
Some Representation Learning Tasks and
the Inspection of eir Models

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Lukas Pfahler

Dortmund

2022

Tag der mündlichen Prüfung: 28.11.2022

Dekan: Prof. Dr.-Ing. Gernot Fink

Gutachter/Gutachterinnen:

• Prof. Dr. Katharina Morik

• Prof. Dr. Andreas Hotho

Contents

I Introduction 7

1 Motivation 9
1.1 Contributions . 10
1.2 Outline . 12

2 A Brief Introduction to Machine Learning 15
2.1 Deep Learning . 15

2.1.1 Models . 16
2.1.2 Objective Functions . 21
2.1.3 Optimizers . 23

2.2 Tree-Based Machine Learning Models 27
2.2.1 Decision Trees . 27
2.2.2 Random Forest Models 28

II Designing Machine Learning Tasks 31

3 Related Work on Machine Learning Tasks 33
3.1 Supervised Learning . 33

3.1.1 Supervised Learning under Class Imbalance 33
3.1.2 Noisy Label Learning . 34
3.1.3 Multi-Task Learning . 35

3.2 Representation Learning . 37
3.2.1 Auto-Encoders . 37
3.2.2 Contextual Embeddings 38
3.2.3 Representation Learning based on Similarity 39
3.2.4 Other Self-Supervised Approaches 43

4 Learning Representations with Unsupervised Tasks 45
4.1 Introduction . 45
4.2 Math Search and KDD . 46

4.2.1 Representation . 46
4.2.2 Similarity Measure . 47
4.2.3 Retrieval . 47

3

4.3 The Dataset . 48
4.4 Embedding using Convolutional Networks on Bitmap Representations 49

4.4.1 Data Representation . 50
4.4.2 The Equation-Encoder Model 50
4.4.3 Empirical Evaluation . 51
4.4.4 Conclusion . 54

4.5 Embedding using Transformers on Sequential Representations . . . 55
4.5.1 Data Representation . 55
4.5.2 Training Transformer Models 57
4.5.3 Retrieval of Equalities and Inequalities 57

4.6 Embedding using Graph Convolutional Networks on Tree Represen-
tations . 60
4.6.1 Data-Representation . 60
4.6.2 Training Graph-Neural-Network for Embedding Formulas . 61
4.6.3 Statistical Analysis . 64
4.6.4 Experimental Results . 66

4.7 Conclusion and Outlook . 71

5 Learning Representation with Multitask Learning and Noisy Labels 73
5.1 A Supervised Multi-Task Representation Learning Approach 75

5.1.1 Supervision by Simulated Data, Data Representation and Pre-
Processing . 76

5.1.2 Multi-Task Deep Neural Network 77
5.1.3 Experiments . 79
5.1.4 Discussion . 84

5.2 Supervision based on Noisy Labels with Partially-Known Class-Conditional
Label Noise . 84
5.2.1 The Significance of Detection as Noisy Label Learning with

Partially Known Label Noise 85
5.2.2 Experimental Results on Imbalanced Data Sets 91
5.2.3 Gamma-Hadron Classification with Noisy Labels 95
5.2.4 Deep Gamma-Hadron Classification with Noisy Labels . . . 99

5.3 Summary . 102

III Inspecting Machine Learning Models 103

6 Motivation 105
6.1 Related Work . 105

6.1.1 Explanations . 105
6.1.2 Robustness . 108

6.2 Structure of this Part . 110

4

7 How Does the Model Compute? 113
7.1 Introduction . 113
7.2 Method . 114

7.2.1 Graph Neural Networks for Trees 114
7.2.2 Forward-Visualization . 114
7.2.3 Backward-Visualization 115

7.3 Qualitative Study: Interpretable Search for Formulas 115
7.4 Conclusion and Outlook . 119

8 Why Did the Model Learn a Representation? 121
8.1 Related Work . 122
8.2 Method . 123

8.2.1 Explaining Pre-Activations by the Training History 124
8.2.2 Computing Most Influential Examples 125
8.2.3 Visualizing Contributions in Ridge Plots 126

8.3 Batch-Wise Tracking of Contributions 126
8.3.1 Ghost-Batchnormalization Layers 127
8.3.2 Implementation for pyTorch 129
8.3.3 Experimental Evaluation 130
8.3.4 Explanations for Graph Classification 131

8.4 Example-Wise Tracking of Contributions 137
8.4.1 Method . 137
8.4.2 Implementation Details 139
8.4.3 Experimental Evaluation 139

8.5 Conclusion, Discussion and Future Research 144

9 How Robust is a Model? 147
9.1 Introduction . 147
9.2 Related Work . 148
9.3 Preliminaries . 149

9.3.1 Decision Tree Distillation 150
9.3.2 Decision Tree Verification 152

9.4 Random Forest Verification Through Knowledge Distillation 153
9.4.1 Bounding the Output Range of Random Forests 153
9.4.2 Simultaneous Distillation and Verification 154
9.4.3 Some Comments on Asymptotic Runtime 157
9.4.4 Implementation Details 157

9.5 Experimental Evaluation . 158
9.5.1 Setup . 158
9.5.2 Results . 159

9.6 Conclusion . 160

5

IV Conclusion 161

10 Conclusion and Outlook 163

11 Bibliographical Remarks 167

V Appendix 169

12 Open Source Software 171
12.1 malocher . 171

12.1.1 Installation . 172
12.1.2 Setting up the Malocher-Workers 172
12.1.3 Sample . 172
12.1.4 Pitfalls . 173

12.2 meticulous-ml . 173
12.2.1 Best Practices for Tracking Machine Learning Experiments . 173
12.2.2 Example Python Snippet for meticulous-ml 175

12.3 arxiv-library . 178
12.3.1 Installation . 178
12.3.2 Pipeline . 178
12.3.3 Internal Python Functions 179

12.4 xai-tracking . 181

13 Additional Tables and Figures 183
13.1 Mathematical Retrieval Results 183
13.2 Noisy Label Learning . 185

6

Part I

Introduction

7

Chapter 1

Motivation

M
 in its cosmos of tasks, models, and methods is as di-
verse as ever. While traditionally, we have distinguished only supervised
learning tasks like classification or regression, and unsupervised learn-
ing tasks like clustering or association rule mining [100], today, the

field of machine learning knows a wide and diverse range of tasks for a wide range of
data modalities. Supervision comes in different varieties, with many sources of super-
vision in multi-task learning, low-quality supervision in noisy-label learning or even
self-supervision, where we algorithmically derive supervision signals from the training
examples themselves for unsupervised training without annotations. Classically, data is
represented using a fixed set of manually engineered features derived from neat database
tables and choosing the best representation was treated separately from training mod-
els, through approaches like feature selection or dimensionality reduction. Now, deep
learning further shifts problem-solving towards the data and tackles problems through
increasing data quantities. We now incorporate representation learning into the learn-
ing task and trust that a model, equipped with sufficient amounts of training data,
learn a suitable representation automatically.

In this data-driven approach, collecting and curating training data becomes more
and more important [229, 270, 271]. For instance, the successes of machine learning
methods in computer vision tasks like object detection [137] are fueled by the availabil-
ity of large, labeled data sets, most prominently ImageNet. ImageNet was started by
Fei-Fei Li [54], who collected millions of images from the web and used crowd-sourced
annotators to group them into well-defined classes derived from the WordNet lexical
database [55]. Since then, the use of even larger quantities of cheaper, unlabeled data
in conjunction with modern representation learning tasks that do not require labels
for choosing useful representations have sparked the development of models with even
higher object detection accuracies [295]. A similar trend can be observed in natural lan-
guage processing. Language models with millions of parameters are trained with large
collections of texts obtained from print media as well as the web and achieve remark-
able results on various downstream tasks [31, 58, 217]. With unsupervised training,
it is crucial to have downstream evaluation tasks for measuring the representational

9

power of a trained model [154]. For natural language, the GLUE benchmarks for En-
glish language understanding [277, 278], a diverse compilation of curated evaluation
tasks that require models to exhibit forms of language understanding, have been used
to quantify the evolution of models.

Despite the importance of training and evaluation data for current machine learn-
ing tasks and models [203, 270, 271], Sambasivan et al. note that ”paradoxically, data
is the most under-valued and de-glamorised aspect of AI.” [229]. The decisions taken in
the process of collecting and curating data sets for machine learning have significant
influence on the resulting machine learning models and their impact, both positive
and negative [203]. Bender et al. demonstrate the dangers of training large language
models on web crawls with little quality control [14], including how small diversity
in the data can lead to discrimination, inequality, and bias in the learned representa-
tions. Similar problems have been reported for image classifiers [19, 131]. Pauladda
et al. [203] identify another issue with the way we treat data for machine learning:
Oftentimes, following the mantra that more data is better, data is reused outside of the
context it was collected in. This blind use can lead to models that exploit spurious cues
or correlations [203] or shortcuts [82] to make decisions.

This highlights the importance of methods for human inspection of the resulting
models. To establish trust the decisions of a machine learning model, it is not enough
to rely on empirical validation scores like accuracy. In the data-driven approach to
representation learning, we also need to establish trust that the model learns to make
decisions based on relevant aspects of the data, without exploiting spurious correlations
[234] and without amplifying biases [165]. The umbrella term trustworthiness spans
many research directions taken to establish this trust. Explainable artificial intelligence
aims to provide human-understandable explanations for decisions. It is through the
inspection of these explanation that we gain understanding of and ultimately trust
in our models. Complimentarily, computing adversarial perturbations show us how
to induce prediction errors in our models and robustness verification provides formal
guarantees that these errors will not happen.

We see that there are problems to address along the full pipeline of machine learn-
ing projects, from data collection over prediction task design to the inspection of the
trained model.

1.1 Contributions

This work places itself amidst the diverse research landscape of machine learning tasks
with all the challenges this entails:

• We design machine learning tasks for applications where we do not immediately
have access to neatly-labeled training data.

• We contribute a dataset for learning representations as well as a number of suit-
able downstream evaluation tasks.

• We develop methods to inspect models and gain trust into their decisions.

10

More specifically, we first look into the problem of learning representations for the
retrieval of related mathematical expressions. To this end, we propose unsupervised
or self-supervised machine learning tasks. We train convolutional neural networks,
transformer models and graph neural networks to embed formulas from scientific arti-
cles into a real-valued vector space. We collect a dataset of over 28.9 million formulas
from over 900,000 papers from arXiv.org and represent the formulas in different in-
put formats — images, sequences or trees — depending on the embedding model.
We compile an evaluation dataset with annotated search queries from several differ-
ent disciplines and showcase the usefulness of our approach for deploying a search
engine for mathematical expressions. Our embedding approach is resource-efficient:
The collection of formulas has to be processed by our neural models only once to obtain
embeddings. At retrieval time, we use nearest-neighbor search to obtain search results.
The search problem can be solved efficiently using existing index data-structures.

Furthermore, we investigate machine learning tasks in astrophysics. Models are
traditionally trained on simulated data, with hand-crafted features and using multiple
single-task models. In contrast, we build a single multi-task neural model that works
directly on telescope images and uses convolution layers to learn suitable feature repre-
sentations automatically. Our model has multiple outputs, one for each learning task,
which are based on the same hidden representation. This way, we learn representa-
tions that are not only useful for a single task but all tasks. We design loss functions
for each task and, more importantly, propose a novel way to combine the different loss
functions to account for their different scales and behaviors.

We explore another form of supervision that does not rely on simulated training
data, but learns from actual telescope recordings. Through the framework of noisy
label learning, we propose an approach for learning gamma hadron classifiers that can
outperform existing classifiers trained on simulated data. Our approach reduces the
dependency on complicated numerical simulations for generating training data, tak-
ing the data-driven approach to a next level.

Orthogonally, we contribute methods for the inspection of machine learning mod-
els, particularly large, non-linear models that can no longer be understood in their
entirety. We investigate three approaches for establishing trust in models.

We propose a method to highlight influential input nodes for similarity computa-
tions performed by graph neural networks. We test this approach with our embedding
models for retrieval of related formulas and show that it can help understand the out-
put of models.

Next we investigate explanation methods that provide explanations based on the
training process that produced the model. This way we can provide explanations that
are not merely an approximation of the computation of the prediction function, but
actually an investigation into why the model learned to produce an output grounded in
the actual data. More specifically, we propose two different forms of explanations, first
the output of the most influential training examples for an individual prediction, and

11

second an aggregated plot that shows the influence of all trainings-examples grouped
by class. We propose two different methods for tracking the training process and show
how they can be easily implemented within existing deep learning frameworks. Exper-
imental evaluations illustrate the usefulness of our approach, e.g. for image classifica-
tion.

Finally, we contribute a method to verify the adversarial robustness of random
forest classifiers. Our method is based on knowledge distillation into a decision tree
model. We bound the approximation error of using the decision tree as a proxy model
to the given random forest model and use these bounds to provide guarantees on the
adversarial robustness of the random forest. Our robustness guarantees are approxi-
mative, but we can provably control the quality of our results using a hyperparameter.
We demonstrate the usefulness of our approach in experiments with common tabular
datasets and large random forest models.

1.2 Outline

This thesis is structured in four parts. This part, Part 1, proceeds to introduce impor-
tant basic concepts from machine learning in Chapter 2. These concepts will be used
in the remainder of this work and will be familiar to anyone with a scholarly interest in
machine learning. While we focus on the building blocks of deep learning in Section
2.1, we also cover other machine learning models in Section 2.2.

The second part of this thesis is concerned with designing machine learning tasks.
We begin with a literature review on the machine learning tasks relevant for this thesis
in Chapter 3. Starting with tasks that have access to forms of ground truth annotations,
we look into classification tasks with high class imbalances, e.g. detection of instances
of rare classes, tasks that combine multiple sources of supervision in multi-task learn-
ing, and tasks that only have access to noisy versions of the ground-truth learning.
Then we proceed to look into unsupervised representation learning tasks that do not
have access to annotated training data. For this learning paradigm, we cover embed-
ding learning tasks based on contextual similarity as well as other contrastive learning
approaches, but also self-supervised tasks like masking.

In Chapter 4, we develop machine learning tasks for learning to retrieve related
mathematical expressions. We base our studies on related work for unsupervised and
self-supervised representation learning. We show how we collect a dataset of mathe-
matical expressions in Section 4.3 and proceed to investigate two different data repre-
sentations, bitmap representations (Section 4.4) and XML-representations, either se-
quentially (Section 4.5) or tree-shaped (Section 4.6). We investigate different pretrain-
ing tasks and propose a number of different evaluation tasks to measure the usefulness
of our learned representation models.

Chapter 5 investigates different sources of supervision for machine learning in
gamma ray astronomy. We begin by reviewing the three prediction tasks that are cur-

12

rently tackled in the FACT telescope [6]. In Section 5.1, we propose to use multitask
deep network architecture to tackle these machine learning tasks simultaneously in a
shared model. Then, in Section 5.2, we investigate the use of noisy label learning for
separating gamma particles from hadronic particles, a binary classification problem
central in the data analysis pipeline of the FACT telescope. We demonstrate that the
noisy learning approach works in conjunction with the deep-learning pipeline devel-
oped in the first section.

Finally, Part 3 will approach the topic of trustworthy machine learning from the
perspective of the data scientist who is interested in inspecting their trained models,
rather than an outsider who is affected by the model’s decisions. Chapter 6 introduces
related work on the subfields of trustworthy machine learning most relevant to this
part of the thesis: explainable artificial intelligence and robustness.

In Chapter 7, we revisit the idea of searching related mathematical formulas and
investigate the use of visual XAI approaches, including a saliency-map approach, to
explain nearest neighbor queries of embeddings computed with graph neural networks.

Then, in Chapter 8 we investigate methods that track the training history in order
to provide explanations that tackle the problem of explaining “why” a model learned to
predict a class. We present two approaches: The first one presented in Section 8.3 can
work with any optimizer, but requires training with customized random minibatches.
The second approach presented in Section 8.4 can work with standard minibatches,
but requires adapting the implementation of the optimizer, which we illustrate for the
standard SGD optimizer.

Finally, in Chapter 9, we investigate another aspect of trust, namely robustness. In
particular, we investigate adversarial perturbations, i.e. small changes to the input data
that flip the prediction of models, in our case random forest models. Analyzing these
perturbations may give insights into what causes models to fail and produce wrong
predictions. We present an approach based on knowledge distillation from a random
forest into a less complex decision tree model. We present the distillation method in
Section 9.3.1, then we present existing methods on the robustness verification of trees
in Section 9.3.2. We then combine the two methods into a robustness verification
method for random forest models in Section 9.4.

We end this thesis in Part 4 that concludes in Chapter 10 with a discussion of the
contribution and future research directions. In Chapter 11, we find bibliographical
remarks, including discussions of the collaborations that lead to the results presented
in this thesis.

13

14

Chapter 2

A Brief Introduction to Machine
Learning

Deep learning is constructing
networks of parameterized functional
modules and training them from
examples using gradient-based
optimization. That’s it.

Yann LeCun

M
 L is defined by Tom Mitchell as “the study of computer
algorithms that improve automatically through experience” [172]. In
this chapter, we will introduce the foundations in the area of machine
learning that we will build the rest of this thesis on. We will take the

rather unusual road and begin by introducing deep learning, which allows us to intro-
duce many of the terms and definitions used by machine learning in general. Then
we widen our scope and also introduce concepts from the remaining areas of machine
learning.

2.1 Deep Learning

What started out as a term for training neural networks with more than 3 layers [108],
is now an umbrella term for machine learning techniques centered around non-linear
models that are composed from differentiable building blocks with differentiable pa-
rameters trained using variants of stochastic gradient descent optimization with learn-
ing tasks that rely on training data to estimate statistical quantities: Deep Learning. In
this chapter, we will introduce the most important building blocks of deep learning
along with the necessary notation. This chapter is not intended to replace a thorough
introduction to deep learning like the excellent textbook by Goodfellow et al. [92].

As hinted above, deep learning requires three components: A model, an objective
function and an optimizer. First we review their roles and how these components

15

interact, then we will cover the fundamentals of each component individually.
Let fθ denote a function parameterized by a real-valued set of parameters θ. We

will call fθ our model and θ are its weights. Training the model involves minimizing an
objective function L

min
θ
L(fθ) (2.1)

that often involves a given set of training data. For instance in the classical empirical
risk minimization (ERM) for supervised learning, we are given a dataset

D = {(x1, y1), . . . (xn, yn)}

of pairs, where x ∈ X is an example and y ∈ Y is a desired output of our model called
label. When Y is continuous, we speak of regression tasks, for countable discrete sets
Y = {1, . . . ,M} we speak of classi cation tasks. Tasks with M = 2 are called binary
classi cation, while M > 2 is called multiclass classi cation. The ERM objective is

LERM(fθ) =
1

n

n∑
i=1

ℓ(fθ(xi), yi)

for a loss function ℓ 7→ R that judges the quality of the prediction such that ’better’
predictions obtain lower losses. In the next chapters we will see different objectives
for different kinds of supervision. These objectives, however, will share a common
property: They estimate an expected value by computing an empirical mean; hence
they can be decomposed into sums. The optimizers we use to minimize the objective
and train the model will exploit this decomposable structure. When f is differentiable
with respect to θ and L is differentiable with respect to the outputs of f , we can use
gradient-based optimization techniques, most prominently stochastic gradient descent
[186]. Intuitively, the gradient ∇θL of the objective function points in the direction
of the steepest ascent of the function in the parameter space. Modifying θ by taking a
small enough step in the negative direction of the gradient reduces the objective value.
This is the fundamental idea of gradient-based optimization that we will outline in
Section 2.1.3.

2.1.1 Models

Out of the many possible ways to introduce the family of deep networks, this work
choses to approach them via their computation graph. This representations allows us
to elegantly formalize the mathematics of deep network optimization for a very general
set of possible models, but is also very close to the way modern deep learning software
libraries implement deep networks.

e Computation Graph

Deep networks are composed from simple building blocks. In its simplest form, the
model applies different operations f1 . . . fl in a sequence

f(x) = (fl ◦ fl−1 ◦ . . . ◦ f2 ◦ f1)(x)

16

x

f1(·)

f2(·)

f3(·)

f4(·)

θ1

θ3

(a) Sequential Computation Graph

x

f1(·) f2(·)

f4(·, ·)f3(·)

f5(·)

f6(·, ·)

θ1

θ5

(b) Directed, Acyclic Computation Graph

Figure 2.1: Different types of computation graphs

to compute its output. We call these models feed-forward models or sequential models.
Each operation takes one input and computes one output. More complex structures
are possible. First, the function fi could be parameterized by a set of weights θi. Sec-
ond, instead of the sequential structure, we can also design deep networks represented
as directed, acyclic graphs, so-called computation graphs. Now the building blocks are
arranged as nodes in graph that can have more than one output, which branches out
the computation graph, or can take more than one input, which allows to merge dif-
ferent branches of the computation. Nodes with no incoming edges are inputs to the
function, either the actual inputs x or the weights that parameterize the deep network.
Nodes without outgoing edges compute the outputs of our model. There is at least
one output, but more than one outputs are possible. This is illustrated in Figure 2.1.

The order in which the composed function of a deep network is evaluated is deter-
mined by the topological order of the graph. In deep learning, this is referred to as the
forward pass: The forward pass of the whole network executes the forward passes of all
blocks in topological order.

When we optimize an objective function that depends on the outputs of our model,
we extend the computation graph by another node that computes the real-valued ob-
jective based on the one or more output nodes. Now instead of f , the graph expresses
(L ◦ f). As we have noted, optimization for deep learning requires the computation
of gradients. How these gradients are computed is also described by the computation
graph.

We need to compute the gradient of L, the final objective-node in our extended
computation graph, with respect to the inputs x(i) for all nodes in the graph. We
consider a single node. Let f(x) be its function with inputs x(1), . . . x(k) and K
outputs where f (j)(x) is the j-th output. The chain rule of differentiation states

∇x(i)L =
K∑
j=1

(
∂f (j)(x)

∂x(i)

)T

∇f (j)(x)L (2.2)

17

where
(
∂f (j)(x)

∂x(i)

)
is the Jacobian matrix of f (j) w.r.t. x(i). This equality expresses the

dynamic programming approach for obtaining all gradients in the computation graph
famously known as back-propagation [227], the computation (2.2) for a single block
is called the backward function. Starting with the objective node, we can propagate the
vector ∂L

∂x(i) through the graph in reversed topological order. For all other nodes, if we
know the derivative with respect to their outputs, i.e. the inputs of their successors, we
can compute the derivative with respect to their inputs. In particular we can compute
the gradients for all weights of our model, which are represented as input nodes in the
graph. This is called the backward pass.

For instance for the ERM objective, we can compute the gradient of the objective
with respect to the weights from the sum of the gradients of the loss function ℓ that is
differentiable in its first argument as

∇θLERM(fθ) =
1

n

n∑
i=1

(
∂fθ(xi),

∂θ

)T

∇fθ(xi)ℓ(fθ(xi), yi).

To summarize, computation graphs simultaneously specify how to compute two as-
pects of the model: How to compute the output of a model given its inputs and weights
(forward pass) and how to compute the gradient of a loss function with respect to the
inputs and weights (backward pass).

Basic Layers

We continue the introduction of models for deep learning with an overview over the
most important and popular building blocks or layers of deep networks.

Linear Layers Given an input x ∈ Rd, the linear layer computes its output

y =Wx+ b

with weights W ∈ Rd′×d and bias b ∈ Rd′ . Linear layers are often called fully-
connected layers, as each component of the output yk potentially depends on all com-
ponents if the input, since yk =W T

k x. In traditional neural network literature, these
components are called neurons. The backward pass of a linear layer is given as

∇xL =W T∇yL
∇WL = (∇yL)xT

∇bL = ∇yL.

For high dimensional data, these linear layers have a very high number of trainable
weights. For data with spatial or temporal neighborhoods convolution layers are an
alternative with sparse and shared weights [145]. We denote the convolution with a
filter W as

y =W ∗ x

18

and note that it can be expressed as a matrix multiplication with a large, sparse weight
matrix with duplicate entries. Convolution operations for 1d, 2d or 3d tensors, are
efficiently implemented in all common deep learning toolkits.

Non-Linear Activation Functions Composing functions from only linear functions
will always result in a linear function. To gain expressivity, we introduce non-linear
activation functions. There are hundreds of alternatives, we will just introduce four
of them. We begin with activations that are applied elementwise to a vectorial input.
Traditional neural networks use the sigmoid activation

σ(a) =
1

1 + exp(−a)

which outputs values in the range (0, 1) which is convenient for modelling probabili-
ties. Modern deep networks often use the ReLU activation [80]

[a]+ = max(0, a)

which sets all negative values to zero, thereby inducing sparse representations. While
the sigmoid unit reduces the magnitudes of gradients which becomes a problem in
deep networks, the ReLU activation either preserves the gradient or sets it to zero.
This has been shown to reduce the vanishing gradient problem [90]. Many variants of
the ReLU function have been proposed, mostly in order to keep gradient information
for negative inputs. One popular choice is the Gaussian Error Linear Unit (GELU)
defined by Hendrycks and Gimpel [105] as

g(a) =
a

2

[
1 + erf(a/

√
2)
]
.

Finally we introduce the softmax activation that is not an element-wise activation,
but transforms a vectorial input a ∈ Rd and returns a categorical probability distribu-
tion

s(a)i =
exp(ai)
d∑

j=1
exp(aj)

for i = 1, . . . , d.

This activation is especially useful for transforming the output of the last layer of deep
networks to compute class probabilities.

Batch-Normalization Batch normalization [115] is one of the success stories of deep
learning. A seemingly simple operation that speeds up training, reduces the burden of
hyperparameter tuning regarding learning rates and weight initializations and often
even helps generalization.

The forward pass of batch normalization receives a minibatch of inputs x1, . . . xm
and computes its outputs yi in the following steps:

µ =
1

m

m∑
i=1

xi

19

σ2 =
1

m

m∑
i=1

(xi − µ)2

yi = (xi − µ) · (σ2 + ϵ)−
1
2 for i = 1, . . . ,m

where µ is the sample mean, σ2 is the sample variance and ϵ is a small constant for
numerical stability that ensures that we never divide by zero.

Batch normalization relies on minibatches of data, sufficiently large as to allow the
estimation of the mean and variance of the feature vector x. At inference time, we also
need to make predictions for single data points, which does not allow the computation
of variances and renders the definition of means void. To solve this problem, during
training estimates of mean and variances are updated. Usually we use exponential
smoothing to compute running means

µ(t) = (1− η)µ(t−1) + ηµ (2.3)

(σ2)(t) = (1− η)(σ2)(t−1) + ησ2 (2.4)

for a momentum parameter η ∈ [0, 1). At inference time, we use the running statistics
µ(t), (σ2)(t) instead of computing batch statistics.

It is important to note that during training, we do a full backpropagation pass
through this forward computation, also backpropagating the loss gradient through µ
and σ2, hence gradients with respect to x are not just scaled and shifted (see e.g. [136]
for a derivation of the backward pass).

Self-Attention Self-attention, a special form of the attention mechanism [273], is a
network layer that learns how to aggregate inputs structured in a sequence.

We assume that our input is structured like a sequence, e.g. s.t. x = [x1, . . . , xk] ∈
Rd×k for a fixed length k. We compute three vectorial representations of the input,
the key k, the value v and the query q, via

k = Kx ∈ Rd′×k (2.5)

v = V x ∈ Rd′×k (2.6)

q = Qx ∈ Rd′×k (2.7)

with weights K,V,X ∈ Rd′×d. Now we compute the so-called attention matrix

A = softmax(kT q) ∈ Rk×k s.t.
∑
i

A·i = 1 (2.8)

and use the attention weights that sum to 1 to compute the final output

y = vA or see below for componentwise (2.9)

yi =
k∑

j=1

Ajivj (2.10)

20

The attention matrix A is the source of non-linearity of the self-attention layer. It
controls how the vi values are aggregated at each step of the sequence. Multi-head
self-attention computes a specified number of self-attention layers in parallel, concate-
nating the parallel outputs into a single output.

Graph Convolutions Graph CNNs have been applied in many contexts, for in-
stance for classifying molecules [67] or classification and segmentation of point-clouds
[281]. Like classic convolutional neural networks for image processing, graph con-
volutions compute feature maps based on local neighborhoods and thus can exploit
relations between nodes in a graph. While in CNNs, we have features associated with
each pixel in the pixel grid and neighborhoods are defined by this grid, in graph CNNs
we have features associated with each node of the graph and neighborhoods are defined
by the edges in the graph. We define graph structures x = (V,E) as a tuple of node-
features V and edges E. Let |x| denote the number of nodes in x. We assume that
V ∈ R|x|×d where vi are the features of the i-th node. A graph CNN maps an input
graph to an output with transformed feature vectors in a d′-dimensional output space
but with identical edge structure. LetN (i) denote the set of neighboring nodes of the
i-th node.

Borrowing the notation of Morris et al. [179], an abstract graph network layer can
be described by its output

v′i = ψ
(
vi,□j∈N (i) ϕ (vi, vj , eij)

)
where ϕ, ψ are differentiable buildingblocks such as linear transformations or neural
networks, □ denotes a differentiable, permutation invariant function like sum, mean
or max and N (i) denotes the set of all neighboring nodes of i in the tree with edges
E. Note that ϕ might use information about the edges in the form of vectorial edge-
features eij . An example of a simple graph convolutional layer is

v′i = σ

W ∑
j∈N (i)∪i

vj

which linearly transforms all nodes using a weight matrixW , aggregates by computing
the sum of all neighborhoods and applying a component-wise activation function, in
this case the sigmoid function σ.

We can use the average-pooling to aggregate all node-features of a graph into a
single feature vector for a graph.

2.1.2 Objective Functions

We begin by discussing the objective function at heart of most supervised machine
learning, the empirical risk minimization objective introduced earlier.

21

Empirical Risk Minimization

Empirical risk minimization is the predominant objective function for supervised learn-
ing tasks. It is centered around the concept of the risk of a model. Let ℓ : Ŷ ×Y → R
be a loss function that takes an output of a model ŷ ∈ Ŷ and a desired output y ∈ Y
and computes a score of how wrong the prediction is. A simple example is the 0/1 loss
that takes a vector of class probabilities ŷ and the true class y and checks if we assign
the largest probability to the correct class

ℓ0/1(ŷ, y) =

{
0 if arg maxi ŷi = y

1 otherwise.

The risk of a model fθ is defined as the expected loss over the full data distribution

R(fθ) = E(x,y)ℓ(fθ(x), y) (2.11)

When we do not have access to the data distribution, but only to a finite sample of
datapoints that are independent and indentically distributed (iid), we consider the em-
pirical risk function as a mean to estimate the stochastic quantity using finite amounts
of data

R(fθ) =
1

n

n∑
i=1

ℓ(fθ(xi), yi) (2.12)

We hope that through minimizing the empirical risk

arg min
θ
R(fθ) = arg min

θ

1

n

n∑
i=1

ℓ(fθ(xi), yi), (2.13)

we obtain a model that has a small true risk. We employ validation techniques to verify
this: The most common validation protocol in deep learning literature is the use of a
train-test split. We split our dataset into two disjunct parts. Then we train on the
training set and evaluate the risk on the test set. It is important that the two sets are
independent. Another popular albeit more computationally expensive choice is cross-
validation, where we divide the dataset into k disjunct chunks and use each chunk as
test data once, training on the remaining chunks. This way we obtain k estimates of
the risk [100].

When the predictions {fθ(xi), i = 1, . . . , n} are independent, we can bound
the difference |R − R| using concentration inequalities like Hoeffding’s bound or
Bernstein’s bound [24]. This is the case when we evaluate the risk on a sample of iid.
holdout data, e.g. the test-data or in cross-validation. When we want to bound the
difference on the training data and select fθ by running a learning algorithm on the
data, eg. by empirical risk minimization

fθ = arg min
θ
R(fθ),

22

f depends on all xi and consequently, the f(xi) are no longer independent, even if
the xi are sampled independently. Statistical learning theory [176,240,272] attempts
to bound this difference when functions fθ are chosen from a family of functions.

When the model performs substantially better on our training data than on val-
idation data, we speak of over tting. Traditionally the term is used, when we find
a generalization gap, i.e. the difference |R − R| > 0. Lately, the meaning of the
term overfitting has changed in deep learning: Deep networks with many parameters
or overparameterized models, i.e. models with more parameters than input data, can
easily fit any dataset with near-optimal training loss and we find that during training
the validation loss still decreases, the so-called double-descent [296,297]. We speak of
overfitting when during training, the loss on a holdout set stops decreasing and starts
to increase again.

Popular Loss Functions

For classification tasks, the most popular loss function is the cross entropy loss, which is
the negative log-likelihood of the predicted probability of the true class.

ℓCE = − log ŷy

where ŷ is a probability vector ŷ ∈ [0, 1]d with ||ŷ||1 = 1 and y ∈ {1, . . . , d}. In
deep learning we usually use ℓCE on the outputs of a softmax activation function.

Another important loss is the hinge loss known from support vector machines

ℓhinge(ŷ, y) = max
(
0, 1−

[
ŷy −max

i ̸=y
ŷi

])
that is zero when the model’s output for the true class exceeds the outputs for all the
other classes by a margin of 1 or more. This notion of a margin is useful only when we
control the magnitudes of the model’s outputs. In support vector machines this is done
through l2-regularization. For deep networks we can either use activations that limit
the range of the outputs, e.g. sigmoid or softmax, or apply explicit normalization [62]
to the output by scaling with the inverse of its norm. For the case of binarized neural
networks, the maximum output is known, and we can change the margin constant
from 1 to a more appropriate value [33].

2.1.3 Optimizers

We will cover the basics of optimization methods used for deep learning in this section.

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an optimization algorithm for minimization of
expecations over distributions that we can sample from. The most relevant problem
that fits this description in machine learning is the risk of a classifier

min
θ
R(fθ) = min

θ
E(x,y)ℓ(fθ(x), y).

23

Starting with an initial θ(0), we iteratively refine θ by sampling a data point (x(i), y(i))
and evaluating its stochastic gradient

∇θℓ(f
(i−1)
θ (x(i)), y(i)).

Then we take a small step in the negative direction of the gradient, the direction of
steepest descent for ℓ(f (i−1)

θ (x(i)), y(i)) in order to optimize the risk. We arrive at

θ(i) = θ(i−1) − η∇θℓ(f
(i−1)
θ (x(i)), y(i))

where η > 0 is a small step size, also refereed to as learning rate in the context of
machine learning. In practice, however, rather than sampling the examples during the
optimization we instead work on a finite dataset and iterate over the data in random
order.

The use of stochastic gradients in contrast of using the full gradient computed on
all available data greatly reduces the runtime cost for large datasets. Because gradients
are linear, the stochastic gradients are unbiased estimators of the full gradient, i.e.

E(x,y)∇θℓ(fθ(x), y) = ∇θR(fθ)

however the variance of this estimator will often be high. Hence instead of estimating
the gradient based on a single data point, in practice we use small minibatches of data
to estimate the gradient. Let B(i) = {(x(i)k , y

(i)
k | k = 1, . . . ,m} be the minibatch

sampled at the i-th iteration. The size of these minibatches m, the batch-size, is an
important hyper-parameter. We update θ based on the stochastic gradient estimated
on B(i)

θ(i) = θ(i−1) − η

m

m∑
k=1

∇θℓ(f
(i−1)
θ (x

(i)
k), y

(i)
k)

In practice, we usually do not have the possibility of sampling the distribution, but
only have access to a fixed dataset for training. We can still apply SGD by iterating
over the data set a number of times. We call this number of iterations the number of
epoches where an epoch is one iteration over the full dataset.

Momentum and Adam

Stochastic gradient descent is a so-called rst-order method, i.e. it only uses the first
derivative for optimization. Access to higher order derivatives gives an optimization
algorithm additional information about the curvature of the objective function. For
instance, Newton method uses the second derivative, the Hessian matrix. Unfortu-
nately, computing the quadratic Hessian matrix is intractable for large deep networks.
Thus we focus on first-order methods in this section, but consider additional tricks that
help convergence with noisy stochastic gradients.

The first trick, momentum, does not use the raw stochastic gradients, but keeps a
running average of the gradients and uses this more stable estimate for updating the

24

weights. The influence of the old estimate is controlled using a parameter β ∈ (0, 1]
referred to as momentum. For notational simplicity we show the computation without
minibatches:

v(i) = βv(i−1) + η∇θℓ(f
(i−1)
θ (x(i)), y(i))

θ(i) = θ(i−1) − v(i)

Common choices for β are 0.9 or 0.99.
Probably the most widely-used SGD-variant for deep learning is Adaptive Moment

Estimation (Adam) [134]. It aims to choose learning rates for each parameter individu-
ally, such that weights that frequently receive substantial updates have smaller learning
rates than weights with infrequent updates. To this end, Adam tracks the magnitudes
of the gradients and the element-wise-squared gradients in running averages. With
v
(0)
1 = v

(0)
2 = 0, we update

v
(i)
1 = β1v

(i−1)
1 + (1− β1)∇θℓ(f

(i−1)
θ (x(i)), y(i))

v
(i)
2 = β2v

(i−1)
2 + (1− β2)

(
∇θℓ(f

(i−1)
θ (x(i)), y(i))

)2
θ(i) = θ(i−1) − η ·

(√
v
(i)
2 /(1− βi2) + ε

)−1

· (1− βi1)−1v
(i)
1 .

More Design Choices

Typical deep learning pipelines include a large number of techniques and tricks, most
coming with their own set of hyperparameters to tune. We discuss some common
design choices.

Initialization There are many ways of randomly initializing the weights in deep net-
works. The most common initialization scheme is Glorot or Xavier initialization [89]
where weights are drawn from a normal distribution with zero mean and variance in-
versely proportional to the size of the layer. More formally, when a linear layer maps
from d to d′ dimensions, we chose

σ =

√
2

d+ d′

and initialize the weights by sampling a normal distribution wij ∼ N (0, σ). Alterna-
tively, we can sample from a uniform distribution wij ∼ U

(
−
√
3σ,
√
3σ
)
.

Regularization We often want to encode additional desired properties of our model
into the objective function or into the training process. These properties often relate to
the ability of our model to generalize to unseen data: By penalizing the proxy measures
for the complexity of the model, we wish to obtain ’simpler’ models that generalize
better.

25

A classic example of regularization is l2-regularization, where we additionally pe-
nalize the l2 of the (vectorized) weights of a network and include an additional+λ||θ||22
in the objective that has a hyperparameter λ that controls the strength of regularization.
In the context of deep learning this is often called weight decay and is implemented in
the optimizer rather than in the objective function: After each gradient step, the mag-
nitude of the weights is reduced by a factor of λ, which, mathematically is the same
as adding the term to the objective. We can use other norms for regularization, l1 is a
popular choice for inducing sparsity [260] and the nuclear matrix norm is a popular
choice for inducing low-rank transformations in linear layers [164].

Dropout regularization [247] randomly sets the values of neurons to 0 during train-
ing, while during testing the network uses all of its neurons, appropriately scaled. Intu-
itively, this forces the network to learn redundant representations that still work under
this stochastic noise, thereby reducing the capacity of the network. Indeed, dropout is
related to nuclear norm, low-rank regularization [41].

Early Stopping, i.e. stopping the training before convergence, e.g. after a prede-
fined number of epochs or as soon as the models performance measured on a separate
development set stops improving, also biases the training process towards simpler mod-
els.

Learning Rate Schedules Tuning the learning rate or step-size for training deep
learning remains a challenge. For good convergence to optimal objective values, we
often adapt the learning rate during training, so-called learning rate scheduling. Instead
of using a constant learning rate, decreasing it during training has shown benefits. A
simple schedule is step-wise decrease, where at pre-specified epochs we decrease the
learning rate by a specified factor. A common choice is decreasing the learning rate by
1/2 twice during training, e.g. after 30 and 60 epochs for 100 epochs of training.

Data Augmentation When we want to reduce the generalization gap between train-
ing and test performance, conventional wisdom dictates that we find more training
data. However, obtaining more training data is expensive. Instead, we can apply cheap
randomized heuristics to obtain artificial training data by making small modifications
to examples in our existing data. We call this process data augmentation. A simple
example is adding Gaussian noise with small variance to the original data points. De-
pending on the data modality, we can apply domain-specific augmentations that in-
corporate background knowledge about invariances. For instance for images, we can
apply a number of image transformations like cropping, scaling, rotating, changing
the colors, brightness or contrast, etc. A popular approach is RandAugment [305],
where we randomly choose a number of these transformations and randomly choose
the intensity of the transformations. We may also obtain new training example by in-
terpolating between two or more existing examples. Examples of this approach include
SMOTE [20] and Mixup [298].

26

xc1 ≤ θ1

xc2 ≤ θ2 xc3 ≤ θ3

0.7 0.8 0.3 0.6

Figure 2.2: Example decision tree of depth 2 for binary classification

2.2 Tree-Based Machine Learning Models

After discussing deep learning and some of its many design choices, we know cover
tree-based machine learning models. We begin by discussing decision trees, then we
cover random forest models, i.e. ensembles of decision trees.

2.2.1 Decision Trees

Decision trees are family of models that follow a different structure than deep networks.
While deep networks are, for the most part, a composition of linear and non-linear
transformations, decision trees work by recursively partitioning the input domain by
axis-aligned cuts. We will first formally define the family of decision tree models, then
we will introduce the standard greedy decision tree induction algorithm for learning
decision trees from data.

Model Structure A decision tree f(x) for classification tasks can be represented by a
binary tree that describes how a given example x is classified. We start the classification
at the root node. Each internal node vi, identified by index i, computes a comparison
xci ≤ θi on a feature ci using a split threshold θi. Depending on the outcome of the
comparison, the classification recursively proceeds in the left or in the right child node.
Each leaf node stores an output probability vector in the multiclass setting or a single
probability in the binary classification setting. These probabilities fvi are output when
we reach a leaf node during inference. In conclusion, each node v of the tree is a tuple
of feature c, threshold θ, left and right child denoted by l_child(v) and r_child(v),
and output probability fv, where the output probability is only used if the node has
no children. The set of leaf nodes of the decision tree f is denoted by V (f). We see a
small example in Figure 2.2.

Greedy Decision Tree Induction The de-facto standard method for training deci-
sion trees given a set of labeled training data (xi, yi) is top-down greedy decision tree
induction [30, 214]. We recursively split the full dataset X using the split (c, θ) that
locally optimizes a so-called split criterion until a termination criterion is fulfilled. More

27

specifically, we chose

c, θ = arg min
c,θ

F ({(x, y) ∈ X | xc ≤ θ}︸ ︷︷ ︸
=:left(X,f,θ)

, {(x, y) ∈ X | xc > θ}︸ ︷︷ ︸
=:right(X,f,θ)

and recursively continue on left(X, c, θ) and right(X, c, θ).
Common choices for the split criterium F are the Gini score that computes the

weighted sum of Gini impurities on the left and right side of the split value

Fgini(X) = |left(X, c, θ)| ·G(left(X, c, θ)) (2.14)
+ |right(X, c, θ)| ·G(right(X, c, θ)) where (2.15)

G(X) = 1− |X|−2
C∑

j=1

 |X|∑
i=1

1[yi = j]

2

(2.16)

and the entropy measure, weighted analogously

Fent(X) = |left(X, c, θ)| ·H(left(X, c, θ)) (2.17)
+ |right(X, c, θ)| ·H(right(X, c, θ)) where (2.18)

H(X) = −
C∑

j=1

|X|−1

|X|∑
i=1

1[yi = j]

 log

|X|−1

|X|∑
i=1

1[yi = j]

 (2.19)

When we contrast the entropy measure with the measure with no new split, we can
interpret the difference as information gain and use this as a termination criterion.

Different termination criteria are possible. Obviously, stopping when |X| = 1 is
the ultimate stopping criterion. Other choices are building trees up to a user-specified
maximum tree depth. In general, smaller trees generalize better whereas deeper trees
have higher capacity to fit complex decision boundaries, yielding the traditional trade-
off seen in statistical learning. We can also stop once the split criterion computes an
impurity score below a user-specified threshold or once the number of training data
points in a node is below a threshold. Each of these termination criteria is represented
by tunable hyperparameters in common machine learning frameworks.

2.2.2 Random Forest Models

To improve the classification performance of a single decision tree, we can use a col-
lection of decision trees and use their average prediction to classify examples. This
technique is called ensembling. Obviously, we need to obtain a set of different decision
trees. To this end, Breiman has proposed bagging [28], where we draw bootstrap sam-
ples, i.e. samples of the same size as the original dataset drawn with replacement, and
train classifiers on these bootstrap samples. The random forest classifier, proposed by
Breiman [29], goes one step further and also uses a random subset of features, drawn
without replacement, usually of size

√
d where d is the original dimensionality of the

data. Using these bootstrap samples of reduced dimensionality, we train decision trees

28

using the greedy top-down induction algorithm discussed above. The resulting ran-
dom forest classifiers have been shown to be among the most successful classifiers on a
wide range of datasets [75].

Recent results illustrate that random forests work well in the interpolating regime,
i.e. in situations where the individual decision trees are trained to classify their re-
spective training sets perfectly [34]. Traditional theoretic frameworks for investigat-
ing generalization of random forests, like the bias-variance-decomposition [36] or the
C-bound [83] for majority vote random forest, still fall short of fully explaining the
success of random forests.

29

30

Part II

Designing Machine Learning Tasks

31

Chapter 3

Related Work on Machine
Learning Tasks

H
 do we turn data into actionable knowledge or models that guide de-
cisions? Machine learning provides the answer in the form of machine
learning tasks that specify desiderata for models, and in the form of ma-
chine learning algorithms that train models on the specified tasks. In the

last section we have seen the objectives of empirical risk minimization for supervised
learning, e.g. for classification we can use a model that minimizes the cross-entropy-
loss of its output with respect to the ground-truth labels. In this chapter we review a
wider range of objective functions, covering variants of supervised learning and unsu-
pervised representation learning approaches.

3.1 Supervised Learning

We present related work on machine learning tasks that work with variants of full su-
pervision that go beyond the traditional empirical risk minimization objective covered
in the last chapter.

3.1.1 Supervised Learning under Class Imbalance

In classification problems with strong class imbalance, i.e. situations where some classes
are much more frequent than other classes, plain empirical risk minimization may yield
undesirable models. Solutions include weighting the training examples [127] or, over-
or undersampling the dataset to obtain a balanced dataset [20].

Alternatively, for binary classification problems, formulating the training objective
as a pairwise ranking task has been proposed. Intuitively, for any pair of data points
(x, y), (x′, y′), whenever y ̸= y′ we want the model to output a higher probability
for class +1 for the example with positive label [51]. This yields the risk functional

E
(x,y),(x′,y′)

1[y = +1 ∧ y′ = −1] · 1[f(x) > f(x′)] (3.1)

33

In order to apply numerical optimization methods, we substitute the indicator
function with a convex loss function like the hinge loss and obtain the following train-
ing objective for a finite data set

L(f) = 1

K

∑
(x,+1)∈D

∑
(x′,−1)∈D

max(0, 1− (f(x)− f(x′)) with (3.2)

K = |{y | (x, y) ∈ D ∧ y = +1}| · |{y | (x, y) ∈ D ∧ y = −1}| (3.3)

It has been shown that this objective function directly optimized the area under
the ROC-curve, an important quality measure in retrieval as well as imbalanced clas-
sification [162, 274]. For linear models f(x) = ⟨w, x⟩ it holds that f(x)− f(x′) =
⟨w, x−x′⟩, so we can generate new training data comprised of the differences of pairs
of examples. Training using all combinations of data points quickly becomes infeasible,
so randomly generating training batches is a more efficient algorithmic option [48].

We include pairwise ranking in our discussion as it illustrates that objective func-
tions may compute losses over more than one output of the model; pairwise uses the
models twice on a pair of examples from the training data. We will see more exam-
ples of this pattern in the following sections, the formulation is particularly similar to
similarity learning approaches.

3.1.2 Noisy Label Learning

For binary classification problems, we traditionally assume access to ground-truth la-
bels. In contrast, in binary classifications problems with noisy labels, we only have
access to labels that are noisy, i.e. they may be flipped according to a random pro-
cess [84, 183, 235]. We consider so-called class-conditional label noise: Here labels are
flipped according to probabilities that depend only on the true class [183]. Let ŷ =±1
denote a noisy label and y =±1 be its corresponding clean label. Then the noise pro-
cess is defined by two probabilities p+, p−. We define p+ := P (ŷ = −1 | y = +1) as
the probability of flipping a clean positive, and p− := P (ŷ = +1 | y = −1) for the
probability of flipping a clean negative label. The process is summarized in Figure 3.1.

Learning under this noise model is feasible when noisy labels are correct on average
[167, 183], i.e.

p+ + p− < 1. (3.4)

y = +1

y = −1

ŷ = +1

ŷ = −1

(1− p+)

p+

p−

(1− p−)

Figure 3.1: The Flip-Probabilities for Class-Conditional Label Noise

34

Equivalently, we can say that learning is feasible if it is more likely to observe a noisy
positive given a true positive than given a true negative

P(ŷ = +1 | y = +1) > P(ŷ = +1 | y = −1).

According to Scott et al. [235, Proposition 1], there is a one-to-one correspondence
between the optimal noisy thresholds θ ∈ R and the optimal clean thresholds λ ∈ R.
Namely, ∀x ∈ X ∀λ ≥ 0 ∃ θ ≥ 0 such that

P(x | Y = +1)

P(x | Y = −1)
> λ ⇔ P(x | Ŷ = +1)

P(x | Ŷ = −1)
> θ.

Indeed, for a Bayes-optimal classifier for the noisy labels, f(x) = P (ŷ = +1 | x) we
can use the threshold θ∗ = (1− p+ + p−)/2 and output +1 only if the f(x) ≥ θ∗.

Another direct consequence of this result is that the area under the ROC curve is
immune to label noise [167]. For other measures such as accuracy, we can obtain good
classifiers by training on noise data and then finetuning the decision threshold [167].
If we have access to a small sample with clean labels, this sample can be used to estimate
the threshold [21]. However, in many situations we do not have access. If both p+
and p− are known, we can set the threshold as described above. Alternatively, we can
apply label-dependent weights in the loss function during training [84, 183].

When both noise rates are unknown, we can try to estimate them from noisy data
[167, 235]. This requires additional assumptions. For instance, Menon et al. [167]
assume that there are areas of the feature space where the labels are clean and the other
clean class has zero probability. Under class imbalance, this becomes more challenging
[173].

Other two-step procedures that estimate the transition matrix between the noisy-
and true-classes have been proposed. A common assumption is the existence of so-
called anchor points where we can assume that the examples are correctly labeled. For
instance Patrini et al. [202] use the most confidently predicted examples for each class
as anchor points and estimate the transition matrix based on these few points. Then the
transition matrix is applied at inference time to compute the estimated true-class prob-
abilities from the predictions for the noisy class. Building on this so-called forward-
correction procedure, Xia et al. [286] and Yao et al. [288] propose other approaches for
estimating the transition matrix from noisily-labeled data. In the context of deep learn-
ing, methods for training the prediction model and estimating the transition matrix
simultaneously during training have been proposed, e.g. by Li et al. [153].

3.1.3 Multi-Task Learning

In multi-task learning [39,40] we want to train a model that can simultaneously solve
more than one prediction tasks given the same input data. Since the outputs required
for the different tasks may vary, usually models are constructed to have multiple outputs
where the outputs share significant parts of the computation.

By exploiting similarities between related tasks we can use information in the train-
ing signals of other tasks and obtain better generalization [40]. Intuitively, multi-task

35

learning increases the amount of training data, as we also benefit from the training
data of the related tasks. Additionally, the space of possible models is constrained to
the intersection of task-specific models, reducing the statistical complexity of learn-
ing [40, Sec. 3.2.4]. Another benefit is the resource efficiency: When we can share
parts of the model for a number of tasks that need to be solved together frequently, we
save computation time, memory and, more generally, energy.

In the case of deep networks, the models may learn a shared hidden representation
and apply separate prediction heads on top of that shared representation. Formally,
we have f(x) = [f1(x), . . . fk(x)]

T with fi(x) = hi(g(x)) with a shared feature
encoder g(x) and prediction heads hi(z). Each of these prediction tasks is associated
with its own objective and loss function.

During simultaneous training, all task objectives are combined and jointly trained.
A naive way to achieve this is to add all loss values and optimize their sum. This works
well if for all examples we have labels for all tasks and if the loss values fall into a
similar numeric range. Indeed, Kurin et al. demonstrate that in fair evaluations, this
approach outperforms more complicated methods in a number of benchmark tasks
[141]. When loss ranges differ significantly, we may need to reweight the objectives in
a weighted sum, as to not put too much emphasis on individual objectives. How these
weights are chosen has a strong effect on the resulting behavior of the model [132].
The task weights are additional hyperparameters that need resource-intensive tuning.
Kendall et al. [132] propose to automatically select weights based on the homoscedastic
uncertainty of the tasks. By explicitly modeling the variance of continous outputs and
the temperature of discrete outputs using tunable parameters that are part of the overall
objective, we obtain a fully differentiable objective function that includes task weights,
where naively tuning weights would converge to a zero weight vector solutions [132].
When our training data is labeled incompletely, i.e. each example only has labels on
a subset of tasks, we can optimize the objectives in an alternating fashion, where we
optimize a different task at each weight update in an SGD-like optimization algorithm
[49].

Ruder distinguished between hard parameter sharing and soft parameter sharing
methods [224], where hard parameter sharing forces the multitask models to use ex-
actly the same model parameters up to the individual prediction heads, whereas in soft
parameter sharing the task-specific models are only regularized to be similar, e.g. by
penelizing the pairwise squared Euclidean distances of the corresponding layer weight
matrices.

With the availability of large collections of pre-trained model, a second multi-task
paradigm has been introduced: Sequential Training. Here we take a model trained on
a set of tasks and train it on a novel task. Hence the user training the new model may
not have access to the training data used for the earlier model. This introduces the
problem of catastrophic forgetting [79], where after training the problem on the novel
task, the performance of the previous tasks degrades.

36

ϕ(x)
Encoder

ϕ : X → Rk
Decoder

ϕ′ : Rk → X
Input:
x

Output:
x̃ ≈ x

L = minExℓ(x, ϕ
′(ϕ(x))

Figure 3.2: The Auto-Encoder architecture with its components. The training objec-
tive is minimizing the expected reconstruction error minExℓ(x, ϕ

′(ϕ(x)) and we train
using an unlabeled dataset.

3.2 Representation Learning

In this Section we will cover approaches that work without full supervision. Instead
we learn representations based on other sources of supervision. Particularly for high-
dimensional data, learning a more compact representation that captures the latent
structures of the high-dimensional space is an important topic [15]. Learning a good
representation that captures useful information for our data makes it easier to solve
downstream tasks like similarity search [209], transfer learning [73], or few-shot clas-
sification [251]. We will cover different ways to obtain supervision signals in this sec-
tion.

3.2.1 Auto-Encoders

The first source of supervision signals we consider in this chapter is reconstruction.
We want to learn a representation that can be approximately inverted, such that we
can reconstructed the input given the representation.

Principal component analysis (PCA) [100] is a linear representation learning algo-
rithm that finds the orthogonal, linear map into a lower-dimensional subspace that has
minimal reconstruction error measured in squared Euclidean norm. Let d be the origi-
nal dimensionality of the data. We can chose the dimensionality of our representation,
k ≤ d. The weight matrix of our PCA representation are the k leading eigenvectors
of the covariance matrix of out training data.

Auto-Encoders [26,109] use the same training objective idea, i.e. minimizing the
reconstruction error between input and reconstruction as measured by a loss function,
but use deep networks rather than linear functions to compute the hidden represen-
tation (encoder) and the reconstruction (decoder) [15]. This is depicted in Fig 3.2.
For real-valued inputs like images or timeseries, we often use the Euclidean distance
as loss function. For textual data that is represented as bag-of-words, we can use the
negative log-likelihood of predicting the original tokens given the token probabilities

37

computed by the decoder [52, 207].

3.2.2 Contextual Embeddings

One popular class of unsupervised pretraining algorithm is built around the distribu-
tational hypothesis. Formulated eg. by Harris in 1954 [99], it postulates that objects
that occur in similar contexts are similar. In the context of natural language, this means
that words are similar when the words that frequently surround it (the context) are
similar. Put differently: The semantic meaning or grammatical function of a a word
can be derived by its context. We can exploit these ’distributational regularities’ for
designing representation learning algorithms. This is the second source of supervision
signals covered in this chapter: Contexts.

The idea of contextual embeddings for natural language processing was made popu-
lar by Mikolov et al. [168–170], who proposed several approaches for learning vectorial
representations of words. We introduce their so-called Skip-Gram approach: Starting
from a large text corpus T , let w1w2 . . . wk be its tokenized sequence of words. Let V
denote the vocabulary, i.e. the set of words that we consider from the corpus. The vo-
cabulary might contain a special <unk> token for handling out-of-vocabulary tokens.
For simplicity, we assume single large text rather than a collection of texts. We define
contexts of words using a positive integer k and say thatwj occurs in the contexts ofwi

if |i−j| ≤ k with i ̸= j. We denote the set of all words in the context ofwi as Ck(wi).
When handling a collection of texts, we have to define the contexts accordingly, such
that contexts do not cross over the boundaries of the individual texts.

We want to learn a model fθ : V → Rd that maps a given word into a vector
space such that we can predict which other words frequently appear in its context.
We can extend the model to (fθ,W) with W ∈ R|V|×d such that s(Wfθ(w)) com-
putes word-probabilities using the softmax function s(·). Now we define the objective
as minimizing the negative log likelihood of the predicted word probabilities in the
contexts of tokens in the data

L(θ,W) = Ew∼T ,w′∈Ck(w) − log sw′ (Wfθ(w)) (3.5)

where words from the context are selected with uniform probability. For large vocabu-
laries, computing the softmax operation is computationally expensive. One alternative
proposed by Mikolov et al. is using the hierarchical softmax operation [168,178] that
decomposes the computation of the output probabilities along a binary tree which en-
ables the computation of output probabilities inO(log |V|) for balanced trees. Instead
of using balanced trees, in practice we often use Huffman trees. This results in smaller
tree-depth for frequent words at the cost of larger depth for the infrequent tokens.

Another alternative to eliminate the softmax operation is negative sampling. In-
stead of estimating word probabilities, we turn the problem into a binary classification
problem: Given a pair of words, decide whether they appear in the same context or
not. The original formulation uses separate models θ, θ′ for embedding the words and

38

the contexts, though there are works that just rely on the same model (e.g. [121]).

L(θ, θ′) = E
w∼T

w+∈Ck(w)

[
− logσ (⟨fθ(w), fθ′(w+)⟩) (3.6)

+K E
w− ̸∈Ck(w)

− log(1− σ (⟨fθ(w), fθ′(w−)⟩))
]

(3.7)

Algorithmically, we randomly sample K negative examples and apply stochastic gra-
dient descent on each of these samples. Sampling the negative samples can be done
uniformly at random, but Mikolov et al. [169] find that chosing them with probability
proportional to frequency of a token raised to the power 2/3 yields better results.

Levy and Goldberg show that the objective function can be expressed as a ma-
trix factorization approach of the shifted pointwise mutual information matrix [149],
which connects the approach to other matrix factorization approaches like SVD.

We note that Mikolov et al. also proposed another variant for learning word em-
beddings, the CBOW model. In this formulation, we use the full context as input and
predict the original token. This idea has later been called masking and is at the core of
training modern, large-scale language models. We will discuss it further later in this
Chapter.

The use of contextual embeddings is not limited to word embeddings. For instance,
Sermanet et al. [238] use it to embed individual image frames from a video in a shared
vector space. Here the context is defined by the time difference between two frames.

3.2.3 Representation Learning based on Similarity

Next we consider a class of training objectives originally proposed for similarity learning
where ground-truth similarities are known. However, we can also apply weaker notions
of similarity such as the contextual similarity introduced in the previous section or the
augmentation approaches introduced in the next section. This was proposed already
by Becker and Hinton [12], who train representations by maximizing the similarity of
representations of separate but related parts, e.g. adjacent patches of the same input
image or different modalities of the same input (e.g. vision and audio of a video). Note
that our introductory example of contextual embeddings also follows the principle of
maximizing similarities. Let us first consider the loss functions used.

Margin Approaches for Pairs and Triplets

Mobahi et al. [174] propose the Siamese loss: Given a desired margin ∆ ≥ 0, the dot
product of the representations should be larger than ∆ for a similar pair and less than
−∆ otherwise. We use y =±1 to encode the true similarity of unit-length, vectorial
representations x1 and x2 and define

ℓsiam(x1, x2, y) = max(0,∆− y⟨x1, x2⟩). (3.8)

The model f is used twice to calculate the loss, motivating the term Siamese network,
because we can also view this as two models that share all their weights (twins) and
that are connected by the loss function.

39

The second loss works on triplets, so that the model is used three times per train-
ing example: Given an example x, the so-called anchor, a similar example x+ and
a dissimilar example x−, we want the model to judge the similar pair as more simi-
lar then the dissimilar pair. Balntas et al. propose to formulate this as a margin loss
as well [10]. Furthermore they propose to swap the roles of anchor example and the
positive example if this yields a larger loss value to obtain a more strict loss:

ℓtri(x, x+, x−) = max

0

∆− ⟨f(x), f(x+)⟩+ ⟨f(x), f(x−)⟩
∆− ⟨f(x+), f(x)⟩+ ⟨f(x+), f(x−)⟩

(3.9)

Following Janocha and Czarnecki [122] we can use squared hinge losses ℓ2siam and
ℓ2tri instead of hinge losses for faster convergence.

These losses can be used to derive a risk function. For the Siamese network formu-
lation, we assume that a distribution of labeled similarity pairs is available

L(θ) = E
(x1,x2,y)

ℓsiam(fθ(x1), fθ(x2), y) (3.10)

and if p+ and p− denote the probabilities of sampling a positive pair or a negative pair,
we can decompose

L(θ) = p+ E
(x1,x2)|y=+1

ℓsiam(fθ(x1), fθ(x2),+1)

+ p− E
(x1,x2)|y=−1

ℓsiam(fθ(x1), fθ(x2),−1)

In situations where we only have access to a distribution of positive pairs, we can again
apply negative sampling: A positive pair should be more similar than a random pair.
Formally, this amounts to substituting the distribution of negative pairs in the second
expectation with an artificial negative-distribution.

For the triplet loss, we can also assume a distribution over triplets (x, x+, x−).
Alternatively, we need access to a distribution of anchor examples x ∼ P , as well
as positive and negative distributions P+(x) and P−(x) that are conditioned on the
anchor example x. Then we define the risk as

L(θ) = E
x∼P

E
x+∼P+(x)

E
x−∼P−(x)

ℓtri
(
fθ(x), fθ(x+), fθ(x)(x−)

)
.

We demand that all inputs to the loss functions are unit-length. Without controlling
the norm of the inputs, we can trivially minimize the loss by scaling all vectors as soon
as the similarity of the positive pair is larger than for the negative pair. Controlling the
magnitude can alternatively be achieved through regularization of the model.

Minibatch Approaches

Instead of using only two or three examples to compute a loss of a predicted similarity
between two representations, we can also design losses that work on a larger batch of
data points.

40

Ustinova and Lempitsky [269] have proposed the so-called histogram loss. We have
a minibatch of m positive pairs X+ and a batch of negative pairs X− with respect to
m anchor examples X . For now, we leave the question of where the labels for these
pairs come from untouched. We collect all cosine similarities between positive pairs in
a vector s+ = (⟨f(xi), f(x+i)⟩)i=1,...,m and of all negative pairs in s−. We divide the
interval [−1, 1] intoR−1 equally-sized bins with boundaries−1 = t1, t2, ..., tR = 1
and width ∆ = 2/(R − 1) and build histograms for the positive similarities and the
negative similarities. Now we demand that the positive histogram leans more toward
the +1 similarity than the negative histogram. We formalize this intuition as

ℓh(s
+, s−) =

1

m2

R∑
r=1

r∑
r′=1

(
m∑
i=1

δr[s
−
i]

)(
m∑
i=1

δr′ [s
+
i]

)
(3.11)

where instead of hard assignments, we use the triangular kernel

δr[s] =

(s− tr−1)/∆ if s ∈ [tr−1, tr]

(tr−1 − s)/∆ if s ∈ [tr, tr+1]

0 otherwise

to put similarities into bins. This way we obtain a differentiable loss function. When
negative pairs are chosen randomly, instead of using a vector of dissimilar dot product
values, we can also use all all combinations of dot products, i.e. all entries in the matrix
S−
ij = ⟨f(xi), f(x−j)⟩, to compute the histogram of the negative similarities.

Arguably the most popular loss function is the Info-NCE loss [198]. It treats the
similarity learning task with a minibatch of size m as a m-class classification prob-
lem: Given a minibatch of xi with positive partners x+i , the model should output
the i-th partner for the i-th example. This is achieved by applying the softmax and
crossentropy-loss function to the matrix of cosine similarities. Hence implicitly, all
other examples in a mini batch are treated as negative samples.

ℓ(X,X+) = m−1
m∑
i=1

log
exp⟨f(xi), f(x+i)⟩∑
j ̸=i exp⟨f(xi), f(x+j)⟩

(3.12)

Usually, is is beneficial to chose the batch size as large as possible. When this is not
computationally feasible, we can also use so-called memory banks of older negative
examples [285]. Instead of using a square matrix of similarities where all dot products
depend on the current batch, we then have a rectangular matrix where only some of
the entries depend on the current batch and part of the current computation graph.

Contrastive Learning

We now present another source of supervision: In contrastive learning, we rely on
random data augmentations. Here both negative and positive examples are artificially
generated. For generating positive pairs, we generate two different views of the same

41

x

x1 ∼ a(x)

x2 ∼ a(x)

f(x1)

f(x2)

maximize similarity ℓ

Figure 3.3: Contrastive Learning with Data Augmentations

data point. This can be done using randomly applied data augmentations. When
these augmentations preserve the semantic information in the data point and produce
examples that are non-trivially different, we can train models using this artificial data
[259].

Minibatch-based losses, most commonly the Info-NCE loss, are used for con-
trastive learning. This approach is summarized in Figure 3.3: Given a data point x,
two views x1, x2 are randomly generated. Then the same model f is used to compute
a vectorial representation. Minimizing a loss function promotes high similarity of the
representations.

We can also imagine generating views of different modalities, e.g. separating audio
and visual from a video. We can apply the same idea then, but need two different
models f1 and f2 to embed the different data formats into a shared vector space where
the dot product similarity can be computed.

For computer vision tasks, Chen et al, proposed the SimCLR approach for con-
trastive learning [46]. They propose a set of random image augmentations that has
become the baseline for self-supervised learning with images. These augmentations
include operations like Gaussian blur, addition of random noise, cutting, scaling, flip-
ping or rotating the image, manipulation of brightness or contrast, or other manipula-
tions of the color channels. Building on this set of augmentations, Grill et al. propose
BYOL - bootstrap your own latents - that maintains a running average model that
is used for the second view rather than using the same model. This running aver-
age model is updated using exponentially smoothed averaging and is detached from
the gradient-based optimization. The objective function minimizes the distance be-
tween the latent representations of the model and the average model. This way the
authors claim that the method works without explicit negative examples. However,
further investigation reveals that batch normalization in the model acts a form of im-
plicit negative examples, as embeddings in a batch are spread into the range of a unit
Gaussian distribution, thereby prohibiting the collapse of all representations to a con-
stant vector, so-called mode collapse, which is the trivial global minimizer of the BYOL
objective [76]. Other measures to prevent mode collapse are possible; Richemond et
al. find that a combination of group normalization and weight standartization also
successfully prevents mode collapse [222].

42

Zbontar et al. [293] propose an alternative to contrastive losses: Instead of work-
ing on the Gram matrix of cosine similarities, they work on the empirical correlation
matrix of features between the two views in the representation state. This correlation
matrix is computed on batches of data and is optimized towards the identity matrix.
Ableation studies show that the normalization term in the computation of the corre-
lation prevents mode collapse in this training objective [293].

3.2.4 Other Self-Supervised Approaches

Finally, we consider other self-supervised approaches that do not fit the above cate-
gories.

Autoregressive Tasks

We review tasks based on predicting the next input in a sequence of inputs. For time-
series data this is typically called timeseries forecasting. However, we can also use this
task to learn representations. Particularly in the natural language processing domain,
autoregressive tasks have shown great success. Language models are tasked with pre-
dicting the next word given the previous words in a paragraph and trained on large
collections of texts. Sometimes this is also called causal language modeling. Large
transformer-based models like GPT-2 [217] or GPT-3 [31] have demonstrated that
they learn useful representations of text for a wide variety of downstream tasks, includ-
ing few-shot learning [251].

Masking Tasks

Masking tasks exploit the compositional structure of inputs: When an input is com-
posed of parts that are related, we can hide parts of the input and ask the model to
predict the hidden parts given the remaining parts. Mikolov et al. proposed mask-
ing as a way to learn word embeddings, as discussed above. Devlin et al. made this
approach popular for learning representations for text using large transformer mod-
els [58]. Given a tokenized sequence of text, we can randomly hide a fraction of the
tokens and train the model to reconstruct the original sequence. In this particular
case, the reconstruction of each token is a classification task where each possible token
is a possible output. The overall loss is given as the sum of all prediction losses over
all masked tokens. Instead of asking the model to predict the masked token, Clark
et al. propose to randomly exchange some tokens with random tokens and ask the
model to predict which tokens are fake [47], turning the pretraining problem into a
discriminative task, namely a binary classification problem.

Masking is also popular in computer vision, for instance Lee et al. randomly hide
square patches in images and ask the model to pick the original patch from a set of
candidates [147]. They show that this discrete treatment of the masking problem as
a classification task is superior to predicting the actual image pixels in a regression
approach. It has the additional advantage of only requiring a model for encoding

43

images, but no decoder architecture for outputting images given a latent representation.
Hence training is more resource-efficient.

Other Tasks

Finally, we review some more exotic representation learning tasks for learning image
representations. Gidaris et al. [85] propose to randomly rotate images in one of 4 ways
and task the model with predicting the rotation. This 4-way classification task requires
leaning about the objects depicted in the images and how they are usually oriented.
Zhang et al. [299] propose to feed grayscale images into a model that has to reconstruct
color images. This regression task also requires learning about the objects in the image
and what colors are usually present in the detected shapes. Noroozi and Favaro [192]
propose a task that is based on the global compositional structure of images: They cut
the images in so-called JigSaw puzzles that the model should solve, i.e. they split the
image into tiles, and task the model with predicting the In another approach, Noroozi
et al. [193] use a task based on counting. Here the sum of counts in 4 distinct parts of
the input image should equal the count in the full image. The model is trained without
access to ground-truth counts, but has to figure out some feature in the data that fulfils
this sum-of-counts property.

All of the above tasks have been demonstrated to be beneficial for downstream
tasks like object detection.

44

Chapter 4

Learning Representations with
Unsupervised Tasks

Only mathematics and mathematical
logic can say as little as the physicist
means to say.

Bertrand Russell

M
 as a discipline relies on abstract reasoning and applying trans-
formations to expressions. In this chapter we investigate how to apply
machine learning techniques for representation learning to the problem
of finding representations for mathematical expressions.

4.1 Introduction

Machine learning has contributed to many success stories of search engines. Unfor-
tunately, the search itself is most often based on words or text. Technical terms in
different disciplines, however, may have different meanings or the same meaning may
be referred to by different terms. For instance, various usages of the Bayes’ law occur
in different scientific fields and can be found under different titles. For instance in
astrophysics, it is known as information eld theory [71]. Without knowing physics
and even if the name Bayes were not mentioned, it is easily recognized by the for-
mula P (d|s) = P (d, s)/P (s) in the paper. Another example is Ising’s paper in a
physics journal from 1925 under the title Ferromagnetismus. Today, the Ising model
is also popular in machine learning, but is referred to first as Hop eld network and
later as Boltzmann machine. This illustrates the aspect of time: words for partic-
ular topics change over time. The language of Ising’s paper is German, the paper
introducing Jensen’s inequality in 1906 is written in French. Again, the inequality
f((a + b)/2) ≤ f(a)/2 + f(b)/2 can be easily understood, anyhow. We conclude
that the most compact and comprehensive way to transport the main ideas of scientific

45

manuscripts in disciplines like computer science or physics are the formulas used. Thus
it should also be the way we formulate our search queries when searching for scientific
manuscripts. In order to judge the relevance of mathematical expressions for a search
query, a system has to generalize between different notations and match the parts of
equations, that describe the same concepts, even if they appear in a different form. A
human reader resorts to domain knowledge acquired over years of training in his field
to judge the relevance. We wonder how machine learning models with access to vast
amounts of mathematical content can help automatize this process.

In this chapter, we propose to use machine learning models to learn a represen-
tation of mathematical expressions that captures semantic relatedness. To this end,
we design unsupervised learning tasks based on the ideas in Section 3.2, most no-
tably based on contextual similarity and based on self-supervised learning. We curate
a dataset of over 28.9 million equations from over 900,000 papers from arXiv.org and
explore different ways to represent the data to train our our machine learning models.

4.2 Math Search and KDD

Mining and indexing mathematical expressions in document collections is a challeng-
ing task, mostly tackled in the information retrieval community [96,302]. We outline
how the problem of math search is treated with the tools from knowledge discovery
and data mining and present related work on the machine learning methods we chose
for our approach.

4.2.1 Representation

The first question we have to consider is how to represent mathematical expression.
Choices can be divided into two categories: those for visually representing and those
for semantically representing math. The former category is focused on the layout of an
expression. The most prominent choices are LaTex, a Turing-complete language used
in the publications on arXiv.org, as well as Presentation MathML1, an XML dialect for
displaying math on the web that we chose in this work. The latter category includes
Content MathML and OpenMath, two similar XML dialects that focus on semantics
rather than layout, but also domain-specific languages for symbolic math solvers like
Mathematica, that also allow to manipulate and transform formulas. To the best of
our knowledge, no large, diverse, and public collection of semantic math expressions
exists and, unfortunately, converting math from a display-representation, where data is
available in large quantities, to a semantic representation which seems more appropriate
for searching, is a non-trivial task. Available solutions either use rules and heuristics,
e.g. the converter ml2om that translates LaTeX to OpenMath [261], or also apply
machine learning [279]. For the studies in this chapter, we chose to apply machine
learning methods directly on visual representations, which are more readily available.

1https://www.w3.org/TR/MathML3/

46

https://www.w3.org/TR/MathML3/

4.2.2 Similarity Measure

The second question is how we compute similarity between formulas. Zanibbi et
al. distinguish text-based, tree-based and spectral approaches [292]. Text-based ap-
proaches transform tree-structured math into a sequence, for instance by pre-order
traversal, and then estimate the similarity using methods for sequences like cosine
similarities of bags-of-words or the length of the largest common substring. Tree-
based approaches focus on matching trees or subtrees in hierarchical representations
of expressions like XML formats. Typically computing similarities involves solving
dynamic-programming problems. Spectral approaches work on paths or partial sub-
trees in the trees. An example is [302], that indexes root-leaf paths of operator trees.
From matches of the root-leaf paths, they compute the largest common subexpression
to score the similarity of two equations. To convert math from LaTeX to the semantic
representation of operator trees, the authors use ca. 100 handwritten grammar rules.

A new trend is to use machine learning to learn a similarity measure. A machine
learning model maps an equation to a dense, low-dimensional vector. The similarity
between these so-called embeddings can be computed via their inner product, which
enables fast indexing using a variety of index structures, including faiss and annoy, de-
signed for efficiently handling millions of these dense, low-dimensional vectors. Man-
souri et al. [161] propose to embed equations using fastText, a method originally de-
signed for computing word embeddings. In this Chapter we explore other machine
learning tasks based on ideas presented in Section 3.2 and other models like convo-
lutional neural networks (Section 4.4), transformer models (Section 4.5) and graph
convolutional neural networks (Section 4.6).

4.2.3 Retrieval

Approaches developed for the application of information retrieval need to actually al-
low efficient retrieval. We do not want to compute similarity between a query and all of
millions of formulas in a database, as runtime and energy costs are impractical for search
engine applications. For similarity measures working on matching sub-structures in
expressions, this means that we need to implement index structures like inverted in-
dices [9] for these tasks (see e.g. [302]). For machine learning based approaches, we
have to deal with vectorial data. If a model computes a complex relationship between
a query formula and a candidate formula simultaneously, designing an index structure
becomes difficult [258]. Hence the approaches considered in this chapter reduce re-
trieval to nearest neighbor queries in vector spaces by using machine learning models
to embed the query and candidate expressions separately. Hence we can rely on ex-
isting index structures for nearest neighbor queries to implement retrieval. Indexing
solutions include annoy, which indexes data using an ensemble of random halfspace
trees [16] as well as other approaches based on small-world graphs [160].

47

ast
ro-

ph

con
d-m

at cs
math

he
p-p

h

ph
ysi

cs

qu
an

t-p
h
he

p-t
h
gr-

qc sta
t

nu
cl-

th
he

p-e
x
q-b

io

math
-ph
he

p-l
at

nli
n

nu
cl-

ex
q-fi

n ees
s
eco

n

ch
ao-

dy
n0

0.5

1

1.5

2
·105

Subject Area

Fr
eq

ue
nc

y

Figure 4.1: Number of Papers per Subject Areas in our Sample

4.3 e Dataset

Data is the fuel that powers machine learning models [271]. In the introduction of
this thesis, we have seen examples how large datasets have sparked innovation and
performance increases in different domains. We collect and curate a training dataset
for the domain of mathematical expressions. In the following, we describe which steps
we take.

We are working on data obtained from arxiv.org, a service where scientists can up-
load their manuscripts or pre-prints without reviewing process. We have downloaded
all the LaTeX sources of publications up to April 2019 from the official bulk data
repositories2. This way we have obtained 934,287 papers. As we can see in Figure 4.1,
the large majority of these papers are from disciplines where mathematical expressions
are an important part of publications. The most prominent subject areas are astro-
physics, condensed-matter physics, computer science, mathematics, and high energy
physics. We merge the sources with meta data like paper title, authors, abstract, data
of publication, etc. using the arXiv API.

The goal of pre-processing the raw dataset is to provide a list of mathematical ex-
pressions for each paper in a way that allows compilation to other display formats.
Recall that LaTeX is a Turing-complete programming language rather than a markup
language for mathematics. As such, it may not be the most suitable choice for represen-
tation due to its complexity; in the course of this chapter we shall investigate different
representations that can be obtained through compilation of the LaTeX sources.

Starting with the folder of source files, including at least one LaTex source as well
as images or figures, for a single paper, we begin by identifying the main document.
We proceed to resolve all the imports of sub-files to obtain a single source file with all
contents in the right order. We divide this single document into parts according to the
section structure to provide fine-grained contexts to formulas. From all publications,
for each section of the document we extract mathematical expressions by using reg-
ular expressions for the most common math-environments like ’$$ $$’, ’equation’,
’align’, etc. We do not use inline math snippets but focus on expressions that stand
on their own, as they tend to describe more important concepts. Many of the formulas

2https://arxiv.org/help/bulk_data_s3

48

https://arxiv.org/help/bulk_data_s3

found this way need special LaTeX packages that provide additional LaTeX commands.
We automatically detect which packages are used and provide this list to enable com-
pilation. Some packages commonly break compilation, so we have assembled a list of
packages to exclude. Similarly, some LaTeX commands commonly break compilation,
so we override them with harmless alternatives. Furthermore we extract user-defined
commands and macros, which may be prerequisites for compiling the formulas and
also include these when compiling the formulae.

Furthermore we have used regular expressions to find arXiv-ids in the bibliogra-
phies of the paper to build a citation graph. In total, 540,892 papers have an outgoing
edge, with a total number of edges of 4,553,297. Since we only detect those references
that use an arXiv-id, for instance in an url, our citation graph is only a subgraph of the
true citation graph.

To ensure reproducibility we provide the scripts used for processing the public
arXiv data dump, extracting the mathematical expressions and converting them to
MathML as well as collecting meta-data and citations at https://github.com/
Whadup/arxiv_library. This library is further discussed in the appendix. We also
share our citation graph, which might be interesting in other applications.

4.4 Embedding using Convolutional Networks on Bitmap
Representations

We first explore the idea of representing formulas as fixed-size bitmap images. While
at first this seems like an unsuitable choice, the multitude of machine-learning or
computer-vision approaches that successfully transform images of typeset [56] or hand-
written [5,159] math back to tree-based representations suggests that bitmap represen-
tations preserve all required information of tree-based approaches. Furthermore, this
representation is invariant to the authors’ LaTeX programming style, use of macros, etc.
There are many ways to write the same formula in LaTex, however, compiling the dif-
ferent input strings to a bitmap gives the same image. Additionally the LaTeX sources
of a scientific publication are often unavailable, particularly on platforms other than
arXiv, but images of equations may be identified and cropped from digital documents
automatically.

To the best of our knowledge we propose the first system that represents mathe-
matical expressions as bitmap images and uses machine learning to detect similarities.
This way we can build on a rich set of works on similarity learning between images.
The current boom of deep networks, and in particular convolutional neural networks,
has heavily impacted computer vision. One important task is detecting similar im-
ages or similar objects in images or videos and a popular architecture for learning these
similarities are Siamese networks, i.e. convolutional neural networks that are used to
encode two images into a shared vector space where the similarity is measured. Ex-
amples of this application include identifying products in different product photos on
e-commerce websites [242], person re-identification in photos [62, 300], detection of
models of vehicles [155]

49

https://github.com/Whadup/arxiv_library
https://github.com/Whadup/arxiv_library

min
w

1

n

n∑
i=1

ℓ(yi, w
Txi)+λ||w||2

(a) Original Formula (b) Bitmap Representation from [211]

Figure 4.2: Illustration of the Bitmap Representation

4.4.1 Data Representation

For this study, we only work on a small subset of publications, a combination of two
publicly available crawls of arXiv-ids at Kaggle.com3 and at Andrej Karpathy’s page4.
The publications in these crawls are mainly from machine-learning related subdomains
of computer science. In total, this machine learning subset contains more than 44k
papers.

We chose to represent equations as fixed-size bitmaps as illustrated in Figure 4.2.
The images we created are 531×106 pixels in size, however for more efficient learning
we only use the center rectangle of size 333 × 32 pixels for training. This decrease
in height does not affect single-line equations, the decrease in width does not affect
equations that fit into a single column in a two-column layout, longer equations will
miss beginning and end. We have applied only rudimentary data-cleaning on the
images. Most notably, we omit images that are mostly white background and have
only few black foreground pixels. The majority of these images are artifacts of failed
LaTeX compilation.

This dataset of bitmap images is published at https://whadup.github.io/
EquationLearning/ and we invite the machine learning community to use it.

4.4.2 e Equation-Encoder Model

Our embedding model, the equation-encoder, is a standard convolutional neural net-
work. We try two different networks, a small and a large one. The small model is
comprised of three convolution layers with 32 channels, each followed by a MaxPool-
ing layer, followed by a final fully connected linear layer, as depicted in Figure 4.3.
The larger model uses 6 convolution layers with 64 channels each, every other layer
followed by a MaxPooling layer. Then the embedding is computed by two fully con-
nected layers. We apply batch normalization between the fully connected layers for
more stable optimization, but freeze that layer in later epochs of training. Both models
map into a space of dimensionality d = 64. All non-linearities are rectifying lin-
ear units (ReLU). In total, the small model has 45,504 parameters, while the number
of parameters in the large model is 255,040. As noted before, margin losses require
that the magnitude of embeddings is controlled either by applying regularization or
normalization. Otherwise arbitrary absolute margins can be satisfied by scaling the

3https://www.kaggle.com/neelshah18/arxivdataset
4https://cs.stanford.edu/people/karpathy/arxiv_10K_export.zip

50

https://whadup.github.io/EquationLearning/
https://whadup.github.io/EquationLearning/
https://www.kaggle.com/neelshah18/arxivdataset
https://cs.stanford.edu/people/karpathy/arxiv_10K_export.zip

Figure 4.3: Equation Encoder Architecture (small)

output by a large enough values. We choose to normalize our embeddings to unit
length f̄(x) = f(x)/(||f(x)||2 + ϵ) where a small, constant ϵ > 0 is added for nu-
merical stability. This choice avoids the introduction of yet another hyperparameter
that controls regularization. We set ϵ = 10−5 in all our experiments.

We train these models using two different contextual embedding tasks. Specifically,
we compare using the Siamese loss (3.8) that works on pairs of formulas labeled as
either similar or dissimilar, and the triplet loss (3.9) that works on a triplet of formulas
including one similar and one dissimilar partner. We have discussed these losses in
Section 3.2.3. For our representation learning task, we claim that two formulas are
similar if they appear in the same paper. To this end, we select an equation from our
dataset uniformly at random. Using this anchor point, we can randomly select other
equations from either the same paper or a different paper to obtain the training pairs
and triplets.

We train our models using the Adam optimizer and initialize the learning rate at
0.00025 and reduce it by a factor of 0.1 every 10 epochs of training. We train using
minibatches of size 100 and run training for 30 epochs.

4.4.3 Empirical Evaluation

In this section we experimentally evaluate the models we proposed in the previous
section. First we try to establish quantitative metrics for measuring the quality of our
embeddings. To this end, we curate a small evaluation dataset with hand-labeled equa-
tions. Second, we do a qualitative evaluation and inspect a few queries and discuss the
results.

Gold-Label Evaluation Data

Quantitative evaluation is difficult whenever we cannot compare to a ground truth.
This problem arises in many unsupervised learning applications, including cluster-
ing [275] and embedding learning [88,170,233]. Word Embedding models are often
evaluated by computing measures using a small, manually labeled set of word pairs.
Following their experimental protocol, we hand-labeled about 100 equations into 13
categories of equations that we have identified as prominent in machine learning lit-
erature. These include equations describing the empirical risk minimization principle,
the k-means objective, the dual formulation of the kernelized support vector machine,

51

Table 4.1: Performance Metrics for the small and large Models for two different em-
bedding learning objective functions.

Metric small large
Triplet Siamese Triplet Siamese

Eval Accuracy ↑ 0.6827 0.5385 0.6827 0.6827
Eval Triplet ↓ 0.8091 0.9208 0.6921 0.7867
Eval Siamese ↓ 0.8403 0.8777 0.7680 0.8168

Hold-Out Triplet ↓ 0.8015 0.8120 0.7245 0.7314
Hold-Out Siamese ↓ 0.8458 0.8392 0.7972 0.7970

but also concentration inequalities and Rademacher averages used in the theoretical
analysis of machine learning algorithms. Under our embedding model, equations that
belong to the same category should have higher similarity than inter-category pairs.
Thus quantitative measure of embedding quality are possible. Note that this labeled
dataset is used exclusively for evaluation purposes and never for learning. We com-
pute leave-one-out estimates of the accuracy for 1-nearest-neighbor classification with
cosine similarity for the hand-labeled evaluation data. Consequently, this metric mea-
sures how many nearest-neighbor pairs share the same category. Furthermore, we can
evaluate the loss functions on this evaluation data as well as on hold-out data.

We have summarized our results for the models trained with the two different ob-
jective functions in Table 4.1. First of all, we note that a larger model size is beneficial
for the problem at hand. It allows us to obtain larger margins on both hold-out and
evaluation data. Additionally, training with the triplet objective consistently outper-
forms the models trained with Siamese loss, even when we evaluate the Siamese loss
on holdout data.

ra
de

m
ac

he
r

gp gp
ke

rn
el m
rf

em
pi

ric
al

ris
k

m
rf

ke
rn

el m
rf

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

km
ea

ns
km

ea
ns

lst
m

lst
m

km
ea

ns
m

at
rix

fa
ct

m
at

rix
fa

ct
m

at
rix

fa
ct

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

em
pi

ric
al

ris
k

lst
m

lst
m

lst
m

lst
m

lst
m

lst
m

lst
m ld
a

ld
a

ld
a

ld
a

ld
a

ql
ea

rn
ql

ea
rn

lst
m

ql
ea

rn
lst

m
lst

m
lst

m
lst

m
lst

m
lst

m
lst

m
km

ea
ns

km
ea

ns
km

ea
ns

m
at

rix
fa

ct
m

at
rix

fa
ct gp gp gp gp gp gp

ke
rn

el
m

at
rix

fa
ct

ke
rn

el
km

ea
ns gp gp m
rf

m
rf

m
rf

m
rf ld
a

sg
d

ke
rn

el
co

nv
ex

co
nv

ex
co

nv
ex

ke
rn

el
co

nv
ex

co
nv

ex
co

nv
ex

em
pi

ric
al

ris
k

sg
d

sg
d

sg
d

sg
d

em
pi

ric
al

ris
k

co
nc

en
tra

tio
n

co
nc

en
tra

tio
n

ra
de

m
ac

he
r

km
ea

ns
em

pi
ric

al
ris

k
ra

de
m

ac
he

r
ra

de
m

ac
he

r
co

nc
en

tra
tio

n
co

nc
en

tra
tio

n
co

nc
en

tra
tio

n
ra

de
m

ac
he

r
ra

de
m

ac
he

r
sg

d
co

nv
ex

co
nv

ex
co

nv
ex

co
nv

ex sg
d

sg
d

sg
d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 4.4: A dendrogram showing a hierarchical clustering of our evaluation dataset
according to our embedding model, colored according to hand-annotated labels, gray
for non-pure clusters.

52

(q)

(1)

(2)

(3)

(4)

(5)
(a) (b)

Figure 4.5: Sample Queries and Results: The first line shows queries, the remaining
lines show the top-5 results. Shows center rectangle only.

(q)

(1)

(2)

(3)

(4)

(5)
(a) (b)

Figure 4.6: More Sample Queries and Results: The first line shows queries, the re-
maining lines show the top-5 results. Shows center rectangle only. The results for
these queries are more diverse.

We visually inspect the performance of the large embedding-model in a hierarchi-
cal clustering of our labeled evaluation data. The clustering is done using agglomerative
clustering with the complete-linkage strategy and dot-product similarity. In Figure 4.4
we see that on the lower levels of the hierarchy many clusters belong to a unique cat-
egory of equations and that the computed similarities are high. On the right side of
the plot, we see that categories mix, but do so in a plausible manner: the connection
from sgd (stochastic gradient descent) and convex (equations describing properties like
convexity or Lipschitz continuity) is apparent, as articles analyzing the convergence of
optimization algorithms rely heavily on these definitions. The connection between
Rademacher complexities and concentration inequalities cannot be denied as well.

53

A Qualitative Analysis of Example Queries

In Figure 4.5 we want to show some example queries with their respective top results5.
In the first column we query an equation that describes a modified variant of an LSTM
recurrent neural network. The system returns equations that seem to describe other
recurrent network architectures or parts of recurrent units like the output part in row
(3). In the second column the system does not work as well: The first result is relevant,
however it is from the same publication as the query. That is a) not very useful for the
user, and b) not difficult for the system to identify, as the query-answer-pairs were used
during training. The remaining answers seem to have no semantic similarity. However
they are at least visually similar: Short equation where an uppercase character function
equals a term with a fraction. This difference in quality between the two columns is
also expressed in the computed similarities. While the most relevant equation on the
left has a similarity of 0.99, the most relevant equation on the right that is not from
the same paper, has a similarity of only 0.91.

In Figure 4.6 we see more examples: On the left we query a definition of the
value function, an expression related to reinforcement learning. And indeed all results
are related to reinforcement learning. Even (2), which looks the most dissimilar, is
taken from a survey on reinforcement learning6. On the right, the equations appear
more diverse, but all involve probabilistic modeling. The computed similarities range
between 0.93 and 0.90, which again is substantially lower than on the left.

Overall the quality of the results is convincing, the results contain useful and related
equations in most cases. It seems that our system has learned to group equations that
belong to a subfield of machine learning together in a latent space. Using a visual
representation helps comparing the coarse structure of expressions.

4.4.4 Conclusion

In this Section we have designed embedding models for mathematical expressions
based on convolutional neural networks. We have represented data as fixed-size bitmap
images and demonstrated that a system trained in an unsupervised manner is useful for
identifying related formulas. Our machine learning tasks are using the contextual sim-
ilarity paradigm and we have found in a comparison of two loss functions for similarity
learning that the triplet loss yields better models.

While we have stated valid arguments for using an image representation, we admit
that it does not feel like the most natural choice of representation. In the next sec-
tions, we will look into alternative representations that treat mathematical expressions
as textual data.

5In the appendix you can find a table of the corresponding works
6Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar. Bayesian Reinforcement Learn-

ing: A Survey, 2016.

54

4.5 Embedding using Transformers on Sequential Represen-
tations

Large natural language models based on transformers [273], i.e. neural networks with
self-attention, pretrained on large corpora of textual data have enabled breakthroughs
in natural language processing [31, 58, 217]. In this section, we will take inspiration
from the textual data domain and design machine learning tasks and models for math-
ematical formulas represented as sequences of tokens.

Transformer models have been used for information retrieval [220] and also math-
ematical retrieval, for instance in the ARQ-Math competition [291]. The participants
Novotny et al. propose a mathematical retrieval system for question answering that
also utilizes a BERT architecture named CompuBERT [197]. The authors finetune
a pretrained natural language model on a task that matches questions and answers
containing formulas on stackexchange. They use the triplet loss to learn embeddings
for questions and answers that capture their connection first proposed in Sentence-
BERT [220]. The authors also experiment with different representations of math,
including working on pure LaTeX and on MathML trees, serialized via pre-order iter-
ation as in this work. However, as they rely on pretrained NLP BERT models, they
do not carefully design a vocabulary to express the mathematical formulas within the
natural text more appropriately. Ultimately, they use the CompuBERT architecuture
in an ensemble, where the strength of the CompuBert seems to lie in grasping the
semantics of the textual parts of question and answer, and the other two systems, in-
cluding Formula2Vec, an approach based on FastText document embeddings [124],
increase the quality in retrieval of formulas. Similar to Novotny et al., Rohatgi et al.
use a RoBERTa model trained on natural language posts containing LaTex formulas
to solve the question-answering task of the ARQ-Math competition [223].

In this section, we explore transformer models for the retrieval of related mathe-
matical expressions. Unlike the works discussed above, we train a transformer model
solely on the mathematical formulae of our dataset. We explore a representation based
on a markup language for mathematical expressions, MathML and feed a sequential-
ized variant of these XML-documents to a transformer model to embed formulas in a
vector space.

We examine if our BERT model learns useful representations for advanced mathe-
matical tasks by finetuning pre-trained and not pre-trained models for a discriminative
tasks of identifying equalities or in-equalities.

4.5.1 Data Representation

While in the last section, we have represented mathematical expressions using bitmap
images, in this section we explore an alternative: representing formulas as text-like se-
quences. To convert the formulas from the multi-purpose LaTeX language to a more
normalized form, we rely on the XML-based MathML format for rendering mathe-
matical expressions on webpages. Using the library Katex7 we compile the raw LaTeX

7http://katex.org

55

http://katex.org

formulas to MathML. The MathML standard defines around 30 different XML-tags
like <mi> for math identifiers or <mo> for math operators. Some of these tags use at-
tributes, for instance to change font or spacing. Leaf nodes contain text like numbers,
parenthesis or letters (greek, latin, etc...). We see an example of an equation encoded
as MathML in Figure 4.7. Out of all papers downloaded, 760,041 papers contain at
least one equation that we were able to convert to MathML. In total we have a dataset
of 28,973,591 MathML equations.

In order to feed the MathML to a transformer model that works on sequential data,
we flatten the tree-based XML using in-order tree traversal, where opening and closing
tags are placed around any child nodes. We one-hot-encode the resulting sequence of
tags and tokens, but use the same encoding for opening- and closing tags to reduce
the number of distinct tokens. We truncate the vocabulary to a total size of 512,
which captures 98.8% of token occurrences in the dataset. This is a notably smaller
vocabulary than commonly found in natural language models, where vocabulary sizes
above 30,000 are common [58, 217].

<math xmlns="http://www.w3.org/...">
<semantics >

<mrow>
<mfrac >

<mn>1</mn><mi>n</mi>
</mfrac >
<msubsup >

<mo>Σ</mo>
<mrow>

<mi>i</mi><mo>=</mo><mn>1</mn>
</mrow>
<mi>n</mi>

</msubsup >
<mi mathvariant="normal">ℓ</mi>
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<msub>

<mi>x</mi><mi>i</mi>
</msub>
<mo stretchy="false">)</mo>
<mo separator="true">,</mo>
<msub>

<mi>y</mi><mi>i</mi>
</msub>
<mo stretchy="false">)</mo>
<mo separator="true">,</mo>

</mrow>
</semantics >

</math>

Figure 4.7: Example MathML for 1
n

n∑
i=1

ℓ(f(xi), yi).

56

4.5.2 Training Transformer Models

The original transformer model — as proposed by Vaswani et al. [273] — is slightly
modified in BERT [58], which is only using encoder layers. In our work we use the
same transformer model architecture as BERT - including the same encoder layers,
activation functions, optimization algorithms and learning rate schedules. The trans-
former architecture introduces the multi-head-attention layers as key mechanism for
learning the relations between each pair of tokens in the input sequence. This is ap-
plicable on mathematical formulas too, because understanding the relations between
the symbols of a mathematical formula is crucial for understanding the meaning of
the formula. We also extend the vocabulary by the special classification, separation,
masking and unknown token – as did in [58] – in order to perform prediction of
masked tokens and thereby integrate in the model the ability to correct mathematical
expressions.

We explore three differently sized variants of the BERT architectures for embed-
ding mathematical expressions: While BERT has a hidden-size-dependent number of
attention heads, we keep them constant. We set the number of different multi-head-
attention heads D to 4. By doing so the hidden size H has the largest impact on the
performance of the multihead attention. As for the intermediate projection size we
kept this always bigger than the hidden size so that we can have a linear projection on
a higher space. The resulting models are the summarized in Table 4.2.

Table 4.2: Math-BERT model configurations

Model L H I D Params GFLOP

SMALL 4 128 768 4 1.2m 0.7
BASE 8 256 768 4 6.0m 3.6
LARGE 12 512 768 4 25.0m 15

We train these models using the original masking task proposed by Devlin et al.,
we have discussed masking in Chapter 3.2 and will further discuss this task in more
detail in the next section. The original BERT model also includes a classification task
where the model has to guess if two sequences fed into the model simultaneously are
consecutive sentences in a shared document. We exchange this task with the contextual
task used in the last Section and classify, if two formulas are from the same paper
instead. We use the ADAM optimizer used in the original BERT paper.

4.5.3 Retrieval of Equalities and Inequalities

We have extracted equalities and inequalities in the test-set of our data using regu-
lar expressions. Using a simple heuristic, we filter the resulting (in-)equalities, such
that left-hand-side (LHS) and right-hand-side (RHS) do not differ in length dramat-
ically, thereby eliminating formulas like definitions, where the LHS is a only sin-
gle symbol. We derive three different data sets, one with only equalities (LHS and

57

RHS split at ”=”), one with inequalities (split at < and ≤) and one with mixed
relations (split at =<>≤ and ≥). This data allows us to use the LHS of the (in-
)equalities as query in hopes of retrieving RHS. We make our finetuning-data available
at https://whadup.github.io/arxiv_learning/ as well.

Following other machine-learning-based approaches for mathematical retrieval [161,
209,211], we use our models to encode formulas into a dense vector space and retrieve
results using approximate nearest neighbor search [16] in this vector space. In the case
of our BERT models, we use output embedding of the CLS token as the representation
for the whole formula and finetune the model to output meaningful embeddings for
this first token. We finetune our models on half of the available data and test on the
remaining half.

Finetuning Task We propose to use contrastive learning to learn to identify the RHS
given the LHS. The learning task in contrastive learning is identifying the right partner
for each input in a minibatch of datapoints. Hence the representation learning problem
is formulated as a classification problem. Let X l, Xr ∈ Rm×d contain the output
embeddings of a minibatch of LHSs and RHSs. We normalize each embedding to unit-
length and denote the normalized embeddings by X̄ l and X̄r. We use the InfoNCE
loss [198] presented in (3.12) in Chapter 3.2, i.e. the negative log likelihood of softmax
probabilities parameterized by the pairwise cosine similarities between the LHs and
RHSs:

ℓτ (X̄
l, X̄r) = m−1

m∑
i=1

log
exp(⟨X̄ l

i , X̄
r
i ⟩/τ)∑

j ̸=i exp(⟨X̄ l
i , X̄

r
j ⟩/τ)

(4.1)

where τ > 0 is a hyperparameter that controls the temperature of the ouput probability
distribution, which we set to 10−2. The contrastive learning task is more difficult
for larger batchsizes m, as there are more candidate RHSs to choose from and thus
the underlying classification problem becomes more difficult. But it has been shown
that the utility of the model increases for larger batchsizes [46, 171], which we also
investigate in our application.

Baseline-Models In addition to our models we include several baseline models:

• First, we test a simple bag-of-words (BoW) model that is trained on a bag of
MathML tree nodes. This model does not use a pre-training phase, but is only
tuned on the finetuning data. The BoW model maps the sparse BoW represen-
tation to a d-dimensional vectorial embedding though a single matrix multipli-
cation. In comparison to our BERT models, we do not restrict the vocabulary
size of the inputs. The representation is trained using the same contrastive learn-
ing task with InfoNCE loss. We test d ∈ {64, 128, 256} and report the best
result after varying learning rates and number of training epochs in a grid search.

• Second we evaluate a pretraining approach based on the BoW-model. The word-
embedding based approach fastText by Joulin et al. [124] is trained by predicting

58

https://whadup.github.io/arxiv_learning/

which tokens appear in the contexts together. Mansoury et al. use it for learning
embeddings of formulae by serializing a MathML layout tree similar to the one
we are using in this work [161], hence we include it in our comparison. We
finetune these embeddings by learning a linear mapping into a d-dimensional
vector space, d ∈ {64, 128, 256} using the same contrastive learning task.

We begin by training our models and the baseline-models with a minibatch-size of
1024. Then we also investigate the effect of varying the batch-size.

Results For testing, we compute embeddings for all LHSs and RHSs in the test-
data and store them in an index structure. We use annoy [16], an indexing method
for approximate nearest-neighbor search based on an ensemble of random projection
trees. We use an ensemble of 16 trees with default hyperparameters, but we found that
the results were very insensitive to our particular parameter choices.

Then we query the k-nearest neighbors, k ∈ {1, 10, 100} for each formula from
the test-set and check if the corresponding other side of the (in-)equality is in the result
set. This way we can compute recall values to measure the quality of our embeddings.

We summarize our findings in Table 4.3. Our BERT-approach substantially out-
performs both the BoW approaches, without (BOW) and with pretraining (FAST-
TEXT). This suggests that our model is capable of matching formulas based on char-
acteristics that go beyond merely counting the number of matching tokens.

Throughout all our models we observe the benefit of pretraining, as models that
were trained from scratch – with exception of the small model – perform worse than
their pretrained counterparts.

Overall, the recall at 10 is already pretty high, which indicates that our approach is
useful in search engine applications where users generally want to inspect only a small
number of results. In summary, we recommend using the BASE pre-trained model.

Table 4.3: Results of the Mathematical Retrieval Experiment. We report recall@K for
K ∈ {1, 10, 100}.

Model Equalities (36864) Relations (40960) Inequalities (13312)
R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100

SMALL-PRE 0.379 0.577 0.714 0.432 0.626 0.749 0.397 0.661 0.795
SMALL-NO-PRE 0.400 0.584 0.700 0.405 0.632 0.769 0.371 0.632 0.769
BASE-PRE 0.511 0.71 0.805 0.503 0.697 0.791 0.484 0.765 0.860
BASE-NO-PRE 0.434 0.623 0.729 0.446 0.63 0.734 0.409 0.682 0.797
LARGE-PRE 0.507 0.704 0.799 0.496 0.683 0.777 0.489 0.765 0.864
LARGE-NO-PRE 0.452 0.637 0.737 0.46 0.640 0.736 0.427 0.703 0.817

BOW 0.483 0.653 0.739 0.491 0.658 0.743 0.503 0.738 0.821
FASTTEXT [124] 0.480 0.650 0.739 0.488 0.651 0.742 0.488 0.713 0.810

59

) (2 1 , - + = i 0 n x t k | d s . m a r p e 3 j c ’ l f] [u 4 � g T y z N A q o R ∑ b µ

2

4

6

·1 0 7

C h ar a ct er

Fr
eq

ue
nc

y

Fi g ure 4. 8: Th e 5 0 m ost fre q u e nt c h ar a ct ers i n m at h e n vir o n m e nts.

4. 6 E m b e d di n g usi n g Gr a p h C o n v ol uti o n al Net w or ks o n Tr e e

R e pr es e nt ati o ns

We re vi e we d re pres e nt ati o n c h oi c es f or m at h e m ati c al retri e v al i n t h e b e gi n ni n g of t his
c h a pt er. We f o u n d t h at t h e b ott o m li n e of t h e re pres e nt ati o n q u esti o n is t h at m at h
is e x press e d i n tre es, eit h er X M L or ot h er p ars e tre es. C o ns e q u e ntl y, i n t his Se cti o n,
we i n vesti g at e a f a mil y of m a c hi n e l e ar ni n g m o d els t h at c a n w or k dire ctl y o n tre e-
str u ct ure d d at a. S p e ci fi c all y, we d esi g n a gr a p h n e ur al n et w or k f or o bt ai ni n g ve ct ori al
re pres e nt ati o ns of m at h e m ati c al e x pressi o ns.

4. 6. 1 D at a- R e pr es e nt ati o n

We w a nt t o us e a tre e- b as e d re pres e nt ati o n d eri ve d fr o m t h e M at h M L re pres e nt ati o n
we i ntr o d u c e d i n t h e l ast C h a pt er. I n or d er t o f e e d t h e M at h M L t o a gr a p h c o n v ol u-
ti o n al n e ur al n et w or k, we h a ve t o c o n vert it t o a gr a p h wit h ve ct ori al n o d e f e at ures.

We vi e w t h e X M L-str u ct ure as a tre e a n d us e its n o d es a n d e d g es a n d d eri ve f e a-
t ures b as e d o n t a gs, attri b ut es a n d t e xt. F or e a c h n o d e we us e o n e- h ot e n c o d e d f e at ure
ve ct ors of di m e nsi o n alit y 2 5 6. Th e first 3 2 f e at ures are us e d t o e n c o d e t h e t y p e of
t h e X M L-t a g. Th e n e xt 3 2 f e at ures are us e d t o e n c o d e o pti o n al attri b ut es, m ost c o m-
m o nl y c h a n g es of t h e f o nt t o b ol d or c alli gr a p h y f o nts. Th e re m ai ni n g 1 9 2 di m e nsi o ns
are us e d t o e n c o d e t h e m ost fre q u e nt c h ar a ct ers us e d i n l e af- n o d es. I n Fi g ure 4. 8 we
s e e t h at t h e m ost fre q u e nt c h ar a ct ers are o p e ni n g a n d cl osi n g p are nt h esis, f oll o we d
b y a v ari et y of n u m b ers, l ati n or gre e k l ett ers a n d m at h e m ati c al o p er at ors. F or b ot h
attri b ut e a n d c h ar a ct er f e at ures, we i ntr o d u c e s p e ci al u n k n o w n s y m b ols f or all r are
attri b ut es/ c h ar a ct ers. We disti n g uis h t hre e gr o u ps of f e at ures: t a g, attri b ut e a n d c o n-
t e nt. We e n c o d e t his d at a usi n g a t ot al of 2 5 6 f e at ures w h ere we us e 3 2 di m e nsi o ns t o
e n c o d e t h e t a gs, 3 2 di m e nsi o ns t o e n c o d e t h e m ost fre q u e nt attri b ut es (i n cl u di n g o n e
s p e ci al s y m b ol f or u n k n o w n attri b ut es) a n d t h e re m ai ni n g 1 9 2 di m e nsi o ns t o e n c o d e
t h e m ost fre q u e nt c h ar a ct ers of t h e c o nt e nt (als o i n cl u di n g o n e u n k n o w n s y m b ol). I n
a d diti o n t o t h e o n e- h ot e n c o d e d f e at ures, we st ore t h e p ositi o n of t h e n o d e a m o n gst
its si bli n g n o d es.

6 0

4.6.2 Training Graph-Neural-Network for Embedding Formulas

We define a graph convolutional neural network for the task of embedding mathemat-
ical expressions into a low-dimensional vector space. The raw MathML is converted to
graphs with vectorial features as described in Section 4.6.1. We propose to use a special
first layer that combines the one-hot encoded information at a node with the decimal
position attribute. Following Vaswani et al. [273], we encode the position of the i-th
node pi ∈ N using positional embeddings. We use fixed sinusoid embeddings [273]
denoted byE(pj), but to still allow the model to control the influence of the positional
embeddings, we introduce a learnable scaling coefficient α initialized to 1.

x
(1)
i = max

0⃗,
∑

j∈N (i)∪i

W (1)xj + αE(pj) + b(1)

The first layer is followed by 3 fully-connected graph convolution layers of width

512, where the l-th layer is defined by

x
(l)
i = max

0⃗,
∑

j∈N (i)∪i

W (l)x
(l−1)
j + b(l)

which linearly transforms all nodes using a weight matrix W (l), adds a bias term b(l),
aggregates by computing the sum over all neighborhoods and applies the ReLU acti-
vation component-wise. All graph convolution layers output feature maps with 512
dimensions. We apply batch-normalization before the first and third graph convolu-
tion layer. For the remainder of this paper, let ϕ(x) ∈ R|x|×512 denote the output of
the last graph convolution layer given the input x. To obtain a single embedding for
an input graph, we compute the mean of all node features. This mean is transformed
in another linear layer to reduce the dimensionality to 64. For the remainder of this
paper, let ϕ̄(x) ∈ R64 denote this embedding of x.

When scoring similarities between embeddings with margin losses, we need to
control the norm of the embeddings, otherwise the notion of adherence to a mar-
gin becomes meaningless. Among others, Ding et al. [62] propose to normalize all
embeddings to unit length. We propose a softer normalization inspired by batch nor-
malization [115] that also allows to obtain embeddings with norms smaller than 1. For
every training batch of graphs, we compute the mean of the norm as well as its stan-
dard deviation. Then we inversely scale each embedding by the mean plus the standard
deviation. This way, most embeddings have norm smaller than 1. We keep a running
average of the means and standard deviations. At inference time, we use these running
averages for scaling.

We propose to train our embeddings using two self-supervised learning tasks si-
multaneously by adding their respective losses.

61

Contextual Similarity

For learning relations between equations, we rely on the established contextual similar-
ity task that we introduced in Section 3.2. The central idea of the learning task is that
objects that frequently appear in shared contexts are related. We define the context of
mathematical expressions as the paper containing the equation and conjecture that two
equations are related if they appear in the same paper, as in Section 4.4. We extend
this approach and further define two equations as related if one paper references the
other using a citation graph. This way we hope to connect equations that describe the
same context but use different notation. In addition, we discriminate between sam-
pling expressions from the same paper and from the same section. We hope that within
sections, equations are more related to each other. For obtaining positive examples of
related equations, we

1. sample a paper uniformly at random and select an expression from this paper
uniformly at random.

2. randomly select whether we sample from the same section, same paper or along
a citation,

3. sample a positive example using that method. When we cannot find a positive
example using that method, we jump back to (1).

For learning similarities we also require negative examples. To obtain these, we sample
a paper uniformly at random and select an expression from this paper uniformly at
random. The random process that generates these weak labels for similarity learning
introduces a lot of noise, as many equations we claim are related are unrelated and
some of the pairs we say are unrelated are related. We leave the investigation of more
advanced sampling schemes to future work.

Using the sampled equations x with positive x+ and negative partners x−, we
apply similarity learning loss functions to design an objective. We investigate two
different losses: Triplet and Histogram. The triplet loss (3.9) proposed by Balntas
et al. [10] we have previously used in Section 4.4, contrasts the similarity between
a positive pair of examples and a negative pair of examples. For this study we also
investigate the histogram loss (3.11) as proposed by Ustinova and Lempitsky [269]. It
does not work on a single triplets of equations, but on mini-batches of size m positive
pairs X+ and a batch of negative pairs X− with respect to anchor examples X . We
hope that histogram loss is more robust with regard to the massive noise in our labels
as each positive example is contrasted with all negative examples.

Masking Task We propose to extend the contextual similarity task by another tasks
and optimize the sum of both tasks for training our embedding models. The main
idea of our second task is, that the symbols in mathematical expressions do not appear
independent from each other, but have strong dependencies. Thus if we hide a frac-
tion of the symbols in an equation, we should be able to approximately reconstruct
the hidden symbols from the remaining symbols. This task is reminiscent of masked

62

min
1

n

n∑
i=1

ℓ(⟨w, i⟩, yi)

P (=?) =

w : 0.81
β : 0.04

...

 P (=?) =

x : 0.73
y : 0.02

...

Figure 4.9: Example of the Masking Task with Fictional Values

language modeling tasks made popular by BERT [58] seen in the last Section. In order
to successfully solve this task, a model has to learn about the frequencies of symbols
and their dependencies from the data, as is illustrated in Figure 4.9.

More formally, we proceed as follows: For each input graph x with featuresX , we
randomly set the feature vector of 15% of the nodes to all zero obtaining the graph x■.
Then we compute ϕ(x■) ∈ R|x|×512. Now for each masked node, we want to solve
three separate classification tasks: Given ϕi(x■), predict the right XML-tag, predict
the right XML-attributes (or no-attribute if no attributes where used) and predict the
right character (or no-character if no character was used). We solve these tasks using
a single linear layer of dimensionality 32,32+1 and 192+1 respectively with soft-max
activation and compute the cross-entropy loss ℓ on all tasks:

ℓtag,i = ℓ(softmax(W (tag)ϕi(x■) + b(tag), Xi,1:32)

ℓattr,i = ℓ(softmax(W (attr)ϕi(x■) + b(attr), Xi,33:64)

ℓchar,i = ℓ(softmax(W (char)ϕi(x■) + b(char), Xi,65:256)

The overall loss of the masking task is defined as the mean of all three classification
losses ℓmask,i =

1
3(ℓtag,i + ℓattr,i + ℓchar,i). The loss is only evaluated for the masked

tokens and we compute the mean over all masked tokens to obtain a loss value for x■.
Adding this task to the contextual similarity task has the additional advantage that

we now learn a representation that not only captures context information, but also
preserves information about the raw input symbols.

Data-Augmentation

Data augmentation eases the generalization of machine learning models and is particu-
larly popular for image classification tasks where we can augment images by randomly
rotating, scaling, padding, etc. For mathematical expressions, we propose the following
random data augmentation: Since we know that a renaming of symbols in equations

63

rarely changes the semantic, we propose to randomly permute the character features of
all nodes that correspond to a math identifier, encoded in <mi> tags according to the
MathML standard. For each equation we process, we sample a number of flips from
a Poisson distribution with expected value 32. Then starting with the identity permu-
tation that does not change the order of our 192 features, we construct a permutation
with the desired number of flips by incrementally exchanging two random characters.

4.6.3 Statistical Analysis

Before we present empirical results on our embedding approach, we want to discuss
their statistical significance using concentration inequalities. We begin by discussing
the assumptions we use for our discussion that go beyond the usual iid. assumptions.
Then we talk about testing of embedding models on hold-out data.

Assumptions

In usual classification settings [272], as well as metric learning settings [48, 163], we
assume that we have access to independent and identically distributed training data.
In our case of embedding learning for mathematical expressions, we would require to a
sample of independent equations, or to be more precise, independent pairs of equations
with (weak) similarity labels. However, this assumption surely does not hold, as two
equations that appear in the same paper do not appear independently from each other.
An example illustrates this: Let X1 and X2 denote two equations. If it is revealed
to you that X1 shows Heisenberg’s uncertainty principle X1 = {σxσp ≥ ℏ/2}, and
that X2 appears in the same paper, the probability of X2 being related to quantum
mechanics increases. This illustrates that P (X2 = x2 | X1 = x1) ̸= P (X2 = x2)
and thus X1 and X2 are not independent. For the purpose of our analysis, we assume
that

(A1) we have an iid. sample of N papers where the i-th paper contains ni equations

(A2) the number of equations is n =
∑N

i=1 ni

(A3) equations in the i-th paper are independent of equations in all other papers.

Surely papers do not appear independently of one another, but this we will ignore in
our statistical analysis.

Con dence Intervals for Hold-Out Data

Now we carry out our statistical analysis for measuring scores on hold-out data where
the model ϕ̄ is fixed and independent of the hold-out data. In the common iid setting,
we can apply concentration inequalities like Hoeffding’s inequality to bound the gap
between performance evaluations like accuracy or loss measured on a finite hold-out
sample and the true expected value.

64

Since we do not have iid. data, we have to use a refined approach. We use U -
statistics [111] s to analyze our models. In our case, they are defined as expectations
over functions of triples of equations V (x1, x2, x3) called kernel.

s = E
x1,x2,x3

V (x1, x2, x3).

For instance we can define the ranking score, i.e. the fraction of triplets where the
positive pair has a higher similarity than the negative pair. For convenience, we define
P (x) as the set of possible positive examples for an expression x. Then we can write
the ranking score as

Vranking(x1, x2, x3) =
[
1(x2 ∈ P (x1) ∧ x3 ̸∈ P (x1)) · (4.2)

1(⟨ϕ̄(x1), ϕ̄(x2)⟩ > ⟨ϕ̄(x1), ϕ̄(x3)⟩)
]

(4.3)

The histogram loss can also be expressed as a U -statistic:

Vhist(x1, x2, x3) =
[
1(x2 ∈ P (x1) ∧ x3 ̸∈ P (x1)) · (4.4)

R∑
r=1

r∑
r′=1

δr′(⟨ϕ̄(x1), ϕ̄(x2)⟩)δr(⟨ϕ̄(x1), ϕ̄(x3)⟩)
]

Note that whenever (x1, x2, x3) is not a triple with a positive and a negative example,
the triple contributes zero to the expectations. To simplify the analysis, we first consider
so-called complete U -statistics, i.e. we estimate the true score using all possible triplets
from a finite set of n expressions {xi | i = 1, ..., n}

ŝ =

(
n

3

)−1∑
i,j,k

V (xi, xj , xk). (4.5)

Now the goal is to bound the difference between s and ŝ in high probability.

eorem 1. If V (x1, x2, x3) ∈ [0, 1], then for δ ∈ (0, 1) with probability at least 1−δ
we have

s ≤ ŝ+ 3

√
ln(1/δ)
2N

Proof. We proof this using Janson’s concentration inequality for sums of partly depen-
dent variables [123]. In Equation (4.5), we compute a sum over triplets, where the
triplets are constructed from dependent samples. Thus the summands have dependen-
cies. We construct a dependency graph, where each node corresponds to a triplet and
two nodes have an edge if they are dependent. In our case two triplets are connected
if one of the equations in the first triplet is from the same paper as any equation in the
second triplet. In order to apply [123], Theorem 2.1, we have to bound the chromatic
number χ∗ of this dependency graph. To this end, we consider an arbitrary node v in

65

the graph with equations from paper i, j and k. Its degree is bounded by the number
of equations in the papers deg(v) ≤ (ni + nj + nk)

(
n−1
2

)
, hence

χ∗ ≤ 3

(
n− 1

2

)
max
i
ni. (4.6)

Then for t > 0 we have

P(s− ŝ ≥ t)
[123]
≤ exp

(
−2t2

(
n
3

)
χ∗

)
(4.7)

(4.6)
≤ exp

(
−2t2n

9maxi ni

)
≤ exp

(
−2t2N

9

)
(4.8)

Solving for t yields the desired confidence interval.

For incomplete U -statistics, where we estimate the score by a subset of triplets D
sampled independently with replacement [48] as

ŝ⊂ =
1

|B|
·

∑
(xi,xj ,xk)∈D

V (xi, xj , xk),

the bound (4.6) no longer holds. But we can compute an empirical bound χ̂ using
any greedy graph coloring algorithm. Then Janson’s concentration inequality implies
that with probability at least 1− δ

s ≤ ŝ⊂ +

√
ln(1/δ)χ̂
2|D|

. (4.9)

4.6.4 Experimental Results

In this section we perform an experimental evaluation of our embedding model. In
particular, we focus on the use-case of a search engine for mathematical expressions.
We begin by investigating the effects of the individual components of our model on a
small, closed subset of the data. Then we investigate the effectiveness of our method
on all 29,9 million equations.

Analysis on the Machine-Learning-Subset

We begin our analysis only on arXiv publications where the primary subject classifica-
tion is machine learning (cs.LG). This is a natural choice, as we have some expertise
to judge the quality of our results, a task which we are in no way equipped for across
all subject fields.

Of these 9,936 publications, we sample two subsets, train and test of size 7,949
and 1,987 respectively with a total number of equations of 237,335 and 54,767 re-
spectively. In Section 5 we have seen that scores evaluated on hold-out data converge
to true empirical scores inO(1/

√
N) where N is the number of papers in the test set.

66

Table 4.4: Ablation Study

Influence Factor Ranking
Hold-Out

Ranking
Eval

Accuracy
Eval

Full Model 76.5 (±0.0) 57.7 (±0.0) 60.6 (±0.0)
No Histogram Loss 72.5 (−4.0) 49.6 (−8.1) 30.9 (−29.7)
No Masking 75.2 (−1.3) 54.3 (−3.4) 50.0 (−10.6)
No Augmentation 75.3 (−1.2) 53.6 (−4.1) 50.0 (−10.6)

Bitmap CNN from Section 4.4 76.2 (−0.3) 71.9 (+14.2) 68.3 (+7.7)
Bitmap CNN retrained 70.0 (−6.5) 50.0 (−7.7) 52.9 (−7.7)

In this regard, our test set is appropriately sized. We use the train-set for building our
embedding models and use the test-set to investigate generalization properties.

For training, we sample 1 million triplets (x, x+, x−). Of these triples, 45.9%
have a positive pair from the same section, 42.2% from the same paper and 13.9%
along an edge in the citation graph. We sample 100k triplets for testing with similarly
distributed positive examples.

We perform an ablation study on our proposed embedding model and compare it
to prior work. This section investigates the influence of our design choices. We decided
(a) to use the Histogram loss instead of the triplet loss, (b) to also add an masking task,
(c) to data augmentation.

We measure Ranking score, i.e. the fraction of all triples in the training data where
same-class pairs of equations have higher similarities than across-class pairs. As we see
in Table 4.4, our evaluations indicate that all of our design choices contribute favorably
to the overall performance on hold-out data, as deactivating any component decreases
the score. We note that the biggest gain is achieved by switching form triplet-loss to
histogram-loss. We believe that this is due to the massive noise in our labels.

We also compare with the our previous model from Section 4.4 and see that we
beat it by a small margin. However this comparison is not entirely fair, as their model
was trained on a larger dataset of around 25k papers, probably including some of the
papers in our test set. We use their code to re-train on our subset of equations and
yield a substantial margin of 6.5 percentage points.

We also use our previous evaluation data (Sec. 4.4). It consists of 103 equations
labeled into 13 categories related to machine learning including k-means, LSTMs,
empirical risk minimization, etc. Since only bitmaps are available, we transcribe the
equations manually. There are three issues with this evaluation set: First, it is too small
to produce significant numbers. Second, some equations in the dataset appear in the
training data. This is not only the case for our subset, but also for the training data used
in Section 4.4. Third, many equations within a category are obviously from the same
paper, hence we have seen some of the pairs in our training data. Nevertheless we use
the evaluation data. Indeed in our use-case of search engines, the crawled equations
will always be in the training data and only the user queries will be unseen equations.

67

Table 4.5: Eval Scores

Dataset Ranking
Eval

Accuracy
Eval

1mio ML-Subset Triplets 57.7 60.6
5mio Full ArXiv Triplets 76.2 80.9
20mio Full ArXiv Triplets 75.3 84.0
Bitmap CNN (Sec. 4.4) 71.9 68.3

In a way, we simulate this with the eval data.
Following the original experimental protocol, we measure the 1-nearest-neighbor

accuracy obtained in leave-one-out validation (named Accuracy) as well as the above
Ranking score. In Table 4.4, we again see that our model is only surpassed by the
pre-trained model that uses a larger training dataset. This motivates the use of a much
larger dataset.

Large-Scale Experiments

For training on all the papers in our dataset, we sample two different sets of training
triplets, one with 5 million triplets and one with 20 million triplets. We train our
models on a Nvidia GTX1080 GPU with 8GB memory, which allows us to process
mini-batches of 128 triplets or 384 equations. During training, we process around
1,300 triplets per second, not counting the time for reading data from hard disk. In
total, one of the 20 epochs of training on 20mio triplets takes 6:30h on our system. We
use annoy to construct an index for approximate nearest neighbor retrieval. In total,
our index uses 13GB of hard disk storage to manage all mathematical expressions in
our dataset.

Before we evaluate our models in a search engine study, we again check the per-
formance on the aforementioned evaluation data. The results in Table 4.5 indicate the
power of using large amounts of training data, although it is unclear if using 20mio
training triplets is an advantage over using only 5mio. Our large-scale models beat all
the models trained on smaller amounts of data. Even though the smaller models were
trained on only machine-learning related data, we obtain better scores on the machine
learning evaluation data by training on all disciplines.

Let us now inspect two example search queries. In Figures 4.10 and 4.11 we see
two examples from the introduction, Bayes law and Ising models, and their respective
nearest neighbors under our model trained on 5mio triplets. We see that we can find
other definitions of Bayes’ law as well as the related law of total probability. When we
perform a query for the Ising Model and look at the first 20 results, we find papers
where the model is called Boltzmann machine as well as papers that refer to the Ising
model. This illustrates the power of querying for mathematical expressions instead of
using keywords.

68

Table 4.6: Results of the Mathematical Retrieval Experiment. We report recall@K for
K ∈ {1, 10, 100}.

Model Equalities (36864) Relations (40960) Inequalities (13312)
R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100

Transformer Sec. 4.5 0.511 0.71 0.805 0.503 0.697 0.791 0.484 0.765 0.86
BoW 0.483 0.653 0.739 0.491 0.658 0.743 0.503 0.738 0.821
FastText [124] 0.480 0.650 0.739 0.488 0.651 0.742 0.488 0.713 0.810
Graph-CNN 0.507 0.833 0.884 0.512 0.834 0.883 0.504 0.870 0.922

Identifying Equalities and Inequalities

We repeat the experiment of retrieving the right-hand-sides of (in-)equalities given the
left-hand-sides of Section 4.5. We again use the contrastive-learning task to fine-tune
our graph-convolutional neural network that was pretrained using the masking and
contextual similarity task.

As we can see in Table 4.6, our graph-cnn network substantially outperforms both
baseline methods – bag-of-words and FastText – but also the transformer model pro-
posed in Section 4.5. With one exception, we can report the best recall scores on all 3
subsets of formulas, often by quite substantial margins.

Search Engine Study

Finally we want to study the usefulness of our embedding approach for a search engine
application more systematically. Traditionally, validating search engines using measures
like precision or recall, requires relevance scores for each result for each evaluation
query. We see that this requires a lot of manual annotation work since we have to
manually identify each relevant equation for each query. Unfortunately, we were not
able to find available evaluation data. The best fit is the NTCIR-12 task evaluation
data [292] consisting of 37 annotated queries. However is not appropriate for our
approach, as most queries are a combination of math as well as keywords. When we
ignore the keywords, the remaining query become very generic, for instance x + y,
which makes it very unlikely that we accurately find the articles labeled as relevant. In
addition, the overall focus of the NTCIR-12 task is recovery of exact matches, whereas

Query: P (d | s) = P (d,s)
P (s)

1st Result: P (s | d) = P (d|s)P (s)
P (d)

4th Result: P (d) =
∫
P (d | s)P (s)ds

Figure 4.10: Example: Bayes’ law. We report the first result and the first result that
does not show Bayes’ law, but, in this case, the related law of total probability. The first
result is from: R. H. Leike, T. A. Enßlin, Charting nearby dust clouds using Gaia data
only, 2019.

69

Query:
∑

i<j wij si sj +
∑

i θi si
’Boltzmann’ Result: E = −

∑
i bi si −

∑
i<j wijsisj .

’Ising’ Result: H = −
∑

i<j Cij Jijσiσj −
∑

i hiσi

Figure 4.11: Example: Ising Model. We find equations related to both Ising Mod-
els and Boltzmann Machines. First result is from: Weinstein, Learning the Einstein-
Podolsky-Rosen correlations on a Restricted Boltzmann Machine, 2017. Second result is
from: Ferrari et al., Finite size corrections to disordered systems on Erdös-Ráenyi random
graphs, 2013.

our focus is on retrieving related expressions.
Consequently, we curate and publish our own evaluation data. To reduce the man-

ual annotation labour, we want to apply a heuristic for the relevance judgement. To
this end, we have asked our colleagues, many from disciplines other than computer
science and data science, to provide us with equations that we should query. For each
equation, they provide a set of keywords or key-phrases that should appear in the sec-
tion around the result. If one of the keywords is present, we count the result as correct.
This way we can evaluate our search result without manually checking result lists. If
a keyword has more than 10 characters, we also count it, if we find a substring that
has a Levenshtein distance less than 2. In total, we have 53 evaluation queries publicly
available and editable online8.

We inspect two different information retrieval metrics that do not require to know
the number of relevant documents in advance: Precision@k and unnormalized Mean
Average Precision. Precision@k is defined as the fraction of relevant documents within
the first k results. We report it for lists of 10, 100 and 1000 results and compute its
mean over our evaluation queries.

Unnormalized Mean Average Precision is derived of the standard mean average
precision metric. Since we do not now the number of relevant documents in advance,
we omit this term, limit the search to a maximum of 1000 results and obtain the
following definition

uMAP =
1000∑
k=1

P (k)∆k

where P (k) is Precision@k and ∆k specifies if the k-th result is relevant. Again we
compute the mean over all evaluation queries. In comparison to Precision@k, uMAP
considers the order of the search results and rewards relevant results early in the result
lists.

For reference, we include retrieval based on a bag-of-words representation. To this
end, we use our data representation as in Section 4.6.1, but compute the sum over all
nodes in the graph to obtain a single 256-dimensional vector of the whole tree. We
retrieve the nearest neighbors using cosine similarity.

8Crowd-sourced evaluation data can be accessed and edited here: https://www.overleaf.com/
8721648589nrjxgwmtzfvm.

70

https://www.overleaf.com/8721648589nrjxgwmtzfvm
https://www.overleaf.com/8721648589nrjxgwmtzfvm

Table 4.7: Search Engine Performance

P@10 P@100 P@1000 uMAP

BoW 0.4567 0.3170 0.2083 106.17
5Mio 0.5038 0.3817 0.2984 165.04
20Mio 0.4547 0.3709 0.2897 156.51

In Table 4.7, we see that our approach beats the bag-of-words margin, in particular
for larger values of k. We see for Precision@10, the performance between BoW and our
embedding model is very similar. This is because for many queries the top-10 results are
mostly near-perfect matches which are easily identified even without machine learning.
However when we look at more results, we are able to find almost 50% more relevant
equations.

4.7 Conclusion and Outlook

Finding relevant literature even across disciplines is essential for scientific investiga-
tions. The search results should entail stimulating, relevant papers. Very often, a look
at the formula in a paper gives a compact description of the problems and solutions
discussed in the paper. Hence, the goal is to offer related papers based on the math-
ematical expressions. In this chapter we have demonstrated how unsupervised repre-
sentation learning can train useful representations for mathematical expressions that
allow us to find related expressions in large collections of formulae. We have investi-
gated three different ways to represent the training data and have proposed models for
each data format. This way, we have progressed from a convolutional neural network
to a graph-convolutional neural network and found that the tree-based representation
was indeed superior to both bitmap and sequential representations.

We have curated a huge dataset with over 29 million mathematical expressions
based on over 900,000 papers hosted on arXiv.org and designed a number of evalu-
ation tasks to measure the quality of our models. Particularly, on one of these eval-
uation tasks, we have shown the benefit of our search system using a new dataset of
annotated math queries. Our study suggests that future search engines for scientific
literature could benefit from considering mathematical expressions as a means to for-
mulate queries and from using machine learning models for mathematical formulas
for retrieval.

Viewed from a broader perspective, we see that machine learning is increasingly
used for problems in mathematics, e.g. in symbolic mathematic software or com-
puter algebra systems. For instance, Arabshahi et al. [7] use a synthetic data gener-
ator to generate equalities. Then they train tree-recurrent neural networks to decide
if two formulas are equal. Wankerl et al. [282] solve issues with the data generator
that allowed models to exploit shortcuts to make decisions and extend the scope of
the work by also including other relations between formulas like derivatives. Trans-
former models have been shown to solve differential equations or integrals [143,191].

71

Since publishing our work [209] we have seen many works on pretraining large lan-
guage models on scientific mathematical expressions crawled on arXiv.org for various
use-cases. Similar to our study in Section 4.5, Peng et al. [204] also investigate the
use of transformer models for mathematical retrieval. But applications are more di-
verse than that. Researchers at Google demonstrate the usefulness of these models for
mathematical reasoning tasks [216]. By using arXiv data and MATH [104], a dataset
of mathematical problems with step-by-step solutions, Lewkowycz et al. [150] train
Minerva, a transformer model that achieves state-of-the-art performance on several
quantitative reasoning datasets. These datasets include high-school to undergraduate
level mathematical problems as well as other multi-step reasoning problems.

Bridging the gap between applying models to the highly standardized quantitative
reasoning problems or integral and differential equation problems and to the complex,
diverse, ambiguous, and often underspecified mathematical expressions found in sci-
entific literature remains an open problem. However, we have demonstrated that a
machine learning model enables retrieval that goes beyond merely comparing symbol
frequencies. Combining more data sources, as pioneered by Lewkowycz et al. [150]
might be one ingredient for further improvements. The other ingredients that need fur-
ther research are the family of models used for computing embeddings and the training
tasks used. Whether or not the tasks investigated in this Chapter can be solved with
near-perfect precision using only large datasets and neural network models without a
“symbolic” reasoning component is still a debate in the artificial intelligence commu-
nity [146, Sec. 8].

72

Chapter 5

Learning Representation with
Multitask Learning and Noisy
Labels

A
, literally translated, is the science that studies the laws of the
stars. Modern astronomy relies on machine learning models for data anal-
ysis, and we explore training these models based on multitask learning and
noisy label learning in this chapter. To study stars, other celestial objects or

– more broadly put – our universe, modern astronomers observe high energy particles
emitted from celestial objects. Analyzing these energy beams allows to draw conclu-
sions on the key characteristics of the sources. For example, different types of super-
novae can be found by observing high energy particles [38]. Large international collab-
orations deploy a wide variety of detector hardware including telescopes [6, 133, 205]
to observe different ranges of electromagnetic beams.

In the FACT experiment [6] that detects highly energetic gamma rays using a
Cherenkov telescope, we have to solve three central machine learning problems in the
detector. The first is the distinction between gamma rays which may indicate a celestial
object and background noise which is mostly produced by cosmic rays from hadrons
that do not allow to conclude on a particular source – the gamma-hadron separation
problem. Secondly, we want to estimate the energy of the recorded particle. And third
we need to reconstruct its origin, i.e. the position of the detected source in the view
pane of the telescope camera, which is particularly challenging in the mono-telescope
setting of the FACT experiment.

Machine learning has been established as an effective tool for data analysis in mod-
ern high energy particle experiments and for solving the above-mentioned prediction
problems. Current approaches use a basic hardware trigger, i.e., they begin the record-
ing of an event when sufficient energy hits the detector. From the telescope recording
we can obtain the number of photos recorded by each pixel in the telescope camera,
giving us an image of the event, as illustrated in Figure 5.1. Then, a complex analysis
pipeline calibrates the data and extracts pre-defined features which are used for classi-

73

0 10 20 30 40

0

10

20

30

40

Hadron

0 10 20 30 40

0

10

20

30

40

Hadron

0 10 20 30 40

0

10

20

30

40

Gamma

0 10 20 30 40

0

10

20

30

40

Hadron

0 10 20 30 40

0

10

20

30

40

Gamma

0 10 20 30 40

0

10

20

30

40

Gamma

0 10 20 30 40

0

10

20

30

40

Hadron

0 10 20 30 40

0

10

20

30

40

Hadron

0 10 20 30 40

0

10

20

30

40

Gamma

0 10 20 30 40

0

10

20

30

40

Hadron

Figure 5.1: Simulated air showers of both classes – gamma and hadron – as captured
by the FACT telescope.

fying the stored event as hadron or gamma rays. The current models rely on Random
Forest classifiers on these hand-crafted features.

These hand-crafted features include simple aggregate statistics like the number of
pixels that recorded photons or the sum of overall photons. It also includes more
advanced statistics based on image proessing, like the number of islands, i.e. the num-
ber of connected blobs. One noteworthy feature set are the so-called Hillas parame-
ters [107]. The Hillas parameters describe an ellipsis that best fits the shower image
through its width, length and orientation. The Hillas parameters are informative for
gamma hadron separation, but even more for estimating the source position of a par-
ticle. From domain knowledge we know that the origin position lies on the major axis
of the Hillas ellipse that fits the shower image in the camera, at a certain distance from
the image center of gravity [64, 77]. Using this insight, the task of origin estimation
can be reduced to estimating this distance (which can be negative), a one-dimensional
regression task. Noethe proposes to decompose this task into a regression task of the
absolute distance and a classification task of its sign [194] and solve these tasks with a
random forest regressor and classifier, respectively.

All of the above machine learning problems are traditionally tackled as super-
vised learning tasks where annotated training data is produced in sophisticated sim-
ulations [22,195]. In this chapter, we investigate two more variants of supervision for

74

machine learning: Supervised training with multiple supervision sources and supervised
training with noisy labels. Currently, three separate models are trained and deployed.
But, since all tasks depend on the same telescope measurements, we view the problem
as a multi-task learning problem and train a shared model based on multiple sources
of supervision, one source for each task. We outline how we can replace the man-
ual feature engineering currently applied with a learned representation trained with
traditional full supervision. Our approach will train a shared representation that can
solve all three prediction tasks with specialized prediction networks build on top of
the shared representation. This parameter sharing increases the inference efficiency of
our models. Furthermore, tasks may benefit from shared properties of the prediction
tasks. We design loss functions for each task and, more importantly, propose a novel
way to combine the different loss functions in a way that accounts for their different
scales and convergence behaviors.

Furthermore, we look into an alternative source of supervision that reduces the
burden of simulating training data by using real telescope recordings. We rely on the
concept of noisy labels and introduce a novel method for learning under label noise
where only one noise rate is known. We show how gamma-hadron separation can
be framed in this setting and illustrate that the method allows us to train accurate
classifiers. For this result, we first use the hand-crafted features of the current pipeline in
conjunction with random forest classifiers. In a next step we proceed to train the deep
networks presented in the first chapter using our novel noisy-label learning approach.

5.1 A Supervised Multi-Task Representation Learning Ap-
proach

The current machine learning pipeline in the FACT experiment heavily relies on the
manual features designed by a domain experts. We wonder, whether we could replace
the long pipeline by a deep learning process. Deep learning is supposed to decrease
the burden of feature engineering, as the network already learns a suitable feature rep-
resentation. Is this true for gamma astronomy? Works in other telescope projects
suggest the benefits of using deep learning [118, 190, 243]. However, deep learning is
widely known to be resource hungry requiring not only vast amounts of training data,
but also GPU hours to train and apply models. Future monitoring facilities will be
installed around the world, often in remote positions, for a round-about view of the
sky [226]. They need to detect an interesting gamma event fast, so that they can notify
the other telescopes, which then turn in order record the event from their angle. In
modern multi-messenger astrophysics, even different types of detectors inform each
other so that the same event can be verified by different measurements. So we have to
not only consider the quality of our model predictions, but also take into account the
resource constraints of executing the models. These constraints include the inference
time for enabling fast reaction times, but also energy demands when powering high
performance computers in remote locations is not feasible.

75

Figure 5.2: Hexagonal data transformed to a quadratic grid. The transformation is
bijective in the green (and blue) area and does not change the raw values, however
it only approximates the neighborhood relationships of the original hexagonal image.
Red areas are padded with zeros. Figure taken from [35].

5.1.1 Supervision by SimulatedData, DataRepresentation andPre-Processing

When applying machine learning in astrophysics, it is difficult to obtain labeled data.
A common approach to solve this problem is to combine Monte Carlo simulations
with a careful training of the classifier. Astrophysics has a profound understanding
of particle interactions in the atmosphere: Given the energy and direction of some
parent particle (gamma, proton, etc.), its interaction can be described by a probabilistic
model which gives a probability for particle collisions, possibly resulting in secondary
particles, which again may interact with each other. This results in a cascade of levels
of interactions that form the air shower, which can be simulated by software like the
CORSIKA simulator [102]. The output is a simulated air shower, which needs to be
run through a simulation of the telescope and camera device to produce realistic raw
data mimicking a shower that would have been recorded using the telescope. We can
simulate interesting particles (e.g. gamma) and uninteresting particles (e.g. proton)
and label the resulting raw-data accordingly. Furthermore we can simulate particles of
different energy levels and control the source position of the simulated gamma rays.

For our study, the simulation is run in the so-called diffuse mode that simulates
gamma particles originating from positions distributed uniformly in the camera pane.

In this study, we want to apply a multi-task deep network in the data analysis
pipeline of the FACT telescope. In our training data, each event is represented as an
image where each of 1440 pixels contains a photon count represented as a positive
integer.

76

This photon count representation is based on the single-photon extraction for
FACTs SiPM sensors proposed by Mueller et al. [181] and is implemented in the
photon-stream software library [185]. The photon-stream library allows to extract
the arrival times of individual photons on a per-pixel level, hence we could work on
this event sequence of timestamped photon arrivals. To reduce the complexity, we just
work on the number of photons per pixel for each event.

In the camera, these pixels are arranged in a hexagonal grid. However, in contrast to
[1], we chose to embed these pixels in a regular, quadratic grid of size 45×45 where the
additional pixels are padded zero values, as depicted in Figure 5.2. This allows us to use
regular convolutional neural network rather than networks specialized for hex-grids.
Given the image data, the three prediction tasks, gamma-hadron separation, energy
estimation and origin estimation, that we will introduce in detail in the next section,
should be tackled, generating annotated events for further downstream analysis. We
try to solve them by a single deep neural network without the need for manual feature
engineering.

5.1.2 Multi-Task Deep Neural Network

We design a model that solves all three machine learning tasks simultaneously as also
proposed by Jacquemont et al. [119,120]. It utilizes a shared encoder architecture that
extracts features from the raw photon count images. These features are passed into
three separate prediction heads. The whole network is trained jointly on all tasks. We
begin by discussing each task individually and present the corresponding prediction
heads as well as loss functions. Then we present our approach for combining the losses
to train with three prediction heads.

Gamma-Hadron Separation is a binary classification task. Early approaches based
on manually-designed decision rules were already quite successful, also simple machine
learning rules based on histogram features already achieve good classification perfor-
mance. The random forest approaches outlined by Nöthe [195] achieve excellent classi-
fication results that are outperformed on simulation data by deep learning approaches
like the one proposed by Buschjaeger et al. [35]. For application on real telescope
recordings, this performance advantage on simulation data does not increase source
detection performance, hinting at overfitting to perculiarities of the simulation [35],
an issue that may be addressed through domain adaptation techniques [65].

For the classification task we rely on the standard cross-entropy loss function. The
classification head outputs a probability ŷ that the recorded event is a gamma event.
We minimize the negative log-likelihood of the ground-truth label

ℓ(ŷ, y) = −y log ŷ + (1− y) log(1− ŷ). (5.1)

To ensure that the outputs are indeed valid probabilities, we apply the sigmoid activa-
tion σ(a) = 1/(1 + exp(−x)) after the final affine layer.

77

Gamma Probability

Energy

Origin

Base Encoder

Figure 5.3: Schematic of our Multi-Head Architecture

Energy Estimation is a univariate regression task. We use an affine function to out-
put the prediction given the last hidden representation. Instead of using an absolute
error, we prefer the relative error that normalizes the difference between target and
prediction by the true energy level. We use the loss function

ℓ(ŷ, y) =
|y − ŷ|
y

. (5.2)

and apply the exponential function as activation function after the last layer to account
for the power-law distribution of energies. This presents an alternative to minimizing
the squared difference between the log-target and the prediction, another approach to
dealing with the power-law proposed by Nöthe [195].

Origin Estimation is a two-dimensional regression task. We have already discussed
an approach based on the disp-method that utilized domain knowledge: it separates
the task into a 1d regression task and a classification task by assuming the event origi-
nates on the main axis of the reconstructed shower axis [195]. However, since we no
longer estimate Hillas parameters, but want to rely on a fully-learned analysis pipeline
parameterized by a deep network, we instead tackle the problem as a 2d-regression task
and try to predict the position of the source on the camera-pane. This approach uses
less domain knowledge, which might be a disadvantage, but we might eliminate errors
where the reconstruction of the shower axis is flawed.

Our prediction head uses an affine map to compute the coordinates given the last
hidden representation. For downstream tasks like source detection, it is important that
the angle θ between the predicted source position and the actual position is as small as
possible. We compute this angle θ accounting for the geometry of the telescope and
use it as the loss function that is minimized during training.

Multi-Head Architecture Our multitask network is structured as in Figure 5.3: We
utilize a shared base encoder, i.e. a convolutional neural network that takes the input
images and maps them into a latent vector space. Then this vectorial representation
is fed into three separate prediction heads, i.e. multilayer perceptrons that take the
representation and compute a one- or two-dimensional output for each task.

For this study, we rely on different EfficientNet architectures [257] for our base
encoder. The prediction heads alternate fully-connected layers of a fixed width with

78

batch normalization layers and ReLU activations for a specified number of layers and
compute output using a single affine layer with the desired number of outputs, as
described above.

Multi-Head Loss Combining the three loss functions outlined above is not a trivial
task, because they have very different loss value ranges. This results in different mag-
nitudes of the gradients used during the neural network training. Consequently, tasks
with large gradients dominate the training. An ad-hoc solution is figuring out a set of
weights and optimize a weighted sum of the losses. This however turned out to be a
tedious task, particularly when experimenting with different losses or transformations
of the targets.

We propose to use a normalization layer inspired by batch normalization that es-
timates a normalizing constant for each loss. This constant is supposed to correspond
to the inverse of a loss value that is easily obtained after a short amount of training, a
kind-of default loss. Hence we measure the loss relative to this default loss.

Let lt = (lt1, ..., l
t
k) be the vector of individual losses observed at the t-th weight

update for t ∈ N0. We compute the following aggregates loss l̄t

wt ← (1− t−α)wt−1 + t−αlt (5.3)

l̄t ← 1

k

k∑
i=1

lti
wt
i

(5.4)

where α ≥ 1 controls the speed of convergence of w to the default loss. We use
α = 1.2 in all of our experiments, but preliminary studies found only little effects of
varying this hyperparameter. To further increase the stability of our multi-head loss,
we clip individual loss values at a maximum value of 2wt. This prevents the undesired
effect that high losses incurred on rare, very-high energy particles create a normalization
constant that is too large: so large that training of the head comes to a halt and so large
that it never recovers a useful value during the remaining training process.

5.1.3 Experiments

Experiments are designed to answer two key question: First, can CNNs replace hand-
crafted features with reasonable accuracy on simulated data? Second, will these models
generalize well enough to be used for real data?

Models Architectures and Hyperparameters For our study, we investigate deep
networks based on the EfficientNet architecture which we train from scratch for our
application. This family of deep networks contains 7 different sized models. Instead of
the traditional classification head, we use our multi-head architecture. We use heads of
depth 3 with a fixed width of 512 neurons. In Table 5.1, we see the different resource
requirements for the architectures considered in this study. The run-times measured
for fitting the deep network are measured on a Nvidia DGX-A100 using a single GPU.

79

Table 5.1: Comparison of the different model architectures used for our study.

Model Number of Parameters Fit Time in Seconds

efficientnet-b0 13,540,617 4,542
efficientnet-b1 16,046,253 6,694
efficientnet-b2 18,062,479 7,892
efficientnet-b3 21,877,725 10,367
efficientnet-b4 30,345,765 14,079
efficientnet-b5 42,721,037 18,886
efficientnet-b6 56,666,077 24,860
efficientnet-b7 81,234,685 33,882

We repeat each experiment 10 times and report means and standard deviations of all
metrics.

Simulation Studies In Table 5.2, we see that the performance on holdout-simulation
data is very good across all architectures. The classification performance of the gamma-
hadron-separation task is traditionally measured via area-under-the ROC curve and all
models score roughly the same. Similarly, the origin estimation does not depend on
the architecture. The energy error, however, is larger for the 3 smallest architectures.
In addition, one training run for efficientnet-b7 failed to produce a good model
for the energy estimation, resulting in the outlier mean and standard deviation score.
The performance of origin estimation is measured via the average angle θ between the
true and the estimated origin. A more detailed analysis in Figure 5.4 (left) reveals that
the deep-network analysis outperforms the random-forest-based analysis substantially
for lower-energy, while it is not competitive for higher energies. This so-called angular
resolution plot shows the 68% quantile of the angles between true and estimated origin
for different energy levels. A similar effect can be observed for the estimation of the
energy: We see in Figure 5.4 (right) that for lower-energy particles our deep network
approach has a lower bias than the random forest analysis and that this effect reverses
for higher energies. Here bias is defined as the median of the relative L1-error and
resolution is the difference between the 84.1% quantile and the 15.9% quantile of the
relative L1-error, or intuitively the width of a confidence interval around the median
error [195, Eq. 6.5].

Two orthogonal approaches to further improve our performance come to mind:
Using weighted sampling, we can increase the importance of the rarer higher-energy
particles during training, hopefully improving our results in the tail. Additionally, the
combination of a random forest model with our deep network looks promising for
getting a good performance across all energy levels.

Looking at the resource consumption of our models, we note that the network
using the efficientnet-b0 architecture can still be executed efficiently and fast.
On an Apple Macbook Pro 2020, using a single Intel i7 CPU core, it takes 4.48237±

80

103 104

Etrue / GeV

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.
68

/

103 104

Etrue / GeV

0.5

0.0

0.5

1.0

1.5

Bi
as

0.5

0.0

0.5

1.0

1.5

Re
so

lu
tio

n

Figure 5.4: Angular resolution of the origin estimator for different energy levels (left)
and bias and resolution of the energy estimator. Transparent markers show the perfor-
mance of the random-forest-based estimators.

Table 5.2: Performance of the three prediction heads on simulation data of the different
multi-task model architectures.

Model AUC-ROC ↑ Direction θ ↓ Energy Error ↓
efficientnet-b0 0.8939±0.0020 0.3253±0.0035 0.3646±0.0856
efficientnet-b1 0.8972±0.0026 0.3194±0.0040 0.3540±0.0767
efficientnet-b2 0.8968±0.0038 0.3236±0.0079 0.3407±0.0603
efficientnet-b3 0.8953±0.0040 0.3226±0.0061 0.3273±0.0515
efficientnet-b4 0.8898±0.0066 0.3477±0.0606 0.3248±0.0543
efficientnet-b5 0.8883±0.0083 0.3263±0.0100 0.3383±0.0530
efficientnet-b6 0.8929±0.0035 0.3190±0.0020 0.3294±0.0345
efficientnet-b7 0.8897±0.0041 0.3237±0.0059 0.3936±0.1476
efficientnet-b8 0.8876±0.0087 0.3281±0.0130 0.3217±0.0103
SOTA Random Forest 0.7720±0.0004 0.6127±0.0006 0.3275±0.0006

0.3082 ms to tag a single event using onnx-runtime [57], which is sufficiently fast
for the typical arrival times in the FACT experiment without the need for specialized
hardware.

OpenCrab Source Detection Now we evaluate our trained models from the last
section on real-world data collected by the FACT telescope at the Observatorio del
Roque de los Muchachos (La Palma, Canary Islands, Spain). The telescope has been
directed once towards a known gamma source, the Crab Nebula. A significantly higher
number of gamma ray candidates originates from the direction of the known gamma
ray source than from other directions. On these recorded data, we run the full source
detection pipeline of the FACT experiment and investigate the influence of the gamma-
hadron separation models on the overall quality of the source detection.

The evaluation proceeds in the following steps: We take the publicly available Crab

81

Nebula observation data [6, 17], which consist of 17.7 hours or 3,972,043 recorded
events. Our multitask model is applied to the events to estimate the probability of an
event being a gamma particle and to estimate its direction of origin.

From the direction, we compute the angle between the trajectory of any incoming
ray and the known direction of the Crab Nebula. The number of gamma rays can be
regarded as a distribution that depends on the angle. High counts are to be expected
for small angles. The distribution with respect to the direction of the Crab Nebula is
called an on-distribution [77]. Contrasting the distribution of counts with distributions
for five different positions with no known gamma sources yields the off-distributions. A
uniform distribution of counts over angles is expected, where the majority of counted
rays can be attributed to misclassified hadronic rays. We state the null-hypothesis that
on-distribution and off-distribution follow the same distribution, or, intuitively, that
there is no gamma source at the direction of Crab Nebula. The margin by which a
significance test rejects this null-hypothesis gives us a significance of detectionSLi&Ma,
reported by the number of standard deviations σ [151].

De nition 2 (Li & Ma statistic). Let Non, Noff be the number of events in the on-
and off-positions. Let α = 1

k where k is the number of considered off-regions. Then
we define

SLi&Ma(Non, Noff) =

[
2Non · ln

(
1 + α

α
· Non

Non +Noff

)
+2Noff · ln

(
(1 + α) · Noff

Non +Noff

)]1/2
.

This SLi&Ma is the performance metric for gamma source detection, where larger
numbers are better. A more detailed discussion of this statistic is delayed until next
section.

The trained classifiers output probabilities that an event is a gamma ray and we
can control the classification behavior by varying the threshold for actually predicting
gamma. A large threshold yields less events and also less misclassified events, because
the classifier is more certain. If we set the threshold too large, we get too few total events
which results in a small statistical significance. In contrast, if we decrease the thresh-
old, we obtain more events, but also more misclassifications. If we set the value too
small, we count too many noise events, the difference between on- and off-distribution
shrinks, which also yields a low significance of detection. Following common practice
in gamma-ray astronomy, we chose the threshold that maximizes the significance of
detection.

As we can see in Table 5.3, the significance of detection is large for all models we
testet. Particularly the smaller models up to efficientnet-b3 obtain large mean
significances of detection that seem to outperform the current state-of-the-art random
forest models. However we must note the large variance between the different runs
of the examples. The standard deviation is one order of magnitude larger than for the
random forest models. Unfortunately, we often observe this pattern for deep networks
[27, 213]. Another drawback is that we do not see that the performance measured on

82

0.00 0.05 0.10 0.15 0.20 0.25 0.30
(/)2

0

100

200

300

400

500

600
Source: Crab, tobs = 17.7 h

NOn = 1165, NOff = 1782, = 0.2
NExc = 808.6 ± 35.2, SLi&Ma = 29.5

On
Off

0.00 0.05 0.10 0.15 0.20 0.25 0.30
(/)2

0

100

200

300

400

500

600
Source: Crab, tobs = 17.7 h

NOn = 866, NOff = 1251, = 0.2
NExc = 615.8 ± 30.3, SLi&Ma = 26.4

On
Off

Figure 5.5: Histogram of the frequencies of gamma predictions as a function of the
squared angular distance between the trajectory of any incoming ray and a position in
the sky for efficientnet-b0 (left) and the standard analysis using random forest
(right). On-events show the frequency with respect to the position of the Crab Neb-
ula, while Off-events are w.r.t. positions with no known sources. The significance of
detection test only considers angles smaller than 0.025 (left of the dashed vertical line).

Table 5.3: Significance of Detection (Def. 2) on Crab nebula data of the different
model architectures.

Model Mean±Std-Dev Min Max

efficientnet-b0 26.85±0.57 26.07 29.51
efficientnet-b1 27.28±1.38 23.71 29.26
efficientnet-b2 27.02±1.17 25.03 28.77
efficientnet-b3 26.73±1.10 25.49 29.24
efficientnet-b4 26.80±1.04 24.87 28.44
efficientnet-b5 26.49±1.16 24.40 27.75
efficientnet-b6 25.64±0.90 24.33 26.85
efficientnet-b7 25.64±1.21 23.01 27.12
efficientnet-b8 25.66±0.41 25.18 26.10

SOTA Random Forest 26.25±0.15 - -

83

simulated data (Table 5.2) can predict the detection scores. For practitioners, there are
not only disadvantages: If we have the budget to train a number of candidate models,
we can pick one that works really well. Looking at the maximum reported detection
scores, we see that they exceed 29.0σ, which marks a substantial improvement upon
the state-of-the-art.

We conclude that our multitask model not only works on simulation data, but
also provides meaningful results on real-world source detection tasks. In Figure 5.5
we see, how the efficientnet-b0 model achieves a higher significance of detection
than the current random-forest-based approach: Comparing the number of on-events
and off-events we see that it predicts more gamma events in the on-region, yielding a
stronger signal of the source.

5.1.4 Discussion

Machine Learning is one of the basic building blocks of modern high-energy astropar-
ticle experiments. The FACT telescope measures Cherenkov light emitted in earth’
atmosphere when hit by gamma beams. The telescope measures at a rate of 60 events
per second, better telescopes even measure orders of magnitudes faster, motivating the
demand for fast processing pipelines. This is even more crucial for large telescope ar-
rays in one location or a global distribution of sites that are possibly being deployed in
resource constraint and remote locations. Current approaches solve the event-tagging
problem for FACT by using long processing pipelines that extract hand-crafted fea-
tures which are then used by RFs. In this section, we successfully replaced this entire
prediction pipeline with a single multitask CNN. We have seen that the performance
exceeds the state-of-the art on both simulated data and in a real-world task, the signif-
icant detection of a known Gamma source.

5.2 Supervision based onNoisy Labels with Partially-Known
Class-Conditional Label Noise

In this section, we explore the potential of weak supervision for gamma hadron clas-
si cation [22, 35], one of the three central machine learning tasks in gamma ray as-
tronomy. By pointing the telescope at a known gamma source, we record unlabeled
real-world data and use the estimated origin of recorded particles as a source of super-
vision. Formally, we treat the origin of gamma and hadron particles as a noisy weak
label.

Discussing our approach within the theoretical framework of noisy labels even re-
veals a more general contribution of our work: unlike existing approaches in noisy
label learning [84, 183, 235], we do not require knowledge about both the class-wise
noise rates, but only one. We design a learning criterion based on the significance
of detection and show how it tackles a noisy label learning problem for binary clas-
sification where exactly one of the noise probabilities is known. We call this setting
partially known class-conditional label noise. We address the partial knowledge of

84

class-conditional label noise through an objective function that a learning algorithm
can optimize.

Recall from Chapter 3 that ŷ =±1 denotes a noisy label and y =±1 is its cor-
responding clean label. Furthermore, the noise process is defined by two probabilities
p+, p−. We define p+ := P (ŷ = −1 | y = +1) as the probability of flipping a clean
positive, and p− := P (ŷ = +1 | y = −1) for the probability of flipping a clean neg-
ative label. Learning under this noise model is feasible iff. p++p− < 1. In Chapter 3
we have discussed related work on noisy label learning with either fully unknown noise
rates or fully known noise rates. We present the first method for settings where only
one noise-rate is unknown.

For the rest of this chapter, we use subscripts py with y ∈ {+1,−1} or Nŷ with
ŷ ∈ {+1,−1} to compactly represent p+, p−, N+, and N−.

5.2.1 e Signi cance of Detection as Noisy Label Learning with Par-
tially Known Label Noise

We propose a novel method for learning under class conditional label noise with one
known noise rate. The method is inspired by the gamma hadron separation problem
that arises during source detection, a situation where we will see that indeed exactly
one noise rate is known beforehand. Our method is based on the Li&Ma significance
of detection score of Definition 2 that we will repurpose for general binary classifi-
cation tasks with partially known label noise. In particular, we assume, without loss
of generality, that the class-conditional noise probability p− is known. We begin by
first redefining the score more generally in terms of noisy labels rather than on- and
off-regions, although the correspondence is one-to-one.

De nition 3 (Li & Ma Detection Score). LetNŷ be the number of true positives with
a noisy label ŷ ∈ {+,−} and let α = p−

1−p−
. We assume that N = N++N− follows

a Poisson distribution. The Li&Ma detection score is defined as

fα(N+, N−) =

[
2N+ · ln

(
1 + α

α
· N+

N+ +N−

)
+2N− · ln

(
(1 + α) · N−

N+ +N−

)]1/2
.

Remark 1. We assume that the number of true positives follows a Poisson distribution.
This is plausible in a lot of situations, including gamma ray astronomy: Recall that
Poisson distributions models counts of events that are recorded in a fixed, continuous
interval of time if these events occur with a constant mean rate and independently
of the time since the last event. The same data collection process can be found in
many detection tasks in machine learning. Even in situations whereN is not naturally
described using a Poisson distribution, the test statistic can still be useful: For instance,
when could assume that N follows a Binomial distribution, i.e. a distribution that
models the number of events in a discrete interval. Then for large N , the Binomial
distribution approaches a Poisson distribution.

85

Now we will show that we can use the Li&Ma statistic of Definition 3 to test the
foundational assumption of noisy label learning with class-conditional label noise, i.e.
that p+ + p− < 1. To do so, we formulate the null-hypothesis

h0 : p+ + p− = 1. (5.5)

We do not need to consider the case p+ + p− > 1 as flipping the roles of the noisy
labels fulfils the assumption with (1− p+) + (1− p−) = 2− (p+ + p−) < 1.

By showing how this null-hypothesis can be reformulated as a hypothesis that com-
pares two Poisson distributions, we can use known results that tell us when we can reject
this reformulated null-hypothesis.

To do so, we first prove a technical lemma that establishes that the number of
true positives with a particular noisy label is Poisson-distributed if the number of true
positives is Poisson-distributed.

Lemma 1. Let λ be the rate of the Poisson distribution P(· | λ) that models the number
of true positive examples N . en the number of true positives with a noisy label ŷ = +1
and ŷ = −1 are Poisson distributed with rates (1− p+)λ and p+λ, respectively.

Proof. We proof the statement for ŷ = +1, the proof for ŷ = −1 is analogous.
Let ŷ1, . . . , ŷN be random variables that contain the noisy labels of the true positive
examples y1, . . . , yN . Then the probability

P

(
N∑
k=1

1[ŷk = +1] = N+

)
=

∞∑
l=N+

P

(
(N = l) ∩

(
l∑

k=1

1[ŷk = +1] = N+

))

=
∞∑

l=N+

P (N = l | λ) P

(
l∑

k=1

1[ŷk = +1] = N+

)

=

∞∑
l=j

e−λλ
l

l!

(
l

N+

)
(1− p+)N+p

l−N+
+

=
e−λ(1− p+)N+λN+

N+!

∞∑
l=N+

λl−N+p
l−N+
+

(l −N+)!

=
e−λ(1−p+)(λ(1− p+))N+

N+!

= P(N+ | (1− p+)λ)

which is exactly the density function of a Poisson random variable with rate (1 −
p+)λ.

Now we prove that our initial null-hypothesis can be reformulated as a comparison
of Poisson rates.

Lemma 2. Let λ be the rate of the Poisson distribution that models the number of true
positive examples N . Let α = p−

1−p−
. Let λ+ = (1− p+)λ and λ− = p+λ.

86

en

p+ + p− = 1 ⇔ λ+ − αλ− = 0.

Proof. Algebraic massaging yields the desired result:

p+ + p− = 1

⇔ p+p− = 1− p− − p+ + p+p−

= (1− p−)(1− p+)

⇔ p+
p−

1− p−
= 1− p+

⇔ αp+λ = (1− p+)λ
⇔ αλ− = λ+

⇔ λ+ − αλ− = 0.

Lemmas 1 and 2 yield that our initial hypothesis can be rearranged into a hypoth-
esis that contrasts two Poisson distributions with rates λ+ and λ−. Now we show that
the Li&Ma statistic is the statistic of a hypothesis test that rejects the null hypothesis
that noisy label learning with class conditional label noise is infeasible.

eorem 4 (Li&Ma Hypothesis Test). Let Nŷ be the number of true positives with a
noisy label ŷ ∈ {+,−} and let α = p−

1−p−
. We assume that N = N+ + N− follows

a Poisson distribution. Let N : R → [0, 1] be the cumulative density function of the
standard normal distribution. e p value for rejecting h0 : p+ + p− ≥ 1 is given by

p = 1−N (fα(N+, N−)) (5.6)

where fα(N+, N−) is the Li&Ma statistic stated in De nition 3.

Proof. Using Lemma 2, we can reformulate the null-hypothesis as λ+ − αλ− = 0.
Recall from Lemma 1 that N+ and N− follow a Poission distribution. Based on their
respective Poisson rates λ− and λ+, we employ the likelihood ratio test as first proposed
in Li and Ma [151, Eq. 17]. We present their proof in the our setting of noisy label
learning here.

The data used as evidence in the statistical hypothesis test are the counts N+ and
N− and we employ two parameters β and γ with λ+ = β + γ and λ− = γ/α for
modeling the likelihood of the measured data

P(N+, N− | β, γ) = P(N+ | β + γ)× P(N− | γ/α).

Hence β models the excess counts N+ − αN− and γ models αN−, consequently
we can express the null hypothesis as h0 : β = 0. In order to apply the likelihood
ratio test, we have to compute the maximum likelihood estimates of β and γ given
(N+, N−). Starting with the log likelihood

L(N+, N− | β, γ) =N+ ln(β + γ)− (β + γ)− lnN+!

87

+N−(ln γ − lnα)− γ/α− lnN−!

we find the maximum likelihood estimates at the root of the partial derivatives

∂

∂β
L(N+, N− | β, γ) =

N+

β + γ
− 1 = 0

∂

∂γ
L(N+, N− | β, γ) =

N+

β + γ
− 1 +

N−
γ
− 1

α
= 0

which is at β̂ = N+ − αN− and γ̂ = αN−.
Furthermore we need a maximum likelihood estimate of γ conditioned on the null

hypothesis β = 0. We again find the root of the partial derivative of the log likelihood

∂

∂γ
L(N+, N− | β = 0, γ) =

N+ +N−
γ

− (1 + 1/α) = 0

⇒ γ(0) =
N+ +N−
1 + 1/α

=
α

1 + α
(N+ +N−).

Now the maximum likelihood ratio

λ =
L(N+, N− | β = 0, γ = γ(0))

L(N+, N− | β = β̂, γ = γ̂)

=

[
α

1 + α

N+ +N−
N+

]N+
[

1

1 + α

N+ +N−
N−

]N−

can be used to reject the null hypothesis in a likelihood ratio test.
Standard results on likelihood ratio tests (eg. [244, Theorem 7.2.2]) dictate, that

√
−2 lnλ ∼ χ(1)

if the null hypothesis is true. We can take

S =
√
−2 lnλ = fα(N+, N−)

as the significance value with corresponding p-value 1 − N (S | µ = 0, σ = 1) for
rejecting the null hypothesis.

Remark 2. A similar hypothesis test can be derived if we assume that N follows a
Binomial distribution. Then analogously, N+ and N− also follow Binomial distribu-
tions. Unfortunately, the resulting test statistic does not have a nice, compact form.
Still it has a closed-form that we can compute and our experiments found that the
Poisson variant is more useful but that the difference is slim.

In the next sections we will use this hypothesis test to find classifiers by selecting
the models that reject the null hypothesis as significantly as possible.

88

Decision reshold Optimization

So far, the counts Nŷ from Definition 3 describe the numbers of true positives with
a noisy label ŷ. Thus, they require a set of data that is both ground-truth labeled
and noisily labeled. To lose this unrealistic requirement, we heuristically replace the
Nŷ counts with counts of predicted positives. This replacement allows us to tune the
decision threshold which leads to the predicted positives, so that the tuned threshold
maximally aligns with the foundational assumption p+ + p− < 1.

More specifically, we compute the function fα from Definition 3 over N θ
ŷ , the

numbers of predicted positives according to a decision threshold θ. We choose θ such
that fα becomes maximal, i.e. for noisy labels ŷ ∈ {+1,−1}, a soft classifier h : X →
R, and a noisily labeled data set {(x⃗i, ŷi) : 1 ≤ i ≤ N}, we choose

θ∗ = arg max
θ

fα(N
θ
+, N

θ
−),

where N θ
ŷ =

∑N
i=11ŷh(x⃗i)> ŷθ ,

(5.7)

so that fα becomes the objective function with which we optimize the threshold θ.
This optimization does not require any ground-truth labels; we only need to count

the numbers of predicted positives in both noisy classes. Moreover, we require knowl-
edge about the rate p−, so that we can compute α = p−

1−p−
, but we do not need

to know the p+ rate. The maximization works with any soft classifier h, like SVMs,
decision trees, deep neural networks, and many more.

We heuristically replace true positives Nŷ with predicted positives N θ
ŷ in the hy-

pothesis test. This maximization of fα can lead to rejections that are overly optimistic
and learning with label noise can falsely appear feasible. On the other hand, if the
null hypothesis cannot be rejected despite the maximization of fα, i.e. if not even the
optimized predictions of the model fulfill the foundational noisy learning assumption,
we may conclude that learning is infeasible given only noisy labels.

We summarize our threshold optimization technique in Algorithm 1. If we cannot
establish learnability with the given noisy labels, we can throw an error.

Algorithm 1 Li&Ma decision threshold tuning.
Input: A scoring function h : X → R, a desired p value p > 0, a noise rate 0 <
p− < 1, and N noisily labeled instances {(x⃗i, ŷi) : 1 ≤ i ≤ N}.
Output: A decision threshold θ ∈ R.

1: Let α = p−
(1−p−)

2: Optimize θ∗ according to Eq. 5.7
3: if p > 1−N (fα(N

θ∗
+ , N θ∗

−)) then
4: return θ∗

5: else
6: return failure: could not establish that learning is feasible
7: end if

89

Decision Tree Induction

The threshold tuning from Algorithm 1 is particularly advantageous if some soft clas-
sifier h already exists. If not, we can alternatively maximize fα over the entire model,
not only over the decision threshold θ.

To this end, we propose a decision tree induction algorithm which learns by max-
imizing fα directly, i.e. in every split. Like classic decision trees, our algorithm recur-
sively partitions the (noisy) training set in a greedy fashion: at each node, we split the
data by thresholding a single feature. To find the best split, evaluate fα for both sides
of the partition. We stop at a user-defined maximum tree depth or when no split can
further improve fα. Namely, each iteration of our tree induction algorithm selects a
feature j and a feature threshold t, such that

j∗, t∗ = arg max
j,t

max
{
f
Xj≤t
α , f

Xj>t
α

}
,

where f
Xj≤t
α = fα

(
N

Xj≤t
+ , N

Xj≤t
−

)
,

f
Xj>t
α = fα

(
N

Xj>t
+ , N

Xj>t
−

)
,

N
Xj≤t
ŷ =

∑N
i=11x⃗ij ≤ t∧ ŷi=ŷ ,

N
Xj>t
ŷ =

∑N
i=11x⃗ij >t∧ ŷi=ŷ ,

(5.8)

The best split according to Eq. 5.8 can be evaluated efficiently by sorting the data
according to each of the features. Considering only the maximum of fXj≤t

α and fXj>t
α

amounts to the fact that a greedy maximization of fα does not require balanced splits:
if the other side of a split results in a low sigma value, we can either discard this side
without harming the overall fα or we can split this side further in a later step. As fα
increases with larger counts, the greedy approach is not tempted to split off individual
examples. We have summarized our method in Algorithm 2.

Algorithm 2 Li&Ma decision tree induction.
Input: A maximum depth d ≥ 0, a noise rate 0 < p− < 1, and N noisily labeled
instances {(x⃗i, ŷi) : 1 ≤ i ≤ N}.
Output: A trained decision tree.

1: Let α = p−
1−p−

.
2: if d > 0 then
3: Find j∗, t∗ according to Eq. 5.8.
4: Split L = {x⃗i : x⃗ij∗ ≤ t∗}, R = {x⃗i : x⃗ij∗ > t∗}
5: Construct sub-trees on L and R with depth d− 1.
6: return a tree with a split j∗, t∗ and both sub-trees.
7: else
8: return a leaf node with the output 1

N

∑N
i=11ŷi=+1.

9: end if

90

Ensemble Methods Tree models often benefit from ensembling approaches, so we
also consider them in this context. As with classic random forests [29], we choose
a bagging approach [28] to build ensembles from Algorithm 2. Namely, we use a
bootstrapped sample of the noisy instances for each tree and draw a random feature
subset of size ⌊

√
d⌋ for each split. We combine the predictions of all trees by averaging

their classification outputs. Using the bagging approach, we can tune the final decision
threshold of the ensemble with Algorithm 1 on out-of-bag, noisily labeled data. This
avoid the use of a separate dataset for decision threshold tuning.

5.2.2 Experimental Results on Imbalanced Data Sets

We begin our experimental evaluation using data sets outside of gamma ray astronomy.
Specifically, we begin with a synthetic example, before investigating our approach on
imbalanced datasets with random forest classifiers.

An Illustrative Example

We begin our experimental evaluation with a synthetic classification problem with one-
dimensional X = [0, 1]. We summarize the problem in Figure 5.6: The conditional
distributions given the clean label are summarized in Fig. 5.6a. For this illustrative
example we have chosen the prior probability P (Y = +1) = 1/4. Hence we know
the Bayes-optimal classifier that is shown in Fig 5.6c.

When we induce class-conditional label noise with p+ = 0.2 and p− = 0.4,
we now observe the conditional distributions P (X | Ŷ) shown in Fig 5.6b. We
immediately see that the classification problem will be more difficult to solve, because
in contrast to the clean conditionals we observe significant overlaps of the peeks of the
distributions for both noisy classes. This is also apparent in the Bayes-optimal classifier
that outputs probability estimates closer to 1/2. When we use this classifier to predict
the clean labels Y using the decision threshold 1/2, we produce wrong outputs in the
red regions highlighted in Fig 5.6d. The probability of sampling x in this red region
is 0.0224. But we can recover the perfect decision boundary by setting the decision
threshold to θ∗ = (1− p+ + p−)/2 = 0.6.

Without access to both p+ and p−, we use our Li&Ma threshold tuning procedure
to estimate θ̂. Hence we need counts N+ and N− for a given threshold θ. For this
simulation we use their expected values for an imaginative sample of size N

N+ = N · E
(x,ŷ)

(1[ŷ = +1]1[P (ŷ = +1 | x) ≥ θ]) (5.9)

N− = N · E
(x,ŷ)

(1[ŷ = −1]1[P (ŷ = +1 | x) ≥ θ]) (5.10)

which we can compute exactly given the conditional, prior and noise probabilities of
our synthetic example. As we can see in Figure 5.6e, we find the best θ̂ = 0.5935,
which is very close to the optimal value of 0.6. Indeed, using this threshold yields a
substantially smaller region with wrong classification with regard to the clean labels,
as indicated by the very slim red region in Fig 5.6f. The probability for sampling x in

91

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4

5

×10
−3

P (x | y = +1)
P (x | y = −1)

(a) Conditional Distributions given Clean La-
bels

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

×10
−3

P (x | ŷ = +1)
P (x | ŷ = −1)

(b) Conditional Distributions given Noisy La-
bels

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

P (y = +1 | x)

(c) Bayes-Optimal Classifier for Clean Label

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

θ∗

P (ŷ = +1 | x)

(d) Bayes-Optimal Classifier for Noisy Label

0.0 0.2 0.4 0.6 0.8 1.0

θ

0

20

40

60

80

100

120

θ̂

lima(N+, N−)

(e) Li&Ma Score for Different Thresh-
olds based on Expected N+ and N− for
N =100,000.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

θ̂

P (ŷ = +1 | x)

(f) Bayes-Optimal Classifier for Noisy Label
with Li&Ma Threshold

Figure 5.6: An Illustrative Example of Li&Ma Decision Threshold Tuning with p− =
0.4, p+ = 0.2 and P (y = +1) = 0.25. See Main-Text for a Detailed Review.

92

Table 5.4: Results of the Simulation Study for Different Noise Configurations. We
observe that our estimated thresholds are always close to the optimal thresholds. In
configurations where p+ ≠ p− this yields substantial reductions of the error probabil-
ities. In configurations where p+ = p−, the optimal threshold is the naive threshold
of 0.5, which cannot be improved by our method.

 O

LM

N

LM

p− = 0.5, p+ = 0.1
p− = 0.5, p+ = 0.25
p− = 0.2, p+ = 0.2
p− = 0.4, p+ = 0.4
p− = 0.4, p+ = 0.2
p− = 0.1, p+ = 0.3
p− = 0.3, p+ = 0.1

the red region is reduced to 0.0014. We can only speculate why our method cannot
recover the perfect decision boundary. A likely explanation is the violated assumption
that the number of true positives follows a Poisson distribution, as in our example it
follows a Binomial distribution with p = 1/4.

We can repeat this experiment for different noise configurations. In Table 5.4 we
summarize the results obtained. For symmetric noise configurations p+ = p−, the
optimal decision thresholds θ∗ = 0.5 is the naive threshold, so any other threshold
obtained by a tuning procedure cannot be better. Still our approach can recover it
almost perfectly. For asymmetric noise configurations we can report great decreases
of the probability of sampling x in a region where the Bayes-optimal classifier for the
clean labels disagrees with the output of the thresholded classifier for the noisy labels.

Results on Imbalanced Datasets

Our next evaluation is based on imbalanced data sets1 from the imbalanced-learn li-
brary [148], where label noise is particularly harmful. We artificially inject different
levels of class-conditional label noise, which are listed in Fig. 5.7 and in Table 5.5.
The first two noise levels are designed by us and the remaining four were proposed by
Natarajan et al. [183]. We limit our evaluation to those 17 data sets that have at least
100 instances of the minority class.

We estimate the performance of each method in terms of the F1 score, a metric
that is well suited for imbalanced data. This score is averaged over 20 repetitions of
a 10-fold stratified cross-validation, where we observe quite small standard deviations
among all repetitions. We do not validate in terms of the area under the ROC curve

1https://imbalanced-learn.org/stable/datasets/

93

https://imbalanced-learn.org/stable/data sets/

1234

p− = 0.5, p+ = 0.1

p− = 0.5, p+ = 0.25

p− = 0.2, p+ = 0.2

p− = 0.4, p+ = 0.4

p− = 0.1, p+ = 0.3

p− = 0.3, p+ = 0.1

avg. rank (lower is better)

Li&Ma threshold (Alg. 1)
Li&Ma tree (Alg. 2)
Menon et al. (2015)
Mithal et al. (2017)

Figure 5.7: Each row displays one critical difference diagram [53] which corresponds
to one noise configuration. This overview summarizes a total of 81,600 random for-
est classifiers, which consist of 4 binary learning methods for noisy labels × 6 noise
configurations × 17 data sets × 10 cross validation folds × 20 repetitions with ran-
dom initialization. Methods are connected with horizontal brackets if and only if a
Holm-corrected Wilcoxon signed-rank test cannot significantly distinguish their pair-
wise performances, in terms of their cross-validated F1 score, at a confidence level of
0.90.

94

Table 5.5: Average F1 scores (higher is better) over 17 data sets and 20 repetitions of
a 10-fold cross-validation with different label noise configurations. A full version is in
the appendix.

 LM

LM

M

M

p− = 0.5, p+ = 0.1 . 0.5475 . .
p− = 0.5, p+ = 0.25 . 0.4372 . .
p− = 0.2, p+ = 0.2 0.6006 . . .
p− = 0.4, p+ = 0.4 . 0.3884 . .
p− = 0.1, p+ = 0.3 0.6164 . . .
p− = 0.3, p+ = 0.1 0.5970 . . .

 0.5256 . . .

because this metric is anyway optimal under class-conditional label noise [167] and
therefore not informative. We do also not validate in terms of accuracy because this
metric is usually meaningless under severe class imbalance.

Figure 5.7 compares the performances of the noisy learning methods in Critical
Difference Diagrams [53]. These diagrams plot the average ranks of all methods across
the 17 data sets and connect those methods that a Holm-corrected Wilcoxon signed-
rank test cannot significantly distinguish. The average ranks (lower is better) tell which
method frequently wins against the others, while all missing connections indicate sig-
nificant differences between the competitors.

Additionally, Table 5.5 reports the average F1 scores across all data sets and repe-
titions for each of the methods. The F1 scores for every individual data set, noise con-
figuration and method can be found in the appendix, see Table 13.1 and Table 13.2.

Combining the views from Figure 5.7 and Table 5.5, we find that our thresholding
approach from Algorithm 1 has the best average rank across all noise configurations, as
well as the best average F1 score. Furthermore, it is always located in the best perform-
ing group of methods, according to the Wilcoxon signed-rank tests. Accounting for
the partial knowledge of the noise rates thus gives an advantage over existing methods
that have to estimate both rates. Our decision tree approach from Algorithm 2 is in the
best group of most noise configurations, but generally performs worse. Therefore, we
generally recommend Algorithm 1 for imbalanced, partially-known class-conditional
label noise problems.

5.2.3 Gamma-Hadron Classi cation with Noisy Labels

Now we benchmark our approach on the gamma hadron classification task that moti-
vated the method. We begin by reviewing the source detection task already presented
in Section 5.1.3.

95

camera plane

Off

On Off

Off

OffOff

Figure 5.8: An Illustration of the Wobble mode for capturing on- and off-regions
simultaneously. Figure taken from [206].

In astrophysics, gamma ray sources are detected by measuring rays emitted from
the direction of the suspected source. This signal is contrasted with background mea-
surements obtained by recording from a direction where no source is suspected. A
detection is successful, if the signal significantly exceeds the background, which e.g.
motivated Definition 2. Li and Ma [151] have originally defined the scaling factor
α as the fraction ton/toff of observation times. Here, ton measures the time used to
observe the source and toff measures the time used to observe the background in an
area where no source is assumed. These times are known by design; astronomers can
freely choose how much time they assign to the observation of different positions in
the sky.

In the Wobble observation mode, the region of interest and 5 background regions
are recorded simultaneously for the same observation time. We illustrate this operation
mode in Figure 5.8. The region of interest, the on-region, is placed on a ring around the
camera center. It measures the rate of gamma rays that the suspected source emits. The
additional off-regions on the same ring simultaneously measure the background rate,
provided that no other gamma ray source falls into any of them. The FACT telescope,
for instance, places six regions on a 0.6° ring inside its 4.5° field of view. Every 20
minutes, another region on the camera pane is used as on-region, which causes the
telescope to wobble from region to region while observing a fixed position in the sky.

We want to tackle the gamma hadron problem using the estimated origin of parti-
cles as weak labels. We have ŷ = +1 if the particle was estimated to originate from the
on-region and ŷ = −1 if it falls into one of the off-regions. Intuitively, we expect more
gamma particles with y = +1 in the on-regions, so learning should be feasible. As-
tronomers can make an additional assumption: hadronic particles are expected to occur
uniformly, i.e. at a constant rate, across all sky positions. Consequently p−, the proba-
bility of recording a hadronic particle in the on-region, must exclusively depend on the
observation times ton and toff. More specifically, it is known to be p− = ton

ton+toff
. In

the FACT experiment, operating in Wobble mode as described above, the background
is recorded 5 times as long, which yields p− = 1/6 and α = p− / (1 − p−) = 0.2.

96

So we are in the setting of noisy label learning with one known noise rate.

Dataset and Classi cation Models We begin our analysis using decision tree and
random forest classifiers on the hand-crafted features described at the beginning of this
chapter.

We again use the open data sample of the FACT collaboration [196]. This data
contains five nights of observations in wobble mode, totalling 757,993 recorded events,
where the telescope places the Crab nebula, a bright supernova remnant, in the on-
region. Each of these events is characterized by 22 features. We expect that the vast
majority of events are hadronic particles and that only around 0.1% to 1% are the
gamma events we are interested in. Of all events, 4,322 fall into the on-region ŷ = +1
and 17,229 fall into off-regions with ŷ = −1. The estimation of origin that these noisy
labels are based on is performed using the current SOTA random forest approach and
are part of the available dataset.

We again compare our methods, Algorithm 1 and Algorithm 2 to the methods of
Menon [167] and Mithal [173]. We use the same models for all decision threshold
tuning approaches and use the same hyperparameters for inducing decision trees with
Algorithm 2 as we use in the construction of the standard classification trees.

We test a number of different hyperparameter settings per model and repeat each
setup ten times to report average values and standard deviations.

Performance We use a cross-validation protocol to estimate the significance of de-
tection using the noisy-label approaches: We train and predict on disjunct splits of
the data, as usual. However, we store the predictions of each holdout set, rather than
computing a score in each fold. This way, we obtain predictions for all instances in
the data, but each prediction is based on a model that has not seen the instance dur-
ing training. We then report the values of the significance of detection (Def. 2) that
we obtain with the full data set. For reliable results, the training and hold-out sets of
the data should be as independent as possible. Since recording conditions, like the
brightness of the night sky, change during the course of recording, we group the data
based on an attribute that corresponds to the time of the day. We found that this
grouping yields the lowest values of significance, giving us the most cautions estimates
of model performances. Additionally, we compare to the state-of-the-art supervised
models that are trained on simulated data with the same 22 features. By the design
of the cross-validation protocol, we ensure that the measurements of fully-supervised
and noisy-label models are comparable, as the significance grows with larger numbers
of examples, which is now the same.

The average values and standard deviations across all repetitions are displayed in
Table 5.6. We see that all of the approaches for class-conditional label noise, if they
employ random forests, perform as good as the traditional approach that is trained
with costly, simulated data. Some of the methods even slightly outperform this strongly
supervised baseline. Apparently, the potential disadvantage of noisy labels being weaker
than simulated clean labels is compensated by the fact that the noisily labeled data,
coming from the actual telescope, is more realistic than the simulated state-of-the-art

97

Table 5.6: fα outcomes (see Definition 2, higher is better) for the open Crab Nebula
data of the FACT telescope.

LM (A.)
_= 24.059±0.00 23.302±0.332
_= 20.623±0.00 24.737±0.240

LM (A.)
_= 24.290±0.00 25.300±0.108
_= 20.920±0.00 26.555±0.249

M []
_= 24.290±0.00 25.131±0.218
_= 18.232±0.00 26.197±0.289

M []
_= 24.582±0.00 25.279±0.223
_= 20.534±0.00 26.389±0.180

S (SOTA)
DT / RF 24.650±0.000 26.254±0.151

training data. This remarkable result could shape the way in which future telescope
projects approach their analysis pipelines: it demonstrates that we can benefit from
real recordings for training, not only as background events, as it has been done before
[2], but also for learning about the gamma class. Gamma hadron classification could
become even more data driven than today and less sensitive to imperfections and biases
of the simulation.

Once we decided to use noisy labels, the choice of the particular method for tuning
the decision threshold is only a secondary concern: All methods considered yield high
significance scores, although our approach using domain knowledge on the noise rate
p− slightly outperforms the other contestants.

Interpretability To validate the claim that Definition 3 is interpretable as a hypoth-
esis test about learnability under class-conditional label noise, we conduct another ex-
periment in which we artificially remove all on-labeled instances from the data set.
We then incorrectly label one of the off-regions as being the on-region. These fake
re-assignments are meant to break the correspondence between clean and noisy labels
and should therefore render learning infeasible. As desired, Table 5.7 demonstrates
that our proposed algorithms methods indeed produce fα values close to zero, making
our algorithm output an error message. Practitioners can tell from these values that no
strong classifier can be learned from the given noisy labels. The fact that our algorithms
intend to maximize fα does not result in a false outcome of the hypothesis test.

98

Table 5.7: fα outcomes (see Def. 2) for the FACT data with artificially substituted
on-instances.

method decision tree random forest

Li&Ma tree (Alg. 2) 0.0000±0.0000 0.0435±0.0746
Li&Ma threshold (Alg. 1) 0.0000±0.0000 0.1788±0.2909

Table 5.8: Significance of Detection when our noisy learning models are transferred
to different sources.

Target Source Observation Time Alg. 1 Super-
max_depth=8, T=100 vised

Crab Nebula Oct ’13 30.8710±0.3611 30.381
Mrk 421 Oct ’13 – Feb ’14 23.2386±0.3068 23.278
Mrk 501 Jul ’13 – Dec ’14 27.3412±0.1490 26.330

Transfer to Different Sources Next we test if the models trained on the available
Crab nebula sample are useful classifiers in the detection of other sources. To this end,
we use three other datasets of recorded events: Two where the telescope was pointed
at other known sources Mrk421 and Mrk501, and one where the Crab nebula was
recorded on different days. These samples are used exclusively for testing, training was
performed on the dataset described above. This way we test if there is overfitting to the
particular source in the training data. As we can see in Table 5.8, the performance of
our models trained with noisy labels derived from the estimated origin of particles is on-
par with the performance of the current state-of-the art classifier trained on simulation
data. This is first evidence that the classifiers trained are indeed useful for the analysis
of gamma ray sources and even the detection of new gamma sources.

5.2.4 Deep Gamma-Hadron Classi cation with Noisy Labels

We combine the last two Sections and directly train Gamma-Hadron separators from
raw image data using noisy labels and repeat the experiments done with random forest
classifiers on handcrafted features for deep networks trained on the photon count image
data.

We consider two approaches, deriving a differentiable Li&Ma loss function and
using a standard loss plus the threshold tuning algorithm, and quickly settle for the
latter.

Soft-Li&Ma As commonly done in deep learning literature, we replace the indicator
function in the original Li&Ma formulation with sigmoid functions σ(·). This way
we obtain the differentiable loss function that computes the loss given a vector of noisy

99

(a) Soft-Li&Ma (b) CrossEntropy

Figure 5.9: The loss surface for the Soft-Li&Ma and crossentropy objective for a mini-
batch of size 2, where x, y are the model outputs for two examples with noisy label +1
and −1 respectively. We see that there is a bad local maximum that is separated from
the global maxima by a deep valley. In contrast, the cross-entropy loss has only one
global maxima that is easily accessible.

labels Ŷ and a vector of predictions f(X) and computes

ℓsoft-lima(Ŷ , f(X)) = fα(S+, S−) (5.11)

S+ =
N∑
i=1

1[ŷi = +1]σ (f(xi)) (5.12)

S− =
N∑
i=1

1[ŷi = −1]σ (−f(xi)) (5.13)

Unfortunately, learning models that maximize the Soft-Li&Ma objective using stochas-
tic gradient optimization methods turns out to be a challenging task. We can see why
in Figure 5.9a: The objective function has spurious local maxima that are seperated
by valleys around the axis. Crossing these valleys requires taking a step in the gradient
direction while SGD takes optimization steps in the opposite gradient direction. We
quickly abandon this idea in favor of the two-step procedure proposed earlier.

Noisy Classi cation + reshold-Tuning We use standard cross entropy loss, see
Fig 5.9b, and fit our model to the noisy labels. Then we apply the Li&Ma threshold
tuning approach of Alg. 1. In the two-dimensional example, we see no spurious local
extrema in the loss surface. As the telescope records the off-region 5 times longer, we
weight the loss function inversely to reduce the models bias towards predicting the
negative class.

Deep Learning requires large amounts of data for fitting large numbers of parame-
ters. However, only a limited amount of training data is available. While the telescope
records data in large volumes, the number of events that originate in the on- and off-
regions is still rather small. For instance, using the efficientnet-b0 model from

100

Table 5.9: Significance of Detection Scores (Cross-Validated) for efficientnet-b0
networks. We see that the noisy label approach that retrains the classification head with
noisy labels and the one that finetunes the classification head outperform the previous
classification head based on full supervision with simulation data.

Training Paradigm Li&Ma Signi cance

Full 20.03±1.72
Head 28.13±0.73
Finetune 28.50±0.32
Simulation-Based 26.85±0.57

the first Section yields a subset of only about 25,000 examples that can be used for
training in the noisy label approach. To account for this, we propose three different
training paradigms:

• Full Training: We train a deep network with randomly initialized weights that
tackles just the gamma-hadron separation task. This model would have to be
used in parallel with the model from the first section that predicts the origin
and energy of observations.

• Head Training: We take the model of the first section trained on simulation
data and only re-initialize the parameters of the prediction head responsible for
gamma-hadron separation. We freeze all weights in the shared encoder and train
only the prediction head using the noisy labels.

• Finetune Training: We also take the model trained on simulation data and
freeze the weights of the shared encoder. However, we do not reinitialize the
weights of the gamma-hadron prediction head. Instead we continue to train its
weights using the noisily-labeled data.

Empirical Results

We limit our empirical study to the smallest efficientnet-b0 architecture. We run
a hyperparameter search and optimize the hyperparameters for each training paradigm
separately. As we can see in Table 5.9, we can outperform the models trained with
full supervision on simulated data. Indeed the models where the prediction head was
retrained or finetuned outperform the supervised models substantially. Only the model
trained from scratch is not competitive. This is most likely due to the limited amount
of training data available. Recall that the model has 13.5 million parameters while the
data set used has only about 25,000 examples.

The hyperparameter search revealed that the best results for the finetuning ap-
proach are obtained using only a single epoch of finetuning with a small learning rate.
In contrast, tuning the head usually needs 10-20 epochs of training to obtain the best

101

results. This suggests that we do not need to change the model a lot to adapt from the
simulation data to the noisily-labeled, real-world data.

5.3 Summary

In this Chapter, we have tackled the event-tagging problem that arises in modern
gamma-ray astronomy though different variants of supervision. The problem involves
three machine learning tasks: gamma-hadron separation, energy estimation and origin
estimation. We have advanced the current state-of-the-art in two separate ways: First,
using a multitask deep network, we were able to replace the current approach based
on manual feature engineering and random forest models with a shared deep network
that works on raw photon-count images. The training approach belongs to the fam-
ily of supervised methods and we have combined three sources of full supervision to
train a single, multi-task model. Our model outperforms the current models on both
simulation data and on a real-world source detection task.

Second, we showed how the gamma-hadron task can benefit from noisy label learn-
ing, another form of supervision. To this end, we designed novel noisy-label learning
algorithms inspired by the source-detection task. In contrast with existing approaches
for class-conditional label noise, our approach assumes that exactly one noise rate is
known, as it is the case in source detection for gamma ray astronomy. Empirical re-
sults show that both the current detection pipeline based on random forests, as well
as the deep network pipeline proposed in this chapter benefit from this novel training
paradigm, as we report increases in the significance of detection.

102

Part III

Inspecting Machine Learning
Models

103

Chapter 6

Motivation

O
 a model has been designed and trained through an appropriate choice

of model family, learning task and data processing, and once it has been
established that we expect good empirical performance through an ap-
propriate choice of validation protocol, we have to decide if we trust the

model enough to deploy it in its intended application.
Under the umbrella term trustworthy machine learning, many aspects of trust and

methods of establishing trust have been investigated. In this work we focus on methods
aimed at helping the data scientist establish trust in their models before deployment,
rather than considering laypersons who interact with a deployed model. Hence we do
not have to account for common misconceptions on AI systems [4].

Particularly for models with many parameters, like deep networks or random forests,
we cannot just inspect the final, learned decision function and expect to understand its
inner workings. But understanding these inner workings is a good pathway to building
trust [11,139]. We consider two different approaches for inspecting machine learning
models: Providing explanations and checking the robustness of models.

6.1 Related Work

We review related work that targets model inspection, in particular approaches related
to explanations and to robustness verification.

6.1.1 Explanations

One way of inspecting a model is inspecting its decisions. By investigating why a
model makes decisions, we gain insights - and ultimately trust - in the model and
its behavior. The explainable artificial intelligence (XAI) community has proposed a
plethora of methods for providing explanations, i.e. answering why a decision was
made [13,225]. We provide a short overview of related work in that area. While work
on interpretable machine learning focusses on learning models that can be understand as
a whole, we focus on works that explain models that are too complex to be understood
in their entirety. These methods can be divided into global and local methods, where

105

the former provide explanations to the whole model whereas the latter methods explain
individual decisions.

Interpretable ProxyModels Interpretable models are useful for general explanation:
We can train an interpretable model that approximates the output of a model that we
want to explain to obtain a global explanation of our model (see e.g. [177, Chapter 8.6]
or [228]). However, the discrepancy between the model and its interpretable surrogate
can lead to unfaithful explanations. Furthermore, characterizing or measuring this
discrepancy is difficult on finite datasets. In the last Chapter we see a case were a global
surrogate model is used and the discrepancy is measured faithfully.

We can also generate explanations for individual decisions by generating local
proxy models. Here the model is queried in the neighborhood of the point we want to
explain. The resulting set of examples labeled by our model of interest is used to train
an interpretable proxy model. This proxy model describes the local decision bound-
ary around the point of interest and we can use it to provide an explanation for our
model. Different methods that apply this idea have been proposed; they differ in the
way a local neighborhood is generated and in the interpretable model used. The most
prominent approach is LIME proposed by Ribeiro et al. [221]. They sample synthetic
datapoints in the neighborhood and train linear models to obtain interpretable mod-
els. The linear coefficients can be used as explanations. In contrast, LORE [98] applies
rule learning to generate local models and selects the neighborhood using a genertic
algorithm.

Using interpretable proxy models is only feasible if the complexity of the decision
boundary, locally or globally, is small enough for the class of interpretable models. For
instance, this approach likely does not yield useful results for deep networks for high
resolution image classification.

Feature Attribution Methods Attribution based methods try to identify the most
important input dimensions for the model’s decisions. Hence they provide explana-
tions that superficially describe how the model computed its output: The complex
decision function is reduced to a list of features that are important for the decision.
How exactly these features influence the decision is excluded from the explanation. A
simple algorithm iterates all features and drops each feature from the training data. We
can measure the drop in prediction performance for the model without access to the
particular feature and rank all features based on these performance differences: The
features that cannot be omitted without a substantial decrease in performance are the
most important features for a classifier. The disadvantage of this easy algorithm is that
we have to train one model per input dimension. Instead, Breiman [29] proposes to
measure the feature importance at test time on a holdout-set. Originally proposed for
random forests, for each input feature we randomly permute all the feature values in
the test set and measure the resulting drop in classification performance on the cor-
rupted data. This randomization breaks the correspondence between the feature and
the target variable. Larger drops in performance indicate that a feature is important
for the decision. In the case of random forests or other bagging ensembles, we do

106

not need the separate test set, but can work with out-of-bag estimates of the perfor-
mance [29]. Both of these attribution approaches provide global explanations to the
model. Domain experts can use these feature importances to judge if it is plausible to
make decisions based on the set of important features.

Other approaches estimate local feature importances for individual model deci-
sions. The most prominent method is probably SHAP [156], which estimates fea-
ture importances for individual decisions based on the Shapley values (see e.g. [177]).
For each feature, SHAP values measure the change in the expected model prediction
when fixing that feature. For linear models, these contributions are a function of the
weights [248]. For other models, the SHAP values have to be computed approxi-
mately [156].

Saliency Map Approaches Feature importance approaches do not easily scale to
high-dimensional data like images, text or time series. Here individual features are
often meaningless, e.g. a single pixel cannot explain the decision in an object detec-
tion task., but explanations must focus on a particular combination of features. For
convolutional neural networks, this includes methods like saliency maps [245]. Build-
ing onto the deconvolution technique [245,294], Springenberg et al. propose a kind of
guided backpropagation where negative gradients are set to zero in the backward step to
focus solely on input features which increase the activation of a higher layer unit [246].
Another approach by Stylianou and Pless visualizes the output of a convolutional neural
network using just the activations of the last convolutional layer to identify the regions
of interest for the image classification [249]. Saliency map approaches have been useful
for identifying models that reach decisions by exploiting spurious correlations or short-
cuts [82], e.g. detecting a ship when there is water in the image [18, 152]. Saliency
methods allow us to detect these shortcuts or so-called Clever-Hans behaviour [276]
in image classifiers, in a second step we correct the model [234].

Counterfactual Explanations Counterfactual explanations are primarily tailored for
generating explanations meant for the human affected by the current decision. Expla-
nation are provided in form of the closest inputs that achieve the desired output [97].
This input can either be from the training data or a synthetic input. In the case of syn-
thetic inputs, these have to be constrained to plausible values of the input space [138].
Taking plausibility one step further, we can also look into algorithmic recourse. Here,
the change of the input has to be plausible, for instance something that a human can
achieve through taking a feasible action [128].

Example-Based Explanations Another common technique is to use the training
data for providing explanations. This is often names example-based explanation. In the
simplest form, nearest-neighbor based classifiers provide explainable decision through
the nearest neighbor examples [177]. Support vector machines have a similar property:
Looking at the support vectors – all of them or only the most influential ones for a
particular decision – provides interpretable models or explainable decisions [228].

107

Permutation based approaches are an easy way to measure the importance of indi-
vidual training instances to the final model by dropping them from the training data
and monitoring the change of the model. However they do not scale to large-scale deep
learning problems. In contrast to feature attribution methods, this method works on
examples rather than features. Influence Functions [135] provide an alternative. They
investigate how the model changes when individual examples are reweighted in the
empirical loss function. This can be approximated by investigating the Hessian ma-
trix of the loss function around the final model. For interesting models, however, this
Hessian matrix can only be approximated [135].

Evaluating Explanations Finally we should note that evaluating explanations is a
non-trivial task on its own [23,184,303]. Particularly visual explanations and example-
based explanations [187] are often subjective and defining quantitative metrics is diffi-
cult. Datasets where expert explanations are provided as an additional layer of annota-
tion may allow quantitative evaluations. However, it is not always apparent that there
is a single, unique explanation. Synthetic data can ensure this. For instance, Sanchez-
Lengeling [230] provide a set of synthetic graph-classification tasks where labeled sets
of nodes are responsible for the target variable. Tritscher et al. generate datasets of syn-
thetic categorical features and use randomly generated boolean functions as labeling
functions with 3 to 10 important features [267]. In both cases, XAI method should
identify only truly relevant parts of the input as relevant. More recently, Tritscher et al.
provide a more realistic dataset for fraud detection where domain experts have manu-
ally annotated the “problematic” features of simulated fraud cases [125]. Mücke and
Pfahler use the known, deterministic rules for checking for check mate in chess games
to derive a dataset with ground-truth explanations [180].

6.1.2 Robustness

Robustness measures describe how stable a model’s predictions are under small changes
to the input. Intuitively, we want predictions to remain unchanged when we change
the input insignificantly. Szegedy et al. demonstrated that deep networks fail catas-
trophically in this regard: Seemingly random noise added to input images, far from
challenging to the human eye, can flip the prediction of a deep network [254]. Since
this initial shock, the topic of robustness was addressed throughout the machine learn-
ing community.

Assessing a model’s robustness can increase trust in its behaviour at inference time
[166]. For instance we can establish that the model behaves as desired not only at
validation points, but also in their immediate neighborhoods. Further, by inspecting
perturbations that do change the output, we can gain insights into the shape of the
decision boundary.

Overall, related work that investigate robustness can be divided into three cate-
gories: attacks, defenses and verification.

108

Attacks Szegedy et al show that we can find perturbations with small l2-norm to a
given test example x using simple first-order optimization starting at x [254]. They
formalize the problem as searching the smallest possible perturbation, but settle for an
approximation to find any locally-optimal small perturbation, due to the non-convex
nature of the optimization problem. Few-pixel [175] and one-pixel attacks [250] con-
strain the adversarial perturbations using l0 norm, i.e. the number of features affected.
The authors show that we can fool deep image recognition models by modifying few or
only one pixels for many network architectures, including the popular VGG convolu-
tion networks. Approaches that follow similar paradigms have been summarized under
the umbrella-term adversarial attacks [114]. It has been shown that adversarial attacks
on image classifiers are quite robust and even work after printing and photographing
the targeted images [140]. Fawkes is a tool to modify photos such that deep network-
based facial recognition software cannot recognize faces [241]. It is designed to be
used whenever photos are uploaded onto social media to prevent third parties from
training facial recognition systems on social media data. Here the constraints are that
changes are imperceivable to the human eye. The authors note that this approach is in
an ”arms-race” with commercial facial recognition software.

Inspecting adversarial examples may provide insights into the behavior of the model.

Defenses We can try to train models that are robust to adversarial attacks, this is
commonly known as adversarial training. The challenge is both increasing the ad-
versarial robustness while maintaining the accuracy of the model. Goodfellow et al.
propose to include a regularization term into the training objective that considers the
loss of not only the original training example, but also of an adversarially perturbed
example. They obtain this adversarial example using their fast gradient sign method,
that simply takes a small step in the direction of the sign of the gradient of the loss
with respect to the original example [93]. More generally, methods for training robust
models solve a min-max optimization problem: We want to minimize the loss of the
’hardest’ adversarial example. Obtaining the hard adversarial example is an inner loss-
maximization problem, training or model to classify this adversarial example correctly
is the outer minimization problem. Algorithmically, Madry et al. propose to alternate
between obtaining a hard adversarial example through a number of stochastic opti-
mization steps in the input space and an optimization step for the classification loss on
this adversarial example [158]. Obviously, this algorithm introduces computational
overhead in comparison to the standard non-robust training. Shahafi et al. [239] pro-
pose to simultaneously train the classifier and improve the adversarial examples instead
of alternating the optimization. This way they achieve a substantial speed-up.

Croce et al. discover that the adversarial robustness of a ReLU network is related
to the size of the linear regions and propose a regularizer that promotes large linear
regions [50].

Veri cation For establishing trust in a model, robustness verification methods pro-
vide formal, provable guarantees that there are no adversarial perturbations within a
neighborhood with certain properties.

109

Verification, in general, proves that a program, in our case a machine learning
model, fulfils a certain property [66]. These properties could eg. be safety properties
relating to autonomous systems [86]. Properties may either be global, i.e. they hold
across the full data space, or local, i.e. they should hold around a specified data points.
Girard-Satabin et al. point out that in order to prove global properties, the input space
must be low-dimensional and the semantics of the features and their interaction must
be well-understood. In problems that arise in perception or computer vision this will
not be the case, which is why the employ a simulator [86]. Robustness-verification on
the other hand is a local property: Given a constrained set around a focal point x, e.g.
defined by an l2-ball, verify that there are no adversarial perturbations that change the
model output within the set. Alternatively we can phrase this property check as an
optimization problem: Find the largest set such there is provably no adversarial per-
turbation. Hence it is equal to counterfactual explanation, where we find the smallest
perturbation as a form of explanation, as detailed above. In summary, while adver-
sarial attacks prove the existence of adversarial perturbations by finding an example,
verification proves their non-existence through formal methods. A multitude of dif-
ferent methods exist, tailored to specific model classes. An overview for decision tree
and random forest verification is given in Chapter 10. As tree-based models with their
if-else-structure closer resemble the input programs traditionally considered in formal
verification in software engineering, many of the approaches are inspired from that
research domain. In contrast, deep networks with their models that sequentially apply
linear algebra operations and non-linearities, without the need for control-flow, con-
stitute very different programs [87]. Still, approaches try to apply standard software
verification tools to obtain formal guarantees [68, 86]. Other approaches work by ex-
ploiting properties of the function computed by deep network. For instance, networks
that apply only ReLU activation compute piecewise-affine function; this structure can
be exploited to derive robustness properties, as shown by Croce et al. [50] who exploit
this insight to train more robust models through regularization. Abstract interpretation
techniques, eg. Müller et al. and references therin [182], can handle a more general
family of neural networks and are the current state-of-the-art for deep network verifica-
tion: They approximate how a deep network transforms a given convex set, rather than
a single point. If the set of inputs where we want the network to have robust outputs,
intersects the the decision boundary, then the model is not robust. The difficulty lies
in handling the non-linearities, which have to be approximated via increasingly tight
constraints.

6.2 Structure of this Part

The remaining chapters of this part cover three different approaches for inspecting
models with many parameters. We begin by discussing a saliency-map approach for
graph-convolutional neural networks in Chapter 7. The method can be used to explain
similarity computations based on representations computed by deep networks. We
showcase this approach in a mathematical retrieval application.

110

Next, we present a method for providing explanations for deep networks in Chap-
ter 8. In contrast to other approaches, it aims to answer why a model has learned a
representation. Our approach works by tracking all weight updates during the model
training and we propose two different ways to integrate this into existing training
pipelines. We evaluate our approach for standard image classification tasks.

Finally, we present a method for verifying the robustness of random forest mod-
els and show how it can be used to gain insights into the decision boundary of large
models.

111

112

Chapter 7

How Does the Model Compute?

L
 machine learning models guide decisions in many high-stakes environ-
ments. Their decisions, however, are not understandable by inspecting the
weights of the final model anymore. Instead, we try to understand individ-
ual decisions. One way to approach this explanation problem is by asking

the question “How did the model compute the decision?”. Answers may include de-
scriptions of what features or parts of the input were most important to the decision, as
seen in the last Chapter. In this Chapter we investigate this question for graph-neural
networks that compute the similarity between two tree inputs.

7.1 Introduction

Advances in artificial intelligence, particularly in deep learning, have had a huge im-
pact on information retrieval and has changed the way we process, index and retrieve
data. Artificial neural networks transform multimedia content like text, images, au-
dio or video and compute latent representations which we can use to detect semantic
similarities.

In this chapter we revisit the problem of retrieving related mathematical expres-
sions. We investigate the embedding models powered by graph neural networks pre-
sented in Chapter 4.6.1. The model is designed to help scientists find related research
based on math-queries. In a formula search engine, the users are interacting with a
search interface that accepts queries presented as LaTeX mathematical expressions and
are presented with results. These results are based on our neural network computa-
tions and it is often unclear how they came about. Traditional keyword queries are
easily interpreted: We can highlight where the query-keywords or expressions related
to the keywords appear in the results, thereby justifying the systems output. Because
our system does not rely on exact matching of sub-terms, but rates overall semantic
relatedness, the outputs are harder to interpret and harder to visualize, as we cannot
necessarily highlight overlapping parts of result and query. To overcome this issue,
we propose to apply so-called salience map for visualizing the similarity scores pre-
dicted by a graph convolutional neural network [230]. These visualizations help the

113

machine learning engineer who deploys the models in understanding how the model
rates similarities, but may also be integrated in a user interface to support end-users.

The rest of this chapter is structured as follows: We present our two methods for
visualizing embeddings of trees in Section 2. In Section 3 we discuss our results in the
context of a search engine for mathematical content. We discuss our dataset and data
preparation and perform a qualitative study of our visualizations. We conclude this
paper with an outlook in Section 4.

7.2 Method

We begin to describe our method by reviewing the definition of graph convolutional
neural networks. Then we propose two different methods for obtaining visualizations
of nearest neighbor queries: one based on forward information and one based on back-
ward information.

7.2.1 Graph Neural Networks for Trees

We define tree structures x = (X,E) as a tuple of node-features X and edges E.
Let |x| denote the number of nodes in x. We assume that X ∈ R|x|×d. A graph
neural network maps a given tree to an output tree with transformed feature vectors in
a d′-dimensional output space but with identical edge structure. We denote the neural
network by ϕ(x) = (ϕ(X,E), E). Let ϕ(x)i ∈ Rd′ denote the output of the i-th
node.

To store the fixed-size embedding of the whole tree in a vector database, we com-
pute the mean of all nodes denoted by ϕ̄(x) = |x|−1

∑
i ϕ(x)i. Then we can compute

the cosine similarity or the dot product

sim(x, x′) := ⟨ϕ̄(x), ϕ̄(x′)⟩

in order to obtain the similarity of two trees.

7.2.2 Forward-Visualization

As the embedding of a tree is the mean of all its nodes, we can see that each pair
of nodes contributes to the overall similarity. The similarity i.e. dot-product can be
decomposed as

⟨ϕ̄(x), ϕ̄(x′)⟩ = (|x| · |x′|)−1

|x|∑
i=1

|x′|∑
j=1

⟨ϕ(x)i, ϕ(x′)j⟩.

Following the ideas of Stylianou and Pless [249], we visualize the similarity by coloring
the nodes according to their contributions to the overall similarity. Hence given the
query, we color the i-th node proportional to

ci ∼ ⟨ϕi(x), ϕ̄(q)⟩.

114

This approach is computationally cheap, we just have to run one forward pass for every
search result we want to visualize.

7.2.3 Backward-Visualization

Following the ideas of salience maps [245], we color nodes in the tree according to
the gradient of the similarity. Looking at a first order Taylor approximation of the
similarity, we can write

sim(x⃗+∆, q⃗) ≈ sim(x⃗, q⃗) + ⟨∆,∇x⃗sim(x⃗, q⃗)⟩

to approximate how the similarity changes based on perturbations ∆ to the input x⃗. If
we decrease the value of x in the i-th coordinate, the corresponding coordinate in the
gradient∇x⃗ indicates whether the first-order approximation of the similarity decreases
or increases. If the gradient is positive, then reducing the feature reduces the similarity.
Thus the feature is important for the overall similarity. Hence we use the values in the
gradient ∇x⃗ to visualize similarity.

In classical convolutional neural networks for image processing, the input is either
a greyscale or an RGB-image. Thus at every position, there is either a 1-dimensional or
3-dimensional feature vector likewise gradient vector. If there is only one dimension,
we do not need to aggregate the gradient, in the case of three dimensions we often
aggregate by using the maximum gradient over all color channels.

In our case, we have higher-dimensional feature vectors in Rd. Hence we have to
aggregate the gradient

ci ∼ f(∇xisim(x, q)).

where f is an aggregation such as max, mean or the sum of all non-negative gradients.
We are particularly interested in the case where x is a one-hot encoding of XML-

data. Hence x is sparse and binary. We propose to use only gradient information of
components that are set to 1 in the input to answer the question how the similarity
changes if we flip inputs from one to zero. The component-wise multiplication of the
input and the gradient eliminates all gradient mass at input components that are zero.
We aggregate only the remaining components

ci ∼ f(xi ⊙∇xisim(x⃗, q⃗))

and color the nodes proportional to this aggregation.

7.3 Qualitative Study: Interpretable Search for Formulas

We showcase our approach in a semantic search engine for mathematical equations
which we have crawled from arxiv.org. First we give details on our dataset and machine
learning model. Then we perform a number of example queries and discuss the quality
of our visualizations.

115

Data We are again working on data obtained from arxiv.org, but filtered all publi-
cations that use the subject code cs.LG which covers computer science publications
on machine learning. Of these 9,936 publications, we sample two subsets, index and
query of size 7,949 and 1,987 respectively. We use the index-set for building our index
using our graph neural network and the query set for search queries.

EmbeddingNetwork We use a graph convolutional network to map the 256-dimensional
tree to a 64-dimensional tree and compute a fixed-size embedding by averaging over all
nodes. We use a network architecture with 5 layers that use a hidden dimensionality
of 256. Each layer computes a linear transformation of the inputs, computes the mean
over all neighborhoods (□ = mean) and applies the ReLU activation to the outputs.
After each layer, we use batch normalization. The network is trained as described in
Section 4.6.1.

In this section we present a qualitative study of our proposed method in the context
of math retrieval.

Rendering andColor Palettes First we want to discuss some peculiarities of MathML
trees. The advantage of these trees is that the underlying XML-format of our repre-
sentation is a mark-up language. Hence there is a native way to visualize them by
rendering the equation with a corresponding markup processor like Katex or Math-
Jax1. We can add additional style information to the original markup to color the
nodes according to our computed visualization. This way we obtain beautiful visual-
izations without worrying about issues like tree layouting etc. One problem with this
approach is that we can only visualize some of the nodes. Particularly, with some ex-
ceptions like root or fraction bars, we will color only leaf-nodes, as most inner nodes
belong to XML-tags that do not directly output visible symbols. For instance in Fig-
ure 4.7, the <msubsup>-tag corresponds to a node that does not output any symbols
on its own, but only encapsulates the symbols of its children.

One way to mitigate this issue is to set the color intensity of the i-th node to the
sum of all colors intensities on the path from root to i-th node. However we have
seen that this puts too much emphasis on nodes that are deeper in the tree. Hence we
currently omit all hidden nodes from the visualization.

We use max-aggregation of the gradients and compute colors by linear interpola-
tion where black font indicates the most significant parts and grey parts are less signif-
icant.

Results We find semantically related equations by applying annoy to create an in-
dex structure for nearest neighbor retrieval with dot-product similarity. The retrieved
equations will not be equivalent or strictly equal, but depicting similar concepts. We
analyze the visualizations for the nearest neighbor as output by the index.

We compare the visualization based on the forward pass with visualization based on
backward. In Examples 1-6 we present pairs of query (first row) and nearest neighbor

1http://mathjax.org

116

http://mathjax.org

Example 7.1: Example Query (Taylor Approximation)

Example 7.2: Example Query (Empirical Risk Minimization)

Example 7.3: Example Query (Multi-Layer Perceptron)

Example 7.4: Example Query (Submodular Functions)

Example 7.5: Example Query (Rademacher Complexity)

and color the result according to the forward pass (second row) and backward pass
(third row). All examples are from the context of machine learning, which allows us
to judge the results based on our background-knowledge of the research area. We now
discuss each example in detail:

In Example 7.1, we have queried the definition of the first-order Taylor approx-
imation. The embedding model retrieved the second-order Taylor approximation as

117

Example 7.6: Example Query (Hoeffding’s Bound)

nearest neighbor. Both visualization put the emphasis on the ∇-symbol, the symbol
commonly used for gradients. Interestingly, the backward visualization indicates that
theH symbol, commonly used for the Hessian matrix i.e. the second order derivative,
also contributes to the overall similarity score. Apparently the model has learned that
both symbols appear frequently together, e.g. in the context of differentiable functions.

The query in Example 7.2 is the empirical risk functional commonly used in ma-
chine learning. Both approaches highlight that we have a sum over objects subscripted
by i. In addition, the backward approach highlights the ·̂-symbol commonly used to
indicate that a random quantity is estimated using a finite sample. The model seems
to have learned that it frequently co-occurs with estimators of the form 1

n

∑N
i=1 zi.

Example 7.3 shows a query for the definition of a fully connected neural network
layer. The forward-visualization focusses on the variables W,B for weight matrix and
bias vector, while the backward variant focusses on the superscripted index indicating
the number of the layer l.

In Example 7.4, we see the definition of gain used in the context of submodular
function maximization, where both visualizations highlight the ∪ symbol. There is
almost no difference between the two variants, most notable is the stronger emphasis
on the opening curly-brace in the forward-visualization.

For Example 7.5, we have queried the definition of the empirical Rademacher
complexity, a measure used e.g. in statistical learning theory. Both approaches high-
light the sup operation, which is indeed essential for the definition. Without the sup,
the expected value would trivially amount to 0. The forward visualization seems to
highlight the combination of expectation and supremum, whereas the backward vari-
ant highlights mostly supremum and εi. This indicates that the model has correctly
learned that both σ and ε are frequently used for Rademacher averages.

The last Example 7.6 shows concentration inequality, more precisely Hoeffding’s
bound that bounds the deviation from a sample mean to the true expected value of a
random variable X . Both visualizations highlight the ·̄ symbol that is frequently used
to indicate sample means and hence is related to the ·̂ symbol for empirically estimated
quantities used by the query. Additionally both visualization highlight the X that is
generally used for random variables in statistics literature. It is interesting to note that
the forward vizualization also places emphasis on the ≤ operator, while the backward
visualization mostly highlights the ≥.

Overall we see that the forward visualizations spread the emphasis more evenly over
the tokens than the backward pass. We think that with each layer of the encoder net-
work the information in the nodes becomes less local and more global, as the feature
vector at each node is a function of all its neighbors on the previous layer. This mixing

118

makes it more difficult to highlight where the important information is originally com-
ing from. The backward-based approach does not have this issue. Both approaches put
a lot of emphasis on math operators like equal or plus-signs.

7.4 Conclusion and Outlook

In this Chapter we have proposed two different approaches for visualizing similarity
computations between embeddings computed by graph convolutional networks. We
have applied our method in the domain of mathematical retrieval. Both methods have
allowed us to gain insights into the way our model scores similarities. The visualizations
indicate that our model was able to learn conventions and notations to infer the context
in which equations appear.

We are confident that the methods proposed in this work are also useful in other ap-
plication domains. For instance when we work with graph representations of molecules
[67] and use geometric deep learning to solve classification or metric learning tasks, we
can color two-dimensional or three-dimensional illustrations of the molecules using
our methods.

119

120

Chapter 8

Why Did the Model Learn a
Representation?

C
 approaches for explainability in machine learning focus ei-

ther on explaining individual predictions or on explaining the full model
[144, 237]. Explanation methods should answer the question “Why did
the model compute this output?”. Many methods approach this question

by providing a description on what the model does or how it computes its outputs.
Selbst and Baricas observe that

“so far, the majority of discourse around understanding machine learning
models has seen the proper task as opening the black box and explaining
what is inside.” [237]

For instance for convolutional neural networks, saliency methods [245] provide
explanations in the form of heatmap overlays for the input images highlighting which
region was most important to the convolutional neural network. In the last Chapter
we have seen a saliency-map approach for graph-neural networks that was applied to
interpreting retrieval results in a mathematical search engine. However, it is left to the
user to infer or interpret why that region is important for the decision. Furthermore,
these methods often show little dependence on the model they try to explain [3].

We would like the explanation to include evidence that the decision is correct and
that the model behaves sensibly. We argue that, in the case of machine learning models,
the leading question for designing explanation methods should be extended to “Why
did the model learn to compute this output?” The key to answering that question lies
in the training process of the model. For instance a decision tree can provide evidence
for its decision by reporting the class frequencies that fall into nodes along its decision
path. In this Chapter we aim to provide similar evidence for the decisions of deep
networks.

We propose a method for tracking the training process of deep networks. By
archieving all weight updates of a deep network, we can attribute the representations
computed at each layer to individual training examples. Ultimately we can support

121

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

fr
og

do
g

de
er

ca
t

ca
r

bi
rd

Cosine Angle γ̄

Figure 8.1: Example Explanation Histogram: “e model predicts frog as training ex-
amples of that class had the highest in uence on the computed intermediate representation
in layer 14”.

the explanation of a model’s decision with data points in the training data. To this
end, we propose two visual explanations: First, we can identify and show the most-
influential training examples, second we can visualize how all training examples of a
class contributed to the computed representaion in ridge plots like in Figure 8.1.

8.1 Related Work

We have already reviewed related work on explainable artificial intelligence. In ad-
dition, perhaps most relevant to this work are methods that also trace the training
process of gradient-based methods: Garima et al. [81] decompose the losses of train-
ing instances to sums over the losses of all intermediate models during training. They
employ a first-order Taylor approximation to compute the contribution to the loss as
a function of the gradient. This allows them to analyze how much a training example
contributed to the loss of the final model given a test example. As in our approach,
this requires storing parameters in all training steps: While we store the parameter
changes, the authors employ an approximation step and store only the intermediate
models. Garima et al. justify this decision with the storage and IO demands that ren-
der tracking of all updates infeasible, whereas we find that it is tractable to store all
weight updates on our hardware. As with our approach, this exact formulation only
works in the stochastic setting without minibatches, but minibatches are supported by
applying another approximation step. Ultimately, the method they propose judges the
influence of a given training example by the dot products between the weight gradient

122

of the loss given the training example xi and the gradient given the test example x,
summed over all T checkpoints θ(t)

I(xi, x) =

T∑
t=1

⟨
∇θℓ(fθ(t)(xi)),∇θℓ(fθ(t)(x))

⟩
(8.1)

Follow-up work by Zhang et al. [301] extends their work for natural language classifiers
which allows finer-grained contribution of the influence to spans of training texts,
rather than the full text. Swayamdipta [253] analyze the training process, but their
goal is to identify easy and hard training instances in the training data to help the
machine learning engineer assess the data quality. Tracking the training process is also
interesting for establishing generalization results for stochastic optimizers [110, 256].

8.2 Method

Stochastic gradient descent (SGD) and its variant are the most popular and most fre-
quently used learning algorithms for a diverse range of models, most notable deep
networks, but also for kernel methods [208] or matrix factorization methods [106].
For supervised learning, SGD trains a model fθ parameterized by real-valued weights
θ by minimizing the empirical risk

arg min
θ

1

n

n∑
i=1

ℓ(fθ(xi), yi).

Optimization is performed in T iterations, where, at the t-th iteration, we sample an
example (xt, yt) from the training data and update the weights in the negative direction
of the gradient of the loss

θ(t+1) = θ(t) − η(t)∇θℓ
(t)(fθ(t)(xt), yt) (8.2)

with a small step-size η(t). Hence the output of the SGD training algorithm is a vector
of weights that is the sum of all weight updates performed during training

θ∗ =
T∑
t=1

−η(t)∇θℓ
(t)(fθ(t)(xt), yt)︸ ︷︷ ︸
=:∆(t)

. (8.3)

For the purposes of this paper, we can view this as a sum of vectors ∆(t). Hence
variants of SGD like SGD with momentum [252], Adam [134] or SAM [78] also fit
within this framework. These variants do not use the plain gradients, but update the
weights based on a function of the gradient and an internal state of the optimizer. In
this case, we denote by ∆(t) the difference of the weight vector before and after the
t-th training step.

We propose methods for explaining deep learning representations based on track-
ing the ∆(t) values during the training stage. We show how it can be used to identify
the most influential training examples, which can be used as a form of explanation of

123

Wx

∆(2)x

∆(5)x

∆(9)x

Figure 8.2: Illustration of the decomposition of preactivations into individual gradient
updates. The marked updates are the most substantial individual contributions toWx.

model decisions. Next we propose a visual explanation that summarizes the training
process of a learned representation.

8.2.1 Explaining Pre-Activations by the Training History

Deep networks compute outputs in a sequence of layers. In this work we tackle the
problem of providing explanations for a the intermediate representations learned in
any of these layers. We begin our analysis for the case of single-instance stochastic
training without mini-batching as in (8.2). In the next sections we develop methods
for training with mini-batches.

For notational simplicity we define a deep network as a composition of layers. We
note that our method can also be applied to more complicated networks e.g. networks
with residual connections, etc. For additional simplicity we limit our analysis to linear
layers without bias terms, which includes fully connected layers as well as convolutional
layers. We define the output of the l-th layer of a deep network

fl(x) = σl (Wlfl−1(x)) (8.4)

where σl is an activation function and Wl, is a real-valued weight matrix. We define
f0(x) := x. We focus on the pre-activationsWlfl−1(x) of the l-th layer.

In a slight abuse of notation, following (8.3), we define the decomposition of the
weights into the contributions at every training step

Wl =
T∑
t=1

∆
(t)
l (8.5)

and consequently we can decompose the preactivations as

Wlfl−1(x) =

T∑
t=1

∆
(t)
l fl−1(x) (8.6)

124

as is depicted in Figure 8.2. To measure the most substantial individual contributions
to the preactivation, we compute the projection of the contributions onto the overall
representation in the l-th layer

γ
(t)
l :=

⟨
Wlfl−1(x),∆

(t)
l fl−1(x)

⟩
(8.7)

and we use large γ-values to construct explanations. In addition to the dot product,
we also consider the cosine similarity

γ̄
(t)
l := γ

(t)
l ·

(
||Wlfl−1(x)||2 · ||∆

(t)
l fl−1(x)||2

)−1
(8.8)

that describes the angle between the contribution and the final representation.
One special layer is the last layer, as it outputs the logits of the predictions. Hence

we can contribute the predicted class probabilities to individual training steps by in-
specting the decomposed preactivations there.

8.2.2 Computing Most In uential Examples

We can use the γ values to find the most influential training examples for a decision
of interest. Each γ(t) is based on exactly one ∆(t) which, in turn, is based on the loss
computed on exactly one training example for stochastic training without minibatch-
ing. During training over multiple epochs, each example is used for training multiple
times. In this case, we aggregate all γ values for each training example by summing
them up to get a total contribution over all training epochs. This approach is outlined
in Algorithm 3.

Note that for learning a classifier that discriminates one class vs. all the other
classes, influential examples must not necessarily belong to the positive class. Perhaps
even the more interesting examples belong to the other class but were misclassified
during training, leading to weight updates to correct the behavior.

Algorithm 3 Computing Influential Examples

function -(f, x,∆(·)
l)

Γi = 0 for i = 1, . . . , n ▷ Initialize Influences
Compute f(l−1)(x) and Wlf(l−1)(x)

for t = 1, . . . , T do ▷ Iterate Training History
Identify example xi used for ∆(t)

Compute γ(t)l with Eq. (8.7)
Γi = Γi + γ

(t)
l ▷ Sum up example importances

end for
return top-k indices in Γ

end function

125

8.2.3 Visualizing Contributions in Ridge Plots

Privacy Requirements may prevent us from explaining decisions to users by showing
the labeled training data as evidence, e.g. in situations where training data contains
personal information like for automated credit scoring or in medical applications. In
many situations we can still provide explanations based on aggregated information, e.g.
when the number of training examples is sufficiently large that aggregation does not
leak personal information. Displaying aggregated information has the additional ad-
vantage that it shows a more complete picture of the training process, whereas showing
individual training instances as explanations shows only a very small part of the process
and the interpretation of the instances is very subjective.

For visualizing aggregated statistics, we propose to show ridge plots to aggregate
all γ(t)l values grouped by layer and training labels. These plots for a single layer are
structured as follows: We use one subplot for each class of interest. Its x-axis shows
the cosine similarities γ̄(t)l between the individual contributions and the total preacti-
vations according to (8.8), on the y-axis we show a density estimate of how frequently
this cosine similarity appeared during training. Instead of showing raw counts, we
weight each of them by the magnitude of the update ||∆(t)

l fl−1(x)||2. We decided
against the use of histograms and used kernel density estimates instead. While this
is mostly for aesthetic reasons, it also reduces the visual complexity of the plots by
smoothing out the noise, making them more digestible for the viewer.

By controlling the kernel bandwidth parameter we can control the amount of
smoothing to the plotted density. Throughout our analysis we use a bandwidth of
0.1 which gives a good tradeoff between accuracy of the density estimates and read-
ability. This approach is outlined in Algorithm 4. For visual guidance we highlight
the predicted class and only show the classes with the top-10 predicted probabilities.
You can find an example ridge plot in Figure 8.1: A high influence of a certain class is
indicated by large amount of probability mass at high similarities, as is the case in the
example for the target class ”frog”. Note that inspecting the output layer in these plots
goes beyond obtaining a class probability at prediction time: They allow to understand
how these class probabilities came about.

8.3 Batch-Wise Tracking of Contributions

Mini-batch training can significantly decrease the duration of training by reducing the
overall number of parameter updates to a model. Modern deep networks are almost
always trained with mini-batching to allow the efficient processing of massive datasets
exploiting parallel computations on GPUs. The prominent deep learning frameworks
are build with mini-batching in mind and gradients of network parameters are accu-
mulated over the batch during the backward pass. In our case, however, it causes a
serious problem: When we track updates on the granularity of minibatches, we can no
longer attribute updates to individual training instances or their respective class labels,
as the gradients are already averaged across instances. In this Section, we propose an

126

Algorithm 4 Computing Ridge Plots

function -(f, x,∆(·)
l)

for each class y do ▷ Initialize statistics
Γy = ∅

end for
Compute f(l−1)(x) and Wlf(l−1)(x)

for t = 1, . . . , T do ▷ Iterate training history
Identify class yi used for ∆(t)

Compute γ̄(t)l with Eq. (8.8)
▷ Store cos-similarity and weight for class yi
Γyi = Γyi ∪ {(γ̄

(t)
l , ||∆(t)

l fl−1(x)||2)}
end for
plots = ∅
for each class y do

▷ Plot cosine similarities and weights from Γy

plots = plots ∪ {kdePlot(Γy, kernel-bw = 0.1)}
end for
return plots

end function

alternative for mini-batching where we train with mini-batches of training instances
that all belong to the same class. This way we can at least attribute weight updates to
classes rather than individual examples.

More specifically, we first compute a random permutation of our dataset and then
group our data set by class. We generate mini-batches by first sampling a class with
probability proportional to the prior probability we find in the data set. Then we
generate a random batch by yielding the desired number of examples that belong to the
class. We stop when we do not have enough data points for a full minibatch available
for all classes. The next epoch of training proceeds with a new random permutation
of the full dataset, giving rise to new mini-batches. This way we obtain random mini-
batches of a single class.

8.3.1 Ghost-Batchnormalization Layers

Using mini-batches of a single class causes new problems for many modern deep net-
work architectures, as it limits the usefulness of batch normalization layers. The ap-
pealing property of batch normalization is that it normalizes features in a batch, such
that their values lie in a standardized range, which allows efficient training without nu-
merical instabilities, but also differ, which allows the model to discriminate between
the classes [115]. But when we train with batches of a single class, the batch normal-
ization layer forces feature values to differ that should be similar, as illustrated in the
Figure 8.3b. In particular, a following batch of datapoints from a different class would

127

0.5 1 1.5 2
Input

−1 0 1 2
Output

(a) Normal Mini-Batches

0.5 1 1.5 2
Input

−1 0 1 2
Output

(b) Single-Class Mini-Batches

0.5 1 1.5 2
Input

−2 −1 0 1 2
Output

(c) Ghost-Sample Mini-Batches

Figure 8.3: Illustration of the different batch-normalization variants, color indicates
class labels. (b) When we construct batches with a single class, the outputs span the
whole range. An imaginary next batch of the other class would to the same, hindering
training. (c) Ghost samples solve this problem, as mean and variance are also computed
on the ghost batch.

consequently span the same range of feature values.
We introduce ghost samples to the mini batch to prevent this problem: These ghost

samples are training instances sampled from all classes according to the class prior prob-
abilities. We compute the batch normalization statistics on the ghost samples and the
normal batch separately. Then we combine the statistics by downweighting the exam-
ples in the mini batch to only have a total weight corresponding to one example in the
ghostbatch as outlined in Algorithm 5. This is done using the standard formulas for
weighted merging of two means and variances [42]:

µ = µghost + (µbatch − µghost)/(1 + |xghost|) (8.9)

c = |xghost|/(1 + |xghost|) (8.10)

σ2 = c · σ2ghost + σ2sample + c · (µbatch − µghost)
2/(1 + |xghost|)] (8.11)

This way all examples contribute to the mean and variance estimates, but the same-
class batch has only little influence, as illustrated in the third row of Figure 8.3. At
inference time, we use running estimates of mean and variance, as it is the standard for
batch normalization layers.

When evaluating the loss of our model, however, we only use the samples in the
original minibatch without the ghost samples. This way normalization is based on
all classes, while loss is based only on a single class. Now the model’s gradients and
consequently the parameter updates are mostly based on the single-class batch. This
allows us to still attribute individual training steps to a set of examples of a single class.
Instead of presenting the examples that were most influential, we can now present

128

Algorithm 5 Batch-Normalization with Ghost Samples

1: function -(x, ε = 10−5)
2: ▷ Split ghost-batch examples and compute statistics
3: [xbatch, xghost] = split(x)
4: µghost, µbatch = mean(xghost), mean(xbatch)
5: σ2ghost, σ

2
batch = var(xghost), var(xbatch)

6: ▷ Combine batch and ghost statistics
7: µ = µghost + (µbatch − µghost)/(1 + |xghost|)
8: c = |xghost|/(1 + |xghost|)
9: σ2 = c · σ2ghost + σ2sample + c · (µghost − µbatch)

2/(1 + |xghost|)]
10: Update batch-norm running statistics with µ and σ2

11: return (x− µ)/(σ + ε)
12: end function

the most influential minibatches. When computing the overall contribution of an
individual example, the contributions of a minibatch are attributed to all its training
examples equally. This way we can still aggregate the contributions by summation.
While we could also aggregate contributions in a normal mini-batch, in practice this
yields unusable values. With one-class minibatches, however, the results are better. We
believe this is due to the lower variance in the batch. In the next section we present an
alternative visual explanation that aggregates class-wise rather than example-wise.

8.3.2 Implementation for pyTorch

We have implemented batch-wise tracking of gradients as a pytorch library. This li-
brary allows users to easily integrate our proposed approach into existing deep learning
codebases. We have illustrated this in a small example in Fig 8.4 for training a VGG16
network on Cifar-10 data. In order to integrate our approach, we have to make the
following changes:

• Provide unique identifiers for each training example. This can be achieved con-
veniently by wrapping an existing torch.utils.data.Dataset object us-
ing our wrapper class WrappedDataset, that automatically assigns ids. For
instance for a dataset (xi, yi) it instead returns tuples (xi, yi, i).

• Replace standard batch normalization layers with our ghost-batchnormalization
layer. This can either be done manually or using our patch_batchnorm con-
venience function.

• Replace the default batch sampler in the torch.utils.data.Dataloader
to generate single-class batches with ghost-samples. We have implemented this
in the ClassSampler class.

• Wrap the torch.optim.Optimizer used for training to enable the weight-
update tracking functionality. We obtain a anonymous wrapped optimizer class

129

by invoking WrappedOptimizer(). Then we can create an optimizer by call-
ing its constructor with the hyperparameters that we want to use for optimizing.
Its step() method requires additional arguments: The indices and optionally
class labels of the training batch. Furthermore, the optimizer has a done()
method that gracefully terminates the logging.

8.3.3 Experimental Evaluation

In our experimental evaluation, we inverstigate the behaviour of the batchwise-tracking
of weight updates and the usefulness for generating explanations for model decisions.

Cifar-10 Image Classi cation We investigate our method for a popular image clas-
sification benchmark, the Cifar-10 dataset. We train a convolutional neural network
that uses the VGG-16 architecture - 13 convolution layers followed by 3 fully con-
nected layers - and train it with our mini-batch training algorithm with a batch size of
128 examples, of which 40 examples are the ghost sample containing 4 images of each
class. Note that the classes are balanced in the train- as well as test-data, so the ghost
sample also should also have this property. We train using vanilla stochastic gradient
descent for 35 epochs with an initial learning rate of 0.01 which is decreased by a fac-
tor of 0.1 every 10 epochs. Our model achieves a test accuracy of 80%, which is not
state-of-the-art, but sufficiently high to demonstrate the usefulness of our explanation
approach. We have noted that training with same-class minibatches leads to slower
minimization of the training loss, indicating that it is harder to learn models in this
setup. This may have an impact also on inference performance of the models.

We investigate both types of visual explanations proposed in this Section, the most
influential training examples, see e.g. Figure 8.5c and ridge plots of all contributions,
e.g. in Figure 8.6. Both forms of visualization show changing behavior along the depth
of the network: In the ridge plots, we see that later layers are more specific to classes
and hence seem more important for explanations, whereas earlier layers do not differ
substantially. For instance in the 13th linear layer, Figure 8.5a, we see a clear peak of
high similarities i.e. high influence for the true class ”truck”, whereas in the earlier 4th
convolution layer, Figure 8.5c, the classes behave more homogeneous. When look-
ing at the most-influential training images, the later layers show only images of the
predicted class, as in Figure 8.5c. Again earlier layers show very mixed images, as e.g.
the 1st layer in Figure 8.7. Further analysis reveals that these outputs are triggered by
weight updates very early in the training process when the model was still untrained
and the optimization performed large weight updates to learn. Other layers, like the
4th layer in Figure 8.5a, again only show images of the target class, but we do note
a higher variety in the images , for instance in the perspective of the images, in com-
parison to the later layers. All in all, this changing behavior along the depth of the
network is in line with previous results, that illustrate how convolution filters match
more complex patterns corresponding to the classes in later layers, whereas the earlier
layers match basic concepts like edges and textures [72].

130

Furthermore we can see that related classes influence each others representation,
e.g. truck and car or plane and bird are often both influential on middle layers. This
phenomenon is present in the ridge plots (see eg. Figure 8.6b) as well as the most
influential examples (see e.g. Figure 8.5b).

8.3.4 Explanations for Graph Classi cation

In this section, we investigate explanations for a graph neural network. We work with
the ogbg-ppa dataset that contains undirected protein association neighborhoods from
37 different taxonomic groups which is the prediction target [113, 255, 304]. Each
node represents a protein and each edge represents an interaction and is described
by 7 features. We use the official train-test split, where the training data contains x
graphs and the test data contains y graphs. Unlike in the previous section, the classes
are not perfectly balanced. We use a graph convolutional neural network based on
the model proposed by Xu et al. [287] that uses 5 layers of graph convolutions and a
hidden dimensionality of 300. The edge features are transformed to 300-dimensional
incoming node features [113].

The graph convolution transforms the features of a node v by

fl(xv) = MLPl

 ∑
(u,v)∈E

max[xu +Wlϕ(u, v), 0]

 (8.12)

where ϕ(u, v) denotes the edge features of the edge from u to v. We use the edge
transformation Wlϕ(u, v) as well as all linear layer in MLPl to compute explanations.

We use SGD training with Nesterov momentum of 0.9 and an initial learning rate
of 0.001 that is decreased by factor 0.1 after 10 and 40 epochs. Our model trained
with single-class minibatches of size 32 achieves an accuracy of 71.5% on the test data,
which places is comparable to performances of the baselines on the current public
leaderbord for the ogbg-ppa dataset.

We only inspect the ridge plots in this application, as images of graphs with more
than 100 nodes and 6 numerical edge features are very hard to interpret, particularly
without domain knowledge. The visualizations for this graph neural network reveal,
that all but the last two layers have almost uniform behavior throughout the classes, as
e.g. shown in Figure 8.8c. This indicates that the network is not benefitting from its
depth, as the intermediate representations are not discriminative for the target class.
This highlights another possible use-case of our method for machine learning engineers
who can use the approach for debugging machine learning models.

Computational Overhead Biggest roadblock for implementing this system seems
to be the additional overhead during training. In this section, we report the impact on
runtime and memory or storage. All reported runtimes are measured on a NVIDIA
DGX A100 machine using a single A100 GPU with 400GB memory.

As we can see in Table 8.2, tracking all weight updates requires 1.5 and 1.9 terabytes
of disk space. While this seems like a lot, it also is small enough to fit on modern

131

Table 8.1: Computational Overhead Statistics for the Previous Experiments

Metric cifar10 ogp-ppa

Model Size 129MB 7.1MB
Number of Weight Updates 11,685 278,500
Runtime per Epoche 72sec 264s
Relative Overhead Runtime +453% +54%
Disk Storage Demand 1.5TB 1.9TB
Explanation Time 10min 66min

132

import torch
from torch.optim import SGD
from xai_tracking.xai import WrappedOptimizer
from xai_tracking.xai import WrappedDataset
from xai_tracking.xai import ClassSampler
from xai_tracking.xai import patch_batchnorm

train_set = CIFAR10()
train_set = WrappedDataset(CIFAR10())

GHOST_SAMPLES=64
sampler = ClassSampler(train_set, ghost_samples=GHOST_SAMPLES)
train_loader = torch.utils.data.DataLoader(train_set, \
batch_size=512)
train_loader = torch.utils.data.DataLoader(train_set, \

batch_size=512, \
sampler=sampler)

model = VGG16()

replace batch normalization layers with ghost normalization
model = patch_batchnorm(model, ghost_samples=GHOST_SAMPLES)

wrap optimizer class to enable tracking
SGD = WrappedOptimizer(SGD, history_file="history)
optimizer = SGD(model.parameters(), lr=0.1)

[...]

for batch in train_loader:
inputs, labels = data
inputs, labels, indices = data
optimizer.zero_grad()
predictions = model(inputs)[:-GHOST_SAMPLES]
loss = loss_function(predictions, labels[:-GHOST_SAMPLES])
loss.backward()
optimizer.step()
optimizer.step(ids=ind, labels=labels)

optimizer.done() #Wait for all Processes to finish, close open files

Figure 8.4: Sample Code for Capturing the Training Process of a VGG16 model
trained with SGD on the CIFAR-10 dataset. Required changes are highlighted, we
see that we need to include indices in our training data, use our class-wise samples,
substitute batch normalization for our ghost normalization layers and use a wrapped
variant of the optimizer.

133

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

(a) 13th Layer

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

(b) 10th Layer

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

(c) 4th Layer

Figure 8.5: The 7 most influential training examples for the 3 layers of the VGG-16
network. Top left image is the input image for reference. We see a high influence of
the class ”car” on the representation in the middle layers, here e.g. in the 10th layer.
The later layers, eg. the 13th layer, is influenced mostly by very similar images, i.e.
trucks photographed from an angle, whereas the earlier convolutional layers, here the
4th layer, is influenced by images of trucks shot from a variety of angles.

134

LAYER13

−0.4 −0.2 0 0.2 0.4

tr
uc

k
sh

ip
pl
an

e
ho

rs
e

fr
og

do
g

de
er

ca
t

ca
r

bi
rd

Cosine Angle γ̄

(a) 13th LayerLAYER10

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

tr
uc

k
sh

ip
pl
an

e
ho

rs
e

fr
og

do
g

de
er

ca
t

ca
r

bi
rd

Cosine Angle γ̄

(b) 10th LayerLAYER4

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

tr
uc

k
sh

ip
pl
an

e
ho

rs
e

fr
og

do
g

de
er

ca
t

ca
r

bi
rd

Cosine Angle γ̄

(c) 4th Layer

Figure 8.6: Ridge Plot for the 3 layers of the VGG-16 network. We see a high influence
of the class ”car” on the representation in the middle layers, here e.g. in the 10th layer.
The earlier layers are not as descriptive of individual classes, eg. the 4th layer.

135

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

Figure 8.7: Highly influential images for the first layer from a variety of classes leave
the practitioner confused. Input image in top left position for reference.

LAYER15

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

c6
c3
4

c3
c2
8

c2
4

c2
1

c1
9

c1
8

c1
7

c1
2

(a) Logit Layer

LAYER14

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

c6
c3
4

c3
c2
8

c2
4

c2
1

c1
9

c1
8

c1
7

c1
2

(b) 14th Layer

LAYER12

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

c6
c3
4

c3
c2
8

c2
4

c2
1

c1
9

c1
8

c1
7

c1
2

(c) 12th Layer

Figure 8.8: Ridge Plot for the output layer, the 14th layer and the 12th layer. We see
that while the representation at the 14th layer can be attributed to examples of the
correct class, the representations in the 12th layer and in all prior layers look unspecific
to a class. This indicates a poor choice of network architecture that does not utilize all
layers for classification.

136

compute architecture. But, generating explanations is expensive, as we have to load
these terabytes of parameters efficiently from disk onto GPU for one-time use. These
I/O operations are the current computational bottleneck, explaining the long running
times of generating explanations. Note that the time per explanation decreases when
we generate a batch of explanations, as we only need to load the weight changes once
per batch rather than once per example.

At training time, the overhead of storing all weight updates to disk on the training
time depends on the model size: For the large VGG-16 model the impact is very high,
mostly due to the large linear layers with over 4mio parameters each, whereas for the
small graph neural network it is not severe. At the moment we naively store all weights
updates uncompressed to disk, which is probably very wasteful and makes explanation
rather slow, because massive amounts of weights have to be transferred from disk to
GPU.

Different options for making this more efficient come to mind: We can for instance
approximate the weight updates of large linear layers with low-rank approximations.
For standard SGD-training, these updates are indeed low-rank as the weight update
is computed as an outer product of input and gradient and thus its rank is at most
the batch-size. We explore this further in the next section. An alternative to low-rank
approximations are random projections as e.g. Garima et al. [81] propose.

8.4 Example-Wise Tracking of Contributions

In the last section we have developed an explanation approach that works by tracking
the weight updates during training. While it can be wrapped around any optimization
procedure that incrementally updates weights based on examples, it prohibited the
use of general mini-batches. We can either use batch-size of 1 or mitigated this by
using minibatches of the same class. Consequently, it required modifying the training
protocol, which includes finding new hyperparameters that work well with same-class
mini-batches. In this Section we present another approach that allows the use of general
mini-batches, but needs to use modified optimizers implementations: We sacrifice the
flexibility of wrapping any optimizer for the ability to handle general minibatches.
We demonstrate our approach with an implementation for vanilla SGD optimization,
but note that it can be adapted to other gradient-based optimizers like SGD with
Momentum or Adam. This way, once we have implemented our modified optimizer
of choice, we can use the same training hyperparameters for training with and without
tracking.

8.4.1 Method

We look specifically into tracking vanilla stochastic gradient descent training with
mini-batches. Consequently, the t-th update is of the form

θ(t+1) = θ(t) − η(t)

k

k∑
i=1

∇θℓ(fθ(t)(xs(t)i

), y
s
(t)
i

) (8.13)

137

where s(t)1 , . . . , s
(t)
k are the indices of random samples selected from the training data

that are used in the t-th mini-batch.
We want to explain deep representations by decomposing their linear parts into

sums where the summands correspond to individual training examples. The gradient
of the mini-batch is just the average gradient of the individual examples in the mini-
batch. Consequently, in a fully-connected layer h(l) =W (l)h(l−1) the gradient∇(l)

W ℓ
has low-rank structure

∇W (l)ℓ =

k∑
i=1

(
∇

h
(l)
i

ℓ
)(

h
(l−1)
i

)T
(8.14)

as it is the sum of k rank-1 matrices obtained in the outer product of the layer’s input
and the gradient with respect to its output.

A similar, parameter-efficient parameterization exists for convolutional layersh(l) =
W (l) ∗ h(l−1). Its gradient ∇(l)

W ℓ can be written as

∇W (l)ℓ =

k∑
i=1

(
∇

h
(l)
·i
ℓ
)
∗
(
h
(l−1)
·i

)
. (8.15)

In both cases, the gradient can be decomposed into a sum, where each summand cor-
responds to exactly one training example. We will use these summands to build expla-
nations. In particular, since we can now attribute weight updates precisely to training
examples, we can aggregate all weight updates grouped by training example. This way
we can decompose the final weights into N components, where N is the number of
training examples.

We have seen in the last section, that the largest computational bottleneck is the
disk write speed. Equations (8.14) and (8.15) allow us to choose between two ways
to store the per-example contributions and pick the one that requires less storage and
hence less disk writes: We can either materialize the full weight updates or store the
two factors and materialize the full weight updates later, either in a post-processing
step or during the generation of explanations.

Deep learning frameworks like pytorch do not compute the per-example contri-
butions, since they only need the batchwise aggregated gradient information. Conse-
quently, tracking and logging these gradients requires additional work.

Remark 3. We have derived the method for vanilla stochastic gradient descent op-
timization. This is the simplest case, as the SGD optimizer is state-less, i.e. it does
not maintain information about the variables it optimizes. Note, however, that we
can handle optimizers that maintain information in the following manner: We first
choose a linear function based on the state and the aggregated gradient, and then use
this linear function to update the weights. Linearity allows us to decompose the weight
update into per-example contributions. E.g. vanilla stochastic gradient descent always
chooses the linear function

g(G) = −ηG

138

while stochastic gradient descent with momentum also includes the running average
v(i−1) that is stored in the optimizer’s state and uses

g(G) = −βv(i−1) − ηG.

For Adam, the linear function includes one multiplicative weight per entry in G. The
multiplicative weights are based on the full aggregated gradient and are maintained in
the optimizer’s state. In a way, this view is an over-simplification: The true update
depends not only on the current batch of examples in G, but on all previous examples
that informed the choice of g(·). We consider our approach an approximation that
makes tracking the influence feasible.

8.4.2 Implementation Details

We have also implemented this method in the same pytorch library. We have summa-
rized the necessary code changes in Figure 8.9. In contrast to the last Section, it re-
quires the use of our specialized SGD optimizer. Additionally, we require an additional
setup step that initializes routines that store the required forward and backward fac-
tors of equations (8.14) and (8.15) during the forward- and backward-computations.
Internally, this is done using pytorch’s hook API. The hookup method installs the ap-
propriate callbacks for logging the required tensors. Also it decides wether to store the
weight updates in the factorized form or in the fully-materialized in order to minimize
the disk write latency.

8.4.3 Experimental Evaluation

Cifar-10 Image Classi cation We again investigate our method for a popular image
classification dataset Cifar-10. We train a convolutional neural network that uses the
VGG-16 architecture. In contrast to the last Section, we employ a slimmed-down
variant of the VGG-16 architecture that does not employ three large linear layers.
Instead, the last convolution layer is directly mapped to 10 class logits. We train the
model for 200 epochs employing standard data augmentations, randomized padded
crops and rotations, and reduce the learning rate using the popular cosine-annealing
schedule. This way our model achieves a test accuracy of 92%, which is in line with
the best published results for VGG-16 networks trained only on cifar-10 data.

We include an example classification in Figure 8.10. As before, we observe the
same changing behaviour across layers, where the later layers have received very class-
specific updates that are most responsible for the final representation and earlier layers
see very mixed class influences. In this instance, we observe that representations of
semantically related classes, e.g. car and truck, are on opposing ends of the cosine
similarity diagram for later layers. This means that the later layers are responsible for
separating the semantically similar classes and that during training, large updates were
necessary to obtain this separation.

Comparison to other Methods We now compare the most-influential examples we
compute to the most influential examples according to TracIn, the method proposed by

139

import torch
#from torch.optim import SGD
from xai_tracking.xai import WrappedSGD as SGD
from xai_tracking.xai import WrappedDataset

train_set = CIFAR10()
train_set = WrappedDataset(CIFAR10())

train_loader = torch.utils.data.DataLoader(train_set, batch_size=512)

model = VGG16()

optimizer = SGD(model.parameters(), lr=0.1)
optimizer = SGD(model.parameters(), lr=0.1, history_file="history/")
optimizer.hookup(model)
[...]

for batch in train_loader:
inputs, labels = data
inputs, labels, indices = data
optimizer.zero_grad()
loss = loss_function(model(inputs), labels)
loss.backward()
optimizer.step()
optimizer.step(ids=ind, labels=labels)

optimizer.done() #Wait for all Processes to finish, close open files.

Figure 8.9: Sample Code for Capturing the Training Process of a VGG16 model
trained with SGD on the CIFAR-10 dataset. Required changes are highlighted and
are minimal. Indeed we do not need to change anything about the model, nor the way
data is sampled.

140

LAYER2

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

tr
uc

k
sh

ip
pl
an

e
ho

rs
e

fr
og

do
g

de
er

ca
t

ca
r

bi
rd

Cosine Angle γ̄

(a) 12th LayerLAYER10

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

tr
uc

k
sh

ip
pl
an

e
ho

rs
e

fr
og

do
g

de
er

ca
t

ca
r

bi
rd

Cosine Angle γ̄

(b) 6th LayerLAYER0

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

tr
uc

k
sh

ip
pl
an

e
ho

rs
e

fr
og

do
g

de
er

ca
t

ca
r

bi
rd

Cosine Angle γ̄

(c) 1st Layer

Figure 8.10: Ridge Plot for the 3 layers of the VGG-16 network as computed using
the examplewise gradient contributions aggregated across examples. The earlier layers
are not as descriptive of individual classes, eg. the 1st layer.

141

Table 8.2: Computational Overhead Statistics for the Previous Experiments

Metric examplewise batchwise

Model Size 57MB 57MB
Number of Weight Updates 78,000 78,000
Runtime per Epoche 56sec 36s
Relative Overhead Runtime +460% +260%
Disk Storage Demand 11.0TB 6.0TB
Explanation Time 10min 66min

Garima et al. [81]. Both methods work by tracking the model throughout the training
process, however Garima et al. only use the checkpoints to estimate the influence of
individual examples on the final loss. We use the TracIn variant that only analyzes the
final layer of the model and compare to the output that our method produces for the
last layer. For our experiment, we use the same Cifar-10 model as described above,
hence we have 200 checkpoints, one for every epoch. TracIn has to run inference on
the full training dataset for each checkpoint, hence the runtime cost for generating
explanations is higher than in our approach.

In Figure 8.11 we show an exemplary comparison of the two methods. This ex-
ample is characteristic for the outputs we see and highlights an important difference
between the approaches. TracIn tends to identify a set of visually similar examples as
most influential, whereas we output a diverse set. Often, our outputs are examples that
may be mistaken for another class, sometimes even mislabeled training examples, for
instance two women labeled truck. This difference is explained by the approach they
take. As we see in Eq. 8.1, the similarity is computed as the similarity of gradients
of the model given the training input and the test input. These will be similar if the
inputs are similar, as has been demonstrated by Charpiat et al. [43], who exploit this
property to propose a similarity measure based on gradient dot-products on the final,
trained model.

Similarly, another simple explanation method that outputs the training examples
with the most similar latent representation produces visually appealing explanations
that highlight what the model has learned, but not how and why the model learned.
We want to find the examples, that were most influential for the final representation
during training, not the examples that are most similar after training.

Another competitor are influence functions. Influence functions model the influ-
ence of training examples around the final model and cannot account for the training
process that actually led to this model. We can view them as an idealization of training.
Hence they too answer a different question.

Computational Overhead We repeat the batch-wise experiment from the last chap-
ter using the same number of 200 epochs for training with a batch-size of 128. Fur-
thermore we use the same, smaller VGG16 model taylored to the cifar dataset. This

142

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

(a) Our Approach

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

0 10 20 30
30

25

20

15

10

5

0

(b) TracIn

Figure 8.11: Example Outputs for our Approach and TracIn for an instance of the class
”Ship”. Noteworthy, the two sets of top 7 most influential examples are distinct. We
observe that TracIn produces more visually similar images, whereas our set captures a
more diverse set of ship types.

143

way we obtain faster tracking of the weight updates for the batchwise variant, as the
large fully-connected linear layers are no longer present. We can now fairly compare
the computational overhead of both approaches: examplewise and batchwise tracking.

We see that tracking the examples on a per-example basis increases the storage de-
mand from 6.0TB to 11.0TB. Using the low-rank factorization that naturally arises
for the parameter updates in stochastic gradient optimization helped reduce this in-
crease in comparison to the naive approach presented in the last Section. We have to
track a number of weight updates that increased by a factor of batch-size, in this case
128. With that in mind, we see that the low-rank approach is very effective, getting
the factor down from 128 to below 2.

The most important factor for reducing the explanation time, however, is the post-
processing step that aggregates all weight updates by the training example that was in-
volved. This reduces the number of sets of weights from 78,000, the number of weight
updates, to 50,000, the number of training examples. Without this aggregation, we
have to iterate about 1 million individual contribution as each example is used 200
times during training.

The additional callbacks employed in both forward- and backward-computation
increase the runtime overhead in comparison to batchwise tracking of weight updates.

Keeping in mind that the modeling process involves training lots of models for
hyperparameter tuning, etc. and we only need to track the training for few promising
candidate models, this illustrates that applying the approach is actually feasible from
a computational cost standpoint: Training some models longer as before is a plausible
extra effort for obtaining insights into the model’s decisions, particularly for models
we want to deploy.

8.5 Conclusion, Discussion and Future Research

We have proposed an addition to the pool of explanation methods. While many other
methods explain, how the model computed a decision, our method asks why the model
learned to classify this way. Hence it is meant to complement existing methods to pro-
vide evidence from the training set that decisions are sound. Our approach is extremely
simple: We track all weight updates during training which allows us to decompose the
hidden activations of neural networks into a sum over training steps. This way we
can attribute the representation to individual training examples. We have proposed
two types of visual explanations: One based on most-influential individual training
instance, the other based on aggregated statistics over all training steps.

Our explanations do not attempt to “open the black box”, instead they find evi-
dence for the decision in the training process. We can provide insights which training
examples actually shaped the intermediate representations for a given example the most
(Algorithm 3), and which classes influenced the intermediate representations most (Al-
gorithm. 4).

Our method is general, it can either be wrapped around any optimization algo-
rithm by switching the training protocol to our single-class mini-batching with ghost-

144

samples, or it can replace vanilla stochastic gradient training using standard mini-
batching and standard models. This allows practitioners to integrate our approach
into existing machine learning pipelines.

Using our approach, we can now answer the question “Why did the model learn
to predict y?” with an explanation like in Figure 8.1, optionally — depending on
the target audience — equipped with a brief description of neural networks and their
weight-decomposition (8.5). Unlike other approaches, the explanations are directly
tied to the training process, not only to the final model [135], or the training data [289]
or even nothing but the model architecture [3].

Our approach has one serious draw-back: It only works for multiclass-classification
with a sufficiently large number of classes. Indeed, when we consider binary targets,
any update that benefits the representation for classifying one class simultaneously ben-
efits the other class. Hence, attributing the update to either class is pointless. More
generally, each weight update is made to improve at the classification problem one
vs. the rest. For problems with more classes, we this symmetry becomes weaker and
weaker, for our example problems with 10 classes we find that the attribution of weight
updates to classes is sufficiently meaningful.

Currently our approach only analyzes the linear maps in a feed forward network.
While this includes many popular machine learning models like CNNs or graph neural
networks, it does exclude two popular architecture choices: gated recurrent networks
and transformer architectures with their self-attention layers. How to extend our ap-
proach to these models remains an open question.

We have investigated the use of low-rank representations for efficient storage of
all weight updates. Further avenues for increasing the efficiency remain: Sketching
and sampling are two promising, orthogonal approaches. While sketching reduces the
dimensionality of the (vectorized) weight updates, for instance through multiplication
with random matrices [268], sampling reduces the number of updates that we actually
store. Coresets [74, 157] may provide a way to cleverly select which updates to write
to disk in a streaming fashion, but the number of weight updates it needs to retain in
a buffer may exceed the available memory for large models.

We think the combination of our approach with saliency approaches may be an
interesting future endeavour. Since we can decompose pre-activations into a sum over
groups, e.g. examples or classes, we may highlight the features in the input image that
correspond to the group using these deconvolution techniques.

145

146

Chapter 9

How Robust is a Model?

M
 models are under increasing scrutiny. In the last chap-
ters, we have investigated how decisions of models emerge. We looked
into what parts of the input influenced a decision to answer, how the
decision was computed, and we looked into what parts of the training

data influenced a decision to understand, why a model learned to decide the way it
does. In this chapter, we investigate another aspect of model predictions: How can we
change inputs to provoke errors? And how can we guarantee, that these attacks will
not happen?

9.1 Introduction

We tackle the problem of adversarial robustness: Informally, small changes to the input
of a model should not revise its decision. Our focus is on random forest models [29],
arguably the most popular choice for classification tasks with tabular data [75].

Problem Statement Given a random forest f and an example x, the adversarial ro-
bustness is defined as the magnitute of the smallest perturbation to x that changes the
predicted class:

min
∆
||∆||p s.t. f(x) ̸= f(x+∆). (9.1)

Solving this problem is NP-complete for random forests with more than one trees
with depth larger than two [126]. Decision trees, however, can be verified with regard
to adversarial robustness in linear time w.r.t the number of tree nodes. In this work
we hence start by distilling random forest models into a single decision tree which
allows efficient verification of random forests. We note that every random forest can
be represented as a deeper decision tree, as both model families compute piecewise
constant functions. However, a naive construction yields an exponentially deep tree,
which is in line with the computational complexity of the problem. We suspect that
real-world random forests do not make use of their exponential, worst-case complexity.

147

Thus we propose to distill the random forest into a deep – albeit not obsessively deep
– decision tree using a greedy procedure in order to compute lower bounds.

We highlight the contributions of this Section. We

1. design a knowledge-distillation algorithm that approximates the output of a ran-
dom forest model in a single decision tree,

2. derive a robustness verification algorithm for random forests that internally uses
the distillation approach to compute robustness guarantees for the random forest
based on guarantees of a distilled tree,

3. prove that our algorithm computes lower bounds on the robustness that hold
on a user-specifiable fraction of the input space in Theorem 5 and Theorem 6,
and

4. illustrate the usefulness of our new algorithm in an empirical evaluation.

The rest of this Section is structured as follows: We begin by reviewing related work
in Section 10.2. In Section 10.3, we introduce the preliminaries necessary to under-
stand our approach. Besides the mandatory introduction of notation, this includes our
greedy, knowledge distillation algorithm for random forests and Chen et al.’s [45] ad-
versarial robustness algorithm for decision trees. Then we are equipped to approach the
main contribution of this paper in Section 10.4 and develop a robustness-verification
algorithm based on distillation, which we put to an empirical test in Section 10.5. We
conclude this paper in Section 10.6.

9.2 Related Work

Since the initial shock over the poor robustness of deep networks [254], a lot of meth-
ods for testing and for improving robustness have been proposed (see e.g. [114] for
a survey). Our work is focussed on computing adversarial robustness for tree-based
models.

Researchers have used logical solvers [25, 59, 69, 117, 231], SMT solvers [188],
property checking [264, 265], abstract interpretation [218, 219], as well as mixed-
integer linear programming solvers [126] and have rephrased the random forest verifi-
cation problem in their respective input formats. Most of these approaches are limited
to small-scale models and struggle with realistic numbers of trees and tree-depths. In-
terestingly, similar approaches have recently been used for deep learning as well, e.g.
through SMT solvers [129] or mixed integer linear programming [32, 262]. Perhaps
most relevant to our approach are the decision tree verification approaches of Chen et
al. [45] and Wang et al. [280], so we outline them in adequate detail in Section 3. The
most promising work for robustness verification of random forests is V proposed
by Devos et al. [60]. It computes adversarial robustness based on A* search in a cleverly
designed search space inspired by prior work of Chen et al. [45]. Like the approach
presented in this work, they too present an anytime-algorithm that can output lower
bounds at any time.

148

Another research direction is aimed at making decision trees and random forests
more robust through modified training procedures [37,44]. Estimating the robustness
and identifying adversarial examples is an important building block of these methods.

Knowledge distillation is the process of using a large model to train a smaller model
in an effort to combine the benefits of an expressive, large model with the efficiency
of a small model [94]. Our approach is tailored for the piecewise-constant functions
computed by random forests. Thus it does not need access to data to perform distil-
lation, unlike many approaches for deep networks; though there are approaches for
deep networks that generate synthetic data points for distillation [290]. Many authors
suggest using distillation to increase the robustness of small deep networks, e.g. [91].
From the theoretical perspective, distillation has also been used to derive generalization
bounds [8, 112], where we can give tighter guarantees to the smaller models.

9.3 Preliminaries

We begin by introducing some notation. LetX denote the input space of our examples
x ∈ X and f(x) ∈ [0, 1] denote the probability output of a random forest. In slight
abuse of notation, f(x) ̸= y checks if the most likely class label is not y ∈ {0, 1}.
We denote nodes in a decision tree with the symbols v or w. A node v in a tree fi has
children l_child(v) and r_child(v), an output fvi , and computes a split on a feature
c with a threshold θ by checking if xc ≤ θ. The set of leaf nodes of the decision
tree fi is denoted by V (fi). Note that a decision tree recursively partitions the data
space into axis-aligned hyper-rectangles. We denote these partitions by Θ ⊆ [0, 1]d,
in particularly we denote by Θv the partition corresponding to a tree-node v.

Let µ(·) denote the Lebesgue measure, hence µ(Θ) computes the volume of the
hyper-rectangle Θ.

We make a few assumptions. The first assumption is only technical:

Assumption 1. Our data domain X is the d-dimensional hypercube [0, 1]d.

We can always meet this assumption through appropriate normalization at pre-
processing. In our experimental section we will use quantile-transformations.

Assumption 2. For a given p ≥ 1, the lp norm is a meaningful way to measure the
magnitude of adversarial perturbations.

This assumption entails that the magnitude of permutations can be compared
across different features. This may be achieved through appropriate feature normal-
ization, but usually requires domain knowledge.

Remark 4. Considering adversarial robustness without considering uncertainty esti-
mation or probability calibration is an ill-posed endeavor. Obviously, every model has
a decision boundary and examples closer to the decision boundary are likely less ro-
bust to adversarial perturbations. In the most extreme situation, we are evaluating the
robustness using an example on the decision boundary, where an infinitesimal pertur-
bation can change the output. Consequently, we cannot expect a model to be robust

149

for every output. We instead want our forests to be robust when the output exceeds
a certain minimum certainty, which induces a margin around the decision boundary
where we do not expect robustness. For this margin to be meaningful and interpretable,
the model output should correspond to error probabilities, i.e. the model should be
calibrated.

9.3.1 Decision Tree Distillation

First we show how we can distill a random forest classifier into a single decision tree.
More formally, we solve the following problem:

Problem Statement Given a random forest for binary classification tasks, f(x) =∑
i hi(x), approximate this ensemble of trees with a single, deep regression tree, such

that the mean-squared error

min
f̃

∫
X
|f(x)− f̃(x)|22dµ (9.2)

of the decision tree f̃ is minimized.
A decision tree computes a piecewise-constant function. So let us first consider the

loss of a constant prediction h ∈ R on a partition Θ

ℓ(Θ) = min
h

∫
x∈Θ

|f(x)− h|2 dµ (9.3)

= min
h

∫
Θ

f2 dµ

︸ ︷︷ ︸
=:var(Θ)

−h · 2
∑
i

∫
Θ

fi(x) dµ

︸ ︷︷ ︸
=:bias(Θ)

+h2
∫
Θ
1 dµ︸ ︷︷ ︸

=:vol(Θ)

(9.4)

= var(Θ)− bias(Θ)2

4vol(Θ)
(9.5)

with minimizer h∗ = bias(Θ)
2vol(Θ) .

We now inspect the quantities vol, bias and var individually. The quantity vol(Θ)
is just the volume of the partition Θ that is efficiently computed because Θ is a hyper-
rectangle with known lower and upper boundaries

vol(Θi) =
d∏

i=1

| supΘi − infΘi|. (9.6)

The computation of bias(Θ) decomposes over the trees in the random forest. Hence
we only need to identify the nodes in the forest that fall intoΘ and compute a weighted
sum of their outputs.

bias(Θ) :=2
∑
i

∫
Θ

fi(x) dµ (9.7)

150

=2
∑
i

∑
v∈V (fi)

fvi µ(Θ
v ∩Θ) (9.8)

Finally, we consider var(Θ). In decision trees, this is easily computed: it is simply
the weighted sum of all squared leaf-nodes. For the random forest model f , however,
we have to do more work as we need pairwise intersections of the partitions induced
by the individual trees which yields a worst-case quadratic explosion of the number of
partition cells:

var(Θ) :=

∫
Θ

f2 =
∑
i

∑
v∈V (fi)

fvi

∫
x∈Θv∩Θ

∑
j

fj(x) dµ (9.9)

=
∑
i

∑
j

∑
v∈V (fi)

∑
w∈V (fj)

fvi f
w
j (x)µ(Θv ∩Θw ∩Θ) (9.10)

Now we show how to split a leaf node to improve the approximation. When
evaluating splitting a node v based on feature c and split value θ, we consider the
resulting sets of that split Θv

xc≤θ and Θv
xc>θ, and choose θ and c, such that the sum

of the losses is optimal:

arg min
θ,c

ℓ(Θv
xc≤θ) + ℓ(Θv

xc>θ) (9.11)

= arg min
θ,c

var(Θv)−

(
bias(Θv

≤)
2

4vol(Θv
≤)

+
bias(Θv

>)
2

4vol(Θv
>)

)
(9.12)

= arg max
θ,c

bias(Θv
≤)

2

4vol(Θv
≤)

+
bias(Θv

>)
2

4vol(Θv
>)
. (9.13)

When maximizing over the decision threshold θ, we only have to consider the split
values used in the random forest f . When varying θ, the volumes |Θv∩Θ| change only
in a single dimension k. So this quantity can be efficiently computed. Furthermore
we see that we do not need the costly computation of the variance to compute the best
split.

Putting everything together, we can design a knowledge-distillation algorithm that
approximates the decision boundary of a random forest using a decision tree. We use
the standard, greedy decision tree induction algorithm [215], but instead of splitting
according to a finite set of training points, we use the split criterion (9.13). If we
build the distilled decision tree in a breadth-first traversal, as the number of its nodes
approaches infinity, the output converges to the output of the original random forest
model. A formal proof follows standard consistency proofs for decision trees [61]. As
we have seen in the introduction, the random forest model f can be represented as an
exponentially-deep decision tree. Hence at least one zero-loss solution is attainable.
Furthermore, each new split does not increase the loss. In fact the loss is either de-
creased or the volume of the resulting leaf nodes is decreased. Infinite sequences of
stagnating loss are only possible when zero loss is reached. This ensures convergence.

151

In practice, we can stop at a leaf node once the loss falls below a desired level or once
the number of nodes exceeds a tolerable level.

Remark 5. We limit the derivation of this approach to binary classification where
the output of the random forest is univariate. However, we note that all of the above
derivations can be carried out in the multi-class case where the output of the random-
forest is a categorical probability distribution and we use the sum of squared distances
over all classes to measure the goodness-of-fit if the distilled model.

9.3.2 Decision Tree Veri cation

Chen et al. [45] show that we can compute the l∞ adversarial robustness of decision
trees inO(v) operations, where v is the number of nodes in the tree. Wang et al. [280]
present a generalization of their algorithm to analyze the robustness perturbation with
respect to any lp norm. The idea is simple: For a given example and every leaf node of
the tree, we compute the smallest perturbation that lands the example in the leaf node
recursively in a top-down fashion: At each split, we know the smallest perturbation
to the split feature that puts the example on the wrong side of the split. When we
processed all the leaf-nodes, we find the leaf node that gives a wrong output with
the smallest perturbation, which gives us our exact robustness. We can evaluate this
robustness for a whole set of examples in parallel, giving us either a mean-robustness
or a minimum robustness. This approach is summarized in Algorithm 6.

Algorithm 6 Decision Tree Verification [45]
1: Input: tree h, example x
2: Av = 0⃗ for all v ∈ nodes(h) ▷ initialize perturbations
3: Q = [root(h)] ▷ depth-first-search
4: while Q ̸= ∅ do
5: v = Q.pop() ▷ v with split-feature c, threshold θ
6: if ¬is_leaf(v) then
7: Al_child(v) = Ar_child(v) = Av ▷ clone
8: if xc ≤ θ then
9: Ar_child(v),c = arg max |y|, y ∈ {θ − xc, Av,c}

10: else
11: Al_child(v),c = arg max |y|, y ∈ {θ − xc, Av,c}
12: end if
13: Q = [l_child(v), r_child(v)] +Q
14: end if
15: end while
16: return min{||Av||p | v ∈ V (h) s.t. hv ̸= h(x)}

152

9.4 Random Forest Veri cation rough Knowledge Distil-
lation

We have seen that both the distillation and the verification proceed by traversing the
tree: the former by splitting nodes to improve the fit, the latter by refining the ad-
versarial perturbations. We can now design an algorithm that combines the two in
order to compute adversarial robustness of random forests. In contrast to decision tree
verification, now we have to consider the quality of our tree-approximation: Areas
with poor approximation may still contain adversarial perturbations, even though the
approximated output looks correct.

We proceed in two steps: First, we show how we can determine whether a leaf
node in the distilled tree approximates the random forest sufficiently well. Second,
based on that, we devise a strategy for selecting a leaf node to split further to improve
the approximation. Putting everything together, we devise an anytime algorithm that
approximates the adversarial robustness of a random forest and prove guarantees.

9.4.1 Bounding the Output Range of Random Forests

We need to bound the range of function values that the random forest model outputs
in a given partition Θv. Solving this exactly is equally expensive as bounding its ad-
versarial robustness [60]. Unlike V [60], we only compute measure-theoretic
bounds using exactly computed moments, but we can control the confidence of these
bounds using a user-parameter. Chebyshev’s inequality states that

µ({x ∈ Θ | f(x) > t}) ≤ 1

tk

∫
Θ
|f(x)|k dµ. (9.14)

Hence we can bound the deviation around our approximated output using the second
moment of the absolute difference, i.e. the loss

µ({x ∈ Θv | |f(x)− hv| > t}) ≤ 1

t2

∫
Θv

|f(x)− hv|2 dµ

=
ℓ(Θ)

t2
(9.15)

or equivalently

µ

({
x ∈ Θv

∣∣ |f(x)− hv| >
√
ℓ(Θ)

p

})
≤ p. (9.16)

Consequently, we can bound the volume of the input space where the random forest
deviates by more than a tolerated amount. As the loss gets lower, the bounds get tighter.
Particularly, we are interested in deviations larger than |hv−0.5|which lead to inverted
classifications. Our approach will allow the user to control the measure of space where
function values can fall out of the estimated range.

Remark 6. We have seen above that computing the second moment of f , the vari-
ance var(Θ), requires runtime that is quadratic in the number of random forest leaf

153

nodes in Θ. It is possible to use Chebyshev inequalities of higher, even orders or other
concentration inequalities that use higher moments like [101] in order to get tighter
confidence intervals. Note, however, that computing the k-th moment has runtime
exponential in k. For the 4th moment, this is already infeasible for large random
forests.

9.4.2 Simultaneous Distillation and Veri cation

Starting with an empty tree, we incrementally distill the random forest into a decision
tree for verification. Let f̃ denote our current, in-progress decision tree. For each leaf
node v ∈ V (f̃), we maintain the smallest perturbation that puts the given example x
in it (as in Algorithm 6). Depending on the estimated range of outputs of the original
random forest f , we consider them adversarial or benign. This marks the difference to
plain decision tree verification, as now we do not use the leaf outputs directly, but have
to account for their uncertainty. If we approximate the forest perfectly, then we com-
pute exact lower bounds as Algorithm 6. When we have to assume that the leaf node
with the smallest perturbation contains adversarial permutations judging by the con-
fidence interval, but really the node is benign, we only compute a lower bound on the
true adversarial robustness. In our concentration inequality approach, the confidence
intervals do not hold strictly, but only on the majority of space. Hence it is possible
that the bounds we compute do not hold. We bound the effect of these failures in
Theorems 5 and 6.

Our algorithm can now choose a leaf node to further split according to (9.13).
This will result in two new leaf nodes, where one of the leaf nodes inherits the par-
ent’s perturbation and the other potentially has a larger perturbation depending on
the evaluation of the arg max operation in lines 9 or 11 of Alg. 6. This illustrates a
way to increase the lower bound estimates of the adversarial robustness: We reduce
the loss, such that our confidence interval of random forest outputs (9.16) becomes
sufficiently small to become benign. Meanwhile, the other permutation of the other
child increases in magnitude.

We maintain an ordered queue of all the leaf nodes who are potential adversarial
perturbations, ordered by their norm, and always split the node with the smallest norm.

Now we consider how to select the confidence intervals used for deciding if a per-
turbation is adversarial or benign: Let δ ∈ (0, 1) denote a user-specified tolerance
parameter we refer to as budget. It controls what fraction of the input space is left
unverified during the search for adversarial perturbations. We propose two variants:

Average Variant In this variant, each leaf node can use up an amount of the budget
proportional to its own volume. Consequently, at node v we estimate the confidence
interval

f(x) ∈

(
hv −

√
ℓ(Θv)

δ · vol(v)
, hv +

√
ℓ(Θv)

δ · vol(v)

)
(9.17)

154

which, by (9.16) is potentially violated only on a subset of the input space with measure
bounded by δ · vol(v). Taking the union over the violated areas of all leaf nodes, we
obtain that our confidence intervals fail on a subset bounded in measure by δ.

Greedy Variant The smallest adversarial perturbations for an example x will be, by
definition, in its close proximity. Consequently, large parts of the input space are
irrelevant for the verification – spending our budget in those regions is wasteful. Instead
we propose to spend the budget greedily on the most promising candidate leaves v for
adversarial perturbations. Using all of the budget equals the confidence interval

f(x) ∈

(
hv −

√
ℓ(Θv)

δ
, hv +

√
ℓ(Θv)

δ

)
(9.18)

Since we can only use the budget once, we have to reduce the remaining amount. Let
m = |hv − 1/2| be the margin of hv: the largest deviation we need to worry about.
From (9.15) we can bound the measure of the space where the deviation is larger than
m. If the budget permits this, we can verify v and proceed with reduced budget

δ′ = δ − ℓ(Θv)

m2
. (9.19)

A potential drawback of the greedy approach is that we can miss small perturba-
tions entirely if their corresponding leaf nodes have less volume than the remaining
budget.Future work should look into overhauling the budget parameter to be relative
rather than our proposed absolute budget.

In the following, we prove the main property of our random forest verification
algorithm. For simplicity, we begin by proving the average variant.

eorem 5. Let f be a given random forest model and x be an example. Let δ ∈ (0, 1).
en the average variant of Algorithm 7 that uses the con dence intervals (9.17), computes
a lower bound for the lp-adversarial-robustness that holds on a subset with at least (1− δ)
measure: Let r be the output of Algorithm 7. en there exists X̃ ⊆ X with µ(X̃) ≥
(1− δ) such that

r ≤ min
∆
||∆||p s.t. x+∆ ∈ X̃ and f(x) ̸= f(x+∆).

Proof. Let C ∈ N. Let f̃ denote the decision tree at the end of Algorithm 7 after run-
ning with parameters f, x, δ, C . Let r̃ denote the ouput of Algorithm 7. We proceed
in two steps: First we construct X̃ , then we prove that we compute a lower bound for
the adversarial robustness for all adversarial examples in X̃ .

Consider a leaf v ∈ V (f̃). Let

X̃ v :=

{
x ∈ Θv

∣∣∣ |f(x)− f̃v| ≤√ ℓ(Θv)

δvol(Θv)

}
denote the set of all points in Θv where the random forest output falls inside our
assumed confidence interval. By Chebyshev inequality (9.15), we have

µ(Θv) ≥ vol− δvol(Θv) = vol(1− δ).

155

Algorithm 7 Random Forest Verification (this chapter)

1: Input: forest f , example x, budget δ, max. size C
2: root = root node of new empty tree f̃
3: Aroot = 0⃗ ▷ initialize perturbation
4: Q = [(0, root)] ▷ priority queue
5: while |f̃ | < C and Q ̸= ∅ do
6: v = Q.pop() ▷ leaf with smallest adv. perturbation
7: if greedy and 1/2 ̸∈ δ-interval cδ then
8: δ = δ − ℓ(Θv)

|1/2−f̃v |2
▷ (9.19)

9: continue
10: end if
11: c, θ = best split of v according to (9.13)
12: create children l, r of v according to c and θ.
13: cl, cr = confidence intervals (9.17) or (9.18) for l and r
14: Al = Av, Ar = Av ▷ clone permutations
15: if xf ≤ θ then
16: Al,f = arg max |y|, y ∈ {θ − xf , Av,f}
17: else
18: Ar,f = arg max |y|, y ∈ {θ − xf , Av,f}
19: end if
20: if 1/2 ∈ cl or f(x) ̸= f̃ l then
21: Q.insert(||Al,f ||p, l)
22: end if
23: if 1/2 ∈ cr or f(x) ̸= f̃ r then
24: Q.insert(||Ar,f ||p, r)
25: end if
26: end while
27: return min{p | (p, q) ∈ Q} ▷ smallest adversarial leaf

The leafs partition X = ∪v∈V (f̃)Θ
v with Θv ∩Θw = ∅ for v ̸= w. Hence

µ(∪v∈V (f̃)X̃
v) ≥ (1− δ)

∑
v∈V (f̃)

vol(v) = 1− δ.

Now we proceed to show that we compute lower bounds constrained to the set X̃ .
We assume there is an adversarial permutation ∆ with x + ∆ ∈ X̃ with ||∆||p < r
and f(x+∆) ̸= f(x). Consider the leaf node v with x+∆ ∈ Θv. We know that

f(x+∆) ∈

(
hv −

√
ℓ(Θv)

δ · vol(v)
, hv +

√
ℓ(Θv)

δ · vol(v)

)

because x + ∆ ∈ X̃ . Since v was not in the priority Q, it holds that 1/2 ̸∈ cv and
f(x) = f̃v Since 1/2 ̸∈ cv, we know that f̃v = f(x + ∆). This contradicts the

156

assumption that f(x + ∆) ̸= f(x). We can conclude that no such ∆ can exist, all
adversarial permutations in X̃ must have robustness greater or equal to our output
r.

eorem 6. Under the assumptions of eorem 5, the greedy variant of Algorithm 2 pro-
vides the same guarantees as the average variant in eorem 5.

Proof-Sketch. The proof follows the proof of Theorem 5. However, in constructing
the set X̃ , we only consider the nodes v with permutations smaller than the final
output. For all the other nodes, we take X̃ v = Θv because range errors in nodes with
larger permutation have no effect. By the greedy construction, the sum of measures
is larger than 1 − δ in this case as well. The second part of the proof applies without
modification.

9.4.3 Some Comments on Asymptotic Runtime

Let us investigate the computational cost of running the proposed method. The first
important variable is the number of desired nodes C in the distilled model, which
determines the number of times a node is split.

This node-splitting is the most computationally expensive. Each node in the dis-
tilled tree is associated with a set V of leaf-nodes of the original forest. Computing the
distillation loss has complexity O(|V |2) and computing the best split has complexity
O(|V |d). However, estimating a total runtime of O(C(|Vroot|2 + |Vroot|d)) using all
leaf nodes of the random forest is a massive exaggeration, as the number of leaf nodes
is reduced with each split, in the best case by a factor of two. In practice, we see that
the first splits are by far the most expensive ones; further down the distilled tree the
sets of leaf nodes decrease in size rapidly. We cannot estimate how balanced the splits
are beforehand, which makes an asymptotic analysis difficult without further assump-
tions. If we, for illustration purposes, assume perfectly balanced splits, this yields a
complexity of

O(|Vroot|2 + |Vroot|d logC)

using standard divide-and-conquer runtime analysis. Again, this is not a formal analysis
as we do not know how balanced the splits are.

9.4.4 Implementation Details

We outline a few optional implementation tricks that we used during the development.
For computational efficiency, we do not verify individual examples, but build a joint
distilled decision tree for all examples of the dataset we wish to verify. For simplicity,
we keep priority queues for all examples separately and use a round-robin strategy for
selecting the next split node.

Since the algorithm does not require us to start with an empty tree, to speed up the
construction, we can initialize it with a decision tree fitted to the random forest output
on a set of examples. Then we can put all the leaf nodes into the priority queue and

157

Table 9.1: Comparison of the Adversarial Robustness Values Across Datasets and
Methods

M A M H M
hist min mean hist min mean hist min mean hist min mean

MILP 0.0493 0.4814 0.0030 0.0965 0.0157 0.0972 0.0012 0.2036
V 0.0491 0.4811 0.0029 0.0955 0.0154 0.0952 0.0010 0.2036
Distill-AVG 0.0492 0.3441 0.0017 0.0965 0.0061 0.0883 0.0008 0.2089
Distill-GRD 0.0492 0.3356 0.0040 0.0845 0.0008 0.0687 0.0011 0.2172

0.00 0.05 0.10 0.15 0.20 0.25 0.30
exact adversarial robustness

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

di
st

ill
ad

ve
rs

ar
ia

l r
ob

us
tn

es
s

(a) δ = 0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30
exact adversarial robustness

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
di

st
ill

ad
ve

rs
ar

ia
l r

ob
us

tn
es

s

(b) δ = 0.001

0.00 0.05 0.10 0.15 0.20 0.25 0.30
exact adversarial robustness

0.00

0.05

0.10

0.15

0.20

0.25

di
st

ill
ad

ve
rs

ar
ia

l r
ob

us
tn

es
s

(c) δ = 0.0001

Figure 9.1: Our Lower Bounds (DGRD) vs. the Ground Truth. Points over the
diagonal are outputs that are not actually lower bounds. We see that with lower budget
values δ, the number of these failures decreases.

proceed as before. We can determine that we have fully processed an example when
the smallest permutation indeed changes the outcome of the original model. Refining
the distilled model any further is unnecessary and we can terminate early.

We make our Python implementation available at Github: https://github.
com/Whadup/random_forest_robustness. Future work should implement our
approach in a compiled language to achieve lower runtimes.

9.5 Experimental Evaluation

We empirically verify the usefulness of our approach in this experimental section.

9.5.1 Setup

We begin our experimental section with a discussion of the used datasets, models as
well as methods and their respective hyperparameters.

Datasets andModels We limit our analysis to four standard, tabular datasets, which
is the strong-suit of tree-based models. We analyze standard random forest models with
100 trees and a depth limited to 8 layers. We found these models to be competitive
on all datasets considered. Particularly, increasing the number of ensemble members
or the depth has shown diminishing returns on the classification performance. The
models are trained on all but 500 examples of the data sets, we evaluate the robustness

158

https://github.com/Whadup/random_forest_robustness
https://github.com/Whadup/random_forest_robustness

on the holdout data. As outlined in Remark 1, we only verify examples where the
models outputs confidences larger than 0.6. We use sklearn for fitting the random
forests.

Methods We analyze the two variants of our approach: Either we spend the budget
evenly across the input space (D-AVG) or we spend it greedily (D-GRD).
We compare our method with the output of an exact solver based on Mixed-Integer
linear programming [126] (MILP) and with the V algorithm that produces lower
bounds. We exclude M [45], that like V produces lower bounds, but has
been shown to consistently produce weaker bounds in more time compared to V
[60]. We compute adversarial robustness with respect to the infimum-norm || · ||∞ as
it is the standard in robustness literature, but note again that our approach supports
any lp norm.

Hyperparameters Unless noted differently, for our experiments in this section we
set the budget value δ to 0.01 for D-AVG and to 0.001 for D-GRD. We
limit the number of nodes in our distilled trees to 100,000.

9.5.2 Results

We compare the computed robustness scores of the different methods on our datasets.
The results are summarized in Table 9.1. Looking at the aggregated statistics, we see
that our approach captures the real robustness properties of the models quite well. Par-
ticularly the sparklines in Table 1 indicate that our approach captures the distribution
of robustness scores well. This highlights the usefulness for the particular use-case of
model selection where we want to select a model from a set of candidates that fulfills
certain robustness requirements.

We see that sometimes we compute a higher mean robustness than the exact method.
Obviously that is not a desired outcome. But we have explicitly designed the algorithm
such that it can fail to verify parts of the input space by using up the given budget δ.
Next we analyze these failures in more detail. In Figure 9.1 we compare the exact
robustness values with the bounds computed by our approach for DGRD. All
budget values show a high correlation between our result and the exact value. As ex-
pected, for higher budget values we output invalid lower bounds more often. These
violations get less frequent with higher budgets, but at the cost of looser lower bounds.
We quantify these effects in Table 9.2 and note that the percentage of invalid lower
bound drops from 65% to 18% when we limit the budget. A similar effect happens to
the magnitude of violated bounds which drops from 0.029 to 0.017. A possible rem-
edy for improving the quality of the lower bounds for large δ values is the increasing
the size of the distilled tree.

We note that our python implementation runs orders of magnitude faster than
the exact MILP approach that uses the Gurobi library for solving the mixed-integer
linear programs. The runtime of V and D are roughly the same, but a fair
comparison is not possible: While V is implemented in a compiled language, but

159

Table 9.2: Quantitive Analysis of the Quality of our Bounds for the M dataset.
Let r denote the exact robustness and r̃ denote our estimate of DGRD.

Metric δ = 0.01 δ = 0.001 δ = 0.001

#[r̃ > r] in % 64.81% 38.53 % 17.59 %
mean |r̃ − r| 0.0329 0.0285 0.0451

mean |r̃ − r|, r̃ > r 0.0285 0.0214 0.0172
mean |r̃ − r|, r̃ ≤ r 0.0410 0.0329 0.0510

|r̃ − r|
mean r̃/r 1.2736 1.0622 0.7548

runs single threaded, our approach uses multiprocessing to verify the set of examples
in parallel, but is implemented in Python. We work toward a fairer comparison by
reimplementing our approach in a compiled language as well.

9.6 Conclusion

In this work, we have introduced a novel algorithm for robustness-verification of ran-
dom forest models. It applies a novel algorithmic paradigm: verification through dis-
tillation, that gives an approximate guarantee. Unlike existing approaches that use
combinatorial techniques to estimate the range of outputs of a random forest, our ap-
proach relies on numerical techniques, particularly the exact estimation of moments
and the Chebyshev inequality. We have designed a distillation algorithm that approx-
imates random forests in a single decision tree. Our approach does not need access to
a dataset to perform the distillation, but relies on the piecewise-constant output of the
random forest which allows exact computation of the loss over the full range of inputs.
Then we proposed a verification algorithm that constructs and uses this distilled tree
internally. We formally prove that our approach succeeds in verifying a large fraction
of the input space and that the tightness of this bound can be controlled by the user.
Our empirical evaluation shows that our approach computes useful bounds and that
the budget parameter fulfills its intended purpose. We have proposed two simple ways
to manage this budget, but future work could look into more refined ways to use that
budget during the verification.

160

Part IV

Conclusion

161

Chapter 10

Conclusion and Outlook

After climbing a great hill, one only
finds that there are many more hills
to climb.

Nelson Mandela

This thesis has tackled problems along the full machine learning pipeline. We have
investigated how to design task when data does not come neatly labeled and ready-to-
use. Then we looked into how to establish trust in our models through inspection.
We now conclude by summarizing again the contributions and giving an outlook into
future research directions. We structure this conclusion into two parts corresponding
to the Parts II and III of this thesis.

Designing Machine Learning Tasks

At the core of this part of the thesis, we have designed machine learning tasks for data-
driven training of prediction- and embedding-models.

For the first time, we have designed large embedding models for mathematical
expressions and applied them for the application of retrieving related mathematical
expressions. We have compiled a large dataset of mathematical expressions for self-
supervised pretraining of models based on scientific articles obtained at arxiv.org. Ad-
ditionally, we have designed a number of evaluation tasks to measure the quality of our
models. We investigated three different ways to represent the input data: as bitmap
images, as sequences and as trees and designed models for each data modality. Our
best results are reported for a graph neural network model that is trained on the self-
supervised masking task in conjunction with a contextual similarity task that exploits
the structure of papers. We have used data augmentation to encode invariance against
symbol substitution or renaming into our training tasks.

Since we published our work, pretraining deep networks for mathematics using
datasets derived from arXiv.org [150, 204, 216] or stackexchange.org [150] has took
off and shown merit in many tasks relating to mathematical expressions. Other works

163

https://arxiv.org

use synthetic formula generators to automatically generate training data for a machine
learning system that solves particular mathematical tasks like solving differential equa-
tions, integrals or equalities [143, 200, 232, 282]. Future work should further bridge
the gap between exact symbolic manipulation of formulas required for these tasks and
neural similarity estimates for the non-standardized formulae found in scientific publi-
cations we investigate. To this end, symbolic mathematic software could act as a source
of supervision signals where we generate pairs of formulas through symbolic manipu-
lation of inputs [282] or parts of the input. Difficulties for applying symbolic manip-
ulation to formulas found in scientific literature include inferring the type of symbols
(scalar, vector, function, etc.) and non-standardized notations for operations (e.g. dif-
ferent product symbols for dot products). We may also use symbolic solvers as parts of
neural models, as research on backpropagating through discrete units progresses [189].

Furthermore, we have developed a method for training multitask networks in the
domain of astrophysics. We have replaced the prediction pipeline based on manual
feature engineering and separate prediction models with a multitask network that uses
convolution layers to automatically learn features from camera inputs. These features
are shared between all prediction tasks. Our models outperform existing models in
both prediction performance on simulation data, as well as source detection in real
world data. We assume that deep learning models will be applied in the next generation
of gamma ray telescopes, and our work is another piece of evidence for the superiority
in prediction performance for event tagging in Cherenkov telescopes [118–120, 190,
243].

Finally, we reframed the gamma hadron classification problem as a noisy label
learning problem and have demonstrated how this allows us to use real telescope record-
ings rather than simulation data to train the classifier. In the process, we have de-
signed a more-general learning algorithm for training models in the presence of class-
conditional label noise. In contrast to existing work, we exploit knowledge of one of
the two label noise probabilities, a situation that we found in the gamma-hadron sep-
aration use-case. Finally we demonstrate that a multitask deep network trained with
simulation data first and with noisy-label, real-world data second further improves the
source detection performance. In summary, we believe that using noisy labels based
on real telescope recordings can pave the way to making gamma ray astrophysics even
more data-driven. Future research should explore the use of real-world data for the re-
maining prediction tasks: origin estimation and energy estimation. We have seen that
deep networks trained with our noisy label, real-world recordings currently require pre-
training on simulation data to beat the models trained only on simulation data. We
attributed this to the small number of available real-world data points. Nonetheless
future work should investigate how to train representations only on real-world data,
possibly through the use of unsupervised representation learning approaches.

164

Inspecting Machine Learning Models

Additionally, we have designed methods to manually inspect machine learning models.
We have derived a heatmap approach for explaining and visualizing similarity com-

putations between two trees embedded by a graph neural network. We have proposed
two variants: one based on the forward pass, and the second one based on the back-
ward pass of the graph neural network. We have qualitatively evaluated this approach
in a search engine setting and seen that it helps to understand which symbols in a tree
are responsible for the computed similarity score.

Existing XAI approaches, including our approach for graph neural networks, of-
ten present descriptions of how the prediction was computed, and, depending on the
method used, these descriptions can be more or less faithful and easier or harder to
understand. Instead, we propose methods to provide explanations that describe how
the network has learned to predict. These methods work by tracking the full training
process, that means storing all weight updates, in order to analyze which examples or
which classes of examples have had the highest influence on the final decisions. Our
method works on the level of hidden representations that are learned, as we decompose
each linear projection in a neural network into summands that correspond to training
examples.

Our methods present visual explanations to the practitioners. These may not yet
be as easily digestible as we want. Future work should focus on providing explanations
that are easier to grasp. For instance, we currently visualize each layer in the network
individually. While this fine-grained analysis may be helpful, looking at many lay-
ers in deep networks can be overwhelming. We can look into ways to aggregate the
information over different layers or automatically select the most informative visual-
izations. Another interesting avenue is structuring the explanations according to the
training process: We can track how the prediction for a given example changes over the
course of the training process. We can identify the training steps where the predicted
class changes and provide explanations that provide information on the influential ex-
amples that provoked these changes. We already store the full training process, so all
required information is available.

Finally, we have proposed a novel method for robustness verification for large ran-
dom forest models. We present a new idea how to combine knowledge distillation
and robustness verification that allows us to provide approximate robustness guaran-
tees with a user-controllable tradeoff between runtime complexity and tightness of the
bounds. Future work can look into using the distillation approach for verification of
other model classes. Going from the class of piecewise-constant functions of random
forests to piecewise-linear functions of deep ReLU-networks seems like a promising
research direction to establish verification through distillation in deep learning.

165

166

Chapter 11

Bibliographical Remarks

Chapter 4 is based on number of works. Parts of the chapter are published work
in [211], where standard convolutional networks were used to embed images of for-
mulas. The first iteration of code for the data pre-processing was written by a group
of students as part of a undergraduate project. Jonathan Schill supported this work by
helping with the experiments with convolutional networks. After that, the convolu-
tional networks were replaced with graph convolutional networks that used a MathML
representation, parts of that section were published in [209]. In joint work with Stefan
Todorinski transformer models for sequential MathML representations were consid-
ered. His master thesis provided the code for training these models [263].

The work on multitask supervision in Chapter 5 is based on preliminary results
with co-authors Sebastian Buschjäger, Jens Buß, Wolfgang Rohde and Katharina Morik
[35]. Sebastian Buschjäger and I implemented most of the code for the experiments.
He was responsible for studying the inference times on different hardware platforms,
including FPGA, a research direction that was not part of this section. I ran the ex-
periments, optimized hyperparameters and did the real-world analysis on significance
of detection of Crab nebula. Jens Buss and Maximilian Nöthe advised on astroparticle
physics in general and on the details of the FACT telescope in particular, and helped
us with the data processing as well as the evaluation. Katharina Morik and Wolfgang
Rhode helped writing the paper. The section published in this thesis shows significant
progress with respect to the aforementioned results [35]. Instead of using VGG-style
convolutional networks to solve only the gamma-hadron classification problem, I have
extended the model to the multitask model based on EfficientNet models with its joint
objective that we have seen in this section. Most of the code has been rewritten, data-
preprocessing was adapted and all experiments were overhauled.

The results on noisy label learning in Chapter 5 are based on joint work with Mirko
Bunse that is currently under review and available as a preprint [206]. The research
is based on my initial idea of using the Li&Ma significance as a learning criterion for
training machine learning models, that was empirically shown to work well. In joint
discussions we established that the on- and off-position features serve as noisy labels
in the approach, more specifically labels with class-conditional noise. Mirko Bunse

167

established baselines using other noisy-label-learning approaches that work by tuning
the decision threshold of models and reframed the Li&Ma significance as a method for
tuning the decision threshold. I designed and implemented the experiments on source
detection with deep networks and noisy supervision.

Chapter 7 was originally published as a workshop paper co-authored with Jan
Richter [210]. The methods evaluated in this chapter, namely the forward- and backward-
visualization, were proposed by me and implemented by Jan Richter in his function as
student assistant.

Chapter 12.2 is based on a tech report written with Alina Timmermann [212],
who helped with the literature review on reproducibility.

168

Part V

Appendix

169

Chapter 12

Open Source Software

T
 chapter gives an overview over software developed or contributed-to in
the course of this thesis. The first three libraries presented handle ma-
chine learning computing infrastructure as well as reproducible execution
of machine learning experiments, an important aspect when scientifically

approaching artificial intelligence and data science. After that two libraries for work-
ing with formula on arxiv are presented: one for preprocessing and extracting the data
and another for machine learning experiments using the preprocessed data. Finally,
we present a library for kernel learning on GPUs with stochastic gradient descent and
a library for explaining deep networks.

12.1 malocher

»https://github.com/Whadup/malocher«

“Malocher” is a German colloquialism from the Ruhr-Area for “worker”,
particularly used for miners and steel workers.

Malocher is a lightweight python library for running jobs on a cluster where nodes
are accessed via SSH and share a common network storage like traditional NFS or
mountable cloud storage, as was the case at the Artificial Intelligence group at TU
Dortmund university. It

• uses SSH and paramiko for communication between workers,

• relies on dill for serializing python code and data to a shared filesystem and

• assumes that all python libraries and interpreters are available on all nodes, like
when they are also in the NFS.

This way we do not need to use large cluster computing libraries, e.g. from the
Apache universe, or bug-infested, hardly-documented libraries from the Python uni-
verse like ray or dask.

171

https://github.com/Whadup/malocher

12.1.1 Installation

The simplest way to install malocher is to use pip

pip install git+https://github.com/Whadup/malocher

12.1.2 Setting up the Malocher-Workers

Setting up worker nodes for malocher is very easy. Each node has to fulfil the following
requirements:

• Make sure you can access each malocher node from the supervising node using
the same SSH key ssh_private_key.

• Make sure each malocher-worker, including the supervisor, has access to a shared
directory malocher_dir.

• Make sure every malocher-worker, including the supervisor, has the same python
environment, e.g. put it into a shared directory.

12.1.3 Sample

The following sample shows how we can use malocher to train random forest classifiers
of different depths on 4 SSH machines and collect the results in the main process.

import os
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
import malocher

def fake_experiment(model, data_path=None):
train = pd.read_csv(os.path.join(data_path, "train.csv"))
y_train = train["class"]
X_train = train.drop(columns="class")
test = pd.read_csv(os.path.join(data_path, "test.csv"))
y_test = train["class"]
X_test = train.drop(columns="class")
model.fit(X_train, y_train)
return dict(accuracy = model.score(X_test, y_test))

if __name__ == "__main__":
print("running")
CONFIGS = {}
for D in range(1,10):

MODEL = RandomForestClassifier(max_depth=D)
Store our Configuration under the Job's ID
JOB = malocher.submit(

fake_experiment,

172

MODEL,
data_path="/home/share/datensaetze/pamono"

)
CONFIGS[JOB] = D

RESULTS = malocher.process_all(
jobs=CONFIGS.values(),
ssh_machines=["ls8ws020", "ls8ws021", "ls8ws022", "ls8ws023"],
ssh_port=22,
ssh_username="dummy",
ssh_private_key="malocher_id_rsa"

)
Retrieve the config by the result's ID
for JOB, RESULT in RESULTS:

print(CONFIGS[JOB], RESULT)

12.1.4 Pitfalls

Malocher starts each job in a new python interpreter. When libraries have changed
during the experiment, these changes will be reflected in the outputs of the jobs. Try
to avoid updating libraries and avoid installing libraries you are currently working on
with pip install -e.

Arguments and globals will be stored on disk per job. Avoid loading large amounts
of data in the main process to pass to the workers, as this will result in large files and
long IO waits. It is often better to load the data on the workers. If pre-processing is
necessary in the main process, you can serialize it to disk once and manually reload it
in the workers.

12.2 meticulous-ml

»https://github.com/Whadup/meticulous-ml«

Originally developed by Ashwin Paranjape, meticulous is a library for tracking the
execution and results of machine learning experiments in order to ensure reproducibil-
ity. We extended its tracking capabilities and added functionality to track multiple
experiments in a single script.

12.2.1 Best Practices for Tracking Machine Learning Experiments

For ensuring proper reproducibility of results of machine learning experiments, there
will be suggestions for some best-practices in the following.

Version control of Source Code All the source code written to execute the experi-
ments should be under version control. The de-facto standard tool for version control
is Git [266], although alternatives exist. Code should run from clean Git repositories

173

https://github.com/Whadup/meticulous-ml

only, i.e. repositories with no uncommitted changes. This allows to associate the ex-
act status of the code with the experiment run by its unique commit identifier that is
provided by the version control software. Consequently, to replicate an experimental
result, we can revert the code to the exact version used.

VersionControl of allDependencies Most machine learning experiments rely heav-
ily on software libraries such as Tensorflow or Scikit-learn. These libraries are rapidly
evolving and new versions are released frequently. Hence it is important to keep track
of which version of libraries was used in an experiment. It is generally recommended
to use one environment for each project using tools like Venv or Anaconda for python
environments, or Docker [63] on the operating system level, and specify which li-
braries should be installed using the respective config-files. However, we should not
rely on these config-files for ensuring reproduciblity: They often allow vague version
constraints (e.g. “newer than v1.2”), and a user can update a library without also edit-
ing the environment config-file. Hence we should also capture the software versions
at runtime.

Version Control of Data There are less established software solutions for version
control of data, though research data management is becoming increasingly important
in science and more protocols are established in institutions [284]. For instance, open
science data is often published and associated with a unique digital object identifier
(DOI). Locally, all scripts that access, filter or preprocess the data should also be un-
der version control. Whenever possible, we should include a script for obtaining the
original data, alternatively we can maintain a description of how and where to obtain
it. Intermediate data files, e.g. preprocessed data, should have meta data that contains,
among others, a timestamp, a reference to the git commit of the preprocessing utility
script that has been used, as well as a reference to all the input files that were used to
generate the output. Many file formats support attaching meta data. For instance, in
.json files or .hdf5 files a new field for meta data can be introduced and .csv files
can begin with a comment section. If this is not possible, a metadata file should be
stored next to the data file and copied around with the data.

Tracking of allHyperparameters Machine learning methods, particularly deep learn-
ing approaches, have many hyperparameters and much time is spend tuning these pa-
rameters to maximize performance, either manually or automatically. Thus, we need
to track all these hyperparameters to replicate the experiment later. When we are in-
terested in reproducing the results of randomized algorithms, it is important to also
track the random seeds used for the random generator.

Tracking of all Results We want to archive all the outcomes of an experiment. That
includes any metric, including runtime, that we evaluate to judge the quality of a ma-
chine learning model, but also other outputs like the model itself or any other result
files. It is important that each result or output can be associated with the correspond-

174

ing experiment. Often it is also useful to capture all console outputs as well as error
messages in text files.

Reproducibility of Findings For maximum reproducibility of findings, experiments
should be carried out multiple times with various initialization and different environ-
ments. These practices result in claims with sufficient statistical significance [103].
For training data, unbiased data in large quantities should be used. Negative outcomes
in an experimental setup should also be published [236]. These measures potentially
highlight pros and cons of a model and enhance the understanding of how or when it
operates superior.

Use Experiment Tracking Software All the above information needs to be tracked,
linked and archived. For this purpose, software solutions such as Sacred [95], MLflow
[130], Tensorboard, Wandb [283], Theano [142] or Gym [199] exist and should be
used. They provide convenient solutions to reproducibility that do not require chang-
ing large amounts of code. When we do machine learning experiments on cloud plat-
forms, they often provide their own tools for reproducibility [116]. In the next section,
we will present another software solution, meticulous-ml, in greater detail.

12.2.2 Example Python Snippet for meticulous-ml

In this section, we present the python library meticulous-ml [201], originally writ-
ten by Ashwin Paranjape, that supports machine learning researchers by handling many
of the requirements for reproducible research established above, while requiring only
minimal code changes for existing experiment scripts. Perhaps most importantly, it is,
as Hady Elsahar puts it, “suitable for the messy, clueless nature of research” [70]. We see
an example for tracking a simple machine learning experiment, training and evaluating
a random forest classifier, in Listing 1 and continue to discuss the highlighted, crucial
changes to incorporate meticulous.

from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import (accuracy_score, f1_score)
import argparse
import pickle
from meticulous import Experiment

parser = argparse.ArgumentParser ()
parser.add_argument('--max-depth', type=int , default=8)
parser.add_argument('--dataset', type=str , default="mozilla4")
Adds the "meticulous" argument group to your script
Experiment.add_argument_group(parser)
Creates experiment object and extracts all hyperparameters
experiment = Experiment.from_parser(parser)

175

args = parser.parse_args()

#load and split training data
X, y = fetch_openml(args.dataset, return_X_y=True)
y = LabelEncoder().fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y)

train and validate the model
model = RandomForestClassifier(max_depth=args.max_depth)
model.fit(X_train, y_train)

Log metrics in experiment directory
accuracy = accuracy_score(model.predict(X_test), y_test)
f1 = f1_score(model.predict(X_test), y_test)
print(f"Accuracy: {accuracy:.4f}, F1-Score: {f1:.4f}")
experiment.summary(accuracy=accuracy, f1=f1)

Writes model file to the experiment directory
with experiment.open('model.pickle', 'wb') as f:

pickle.dump(model , f)

First, to install meticulous-ml, we recommend using pip:

pip install \
"git+https://github.com/Whadup/meticulous -ml"

but manual installation is also possible.
To enable tracking of an experiment, we have to instanciate an Experiment ob-

ject. One convenient way is to derive it from the argument parser, simultaneously cap-
turing all the hyperparameters provided by the user. Alternatively, we can manually
provide all arguments that we want to capture. When the experiment is initialized,
a folder is created on the local filesystem. It contains all information related to this
experiment run in human-readable format: All standard output and errors will be cap-
tured, the hyperparameters provided through the argument parser will be stored and
the meta data discussed in the previous section, including version control information,
used software libraries, execution time, etc., will be captured.

When we want to capture metrics like accuracy or f1-score, we can use the experiment.-
summary() method. Now these scores are stored in a standardized way and can easily
be retrieved and compared, for instance using the CLI tool described below.

When we want to store and archive files, replace open() with experiment.open()
to obtain a file handle in the folder associated to the experiment run. Listing 2 sum-
marizes the folder structure automatically created to archive the experiment results by
meticulous-ml.

To ease browsing the results, we recommend using the CLI tool meticulous to
select, filter, group and sort the runs and export the resulting tabular data into a variety
of formats. In Listing 3 we see an example for analyzing the experimental results of
the performance of the random forest classifier in our example. We have run this

176

Listing 12.1: Automatically generated file hierarchy of the meticulous-ml experi-
ment directory (left) with description of each file or sub-directory (right).
$ find ./experiments_dir

./experiments_dir/ ← directory for all records
1/ ← first experiment run

[...]
2/ ← second experiment run

args.json ← all cmd-line arguments
some_output.txt ← we can save custom files, too
metadata.json ← all meta-data
STATUS ← success, failure or still running?
stdout ← captured std-output
stderr ← captured std-error
summary.json ← all user summaries

Listing 12.2: Example for using the CLI tool meticulous to aggregate metrics and
summarize experimental results. Meticulous automatically computes mean and stan-
dard deviation for numerical summaries if we use the ----groupby argument.
$ meticulous experiment_dir

--filter 'args_dataset=="magictelescope"' \
--groupby 'args_max_depth ' \
--sort 'summary_accuracy_mean ' \
--columns 'args_max_depth ,summary_acc_mean ,summary_acc_std '
--export 'results.tex'

args_max_depth summary_acc_mean summary_acc_std
7 10 0.8706 0.0041
6 9 0.8681 0.0045
5 8 0.8610 0.0056
4 7 0.8515 0.0048
3 6 0.8486 0.0048
2 5 0.8379 0.0062
1 4 0.8288 0.0060
0 3 0.8038 0.0080

177

experiment for different values of max_depth, using multiple runs per configuration.
We filter the results to only show runs relating to the magictelescope dataset and
compute means and standard deviations over the repeated runs. We sort the results to
show the runs with the best average accuracy first and select only a subset of the table
columns. Exporting this table in LaTex format allows us to easily include the results
in a scientific article.

This concludes the quick introduction into the meticulous-ml library: We have
seen that minimal code changes already result in large increases in reproducibilty of
results. Furthermore, it provides a convenient commandline tool for browsing, sum-
marizing and exporting the results.

12.3 arxiv-library

»https://github.com/Whadup/arxiv_library«

We have developed arxiv-library to solve the problem of extracting all mathemat-
ical expressions from the raw arxiv data that is available through the official arXiv.org
bulk data website at https://arxiv.org/help/bulk_data_s3.

12.3.1 Installation

First, to install arxiv-library, we recommend using pip:

pip install \
"git+https://github.com/Whadup/arxiv -library"

but manual installation is also possible.
Additionally the library requires node.js and the node module katex to be installed.

You can download node.js at https://nodejs.org/en/download/ and choose
the respective installer for your os. The command

npm install -g yargs katex

installs the katex module we use for compiling LaTex formulas to MathML.

12.3.2 Pipeline

Our commandline tool equation-extractor implements the full preprocessing
pipeline used for the studies in this thesis. Starting with the compressed data obtained
from arxiv, we extract and compile all formulas to a folder of json files, one per paper
using

equation -extractor \
</path/to/tar-archives > \
</path/to/output_dir > \
[--fulltext]

178

https://github.com/Whadup/arxiv_library
https://arxiv.org/help/bulk_data_s3
https://nodejs.org/en/download/

The first parameter points to a folder containing the tar-archives with the raw data. The
tar-archives are organized as follows: One tar archive (e.g. “arXiv_src_1503_007.tar”)
contains the sources for multiple papers from March 2015. One member of the tar-
archive represents one publication and can be of three different types: A single gzip
compressed tex-file, a .tar.gz archive containing multiple source files, or a gzip com-
pressed pdf. The last case is impossible to handle for our library, these papers will be
ignored during processing.

The pipeline extracts the archives and continues to process the retrieved papers. At
the end of the pipeline we get a dictionary for each paper that contains the formulas
that could be extracted (in LaTeX and in MathML format), and some meta data like
author, arXiv-category etc. The extracted formulas are organized section wise.

The paper-dicts are stored in json-files in the folder specified in the second param-
eter.

The parameter --fulltext is an optional flag. If this flag is set, the paper’s con-
tent will be stored in the paper dict with key ”paper”.

12.3.3 Internal Python Functions

We also provide the internal functions of the pipeline for usage in other software. Below
we showcase how to use some of the most important functionalities.

Extract tar You may retrieve all files for a tar archive with all papers from one month
like this:

import arxiv_library.io_pkg.targz as io_targz

for compressed_file_dict in io_targz.process_tar("path/to/tars"):
file_dict = io_targz.process_gz(compressed_file_dict)
do something with the file dict

Extract from LaTex With the tex-extraction process we want extract the formulas
from a paper. The paper is provided as a filedict.

During this process we perform the following steps:

1. Remove all comments in all tex-files.

2. Resolve all imports, so that we get one big tex-files that contains all paper con-
tent.

3. Extract the preamble of the big tex-file.

4. Split the paper content (i.e. all text wrapped in between \begin{document}
and \end{document}) into sections.

5. Search for math-environments within the sections and extract them to the dic-
tionary

179

6. Extract citation information from the paper.

You may implement this pipeline with something like this:

import arxiv_library.extraction.comments as comments
import arxiv_library.extraction.imports as imports
import arxiv_library.extraction.preamble as preamble
import arxiv_library.extraction.sections as sections
import arxiv_library.extraction.equations as equations
import arxiv_library.extraction.citations as citations

Initially you need a filedict from the tar-extraction
file_dict = {"..." : "..."}
file_dict = comments.remove_comments(file_dict)
paper_dict = imports.resolve_imports(file_dict)
paper_dict = preamble.extract_preamble(paper_dict)
paper_dict = sections.extract_sections(paper_dict)
paper_dict = equations.extract_equations(paper_dict)
paper_dict = citations.extract_citations(paper_dict)
do something with the paper_dict

Compile to MathML To compile the extracted LaTeX-formulas to MathML you
may use this code:

import arxiv_library.compilation.mathml as mathml
Initially you will need the paper dict
with the LaTeX-formulas that you want to compile.
paper_dict = {"...": "..."}
paper_dict = mathml.compile_paper(

paper_dict,
paper_dict["arxiv_id"]

)
do something with the paper_dict

Retrieve meta data To retrieve the meta data for the publications by querying the
arXiv-API you may use this code:

import arxiv_library.io_pkg.metadata as metadata
Initially you will need a list with all paper dicts
for which you want to retrieve meta data
paper_dicts = [...]
paper_dicts = metadata.receive_meta_data(paper_dicts)
do something with the paper_dicts

These snippets illustrate that our library has use-cases outside of our mathematical
expression search study.

180

12.4 xai-tracking

»https://github.com/Whadup/xai-tracking«

We have implemented the explanation methods based on tracking the training process
of a deep network (Chapter 8) in a small python library. It can be obtained using git

git clone https://github.com/Whadup/xai-tracking

It supports the deep learning framework pytorch and includes classes to wrap
around the optimizers used during training to enable the tracking of all weight up-
dates.

Usage We have already seen two code snippets of our library in use for the tracking
of the training process in Chapter 8 in Figures 8.4 and 8.9. To generate explanations
from the tracked weight updates, we provide the explain() function that takes a
model, an input example as well as a link to the tracked weight updates and computes
all contribution values for all layers of the model.

From these contributions, we can either infer the most influential training exam-
ples, or compute the ridge plots seen in Chapter 8. We provide code snippets for those
plots as well.

181

https://github.com/Whadup/xai-tracking

182

Chapter 13

Additional Tables and Figures

13.1 Mathematical Retrieval Results

Source of the Equation in Figure 4.5 (a)

(q) Rajarshee Mitra. A Generative Approach to Question Answering, 2017
(1) Desmond Elliott, Stella Frank, Eva Hasler. Multilingual Image De-

scription with Neural Sequence Models, 2015.
(2) Desmond Elliott, Stella Frank, Eva Hasler. Multilingual Image De-

scription with Neural Sequence Models, 2015.
(3) Preksha Nema, Mitesh Khapra, Anirban Laha, Balaraman Ravin-

dran. Diversity driven Attention Model for Query-based Abstractive
Summarization, 2017.

(4) Hongyuan Mei, Mohit Bansal, Matthew R. Walter. Listen, Attend,
and Walk: Neural Mapping of Navigational Instructions to Action Se-
quences, 2015.

(5) Hongyuan Mei, Mohit Bansal, Matthew R. Walter. Listen, Attend,
and Walk: Neural Mapping of Navigational Instructions to Action Se-
quences, 2015.

183

Source of the Equation in Figure 4.5 (b)

(q) Ted Dunning. Finding Structure in Text, Genome and Other Symbolic
Sequences, 2012

(1) Ted Dunning. Finding Structure in Text, Genome and Other Symbolic
Sequences, 2012

(2) Parthan Kasarapu, Lloyd Allison. Minimum message length estima-
tion of mixtures of multivariate Gaussian and von Mises-Fisher distri-
butions, 2015.

(3) Shiliang Zhang, Hui Jiang. Hybrid Orthogonal Projection and Esti-
mation (HOPE): A New Framework to Probe and Learn Neural Net-
works, 2015.

(4) Meng Qu, Xiang Ren, Yu Zhang, Jiawei Han. Weakly-supervised
Relation Extraction by Pattern-enhanced Embedding Learning, 2017.

(5) Yu Zhang, Srikanta Tirthapura, Graham Cormode. Learning Graph-
ical Models from a Distributed Stream, 2017.

Source of the Equation in Figure 4.6 (a)

(q) Han Cai, Kan Ren, Weinan Zhang, Kleanthis Malialis, Jun Wang,
Yong Yu, Defeng Guo. Real-Time Bidding by Reinforcement Learning
in Display Advertising, 2017.

(1) Kavosh Asadi, Michael L. Littman. An Alternative Softmax Operator
for Reinforcement Learning, 2016.

(2) Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv
Tamar. Bayesian Reinforcement Learning: A Survey, 2016.

(3) Ofir Nachum, Mohammad Norouzi, George Tucker, Dale Schuur-
mans. Smoothed Action Value Functions for LearningGaussian Policies,
2018.

(4) Xiaomin Lin, Peter A. Beling, Randy Cogill. Multi-agent Inverse Re-
inforcement Learning for Zero-sum Games, 2014.

(5) Scott Fujimoto, Herke van Hoof, Dave Meger. Addressing Function
Approximation Error in Actor-Critic Methods, 2018.

184

Source of the Equation in Figure 4.6 (b)

(q) Yida Wang, Weihong Deng. Generative Model with Coordinate Met-
ric Learning for Object Recognition Based on 3D Models, 2017.

(1) Yingming Li, Ming Yang, Zhongfei Zhang. A Survey of Multi-View
Representation Learning, 2016.

(2) Tom Rainforth, Tuan Anh Le, Jan-Willem van de Meent, Michael
A. Osborne, Frank Wood. Bayesian Optimization for Probabilistic
Programs, 2017.

(3) Beipeng Mu, Shih-Yuan Liu, Liam Paull, John Leonard, Jonathan
How. SLAM with Objects using a Nonparametric Pose Graph, 2017.

(4) Anqi Liu, Rizal Fathony, Brian D. Ziebart. Kernel Robust Bias-Aware
Prediction under Covariate Shift, 2017.

(5) Roger Frigola, Carl Edward Rasmussen. Integrated Pre-Processing
for Bayesian Nonlinear System Identi cation with Gaussian Processes,
2013.

13.2 Noisy Label Learning

185

Table 13.1: Average F1 scores (higher is better) per data set.

p− p+
LM

LM

M

M

-

. . .±. .±. 0.149±0.004 .±.
. . .±. .±. 0.137±0.001 .±.
. . .±. .±. .±. 0.143±0.003
. . 0.135±0.003 .±. .±. .±.
. . .±. 0.147±0.006 .±. .±.
. . .±. 0.156±0.008 .±. .±.

-

. . .±. .±. .±. 0.214±0.008
. . .±. 0.126±0.006 .±. .±.
. . .±. .±. 0.255±0.016 .±.
. . .±. .±. .±. 0.159±0.022
. . .±. 0.310±0.010 .±. .±.
. . .±. 0.372±0.010 .±. .±.

. . 0.668±0.009 .±. .±. .±.
. . .±. .±. 0.564±0.016 .±.
. . 0.733±0.004 .±. .±. .±.
. . .±. .±. .±. 0.418±0.021
. . .±. 0.684±0.005 .±. .±.
. . 0.679±0.009 .±. .±. .±.

-

. . .±. .±. .±. 0.429±0.016
. . .±. 0.349±0.011 .±. .±.
. . .±. 0.505±0.014 .±. .±.
. . .±. .±. .±. 0.264±0.026
. . .±. 0.505±0.012 .±. .±.
. . .±. .±. .±. 0.506±0.018

-

. . .±. .±. 0.766±0.017 .±.
. . .±. .±. .±. 0.668±0.042
. . .±. 0.835±0.005 .±. .±.
. . .±. .±. .±. 0.644±0.016
. . .±. 0.827±0.005 .±. .±.
. . .±. .±. 0.851±0.009 .±.

-

. . .±. .±. .±. 0.822±0.006
. . .±. .±. .±. 0.582±0.017
. . .±. 0.856±0.004 .±. .±.
. . .±. 0.489±0.010 .±. .±.
. . .±. .±. 0.850±0.005 .±.
. . .±. .±. .±. 0.864±0.005

. . .±. 0.181±0.005 .±. .±.
. . .±. 0.146±0.007 .±. .±.
. . .±. 0.221±0.009 .±. .±.
. . .±. 0.157±0.006 .±. .±.
. . .±. 0.206±0.006 .±. .±.
. . .±. 0.277±0.009 .±. .±.

. . .±. .±. 0.584±0.011 .±.
. . .±. .±. .±. 0.539±0.013
. . .±. 0.635±0.003 .±. .±.
. . .±. .±. .±. 0.527±0.010
. . .±. 0.632±0.005 .±. .±.
. . .±. 0.642±0.003 .±. .±.

-

. . .±. .±. 0.797±0.002 .±.
. . .±. .±. .±. 0.777±0.003
. . 0.806±0.002 .±. .±. .±.
. . .±. .±. 0.775±0.005 .±.
. . 0.799±0.002 .±. .±. .±.
. . .±. .±. .±. 0.817±0.003

186

Table 13.2: Average F1 scores continued.

p− p+
LM

LM

M

M

-

. . .±. .±. 0.961±0.002 .±.
. . 0.893±0.007 .±. .±. .±.
. . .±. .±. 0.974±0.002 .±.
. . .±. .±. .±. 0.823±0.010
. . .±. .±. .±. 0.977±0.002
. . .±. .±. 0.981±0.001 .±.

-

. . .±. .±. 0.847±0.010 .±.
. . .±. .±. 0.712±0.016 .±.
. . .±. .±. 0.907±0.004 .±.
. . .±. .±. 0.697±0.018 .±.
. . 0.900±0.006 .±. .±. .±.
. . .±. .±. 0.908±0.006 .±.

. . .±. .±. 0.583±0.017 .±.
. . .±. .±. .±. 0.486±0.045
. . .±. .±. .±. 0.636±0.007
. . .±. .±. 0.301±0.046 .±.
. . 0.648±0.009 .±. .±. .±.
. . .±. 0.664±0.006 .±. .±.

-

. . .±. .±. 0.834±0.006 .±.
. . .±. 0.734±0.004 .±. .±.
. . 0.880±0.004 .±. .±. .±.
. . .±. .±. .±. 0.634±0.020
. . 0.889±0.003 .±. .±. .±.
. . 0.892±0.004 .±. .±. .±.

. . .±. .±. 0.729±0.008 .±.
. . .±. .±. 0.478±0.044 .±.
. . 0.819±0.007 .±. .±. .±.
. . .±. .±. .±. 0.508±0.035
. . .±. .±. 0.819±0.007 .±.
. . .±. 0.814±0.008 .±. .±.

-

. . .±. 0.135±0.004 .±. .±.
. . .±. 0.147±0.002 .±. .±.
. . .±. 0.207±0.005 .±. .±.
. . .±. 0.134±0.003 .±. .±.
. . .±. 0.193±0.003 .±. .±.
. . .±. 0.218±0.004 .±. .±.

-

-

. . .±. .±. .±. 0.557±0.026
. . .±. .±. 0.340±0.019 .±.
. . .±. .±. .±. 0.792±0.015
. . .±. .±. 0.337±0.027 .±.
. . .±. .±. 0.733±0.021 .±.
. . .±. .±. 0.832±0.018 .±.

. . .±. .±. .±. 0.404±0.012
. . .±. .±. .±. 0.300±0.017
. . .±. .±. .±. 0.369±0.008
. . .±. 0.223±0.004 .±. .±.
. . .±. .±. .±. 0.386±0.007
. . .±. .±. 0.400±0.006 .±.

187

188

List of Figures

2.1 Different types of computation graphs 17
2.2 Example decision tree of depth 2 for binary classification 27

3.1 The Flip-Probabilities for Class-Conditional Label Noise 34
3.2 The Auto-Encoder architecture with its components. The training ob-

jective is minimizing the expected reconstruction error minExℓ(x, ϕ
′(ϕ(x))

and we train using an unlabeled dataset. 37
3.3 Contrastive Learning with Data Augmentations 42

4.1 Number of Papers per Subject Areas in our Sample 48
4.2 Illustration of the Bitmap Representation 50
4.3 Equation Encoder Architecture (small) 51
4.4 A dendrogram showing a hierarchical clustering of our evaluation dataset

according to our embedding model, colored according to hand-annotated
labels, gray for non-pure clusters. 52

4.5 Sample Queries and Results: The first line shows queries, the remain-
ing lines show the top-5 results. Shows center rectangle only. 53

4.6 More Sample Queries and Results: The first line shows queries, the
remaining lines show the top-5 results. Shows center rectangle only.
The results for these queries are more diverse. 53

4.7 Example MathML for 1
n

n∑
i=1

ℓ(f(xi), yi). 56

4.8 The 50 most frequent characters in math environments. 60
4.9 Example of the Masking Task with Fictional Values 63
4.10 Example: Bayes’ law. We report the first result and the first result

that does not show Bayes’ law, but, in this case, the related law of
total probability. The first result is from: R. H. Leike, T. A. Enßlin,
Charting nearby dust clouds using Gaia data only, 2019. 69

4.11 Example: Ising Model. We find equations related to both Ising Mod-
els and Boltzmann Machines. First result is from: Weinstein, Learning
the Einstein-Podolsky-Rosen correlations on a Restricted Boltzmann Ma-
chine, 2017. Second result is from: Ferrari et al., Finite size corrections
to disordered systems on Erdös-Ráenyi random graphs, 2013. 70

189

5.1 Simulated air showers of both classes – gamma and hadron – as cap-
tured by the FACT telescope. 74

5.2 Hexagonal data transformed to a quadratic grid. The transformation
is bijective in the green (and blue) area and does not change the raw
values, however it only approximates the neighborhood relationships
of the original hexagonal image. Red areas are padded with zeros.
Figure taken from [35]. 76

5.3 Schematic of our Multi-Head Architecture 78
5.4 Angular resolution of the origin estimator for different energy levels

(left) and bias and resolution of the energy estimator. Transparent
markers show the performance of the random-forest-based estimators. 81

5.5 Histogram of the frequencies of gamma predictions as a function of
the squared angular distance between the trajectory of any incoming
ray and a position in the sky for efficientnet-b0 (left) and the
standard analysis using random forest (right). On-events show the
frequency with respect to the position of the Crab Nebula, while Off-
events are w.r.t. positions with no known sources. The significance
of detection test only considers angles smaller than 0.025 (left of the
dashed vertical line). 83

5.6 An Illustrative Example of Li&Ma Decision Threshold Tuning with
p− = 0.4, p+ = 0.2 and P (y = +1) = 0.25. See Main-Text for a
Detailed Review. 92

5.7 Each row displays one critical difference diagram [53] which corre-
sponds to one noise configuration. This overview summarizes a total
of 81,600 random forest classifiers, which consist of 4 binary learn-
ing methods for noisy labels × 6 noise configurations × 17 data sets
× 10 cross validation folds × 20 repetitions with random initializa-
tion. Methods are connected with horizontal brackets if and only if
a Holm-corrected Wilcoxon signed-rank test cannot significantly dis-
tinguish their pairwise performances, in terms of their cross-validated
F1 score, at a confidence level of 0.90. 94

5.8 An Illustration of the Wobble mode for capturing on- and off-regions
simultaneously. Figure taken from [206]. 96

5.9 The loss surface for the Soft-Li&Ma and crossentropy objective for a
minibatch of size 2, where x, y are the model outputs for two examples
with noisy label +1 and −1 respectively. We see that there is a bad
local maximum that is separated from the global maxima by a deep
valley. In contrast, the cross-entropy loss has only one global maxima
that is easily accessible. 100

7.1 Example Query (Taylor Approximation) 117
7.2 Example Query (Empirical Risk Minimization) 117
7.3 Example Query (Multi-Layer Perceptron) 117
7.4 Example Query (Submodular Functions) 117

190

7.5 Example Query (Rademacher Complexity) 117
7.6 Example Query (Hoeffding’s Bound) 118

8.1 Example Explanation Histogram: “e model predicts frog as training
examples of that class had the highest in uence on the computed interme-
diate representation in layer 14”. 122

8.2 Illustration of the decomposition of preactivations into individual gra-
dient updates. The marked updates are the most substantial individual
contributions to Wx. 124

8.3 Illustration of the different batch-normalization variants, color indi-
cates class labels. (b) When we construct batches with a single class,
the outputs span the whole range. An imaginary next batch of the
other class would to the same, hindering training. (c) Ghost samples
solve this problem, as mean and variance are also computed on the
ghost batch. 128

8.4 Sample Code for Capturing the Training Process of a VGG16 model
trained with SGD on the CIFAR-10 dataset. Required changes are
highlighted, we see that we need to include indices in our training
data, use our class-wise samples, substitute batch normalization for
our ghost normalization layers and use a wrapped variant of the opti-
mizer. 133

8.5 The 7 most influential training examples for the 3 layers of the VGG-
16 network. Top left image is the input image for reference. We see
a high influence of the class ”car” on the representation in the middle
layers, here e.g. in the 10th layer. The later layers, eg. the 13th layer,
is influenced mostly by very similar images, i.e. trucks photographed
from an angle, whereas the earlier convolutional layers, here the 4th
layer, is influenced by images of trucks shot from a variety of angles. 134

8.6 Ridge Plot for the 3 layers of the VGG-16 network. We see a high
influence of the class ”car” on the representation in the middle layers,
here e.g. in the 10th layer. The earlier layers are not as descriptive of
individual classes, eg. the 4th layer. 135

8.7 Highly influential images for the first layer from a variety of classes
leave the practitioner confused. Input image in top left position for
reference. 136

8.8 Ridge Plot for the output layer, the 14th layer and the 12th layer. We
see that while the representation at the 14th layer can be attributed to
examples of the correct class, the representations in the 12th layer and
in all prior layers look unspecific to a class. This indicates a poor choice
of network architecture that does not utilize all layers for classification. 136

8.9 Sample Code for Capturing the Training Process of a VGG16 model
trained with SGD on the CIFAR-10 dataset. Required changes are
highlighted and are minimal. Indeed we do not need to change any-
thing about the model, nor the way data is sampled. 140

191

8.10 Ridge Plot for the 3 layers of the VGG-16 network as computed using
the examplewise gradient contributions aggregated across examples.
The earlier layers are not as descriptive of individual classes, eg. the
1st layer. 141

8.11 Example Outputs for our Approach and TracIn for an instance of the
class ”Ship”. Noteworthy, the two sets of top 7 most influential ex-
amples are distinct. We observe that TracIn produces more visually
similar images, whereas our set captures a more diverse set of ship types.143

9.1 Our Lower Bounds (DGRD) vs. the Ground Truth. Points over
the diagonal are outputs that are not actually lower bounds. We see
that with lower budget values δ, the number of these failures decreases. 158

192

List of Tables

4.1 Performance Metrics for the small and large Models for two different
embedding learning objective functions. 52

4.2 Math-BERT model configurations 57
4.3 Results of the Mathematical Retrieval Experiment. We report re-

call@K for K ∈ {1, 10, 100}. 59
4.4 Ablation Study . 67
4.5 Eval Scores . 68
4.6 Results of the Mathematical Retrieval Experiment. We report re-

call@K for K ∈ {1, 10, 100}. 69
4.7 Search Engine Performance . 71

5.1 Comparison of the different model architectures used for our study. . 80
5.2 Performance of the three prediction heads on simulation data of the

different multi-task model architectures. 81
5.3 Significance of Detection (Def. 2) on Crab nebula data of the different

model architectures. 83
5.4 Results of the Simulation Study for Different Noise Configurations.

We observe that our estimated thresholds are always close to the op-
timal thresholds. In configurations where p+ ̸= p− this yields sub-
stantial reductions of the error probabilities. In configurations where
p+ = p−, the optimal threshold is the naive threshold of 0.5, which
cannot be improved by our method. 93

5.5 Average F1 scores (higher is better) over 17 data sets and 20 repetitions
of a 10-fold cross-validation with different label noise configurations.
A full version is in the appendix. 95

5.6 fα outcomes (see Definition 2, higher is better) for the open Crab
Nebula data of the FACT telescope. 98

5.7 fα outcomes (see Def. 2) for the FACT data with artificially substi-
tuted on-instances. 99

5.8 Significance of Detection when our noisy learning models are trans-
ferred to different sources. 99

193

5.9 Significance of Detection Scores (Cross-Validated) for efficientnet-b0
networks. We see that the noisy label approach that retrains the classi-
fication head with noisy labels and the one that finetunes the classifi-
cation head outperform the previous classification head based on full
supervision with simulation data. 101

8.1 Computational Overhead Statistics for the Previous Experiments . . 132
8.2 Computational Overhead Statistics for the Previous Experiments . . 142

9.1 Comparison of the Adversarial Robustness Values Across Datasets and
Methods . 158

9.2 Quantitive Analysis of the Quality of our Bounds for the M dataset.
Let r denote the exact robustness and r̃ denote our estimate of D-
GRD. 160

13.1 Average F1 scores (higher is better) per data set. 186
13.2 Average F1 scores continued. 187

194

Bibliography

[1] R. Abbasi, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, and
And Others. A Convolutional Neural Network based Cascade Reconstruction
for the IceCube Neutrino Observatory. Technical report, 2021. 77

[2] V. A. Acciari and Others. MAGIC observations of the diffuse emission in the
vicinity of the Galactic center. A and A, 642, 2020. 98

[3] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt,
and Been Kim. Sanity Checks for Saliency Maps. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. 121, 145

[4] Fatemeh Alizadeh, Gunnar Stevens, and Margarita Esau. I Don’t Know, Is
AI Also Used in Airbags? An Empirical Study of Folk Concepts and People’s
Expectations of Current and Future Artificial Intelligence. i-com, 20(1):3–17,
2021. 105

[5] Francisco Álvaro, Joan-Andreu Sánchez, and José-Miguel Benedí. Recogni-
tion of On-line Handwritten Mathematical Expressions Using 2D Stochastic
Context-Free Grammars and Hidden Markov Models. Pattern Recognition Let-
ters, (35):58–67, 2014. 49

[6] H. Anderhub, M. Backes, A. Biland, V. Boccone, I. Braun, T. Bretz, J. Buß,
F. Cadoux, V. Commichau, L. Djambazov, D. Dorner, S. Einecke, D. Eise-
nacher, A. Gendotti, O. Grimm, H. Von Gunten, C. Haller, D. Hilde-
brand, U. Horisberger, B. Huber, K. S. Kim, M. L. Knoetig, J. H. Köhne,
T. Krähenbühl, B. Krumm, M. Lee, E. Lorenz, W. Lustermann, E. Lyard,
K. Mannheim, M. Meharga, K. Meier, T. Montaruli, D. Neise, F. Nessi-
Tedaldi, A. K. Overkemping, A. Paravac, F. Pauss, D. Renker, W. Rhode,
M. Ribordy, U. Röser, J. P. Stucki, J. Schneider, T. Steinbring, F. Temme,
J. Thaele, S. Tobler, G. Viertel, P. Vogler, R. Walter, K. Warda, Q. Weitzel,
and M. Zänglein. Design and operation of FACT-the first G-APD Cherenkov
telescope. Journal of Instrumentation, 8(6), 2013. 13, 73, 82

195

[7] Forough Arabshahi, Zhichu Lu, Pranay Mundra, Sameer Singh, and Ani-
mashree Anandkumar. Compositional Generalization with Tree Stack Memory
Units. Technical report, 2020. 71

[8] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger gener-
alization bounds for deep nets via a compression approach. In Proceedings of
the 35th International Conference on Machine Learning, pages 254–263. PMLR,
2018. 149

[9] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval,
volume 463. ACM press New York, 1999. 47

[10] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learn-
ing local feature descriptors with triplets and shallow convolutional neural net-
works. In Richard C. Wilson, Edwin R. Hancock, and William A. P. Smith, ed-
itors, Proceedings of the BritishMachine Vision Conference (BMVC), pages 119.1–
119.11. BMVA Press, 2016. 40, 62

[11] Gagan Bansal, Besmira Nushi, Ece Kamar, Walter S. Lasecki, Daniel S. Weld,
and Eric Horvitz. Beyond Accuracy: The Role of Mental Models in Human-AI
Team Performance. In Proceedings of the AAAI Conference on Human Computa-
tion and Crowdsourcing, 2019. 105

[12] Suzanna Becker and Geoffrey E. Hinton. Self-organizing neural network that
discovers surfaces in random-dot stereograms. Nature, 355(6356):161–163,
1992. 39

[13] Katharina Beckh, Sebastian Müller, Matthias Jakobs, Vanessa Toborek, Hanxiao
Tao, Raphael Fischer, Pascal Welke, Sebastian Houben, and Laura von Rueden.
Explainable Machine Learning with Prior Knowledge: An Overview. Technical
report, 2021. 105

[14] Emily M Bender and Angelina Mcmillan-major. On the Dangers of Stochastic
Parrots: Can LanguageModels Be Too Big?, volume 1. Association for Computing
Machinery, 2021. 10

[15] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-
ing: A review and new perspectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(1993):1–30, 2013. 37

[16] Erik Bernhardsson. Annoy: Approximate Nearest Neighbors in C++/Python, 2018.
47, 58, 59

[17] A. Biland, T. Bretz, J. Buß, V. Commichau, L. Djambazov, D. Dorner, S. Ei-
necke, D. Eisenacher, J. Freiwald, O. Grimm, H. Von Gunten, C. Haller,
C. Hempfling, D. Hildebrand, G. Hughes, U. Horisberger, M. L. Knoetig,
T. Krähenbühl, W. Lustermann, E. Lyard, K. Mannheim, K. Meier, S. Mueller,

196

D. Neise, A. K. Overkemping, A. Paravac, F. Pauss, W. Rhode, U. Röser, J. P.
Stucki, T. Steinbring, F. Temme, J. Thaele, P. Vogler, R. Walter, and Q. Weitzel.
Calibration and performance of the photon sensor response of FACT - The first
G-APD Cherenkov telescope. Journal of Instrumentation, 9(10), 2014. 82

[18] Alexander Binder, Wojciech Samek, Grégoire Montavon, Sebastian Bach, and
Klaus-Robert Müller. Analyzing and validating neural networks predictions.
In Proceedings of the ICML 2016 Workshop on Visualization for Deep Learning,
2016. 107

[19] Abeba Birhane and Vinay Uday Prabhu. Large image datasets: A pyrrhic win
for computer vision? In WACV 2021, pages 1537–1547, 2021. 10

[20] Rok Blagus and Lara Lusa. SMOTE for high-dimensional class-imbalanced
data. BMC Bioinformatics, 14(1):106, 2013. 26, 33

[21] Avrim Blum and Tom M. Mitchell. Combining Labeled and Unlabeled Data
with Co-Training. In Conference on Computational Learning eory. ACM,
1998. 35

[22] Christian Bockermann, Kai Brügge, Jens Buß, Alexey Egorov, Katharina Morik,
Wolfgang Rhode, and Tim Ruhe. Online Analysis of High-Volume Data
Streams in Astroparticle Physics. In Albert Bifet, Michael May, Bianca
Zadrozny, Ricard Gavaldà, Dino Pedreschi, Francesco Bonchi, Jaime S. Car-
doso, and Myra Spiliopoulou, editors, Machine Learning and Knowledge Dis-
covery in Databases - European Conference, ECML PKDD 2015, Porto, Portugal,
September 7-11, 2015, Proceedings, Part III, volume 9286 of Lecture Notes in
Computer Science, pages 100–115. Springer, 2015. 74, 84

[23] Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino
Pedreschi, and Salvatore Rinzivillo. A Survey Of Methods For Explaining Black-
Box Models. ACM Computing Surveys, 51(5):1–33, 2021. 108

[24] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequal-
ities: A Nonasymptotic eory of Independence. OUP Oxford, 2013. 22

[25] Ryma Boumazouza, Fahima Cheikh-Alili, Bertrand Mazure, and Karim Tabia.
ASTERYX: A Model-Agnostic SaT-BasEd AppRoach for SYmbolic and Score-Based
EXplanations, pages 120–129. Association for Computing Machinery, New
York, NY, USA, 2021. 148

[26] H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and
singular value decomposition. Biological Cybernetics, 59(4):291–294, 1988. 37

[27] Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan
Nichyporuk, Justin Szeto, Naz Sepah, Edward Raff, Kanika Madan, Vikram
Voleti, Samira Ebrahimi Kahou, Vincent Michalski, Dmitriy Serdyuk, Tal Ar-
bel, Chris Pal, Gaël Varoquaux, and Pascal Vincent. Accounting for Variance in

197

Machine Learning Benchmarks. In A. Smola, A. Dimakis, and I. Stoica, editors,
Proceedings of Machine Learning and Systems, volume 3, 2021. 82

[28] Leo Breiman. Bagging predictors. Machine Learning, 24(2), 1996. 28, 91

[29] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. 28, 91,
106, 107, 147

[30] Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. Clas-
si cation and Regression Trees. Taylor & Francis, 1984. 27

[31] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc., 2020. 9, 43, 55

[32] Rudy Bunel, Philip H S Torr, M Pawan Kumar, and Jingyue Lu. Branch and
Bound for Piecewise Linear Neural Network Verification. Journal of Machine
Learning Research, 21:1–39, 2020. 148

[33] Sebastian Buschjäger, Jian-Jia Chen, Kuan-Hsun Chen, Mario Günzel, Chris-
tian Hakert, Katharina Morik, Rodion Novkin, Lukas Pfahler, and Mikail
Yayla. Margin-Maximization in Binarized Neural Networks for Optimizing
Bit Error Tolerance. In 2021 Design, Automation Test in Europe Conference Ex-
hibition (DATE), pages 673–678, 2021. 23

[34] Sebastian Buschjäger and Katharina Morik. There is no Double-Descent in
Random Forests. Technical Report 2019, 2021. 29

[35] Sebastian Buschjäger, Lukas Pfahler, Jens Buß, Katharina Morik, and Wolfgang
Rhode. On-Site Gamma-Hadron Separation with Deep Learning on FPGAs.
In Yuxiao Dong, Dunja Mladenic, and Craig Saunders, editors, Machine Learn-
ing and Knowledge Discovery in Databases: Applied Data Science Track - European
Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Pro-
ceedings, Part IV, volume 12460 of Lecture Notes in Computer Science, pages
478–493. Springer, 2020. 76, 77, 84, 167, 190

[36] Sebastian Buschjäger, Lukas Pfahler, and Katharina Morik. Generalized Nega-
tive Correlation Learning for Deep Ensembling. Technical report. 29

198

[37] Stefano Calzavara, Claudio Lucchese, and Gabriele Tolomei. Adversarial Train-
ing of Gradient-Boosted Decision Trees. In Proceedings of the 28th ACM In-
ternational Conference on Information and Knowledge Management, CIKM ’19,
pages 2429–2432, New York, NY, USA, 2019. Association for Computing Ma-
chinery. 149

[38] Bradley W. Carroll and Dale A. Ostlie. An introduction to modern astrophysics.
Cambridge University Press, 2017. 73

[39] Rich Caruana. Multitask Learning. PhD thesis, Carnegie Mellon University,
1997. 35

[40] Rich Caruana. Multitask Learning. Machine Learning, 28:41–75, 1997. 35,
36

[41] Jacopo Cavazza, Pietro Morerio, Benjamin Haeffele, Connor Lane, Vittorio
Murino, and René Vidal. Dropout as a Low-Rank Regularizer for Matrix Fac-
torization. In Proceedings of the 21st International Conference on Arti cial Intel-
ligence and Statistics (AISTATS), number 2. JMLR, 2018. 26

[42] Tony F. Chan, Gene H. Golub, and Randall J. LeVeque. Updating formulae
and a pairwise algorithm for computing sample variances. InCOMPSTAT 1982
5th Symposium held at Toulouse 1982, pages 30–41. Springer, 1982. 128

[43] Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka.
Input Similarity from the Neural Network Perspective. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 32, pages 1–10,
Vancouver, 2019. Curran Associates, Inc. 142

[44] Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust de-
cision trees against adversarial examples. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Ma-
chine Learning, pages 1122–1131. PMLR, 2019. 149

[45] Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane Boning, and Cho-Jui Hsieh.
Robustness Verification of Tree-based Models. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32, pages 1–12. Curran Asso-
ciates, Inc., 2019. 148, 152, 159

[46] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A Simple Framework for Contrastive Learning of Visual Representations. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, Vienna, 2020. PMLR. 42, 58

199

[47] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Gener-
ators. In International Conference on Learning Representations, 2020. 43

[48] Stephan Clémençon, Igor Colin, and Aurélien Bellet. Scaling-up Empirical Risk
Minimization: Optimization of Incomplete U-statistics. Journal of Machine
Learning Research, 17:1–36, 2016. 34, 64, 66

[49] Ronan Collobert and Jason Weston. A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning. In Proceed-
ings of the 25th International Conference on Machine Learning, pages 160–167,
New York, NY, USA, 2008. Association for Computing Machinery. 36

[50] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable Ro-
bustness of ReLU networks via Maximization of Linear Regions. In Proceedings
of the 22nd International Conference on Arti cial Intelligence and Statistics (AIS-
TATS), 2019. 109, 110

[51] Ricardo Cruz, Kelwin Fernandes, Jaime S. Cardoso, and Joaquim F. Pinto
Costa. Tackling Class Imbalance with Ranking. In 2016 International Joint
Conference on Neural Networks (IJCNN), pages 2182–2187. IEEE, 2016. 33

[52] Andrew M. Dai, Christopher Olah, Quoc Viet Le, and Greg S. Corrado. Doc-
ument Embedding with Paragraph Vectors. In Neurips Workshop on deep neural
networks and representation learning, pages 1–9, 2014. 38

[53] Janez Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research, 7:1–30, dec 2006. 94, 95, 190

[54] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009. 9

[55] Jia Deng, Olga Russakovsky, Jonathan Krause, Michael Bernstein, Alexander C
Berg, and Li Fei-Fei. Scalable Multi-Label Annotation. In ACM Conference on
Human Factors in Computing Systems (CHI), 2014. 9

[56] Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush. Image-
to-Markup Generation with Coarse-to-Fine Attention. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Ma-
chine Learning, pages 980—-989. JMLR, 2017. 49

[57] ONNX Runtime Developers and Microsoft. ONNX Runtime, 2021. 81

[58] Jacob Devlin, Ming-Wei Chang, Lee Kenton, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of NAACL-HLT 2019, pages 4171–4186. Association for Com-
putational Linguistics, 2019. 9, 43, 55, 56, 57, 63

200

[59] Laurens Devos, Wannes Meert, and Jesse Davis. Verifying tree ensembles by rea-
soning about potential instances. In Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM), pages 450–458. SIAM, 2021. 148

[60] Laurens Devos, Wannes Meert, and Jesse Davis. Versatile Verification of Tree
Ensembles. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139. PMLR, 2021. 148,
153, 159

[61] Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic eory of Pattern
Recognition. Springer-Verlag, 1996. 151

[62] Shengyong Ding, Liang Lin, Guangrun Wang, and Hongyang Chao. Deep
feature learning with relative distance comparison for person re-identification.
Pattern Recognition, 48(10):2993–3003, 2015. 23, 49, 61

[63] Inc. Docker. Docker Website, 2021. 174

[64] E. Domingo-Santamaría, J. Flix, V. Scalzotto, W. Wittek, and J. Rico. The
DISP analysis method for point-like or extended γ source searches/studies with
the MAGIC Telescope. In e Magic Project – MAGIC Detector and Analysis
Details. 2005. 74

[65] Robin Dylan Drew. Deep Unsupervised Domain Adaptation for Gamma-
Hadron Separation. Master’s thesis, TU Dortmund, 2021. 77

[66] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Au-
tomated Techniques for Formal Software Verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(7):1165–1178,
2008. 110

[67] David K. Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional net-
works on graphs for learning molecular fingerprints. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances In Neural Information
Precessing Systems, volume 28, pages 2224–2232. Curran Associates, Inc, 2015.
21, 119

[68] Rüdiger Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neu-
ral Networks. In Deepak D’Souza and K Narayan Kumar, editors, Automated
Technology for Veri cation and Analysis, pages 269–286, Cham, 2017. Springer
International Publishing. 110

[69] Gil Einziger, Maayan Goldstein, Yaniv Sa, Itai Segall, and Bell Labs. Verifying
Robustness of Gradient Boosted Models. In e irty-ird AAAI Conference
on Arti cial Intelligence, 2018. 148

201

[70] Hady Elsahar. How do you manage your Machine Learning Experiments?, aug
2019. 175

[71] Torsten A. Enßlin, Mona Frommert, and Francisco S. Kitaura. Information
field theory for cosmological perturbation reconstruction and nonlinear signal
analysis. Phys. Rev. D, 80(10):105005, nov 2009. 45

[72] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visual-
izing Higher-Layer Features of a Deep Network Visualizing Higher-Layer Fea-
tures of a Deep Network Introduction. Technical Report 2014, 2009. 130

[73] Linus Ericsson, Henry Gouk, and Timothy M. Hospedales. How Well Do
Self-Supervised Models Transfer? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5414–5423, jun 2021.
37

[74] Dan Feldman, Sedat Ozer, and Daniela Rus. Coresets for Vector Summarization
with Applications to Network Graphs. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning.
PMLR, 2017. 145

[75] Manuel Fernández-Delgado, Eva Cernadas, Senßen Barro, and Diano Amirim.
Do we Need Hundreds of Classifiers to Solve Real World Classification Prob-
lems? Journal of Machine Learning Research, 15:3133–3181, 2014. 29, 147

[76] Abe Fetterman and Josh Albrecht. Understanding selfsupervised and contrastive
learning with” bootstrap your own latent”(byol). 2020. 42

[77] V. P. Fomin, A. A. Stepanian, R. C. Lamb, D. A. Lewis, M. Punch, and T. C.
Weekes. New methods of atmospheric Cherenkov imaging for gamma-ray as-
tronomy. I. The False Source method. Astroparticle Physics, 6505(94), 1994.
74, 82

[78] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur.
Sharpness-aware Minimization for Efficiently Improving Generalization. In In-
ternational Conference on Learning Representations, 2021. 123

[79] Robert M. French. Catastrophic forgetting in connectionist networks. Trends
in cognitive sciences, 3(4):128–135, 1999. 36

[80] Kunihiko Fukushima. Visual Feature Extraction by a Multilayered Network of
Analog Threshold Elements. IEEE Transactions on Systems Science and Cybernet-
ics, 5(4):322–333, 1969. 19

[81] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Esti-
mating Training Data Influence by Tracing Gradient Descent. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances In Neural
Information Precessing Systems, volume 33. Curran Associates, Inc., 2020. 122,
137, 142

202

[82] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel,
Wieland Brendel, Matthias Bethge, and Felix A. Wichmann. Shortcut learning
in deep neural networks. Nature Machine Intelligence, 2(11):665–673, 2020.
10, 107

[83] Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario March, and
Jean-Francis Roy. Risk Bounds for the Majority Vote: From a PAC-Bayesian
Analysis to a Learning Algorithm. Journal of Machine Learning Research,
16(26):787–860, 2015. 29

[84] Aritra Ghosh, Naresh Manwani, and P. S. Sastry. Making risk minimization
tolerant to label noise. Neurocomputing, 160, 2015. 34, 35, 84

[85] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised Represen-
tation Learning by Predicting Image Rotations. In International Conference on
Learning Representations, pages 1–16, 2018. 44

[86] Julien Girard-Satabin, Guillaume Charpiat, Zakaria Hichem Chihani, and
Marc Schoenauer. CAMUS: A Framework to Build Formal Specifications for
Deep Perception Systems Using Simulators. In ECAI 2020, pages 1–19, 2020.
110

[87] Julien Girard-Satabin, Aymeric Varasse, Marc Schoenauer, Guillaume Charpiat,
and Zakaria Chihani. COnvex polytopes for neural network verification. Tech-
nical report. 110

[88] Anna Gladkova and Aleksandr Drozd. Intrinsic Evaluations of Word Embed-
dings: What Can We Do Better? In Proceedings of the 1stWorkshop on Evaluating
Vector Space Representations for NLP, pages 36–42, 2016. 51

[89] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. 9:249–256, 2010. 25

[90] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neu-
ral Networks. In Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudík,
editors, Proceedings of the 14th International Conference on Arti cial Intelligence
and Statistics (AISTATS), volume 15, pages 315–323. JMLR, 2011. 19

[91] Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Goldstein. Adversarially
Robust Distillation. In e irty-Fourth AAAI Conference on Arti cial Intelli-
gence. AAAI Press, 2020. 149

[92] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. 15

[93] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Har-
nessing Adversarial Examples. In International Conference on Learning Represen-
tations, 2015. 109

203

[94] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowl-
edge distillation: A survey. International Journal of Computer Vision,
129(6):1789–1819, 2021. 149

[95] Klaus Greff, Aaron Klein, Martin Chovanec, and Frank Hutter. The Sacred
Infrastructure for Computational Research. In Proceedings of the 15th Python in
Science Conference (SCIPY 2017), pages 49–56, 2017. 175

[96] Ferruccio Guidi and Claudio Sacerdoti Coen. A survey on retrieval of math-
ematical knowledge. Mathematics in Computer Science, 10(4):409–427, 2016.
46

[97] Riccardo Guidotti, Anna Monreale, Fosca Giannotti, Dino Pedreschi, Salvatore
Ruggieri, and Franco Turini. Factual and Counterfactual Explanations for Black
Box Decision Making. IEEE Intelligent Systems, 34(6):14–23, 2019. 107

[98] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, and Dino Pedreschi.
Local Rule-Based Explanations of Black Box Decision Systems. Technical Re-
port May, 2018. 106

[99] Zellig S. Harris. Distributional Structure. WORD, 10(2-3):146–162, 1954. 38

[100] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. e Elements of Statis-
tical Learning, volume 2. Springer, 2009. 9, 22, 37

[101] Simai He, Jiawei Zhang, and Shuzhong Zhang. Bounding Probability of Small
Deviation: A Fourth Moment Approach. Mathematics of Operations Research,
35(1), 2010. 154

[102] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw. CORSIKA: a
Monte Carlo code to simulate extensive air showers. Forschungszentrum Karlsruhe
GmbH, Karlsruhe (Germany), feb 1998. 76

[103] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. Deep Reinforcement Learning that Matters, 2019. 175

[104] Dan Hendrycks, Collin Burns, Saurav Kadavath, Dawn Song, Akul Arora, Eric
Tang, and Jacob Steinhardt. Measuring Mathematical Problem Solving With
the MATH Dataset. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang,
and J. Wortman Vaughan, editors, Advances In Neural Information Precessing
Systems, volume 34, pages 1–22. Curran Associates, Inc., 2021. 72

[105] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs).
Technical report, 2016. 19

[106] Sibylle Heß. A Mathematical eory of Making Hard Decisions : Model Selection
and Robustness of Matrix Factorization with Binary Constraints. PhD thesis, TU
Dortmund University, 2018. 123

204

[107] A. M. Hillas. Cerenkov Light Images of EAS Produced by Primary Gamma Rays
and by Nuclei. In 19th International Cosmic Ray Conference (ICRC19), Volume
3, volume 3 of International Cosmic Ray Conference, page 445, aug 1985. 74

[108] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning al-
gorithm for deep belief nets. Neural Computation, 2006. 15

[109] Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, Minimum Descrip-
tion Length and Helmholtz Free Energy. In J. Cowan, G. Tesauro, and J. Al-
spector, editors, Advances in Neural Information Processing Systems, volume 6,
pages 3–10. Morgan-Kaufmann, 1993. 37

[110] Liam Hodgkinson, Umut Şimşekli, Rajiv Khanna, and Michael W. Mahoney.
Generalization Properties of Stochastic Optimizers via Trajectory Analysis.
Technical report. 123

[111] Wassily Hoeffding. A class of statistics with asymptotically normal distribution.
Annals of Statistics, 1948. 65

[112] Daniel Hsu, Ziwei Ji, Matus Telgarsky, and Lan Wang. Generalization bounds
via distillation. In International Conference on Learning Representations, pages
1–25, 2021. 149

[113] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, Jure Leskovec, Regina Barzilay, Peter Battaglia, Yoshua
Bengio, Michael Bronstein, Stephan Günnemann, Will Hamilton, Tommi
Jaakkola, Stefanie Jegelka, Maximilian Nickel, Chris Re, Le Song, Jian Tang,
Max Welling, and Rich Zemel. Open Graph Benchmark: Datasets for Ma-
chine Learning on Graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances In Neural Information Precessing Systems,
volume 33, pages 1–34. Curran Associates, Inc., 2020. 131

[114] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun,
Emese Thamo, Min Wu, and Xinping Yi. A Survey of Safety and Trustwor-
thiness of Deep Neural Networks: Verification, Testing, Adversarial Attack and
Defence, and Interpretability. Technical report, 2020. 109, 148

[115] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37, pages 448–456, Lille, France, 2015. PMLR. 19, 61, 127

[116] Richard Isdahl and Odd Erik Gundersen. Out-of-the-box Reproducibility: A
Survey of Machine Learning Platforms. In 15th International Conference on
eScience, pages 86–95. IEEE, 2019. 175

205

[117] Yacine Izza and Joao Marques-Silva. On Explaining Random Forests with SAT.
In Zhi-Hua Zhou, editor, Proceedings of the irtieth International Joint Confer-
ence on Arti cial Intelligence, IJCAI-21, pages 2584–2591. International Joint
Conferences on Artificial Intelligence Organization, 2021. 148

[118] Mikael Jacquemont, Thomas Vuillaume, Alexandre Benoit, Cilles Maurin,
Patrick Lambert, and Giovanni Lamanna. First Full-Event Reconstruction from
Imaging Atmospheric Cherenkov Telescope Real Data with Deep Learning.
Technical report, 2021. 75, 164

[119] Mikaël Jacquemont, Thomas Vuillaume, Alexandre Benoît, Gilles Maurin, and
Patrick Lambert. Single Imaging Atmospheric Cherenkov Telescope Full-Event
Reconstruction with a Deep Multi-Task Learning Architecture. Technical re-
port, 2020. 77, 164

[120] Mikaël Jacquemont, Thomas Vuillaume, Alexandre Benoit, Gilles Maurin, and
Patrick Lambert. Multi-Task architecture with attention for imaging atmo-
spheric cherenkov telescope data analysis. In VISIGRAPP 2021 - Proceedings of
the 16th International Joint Conference on Computer Vision, Imaging and Com-
puter Graphics eory and Applications, volume 5, pages 534–544, 2021. 77,
164

[121] Ariel Jaffe, Yuval Kluger, Ofir Lindenbaum, Jonathan Patsenker, Erez Peterfre-
und, and Stefan Steinerberger. The Spectral Underpinning of word2vec. Fron-
tiers in Applied Mathematics and Statistics, 6(December):1–10, 2020. 39

[122] Katarzyna Janocha and Wojciech Marian Czarnecki. On Loss Functions for
Deep Neural Networks in Classification. Schedae Informaticae, 25:1–10, 2017.
40

[123] Svante Janson. Large Deviations for Sums of Partly Dependent Random Vari-
ables. Random Structures & Algorithms, 24(3):234–248, 2003. 65, 66

[124] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag
of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics, pages
1–55, 2017. 55, 58, 59, 69

[125] Andreas Hotho Julian Tritscher, Fabian Gwinner, Daniel Schlör, Anna Krause.
Open ERP System Data For Occupational Fraud Detection Julian. Technical
report. 108

[126] Alex Kantchelian, J.D. Tygar, and Anthony D. Joseph. Evasion and Hardening
of Tree Ensemble Classifiers. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of the 33rd International Conference on Machine Learning,
volume 48. JMLR, 2016. 147, 148, 159

206

[127] Grigoris Karakoulas and John Shawe-Taylor. Optimizing Classifers for Imbal-
anced Training Sets. In M Kearns, S Solla, and D Cohn, editors, Advances in
Neural Information Processing Systems, volume 11. MIT Press, 1998. 33

[128] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic re-
course: from counterfactual explanations to interventions. In Proceedings of
the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages
353–362, 2021. 107

[129] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks. In In-
ternational Conference on Computer Aided Veri cation, pages 97–117. Springer,
2017. 148

[130] Harutaka Kawamura, Arjun DCunha, Andrew Chen, Richard Zang, and Oth-
ers. MLflow. 175

[131] Nicolas Kayser-Bril. Google apologizes after its Vision AI produced racist re-
sults, 2020. 10

[132] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-Task Learning Using Un-
certainty to Weigh Losses for Scene Geometry and Semantics. In CVPR 2018,
pages 7482–7491. IEEE. 36

[133] D. B. Kieda, VERITAS Collaboration, and Others. Status of the VERITAS
ground based GeV/TeV Gamma-Ray Observatory. In Bulletin of the American
Astronomical Society, volume 36, page 910, 2004. 73

[134] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. In Yoshua Bengio and Yann LeCun, editors, International Conference on
Learning Representations, 2015. 25, 123

[135] Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via In-
fluence Functions. In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference onMachine Learning,. PMLR, 2017. 108, 145

[136] Frederik Kratzert. Understanding the backward pass through Batch Normaliza-
tion Layer, 2016. 20

[137] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012. 9

[138] Ulrike Kuhl, André Artelt, and Barbara Hammer. Keep Your Friends Close and
Your Counterfactuals Closer: Improved Learning From Closests Rather Than
Plausible Counterfactual Explanations in an Abstract Setting. In ACM Con-
ference on Fairness, Accountability, and Transparency, pages 1–17, Seoul, 2022.
Association for Computing Machinery. 107

207

[139] Todd Kulesza, Simone Stumpf, Margaret Burnett, Sherry Yang, Irwin Kwan,
and Weng-keen Wong. Too Much, Too Little, or Just Right? Ways Explanations
Impact End Users ’ Mental Models. In IEEE Symposium on Visual Languages
and Human Centric Computing, pages 3–10. IEEE, 2013. 105

[140] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples
in the physical world. In International Conference on Learning Representations
Workshops, number c, pages 1–14, 2017. 109

[141] Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and
M Pawan Kumar. In Defense of the Unitary Scalarization for Deep Multi-Task
Learning. Technical report, 2022. 36

[142] LISA lab Revision. Theano Documentation, 2021. 175

[143] Guillaume Lample and François Charton. Deep Learning for Symbolic Math-
ematics. In International Conference on Learning Representations, pages 1–24,
2020. 71, 164

[144] Markus Langer, Daniel Oster, Lena Kästner, Timo Speith, Kevin Baum, Hol-
ger Hermanns, Eva Schmidt, and Andreas Sesing. What Do We Want From
Explainable Artificial Intelligence (XAI)? Arti cial Intelligence, pages 0–57,
2021. 121

[145] Yan LeCun, O. Matan, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, L. D. Jacket, and H. S. Baird. Handwritten zip code recogni-
tion with multilayer networks. In Proceedings. 10th International Conference on
Pattern Recognition, volume ii, pages 35–40 vol.2, 1990. 18

[146] Yann Lecun. A Path Towards Autonomous Machine Intelligence. Technical
report, 2022. 72

[147] Jason D. Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. Predicting What
You Already Know Helps: Provable Self-Supervised Learning. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Ad-
vances In Neural Information Precessing Systems, volume 34. Curran Associates,
Inc, 2021. 43

[148] Guillaume Lemaitre, Fernando Nogueira, and Christos K Aridas. Imbalanced-
learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Ma-
chine Learning. J. Mach. Learn. Res., 18, 2017. 93

[149] Omer Levy and Yoav Goldberg. Neural Word Embedding as Implicit Matrix
Factorization. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K.Q. Weinberger, editors, Advances In Neural Information Precessing Systems,
volume 27, 2014. 39

208

[150] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, and Henryk
Michalewski. Solving Quantitative Reasoning Problems with Language Models.
Technical report. 72, 163

[151] Ti-Pei Li and Yu-Qian Ma. Analysis methods for results in gamma-ray astron-
omy. e Astrophysical Journal, 272, 1983. 82, 87, 96

[152] Xiao-Hui Li, Yuhan Shi, Haoyang Li, Wei Bai, Yuanwei Song, Caleb Chen Cao,
and Lei Chen. Quantitative Evaluations on Saliency Methods: An Experimental
Study. In Proceedings of ACM Conference (Conference’17), volume 1. Association
for Computing Machinery. 107

[153] Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, and Masashi Sugiyama. Prov-
ably End-to-end Label-noise Learning without Anchor Points. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th International Conference onMa-
chine Learning. PMLR, 2021. 35

[154] Thomas I. Liao, Rohan Taori, Inioluwa Deborah Raji, and Ludwig Schmidt.
Are We Learning Yet? A Meta-Review of Evaluation Failures Across Machine
Learning. In 35th Conference on Neural Information Processing Systems (NeurIPS
2021) Track on Datasets and Benchmarks, number NeurIPS, 2021. 10

[155] Hongye Liu, Yonghong Tian, Yaowei Wang, Lu Pang, and Tiejun Huang. Deep
Relative Distance Learning: Tell the Difference Between Similar Vehicles. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2167–2175, 2016. 49

[156] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model
Predictions. In I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus, S Vish-
wanathan, and R Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 107

[157] Alaa Maalouf, Ibrahim Jubran, Murad Tukan, and Dan Feldman. Coresets for
the Average Case Error for Finite Query Sets. Sensors, 21(6689), 2021. 145

[158] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
Adrian Vladu, and Computer Science. Towards Deep Learning Models Resis-
tant to Adversarial Attacks. In International Conference on Learning Representa-
tions, number 2017, pages 1–23, 2018. 109

[159] Mahshad Mahdavi, Richard Zanibbi, Harold Mouch, and Christian Viard-
gaudin. ICDAR 2019 CROHME + TFD : Competition on Recognition of
Handwritten Mathematical Expressions and Typeset Formula Detection. In
15th IAPR International Conference on Document Analysis and Recognition (IC-
DAR 2019), 2019. 49

209

[160] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
Approximate nearest neighbor algorithm based on navigable small world graphs.
Information Systems, 45:61–68, 2014. 47

[161] Behrooz Mansouri, Douglas W. Oard, C. Lee Giles, and Richard Zanibbi.
Tangent-CFT : An Embedding Model for Mathematical Formulas. In Proceed-
ings of the 2019 ACM SIGIR International Conference on eory of Information
Retrieval. Association for Computing Machinery, 2019. 47, 58, 59

[162] C. Marrocco, R. P. W. Duin, and F. Tortorella. Maximizing the area under the
ROC curve by pairwise feature combination. Pattern Recognition, 41(6):1961–
1974, 2008. 34

[163] Andreas Maurer. Learning similarity with operator-valued large-margin classi-
fiers. Journal of Machine Learning Research, 9:1049–1082, 2008. 64

[164] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral Regulariza-
tion Algorithms for Learning Large Incomplete Matrices. Journal of Machine
Learning Research, 11:2287–2322, 2010. 26

[165] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and
Aram Galstyan. A Survey on Bias and Fairness in Machine Learning. ACM
Computing Surveys, 54(6), jul 2021. 10

[166] Dennis Y Menn and Hung-yi Lee. Searching for the Essence of Adversarial
Perturbations. Technical report, 2022. 108

[167] Aditya Krishna Menon, Brendan van Rooyen, Cheng Soon Ong, and Robert C
Williamson. Learning from Corrupted Binary Labels via Class-Probability Es-
timation. In Francis Bach and David Blei, editors, Proceedings of the 32nd In-
ternational Conference on Machine Learning, volume 37. PMLR, 2015. 34, 35,
95, 97, 98

[168] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Kai Chen, and Jef-
frey Dean. Efficient Estimation of Word Representations in Vector Space. In
International Conference on Learning Representations, 2013. 38

[169] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Ilya Sutskever, Kai
Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words
and Phrases and their Compositionality. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 26, pages 1–9, 2013. 38, 39

[170] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in
Continuous Space Word Representations. In Human Language Technologies:
Conference of the North American Chapter of the Association of Computational
Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,
Georgia, USA, pages 746–751, 2013. 38, 51

210

[171] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-
invariant representations. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6707–6717, 2020. 58

[172] Tom M Mitchell. Machine Learning. McGraw-Hill, New York, 1997. 15

[173] Varun Mithal, Guruprasad Nayak, Ankush Khandelwal, Vipin Kumar,
Nikunj C. Oza, and Ramakrishna R. Nemani. RAPT: Rare Class Prediction
in Absence of True Labels. IEEE Transactions on Knowledge and Data Engineer-
ing, 29(11), 2017. 35, 97, 98

[174] Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep Learning from
Temporal Coherence in Video. In Proceedings of the 26th International Confer-
ence on Machine Learning, pages 737–744. PMLR, 2009. 39

[175] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard.
SparseFool: A Few Pixels Make a Big Difference. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), jun 2019. 109

[176] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. MIT Press, Cambridge, MA, USA, 2012. 23

[177] Christoph Molnar. Interpretable Machine Learning. Independently published,
2019. 106, 107

[178] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network
language model. Proceedings of the Tenth International Workshop on Arti cial
Intelligence and Statistics, pages 246–252, 2005. 38

[179] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman
go neural: Higher-order graph neural networks. In Proceedings of the AAAI
Conference on Arti cial Intelligence, volume 33, pages 4602–4609, 2019. 21

[180] Sascha Mücke and Lukas Pfahler. Check Mate: A Sanity Check for Trustworthy
AI. Technical report, 2022. 108

[181] S A Mueller and Others. Single photon extraction for FACT’s SiPMs allows for
novel IACT event representation. In Proceedings of Science, 2017. 77

[182] Mark Niklas Müller, Gleb Mararchuk, Gagandeep Singh, Markus Püschel, and
Martin Vechev. PRIMA : General and Precise Neural Network Certification via
Scalable Convex Hull Approximations. In Proceedings of the ACM on Program-
ming Languages, volume 6, pages 1–33. Association for Computing Machinery,
2022. 110

[183] Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep K. Ravikumar, and Ambuj
Tewari. Learning with Noisy Labels. In C. J. C. Burges, L. Bottou, M. Welling,

211

Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 26. Curran Associates, Inc., 2013. 34, 35, 84, 93

[184] Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yas-
min Schmitt, Jörg Schlötterer, Maurice van Keulen, and Christin Seifert. From
Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review
on Evaluating Explainable AI. Technical Report 1, 2022. 108

[185] Domonik Neise, Laurits Tani, Maximilian Nöthe, Mirko Bunse, Kai Brügge,
and Jens Buß. photon_stream, 2021. 77

[186] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Stochastic Approximation
approach to Stochastic Programming. SIAM Journal on Optimization, 19:1574–
1609, 2009. 16

[187] An-phi Nguyen and María Rodríguez Martínez. On quantitative aspects of
model interpretability. Technical report, 2020. 108

[188] Chaoqun Nie, Jianqi Shi, and Yanhong Huang. VARF: Verifying and Analyzing
Robustness of Random Forests. In Shang-Wei Lin, Zhe Hou, and Brendan
Mahony, editors, Formal Methods and Software Engineering, pages 163–178,
Cham, 2020. Springer International Publishing. 148

[189] Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit MLE:
Backpropagating Through Discrete Exponential Family Distributions. Advances
in Neural Information Processing Systems, 18:14567–14579, 2021. 164

[190] D Nieto, A Brill, Q Feng, M Jacquemont, B Kim, T Miener, and T Vuillaume.
Studying deep convolutional neural networks with hexagonal lattices for imag-
ing atmospheric Cherenkov telescope event reconstruction. Proceedings of Sci-
ence, pages 0–7, 2019. 75, 164

[191] Kimia Noorbakhsh, Modar Sulaiman, Mahdi Sharifi, Kallol Roy, and Pooyan
Jamshidi. Pretrained Language Models are Symbolic Mathematics Solvers too!
Technical report, 2019. 71

[192] Mehdi Noroozi and Paolo Favaro. Unsupervised Learning of Visual Represen-
tations by Solving Jigsaw Puzzles. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling, editors, Computer Vision – ECCV 2016, pages 69–84, Cham,
2016. Springer International Publishing. 44

[193] Mehdi Noroozi, Hamed Pirsiavash, and Paolo Favaro. Representation Learning
by Learning to Count. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5898–5906. IEEE, 2017. 44

[194] Maximilian Nöthe. Improving the Angular Resolution of FACT Using Machine
Learning. Technical report, Tu Dortmund University, Dortmund, 2017. 74

212

[195] Maximilian Nöthe. Monitoring the High Energy Universe. PhD thesis, TU
Dortmund University, 2020. 74, 77, 78, 80

[196] Maximilian Nöthe. FACT Open Crab Sample Analysis. https://github.
com/fact-project/open_crab_sample_analysis, 2021. 97

[197] Vít Novotný, Petr Sojka, Michal Štefánik, and Dávid Lupták. Three is Bet-
ter than One Ensembling Math Information Retrieval Systems. (September
2020):22–25. 55

[198] Aaron Van Den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning
with Contrastive Predictive Coding. Technical report. 41, 58

[199] OpenAI. Gym Website, 2021. 175

[200] Alexander G Ororbia, Dan Kifer, and C Lee Giles. Recognizing and Verify-
ing Mathematical Equations using Multiplicative Differential Neural Units. In
Proceedings of the AAAI Conference on Arti cial Intelligence, 2021. 164

[201] Ashwin Paranjape and Lukas Pfahler. meticulous-ml. 175

[202] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and
Lizhen Qu. Making Deep Neural Networks Robust to Label Noise: a Loss
Correction Approach. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. IEEE, 2017. 35

[203] Amandalynne Paullada, Inioluwa Deborah Raji, Emily M. Bender, Emily Den-
ton, and Alex Hanna. Data and its (dis)contents: A survey of dataset devel-
opment and use in machine learning research. Patterns, 2(11):100336, 2021.
10

[204] Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang. MathBERT: A Pre-Trained
Model for Mathematical Formula Understanding. Technical report. 72, 163

[205] D. Petry. The MAGIC Telescope-prospects for GRB research. Astronomy and
Astrophysics Supplement Series, 138(3):601–602, 1999. 73

[206] Lukas Pfahler, Mirko Bunse, and Katharina Morik. Noisy Labels for Weakly
Supervised Gamma Hadron Classification. Technical report, TU Dortmund
University, 2021. 96, 167, 190

[207] Lukas Pfahler and Katharina Morik. Learning Low-Rank Document Embed-
dings with Weighted Nuclear Norm Regularization. In IEEE International Con-
ference on Data Science and Advanced Analytics, page 16. IEEE, 2017. 38

[208] Lukas Pfahler and Katharina Morik. Nyström-SGD : Rapidly Learning Kernel-
Classifiers with Conditioned Stochastic Gradient Descent. In Machine Learn-
ing and Knowledge Discovery in Databases. ECML PKDD 2018, Dublin, 2018.
Springer. 123

213

https://github.com/fact-project/open_crab_sample_analysis
https://github.com/fact-project/open_crab_sample_analysis

[209] Lukas Pfahler and Katharina Morik. Semantic Search in Millions of Equations.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2020. 37, 58, 72, 167

[210] Lukas Pfahler and Jan Richter. Interpretable Nearest Neighbor Queries for Tree-
Structured Data in Vector Databases of Graph-Neural Network Embeddings.
In Workshop Proceedings of the EDBT/ICDT 2020 Joint Conference, pages 2–6.
168

[211] Lukas Pfahler, Jonathan Schill, and Katharina Morik. The Search for Equa-
tions - Learning to Identify Similarities between Mathematical Expressions. In
Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019,
2019. 50, 58, 167

[212] Lukas Pfahler, Alina Timmermann, and Katharina Morik. ML2R Cod-
ing Nuggets: Reproducible Machine Learning Experiments ML2R Coding
Nuggets Reproducible Machine Learning Experiments. Technical Report Jan-
uary, ML2R, 2022. 168

[213] Hung Viet Pham, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, and
Lin Tan. Problems and Opportunities in Training Deep Learning Software
Systems: An Analysis of Variance. In ASE ’20. 82

[214] J. Ross Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81–106,
1986. 27

[215] J. Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 1993. 151

[216] Markus N. Rabe, Christian Szegedy, Kshitij Bansal, and Dennis Lee. Math-
ematical Reasoning Via Self-Supervised Skip-Tree Training. In International
Conference on Learning Representations, pages 1–21, 2021. 72, 163

[217] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, and Others. Language models are unsupervised multitask learners.
2019. 9, 43, 55, 56

[218] Francesco Ranzato and Marco Zanella. Robustness Verification of Decision
Tree Ensembles. In Proceedings of the 1st Workshop on Arti cial Intelligence and
Formal Veri cation, Logics, Automata and Synthesis (OVERLAY),, pages 8–13,
2019. 148

[219] Francesco Ranzato and Marco Zanella. Abstract Interpretation of Decision Tree
Ensemble Classifiers. Proceedings of the AAAI Conference on Arti cial Intelligence,
34(04):5478–5486, 2020. 148

[220] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings us-
ing Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference

214

on Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992, Hong
Kong, China, nov 2019. Association for Computational Linguistics. 55

[221] Marco Tulio Ribeiro, Carlos Guestrin, Sameer Singh, and Carlos Guestrin.
”Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 1135–1144, New York, NY, USA,
2016. Association for Computing Machinery. 106

[222] Pierre H. Richemond, Jean-Bastien Grill, Florent Altché, Corentin Tallec, Flo-
rian Strub, Andrew Brock, Samuel Smith, Soham De Razvan, Bilal Piot, and
Michal Valko. BYOL works even without batch statistics. In NeurIPS 2020
Workshop: Self-Supervised Learning-eory and Practice, pages 1–6. 42

[223] Shaurya Rohatgi, Jian Wu, and C. Lee Giles. PSU at CLEF-2020 ARQMath
Track : Unsupervised Re-ranking using Pretraining. pages 22–25, 2020. 55

[224] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Net-
works. Technical Report May, 2017. 36

[225] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, and Lesia Semen-
ova. Interpretable Machine Learning : Fundamental Principles and 10 Grand
Challenges. Statistics Surveys, pages 1–80, 2021. 105

[226] Tim Ruhe, Dominik Elsässer, Wolfgang Rhode, Maximilian Nöthe, and Kai
Brügge. Cherenkov Telescope Ring-An Idea for World Wide Monitoring of the
VHE Sky. EPJ Web Conference, 207, 2019. 75

[227] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
Internal Representations By Error Propagation. In Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations. MIT
Press, 1985. 18

[228] Stefan Rüping. Learning interpretable models. PhD thesis, TU Dortmund Uni-
versity, 2006. 106, 107

[229] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong,
Praveen Kumar Paritosh, and Lora Mois Aroyo. ”Everyone wants to do the
model work, not the data work”: Data Cascades in High-Stakes AI. In SIGCHI.
ACM, 2021. 9, 10

[230] Benjamin Sanchez-Lengeling, Jennifer Wei, Brian Lee, Emily Reif, Peter Y
Wang, Wei Qian, Kevin Mccloskey, Lucy Colwell, and Alexander Wiltschko.
Evaluating Attribution for Graph Neural Networks. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances In Neural Informa-
tion Precessing Systems, volume 33, pages 1–13. Curran Associates, Inc., 2020.
108, 113

215

[231] Naoto Sato, Hironobu Kuruma, Yuichiroh Nakagawa, and Hideto Ogawa. For-
mal Verification of a Decision-Tree Ensemble Model and Detection of Its Vio-
lation Ranges. IEICE Transactions on Information and Systems, E103.D(2):363–
378, 2020. 148

[232] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing
Mathematical Reasoning Abilities of Neural Models. pages 1–17, 2019. 164

[233] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Evalua-
tion methods for unsupervised word embeddings. Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing, (September):298–
307, 2015. 51

[234] Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger,
Franziska Herbert, Xiaoting Shao, Hans-georg Luigs, Anne-Katrin Mahlein,
and Kristian Kersting. Making deep neural networks right for the right scien-
tific reasons by interacting with their explanations. Nature Machine Intelligence,
(Xil):1–18, 2020. 10, 107

[235] Clayton Scott, Gilles Blanchard, and Gregory Handy. Classification with Asym-
metric Label Noise: Consistency and Maximal Denoising. In Conference on
Computational Learning eory, volume 30 of JMLR Workshop and Conf. Proc.,
2013. 34, 35, 84

[236] D. Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. Winner’s Curse? On
Pace, Progress, and Empirical Rigor, 2018. 175

[237] Andrew D. Selbst and Solon Barocas. The Intuitive Appeal of Explainable Ma-
chines. Fordham Law Review, 2018. 121

[238] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan
Schaal, Sergey Levine, and Google Brain. Time-contrastive networks: Self-
supervised learning from video. In 2018 IEEE international conference on robotics
and automation (ICRA), pages 1134–1141. IEEE, 2018. 39

[239] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dick-
erson, Christoph Studer, Larry S. Davis, Gavin Taylor, and Tom Goldstein.
Adversarial training for free! In H Wallach, H Larochelle, A Beygelzimer,
F d'Alché-Buc, E Fox, and R Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019. 109

[240] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning :
From eory to Algorithms. Cambridge University Press, 2014. 23

[241] Shawn Shan, Emily Wenger, Jiayun Zhang, Huiying Li, Haitao Zheng, and
Ben Y Zhao. Fawkes: Protecting Privacy against Unauthorized Deep Learn-
ing Models. In Proceedings of the 29th USENIX Security Symposium (USENIX
Security 2020), 2020. 109

216

[242] Devashish Shankar, Sujay Narumanchi, H. A. Ananya, Pramod Kompalli, and
Krishnendu Chaudhury. Deep Learning based Large Scale Visual Recommen-
dation and Search for E-Commerce, 2017. 49

[243] I. Shilon, M. Kraus, M. Büchele, K. Egberts, T.Fischer, T.L. Holch, T. Lohse,
U. Schwanke, C. Steppa, and S. Funk. Application of Deep Learning methods
to analysis of Imaging Atmospheric Cherenkov Telescopes data. 2018. 75, 164

[244] S. D. Silvey. Statistical Inference, volume 7. CRC Press, 1975. 88

[245] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convo-
lutional Networks: Visualising Image Classification Models and Saliency Maps.
CoRR, dec 2013. 107, 115, 121

[246] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. Striving for simplicity: The all convolutional net. Technical report,
2014. 107

[247] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. 26

[248] Erik Strumbelj and Igor Kononenko. Explaining prediction models and indi-
vidual predictions with feature contributions. Knowledge and Information Sys-
tems, 41:647–665, 2013. 107

[249] Abby Stylianou and Robert Pless. Visualizing Deep Similarity Networks. Tech-
nical report, 2019. 107, 114

[250] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack
for fooling deep neural networks. IEEE Transactions on Evolutionary Computa-
tion, 23(5):828–841, 2019. 109

[251] Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan. When Does Self-
supervision Improve Few-Shot Learning? In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020,
pages 645–666, Cham, 2020. Springer International Publishing. 37, 43

[252] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the im-
portance of initialization and momentum in deep learning. In Sanjoy Dasgupta
and David McAllester, editors, Proceedings of the 30th International Conference
on Machine Learning, volume 28, Atlanta, Georgia, USA, 2013. PMLR. 123

[253] Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Han-
naneh Hajishirzi, Noah A Smith, and Yejin Choi. Dataset Cartography: Map-
ping and Diagnosing Datasets with Training Dynamics. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing, pages
9275–9293. Association for Computational Linguistics, 2020. 123

217

[254] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013. 108, 109, 148

[255] Damian Szklarczyk, Annika L. Gable, David Lyon, Alexander Junge, Ste-
fan Wyder, Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T. Doncheva,
John H. Morris, Peer Bork, Lars J. Jensen, and Christian von Mering. STRING
v11: protein-protein association networks with increased coverage, supporting
functional discovery in genome-wide experimental datasets. Nucleic acids re-
search, 47(D1):D607–D613, jan 2019. 131

[256] Chengli Tan, Jiangshe Zhang, and Junmin Liu. Trajectory-dependent Gener-
alization Bounds for Deep Neural Networks via Fractional Brownian Motion.
Technical report. 123

[257] Mingxing Tan and Quoc Viet Le. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. Proceedings of the 36th International Confer-
ence on Machine Learning, 2019. 78

[258] Yi Tay, Vinh Q Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, William W
Cohen, and Donald Metzler. Transformer Memory as a Differentiable Search
Index. Technical report, Google Research, 2022. 47

[259] Yonglong Tian, Chen Sun, Cordelia Schmid, Ben Poole, and Phillip Isola. What
Makes for Good Views for Contrastive Learning? In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances In Neural Information
Precessing Systems, volume 33. Curran Associates, Inc., 2020. 42

[260] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith
Knight. Sparsity and smoothness via the fused lasso. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 67(1):91–108, 2005. 26

[261] Richard M Timoney. OpenMath LaTeX to OpenMath Converter. Technical
report, 1999. 46

[262] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming. In International Conference on
Learning Representations, pages 1–21, 2019. 148

[263] Stefan Todorinski. Erkennung von Ähnlichkeiten zwischen mathematischen
Ausdrücken mittels Bidirectional Encoder Representations from Transformers.
Master’s thesis, TU Dortmund, 2021. 167

[264] John Törnblom and Simin Nadjm-Tehrani. An Abstraction-Refinement Ap-
proach to Formal Verification of Tree Ensembles. In Alexander Romanovsky,
Elena Troubitsyna, Ilir Gashi, Erwin Schoitsch, and Friedemann Bitsch, edi-
tors, Computer Safety, Reliability, and Security, pages 301–313, Cham, 2019.
Springer International Publishing. 148

218

[265] John Törnblom and Simin Nadjm-Tehrani. Formal verification of input-output
mappings of tree ensembles. Science of Computer Programming, 194:102450,
2020. 148

[266] Linus Torvalds, Junio Hamano, and Others. Git - fast, scalable, distributed
revision control system, 2005. 173

[267] Julian Tritscher, Markus Ring, Daniel Schlr, Lena Hettinger, and Andreas
Hotho. Evaluation of Post-hoc XAI Approaches Through Synthetic Tabular
Data. In Denis Helic, Gerhard Leitner, Martin Stettinger, Alexander Felfernig,
and Zbigniew W Raś, editors, Foundations of Intelligent Systems, pages 422–430,
Cham, 2020. Springer International Publishing. 108

[268] Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Practi-
cal sketching algorithms for low-rank matrix approximation. SIAM Journal on
Matrix Analysis and Applications, 38(4):1454–1485, 2017. 145

[269] Evgeniya Ustinova and Victor Lempitsky. Learning Deep Embeddings with
Histogram Loss. In Advances In Neural Information Precessing Systems 2016,
2016. 41, 62

[270] Joaquin Vanschoren and Serena Yeung. Announcing the NeurIPS 2021
Datasets and Benchmarks Track. 9, 10

[271] Joaquin Vanschoren and Serena Yeung, editors. Proceedings of the Neural In-
formation Processing Systems Track on Datasets and Benchmarks. 2021. 9, 10,
48

[272] Vladimir N. Vapnik. e Nature of Statistical Learning eory. Springer, second
edition, 2000. 23, 64

[273] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. Advances in Neural Information Processing Systems, 2017. 20, 55, 57, 61

[274] Robin Vogel, Aurélien Bellet, and Stéphan Clémençon. A Probabilistic Theory
of Supervised Similarity Learning for Pointwise ROC Curve Optimization. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning. PMLR, 2018. 34

[275] Ulrike von Luxburg, Robert C. Williamson, and Isabelle Guyon. Clustering:
Science or Art? In JMLRWorkshop and Conference Proceedings 27, pages 65–79,
2012. 51

[276] David Wallis and Irène Buvat. Clever Hans effect found in a widely used brain
tumour MRI dataset. Medical Image Analysis, 77:102368, 2022. 107

219

[277] Alex Wang, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Su-
perGLUE : A Stickier Benchmark for General-Purpose Language Understand-
ing Systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, editors, Advances In Neural Information Precessing Sys-
tems, volume 32. Curran Associates, Inc., 2019. 10

[278] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. GLUE: A Multi-Task Benchmark and Analysis Platform
for Natural Language Un derstanding. In International Conference on Learning
Representations, pages 1–20, 2019. 10

[279] Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang, and Xiaojiang Liu. Trans-
lating Math Word Problem to Expression Tree. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 1064–1069, 2018. 46

[280] Yihan Wang, Huan Zhang, Hongge Chen, and Duane Boning. On ℓp-norm
Robustness of Ensemble Decision Stumps and Trees. In Hal Daumé III and
Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning. PLMR, 2020. 148, 152

[281] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. Dynamic graph CNN for learning on point clouds.
ACM Transactions on Graphics (TOG), 38(5):1–12, 2019. 21

[282] Sebastian Wankerl, Andrzej Dulny, Gerhard Götz, and Andreas Hotho. Learn-
ing Mathematical Relations Using Deep Tree Models. In 2021 20th IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA), pages
1681–1687, 2021. 71, 164

[283] Weights & Biases. wandb, 2021. 175

[284] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle
Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten,
Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J.
Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Ed-
munds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair
J. G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Pe-
ter A. C. ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J.
Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson,
Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta San-
sone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris A.
Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop,
Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and
Barend Mons. The FAIR Guiding Principles for scientific data management
and stewardship. Scienti c Data, 3(1):160018, 2016. 174

220

[285] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature
learning via non-parametric instance discrimination. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3733–3742, 2018.
41

[286] Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu,
and Masashi Sugiyama. Are Anchor Points Really Indispensable in Label-Noise
Learning? In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. 35

[287] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful
Are Graph Neural Networks? In International Conference on Learning Represen-
tations, pages 1–17, 2019. 131

[288] Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu,
and Masashi Sugiyama. Dual T: Reducing Estimation Error for Transition Ma-
trix in Label-noise Learning. In Advances in Neural Information Processing Sys-
tems, volume 33, pages 7260–7271. Curran Associates, Inc., 2020. 35

[289] Chih-kuan Yeh, Joon Sik Kium, Ian E. H. Yen, and Pradeep Ravikumar. Rep-
resenter Point Selection for Explaining Deep Neural Networks. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances In Neural Information Precessing Systems, volume 31. Curran
Associates, Inc., 2018. 145

[290] Jaemin Yoo and Taebum Kim. Knowledge Extraction with No Observable Data.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
R. Garnett, editors, Advances In Neural Information Precessing Systems, num-
ber 32. Curran Associates, Inc., 2019. 149

[291] Richard Zanibbi, Douglas W. Oard, Anurag Agarwal, and Behrooz Mansouri.
Overview of ARQMath 2020 (Updated Working Notes Version): CLEF Lab
on Answer Retrieval for Questions on Math. 2020(September):22–25, 2020.
55

[292] Richard Zanibbi, Goran Topi, Michael Kohlhase, and Kenny Davila. NTCIR-
12 MathIR Task Overview. In Proceedings of the 12th NTCIR Conference on
Evaluation of Information Access Technologies, Tokyo, Japan, 2016. 47, 69

[293] Jure Zbontar, Li Jing, Ishan Misra, and Yann LeCun. Barlow Twins: Self-
Supervised Learning via Redundancy Reduction. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning. PMLR, 2021. 43

[294] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convo-
lutional Networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne

221

Tuytelaars, editors, Computer Vision – ECCV 2014, pages 818–833. Springer
International Publishing, 2014. 107

[295] Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Im-
age is Worth 16x16 Words - Transformers for Image Recognition at Scale. In
International Conference on Learning Representations, 2021. 9

[296] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. In
International Conference on Learning Representations, 2017. 23

[297] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding Deep Learning (Still) Requires Rethinking General-
ization. Communications of the ACM, 64(3):107–115, feb 2021. 23

[298] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz.
mixup: Beyond Empirical Risk Minimization. In International Conference on
Learning Representations, pages 1–13, 2018. 26

[299] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful Image Colorization.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vi-
sion – ECCV 2016, pages 649–666, Cham, 2016. Springer International Pub-
lishing. 44

[300] Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang. Bit-
Scalable Deep Hashing With Regularized Similarity Learning for Image Re-
trieval and Person Re-Identification. IEEE Transactions on Image Processing,
24(12):4766–4779, 2015. 49

[301] Wei Zhang, Ziming Huang, Yada Zhu, Guangnan Ye, Xiaodong Cui, and Fan
Zhang. On Sample Based Explanation Methods for NLP: Faithfulness, Effi-
ciency and Semantic Evaluation. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers), pages 5399–5411,
Online, aug 2021. Association for Computational Linguistics. 123

[302] Wei Zhong and Richard Zanibbi. Structural Similarity Search for Formulas
using Leaf-Root Paths in Operator Subtrees. In European Conference on Infor-
mation Retrieval, pages 116–129. Springer, 2019. 46, 47

[303] Jianlong Zhou, Amir H Gandomi, Fang Chen, and Andreas Holzinger. Eval-
uating the Quality of Machine Learning Explanations: A Survey on Methods
and Metrics. Electronics, 10(5):1–19, 2021. 108

[304] Marinka Zitnik, Rok Sosič, Marcus W. Feldman, and Jure Leskovec. Evolution
of resilience in protein interactomes across the tree of life. Proceedings of the
National Academy of Sciences, 116(10):4426–4433, 2019. 131

222

[305] Barret Zoph, Jonathon Shlens, and Quoc Viet Le. RandAugment: Practical
automated data augmentation with a reduced search space. Technical report.
26

223

	I Introduction
	Motivation
	Contributions
	Outline

	A Brief Introduction to Machine Learning
	Deep Learning
	Models
	Objective Functions
	Optimizers

	Tree-Based Machine Learning Models
	Decision Trees
	Random Forest Models

	II Designing Machine Learning Tasks
	Related Work on Machine Learning Tasks
	Supervised Learning
	Supervised Learning under Class Imbalance
	Noisy Label Learning
	Multi-Task Learning

	Representation Learning
	Auto-Encoders
	Contextual Embeddings
	Representation Learning based on Similarity
	Other Self-Supervised Approaches

	Learning Representations with Unsupervised Tasks
	Introduction
	Math Search and KDD
	Representation
	Similarity Measure
	Retrieval

	The Dataset
	Embedding using Convolutional Networks on Bitmap Representations
	Data Representation
	The Equation-Encoder Model
	Empirical Evaluation
	Conclusion

	Embedding using Transformers on Sequential Representations
	Data Representation
	Training Transformer Models
	Retrieval of Equalities and Inequalities

	Embedding using Graph Convolutional Networks on Tree Representations
	Data-Representation
	Training Graph-Neural-Network for Embedding Formulas
	Statistical Analysis
	Experimental Results

	Conclusion and Outlook

	Learning Representation with Multitask Learning and Noisy Labels
	A Supervised Multi-Task Representation Learning Approach
	Supervision by Simulated Data, Data Representation and Pre-Processing
	Multi-Task Deep Neural Network
	Experiments
	Discussion

	Supervision based on Noisy Labels with Partially-Known Class-Conditional Label Noise
	The Significance of Detection as Noisy Label Learning with Partially Known Label Noise
	Experimental Results on Imbalanced Data Sets
	Gamma-Hadron Classification with Noisy Labels
	Deep Gamma-Hadron Classification with Noisy Labels

	Summary

	III Inspecting Machine Learning Models
	Motivation
	Related Work
	Explanations
	Robustness

	Structure of this Part

	How Does the Model Compute?
	Introduction
	Method
	Graph Neural Networks for Trees
	Forward-Visualization
	Backward-Visualization

	Qualitative Study: Interpretable Search for Formulas
	Conclusion and Outlook

	Why Did the Model Learn a Representation?
	Related Work
	Method
	Explaining Pre-Activations by the Training History
	Computing Most Influential Examples
	Visualizing Contributions in Ridge Plots

	Batch-Wise Tracking of Contributions
	Ghost-Batchnormalization Layers
	Implementation for pyTorch
	Experimental Evaluation
	Explanations for Graph Classification

	Example-Wise Tracking of Contributions
	Method
	Implementation Details
	Experimental Evaluation

	Conclusion, Discussion and Future Research

	How Robust is a Model?
	Introduction
	Related Work
	Preliminaries
	Decision Tree Distillation
	Decision Tree Verification

	Random Forest Verification Through Knowledge Distillation
	Bounding the Output Range of Random Forests
	Simultaneous Distillation and Verification
	Some Comments on Asymptotic Runtime
	Implementation Details

	Experimental Evaluation
	Setup
	Results

	Conclusion

	IV Conclusion
	Conclusion and Outlook
	Bibliographical Remarks

	V Appendix
	Open Source Software
	malocher
	Installation
	Setting up the Malocher-Workers
	Sample
	Pitfalls

	meticulous-ml
	Best Practices for Tracking Machine Learning Experiments
	Example Python Snippet for meticulous-ml

	arxiv-library
	Installation
	Pipeline
	Internal Python Functions

	xai-tracking

	Additional Tables and Figures
	Mathematical Retrieval Results
	Noisy Label Learning

