even if
the extension L/F is not modular.

Theorem 2.28. Let r ≥ 1. For each 1 ≤ i ≤ r, let ai ∈ F , ni ≥ 1, and
αi, βi be such that αpi = βp

ni

i = ai. Furthermore, set K = F (α1, . . . , αr),
L = F (β1, . . . , βr) and π = ⟨⟨a1, . . . , ar⟩⟩. Let φ be an anisotropic p-form.
Then

(i) id(φK) = id(φL),
(ii) id(φK) = 1

pr id(φ⊗ π) if π is anisotropic.

Proof. To prove (i), we proceed by induction on r. Let r = 1, and write
a = a1, n = n1, α = α1 and β = β1. Let V be the vector space associated
with φ, and write VK = K ⊗F V and VL = L ⊗F V ≃ L ⊗K VK as usual.
Let WK = {w ∈ VK | φK(w) = 0} (resp. WL = {w ∈ VL | φL(w) = 0}) be
the maximal isotropic subspace of VK (resp. VL); then id(φK) = dimKWK

(resp. id(φL) = dimLWL). We will show that WL = L ⊗K WK , which
will not only justify the notation but also prove the claim because we have
dimL(L⊗K WK) = dimKWK by Lemma 1.9.

Let w = ∑︁k
i=1 γi ⊗ wi ∈ L⊗K WK for some γi ∈ L and wi ∈ WK ; then

φL(w) = φL

(︄
k∑︂
i=1

γi ⊗ wi

)︄
=

k∑︂
i=1

γpi φK(wi) = 0.

Hence, w ∈ WL, and so we get L⊗K WK ⊆ WL.
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For a proof of the opposite inclusion, first note that φK(v) ∈ F for any
v ∈ VK by Lemma 2.25(i). Now, let w ∈ WL. Since {1, β, β2, . . . , βp

n−1−1}
is a basis of L over K, we can write

w =
pn−1−1∑︂
i=0

βi ⊗ wi

with wi ∈ VK . Then

0 = φL(w) =
pn−1−1∑︂
i=0

βpiφK(wi).

Note that the set B = {1, βp, β2p, . . . , βp
n−p} is a subset of {1, β, . . . , βpn−1},

which is a basis of L over F ; therefore, B is linearly independent over F .
Since, as we noted, φK(wi) ∈ F for all the i’s, it follows that φK(wi) = 0.
Thus, we have wi ∈ WK for all i, and hence w ∈ L⊗K WK . It follows that
WL ⊆ L⊗K WK , which concludes the proof in the case r = 1.

Let r > 1; for 0 ≤ i ≤ r, set

Li = F (β1, . . . , βi, αi+1, . . . , αr).

Then L0 = K, Lr = L, and id(φLi
) = id(φLi+1) for all 0 ≤ i ≤ r − 1 by the

previous part of the proof. Therefore, id(φK) = id(φL).
(ii) Set Ki = F (α1, . . . , αi) for 0 ≤ i ≤ r. Since π is anisotropic by the

assumption, we have [Ki+1 : Ki] = p for all 0 ≤ i ≤ r− 1. Now the equality
id(φ⊗ π) = 1

pr id(φK) follows by a repeated application of Lemma 2.25:

id(φK) = id(φKr) = p id((⟨⟨ar⟩⟩ ⊗ φ)Kr−1) = . . .

= prid((⟨⟨a1, . . . , ar⟩⟩ ⊗ φ)K0) = prid(φ⊗ π).

Next to the standard and full splitting pattern, we can define purely
inseparable splitting pattern of a p-form φ over F as

piSP(φ) = {dim(φL)an | L/F a purely inseparable extension}.

By the previous theorem, we only need to consider purely inseparable ex-
tensions of exponent one.

Corollary 2.29. Let φ be a p-form over F . Then

piSP(φ) = {dim(φK)an | K/F finite purely inseparable of exponent 1}.

Remark 2.30. We can restrict the field extensions necessary to deter-
mine piSP(φ) a bit more: Let φ be anisotropic with ndegF φ = pn and
NF (φ) = F p(a1, . . . , an). Consider the field K = F ( p

√
b1, . . . ,

p
√
br), write

π ∼= ⟨⟨b1, . . . , br⟩⟩, and assume that π is anisotropic. Then we know from
Proposition 2.27 that φK is isotropic if and only if φ ⊗ π is isotropic. By
Lemma 2.20, this can happen only if ndegF (φ⊗ π) < ndegF (φ) · ndegF (π),
i.e., if the set {a1, . . . , an, b1, . . . , br} is p-dependent. Thus, we have

piSP(φ) = {dim(φK)an | [Kp(a1, . . . , an) : F p] < pn[Kp : F p]},
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where K runs over purely inseparable extensions of F of exponent one.
This also indicates that a p-form may become isotropic even over a field

E such that Ep ∩ NF (φ) = F p. For example, consider a set {a1, a2, a3, b1}
p-independent over F , and write φ ∼= ⟨1, a1, a2, a3⟩ and E = F ( p

√
b1,

p
√
b2)

with b2 = a1b1+a3
a2

. It can be shown that indeed Ep ∩ NF (φ) = F p. More-
over, ⟨a1b1, a2b2, a3⟩ ⊆ φ ⊗ ⟨⟨b1, b2⟩⟩, and since a3 = a1b1 + a2b2, the form
⟨a1b1, a2b2, a3⟩ is isotropic. Therefore, φ⊗⟨⟨b1, b2⟩⟩ is isotropic, and so is φE.

Later in this section, we will compute the full splitting patterns of some
families of p-forms using solely purely inseparable field extensions of expo-
nent one. So, at this point, we would like to prove that piSP(φ) = fSP(φ)
for any p-form φ. However, that is not as straightforward as it may seem
to be: It means that for any field extension E/F , we must find a purely
inseparable extension K/F such that id(φE) = id(φK). As a possible first
step in this direction, we propose Conjecture 2.31.

For a finite extension K/F and α ∈ K, we denote the norm of α over F
by NK/F (α).

Conjecture 2.31. Let φ be a p-form over F and E/F a separable field
extension, α ∈ E \Ep and n ≥ 1. Denote L = E( pn√

α) and a = NF (α)/F (α).
If φL is isotropic, then the following hold:

(i) ⟨⟨a⟩⟩ ⊗ φ is isotropic;
(ii) if a /∈ F p, then φF ( p√a) is isotropic.

2.2.2 Bounds on the size of fSP(φ)
Putting aside the trivial case when φan is the zero form, it is obvious that
fSP(φ) ⊆ {1, 2, . . . , dimφ}, and hence |fSP(φ)| ≤ dimφ. We will show that
the bound cannot be improved. Moreover, we provide a lower bound for
|piSP(φ)|; since obviously piSP(φ) ⊆ fSP(φ), we will also get a lower bound
for |fSP(φ)|.

For a given p-form φ, we construct a tower of fields over which the defect
of φ is strictly increasing similarly as over the standard splitting tower. To
do that, we put a seemingly strong assumption on the p-form. But by
Corollary 2.9, all p-forms which represent one fulfill this assumption.

Lemma 2.32. Let φ = ⟨1, a1, . . . , an⟩ be a p-form over F , and assume that
{a1, . . . , am} is a p-basis of the field NF (φ) over F for some m ≤ n. We
denote E0 = F and Ei = F

(︂
p
√
a1, . . . , p

√
ai
)︂

for 1 ≤ i ≤ m. Then we have
id(φEi+1) > id(φEi

) and ⟨1, ai+1, . . . , am⟩Ei
⊆ (φEi

)an for any 0 ≤ i ≤ m− 1.

Proof. Let i ∈ {0, . . . ,m− 1} and set τi = (φEi
)an. Since DF (φ) ⊆ DEi

(τi),
it follows from Lemma 2.1 that

(⟨1, ai+1, . . . , am⟩Ei
)an ⊆ τi,

and so we only need to prove that the form ⟨1, ai+1, . . . , am⟩Ei
is anisotropic

over Ei. Suppose not; then we can find k ∈ {i+ 1, . . . ,m}, such that

ak ∈ spanEp
i
{1, ai+1, . . . ,ˆ︂ak, . . . , am}.
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But that implies ak ∈ F p(a1, . . . ,ˆ︂ak, . . . , am), which is a contradiction with
the choice of {a1, . . . , am} as a p-basis over F by Lemma 2.4.

Furthermore, the p-form ⟨1, ai+1, . . . , am⟩ becomes isotropic over the field
Ei+1, and hence so does τi. It follows that id(φEi+1) > id(φEi

).

As a corollary to the previous lemma, we get a lower bound on the size
of the sets piSP(φ) and fSP(φ).
Corollary 2.33. Let φ be a p-form over F , and suppose that ndegF φ = pm.
Then |piSP(φ)| ≥ m+ 1 and |fSP(φ)| ≥ m+ 1.
Proof. Since the splitting patterns do not depend on the choice of the simi-
larity class, we can assume without loss of generality that 1 ∈ DF (φ); Then,
invoking Corollary 2.9, we can suppose that φ is as in Lemma 2.32. Us-
ing the fields Ei for 0 ≤ i ≤ m from that lemma, it follows that we have
dim(φEi

)an ̸= dim(φEj
)an for any i ̸= j. The claim follows.

Remark 2.34. (i) The same lower bound on |fSP(φ)| as in Corollary 2.33
could be obtained through the standard splitting tower: Indeed, by [Scu16b,
Lemma 4.3], it holds that ndegF (φ)(φF (φ))an = 1

p
ndegF φ; therefore, it fol-

lows that |sSP(φ)| = m + 1 where ndegF φ = pm. Since sSP(φ) ⊆ fSP(φ),
we get |fSP(φ)| ≥ m+ 1.

(ii) The tower of fields F = E0 ⊆ E1 ⊆ · · · ⊆ Em in Lemma 2.32
might look like a purely inseparable analogy of the standard splitting tower
(note that they are of the same length). But the values of id(φEi

) de-
pend on the ordering of a1, . . . , am, so in particular we cannot expect that
id(φE1) = id(φF (φ)).

For example, if φ ∼= ⟨⟨a1, a2⟩⟩ ⊥ a3⟨1, a1⟩ for some set {a1, a2, a3} ⊆ F ∗

p-independent over F , then (φF ( p
√
a1))an ∼= (⟨⟨a2⟩⟩⊥a3⟨1⟩)F ( p

√
a1). The p-form

(φF (φ))an ∼= ⟨⟨a1, a2⟩⟩F (φ) corresponds rather to (φF ( p
√
a3))an ∼= ⟨⟨a1, a2⟩⟩F ( p

√
a3).

The following example shows that the lower bound from Corollary 2.33
cannot be improved.
Example 2.35. Let φ ∼= ⟨1, a1, . . . , am⟩ be a minimal p-form over F (i.e.,
the set {a1, . . . , am} is p-independent over F ). Then ndegF φ = pm and

fSP(φ) = {1, 2, . . . ,m+ 1}.

2.2.3 Full splitting pattern of quasi-Pfister forms
To determine the full splitting pattern of quasi-Pfister forms, we start by
looking at their behavior over purely inseparable field extensions.
Lemma 2.36. Let π and π′ be anisotropic quasi-Pfister forms over F such
that π ∼= ⟨⟨a⟩⟩ ⊗ π′ for some a ∈ F , and let E = F ( p

√
a). Then π′

E is
anisotropic. Furthermore, if φ is a p-form over F such that ν̂F (φ) ∼= π,
then ν̂E(φ) ∼= π′

E.
Proof. Let π′ = ⟨⟨b1, . . . , bm⟩⟩. If π′

E is isotropic, then, by Corollary 2.6,
{b1, . . . , bm} is p-dependent over E, and hence we find i ∈ {1, . . . ,m} such
that bi ∈ Ep(b1, . . . , bi−1, bi+1, . . . , bm) by Lemma 2.4. But it means that
bi ∈ F p(a, b1, . . . , bi−1, bi+1, . . . , bm), and hence π is isotropic.

The second statement follows from the first one and Lemma 2.14.
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Lemma 2.37. Let π = ⟨⟨a1, . . . , am⟩⟩ be an anisotropic quasi-Pfister form
over F , and let φ be a p-form over F with ν̂F (φ) ∼= π. We set E0 = F and
Ei = F

(︂
p
√
a1, . . . , p

√
ai
)︂

for 1 ≤ i ≤ m. Then (πEi
)an ∼= ⟨⟨ai+1, . . . , am⟩⟩ and

ν̂Ei
(φ) ∼= ⟨⟨ai+1, . . . , am⟩⟩ for any 0 ≤ i ≤ m. (For i = m we get the 0-fold

Pfister form ⟨1⟩.)

Proof. The first claim follows from Lemma 2.36 by induction on i. The
second claim is a consequence of the first one and Lemma 2.14.

Example 2.38. Let π ∼= ⟨⟨a1, . . . , an⟩⟩ be an anisotropic quasi-Pfister form.
Combining Lemmas 2.18 and 2.37, we get

fSP(π) = {1, p, . . . , pn}.

2.2.4 Full splitting pattern of quasi-Pfister neighbors
We look at anisotropic p-forms of the form φ ∼= π ⊥ dσ, where π is a
quasi-Pfister form and σ ⊆ π. Note that φ is a quasi-Pfister neighbor of
ν̂F (φ) ∼= π ⊗ ⟨⟨d⟩⟩.

Lemma 2.39. Let π be a quasi-Pfister form over F , σ ⊆ π and d ∈ F ∗

be such that the p-form φ ∼= π ⊥ dσ is anisotropic. Let E/F be a field
extension.

(i) If d ∈ DE(π), then we have (φE)an ∼= (πE)an, and so, in particular,
id(φE) = id(πE) + dim σ.

(ii) If d /∈ DE(π), then (φE)an ∼= (πE)an ⊥ d(σE)an, and so, in particular,
id(φE) = id(πE) + id(σE).

Proof. If d ∈ DE(π), then φE ∼= dπE ⊥ dσE, and hence (φE)an ∼= (πE)an.
Now assume d /∈ DE(π); if (πE)an⊥d(σE)an were isotropic, then so would

be (πE)an ⊗ ⟨1, d⟩, which would imply d ∈ DE(π), a contradiction. Thus,
(πE)an ⊥ d(σE)an is anisotropic. As clearly (φE)an ∼= ((πE)an ⊥ d(σE)an)an,
we get (φE)an ∼= (πE)an ⊥ d(σE)an.

Corollary 2.40. Let π be an n-fold quasi-Pfister form over F , σ ⊆ π and
d ∈ F ∗ be such that the p-form φ ∼= π⊥dσ is anisotropic. Then the following
hold:

(i) fSP(φ) ⊆ {pk + l | 0 ≤ k ≤ n, 0 ≤ l ≤ dim σ};
(ii) if E/F is a field extension such that φE is isotropic, then we have

id(φE) ≥ id(φF (φ)).

Proof. Part (i) is a direct consequence of Lemma 2.39.
To prove part (ii), note that φ is a quasi-Pfister neighbor of π ⊗ ⟨⟨d⟩⟩,

and so we have id(φF (φ)) = dim σ by Proposition 2.16. Therefore, we want
to show that id(φE) ≥ dim σ.

Note that the p-form ν̂F (φ) ∼= π⊗⟨⟨d⟩⟩ has the dimension pn+1. Since φE
is isotropic, the p-form ν̂F (φ)E is isotropic too, and so dim(ν̂F (φ)E)an ≤ pn

by Lemma 2.18. As (φE)an ⊆ (ν̂F (φ)E)an, it follows that id(φE) ≥ dim σ.

Lemma 2.41. Let π ∼= ⟨⟨a1, . . . , an⟩⟩ be an anisotropic quasi-Pfister form
over F and σ ∼= ⟨1, a1, . . . , as⟩ for some s ≤ n. Let E/F be a field extension.
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(i) If dim(σE)an = l, then dim(πE)an ≥ p⌈logp l⌉.
(ii) If dim(πE)an = pk, then dim(σE)an ≥ k − n+ s+ 1.

Proof. Part (i) follows from the facts that (σE)an ⊆ (πE)an and the dimen-
sion of (πE)an is a p-power.

To prove part (ii), we apply Proposition 2.17 on πE to find a subset
{i1, . . . , ik} ⊆ {1, . . . , n} such that (πE)an ∼= ⟨⟨ai1 , . . . , aik⟩⟩E. Let

{j1, . . . , jl} = {i1, . . . , ik} ∩ {1, . . . , s};

since aj1 , . . . , ajl are p-independent over E, the p-form ⟨1, aj1 , . . . , ajl⟩E is
an anisotropic subform of (σE)an. In particular, dim(σE)an ≥ l + 1. Since

l = |{i1, . . . , ik} ∩ {1, . . . , s}| ≥ k − (n− s),

the claim follows.

If, in the situation of Lemma 2.39, the form σ is minimal, then it is
possible to describe the full splitting pattern of φ ∼= π ⊥ dσ.

Theorem 2.42. Let π be an n-fold quasi-Pfister form over F , σ be a mini-
mal subform of π of dimension at least 2 and d ∈ F ∗ be such that the p-form
φ ∼= π ⊥ dσ is anisotropic. Then m ∈ fSP(φ) if and only if m = pk + l and
one of the following holds:

(i) 0 ≤ k ≤ n and l = 0;
(ii) 0 ≤ k ≤ n and max{1, k − n+ dim σ} ≤ l ≤ min{dim σ, pk}.

Proof. If x ∈ DF (σ), then x−1 ∈ GF (π), and hence x−1φ ∼= π ⊥ d(x−1σ)
with 1 ∈ DF (x−1σ); therefore, we can assume without loss of generality that
1 ∈ DF (σ). Let σ ∼= ⟨1, a1, . . . , as⟩ for some 1 ≤ s ≤ n; since σ is assumed to
be minimal, the set {a1, . . . , as} is p-independent by part (i) of Lemma 2.23,
and hence it can be extended to a p-independent set {a1, . . . , an} such that
NF (π) = F p(a1, . . . , an). Then π ∼= ⟨⟨a1, . . . , an⟩⟩ and

φ ∼= ⟨⟨a1 . . . , an⟩⟩ ⊥ d⟨1, a1, . . . , as⟩.

By Corollary 2.40, we have

fSP(φ) ⊆ {pk + l | 0 ≤ k ≤ n, 0 ≤ l ≤ s+ 1}.

Furthermore, if l ≥ 1 (i.e., if σE does not disappear completely in (φE)an),
then by Lemma 2.41, it must hold k−n+ s+ 1 ≤ l ≤ pk for any tuple (k, l)
such that pk + l ∈ fSP(φ). Therefore, fSP(φ) ⊆ I where

I = {pk + l | 0 ≤ k ≤ n,max{1, k − n+ s+ 1} ≤ l ≤ min{s+ 1, pk}}
∪ {pk | 0 ≤ k ≤ n}.

So we only need to prove that all the values in I are realizable. We define

I0 = {(k, 0) | 0 ≤ k ≤ n},
I1 = {(k, l) | 0 ≤ k ≤ n,max{1, k − n+ s+ 1} ≤ l ≤ min{s+ 1, k + 1}},
I2 = {(k, l) | 0 ≤ k ≤ n, k + 1 < l ≤ min{s+ 1, pk}};
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then I = {pk + l | (k, l) ∈ I0 ∪ I1 ∪ I2}.
If (k, l) = (k, 0) ∈ I0, then set Dk = F ( p

√
ak+1, . . . , p

√
an,

p
√
d). We get

(φDk
)an ∼= ⟨⟨a1, . . . , ak⟩⟩Dk

,

i.e., dim(φDk
)an = pk.

To cover the values in the set I1, we define En,s+1 = F and

Ek,l = F ( p
√
al, . . . , p

√
an−(k−l)−1)

for all tuples (k, l) ∈ I1 such that (k, l) ̸= (n, s+1); note that since k ≤ n−1
for such tuples, we have l ≤ n−(k−l)−1. Moreover, the condition l ≤ k+1
can be rewritten as n − (k − l) − 1 ≤ n. Therefore, Ek,l is well-defined.
Moreover, the inequality k− n+ s+ 1 ≤ l ensures that s ≤ n− (k− l) − 1,
and hence (σEk,l

)an ∼= ⟨1, a1, . . . , al−1⟩Ek,l
. Thus, for any (k, l) ∈ I1, we get

(φEk,l
)an ∼= (⟨⟨a1, . . . , al−1⟩⟩ ⊗ ⟨⟨an−(k−l), . . . , an⟩⟩ ⊥ d⟨1, a1, . . . , al−1⟩)Ek,l

and so dim(φEk,l
)an = pk + l.

Finally, let (k, l) ∈ I2. We denote Sk = {λ : {1, . . . , k} → {0, . . . , p−1}}
and write aλ = ∏︁k

i=1 a
λ(i)
i for any λ ∈ Sk. Furthermore, we pick a subset

Lk,l ⊆ Sk such that |Lk,l| = l−k−1 and ∑︁k
i=1 λ(i) > 1 for each λ ∈ Lk,l; note

that this is possible since l−k−1 ≤ pk−k−1 =
⃓⃓⃓
{λ ∈ Sk | ∑︁k

i=1 λ(i) > 1}
⃓⃓⃓
.

Let Lk,l = {λ1, . . . , λl−k−1}. We define

Gk,l = F

⎛⎝ p

⌜⃓⃓⎷ aλ1

ak+1
, . . . , p

⌜⃓⃓⎷aλl−k−1

al−1
, p
√
al, . . . , p

√
an

⎞⎠
(the field depends on the choice of Lk,l and the ordering of its elements).
Then [Gk,l : F ] ≤ pn−k, and

Gp
k,l(a1, . . . , ak) = F p

(︄
a1, . . . , ak,

aλ1

ak+1
, . . . ,

aλl−k−1

al−1
, al, . . . , an

)︄
= F p(a1, . . . , an)

because by the definition aλi ∈ F p(a1, . . . , ak) for all 1 ≤ i ≤ l − k − 1. As
[Gp

k,l : F p] = [Gk,l : F ] by Lemma 2.3, we get

pn = [F p(a1, . . . , an) : F p] = [Gp
k,l(a1, . . . , ak) : Gp

k,l] · [Gp
k,l : F p] ≤ pk · pn−k.

It follows that [Gk,l : F ] = pn−k and [Gp
k,l(a1, . . . , ak) : Gp

k,l] = pk; hence,
in particular, the set {a1, . . . , ak} is p-independent over Gk,l, which means
that the p-form ⟨⟨a1, . . . , ak⟩⟩ is anisotropic over Gk,l. Moreover, note that
we have aλi ≡ ak+i mod G∗p

k,l for any 1 ≤ i ≤ l − k − 1; in particular
ak+1, . . . , al−1 ∈ DGk,l

(⟨⟨a1, . . . , ak⟩⟩). Therefore,

(πGk,l
)an ∼= ⟨⟨a1, . . . , ak⟩⟩Gk,l

,

(σGk,l
)an ∼= ⟨1, a1, . . . , al−1⟩Gk,l

,
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where the anisotropy of ⟨1, a1, . . . , al−1⟩Gk,l
follows from

⟨1, a1, . . . , al−1⟩Gk,l
∼=
(︂
⟨1, a1, . . . , ak⟩ ⊥

l−k−1

⊥
i=1

⟨aλi⟩
)︂
Gk,l

⊆ ⟨⟨a1, . . . , ak⟩⟩Gk,l
.

Since d /∈ F p(a1, . . . , an) = DGk,l
(π), we get by Lemma 2.39 that

(φGk,l
)an ∼= (⟨⟨a1, . . . , ak⟩⟩ ⊥ d⟨1, a1, . . . , al−1⟩)Gk,l

;

in particular dim(φGk,l
)an = pk + l.

Remark 2.43. Note that we used in the proof of Theorem 2.42 only purely
inseparable field extensions of exponent one. Thus, for any p-form φ satis-
fying the conditions of that theorem, we have piSP(φ) = fSP(φ).

The following example illustrates both the result and the proof of The-
orem 2.42.

Example 2.44. Let a1, a2, a3, a4, d ∈ F ∗ be p-independent and

φ ∼= ⟨⟨a1, a2, a3, a4⟩⟩ ⊥ d⟨1, a1, a2, a3⟩.

Then we have by Theorem 2.42

fSP(φ) ={p0, p1, p2, p3, p4}
∪ {p0 + 1, p1 + 1, p1 + 2, p2 + 2, p2 + 3, p2 + 4, p3 + 3, p3 + 4}
∪ {p1 + 3 | if p ≥ 3} ∪ {p1 + 4 | if p ≥ 4}.

Table 2.1 provides the fields used in the proof of Theorem 2.42 and the
obtained p-forms for the case p ≥ 4.
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dim 0 1 2 3 4

p0
D0 = F ( p

√
a1, p

√
a2, p

√
a3, p

√
a4,

p
√
d) E0,1 = F ( p

√
a1, p

√
a2, p

√
a3, p

√
a4)

X X X
⟨1⟩ ⟨1⟩ ⊥ d⟨1⟩

p1
D1 = F ( p

√
a1, p

√
a2, p

√
a3,

p
√
d) E1,1 = F ( p

√
a1, p

√
a2, p

√
a3) E1,2 = F ( p

√
a2, p

√
a3, p

√
a4) G1,3 = F

(︂
p

√︃
a2

1
a2
, p
√
a3, p

√
a4
)︂

G1,4 = F
(︂

p

√︃
a2

1
a2
, p

√︃
a3

1
a3
, p
√
a4
)︂

⟨⟨a4⟩⟩ ⟨⟨a4⟩⟩ ⊥ d⟨1⟩ ⟨⟨a1⟩⟩ ⊥ d⟨1, a1⟩ ⟨⟨a1⟩⟩ ⊥ d⟨1, a1, a
2
1⟩ ⟨⟨a1⟩⟩ ⊥ d⟨1, a1, a

2
1, a

3
1⟩

p2
D2 = F ( p

√
a1, p

√
a2,

p
√
d)

X
E2,2 = F ( p

√
a2, p

√
a3) E2,3 = F ( p

√
a3, p

√
a4) G2,4 = F

(︂
p

√︂
a1a2
a3
, p
√
a4
)︂

⟨⟨a3, a4⟩⟩ ⟨⟨a1, a4⟩⟩ ⊥ d⟨1, a1⟩ ⟨⟨a1, a2⟩⟩ ⊥ d⟨1, a1, a2⟩ ⟨⟨a1, a2⟩⟩ ⊥ d⟨1, a1, a2, a1a2⟩

p3
D3 = F ( p

√
a1,

p
√
d)

X X
E3,3 = F ( p

√
a3) E3,4 = F ( p

√
a4)

⟨⟨a2, a3, a4⟩⟩ ⟨⟨a1, a2, a3⟩⟩ ⊥ d⟨1, a1, a2⟩ ⟨⟨a1, a2, a3⟩⟩ ⊥ d⟨1, a1, a2, a3⟩

p4
D4 = F ( p

√
d)

X X X
E4,4 = F

⟨⟨a1, a2, a3, a4⟩⟩ ⟨⟨a1, a2, a3, a4⟩⟩ ⊥ d⟨1, a1, a2, a3⟩

Table 2.1: Splitting of the p-form ⟨⟨a1, a2, a3, a4⟩⟩ ⊥ d⟨1, a1, a2, a3⟩ in the case p ≥ 4 (see Example 2.44).

48



2.2.5 Subforms of p-forms
The next Lemma has been proved in [Scu16b] (and in [Lag04] in the case of
p = 2), but since it will be an important building block in the next chapter,
we provide the proof here.

Proposition 2.45 ([Scu16b, Lemma 3.9]). Let φ be an anisotropic p-form
over F , a ∈ F \ F p and m ∈ N. If id(φF ( p√a)) ≥ m, then there exists a
p-form τ ⊆ φ with dim τ ≤ pm such that id(τF ( p√a)) ≥ m.

Proof. We proceed by induction on m. Let V be the underlying vector space
of φ and Va ∼= F ( p

√
a) ⊗F V . Let 0 ̸= v ∈ Va be such that φF ( p√a)(v) = 0.

Note that v can be written as

v =
p−1∑︂
i=0

( p
√
a)i ⊗ vi with vi ∈ V, 0 ≤ i ≤ p− 1.

Let U = spanF{v0, . . . , vp−1} and σ ∼= φ|U ; then dim σ ≤ p and σF ( p√a) is
isotropic. Thus, if m = 1, we set τ ∼= σ.

Assume m > 1. Let k = id(σF ( p√a)) and let φ′ ⊆ φ be such that
φ ∼= σ ⊥ φ′. Furthermore, by Lemma 2.2, we can find σ′ ⊆ σ such that
(σF ( p√a))an ∼= σ′

F ( p√a). We have

φF ( p√a)
∼= (σ ⊥ φ′)F ( p√a)

∼= (σ′ ⊥ φ′)F ( p√a) ⊥ k × ⟨0⟩;

it follows that

id((σ′ ⊥ φ′)F ( p√a)) = id(φF ( p√a)) − k ≥ m− k.

Since k ≥ 1 by the construction of σ, we can apply the induction hypothesis
on the p-form σ′ ⊥φ′ to find its subform τ ′ with dim τ ′ ≤ p(m−k) such that
id(τ ′

F ( p√a)) ≥ m− k. The form τ ∼= τ ′ ⊥ σ has the desired properties.

Note that in the special case of p = 2 and m = 1, the p-form τ has
dimension two. It follows that there exists c ∈ F ∗ such that τ ∼= c⟨1, a⟩ ⊆ φ.
However, for p > 2, there does not have to exist a two-dimensional subform
of φ which becomes isotropic over E = F ( p

√
a), as we will see in the following

example.

Example 2.46. Let p > 2 and φ ∼= ⟨1, b, a(1 + ab)⟩ be a p-form, where
{a, b} ⊆ F is a p-independent set over F . Note that φ is a subform of the
anisotropic quasi-Pfister form ⟨⟨a, b⟩⟩, and hence φ is anisotropic over F . On
the other hand, over E = F ( p

√
a), we have

φE ∼= ⟨1, b, 1 + ab⟩E ∼= ⟨1, b, ab⟩E ∼= ⟨1, b, b⟩E ∼= ⟨1, b, 0⟩E,

i.e., φE is isotropic.
Let σ be a two-dimensional subform of φ; then we can write

σ ∼= ⟨xp1 + byp1 + a(1 + ab)zp1 , xp2 + byp2 + a(1 + ab)zp2⟩

for some xi, yi, zi ∈ F such that xpi + bypi + a(1 + ab)zpi ̸= 0 for i = 1, 2. Now
either at least one of z1, z2 is zero, or we can add the (−z1)p-multiple of the

49



second coefficient of σ to the zp2-multiple of its first coefficient and reduce
the a(1+ab) term of the first coefficient; hence, we can assume without loss
of generality that z1 = 0. Then NF (σ) = F p(α) with

α = xp2 + byp2 + a(1 + ab)zp2
xp1 + byp1

.

Assume that σ is isotropic over F ( p
√
a). Then a ∈ F p(α) by Lemma 2.25,

i.e., F p(a) = F p(α), which means that α = ∑︁p−1
k=0 a

kwpk for some wk ∈ F .
Therefore,

xp2 + byp2 + a(1 + ab)zp2 = (xp1 + byp1)
p−1∑︂
k=0

akwpk.

This can be rewritten as

(x2 − x1w0)p + a(z2 − x1w1)p + b(y2 − y1w0)p + a2(−x1w2)p + ab(−y1w1)p

+ a2b(z2 − y1w2)p +
p−1∑︂
k=3

ak(−x1wk)p +
p−1∑︂
k=3

akb(−y1wk)p = 0.

Recalling that a, b are p-independent over F by the assumption, all the
coefficients (the p-powers) must be zero by Lemma 2.4; in particular:

x2 = x1w0, y2 = y1w0, z2 = x1w1 = y1w2,

x1w2 = 0, y1w1 = 0, y1wk = 0 ∀k ≥ 3.

If x1 = 0, then necessarily x2 = z2 = 0, and we get σ ∼= ⟨b, b⟩, which is a
contradiction to its anisotropy; thus, x1 ̸= 0. Since x1w2 = 0, this means
that w2 = 0, and hence z2 = 0. Furthermore, if y1 = 0, then y2 = 0, too,
and σ ∼= ⟨1, 1⟩, a contradiction. Thus, y1 ̸= 0, and so w1 = 0 and wk = 0
for all k ≥ 3; since we already know w2 = 0, it follows that α = wp0. That
contradicts the anisotropy of σ.

We have proven that σ, an arbitrary two-dimensional subform of φ, is
anisotropic over the field F ( p

√
a). Note that we needed to use the coefficient

w2 to do this, which can be done only under the assumption p > 2; indeed,
for p = 2, we have φ ∼= a⟨1, a, ab⟩, so φ contains a subform similar to ⟨1, a⟩.

Moreover, note that if we apply Proposition 2.45 on φ, the “isotropic sub-
form” τ would be the whole φ; since ν̂F (φ) ̸⊆ ⟨⟨a⟩⟩, it means that in general
we cannot even expect the p-form τ to be a subform of ⟨c1, . . . , cm⟩ ⊗ ⟨⟨a⟩⟩
for some c1, . . . , cm ∈ F ∗.
Lemma 2.47. Let π = ⟨⟨a1, . . . , an⟩⟩ be an anisotropic quasi-Pfister form
over F and φ a p-form over F such that xπ ⊆ φ for some x ∈ F ∗. Then
for every b ∈ F p(a1, . . . , an) \ F p, the following hold:

(i) id(πF ( p√
b)) = pn − pn−1,

(ii) id(φF ( p√
b)) ≥ pn − pn−1.

Proof. It is obvious that id(φF ( p√
b)) ≥ id(πF ( p√

b)), so it is sufficient to prove
part (i). As b /∈ F p, we can extend b to a p-basis of the field F p(a1, . . . , an) by
Lemma 2.7; so, F p(a1, . . . , an) = F p(b, c2, . . . , cn) for some c2, . . . , cn ∈ F ∗.
It follows from Proposition 2.11 that π = ⟨⟨a1, . . . , an⟩⟩ ∼= ⟨⟨b, c2, . . . , cn⟩⟩.
Therefore, we have (πF ( p√

b))an ∼= ⟨⟨c2, . . . , cn⟩⟩ by Lemma 2.36, and it follows
that id(πF ( p√

b)) = pn − pn−1.
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It would be great if a converse to the previous lemma held: Suppose φ
is an anisotropic p-form and {a1, . . . , an} a p-independent set over F such
that

id(φF ( p√
b)) ≥ pn − pn−1 for any b ∈ F p(a1, . . . , an) \ F p. (l)

Does it follow that φ must contain a subform similar to the quasi-Pfister
form ⟨⟨a1, . . . , an⟩⟩? The following example shows that this is not true in
general.

Example 2.48. Let π = ⟨⟨a1, . . . , an⟩⟩ be an anisotropic quasi-Pfister form
over F with n ≥ 2. For x ∈ F ∗ such that x /∈ DF (π) and a p-form π′ such
that ⟨1⟩ ⊥ π′ ∼= π set φ ∼= π′ ⊥ xπ′.

Let b ∈ F p(a1, . . . , an) \ F p. First, note that

id(π′
F ( p√

b)) ≥ pn − pn−1 − 1,

since (π′
F ( p√

b))an ⊆ (πF ( p√
b))an and dim(πF ( p√

b))an = pn−1. It follows that

id(φF ( p√
b)) ≥ 2id(π′

F ( p√
b)) ≥ 2(pn − pn−1 − 1) ≥ pn − pn−1

for any p ≥ 2 and n ≥ 2; hence, the condition (l) is satisfied.
We show 1 /∈ DF (φ): For a contradiction, suppose 1 ∈ DF (φ). Then

φ⊥⟨1⟩ is isotropic. Since φ⊥⟨1⟩ ⊆ π⊥xπ ⊆ π⊗⟨⟨x⟩⟩, the quasi-Pfister form
π ⊗ ⟨⟨x⟩⟩ is isotropic, too. But then x ∈ NF (π) = DF (π) by Lemma 2.19,
which contradicts the choice of x.

Finally, assume that cπ ⊆ φ for some c ∈ F ∗. Consider the p-form
cπ ⊥ π′: If this form is isotropic, then π ⊗ ⟨⟨c⟩⟩ is isotropic as well, and
hence c ∈ DF (π), again by Lemma 2.19. But then cπ ∼= π, so π ⊆ φ, and
hence 1 ∈ DF (φ), which is not the case. Thus, the p-form cπ ⊥ π′ must be
anisotropic. Since both cπ and π′ are subforms of φ, we get cπ ⊥ π′ ⊆ φ.
But that is absurd, because dim(cπ ⊥ π′) > dimφ. Therefore, φ does not
contain a subform similar to π.

2.2.6 Isotropy over a function field
We present an extended version of a known proposition.

Proposition 2.49. Let φ, ψ be anisotropic p-forms over F . Assume that
ψ ∼= ⟨1⟩ ⊥ ψ′, and denote X ′ = (X2, . . . , Xdimψ). Then the following are
equivalent:

(i) φF (ψ) is isotropic,
(ii) φF (X′) ⊗ ⟨⟨ψ′(X ′)⟩⟩ is isotropic.

If, moreover, φ is a quasi-Pfister form or a quasi-Pfister neighbor, then the
conditions above are also equivalent to
(iii) ψ′(X ′) ∈ NF (X′)(φ).

Proof. For the equivalence of (i) and (ii), see [Hof04, Prop. 7.15]. The
equivalence of (ii) and (iii) follows from Lemma 2.19.

Recall that ⟨D∗
F (φ)⟩ denotes the multiplicative subgroup of F ∗ generated

by D∗
F (φ). In the following lemma, we give a sufficient condition for an

anisotropic p-form to become isotropic over a function field of a polynomial.
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Lemma 2.50. Let φ be a p-form over F (or, more generally, any homoge-
neous polynomial of degree p). Let X = (X1, . . . , Xn) and f ∈ F [X] be an
irreducible polynomial. If there exists a ∈ F ∗ such that af ∈ ⟨D∗

F (X)(φ)⟩,
then φF (f) is isotropic.

Proof. Since the function fields F (f) and F (af) coincide, we can assume
without loss of generality that a = 1. Set n = dimφ. Let

f =
k∏︂
i=1

φ(ξ′
i)

for some k > 0 and ξ′
i = (ξ′

i1, . . . , ξ
′
in) with ξ′

ij ∈ F (X) for all i, j. For each
i, we can find 0 ̸= hi ∈ F [X] such that hiξ′

ij ∈ F [X] for all j; we denote
ξij = hiξ

′
ij and ξi = (ξi1, . . . , ξin). Moreover, set h = ∏︁k

i=1 hi. Then

hpf =
k∏︂
i=1

φ(ξi) ̸= 0.

If there exists an i ∈ {1, . . . , k} such that f | ξij for all j, then fp | hpf ;
since f is irreducible, we get f | h. Hence, we can replace ξij by ξij

f
for each

1 ≤ j ≤ n, and h by h
f
. Repeating this step if necessary, we may assume

that for each i ∈ {1, . . . , k}, there exists at least one j ∈ {1, . . . , n} such
that f ∤ ξij.

Since f | ∏︁k
i=1 φ(ξi) and f is irreducible, there exists an i ∈ {1, . . . , k}

such that f | φ(ξi), i.e., φ(ξi) = fg for some g ∈ F [X]. Then φ(ξi) = 0 over
the domain F [X]/(f), and hence also over its quotient field F (f). By the
previous paragraph, ξi mod (f) is a nonzero vector over F (f). Therefore,
φF (f) is isotropic.

We close this subsection with a known lemma, which we will use in the
following section to determine some necessary conditions for stable bira-
tional p-forms.

Lemma 2.51 ([Hof04, Lemma 7.12]). Let φ, ψ be anisotropic p-forms
over F . If φF (ψ) is isotropic, then ν̂F (ψ) ⊆ ν̂F (φ), NF (ψ) ⊆ NF (φ) and
ndegF (ψ) ≤ ndegF (φ). In this case, ndegF (ψ)(φF (ψ)) = 1

p
ndegF (φ).
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2.3 Birational and stable birational equiva-
lence

We devote this section to a summary of results about the birational and the
stable birational equivalence. These are all known results, but the original
statements do not always talk about the (stable) birational equivalence ex-
plicitly; whenever this is the case, we provide a short proof, which translates
the original statement into our notation.

Recall that by Lemma 1.53, if φ stb∼ ψ, then φF (ψ) and ψF (φ) are isotropic.
By a double application of Lemma 2.51, we get the following:

Lemma 2.52. Let φ, ψ be anisotropic p-forms over F such that φF (ψ)

and ψF (φ) are isotropic (e.g., such that φ stb∼ ψ). Then ν̂F (φ) ∼= ν̂F (ψ),
NF (φ) = NF (ψ) and ndegF (φ) = ndegF (ψ).

Under some strong assumptions on the p-forms, the stable birational
equivalence coincides with the similarity.

Proposition 2.53. Let φ, ψ be anisotropic p-forms over F of the same
dimension such that φF (ψ) and ψF (φ) are isotropic (e.g., such that φ stb∼ ψ).

(i) If φ is similar to a quasi-Pfister form, then φ
sim∼ ψ. In particular, if

we have 1 ∈ DF (φ) ∩DF (ψ), then φ ∼= ψ.
(ii) If φ is a quasi-Pfister neighbor of codimension one, then φ

sim∼ ψ.

Proof. By Lemma 2.52, there exists a quasi-Pfister form π over F such that
π ∼= ν̂F (φ) ∼= ν̂F (ψ).

(i) We can find c, d ∈ F ∗ such that cφ ∼= π ⊇ dψ. For dimension reasons,
φ

sim∼ ψ. Assume 1 ∈ DF (φ) ∩ DF (ψ). As φ ∼= c−1π represents 1, it follows
from Lemma 1.42 that c−1π ∼= π; thus, φ ∼= π. Analogously, ψ ∼= π; hence,
φ ∼= ψ.

(ii) Since φ is a quasi-Pfister neighbor of π of codimension 1, we have
dimψ = dimφ = dim π − 1. Moreover, cψ ⊆ ν̂F (ψ) ∼= π for some c ∈ F ∗.
Therefore, ψ is a quasi-Pfister neighbor of π of codimension 1. Using [Hof04,
Prop. 4.15], any two such p-forms are similar, i.e., φ sim∼ ψ as claimed.

The following proposition reinterprets some results from [Scu13] in a
way that they solve the analogue of the Quadratic Zariski Problem for some
families of p-forms.

Proposition 2.54. Let φ, ψ be anisotropic p-forms over F of the same
dimension d such that φF (ψ) and ψF (φ) are isotropic (e.g., such that φ stb∼ ψ),
and assume that at least one of the following holds:

(i) φ is similar to a quasi-Pfister form,
(ii) φ is a quasi-Pfister neighbor,
(iii) d ≤ pn + n+ 2 where n is the unique integer such that pn < d ≤ pn+1,
(iv) p = 2 or p = 3.

Then φ
bir∼ ψ.

53



Proof. If d = 1, then φ
sim∼ ψ, and so in particular φ bir∼ ψ. Thus, assume

d ≥ 2.
Since similar forms are birational by Lemma 1.50, part (i) is an easy

consequence of Proposition 2.53.
By Lemma 1.34, there exist rational maps Xψ ‧‧➡ Xφ and Xφ ‧‧➡ Xψ.

Now, part (iv) is covered by [Scu13, Theorem 7.7]. Recalling that dimXφ =
dimφ− 2, part (iii) follows from [Scu13, Proposition 7.11].

To prove part (ii), note that ν̂F (φ) ∼= ν̂F (ψ) by Lemma 2.52. Since
dimφ = dimψ by the assumption, it follows that ψ is also a quasi-Pfister
neighbor. Now the claim follows from [Scu13, Proposition 7.9].

Corollary 2.55. Any two anisotropic quasi-Pfister neighbors of the same
quasi-Pfister form which have the same dimension are birationally equiva-
lent.

Proof. Let φ and ψ be quasi-Pfister neighbors of a quasi-Pfister form π
over F . If dimφ = dimψ = 1, then the claim is trivial. Thus, suppose
dimφ = dimψ ≥ 2. For any extension E/F , we have by Lemma 1.26 that
φE is isotropic if and only if πE is isotropic if and only if ψE is isotropic.
Applying this to E = F (φ) and E = F (ψ), we get that φF (ψ) and ψF (φ) are
isotropic. The claim follows by Proposition 2.54(ii).

We conclude the section with a proposition, which connects the sta-
ble birational equivalence with the standard splitting pattern (see Subsec-
tion 1.1.9 for the definitions); roughly, it states that two stably birationally
equivalent p-forms φ, ψ can have different dimensions over F , but each pair
of the higher kernel forms φk, ψk must be of the same dimension.

Proposition 2.56 ([Scu16b, Prop. 5.7]). Let φ, ψ be anisotropic p-forms
of dimension at least two such that φ stb∼ ψ. Then sSP(φ1) = sSP(ψ1).
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2.4 Vishik equivalence
Recall that, by Lemma 1.61, if φ and ψ are two p-forms over F of dimension
at least two such that φ v∼ ψ, then φF (ψ) and ψF (φ) are isotropic. In the
case of dimφ = dimψ = 1, the assumption φ

v∼ ψ trivially implies φ sim∼ ψ.
Combining these with results from the previous section, we immediately get
the following:

Corollary 2.57. Let φ, ψ be anisotropic p-forms such that φ v∼ ψ. Then
the following hold:

(i) ν̂F (φ) ∼= ν̂F (ψ), NF (φ) = NF (ψ) and ndegF (φ) = ndegF (ψ).
(ii) If φ is a quasi-Pfister form or a quasi-Pfister neighbor of codimension

one, then φ
sim∼ ψ.

(iii) Assume that at least one of the following holds:
• φ is a quasi-Pfister neighbor;
• p ∈ {2, 3};
• dimφ ≤ pn + n + 2 where n is the unique integer such that
pn < dimφ ≤ pn+1.

Then φ
bir∼ ψ.

2.4.1 Weak Vishik equivalence
Proving that two p-forms are Vishik equivalent might be difficult. Moreover,
we do not always need the full strength of the Vishik equivalence; therefore,
we define a weaker version.

Definition 2.58. Let φ, ψ be p-forms over F . We say that they are weakly
Vishik equivalent and write φ v0∼ ψ if dimφ = dimψ and the following holds:

id(φF ( p√a)) = id(ψF ( p√a)) ∀ a ∈ F. (v0)

The weak Vishik equivalence has three (rather obvious) properties.

Lemma 2.59. Let φ, ψ be p-forms over F . Then:
(i) If φ v0∼ ψ, then id(φ) = id(ψ).
(ii) φ

v0∼ ψ if and only if φan
v0∼ ψan.

(iii) If φ v∼ ψ, then φ
v0∼ ψ.

Proof. Part (i) follows directly from the definition, because we include the
equality of the defects over the field F ( p

√
1) ≃ F . Part (ii) is then an easy

consequence of part (i). Finally, part (iii) is trivial.

To prove that Vishik equivalent forms have the same norm field, we used
the isotropy over the function fields of each other. Another possibility to
determine the norm field is to use Proposition 2.10, which only needs one
particular purely inseparable field extension of exponent one. But for weakly
Vishik equivalent forms, neither of these is at our disposal; nevertheless,
thanks to Corollary 2.26, we are still able to prove that they have the same
norm field.
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Proposition 2.60. Let φ, ψ be p-forms over F such that φ v0∼ ψ. Then
ν̂F (φ) ∼= ν̂F (ψ), NF (φ) = NF (ψ) and ndegF (φ) = ndegF (ψ).

Proof. We prove only NF (φ) = NF (ψ), then the rest follows. Invoking
Lemma 2.59 and recalling that the norm field takes into account only the
anisotropic part of a p-form, we can assume that φ and ψ are anisotropic. By
the definition of the weak Vishik equivalence and by part (iv) of Lemma 2.25,
we have for any a ∈ F :

id(φF ( p√a)) > 0 =⇒ id(ψF ( p√a)) > 0 =⇒ a ∈ NF (ψ).

Thus, we can apply Corollary 2.26 on the p-form φ and the field E = NF (ψ);
we obtain NF (φ) ⊆ NF (ψ). By the symmetry of the argument, we get
NF (φ) = NF (ψ).

Since (weakly) Vishik equivalent forms are always of the same dimension,
we immediately get:

Corollary 2.61. Let φ, ψ be p-forms over F such that φ v0∼ ψ.
(i) If φ is minimal over F , then ψ is also minimal over F .
(ii) If φ is a quasi-Pfister form or a quasi-Pfister neighbor of codimension

one over F , then φ
sim∼ ψ.

Proof. By Proposition 2.60, we have ndegF φ = ndegF ψ; since dimφ =
dimψ, part (i) follows immediately. To prove part (ii), note that we also
have ν̂F (φ) ∼= ν̂F (ψ); if φ is a quasi-Pfister form, then φ ∼= ν̂F (ψ) ⊇ cψ for
some c ∈ F ∗, and hence φ sim∼ ψ for dimensional reason. In the case when φ
is a quasi-Pfister neighbor of codimension one, we proceed as in the proof
of part (ii) of Proposition 2.53.

2.4.2 Relation with similarity
We already know that for quasi-Pfister forms and quasi-Pfister neighbors of
codimension one, Question Q has a positive answer (i.e., the Vishik equiv-
alence is sufficient for the p-forms to be similar). We would like to prove
that Question Q has a positive answer for all p-forms. Unfortunately, this
is not true in general – as we will see, it is even not true for quasi-Pfister
neighbors. We will provide two examples of pairs of p-forms that are Vishik
equivalent but not similar. However, both of the counterexamples have two
things in common: First, the considered p-forms are subforms of ⟨⟨a⟩⟩, and
so they have norm degree one. Second, they do not work for p = 2 and
p = 3. We will focus on the characteristic two case in Chapter 3, but the
case p = 3 remains open as well as p-forms of higher norm degrees.

Before we can get to the counterexamples, we need some lemmas.

Lemma 2.62. Let 1 ≤ k, l ≤ p − 1, a ∈ F \ F p, and let E/F be a field
extension. Then the following are equivalent:

(i) ⟨1, ak⟩ is isotropic over E,
(ii) ⟨1, al⟩ is isotropic over E,
(iii) ak ∈ Ep,
(iv) al ∈ Ep.
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Proof. Assume that ⟨1, ak⟩ is isotropic over E. This is equivalent to the
existence of x, y ∈ E, at least one (and hence both) of them nonzero, such
that xp + akyp = 0, which is equivalent to ak = (−x)p

yp ∈ Ep. This proves
both (i) ⇔ (iii) and (ii) ⇔ (iv).

Now let 1 ≤ t ≤ p − 1 be such that kt ≡ l (mod p). If ak ∈ Ep, then
akt ∈ Ep, and hence also al ∈ Ep. This proves (iii) ⇒ (iv) and, by symmetry,
also (iv) ⇒ (iii).

Lemma 2.63. Let a ∈ F \ F p and k, l ∈ Z with k, l ̸≡ 0 (mod p). Then
⟨1, ak⟩ sim∼ ⟨1, al⟩ if and only if k ≡ ±l (mod p).

Proof. If k ≡ l (mod p), then k = pm + l for some m ∈ Z, and so we
have ⟨1, ak⟩ ∼= ⟨1, apm+l⟩ ∼= ⟨1, al⟩. If k ≡ −l (mod p), then we can write
k = pn− l for some n ∈ Z, and then we have

⟨1, ak⟩ = ⟨1, apn−l⟩ ∼= ⟨1, a−l⟩ sim∼ al⟨1, a−l⟩ ∼= ⟨al, 1⟩ ∼= ⟨1, al⟩.

To prove the opposite direction, assume that ⟨1, ak⟩ sim∼ ⟨1, al⟩, i.e., there
exists c ∈ F ∗ such that c⟨1, ak⟩ ∼= ⟨1, al⟩. Then necessarily c ∈ DF (⟨1, al⟩),
so we can find x, y ∈ F such that c = xp + alyp. On the other hand,
1 ∈ DF (c⟨1, ak⟩), and thus 1 = cup+ cakvp for some u, v ∈ F . Putting these
together, we have

1 = (xp + alyp)up + (xp + alyp)akup = (xu)p + al(yu)p + ak(xv)p + ak+l(yv)p.

Suppose k ̸≡ ±l (mod p). Then τ = ⟨1, ak, al, ak+l⟩ is a subform of ⟨⟨a⟩⟩,
and hence anisotropic. Thus, τ represents every element of DF (τ) uniquely,
so we get xu ̸= 0 and yu = xv = yv = 0. This implies x, u ̸= 0 and
y = v = 0; hence, c = xp and ⟨1, ak⟩ ∼= ⟨1, al⟩. Thus, al ∈ DF (⟨1, ak⟩),
which is impossible for l ̸≡ 0, k (mod p).

Lemma 2.64. Let a ∈ F \ F p and φ, ψ be quasi-Pfister neighbors of ⟨⟨a⟩⟩
of the same dimension. Then φ

v∼ ψ.

Proof. Obviously, both φ and ψ are anisotropic. Let E/F be any field exten-
sion; it holds (φE)an, (ψE)an ⊆ (⟨⟨a⟩⟩E)an. Then either ⟨⟨a⟩⟩E is anisotropic,
and hence both φE and ψE are anisotropic, or we have (⟨⟨a⟩⟩E)an ∼= ⟨1⟩E
by Lemma 2.18, in which case (φE)an ∼= ⟨1⟩E ∼= (ψE)an. Consequently,
φ

v∼ ψ.

Example 2.65. Let p > 3 and φ ∼= ⟨1, a⟩, ψ ∼= ⟨1, a2⟩ be p-forms with
a ∈ F \F p. Note that φ and ψ are quasi-Pfister neighbors of ⟨⟨a⟩⟩; therefore,
φ

v∼ ψ by Lemma 2.64. On the other hand, Lemma 2.63 ensures that φ and
ψ are not similar for any p > 3.

Note that the problems with characteristics two and three are different.
If p = 2, then φ is anisotropic while ψ is isotropic. If p = 3, it holds that
a2φ ∼= ψ.
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Example 2.66. Let p = 5 and a ∈ F \F 5. Set π ∼= ⟨1, a, a2, a3, a4⟩ ∼= ⟨⟨a⟩⟩,
φ ∼= ⟨1, a, a2⟩ and ψ ∼= ⟨1, a, a3⟩. It follows φ v∼ ψ by Lemma 2.64.

Assume that c ∈ F is such that cψ ∼= φ. Note that

DF (φ) = {x5
0 + ax5

1 + a2x5
2 | xi ∈ F, 0 ≤ i ≤ 2},

DF (π) = {x5
0 + ax5

1 + a2x5
2 + a3x5

3 + a4x5
4 | xi ∈ F, 0 ≤ i ≤ 4},

and the expression of any element of DF (φ) (resp. DF (π)) is unique thanks
to the anisotropy of φ (resp. π). In particular, φ does not represent any
term of the form a3x5 or a4x5 with x ∈ F .

As c ∈ DF (φ), we can write c = x5 + ay5 + a2z5 for some x, y, z ∈ F .
Since ca = ax5 + a2y5 + a3z5 ∈ DF (φ), it follows that z = 0. Furthermore,
ca3 = a3x5 + a4y5 + (az)5 ∈ DF (φ) implies that x = y = 0. But then c = 0,
which is absurd. Therefore, φ and ψ are not similar.

2.4.3 Similarity factors
As we have seen, the Vishik equivalence is not as strong on p-forms as the
similarity is, but it still does well when restricted to quasi-Pfister forms.
In this subsection, we will show that this is also true for divisibility by
quasi-Pfister forms. In particular, we will prove that if φ v∼ ψ for some
p-forms φ, ψ with φ divisible by a quasi-Pfister form π, then ψ is divisible
by π, too.

Let φ be a p-form defined over F . Recall that we write

GF (φ) = {x ∈ F ∗ | xφ ∼= φ} ∪ {0},

and call the nonzero elements of this set the similarity factors of φ. As
observed in [Hof04, Prop. 6.4], the set GF (φ) together with the usual op-
erations is a finite field extension of F p inside NF (φ); in particular, by
Lemma 2.7, there exists a p-independent set {a1, . . . , am} ⊆ F ∗ such that
GF (φ) = F p(a1, . . . , am). We denote σ̂F (φ) ∼= ⟨⟨a1, . . . , am⟩⟩ and call it
the similarity form of φ over F . Moreover, again by [Hof04, Prop. 6.4],
there exists a p-form γ over F such that φan ∼= σ̂F (φ) ⊗ γ. It holds that
DF (σ̂F (φ)) = GF (φ).

We will show that Vishik equivalent p-forms have the same similarity
factors. But first, we need a simple lemma.

Lemma 2.67. Let π1, π2 be anisotropic Pfister p-forms. Then π1 ⊆ π2 if
and only if π2 ∼= π1 ⊗ γ for some p-form γ over F . In that case, γ can be
chosen to be a quasi-Pfister form.

Proof. Write π1 ∼= ⟨⟨a1, . . . , ar⟩⟩ and π2 ∼= ⟨⟨b1, . . . , bs⟩⟩, which means that we
have NF (π1) = F p(a1, . . . , ar) and NF (π2) = F p(b1, . . . , bs). Note that the
bijection between finite field extensions of F p inside F and Pfister p-forms
over F described in Proposition 2.11 implies that π1 ⊆ π2 if and only if
NF (π1) ⊆ NF (π2).

If this holds, then (by Lemma 2.7) we extend {a1, . . . , ar} to a p-basis
of F p(b1, . . . , bs); thus, F p(b1, . . . , bs) = F p(a1, . . . , ar, ar+1, . . . , as) for some
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ar+1, . . . , as ∈ F ∗, and so ⟨⟨b1, . . . , bs⟩⟩ ∼= ⟨⟨a1, . . . , ar⟩⟩ ⊗ ⟨⟨ar+1, . . . , as⟩⟩ by
Corollary 2.6.

On the other hand, assume π2 ∼= π1 ⊗ γ for a p-form γ. If 1 ∈ D∗
F (γ),

then we can write γ ∼= ⟨1⟩ ⊥ γ′ for a suitable p-form γ′; in that case,
π2 ∼= π1 ⊥ π1 ⊗ γ′ and we are done. More generally, if c ∈ D∗

F (γ), then
c ∈ D∗

F (π2) = G∗
F (π2). Now π2 ∼= cπ2 ∼= π1 ⊗ cγ with 1 ∈ D∗

F (cγ), so we are
done by the previous case.

Proposition 2.68. Let φ, ψ be anisotropic p-forms over F such that φ v0∼ ψ.
Then GF (φ) = GF (ψ).

Proof. The inclusion F p ⊆ GF (ψ) is obvious. Hence, pick a ∈ GF (φ) \ F p.
Since GF (φ) = DF (σ̂F (φ)) is a field, we get that a2, . . . , ap−1 ∈ DF (σ̂F (φ))
and 1 ∈ DF (σ̂F (φ)). As the p-form ⟨1, a, . . . , ap−1⟩ ∼= ⟨⟨a⟩⟩ is anisotropic,
we get ⟨⟨a⟩⟩ ⊆ σ̂F (φ) by Lemma 2.1; therefore, ⟨⟨a⟩⟩ divides σ̂F (φ) by
Lemma 2.67. Since further σ̂F (φ) divides φ, we can find a p-form φ′ defined
over F such that φ ∼= ⟨⟨a⟩⟩ ⊗ φ′.

Set E = F ( p
√
a); it holds that (φE)an ∼= (φ′

E)an. Therefore, we have
dim(φ′

E)an ≤ 1
p

dimφ. But the reverse inequality is true by Lemma 2.25;
hence, φ′

E is anisotropic and dim(φE)an = 1
p

dimφ.
Since φ v0∼ ψ, we have dim(ψE)an = 1

p
dimψ. Let ψ′ be a p-form over F

such that ψ′
E

∼= (ψE)an. As it holds that

DF (ψ) ⊆ DE(ψ) = DE(ψ′) = DF (⟨⟨a⟩⟩ ⊗ ψ′),

we get ψ ⊆ ⟨⟨a⟩⟩ ⊗ ψ′ by Lemma 2.1. Comparing the dimensions implies
that ψ ∼= ⟨⟨a⟩⟩ ⊗ ψ′, and hence a ∈ GF (ψ).

All in all, we have proved GF (φ) ⊆ GF (ψ). The other inclusion follows
by the symmetry of the argument.

Lemma 2.69. Let τ be a p-form defined over F and K/F be a field exten-
sion such that Kp ⊆ GF (τ). Let φ, ψ be p-forms defined over F , anisotropic
over K and such that φK ∼= ψK. Then φ⊗ τ ∼= ψ ⊗ τ over F .

Proof. Let φ ∼= ⟨b1, . . . , bm⟩ and ψ ∼= ⟨c1, . . . , cm⟩. It follows from the
assumptions that {b1, . . . , bm} and {c1, . . . , cm} are two bases of the same
Kp-vector space. Recall that we can get one basis from the other by a finite
series of operations of the following type: an exchange of two basis elements,
scalar multiplication of one basis element, and adding one basis element to
another basis element. Thus, it is sufficient to show that the following hold
for any 0 ≤ i, j ≤ m, i ̸= j, and a ∈ Kp:

(i) ⟨b0, . . . , bi, . . . , bj, . . . , bm⟩ ⊗ τ ∼= ⟨b0, . . . , bj, . . . , bi, . . . , bm⟩ ⊗ τ ,
(ii) ⟨b0, . . . , bi, . . . , bm⟩ ⊗ τ ∼= ⟨b0, . . . , abi, . . . , bm⟩ ⊗ τ ,
(iii) ⟨b0, . . . , bi, . . . , bj, . . . , bm⟩ ⊗ τ ∼= ⟨b0, . . . , bi + bj, . . . , bj, . . . , bm⟩ ⊗ τ .

Part (i) is obvious. Part (ii) follows from the fact that biτ ∼= abiτ since
a ∈ GF (τ). To prove part (iii), note that biτ ⊥ bjτ ∼= (bi + bj)τ ⊥ bjτ .

Proposition 2.70. Let π ∼= ⟨⟨a1, . . . , an⟩⟩ be an anisotropic quasi-Pfister
form over F and K = F ( p

√
a1, . . . , p

√
an). Assume that φ ∼= π ⊗ φ′ and

ψ ∼= π ⊗ ψ′ are anisotropic p-forms over F such that φ′
K

sim∼ ψ′
K. Then

φ
sim∼ ψ.
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Proof. Without loss of generality, assume that 1 ∈ DF (φ′) ∩DF (ψ′). Write
φ′ ∼= ⟨1, b1, . . . , bm⟩, and let c ∈ K∗ be such that cψ′

K
∼= φ′

K . Then

c ∈ DK(φ′) = spanKp{1, b1, . . . , bm} ⊆ F ;

thus, cψ′ is defined over F . By Theorem 2.28, we have pnid(φ′
K) = id(φ) = 0,

and hence φ′
K is anisotropic; analogously, we get that cψ′

K is anisotropic.
Now Lemma 2.69 implies that π ⊗ φ′ ∼= π ⊗ cψ′. As π ⊗ cψ′ ∼= c(π ⊗ ψ′),
the claim follows.

Remark 2.71. Propositions 2.68 and 2.70 can be used for a simplifica-
tion of the problem, whether the Vishik equivalence implies the similarity.
Namely, we can restrict ourselves to the case of forms with the similarity
factors F p: Let φ, ψ be two anisotropic p-forms over F such that φ v∼ ψ.
Since GF (φ) = GF (ψ) by Proposition 2.68, we can write φ ∼= π ⊗ φ′ and
ψ ∼= π ⊗ ψ′ with the quasi-Pfister form π ∼= σ̂F (φ) ∼= σ̂F (ψ) and some
anisotropic p-forms φ′, ψ′ defined over F . Let π ∼= ⟨⟨a1, . . . , an⟩⟩, and put
K = F ( p

√
a1, . . . , p

√
an). Then φ′

K , ψ′
K are anisotropic by Lemma 2.27.

Hence (φK)an ∼= φ′
K and (ψK)an ∼= ψ′

K , and we get φ′
K

v∼ ψ′
K by Lemma 1.59

(note that to apply this lemma, we need the full strength of the Vishik equiv-
alence, the weak Vishik equivalence does not have to be sufficient here). If
we knew that φ′

K
sim∼ ψ′

K , it would follow by Proposition 2.70 that φ sim∼ ψ.

2.4.4 Relation with birationality
Recall that we have already seen in Corollary 2.57 that, under some addi-
tional assumptions (e.g., p = 2), Vishik equivalent p-forms are also bira-
tionally equivalent. We are now interested in the opposite direction: Are
birationally equivalent p-forms necessarily Vishik equivalent? The following
example shows that it is not true in general, even for p = 2.

Example 2.72. Let {a, b, c} ⊆ F be p-independent. Set φ ∼= ⟨⟨a, b⟩⟩⊥c⟨1, a⟩
and ψ ∼= ⟨⟨a, b⟩⟩ ⊥ c⟨1, b⟩. Then φ and ψ are anisotropic quasi-Pfister neigh-
bors of the p-form ⟨⟨a, b, c⟩⟩, and hence φ bir∼ ψ by Corollary 2.55.

Set E = F ( p
√
a). Since ⟨⟨b, c⟩⟩ is anisotropic over E by Lemma 2.36, its

subforms ⟨⟨b⟩⟩ ⊥ ⟨c⟩ and ⟨⟨b⟩⟩ ⊥ c⟨1, b⟩ are also anisotropic over E; therefore,
we have

(φE)an ∼= (⟨⟨b⟩⟩ ⊥ ⟨c⟩)E and (ψE)an ∼= (⟨⟨b⟩⟩ ⊥ c⟨1, b⟩)E.

Obviously, dim(φE)an ̸= dim(ψE)an, and so φ ̸ v∼ ψ.

Remark 2.73. We want to point out the following consequences of Exam-
ple 2.72 for p-forms φ and ψ:

(i) φ
bir∼ ψ does not imply φ

sim∼ ψ (because otherwise we would have
φ

bir∼ ψ ⇒ φ
sim∼ ψ ⇒ φ

v∼ ψ, a contradiction);
(ii) φ

stb∼ ψ does not imply φ
v∼ ψ (since otherwise it would hold that

φ
bir∼ ψ ⇒ φ

stb∼ ψ ⇒ φ
v∼ ψ, a contradiction again).
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2.5 Summary
Now we are ready to complete the diagram from Figure 1.1 in the case
of p-forms. Recall that in Examples 2.65 and 2.66, we provided pairs of
p-forms which were Vishik equivalent but not similar. Example 2.72 and
Remark 2.73 explain all the remaining “NO’s” in the diagram.

bir

sim stb

Vishik

NO

NO

?

NONO
?

?

Figure 2.1: The equivalence relations for p-forms

Remark 2.74. We would like to emphasize that all the question marks are
a “YES” in the case of p ∈ {2, 3}, and also for some families of p-forms.
As one can see from the diagram in Figure 2.2, the bottleneck for all these
implications is Proposition 2.54.

φ
bir∼ ψ

φF (ψ) and ψF (φ) isotropic φ
stb∼ ψ

φ
v∼ ψ

Lemma 1.49Only under the conditions
of Proposition 2.54

Lemma 1.53

Lemma 1.61

Figure 2.2: Relations of p-forms labeled with a question mark
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Recall that Proposition 2.54 is just a reinterpretation of some theorems
from [Scu13]. According to this paper, the actual obstacle is the following
question:

Question A ([Scu13, Question 5.17]). Let φ be an anisotropic p-form over
F . Is it true that id(φF (φ)) is minimal among the values of id(φE), where E
runs over all field extensions of F over which φ becomes isotropic?

This question has a positive answer in case of p = 2 and p = 3 (see
[Scu13]), and it is expected that it is true for any prime p.
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3. Totally singular quadratic
forms
In this chapter, we consider the special case of quasilinear p-forms for p = 2,
i.e., the totally singular quadratic forms. Thus, all fields in this chapter are
of characteristic 2.

We start with a re-examination of Figure 2.1: First of all, recall that
the unlabeled implications are true for all forms for trivial reasons (see Fig-
ure 1.1). By Remark 2.74, all the question marks have a positive answer
in the case of totally singular quadratic forms. Moreover, note that Exam-
ple 2.72 does not have any assumptions on p, and hence it is true for totally
singular forms in particular. Together with this example, Remark 2.73 holds
for totally singular forms, too. Contrary to that, Examples 2.65 and 2.66
exclude the case p = 2. Therefore, as it can be seen in Figure 3.1, we are
left with Question Q, i.e., with the following question: Are Vishik equivalent
totally singular quadratic forms always similar?

bir

sim stb

Vishik

NO

NO

NO?

Figure 3.1: The equivalence relations for totally singular quadratic forms

Unfortunately, we are neither able to prove that the question has a pos-
itive answer nor find a counterexample. However, we show that it is true at
least for some families of totally singular quadratic forms; see Theorems 3.6
and 3.16.
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3.1 Preliminaries
Totally singular quadratic forms are the special case of p-forms with p = 2,
so we will use many results of the previous chapter. One of them, Proposi-
tion 2.45, will be very important in our work, so we restate it here.

Proposition 3.1 ([Lag04, Prop. 2.11]). Let a ∈ F \ F 2 and let φ be an
anisotropic totally singular quadratic form over F with dimφ ≥ 2. If φ
becomes isotropic over E = F (

√
a), then there exists a totally singular

quadratic form τ over F such that dim τ = id(φE) and τ ⊗ ⟨1, a⟩ ⊆ φ.
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3.2 Minimal quadratic forms
Recall that a minimal quadratic form is an anisotropic totally singular
quadratic form φ over F such that ndegF φ = 2dimφ−1. For some general
properties on minimal forms, see Subsection 2.1.3.

3.2.1 Forms of dimensions two and three
Note that all anisotropic totally singular forms of dimensions two and three
are minimal by Proposition 2.13. For now, we concentrate on such forms
and prove some preparatory lemmas.

Lemma 3.2. Let b, c ∈ F \ F 2. Then c ∈ DF (⟨1, b⟩) if and only if
b ∈ DF (⟨1, c⟩) if and only if ⟨1, b⟩ ∼= ⟨1, c⟩.

Proof. c ∈ DF (⟨1, b⟩) holds if we can find x, y ∈ F such that x2 + by2 = c;
as c /∈ F 2, we have y ̸= 0. It follows ⟨1, b⟩ ∼= ⟨1, by2⟩ ∼= ⟨1, x2 + by2⟩ ∼= ⟨1, c⟩,
and thus also b ∈ DF (⟨1, c⟩).

Lemma 3.3. Let a, b, x, y ∈ F and y ̸= 0. Then

⟨1, a, bx2 + aby2⟩ ∼=
(︃
a+

(︂
x
y

)︂2
)︃

⟨1, a, b⟩.

Proof. We have

⟨1, a, bx2 + aby2⟩ ∼=
⟨︃

1, a+
(︂
x
y

)︂2
, b
(︃
a+

(︂
x
y

)︂2
)︃⟩︃

∼=
(︃
a+

(︂
x
y

)︂2
)︃⟨︃

a+
(︂
x
y

)︂2
, 1, b

⟩︃
∼=
(︃
a+

(︂
x
y

)︂2
)︃

⟨1, a, b⟩.

Lemma 3.4. Let a, b, c ∈ F \F 2, and suppose that a ∈ DF (⟨1, c, bc⟩). Then
there exists s ∈ F such that ⟨1, c, bc⟩ ∼= (a+ s2)⟨1, a, b⟩.

Proof. Let x, y, z ∈ F be such that

a = x2 + cy2 + bcz2. (3.1)

Suppose first z = 0; then a ∈ DF (⟨1, c⟩), and we have ⟨1, c⟩ ∼= ⟨1, a⟩ by
Lemma 3.2. Moreover, since a /∈ F 2, it must be y ̸= 0, and (3.1) can be
rewritten as c =

(︂
x
y

)︂2
+ a

(︂
1
y

)︂2
. Putting these together, we obtain

⟨1, c, bc⟩ ∼=
⟨︃

1, a, b
(︂(︂

x
y

)︂2
+ a

(︂
1
y

)︂2)︂⟩︃ ∼= ⟨1, a, b(x2 + a)⟩;

hence, ⟨1, c, bc⟩ ∼= (a+ x2) ⟨1, a, b⟩ by Lemma 3.3.
Now let z ̸= 0; then

⟨1, c, bc⟩ ∼= ⟨1, c, x2 + cy2 + bcz2⟩ ∼= ⟨1, a, c⟩.

Moreover, note that z ̸= 0 and b /∈ F 2 imply y2 + bz2 ̸= 0; hence, we can
rewrite (3.1) as

c(y2 + bz2)2 = (a+ x2)(y2 + bz2) = (xy)2 + ay2 + b(xz)2 + abz2.
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Thus, we have

⟨1, a, c⟩ ∼= ⟨1, a, b(xz)2 + abz2⟩ ∼= (a+ x2)⟨1, a, b⟩,

where the latter isometry follows from Lemma 3.3. Therefore, we get
⟨1, c, bc⟩ ∼= (a+ x2)⟨1, a, b⟩ in this case, too.

The following lemma mimics the situation we end up with after applying
Proposition 3.1.

Lemma 3.5. Let ψ be a totally singular quadratic form over F such that
1 ∈ DF (ψ). Let a, c ∈ F ∗ be such that c⟨1, a⟩ is anisotropic over F , and
suppose c⟨1, a⟩ ⊆ ψ. Then

(i) either ⟨1, c, ac⟩ ⊆ ψ (this occurs if and only if 1 /∈ DF (c⟨1, a⟩)),
(ii) or ⟨1, a⟩ ⊆ ψ and c ∈ DF (⟨1, a⟩).

Proof. If 1 /∈ DF (c⟨1, a⟩), then ⟨1, a, ca⟩ is anisotropic, and so ⟨1, c, ca⟩ ⊆ ψ
by Lemma 2.1. On the other hand, if 1 ∈ DF (c⟨1, a⟩), then it follows that
c ∈ DF (⟨1, a⟩) = GF (⟨1, a⟩); thus, ⟨1, a⟩ ∼= c⟨1, a⟩ ⊆ ψ.

3.2.2 Vishik equivalence
Now we extend Subsection 2.1.3 and prove that (weakly) Vishik equivalent
minimal quadratic forms are always similar. The proof is based mainly on
the 2-independence of the coefficients as explored in Lemma 2.24.

Theorem 3.6. Let φ, ψ be totally singular quadratic forms over F such
that φan is minimal over F . If φ v0∼ ψ, then φ

sim∼ ψ.

Proof. Invoking Lemmas 2.59 and 1.37, we can assume that the forms φ and
ψ are anisotropic. By Lemma 2.23, we can suppose that φ ∼= ⟨1, a1, . . . , an⟩
for some {a1, . . . , an} ⊆ F which is 2-independent over F ; it follows that
NF (φ) = F 2(a1, . . . , an), and B(0) = {a1, . . . , an} is a 2-basis of NF (φ)
over F . Moreover, NF (φ) = NF (ψ) by Proposition 2.60, and ψ is minimal
over F by Corollary 2.61.

We start with an observation:

For any a ∈ DF (φ)\F 2, the form φF (
√
a) is isotropic. As φ v0∼ ψ,

ψ must be isotropic over F (
√
a) as well. By Proposition 3.1, we

can find c ∈ F ∗ such that c⟨1, a⟩ ⊆ ψ.
()

The main idea is to look at such ca for some a ∈ DF (φ), and express it
with respect to an appropriate 2-basis of NF (ψ). Applying Lemma 2.24, we
get that almost all coefficients must be zero. Via a combination of different
values of a, we usually end up with the conclusion that c must be a square,
which means that a ∈ DF (ψ). In particular, we will prove that there is a
scalar multiple of ψ which represents all the values 1, a1, . . . , ak.

We divide the proof into several steps and cases. To simplify the notation
and omit multiple indices, we use the same letters repeatedly – the meaning
of si, ui, xi, yi, zi changes in each subcase (although they are usually used
in similar situations). On the other hand, the meaning of ai, ci, di, ei is
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“global”, i.e., does not change during the proof. Moreover, we consider
only 2-independence and 2-bases over F , and so we omit to repeat “over
F” each time. We also would like to recall the notation from the end
of Subsection 2.1.1: By a “unique expression with respect to a 2-basis”
we actually mean the unique expression with respect to the corresponding
F 2-linear basis.

(1) First of all, note that () proves the claim completely if dimψ = 2.
Therefore, suppose dimψ ≥ 3.

As the first step, we will prove that ψ contains a subform similar to
⟨1, a1, a2⟩: By (), we find c1 ∈ F ∗ such that c1⟨1, a1⟩ ⊆ ψ. Since we are
interested in ψ only up to similarity, we can assume without loss of generality
that c1 = 1. Now, c2⟨1, a2⟩ ⊆ ψ for some c2 ∈ F ∗. By Lemma 3.5, there are
two possibilities: Either ⟨1, a2⟩ ⊆ ψ or ⟨1, c2, c2a2⟩ ⊆ ψ.

(1A) If ⟨1, a2⟩ ⊆ ψ, we get ⟨1, a1, a2⟩ ⊆ ψ immediately.
(1B) Suppose that ⟨1, c2, c2a2⟩ ⊆ ψ holds. We have to further distinguish

two cases, depending on whether a1 is represented by the form ⟨1, c2, c2a2⟩
or not.

(1Bi) Assume a1 ∈ DF (⟨1, c2, c2a2⟩). Then ⟨1, c2, c2a2⟩
sim∼ ⟨1, a1, a2⟩ by

Lemma 3.4.
(1Bii) Let a1 /∈ DF (⟨1, c2, c2a2⟩); then ⟨1, a1, c2, c2a2⟩ is an anisotropic

subform of ψ, and hence ψ ∼= ⟨1, a1, c2, c2a2, s4, . . . , sn⟩ for some suitable
s4, . . . , sn ∈ F ∗. Since ψ is minimal, the set

B(1Bii) = {a1, c2, c2a2, s4, . . . , sn}

is 2-independent, and hence it is a 2-basis of NF (ψ). Since a2 ∈ NF (ψ), the
element a2 has a unique expression with respect to B(1Bii):

a2 = c2 · c2a2 ·
(︃ 1
c2

)︃2
. (3.2)

It follows by Lemma 2.24 that a2 /∈ DF (ψ).
Furthermore, as a1 + a2 ∈ DF (φ) \ F 2, we use () to find d2 ∈ F ∗ such

that d2⟨1, a1 + a2⟩ ⊆ ψ. In particular, d2 ∈ DF (ψ); hence,

d2 = x2
0 + a1 · x2

1 + c2 · x2
2 + c2a2 · x2

3 +
n∑︂
i=4

si · x2
i

for some suitable x0, . . . , xn ∈ F . Multiplying d2 by (a1 + a2) and using
(3.2) (i.e., expressing d2(a1 + a2) with respect to the basis B(1Bii)), we get

d2(a1 + a2) = (a1x1)2 + a1 · x2
0 + c2 · (a2x3)2 + c2a2 · x2

2

+ a1 · c2 · x2
2 + a1 · c2a2 · x2

3 +
n∑︂
i=4

a1 · si · x2
i + c2 · c2a2 ·

(︃
x0

c2

)︃2

+ a1 · c2 · c2a2 ·
(︃
x1

c2

)︃2
+

n∑︂
i=4

c2 · c2a2 · si ·
(︃
xi
c2

)︃2
.

We know that d2(a1 + a2) is represented by ψ; but that is impossible by
Lemma 2.24 unless all the terms composed from at least two elements of
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B(1Bii) (i.e., all but the first four) are zero. It follows xi = 0 for all 0 ≤ i ≤ n;
hence, d2 = 0 which is absurd. Therefore, this case cannot happen at all.

We can conclude step (1): We have proved that ψ has a subform similar
to ⟨1, a1, a2⟩. If dimψ = 3, then there is nothing more to prove. From now
on, we will assume that dimψ ≥ 4 and ⟨1, a1, a2⟩ ⊆ ψ.

(2) Now let k ∈ {3, . . . , n}. By (), we find ck, dk, ek ∈ F ∗ such that
ck⟨1, ak⟩, dk⟨1, a1 + ak⟩ and ek⟨1, a2 + ak⟩ are subforms of ψ. The case
distinction is slightly different than in (1); here it depends on whether ck is
represented by DF (⟨1, a1, a2⟩) or not.

(2A) Assume ck ∈ DF (⟨1, a1, a2⟩). Then
ck = u2

0 + a1 · u2
1 + a2 · u2

2 (3.3)
for some u0, u1, u2 ∈ F (here we slightly abuse the notation; technically,
u0, u1, u2 depend on k), and so

ckak = ak · u2
0 + a1 · ak · u2

1 + a2 · ak · u2
2.

By the uniqueness of the expression of ckak with respect to B(0), it fol-
lows by Lemma 2.24 that ckak /∈ DF (⟨1, a1, a2⟩). On the other hand, we
know that ckak ∈ DF (ψ); therefore, ψ ∼= ⟨1, a1, a2, ckak, s4, . . . , sn⟩ for some
s4, . . . , sn ∈ F ∗ (possibly different from the si’s in case (1Bii) above), and

B(2A) = {a1, a2, ckak, s4, . . . , sn}

is a 2-basis of NF (ψ) by the minimality of ψ. Obviously, ak = ck · ckak · c−2
k ;

rewriting ck via (3.3), we get the unique expression of ak with respect to
B(2A):

ak = ckak ·
(︃
u0

ck

)︃2
+ a1 · ckak ·

(︃
u1

ck

)︃2
+ a2 · ckak ·

(︃
u2

ck

)︃2
. (3.4)

Furthermore, we have dk ∈ DF (ψ), and hence

dk = x2
0 + a1 · x2

1 + a2 · x2
2 + ckak · x2

3 +
n∑︂
i=4

si · x2
i

for suitable x0, . . . , xn ∈ F (again, we omit to express the dependence on
k). Multiplying dk by (a1 + ak) and using (3.4), we can express dk(a1 + ak)
with respect to B(2A) as follows:
dk(a1 + ak) = (a1x1 + aku0x3)2 + a1 · (x0 + aku1x3)2 + a2 · (aku2x3)2

+ ckak ·
(︃
u0

ck
x0 + a1u1

ck
x1 + a2u2

ck
x2

)︃2
+ a1 · a2 · x2

2

+ a1 · ckak ·
(︃
u1

ck
x0 + u0

ck
x1 + x3

)︃2
+

n∑︂
i=4

a1 · si · x2
i

+ a2 · ckak ·
(︃
u2

ck
x0 + u0

ck
x2

)︃2
+

n∑︂
i=4

ckak · si ·
(︃
u0

ck
xi

)︃2

+ a1 · a2 · ckak ·
(︃
u2

ck
x1 + u1

ck
x2

)︃2
+

n∑︂
i=4

a1 · ckak · si ·
(︃
u1

ck
xi

)︃2

+
n∑︂
i=4

a2 · ckak · si ·
(︃
u2

ck
xi

)︃2
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Similarly as before, since dk(a1 + ak) ∈ DF (ψ) and ψ is minimal, it follows
from Lemma 2.24 that all the “composed” terms, i.e., all the terms except
for the first four, must be zero. In particular:

• The coefficient by ckak ·si is zero for each 4 ≤ i ≤ n, and hence xi = 0
for each 4 ≤ i ≤ n.

• The coefficient by a1 · a2· equals zero; thus, x2 = 0.
• The coefficient by a2 · ckak must be zero, i.e., u2

ck
x0 + u0

ck
x2 = 0. As

x2 = 0, we get u2x0 = 0.
• The coefficient by a1 · a2 · ckak is zero, so u2

ck
x1 + u1

ck
x2 = 0. Again, as

x2 = 0, it must hold u2x1 = 0.
• The coefficient by a1 · ckak must be zero, thus x3 + u1

ck
x0 + u0

ck
x1 = 0.

If u2 ̸= 0, then x0 = x1 = 0, and in that case also x3 = 0 (by the last bullet
point); but then dk = 0, which is absurd. Therefore, u2 = 0.

We proceed analogously for ek and ek(a2+ak), only now we know u2 = 0,
which means that

ck = u2
0 + a1 · u2

1 and ak = ckak ·
(︃
u0

ck

)︃2
+ a1 · ckak ·

(︃
u1

ck

)︃2
.

Since ek ∈ DF (ψ), we have

ek = y2
0 + a1 · y2

1 + a2 · y2
2 + ckak · y2

3 +
n∑︂
i=4

si · y2
i

for some yo, . . . , yn ∈ F , and

ek(a2 + ak) =
(︃
a2y2 + ckak

u0

ck
y3

)︃2
+ a1 ·

(︃
ckak

u1

ck
y3

)︃2
+ a2 · y2

0

+ ckak ·
(︃
u0

ck
y0 + a1

u1

ck
y1

)︃2
+ a1 · a2 · y2

1

+ a1 · ckak ·
(︃
u1

ck
y0 + u0

ck
y1

)︃2
+ a2 · ckak ·

(︃
y3 + u0

ck
y2

)︃2

+
n∑︂
i=4

a2 · si · y2
i +

n∑︂
i=4

ckak · si ·
(︃
u0

ck
yi

)︃2

+ a1 · a2 · ckak ·
(︃
u1

ck
y2

)︃2
+

n∑︂
i=4

a1 · ckak · si ·
(︃
u1

ck
yi

)︃2
.

Again, all the coefficients by the composed terms must be zero, so in par-
ticular:

• yi = 0 for all 4 ≤ i ≤ n because of the coefficients by a2 · si.
• y1 = 0 because of the coefficient by a1 · a2.
• u1y0 = 0 because of the coefficient by a1 · ckak.
• u1y2 = 0 because of the coefficient by a1 · a2 · ckak.
• y3 + u0

ck
y2 = 0 because of the coefficient by a2 · ckak.

If u1 ̸= 0, then necessarily y0 = 0 and y2 = 0, which implies y3 = 0; it would
follow ek = 0, which is absurd. Thus, we have u1 = 0. Therefore, ck = u2

0,
and we have ⟨1, ak⟩ ⊆ ψ; in particular, ak ∈ DF (ψ).
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(2B) Suppose ck /∈ DF (⟨1, a1, a2⟩); then ⟨1, a1, a2, ck⟩ ⊆ ψ. Here we
distinguish two subcases:

(2Bi) Let ckak ∈ DF (⟨1, a1, a2, ck⟩); then

ckak = u2
0 + a1 · u2

1 + a2 · u2
2 + ck · u2

3

for some u0, . . . , u3 ∈ F , and hence

ak = u2
3 + ck ·

(︃
u0

ck

)︃2
+ a1 · ck ·

(︃
u1

ck

)︃2
+ a2 · ck ·

(︃
u2

ck

)︃2
.

We have
ψ ∼= ⟨1, a1, a2, ck, s4, . . . , sn⟩

for some s4, . . . , sn ∈ F ; then

B(2Bi) = {a1, a2, ck, s4, . . . , sn}

is a 2-basis of NF (ψ). As before, we consider the unique representations of
dk and ek by ψ, and express dk(a1 + ak) and ek(a2 + ak) with respect to
B(2Bi). We obtain that u1 = u2 = 0; therefore, ak = u2

3 + ck
(︂
u0
ck

)︂2
, so in

particular ak ∈ DF (ψ).
(2Bii) If ckak /∈ DF (⟨1, a1, a2, ck⟩), then we have dimψ ≥ 5 and

ψ ∼= ⟨1, a1, a2, ck, ckak, s5, . . . , sn⟩

for some s5, . . . , sn ∈ F , and the corresponding 2-basis of NF (ψ) is

B(2Bii) = {a1, a2, ck, ckak, s5, . . . , sn}.

Again, we consider the unique representation of dk by ψ. In this case, we
express ak with respect to B(2Bii) as

ak = ck · ckak ·
(︃ 1
ck

)︃2
.

This time, the consideration of the element dk(a1+ak) with respect to B(2Bii)
already implies dk = 0; that is absurd, and hence this case cannot happen.

(3) We have proved that, up to multiplying ψ by a constant from F ∗, we
have ⟨1, a1, a2⟩ ⊆ ψ (step (1)), and ak ∈ DF (ψ) for all 3 ≤ k ≤ n (step (2)).
Invoking Lemma 2.1, we get φ sim∼ ψ.
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3.3 Special quasi-Pfister neighbors
The definition of a special quasi-Pfister neighbor is motivated by its coun-
terpart in characteristic not 2, which appeared in the paper [AO95].

Definition 3.7. We call a totally singular quadratic form φ over F a special
quasi-Pfister neighbour if φ sim∼ π ⊥ bσ with π a quasi-Pfister form over F ,
b ∈ F ∗ and σ ⊆ π. In such situation, we also say that φ is given by the
triple (π, b, σ).

3.3.1 Quasi-Pfister neighbors of small dimensions
We will describe all special quasi-Pfister neighbors of a dimension up to
eleven and their full splitting pattern. In particular, we will see that all
quasi-Pfister neighbors up to dimension eight are special. First, we recall a
proposition from [HL04].

Lemma 3.8 ([HL04, Prop. 8.12]). Let φ be an anisotropic totally singular
quadratic form over F with dimφ ≤ 8. Then φ is a quasi-Pfister neighbor
if and only if

(i) dimφ ≤ 3, or
(ii) dimφ = 2n for some n ≥ 1 and φ is similar to an n-fold quasi-Pfister

form, or
(iii) there exist x, y, z ∈ F ∗ such that

(a) φ
sim∼ ⟨1, x, y, xy, z⟩ in the case of dimφ = 5,

(b) φ
sim∼ ⟨1, x, y, xy, z, xz⟩ in the case of dimφ = 6,

(c) φ
sim∼ ⟨x, y, z, xy, xz, yz, xyz⟩ in the case of dimφ = 7.

With the previous lemma, it is easy to classify all special quasi-Pfister
neighbors of dimensions up to 8: Any quasi-Pfister neighbor of dimension 2n
for some n ≥ 0 is similar to an n-fold quasi-Pfister form, and hence special.
For the other small dimensions, we have

• ⟨1, x, y⟩ ∼= ⟨⟨x⟩⟩ ⊥ z⟨1⟩,
• ⟨1, x, y, xy, z⟩ ∼= ⟨⟨x, y⟩⟩ ⊥ z⟨1⟩,
• ⟨1, x, y, xy, z, xz⟩ ∼= ⟨⟨x, y⟩⟩ ⊥ z⟨1, x⟩,
• ⟨x, y, z, xy, xz, yz, xyz⟩ ∼= xyz(⟨⟨x, y⟩⟩ ⊥ z⟨1, x, y⟩);

therefore, we get the following corollary.

Corollary 3.9. All anisotropic quasi-Pfister neighbors of dimensions up to
8 are special.

Proposition 3.10. Let φ be an anisotropic special quasi-Pfister neighbor.
(i) If dimφ = 3, then we have φ sim∼ ⟨⟨a⟩⟩ ⊥ d⟨1⟩ for some a, d ∈ F ∗ and

fSP(φ) = {1, 2, 3}.
(ii) If dimφ = 5, then φ

sim∼ ⟨⟨a, b⟩⟩ ⊥ d⟨1⟩ for some a, b, d ∈ F ∗ and
fSP(φ) = {1, 2, 3, 4, 5}.

(iii) If dimφ = 6, then φ
sim∼ ⟨⟨a, b⟩⟩ ⊥ d⟨1, a⟩ for some a, b, d ∈ F ∗ and

fSP(φ) = {1, 2, 3, 4, 6}.
(iv) If dimφ = 7, then φ

sim∼ ⟨⟨a, b⟩⟩ ⊥ d⟨1, a, b⟩ for some a, b, d ∈ F ∗ and
fSP(φ) = {1, 2, 4, 7}.
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(v) If dimφ = 9, then φ
sim∼ ⟨⟨a, b, c⟩⟩ ⊥ d⟨1⟩ for some a, b, c, d ∈ F ∗ and

fSP(φ) = {1, 2, 3, 4, 5, 8, 9}.
(vi) If dimφ = 10, then φ sim∼ ⟨⟨a, b, c⟩⟩⊥d⟨1, a⟩ for some a, b, c, d ∈ F ∗ and

fSP(φ) = {1, 2, 3, 4, 5, 6, 8, 10}.
(vii) If dimφ = 11, then φ

sim∼ ⟨⟨a, b, c⟩⟩ ⊥ d⟨1, a, b⟩ for some a, b, c, d ∈ F ∗

and fSP(φ) = {1, 2, 3, 4, 6, 7, 8, 11}.

Proof. All special quasi-Pfister neighbors up to dimension 8 have been de-
scribed by Lemma 3.8 and Corollary 3.9. If φ sim∼ π ⊥ dσ is a special
quasi-Pfister neighbor and 9 ≤ dimφ ≤ 11, then necessarily dim π = 23 and
1 ≤ dim σ ≤ 3. Recall that all totally singular quadratic forms of dimensions
two or three are minimal; thus, without loss of generality, ⟨1⟩ ⊆ σ ⊆ ⟨1, a, b⟩
for some 2-independent set {a, b} ⊆ F . By Lemma 2.7, we can find c ∈ F ∗

such that {a, b, c} is a 2-basis of NF (π) over F . Then we have π ∼= ⟨⟨a, b, c⟩⟩.
The full splitting pattern of φ follows directly from Theorem 2.42.

In the following example, we will show that not all quasi-Pfister neigh-
bors are special.

Example 3.11. Let φ ∼= ⟨1, a, b, c, d, ab, ac, ad, bc⟩ with {a, b, c, d} ⊆ F
2-independent over F . Then φ is a quasi-Pfister neighbor of ⟨⟨a, b, c, d⟩⟩.

On the other hand, we have

φF (
√
b)

∼= ⟨1, a, 1, c, d, a, ac, ad, c⟩F (
√
b)

∼= ⟨1, a, c, d, ac, ad, 0, 0, 0⟩F (
√
b);

since ⟨1, a, c, d, ac, ad⟩ ⊆ ⟨⟨a, c, d⟩⟩ and ⟨⟨a, c, d⟩⟩ is anisotropic over F (
√
b)

(e.g., by Lemma 2.36), we get

(φF (
√
b))an ∼= ⟨1, a, c, d, ac, ad⟩F (

√
b),

so we have in particular 6 ∈ fSP(φ). As the full splitting pattern of any
9-dimensional special quasi-Pfister neighbor equals to {1, 2, 3, 4, 5, 8, 9} by
Proposition 3.10, it follows that φ cannot be any special quasi-Pfister neigh-
bor.

3.3.2 Vishik equivalence
Ideally, we would like to prove that if two totally singular forms are Vishik
equivalent and at least one of them is a special quasi-Pfister neighbor, then
they are similar. Unfortunately, we will need some additional assumptions.
We start with a few lemmas.

First, we prove that if a quasi-Pfister neighbor of norm degree 2n contains
a quasi-Pfister form of dimension 2n−1, then it must be a special quasi-Pfister
neighbor.

Lemma 3.12. Let π be an anisotropic quasi-Pfister form over F . Moreover,
let ψ be an anisotropic totally singular quadratic form over F such that
π ⊆ ψ and ν̂F (ψ) ∼= π ⊗ ⟨⟨b⟩⟩ for some b ∈ F ∗. Then there exists a totally
singular form ρ ⊆ π such that ψ ∼= π ⊥ bρ.
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Proof. First, recall that a norm form is always anisotropic; hence, π ⊗ ⟨⟨b⟩⟩
is anisotropic, and we get by Lemma 2.19 that b /∈ DF (π).

Let ρ′ be a totally singular quadratic form over F such that ψ ∼= π⊥ bρ′.
Denote s = dim ρ′ and ρ′ = ⟨d′

1, . . . , d
′
s⟩. For each k ∈ {1, . . . , s}, we proceed

as follows: Since bDF (ρ′) ⊆ DF (ψ) ⊆ DF (π ⊗ ⟨⟨b⟩⟩), we can write

bd′
k = π(ξk) + bπ(ζk)

for some appropriate vectors ξk, ζk. If ζk = 0, then bd′
k = π(ξk) ∈ DF (π),

which contradicts the anisotropy of ψ; thus, the vector ζk must be nonzero.
It follows that π(ζk) ̸= 0, and so we set dk = π(ζk); then

π ⊥ b⟨d′
k⟩ ∼= π ⊥ ⟨π(ξk) + bdk⟩ ∼= π ⊥ b⟨dk⟩.

It follows that

π ⊥ b⟨d′
1, . . . , d

′
k⟩ ⊥ b⟨dk+1, . . . , ds⟩ ∼= π ⊥ b⟨d′

1, . . . , d
′
k−1⟩ ⊥ b⟨dk, . . . , ds⟩

for any 1 ≤ k ≤ s. Therefore,

π ⊥ b⟨d′
1, . . . , d

′
s⟩ ∼= π ⊥ b⟨d1, . . . , ds⟩,

where ρ ∼= ⟨d1, . . . , ds⟩ is a subform of π, because dk ∈ DF (π) for each k.

Proposition 3.13. Let φ, ψ be anisotropic totally singular quadratic forms
over F such that φ v0∼ ψ. Assume that φ is a special quasi-Pfister neighbor
given by a triple (π, b, σ). Moreover, suppose that cπ ⊆ ψ for some c ∈ F ∗.
Then ψ is a special quasi-Pfister neighbor given by a triple (π, b, ρ) for some
form ρ over F such that ρ v0∼ σ.

Proof. Let d ∈ DF (σ). Then d ∈ DF (π) = GF (π); hence, dφ ∼= π ⊥ b(dσ)
and 1 ∈ DF (dσ). Therefore, we can assume that 1 ∈ DF (σ). Then, since φ
is anisotropic, we must have b /∈ DF (π). It follows that ν̂F (φ) ∼= π ⊗ ⟨⟨b⟩⟩.
Since ν̂F (ψ) ∼= ν̂F (φ) by Proposition 2.60, we also have ν̂F (ψ) ∼= π ⊗ ⟨⟨b⟩⟩.
Finally, we can suppose that π ⊆ ψ. Therefore, we can apply Lemma 3.12
to find a totally singular quadratic form ρ ⊆ π such that ψ ∼= π ⊥ bρ.

It remains to show that σ v0∼ ρ: The equality dim σ = dim ρ follows
directly from dimφ = dimψ. So, consider the field E = F (

√
a) for some

a ∈ F ∗. If a /∈ NF (π), then πE is anisotropic by Lemma 2.25, and so are its
subforms σE and ρE; in particular, id(σE) = id(ρE). On the other hand, if
a ∈ NF (π), then (π ⊗ ⟨⟨a⟩⟩)an ∼= π; together with Lemma 2.25, we obtain

DE(πE) = DF (π ⊗ ⟨⟨a⟩⟩) = DF (π).

It follows that b /∈ DE(πE), and so we get by Lemma 2.39 that

id(φE) = id(πE) + id(σE) and id(ψE) = id(πE) + id(ρE).

Since id(φE) = id(ψE) by the assumption, we get id(σE) = id(ρE).
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Remark 3.14. With the same notation as in Proposition 3.13, we can
consider a stronger assumption φ

v∼ ψ and ask whether it implies σ v∼ ρ.
First, note that any field E with b ∈ DE(π) is problematic: In this case,

we have
bφE ∼= bπE ⊥ σE ∼= (π ⊥ σ)E.

Hence, (φE)an ∼= (πE)an, so we do not get any information about id(σE).
We can still give a more specific characterization of the problematic

fields: As in the proof of Proposition 3.13, we can assume that 1 ∈ DF (σ).
First, let T and S be fields such that F ⊆ T ⊆ S ⊆ E, T/F is purely
transcendental, S/T is separable and E/S is purely inseparable.

If b ∈ DS(π), then (π⊥⟨b⟩)S is isotropic. Then π⊥⟨b⟩ is isotropic over F
by Lemmas 1.13 and 1.14. But that is impossible because π⊥ ⟨b⟩ ⊆ π⊥ bσ
and π ⊥ bσ is anisotropic. Thus, b /∈ DS(π).

Furthermore, isotropy is a finite problem; thus, we can construct a field
L with S ⊆ L ⊆ E such that L/S is finite, and we have id(σL) = id(σE) and
id(ρL) = id(ρE). Then, by Lemma 1.15, L = S

(︂
2n1√
s1, . . . ,

2nk√
sk
)︂

for some
k ≥ 0, si ∈ S and ni ≥ 1. Set K = S(√s1, . . . ,

√
sk); then id(σK) = id(σL)

and id(ρK) = id(ρL) by Theorem 2.28.
If b /∈ DK(π), then we can apply Lemma 2.39 to get id(σK) = id(ρK);

then id(σE) = id(ρE) by the construction of K, and we are done. Therefore,
assume b ∈ DK(π).

Now we can construct a field M such that S ⊆ M ⊆ K, it holds that
b /∈ DM(π), and for each ε ∈ K \ M , we have b ∈ DM(ε)(π). Then we
have (φM)an ∼= (πM)an ⊥ b(σM)an and (ψM)an ∼= (πM)an ⊥ b(ρM)an and
id(σM) = id(ρM) by Lemma 2.39. Thus, let φ′, ψ′, π′, σ′, ρ′ be forms over
F such that φ′

M
∼= (φM)an, ψ′

M
∼= (ψM)an, etc. In particular, π′

M is a
quasi-Pfister form.

Let ε ∈ K \M , and e ∈ S be such that ε2 = e. Then we know

b ∈ DM(
√
e)(π′) \DM(π′) = DM(π′ ⊗ ⟨⟨e⟩⟩) \DM(π′);

in particular, DM(π′) ⊊ DM(π′ ⊗⟨⟨e⟩⟩), which is only possible if (π′ ⊗⟨⟨e⟩⟩)M
is anisotropic. It follows by Lemma 2.25 that π′

M(
√
e) is anisotropic. In that

case, its subforms σ′
M(

√
e), ρ′

M(
√
e) must be anisotropic, too. It follows that

id(σM(
√
e)) = id(σM) = id(ρM) = id(ρM(

√
e)).

However, the field extensionK/M does not have to be simple, as we show
in the following example: Let π′

M
∼= ⟨⟨a1, . . . , an⟩⟩M for some a1, . . . , an ∈ F ∗,

and assume that n ≥ 2. Set K = M(
√
b,

√
a1 + a2b). It is easy to see that

{b, a1 + a2b} is 2-independent over M , and hence [K : M ] = 4. Since K
does not contain any element of degree four over M , it follows that K/M
is not simple. Now consider ε ∈ K \M ; then

ε = w + x
√
b+ y

√
b
√︂
a1 + a2b+ z

√︂
a1 + a2b

with w, x, y, z ∈ M , at least one of x, y, z nonzero. Then

DM(ε)(π′) = DM(π′ ⊗ ⟨⟨ε2⟩⟩) = M2(a1, . . . , an, ε
2)
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Considering ε2 as an element of K2/M2(a1, . . . , an), we get:

ε2 = w2 + bx2 + a1by
2 + a2(by)2 + a1z

2 + a2bz
2 ≡ bx2 + a1by

2 + a2bz
2

= b(x2 + a1y
2 + a2z

2) ≡ b mod M2(a1, . . . , an),

where we used that x2 + a1y
2 + a2z

2 ̸= 0 (this holds because {a1, a2} is
2-independent over M and at least one of x, y, z is nonzero by the assump-
tion). Therefore, we have DM(ε)(π′) = M2(a1, . . . , an, b). In particular,
b ∈ DM(ε)(π′) for any ε ∈ K \ M , and so we cannot find any field M ′ with
M ⊊M ′ ⊆ K such that b /∈ DM ′(π′).

With the notation and assumptions of Proposition 3.13, we know that
σ

v0∼ ρ, and hence NF (σ) ≃ NF (ρ) by Proposition 2.60. To conclude this
section, we prove NF (σ) ≃ NF (ρ) by a different approach.

Lemma 3.15. Let φ = π ⊥ bσ, ψ = π ⊥ bρ be anisotropic totally singular
quadratic forms over F with π a quasi-Pfister form, b ∈ F ∗ and σ, ρ ⊆ π.
Moreover, suppose that 1 ∈ DF (σ)∩DF (ρ). If φ v∼ ψ, then NF (σ) = NF (ρ).

Proof. First, note that the anisotropy of φ together with the assumption
1 ∈ DF (σ) implies that b /∈ DF (π).

By Corollary 2.9, we can find c1, . . . , cs ∈ F ∗ and 0 ≤ k ≤ s such
that σ = ⟨1, c1, . . . , cs⟩ and {c1, . . . , ck} is a 2-basis of NF (σ) over F . Set
K = F (√c1, . . . ,

√
ck). Then (σK)an ∼= ⟨1⟩ by Proposition 2.10. Write

π ∼= ⟨⟨a1, . . . , an⟩⟩ and π′ ∼= (πK)an. Then

DK(π′) = K2(a1, . . . , an) = F 2(c1, . . . , ck, a1, . . . , an)
NF (σ)⊆NF (π)= F 2(a1, . . . , an) = DF (π);

hence, b /∈ DK(π′), and so (φK)an ∼= π′ ⊥ b⟨1⟩. We will show that this is
isometric to (ψK)an: Obviously, π′ ⊆ (ψK)an. From the Vishik equivalence
of φ and ψ we know dim(ψK)an = dim π′ + 1. Set ρ′ ∼= (ρK)an. Since
b /∈ DK(π′), we get by Lemma 2.39 that π′⊥bρ′ is anisotropic. It means that
π′ ⊥ bρ′ ∼= (ψK)an, and hence dim ρ′ = 1. As 1 ∈ DF (ρ) ⊆ DK(ρ′), it follows
that ρ′ ∼= ⟨1⟩. Consequently, again by Proposition 2.10, we get NF (ρ) ⊆
F 2(c1, . . . , ck) = NF (σ). The other inclusion can be proved analogously.
Therefore, NF (σ) = NF (ρ).
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3.4 Vishik equivalence
In this final section, we put together all our results on the Vishik equivalence
of totally singular quadratic forms.

Before stating the main theorem of this section, note that any anisotropic
totally singular quadratic form of dimension less or equal to four is minimal
or it is similar to a quasi-Pfister form.

Theorem 3.16. Let φ, ψ be totally singular quadratic forms over F such
that φ v0∼ ψ. Assume that φ is a special quasi-Pfister neighbor given by the
triple (π, b, σ), and cπ ⊆ ψ for some c ∈ F ∗. Moreover, suppose that σ is
either a quasi-Pfister form, a quasi-Pfister neighbor of codimension one, or
a minimal form. Then φ

sim∼ ψ.

Proof. By Proposition 3.13, there exists a totally singular quadratic form
ρ ⊆ π and c′ ∈ F ∗ such that c′ψ ∼= π ⊥ bρ and σ

v0∼ ρ. Then, by Corol-
lary 2.61, resp. by Theorem 3.6, we have σ sim∼ ρ.

Let d ∈ F ∗ be such that ρ ∼= dσ, and let a ∈ D∗
F (σ). Then

da ∈ D∗
F (dσ) = D∗

F (ρ) ⊆ D∗
F (π) = G∗

F (π).

As a ∈ G∗
F (π) and G∗

F (π) is a group, it follows that d ∈ G∗
F (π). Hence,

dφ ∼= dπ ⊥ b(dσ) ∼= π ⊥ bρ ∼= c′ψ,

i.e., φ sim∼ ψ.

Corollary 3.17. Let φ, ψ be totally singular quadratic forms over F such
that φ v∼ ψ. Let K/F be an extension such that K2 ≃ GF (φ), and let φ′

be a form over F such that φ′
K

∼= (φK)an. Assume that φ′
K is a special

quasi-Pfister neighbor given by the triple (π, b, σ), and that cπ ⊆ ψK for
some c ∈ K∗. Moreover, suppose that σ is either a quasi-Pfister form, a
quasi-Pfister neighbor of codimension one, or a minimal form (over K).
Then φ

sim∼ ψ.

Proof. Let τ ∼= σ̂F (φ), i.e., let τ be an anisotropic quasi-Pfister form over F
such that DF (τ) = GF (φ); then there exists γ over F such that φ ∼= τ ⊗ γ.
Set τ ∼= ⟨⟨a1, . . . , an⟩⟩ for some a1, . . . , an ∈ F ∗; then K ≃ F (√a1, . . . ,

√
an),

and we have (φK)an ∼= γK . In particular, we can assume γ ∼= φ′. Since
GF (φ) ≃ GF (ψ) by Proposition 2.68, we can use analogous arguments to
find a form ψ′ over F such that ψ ∼= τ ⊗ ψ′ and ψ′

K
∼= (ψK)an.

Since φ v∼ ψ, we get by Lemma 1.59 that φ′
K

v∼ ψ′
K . Since cπ ⊆ ψK and

π is anisotropic over K, it follows that cπ ⊆ ψ′
K . By Theorem 3.16, we have

φ′
K

sim∼ ψ′
K . Finally, Proposition 2.70 implies that φ sim∼ ψ.

Remark 3.18. Note that we need in the proof of Corollary 3.17 that
φ′
K

v0∼ ψ′
K . To be able to conclude that, we need the full strength of φ v∼ ψ,

it would not be sufficient to assume φ v0∼ ψ.

We conclude the chapter with an observation about the splitting pat-
terns. It is obvious that Vishik equivalent forms have the same full splitting
pattern. But what about the standard splitting pattern?
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Proposition 3.19. Let φ, ψ be totally singular quadratic forms over F . If
φ

v∼ ψ, then sSP(φ) = sSP(ψ).

Proof. Note that Vishik equivalent forms have in particular the same dimen-
sion; thus, without loss of generality, assume that φ and ψ are anisotropic.
If dimφ = dimψ = 1, then the statement is obvious. Thus, assume
dimφ = dimψ ≥ 2; then φ and ψ are irreducible.

By Corollary 2.57, we know that φ v∼ ψ implies φ bir∼ ψ; hence, we have
F (φ) ≃ F (ψ) by Proposition 1.44. Therefore, we have

id(φF (φ)) = id(φF (ψ)) = id(ψF (ψ)),

and it follows that dim(φF (φ))an = dim(ψF (ψ))an. Setting φ1 ∼= (φF (φ))an

and ψ1 ∼= (ψF (φ))an, we note that φ1
v∼ ψ1 by Lemma 1.59. Thus, we can

proceed by induction.
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4. Nonsingular quadratic forms
Unlike in the other chapters, we do not put any general assumptions on
the characteristic of the fields, because many of the statements hold in
any characteristic. However, our main emphasis still lies on characteristic
two. Therefore we often omit to provide separate references for the case of
characteristic other than two.

Similarly as in the previous chapter, our main goal is to examine Ques-
tion Q, that is, whether Vishik equivalent quadratic forms are necessarily
similar. This is known to be true for some quadratic forms of odd di-
mension (see Theorems 4.9 and 4.10). In Theorem 4.13, we prove that
this also holds for excellent nonsingular quadratic forms. Furthermore, we
provide an example of nonsingular quadratic forms which are stably bira-
tionally equivalent, but not Vishik equivalent; see Example 4.19. We will
also see in Proposition 4.15 and Theorem 4.17 that quadratic Pfister forms
and quadratic Pfister neighbors of codimension one are stably birationally
equivalent if and only if they are similar.
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4.1 Preliminaries
Let charF = 2; recall that the Artin–Schreier map ℘ : F → F is given by
x ↦→ x2 + x. Let

φ ∼= [a1, b1] ⊥ . . . ⊥ [an, bn]
be a nonsingular quadratic form over F . We define its Arf invariant ∆(φ)
as an element of F/℘(F ) given by

∆(φ) =
n∑︂
i=1

aibi.

If ψ is a nonsingular quadratic form such that φ ∼= ψ, then we have
∆(φ) = ∆(ψ) ∈ F/℘(F ); see [Arf41, Th. 5].

Lemma 4.1. Let charF = 2 and φ be an anisotropic nonsingular quadratic
form over F such that dimφ = 4. If ∆(φ) ∈ ℘(F ), then φ is similar to a
quadratic Pfister form.

Proof. Let φ ∼= a1[1, b1] ⊥ a2[1, b2] for some ai, bi ∈ F ∗. Since we have
b1 + b2 = ∆(φ) ∈ ℘(F ) by the assumption, there exists x ∈ F such that
b1 = b2 + x2 + x. We get [1, b2] ∼= [1, b2 + x2 + x] ∼= [1, b1]; therefore,

φ ∼= ⟨a1, a2⟩b ⊗ [1, b1] ∼= a−1
1 ⟨⟨a1a2; b1]].

We recall some statements about (not necessarily nonsingular) quadratic
forms. We start with a proposition analogous to Proposition 3.1. Since the
original proof of the statement is in a slightly different setting, we provide
a proof here.

Proposition 4.2 ([Bae78, Ch. IV., Th. 4.2]). Let charF = 2. Let φ be an
anisotropic quadratic form over F , and let d ∈ F \ ℘(F ). Then φF (℘−1(d))
is isotropic if and only if there exists c ∈ F ∗ such that c [1, d] ⊆ φ.

Proof. Let δ ∈ F be such that δ2 + δ = d; then [1, d]F (δ) is isotropic. Thus,
if c [1, d] ⊆ φ, then φF (δ) is isotropic as well.

Now let V be the vector space associated to φ, and let VF (δ) = F (δ)⊗F V .
Assume that φF (δ) is isotropic. Then we can find a nonzero vector w ∈ VF (δ)
such that φF (δ)(w) = 0. Since we can write w = 1 ⊗ u + δ ⊗ v for some
u, v ∈ V , we get

0 = φF (δ)(w) = φ(u)+δ2φ(v)+δbφ(u, v) = φ(u)+dφ(v)+δ(φ(v)+bφ(u, v)),

and it follows

φ(u) = dφ(v) and φ(v) = bφ(u, v).

Since φ is anisotropic, we have v ̸= 0 and φ(v) ̸= 0; set c = φ(v). Then we
have c = bφ(u, v) ̸= 0, which means that u, v are linearly independent. For
W = spanF{u, c−1v}, we get

φ|W ∼=
[︂
cd, c−2c

]︂ ∼=
[︂
c−1, cd

]︂ ∼= c [1, d] .

Therefore, c [1, d] ⊆ φ.
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Theorem 4.3 (Domination Theorem, [HL04, Th. 4.2(i)] and [EKM08,
Th. 22.5]). Let charF be arbitrary. Let φ, ψ be quadratic forms over F
with φ anisotropic and ψ nondefective. Assume that the form φF (ψ) is hy-
perbolic. Let a ∈ D∗

F (φ) and b ∈ D∗
F (ψ). Then abψ ≼ φ; in particular,

dimψ ≤ dimφ.

We call a quadratic form nondegenerate if it is nondefective over any field
extension. If the characteristic is not two, then “nondegenerate” coincides
with “regular”. In characteristic two, a quadratic form φ is nondegenerate
if and only if dim ql(φ) ≤ 1 and ql(φ) ̸∼= ⟨0⟩.

Proposition 4.4 ([EKM08, Cor. 23.4]). Let charF be arbitrary. Let φ be
a nondegenerate anisotropic quadratic form of dimension at least two over
F . Then the following are equivalent:

(i) φ is similar to some n-fold quadratic Pfister form with n ≥ 1;
(ii) φF (φ) is hyperbolic.

Proposition 4.5 ([EKM08, Cor. 23.6]). Let charF be arbitrary. Let φ be
an anisotropic n-fold quadratic Pfister form over F with n ≥ 1 and ψ an
anisotropic quadratic form over F of even dimension. Then the following
are equivalent:

(i) ψ ∼= b ⊗ φ for some symmetric bilinear form b over F ,
(ii) ψF (φ) is hyperbolic.

Theorem 4.6 (Separation Theorem, [EKM08, Th. 26.5.]). Let charF be
arbitrary. Let φ, ψ be anisotropic quadratic forms over F , and suppose that
dimφ ≤ 2n < dimψ for some n ≥ 0. Then φF (ψ) is anisotropic.

Let φ be a quadratic form on a vector space V over F (not necessarily
nonsingular), and let σ be another quadratic form over F such that σ ≼ φ.
By the definition, there exists a subspace U ⊆ V such that σ ∼= φ|U . Let
W = {v ∈ V | bφ(u, v) = 0 ∀u ∈ U}. Then we denote the quadratic form
φ|W by σc

φ and call it the complement of σ in φ. It holds that σ ⊥ φ
Witt∼ σc

φ

(see [HL04, Lemma 3.7]). With the notation from Proposition 1.7, we have
σc
φ

∼= τ ⊥ ⟨c1, . . . , cs′′⟩ (see [HL04, Lemma 3.1]). In particular, if σ is non-
singular, then we have σ ⊆ φ and φ ∼= σ ⊥ σc

φ.

Theorem 4.7 (Fitzgerald’s Theorem, [EKM08, Th. 27.1]). Let charF be
arbitrary. Let ρ be a nonhyperbolic quadratic form over F and φ ≼ ρ with
dimφ ≥ 2. Suppose that:

(i) φ and φcρ are anisotropic,
(ii) ρF (φ) is hyperbolic,
(iii) 2 dimφ > dim ρ − dim ρh(ρ)−1 (where ρh(ρ)−1 is the penultimate form

in the standard splitting tower of ρ).
Then ρ is similar to an anisotropic quadratic Pfister form.

Recall that a quadratic form φ over F is called excellent if, for any field
extension E/F , the form (φE)an is defined over F . It is easy to see that
if φ is an excellent form over F and E/F a field extension, then (φE)an is
excellent as well.
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The following theorem characterizes nondegenerate excellent quadratic
forms.

Theorem 4.8 ([EKM08, Th. 28.3]). Let charF be arbitrary. Let φ be a
nondegenerate quadratic form over F . Then the following are equivalent:

(i) φ is excellent.
(ii) There exists a sequence φan ∼= ζ0, ζ1, . . . , ζt−1 of anisotropic quadratic

Pfister neighbors over F with associated quadratic Pfister forms ρ0,
ρ1, . . . , ρt−1 and a form ζt with dim ζt ≤ 1 such that ζr ∼= (ρr ⊥ ζr+1)an
for all 0 ≤ r − 1 ≤ t,

In other words, for each 0 ≤ r < t, the form ζr is a quadratic Pfister
neighbor with complementary form −ζr+1. Moreover, the length t of the
sequence coincides with the height h(φ), and (ζr)Fr

∼= φr, the r-th kernel
form of φ, for every 0 ≤ r ≤ t. It follows that all the kernel forms of an
excellent form are excellent and in particular defined over the base field F .
Furthermore, it follows that the standard splitting pattern of an anisotropic
nondegenerate excellent form is uniquely given by its dimension.

Note that, in the case of even-dimensional forms, the form φh−1 must be
similar to a quadratic Pfister form; this is the only one among the higher
kernel forms, whose dimension is a power of two.
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4.2 Vishik equivalence
First, we state some known results about the Vishik equivalence on nonde-
generate quadratic forms of odd dimension.

Theorem 4.9 ([Izh98, Th. 2.5.]). Let charF ̸= 2. Let φ, ψ be quadratic
forms over F of the same odd dimension. Then φ v∼ ψ if and only if φ sim∼ ψ.

Theorem 4.10 ([EKM08, Th. 27.3.]). Let F be a field of an arbitrary
characteristic. Let φ, ψ be nondegenerate quadratic forms over F of the
same odd dimension. If φ v∼ ψ, then φ

sim∼ ψ.

As we can see, the question of whether Vishik equivalent quadratic forms
are similar is settled for quadratic forms of odd dimension (although in
characteristic two only for the nondegenerate ones). What about even-
dimensional forms? It does not hold in general; see counterexamples in
[Izh98] for fields of characteristic other than two. However, we will prove
that it does hold for excellent nonsingular quadratic forms. But first, we
need some preparation.

The following proposition is a generalization of [Izh98, Prop. 1.1] to fields
of an arbitrary characteristic. The proof remains almost the same, but one
has to make sure that the used known results are available in characteristic
two (at least for nonsingular forms).

Proposition 4.11. Let charF be arbitrary. Let φ and ψ be anisotropic
nonsingular quadratic forms over F such that dimφ ≥ dimψ. Suppose that
the form τ ∼= φ⊥ ψ is hyperbolic over F (φ).

(i) If τ is isotropic, then τ is hyperbolic.
(ii) If τ is anisotropic, then τ is similar to a quadratic Pfister form.

Proof. (i) Since

τan ⊥ −φ Witt∼ τ ⊥ −φ ∼= φ⊥ ψ ⊥ −φ ∼= (dimφ) × H ⊥ ψ
Witt∼ ψ,

we have τan ⊥ −φ Witt∼ ψ, which means (τan ⊥ −φ)an ∼= ψ, as ψ is assumed
to be anisotropic. In particular, dim(τan ⊥ −φ)an = dimψ.

For a contradiction, assume τ to be isotropic but not hyperbolic; thus,
0 < dim τan < dim τ . Then we have

dim(τan ⊥ −φ)an = dimψ ≤ dimφ < dim τan + dimφ = dim(τan ⊥ −φ);

thus, τan ⊥ −φ is isotropic. Hence the set D∗
F (τan) ∩ D∗

F (φ) is nonempty;
let a be an element of this set. Note that the hyperbolicity of τF (φ) implies
that (τan)F (φ) is hyperbolic as well. Now Domination Theorem 4.3 implies
that a2φ, and hence φ as well, is dominated by τan. Since all the forms are
nonsingular, we get τan ∼= φ⊥ φcτan . Therefore,

τan ⊥ −φ ∼= φ⊥ φcτan ⊥ −φ ∼= (dimφ) × H ⊥ φcτan ,

which implies

dim(τan ⊥ −φ)an ≤ dimφcτan = dim τan − dimφ.
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But using the assumption τan ̸∼= τ , we get

dim τan − dimφ < dim τ − dimφ = dimψ,

and hence dim(τan ⊥ −φ)an < dimψ; that is a contradiction to the equality
dim(τan ⊥ −φ)an = dimψ proved above.

(ii) Instead of proving that τ is similar to a quadratic Pfister form, we
will use the characterization of quadratic Pfister forms and prove that τF (τ)
is hyperbolic (see Proposition 4.4). As 2 dimψ ≤ dim τ , the Separation
Theorem 4.6 yields the anisotropy of the form ψF (τ).

First, assume that φF (τ) is anisotropic as well. In such a case, we have
τF (τ) ∼= φF (τ) ⊥ ψF (τ) isotropic and τF (τ,φ) hyperbolic by the assumption;
then using part (i) for the field F (τ) yields the hyperbolicity of τF (τ).

Now, suppose that φF (τ) is isotropic; in this case, the field extension
F (φ, τ)/F (τ) is purely transcendental by Lemma 1.18. Moreover, as τF (φ) is
hyperbolic, the form τF (φ,τ) is hyperbolic as well. It follows from Lemma 1.13
that τF (τ) is hyperbolic.

The following proposition is known in the case of a field of characteristic
other than two, see [Izh98, Cor. 1.3]. We will prove it here for fields of
characteristic two.

Proposition 4.12. Let charF be arbitrary. Let φ and ψ be anisotropic
nonsingular quadratic forms over F such that (φF (φ))an ∼= (ψF (φ))an and
dimφ ≥ dimψ ≥ 2. Then either φ ∼= ψ or φ⊥ − ψ is similar to an
anisotropic quadratic Pfister form over F .

Proof. Set τ = φ ⊥ −ψ; since (φF (φ))an ∼= (ψF (φ))an by the assumption, it
clearly holds that τF (φ) is hyperbolic.

First, suppose that τ is anisotropic over F ; since φ is a subform of τ
with a complementary form ψ, both φ and ψ are anisotropic. Moreover,
as we assumed dimψ ≤ dimφ, we have dim τ ≤ 2 dimφ. It follows from
Fitzgerald’s Theorem 4.7 that τ is similar to an anisotropic quadratic Pfister
form.

If τ is isotropic over F , then τ is hyperbolic over F by part (i) of Propo-
sition 4.11. Since we assume φ and ψ to be nonsingular, it follows that
φan ∼= ψan. As both forms are anisotropic, we obtain φ ∼= ψ as desired.

Now we are ready to prove that Question Q has a positive answer for
excellent nonsingular quadratic forms.

Theorem 4.13. Let F be a field of an arbitrary characteristic, and let φ, ψ
be nonsingular excellent forms over F . Then φ

v∼ ψ if and only if φ sim∼ ψ.

Proof. We know that the similarity implies the Vishik equivalence (see
Lemma 1.60). Thus, suppose that φ v∼ ψ. Invoking Lemmas 1.37 and
1.59, we may assume that φ and ψ are anisotropic.

Since φ and ψ are excellent forms of the same dimension, they have
the same height h. Let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh be the fields in the
standard splitting tower of the form φ. Note that for any 0 ≤ r ≤ h, the
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forms φr ∼= (φFr)an and (ψFr)an are anisotropic excellent forms of the same
dimension and (φFr)an

v∼ (ψFr)an by Lemma 1.59.
First, let us consider the quadratic forms φ′ and ψ′ over Fh−1 defined by

φ′ ∼= φh−1 ∼= (φFh−1)an and ψ′ ∼= (ψFh−1)an.

Then we know φ′ v∼ ψ′. We claim that we may replace the forms φ and
ψ by forms similar over F in such a way that both φ′ and ψ′ represent 1:
Let α be the form over F such that φ′ ∼= αFh−1 , and let a ∈ D∗

F (α). Then
aφ′ ∼= aαFh−1 represents 1, and it is the (h− 1)th kernel form of aφ. In the
same manner, we can replace ψ′ by bψ′ with b ∈ F ∗ such that bψ′ represents
1. Thus, let us assume that 1 ∈ D∗

Fh−1
(φ′) ∩D∗

Fh−1
(ψ′).

We proceed by induction by going down from the top of the tower to
the bottom.

As we know, φ′ is similar to an n-fold quadratic Pfister form for some
n ≥ 1. Since φ′

Fh−1(φ′) is hyperbolic by Corollary 1.25 and φ′ v∼ ψ′, it
follows that ψ′

Fh−1(φ′) must be hyperbolic. Invoking Proposition 4.5, we get
that there exists a symmetric bilinear form b over Fh−1 such that ψ′ ∼= b⊗φ′;
comparing the dimensions, we get dim b = 1, i.e., φ′ sim∼ ψ′. In particular,
ψ′ is similar to an n-fold quadratic Pfister form over Fh−1. Therefore, φ′

and ψ′ are two quadratic forms representing one and similar to the same
quadratic Pfister form; by Lemma 1.42, it follows that φ′ ∼= ψ′.

As for the induction step, let us assume that r ∈ {0, . . . , h − 2} is such
that we have already proved

(φFr+1)an ∼= (ψFr+1)an.

Consider the forms

φ′′ ∼= (φFr)an and ψ′′ ∼= (ψFr)an

(i.e., we are going one step lower in the splitting tower). Since we have
(φ′′

Fr(φ′′))an ∼= (φFr+1)an and (ψ′′
Fr(φ′′))an ∼= (ψFr+1)an, the induction hypothe-

ses assures the isometry (φ′′
Fr(φ′′))an ∼= (ψ′′

Fr(φ′′))an. Invoking Proposition
4.12, we see that either φ′′⊥ − ψ′′ is similar to a quadratic Pfister form,
or φ′′ ∼= ψ′′. But the former is absurd since dimφ′′ = dimψ′′ and from
the excellence of φ, it follows that the dimension of φ′′ is not a power of 2.
Therefore, φ′′ ∼= ψ′′, i.e., (φFr)an ∼= (ψFr)an, which completes the proof.

Note that any nonsingular quadratic form of dimension two is excellent:
Over any field extension, it either remains anisotropic or becomes hyper-
bolic. Another explanation can be given through Lemma 1.28, because any
two-dimensional nonsingular quadratic form is similar to a quadratic Pfister
form.

In the next possible dimension, that is, in dimension four, not all nonsin-
gular quadratic forms have to be excellent, as the following example shows.

Example 4.14. Recall that by Theorem 4.8, any anisotropic nonsingular
quadratic form which is to be excellent must be a quadratic Pfister neighbor.
In dimension four, all quadratic Pfister neighbors are similar to quadratic
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Pfister forms. In particular, any nonsingular excellent form of dimension
four is of the form z([1, x]⊥y[1, x]) for some x, y, z ∈ F , and so it has trivial
Arf invariant.

Consider now a, b, c ∈ F ∗ such that a+bc /∈ ℘(F ) (e.g., let F = F2(a, b, c)
with a, b, c algebraically independent). Then the four-dimensional quadratic
form [1, a] ⊥ [b, c] has a nontrivial Arf invariant, and hence it cannot be
excellent.
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4.3 Stable birational equivalence
In this section, we provide a few results about the stable birational equiva-
lence of nonsingular quadratic forms. We start with quadratic Pfister forms.

Proposition 4.15. Let charF be arbitrary. Let φ and ψ be quadratic forms
over F of the same dimension, and assume that φ is an anisotropic quadratic
Pfister form. If φ stb∼ ψ, then φ

sim∼ ψ.

Proof. The form φF (ψ) is isotropic by Lemma 1.53. Since φ is a quadratic
Pfister form, it follows by Corollary 1.25 that φF (ψ) is hyperbolic. Thus, we
obtain from Domination Theorem 4.3 that cψ ≼ φ for some c ∈ F ∗. For
dimensional reasons, we must have cψ ∼= φ.

Let π be a quadratic Pfister form over F . Then there exists a unique
(up to isometry) quadratic form π′ such that π⊥ ⟨1⟩ ∼= π′ ⊥H; we call such
form π′ the pure part of π.

Let us be a bit more specific: Let π ∼= τ ⊥ [1, a] for a nonsingular
quadratic form τ and a ∈ F . Then

π ⊥ ⟨1⟩ ∼= τ ⊥ [1, a] ⊥ ⟨1⟩ ∼= τ ⊥ H ⊥ ⟨1⟩,

and hence π′ ∼= τ ⊥ ⟨1⟩. In particular, it follows that π′ ≼ π, and so π′ is a
Pfister neighbor of π of codimension one.

Lemma 4.16. Let charF be arbitrary. Let π be a quadratic Pfister form
over F . Then any quadratic Pfister neighbor of π of codimension one is
similar to the pure part of π.

Proof. If charF ̸= 2, then the claim is trivial. Thus, assume charF = 2.
Let φ be a quadratic Pfister neighbor of π of codimension one, i.e., let
cφ ≼ π for some c ∈ F ∗ and dimφ = dim π − 1. Then φ ∼= φr ⊥ ⟨a⟩ for
a nonsingular quadratic form φr and a ∈ F ∗. As cφr ⊥ ⟨ca⟩ ∼= cφ ≼ π, it
follows that ca ∈ D∗

F (π) = G∗
F (π) (we use Lemma 1.41); thus, we have

aφr ⊥ ⟨1⟩ ∼= (ca)cφ ≼ caπ ∼= π.

Then there exists b ∈ F such that aφr ⊥ [1, b] ∼= π; it follows that

aφ⊥ H ∼= aφr ⊥ [1, b] ⊥ ⟨1⟩ ∼= π ⊥ ⟨1⟩.

Thus, aφ is the pure part of π.

We extend Proposition 4.15 to quadratic Pfister neighbors of codimen-
sion one.

Theorem 4.17. Let F be a field of arbitrary characteristic. Let π be a
quadratic Pfister form over F and let φ, ψ be anisotropic quadratic forms
over F such that dimφ = dimψ. Assume that φ is a quadratic Pfister
neighbor of π of codimension one. If φ stb∼ ψ, then φ

sim∼ ψ.
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Proof. Assume charF = 2; the proof in the other case is analogous and
mostly follows the lines of the proof of [Wad75, Th. 4].

Similarly as in the proof of Proposition 4.15, we get that cψ ≼ π for some
c ∈ F ∗. Since dimψ = dimφ = dim π − 1, we must have ψ ∼= dψr ⊥ ⟨d⟩
for a nonsingular quadratic form ψr and d ∈ F ∗. Since (cd−1)dψ ≼ π and
1 ∈ D∗

F (dψ), it follows that cd−1 ∈ D∗
F (π) = G∗

F (π) (we use Lemma 1.41),
and hence dψ ≼ (cd−1)π ∼= π.

By Lemma 4.16, there exists e ∈ F ∗ such that eφ is a pure part of π,
i.e., eφ ∼= φr ⊥ ⟨1⟩ for a nonsingular quadratic form φr.

Since φr ⊥ ⟨1⟩ ≼ π and ψr ⊥ ⟨1⟩ ≼ π, there exist a, b ∈ F such that

φr ⊥ [1, a] ∼= π ∼= ψr ⊥ [1, b].

Then

φr ⊥ H ⊥ ⟨1⟩ ∼= φr ⊥ [1, a] ⊥ ⟨1⟩ ∼= ψr ⊥ [1, b] ⊥ ⟨1⟩ ∼= ψr ⊥ H ⊥ ⟨1⟩.

Cancelling the hyperbolic planes on both sides (we apply Theorem 1.4), we
get φr ⊥ ⟨1⟩ ∼= ψr ⊥ ⟨1⟩, i.e., eφ ∼= dψ.

For general quadratic Pfister neighbors, we get a weaker statement.

Proposition 4.18. Let charF be arbitrary. Let φ and ψ be irreducible
quadratic Pfister neighbors of a quadratic Pfister form π over F . Then
φ

stb∼ ψ.

Proof. By Lemma 1.26, we know that for any extension E/F , it holds that
φE is isotropic if and only if πE is isotropic if and only if ψE is isotropic.
Therefore, choosing E = F (ψ) and E = F (φ), we get that φF (ψ) and ψF (φ)

are isotropic. It follows by Proposition 1.54 that φ stb∼ ψ.

In the following example, we provide nonsingular quadratic forms which
are stably birationally equivalent but not Vishik equivalent.

Example 4.19. Let F0 be a field with charF0 = 2, and set F = F0(a, b, c)
for some elements a, b, c algebraically independent over F0. Consider the
quadratic Pfister form π ∼= ⟨⟨a, b; c]] over F . Then

π ∼= [1, c] ⊥ a[1, c] ⊥ b[1, c] ⊥ ab[1, c].

Note that, using the standard relations (1.2) and (1.3), we have

b[1, c] ⊥ ab[1, c] ∼= b[1, c] ⊥ b[a−1, ac] ∼= b[1, (a+ 1)c] ⊥ b[a−1 + 1, ac];

denoting

φ ∼= [1, c] ⊥ a[1, c] ⊥ b[1, c] and ψ ∼= [1, c] ⊥ a[1, c] ⊥ b[1, (a+ 1)c],

it follows that both φ and ψ are quadratic Pfister neighbors of π. Hence,
φ

stb∼ ψ by Proposition 4.18.
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Consider the field K = F (℘−1(c)). Then obviously

φK ∼= 3 × H,
ψK ∼= 2 × H ⊥ b[1, (a+ 1)c]K .

Assume that the form [1, (a+ 1)c] is isotropic over K. By Proposition 4.2,
that is equivalent to d[1, c] ∼= [1, (a+ 1)c] for some d ∈ F ∗. Comparing the
Arf invariants of these two binary forms, we get c = (a + 1)c ∈ F/℘(F ),
which implies ac ∈ ℘(F ). That contradicts the choice of a and c. Therefore,
we have iW(ψK) = 2, and hence φ ̸ v∼ ψ.
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4.4 Summary
Although we have achieved some interesting results on nonsingular and
nondegenerate quadratic forms in this chapter, none of them provided us
with a decisive answer to whether one equivalence implies another one – with
the exception of Example 4.19. This example shows that stable birationally
equivalent nonsingular quadratic forms are in general not Vishik equivalent.

bir

sim stb

Vishik

?

?

?

NO?

?

Figure 4.1: The equivalence relations for nonsingular quadratic forms
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5. Singular quadratic forms
In this chapter, we come back to the assumption that all the fields are of
characteristic 2.

Until now, we put restrictions on the forms we worked with. Not so in
this chapter; we develop theorems that hold regardless of the type of the
quadratic form. Let us recall a known theorem:

Theorem 5.1 ([EKM08, Th. 18.3]). Let φ be a quadratic form over F ,
f ∈ F [X] a nonzero monic polynomial in one variable, and a ∈ F ∗. Then
the following conditions are equivalent:

(i) af ∈ ⟨D∗
F (X)(φ)⟩,

(ii) φF (g) is isotropic for each irreducible divisor g occurring to an odd
power in the factorization of f .

This theorem gives a characterization when an anisotropic quadratic
form becomes isotropic over a function field of a polynomial. Unfortunately,
it considers only polynomials in one variable. Inspired by this theorem and
by the recent work of Roussey [Rou22], which treated the case of quadratic
forms over fields of characteristic other than two, we focus on the question of
when an anisotropic quadratic form becomes isotropic over a function field
– first generally over a function field of a polynomial (Subsection 5.2.1),
later more specifically over a function field of another quadratic form (Sub-
section 5.2.2). Recalling Proposition 1.54, the latter clearly has interesting
consequences on when two quadratic forms are stably birational, and hence
this topic also fits well into the general frame of this thesis.

At the end of the chapter, we shortly look at the Vishik equivalence;
we apply some of the results from previous chapters to singular quadratic
forms.
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5.1 Preliminaries
In this chapter, we will use many statements from other chapters, including
the appendix. However, there is still one important proposition that we
have not mentioned yet. Basically, it is well known but we weaken some of
the assumptions of the original statement here.

Proposition 5.2. Let φ, ψ, σ be quadratic forms over F with ψ nondefec-
tive. If φF (ψ) and ψF (σ) are isotropic, then φF (σ) is isotropic as well.

Proof. If all the forms φ, ψ, and σ are anisotropic, then the claim coincides
with [EKM08, Prop. 22.16].

If φ is isotropic, then φF (σ) is also isotropic for trivial reasons.
If ψ is isotropic and nondefective, then either ψ ∼= H and F (ψ) ≃ F ,

or F (ψ)/F is purely transcendental by Lemma 1.18; anyway, φ must be
isotropic over F , and we are in the previous case.

Now assume that σ is isotropic but nondefective. By an analogous ar-
gument as above, we obtain that ψ must be isotropic over F (but still
nondefective by the assumption). Then again, φ is isotropic over F by
Lemma 1.13, so φF (σ) is isotropic.

Finally, if σ is defective, then F (σ)/F (σnd) is purely transcendental by
Lemma 1.17, and so ψF (σnd) is isotropic by Lemma 1.13. Then φF (σnd) is
isotropic by the previous part of the proof. Applying Lemma 1.13 again,
we get that φF (σ) is isotropic.
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5.2 Isotropy over function fields and stable
birational equivalence

The content of this section is based on the paper [Zem22].

As a preparation for later proofs, we compare some of the sets and
multiplicative groups (see Subsection 1.1.6 for the definitions).

Lemma 5.3. Let φ be a quadratic form.
(i) ⟨D∗

F (φ)2⟩ = ⟨D∗
F (cφ)2⟩ for any c ∈ F ∗,

(ii) F ∗2 ⊆ D∗
F (φ)2 ⊆ ⟨D∗

F (φ)2⟩ ⊆ ⟨D∗
F (φ)⟩ ⊆ F ∗,

(iii) ⟨D∗
F (φ)2⟩ = ⟨D∗

F (cφ)⟩ for any c ∈ D∗
F (φ).

Proof. (i) Since DF (φ) = DF (c−2φ), the group ⟨D∗
F (cφ)2⟩ is generated by

the elements ca · c(c−2b) = ab, a, b ∈ D∗
F (φ).

(ii) For the first inclusion, let x ∈ F ∗; then for any a ∈ D∗
F (φ), we

have a−1, ax2 ∈ D∗
F (φ). Hence, x2 = a−1 · ax2 ∈ D∗

F (φ)2. The second
inclusion, D∗

F (φ)2 ⊆ ⟨D∗
F (φ)2⟩, follows directly from the definition. To see

the third inclusion, let y ∈ ⟨D∗
F (φ)2⟩; then y = ∏︁n

i=1 aibi for some n > 0 and
ai, bi ∈ D∗

F (φ), and hence y ∈ ⟨D∗
F (φ)⟩. Finally, the inclusion ⟨D∗

F (φ)⟩ ⊆ F ∗

is clear by the definition.
(iii) We have

⟨D∗
F (φ)2⟩ (i)= ⟨D∗

F (cφ)2⟩
(ii)
⊆ ⟨D∗

F (cφ)⟩ = ⟨cD∗
F (φ)⟩ ⊆ ⟨D∗

F (φ)2⟩,

where the last inclusion holds, because c ∈ D∗
F (φ).

5.2.1 Function fields of polynomials
Throughout this subsection, we denote X = (X1, . . . , Xl) with l > 0. For a
polynomial f ∈ F [X], we denote by lc(f) its leading coefficient with respect
to the lexicographical ordering. We say that f is monic if lc(f) = 1. By
degXi

f we mean the maximal degree of the variable Xi appearing in f and
by deg f the maximal total degree of all terms in f .

We start with a lemma which we have already seen in the context of
p-forms, see Lemma 2.50. Since the proof does not change for the case of
quadratic forms in any other way except for setting p = 2, we do not repeat
it here.

Lemma 5.4. Let φ be a quadratic form over F . Let f ∈ F [X] be an
irreducible polynomial. If there exists a ∈ F ∗ such that af ∈ ⟨D∗

F (X)(φ)⟩,
then φF (f) is isotropic.

In the following, we want to prove the opposite of the previous lemma:
namely, to prove that if a quadratic form φ becomes isotropic over a function
field of a polynomial f , then f is represented by a product of some elements
of D∗

F (X)(φ). But first, we deal with the leading coefficient.

Lemma 5.5. Let φ be a quadratic form over F . If f ∈ F [X] is such that
f ∈ D∗

F (X)(φ)m for some m > 0, then lc(f) ∈ D∗
F (φ)m.
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Proof. Let n = dimφ. By the assumption,

f =
m∏︂
i=1

φ(ξ′
i)

for some ξ′
i = (ξ′

i1, . . . , ξ
′
in) with ξ′

ij ∈ F (X). For each i, we can find a monic
polynomial hi ∈ F [X] such that hiξ′

ij ∈ F [X] for all j; denote h = ∏︁m
i=1 hi,

ξij = hiξ
′
ij and ξi = (ξi1, . . . , ξin). Then

fh2 =
m∏︂
i=1

φ(ξi).

For each i, we set di = max{deg ξij | 1 ≤ j ≤ n}, and

αij =
⎧⎨⎩lc(ξij) if deg ξij = di,

0 otherwise.

Writing αi = (αi1, . . . , αin), it follows that φ(αi) is the leading coefficient of
φ(ξi). Therefore, ∏︁m

i=1 φ(αi) is the leading coefficient of ∏︁m
i=1 φ(ξi) = fh2.

Since h is monic, we have lc(f) = lc(fh2), and the claim follows.

Lemma 5.6. Let f ∈ F [X] be a monic irreducible polynomial in one vari-
able and φ a nondefective quadratic form over F of dimension n. Suppose
that f divides φ(ξ1, . . . , ξn) for some ξi ∈ F [X], 1 ≤ i ≤ n, not all of them
divisible by f . Then f ∈ D∗

F (X)(φ)m for some m ≤ deg f .

Proof. First assume that dimφ = 1; then φ ∼= ⟨a⟩ for some a ∈ F ∗, and
f | φ(ξ1) = aξ2

1 , i.e., f divides ξ1, a contradiction to our assumption. Hence,
this case cannot happen.

If φ is isotropic, then, since it is nondefective by the assumption, we
have H ⊆ φ. Hence, D∗

F (X)(φ) = F (X)∗, and f ∈ D∗
F (X)(φ) trivially.

From now on, suppose that φ is anisotropic and dimφ ≥ 2. If deg f = 1,
then f(X) = X − b for some b ∈ F . It means that φ(ξ1(X), . . . , ξn(X)) =
(X − b)g(X) for some g ∈ F [X], and hence φ(ξ1(b), . . . , ξn(b)) = 0. Since
φ is anisotropic, we get ξi(b) = 0 for every 1 ≤ i ≤ n; but in that case
f(X) = X − b divides all ξi’s, a contradiction.

Assume deg f = 2; then, up to a linear substitution, there are only two
possibilities: either f(X) = X2 + c or f(X) = X2 +X + c for some c ∈ F ∗.
Pick a root γ ∈ F of f (i.e., γ2 = c, resp. γ2 + γ = c). Since we can
find g(X) ∈ F [X] such that f(X)g(X) = φ(ξ1(X), . . . , ξn(X)), it follows
that over F (γ), we have φ(ξ1(γ), . . . , ξn(γ)) = 0. Note that if ξi(γ) = 0 for
all 1 ≤ i ≤ n, then X + γ divides each ξi over F (γ); as f is the minimal
polynomial of γ over F , it implies that f divides each ξi over F , which is a
contradiction. Therefore, not all ξi(γ) = 0, and so φF (γ) is isotropic. Let us
apply Proposition 3.1, resp. Proposition 4.2: We can find some c′ ∈ F ∗ such
that in the case of f(X) = X2 + c, we have c′⟨1, c⟩ ≼ φ, and in the case of
f(X) = X2 +X + c, we have c′ [1, c] ⊆ φ. In both cases we get 1

c′ ∈ D∗
F (φ)

and c′f(X) ∈ D∗
F (X)(φ); thus, f(X) ∈ D∗

F (φ)D∗
F (X)(φ) ⊆ D∗

F (X)(φ)2.
Now we will assume deg f ≥ 2 and proceed by induction on deg f . For

each i, we divide ξi by f with a remainder ξ′
i:

ξi = fζi + ξ′
i for some ζi, ξ′

i ∈ F [X], deg ξ′
i < deg f.
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We denote

ζ = (ζ1, . . . , ζn), ξ = (ξ1, . . . , ξn), ξ′ = (ξ′
1, . . . , ξ

′
n);

then ξ = fζ + ξ′, and by the assumption there exists g ∈ F [X] such that

fg = φ(ξ) = φ(ξ′) + f 2φ(ζ) + fbφ(ζ, ξ′).

Let g + fφ(ζ) + bφ(ζ, ξ′) = ah with a ∈ F ∗ and h ∈ F [X] monic; then
φ(ξ′) = afh, and we have

deg f + deg h = degφ(ξ′) ≤ 2 max{deg ξ′
i | i = 1, . . . , n} < 2 deg f,

i.e., deg h < deg f . Moreover, since there is at least one ξi non-divisible
by f , we have ξ′ ̸= 0. As φ is anisotropic, it follows that φ(ξ′) ̸= 0;
hence, degφ(ξ′) is even, so deg f and deg h have necessarily the same parity.
Therefore, deg h ≤ deg f − 2.

Write h = ∏︁r
j=1 hj, where hj ∈ F [X] is a monic irreducible polynomial

for each j. If there is a k ∈ {1, . . . , r} such that hk | ξ′
i for every i, then

h2
k | φ(ξ′) = afh. Since both hk and f are irreducible and deg hk < deg f ,

it follows that h2
k | h. In that case we replace ξ′ by

(︂
ξ′

1
hk
, . . . , ξ

′
n

hk

)︂
and h

by h
h2

k
. Repeating this process if necessary, we end up with afh′′ = φ(ξ′′),

ξ′′ = (ξ′′
1 , . . . , ξ

′′
n) ∈ F [X]n and h′′ = ∏︁s

j=1 hj, where, for each 1 ≤ j ≤ s, the
polynomial hj is monic irreducible and does not divide all ξ′′

i ’s.
As both f and h′′ are monic, a is the leading coefficient of afh′′ = φ(ξ′′).

Therefore, a ∈ D∗
F (φ) by Lemma 5.5.

If h′′ = 1, then

f = 1
a
φ(ξ′′) ∈ D∗

F (φ)D∗
F (X)(φ) ⊆ D∗

F (X)(φ)2,

and we are done since we assumed deg f ≥ 2. If h′′ ̸= 1, then we know
for each 1 ≤ j ≤ s that deg hj < deg f , and hj is a monic irreducible
polynomial dividing φ(ξ′′) but not dividing all ξ′′

i . Hence, by the induction
hypothesis, hj ∈ D∗

F (X)(φ)mj for some mj ≤ deg hj. It also follows that
1
hj

∈ D∗
F (X)(φ)mj . Consequently,

1
h′′ =

s∏︂
j=1

1
hj

∈ D∗
F (X)(φ)m where m =

s∑︂
j=1

mj,

and thus

f = 1
ah′′φ(ξ′′) ∈ D∗

F (φ)D∗
F (X)(φ)mD∗

F (X)(φ) ⊆ D∗
F (X)(φ)m+2,

where
m+ 2 ≤ deg h′′ + 2 ≤ deg h+ 2 ≤ deg f.

With Lemmas 5.4 and 5.6 at hand, we can prove our first characteriza-
tion of the isotropy of φF (f). Note its similarity to Proposition 5.2 but we
provide an upper bound on the power of D∗

F (X)(φ) necessary.

95



Proposition 5.7. Let φ be a nondefective quadratic form over F such that
1 ∈ D∗

F (φ), and let f ∈ F [X] be a monic irreducible polynomial in one
variable. Then the following are equivalent:

(i) f ∈ D∗
F (X)(φ)m, m ≤ deg f ;

(ii) φF (f) is isotropic.

Proof. The implication (i) ⇒ (ii) is covered by Lemma 5.4. To prove the
converse, assume that the form φF (f) is isotropic and denote n = dimφ.
Then we can find ξ1, . . . , ξn ∈ F (f) = F [X]/(f), not all zero, such that
φF (f)(ξ1, . . . , ξn) = 0. For each 1 ≤ i ≤ n, let ξi ∈ F [X] be such that the
image of ξi in F [X]/(f) is precisely ξi. Then φ(ξ1, . . . , ξn) = fh for some
h ∈ F [X]. Note that since not all of the ξi’s were zero, not all of the ξi’s
are divisible by f . Hence, the claim follows by Lemma 5.6.

Now we extend the previous proposition to polynomials in more vari-
ables.

Theorem 5.8. Let φ be a nondefective quadratic form over F such that
1 ∈ D∗

F (φ). Let f ∈ F [X] be a monic irreducible polynomial such that
deg f ≥ 1. Then the following are equivalent:

(i) f ∈ D∗
F (X)(φ)m with m ≤ deg f ,

(ii) φF (f) is isotropic.

Proof. The implication (i) ⇒ (ii) is covered by Lemma 5.4. Let us prove
the converse. If φ is isotropic, then necessarily H ⊆ φ, and f ∈ D∗

F (X)(φ)
for trivial reasons. Thus, assume that φ is anisotropic.

Note that we can assume degXi
f > 0 for all 1 ≤ i ≤ l; otherwise, we

pick the maximal subset {i1, . . . , il̃} of {1, . . . , l} such that degXij
f > 0 for

all 1 ≤ j ≤ l̃ (where l̃ ≥ 1 by the assumption), and for ˜︂X = (Xi1 , . . . , Xil̃
)

prove that f ∈ D∗
F (˜︁X)

(φ)m for some m. Since D∗
F (˜︁X)

(φ)m ⊆ D∗
F (X)(φ)m, the

claim follows.

First, we suppose that the field F is infinite, and we proceed by induction
on the number of variables l. For l = 1, we apply Lemma 5.6.

Assume l ≥ 2. Denote X ′ = (X2, . . . , Xl), d = degX1 f and n = dimφ.
Then we can find polynomials fd ∈ F [X ′] and ˜︁f ∈ F [X] such that

f = fdX
d
1 + ˜︁f

and degX1
˜︁f < d; then deg fd ≤ deg f − d. Note that, since f is monic, fd is

monic as well. Furthermore, consider g = f
fd

as an element of F (X ′)[X1];
then degX1 g = d and by Gauss’ lemma, g is a monic irreducible polynomial
in X1 over F (X ′). Since F (X ′)(g) = F (f), the quadratic form φ is isotropic
over F (X ′)(g), and, by Proposition 5.7, we get

g ∈ D∗
F (X′)(X1)(φ)d′ = D∗

F (X)(φ)d′

for some d′ ≤ d. Since 1 ∈ D∗
F (φ), we can assume d′ = d.

Now let h ∈ F [X] be such that gh2 ∈ D∗
F [X](φ)d, i.e.,

gh2 = φ(ξ11, . . . , ξ1n) · · ·φ(ξd1, . . . , ξdn)
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for some ξij ∈ F [X]; this can be rewritten as

fh2 = fd φ(ξ11, . . . , ξ1n) · · ·φ(ξd1, . . . , ξdn). (5.1)

Moreover, for each i, we can assume that the polynomials ξi1, . . . , ξin have
no common divisor in F [X]: If q | ξij for all j, then necessarily q2 | fh2, and
hence q | h since f is irreducible. In that case, we can consider ξi1

q
, . . . , ξin

q

and h
q

instead.
Write fd = r2s with r, s ∈ F [X ′] monic polynomials (recall that fd is

monic) such that s has no square factors. If s = 1, then clearly fd = r2 ∈
D∗
F (X′)(φ). If s ̸= 1, then proving s ∈ D∗

F (X′)(φ)m′ for some m′ > 0 will
imply that also fd = r2s ∈ D∗

F (X′)(φ)m′ .
Suppose s ̸= 1. For each monic irreducible polynomial t ∈ F [X ′] such

that t | s, we proceed as follows: First, note that t ∤ f , because f is
irreducible, and by the assumption f /∈ F [X ′]. Since F is infinite, we can
find c ∈ F such that t(X ′) ∤ f(c,X ′). Denote ξ′

ij = ξij(c,X ′), f ′ = f(c,X ′)
and h′ = h(c,X ′); then we rewrite (5.1) as

f ′(h′)2 = fd φ(ξ′
11, . . . , ξ

′
1n) · · ·φ(ξ′

d1, . . . , ξ
′
dn). (5.2)

Note that ξ′
i1 = · · · = ξ′

in = 0 for some i would mean that X1 − c | ξij for
all j, which would contradict our assumption. Since φ is anisotropic over F
and hence also over F (X ′) by Lemma 1.13, we have φ(ξ′

i1, . . . , ξ
′
in) ̸= 0 for

each i; hence, f ′, h′ ̸= 0. Let us compare the t-adic valuation vt on the left
and right hand side of (5.2): Since vt(f ′) = 0, the value vt(f ′(h′)2) must
be even. On the other hand, vt(fd) is odd by the assumption, and hence
there exists a k ∈ {1, . . . , d} such that vt(φ(ξ′

k1, . . . , ξ
′
kn)) is odd. Denote

u = min{vt(ξ′
kj) | 1 ≤ j ≤ n} and ξ′′

kj = t−uξ′
kj for 1 ≤ j ≤ n. Then not all

ξ′′
k1, . . . , ξ

′′
kn are divisible by t, and we have

vt(φ(ξ′′
k1, . . . , ξ

′′
kn)) = vt(φ(ξ′

k1, . . . , ξ
′
kn)) − 2u > 0,

i.e., t divides φ(ξ′′
k1, . . . , ξ

′′
kn). Therefore, φ(ξ′′

k1, . . . , ξ
′′
kn) = 0 over F [X ′]/(t)

and hence also over F (t). Thus, φ is isotropic over F (t). By the induction
hypothesis, t ∈ D∗

F (X′)(φ)deg t.
All in all, we get

fd = r2 ∏︂
t|s irred.

t ∈ D∗
F (X′)(φ)m′

where

m′ =
⎧⎨⎩1 if s = 1,

deg s otherwise,
and we have m′ ≤ deg fd ≤ deg f − d. Hence,

f = fd g ∈ D∗
F (X)(φ)m

with m = m′ + d ≤ deg f as claimed.

Now assume that F is finite; then the field F ((Y )) is infinite, and φF ((Y ))(f)
is isotropic; by the previous result, we have f ∈ D∗

F ((Y ))(X)(φ)m for some
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m ≤ deg f . Since F ((Y ))(X) ⊆ F (X)((Y )), we also have f ∈ D∗
F (X)((Y ))(φ)m.

Thus, we have

f =
m∏︂
i=1

φ(ξi)

for some ξi = (ξi1, . . . , ξin) with ξij ∈ F (X)((Y )). As the form φ is
anisotropic, the value vY (φ(ξi)) is even for each i by Lemma A.5; write
vY (φ(ξi)) = 2ki, and set ξ′

i = Y −kiξi. By Lemma A.6, it follows that
ki = min{vY (ξij) | 1 ≤ j ≤ n}, and hence ξ′

i ∈ F (X)[[Y ]]n.
We have

Y 2kf =
m∏︂
i=1

φ(ξ′
i), where k =

m∑︂
i=1

ki. (5.3)

Since vY (f) = 0 and vY (φ(ξ′
i)) = 0 for each i, it follows that k = 0. Hence,

passing the equation (5.3) to the residue field F (X), we get

f =
m∏︂
i=1

φ
(︂
ξ′
i

)︂
,

and thus f ∈ D∗
F (X)(φ)m.

As the final step in reaching the goal of this subsection, we consider
reducible polynomials in more variables. We obtain a characteristic two
version of [BF95, Th. 1].

Theorem 5.9. Let φ be a nondefective quadratic form over F such that
1 ∈ DF (φ). Let a ∈ F ∗ and f1, . . . , fr, g ∈ F [X] be monic polynomials with
f1, . . . , fr distinct and irreducible. Suppose that f = af1 · · · frg2. Then the
following are equivalent:

(i) f ∈ ⟨D∗
F (X)(φ)⟩,

(ii) a ∈ ⟨D∗
F (φ)⟩ and fk ∈ ⟨D∗

F (X)(φ)⟩ for every 1 ≤ k ≤ r,
(iii) a ∈ ⟨D∗

F (φ)⟩ and φF (fk) is isotropic for every 1 ≤ k ≤ r.

Proof. Applying Theorem 5.8 to each fk, 1 ≤ k ≤ r, we get the implication
(iii) ⇒ (ii). As g2 ∈ D∗

F (X)(φ), the implication (ii) ⇒ (i) is trivial. Hence,
we only need to prove (i) ⇒ (iii).

Suppose f ∈ ⟨D∗
F (X)(φ)⟩. By Lemma 5.5, a = lc(f) ∈ ⟨D∗

F (φ)⟩. By
clearing denominators, we may assume

m∏︂
i=1

φ(ξi) = fh2 = af1 · · · frg2h2

for some m > 0, ξi = (ξi1, . . . , ξin) ∈ F [X]n and a monic polynomial
h ∈ F [X]. Let γi = gcd(ξi1, . . . , ξin). Without loss of generality, we can
assume γi = 1 for all 1 ≤ i ≤ m; otherwise we replace ξij by ξij

γi
and gh by

gh
γi

. For any 1 ≤ k ≤ r, we know that fk is irreducible, and hence fk divides
φ(ξi) for some i; thus φ(ξi) = 0 over F (fk). By the assumption above, ξi is
a nonzero vector over F [X]/(fk), and hence also over F (fk); it follows that
φF (fk) is isotropic.

98



Remark 5.10. Note that by the transition to reducible polynomials, we
lost the upper bound for the necessary power of D∗

F (X)(φ). But if we keep
in Theorem 5.9 the assumption that the polynomial f is monic, then we
can also keep the upper bounds. In particular, with the notation from the
theorem, the following are equivalent for monic f (i.e., a = 1):

(i) f ∈ D∗
F (X)(φ)m with m ≤ deg f ,

(ii) fk ∈ D∗
F (X)(φ)mk with mk ≤ deg fk for every 1 ≤ k ≤ r,

(iii) φF (fk) is isotropic for every 1 ≤ k ≤ r.

5.2.2 Function fields of quadratic forms
In this subsection, we concentrate on the isotropy over a function field of
a quadratic form. Most of the proofs in this subsection must deal with
the obstacle of “two types” of isotropy: Unlike in the case of characteristic
other than two, the isotropy of a quadratic form φ does not necessarily
mean H ⊆ φ, because φ may be just defective. So an isotropic form does
not have to be universal, which makes both the assertions and the proofs
more elaborate.

For a start, we need to prepare some lemmas. In particular, the first
lemma basically says that discarding the defect does not affect the Witt
index.

Lemma 5.11. Let φ be a semisingular and ψ an arbitrary quadratic form
over F , and let E/F be a field extension. Assume that iW(φF (ψ)) > 0 and
iW(φE) = 0. Let φ′ be a quadratic form over E such that φ′ ∼= (φE)an. Then
iW(φ′

E(ψ)) > 0.

Proof. As iW(φE) = 0, we have φ′ ∼= (φE)nd; hence,

φE(ψ) ∼= φ′
E(ψ) ⊥ id(φE) × ⟨0⟩,

and it follows that iW(φ′
E(ψ)) = iW(φE(ψ)). Therefore, iW(φ′

E(ψ)) > 0.

Lemma 5.12. Let φ, ψ be quadratic forms over F with dimφ, dimψ ≥ 2,
and let φF (ψ) be isotropic. If E/F is a field extension such that both φE and
ψE are anisotropic, then D∗

E(ψ)2 ⊆ D∗
E(φ)2.

Proof. Let c ∈ D∗
E(ψ); then 1 ∈ D∗

E(cψ). Let a ∈ D∗
E(cψ). It suffices to

show that a ∈ D∗
E(φ)2.

First, assume a = x2 for some x ∈ E∗; then a = x2 = bx2 · b
b2 ∈ D∗

E(φ)2

for any b ∈ D∗
E(φ). Now suppose a /∈ E2. Let VψE

be the underlying vector
space of ψE, and let u, v ∈ VψE

be such that cψE(u) = 1 and cψE(v) = a.
Note that u, v are linearly independent: if v = tu for some t ∈ E∗, then
a = cψE(v) = cψE(tu) = t2 ∈ E2, a contradiction.

If bψE
(u, v) = 0, then ⟨1, a⟩ ≼ cψE, and hence ψE(

√
a) is isotropic. By

Proposition 5.2, φE(
√
a) is also isotropic, and by Proposition 3.1 we have

b⟨1, a⟩ ≼ φE for some b ∈ E∗. In particular, b, ba ∈ D∗
E(φ), and hence

a = ba · b
b2 ∈ D∗

E(φ)2.
Let bψE

(u, v) ̸= 0. Set s = bψE
(u, v); then [1, s−2a] ⊆ cψE. As ψE is

anisotropic by the assumption, it follows that s−2a /∈ ℘(E). So, considering
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α = ℘−1(s−2a) ∈ F , we get [E(α) : E] = 2 and ψE(α) is isotropic. Similarly
as above, it follows that φE(α) is isotropic by Proposition 5.2. Invoking
Proposition 4.2, we get b [1, s−2a] ⊆ φE for some b ∈ D∗

E(φ). In particular,
b, bs−2a ∈ D∗

E(φ), hence a = ab
s2 · bs2

b2 ∈ D∗
E(φ)2.

Proposition 5.13. Let φ, ψ be nondefective quadratic forms over F . Set

E =
⎧⎨⎩{E | E/F an extension s.t. id(φE) = 0} if ψ is totally singular,

{E | E/F an extension} otherwise.

If φF (ψ) is isotropic, then D∗
E(ψ)2 ⊆ D∗

E(φ)2 for every E ∈ E.

Proof. We will prove the proposition in several steps, starting with some
trivial cases.

(0) Let E0/F be a field extension such that iW(φE0) > 0, i.e., HE0 ⊆ φE0 .
Then D∗

E0(φ) = E∗
0 , and trivially, D∗

E0(ψ)2 ⊆ D∗
E0(φ)2.

(1) Since a nondefective one-dimensional quadratic form cannot become
isotropic, we may assume dimφ ≥ 2.

If dimψ = 1, then F (ψ) = F . If ψ is isotropic (but nondefective by the
assumption), then the field extension F (ψ)/F is purely transcendental by
Lemma 1.18. In both cases, we get that φ is isotropic over F (in the latter
case by Lemma 1.13).

If φ is isotropic over F , then (since it is nondefective), H ⊆ φ. Then
also HE ⊆ φE for any field extension E/F , and we are done by (0) with
E0 = E.

(2) Suppose that φ, ψ are anisotropic, and let E ∈ E . We claim
that there exists a form ψ′ ⊆ ψ (over F ) such that ψ′

E
∼= (ψE)nd: Write

ψ ∼= ψr ⊥ ql(ψ). Then, by Lemma 2.2, there exists an anisotropic form
σ ⊆ ql(ψ) over F such that σE ∼= (ql(ψ)E)an. Therefore,

(ψr ⊥ σ)E ∼= (ψr)E ⊥ (ql(ψ)E)an ∼= (ψE)nd.

Setting ψ′ = ψr ⊥ σ, the claim follows. Furthermore, note that we have
D∗
E(ψ) = D∗

E(ψ′).
If dimψ′ = 1, then D∗

E(ψ′)2 = E∗2 ⊆ D∗
E(φ)2, and thus the inclusion

D∗
E(ψ)2 ⊆ D∗

E(φ)2 holds for trivial reasons.
Suppose dimψ′ ≥ 2; then ψ′ ⊆ ψ implies that ψF (ψ′) is isotropic. To-

gether with the assumptions that φF (ψ) is isotropic and ψ is nondefective,
we get that φF (ψ′) is isotropic by Proposition 5.2.

(3) Now fix a field E ∈ E . By (1) we can assume that φ, ψ are anisotropic
over F and dimφ, dimψ ≥ 2. Invoking (2) we can suppose (by replacing
ψ with ψ′) that ψE is nondefective. We treat different kinds of quadratic
forms separately.

First, assume that φE is anisotropic. If ψE is isotropic, then (since we
assume ψE to be nondefective), the extension E(ψ)/E is purely transcen-
dental by Lemma 1.18, and so, by Lemma 1.13, the isotropy of φE(ψ) implies
the isotropy of φE, a contradiction. Therefore, ψE must be anisotropic in
this case, and the claim follows from Lemma 5.12.
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Now suppose that φE is isotropic. If iW(φE) > 0, then we are done by
(0). Hence, assume it(φE) = id(φE) > 0. Note that id(φF (ψ)) > 0 means
that ql(φ)F (ψ) is isotropic, which is possible only if ψ is totally singular
by Lemma 1.21; but in that case we have id(φE) = 0 by the assumption.
Therefore, it must be id(φF (ψ)) = 0, and hence iW(φF (ψ)) > 0. If ψE were
isotropic, then (since ψE is nondefective) E(ψ)/E were a purely transcen-
dental extension by Lemma 1.18, and hence, by Lemma 1.13,

0 = iW(φE) = iW(φE(ψ)) ≥ iW(φF (ψ)) > 0,

a contradiction; therefore, ψE must be anisotropic. Moreover, note that the
assumptions id(φE) > 0 and iW(φF (ψ)) > 0 imply that φ is semisingular. Set
φ′ = (φE)an; by Lemma 5.11, we have iW(φ′

E(ψ)) > 0. Applying Lemma 5.12
to the forms φ′ and ψ, we get D∗

E(ψ)2 ⊆ D∗
E(φ′)2. Since D∗

E(φ′) = D∗
E(φ),

the claim follows.

Combining Proposition 5.13, Lemma 5.3 and Lemma 5.4 applied to the
case f = ψ, we get a full characterisation of the isotropy of φF (ψ).

Theorem 5.14. Let φ, ψ be nondefective quadratic forms over F , and
suppose that dimψ ≥ 2. Denote X = (X1, . . . , Xdimψ), and set

E =
⎧⎨⎩{E | E/F an extension s.t. id(φE) = 0} if ψ is totally singular,

{E | E/F an extension} otherwise.

Then the following assertions are equivalent:
(i) φF (ψ) is isotropic,
(ii) D∗

E(ψ)2 ⊆ D∗
E(φ)2 for every E ∈ E,

(iii) aψ(X) ∈ D∗
F (X)(φ)2 for every a ∈ D∗

F (ψ),
(iv) ⟨D∗

E(ψ)2⟩ ⊆ ⟨D∗
E(φ)2⟩ for every E ∈ E,

(v) aψ(X) ∈ ⟨D∗
F (X)(φ)2⟩ for every a ∈ D∗

F (ψ),
(vi) ⟨D∗

E(aψ)⟩ ⊆ ⟨D∗
E(φ)⟩ for every E ∈ E and every a ∈ D∗

F (ψ),
(vii) aψ(X) ∈ ⟨D∗

F (X)(φ)⟩ for every a ∈ D∗
F (ψ).

Proof. (i) ⇒ (ii) is covered by Proposition 5.13. The implications (ii) ⇒ (iii),
(iv) ⇒ (v) and (vi) ⇒ (vii) follow trivially by setting E = F (X); note that
F (X) ∈ E by Lemma 1.13. By Lemma 5.3, we get (iii) ⇒ (v) ⇒ (vii).

To prove (ii) ⇒ (iv), let x ∈ ⟨D∗
E(ψ)2⟩. Then x = ∏︁k

i=1 aibi for some
ai, bi ∈ D∗

E(ψ). Since aibi ∈ D∗
E(φ)2 by the assumption of (ii), we get

x ∈ ⟨D∗
E(ψ)2⟩.

By combining the assumption of (iv) with Lemma 5.3, we obtain that
⟨D∗

E(aψ)⟩ = ⟨D∗
E(ψ)2⟩ ⊆ ⟨D∗

E(φ)2⟩ ⊆ ⟨D∗
E(φ)⟩; therefore, (iv) ⇒ (vi).

Finally, Lemma 5.4 gives (vii) ⇒ (i) for all but one possible ψ; if ψ ∼= H,
then the polynomial ψ(X) is reducible. But by assuming (vii), we have
X1X2 ∈ ⟨D∗

F (X1,X2)(φ)⟩, and it follows by Theorem 5.9 that φF must be
isotropic (because for fi = Xi, we have F (fi) ≃ F ). Since F (H) = F by
definition, the claim follows.

Remark 5.15. The assumption that dimψ ≥ 2 is only necessary for the
proof of (vii) ⇒ (i), but it is crucial there: Let ψ ∼= ⟨1⟩ and φ ∼= [1, b]
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for some b ∈ F \ ℘(F ); then φ is anisotropic over F . Here we have
a2X2

1 · 1 ∈ ⟨D∗
F (X1)(φ)⟩ for any a ∈ F ∗, i.e., (vii) is fulfilled. But F (ψ) = F ,

so (i) does not hold.
In the proof of Theorem 5.14, to show (ii) ⇒ (i), we used the chain of

implications (ii) ⇒ (iii) ⇒ (v) ⇒ (vii) ⇒ (i), in which we needed only the
field F (X). Moreover, we could as well use any field F (X1, . . . , Xn) with
n ≥ dimψ. Hence, we have actually proved the following:
Corollary 5.16. Let φ, ψ be nondefective quadratic forms over F with
dimψ ≥ 2, and let Y = (Y1, . . . , Yn) with n ≥ dimψ. Then the follow-
ing are equivalent:

(i) φF (ψ) is isotropic,
(ii) D∗

F (Y )(ψ)2 ⊆ D∗
F (Y )(φ)2.

Let φ, ψ be quadratic forms over F . We can ask when both φF (ψ) and
ψF (φ) are isotropic, i.e., when

it(φF (ψ)) > 0 & it(ψF (φ)) > 0. (l)

Recall that if the forms φ and ψ are nondefective, then (l) is an equiva-
lent condition to φ and ψ being stably birationally equivalent (see Propo-
sition 1.54). We apply Theorem 5.14 together with Corollary 5.16 to get a
characterization of this phenomenon.
Corollary 5.17. Let φ and ψ be nondefective quadratic forms of dimen-
sion at least two, and let Y = (Y1, . . . , Yn) with n ≥ max{dimφ, dimψ}.
Moreover, set

E =
⎧⎨⎩{E | E/F an extension} if neither φ nor ψ is totally singular,

{E | E/F an extension s.t. id(φE) = id(ψE) = 0} otherwise.

Then the following are equivalent:
(a) φ

stb∼ ψ,
(b) D∗

E(ψ)2 = D∗
E(φ)2 for every E ∈ E,

(c) ⟨D∗
E(ψ)2⟩ = ⟨D∗

E(φ)2⟩ for every E ∈ E,
(d) D∗

F (Y )(ψ)2 = D∗
F (Y )(φ)2.

If 1 ∈ D∗
F (φ) ∩D∗

F (ψ), then the conditions above are also equivalent to
(e) ⟨D∗

E(ψ)⟩ = ⟨D∗
E(φ)⟩ for every E ∈ E.

Proof. The proof can basically be obtained through two-sided applications
of Theorem 5.14 and Corollary 5.16, but note that our current E is slightly
different from the one in that theorem.

First, the implication (a) ⇒ (b) follows directly from the theorem, and
(b) ⇒ (c) can be done exactly as the proof of (ii) ⇒ (iv) of the theorem. For
(c) ⇒ (a), note that to prove (iv) ⇒ (i) in the theorem, we have actually
shown (iv) ⇒ (v) ⇒ (vii) ⇒ (i), and we only used the field F (X), which is
an element of (our current) E ; therefore, (c) ⇒ (a) holds.

The implication (b) ⇒ (d) is obvious, as F (Y ) ∈ E by Lemma 1.13.
Furthermore, (d) ⇒ (a) follows directly from the corollary.

Finally, (a) ⇔ (e) follows from the theorem if we note that in the proof
of (vi) ⇒ (vii) ⇒ (i), only the existence of one a ∈ D∗

F (ψ) with the required
property was necessary.
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5.2.3 Sums and Pfister multiples of quadratic forms
The goal of this subsection is to extend the results from the previous one
by comparing the isotropy of φF (ψ) with the isotropy of (π ⊗ φ)F (π⊗ψ) for a
bilinear Pfister form π.

Lemma 5.18. Let φ0, φ1 and τ be quadratic forms over F with φ0 and φ1
nondefective, and let φ ∼= φ0 ⊥Xφ1 over F (X). Then iW(τF (X)(φ)) = iW(τ)
and id(τF (X)(φ)) = id(τ). In particular, if τ is nondefective, then τF (X)(φ) is
also nondefective.

Proof. If φi is isotropic for some i, then necessarily H ⊆ φ, and hence
F (X)(φ)/F is purely transcendental by Lemma 1.18 (because φ is nonde-
fective by Example A.3). Then the claim follows by Lemma 1.13. Hence,
we can suppose that φ0 and φ1 are anisotropic.

Assume that τ is anisotropic. Let dim τ = d, dimφ = n, and de-
note Y = (Y1, . . . , Yn), an n-tuple of variables. Without loss of generality,
suppose that 1 ∈ D∗

F (X)(φ). For a contradiction, assume that τF (X)(φ) is
isotropic; then, by Theorem 5.14, φ(Y ) ∈ D∗

F (X,Y )(τ)2. Thus, after the
usual multiplication by a common denominator, we get

h2(X,Y )φ(Y ) =
2∏︂
i=1

τ(ξi1(X,Y ), . . . , ξid(X,Y )) (5.4)

for some h ∈ F [X,Y ] and ξij ∈ F [X,Y ], 1 ≤ i ≤ 2, 1 ≤ j ≤ d. Clearly,
degX(τ(ξi1(X,Y ), . . . , ξid(X,Y ))) is even for each i, and hence the degree
in X of the polynomial on the right side of (5.4) is even. On the other hand,
we know degX(φ(Y )) = 1, so the degree in X of the polynomial on the left
side of (5.4) is odd. That is absurd; therefore, τF (X)(φ) is anisotropic.

If τ is isotropic, then we know by the previous part of the proof that τan
remains anisotropic over F (X)(φ). The claim follows.

Note that the previous lemma is a consequence of Lemmas A.4 and 1.13.

Proposition 5.19. Let φ0, φ1, ψ0, ψ1 be nondefective quadratic forms over
F . Write F ′ = F (X) and F ′′ = F ((X)). Let φ ∼= φ0 ⊥Xφ1, ψ ∼= ψ0 ⊥Xψ1
be quadratic forms over F ′, and set

E = {E | E/F s.t. id((φ0)E) = id((φ1)E) = id((ψ0)E) = id((ψ1)E) = 0}.

(1) The following are equivalent:
(i) φF ′(ψ) is isotropic,
(ii) φF ′′(ψ) is isotropic,
(iii) D∗

E(ψ0)D∗
E(ψ1) ⊆ D∗

E(φ0)D∗
E(φ1) for each E ∈ E.

(2) Let the form φF ′(ψ) (or the form φF ′′(ψ)) be isotropic. If dimψi ≥ 2
for an i ∈ {0, 1}, then at least one of the forms φ0 and φ1 is isotropic
over F (ψi).

Proof. We start by proving (1). The implication (i) ⇒ (ii) is obvious.
For (ii) ⇒ (iii), let E ∈ E , and denote E ′ = E(X) and E ′′ = E((X)).

If (φi)E is isotropic for some i, then, since id((φi)E) = 0 by the assump-
tion, we have H ⊆ φi; in that case, D∗

E(φ0)D∗
E(φ1) = E∗, and the claim
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follows trivially. Thus, assume that both φ0 and φ1 are anisotropic over
E. Let a ∈ D∗

E(ψ0)D∗
E(ψ1); then (ψ0 ⊥ aψ1)E is isotropic. Obviously, we

have ψE′′(
√
aX)

∼= (ψ0 ⊥ aψ1)E′′(
√
aX), and hence ψE′′(

√
aX) is isotropic. As

φF ′′(ψ) is isotropic by the assumption, φE′′(ψ) must be isotropic as well.
Furthermore, φE′′ and ψE′′ are nondefective (see Example A.3). It fol-
lows from Proposition 5.2 that φE′′(

√
aX) is isotropic. Moreover, we have

φE′′(
√
aX)

∼= (φ0 ⊥ aφ1)E′′(
√
aX). Since E ′′(

√
aX) is a complete discrete

valuation field with residue field E, the form (φ0 ⊥ aφ1)E is isotropic by
Lemma A.1. Since both φ0 and φ1 are anisotropic over E, we get that
a ∈ D∗

E(φ0)D∗
E(φ1).

Now we prove (iii) ⇒ (i): First, note that F ′(ψ) ∈ E by Lemma 5.18.
Since ψF ′(ψ) ∼= (ψ0⊥Xψ1)F ′(ψ) is isotropic, we getX ∈ D∗

F ′(ψ)(ψ0)D∗
F ′(ψ)(ψ1).

Therefore, X ∈ D∗
F ′(ψ)(φ0)D∗

F ′(ψ)(φ1), which implies that the quadratic form
(φ0 ⊥Xφ1)F ′(ψ) ∼= φF ′(ψ) is isotropic.

To prove (2), note that it follows from the assumptions that φF ′′(ψ) is
isotropic in any case. Observe that if ψ0 or ψ1 is isotropic, then φ must
be isotropic over F ′′ by Lemma 1.13, and in that case φ0 or φ1 is isotropic
over F by Lemma A.2. But if φ0 or φ1 is isotropic over F , then the claim
is trivial. Hence, suppose that φ0, φ1, ψ0, ψ1 are all anisotropic.

Assume that i ∈ {0, 1} such that dimψi ≥ 2; then ψF ′′(ψi) is isotropic.
As φF ′′ , ψF ′′ and (ψi)F ′′ are anisotropic, it follows by Proposition 5.2 that
φF ′′(ψi) is isotropic, too. Since F ′′(ψi) ⊆ F (ψi)((X)), it follows that φ is
isotropic over F (ψi)((X)). By Lemma A.2, φ0 or φ1 must be isotropic over
F (ψi).

Corollary 5.20. Let φ0, φ1, ψ0, ψ1, φ, ψ, E be as in Proposition 5.19.
Then the following are equivalent:

(i) φ
stb∼ ψ,

(ii) D∗
E(ψ0)D∗

E(ψ1) = D∗
E(φ0)D∗

E(φ1) for each E ∈ E.

Lemma 5.21. Let φ, ψ be nondefective quadratic forms over F , dimψ ≥ 2,
and let

E = {E | E/F an extension s.t. id(φE) = id(ψE) = 0}.

Then the following are equivalent:
(i) φF (ψ) is isotropic,
(ii) DE(ψ)2 ⊆ DE(φ)2 for each E ∈ E,
(iii) φ⊥Xφ is isotropic over F (X)(ψ ⊥Xψ),
(iv) φ⊥Xφ is isotropic over F ((X))(ψ ⊥Xψ),
(v) for every n ≥ 0, (⟨⟨X1, . . . , Xn⟩⟩b ⊗ φ)F (X1,...,Xn)(⟨⟨X1,...,Xn⟩⟩b⊗ψ) is iso-

tropic,
(vi) for every n ≥ 0, (⟨⟨X1, . . . , Xn⟩⟩b ⊗ φ)F ((X1))...((Xn))(⟨⟨X1,...,Xn⟩⟩b⊗ψ) is iso-

tropic.

Proof. (i) ⇒ (ii) follows from Theorem 5.14, and, as F (X1, . . . , Xdimψ) ∈ E
by Lemma 1.13, (ii) ⇒ (i) follows from Corollary 5.16. The equivalences
(ii) ⇔ (iii) ⇔ (iv) are a consequence of Proposition 5.19. Furthermore, (iii)
is a special case of (v). For the other way around, note that (v) coincides
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with (i) for n = 0; for n = 1, (v) coincides with (iii); and for n > 1, (v)
can be obtained by a repeated application of (i) ⇒ (iii). Thus, (iii) ⇔ (v).
Analogously, we get (iv) ⇔ (vi).

Theorem 5.22. Let φ, ψ be quadratic forms over F , and let π be a bilinear
Pfister form over F . If φF (ψ) is isotropic, then (π ⊗ φ)F (π⊗ψ) is isotropic.

Proof. Suppose without loss of generality that φ, ψ, π are anisotropic over
F . Let π ∼= ⟨⟨a1, . . . , an⟩⟩b. If n = 0, i.e., π ∼= ⟨1⟩, then there is nothing to
prove; thus, assume n ≥ 1.

Since φF (ψ) is isotropic, we get by Lemma 5.21 that the quadratic form
⟨⟨X1, . . . , Xn⟩⟩b⊗φ is isotropic over F (X1, . . . , Xn)(⟨⟨X1, . . . , Xn⟩⟩b⊗ψ). Set
T = Xn + an; then we have F (X1, . . . , Xn) = F (X1, . . . , Xn−1, T ), and
it follows that F (X1, . . . , Xn−1, T ) ⊆ F (X1, . . . , Xn−1)((T )). Let us write
K = F (X1, . . . , Xn−1)((T ))(

√
anT ); then 1 + T

an
∈ K∗2, and so

Xn = an + T ≡ (an + T )
(︃

1 + T

an

)︃
= (an + T )2

an
≡ 1
an

≡ an mod K∗2.

Therefore, over K, we have

(⟨⟨X1, . . . , Xn⟩⟩b ⊗ φ)K ∼= (⟨⟨X1, . . . , Xn−1, an⟩⟩b ⊗ φ)K ,
(⟨⟨X1, . . . , Xn⟩⟩b ⊗ ψ)K ∼= (⟨⟨X1, . . . , Xn−1, an⟩⟩b ⊗ ψ)K .

Write φ′ ∼= ⟨⟨X1, . . . , Xn−1, an⟩⟩b ⊗ φ and ψ′ ∼= ⟨⟨X1, . . . , Xn−1, an⟩⟩b ⊗ ψ;
we have φK(ψ) ∼= φ′

K(ψ′), and it follows that φ′
K(ψ′) is isotropic. Note that

the forms φ′, ψ′ are defined over F (X1, . . . , Xn−1), so in particular, we
have K(ψ′) ⊆ F (X1, . . . , Xn−1)(ψ′)((T ))(

√
anT ). Hence, φ′ is isotropic over

F (X1, . . . , Xn−1)(ψ′)((T ))(
√
anT ), which is a complete discrete valuation

field with the residue field F (X1, . . . , Xn)(ψ′). Therefore, by Lemma A.1,
φ′
F (X1,...,Xn−1)(ψ′) is isotropic. We proceed by induction.

Corollary 5.23. Let φ, ψ be quadratic forms over F . Then the following
are equivalent:

(i) φF (ψ) is isotropic,
(ii) for any field extension E/F , any n ≥ 0 and any n-fold bilinear Pfister

form π over E, the form (π ⊗ φ)E(π⊗ψ) is isotropic.

Remark 5.24. One could hope that, given anisotropic quadratic forms φ,
ψ and a bilinear Pfister form π over F such that (π ⊗ φ)F (π⊗ψ) is isotropic,
then φF (ψ) must be isotropic. But that is not true in general: Let a, b ∈ F be
2-independent over F , and set φ ∼= ⟨1, a⟩, ψ ∼= ⟨1, a, b⟩, and π ∼= ⟨⟨a⟩⟩b. Then
φF (ψ) is anisotropic by Separation Theorem 4.6, while π ⊗ φ is obviously
isotropic over F already.

Another example shows that the claim cannot hold even under the as-
sumption that π ⊗ φ is anisotropic over F : Let a, b be as above, and set
φ′ ∼= ⟨1, a⟩, ψ′ ∼= ⟨1, ab⟩ and π′ ∼= ⟨⟨b⟩⟩b. Then π′ ⊗φ′ ∼= ⟨1, a, b, ab⟩ ∼= π′ ⊗ψ′,
so (π′ ⊗ φ′)F (π′⊗ψ′) is obviously isotropic. On the other hand, if φ′

F (ψ′) were
isotropic, then, by Proposition 3.1, it must hold φ′ sim∼ ψ′, which is not true.
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As the final result, we combine Corollary 5.17, Lemma 5.21 and Corol-
lary 5.23.

Corollary 5.25. Let φ, ψ be nondefective quadratic forms over F of di-
mension at least two, and let

E = {E | E/F an extension s.t. id(φE) = id(ψE) = 0}.

Then the following are equivalent:
(i) φ

stb∼ ψ,
(ii) DE(ψ)2 = DE(φ)2 for each E ∈ E,
(iii) for every n ≥ 1, ⟨⟨X1, . . . , Xn⟩⟩b ⊗ φ

stb∼ ⟨⟨X1, . . . , Xn⟩⟩b ⊗ ψ over
F (X1, . . . , Xn),

(iv) for any field extension E/F , any n ≥ 0 and any n-fold bilinear Pfister
form π over E, we have (π ⊗ φ)E stb∼ (π ⊗ ψ)E.

106



5.3 Relation between equivalences
Since totally singular quadratic forms are a special case of singular quadratic
forms, all the “no”’s from Figure 3.1 still apply. Combining with Figure 1.1,
we can decide on all but three relations; see Figure 5.1.

bir

sim stb

Vishik

NO

NO

?

NO?

?

Figure 5.1: The equivalence relations for singular quadratic forms

In the rest of this section, we look at Question Q and provide some
consequences of our previous results on singular quadratic forms.

Recall that the quasilinear part of a singular quadratic form is unique
up to isometry. Therefore, for any quadratic form φ over F and any field
extension E/F , we have id(φE) = id(ql(φ)E). That proves the following
lemma:

Lemma 5.26. Let φ, ψ be singular quadratic forms over F . If φ v∼ ψ, then
ql(φ) v∼ ql(ψ).

In Chapters 2 and 3, we gave a positive answer to Question Q for some
families of totally singular quadratic forms. Thanks to the previous lemma,
we can apply them to quasilinear parts of singular quadratic forms. In
particular, invoking Corollary 2.57(ii) and Theorems 3.6 and 3.16, we get
the following:

Corollary 5.27. Let φ, ψ be singular quadratic forms over F , and assume
that ql(φ) satisfies one of the following:

(i) it is a quasi-Pfister form or a quasi-Pfister neighbor of codimension
one,

(ii) it is minimal over F ,
(iii) it is a special quasi-Pfister neighbor given by the triple (π, b, σ) with σ

as in (i) or (ii).
If φ v∼ ψ, then ql(φ) sim∼ ql(ψ).

Since a “nonsingular part” of a semisingular quadratic form is not unique,
it is more difficult to prove results about it. One possibility, how to extract
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a “nonsingular part” is to look at the quadratic form over an appropri-
ate field extension. However, we do not know whether this “nonsingular
part” remains anisotropic over such a field extension, or how to transfer the
obtained similarity to the base field.

Proposition 5.28. Let φ, ψ be semisingular quadratic forms over F and
φ

v∼ ψ. Let {b1, . . . , bn} be a 2-basis of the field NF (ql(φ)) over F . Assume
that n ≥ 1, and set K = F (

√
b1, . . . ,

√
bn). Then φK ∼= cψK for some

c ∈ F ∗.

Proof. By Lemma 5.26, we have ql(φ) v∼ ql(ψ); thus, we get from Corol-
lary 2.57 that NF (ql(φ)) = NF (ql(ψ)). By Proposition 2.10, it follows that
(ql(φ)K)an ∼= ⟨1⟩K ∼= (ql(ψ)K)an. Therefore, (φK)an and (ψK)an are nonde-
generate quadratic forms of odd dimension. Since they are Vishik equiv-
alent by Lemma 1.59, we get from Theorem 4.10 that (φK)an

sim∼ (ψK)an.
Let c ∈ K∗ be such that (φK)an ∼= c(ψK)an; then we have in particular
(ql(φ)K)an ∼= c(ql(ψ)K)an, i.e., ⟨1⟩K ∼= c⟨1⟩K . It follows that c ∈ K∗2, where
K∗2 = F 2(b1, . . . , bn)∗ ⊆ F ∗; hence, c ∈ F ∗. Finally, we have φK ∼= cψK by
Lemma 1.37.
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Conclusion
The main goal of this thesis was to complete Figure 1.1 – to decide whether
the missing implications are true or not, with a special focus on Question Q,
that is, whether Vishik equivalent forms are always similar. Looking at Fig-
ures 2.1 (p-forms), 3.1 (totally singular forms), 4.1 (nonsingular forms) and
5.1 (singular forms), it may seem that I have not really succeeded. However,
I believe that I provided some interesting results while trying. Moreover, in
the beginning, I thought that giving a positive answer to Question Q for all
quadratic forms should be possible; in particular, I expected the case of to-
tally singular quadratic forms to be quite easy. After proving Theorem 3.6
and Proposition 3.13, I realized that the general case might be a bit more
tricky than I thought.

Of course, it is in my nature as a mathematician not to be satisfied with
my work until I find answers to all my questions. I also must say that I
rather exhausted the available time than the ideas for this thesis. Therefore,
I would like to conclude this thesis with a list of concrete tasks I would like
to finish at some point in the future:

1. In [Izh98], there is a counterexample to Question Q for the case of
characteristic other than two. Could that counterexample be somehow
modified for nonsingular quadratic forms over fields of characteristic
two?

2. In characteristic other than two, the implication “bir ⇒ sim” is true
for four-dimensional quadratic forms by [Wad75]. Is it also true for
nonsingular quadratic forms in characteristic two? (Here I have al-
ready checked that the proof of Wadsworth cannot be straightfor-
wardly rewritten into characteristic two.)

3. In the case of characteristic other than two, the counterexample for
the implication “bir ⇒ sim” is based on concrete constructions of
rational maps (“transposition maps”) between forms φ⊗ π ⊥ aσ ⊥ bτ
and φ⊗π⊥ bσ⊥aτ , where π is a Pfister form, φ is arbitrary, σ, τ ⊆ π
and a, b ∈ F ∗; see [Tot09, Lemma 5.1]. Could this result be translated
into the characteristic two case?
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A. Forms over discrete
valuation fields
To the best of our knowledge, there is no comprehensive text about quadratic
forms over discrete valuation fields of characteristic two, rather only isolated
lemmas in different papers. For p-forms, there are probably no published
results at all. Therefore, we devote this appendix at least to some basic
results. These results, restricted to the case of quadratic forms, can also be
found in [Zem22, Subsection 2.3].

Recall that we write form as a common term for quadratic forms and
p-forms. We denote by A a discrete valuation ring, (t) its maximal ideal
with a uniformizing element t, K the quotient field of A, vt the valuation on
K, and F the residue field A/(t). If φ is a form defined over A, we denote
by φ its image under the homomorphism A → F . Moreover, if φ is a form
defined over F , then we denote by φl some lifting to K, i.e., a form over
A which satisfies φl ∼= φ (it does not have to be unique). Then (φl)K is a
form over K; by abuse of notation, we will denote this form φl, too.

We call a vector ξ = (ξ1, . . . , ξn) with ξi ∈ A primitive if ξi /∈ (t) for
some i, i.e., if the image ξ of ξ under A → F is nonzero. Note that for
any vector ξ′ over A, there exists an F -multiple of ξ′ which is primitive:
Let ξ′ = (ξ′

1, . . . , ξ
′
n) and set k = max{vt(ξ′

i) | 1 ≤ i ≤ n}; then the vector
ξ = t−kξ′ is primitive. In particular, if φ is an isotropic form over K, then
it is also isotropic over A, and there exists a primitive vector ξ such that
φ(ξ) = 0.

Lemma A.1. Let φ be a form over F . If φl is isotropic over K, then φ is
isotropic over F .

Proof. Let dimφ = n. If φl is isotropic over K, then there exists a primitive
vector ξ = (ξ1, . . . , ξn) with all ξi ∈ A such that φl(ξ) = 0. Then ξ is a
nonzero vector in F for which φl(ξ) = 0. Therefore, φl ∼= φ is isotropic over
F .

Lemma A.2. Let 1 ≤ k ≤ p − 1 (where p = charF ), and φ0,. . . , φk
be forms over A. If the forms φ0, . . . , φk are anisotropic over F , then
φ0 ⊥ tφ1 ⊥ . . . ⊥ tkφk is anisotropic over K.

Proof. For the case of quadratic forms, see [EKM08, Lemma 19.5]. In the
case of p-forms, the proof is completely analogous: Assume that the p-form
φ0 ⊥ tφ1 ⊥ . . . ⊥ tkφk is isotropic over K; then there exist some vectors
ξ0, . . . , ξk over A, at least one of them primitive, such that

t0φ0(ξ0) ⊥ tφ1(ξ1) ⊥ . . . ⊥ tk−1φk−1(ξk−1) ⊥ tkφk(ξk) = 0.

Reducing modulo t, we get φ0(ξ0) = 0, and since φ0 is anisotropic over F ,
it follows that ξ0 is the zero vector over F , i.e., ξ0 is divisible by t over A.
Writing ξ0 = tξ′

0, we get

tp−1φ0(ξ′
0) ⊥ t0φ1(ξ1) ⊥ . . . ⊥ tk−2φk−1(ξk−1) ⊥ tk−1φk(ξk) = 0.
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Reducing modulo t again, we obtain φ1(ξ1) = 0. Again, ξ1 must be also
divisible by t, and we write ξ1 = tξ′

1. Proceeding inductively, we finally get

tp−kφ0(ξ′
0) ⊥ tp−k+1φ1(ξ′

1) ⊥ . . . ⊥ tp−1φk−1(ξ′
k−1) ⊥ t0φk(ξk) = 0,

and reducing modulo t gives again φk(ξk) = 0. Thus, all the vectors
ξ0, . . . , ξk are divisible by t, a contradiction.

Example A.3. For a field F , let K = F (X) (resp. K = F ((X))) be the
rational function field (resp. the field of formal power series) in one variable.
Then K is a discrete valuation field with respect to the X-adic valuation,
the valuation ring is OX =

{︂
f
g

⃓⃓⃓
f, g ∈ F [X], X ∤ g

}︂
(resp. F [[X]]), and the

residue field is F .
Let φ0, φ1 be anisotropic forms over F . By Lemma A.1, φ0 and φ1 are

anisotropic over K. By Lemma A.2, the form φ0 ⊥Xφ1 is also anisotropic
over K.

Analogously, by considering the anisotropic part, one can show that if
φ0, φ1 are nondefective over F , then φ0 ⊥Xφ1 is nondefective over K.

Lemma A.4. Let φ0, φ1 be nonzero forms over F , and let φ ∼= φ0 ⊥Xφ1
over F (X). Then F (X)(φ)/F is a purely transcendental extension.

Proof. By Lemma 1.17, we can assume φ0 and φ1 to be nondefective. If
H ⊆ φi for some i ∈ {0, 1}, then F (X)(φ)/F (X) is purely transcendental
by Lemma 1.18, and the claim follows. Therefore, assume that both φ0 and
φ1 are anisotropic. Then φ is anisotropic over F (X) by Lemma A.2.

Let T , Y = (Y1, . . . , Ydimφ0−2) and Z = (Z1, . . . , Zdimφ1) be (tuples of)
variables.

First, assume that dim ql(φ0) ≥ 1. Then there exists an a ∈ F ∗ and a
form φ′

0 over F (possibly the zero form) such that φ0 ∼= ⟨a⟩ ⊥ φ′
0. Without

loss of generality, let a = 1; otherwise, consider the form a−1φ. Then

F (X)(φ) ≃ Quot
(︂
F (X,T,Y ,Z)/(φ(T, 1,Y ,Z)

)︂
. (A.1)

Over the quotient field, we have

T p + φ′
0(1,Y ) +Xφ1(Z) = 0.

Let
α = p

√︂
−φ′

0(1,Y ) −Xφ1(Z);
then F (X)(φ) ≃ F (X,Y ,Z)(α). Moreover, as

X = −αp + φ′
0(1,Y )

φ1(Z) ,

we get X ∈ F (Y ,Z, α). It follows that F (X)(φ) ≃ F (Y ,Z, α). Recall
that, by Lemma 1.20, we have trdegF (X) F (X)(φ) = dimφ− 2; thus,

trdegF F (Y ,Z, α) = trdegF F (X)(φ) = dimφ− 1.

Since
trdegF F (Y ,Z) = dimφ0 − 2 + dimφ1 = dimφ− 2,
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it follows that {Y ,Z, α} must be a transcendence basis of F (Y ,Z, α) over
F , i.e., the field extension F (Y ,Z, α)/F is purely transcendental.

Now, suppose that φ0 is a nonsingular quadratic form. Multiplying
the form φ by an element of F ∗ if necessary, we may assume that there
exists an a ∈ F ∗ and a nonsingular quadratic form φ′

0 over F such that
φ0 ∼= [1, a] ⊥ φ′

0. Then we can express the function field F (X)(φ) as in
(A.1), and over that quotient field, we have

T 2 + T + a+ φ′
0(Y ) +Xφ1(Z) = 0.

Denote
β = ℘−1(a+ φ′

0(Y ) +Xφ1(Z));
then F (X)(φ) ≃ F (X,Y ,Z)(β). We have

X = β2 + β + φ′
0(Y )

φ1(Z) ∈ F (Y ,Z, β),

and hence F (X)(φ) ≃ F (Y ,Z, β). Comparing the transcendence degrees
analogously as in the previous case, we get that F (Y ,Z, β) is purely tran-
scendental over F .

Lemma A.5. Let φ be an anisotropic form over F and dimφ = n. Then
vt(φl(ξ)) ≡ 0 (mod p) for any nonzero vector ξ = (ξ1, . . . , ξn) ∈ Kn.

Proof. Let k = min{vt(ξi) | 1 ≤ i ≤ n}, and set ξ′
i = t−kξi for each i. Then

all ξ′
i ∈ A, but at least one of them does not lie in (t). Write ξ′ = (ξ′

1, . . . , ξ
′
n);

then ξ′ = t−kξ, and so φl(ξ′) = t−pkφl(ξ).
Suppose that vt(φl(ξ)) ̸≡ 0 (mod p); then also vt(φl(ξ′)) ̸≡ 0 (mod p),

and in particular vt(φl(ξ′)) ≥ 1. Hence, 0 = φl(ξ′) = φl(ξ′) in F . Since ξ′

is a nonzero vector over F , we get that φl ∼= φ is isotropic over F .

Lemma A.6. Let φ be an anisotropic form over F of dimension n and
assume that K = F ((X)). Let ξ = (ξ1, . . . , ξn) ∈ Kn and a = φK(ξ). Then
vX(a) = pmin{vX(ξi) | 1 ≤ i ≤ n}.

Proof. Write
ξi =

∞∑︂
j=di

ξijX
j and a =

∞∑︂
j=da

ajX
j

with ξij, aj ∈ F and ξidi
, ada ̸= 0, i.e., vX(ξi) = di and vX(a) = da. Moreover,

set D = min{di | 1 ≤ i ≤ n}, and α = (α1, . . . , αn) with

αi =
⎧⎨⎩ξidi

if di = D,

0 otherwise.

Note that there exists a lifting φl of φ to A such that (φl)K ∼= φK ; therefore,
as φ is anisotropic, φK is also anisotropic by Lemma A.1. Thus, comparing
the terms of the lowest degree in a = φK(ξ), we get that φ(XDα) = adaX

da .
Hence, da = pD.
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