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Abstract

This thesis explores the fundamental aspects of machine learning, which are in-
volved with acquiring knowledge in the research field of astro-particle physics.
This research field substantially relies on machine learning methods, which re-
construct the properties of astro-particles from the raw data that specialized tele-
scopes record. These methods are typically trained from resource-intensive simu-
lations, which reflect the existing knowledge about the particles—knowledge that
physicists strive to expand. We study three fundamental machine learning tasks,
which emerge from this goal.

First, we address ordinal quantification, the task of estimating the prevalences of
ordered classes in sets of unlabeled data. This task emerges from the need for
testing the agreement of astro-physical theories with the class prevalences that a
telescope observes. To this end, we unify existing methods on quantification, pro-
pose an alternative optimization process, and develop regularization techniques
to address ordinality in quantification problems, both in and outside of astro-
particle physics. These advancements provide more accurate reconstructions of
the energy spectra of cosmic gamma ray sources and, hence, support physicists
in drawing conclusions from their telescope data.

Second, we address learning under class-conditional label noise. More particu-
larly, we focus on a novel setting, in which one of the class-wise noise rates is
known and one is not. This setting emerges from a data acquisition protocol,
through which astro-particle telescopes simultaneously observe a region of inter-
est and several background regions. We enable learning under this type of label
noise with algorithms for consistent, noise-aware decision thresholding. These
algorithms yield binary classifiers, which outperform the existing state-of-the-art
in gamma hadron classification with the FACT telescope. Moreover, unlike the
state-of-the-art, our classifiers are entirely trained from the real telescope data
and thus do not require any resource-intensive simulation.

Third, we address active class selection, the task of actively finding those propor-
tions of classes which optimize the classification performance. In astro-particle
physics, this task emerges from the simulation, which produces training data in
any desired class proportions. We clarify the implications of this setting from
two theoretical perspectives, one of which provides us with bounds of the result-
ing classification performance. We employ these bounds in a certificate of model
robustness, which declares a set of class proportions for which the model is accu-
rate with a high probability. We also employ these bounds in an active strategy
for class-conditional data acquisition. Our strategy uniquely considers existing
uncertainties about those class proportions that have to be handled during the
deployment of the classifier, while being theoretically well-justified.
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1. Introduction

Astro-particle physics, a research field at the intersection between astronomy and particle
physics, studies the characteristics of cosmic particles to advance the understanding of
fundamental physics in the extreme cosmic environments where these particles are being
accelerated [15]. This goal is pursued by observing cosmic particles with specialized
telescopes that substantially rely on machine learning [16]. Without machines that learn
from simulations, one could not reconstruct the characteristics of the cosmic particles
from the raw and unlabeled data, which the telescopes take.

1.1. Challenges

In order to support the advancement of astro-particle research, machine learning meth-
ods must build on the existing knowledge of astro-particle physicists. A considerable
amount of this knowledge is encoded in the simulations with which machine learning
methods are trained. In fact, astro-particle simulations reflect a deep understanding of
a large set of physical processes that contribute to the telescope recordings, including
particle interactions, light propagation, and camera electronics. Moreover, the analysis
outcomes have to be appropriately constrained in order to comply with the background
knowledge of the physicist. Beyond these aspects of existing knowledge lie two prospects:
either the discovery of a previously unknown physical effect or an undesired artifact that
disturbs the analysis. Permitting discoveries while preventing disturbances is a truly in-
terdisciplinary endeavor; it requires robust and reliable machine learning methods that
are capable of supporting the advancement of astro-physical theories.

In this thesis, we investigate thesemachine learning requirements from a computer science
perspective. Namely, we address the robustness of machine learningmethods in the scope
of three fundamental learning tasks:

Ordinal Quantification (OQ) is the task of estimating the marginal distribution of or-
dinal class labels from a set of unlabeled data. In astro-particle physics, this task
emerges as a problem termed deconvolution [1] or unfolding [17], where the goal is
to reconstruct energy spectra and sky maps from the telescope data. The challenge
behind OQ is a shift in label probabilities between model training and deployment;
OQ methods must be robust with respect to this shift in order to produce valid
estimates of the marginal distributions.

Class-Conditional Label Noise Learning (CCN) is the task of learning with random-
ly flipped labels, where the flip probabilities exclusively depend on the true class

1



1. Introduction

physical
knowledge

simulation
telescope
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machine
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physical
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Figure 1.1.: The iterative progression of knowledge in astro-particle physics. Existing physical
knowledge is encoded in the simulation, which provides machine learning methods
with training data. The trained models are used to reconstruct the telescope data, in
order to yield a physical interpretation and thereby advance the physical knowledge.
In this illustration, the machine learning node subsumes all learning-related analysis
steps, e.g. sampling, preprocessing, feature extraction, prediction, and validation.
This figure expands the view of probabilistic rationalism [24, Fig. 7] by pointing out
that the telescope data is an external source of the knowledge that is to be acquired.

of each instance. The central difficulty within this task lies in finding the decision
threshold of a classifier when the noise rates are unknown [18]. The challenge of
CCN in astro-particle physics is to leverage the fact that one noise rate is known
and one is not [7].

Active Class Selection (ACS) is the task of finding those proportions of classes, with
which the most cost-efficient training set can be acquired [19]. In astro-particle
physics, this problem emerges from the fact that all training data is generated by
simulations which take the class distribution as an input. Choosing a suitable class
distribution for the simulation is challenging because the real distribution of astro-
particle classes is extremely imbalanced and not known precisely.

These three tasks support the iterative expansion of scientific knowledge in several steps,
which are displayed in Fig. 1.1. In this view, OQ facilitates the physical interpretation
of the data, ACS provides cost-efficient simulations, and CCN reduces the simulation de-
mand by enabling learning from real telescope data. Together, these tasks support the
advancement of valid, scientific knowledge under resource constraints. Each of these task
is fundamental because it can, by itself, also appear in other areas of application.

The non-captioned arrows in Fig. 1.1 lie beyond the scope of this thesis. Namely, we do
not consider how to advance a physical theory with a physical interpretation and we do
not consider how to improve the simulator with physical knowledge. These limitations
reflect the fundamental computer science focus of this thesis. Regarding these topics, the
interested reader can refer to the dissertations of astro-particle physicists with whom we
have collaborated [20]–[23].

2



1.2. Impact

1.2. Impact

In this thesis, we focus on the machine learning aspects of the interdisciplinary endeavor,
which faithful analyses of astro-particle data pose. Through this focus, we contribute, first
and foremost, to the fundamental research of computer science. Our central contributions
are as follows:

Concerning OQ, we unify existing methods on ordinal and non-ordinal quantification
within a common framework. To this end, we demonstrate that unfolding methods from
physics are in fact OQ methods, which are generally applicable, also to OQ tasks from
other areas of application. Moreover, we propose regularization techniques for address-
ing ordinality in quantification algorithms that are, otherwise, non-ordinal. We further
propose a soft-max objective for an effective, unconstrained solution of the quantifica-
tion problem. This objective can be employed in several, widely-acknowledged ordinal
and non-ordinal quantification methods. By revealing the equivalence of unfolding and
OQ and by extending non-ordinal quantification algorithms with ordinality, we open the
topic for strengthened interdisciplinary efforts on improving the reconstruction of the
energy spectra of cosmic gamma ray sources.

In the scope of CCN, we discuss a novel setting of this learning task, in which one noise
rate is known and one is not. This setting stems from astro-particle physics but can occur
in any area of application where a similar data taking protocol is employed. We present a
hypothesis test for this setting, to assess whether CCN learning is feasible. Moreover, we
derive a heuristic performance metric, which only requires noisy labels, from this test.
We employ this metric in finding optimal decision thresholds for any soft classifier and
in learning entire decision tree classifiers from scratch. In large sets of closed telescope
data, we demonstrate that CCN learningmethods are even able to outperform the existing
state-of-the-art in gamma hadron classification. This progress leads to more effective
detections of cosmic gamma ray sources and it saves computational resources, which are
otherwise required by simulations, through learning from real telescope data.

Regarding ACS, we argue that the free choice of class proportions constitutes a domain
gap, the implications of which we discuss from two perspectives. Our first perspective,
which stems from information theory, provides us with an explanation for typical behav-
iors of ACS methods. Our second perspective, which stems from learning theory, further
allows for a quantitative assessment of model performance through probably and approx-
imately correct (PAC) learning bounds. Based on these bounds, we propose a certificate
for model robustness under prior probability shift, which declares a set of class propor-
tions for which themodel is accurate with a high probability. We also use our PAC bounds
to propose an active strategy for data acquisition in ACS, which uniquely considers ex-
isting uncertainties about the class proportions that a classifier has to handle during its
deployment. ACS tasks occur in any application area where a class-conditional data gen-
erator is employed for the production of labeled training data. In astro-particle physics,
this setting emerges from class-conditional simulations.

3
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1.3. Limitations

An essential characteristic of astro-particle analyses is that both the simulation and the
real detector produce their observations x ∈ X from the ground-truth labels y ∈ Y .
In other words, we intend to reconstruct the particle properties y that have lead to an
observation x, rather than forecasting the outcome of some given initial conditions. The
characteristic of y leading to x is not a superficiality; indeed, it has profound implications
on the feasibility of learning tasks. On the one hand, OQwould loose some of its difficulty
and ACSwould be ill-defined if y did not determine x. On the other hand, several learning
tasks, which appear in simulation-based forecasting [25]–[28], are not applicable to the
Y → X problems faced here.

For instance, an astro-particle simulation (Y → X ) is not capable of providing labels for
existing unlabeled observations. Therefore, it cannot be employed as an oracle (X → Y)
in active learning frameworks, as it has been proposed for simulations in milling [25], in
tunneling [26], and in molecular dynamics [27], [28]. These other simulations produce
labels for unlabeled feature vectors; hence, they can be used as oracles in active learning.
For the same reason, however, they cannot be optimized through ACS, which requires
a simulation to produce feature vectors from labels. Despite these differences, active
learning and ACS pursue the same goal: to reduce the amount of simulation resources
that are needed to train a valid prediction model. In this thesis, we address this goal
through ACS.

Due to the computer science focus of this thesis, we do not address the non-captioned
arrows in Fig. 1.1. Namely, we do not consider how to advance a physical theory with a
physical interpretation and we do not consider how to improve the simulator with phys-
ical knowledge. Note, however, that these topics are the subject of our on-going joint
work with astro-particle physicists.

1.4. Outline

The fundamentals of machine learning and astro-particle physics are given in Chap. 2
and in Chap. 3. We then devote one chapter to each of the fundamental machine learning
tasks. In particular, we address OQ in Chap. 4, CCN in Chap. 5, and ACS in Chap. 6. We
draw the conclusions of this thesis in Chap. 7, where we also conceive several directions
for future work. Appendix A provides a commented bibliography of our publications,
which provide the foundation for this thesis.

4



2. Fundamentals of Machine Learning

In this thesis, we develop machine learning methods that address ordinal quantification,
class-conditional label noise, and active class selection. Before we detail these methods
in Chapters 4–6, we introduce their common, underlying concepts.

This chapter is structured as follows: based on the notation that we define in Sec. 2.1, we
present the concepts of supervised machine learning in Sec. 2.2. These concepts provide
the basis for all learning tasks that we address in this thesis. In ordinal quantification and
in active class selection, we encounter prior probability shift, a complication that we detail
in Sec. 2.3. The foundation of our experimental methodology is given in Sec. 2.4.

2.1. Notation

Throughout this thesis, the uppercase lettersX and Y stand for random variables, where
X denotes a vector-valued random variable that comprises all features and Y denotes the
target variable. In supervised learning, X is the input of a model that is meant to accu-
rately predict Y . The state spaces of these random variables, which contain all possible
realizations thereof, are written as calligraphic lettersX and Y . Their realizations are de-
noted as lowercase letters x and y, where x ∈ X and y ∈ Y . Throughout this thesis, the
feature space X ⊆ Rd is a multi-dimensional, real-valued space, where d is the number
of features. The choice of the label space Y depends on the machine learning task.

The probability density of the event, inwhichX takes the value x, is written asP(X = x).
We also use the term “probability density” for P(Y = y), even if Y is categorical. Joint
densities are written as P(X = x ∧ Y = y) and conditional densities are written as
P(X = x | Y = y). Expected values are denoted as Ex∼P(x).

If we encounter multiple realizations of the same random variable, we distinguish them
with subscripts, xi, where i is a positive integer. In contrast, we address the i-th compo-
nent of a vector x with brackets and a subscript, [x]i. This notation allows us to address
the i-th component of some specific realization xj as [xj ]i.

A labeled data set DXY = {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m} ∼ Pm is a sequence of
m realizations of X and Y , as according to their joint density P(X = x ∧ Y = y). An
un-labeled data set DX = {xi ∈ X : 1 ≤ i ≤ m} ∼ Pm is a sequence of m realizations
of X without their corresponding labels. Typically, DXY is used for the training and
the validation of supervised learning methods, while DX requires a supervised model to
predict the corresponding labels yi during deployment.

5



2. Fundamentals of Machine Learning

2.2. Supervised Machine Learning

A frequent goal in machine learning is to predict some target variable Y from features
X . This goal is motivated in countless applications, where Y is difficult, costly, or even
impossible to measure, while X can be measured with a reasonable cost. A practitioner,
who is able to acquire a labeled data setDXY , can use supervised learning to find a map-
ping that predicts Y for any future realization of X . With this mapping, the practitioner
can omit future measurements of Y in favor of predicting Y from X .

Definition 2.1 (Supervised Learning). Given a labeled data set DXY , the goal of super-
vised learning is to find a mapping X → Y , from some family of mappings, such that some
quality measure Q : (X → Y)→ R is maximized.

We typically call the desired mapping a prediction model because it predicts the value of
Y from any realization ofX . Depending on the choice of the label spaceY , this definition
comprises binary classification (Y = {0, 1}), multi-class classification (Y = {1, . . . , C},
where C is the number of classes), ordinal classification (Y = {1, . . . , C}, where the
semantic meaning of the classes follows a total order), regression (Y ⊆ R), and multi-
task learning (Y ⊆ Rt, where t is the number of tasks).

An algorithm for supervised learning consists of the following components:

Model Family The family of permitted mappings X → Y has to be specified. With
a given model family, which is parameterized by a vector β, supervised learning
means to find a parameter vector β∗ that maximizes Q for the data set DXY .

Quality Measure The quality measure Q has to reflect the criteria that characterize a
“good” prediction model in the use case at hand. Typical criteria, in this regard, are
low prediction errors and an accordance with prior assumptions about the predic-
tion model. The measureQ estimates the quality of any candidate vector β through
the data set DXY , so that a parameter vector β∗, which is optimal for DXY , can be
identified.

Optimization Depending on the model family and the quality measure, a suitable op-
timization algorithm has to be chosen. This algorithm searches, in the space of
parameter vectors, for the optimal parameter vector β∗.

In the following sub-sections, we discuss empirical risk minimization, thresholded deci-
sion functions, and decision trees. This selection of supervised learning algorithms has a
particular relevance for the findings of this thesis.

2.2.1. Empirical Risk Minimization

Many supervised learning algorithms can be described in the framework of empirical risk
minimization (ERM). In this framework, we are considering a hypothesis h : X → Z
from some hypothesis class H, where the output space Z depends on the learning task.
In binary classification, for instance, Z = R comprises real-valued scores for the positive

6



2.2. Supervised Machine Learning

class and a binary prediction ˆ︁y ∈ {0, 1} is obtained by thresholding h(x) at some scalar
λ ∈ R, i.e., ˆ︁y = 1 iff h(x) > λ. In multi-class classification, Z = RC comprises vectors of
class-wise scores and a prediction ˆ︁y ∈ {1, . . . , C} is obtained by selecting the maximum
score, ˆ︁y = argmaxi[h(x)]i. In regression, Z = Y = R is identical to the label space Y ,
so that predictions are directly given by ˆ︁y = h(x). In Chap. 6, we use ERM to establish a
probably approximately correct (PAC) learning theory on active class selection.

The ultimate goal of ERM is to minimize the expected risk

R(h; ℓ) = E(x,y)∼P
(︁
ℓ(h(x), y)

)︁
=

∫︂
X×Y

P
(︁
X = x ∧ Y = y

)︁
· ℓ
(︁
h(x), y

)︁
dx dy (2.1)

of h under the loss function ℓ : (Z×Y)→ R, whichmeasures the error of each individual
prediction. However, the true expected risk is not accessible when learning from a finite
set of data. Therefore, the expected risk is approximated through the empirical risk

RDXY
(h; ℓ) =

1

m

m∑︂
i=1

ℓ
(︁
h(xi), yi

)︁
, (2.2)

which is computed from the training set DXY . ERM learns an optimal prediction model
h∗ through minimizing this accessible, empirical risk instead of the inaccessible, expected
risk from Eq. 2.1. In particular, ERM learns the model

h∗ = argmin
h∈H

RDXY
(h; ℓ) (2.3)

from a fixed data set DXY . The larger the training set becomes, the more accurate will
the estimation ofR throughRDXY

be. Therefore, the minimizer ofRDXY
approaches the

desired minimizer of R as the size m of DXY increases.

To this end, the following bound measures the probability that the estimation error of
the empirical risk, which is induced by the finite size m of DXY , is bounded above by
some ε > 0. This bound is a standard bound from learning theory and it addresses
learning tasks with identically and independently distributed (IID) data. This IID property
means that the training set DXY is drawn from the same probability density function
that is also encountered during the deployment of the prediction model. In Sec. 2.3, we
discuss a setting where the IID assumption does not hold. For now, however, the IID
assumption establishes that an increase in m leads to a lower error ε, if the probability δ
of the following bound is kept constant.

Proposition 2.1 (IID Bound [29]). For any ε > 0, any loss function ℓ : (Z × Y) → R,
and any fixed h ∈ H, it holds with probability at least 1− δ, where δ = 2e−2mε2 , that⃓⃓

RDXY
(h; ℓ)−R(h; ℓ)

⃓⃓
≤ ε.

7
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Proof. We repeat the proof by Shalev-Shwartz & Ben-David [29, Sec. 4.2] for later ref-
erence. By letting θi = ℓ(h(xi), yi) and µ = R(h; ℓ), we apply Hoeffding’s inequality,
which states that, for 0 ≤ θi ≤ 1,

PD∼Pm

(︄⃓⃓⃓⃓
⃓ 1m

m∑︂
i=1

θi − µ

⃓⃓⃓⃓
⃓ > ε

)︄
≤ 2e−2mε2 = δ. (2.4)

We see that the converse event, i.e.,
⃓⃓
1
m

∑︁m
i1
θi − µ

⃓⃓
≤ ε, holds with probability at least

1 − δ. Taking Eq. 2.4 for granted would therefore already yield our claim ( ). For
later reference, however, we take another step back and prove Eq. 2.4 from Hoeffding’s
Lemma, which states that, for every λ > 0 and for any random variable X ∈ [a, b] with
Ex∼P(x) = 0,

Ex∼P(e
λx) ≤ e

λ2(b−a)2

8 . (2.5)

Letting zi = θi − µ and z̄ = 1
m

∑︁m
i=1 zi, we use i) monotonicity, ii) Markov’s inequality,

iii) independence, and iv) Eq. 2.5 with a = 0, b = 1, and λ = 4mε to see that

P(z̄ ≥ ε)
i)
= P(eλz̄ ≥ eλε)

ii)

≤ e−λε Ex∼P(e
λz̄)

iii)
= e−λε

m∏︂
i=1

Ex∼P(e
λzi/m)

iv)
= e−2mε2 .

(2.6)

We apply Eq. 2.6 to z̄ and to −z̄. We yield Eq. 2.4 via the union bound.

We substantiate our introduction of the ERM framework with the following example.
This example defines two popular loss functions for different learning tasks.

Example 2.1 (Logistic Loss and Squared Error). Let Y = {0, 1}. Examples of loss functions
ℓ : (Z × Y)→ R, which define the risk in ERM, are the logistic loss

ℓlogistic
(︁
h(x), y

)︁
= −y · ln

(︁
h(x)

)︁
− (1− y) · ln

(︁
1− h(x)

)︁
,

which is also known as the cross-entropy loss, and the squared error loss

ℓsquared
(︁
h(x), y

)︁
=
(︁
h(x)− y

)︁2
.

The former of these loss functions is frequently used in classification tasks, while the
latter is more frequently used in regression tasks.

Any risk that is defined through a loss function ℓ can be directly optimized through ERM.
However, some widely-acknowledged quality measures for binary classification cannot
be specified in terms of example-wise losses, i.e., these measures cannot be decomposed
in terms of Eqs. 2.1 and 2.2. Several measures of this kind, however, can be optimized
through a combination of ERM with a separate optimization of the decision threshold, as
we see in the following subsection.

8
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2.2.2. Thresholded Decision Functions for Binary Classification

An widely-acknowledged family of binary classifiers learns some real-valued decision
function h : X → R, which is then thresholded at some λ ∈ R to yield a binary predic-
tion

ˆ︁y = 1h(x)>λ =

{︄
1 if h(x) > λ

0 otherwise
(2.7)

We call this family of classifiers thresholded decision functions. The practical relevance of
this family stems from the fact that several important quality measures for binary classifi-
cation, including accuracy and the Fβ score, can indeed be optimized by classifiers of this
kind. More specifically, several quality measures Q : (X → Y)→ R have the following
property: if h(x) is a consistent estimate of the posterior probability P(Y = 1 | X = x),
there exists a threshold λQ ∈ R such that Eq. 2.7 approaches the Bayes-optimal classifier
with respect to Q in the large sample limit m → ∞. In other words: if h(x) is consis-
tent, we can optimize several quality measuresQmerely by selecting a suitable threshold
λQ. We employ thresholded decision functions in Chap. 5, where we show that they are
optimal even in spite of class-conditional label noise.

The requirement for consistent, binary hypothesesh : X → R is fulfilled by proper scoring
rules, for which ERM yields a consistent estimate of P(Y = 1 | X = x) by Def. 2.2 and
by Prop. 2.1. Therefore, we can use proper scoring rules to learn thresholded decision
functions that are optimal with respect to the mentioned quality measures.

Definition 2.2 (Proper Scoring Rule). We call a loss function ℓ : (Z × Y) → R a
proper scoring rule, if the expected lossR(h; ℓ), which is induced by ℓ, is minimized by the
hypothesis h∗(x) = P(Y = 1 | X = x), i.e., if

argmin
h∈H

R(h; ℓ) = P(Y = 1 | X).

Moreover, if h∗ is unique, we call ℓ strictly proper.

Example 2.2 (Logistic Loss and Squared Error—Revisited). Let Y = {0, 1}. Buja et al. [30]
show that two widely adopted loss functions, the logistic loss and the squared error loss
from Ex. 2.1 are indeed proper scoring rules. Therefore, these loss functions can be used
for learning optimal, thresholded decision functions.

A non-exhaustive list of quality measures, which are optimized through thresholded de-
cision functions, is given in Tab. 2.1. Some of these measures induce a fixed optimal
threshold, e.g. accuracy has an optimal threshold of 1

2 . Other measures induce an op-
timal threshold that depends on the Bayes utility Q∗ = suph∈HQ(h), which is usually
unknown. In these cases, it is possible to optimize the threshold on a hold-out set of
training data. To this end, Alg. 2.1 learns a consistent decision function h : X → R on
one part of the data and optimizes the decision threshold λ on another, disjunct part of
the data. Even though this algorithm is fairly straightforward, it is indeed consistent in

9
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Table 2.1.: Themost important qualitymeasuresQ : (X → Y)→ R for which the Bayes-optimal
classifier takes the form h∗(x) = 1 iff P(Y = 1 | X = x) > λQ, and h∗(x) = 0
otherwise, with an optimal thresholdλQ ∈ R. The Bayes utilityQ∗ = suph∈HQ(h) is
the optimal value of the quality measure, which is attained by h∗. We further write TP,
TN, FP, and FN for true positives, true negatives, false positives, and false negatives.
We give reference to publications which explicitly state the optimal threshold λQ; only
in case of the G measure, no explicit threshold is given.

quality measure Q definition optimal threshold λQ

accuracy TP+TN
TP+TN+FP+FN

1
2 [31], [32]

AM measure TPR+TNR
2 P(Y = 1) [33]

Fβ measure (1 + β2) ·
(︂

β2

Prec +
1

TPR

)︂−1
Q∗

1+β2 [34]

G measure
√
TPR · Prec [32]

Jaccard similarity TP
TP+FP+FN

Q∗

1+Q∗ [31]

precision / Prec TP
TP+FP Q∗ [31]

recall / TPR TP
TP+FN 0 [31]

terms of Q. Its consistency is independently proven by Koyejo et al. [31, Theorem 10]
and by Narasimhan et al. [32, Theorem 1]. Hence, we use Alg. 2.1 to optimize any of the
quality measures of from Tab. 2.1.

Tab. 2.1 lists only the most important quality measures that are optimized through thresh-
olded decision functions. Moreover, however, this family of measures also includes any
other measure that is a ratio of linear combinations of the numbers of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) [31]. Choi et al. [35]
present a large collection of such measures.

Algorithm 2.1 Two-step expected utility maximization [31], [32].
Input: a training set DXY = {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m}, a consistent learning algorithm
A :

⋃︁∞
m=1(X × Y)m → H, and a quality measure Q : (X → Y)→ R

Output: a binary classifier X → Y
1: split DXY into disjunct subsets Dh and Dλ

2: estimate h = A(Dh)
3: optimize λ∗ = argmax0≤λ≤1Q(1h(X)>λ) on Dλ

4: return 1h(X)>λ∗
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2.2. Supervised Machine Learning

2.2.3. Random Forests and Decision Trees

The random forest (RF) [36] is an ensemble method that aggregates the predictions from
multiple, randomized decision trees [37]. It is a popular tool in astro-particle physics,
where it is frequently used for classification [38], [39] and for regression tasks [40], [41].
In this thesis, we employ RFs in most of the experiments, due to their popularity and due
to their high performance on the astro-particle data that we analyse. Another central
advantage of RFs is that their out-of-bag (OOB) predictions can be used for consistent
adjustments of the resulting classifier. We benefit from this property in Chap. 4, where
we require OOB predictions for quantification-related adjustments, and in Chap. 5, where
we require OOB predictions for the tuning of decision thresholds. After the following
introduction of RFs, we also discuss boosted decision trees shortly.

Bagging Multiple methods for randomizing the trees in an RF have been proposed
[36]. Here, we employ the classical bagging approach [42], which trains each ensemble
member hi, where 1 ≤ i ≤ B in an ensemble of size B, with a bootstrap sample Di of
the training set DXY . Each of the bootstrap samples is obtained by randomly drawing,
with replacement, m training examples from DXY . Those examples that are not drawn,
DXY \Di, are called the OOB examples of hi. An additional source of randomness in RFs
is to consider, in each split of each tree, only a random subset of all features as splitting
candidates; we detail this splitting in a moment.

The scikit-learn1 implementation of RF classifiers, which we use throughout this thesis,
aggregates the predictions of the trained ensemble members hi by averaging the scores
which they return for each class 1 ≤ j ≤ C , i.e.,

[︁
h(x)

]︁
j
=

1

B

B∑︂
i=1

[︁
hi(x)

]︁
j
. (2.8)

The OOB prediction of each training example (x, y) ∈ DXY is averaged in a similar fash-
ion, but only regarding those ensemble members hi for which (x, y) is an OOB example
and, hence, has not been used during the training of hi. Thereby, OOB predictions are
produced for all examples of the training set without being subject to overfitting. In con-
trast to Eq. 2.8, the original proposal by Breiman [36] aggregates the predictions in terms
of voting, i.e., [h(x)]j = 1

B

∑︁B
i=1 1j=argmaxk[hi(x)]k , which, in our experience, produces

less accurate results on the astro-particle data that we analyse.

Decision Tree Induction Each individual tree in an RF is induced through the CART
algorithm [37], which creates an increasingly fine partition of the feature space. In par-
ticular, each iteration chooses a feature j ∈ I from an index set I ⊆ {1, . . . , d} and
a threshold t ∈ R. In RFs, we choose the index set I as a random subset of size ⌊

√
d⌋,

1
https://scikit-learn.org/
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which is drawn for each split individually. The combination of a feature j and a threshold
t splits the data into the segments

D(L)
i =

{︁
(x, y) ∈ Di : [x]j ≤ t

}︁
and D(R)

i =
{︁
(x, y) ∈ Di : [x]j > t

}︁
. (2.9)

Each iteration of CART chooses the split (j, t) that minimizes the impurity of the result-
ing segments. In classification, we measure the impurity of a segment in terms of its
entropy

Entropy(Di) = −
C∑︂

k=1

pk · ln(pk), where pk =
1

|Di|

|Di|∑︂
l=1

1yl=k (2.10)

and we choose each split (j, t) such that it minimizes the weighted average⃓⃓
D(L)

i

⃓⃓
|Di|

· Entropy
(︂
D(L)

i

)︂
+

⃓⃓
D(R)

i

⃓⃓
|Di|

· Entropy
(︂
D(R)

i

)︂
(2.11)

of the entropies that the resulting segments exhibit. The splitting according to Eq. 2.11
begins at the root node of the tree, where the entire bootstrap sampleDi is considered. It
is then recursively continued on both sidesD(L)

i andD(R)
i of every split, until a stopping

criterion is reached. The result of this procedure is a randomized decision tree, which aims
at a minimum entropy of its segments. Eq. 2.8 combines multiple trees in an RF.

Alternative: Boosting An alternative to combining multiple randomized trees via
bagging is to train an ensemble of decision tree classifiers via boosting. In contrast to
bagging, this approach does not train all trees in parallel, but sequentially: in each itera-
tion, the training set is re-weighted in a way that focuses the next tree on patterns that
the current ensemble does not yet regard. The popular AdaBoost algorithm [43] has been
applied to the data of the HESS [44] and VERITAS [45] telescopes.

For the MAGIC telescope, a stratified variant of this algorithm, Ada2Boost, has been con-
sidered [46], [47]. Its stratification weights the classes equally, which is desirable when
the area under the receiver operating characteristic (AUROC) is the quality metric [48].
This metric, in turn, is appropriate when the class proportions, which the classifier has to
handle during deployment, are entirely unknown [46]. In astro-particle physics, however,
these class proportions can indeed be estimated [16], [22]. Despite existing uncertainties
about this estimate, it is therefore not ideal to optimize AUROC; for any fixed threshold,
another classifier might perform better. Moreover, an equal weighting of the classes is
also achieved by simulating the classes in equal proportions. Due to these reasons, we fo-
cus our analyses on RFs, the standard learning method for the FACT telescope [49].

2.3. Domains and Prior Probability Shift

The supervised machine learning methods from Secs. 2.2.1–2.2.3 primarily address learn-
ing from identically and independently distributed (IID) data, which means that the train-
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ing set DXY is drawn from the same probability density that is also encountered during
the deployment of the learned model. Due to the assumption of IID data, we can learn
highly performant prediction models by maximizing a quality measure Q on DXY ; if
DXY is sufficiently large, the IID property ensures that our maximization of Q is accu-
rate. The IID assumption is, however, often inappropriate, particularly in the three learn-
ing tasks that we cover in this thesis. Fortunately, the research area of domain adaptation
[50], [51] proposes weaker, more appropriate assumptions, which explicitly allow the
training data and the deployment data to stem from different probability densities.

In this context, a domain is a joint probability density function P(X = x ∧ Y = y),
which corresponds to some particular data-generating process; a different process would
correspond to a different domain. To this end, let S be the source domain where amachine
learning model is trained and let T be the target domain where the trained model is
required to be valid. Domain adaptation is concernedwith the impact of deviationsS ̸= T
on the performance in T and with improving this performance.

In quantification and in active class selection, which we cover in Chap. 4 and in Chap. 6,
we assume that S and T differ at most in terms of their class proportions. In quantifica-
tion, this assumption arises naturally because the class proportions are the object that is
meant to be estimated. In active class selection, we intend to study the impact of a class-
conditional data generator, which induces some class proportions in S while T is fixed.
In both cases, we let all data, no matter if used for training or for testing, be generated by
the same, random mechanism Y → X . We define this assumption as follows:

Definition 2.3 (Identical MechanismAssumption [8] a.k.a. Prior Probability Shift
[52] or Target Shift [53]). Assume that all data in the domains S and T is generated
independently by the same class-conditional mechanism, i.e.,

PS(X = x | Y = y) = PT (X = x | Y = y) ∀x ∈ X , ∀ y ∈ Y.

Due to this equality, any deviation S ̸= T must stem from diverging class proportions, where
∃ y ∈ Y : PS(Y = y) ̸= PT (Y = y).

In astro-particle physics, where supervised models are applied to real telescope data but
are typically trained with simulated data, this assumption is a slight simplification. It is a
simplification because the real data and the simulated data actually come from different
mechanisms, i.e., from the real atmospheric particle interactions and from the simulation.
It is, however, only slight because the simulation is a highly sophisticated and accurate
model of these interactions. Therefore, we can assume that any deviation S ̸= T is at
least dominated by diverging class proportions. We detail the real particle interactions in
Sec. 3.2 and the simulation in Sec. 3.6.

2.4. Model Validation

For any trained machine learning model, the question is: how well does it perform? Find-
ing an answer to this question requires some specific definition of the term “performance”,
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which has to match the requirements of the particular use case at hand. To this end, we
have already introduced a set of quality measures in Tab. 2.1. Beyond this application-
specific aspect of model validation, however, exist general principles of model validation,
which are independent of the use case and the quality measure.

In the following sub-sections, we give an introduction to these principles, introduce crit-
ical difference diagrams as a way to summarize large sets of experiments, and define
several divergence measures for probability density functions. These tools provide the
foundation for the experiments that we present in Chapters 4–6.

2.4.1. Principles of Model Validation

A meaningful assessment of model performance has to address the generalization perfor-
mance of the model in question. This performance is often in contrast to the performance
exhibited on the data that are used for training; the difference between generalization
performance and training performance stems from the fact that complex models have
the capacity to memorize the training set instead of learning meaningful, underlying pat-
terns [54]. This behavior is known as overfitting and a meaningful assessment of model
performance has to be able to detect this behavior.

The most straightforward protocol for model validation is the training test split. In this
protocol, we randomly split the labeled data DXY into two disjunct subsets Dtrn ⊂ DXY

and Dtst ⊂ DXY , where Dtrn ∪ Dtst = DXY and Dtrn ∩ Dtst = ∅. We then use Dtrn

for training the model and Dtst for estimating its performance in terms of some quality
measure. The splitting ensures that the performance assessment does not over-estimate
the model performance in spite of overfitting. Unfortunately, however, omittingDtst dur-
ing training can decrease the performance of the model, as compared to training with
all available data. Moreover, a single split produces only one performance value without
exploring the distribution of this value, which stems from the random splitting.

These issues are addressed in cross validation. This alternative validation protocol ran-
domly splits the data intoK disjunct subsetsDi ⊂ DXY of an equal size, with 1 ≤ i ≤ K ,
DXY =

⋃︁K
i=1Di, and Di ∩ Dj = ∅ ∀ i ̸= j. Each of its K iterations employs Di as the

test set and all remaining data,
⋃︁

j ̸=iDj , for training. Finally, the performance estimates
of all iterations are averaged to obtain a robust, overall estimate. Through other statistics
of the performance values, like their standard deviation, we can further assess their dis-
tribution. By choosing an appropriate value for K , e.g., K = 10, we can use most of the
data for training, so that the model performance does not suffer from a reduced training
set size. However, cross validation is K times more expensive, computationally, than a
single training test split. In order to yield reliable results, we pay this price in all of our
experiments.

Most machine learning methods have hyper-parameters that have to be selected. This
purpose requires another performance assessment and, hence, another disjunct set of
labeled data. This so-called validation set can stem from a single split or from cross-
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12345

winner A
winner B

loser C
loser B
loser A

avg. rank

Figure 2.1.: An example of a CD diagram. Here, “winner A” and “winner B” are classification
methods that are statistically significantly better than the other methods, in terms
of a Holm-corrected Wilcoxon signed-rank test that considers some quality measure
across multiple data sets. We can tell from the horizontal positions that “winner
A” exhibits a lower average rank, and hence performs better on more data sets, than
“winner B”. However, since the two methods are not significantly different from each
other, we cannot conclude that “winner A” is indeed better than “winner B”.

validation splits, of which the performance estimates are averaged. In all experiments,
we select hyper-parameters according to their validation performance.

2.4.2. Critical Difference Diagrams

Critical difference (CD) diagrams [55], [56] describe an evaluation process that is specif-
ically designed for statistically valid comparisons of multiple machine learning methods
across multiple data sets. In the resulting diagram, the horizontal axis plots the aver-
age rank (lower is better) of each method, in terms of some quality measure, across all
data sets. From these ranks, a beholder can tell which method frequently wins against
the others. Most importantly, however, a CD diagram connects, with horizontal bars,
those methods that a Holm-corrected Wilcoxon signed-rank hypothesis test cannot sig-
nificantly distinguish. Consequently, all missing connections indicate the presence of
statistically significant differences between the competing methods. An example diagram,
which illustrates these features, is shown in Fig. 2.1. We employ CD diagrams in Chap-
ters 5–6, to evaluate the performance of multiple machine learning methods, relative to
each other, across multiple data sets.

The expressive power of CD diagrams stems not only from their concise visualization, but
also from the hypothesis tests that they involve. The process of generating a CD diagram
is particularly designed with machine learning experiments in mind [55]. This process
consists of the following steps:

Experimental Results The first step in generating a CD diagram is to produce a set of
experimental results, i.e., to compute some performance metric for each combina-
tion of a method and a data set. Since CD diagrams do not account for the variances
of these results, it is important to ensure robust performance estimates, preferably
cross-validated, average performance values.
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Friedman Test The second step is to conduct a Friedman test, which tells us whether
the results exhibit any significant differences at all. If this test fails, we have not
sufficient data to tell any of the methods apart and we must abort the generation
of the CD diagram. If, however, the test successfully rejects this possibility, we
can place each method at the position of its average rank and proceed with the
evaluation.

Post-hoc Analysis In this third step, a Wilcoxon signed-rank test tells us whether each
pair of methods exhibits a statistically significant difference across all data set-wise
performance values; hence, it tells us whether one method is significantly better
than the other. Since we are now testing many hypotheses at the same time, we
must adjust each Wilcoxon test with Holm’s method. This adjustment effectively
reduces the p-value of each individual test so that the outcomes of all tests are valid
simultaneously, within an overall p-value budget that is defined by the user. In the
CD diagram, we then connect all methods that the Holm-corrected Wilcoxon test
cannot distinguish.

The original proposal by Demšar was to use a Nemenyi test in the post-hoc anal-
ysis [55]. However, the argument by Benavoli et al. [56] establishes the Wilcoxon
signed-rank test as a more appropriate choice.

We conclude that CD diagrams can concisely present the outcomes of large sets of experi-
ments, in a statistically valid form. During the course of this thesis, we have implemented
the above process in reusable open source software.2

2.4.3. Divergence Measures for Probability Densities

In the following, we present divergence measures which assess the dissimilarity between
probability density functions P and Q, which are defined over the same support. We use
these measures to study the error of quantification outcomes in Chap. 4 and to study the
theoretical implications of active class selection in Chap. 6.

Definition 2.4 (Kullback-LeiblerDivergence [57]). LetP : Z → R andQ : Z → R be
two probability density functions over the same support set Z with P (z) > 0 andQ(z) > 0
for all z ∈ Z . The differential Kullback-Leibler (KL) divergence between P and Q is

KLZ (P || Q) = E z∼P

(︃
ln

P (z)

Q(z)

)︃
=

∫︂
Z
P (z) · ln P (z)

Q(z)
dz.

For two joint densities P : X × Y → R and Q : X × Y → R, we further define the
conditional KL divergence, assuming that the corresponding conditional densities P (y | x)
and Q(y | x) exist, as

KLY |X (P || Q) = E(x,y)∼P

(︃
ln

P (y | x)
Q(y | x)

)︃
=

∫︂
X×Y

P (x, y) · ln P (y | x)
Q(y | x)

dx dy.

2
https://github.com/mirkobunse/CriticalDifferenceDiagrams.jl
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A part of our theoretical analysis of active class selection in Chap. 6 is based on the fol-
lowing properties of KL divergences:

Proposition 2.2. Let P and Q be fixed. By omitting their explicit mentioning, we ab-
breviate KLZ (P || Q) with KLZ . Moreover, let KLX,Y be the KL divergence between the
joint densities of X and Y . KL divergences have the following properties [57]:

i) KLZ ≥ 0, where KLZ = 0 iff P = Q. The same property holds for KLY |X .

ii) KLX,Y = KLY |X + KLX = KLX|Y + KLY . This property is known as the chain
rule of KL divergences.

Proof. These properties follow from Def. 2.4, with detail provided in [57, Theorem 2.6.3
and Theorem 2.5.3].

The following divergence measures are required in Chap. 4, where we compare quan-
tification outcomes to ground-truth class prevalences. Since classes are categorical, we
can perfectly represent all probability density functions, in this case, as vectors p ∈ RC

and q ∈ RC , where C is the number of classes. For conciseness, we therefore define the
following divergence measures already in terms of vectors p and q, instead of defining
them in terms of continuous probability density functions P and Q. To this end, we first
define the space PC of admissible vectors. This definition allows us to write p ∈ PC

and q ∈ PC for requiring valid vector representations of probability density functions in
Definitions. 2.6–2.8.

Definition 2.5 (Vector Representation of Probability Density Functions). Any vec-
tor in the unit simplex

PC =

{︃
p ∈ RC : [p]i ≥ 0 ∀ 1 ≤ i ≤ C ∧ 1 =

C∑︂
i=1

[p]i

}︃
.

is a valid representation of a probability density function over the set Y = {1, . . . , C}.

These vectors can directly be interpreted as probabilities, i.e., [p]i = P (Y = i) and
[q]i = Q(Y = i). We use this vector representation to compute the following divergence
measures.

Definition 2.6 (Hellinger Distance). Let p ∈ PC and q ∈ PC be the vector represen-
tation of two probability density functions over Y = {1, . . . , C}. The Hellinger distance
between p and q is

HD(p, q) =

⌜⃓⃓⎷ C∑︂
i=1

(︂√︁
[p ]i −

√︁
[q ]i

)︂2
.
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Definition 2.7 (EarthMover’s Distance [58], a.k.a. Match Distance [59] orWasser-
stein Metric). Let p ∈ PC and q ∈ PC be the vector representation of two probability den-
sity functions over Y = {1, . . . , C}. The earth mover’s distance (EMD) between p and q is

EMD(p, q) =
C−1∑︂
i=1

di ·
⃓⃓⃓⃓ i∑︂
j=1

[p]i − [q]i

⃓⃓⃓⃓
,

where di ∈ R is the ground distance between the consecutive vector components i and i+1.
Throughout this thesis, we set di = 1 ∀ 1 ≤ i ≤ C − 1.

At this point, we note that the EMD [58], the match distance [59] and the Wasserstein
metric originally address different levels of generality. These distances coincide only if
we consider one-dimensional histograms, as we do in Def. 2.7.

In order to constrain the EMD to interpretable values between zero and one, Sakai [60]
proposes a normalized variant of this distance. This normalized distance, evaluated be-
tween a quantification outcome p and a ground-truth vector q, is the main performance
measure in our experiments from Chap. 4.

Definition 2.8 (Normalized Match Distance [60]). Let p ∈ PC and q ∈ PC be the
vector representation of two probability density functions over Y = {1, . . . , C}. The nor-
malized match distance (NMD) between p and q is

NMD(p, q) =
1

C − 1
· EMD(p, q).
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3. Acquiring Knowledge
in Astro-Particle Physics

Modern astro-particle physics is a three-decade old research field at the intersection be-
tween astronomy and particle physics [15], [24]. In this field, scientific knowledge is
continuously expanded with the analysis outcomes of telescope data. In this chapter, we
introduce the research goals of astro-particle physics and the machine learning tasks that
have to be solved in pursuing these goals.

Where appropriate, we illustrate this introductionwith the specifics of the FACT telescope
[49], a small gamma-ray telescope on the Canary Island of La Palma, Spain. This focus
is motivated in the availability of a comprehensive, open data set3 and an open analysis
pipeline,4 which we employ throughout the experiments of this thesis. In contrast, the
data of most other telescopes is kept private by the collaborations which operate these
telescopes. Since this policy hinders reproducibility, we focus on the FACT data.

Most notably, the FACT collaboration has published the entire set of simulated and labeled
data, which their standard analysis employs. This data is continuously updated. A data
set of this kind is indispensable not only for the training of machine learning models, but
also for their validation. Hence, we use this data in all astro-particle experiments.

However, not all data of the FACT telescope is public. With the exception of an open
sample of Crab nebula observations, no real data of the telescope is publicly available.
Through our long-standing interdisciplinary collaboration with astro-particle physicists,
however, we have been granted access to a considerable part of the closed data. Where
appropriate, we leverage this opportunity in the experiments of this thesis. In particular,
we use closed meta-data of the effective areas of the telescope in Chap. 4 and we use
closed data samples of three gamma ray sources in Chap. 5. Since all of the closed data
are unlabeled, however, their applicability is limited to these cases.

We begin the present chapter with Sec. 3.1, where we introduce the research questions
of modern astro-particle physics. Sec. 3.2 presents the imaging atmospheric Cherenkov
technique, throughwhich ground-based telescopes like FACT detect cosmic gamma radia-
tion to answer these questions. The Cherenkov technique poses several machine learning
tasks, which are introduced in Secs. 3.3–3.5. Namely, the reconstruction of energy spec-
tra is presented in Sec. 3.3, the detection of cosmic gamma ray sources in Sec. 3.4, and
gamma hadron classification in Sec. 3.5. We detail the production of labeled training data

3
https://factdata.app.tu-dortmund.de/

4
https://github.com/fact-project/open_crab_sample_analysis
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through simulations in Sec. 3.6 and the processing of the telescope data in Sec. 3.7. Our
presentation is complemented with Sec. 3.8, where we discuss probabilistic rationalism,
the epistemological background of acquiring knowledge in particle physics.

3.1. Scientific Relevance of Astro-Physical Particles

The astronomical observation of the sky dates back at least to the Stone Ages [61]. Galileo
revolutionized this part of human culture in 1609, in being the first who used an optical
telescope to observe objects that appear too small or too dim for an observation with
the naked eye. In the following centuries, the increasing quality of optical telescopes al-
lowed astronomers to explore the universe in more and more detail. However, optical
telescopes are limited to observing the visible light, which only makes up a small part
of the electromagnetic spectrum. This limitation was set aside in the 20th century, when
additional wavelengths became observable through infra-red telescopes, ultra-violet tele-
scopes, radio telescopes, X-ray telescopes, and sub-millimeter telescopes. In 1989, the first
detection of a cosmic gamma ray source by a ground-based telescope was reported [62].
Together, all of these telescopes observe photons that range from low-energy radio waves
to high-energy gamma particles. In addition to these photons, Earth is also bombarded
by charged particles, which are called cosmic rays, and by neutrinos. In 2016, we further
witnessed the first detection of gravitational waves [63] on Earth.

All of the aforementioned types of particles, except for cosmic rays, carry information
about their origin. Therefore, they reveal much more about the universe than visible
light alone could reveal. Not only can we discover the locations of celestial objects that
are not visible otherwise, but also their properties. Even more fundamentally, we can
learn about the physical processes that are at work throughout the universe and within
the most extreme cosmic environments, which accelerate particles to energies that an
artificial particle accelerator on Earth could never provide. Each type of cosmic particle
bears its own secrets to be uncovered and its own challenges in being detected, hence the
multitude of specialized telescopes.

This thesis is mainly focused on the detection and analysis of very-high energy gamma
radiation. Observations of this radiation can help astro-particle physicists in addressing
several scientific questions of fundamental physics [22], [64]:

What is the origin of cosmic rays? In 1912, Victor Hess discovered cosmic rays in a
series of balloon flights [65]. His discovery was the first evidence for the existence
of acceleration processes that exceed the energies explainable by the thermal emis-
sion processes that can be observed with optical telescopes. However, no such ac-
celeration process has yet been identified with certainty [64], [66]. Energy spectra
of gamma ray sources, see Sec. 3.3, have the potential to support a future identifi-
cation of such a process.

How do extreme environments accelerate particles? Active galactic nuclei, gamma
ray bursts, and binary systems can accelerate particles in directed jets of plasma, a
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process that is not yet fully understood [66]. Precise measurements of the gamma-
ray outflows of these systems are required for improving our understanding of the
acceleration processes at work [64].

What is the nature of dark matter? There is strong evidence about the existence of
an unknown form of gravitating matter. However, the kinds of particles that make
up this so-called dark matter are still to be discovered. High-energy gamma rays
have the potential to uncover these particles from distortions [66] and excesses [64]
in energy spectra.

As of today, ground-based gamma ray telescopes have detected over 220 sources of very-
high energy gamma rays.5 Precise measurements of these objects have already helped
in constraining some of the competing theories about fundamental physical processes at
the cosmic scale [61].

3.2. Imaging Atmospheric Cherenkov Telescopes

Imaging atmospheric Cherenkov telescopes (IACTs) are gamma ray telescopes that are
placed on the surface of our planet. Since these ground-based telescopes can observe
even the most energetic gamma radiation, they are important devices for addressing the
scientific questions raised above. FACT [49] is a comparably small telescope of this kind,
which is located on the Canary Island of La Palma, Spain. Other notable IACTs of today
are HESS [68], [69], MAGIC [70], and VERITAS [71]. Soon, also the Cherenkov Tele-
scope Array (CTA) [72] will become operational. This array of about hundred individual
telescopes is expected to outmatch all of the preceding IACTs in terms of scale and sen-
sitivity [64]; however, CTA employs the same detection mechanism as the other IACTs
and, hence, poses the same machine learning tasks.

The detection mechanism of IACTs, the imaging atmospheric Cherenkov technique [62],
critically depends on simulations and machine learning. The reason for this dependency
is that IACTs detect gamma radiation only indirectly, through physical processes that are
triggered by gamma rays. An analysis of the gamma radiation requires that the properties
of the radiation are reconstructed from the processes that an IACT observes. Since no
definite rules for this reconstruction are known a priori, it is necessary to learn these
rules from data that is simulated. We detail the machine learning tasks, which IACTs
pose in this regard, in the following sections.

The indirect detection mechanism of IACTs is sketched in Fig. 3.1. This detection mech-
anism begins with a primary particle, ideally a gamma ray that originates in a distant,
cosmic gamma ray source. When this particle hits Earth’s atmosphere, it interacts with
the molecules therein, forming an extensive air shower (EAS). This EAS consists of sec-
ondary particles, which are products of particle interactions; these secondary particles
interact further, adding even more secondary particles to the EAS. Some of the particles

5
http://tevcat.uchicago.edu/, catalog version 3.400, by Wakely and Horan [67]
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atmosphere

Earth

iv) telescope

• i) primary particle

ii) extensive air shower

iii) Cherenkov light

Figure 3.1.: A primary particle, such as a gamma ray or a cosmic ray, interacts in planet Earth’s
atmosphere. This interaction produces a cascade of secondary particles, the extensive
air shower. Some of the secondary particles inside this shower emit Cherenkov light,
which is recorded by an IACT. This figure is adapted from Bockermann et al. [16].

in an EAS travel faster than light travels through the atmosphere. Therefore, they emit
light, due to theCherenkov effect. The resulting light, the so-called Cherenkov light, can be
recorded with specialized cameras. IACTs use these cameras together with large mirrors
to leverage the Cherenkov effect in detecting cosmic gamma radiation. The Cherenkov
light that an IACT records is a picture of the EAS, and the properties of the EAS are a
picture of the primary gamma ray, in which astro-particle physicists are interested. In
order to analyze the sources of cosmic gamma radiation, physicists have to reconstruct
the properties of each primary particle from the resulting camera recordings.

Fortunately, the interaction processes within the atmosphere are well-understood. This
knowledge about particle interactions is implemented in sophisticated simulations, which
precisely mimic the real detection mechanism from Fig. 3.1. These simulations allow us
to produce synthetic, high-quality IACT recordings, represented by features x ∈ X , for
any hypothetical input gamma ray with properties y ∈ Y . We turn to the details of this
production in Sec. 3.6.

Unfortunately, a simulation Y → X cannot reconstruct its input y from an observation x
that is given by a real IACT. For this purpose, it is necessary to learn a prediction model
X → Y from the simulated data. Operating an IACT hence requires not only simulations,
but also machine learning techniques to translate the fundamental knowledge of the sim-
ulation into practical knowledge about the telescope recordings. This practical, learned
knowledge aims at the reconstruction of energy spectra (see Sec. 3.3), at the detection of
gamma ray sources (see Sec. 3.4), and at the separation of gamma rays from a hadronic
background (see Sec. 3.5).
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3.3. Reconstruction of Energy Spectra

The fundamental questions about the origin of cosmic rays, particle acceleration pro-
cesses, and the nature of dark matter are closely connected to energy spectra, i.e., to the
distribution of gamma ray energies that each gamma ray source exhibits. For instance, a
strong hint for a gamma ray source being an origin of cosmic rays would be an energy
distribution that can only be explained through a hadronic acceleration process [22]. Like-
wise, hints for dark matter can stem from distortions [66] and excesses [64] in the energy
spectra of gamma rays. Answering these fundamental questions of astro-particle physics
therefore requires precise measurements of the energy distributions that cosmic gamma
ray sources exhibit.

A key difficulty in measuring an energy spectrum with an IACT is that an IACT cannot
measure the energy of gamma rays directly. Instead, IACTs record Cherenkov light, which
is correlated with the energy, but which does not allow for inferring the definite energy
value of each gamma ray. Therefore, the desired energy spectrum has to be reconstructed
from the set of Cherenkov light recordings that an IACT has taken for a gamma ray source
under study. The correlation between energy and Cherenkov light, as learned from astro-
particle simulations, provides the basis for this reconstruction.

Formally, we intend to find the probability density function P (y) = P(Y = y) of energy
values y ∈ Y . This density can then be scaled to the expected rate of particles per energy,
per area, per time, and per solid angle. Typically, an analysis of this kind focuses on an
interval Y = [Emin, Emax) of gamma ray energies. However, an IACT measures, instead
of y, a set of Cherenkov light recordingsDX = {xi ∈ X : 1 ≤ i ≤ m}, as represented by
a feature space X , for the gamma ray source under study. Therefore, the reconstruction
of P from DX requires a mapping

(∪∞m=1Xm) → (R→ R), (3.1)

which returns a probability density P ∈ (R → R) for any input data set DX ∈ Xm. In
this formalization, we allow for any numberm of Cherenkov light recordings inDX . The
individual recordings x ∈ DX are also called events.

The first step in defining the mapping from Eq. 3.1 is to represent DX as a probabil-
ity density Q(x) = PDX

(X = x) of the feature space. This representation leads to a
probabilistic view-point, where the densities P andQ are related through the conditional
probability density M(x | y) = P(X = x | Y = y) of measuring x when the unknown
energy value of the gamma ray is y. In this view-point, the measured probability density
Q is defined through the law of total probability,

Q(x) =

∫︂
Y
M(x | y) · P (y) dy, (3.2)

and the reconstruction of P consists in selecting the most likely P for a given Q and
M . At this point, Q is obtained from the telescope recordings DX and M is learned
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from labeled training data {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m′}, which is provided by a
simulation.

The specification of some Q from DX , the learning of some M from training data, and
the selection of P from Q and M require free parameters for Q, M , and P , which are
chosen in accordance to the respective data set. In the reconstruction of energy spectra,
a typical, approximate representation of probability densities is the histogram [73], [74].
Considering C bins for the gamma ray energy, hence, we limit our reconstructions to
probability densities P that can be described as a histogram vector p ∈ RC of bin-wise
probabilities [p]i = P(Y ≡ i). Likewise, a histogram of Q, with F bins, can be described
as a vector q ∈ RF with components [q]i = P(X ≡ i). These approximations lead to a
system of linear equations,

q = M · p, (3.3)

in which each cell [M]ij of the matrix M defines the conditional probability of measuring
a gamma ray in the j-th bin of q when i is the true bin in p.

The physical interpretation of p requires a scaling from probabilities [p]i to the expected
rate of particles per area, per time, and per solid angle. This scaling is taken out as a
component-wise multiplication a ⊙ p, where a ∈ RC is a vector of acceptance factors.
These factors model the detection efficiency of the telescope for each energy bin. The al-
most linear appearance, in a log-log plot where both axes are logarithmic, of the corrected
vector a⊙p is typically leveraged in the regularization of p. We employ this regularization
for ordinal quantification algorithms in Chap. 4. For the FACT data, we have computed
the acceptance factors a from closed meta-data, to which we have been granted access
through our long-standing collaboration with astro-particle physicists.

The histogram representation of P essentially maps the continuous target quantity Y
to an ordered set of classes, where each bin represents one class. In principle, we could
approach the estimation of p by learning a classifier, which predicts the energy bin of each
event, from simulations; we could then count the number of predictions in each bin to
estimate the histogram p for a data sample DX . While this simple counting of prediction
is not Fisher-consistent [75], it connects the reconstruction of energy spectra to ordinal
quantification, a machine learning task that we elaborate in Chap. 4.

An alternative way of estimating energy spectra is to pre-impose a parametric family
of functions for P , typically with parameters that are interpretable in terms of physical
theories about the spectrum. While interpretability is an advantage of this approach, the
assumption of a parametric family of functions, and the theory they represent, poses a
clear disadvantage. From this disadvantage stems a risk of overfitting: does a parameter
value stem from a real physical phenomenon or do we witness a circular argument due to
the pre-imposed theory? In physics literature, the parametric approach is called “Forward
folding”, while the solution of Eq. 3.3 is called “unfolding”. In this work, we focus on the
latter, due to its lower risk of overfitting, due to its importance for addressing fundamental
questions of physics, and due to its close connection to ordinal quantification.
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pointing position A pointing position B

source position (fixed)

field of view (moving)

“on” region

“off” region

Figure 3.2.: Illustration of the wobble mode for source detection. We are displaying a move-
ment of the camera, which alternates between two pointing positions A and B. Each
pointing position places the assumed source position at a non-zero distance from
the center of the field of view. The region around this position is observed as the
“on” region. Other regions, at the same distance from the center, are simultaneously
observed as “off” regions. After some time, the telescope moves to the other point-
ing position. The FACT telescope [49] typically employs two pointing positions and
five background regions for observing the Crab nebula, as illustrated here, but other
numbers of pointing positions and background regions are also feasible.

3.4. Source Detection

Before some particular source of gamma radiation can be analyzed, e.g., in terms of its
energy spectrum, we need to establish a sufficiently certain detection of this source. This
requirement translates to finding sufficient empirical support for the claim that the IACT
is able to “see” the source in the data. This support is not yet established by merely
recording some gamma ray candidates from the direction of the source because most of
these candidates might not actually be gamma rays. In particular, an IACT can mistake
other particles as gamma rays, as we detail in the next section. Due to these background
events, we must show that the direction of an assumed gamma ray source exhibits a
sufficiently large excess in gamma radiation over other directions, where no gamma ray
source is assumed. Only then we can claim that the telescope has successfully detected a
gamma ray source.

We refer to the region around the assumed gamma ray source as the “on” region and to
any region where no gamma ray source is assumed as an “off” region. The IACT must
record data from both types of regions to enable an assessment of the excess in gamma
radiation that the “on” region exhibits. A simultaneous recording of both types is taken
out, for instance, in the so-called wobble mode from Fig. 3.2. This mode of operating an
IACT points the telescope such that the “on” region is placed at some distance from the
center of the telescope’s field of view. At the same distance, multiple “off” regions are
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placed. As time passes, the telescope moves between different pointing positions, each
of which observes “on” and “off” regions simultaneously. This characteristic, alternating
movement of the telescope is colloquially described as “wobbling”, which coined the name
of the wobble mode of operation.

Observing an assumed gamma ray source over an extended period of time provides us
withNon gamma ray candidates in the “on” region andNoff background gamma ray can-
didates in all “off” regions. A detection requires us to show that the excess count of gamma
rays, which we have observed in the “on” region,

Non − α ·Noff, (3.4)

is not just a random artifact but a statistically significant outcome of the observation.
Here, the scaling factor

α =
Aon

Aoff
. (3.5)

allows for a fair comparison betweenNon andNoff even if the areaAon of the “on” region
and the total area of all “off” regions, Aoff, differ from each other. Such different areas are
typical; in Fig. 3.2, for instance, we have n = 5 “off” regions, each spanning the same area
as the “on” region. Hence, the total area of all “off” regions is Aoff = n ·Aon and a scaling
in terms of α is necessary.

To establish the statistical significance of an observation, Li and Ma [76] have proposed
a hypothesis test, which is, by now, the conventional way of realizing source detections
with IACTs. This hypothesis test appropriately models the counts Non and Noff as being
Poisson-distributed with the rates λon and λoff. The hypothesis test consists in checking
whether these rates, scaled by α, are indeed significantly different from each other.

Definition 3.1 (Li & Ma hypothesis test for source detection [76]). Let Non be the
number of gamma ray candidates in the “on” region and let Noff be the number of back-
ground gamma ray candidates in all “off” regions. Moreover, let N : R → [0, 1] be the
cumulative density function of the standard normal distribution. The p-value for rejecting
the null hypothesis h0 : λon ≤ α · λoff is

p = 1−N (fα(Non, Noff)),

fα(Non, Noff) =

[︃
2Non · ln

(︃
1 + α

α
· Non

Non +Noff

)︃
+2Noff · ln

(︃
(1 + α) · Noff

Non +Noff

)︃]︃1/2
.

In gamma ray astronomy, a detection typically succeeds when the test statistic fα exceeds
a value of 5. We are then speaking of a “five sigma detection”, which amounts to a p-value
of 2.87 ·10−7. At this immense level of required significance, it is more practical, and thus
conventional in gamma ray astronomy, to report the values of fα instead of reporting the
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Figure 3.3.: A cosmic source emits gamma rays and hadronic particles. While gamma rays travel
straight through space, hadrons are being deflected by inter-stellar magnetic fields.
Therefore, we cannot know in which cosmic source a hadron originates. Unfortu-
nately, both particle classes, gamma rays and hadronic particles, induce extensive air
showers in Earth’s atmosphere, which are then recorded by IACTs. To obtain a clean
sample of gamma ray observations, we have to separate these two particle classes
from each other.

corresponding p-values. In Chap. 5, we use fα to evaluate classification models because
a high significance of a detection is an indicator of an effective gamma hadron classifier.
To this end, we employ closed data of three gamma ray sources.

3.5. Gamma Hadron Classification

Reconstructions of energy spectra and detections of gamma ray sources require IACT
recordings of cosmic gamma rays, in particular. Unfortunately, the extensive air showers
that IACTs record are not only triggered by gamma rays. Another class of primary par-
ticles, which trigger air showers, consists of hadronic particles. As a consequence, these
particles end up as additional, undesired IACT recordings. An analysis of the gamma ra-
diation, e.g., the reconstruction of an energy spectrum or the detection of a gamma ray
source, therefore requires the separation of the relevant gamma ray recordings from the
undesired hadron recordings.

The reasonwhy hadronic particles are undesired is illustrated in Fig. 3.3. In fact, these par-
ticles can originate in the same sources as the relevant gamma rays. However, hadronic
particles are charged. Therefore, they are deflected by inter-stellar magnetic fields, thus
reaching Earth from directions that do not reveal the position of their origin. Even if all
magnetic fields were known, the uncertainty in their energy estimates would render a
position estimation infeasible [61]. Gamma rays, in contrast, are not deflected by mag-
netic fields; they travel in straight lines, thereby allowing us to reconstruct the positions
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of their origins from IACT recordings. This difference between gamma rays and hadronic
particles makes a separation between the two particle classes indispensable.

The separation of gamma rays from hadronic particles amounts to a classical, binary
classification task X → {“gamma”, “hadron”}, where X is again the feature space of
IACT recordings. Typically, the binary classifiers for this task are trained with simulated
data [16], [39], [77], for which the binary class label is known by design. The real tele-
scope observations are never labeled in these terms. Alternatively, however, we see in
Chap. 5 that noisy, weak labels from the real observations can be employed for training
competitive gamma hadron classifiers without any simulated data.

3.6. Simulation of Telescope Data

The reconstruction of energy spectra, the detection of gamma ray sources, and the clas-
sification into gamma rays and hadrons require labeled training data to learn to predict
particle properties y ∈ Y from unlabeled telescope recordings x ∈ X . These particle
properties comprise the particle class (gamma ray or hadron), the energy of the particle,
and its direction of origin. For the real telescope data, these properties are never known
because no artificial source of these particles exists for the energy regime that is probed
by IACTs. Hence, no real, labeled data is available and simulations must be employed,
instead. Fortunately, the FACT collaboration has published the entire set of simulated
data that are used in their standard analysis.4

In order to produce realistic data, from which valid prediction models can be learned,
it is necessary to simulate all processes that “generate” the data in the real world. As
shown in Fig. 3.1, these processes include the formation of an extensive air shower (EAS),
the production of Cherenkov light, and the data acquisition through an IACT. Due to the
diversity of these processes, physicists have developed the simulation as a combination
of several components, each of which is dedicated to some particular aspect of the real
measurement process. These components are:

Particle Interactions The simulation of particle interactions begins in the moment in
which a primary particle enters Earth’s atmosphere. From there on, the simulation
covers the development of the entire EAS, as shown in steps i) and ii) of Fig. 3.1.
For this purpose, the widely-used simulation software CORSIKA [78] employs sep-
aratemodels for electromagnetic interactions (e.g., EGS4 [79]), for hadronic interac-
tions below 80 GeV (e.g., UrQMD [80]) and for hadronic interactions above 80 GeV
(e.g., EPOS-LHC [81]) [22]. Each of these models comprises a plethora of physical
processes, e.g., annihilation, scattering, bending, and particle production processes
[82]. Hence, they require comprehensive knowledge of the involved, fundamental
particle interactions. However, the small angles, at which some of these interac-
tions occur, exceed the capacity of physical experiments, like the large hadron col-
lider at CERN. Therefore, the involved processes have to be extrapolated, in terms
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of theoretical models, from lower energy regimes [78]. This extrapolation is the
subject of continuous improvements of the simulation pipeline.

Cherenkov Light Production The sensitivity of IACTs requires an accurate simulation
of the Cherenkov light that an EAS produces, see step iii) in Fig. 3.1. This require-
ment introduces a necessity to account for the density and the refraction of the
atmosphere, which have to be measured or estimated for all relevant altitudes. In
CORSIKA, the production of Cherenkov light is implemented through the iact/atmo
extension [82].

Detector Response An IACT consists of a segmented reflector with multiple mirrors,
of a specialized camera, and of read-out electronics. Each of these components
has an influence on the telescope recordings that needs to be simulated. For this
purpose, the simulation software CERES [83] models the absorption of photons,
their reflection in the mirrors, and the behavior of the camera and the electronics,
see step iv) in Fig. 3.1. The input of CERES is the position and arrival time of each
Cherenkov photon that CORSIKA has simulated.

Many of the software components mentioned above are being continuously developed
since decades. Most importantly, they are being continuously updated with the latest fun-
damental knowledge that particle physicists acquire about the interactions of the involved
particles. So to speak, the simulated data comprises nothing less than the state-of-the-art
of our understanding of particle interactions inside Earth’s atmosphere. Therefore, the
simulation is an ideal provider for labeled training data that agrees well with the data of
a real IACT. However, the level of detail that the simulation exhibits poses a consider-
able challenge with respect to the resource footprint of IACT analyses. We address this
challenge in Chap. 6.

The input of the simulation pipeline is the description of some primary particle [22], [78]
in terms of particle properties y ∈ Y that an IACT cannotmeasure directly. For each input
particle, the simulation produces a synthetic telescope observation x ∈ X , similar to the
detection process of a real IACT. The description of the primary particle includes:

Particle Energy One input of the simulation is the desired particle energy. This infor-
mation is later used in the reconstruction of energy spectra.

Direction of Origin Another input of the simulation is the direction, in which the pri-
mary particle originates. This information is later used to predict whether a tele-
scope observation comes from the “on” region or from an “off” region.

Particle Class Also the particle class, i.e., gamma ray or hadron, is specified as an in-
put of the simulation. This information is later used as the class label for training
gamma hadron classifiers.

Typically, the data are produced in batches, where the input either consists of fixed val-
ues or of distributions of particle properties. In the latter case, the simulation software
samples all individual particles in the batch from the given distribution.
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Since the simulation pipeline generates data only for specifically chosen classes, we can
consider this pipeline as a class-conditional data generatorY → X , for whichwe elaborate
the employment of active class selection techniques in Chap. 6. One particular aspect that
we cover in this regard is that the real-world distribution of particle classes is not precisely
known; hence, uncertainties have to be addressed.

The investigation of complex systems through simulations finds applications not only in
astro-particle physics, but also in several other areas of science and engineering. Recently,
there is an increase of attention towards the employment of simulated data particularly
for machine learning, an integration that is sometimes termed simulation data mining
[84]–[87]. The goal of this integration is to reason about a real system under study, by
learning from data which are generated by a simulation of that system. In fact, acquiring
data from the real system is often costly or even impossible, e.g., if the actual system is
still in the design phase and not yet deployed. In contrast, simulations have the potential
to provide large volumes of data, only at the expense of their computation. However, the
need for accurate simulations often leads to complex simulation models, which result in
high resource demands.

3.7. Data Processing

The raw data from the telescope and the raw data from the simulation consist of small
video sequences that picture the evolvements of extensive air showers over short time
scales. The FACT telescope, for instance, records a sequence of 300 frames, which cover
just 150 nanoseconds, where each frame contains 1440 pixels [22]. Each of the twoMAGIC
telescopes records a sequence of 50 frames, which cover just 30 nanoseconds, where each
frame contains 1039 pixels [20]. Not only is this raw data extremely noisy; it is also
biased by environmental conditions, such as temperature and background light. These
conditions affect the hardware of the telescope and, hence, the data.

In order to facilitate effective machine learning for IACTs, it is necessary to de-noise and
correct the raw data of the telescope and the raw data of the simulation. Further process-
ing of the data additionally assists the learning algorithms in finding meaningful patterns.
Hence, the data processing pipeline of IACTs is a central element in predicting the prop-
erties of the primary particles, which are indispensable in the reconstruction of energy
spectra, in the detection of gamma ray sources, and in gamma hadron classification. In
particular, a typical processing pipeline consists of the following steps:

Calibration and Correction Changing environmental conditions require the telescope
to be re-calibrated frequently. For this purpose, the environmental conditions are
tracked and their influence on the raw video sequences is corrected [88]. Also,
the inherent noise of the data, e.g., sampling errors and spike voltages, is rectified.
Some simulations allow us to omit some of these actions because the correspond-
ing artifacts are not being simulated. For instance, CERES [83] does not simulate
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sampling errors and possible jumps in pixel intensities [22]. The real data always
require this processing step.

Signal Extraction To reduce the complexity of the data, each of the calibrated video
sequences is reduced to two images that represent the video sequence sufficiently
well [22], [89]. The first image pictures the total, estimated number of photons that
is recorded by each pixel over the entire video sequence. The second image pictures
the mean, estimated arrival time of photons in each pixel.

Image Cleaning Typically, the majority of pixels does not picture the relevant EAS but
background light or mere noise. For instance, the stars and the moon can easily,
though undesirably, trigger the highly sensitive camera of an IACT. The removal of
these pixels is often a custom procedure that accepts and discards individual pixels
based on global and local thresholds [22], [89].

Feature Extraction EAS have an approximately elliptical shape, which allows for a rep-
resentation of the data in terms of geometric features, such as width, size, and ori-
entation of the shower, as it appears in the cleaned image. In addition to these
so-called Hillas parameters [90], other features have been proposed, e.g., the per-
centage of light in the ellipse, the percentage of light in the brightest pixels, or
the percentage of light in the outer ring of the camera frame [20], [22]. The stan-
dard analysis4 of the FACT telescope, for instance, considers 20 features, while the
extraction of more than 100 features is implemented [88].

This selection of features is motivated in a trade-off betweenmodels that accurately
predict the simulations and models that generalize well from the simulated data to
the real telescope recordings. To this end, astro-particle physicists have selected a
set of features that permits effective learning while ensuring validity also in terms
of the real telescope.

The data processing pipeline of the FACT telescope is implemented in the FACT-tools6

software, which is based on the streams framework [88]. This implementation is able
to handle the data acquisition rate of FACT, which amounts to up to 1 TB per night,
in near real-time even on a small-scale desktop computer. Its extensions to large-scale,
distributed systems further allow for a fast processing of historical, big data.

However, not all of the above processing steps are indispensable. Deep learning promises
to not only learn a predictionmodel but also a suitable sequence of feature representations
[91]. For the FACT data, this promise is demonstrated to be kept, at least with respect to
the last two processing steps. In particular, competitive gamma hadron classifiers can be
learned from the images that are produced by the signal extraction step [77].

In this work, all experiments with the FACT data are based on the feature representation
of the standard analysis4. Moreover, we always employ random forest classifiers, which
are also a part of this analysis pipeline. Thereby, we fully leverage the available domain
knowledge of physicists with the goal of producing analysis outcomes that advance this

6
https://github.com/fact-project/fact-tools
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knowledge as far as machine learning can. Reusing the existing pipeline [22], [88] allows
us to fully focus on the machine learning tasks, which evolve around this pipeline.

3.8. Probabilistic Rationalism

We now turn to the philosophical background of knowledge expansion in astro-particle
physics. This background is provided throughWolfgang Rhode’s probabilistic rationalism
[24], a recent epistemological view that is based on Karl Popper’s conception of a critical
rationalism [92]. While Popper’s view verifies scientific theories only in terms of dichoto-
mous decisions, the central proposal of probabilistic rationalism is to verify theories in
probabilistic terms.

Both forms of rationalism, critical and probabilistic, found the scientific advancement of
knowledge on the falsification of theories through experiments. In this foundation, the
goal of any experiment is to falsify a connection between measurable quantities that is
predicted by a rationally conceived theory. If this falsification is successful, the theory
must be improved or rejected. If not, the experiment has to be re-designed under more
rigorous conditions. Any theory that cannot be falsified through an experiment is out-
right rejected for not being considered scientific. Whatever theory remains under these
requirements, at present, is considered to be the current state-of-the-art [24].

The difference between critical and probabilistic rationalism lies in their conceptions of
a successful falsification. In Popper’s critical rationalism, falsification is dichotomous: a
theory is either falsified or it is not. This dichotomy is suitable for theories that consist in a
simple statement that can only be either true or false. In Rhode’s probabilistic rationalism
[24], however, a theory is allowed to exhibit any probability. This freedom is indispens-
able in modern astro-particle physics, where complex theories with large numbers of free
parameters have to be tested and a dichotomous decision is not always appropriate. In
fact, Popper’s dichotomous falsification is not even intended for describing the actual pro-
gression of physics research [24]. The shift from dichotomous statements to probabilistic
ones is also rooted in the physical world: processes such as quantum effects are not only
probabilistic in our understanding, but probabilistic in their very own nature.

Probabilistic rationalism manifests in an iterative scientific process, which continuously
adapts the probabilities of competing theories to the latest experimental findings. For
astro-particle physics, this iterative process is illustrated in Fig. 1.1: existing, fundamental
knowledge is encoded in a simulation, fromwhichmachine learningmodels are trained to
reconstruct physically meaningful quantities from the experimental raw data. Improve-
ments in the fundamental knowledge propagate to the analysis outcomes, which in turn
contribute to the body of fundamental knowledge. In the following chapters, we elabo-
rate the machine learning tasks that contribute to this iterative process of probabilistic
knowledge expansion in astro-particle physics.
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Quantification [93], [94] is the task of predicting the probability of each class in an unla-
beled data sample. This supervised learning task is in contrast to “standard” classification
learning, where predictions for individual data items, and not for samples of items, are
desired to be accurate. It is also in contrast to simple counting, where the class of each
data item is known and does not need to be predicted [95]. Applications of quantification
arise in text sentiment analyses [96], in the social sciences [97], in technical support log
analyses [93], and in several other areas. The task of quantification is also known as “class
prior estimation” and “prevalence estimation”, among other names [94].

In astro-particle physics, the reconstruction of energy spectra, see Sec. 3.3, poses an or-
dinal quantification task because the energy bins, which we predict, are totally ordered.
Reconstruction methods from the physics literature, going under the name of “unfold-
ing” [74], [98], [99] or “deconvolution” [1], address the order of classes through regu-
larization. Most other quantification research, however, is focused on the non-ordinal
setting. Between these two areas of quantification research, we recognize an interdisci-
plinary gap. In fact, the literature from quantification research and the literature from
unfolding research have developed in the unawareness of each other, despite substantial
similarities in terms of their problem statements and their solutions. In this chapter, we
contribute to quantification and unfolding research in several ways.

First, Sec. 4.1 unifies algorithms from quantification literature and algorithms from un-
folding literature in a single, common framework [2]. This unification, which also ad-
dresses non-ordinal settings, validates our claim that unfolding and quantification are
indeed the same mathematical problem. Our presentation includes a comparison of mul-
tiple, different multi-class extensions [3] to one of the most important methods in quan-
tification, the Adjusted Classify and Count method [93]. Our common framework solves
quantification tasks by themeans of constrained, numerical optimization techniques.

In Sec. 4.2, we propose a novel, alternative solution, which circumvents constrained op-
timization techniques by embedding the constraints in the quantification model. As a
result, the constraints become invariances, which allow us to solve quantification tasks
effectively, by the means of un-constrained optimization techniques.

Drawing inspiration from unfolding methods, we propose novel, regularized variants of
existing quantification methods in Sec. 4.3. Through the regularization, these variants
address ordinal quantification in particular. We locate the general difficulty of solving
quantification in Sec. 4.4 and we empirically evaluate our proposals against the existing
quantification methods in Sec. 4.5.
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4.1. Unification of Algorithms for Quantification and Unfolding

In this section, we propose a common framework for algorithms that stem from quan-
tification literature and from unfolding literature [2]. This framework reveals several
similarities between existing methods from the two research fields. Moreover, it paves
the way for strengthening the interdisciplinary efforts on the subject. A similar attempt
on unifying existing quantification methods is proposed by Firat [100], who recognizes
that many quantification methods can be phrased in terms of constrained, numerical op-
timization tasks. However, he does not formally prove the correctness of his claims. We
complete this attempt on unifying existing quantification methods in terms of i) taking
unfolding algorithms from the physics literature into consideration and ii) giving formal
proofs about the correctness of our framework. Our unification covers algorithms for
ordinal and non-ordinal quantification.

Recall from Eq. 3.2 that our goal is to estimate the probability density P from the integral
Q(X = x) =

∫︁
Yc

M(X = x | Y = y) · P (Y = y) dy. The estimation of P from data
is enabled through the discretization of this integral, which yields the system of linear
equations, q = M · p with histograms q ∈ RF and p ∈ RC , from Eq. 3.3. In case of
a continuous energy interval Yc = [Emin, Emax), we first need to map each continuous
energy value to a discrete class index Y = {1, . . . , C}. For instance, the estimation of
an energy spectrum requires a binning of the interval Yc into C bins [73], [74]. Due to
the order of the bins, which are used as classes, we recognize that the reconstruction of
energy spectra is an ordinal quantification task. Typically, the bin boundaries are chosen
to be equi-distant on a logarithmic energy scale [22].

We proceed similarly with the feature space X ⊆ Rd, in mapping it to a discrete feature
representation f(x) ∈ {1, . . . , F}. This representation is still to be defined for each un-
folding / quantification algorithm in particular. Possible choices are, for instance, classi-
fier predictions [93], a k-means clustering [1], or leaf indices in a decision tree [101].

Outside of the reconstruction of energy spectra, the set of classes is typically fixed. For
instance, a training set in sentiment quantification might define the classes {“positive”,
“neutral”, “negative”} [96], or a marine plankton recognition system might deal with the
prevalence of a single “plankton” class [102]. With such a fixed set, there is no need for
defining the classes based on continuous energy values. The discretization of the feature
space, however, is a necessary step in any algorithm for quantification / unfolding.

The discretization of y and x gives rise to a straightforward representation of distributions
in terms of histograms and sample averages. Consider an unlabeled data sample DX =
{xi ∈ X × Y : 1 ≤ i ≤ N}. Assuming that each data example has some un-observed
ground-truth class label yi, we estimate the quantities from Eq. 3.2 in terms of histograms
p and sample averages q. In particular, letting

p =
1

N

N∑︂
i=1

δyi , q =
1

N

N∑︂
i=1

δf(xi), [δj ]k =

{︄
1 if j = k,

0 otherwise
(4.1)
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leads to the system of linear equations, q = M · p, from Eq. 3.3. Here, the transfer matrix
M ∈ RC×F is estimated by counting and normalizing the co-occurrences of labels y and
transformed features f(x) in a training set. Advanced algorithms are required to estimate
p because a direct solution M−1q typically leads to estimates that are no valid probability
densities, are not physically plausible, or are not even defined. To ensure valid estimates
p, we define the feasible set of solutions as follows.

Definition 4.1 (Feasible Solutions in Unfolding and Quantification). With C ≥ 2
classes, the goal of unfolding and quantification is to estimate a vector p ∈ P of class preva-
lences, where the set of feasible solutions is the unit simplex

P =

{︄
p ∈ RC : [p]i ≥ 0 ∀ 1 ≤ i ≤ C ∧ 1 =

C∑︂
i=1

[p]i

}︄
.

All elements of this set are valid probability densities over the set of classes Y = {1, . . . , C},
as required by unfolding / quantification tasks.

This feasible set allows us to define an appropriate constraint in a common framework for
unfolding and quantification algorithms. Our framework extends the one by Firat [100]
with regularization functions r(p).

Definition 4.2 (Common Framework for Unfolding and Quantification [2]). Al-
gorithms for unfolding and quantification solve the system of linear equations from Eq. 3.3,
q = M · p, for the vector p of the class probabilities in a data set that is characterized by q.
A general, regularized solution to this problem, with a regularization strength τ ≥ 0, is

p∗ = argmin
p∈P

L(p ; q,M) + τ · r(p),

where the loss function L : RC → R, the regularization function r : RC → R, and the
feature transformation f(x), which defines q according to Eq. 4.1, are still to be defined for
each particular unfolding / quantification method.

The general solution from Def. 4.2 holds several opportunities for the development and
the analysis of unfolding and quantification methods. Namely, we can

• employ different loss functions L

• employ different regularization terms r

• employ different feature transformations f(x)

• follow different approaches to the numerical minimization of Def. 4.2

Adhering to this framework are the most important algorithms from unfolding and quan-
tification, e.g., RUN [73], [98], SVD [99], IBU [74], [103], ACC [93], [97], PACC [104],
ReadMe [97], HDx and HDy [105], CC [93], and PCC [104]. We detail these algorithms
in the following sub-sections and develop additional methods for ordinal quantification
in Sec. 4.3. An overview of all algorithms from our framework is given in Tab. 4.1.
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Table 4.1.: Algorithms for unfolding and quantification within the framework of Def. 4.2. This
table is adapted from one of our publications [2].

loss function L regularizer r feature transformation f

RUN [73], [98]
∑︁d

i=1[Mp̄]i − q̄i ln[Mp̄]i
1
2 (Tp)

2 any f : X → {1, . . . , F}

SVD [99]
⃦⃦
q−Mp

w

⃦⃦2
2

1
2 (Tp)

2 any f : X → {1, . . . , F}

IBU [74], [103] expectation maximization smoothing any f : X → {1, . . . , F}

ACC [93], [97] ∥q −Mp∥22 none δarg maxi[h(x)]i

PACC [104] ∥q −Mp∥22 none h(x)

ReadMe [97] ∥q −Mp∥22 none δx=(X1,...,X2d
)

HDx [105] 1
d

∑︁d
i=1 HDi(q, Mp) none (δb(x;1), . . . , δb(x;d))

HDy [105] 1
d

∑︁d
i=1 HDi(q, Mp) none (δb(h(x);1), . . . , δb(h(x);C))

CC [93] none (assume M = I) none δarg maxi[h(x)]i

PCC [104] none (assume M = I) none h(x)

o-ACC (Sec. 4.3.1) ∥q −Mp∥22
1
2 (Tp)

2
δarg maxi[h(x)]i

o-PACC (Sec. 4.3.1) ∥q −Mp∥22
1
2 (Tp)

2
h(x)

o-HDx (Sec. 4.3.2) 1
d

∑︁d
i=1 HDi(q, Mp) 1

2 (Tp)
2

(δb(x;1), . . . , δb(x;d))

o-HDy (Sec. 4.3.2) 1
d

∑︁d
i=1 HDi(q, Mp) 1

2 (Tp)
2

(δb(h(x);1), . . . , δb(h(x);C))
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4.1.1. Regularized Unfolding (RUN)

The RUN method by Blobel [73], [98] is among the most influential works on unfolding.
In fact, all other methods that we consider reference Blobel’s tech report from 1985 [98]
for the ground it has set. In 2002, the method received an update [73], which is still widely
used today [106], [107]. The foundation of RUN is a likelihood function, from which we
derive a loss function L, that is combined with a regularizer r.

Feature Transformation To model the likelihood function of RUN, we consider any
feature transformation f : X → {1, . . . , F} that partitions the feature space by mapping
each data item to an integer. This partition can be induced, for instance, by a k-means
clustering [1], by a decision tree [101], or by the predictions of a classifier. In case of a
k-means clustering, we setF to the number of clusters; in case of a decision tree partition,
we set F to the number of leaf nodes; and in case of classifier predictions, we set F to the
number of classes. A feature transformation of this kind results in q being a histogram of
the feature space X with bins that correspond to the partition indices {1, . . . , F}.

Loss Function RUN’s likelihood function, from which we derive the loss, is defined
over the absolute counts q̄ ∈ NF of data items in each bin of the feature space,

[q̄]i = N · [q]i =

N∑︂
k=1

δf(xk) ∀ 1 ≤ i ≤ F, (4.2)

and over the unknown, absolute counts p̄ ∈ NC of data items in each class,

[p̄]j = N · [p]j =

N∑︂
k=1

δyk ∀ 1 ≤ j ≤ C. (4.3)

The assumptions behind the likelihood function of RUN are i) that the components of q̄
are independent from each other and ii) that the count [q̄]i of data items, which is observed
in each component, is Poisson-distributed with the rate

λi = M⊤
i p̄, (4.4)

where Mi is the i-th column vector of M. More compactly, we can also represent a vector
of these Poisson rates through the matrix product Mp̄.

With the probability density function of the Poisson distribution,

P(Z = z) =
λze−λ

z!
, (4.5)

we define the loss function of RUN as the negative log-likelihood

LRUN(p ; q,M) = − ln
F∏︂
i=1

P(Zi = [q̄]i) =

F∑︂
i=1

[Mp̄]i − q̄i ln[Mp̄]i. (4.6)
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Regularization The goal of RUN’s regularization term is to penalize candidate solu-
tions p, in which neighboring classes exhibit large differences in terms of their proba-
bilities [p]i, [p]i+1. The desire for a penalty of this kind is rooted in the ordinal nature
of unfolding: any solution with large differences between neighboring classes is consid-
ered “un-physical” in the sense of not being plausible against the background of what
we expect from a physical processes. Moreover, if the set of classes was not totally
ordered, there would not even be a well-defined concept of class neighborhood. Well-
behaved candidate solutions p, where the differences between neighboring classes are
sufficiently small, are called “smooth solutions”. In RUN, smooth solutions are ensured
through Tikhonov regularization, i.e., through a regularization term 1

2 (Tp)
2. Here, the

Tikhonov matrix T ∈ RC×C is defined such that

1

2
(Tp)2 =

1

2

C−1∑︂
i=2

([p]i−1 − 2[p]i + [p]i+1)
2 . (4.7)

The energy spectra of cosmic gamma ray sources exhibit their particular smoothness only
in acceptance-corrected log-log plots, as we have noted in Sec. 3.3. Tikhonov regulariza-
tion is thereforemost appropriatewhen applied to a logarithmic and acceptance-corrected
unfolding / quantification result. To leverage the full potential of Tikhonov regulariza-
tion, we hence regularize with respect to log10(a ⊙ p) instead of p, where ⊙ denotes an
element-wise multiplication of the acceptance factors a and the unfolding / quantifica-
tion estimate p. Under this domain-specific transformation, the regularization function
of RUN becomes

rRUN(p; a) =
1

2

(︁
T · log10(a⊙ p)

)︁2
, (4.8)

where the acceptance factors a ∈ RC are computed from closed meta-data, to which
we have access through our long-standing collaboration with astro-particle physicists.
We emphasize that other transformations of p might be more suitable in other areas of
application. These transformations are just as easily fed into the standard Tikhonov reg-
ularization term from Eq. 4.7.

Having defined the loss function and the regularization term of RUN, we now relate our
unified notation to the original notation of the algorithm. This relation proves that RUN
is indeed an instance of our unified framework of unfolding / quantification.

Proposition 4.1. The RUN algorithm [73], [98] is defined over the loss function from
Eq. 4.6 and the regularization term from Eq. 4.7. Through these definitions, RUN qualifies
as an instance of our common framework from Def. 4.2.

Proof. The loss function we present in Eq. 4.6 is a verbatim statement by Blobel [98,
Eqs. (2.29), and (2.26)]. The original algorithm from 1985 [98] treats the elements of p
as B-spline coefficients; however, the 2002 version by the same author [73] employs his-
tograms, which are consistent with our Eq. 4.1. Due to this change “the second derivative
in bin j is proportional to xj−1− 2xj + xj+1” [73], where Blobel’s xi corresponds to our
[p]i. This derivative defines the regularization term from Eq. 4.7.
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Numerical Optimization The original RUN algorithm minimizes LRUN(p ; q,R) +
τ · rRUN(p; a) with the Newton-Raphson method, a standard second-order optimization
technique, which is detailed, for instance, by Wright and Nocedal [108]. However, the
original RUN algorithm does not employ the vanilla version of this method. Instead, Blo-
bel [98] proposes a customized variant of Newton-Raphson, which allows him to fix the
effective number of degrees of freedom of the solution, ndf. A fixed value of ndf also de-
fines the value of τ , the regularization strength in our Def. 4.2. Therefore, a user can
specify the impact of the regularization in terms of ndf, which can be interpreted as the
number of free latent parameters that defines the solution, instead of specifying a less
interpretable τ value. The interested reader can refer to our presentation of the original
RUN algorithm [1], which covers this aspect in detail.

A considerable disadvantage of fixing the value of ndf is that the resulting value of τ must
change in every iteration. Therefore, the objective function changes in every iteration, so
that the original RUN algorithm cannot employ off-the-shelf optimization tools. More-
over, a fixed value of ndf does not prevent the need for cross validation: a practitioner
would still have to select the value of ndf based on some performance metric, just as he
would select a value of τ directly. In this sense, the merit of specifying the regularization
impact through ndf is limited.

Moreover, the custom Newton-Raphson variant of RUN does not properly constrain its
solutions to the feasible set P from Def. 4.1. Therefore, the original RUN frequently re-
turns solutions with negative components and with sums that are unequal to one. These
deficiencies have to be corrected after the optimization, through clipping and normal-
ization. The impact of these operations on the accuracy of the solution is unclear; in
particular, it is not guaranteed that the clipped and normalized values indeed minimize
the regularized loss function within P .

We correct this deficiency in two steps: first, we do not fix the value of ndf. Instead, we
fix the value of τ , which is the usual practice in machine learning and in numerical op-
timization. A fixed value of τ allows us to use any off-the-shelf method for numerical
optimization. Second, we leverage this freedom of choice in using a constrained opti-
mization technique to minimize LRUN(p ; q,R) + τ · rRUN(p) over the feasible set P from
Def. 4.1. In particular, our implementation employs a primal-dual interior-point algo-
rithm with a filter line search [109]. The outcome of our corrections is a variant of RUN
which always returns valid probability densities. We compare this improved variant to
the original RUN in Sec. 4.5.

4.1.2. Unfolding via Singular Value Decomposition (SVD)

The SVD-based unfolding by Hoecker and Kartvelishvili [99] is designed to be a compu-
tationally more effective alternative to the original RUN algorithm. In this regard, SVD

39



4. Ordinal Quantification

employs the same feature transformation and the same regularization term as RUN. The
computational effectiveness of SVD stems from a least squares loss

LSVD(p ; q,M) =

⃦⃦⃦⃦
q −Mp

w

⃦⃦⃦⃦2
2

, (4.9)

with a weight vector w ∈ RF . In principle, this loss can be minimized analytically, i.e.,
without the need for iterative, numerical optimization techniques.

An analytic solution of Eq. 4.9, however, necessarily disregards the feasible set P from
Def. 4.1, just like the original RUN algorithm does. Therefore, SVD is prone to returning
solutions with negative components and with sums that are unequal to one, which have
to be improperly corrected through clipping and normalization. In our implementation,
we do not use the proposed analytic solution but a numerical optimization technique that
is properly constrained to P . In our experiments, we compare this variant to the original
SVD.

The weight vector in Eq. 4.9 is typically given by the standard deviations w =
√
q̄ of

component-wise Poisson distributions. Therefore, the SVD-based approach is similar to
RUN in several regards. In particular, SVD and RUN

• employ the same feature transformation

• employ the same regularization term

• assume independence between the components of q

• assume a Poisson distribution for each component of q

The difference between SVD and RUN, however, is that the Poisson rates in SVD are
assumed to be q̄ instead ofMp̄. This difference allows one to replace the likelihood of RUN
with the least squares loss of SVD. However, this difference is actually a less appropriate
simplification of the RUN likelihood.

Proposition 4.2. The SVD-based unfolding [99] is defined over the loss function from
Eq. 4.9 and the regularization term from Eq. 4.7. Through these definitions, SVD qualifies
as an instance of our common framework from Def. 4.2.

Proof. The loss function we present in Eq. 4.9 and the regularization term from Eq. 4.7
are verbatim statements by Hoecker and Kartvelishvili [99, Eqs. (29), (37), and (38)].

4.1.3. Iterative Bayesian Unfolding (IBU)

The IBU method by D’Agostini [74], [103] follows a probabilistic approach to solving the
system of linear equations from Eq. 3.3, q = M · p, for p. This probabilistic approach
evolves around an expectation maximization process, which repeatedly applies Bayes’

40



4.1. Unification of Algorithms for Quantification and Unfolding

theorem in order to update the solution vector of each previous iteration. IBU is still pop-
ular today [110]; recently, physicists have even proposed to apply IBU to the correction
of read-out noise in quantum computers [111].

ExpectationMaximization The optimization process starts from a user-defined prior
p(0), which is typically set to a uniform distribution [p(0)]i = 1

C ∀ 1 ≤ i ≤ C . The
expectation (E) step and the maximization (M) step of this process can be written as a
single, combined update rule, which revises each previous estimate p(k−1) according to
Bayes’ theorem,

[p(k)]i =
F∑︂

j=1

[M]ij [p
(k−1)]i∑︁C

i′=1[M]i′j [p(k−1)]i′
[q]j . (4.10)

Here, each previous estimate p(k−1) takes the role of the Bayes prior. Due to the appli-
cation of Bayes’ theorem, we acknowledge that the conditional “direction” of each entry
in M, i.e., [M]ij = P(f(X) = j | Y = i) is appropriately considered. However, the loss
function of IBU is only implicit due to the expectation maximization process; we cannot
easily define a loss function L in parametric terms.

Regularization IBU implements regularization toward ordinal solutions in two ad-hoc
manners, by smoothing its intermediate estimates and by early stopping.

A smoothing of intermediate estimates means to replace the actual prior p(k−1) of each
iteration, see Eq. 4.10, with a transformed, more smooth variant of this prior. In particular,
D’Agostini [74] has proposed to fit a low-order polynomial to each p(k−1); due to its low
order, the fitted polynomial will exhibit a high degree of smoothness, which the user can
control by specifying the order. This polynomial is then used, instead of p(k−1), as the
Bayes prior of the current iteration.

In our experience [112], a complete replacement of p(k−1) with a low-order polynomial
does not improve the quality of the unfolding / quantification result. Therefore, we pro-
pose a more general alternative, which employs linear interpolation instead of complete
replacements. In particular, we suggest to replace the actual prior p(k−1) with

(1− λ) · p(k−1) + λ · po, (4.11)

where 0 ≤ λ ≤ 1 is the interpolation parameter and po is a polynomial of order o ∈ N,
which is fitted to p(k−1) and evaluated at the indices of p(k−1). This linear interpolation
allows us to control the impact of the smoothing. For instance, a complete replacement
can be implemented by setting λ = 1 and smoothing can be entirely de-activated by
setting λ = 0.

Since the energy spectra of cosmic gamma ray sources exhibit their particular smoothness
only in acceptance-corrected log-log plots, we have to apply the smoothing to a logarith-
mic and acceptance-corrected unfolding / quantification result. Hence, we smooth and re-
place log10(a⊙p) instead of p, similar to the argumentwe have detailed in Sec. 4.1.1.
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The second technique for regularization, early stopping, requires a smooth prior, like the
default uniform prior [p(0)]i = 1

C ∀ 1 ≤ i ≤ C . Stopping before the repeated application
of Eq. 4.10 converges will maintain the smoothness of p(0) to some degree. Therefore,
early stopping can introduce an inductive bias toward smooth solutions. However, due
to the more fine-grained control that linear interpolations with low-order polynomials
provide, we omit early stopping from our experiments.

Despite the fact that the expectation maximization process optimizes a loss function that
is only implicit, we consider IBU an instance of our common unfolding / quantification
framework. We now prove the correctness of our notation.

Proposition 4.3. IBU [74], [103]maximizes an implicit loss function via expectationmax-
imization, as according to the update rule from Eq. 4.10. Moreover, it implements regu-
larization through smoothing. With these properties, IBU qualifies as an instance of our
common framework from Def. 4.2.

Proof. D’Agostini [74, Eqs. (3), and (4)] estimates [p(k)]i as

1

ϵi

nE∑︂
j=1

n(Ej) ·
P (Ej | Ci) · P0(Ci)∑︁nC
l=1 P (Ej | Cl) · P0(Cl)

,

where we identify our notation as F = nE , C = nC , Mij = P (Ej | Ci), and [p(k−1)]i =
P0(Ci). In the original algorithm, n(Ej) ∈ N is the count observed in the j-th bin, i.e.,
n(Ej) = N · [q]j . Moreover, ϵi > 0 is an acceptance factor, which models the probability
that an existing instance of class i is indeed part of the sample—and not hidden due to
measurement complications. Setting ϵi = N , we obtain [q]j =

n(Ej)
ϵi

, which is consistent
with our Eq. 4.10.

For regularization, D’Agostini [74] proposes to “smooth the results of the unfolding before
feeding them in the next step”, for instance “by a polynomial fit of 3rd degree” or by
another low-order polynomial.

4.1.4. Other Unfolding Methods

Other physics-inspired algorithms are based on similar concepts as RUN, SVD, and IBU.
We focus on these methods due to their long-standing popularity within physics research.
In fact, they are among the first methods that have been proposed in this field, and are still
widely adopted today, in astro-particle physics [106], [107], high-energy physics [110],
and more recently in quantum computing [111]. Moreover, they already cover the most
important aspects of unfolding methods with respect to ordinal quantification.

We have already seen that SVD employs a simplification of the Poisson rates that RUN
uses. Two other methods, MRX [113] and TUnfold [114] employ the same simplification
as SVD, but regularize in different ways. To this end, MRX regularizes with respect to
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the deviation from a prior, instead of regularizing with respect to ordinal plausibility; we
thus do not perceive this method as a true method for ordinal quantification. TUnfold
adds to the RUN regularization a second term, which penalizes estimates that do not sum
up to one. In our implementation of RUN, there is no need for this penalty because the
P constraint already guarantees that all estimates sum up to one.

Another line of work evolves around DSEA [115] and its extension DSEA+ [1]. We per-
ceive this algorithm to lie outside the scope of ordinal quantification because it does not
address the order of classes, like the other unfolding methods do. Moreover, the algo-
rithm was shown to exhibit a performance comparable to, but not better than, RUN and
IBU [1].

4.1.5. Adjusted Classify and Count (ACC)

We now leave the realm of “unfolding” methods, which stem from physics literature,
and turn to methods that go under the name of quantification. One of the most widely
acknowledged methods for quantification is ACC [93], a method that was initially pro-
posed for binary quantification in particular. For the multi-class setting, there exist four
different extensions [3], which we detail in the following.

The original, binary variant of ACC adjusts the fraction q ∈ R of positive predictions
with the true positive and false positive rates of the classifier h : X → R, i.e.,

p =
q − FPR

TPR− FPR
where q =

1

N

N∑︂
k=1

δh(xk)>0 . (4.12)

This adjustment has desirable properties. Most importantly, p is a Fisher consistent es-
timator of P(Y = +1) even under prior probability shift [75]. Moreover, the method is
computationally efficient: a prediction requires only a single pass over the data sample
to compute q; so does the computation of FPR and TPR during training.

Hence, multi-class extensions to the binary ACC are a promising topic for quantification
research. In this regard, we are aware of four extensions to the binary variant of ACC:
one-versus-all decomposition [93], matrix inversion [116], [117], pseudo-inversion [118],
and constrained least squares [97], [2], [100]. We argue that the constrained least squares
variant is the most appropriate extension because it explicitly constrains its solutions
to the feasible set P from Def. 4.1. Therefore, we select this variant for being included
in our common unfolding / quantification framework. For completeness, we also detail
the other multi-class variants of ACC. We delay a comparison of their performances to
Sec. 4.2, where we develop yet another, more effective multi-class extension.
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Table 4.2.: Adjustments in multi-class ACC extensions. Our proposal, the soft-max adjustment,
is detailed later, in Sec. 4.2. This table is adapted from one of our publications [3].

adjustment premise loss function constraints optimization

one-vs-rest (Eq. 4.14) TPRi, FPRi — — —
inverse (Eq. 4.16) M — — —
pseudo-inverse (Eq. 4.19) M least squares min. norm —
constrained (Eq. 4.20) M least squares P constrained
soft-max (ours; Eq. 4.28) M least squares P unconstrained

A summary of the conceptual properties of the four existing multi-class variants, and our
“soft-max” variant from Sec. 4.2, is displayed in Tab. 4.2. Their common ground is an
adjustment of the fractions of predictions,

[q]i =
1

N

N∑︂
k=1

δargmaxi[h(xk)]i ∀ 1 ≤ i ≤ C, (4.13)

through performance estimates of the classifier, e.g., TPRi ∈ R, FPRi ∈ R, or M ∈ RC×C .
Note that Eq. 4.13 is in line with our general definition of q, see Eq. 4.1, if the feature
transformation f(x) = argmaxi[h(x)]i is employed.

One-Versus-Rest Decomposition

The most straightforward extension of binary ACC decomposes the multi-class quantifi-
cation problem into C one-versus-rest tasks [93]. Each of these tasks requires a binary
quantification of one class versus all others. Hence, we can use the binary adjustment
rule from Eq. 4.12 in each of the tasks separately. The resulting estimate is a vector with
components

[p(one−vs−rest)]i =
[q]i − FPRi

TPRi − FPRi
(4.14)

where TPRi and FPRi are the true positive rate and the false positive rate of the classifier
h when class i is classified against all other classes.

Like binary ACC, the estimate from Eq. 4.14 requires clipping and normalization to ensure
that the solution is a valid probability density. Unfortunately, these ad-hoc corrections can
lead to estimation errors if the data sets are not sufficiently large to accurately estimate
q, TPRi, and FPRi.

Matrix Inversion

The one-versus-rest adjustment ignores the fact that mis-classifications can occur be-
tween any pair of classes. It is therefore more appropriate to account not only for the
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class-wise TPRi and FPRi but for the full confusion matrix M ∈ RC×C of the classifier h.
This matrix comprises all mis-classification probabilities

[M]ij = P
(︁
argmax

k
[h(X)]k = i | Y = j

)︁
(4.15)

and it is well-acknowledged [97], [116], [117] that the prediction outcome q is determined
by the system of linear equations, q = M · p, from Eq. 3.3 if p ∈ P is the true class
distribution.

Consequently, we can recover an estimate of the true p with an estimate of the true con-
fusion matrix M. The most straightforward attempt [116], [117] in this direction is to
invert M to yield the estimate

p(inverse) = M−1 · q, (4.16)

which has to be clipped and normalized to represent a valid probability density.

For instance, this matrix inversion estimate is implemented in the current release7 of
QuaPy [119]. Since QuaPy is likely the most complete and usable software package for
quantification, this choice has established p(inverse) as the “quasi-standard” multi-class
extension of ACC and PACC.

However, the inverse of an estimated matrix M is not guaranteed to exist. Therefore, the
estimator is sometimes undefined. QuaPy deals with this issue by falling back to returning
the un-adjusted q if M is not invertible.

Pseudo-Inversion

A robust alternative to matrix inversion is to replace the actual inverse M−1 with the
Moore-Penrose pseudo-inverse

M† = VS†U⊤, (4.17)

where thematrices V, S, andU are defined through the singular value decomposition

M = USV⊤,

S = diag(s1, . . . , sk, 0, . . . , 0),

S† = diag(s−1
1 , . . . , s−1

k , 0, . . . , 0),

(4.18)

and s1, . . . , sk are the non-zero singular values of M in decreasing order. Replacing the
true inverse M−1 with the pseudo-inverse M† leads to the quantification estimate

p(pseudo−inverse) = M† · q, (4.19)

which is always defined because M† is always guaranteed to exist. Fortunately, M† is
equal to M−1 if M−1 exists. Therefore, the replacement does not reduce the quality of

7
https://github.com/HLT-ISTI/QuaPy/releases/tag/0.1.6, release v0.1.6 of QuaPy [119]
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the estimate but it gains robustness because no fallback to a completely un-adjusted q is
necessary if M is not invertible.

The pseudo-inverse estimator is proven to be a least squares estimate of the true p, which
is constrained to a minimum norm solution [118, Th. 4.1]. This constraint has the ad-
vantage that p(pseudo−inverse) is unique while an unconstrained least squares estimate, in
general, is not. However, a minimum norm constraint lacks motivation from a practi-
cal perspective; in fact, a minimum norm is unrelated to the actual feasible set P from
Def. 4.1. Like in the above variants, clipping and normalization are therefore necessary
for returning a valid probability density.

Constrained Least Squares

Bothmatrix inversion techniques, p(inverse) and p(pseudo−inverse), suffer from not being con-
strained to the feasible set P from Def. 4.1. In fact, both techniques tend to produce
estimates that i) do not sum to one and ii) have components that are below zero. This de-
ficiency is typically addressed through clipping and normalization, an ad-hoc correction
that can easily lead to estimation errors.

Loss Function Amore appropriate approach to multi-class ACC, as presented by Hop-
kins and King [97], is implemented as a constrained optimization task

p(constrained) = argmin
p∈P

⃦⃦
q −M · p

⃦⃦2
2
, (4.20)

which explicitly constrains the estimate to the feasible set P from Eq. 4.1. Within this set,
the most accurate estimate according to the squared L2 norm is searched for. Accord-
ingly, p(constrained) employs the same loss function as p(pseudo−inverse), but appropriately
constrains its solution to P instead of minimum norm solutions.

Note that Hopkins and King have developed their method independently of Forman’s bi-
nary ACC. However, the basis of their work is precisely the binary ACC adjustment from
Eq. 4.12, as can be seen in Hopkins and King [97, Eq. (3)]. Therefore, we understand their
method as a multi-class extension to ACC. Due to the specific P constraint in Eq. 4.20,
we select p(constrained) as the most appropriate multi-class extension to ACC, which we
include in our common unfolding / quantification framework.

Proposition 4.4. The constrained least squares extension to binary ACC [93], as pro-
posed by Hopkins and King [97], is defined over the loss function from Eq. 4.20. There-
fore, this extension qualifies as an instance of our common framework from Def. 4.2. The
extension does not employ regularization.
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Proof. Hopkins and King [97, Eq. (4)] marginalize over the true labels D ∈ {1, . . . , J} to
yield the probability density of class predictions ˆ︁D as

P ( ˆ︁D = j) =
J∑︂

j′=1

P ( ˆ︁D = j | D = j′)P (D = j).

The authors note that “this expression represents a set of J equations […] that can be
solved for the J elements in P (D)”. Accordingly, we identify our notation as p = P (D),
q = P ( ˆ︁D), and M = P ( ˆ︁D | D) in their presentation. To solve this set of equations, the
authors propose a “standard constrained least squares to ensure that elements of P (D)
are each in [0,1] and collectively sum up to 1”. This proposal defines the least squares loss
from Eq. 4.20 and matches our constraints with respect to P .

Numerical Optimization Unfortunately, Hopkins and King [97] do not propose a spe-
cific algorithm to solve Eq. 4.20. While an analytic solution exists for the unit sum con-
straint, 1 =

∑︁C
i=1[p]i [120, Chap. 1.4], we are not aware of an analytic solution that

considers the inequality constraints, [p]i ≥ 0 ∀ 1 ≤ i ≤ C , from Def. 4.1.

Consequently, the optimization of Eq. 4.20 requires iterative, numerical optimization tech-
niques. In our implementation, we employ a primal-dual interior-point algorithm with a
filter line search [109]. However, other numerical methods are conceivable at this point.
For instance, Firat [100] employs a sequential quadratic programming technique [108,
Chap. 18] to solve Eq. 4.20. We have to leave a comparison of numerical optimization
techniques in quantification to future work.

4.1.6. Probabilistic ACC (PACC)

The essential proposal of binary PACC [104] is to replace the crisp predictions δh(x)>0,
which are employed in ACC, with probabilistic classification outcomes h(x) ∈ [0, 1].
Despite this replacement, binary PACC employs exactly the adjustment rule of binary
ACC, which we have introduced in Eq. 4.12.

Since PACC differs from ACC only in this single aspect, we can extend the binary PACC
to the multi-class setting in the same variety of multi-class extensions that we have
just discussed for binary ACC: one-versus-rest decomposition, matrix inversion, pseudo-
inversion, and the constrained least squares estimate. All of these extensions have in
common the adjustment of predictions in terms of performance estimates of the classi-
fier. Unlike ACC, these predictions are now given in probabilistic terms, i.e.,

[q]i =
1

N

N∑︂
k=1

[h(xk)]i ∀ 1 ≤ i ≤ C, (4.21)

where h : X → P is a probabilistic multi-class classifier.
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Like in multi-class ACC, we opt for the constrained least squares estimate as the most
appropriate multi-class extension to binary PACC. Therefore, the same loss function is
employed.

Proposition 4.5. The constrained least squares extension to binary PACC [104], as pro-
posed by Hopkins and King [97], is defined over the loss function from Eq. 4.20. There-
fore, this extension qualifies as an instance of our common framework from Def. 4.2. The
extension does not employ regularization.

Proof. The essential proposal by Bella et al. [104] is to replace the crisp classification
outcomes δh(x)>0 with probabilistic ones h(x) ∈ [0, 1]; their adjustment is the same as in
binary ACC. Taking this proposal to multi-class ACC [97], we obtain multi-class PACC
with the loss from Eq. 4.20.

4.1.7. ReadMe

Building on the multi-class version of ACC, ReadMe [97] employs the loss function from
Eq. 4.20. However, ReadMe transforms the features in a unique way that is motivated
in text mining. In this application area, data items x are often represented as bags of
words, i.e., as sparse indicator vectors {0, 1}d for a vocabulary of size d. In ReadMe, q is
a histogram over all 2d possible incarnations Xi of these indicator vectors, i.e.

f (ReadMe)(x) = δx=(X1,...,X2d
), where [δa=(a1,...,an)]i =

{︄
1 if a = ai,

0 otherwise
. (4.22)

Since such a representation is only feasible with small d, ReadMe produces multiple esti-
mates, each of which employs a different and small, random selection of words. Finally,
all of these individual estimates are averaged.

Proposition 4.6. ReadMe [97] is defined over the loss function from Eq. 4.20. Therefore,
it qualifies as an instance of our common framework from Def. 4.2. ReadMe does not
employ regularization.

Proof. Building on their multi-class design of ACC, Hopkins and King [97, Eq. (6)] set up a
matrix equation P (S) = P (S | D)P (D), which maps to our notation as q = P (S) ∈ R2d ,
M = P (S | D) ∈ R2d×C , and p = P (D) ∈ RC . The authors note that “P (S) is
the probability of each of the 2K possible word stem profiles” with K = d being the
number of word stems. To estimate this probability, “we merely compute the proportion
of documents observed with each pattern of word profiles”. This computation leads to a
histogram

q =
1

N

N∑︂
i=1

δxi=(X1,...,X2d
),

which is consistent with our Eqs. 4.1 and 4.22.
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In astro-particle physics, we are not aware of any suitable bag-of-words representation
of the data. Therefore, we omit ReadMe from our experiments.

4.1.8. HDx

HDx [105] builds on the conception that a least-squares loss is not a well-motivated mea-
sure for divergences between probability densities; in fact, other measures are more ap-
propriate for this purpose. One such appropriate measure is the Hellinger distance (HD)
from Def. 2.6, which inspires the name of HDx.

In HDx, each feature is separately binned. A data sample is then represented as a con-
catenation of all feature-wise histograms,

f(x) = (δb(x;1), . . . , δb(x;d)), (4.23)

where b(x; i) is a binning function, whichmaps the feature value [x]i to the corresponding
bin index {1, . . . , Bi}.

The loss of a candidate solution p is measured as the average of all feature-wise Hellinger
distances,

L(p ; M, q) =
1

d

d∑︂
i=1

HDi(q, Mp),

where HDi(q, Mp) =

⌜⃓⃓⃓
⎷

∑︁i
k=1 Bk∑︂

j=1+
∑︁i−1

k=1 Bk

(︃√︂
[q]j −

√︂
[Mp]j

)︃2

.

(4.24)

Here, we let the bin indices range from 1 +
∑︁i−1

k=1Bk to
∑︁i

k=1Bk. This choice is made
in order to define a Hellinger distance HDi which only considers the bins of the i-th
feature.

Proposition 4.7. HDx [105] is defined over the loss function from Eq. 4.24. Therefore, it
qualifies as an instance of our common framework from Def. 4.2. HDx does not employ
regularization.

Proof. González-Castro et al. [105, Eq. (9)] minimize the average of feature-wise Hellinger
distances, as we have stated in Eq. 4.24. They present the distance with respect to a single
feature j, binned into b bins, as⌜⃓⃓⎷ b∑︂

i=1

(︄√︄
|Vj,i|
|V |

−

√︄
|Uj,i|
|U |

)︄2

,
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where |U | is the total number of instances and |Uj,i| is the number of instances whose
feature j is mapped to the i-th bin [105, Eq. (10)]. |V | and |Vj,i| are the numbers of
instances that are to be expected under class prevalences p, hence

|Vj,i|
|V |

= [Mp]
i+

∑︁j−1
k=1 Bk

,

where
∑︁j−1

k=1Bk is the offset of the histogram of feature j within our concatenation of
feature-wise histograms. Using the multi-class product Mp at this point is consistent with
the binary conception of González-Castro et al. [105, Eq. (12)].

The original proposal by González-Castro et al. [105] is to find the minimum of Eq. 4.24
through an extensive grid search. In our implementation, we prefer to stick to con-
strained, numerical optimization process in terms of a primal-dual interior-point algo-
rithm with a filter line search [109].

4.1.9. HDy

HDy [105]minimizesHellinger distances, just likeHDx. However, theHellinger distances
are now measured in terms of classification outcomes instead of feature binnings.

Originally, HDy was proposed for binary quantification in particular. However, we can
easily extend the method to the multi-class setting, borrowing the treatment of multiple
features that HDx employs. In particular, a multi-class HDy can be realized by separately
binning the class-wise classification outcomes, just like features are separately binned
in HDx. Hence, this multi-class extension employs the loss function from Eq. 4.24 but
replaces the feature binning b(x; i) in Eq. 4.23 with b(h(x), i).

Proposition 4.8. Our multi-class extension of HDy [105] employs the loss function from
Eq. 4.24. Therefore, it qualifies as an instance of our common framework from Def. 4.2.
HDy does not employ regularization.

Proof. The original HDy [105, Eqs. (13) and (14)] only addresses binary quantification.
For this case, however, the only change with respect to HDx is that HDy employs soft
classifier outputs h(x) instead of features x. A straightforward extension to the multi-
class setting is therefore to bin the class-wise outputs [h(x)]i separately, as HDx does in
case of features and as we propose in our multi-class extension of HDy.

4.1.10. Un-Adjusted Variants of Classify and Count

We also conceive the un-adjusted methods Classify and Count (CC) [93] and Probabilistic
Classify and Count (PCC) [104] as instances of our framework. Instead of adjusting the
counts q of predictions in terms of the mis-prediction probabilities that are expressed in
the confusion matrix M, these methods simply return q as their estimate for p.
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Therefore, strictly speaking, CC and PCC do not require any minimization of a loss func-
tion. More loosely speaking, however, their disregard of M can be understood as the
assumption of a perfect classifier, which is expressed by M = I being the identity matrix.
Under this assumption, the least squares loss from Eq. 4.20 actually leads to the estimate
p(CC) = q and we can understand this estimate as an instance of our common unfolding
/ quantification framework.

Regarding the representation f(x), CC employs the feature transformation of ACC, i.e.,
δargmaxi[h(x)]i , and PCC employs the feature transformation of PACC, i.e., h(x).

Proposition 4.9. Assume a perfect classifier and, hence, M = I. Under this assump-
tion, we can claim that the un-adjusted methods CC [93] and PCC [104] employ the loss
function from Eq. 4.20. In this limited sense, they qualify as instances of our common
framework from Def. 4.2. CC and PCC do not employ regularization.

Proof. Let M = I. Recognize that the global minimum of the least squares loss,

min
p
∥q −Mp∥22 = 0,

is now attained if and only if p = q. Therefore, under the assumption M = I, the unique
minimizer of the least squares loss is q. In this sense, PCC and CC are proper instances
of our framework.

4.2. Solving Quantification Through Unconstrained
Optimization

Our common framework for unfolding and quantification algorithms, see Def. 4.2, mini-
mizes an objective function, L(p ; q,M) + τ · r(p), over the feasible set P from Def. 4.1.
In the previous section, we have seen that many algorithms from unfolding and quantifi-
cation indeed adhere to this framework.

Constrained, numerical optimization techniques provide us with the opportunity of im-
plementing this constrained optimization task precisely in the way it is formalized. These
techniques ensure, through dedicated efforts, that every intermediate solution candidate
p is in the feasible set P . Thereby, they indeed find a solution that minimizes the ob-
jective function over P . However, their dedicated efforts for constraining the solution
candidates can come at a computational price.

Therefore, we propose an alternative optimization task for implementing any unfolding /
quantification algorithm from our framework. This alternative task is un-constrained, and
thus can lead to more effective solutions. We enable un-constrained optimization through
a soft-max “trick” [3], which embeds the constraints as a part of the unfolding / quantifi-
cation model. Thereby, this trick ensures that all solutions are valid solutions that lie in
P , without requiring a numerical optimization technique to ensure this constraint.
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In the following, we detail the method that stems from employing our soft-max trick in
unfolding / quantification. Then, we evaluate our proposal in the scope of the multi-class
ACC variants from Sec. 4.1.5.

4.2.1. The Soft-Max Trick

Our alternative optimization task does no longer consider the components of p to be the
free parameters over which the objective function is minimized. Instead, we minimize
over latent parameters l ∈ RC , which we transform to valid probability densities through
a soft-max layer softmax(l) ∈ P , where

[softmax(l)]i =
exp([l]i)∑︁C
j=1 exp([l]j)

. (4.25)

Since softmax(l) is always in P , we use this transformation i) as our estimate of p, ii) as
the input of the loss function, and iii) as the input of the regularization term [3]. Thereby,
we obtain the estimate

p∗ = softmax(l∗) (4.26)

through the alternative, un-constrained optimization task

l∗ = argmin
l∈RC

L
(︁
softmax(l) ; q,M

)︁
+ τ · r

(︁
softmax(l)

)︁
+ λ · ∥l ∥22, (4.27)

where λ·∥l ∥22 is an additional regularization term. This term, however, is only a technical
detail that ensures all exp([l]i) to be finite within floating point precision. In our experi-
ments, we fix λ = 10−6, a value that is meant to not influence the final estimate p∗.

We can re-formulate any algorithm from our unified framework in terms of the uncon-
strained optimization task from Eq. 4.27. As two concrete examples, we instantiate the
soft-max version of ACC and PACC,

l(ACC) = argmin
l∈RC

⃦⃦
q −M · softmax(l)

⃦⃦2
2
+ λ ·

⃦⃦
l
⃦⃦2
2
, (4.28)

and the soft-max version of RUN,

l(RUN) = argmin
l∈RC

F∑︂
i=1

[M ·N · softmax(l)]i − q̄i ln[M ·N · softmax(l)]i

+
τ

2

(︁
T · log10(a⊙ softmax(l))

)︁2
+ λ ·

⃦⃦
l
⃦⃦2
2
,

(4.29)

simply by replacing p in Eqs. 4.20, 4.6, and 4.8 with softmax(l). In earlier work [3], we
have taken out this replacement only in the scope of multi-class ACC.
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4.2. Solving Quantification Through Unconstrained Optimization

Table 4.3.: Test set performance of the different multi-class adjustments, for ACC and PACC and
in terms of AE and RAE. The performance of the best adjustment in each setting is
printed in boldface. This table is adapted from one of our publications [3].

adjustment
ACC PACC

AE RAE AE RAE

un-adjusted (Eq. 4.13 / Eq. 4.21) 0.0254 2.5532 0.0246 2.6771

one-vs-rest (Eq. 4.14) 0.0262 4.1484 0.0262 4.1484

inverse (Eq. 4.16) 0.0222 1.7224 0.0195 1.5288

pseudo-inverse (Eq. 4.19) 0.0177 1.7224 0.0195 1.5288

constrained (Eq. 4.20) 0.0158 1.2826 0.0123 0.9908
soft-max (Eq. 4.28) 0.0130 1.2633 0.0106 1.0886

4.2.2. Empirical Validation

In the following, we intend to uncover the merits of our soft-max trick in the scope of
multi-class ACC and PACC. To this end, we evaluate the performance of each method on
the public data set [121] of the LeQua2022 competition [122].

The LeQua2022 dataset is designed to constitute a gold-standard benchmark, both for bi-
nary text quantification and for multi-class text quantification. The multi-class problem
in this competition features 28 classes, 20 000 training items and 1 000 validation sam-
ples. Each of the validation samples consists of 1 000 data items that are drawn accord-
ing to varying class prevalences. The ground-truth class prevalence vectors, with which
quantification performances are measured, are generated with the artificial prevalence
protocol we introduce in Sec. 4.5.1. We employ the vectorial representation of the data
and a logistic regression classifier, which obtained the highest performance on this rep-
resentation during the competition [4]. We optimize the regularization parameter of this
classifier on the validation set and over the grid {10−3, 10−2, 10−1, 100, 101}, to obtain
the best performance for each quantification method. The selection of the best regular-
ization parameter is either in terms of the average absolute error (AE) or in terms of the
average relative absolute error (RAE). After selecting the best hyper-parameters for each
method, we report the results, in terms of both metrics, on the test set.

All multi-class extensions of ACC require the estimation of the confusion matrix M (or
at least the rates TPRi and FPRi) on hold-out data. In order to use all labeled data for
classifier training and for the adjustments, we use a bagging ensemble of size 100. We
estimate M, TPRi, and FPRi on the out-of-bag predictions of this ensemble.

During the hyper-parameter optimization on the validation set, almost all methods suc-
ceeded in producing estimates for the class prevalences. An exception to this outcome is
the matrix inversion from Eq. 4.16 in ACC. This method failed to produce prevalence es-
timates for the values 10−3 and 10−2 of the classifier’s regularization parameter because
these values led to confusion matrices M that were not invertible.
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Discussion The results from Tab. 4.3 demonstrate that the different multi-class adjust-
ments exhibit quite different performances. The lowest errors are achieved by the con-
strained estimator from Eq. 4.20 (in terms of RAE in PACC) and by our unconstrained
soft-max estimator from Eq. 4.28 (in terms of all other configurations). The margins of
improvement over all other adjustments are considerable: for instance, the constrained
PACC achieves an RAE that is 35% smaller than the RAE of the pseudo-inverse PACC
(last column, 0.9908 vs 1.5288); our soft-max PACC achieves an AE that is 46% smaller
than the AE of the pseudo-inverse PACC (third column, 0.0106 vs 0.0195).

4.3. Addressing Ordinality Through Regularization

In the following we develop algorithms which extend ACC, PACC, HDx, HDy, and the
Saerens-Latinne-Decaestecker (SLD) method [123] with the regularizers from RUN and
IBU. This extension yields o-ACC, o-PACC, o-HDx, o-HDy, and o-SLD [5], the OQ coun-
terparts of these well-known, non-ordinal quantification algorithms. Our ordinal exten-
sions demonstrate the practical value of our common framework from Def. 4.2: having
revealed that the existing methods differ from each other mainly in terms of their loss
functions, their regularization terms, and their feature transformations, we are ready to
re-combine these characteristics in order to develop novel quantification methods.

Our ordinal extensions, which employ the existing regularizers from RUN and IBU, pre-
serve the general characteristics of the original, non-ordinal ACC, PACC, HDx, HDy, and
SLD. In particular, our extensions do not alter the loss functions and feature transforma-
tions of these original methods. Therefore, our extensions are “minimal”, in the sense that
they directly address ordinality without introducing any other, undesired side-effects into
the original, well-known quantification methods.

In the following, we detail our extensions. We delay an empirical validation of our pro-
posals to Sec. 4.5.

4.3.1. o-ACC and o-PACC

Our ordinal extensions of ACC and PACC employ the same least squares loss that ACC
and PACC employ. To address ordinality, we include the regularization term from RUN
and SVD, which is defined in Eq. 4.8. Through this re-combination, we obtain the con-
strained optimization task

p(o-ACC / o-PACC) = argmin
p∈P

⃦⃦
q −M · p

⃦⃦2
2
+

1

2

(︁
T · log10(a⊙ p)

)︁2
, (4.30)

where q is defined either by Eq. 4.13 in case of o-ACCor by Eq. 4.21 in case of o-PACC.
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4.3. Addressing Ordinality Through Regularization

To implement this constrained optimization task effectively, we can re-use the soft-max
trick from Sec. 4.2. This trick yields an un-constrained optimization task, through which
we find the latent parameters

l∗ = argmin
l∈RC

⃦⃦
q −M · softmax(l)

⃦⃦2
2

+
τ

2

(︁
T · log10(a⊙ softmax(l))

)︁2
+ λ ·

⃦⃦
l
⃦⃦2
2
, ,

(4.31)

where, again, q is defined either by Eq. 4.13 or by Eq. 4.21 and we set λ = 10−6. Accord-
ing to Eq. 4.26, we recover the estimate p(o-ACC / o-PACC) = softmax(l∗) from the latent
parameter vector l∗.

4.3.2. o-HDx and o-HDy

Our ordinal extensions of HDx andHDy employ the same loss that HDx andHDy employ.
Like in o-ACC and o-PACC, we address ordinality by including the regularization term
from RUN and SVD, which is defined in Eq. 4.8. Through this re-combination, we obtain
the constrained optimization task

p(o-HDx / o-HDy) = argmin
p∈P

1

d

d∑︂
i=1

HDi(q, Mp) +
1

2

(︁
T · log10(a⊙ p)

)︁2 (4.32)

where HDi is defined by Eq. 4.24 and q is defined either by a feature binning b(x; i) in
case of o-HDx or by a classifier output binning b(h(x); i)) in case of o-HDy.

Like in o-ACC and o-PACC, we implement the above task with the soft-max trick from
Sec. 4.2. This trick yields an un-constrained optimization task

l∗ = argmin
l∈RC

1

d

d∑︂
i=1

HDi(q, M · softmax(l))

+
τ

2

(︁
T · log10(a⊙ softmax(l))

)︁2
+ λ ·

⃦⃦
l
⃦⃦2
2
, ,

(4.33)

where, again, we recover the estimate p(o-HDx / o-HDy) = softmax(l∗) from the latent pa-
rameter vector l∗.

4.3.3. o-SLD

We now develop the OQ counterpart of SLD [123], a well-known, non-ordinal quantifi-
cation method. This counterpart solves the quantification task in the same way as the
original SLD, but introduces the regularization technique of IBU. Since SLD does not com-
pute a sample average q, we have not included this method in our common unfolding /
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quantification framework. Therefore, we start by presenting the original SLD before we
develop our ordinal extension thereof.

Original SLD The algorithm by Saerens, Latinne, and Decaestecker [123], also known
as EM-based quantification (EMQ), follows an expectation maximization approach. This
approach is similar, although not equal, to the approach of IBU, which is introduced in
Sec. 4.1.3. In particular, SLD and IBU leverage Bayes’ theorem in the E-step and update
their estimates in the M-step, see Eq. 4.10. However, SLD does not represent the sample
in terms of a histogram q = 1

N

∑︁N
i=1 δf(xi), see Eq. 4.1, like IBU does. Instead, SLD

maintains all individual predictions h(x) of the classifier.

We combine the E-step and the M-step of SLD in a single update rule

[p(k)]i =
1

N

N∑︂
j=1

[h(xj)]i
[p(0)]i

· [p(k−1)]i∑︁C
i′=1

[h(xj)]i′
[p(0)]i′

· [p(k−1)]i′
, (4.34)

which is applied until the estimates converge. The prior p(0) is typically set to the class
distribution of the training set. This default prior is another difference from IBU, which,
instead, uses a uniform prior by default.

Regularization Towards Ordinal Solutions o-SLD addresses ordinality through the
regularization technique of IBU, a smoothing of intermediate estimates. In particular,
o-SLD does not use the latest estimate p(k−1) as the prior of the next iteration, but the
linear interpolation (1 − λ) · p(k−1) + λ · po from Eq. 4.11. Here, 0 ≤ λ ≤ 1 is again
the interpolation parameter and po is again a polynomial of order o ∈ N, which is fitted
to p(k−1) and evaluated at the indices of p(k−1). Like in IBU, we consider λ and o as
hyper-parameters, through which the strength of the regularization is controlled.

4.3.4. Related Work: Ordinal Quantification Without Regularization

Not all methods for ordinal quantification address ordinality through regularization. We
briefly describe these methods in the following.

Ordinal Quantification Tree The OQTmethod by Da San Martino et al. [124] creates
a binary tree of classes, which quantifies each split in terms of binary PCC. The induction
of this tree is informed about the order of classes, which is maintained in the binary
splits of classes, and splits are chosen based on the KL divergence of the resulting binary
quantification outcomes. Thereby, OQT is specifically aimed at ordinal quantification,
but does not introduce an ordinal regularization.

Before our study on ordinal quantification [5], OQT was only evaluated in the ordi-
nal quantification task of the SemEval 2016 competition on sentiment analysis in Twit-
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ter [125]. While OQT was the best performer in this task, we must note that the evalua-
tion featured only a single testing sample, which is insufficient for a reliable performance
assessment. Since we found OQT to perform inferior in our previous experiments [5],
which we revisit in 4.5.3, we exclude OQT from our main evaluation in Sec. 4.5.

Adjusted Regress And Count The ARC method by Esuli [126] creates a binary tree
of classes, similar to OQT. However, ARC chooses each split such that both sides are
maximally balanced. Moreover, ARC quantifies each split in terms of binary ACC.

Before our study, ARC was only evaluated in the SemEval 2016 competition [125]. Like
OQT, the method then performed inferior in our own, previous experiments [5]. There-
fore, we exclude ARC from our main evaluation in Sec. 4.5.

4.4. Spotting the Difficulty of Quantification

We investigate more deeply the pseudo-inverse estimator M†q from Eq. 4.19. This esti-
mator effectively transforms the linear system of equations q = Mp, which we intend to
solve for p, to the surrogate problem

q′ = Sp′, (4.35)

where q′ = U⊤q and p′ = V⊤p. Here, the matrices S, U, and V are defined through the
singular value decomposition from Eq. 4.18. Note that the surrogate problem is solved by
a simple, element-wise multiplication p′ = S†q′ and that we can recover a solution to the
original problem as p = (V⊤)−1p′.

Now imagine the last singular values of M to be extraordinarily small, as compared to
the first singular values. In this case, the inverse of the last singular values, which is
collected in S† = diag(s−1

1 , . . . , s−1
k , 0, . . . , 0), is extraordinarily large. Consequently,

their corresponding components in q′ contribute a lot to the surrogate estimate p′. Small
changes in these large components can result in huge changes in the solution; put dif-
ferently, the pseudo-inverse estimator exhibits a considerable amount of variance if the
singular values of M vary. This variance occurs despite the minimum-norm constraint of
this estimator.

In this sense, we can characterize the difficulty of solving q = Mp through the condition
number κM = s1

sk
. This standard characteristic of a matrix expresses the range of its non-

zero singular values. Physics-inspired OQ methods like RUN and IBU aim at reducing
the variance of their estimates through regularization. A high condition number of M
requires a strong regularization, which can produce considerably biased results.

However, a considerable reduction of the variance can also be achieved by suitable feature
transformations f , namely by those transformations which lead to matrices M with low
condition numbers. To this end, Fig. 4.1 compares a k-means clustering [1], a decision
tree partition [101], and an equi-distant binning of the single, most predictive feature [98].
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Figure 4.1.: The condition number κM (left) of the confusion matrix M ∈ RC×F decreases with
an increasing number F of categories used in the feature transformation f : X →
{1, . . . , F} that defines q ∈ RF . The CART decision tree produces the least difficult
problems, as according to κM, which also leads to lower errors in terms of the Earth
Mover’s Distance (EMD; right). This figure is taken from one of our publications [1].

Due to the strong performance of the decision tree partition, we employ this approach in
all unfolding algorithms.

4.5. Evaluation

Our empirical evaluation of unfolding / quantification algorithms focuses on the recon-
struction of energy spectra, the problem in astro-particle physics that we have detailed
in Sec. 3.3. The goal of our experiments is to answer the following questions:

Q1 How suitable are the existing methods from quantification and unfolding, which we
have introduced in Sec. 4.1, for the reconstruction of energy spectra?

Q2 How does our soft-max trick from Sec. 4.2 compare to implementations that employ
standard, constrained optimization?

Q3 How do our regularized OQ methods from Sec. 4.3 compare to the existing methods?

Our focus on energy spectra manifests in an evaluation that employs the simulated data
of the FACT telescope. To produce labeled test samples for quantification, we draw these
samples from the simulated data. The sampling is taken out in three different, experimen-
tal protocols, which allow for a broad discussion of the relative merits of each method.
We describe these protocols in the following sub-section.

Our focus also manifests in the choice of the evaluation metric. Since the reconstruction
of energy spectra is a problem of ordinal quantification, we deem the normalized match
distance (NMD) from Def. 2.8 most suitable. This distance is directly aimed at ordinal
probability vectors but does, by itself, not consider the fact that the estimates need to be
accurate in the logarithmic and acceptance-corrected plots that physicists typically inspect.
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Therefore, we compute this distance with respect to logarithmic acceptance-corrected
spectra

log10(a⊙ p), (4.36)

which are the subject of the physical analyses, as detailed in Sec. 3.3. Namely, we compute
the quality of an estimate p as

NMD

(︄
log10(a⊙ p)∑︁C

i=1[log10(a⊙ p)]i
,

log10(a⊙ p∗)∑︁C
i=1[log10(a⊙ p∗)]i

)︄
, (4.37)

where p∗ is the vector of ground-truth class prevalences in the current sample. Effectively,
the logarithm and the acceptance correction weight the NMD appropriately, in order to
reflect the fact that a physicist typically inspects log10(a⊙ p) instead of p.

In some of our publications [3], [5], we have also evaluated a part of the presented algo-
rithms on data sets that do not stem from astro-particle physics, but from text quantifica-
tion. Accordingly, we have taken out these evaluations in terms of standard performance
metrics. In these experiments, we have found that our ordinal methods o-PACC, o-ACC,
and o-SLD perform well in ordinal settings, in terms of the standard NMDmetric without
acceptance correction and the logarithm [5]. Moreover, our soft-max implementation in-
deed outperforms constrained optimization in terms of the absolute error and the relative
absolute error [3]. The domain-specific performance according to Eq. 4.37, however, has
not been employed in these works. It is focused in the following experiments to allow for
an evaluation that is even more targeted at the precise needs of knowledge acquisition in
astro-particle physics. We revisit our previous results [3], [5] in Sec. 4.5.3.

4.5.1. Data Sampling Protocols

Our evaluation requires a large set of test samples (DX , p∗) with known ground-truth
class prevalences p∗ ∈ RC . Each quantification method receives each sample DX =
{xi ∈ X : 1 ≤ i ≤ m} as an input and returns the corresponding estimate p. Wemeasure
the quality of each method in terms of its average performance in terms of Eq. 4.37. To
generate samples with known ground-truth prevalences, we draw all samples from the
labeled data of the FACT simulation.

The general process through which we draw the samples is illustrated in Fig. 4.2. First,
we draw a labeled training set DXY at random. All remaining data items are split into
one pool for the validation of hyper-parameters and one pool for testing. Due to this
split, there is no leakage between the data items that are used for training, for hyper-
parameter optimization, and for testing. From each of the two pools, we generate the
individual samples (DX , p∗) by first drawing some class prevalence vector p∗. This draw
is taken out according to one of the specific protocols, which we introduce in the next
paragraphs. Then, we draw a set of data items DX , which exhibits the class proportions
p∗, from the respective pool. We draw a number of samples (DX , p∗) from each pool
separately, to obtain a set of validation samples and a set of testing samples, which are
disjunct from each other.
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Figure 4.2.: The general process of sample generation for the evaluation of quantification meth-
ods. We first draw a training set and split the remaining data into a validation pool
and a training pool. In each pool, we draw data samples according to ground-truth
class prevalence vectors p∗val and p∗tst. Our experiments feature three different proto-
cols for the determination of these prevalence vectors, as well as two values for m,
the number of items in each sample.

The specific protocols, which implement this process, differ in terms of the prevalence
vectors p∗, which they generate. Through their differences, they allow us to explore dif-
ferent spaces of quantification problems. We introduce multiple variants of each protocol
before we select, from each protocol, the most suitable variant for our evaluation.

Natural Prevalence Protocol

The natural prevalence protocol (NPP) keeps the class proportions p∗ fixed to those pro-
portions that occur naturally in the data. Typically, these proportions match the propor-
tions of the training set, so that no prior probability shift occurs in the NPP samples, i.e.,
PT (Y ) = PS(Y ). Therefore, the typical NPP is not appropriate for assessing the required
robustness of quantification methods against prior probability shift.

Here, we consider two variants of NPP, which stem from the prior probability shift that
already exists between the simulated data and the real telescope data. In the data of
the real telescope, the highest energy levels of gamma rays occur only extremely rarely.
However, physicists consider the highest energies to be the most interesting. Moreover,
the extreme imbalance between low-energy and high-energy events typically hinders ef-
fective machine learning, so that physicists have decided to artificially over-sample the
interesting high-energy events in their simulations.

The natural prevalences, as according to the real data and as according to the simulated
data, are plotted in Fig. 4.3. These prevalences give rise to the two NPP variants we con-
sider here, “NPP (simulation)” and “NPP (Crab)”. The first of these variants introduces no
prior probability shift, and hence, is not appropriate for assessing the required robustness
of quantification methods against prior probability shift. The second of these variants
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Figure 4.3.: The fixed class prevalences p∗ that are used in the two variants of the natural preva-
lence protocol. Here, the horizontal axis plots the particle energy in Giga-electron-
Volt (GeV) and the vertical axis plots the probabilities of the energy levels, i.e.,
the probabilities of the ordinal classes. The simulation exhibits an artificial over-
sampling of high energies, due to their importance and due to their extreme rarity in
the real telescope data.

does introduce a prior probability shift, but only exactly one particular shift instance,
which stems from the fixed, underlying prevalence vector.

The prevalence vector of the real telescope data, which yields the “NPP (Crab)” protocol,
specifically models the expected energy density of gamma rays from the Crab nebula, a
bright gamma ray source. This modelling is achieved in two steps. First, a parametric
model of the actual flux of the Crab nebula [127],

Φ(E) =
3.23 · 10−11

TeV · cm2 · s
·
(︃

E

TeV

)︃−2.47−0.24·log10(E/TeV)

, (4.38)

is evaluated at the centers of the energy bins, which define our ordinal classes Y . The
resulting values, p∗Crab ∈ RC , are then divided by the acceptance factors a ∈ RC of
the FACT telescope, to simulate the limited and energy-dependent detection efficiency of
FACT. The outcome of this division,

[p∗]i =
[p∗Crab]i
[a]i

∀ 1 ≤ i ≤ C, (4.39)

defines the single, fixed prevalence vector of the “NPP (Crab)” variant of NPP. This vec-
tor is domain-specific, thus well suited for the evaluation of quantification for energy
spectra, and it introduces prior probability shift for an assessment of quantification ro-
bustness. We compute the required acceptance factors a from closed meta-data of the
FACT telescope.
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Poisson Protocol

A disadvantage of “NPP (Crab)” is that only a single, fixed prevalence vector is used.
Therefore, we propose another evaluation protocol, “Poisson (Crab)”, that introduces a
domain-specific variability of the class prevalence vectors. Like “NPP (Crab)”, this pro-
tocol is based on a parametric model of the Crab nebula flux [127], divided by the ac-
ceptance factors of the FACT telescope. Therefore, the foundation of “Poisson (Crab)” is
again Eq. 4.39.

To generate a domain-specific variability from this single prevalence vector, we interpret
each number of examples, m · [p

∗
Crab]i
[a]i

, as the rate of a Poisson distribution. From this
distribution, we draw an actual, observed number [m∗]i, which we normalize to obtain a
probability density

[p∗]i =
[m∗]i∑︁C
j=1[m

∗]j
∀ 1 ≤ i ≤ C. (4.40)

Through this protocol, we thus obtain prevalence vectors that reflect i) a proper model of
the Crab nebula flux [127], ii) the acceptance of the FACT telescope, and iii) the random
variations that physicists expect trough class-wise Poisson distributions. Indeed, physi-
cists have confirmed to us that this protocol accurately reflects the task of reconstructing
energy spectra. Due to these qualities, we consider “Poisson (Crab)” as our gold-standard
protocol for the evaluation of quantification methods with respect to the reconstruction
of energy spectra from IACT recordings.

Artificial Prevalence Protocol

The artificial prevalence protocol (APP) produces class prevalence vectors that uniformly
populate the entire unit simplex of feasible solutions P from Def. 4.1. Therefore, APP
explores every possible instance of prior probability shift and is hence well suited for
assessing the robustness of quantification methods against prior probability shift.

Typically, however, not all possible prevalence vectors are equally likely in a given ap-
plication. Therefore, most prevalence vectors of APP are often not representative for the
application at hand. Unfortunately, this statement certainly holds for the reconstruction
of energy spectra from IACT recordings. Averaging the performance over many unrep-
resentative samples can lead to overly conservative results, which consider only shift
robustness but not the application-related merits of quantification methods.

Filtering Artificial Prevalences for Ordinal Plausibility

For this reason, we have developed APP-OQ [5], a variant of APP which filters candidate
vectors p∗ in terms of their plausibility in ordinal quantification. We measure plausi-
bility in terms of their smoothness, as according to the Tikhonov regularization term
1
2

(︁
T · log10(a⊙ p∗)

)︁2 from Eq. 4.8. In particular, we maintain only those candidate vec-
tors p∗ which exhibit the lowest values of this term and we explore different fractions (i.e.,
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Table 4.4.: Average smoothness 1
2

(︁
T · log10(a ⊙ p∗)

)︁2
of the logarithmic acceptance-corrected

ground-truth spectra p∗, which are sampled according to each of the protocols. We
test two samples sizes m. Low values indicate smooth spectra.

m protocol
percentile

average
5th 25th 50th 75th 95th

1000 APP .00895 .01733 .03098 .05466 .14605 .04740
APP-OQ (20%) .00631 .01139 .01824 .03022 .05846 .02388
APP-OQ (5%) .00479 .00881 .01390 .02296 .04184 .01774
APP-OQ (1%) .00380 .00717 .01133 .01860 .03418 .01433
NPP (Crab) .00014 .00014 .00014 .00014 .00014 .00014
NPP (simulation) .00203 .00205 .00205 .00205 .00207 .00205
Poisson (Crab) .00018 .00032 .00052 .00091 .00233 .00081

10000 APP .00592 .01144 .01829 .02969 .06612 .02506
APP-OQ (20%) .00381 .00642 .00896 .01243 .02127 .01019
APP-OQ (5%) .00272 .00437 .00601 .00821 .01368 .00682
APP-OQ (1%) .00183 .00304 .00421 .00586 .00976 .00482
NPP (Crab) .00002 .00002 .00002 .00002 .00002 .00002
NPP (simulation) .00051 .00051 .00051 .00051 .00051 .00051
Poisson (Crab) .00003 .00005 .00008 .00013 .00023 .00010

Table 4.5.: Average NMD, as according to Eq. 4.37, between the logarithmic acceptance-corrected
training distribution p0 and the logarithmic acceptance-corrected ground-truth spec-
trum p∗, where p∗ is sampled according to each of the protocols. Low values indicate
small magnitudes of prior probability shift.

m protocol
percentile

average
5th 25th 50th 75th 95th

1000 APP .02830 .04343 .05491 .06965 .12802 .06196
APP-OQ (20%) .02680 .04111 .05254 .06668 .12870 .05983
APP-OQ (5%) .02629 .04060 .05177 .06502 .11800 .05805
APP-OQ (1%) .02610 .04026 .05100 .06370 .11433 .05689
NPP (Crab) .10942 .10948 .10950 .10951 .10958 .10950
NPP (simulation) .00050 .00055 .00056 .00058 .00067 .00060
Poisson (Crab) .07895 .09321 .10602 .11143 .11780 .10210

10000 APP .03362 .05105 .06624 .08692 .13733 .07290
APP-OQ (20%) .03234 .04944 .06438 .08541 .13702 .07139
APP-OQ (5%) .03235 .04881 .06380 .08424 .13323 .07035
APP-OQ (1%) .03162 .04839 .06290 .08296 .13319 .06957
NPP (Crab) .07801 .07801 .07801 .07801 .07801 .07801
NPP (simulation) .00005 .00006 .00006 .00006 .00011 .00007
Poisson (Crab) .07087 .07469 .07782 .08132 .08681 .07821
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20%, 5%, and 1%) to be maintained. All other candidates are discarded and, hence, are not
used to generate samples DX . In order to have 1000 samples, like all other protocols, we
over-produce candidate vectors so that, after discarding, 1000 vectors remain.

While APP-OQ clearly produces class prevalence vectors that are plausible for ordinal
quantification, we might ask: which of the APP-OQ fractions is the most appropriate for
our use case? In fact, this question has motivated us to come up with our gold-standard
“Poisson (Crab)” protocol, with which we address this question in the following.

Selection of Protocols

We intend to explore different spaces of quantification problems through different pro-
tocols, but we also want to focus our evaluation on the most suitable variants for re-
constructing energy spectra in astro-particle physics. In particular, we are looking for
protocol variants which are allowed to behave a little different from the “Poisson (Crab)”
protocol, without being completely alien to our use case.

To compare the variants introduced above, we evaluate the sets of class prevalence vec-
tors, which they produce, in two regards. First, we evaluate the vectors in terms of their
logarithmic, acceptance-corrected smoothness, i.e., in terms of 1

2(T · log10(a⊙ p∗))2. The
average values of this metric, for each protocol, are given in Tab. 4.4. Second, we evaluate
the class prevalence vectors in terms of their prior probability shift. To this end, we mea-
sure the distance between each generated class prevalence vector p∗ and the training set
prevalences p0 through Eq. 4.37; later, we measure the quality of quantification estimates
in the same way. The average shift values, for each protocol, are given in Tab. 4.5.

Based on the results from Tab. 4.4 and Tab. 4.5, we select “NPP (Crab)” and “APP-OQ
(1%)” as our evaluation protocols, in addition to our gold-standard “Poisson (Crab)” pro-
tocol. We select “NPP (Crab)” because it behaves similarly to “Poisson (Crab)” in terms of
smoothness and in terms of prior probability shift. The only exception to this observation
is the smoothness form = 1000, where “NPP (Crab)” produces much smoother and more
constant prevalence vectors than “Poisson (Crab)”. We select “APP-OQ (1%)” because it is,
among all APP variants, the variant that is closest to “Poisson (Crab)”, despite behaving
quite differently. In particular, “APP-OQ (1%)” leads to a considerable variability in terms
of smoothness and prior probability shift. Therefore, this protocol represents a more con-
servative assessment of quantification performance, i.e., an assessment with a stronger
focus on robustness to prior probability shift, than the “Poisson (Crab)” protocol.

4.5.2. Comparison

Our implementations of all methods and experiments are available online.8 Tab. 4.6
and Tab. 4.7 display the results of our comparison, as according to the selected protocols
and the evaluation metric from Eq. 4.37. Due to the protocols and the evaluation metric,

8
https://github.com/mirkobunse/QUnfold.jl
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Table 4.6.: Average NMD (see Eq. 4.37, lower is better) with standard deviations of the logarithmic
acceptance-corrected estimate p. Here, we set m = 1000 and print the best perfor-
mance in boldface. All methods that perform worse than the sum of the best average
and its standard deviation are printed in gray.

method APP-OQ (1%) NPP (Crab) Poisson (Crab)

RUN (original) .0539±.0565 .0963±.0461 .0937±.0449
SVD (original) .0264±.0363 .0921±.0439 .0993±.0474
IBU .0344±.0364 .0173±.0056 .0171±.0070

ACC (constrained) .1963±.0945 .1225±.0292 .1287±.0327
PACC (constrained) .0579±.0558 .0816±.0385 .0810±.0390
HDx (constrained) .0767±.0846 .0742±.0486 .0733±.0496
HDy (constrained) .1420±.1014 .1269±.0367 .1335±.0387

RUN (softmax) .0192±.0203 .0134±.0049 .0205±.0123
SVD (softmax) .0260±.0261 .0216±.0130 .0196±.0121

o-ACC (softmax) .0275±.0249 .0093±.0053 .0143±.0099
o-PACC (softmax) .0326±.0301 .0080±.0036 .0148±.0106
o-HDx (softmax) .0320±.0318 .0166±.0091 .0166±.0098
o-HDy (softmax) .0235±.0228 .0163±.0082 .0159±.0086
o-SLD .0301±.0340 .0195±.0187 .0182±.0085

SLD .0262±.0287 .0696±.0360 .0664±.0353

Table 4.7.: Average NMD (see Tab. 4.6) with m = 10 000.

method APP-OQ (1%) NPP (Crab) Poisson (Crab)

RUN (original) .0221±.0256 .0616±.0232 .0622±.0245
SVD (original) .0166±.0201 .0613±.0267 .0610±.0278
IBU .0243±.0143 .0044±.0029 .0068±.0043

ACC (constrained) .1840±.0428 .0983±.0092 .0989±.0104
PACC (constrained) .0224±.0194 .0346±.0266 .0335±.0252
HDx (constrained) .0530±.0566 .0493±.0309 .0494±.0314
HDy (constrained) .1201±.0653 .1266±.0116 .1260±.0141

RUN (softmax) .0120±.0109 .0031±.0015 .0061±.0038
SVD (softmax) .0197±.0148 .0057±.0025 .0076±.0044

o-ACC (softmax) .0217±.0154 .0041±.0014 .0069±.0039
o-PACC (softmax) .0253±.0192 .0051±.0012 .0075±.0040
o-HDx (softmax) .0204±.0172 .0037±.0020 .0064±.0043
o-HDy (softmax) .0169±.0141 .0036±.0016 .0062±.0039
o-SLD .0201±.0114 .0035±.0018 .0063±.0038

SLD .0169±.0129 .0655±.0149 .0651±.0162
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these results are highly domain-specific, despite the fact that all methods can also be
applied to quantification tasks outside of astro-particle physics. We have set the domain-
specific focus to address Q1–Q3, the questions we have brought up in the beginning of
this section. From Tab. 4.6 and Tab. 4.7, we draw the following conclusions.

Q1: Suitability of Existing Methods

First, we assess how suitable the existing quantification / unfolding methods from Sec. 4.1
are. In Tab. 4.6 and in Tab. 4.7, these methods are listed as “RUN (original)”, “SVD (origi-
nal)”, “IBU”, “ACC (constrained)”, “PACC (constrained)”, “HDx (constrained)”, “HDy (con-
strained)”, and “SLD”. The best methods among this collection are “SLD”, in terms of the
“APP-OQ (1%)” protocol, and “IBU”, in terms of the other protocols. However, our soft-
max and regularization proposals outperform the existing “IBU” and “SLD”.

In terms of quantification performance, a minimum requirement for any quantification
method is to achieve some average performance values that are well below the prior
probability shift values from Tab. 4.5. If a quantification algorithm would not meet this
requirement, it would be advisable to simply return the mistaken training class preva-
lences p0, instead of running this algorithm. Fortunately, however, we see from Tab. 4.6
and Tab. 4.7 that most quantifiers easily meet this requirement. An exception of this ob-
servation are “ACC (constrained)” and “HDy (constrained)”, which are, on average, worse
than the training class prevalences in all three protocols. Therefore, all methods, except
for “ACC (constrained)” and “HDy (constrained)”, are indeed capable of counteracting
prior probability shift in the quantification tasks that are posed by the reconstruction of
energy spectra.

We also see that all methods improve between Tab. 4.6, where each sample comprises
m = 1000 data items, and Tab. 4.7, where each sample comprisesm = 10 000 data items.
This behavior is expected and desired.

Q2: Impact of our Soft-Max Trick

We have already seen in Tab. 4.3 that our soft-max trick from Sec. 4.2 improves the perfor-
mance of the existing methods in terms of the absolute error and in terms of the relative
absolute error. Here, we see that RUN and SVD achieve huge improvements in terms of
the performance metric from Eq. 4.37. For instance, “RUN (softmax)” outperforms “RUN
(original)” in the “Poisson (Crab)” protocol by 78%withm = 1000 (0.0205 versus 0.0937)
and by 90% with m = 10 000 (0.0061 versus 0.0622).

Q3: Impact of Ordinal Regularization

We now take a closer look at the regularized methods “o-ACC (softmax)”, “o-PACC (soft-
max)”, “o-HDx (softmax)”, “o-HDy (softmax)”, and “o-SLD”, which we have developed in
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Sec. 4.3. These methods draw inspiration from RUN, SVD, and IBU, which are regularized
through the same techniques.

We recognize that the best performances, according to all protocols and sample sizes, are
regularized methods. In particular, the best performances across all protocols and sam-
ple sizes are “RUN (softmax)”, “o-ACC (softmax)”, and “o-PACC (softmax)”. Moreover,
none of the non-regularized methods achieves a performance that is within one standard
deviation of the best method, except for SLD and PACC in the “APP-OQ (1%)” protocol.
At this point, we emphasize that the best regularization parameters of all regularized
methods are selected on the basis of the average validation performance in each proto-
col, while Tab. 4.4 reveals a variability of the smoothness, which the individual samples
within each protocol exhibit. Hence, the regularization parameter has to fit all samples.
We conceive further room for improvements through a regularization that targets each
individual sample.

In this experiment, the winning performances of o-ACC and o-PACC and the high perfor-
mances of o-HDx, o-HDy, and o-SLD are particularly noteworthy for two reasons. First,
these algorithms do not originate in astro-particle physics, unlike RUN, SVD, and IBU.
Second, our experiment is specifically targeted at an astro-particle use case, in which
RUN, SVD, and IBU might be expected to exhibit the best performances. Therefore, the
high performance of the other methods strongly supports our claim that quantification
methods from outside of unfolding literature, if they are properly regularized and opti-
mized, can indeed lead to accurate reconstructions of energy spectra.

4.5.3. Previous Results

A comparison similar to the one above already appears in one of our publications [5].
To broaden our discussion towards other applications of quantification, outside of astro-
particle physics, we revisit the results of this comparison in Tabs. 4.8 and 4.9.

The differences between Tabs. 4.8 and 4.9 and the results presented in the section above
are as follows. First, we have evaluated our methods on data from text quantification,
where the goal is to quantify five ordinal classes that represent a scale of five stars in prod-
uct reviews. Second, we have evaluated in terms of a standard NMD metric, see Def. 2.8,
instead of the domain-specific performance measure from Eq. 4.37; we have further eval-
uated in terms of RNOD [60], another evaluation metric for ordinal quantification. Third,
we have regularized in terms of the “plain” Tikhonov regularizer (Tp)2 from Eq. 4.7, in-
stead of using the logarithmic and acceptance-corrected regularizer from Eq. 4.8. Fourth,
we have employed a regular APP protocol and the variant “APP-OQ (20%)”, instead of the
more domain-specific evaluation protocols, which we have used above. Fifth, we have
employed a slightly different selection of quantification methods. Due to these differ-
ences, we must be cautious with drawing conclusions for the reconstruction of energy
spectra in particular. However, these differences allow us to broaden our discussion to an
application of text quantification and to more conservative evaluation protocols, “APP”
and “APP-OQ (20%)”, which emphasize robustness against prior probability shift.
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Table 4.8.: AverageNMD (seeDef. 2.8, lower is better), of the plain estimate p, without a logarithm
and without the acceptance correction. Here, we set m = 1000. The methods “o-
ACC”, “o-PACC” and “RUN” correspond to the constrained versions thereof, without
our soft-max proposal. This table is adapted from one of our publications [5].

method
Amazon (RoBERTa) Amazon (TFIDF) FACT
APP APP-OQ APP APP-OQ APP APP-OQ

CC .0526±.019 .0344±.013 .0867±.034 .0683±.031 .0534±.012 .0494±.011
PCC .0629±.022 .0440±.017 .1082±.044 .0950±.048 .0651±.017 .0621±.017
ACC .0229±.009 .0193±.007 .0353±.015 .0333±.014 .0582±.028 .0575±.028
PACC .0209±.008 .0176±.007 .0301±.015 .0310±.015 .0791±.048 .0816±.049
SLD .0172±.007 .0154±.006 .0477±.018 .0381±.012 .0373±.010 .0355±.009

OQT .0775±.026 .0587±.027 .1583±.065 .1539±.072 .0746±.019 .0731±.020
ARC .0641±.023 .0477±.015 .0989±.037 .0855±.038 .0566±.014 .0568±.016
IBU .0253±.010 .0197±.007 .0596±.023 .0454±.020 .0213±.005 .0187±.004
RUN .0252±.010 .0198±.007 .0594±.023 .0452±.020 .0222±.006 .0194±.005

o-ACC .0229±.009 .0188±.007 .0347±.017 .0227±.009 .0274±.007 .0230±.006
o-PACC .0209±.008 .0174±.007 .0276±.014 .0194±.007 .0230±.006 .0178±.004
o-SLD .0173±.007 .0152±.006 .0477±.018 .0363±.011 .0327±.008 .0289±.007

Table 4.9.: Average RNOD [60] (lower is better) in analogy to Tab. 4.8. This table is adapted from
the supplementary material of one of our publications [5].

method
Amazon (RoBERTa) Amazon (TFIDF) FACT
APP APP-OQ APP APP-OQ APP APP-OQ

CC .1151±.048 .0606±.020 .1555±.062 .0953±.033 .1319±.036 .1071±.027
PCC .1360±.054 .0758±.025 .1807±.063 .1244±.045 .1372±.034 .1096±.026
ACC .0487±.024 .0374±.016 .0786±.039 .0735±.035 .1563±.040 .1375±.030
PACC .0419±.019 .0327±.014 .0681±.037 .0708±.037 .1750±.056 .1719±.047
SLD .0363±.017 .0302±.014 .1073±.051 .0814±.027 .0890±.029 .0767±.021

OQT .1542±.064 .0960±.032 .2168±.071 .1659±.058 .1456±.035 .1225±.032
ARC .1303±.056 .0770±.027 .1698±.065 .1123±.035 .1242±.032 .0973±.022
IBU .0534±.025 .0357±.014 .1186±.052 .0678±.022 .0822±.028 .0649±.018
RUN .0531±.025 .0361±.014 .1185±.053 .0675±.022 .0869±.029 .0685±.019

o-ACC .0487±.024 .0353±.014 .0777±.038 .0465±.020 .1032±.033 .0754±.016
o-PACC .0419±.019 .0316±.012 .0624±.034 .0399±.017 .0914±.029 .0625±.016
o-SLD .0365±.017 .0296±.013 .0973±.036 .0688±.017 .0857±.027 .0658±.015
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The columns in Tabs. 4.8 and 4.9 refer to the two evaluation protocols and to the three data
sets we have employed. Here, the “FACT” data is the same data we have used through-
out this thesis and the two columns “Amazon (RoBERTa)” and “Amazon (TFIDF)” refer to
two text representations of a product review dataset [128]. To this end, we employ either
RoBERTa [129] embeddings of the reviews or simple TFIDF features thereof. The clas-
sifier for classification-based quantification methods is a logistic regression [54], which
performs highly competitive on both representations of the text data.

The results from Tabs. 4.8 and 4.9 suggest that ordinal regularization particularly benefits
quantification methods if the quantification task is indeed ordinal. We draw this con-
clusion from the observation that regularized methods frequently win in the “APP-OQ
(20%)” protocol, but not in the non-ordinal “APP” protocol. However, since this variant
of APP-OQ maintains 20% of all samples, the improvement is not as pronounced as it is
in Sec. 4.5.2, where APP-OQ maintains only the smoothest 1% of all samples. Moreover,
Tabs. 4.8 and 4.9 suggest that quantification methods provide the largest benefit when
the underlying classifier is weak. We draw this second conclusion from the observation
that the powerful RoBERTa embedding allows all methods to achieve accurate results,
while the weak TFIDF representation pronounces the performance differences between
the quantification methods. Finally, we find that NMD and RNOD yield the same gen-
eral conclusions in this experiment. In general, these conclusions are in line with our
domain-specific conclusions from Sec. 4.5.2.
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In this chapter, we explore the potential of weak supervision for gamma hadron classifi-
cation, the essential prediction task for gamma ray astronomy that we have introduced
in Sec. 3.5. By learning directly from the data that a real IACT produces, we solve this
prediction task without the need for costly simulations. In particular, we learn a gamma
hadron classifier by adopting the “on” and “off” annotations of real telescope recordings
as weak labels with class-conditional label noise (CCN). These annotations are provided
for each individual event, through the wobble mode from Fig. 3.2.

The potential of using “on” and “off” annotations as weak labels emerges from data that
are taken while the telescope is pointed at a known gamma ray source, like the Crab
nebula. By knowing that a gamma ray source indeed exists in the “on” region, we also
know that a gamma ray excess must occur in this region. In particular, we know that
Non > α · Noff must hold. Therefore, the “on” and “off” annotations ˆ︁y ∈ {“on”, “off”},
which the wobble mode provides for each real and individual telescope recording x ∈ X ,
loosely correspond to the true class labels y ∈ {“gamma”, “hadron”}. In particular, the
probability of observing a gamma ray in the “on” region is higher than observing a hadron
in this region,

P
(︂ˆ︁Y = “on”

⃓⃓
Y = “gamma”

)︂
> P

(︂ˆ︁Y = “on”
⃓⃓
Y = “hadron”

)︂
. (5.1)

However, we cannot simply treat the “on” and “off” annotations as a direct replacement
for the ground-truth “gamma” and “hadron” labels because there are non-zero probabili-
ties

p+ = P
(︁ˆ︁Y = “off” | Y = “gamma”

)︁
,

p− = P
(︁ˆ︁Y = “on” | Y = “hadron”

)︁
,

(5.2)

which characterize the class-conditional noise of the “on” and “off” weak labels. The
mapping from the true “gamma” and “hadron” labels y to “on” and “off” annotations ˆ︁y, in
terms of p+ and p−, is further illustrated in Fig. 5.1.

Theoretic results on learning under CCN [18], [130]–[132] suggest that Eq. 5.1 suffices for
learning accurate gamma hadron classifiers from “on” and “off” annotations. In this chap-
ter, we explore this potential to find that gamma hadron classification poses an original
CCN problem in which the label noise is partially known. In particular, we show that the
wobble mode ensures that exactly one of the class-wise noise rates is known and hence
does not need to be estimated. Existing work on CCN, to the best of our knowledge, has
either assumed the full knowledge of all noise rates [130], [133] or the complete ignorance
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gamma

hadron
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(1− p+)
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y ˆ︁y
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negative class

Figure 5.1.: CCN in gamma hadron classification. The goal is to distinguish gamma rays from
hadrons, using the “on” and “off” annotations of real telescope recordings. This figure
is adapted from one of our publications [7].

thereof [133], [134]. We demonstrate that ignoring the available, partial knowledge of the
noise rates can lead to sub-optimal results.

We address partial knowledge in CCN through an objective function that a learning al-
gorithm can optimize, be it in gamma hadron classification or on any other binary clas-
sification task under CCN. This objective function combines several qualities:

versatile: our objective can be used to optimize the decision threshold of any existing
decision function h : X → R or to learn a new classifier from scratch. It can also
be used to evaluate classification models in the typical case where no clean data is
available for testing.

These merits require that one of the two class-wise noise rates is known. The wob-
ble mode of IACTs meets this assumption by design.

interpretable: our objective is based on a hypothesis test, which we propose to assess
whether learning is feasible with a given set of noisy labels. If clean ground-truth
labels were available, we could employ this test directly. In gamma hadron classi-
fication, we employ an effective heuristic about this test.

straightforward: our objective function is easy to implement with off-the-shelf opti-
mization tools.

practical: partial knowledge of the class-wise noise rates, as proposed by us, is relevant
in real use cases. We present gamma hadron classification as one example.

This chapter is structured as follows: we first discuss class-conditional label noise, the
properties of which are inherited by partially-known label noise, in Sec. 5.1. In Sec. 5.2,
we then rephrase Li & Ma’s hypothesis test from Def. 3.1 as a general test of CCN learn-
ability. Sec. 5.3 introduces partial knowledge of CCN label noise and proposes algorithms
to handle this setting. We empirically validate our proposals in Sec. 5.4 before we apply
our proposals to a detection of the Crab nebula in Sec. 5.5.
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5.1. Binary Classification Under Class-Conditional Label Noise

In binary classification under random label noise, we only have access to training la-
bels ˆ︁y ∈ {+1,−1} that are noisy in the sense of being randomly flipped versions of the
clean ground-truth labels y ∈ {+1,−1}. We focus on the class-conditional random label
noise model (CCN) [18], [130]–[132] in particular, which states that the labels are flipped
according to the noise rates p+ and p−. These rates depend on the true class y but are in-
dependent of the features. Formally, they are defined as the label flip probabilities

py = P
(︂ˆ︁Y = −y

⃓⃓
Y = y

)︂
, (5.3)

which might be known or unknown.

Remark 5.1 (Compact notation). Our subscript notation py with y ∈ {+1,−1} and Nˆ︁y
with ˆ︁y ∈ {+1,−1} compactly represents the rates p+ = p+1 and p− = p−1 and the
countsN+ = N+1 andN− = N−1. In other words, we omit the number “1” in subscripts
when the meaning is clear from the context.

Conventionally, the feasibility of learning under class-conditional label noise is estab-
lished by assuming a correspondence between noisy and true labels. Namely, the truly-
positive class is required to exhibit a chance of positive noisy labels that is higher than
the chance of positive noisy labels in the truly-negative class,

P
(︂ˆ︁Y = +1

⃓⃓
Y = +1

)︂
> P

(︂ˆ︁Y = +1
⃓⃓
Y = −1

)︂
. (5.4)

This assumption can be written equivalently as p+ + p− < 1. The connection between
Eq. 5.4 and this compact form is established by the rearrangement

P
(︁ˆ︁Y = +1 | Y = +1

)︁
> P

(︁ˆ︁Y = +1 | Y = −1
)︁

⇔ 1 − P
(︁ˆ︁Y = −1 | Y = +1

)︁
> P

(︁ˆ︁Y = +1 | Y = −1
)︁

⇔ 1 > p+ + p−.

Based on this assumption, we formally define the CCN noise model for binary classifica-
tion. In this definition, the random draw of some ω ∈ [0, 1) realizes label flips that occur
randomly with probabilities p+ and p−.

Definition 5.1 (Binary CCN). Let ω be the draw of a random variable that is uniformly
distributed over [0, 1). Further, let p+ + p− < 1 be the noise rates of the true classes y ∈
{+1,−1}. Binary CCN noisy labels ˆ︁y ∈ {+1,−1} are defined by

ˆ︁y = CCN
(︁
y ; ω, p+, p−

)︁
=

{︄
−y if ω ≤ py,

y else

We now discuss the general properties of binary CCN before we discuss CCN settings,
which differ in whether p+ and p− are known or unknown.
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5.1.1. Finding Optimal Decision Thresholds Under CCN

Theoretic studies have show that CCN noisy labels ˆ︁y permit us to learn classifiers which
are optimal even with respect to the clean ground-truth labels y [18], [130]–[132]. For
the family of threshold-optimal performance metrics, the only difficulty lies in finding
an optimal decision threshold θ ∈ R; a decision function h : X → R, which yields the
optimal hard classifier hθ = sign(h(x)− θ), can be learned directly from the noisy labels.
This family of performance metrics, which is detailed in Sec. 2.2.2, includes weighted
accuracy, the Fβ score, and other relevant metrics.

Before proving this statement formally, let us illustrate the immediate implications of bi-
nary CCN in terms of the clean prediction function P(Y = +1 | X = x) and the noisy
prediction function P(ˆ︁Y = +1 | X = x). Indeed, many learning algorithms produce de-
cision functions h which are estimates of the clean P(Y = +1 | X = x). However, a
CCN-unaware learning algorithm, when being trained only on noisily labeled data, would
instead estimate the noisy variant P(ˆ︁Y = +1 | X = x) thereof.

Luckily, the following result states that the clean and noisy prediction functions are
strictly monotone transformations of each other. Due to their strict monotonicity, there
exists a unique one-to-one mapping between their probability values. A carefully cho-
sen threshold for noisy probabilities P(ˆ︁Y = +1 | X = x) can therefore produce optimal
predictions also with regard to the clean classes. Proposition 5.1 goes back to Natarajan
et al. [130, supplementary material, proof of Lemma 7], who employ this result within a
proof that addresses optimal thresholds for the 0-1 loss in particular.

Proposition 5.1. Assume binary CCN label noise according to Def. 5.1. There exists a
strictly monotone transformation, which does not depend on x, between the true clean
probabilities P(Y = +1 | X = x) and the true noisy probabilities P(ˆ︁Y = +1 | X = x).
Namely, ∃ a > 0, b ∈ R, such that, ∀x ∈ X : P(X = x) > 0,

P(ˆ︁Y = +1 | X = x) = a · P(Y = +1 | X = x) + b.

In particular, a = 1− p+ − p− and b = p−.

Proof. The following rearrangement employs i) the law of total probability and ii) the fact
that any CCN noisy label ˆ︁y only depends on the clean label y; more specifically, any ˆ︁y
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is conditionally independent of the features x given y. Moreover, we employ iii) the fact
that P(Y = −1 | X = x) = 1− P(Y = +1 | X = x). For all x ∈ X : P(X = x) > 0,

P(ˆ︁Y = +1 | X = x)

=
1

P(X = x)
P(ˆ︁Y = +1 ∩ X = x)

i)
=

1

P(X = x)

∑︂
y∈{+1,−1}

P(Y = y ∩ ˆ︁Y = +1 ∩ X = x)

=
1

P(X = x)

∑︂
y∈{+1,−1}

P(ˆ︁Y = +1 | Y = y ∩ X = x) · P(Y = y ∩ X = x)

ii)
=

1

P(X = x)

∑︂
y∈{+1,−1}

P(ˆ︁Y = +1 | Y = y) · P(Y = y ∩ X = x)

=
∑︂

y∈{+1,−1}

P(ˆ︁Y = +1 | Y = y) · P(Y = y | X = x)

iii)
= (1− p+) · P(Y = +1 | X = x) + p− ·

(︁
1− P(Y = +1 | X = x)

)︁
= a · P(Y = +1 | X = x) + b

Moreover, a > 0 due to the assumption p+ + p− < 1 from Def. 5.1.

Remark 5.2. Menon et al. [18, Proposition 5] and Scott et al. [131, Proposition 1] present
similar one-to-one correspondences between noisy and clean prediction functions in the
context of binary classificationwithmutually contaminated distributions. While this con-
text might appear to be different from CCN learning, they further show [18, Eq. 3] that
both settings are in fact equivalent. In particular, both settings allow us to learn a predic-
tion function from noisily labeled data and tune the decision threshold of the resulting
model in order to optimally predict the clean classes.

To further prove the existence of an optimal threshold, we need a formal concept of op-
timality. To this end, we employ the performance metrics from Sec. 2.2.2, which are
optimized by thresholded decision functions.

Proposition 5.2 (CCN consistency). Consider a performance metric Q : H → R for
which the Bayes-optimal classifier is of the formh∗(x) = sign(P(Y = +1 | X = x)− θ∗)
with an optimal threshold θ∗ ∈ R. Moreover, let the learning algorithm A : ∪∞m=1(X ×
Y)m → H be a consistent estimator of the scoring function, i.e., let ∀x ∈ X : E(X×Y)m

hA(x)→ P(ˆ︁Y = +1 | X = x) for a noisy sample of size m → ∞. Then, for m → ∞,
the classifier

hλ∗(x) = sign(hA(x)− λ∗)

is Bayes-optimal for Q with a threshold λ∗ = (1− p+ − p−)θ
∗ + p−.
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5. Class-Conditional Label Noise Learning

Proof. Let a = 1 − p+ − p− > 0 and b = p−. The following rearrangement employs
i) Proposition 5.1 and ii) m → ∞ with the fact that A is consistent. The Bayes-optimal
classifier for Q is

h∗(x) = sign(P(Y = +1 | X = x)− θ∗)

= sign(a · P(Y = +1 | X = x) + b− a · θ∗ − b)

i)
= sign(P(ˆ︁Y = +1 | X = x)− (a · θ∗ + b))

ii)
= sign(hA(x)− (a · θ∗ + b)),

which yields the claim for λ∗ = a · θ∗ + b.

Remark 5.3. Proposition 5.2makes two assumptions: first, a performancemetric for which
the Bayes-optimal classifier is of the form h∗(x) = sign(P(Y = +1 | X = x)− θ∗); sec-
ond, a consistent learning algorithm for the decision function hA(x). The assumed family
of performance metrics contains several important measures, like weighted accuracy and
the Fβ score, and the consistency assumption holds for any learning algorithm which
evolves around empirical risk minimization of a proper loss [30], [33], like the logistic
loss and the squared error. Therefore, the proposition is applicable to many performance
metrics and learning algorithms, which are introduced in Sec. 2.2.2.

In practice, this result allows us to use the noisily labeled training data to fit a decision
function h and to obtain an estimate ˆ︁λ ∈ R of the noisy-optimal threshold λ∗. From this
estimate, we can estimate the clean-optimal threshold θ∗ as

ˆ︁θ =
ˆ︁λ− p−

1− p+ − p−
. (5.5)

The remaining difficulty of binary classification under CCN is to estimate p+ or p− from
the noisy data if at least one of these quantities is unknown.

Example 5.1 (Accuracy). The optimal threshold for this performance metric is known to be
λ∗
Acc =

1
2 , see Tab. 2.1. Hence, we do not need to estimate this threshold from data but, due

to CCN, we have to acknowledge that this threshold is only optimal for the noisy labels.
As according to Eq. 5.5, an optimal clean threshold is θ∗Acc = (12 − p−) · (1− p+ − p−)

−1

[130, Theorem 9], which requires the precise knowledge or the estimation of p+ and p−.

So far, we have focused on the performance metrics from Sec. 2.2.2, which are optimized
by thresholded decision functions. For a family of other performance metrics, a similar
approach evolves around empirical riskminimizationwith CCN-aware loss weights [130],
[133]. In the following, we keep focused on thresholded decision functions in order to
study the effects of known and unknown noise rates in particular.
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Figure 5.2.: Set diagram of label noise models. Partially-known class-conditional noise (PK-CCN;
addressed in this work) is a subset of binary CCN, but distinct from completely known
(CK-CCN) and completely unknown (CU-CCN) class-conditional noise, from uniform
and purely instance-dependent label noise.

5.1.2. Completely Known and Completely Unknown Label Noise

The results of Propositions 5.1 and 5.2 hold independently of whether p+ and p− are
known or unknown. If they are known precisely, we can already adapt the threshold
of a decision function that is trained on noisy labels, as according to Eq. 5.5. Typically,
however, p+ and p− are not known, so that an adaptation of the decision threshold re-
quires additional efforts, like estimating these rates from noisy data [18], [131]. Without
access to clean labels, this estimation requires additional assumptions, e.g. the existence
of clean labels at a point in feature space where the other clean class has zero probability
[18]. Class imbalance further complicates the estimation of the noise rates [134].

Due to the fundamental difference between handling CCN with known noise rates and
handling CCN without known rates, we distinguish the two scenarios explicitly, as ac-
cording to the following definitions. In Sec. 5.3, we introduce an additional setting, which
appears in gamma hadron separation, where one noise rate is known and the other is not.
Fig. 5.2 displays a set diagram of these different settings.

Definition 5.2 (CK-CCN). Consider a training set with binary CCN noisy labels ˆ︁y defined
by Def. 5.1. Furthermore, let p+ and p− be precisely known. We call this setting completely
known CCN or CK-CCN for short.

Definition 5.3 (CU-CCN). Consider a training set with binary CCN noisy labels ˆ︁y defined
by Def. 5.1. Furthermore, let p+ and p− be unknown. We call this setting completely
unknown CCN or CU-CCN for short.

Note that, if we had a small, cleanly labeled data set, we could tune the decision threshold
directly on this set [132]. Such a cleanly labeled set of data might exist independently of
whether p+ and p− are known. However, since gamma rays and hadronic particles are
never ground-truth labeled, we do not discuss this possibility further.
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5. Class-Conditional Label Noise Learning

5.1.3. Other Types of Label Noise

Beyond the CCN noise model, other types of label noise have been discussed in the sci-
entific literature. For instance, the label noise is called uniform [133] if each label has the
same chance of being flipped, independent of the class and of the instance. Otherwise, if
the chance of being flipped does not depend on the true class, but on the features, we are
speaking of purely instance-dependent label noise [135]. Learning is feasible under each
of these noise models, given that dedicated assumptions about the data and the learning
method hold. For gamma hadron separation, CCN is the most appropriate model.

Recently, multi-class settings are moving into the focus of CCN learning [136]–[140].
These settings require not only the estimation (or the knowledge) of two noise rates, but
the estimation (or the knowledge) of a dense transition matrix between all noisy and true
classes [137], [141]. This matrix is applied at inference time to compute the estimated
clean class probabilities from the predictions for the noisy classes. In the context of deep
learning, methods for the simultaneous training of the predictionmodel and the transition
matrix have been proposed [142].

All of these multi-class methods either assume full knowledge of all noise rates or full
ignorance of the rates. In this chapter, we focus on binary classification because CCN
with partial knowledge of the noise rates—our focus topic—has a practical use case in
the binary classification task that is posed by gamma hadron separation; an extension of
partial knowledge to the multi-class setting shall remain open for future work.

We further recognize that the above mentioned, recent works on CCN [136]–[140] pri-
marily optimize the accuracy metric, which is inadequate for imbalanced classification
tasks [143]. The problem of class imbalance in CCN unfortunately has remained largely
unexplored, with the notable exception of Mithal et al. [134]. In gamma hadron separa-
tion, due to its extreme and inherent class imbalance, we have to address this issue.

5.1.4. When is Class-Conditional Label Noise Unproblematic?

CCN label noise does not always affect the clean label performance of a model that is
trained from noisy data. In fact, there are performance metrics and noise settings for
which an optimal clean classifier can be trained from noisy data and without the need to
handle CCN. At this point, however, we acknowledge these settings only for complete-
ness. Gamma hadron separation, which aims at maximizing the significance of detection,
is not among the settings where CCN is unproblematic. Therefore, we need to handle
CCN in order to find accurate binary classifiers for our use case.

One performance measure that is robust to CCN is the AM metric, the arithmetic mean
of the true positive rate and the true negative rate. This performance measure is opti-
mized through a thresholded decision function with a decision threshold at the base rate
P(Y = +1) [33], as introduced in Tab. 2.1. Accordingly, the optimal decision threshold
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for the noisy data, under a noisy decision function, is P(ˆ︁Y = +1). It might appear that
the Bayes-optimal classifier for the clean data

argmax
f :X→Y

AM(f ;Y ) = sign
(︁
P(Y = +1 | X = x)− P(Y = +1)

)︁
(5.6)

and the Bayes-optimal classifier for the noisy data

argmax
f :X→Y

AM(f ; ˆ︁Y ) = sign
(︁
P(ˆ︁Y = +1 | X = x)− P(ˆ︁Y = +1)

)︁
(5.7)

are different. However, Menon et al. [18, Proposition 1] have proven a linear relationship
between AM(f ;Y ) and AM(f ; ˆ︁Y ). Due to this relationship, the maximizers from Eq. 5.6
and Eq. 5.7 are indeed identical. Also in terms of the area under the receiver operating
characteristic, there is a linear relationship between the noisy and the clean metric [18,
Corollary 3].

Therefore, when the the performance metric is either the AM measure or the area under
the receiver operating characteristic, we do not need to address CCN at all. We can treat
the noisy labels as if they were clean: no noise rates need to be estimated and the decision
threshold does not need to be adapted because learning from noisy data is already con-
sistent with respect to the clean data if the fundamental CCN assumption p+ + p− < 1
holds. However, we still pay a price for learning under label noise: the sample complexity,
i.e., the number of data items needed to train an accurate model, increases due to CCN
[18, Proposition 2 and Corollary 4].

For the ERM framework, Ghosh et al. [133] present additional conditions under which
learning is robust to CCN. Their symmetry condition of the loss function is ℓ(h(x),+1)+
ℓ(h(x),−1) = c for some c ∈ R and all x ∈ X . This condition is fulfilled, for instance,
by the zero-one loss and by the sigmoid loss. ERM is robust to CCN if, under such a loss
function, either i) the Bayes risk of the clean data is zero or ii) the label noise is uniform
with p+ = p− [133, Theorem 1]. Unfortunately, for gamma hadron separation, we cannot
safely assume any of these two settings.

5.2. Testing CCN Learnability

In order to establish optimal CCN learning, we intend to validate the fundamental CCN
assumption, i.e., p+ + p− < 1, through a hypothesis test. To this end, we formulate the
null hypothesis

h0 : p+ + p− ≥ 1, (5.8)

which states that this assumption was violated. Hence, we can validate the fundamental
CCN assumption through a statistically significant rejection of h0.

It turns out that we can approach the rejection of h0 with the Li &Ma hypothesis test from
Def. 3.1, which was originally proposed for source detection in particular. For general
CCN learning, we now rephrase this test in terms of a CCN noise rate p− and in terms of
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the true positives that are noisily labeled as positives and as negatives. We then prove i)
that this rephrasing is indeed identical to the original hypothesis test from Def. 3.1, and
ii) that this rephrasing indeed tests the null hypothesis from Eq. 5.8.

Definition 5.4 (Li & Ma hypothesis test for CCN). Let Nˆ︁y be the number of true posi-
tives with a noisy label ˆ︁y ∈ {+,−} and let α = p−

1−p−
. Moreover, let N : R→ [0, 1] be the

cumulative density function of the standard normal distribution. The p-value for rejecting
the null hypothesis h0 : p+ + p− ≥ 1 is

p = 1−N (fα(N+, N−)),

fα(N+, N−) =

[︃
2N+ · ln

(︃
1 + α

α
· N+

N+ +N−

)︃
+2N− · ln

(︃
(1 + α) · N−

N+ +N−

)︃]︃1/2
.

To show that this test is indeed the Li & Ma hypothesis test from Def. 3.1, we proceed
in two steps. First, we connect our general CCN definition of α = p−

1−p−
to its domain-

specific, original definition from source detection in astronomy. Second, we prove that
our general, CCN-related null hypothesis is equivalent to the original null hypothesis
from source detection.

The connection of the two α definitions stems from a particular characteristic of the
“hadron” class. This class is expected to occur uniformly, i.e., at a constant rate, across
all sky positions. Consequently, we know that p− = P(ˆ︁Y = “on” | Y = “hadron”) must
exclusively depend on the areas of observation,Aon andAoff. More specifically, we know
that p− = Aon

Aon+Aoff
must hold.

Theorem 5.1. The following definitions of the scaling factor α ∈ R are equivalent:

1. (CCN learning; Def. 5.4) α =
p−

1− p−

2. (source detection; Def. 3.1) α =
Aon

Aoff
with p− =

Aon

Aon +Aoff

Proof. The second definition of α is recovered by plugging p− = Aon
Aon+Aoff

into the first
definition of α.

The equivalence of the hypothesis tests from Def. 5.4 and from Def. 3.1 is established
through the following theorem. In particular, we show that the null hypotheses of both
tests are equivalent, so that the original hypothesis test from Def. 3.1 is applicable to the
null hypothesis from Def. 5.4.
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Theorem 5.2. Let λˆ︁y be the rate of a Poisson distribution which models the number of
true positives in the noisy class ˆ︁y ∈ {+,−} and let α = p−

1−p−
. The null hypotheses from

Def. 5.4 and Def. 3.1 are then equivalent, i.e.,

p+ + p− ≥ 1 ⇔ αλ− ≥ λ+

Proof. LetN+ be the number of true positives in the training set, so that the Poisson rates
are given by λ− = p+N

+ and by λ+ = (1− p+)N
+.

p+ + p− ≥ 1

⇔ p+p− ≥ 1− p− − p+ + p+p−

= (1− p−)(1− p+)

⇔ p+
p−

1− p−
≥ 1− p+

⇔ αp+N
+ ≥ (1− p+)N

+

⇔ αλ− ≥ λ+

Hence, the null hypotheses of both tests are equivalent.

Due to Th. 5.1 and Th. 5.2, we can employ the test statistic fα from the original Li & Ma
hypothesis test to test the feasibility of CCN learning in terms of the fundamental CCN
assumption, p+ + p− < 1. If the test from Def. 5.4 fails to reject, we can conclude that
optimal, binary CCN learning is not sufficiently feasiblewith the given noisy labels.

We emphasize that the countsNˆ︁y fromDef. 5.4 require access to a set of data that is labeled
both in terms of clean ground-truth labels y and in terms of noisy labels ˆ︁y. With a small
data set of this kind and with a known rate p−, we can use this hypothesis test to check
whether the noisy labels allow for optimal CCN learning; if learning appears feasible,
we can then use a larger set of noisily labeled data for training, without requiring clean
ground-truth labels. However, the real telescope data is never cleanly labeled. Therefore,
we cannot use the hypothesis test directly. In the next section, we develop an effective
heuristic for this case, which employs an approximation of this test.

5.3. Partially-Known Class-Conditional Label Noise

Th. 5.1 has just revealed that the noise rate p− is precisely known in gamma hadron
classification. Hence, it does not need to be estimated. Existing work on CCN learning,
to the best of our knowledge, has, instead, either assumed the full knowledge of all noise
rates [130], [133] or the complete ignorance thereof [133], [134]. Motivated by gamma
hadron classification, we now focus on a CCN setting where one of the class-wise noise
rates is known but the other is not. We refer to this novel setting as partially-known CCN
(PK-CCN) in binary classification.
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Definition 5.5 (PK-CCN). Consider a training set with binary CCN noisy labels ˆ︁y defined
according to Def. 5.1. Further let p− be precisely known but let p+ be unknown. We call this
setting partially known CCN or PK-CCN for short.

Like in general CCN, which does not make any assumption about whether p− and p+ are
known, we can find a classification rule that is optimal with respect to the clean labels by
optimizing the decision threshold of a decision function that is trained with noisy labels.
In contrast to CK-CCN and CU-CCN, we employ a known p− rate, but not the unknown
p+ rate, in the threshold optimization.

Our first goal is to choose a decision threshold that i) takes into account the partial knowl-
edge of p− and ii) maximally aligns with the foundational CCN assumption, i.e., with
p+ + p− < 1. To this end, we employ a heuristic that evolves around our hypothesis test
from Def. 5.4. Namely, we choose this threshold such that the outcome of the hypothe-
sis test maximally agrees with the foundational CCN assumption. Our second goal is to
learn not only a decision threshold, but a complete classifier that maximally aligns with
this assumption.

5.3.1. Decision Threshold Optimization

So far, the countsNˆ︁y fromDef. 5.4 describe the numbers of true positiveswith a noisy labelˆ︁y. Thus, they require a set of data that is both ground-truth labeled and noisily labeled. In
order to drop this impractical requirement, we heuristically replace the Nˆ︁y counts with
counts of predicted positives. This replacement allows us to tune the decision threshold
which leads to the predicted positives, so that the tuned threshold maximally aligns with
the foundational CCN assumption p+ + p− < 1.

More specifically, we compute the function fα from Def. 5.4 over N θˆ︁y , the numbers of
predicted positives according to a decision threshold θ. We choose θ such that fα becomes
maximal, i.e., for noisy labels ˆ︁y ∈ {+1,−1}, a decision function h : X → R, and a noisily
labeled data set {(xi, ˆ︁yi) : 1 ≥ i ≥ N}, we choose

θ∗ = argmax
θ

fα(N
θ
+, N

θ
−),

where N θˆ︁y =
∑︁N

i=11ˆ︁yh(xi)> ˆ︁yθ ,
(5.9)

so that fα becomes the objective function with which we optimize the threshold θ.

Effectively, we have just replaced the true counts Nˆ︁y from Def. 5.4 with predicted counts
N θˆ︁y . This heuristic replacement has the following implications:

no need for clean labels: the optimization in Eq. 5.9 does not require any ground-truth
labels; it only needs the counts of predicted positives in both noisy classes, which
is easily obtained from the noisy data.

partial knowledge of noise rates: the optimization in Eq. 5.9 needs to know the rate
p−, so that α = p−

1−p−
can be computed. However, we do not need to know the p+

rate. Hence, our method is a true PK-CCN method.
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model agnosticism: the optimization in Eq. 5.9 works with any decision function h :
X → R, like SVMs, decision trees, deep neural networks, and many more.

hypothesis testing: can we still test PK-CCN learnability if Nˆ︁y is replaced with N θˆ︁y ?
Unfortunately, there is no guarantee that PK-CCN learnability can be tested with
N θˆ︁y . More specifically, we cannot conclude that PK-CCN is indeed feasible if the
optimization from Eq. 5.9 leads to a successful rejection according to Def. 5.4. This
conclusion would only be justified if the classifier was perfect, and henceNˆ︁y = N θˆ︁y ,
which we cannot assume in general.

Therefore, despite being motivated through a hypothesis test, the optimization
from Eq. 5.9 is only heuristic. However, this heuristic yields powerful classifiers, as
we empirically demonstrate in Sec. 5.4. We can also use the heuristic performance
metric fα(N θ

+, N
θ
−) to evaluate classifiers without the need for clean ground-truth

labels.

Our threshold optimization technique for PK-CCN is summarized in Alg. 5.1. If our
heuristic does not indicate a successful rejection of the null hypothesis, we inform the
user through an error message in line 6.

Algorithm 5.1 PK-CCN decision threshold tuning [7].
Input: A scoring function h : X → R, a desired p-value p > 0, a noise rate 0 < p− < 1, and N
noisily labeled instances {(xi, ˆ︁yi) : 1 ≥ i ≥ N}
Output: A decision threshold θ∗ ∈ R
1: α← p−

(1−p−)

2: θ∗ ← argmaxθ∈R fα(N
θ
+, N

θ
−), see Eq. 5.9

3: if p > 1−N (fα(N
θ∗

+ , Nθ∗

− )) then
4: return θ∗

5: else
6: failure PK-CCN learning does not appear feasible
7: end if

The idea of tuning the decision threshold of a gamma hadron classifier by maximizing fα
is not new. In fact, this approach is frequently applied to gamma hadron classifiers that
are trained from simulated data [144]. However, physicists have not yet discussed this
approach in the context of CCN, which has motivated us to fill this gap. Our contribution
is the proposal of learning directly from the real telescope data and to tune the threshold
of the resulting noisy classifier by maximizing fα. The potential of this proposal, to learn
optimal classifiers without any simulated data, is supported by CCN theory. Moreover,
this proposal opens the opportunity of applying Alg. 5.1 also to other use cases beyond
gamma hadron classification.
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5.3.2. Decision Tree Induction

The threshold tuning from Alg. 5.1 is particularly advantageous if some decision function
h already exists. For the case in which no h exists, we now develop an algorithm which
maximizes fα over an entire model space, not only over the decision threshold θ.

To this end, we propose a decision tree induction algorithm which learns by maximiz-
ing fα directly, i.e., in every split. Like classic decision trees, our algorithm recursively
partitions the (noisy) training set in a greedy fashion: at each node, we split the data by
thresholding a single feature. To find the best split, we evaluate fα for both sides of the
partition. We stop at a user-defined maximum tree depth or when no split can further
improve fα. Namely, each iteration of our tree induction algorithm selects a feature j and
a feature threshold t, such that

j∗, t∗ = argmax
j,t

max
{︂
f
Xj≤t
α , f

Xj>t
α

}︂
,

where f
Xj≤t
α = fα

(︂
N

Xj≤t
+ , N

Xj≤t
−

)︂
,

f
Xj>t
α = fα

(︂
N

Xj>t
+ , N

Xj>t
−

)︂
,

N
Xj≤tˆ︁y =

∑︁N
i=11[xi]j ≤ t∧ ˆ︁yi=ˆ︁y ,

N
Xj>tˆ︁y =

∑︁N
i=11[xi]j >t∧ ˆ︁yi=ˆ︁y ,

(5.10)

The best split according to Eq. 5.10 can be evaluated efficiently by sorting the data accord-
ing to each of the features. Considering only the maximum of fXj≤t

α and fXj>t
α amounts

to the fact that a greedy maximization of fα does not require balanced splits: if the other
side of a split results in a low value of fα, we can either discard this side without harming
the overall fα or we can split this side further in a later step. As fα increases with larger
counts, the greedy approach is not tempted to split off individual examples. We have
summarized our method in Alg. 5.2.

As with classic random forests [36], we choose a bagging approach [42] to build ensem-
bles from Alg. 5.2. Namely, we use a bootstrapped sample of the noisy instances for each
tree and draw a random feature subset of size ⌊

√
d⌋ for each split. We combine the predic-

tions of all trees by averaging their classification outputs and we tune the final decision
threshold of the ensemble with Alg. 5.1 on out-of-bag, noisily labeled data.

5.3.3. F1 Score Optimization

Menon et al. [18] propose a technique to estimate several performance metrics under
binary CCN, including the F1 score. This general technique builds on a CCN-aware esti-
mation of the clean positive rate and the clean negative rate of a classifier [131], which we
detail in the following. This estimation allows us to optimize the clean F1 score with data
that is only noisily labeled. While Menon et al. have already conceived this optimization,
it has not yet been evaluated empirically, to the best of our knowledge.
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Algorithm 5.2 PK-CCN decision tree induction [7].
Input: A maximum depth d ≥ 0, a noise rate 0 < p− < 1, and N noisily labeled instances
{(xi, ˆ︁yi) : 1 ≥ i ≥ N}
Output: A trained decision tree

1: α← p−
(1−p−)

2: if d > 0 then
3: j∗, t∗ ← argmaxj,t max{fXj≤t

α , f
Xj>t
α }, see Eq. 5.10

4: Split L← {xi : [xi]j∗ ≤ t∗}, R← {xi : [xi]j∗ > t∗}
5: Construct sub-trees on L and R with depth d− 1

6: return a tree with a split j∗, t∗ and both sub-trees
7: else
8: return a leaf node with the output 1

N

∑︁N
i=11ˆ︁yi=+1

9: end if

In particular, Menon et al. [18] estimate the clean F1 score as

F1(θ; h, p−, p+) =
2 · π · TPR(θ; p−, p+)

π(1 + TPR(θ; p−, p+)) + (1− π)(1− TNR(θ; p−, p+))
, (5.11)

where the clean true positive rate and the clean true negative rate are estimated as

TPR(θ; p−, p+) = 1− a(1− ˆ︃TNR(θ)) + (1− b)(1−ˆ︃TPR(θ))− a

1− a− b
,

TNR(θ; p−, p+) = 1− (1− a)(1− ˆ︃TNR(θ)) + b(1−ˆ︃TPR(θ))− b

1− a− b
.

(5.12)

Here, ˆ︃TPR(θ) = P(h(x) > θ | ˆ︁Y = +1) and ˆ︃TNR(θ) = P(h(x) ≤ θ | ˆ︁Y = −1) are
the noisy rates of true positives and true negatives and ˆ︁π = P(ˆ︁Y = +1) is the noisy
class prior. All of these probabilities can easily be estimated from data that is only noisily
labeled. Moreover,

a =
p−(1− p+ − ˆ︁π)ˆ︁π(1− p+ − p−)

, b =
p+(ˆ︁π − p−)

(1− ˆ︁π)(1− p+ − p−)
, π =

ˆ︁π − p−
1− p+ − p−

, (5.13)

are constants which facilitate the notation in the equations above.

Recall from Sec. 2.2.2 that the F1 score cannot be optimized analytically. However, it can
be optimized through thresholded decision functions, e.g., through the two-step expected
utility maximization from Alg. 2.1 [31], [32]. By itself, this algorithm is un-aware of CCN.
However, the strict monotonicity of noisy and clean posteriors, see Prop. 5.1, allows us to
adapt this algorithm to binary CCN: first, we learn a noisy classifier from noisily labeled
training data; second, we choose a decision threshold that is optimal for the estimate of
the clean F1 score. We present this adaptation in Alg. 5.3.

Note that lines 1 and 2 of Alg. 5.3 estimate the noise rates p− and p+ under the anchor
point assumption [141]. Therefore, the vanilla version of this algorithm addresses the
CU-CCN setting from Def. 5.3, where none of the noise rates is known.
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Algorithm 5.3 Two-step expected utility maximization [31], [32] of the F1 score in spite
of binary CCN [18].
Input: A scoring function h : X → [0, 1] and N noisily labeled instances {(xi, ˆ︁yi) : 1 ≥ i ≥ N}
Output: A decision threshold θ∗ ∈ R
1: ˆ︁p− ← min1≥i≥N h(xi)

2: ˆ︁p+ ← 1−max1≥i≥N h(xi)

3: θ∗ ← argmaxθ∈R F1(θ; h, ˆ︁p−, ˆ︁p+), see Eq. 5.11
4: return θ∗

If these rates are (partially) known, we can replace their estimates ˆ︁p− and ˆ︁p+ with their
known, ground-truth values. In this case, Alg. 5.3 becomes either a PK-CCN algorithm (if
p− is known; see Def. 5.5) or a CK-CCN algorithm (if both rates are known; see Def. 5.2).
In order to assess the merits of our proposed PK-CCN setting, we evaluate all versions of
Alg. 5.3: the vanilla CU-CCN version, the PK-CCN version with the ground-truth value
for p−, and the CK-CCN version with the ground-truth values for p− and p+.

Further note that Alg. 5.3 is a blueprint for the CCN-aware optimization of any perfor-
mance metric that is optimized by a thresholded decision function. An overview of these
performance metrics, all of which can be estimated under CCN according to Menon et
al. [18], is given in Tab. 2.1. For imbalanced classification, we perceive the widely ac-
knowledged F1 score to be the most appropriate measure.

5.4. Validation on Conventional Imbalanced Data Sets

Our goal is to evaluate the merits of PK-CCN over the existing settings CU-CCN and CK-
CCN. In this regard, we start with an extensive evaluation of CCN learning techniques on
27 conventional, imbalanced data sets. We load these data sets from the imbalanced-learn
library9 [145] and artificially inject different levels of CCN, which are listed in Fig. 5.3,
in Tab. 5.1, and in Tab. 5.2. The first two noise configurations are designed by ourselves
and the remaining four are by Natarajan et al. [130]. Our implementations of all methods
and experiments is available online.10

5.4.1. Methodology

We estimate the performance of each CCN method in terms of the F1 score and in terms
of the fα score from Def. 5.4. Each score is averaged over 20 repetitions of a 10-fold strat-
ified cross validation, where we observe small standard deviations among all repetitions.
We emphasize that our evaluation in terms of the F1 score is only possible because we
maintain some of the clean labels for evaluation. If no clean labels were available, a metric
like our fα score, which operates on noisy labels, was indispensable. We also emphasize

9
https://imbalanced-learn.org/stable/datasets/

10
https://github.com/mirkobunse/pkccn
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5.4. Validation on Conventional Imbalanced Data Sets

that we do not validate in terms of the area under the receiver operating characteristic or
in terms of balanced accuracy because these metrics are anyway immune to CCN [18] and
therefore not informative. Due to the class imbalance, we do also not validate in terms of
the standard, un-balanced accuracy.

In total, our results comprise 226 800 classification models. We employ random forest
classifiers because they have a high predictive power and they allow us to tune decision
thresholds consistently, on out-of-bag noisily labeled data.

5.4.2. Results

Fig. 5.3 compares the CCN learning performances in critical difference (CD) diagrams
[55], [56], which we have introduced in Sec. 2.4.2. Recall that a CD diagram compares
multiple machine learning methods across multiple data sets and that allmissing connec-
tions indicate the presence of statistically significant differences between the competitors.
Here, we display multiple CD diagrams, one per row, in a single plot.

The CD diagrams from Fig. 5.3 are complemented by Tab. 5.1, which reports the average
F1 scores across all data sets and repetitions. While these average values, by themselves,
do not reflect howmethods compare to each other, they complete the picture that is given
by Fig. 5.3 in showing the magnitudes of performance differences.

The average fα score of eachmethod is displayed in Tab. 5.2. Unlike theF1 score, thismet-
ric can be evaluated directly on the noisy labels if p− is known. Fig. 5.4 further presents
CD diagrams for this metric.

Discussion The perspectives from Fig. 5.3 and Tab. 5.1 demonstrate the merits of our
proposed setting, PK-CCN: the advantage of PK-CCN methods, which consider a known
p−, over CU-CCN methods, which ignore this knowledge, is statistically significant and
has a considerable magnitude. For instance, the PK-CCN version of the threshold by
Menon et al. [18] achieves an overall average F1 score of 0.425, which is way beyond
the average CU-CCN score of 0.310.

The improvement of CK-CCN over PK-CCN has a much smaller magnitude (Menon:
F1 = 0.433 in CK-CCN versus F1 = 0.425 in PK-CCN) and this improvement is not
statistically significant in several noise configurations, namely in (p−, p+) ∈ {(0.5, 0.1),
(0.5, 0.25), (0.4, 0.4)}. Hence, knowing at least one noise rate is of great importance for
learning.

We recognize that our methods from Alg. 5.1 and Alg. 5.2 significantly loose against the
Menon PK-CCNmethod in the noise configurations (0.2, 0.2) and (0.1, 0.3). We attribute
this observation to the fact that Fig. 5.3 and Tab. 5.1 present an evaluation in terms of the
F1 score, which the Menon technique from Alg. 5.3 optimizes directly. If we replace the
F1 evaluation with an fα evaluation, as presented in Tab. 5.2 and in Fig. 5.4, we see that
our methods frequently win against the baselines. Evaluating in terms of the fα score has
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p− = 0.5, p+ = 0.1

p− = 0.5, p+ = 0.25

p− = 0.2, p+ = 0.2

p− = 0.4, p+ = 0.4

p− = 0.1, p+ = 0.3

p− = 0.3, p+ = 0.1

avg. rank

Legend
Li & Ma tree (ours; Alg. 5.1; PK-CCN)
Li & Ma threshold (ours; Alg. 5.2; PK-CCN)
Menon et al. [18] (Alg. 5.3; PK-CCN; F1 score)
Menon et al. [18] (Alg. 5.3; CK-CCN; F1 score)
Menon et al. [18] (Alg. 5.3; CU-CCN; F1 score)
Mithal et al. [134] (CU-CCN; G measure)
F1 threshold unaware of CCN [31], [32]

Figure 5.3.: Each row in this plot displays one critical difference diagram, see Sec. 2.4.2, which
corresponds to one noise configuration. This overview summarizes a total of 226 800
random forest classifiers, a collection which consists of 7 CCN learning methods× 6
noise configurations × 27 data sets × 10 cross validation folds × 20 repetitions with
random initialization. The x-coordinates indicate average ranks (lower is better), i.e.,
how often a method looses against its competitors. CCNmethods are connected with
horizontal bars if and only if a Holm-correctedWilcoxon signed-rank test cannot sig-
nificantly distinguish their pairwise performances, in terms of their cross-validated
F1 score, at a confidence level of 95%. Hence, allmissing connections indicate statis-
tically significant differences.
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Legend
Li & Ma tree (ours; Alg. 5.1; PK-CCN)
Li & Ma threshold (ours; Alg. 5.2; PK-CCN)
Menon et al. [18] (Alg. 5.3; PK-CCN; F1 score)
Menon et al. [18] (Alg. 5.3; CK-CCN; F1 score)
Menon et al. [18] (Alg. 5.3; CU-CCN; F1 score)
Mithal et al. [134] (CU-CCN; G measure)
F1 threshold unaware of CCN [31], [32]

Figure 5.4.: Critical difference diagrams in terms of cross-validated fα scores. This overview of
our results is analogous to Fig. 5.3, but employs the fα score instead of the F1 score
to determine the performance of each method.
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Table 5.1.: Average F1 scores (higher is better) over all 27 data sets and over 20 repetitions of a
10-fold cross validation.

method p−
=
0.
5,
p+

=
0.
1

p−
=
0.
5,
p+

=
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25

p−
=
0.
2,
p+

=
0.
2

p−
=
0.
4,
p+

=
0.
4

p−
=
0.
1,
p+

=
0.
3

p−
=
0.
3,
p+

=
0.
1
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era

ll a
ve
rag

e

Li&Ma tree .414±.049 .330±.071 .482±.037 .281±.061 .497±.041 .482±.039 .414±.050

Li&Ma threshold .408±.050 .327±.059 .485±.044 .280±.067 .499±.039 .480±.046 .413±.051

Menon PK/F1 .417±.051 .336±.066 .498±.041 .294±.069 .512±.034 .490±.041 .425±.050

Menon CK/F1 .424±.049 .339±.062 .510±.035 .298±.068 .525±.032 .501±.037 .433±.047
Menon CU/F1 .262±.046 .184±.037 .408±.044 .172±.039 .466±.043 .371±.042 .310±.042

Mithal CU/G .333±.051 .234±.057 .429±.051 .185±.047 .461±.052 .405±.045 .341±.050

CCN-unaware F1 .112±.000 .112±.000 .169±.036 .112±.000 .402±.045 .114±.002 .170±.014

Table 5.2.: Average fα scores (higher is better, see Def. 5.4) over all 27 data sets and over 20
repetitions of a 10-fold cross validation.

method p−
=
0.
5,
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=
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Li&Ma tree 6.99±1.12 3.54±1.17 12.44±1.16 2.68±0.97 14.75±1.21 11.54±0.97 8.66±1.10

Li&Ma threshold 7.16±1.07 3.85±1.17 12.79±1.13 2.90±1.15 15.06±1.20 11.91±1.09 8.95±1.13
Menon PK/F1 6.99±1.09 3.83±1.20 12.59±1.19 2.90±1.17 14.83±1.20 11.66±1.13 8.80±1.16

Menon CK/F1 7.16±1.09 3.88±1.16 12.76±1.09 2.94±1.12 14.90±1.21 11.89±1.05 8.92±1.12

Menon CU/F1 5.57±1.27 2.70±1.07 12.01±1.23 2.27±1.16 14.74±1.23 10.66±1.21 7.99±1.20

Mithal CU/G 6.61±1.26 3.15±1.24 12.25±1.34 2.25±1.25 14.60±1.29 11.27±1.23 8.36±1.27

CCN-unaware F1 2.79±0.90 1.75±0.86 7.02±1.43 1.65±1.01 12.87±1.38 4.88±1.10 5.16±1.11
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the advantage that no clean labels are required during the evaluation. For some use cases
of CCN learning, this advantage is critical.

5.5. Case Study: Detection of Cosmic Gamma Ray Sources

We now apply CCN learning methods to the detection of gamma ray sources in the data
of the FACT telescope. For this purpose, as we have motivated in Sec. 3.4 and in Sec. 3.5,
we have to predict the true “gamma” and “hadron” classes, only having access to the
noisy “on” and “off” labels. Our goal is to achieve high fα scores, see Def. 5.4, which
indicate a high classification performance in terms of gamma ray source detections. In
the following, we compare the same CCN learning methods that we have compared in the
previous section, but have to exclude the privileged CK-CCN baseline because we have
no knowledge of p+. The standard operation mode of the FACT telescope [49] chooses
observation areas Aoff = 5 · Aon, which yields α = 1/5 or, due to the equivalence from
Th. 5.1, p− = 1/6.

We compare the CCN thresholding methods on random forests that are trained from two
different data sources: first, on noisily labeled data; second, on labels that we obtain from
the computationally expensive simulation from Sec. 3.6. The second data source yields
the state-of-the-art classifier4 for the FACT data. Notably, physicists already tune the
decision threshold of this simulation-trained state-of-the-art classifier through Alg. 5.1
[144]. However, they do not use the noisy “on” and “off” annotations for the training of
the underlying random forest.

We argue that doing so, however, would be preferable for two reasons. The first reason
is the high computational cost of the simulation, which can be circumvented by learning
directly from the real telescope. The second one is the fact that the simulated labels are
not necessarily clean. In particular, any domain gap between the simulated and real tele-
scope data would correspond to some form of label noise, which is hard to characterize.
In contrast, the CCN noise of “on” and “off” annotations has the clear theoretical impli-
cation that optimal learning, solely from these annotations, is indeed feasible. Still, these
potentials of CCN learning have not yet been considered, to the best of our knowledge,
in the context of gamma hadron classification.

Due to the lack of ground-truth labels, we can report the real-world performance of our
models only in terms of the test statistic fα from Def. 5.4, not in terms of supervised
measures like accuracy or the F1 score. However, fα is an appropriate and conventional
performance metric for gamma hadron classification. Higher values indicate that the
analysis pipeline is able to make a successful detection also with less data; therefore, the
fα values, for any fixed data set, allow us to compare the source detection efficiency of
CCN learning methods. Hence, a comparison of fα values is meaningful even beyond a
mere reject / accept decision of the corresponding hypothesis test from Def. 5.4.
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5.5.1. Data Selection and Methodology

We employ four data sets of the FACT telescope, which correspond to different gamma
ray sources and observation periods. Of these four data sets, only the open Crab sample3

is publicly available. The other three data sets are closed data, which we access through
our interdisciplinary collaboration with astro-particle physicists.

Open Crab Sample Due to its public availability, this data sample allows us to conduct
experiments that are completely reproducible with the code we publish. This pub-
lic sample covers 17.7 hours of observation time between November 1st 2013 and
November 6th 2013.

We detect the Crab nebula in this sample because we intend to produce fα values
that are comparable to other studies and to the outcome of the standard analysis4 of
the FACT telescope. This outcome, which we use as a considerably strong baseline,
amounts to a value of fα = 26.63. We emphasize that this outcome is already the
result of applying Alg. 5.1 with “on” and “off” annotations, despite using simulated
data for the training of the underlying random forest.

Large Closed Crab Sample We also employ another, larger sample of Crab nebula ob-
servations of FACT. This sample amounts to 91.1 hours of observation time between
October 1st 2013 and February 5th 2014 [22]. From this range, we exclude all data
between November 1st 2013 and November 6th 2013, to obtain a set of data that is
disjunct from the open Crab sample.

The purpose of this larger, disjunct set is to have a big, noisily labeled training set
for our CCN learning methods. In particular, we train our methods on this noisy set
and apply them to the three other samples. Unfortunately, the large Crab sample
is not publicly available.

Markarian 421 Sample Due to the wobble mode from Fig. 3.2, physicists have ensured
that no systematic bias towards any particular gamma ray source has to be expected
from the data. Still, we intend to verify this expectation for CCN learning methods
by applying these methods also to gamma ray sources other than the Crab nebula.
To this end, we detect Markarian 421 in a closed data sample that covers observa-
tions between October 1st 2013 and February 5th 2014. Markarian 421 is a bright
blazar, i.e., an active galactic nucleus that emits a jet of high-energy particles in the
direction of planet Earth.

Markarian 501 Sample This source is another bright blazar, which we employ for the
same reasons for which we also employ Markarian 421. This sample, which is also
closed, covers observations between July 1st 2013 and December 31st 2013.

With these data sets, we conduct four experiments. First, we train CCN learning methods
on the large, closed Crab sample and we apply the resulting gamma hadron classifiers
to the open Crab sample. Hence, we obtain performance values that are comparable to
the standard analysis baseline of fα = 26.63. Second and third, we train CCN learning
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Table 5.3.: Average fα scores (higher is better, see Def. 5.4) with standard deviations for the open
Crab sample of the FACT telescope. We evaluate the threshold tuning methods with
classifiers that are either trained with CCN noisy labels (left column) or with simulated
labels (right column). In this table, all scores are achieved in 20 repetitions of a 6-fold
cross validation. Thresholds are separately fitted to each training fold.

method
CCN labels
(open; CV)

simulated labels
(SOTA; CV)

Li & Ma tree (ours; Alg. 5.2; PK-CCN) 23.91±0.34 –
Li & Ma threshold (ours; Alg. 5.1; PK-CCN) 25.39±0.36 26.09±0.23
Menon et al. [18] (Alg. 5.3; PK-CCN; F1 score) 25.72±0.38 25.14±0.06
Menon et al. [18] (Alg. 5.3; CU-CCN; F1 score) 24.75±0.33 16.22±0.04
Mithal et al. [134] (CU-CCN; G measure) 25.31±0.42 26.29±0.10
F1 threshold unaware of CCN [31], [32] 14.39±0.30 16.37±0.07

methods again on the large, closed Crab sample, but we apply the resulting classifiers to
the samples of Markarian 421 and Markarian 501. These experiments provide us with
performance values that assess the generalization capabilities of CCN learning methods
in terms of different gamma ray sources.

Fourth, we conduct an experiment that evaluates CCN learning performances solely on
the openCrab sample, through cross validation. In this experiment, we employ each of the
six nights as one cross validation fold, so that differences between nights, e.g., different
atmospheric conditions, are appropriately handled. Here, the CCN decision thresholds
are fitted in each fold separately. Therefore, the performance values must be expected
to be lower than the state-of-the-art values, which stem from a threshold that is fitted
once, to the entire open Crab sample. Still, this reproducible experiment provides us with
a proper assessment of the general feasibility of CCN learning for source detection. All
experiments are repeated 20 times.

5.5.2. Results

We begin our discussion with the fourth experiment, which employs solely the open Crab
sample through cross validation. The results of this experiment are displayed in Tab. 5.3.
We tune the decision thresholds of two random forests, one trained from “on” and “off”
annotations (left column) and one trained from simulated labels (right column). Our Li &
Ma tree fromAlg. 5.2 ismissing from the right column because thismodel has to be trained
on noisy labels with p− > 0; hence, we cannot use the simulated labels for training. Due
to the cross validation, where thresholds are fitted to each training fold separately, the
scores are generally below the state-of-the-art value of fα = 26.63. However, we see
from this comparison that CCN approaches, in general, perform similar to the costly
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simulation-trained approach. We also see that a CCN-aware thresholding is necessary
because a CCN-unaware thresholding (last row) exhibits inferior performances.

The relative merits of CCN-trained classifiers are more pronounced in the closed data
experiments from Tabs. 5.4–5.6. In these experiments, each repetition and method fits a
single threshold directly to the respective sample that is analysed, which is the typical
approach in gamma hadron classification [144]. Hence, we are able to reproduce the
state-of-the-art performance for the open Crab sample, fα = 26.63, in the combination
of “simulated labels” and the “Li & Ma threshold” of Tab. 5.4. Despite this strong baseline,
however, our CCN learning approach with the large Crab sample achieves an even better
performance, with a value of fα = 27.08. Hence, an improved Crab nebula detection
is possible with CCN-trained classifiers, which do not employ any simulated data. In
Tab. 5.6, which reports the results for the Markarian 501 sample, our CCN methods even
achieve a performance of fα = 28.24, which is considerably above the state-of-the-art
performance of fα = 26.34 for this data sample. Generally, throughout Tabs. 5.4–5.6,
all CCN classifiers outperform the corresponding simulation-trained classifiers. Not only
verifies this finding our claim that CCN learning is indeed feasible for the detection of
cosmic gamma ray sources, but it also suggests that CCN learning can even yield gamma
hadron classifiers which are more effective source detectors than the simulation-trained
state-of-the-art.

We attribute this finding to a combination of two aspects of gamma ray source detection:
first, CCN theory states that optimal learning from “on” and “off” annotations is feasible;
the only difficulty is to find an appropriate decision threshold. Astro-particle physicists,
however, have already addressed this difficulty through Alg. 5.1 [144]. In contrast, any
domain gap between the simulation and the real telescope can result in simulated data that
exhibit some unknown form of label noise, for which the theoretical implications, in terms
of learning, are not as clear as they are for CCN “on” and “off” annotations. In other words:
we cannot rule out the possibility that the performance of a simulation-trained classifier
is indeed limited by the quality of the simulation. The second aspect, which we witness
particularly in Tabs. 5.4–5.6, is that large samples of training data particularly benefit
the performances of CCN methods. To this end, CCN theory predicts that label noise
increases the sample complexity. Our large, closed sample of the Crab nebula, however,
appropriately addresses this issue.

In summary, our experiments demonstrate that highly performant gamma hadron classi-
fiers can be learned solely from the “on” and “off” annotations of the real telescope data.
No simulated data is required to train these classifiers, which enables astro-particle physi-
cists to produce less simulated data in order to reduce the resource demands of their anal-
yses. While small samples of “on” and “off” annotations already yield classifiers which
perform on par with the state-of-the-art (see Tab. 5.3), larger samples can even outper-
form the state-of-the-art classifiers (see Tabs. 5.4–5.6). We have shown that “on” and “off”
annotations are PK-CCN noisy labels with a strong theoretical foundation.
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Table 5.4.: Average fα scores (higher is better, see Def. 5.4) with standard deviations for the open
Crab sample of the FACT telescope. These scores are achieved when a larger, closed,
and disjunct sample of the Crab nebula [22] is used for the training of the CCN meth-
ods. Each threshold is fitted only once in each of 20 repetitions.

method
CCN labels
(closed)

simulated labels
(SOTA)

Li & Ma tree (ours; Alg. 5.2; PK-CCN) 24.71±0.36 –
Li & Ma threshold (ours; Alg. 5.1; PK-CCN) 27.08±0.22 26.63±0.01
Menon et al. [18] (Alg. 5.3; PK-CCN; F1 score) 27.07±0.24 26.07±0.73
Menon et al. [18] (Alg. 5.3; CU-CCN; F1 score) 26.88±0.23 16.32±0.02
Mithal et al. [134] (CU-CCN; G measure) 26.99±0.25 26.63±0.03
F1 threshold unaware of CCN [31], [32] 19.56±1.01 16.35±0.11

Table 5.5.: Average fα scores (see Tab. 5.4) for the Markarian 421 data set.

method
CCN labels
(closed)

simulated labels
(SOTA)

Li & Ma tree (ours; Alg. 5.2; PK-CCN) 22.37±0.31 –
Li & Ma threshold (ours; Alg. 5.1; PK-CCN) 24.15±0.14 23.55±0.03
Menon et al. [18] (Alg. 5.3; PK-CCN; F1 score) 24.00±0.18 22.51±0.28
Menon et al. [18] (Alg. 5.3; CU-CCN; F1 score) 24.09±0.18 12.64±0.11
Mithal et al. [134] (CU-CCN; G measure) 24.14±0.17 23.53±0.05
F1 threshold unaware of CCN [31], [32] 13.20±0.66 12.63±0.08

Table 5.6.: Average fα scores (see Tab. 5.4) for the Markarian 501 data set.

method
CCN labels
(closed)

simulated labels
(SOTA)

Li & Ma tree (ours; Alg. 5.2; PK-CCN) 24.70±0.35 –
Li & Ma threshold (ours; Alg. 5.1; PK-CCN) 28.24±0.12 26.34±0.02
Menon et al. [18] (Alg. 5.3; PK-CCN; F1 score) 28.17±0.16 25.76±0.11
Menon et al. [18] (Alg. 5.3; CU-CCN; F1 score) 27.79±0.26 14.23±0.20
Mithal et al. [134] (CU-CCN; G measure) 28.20±0.16 26.36±0.00
F1 threshold unaware of CCN [31], [32] 13.59±0.26 14.29±0.10
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5. Class-Conditional Label Noise Learning

Table 5.7.: Average fα scores for the open Crab sample with artificially removed “on” instances.
Due to the removal, small values are desirable. In this table, all scores results from 20
repetitions of a 6-fold cross-validation of the open Crab sample, similar to Tab. 5.3.

method
CCN labels
(open; CV)

simulated labels
(SOTA; CV)

Li & Ma tree (ours; Alg. 5.2; PK-CCN) 0.55±0.75 –
Li & Ma threshold (ours; Alg. 5.1; PK-CCN) 0.75±0.76 0.00±0.00
Menon et al. [18] (Alg. 5.3; PK-CCN; F1 score) 0.95±0.72 0.00±0.00
Menon et al. [18] (Alg. 5.3; CU-CCN; F1 score) 0.00±0.00 0.00±0.00
Mithal et al. [134] (CU-CCN; G measure) 0.11±0.20 0.59±0.25
F1 threshold unaware of CCN [31], [32] 0.00±0.00 0.00±0.00

5.5.3. Interpretability

We have clarified in Sec. 5.3.1 that CCN learnability can only be tested through Def. 5.4
if we can access a data set that is both ground-truth labeled and noisily labeled. In astro-
particle physics, no ground-truth labels exist for the real telescope data, so that inter-
preting fα as an actual test statistic, strictly speaking, remains a heuristic assessment.
Astro-particle physicists practically cope with this limitation by requiring huge certain-
ties of fα = 5 and above, which corresponds to p-values of 2.87 · 10−7 and below.

In the following experiment, we intend to assess the degree towhich fα can be interpreted
as a test statistic about CCN learnability, in spite of its heuristic nature. In this experiment,
we artificially remove all “on”-labeled instances from the data set. We then incorrectly
label some of the “off” instances as being “on” instances. These fake re-assignments are
meant to break the correspondence between clean and noisy labels. Hence, they should
render CCN learning infeasible. In this situation, any proper hypothesis test on CCN
learnability should not reject the null hypothesis, i.e., it should not falsely suggest that
CCN learning was feasible.

As desired, Tab. 5.7 demonstrates that all CCN learningmethods indeed produce fα values
close to zero. Practitioners of PK-CCN learning can tell from these values that no strong
classifier can be expected to be learned from the given noisy labels. The fact that our
Alg. 5.1 and Alg. 5.2 directly aim at maximizing the value of fα does not result in a false
outcome of the hypothesis test.
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A class-conditional data generator, like the astro-particle simulation we have introduced
in Sec. 3.6, produces labeled data in arbitrary proportions of classes. Active class selection
(ACS) [19], [146] builds on the idea that this level of freedom can be leveraged to produce
more cost-efficient training sets through an active acquisition of the data. This active
acquisition consists in the production of small batches of data, with each batch being
produced according to those proportions of classes that are expected to provide the largest
performance improvement of a classifier that is trained on all previous batches. This idea
is similar to the idea of active learning [147], but with a class-conditional data generator
instead of an oracle.

The data of imaging atmospheric Cherenkov telescopes (IACTs), which we have intro-
duced in Sec. 3.2, is never ground-truth labeled. Therefore, all labeled data is produced in
sophisticated simulations of the detection mechanism that IACTs leverage. This mecha-
nism is class-conditional: its input, be it in the real world or in the simulation, is a primary
particle, which is characterized, among other properties, by its class. A user of the simu-
lation must decide for the class proportions of the data before any data can be simulated.
Other applications, where a training set with features and labels is not given but features
can be acquired depending on the class proportions, are, for instance, the calibration of
gas sensor arrays [19] and brain-computer interaction [148]–[150].

The goal of ACS is to optimize the acquisition of training data in such applications. This
goal is pursued in a sequence of multiple acquisition steps, which are sketched in Fig. 6.1.
In each step, a classifier is trained and evaluated on the data that have been acquired so
far, starting from a small initial data set (i). Based on the classifier’s performance, a data
acquisition strategy is then allowed to choose the class proportions of the next acquisition
step (ii). The class-conditional data generator realizes these proportions, i.e., it produces
a batch of labeled data according to the choice of the strategy (iii). This batch is added to
the labeled set of data, from which the classifier is trained and evaluated in all subsequent
iterations (iv). The promise of such a sequential and informed data acquisition process
is that the classifier can benefit in terms of data acquisition cost and performance, as
compared to being trained with some predetermined proportions of classes that are not
necessarily optimal.

However, despite these potential benefits, a free choice of training class proportions also
puts the practical value of any ACS-trained model into question: is this model really
appropriate for the class proportions that are handled during deployment? What if the
deployment class proportions are uncertain or change over time? Indeed, astro-particle
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X → Y
classifier

Y → X
data generator

strategyi) evaluat
ion ii) choice p ∈ P

iii) training data
Dp =

{︁
(xi, yi) : 1 ≤ i ≤ b

}︁
iv) re-training
DXY ∪ Dp

prior beliefs about deployment class proportions

existing strategies
our proposal

Figure 6.1.: Active class selection optimizes class-conditioned data acquisition. Strategies for ac-
tive class selection choose the label proportions of newly acquired training data.
They are allowed to base their decisions on the performance of a classifier that is
trained with all previously acquired data. We propose to incorporate prior beliefs,
which can be uncertain, into the decision making. This figure is adapted from one of
our publications [9].

physicists can estimate the ratio between gamma rays and hadrons only roughly, as being
approximately 1 : 103 or even 1 : 104 [16].

We address these questions of model validity through a certification of ACS-trained classi-
fiers. Specifically, our certificate declares a set of class proportions for which the certified
model induces a performance gap between training and deployment that is small with a
high probability. This declaration is theoretically justified by PAC bounds.

Our certificate also provides the basis for an ACS strategy that we develop. Most im-
portantly, this strategy is able to incorporate uncertainties about the deployment class
proportions. This incorporation aims at learning classifiers that are valid in all deploy-
ment scenarios that might have to be addressed.

This chapter is structured as follows: In Sec. 6.1, we introduce the existing heuristic strate-
gies for data acquisition in ACS, before we survey existing experimental results in Sec. 6.2
to manage our expectations on the topic. With these foundations, we turn to two theo-
retical perspectives from which we examine ACS. The first perspective, to which we turn
in Sec. 6.3, is from information theory and provides us with valuable intuitions about the
quality of ACS strategies. The second perspective, to which we turn in Sec. 6.4, is from
learning theory and provides us with a quantitative assessment of ACS in terms of PAC
bounds. From these bounds, we develop our certificate of model robustness in ACS. In
Sec. 6.5, we develop our strategy for uncertainty-aware data acquisition in ACS, which is
also based on our PAC bounds.

6.1. Existing Heuristics for Active Class Selection

The term “active class selection” was coined in 2007, when Lomasky et al. [19] introduced
five heuristics for a class-dependent data acquisition with a gas sensor array. Before their
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seminal work, some general rules of thumb were already known for the determination
of training class proportions. We introduce these rules of thumb and the active heuristic
strategies in the following sub-sections.

6.1.1. Rules of Thumb

Before Lomasky et al. proposed an active, class-conditional acquisition of training data,
systematic empirical studies [48], [151]–[153] confirmed two rules of thumb for data ac-
quisition in binary classification: first, if the classifier performance is measured in ac-
curacy, sampling in the natural proportions of classes leads to high performance scores.
Second, if the performance metric is the area under the receiver operating characteristic
(AUROC), sampling with balanced classes is more advantageous. The second observa-
tion can be explained by the fact that AUROC is akin to an average performance over
all possible class weights. In contrast to Lomasky’s proposal of an active and informed
data acquisition, these prior works do not attempt to acquire data in multiple iterations,
except for the beam search heuristic by Weiss and Provost [48].

6.1.2. Active Strategies

Lomasky et al. [19] consider five heuristics for the active acquisition of data from a class-
conditional data generator. Their heuristics are based on a utility measure, which the
current classifier h : X → RC exhibits for each class y ∈ Y . In particular, each of the
five heuristics samples the class y according to the weight

w(y) =
u(y)∑︁

y′⊆Y u(y′)
, (6.1)

where u : Y → R is a utility heuristic that might or might not depend on the current
prediction model h. The five heuristics by Lomasky et al. are the following:

Uniform Assign the same utility u(y) = 1 to all classes.

Proportional Sample with the class proportions that also occur during deployment, i.e.,
u(y) = PT (Y = y). While the proportional strategy usually performs highly com-
petitively in terms of accuracy, it is sometimes beaten by one of the other heuristics.

Inverse Sample by the inverse class-wise accuracy, u(y) = Accuracyh(y)
−1. This strat-

egy is motivated by the assumption that a low accuracy is exclusively caused by an
insufficient amount of training data.

Improvement Similar to the “inverse” method, but based on the improvement of class-
wise accuracy, u(y) = (Accuracyh(y)−LastAccuracyh(y))

−1, during the last iter-
ation. This strategy assumes that classes with a “stable” accuracy will remain stable
in future iterations.

Redistriction Count the number of examples u(y) = my
h, for which the prediction

changed during the last iteration. The idea behind this strategy is that examples
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close to a decision boundary may be more informative than others. Classes for
which predictions frequently change are assumed to contain many examples close
to decision boundaries.

Several authors experimented with these heuristics. In brain-computer interaction, for
instance, the plain use of the above heuristics [148], [154] and their combination with
other learning tasks, i.e., with collaborative filtering [149] and with instance weighting
[150], was considered. These studies report that the combinations of tasks outperform a
plain use of ACS heuristics in their areas of application.

The most notable experiments have been conducted by Kottke et al. [146], who proposed
another, original heuristic for ACS. This “ACS-PAL” heuristic embeds strategies for active
learning in the ACS process. This embedding aggregates the class-wise utilities,

u(y) =
1

my

my∑︂
i=1

uAL(xi), (6.2)

from utility assessments uAL(xi) that an active learning strategy evaluates for individual
pseudo-examples xi. These pseudo-examples are produced by some generative model
Y → X that is trained, together with the classifier, from ACS-generated data.

Our theoretical analysis of ACS, which we detail in Sections 6.3 and 6.4, reveals that the
“proportional” strategy is actually more than a heuristic; this strategy is indeed optimal
in the large sample limit. However, it requires precise knowledge of the deployment class
proportions PT (Y = y), which practitioners might not be able to provide. Contrastingly,
all other strategies are entirely oblivious to the deployment proportions; they solely focus
on different perceptions of class-wise difficulties. We are not aware of an ACS strategy
that allows for uncertain deployment class proportions; therefore, we develop a novel
strategy for this setting in Sec. 6.5.

6.2. What Can We Expect from Active Class Selection?

Before we turn to a theoretical analysis of ACS, we intend to manage our expectations
about the potential benefits of the existing ACS methods. To this end, let us narrow the
question that is raised by the title of this section: given that new training data can be
acquired from a class-conditional data generator, can we expect ACS to make the optimal
use of a limited data generation budget?

In the following sub-sections, we address this question from two angles: first, we survey
the existing experiments on ACS to assess the relative merits of the proposed ACS strate-
gies. Second, we compare the performance of ACS to the performance of active learning,
a different but related learning task.
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Table 6.1.: The winning ACS strategies for each evaluated data set. Methods that clearly win
against their competitors, in terms of a subjective inspection of the published plots and
tables, are denoted with a check mark (3). Methods that clearly lose are denoted with
a cross mark (7). In some experiments, the “proportional” and “uniform” strategies are
equivalent (≡) due to a uniform class distribution in the test set. Multiple values for
the number of classes and the number of examples indicate sub-sampling. An infinity
sign (∞) indicates synthetic data, from which arbitrary amounts can be sampled. This
table is an extended version of a survey that we have published earlier [10].

data set no. classes no. examples PA
L-A

CS
[14

6]
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rch

[48
]
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g [
19
]
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t [
19
]
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e [
19
]

un
ifo
rm

[19
]

pr
op
or
tio
na
l [
19
]

3clusters [146] 3 60 / ∞ 3 7 7 7 ≡
spirals [146] 3 120 / ∞ 3 7 7 7 ≡

bars [146] 3 120 / ∞ 3 3 3 3 ≡
vehicle [155] 4 80 / 946 3 7 7 3 ≡

vertebral [155] 3 60 / 310 3 7 7 3 ≡
yeast [155] 5 / 8 60 / 1150 3 7 7 3 ≡

land cover [156] 11 ≈ 28 000 3 7 7 7 7

artificial nose [19] 8 ≈ 1 250 7 7 7 7 3

phone [48] 2 652 557 3 7

blackjack [157] 2 15 000 3 7

weather [157] 2 5597 3 3

adult [155] 2 48 842 3 7

kr-vs-kp [155] 2 3196 3 7

covertype [155] 2 / 7 581 102 3 3

letter-recognition [155] 2 / 26 20 000 3 3

6.2.1. Survey of Existing Experimental Results

Tab. 6.1 summarizes the results that have been reported for the existing heuristic meth-
ods, which we have presented in Sec. 6.1. The columns of this table indicate whether a
method clearly outperforms its competitors (3) or not (7). Missing values indicate that a
method has not been evaluated for the particular data set. Unfortunately, the qualification
of a “clear winner” must remain somewhat subjective because the precise values of the
results are not published. In particular, we declare a method as a winner when the plots
in the corresponding paper allow for a clear, visual distinction of this method from its
competitors. We declare multiple methods as winners whenever a single winner cannot
be made out from the published plots and tables.

A central observation to make from Tab. 6.1 is that the random strategies “proportional”
and “uniform” perform highly competitive. In this survey, they win on 8 out of 15 data
sets. Computationally, these strategies come for free, whereas the competing active stra-
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tegies imply a certain computational overhead. Hence, the practical merits of the existing
active ACS heuristics appear to be limited. Beyond these experimental findings, more
general concerns about the applicability of active sampling are being discussed [158]. We
note, however, that the exact class proportions, which are required by the “proportional”
strategy, are often not known at training time. In astro-particle physics, these proportions
can only be estimatedwith considerable uncertainties, which no existing strategy can take
into consideration.

6.2.2. Active Class Selection Versus Active Learning

Active learning (AL) is based on the assumption of an oracle, which can assign labels to ar-
bitrarily chosen data examples. Its goal, to acquire a cost-efficient training set for machine
learning, is the same goal that ACS pursues through class-conditional data acquisition.
In AL, this goal is pursued differently, through an active choice of examples that are to
be labeled by the oracle. Since every labeling induces some cost, AL has to decide which
individual examples exhibit the largest utility for supervised learning.

Conceptually, ACS and AL differ in two aspects. First, their assumptions differ: while
ACS assumes a class-conditional data generator Y → X , the assumption of AL is an
oracle X → Y , which produces labeled data in the other conditional direction. Second,
ACS requires some utility metric uACS : Y → R, which supports the choice of classes
for which additional data is to be generated. We have introduced the existing utility
metrics for ACS in Sec. 6.1. AL requires a different utility function uAL : X → R, which
supports the choice of data examples that are to be labeled. Therefore, we cannot apply AL
techniques in ACS and vice versa [11]. At least, an embedding of AL techniques in ACS
is complicated by the requirement of a generative model, as proposed in the “PAL-ACS”
strategy from Eq. 6.2.

In the context of simulation data mining, ACS and AL correspond to different simulation
strategies. Either, a simulation may generate feature vectors from input labels (Y → X )
[16], [159] or it may generate labels from input features (X → Y) [25], [26], [84], [85],
[87], [160]. Here, the first strategy establishes the simulation as a class-conditional data
generator for ACS and the second one establishes the simulation as an oracle for AL. Both
settings aim at minimizing the computational resources that are required by the simula-
tion. However, we cannot employ an ACS strategy to optimize anX → Y simulation and
we cannot employ an AL strategy to optimize a Y → X simulation [11].

Despite these fundamental, conceptual differences, we intend to assess how the empirical
performances of ACS and AL compare to each other. To this end, we extend some of the
experiments by Kottke et al. [146] with an evaluation of an AL strategy, the probabilistic
active learning (PAL) [161] that is also embedded in “PAL-ACS”.

As another extension of these experiments, we consider a strategy that is optimal for the
artificial “spirals” data set. Its optimality stems from background knowledge about the
data generating process of this data, which allows us to achieve 100% accuracy on one of
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Figure 6.2.: The learning curves of ACS strategies and the AL strategy “PAL”. This figure is
adapted from one of our publications [10].

the classes just by sampling a single instance of this class. In fact, the artificial “spirals”
data set contains one “easy” class that is linearly separable from the other two classes.
In between these other classes, however, a complex decision boundary is defined, such
that many examples of these two classes have to be generated. Even though this optimal
strategy does not generalize to any other data set, it shows how well an ACS strategy
could potentially perform on the “spirals” data.

Fig. 6.2 presents the results of these extensions, specifically the average error among 500
trials. The optimal strategy for the “spirals” data indicates that there is still room for
improving ACS methods. However, PAL is even better than that, indicating that even
the best ACS strategy is not guaranteed to outperform AL strategies. These observations
cannot be made with the two UCI data sets, where no ACS strategy is a clear winner.
We deem this finding consistent with the original experiments. Notably, the AL strategy
performs worse than ACS on the “vertebral” data set. We conclude that the identification
of relevant examples (AL) is not necessarily easier than, but instead considerably different
from the identification of relevant classes (ACS).

6.3. Active Class Selection Constitutes a Domain Gap

In Tab. 6.1, we have seen that active strategies for ACS are often just as good as sampling
randomlywith respect to the natural class proportions. Still, research onACS tries hard to
beat this simple baseline. Seeking to explain this phenomenon, we examine the theoretical
background of ACS from the viewpoint of information theory. Due to this viewpoint, our
analysis is limited to the large sample limit m → ∞, which, however, is continuously
approached by ACS through the iterative acquisition of data. We drop this limitation in
Sec. 6.4, where we establish a more sophisticated analysis that is based on learning theory
and on PAC bounds.

The information-theoretic viewpoint taken here yields an upper bound, which depends
on the class proportions chosen by an ACS strategy, of the error that a consistent Bayesian
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classifier induces. Namely, this bound depends i) on the Kullback-Leibler (KL) divergence
between the deployment class proportions and the class proportions that are chosen by an
ACS strategy; and ii) on the error of the generative part of the classifier. This generative
error diminishes as the size of the training set increases. Therefore, the “proportional”
strategy becomes increasingly superior to other ACS strategies while more and more
training data is acquired. Hence, these theoretical findings enrich the common observa-
tion of a competitive “proportional” strategy by revealing that the relative performance
of this strategy has the tendency to increase with the size of the training set.

In the following, we employ the prior probability shift assumption from Def. 2.3. Under
this assumption, the training set is drawn from P(X | Y ) · PS(Y ), where PS(Y ) is the
class distribution that is chosen by an ACS strategy, and the deployment data is drawn
from P(X | Y ) · PT (Y ), where PT (Y ) can be different from PS(Y ). In this section, our
concept of optimality is meant to study the impact of ACS in a theoretically sound, yet
simple way. To this end, we focus on classifiers that intend to find the most accurate
estimate PD(Y | X), learned from an ACS-generated training set DXY , of the true un-
derlying conditional density PT (Y | X). We formalize this intent as a minimization of
the KL divergence

KLDY |X = KL (PT (Y | X) || PD(Y | X))
!→ min, (6.3)

where the KL divergence between probability density functions is defined in Def. 2.4. The
central question of the following analysis is how ACS affects KLDY |X .

We approach this question in two steps. First, we study the effect of ACS on the distri-
bution of the training data, ignoring the potential effects of estimating PT (Y | X) from
a finite amount of data. These effects are then introduced in the second step, where we
incorporate a Bayesian classifier into our analysis. For now, the limitation to Bayesian
classifiers yields a simple analysis in terms of KL divergences. In Sec. 6.4, we drop this
narrow limitation in favor of a more general analysis.

6.3.1. Effects on the Training Data Distribution

In this first step of our analysis, we study how ACS affects the distribution PS(Y | X) of
the training set. To this end, we assess a KL divergence

KLSY |X = KL (PT (Y | X) || PS(Y | X)) (6.4)

where we emphasize that KLSY |X is different from Eq. 6.3 because it considers only the
training set distribution PS but no estimation from a finite data setDXY . The importance
of studying KLSY |X stems from the existence of consistent estimators of PS(Y | X), e.g.,
the proper scoring rules fromDef. 2.2. Only if KLSY |X = 0will a learning algorithm, which
is consistent with respect to PS(Y | X), be consistent also with respect to PT (Y | X).
Otherwise, standard techniques for consistent machine learning can fail as a consequence
of the KLSY |X divergence that ACS has induced.
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In ACS, we allow some strategy to actively choose PS(Y ), the class proportions of the
training set. Through this choice, ACS can induce a discrepancy between PS(Y ) and the
class proportions of the deployment data, PT (Y ). We assess this discrepancy, like before,
in terms of a KL divergence

KLSY = KL (PT (Y ) || PS(Y )) .

The following theorem bounds the training set divergence KLSY |X , which is induced by
ACS through KLSY , in terms of the divergences KLSY and KLSX .

Theorem 6.1. [8] The KL divergence KLSY |X , which is exhibited by an ACS-generated
training set, is bounded above by the divergence KLSY between the ACS-chosen class
proportions and the deployment class proportions, i.e.,

KLSY |X = KLSY − KLSX ≤ KLSY .

Proof. We apply the chain rule from Prop. 2.2.ii) to see that

KLSX,Y = KLSY |X + KLSX = KLSX|Y + KLSY

⇒ KLSY |X = KLSX|Y + KLSY − KLSX .

Further making the assumption from Def. 2.3, i.e., PS(X | Y ) = P(X | Y ), means under
Prop. 2.2.i) that

KLSX|Y = KL (P(X | Y ) || PS(X | Y )) = 0,

which yields the claim.

Consequently, if we want to minimize KLSY |X , we can instead minimize its upper bound
KLSY . This approach is precisely the idea of the “proportional” strategy, which always ac-
quires data according to PT (Y ). Due to the theoretical finding from Th. 6.1, this strategy
is more than a heuristic: it is indeed optimal in the large sample limit.

Quite interestingly, Th. 6.1 further implies that an increase in KLSX can decrease KLSY |X .
While this finding might appear counter-intuitive at first, it can be traced back to the
correlation between X and Y . For instance, the edge case KLSY |X = KLSY only occurs if
KLSX = 0, which in turn can only happen if a change in PS(Y ) has no effect on PS(X),
or if KLSY = 0 anyways. If changing PS(Y ) has no effect PS(X), then X and Y must
be uncorrelated and we can not expect to learn any meaningful relation between them.
Conversely, if KLSX = KLSY , so that we obtain KLSY |X = 0, we can conclude that X and
Y must be fully correlated. Generally speaking, the higher the correlation is between X
and Y , the easier is the classification task, even despite mistaken class proportions. We
also recognize the following:

Corollary 6.1. [8] The divergence of an ACS-generated training set with respect to X is
always lower than or equal to its divergence with respect to Y .

KLSX ≤ KLSY
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Table 6.2.: The data sets from Fig.6.3.

dataset PT (Y ) no. features no. NCA components no. examples

3clusters [146] ( 13 ,
1
3 ,

1
3 ) 2 ∗ †

spirals [146] ( 13 ,
1
3 ,

1
3 ) 2 ∗ †

vertebral [155] (.32, .19, .48) 6 2 310

yeast [155] (.44, .41, .15) 6 2 1055

vehicle [155] (.26, .24, .26, .25) 18 3 846
∗no NCA is performed
†arbitrary number of examples (synthetic data set; we use 1200)

Proof. This finding follows directly from Theorem 6.1 and from KLSY |X ≥ 0, which is
stated by Prop. 2.2.i).

In order to assess the tightness of the upper bound of Th. 6.1, we now evaluate KLSY
and KLSX empirically. In this regard, we alter the underlying class proportions PS(Y )
of the training set by changing the probability of each class separately; for each class y,
we scan through several probabilities PS(Y = y) ∈ {0.05, 0.1, . . . 0.95} and scale the
probabilities of the other classes y′ ̸= y so that PS(Y ) remains a valid density.

To compute KLSX , we must be able to evaluate PS(X) and PT (X) at arbitrary positions
x ∈ X . We do so with a kernel density estimate (KDE), which we fit for each class on
the full data set. In line with the prior probability shift assumption from Def. 2.3, we use
the same KDEs for both distributions, PS and PT . This way, we can compute PS(X)
and PT (X) through a marginalization over Y . On the UCI data sets, which we employ
here, we enable proper KDE estimations through a neighborhood component analysis
(NCA) [162], a technique for dimensionality reduction. An overview of the experimental
data and the cross-validated number of NCA components is given in Tab. 6.2

Fig. 6.3 shows the results of this experiment. We see that a considerable range of mistaken
training class proportions induces a tight bound KLSX ≈ KLSY , which leads to negligible
divergences KLSY |X ≈ 0. In this range, an optimal classifier can still be learned despite
mistaken class proportions, which an ACS strategy other than the “proportional” strategy
has produced. The width of this range depends on the data set, which is characterized
here as P(X | Y ).

6.3.2. Effects on Bayesian Classifier Induction

In order to analyze the effect of an ACS-chosen PS(Y ) on KLDY |X , we must relate the con-
ditional directionX → Y , which is modeled by the classifier, to the converse conditional
direction Y → X , which is implemented by the data generating process. Since such a
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Figure 6.3.: The divergence KLSY |X = KLSY −KLSX for several data sets, i.e., for differentP(X | Y ).
According to Th. 6.1, regions with KLSX ≈ KLSY indicate that the corresponding class
proportions will not impair the performance of the classifier. Each row in this group
plot presents one data set and each column presents another class y ∈ {1, 2, 3},
for which the probability PS(Y = y) is altered. In each cell, the values of KLSX and
KLSY are plotted on the vertical axis. They stem from the altered probability values
PS(Y = y), which are displayed on the horizontal axis of each cell. As a reference,
the natural class proportions and the uniform class proportions are displayed in ver-
tical lines. This figure is adapted from one of our publications [8].
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relation is prevalent in Bayesian classifiers, we will focus our analysis on this particular
family of classification models. These classifiers make probabilistic predictions

PD(Y | X) =
PD(X | Y ) · ˆ︁P(Y )∫︁

Y PD(X | Y = y) · ˆ︁P(Y = y) dy

as according to Bayes’ rule. We see that Bayesian classifiers learn a generative model
PD(X | Y ), which is weighted by some prior ˆ︁P(Y ). Assuming consistency of the gener-
ative part, we obtain the following result:

Theorem 6.2. [8] Consider a Bayesian classifier that employs a consistent generative
model, i.e., let there be some N ∈ N such that

KLDX|Y = KL (PS(X | Y ) || PD(X | Y )) ≤ εX|Y ∀ m > N,

where PD(X | Y ) is the model that is learned from a training set DXY with m exam-
ples. The error of such a classifier is bounded above by the error of its assumed class
proportions,

KLˆ︁Y = KL
(︂
PT (Y )

⃓⃓⃓⃓⃓⃓ ˆ︁P(Y )
)︂
,

and by the error εX|Y of its generative model, i.e.,

KLDY |X ≤ KLˆ︁Y + εX|Y .

Proof. We use the chain rule from Prop. 2.2.ii),

KLDY |X = KLˆ︁Y + KLDX|Y − KLDX ≤ KLˆ︁Y + KLDX|Y ≤ KLˆ︁Y + εX|Y ,

where the last step employs our consistency assumption.

The prior ˆ︁P(Y ) fromEq. 6.3.2 does not have tomatch theACS-generated class proportions
PS(Y ). In this sense, KLˆ︁Y is independent of the ACS-generated training set; however, if
some informed prior existed, we might as well have employed it in ACS.

The error of the generative model, εX|Y , does depend on the training data, but only indi-
rectly on the ACS-chosen class proportions. In particular, we assume throughDef. 2.3 that
PS(X | Y ) = P(X | Y ), so that any consistent estimator can learn the true P(X | Y )
from the training data, at least up to a divergence of εX|Y . As long as the ACS strategy
assigns a non-zero probability to each class, we will reduce εX|Y eventually by sampling
from any class proportion; what matters for this eventual reduction is the sheer amount
of training data, which continuously increases during the data acquisition process.

We must, however, recognize that the rate with which εX|Y decreases can indeed depend
on the class proportions. In fact, the idea that the natural class proportions PT (Y )might
not yield an optimal rate of decrease has motivated previous work on ACS [19], [146]
and it may motivate future work as well. However, Th. 6.2 strongly suggests that this
potential disadvantage of acquiring data in terms of PT (Y ) is eventually ruled out as the
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6.3. Active Class Selection Constitutes a Domain Gap

amount of training data increases. In other words, the error term εX|Y might benefit
from a non-proportional ACS heuristic, but only at the beginning of the data acquisition
process or under extreme class imbalances.

The following experiment explores the transition from an early acquisition stage, where
active ACS heuristics can still benefit learning, to a late acquisition stage, where we expect
the largest benefit to come from the “proportional” strategy, which always acquires data
in terms of PT (Y ). To this end, we measure the performance of PT (Y ) relative to all
possible, alternative class proportions that a different ACS heuristic might have chosen.
This measurement is taken out as follows:

Measuring the Performance of a Training Set Our evaluation is similar to the setup
proposed by Kottke et al. [146]. Namely, we stick to their Bayesian classifier, a
Parzen window classifier [163] with a constant KDE bandwidth of 0.05, scale each
feature to the unit interval, and measure performance in terms of test set accuracy.
Additionally, we also employ a support vector classifier and a decision tree as non-
Bayesian alternatives. Unlike Kottke et al., we reduce the dimensionality of the data
with NCA [162] because the number of features in some data sets would otherwise
result in poor KDE estimates. For testing, we sample 1

3 of all examples in each data
set in their natural class proportions. This pipeline provides us with a performance
score for arbitrary training sets.

Measuring Relative Performance We apply the above pipeline to several class pro-
portion candidates p ∈ RC , which are evenly distributed over the entire unit sim-
plex, and we rank all candidates according to their performance values. The natural
class proportions are one of these candidates. Their position in this ranking tells
us, how many of the competing class proportions are strictly better: the natural
proportions are optimal if there is no better candidate; the number of better com-
petitors further tells us how close to the optimum the natural class proportions are.
The ranks we report here are relative, i.e., they describe the percentage of other
class proportions that perform strictly better. For instance, a value of 0.5 means
that one half of the other candidates outperform the natural proportions. Note that
a rank relates multiple class proportions to each other; it does not show the trivial
improvement in accuracy due to a larger training set, but the improvement over
other strategies as the training set grows.

We perform the ranking for several training set sizes to see the effect of an increasing
amount of training data. For each step, the ranking is computed separately in each of
1000 repetitions, from which the mean relative ranks are reported together with their
lower and upper quartiles.

The results of this experiment, which are illustrated in Fig. 6.4, exhibit a downward trend
of the ranks for all classifiers. Thus, the natural class proportions become more compet-
itive as the size of the training set increases. One can, however, also observe that several
candidates outperform the natural proportions. In this regard, we must note that a rela-
tive rank > 0 only tells us about the existence of proportions that outperform the natural
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Figure 6.4.: The rank of the natural class proportions, relative to alternative proportions, is pre-
sented for different sizes of the training set. A lower rank translates to a (relatively)
better performance measured in terms of accuracy. Error bars present the lower and
upper quartiles over 1000 trials. We see that the natural proportions gain superiority
over their competitors while the number of training examples increases. This figure
is adapted from one of our publications [8].
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candidate, but not about the existence of an ACS strategy that actually finds them. Indeed,
the performance gained by two different acquisitions with the same class proportions can
deviate substantially between trials. As a consequence, it is extremely difficult to actively
decide for future class proportions based on performances exhibited in the past, which is
a general difficulty of the ACS task. Our findings, both theoretically and experimentally,
imply that the goal of outperforming natural proportions is becomingmore difficult while
more training data is being acquired.

6.4. Certification of Model Robustness in Active Class Selection

In the previous section, we have taken a viewpoint from information theory to study the
implications of ACS qualitatively, in the large sample limit. In the following, we take out a
more quantitative assessment of ACS by establishing a different viewpoint from learning
theory. This viewpoint provides us with a PAC bound, fromwhichwe develop a certificate
for the robustness of ACS-trained classifiers. In particular, this certificate declares the set
of class proportions for which a classifier is valid with a high probability. Our PAC bound
also motivates a novel strategy for ACS, which we develop in Sec. 6.5.

In the following sub-sections, we begin with proving our PAC bound for ACS. Based
on this bound, we provide a quantitative assessment of the ACS-induced error and we
develop our certificate ofmodel robustness. Finally, we validate our certificate empirically
and we certify actual gamma hadron classifiers from astro-particle physics.

6.4.1. PAC Bound for Active Class Selection

The common foundation of our certificate and our ACS strategy is a PAC bound for ACS-
trained classifiers. This bound adapts the standard IID bound from learning theory, which
we have introduced in Th. 2.1. This standard bound quantifies the probability that the
estimation error for the source domain risk RS(h; ℓ), induced by the finite amount m of
data in a data set DXY = {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m} ∼ Pm

S , is bounded above by
some ε > 0.

The first step of adapting the standard bound fromTh. 2.1 to ACS is to extract an asymmet-
ric variant thereof. This variant, which still addresses IID data, states the following:

Corollary 6.2 (Asymmetric IID Bound [12]). For any ε(l), ε(u) > 0, for any loss func-
tion ℓ : (Z × Y)→ R, and for any fixed h ∈ H, each of the following bounds holds with
probability at least 1− δ(i) respectively, where δ(i) = e−2m(ε(i))2 and i ∈ {l, u}:

i) RD(h; ℓ)−RS(h; ℓ) ≤ ε(l)

ii) RS(h; ℓ)−RD(h; ℓ) ≤ ε(u)
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RT (h; ℓ)

RD(h; ℓ)
|RT (h; ℓ)−RD(h; ℓ)|

RS(h; ℓ)|RT (h; ℓ)−RS(h; ℓ)|

ε

Figure 6.5.: Illustration of the proofs of Theorems 6.3 and 6.4. Keeping δ > 0 fixed, we can
choose an estimation error ε → 0 as the training set size m →∞. What remains is
the inter-domain gap |RT (h; ℓ) − RS(h; ℓ)|. This figure is adapted from one of our
publications [12].

Proof. The claim follows from applying Eq. 2.6 to z̄ and −z̄, just like we do in the proof
of Prop. 2.1. This time, however, we use two different ε(l), ε(u) for the two sides of the
bound and we do not combine them via the union bound.

To study the ACS problem, we now replace the IID assumption above with the identical
mechanism / prior probability shift assumption from Def. 2.3. The result of this replace-
ment is Th. 6.3, inwhich the factor 4 in δ, as compared to the factor 2 in the δ of Lemma 2.1,
stems from the fact that either the upper bound or the lower bound might be violated,
each time with at most the same probability. The idea of our proof, which builds on the
triangle inequality, is illustrated in Fig. 6.5.

Theorem 6.3 (Identical Mechanism Bound [12]). For any ε > 0, for any loss function
ℓ : (Z × Y)→ R, and for any fixed h ∈ H, it holds with probability at least 1− δ, where
δ = 4e−2mε2 , that

|RT (h; ℓ)−RS(h; ℓ)| − ε ≤ |RT (h; ℓ)−RD(h; ℓ)| ≤ |RT (h; ℓ)−RS(h; ℓ)|+ ε .

Proof. We employ Prop. 2.1 through the triangle inequality (see Fig. 6.5):

|RD(h; ℓ)−RT (h; ℓ)| ≤ |RD(h; ℓ)−RS(h; ℓ)| + |RS(h; ℓ)−RT (h; ℓ)|
≤ ε + |RS(h; ℓ)−RT (h; ℓ)|,

where the second inequality holds with probability at least 1− 2e−2mε2 .

Likewise, and with the same probability, we use the triangle inequality for the other side
of the claim:

|RT (h; ℓ)−RS(h; ℓ)| ≤ |RT (h; ℓ)−RD(h; ℓ)| + |RD(h; ℓ)−RS(h; ℓ)|
⇔ |RT (h; ℓ)−RD(h; ℓ)| ≥ |RT (h; ℓ)−RS(h; ℓ)| − |RD(h; ℓ)−RS(h; ℓ)|

≥ |RT (h; ℓ)−RS(h; ℓ)| − ε

The above bound addresses a single, fixed hypothesis h ∈ H, which suits our goal of
certifying any given prediction model. For completeness, however, let us also mention
that Th. 6.3 can be extended to entire hypothesis classesH. A bound of this kind is useful
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for analyzing algorithms that return a prediction model as a function of the training data.
As an example, we obtain the following result for finite hypothesis classes.

Theorem 6.4 (Identical Mechanism Bound; Finite Hypothesis Class [12]). Con-
sider a finite hypothesis class H, i.e., |H| < ∞. With probability at least 1 − δ, where
δ = 4|H|e−2mε2 , the upper and lower bounds from Theorem 6.3 hold for all h ∈ H.

Proof. We draw a training set D of size m, where each individual example is drawn from
X × Y , according to PS . Consequently, the full training set is drawn from (X × Y)m,
according to the probability density Pm

S . We are now interested in the probability that
Pm
S assigns to the event that all h ∈ H admit to the identical mechanism bound:

Pm
S

(︂{︁
D : ∀h ∈ H, |RT (h)−RS(h)| − ε ≤ |RT (h)−RD(h)|

≤ |RT (h)−RS(h)| + ε
}︁)︂

We estimate the above probability from the probability of the converse event; if the above
probability is p, then the following must be 1− p:

Pm
S

(︂{︁
D : ∃h ∈ H, |RT (h)−RS(h)| − ε > |RT (h)−RD(h)|

∧ |RT (h)−RD(h)| > |RT (h)−RS(h)| + ε
}︁)︂

We now apply the union bound twice. This bound states that P(A ∧B) ≤ P(A) + P(B)
for any two events A and B:

… ≤ Pm
S

(︂{︁
D : ∃h ∈ H, |RT (h)−RS(h)| − ε > |RT (h)−RD(h)|

}︁)︂
+ Pm

S

(︂{︁
D : ∃h ∈ H, |RT (h)−RD(h)| > |RT (h)−RS(h)| + ε

}︁)︂
≤
∑︂
h∈H

Pm
S

(︂{︁
D : |RT (h)−RS(h)| − ε > |RT (h)−RD(h)|

}︁)︂
+
∑︂
h∈H

Pm
S

(︂{︁
D : |RT (h)−RD(h)| > |RT (h)−RS(h)| + ε

}︁)︂

We have thus reduced the probability of the identical mechanism bound with respect to
an entire hypothesis class H to a sum of probabilities for single hypotheses h ∈ H. The
single-hypothesis case has already been proven in Th. 6.3. Let us rephrase this result here
to clarify the connection: Each of the following statements describes a violation of the
Th. 6.3 bound, each having a probability of at most 2e−2mε2 :

• |RT (h)−RS(h)| − ε > |RT (h)−RD(h)|
• |RT (h)−RD(h)| > |RT (h)−RS(h)| + ε
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These two events, together with their probabilities, can be plugged into the above trans-
formation, which proves the claim:

… ≤
∑︂
h∈H

2e−2mε2 +
∑︂
h∈H

2e−2mε2 = 4|H|e−2mε2

The lower and upper bounds in Theorems 6.3 and 6.4 quantitatively asses the way in
which the total error |RT (h; ℓ)−RD(h; ℓ)| approaches the inter-domain gap |RT (h; ℓ)−
RS(h; ℓ)|, depending on the interplay between ε, δ, m, ℓ, andH. It is therefore a quanti-
tative and thus more nuanced equivalent of Prop. 6.2. The inter-domain gap is constant
with respect to the random draw of the training sample DXY ∼ Pm

S and is therefore
independent of ε, of δ, and of m. Consequently, it remains even with an infinite amount
of training data. Depending on the choice of H and ℓ, and depending on the data distri-
bution, it may be large or negligible. In the following, we will therefore study this error
in more detail.

6.4.2. Quantitative Assessment of the Domain Gap

We begin our study of the inter-domain gap |RT (h; ℓ)−RS(h; ℓ)| by factorizing the total
expected riskR(h; ℓ) from Def. 2.1 into label-dependent risks ℓX(h, y) that are marginal-
ized over the entire feature space X . These risks only depend on the hypothesis h and
on the label y and are, under the identical mechanism assumption from Def. 2.3, identical
among S and T .

R(h; ℓ) =

∫︂
Y

∫︂
X
P(X = x ∧ Y = y) · ℓ(h(x), y) dx dy

=

∫︂
Y
P(Y = y) ·

∫︂
X
P(X = x | Y = y) · ℓ(h(x), y) dx⏞ ⏟⏟ ⏞

= ℓX(h,y)

dy

Plugging ℓX(h, y) into the domain gap |RT (h; ℓ) − RS(h; ℓ)| from the Theorems 6.3
and 6.4 allows us to marginalize the class-wise risks over the label space:

|RT (h; ℓ)−RS(h; ℓ)| =

⃓⃓⃓⃓∫︂
Y

(︂
PT (Y = y)− PS(Y = y)

)︂
· ℓX(h, y) dy

⃓⃓⃓⃓

For classification tasks, i.e., for Y = {1, . . . , C} with C ≥ 2, we define the vectors
pS , pT ∈ RC through [p•]i = P•(Y = i), i.e., through the label probabilities in the
domains S and T . Furthermore, we define a vector ℓh ∈ RC of class-wise risks through
[ℓh]i = ℓX(h, i). The computation of the ACS-induced domain gap then simplifies to
an absolute difference between scalar products R•(h; ℓ) =

∑︁
i∈Y [p•]i[ℓh]i = ⟨p•, ℓh⟩.

Namely, for classification tasks:

|R clf
T (h; ℓ)−R clf

S (h; ℓ)| =
⃓⃓
⟨pT , ℓh⟩ − ⟨pS , ℓh⟩

⃓⃓
(6.5)
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Before we move on to a theorem about the practical implications of Eq. 6.5, let us build an
intuition about these implications in a more simple setting, binary classification.

Example 6.1 (Binary classification). In binary classification, the situation from Eq. 6.5 sim-
plifies to Y = {1, 2}with P•(Y = 1) = p• and P•(Y = 2) = 1−p•. Let∆p = |pT −pS |
be be the absolute difference of the binary class proportions between the two domains
and let ∆ℓX = |ℓX(h, 2) − ℓX(h, 1)| be the absolute difference between the class-wise
risks. The difference∆ℓX is independent of the class proportions and can be defined over
any loss function ℓ. Rearranging Eq. 6.5 for binary classification, we obtain

|R bin
T (h; ℓ)−R bin

S (h; ℓ)|
=
⃓⃓(︁
pT ℓX(h, 2) + (1− pT )ℓX(h, 1)

)︁
−
(︁
pSℓX(h, 2) + (1− pS)ℓX(h, 1)

)︁⃓⃓
=
⃓⃓(︁
pT − pS

)︁
·
(︁
ℓX(h, 2)− ℓX(h, 1)

)︁⃓⃓
= ∆p ·∆ℓX ,

(6.6)

from which we see that in binary classification, for any loss function, the domain gap
induced by ACS is simply the product of the class proportion difference∆p and the (true)
class-wise risk difference ∆ℓX . If one of these terms is zero, so is the inter-domain gap.
If one of these terms is non-zero but fixed, the domain gap will grow linearly with the
other term.

Example 6.2 (Binary classification with zero-one loss). Let us illustrate Eq. 6.6 a little further.
The zero-one loss is defined by ℓ(h(x), y) = 0 if the prediction is correct, i.e., if y =
1h(x)>0.5, and ℓ(h(x), y) = 1 otherwise. Consequently, ℓX(h, 2) is the true rate of false
positives and ℓX(h, 1) is the true rate of false negatives. The more similar these rates
are, the smaller will the inter-domain gap be for any distribution of classes in the target
domain. Supposing that balanced training sets tend to balance ℓX(h, 2) and ℓX(h, 1), we
can argue that balanced training sets (supposedly) maximize the range of feasible target
domains with respect to the zero-one loss.

Example 6.3 (Cost-sensitive learning). The situation is quite different if the binary zero-
one loss is weighted by the class, i.e., if mis-predictions are penalized by ℓ(h(x), y) =
wy . Such a weighting is common in cost-sensitive and imbalanced classification [143].
Here, Eq. 6.6 illustrates how counteracting class imbalance with weights can increase the
robustness of the model: balancing ℓX(h, 2) and ℓX(h, 1)will increase the range of target
domains that are feasible under the class-based weighting.

For completeness, we extend a part of this intuition from binary classification to classifi-
cation tasks with an arbitrary number of classes:

Theorem 6.5. [12] In classification, the inter-domain gap |R clf
T (h; ℓ) − R clf

S (h; ℓ)| from
Theorem 6.3 is equal to zero if one of the following conditions holds:

i) pS = pT

ii) ℓX(h, i) = ℓX(h, j) ∀ i, j ∈ Y
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Proof. Condition i) trivially yields the claim through Eq. 6.5. Condition ii) means that
∆ℓ = |ℓX(h, i)− ℓX(h, j)| = 0 for every binary sub-task in a one-vs-one decomposition
of the label setY . The domain gap of each binary sub-task, and therefore the total domain
gap, is then zero according to Eq. 6.6.

Despite the fact that condition 6.5.ii) yields a domain gap of zero, one should not pre-
maturely jump to the conclusion that a learning algorithm should enforce this condition
necessarily. Recall that Theorem 6.5 addresses the domain gap, but not the deployment
risk which we actually want to minimize; if enforcing condition 6.5.ii) results in a high
source domain error, all domain robustness will not help to find an accurate target domain
model. We therefore advise practitioners to carefully weigh out the source domain error
with the domain robustness of the model, depending on the requirements of the use case
at hand. Bayesian classifiers, which allow practitioners to mimic arbitrary pS even after
training, can prove useful in this regard.

6.4.3. Certification of Binary Classifiers

We now develop a certificate which declares a set of class proportions P , for which an
ACS-trained classifier is valid with a high probability. This certificate is theoretically
justified by the PAC bounds and the quantitative assessment of the domain gap, which
we have presented above. While the general concept of our certificate is applicable to any
classification task, we substantiate our proposal here in terms of a certificate for binary
classifiers, in particular.

Model certification, in the broad sense of model performance reports [164]–[166] and for-
mal proofs of robustness [167]–[170], has motivated us to study model robustness for the
particular setting of ACS. Our certificate is only a single component in the more compre-
hensive reports that are conceived in the literature; yet, the certification of feasible class
proportions is a central and trust-critical issue in ACS, due to the arbitrary choice of the
training class proportions that a class-conditional data generator offers. Moreover, the
concept of feasible class proportions is easily understandable and can be relevant in any
other setting where prior probability shift occurs.

In particular, our certificate declares a set of class proportions, to which a fixed hypothesis
h, trained in the ACS-induced domain S , is safely applicable. By “safely”, we mean that
during the deployment on T , h induces only a small domain-induced error with a high
probability.

Definition 6.1 (Certified Hypothesis [12]). A hypothesis h ∈ H is (ε, δ)-certified for
all class proportions in the set P ⊆ RC if with probability at least 1− δ and ε, δ > 0:

|RT (h; ℓ)−RS(h; ℓ)| ≤ ε ∀ pT ∈ P
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ε1 ε2

ˆ︁ℓX(h, 1) ˆ︁ℓX(h, 2)

ℓX(h, 1) ℓX(h, 2)

∆ˆ︁ℓX

∆ℓ∗X

Figure 6.6.: Estimation of the minimum upper bound ∆ℓ∗X from data. We have to choose ε1 and
ε2 as small as possible, within a given, total probability budget δ. Adding ε2 to the
estimate ˆ︁ℓX(h, 2) and subtracting ε1 from the estimate ˆ︁ℓX(h, 1) yields the desired,
minimum upper bound. This figure is taken from one of our publications [12].

For simplicity, we limit our presentation to binary classification, i.e., C = 2 (see Ex. 6.1).
In this case, P is simply a scalar range [ pmin

T , pmax
T ] of the positive class proportion

PT (Y = 1). According to Eq. 6.6, this range is defined by the largest∆p∗ for which

∆p ·∆ℓX ≤ ε ∀ ∆p ≤ ∆p∗. (6.7)

Keep in mind that ∆ℓX is defined over the true class-wise risks. If we knew them, we
could simply rearrange Eq. 6.7 to find the largest∆p for a given ε; the equationwould then
hold with probability one. However, we do not know the true class-wise risks; instead, we
estimate an upper bound that is only exceeded by the true ∆ℓX with a small probability
of at most δ > 0. Particularly, to maximize ∆p∗, we find the smallest upper bound ∆ℓ∗X
among all such upper bounds.

An empirical estimate ∆ˆ︁ℓX of the true ∆ℓX is given by the empirical class-wise risksˆ︁ℓX(h, y) observed in an ACS-generated validation sample D:

∆ˆ︁ℓX =
⃓⃓⃓ˆ︁ℓX(h, 1)− ˆ︁ℓX(h, 2)

⃓⃓⃓
, where ˆ︁ℓX(h, y) = 1

my

∑︁
i : yi=y ℓ(y, h(xi))

Here, each ˆ︁ℓX(h, y) can be associated with maximum lower and upper errors ε(l)y , ε
(u)
y >

0, which are not exceeded with probabilities at least 1 − δ
(l)
y and 1 − δ

(u)
y . By choosing

ε
(l)
y , ε

(u)
y for both classes, we can thus find all upper bounds of the true ∆ℓX that hold

with at least the desired probability 1− δ.

Fig. 6.6 sketches our estimation of the smallest upper bound ∆ℓ∗X . For simplicity, we
assume that ˆ︁ℓX(h, 2) ≥ ˆ︁ℓX(h, 1). This assumption comes without a loss of generality
because we can otherwise simply switch the labels to make the assumption hold. Now,ˆ︁ℓX(h, 1) shrinks at most by ε1 and ˆ︁ℓX(h, 2) grows at most by ε2. Minimizing ε1 and ε2
simultaneously, within a user-specified probability budget δ, yields the desired minimum
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upper bound ∆ℓ∗X which the true ∆ℓX only exceeds with probability at most δ = δ1 +
δ2 − δ1δ2. We find the values of δ1 and δ2 through Corollary 6.2, letting

− (ˆ︁ℓX(h, 2)− ˆ︁ℓX(h, 1) + ε1)⏞ ⏟⏟ ⏞
= ε

(l)
2

≤ ℓX(h, 2)− ˆ︁ℓX(h, 2) ≤ ε2⏞⏟⏟⏞
= ε

(u)
2

and − (ˆ︁ℓX(h, 2)− ˆ︁ℓX(h, 1) + ε2)⏞ ⏟⏟ ⏞
= ε

(u)
1

≤ ˆ︁ℓX(h, 1)− ℓX(h, 1) ≤ ε1⏞⏟⏟⏞
= ε

(l)
1

,

so that δy = δ
(l)
y + δ

(u)
y − δ

(l)
y δ

(u)
y and δ

(i)
y = e−2my(ε

(i)
y )2 .

During the optimization, strict inequalities are realized through non-strict inequalities
with some sufficiently small τ > 0:

min
ε1, ε2∈R

ε2 + ε1, s.t.

{︄
ε1, ε2 ≥ τ

δ − (δ1 + δ2 − δ1δ2) ≥ 0
(6.8)

The minimizer (ε∗1, ε
∗
2) of this optimization problem defines the smallest upper bound

∆ℓ∗X = (ˆ︁ℓX(h, 2) + ε∗2) − (ˆ︁ℓX(h, 1) − ε∗1) that is not exceeded by the true ∆ℓX with
probability at least 1 − δ. Choosing ∆p∗ = ε

∆ℓ∗X
will make Eq. 6.7 hold with the same

probability, so that the range [pS−∆p∗, pS+∆p∗] of binary deployment class proportions
pT is (ε, δ)-certified according to Def. 6.1.

If only small data volumes are available, it can happen that ϵ1 must exceed ˆ︁ℓX(h, 1) to
stay within the user-specified probability budget δ. This situation would mean that the
lower bound ℓX(h, 1) = ˆ︁ℓX(h, 1) − ε1 is below zero, which does not reflect the basic
loss property ℓ(h, y) ≥ 0. If the estimation of ∆ℓ∗X fails in this way, we fall back to a
more simple, one-sided estimation. Namely, we only minimize the two upper bounds
ε
(u)
y that depend only on ε2 and fix the two lower bounds to ε

(l)
y = 0. Doing so allows us

to estimate a valid upper bound ∆ℓ∗X also for arbitrarily small data sets.

6.4.4. Empirical Validation of Binary Certificates

In the following, we show that an (ε, δ) certified class proportion set P indeed charac-
terizes an upper bound of the inter-domain gap. Our experiments even demonstrate that
our certificate, being estimated only with source domain data, is very close to bounds that
are obtained with labeled target domain data and are therefore not accessible in practice.
It is therefore highly beneficial when only ACS-generated data is available and no labeled
data from the target domain can be accessed.

We randomly sub-sample the data to generate different deployment class proportions
pT while keeping P(X | Y ) fixed, in accordance to Def. 2.3. We compare two ways of
estimating the target domain risk:

118
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a) Our baseline is an empirical estimate ˆ︁RT of the target domain risk that is computed
with actual target domain data. Data of this kind is typically unavailable in practice.

b) We predict the target domain risk RT from an (ε, δ) certificate by adding the do-
main gap parameter ε to the empirical source domain risk ˆ︁RS . We always choose
the certificates such that they cover the class proportion difference∆p = |pT −pS |;
in fact, we consider ε as a function of ∆p in this experiment.

The certificate is correct if ˆ︁RS + ε ≥ ˆ︁RT holds, i.e., if ε indeed characterizes an upper
bound of the inter-domain gap. If the two values are close to each other, i.e., if ˆ︁RS + ε ≈ˆ︁RT , we speak of a tight upper bound.

Correctness: Our experiments cover a repeated three-fold cross validation on eight im-
balanced data sets, eight loss functions, and three learning algorithms, to represent a
broad range of scenarios. Of all 9000 certificates, only 4.5% fail the test of ensuringˆ︁RS + ε ≥ ˆ︁RT . Since we have used δ = 0.05 in these experiments, this amount of
failures is actually foreseen by the statistical nature of our certificate: if it holds with
probability at least 1 − δ, it is allowed to fail in 5% of all tests. This margin is almost
completely used but not exceeded. Consequently, our certificate is correct in the sense of
indeed characterizing an upper bound ε of the inter-domain gap with probability at least
1− δ.

Tightness: A fair comparison between our certificate and our baseline ˆ︁RT requires us to
take the estimation error εT of the baseline into account. This necessity stems from the
fact that ˆ︁RT is also just an estimate from a finite amount of data. Having access to labeled
target domain data will thus yield an upper bound ˆ︁RT + εT of the true target domain
error RT , according to Prop. 2.1; this upper bound is then compared to our certificate,
which has only seen the source domain data.

Fig. 6.7 presents this comparison for a random selection of our experiments. For most
target domains pT , the two predictions ( and ) are almost indistinguishable from each
other. This observation means that the certificate, which is based only on source domain
data, is as accurate as estimating the target domain risk with a privileged access to labeled
target domain data. Over all 9000 certificates, we find a mean absolute difference between
the two predictions of merely 0.049; in fact, all supplementary plots [12] look highly
similar to those displayed in Fig. 6.7, despite coveringmany other data sets, loss functions,
and learning methods. The margin to the left of each vertical line appears because our
certificate covers an absolute inter-domain gap rather than a signed value.

By choosing ε as a function of ∆p, we have “turned the certificate around”; in a usual
application, a user would rather fix the ε value and look for a certified range∆p of feasible
class proportions. Therefore, we provide an excerpt of the certified∆p values in Tab. 6.3,
where the certified target domain ranges [pS −∆p∗, pS +∆p∗] induce a domain gap of
at most ε = 0.01 with a probability of at least 1 − δ = 0.95. Since the domain gap is at
most 0.01, we can expect a target domain risk of at most RS(h; ℓ) + 0.01.
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Figure 6.7.: The target domain risk RT (h; ℓ) is upper-bounded by our (ε, δ) certificate and a
baseline ˆ︁RT + εT with privileged access to target domain data. Each of the above
plots displays a different combination of loss function, learning method, and data set.
The class proportions pT of the target domain are varied over the x axis with a thin
vertical line indicating the training proportions pS . This figure is adapted from the
supplementary material of one of our publications [12].
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Table 6.3.: Feasible class proportions ∆p∗, according to (ε, δ) certificates that are computed for
a class-weighted zero-one loss with ε = 0.01 and δ = 0.05. This table is taken from
one of our publications [12].

data set classifier RS(h; ℓ) pS ∆p∗

coil_2000 logistic regression 0.0722 0.0597 0.0109
coil_2000 decision tree 0.0778 0.0597 0.0107
letter_img logistic regression 0.0179 0.0367 0.0463
letter_img decision tree 0.0139 0.0367 0.0504

optical_digits logistic regression 0.0406 0.0986 0.0437
optical_digits decision tree 0.0463 0.0986 0.0309

pen_digits logistic regression 0.038 0.096 0.044
pen_digits decision tree 0.0216 0.096 0.0695

protein_homo logistic regression 0.0056 0.0089 0.036
protein_homo decision tree 0.006 0.0089 0.0291

satimage logistic regression 0.1205 0.0973 0.0118
satimage decision tree 0.0763 0.0973 0.018

Table 6.4.: The parameters of an (ε, δ) certificate that covers the extreme class proportions pT =
10−4 in astro-particle physics. This table is adapted from one of our publications [12].

RS(h) δ ϵδ

0.058±0.015

0.01 0.0315
0.025 0.0314
0.05 0.0314
0.1 0.0313
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6.4.5. Binary Certificates in Astro-Particle Physics

We now apply our certification scheme to the data of the FACT telescope. In particular,
we apply the default analysis pipeline, fix δ to a small value (0.01 or 0.1), and select ε
such that the resulting (ε, δ) certificate covers the anticipated maximum class proportion
difference ∆p = |pT − pS | between the simulated and the observed domain. For both δ
values, we obtain similar ε values under the zero-one loss, namely ε(δ=0.01) = 0.0315 and
ε(δ=0.1) = 0.0313. We conclude that the ACS-induced zero-one loss of the FACT pipeline
is at most 3.15% with probability at least 99%, and at most 3.13% with probability at least
90%. The pipeline is trustworthy within these specific ranges and improvements to these
certified values can be achieved by improving the performance of the pipeline.

Tab. 6.4 presents the results of our astro-particle experiment. The fact that all ε values are
close to each other stems from the large amount of source domain data (24000 examples)
we use to certify the model. We note, however, that the zero-one loss is not a particularly
informative measure for the performance of gamma hadron classifiers. Future research
on ACS certification has to address quality measures that cannot be decomposed in terms
of Eqs. 2.1 and 2.2, e.g., the F1 score or the Li & Ma statistic from Def. 3.1.

Despite these current limitations, physicists have confirmed to us the great value of cer-
tificates of this kind : until now, they were not able to properly assess the performance
implications of the mistaken class proportions of their simulated training data. Our cer-
tificate addresses this need in declaring an upper bound for the loss, which stems from
the mistaken class proportions and holds with a precisely determined probability. Confi-
dence assessments of this kind are of utter importance for drawing trustworthy physical
interpretations from the telescope data.

6.5. A Strategy for Uncertain Deployment Class Proportions

Our certificate is motivated by the uncertainties that a practitioner can have about the
class proportions which need to be handled during deployment. It addresses this uncer-
tainty by building trust in a classifier after this classifier has been trained through ACS.
However, it has no immediate implications on how to acquire data, in terms of an ACS
strategy, if the deployment class proportions are uncertain.

In the following, we evolve the theoretical basis of our certificate towards a data acquisi-
tion strategy for ACS [9]. Unlike existing strategies, which solely focus on the perceived
difficulties of the classes, our strategy uniquely combines the following qualities:

• It naturally supports uncertainty about the deployment class proportions. A prac-
titioner expresses this uncertainty through a prior distribution. For binary classifi-
cation, we propose a Beta prior, for instance.

• Our strategy is theoretically justified by the PAC learning bounds, which we have
developed for the ACS setting in Sec. 6.4.
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The goal of our strategy is to decrease the inter-domain gap∆p ·∆ℓ from Theorem 6.3 as
much as possible, as according to a prior distribution ˆ︁P of the deployment class propor-
tions pT . This decrease will allow us to learn accurate predictions for the target domain,
as according to the prior beliefs of a domain expert.

Formally, we assume a prior ˆ︁P : [0, 1]→ [0, 1] of the positive class prevalence pT ∈ [0, 1]
to be given. We incorporate ˆ︁P by marginalizing the inter-domain gap over this prior, as
according to Eq. 6.9. Since we do not know the true ∆ℓX , we are using the estimated
upper bound ∆ℓ∗X from Eq. 6.8 instead. Consequently, the marginalization according to
∆ℓ∗X is an upper bound, with probability 1 − δ, of the marginalization according to the
true ∆ℓX .

ε∗ =

∫︂ 1

0

ˆ︁P(pT = p) · |pS − p|⏞ ⏟⏟ ⏞
= ∆p

·∆ℓ∗X d p (6.9)

In each ACS iteration, we are free to alter the class proportions pS of the ACS-generated
training set to some degree, depending on how much data we acquire in each batch and
on how much data we already have acquired. In fact, we can understand

pS =
m2

(m1 +m2)
(6.10)

as a function of the class-wise numbers of samplesm1 andm2. The upper bound∆ℓ∗X also
lends itself for being interpreted as a function of sample sizes: the more data is acquired
in both classes, the tighter will our estimation of this quantity be. Ultimately, we consider
ε∗ to be a function of m1 and m2, so that we can minimize ε∗ via an optimal choice of
m1 and m2 in each data acquisition batch.

6.5.1. Minimizing the Marginalized Error

Our strategy decreases ε∗ in the direction of its steepest descent, i.e., it takes a simple
gradient step with respect to the acquisition vector m = (m1,m2). The gradient which
defines the steepest descent is computed via the product rule:

∇m ε∗ = ∇mf ·∆ℓ∗X + f · ∇m∆ℓ∗X

where f(m) =

∫︂ 1

0

ˆ︁P(pT = p) · |pS(m)− p| d p
(6.11)

We will come back to the function f shortly. For now, we plug ∆ℓ∗X and ∇m∆ℓ∗X into
the equation above. These functions are defined by

∆ℓ∗X(m) = ˆ︁ℓX(h; 2) +

√︄
ln δ2
−2[m]2

− ˆ︁ℓX(h; 1) +

√︄
ln δ1
−2[m]1

,

[∇m∆ℓ∗X(m)]y =

(︃
− ln δy
[m]y

)︃ 3
2

· (2
√
2 ln δy)−1,

(6.12)
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where the δy are probabilities of violations of ∆ℓ∗X that occur from either one of the
class-wise risks ℓX(h, y) in ∆ℓ. In fact, we have seen in Sec. 6.4 that finding a suitable
assignment of δy values within a given probability budget δ = δ1 + δ2 − δ1δ2 is the
central difficulty in model certification; there, the sample size m is fixed, so that ∆ℓ∗X
can be optimized over this assignment. Here, we keep the δy fixed instead, to values that
are obtained with a certificate from previous ACS acquisitions. This change allows us to
optimize ∆ℓ∗X over m to acquire new data and it guarantees that ∆ℓ∗X remains an upper
bound of the true∆ℓ also in the next batch, at least with probability 1−δ. The class-wise
estimates ˆ︁ℓX(h, y) in Eq. 6.12 are the average values of risks in the training data; they are
also part of our certificate.

6.5.2. A Beta Prior for Binary Class Proportions

Now we turn to the value and the gradient of the function f in Eq. 6.11. Plugging a
parametric prior ˆ︁P into this function can allow us to compute these terms efficiently, in
closed forms. To this end, a Beta(α, β) prior is suitable for binary classification because
the Beta distribution is a conjugate prior of the Bernoulli distribution, which in turn is a
suitable model for the prevalence of binary class labels. As a matter of convenience, the
parameters α > 0 and β > 0 can be chosen such that the resulting distribution has some
predetermined mean and standard deviation; we believe that domain experts can often
express their prior beliefs in terms of these properties.

Plugging a Beta prior into the f function from Eq. 6.11 yields the following components,
where I is the regularized incomplete Beta function:

fα,β(m) =
2pS(m)α(1− pS(m))β

(α+ β)B(α, β)
+
(︂
pS(m)− α

α+ β

)︂(︂
2IpS(m)(α, β)− 1

)︂
∇mfα,β =

2IpS(m)(α, β)− 1

([m]1 + [m]2)2
·
(︃

[m]2
−[m]1

)︃
(6.13)

Plugging Eq. 6.12 and 6.13 into Eq. 6.11 provides us with a gradient that we can compute
analytically from a certificate with a δy assignment, from sample sizes [m]1 and [m]2 and
from the prior parameters α and β. The negative gradient −∇m ε∗ of the marginalized
error ε∗ defines the class-wise numbers of samples that our strategy acquires in the next
data acquisition batch.

With small data volumes or with highly imbalanced classes, our strategy is dominated by
the∆ℓ∗X component; small classes need additional data until this upper bound holds with
some desired probability 1 − δ. Contrastingly, when the total data volume is large, our
strategy is dominated by the f component; to this end, a Beta prior favors class propor-
tions that are close to its mean α

α+β . We have already seen in our information-theoretic
examination of ACS, see Sec. 6.3, that a transition between these two behaviors is desirable
because non-natural class proportions can facilitate learning only at the early acquisition
stage, while the late stage benefits from the natural class proportions. The precise turn-
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ing point between these two behaviors is well-founded in the PAC learning theory from
Sec. 6.4, which underlies the estimation of ∆ℓ∗X .

6.5.3. Experimental Validation

We have parameterized the Beta prior of our strategy with a predetermined mean and
standard deviation, both set to the value of pT . Accordingly, the mean of the prior is well
aligned with the true class proportions of the deployment data; the uncertainty, however,
which is expressed by the standard deviation, is as large as possible.

In accordance to a reliable evaluation methodology of active data acquisition strategies
[171], we present pairwise differences between ACS strategies in terms of their statis-
tical significance. A comprehensive way of plotting such differences is through critical
difference (CD) diagrams [55], [56], which we have introduced in Sec. 2.4.2. We employ
accuracy as the underlying performance metric and we conduct multiple trials to obtain
an average performance value for each combination of strategy and data set.

We define the trials via five repetitions of a three-fold cross validation. From the imba-
lanced-learn package [145], we retrieve 13 data sets9 that have at least 150 minority class
samples (to facilitate sampling) and at most 100 features (to facilitate learning). We ensure
comparability between all strategies by employing the same classifier in all experiments,
a logistic regression with default meta-parameters. The data acquisition happens in up to
8 batches, each of which acquires 50 new training examples. However, not all strategies
reach the last batch on all data sets; we stop each trial as soon as the strategy exhausts
one of the classes. We opted for this early stopping criterion to focus on “realistic” acqui-
sitions that happen due to free choices and not due to the fact that our experiment only
simulates class-dependent data acquisition with finite pools of data. For the same rea-
son, and due to weak performances on imbalanced data, we did not evaluate the uniform
strategy here. Due to the early stopping, it becomes increasingly harder to detect signif-
icant differences; while the batches three and four can be evaluated on all data sets, only
9 data sets remain for batch eight. The implementation of our configurable experiments
is available online.11

Fig. 6.8 presents the CD diagrams, as according to our evaluation methodology. We see
that our method, with access to an uncertain prior of pT , performs as well as “propor-
tional” sampling, the privileged strategy that knows pT precisely. Moreover, our method
outperforms all existing strategies which are oblivious to pT .

Fig. 6.9 traces this success back to the acquisition behavior that each strategy exhibits. Our
own strategy quickly approaches the true proportions pT of classes, due to the perfect
alignment between the mean of the prior and pT . For the particular case of a Beta prior,
this behavior is a reason for concern: if the mean of this prior was not well aligned with
pT , we might have acquired data in mistaken class proportions; only if the mean of the
Beta prior is sufficiently accurate, we can expect the competitive behavior that Fig. 6.8

11
https://github.com/mirkobunse/AcsCertificates.jl
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Figure 6.8.: Critical difference (CD) diagrams, see Sec. 2.4.2, evaluate our ACS strategy ( ) against
existing ACS strategies, one of which has privileged access to the true class propor-
tions pT ( ). The two plots present different values of pT . Each position on the ver-
tical axes corresponds to one CD diagram for one batch in the ACS data acquisition
loop. Horizontal positions correspond to the average ranks of strategies across mul-
tiple data sets, as according to the average accuracy in multiple trials; lower ranks
are better. Horizontal connections between two or more strategies indicate that a
Wilcoxon signed-rank test is not able to detect significant differences between these
methods from the performances they exhibit. This figure is taken from one of our
publications [9].
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Figure 6.9.: Our ACS strategy ( ) quickly approaches the true proportions pT of classes in terms
of the Kullback-Leibler divergence from Def. 2.4. Due to the uncertainty of the prior,
however, this divergence always remains above zero. The standard deviations, which
are displayed as error bars, increase considerably with the other strategies. This
figure is taken from one of our publications [9].

suggests. Future research down this lane, e.g., with other types of prior distributions, is
needed.

Fig. 6.9 further reveals two explanations for the poor performances of the existing strate-
gies: first, all of these strategies exhibit a central tendency of staying close to the class
proportions of the initial training set; second, each of these strategies prefers class pro-
portions of an increasingly large variability. Both of these behaviors are due to the sole
focus of these strategies on the perceived difficulties of classes, which can differ consid-
erably between the data sets. Our theoretical analyses from Sections 6.3 and 6.4 suggest
that a behavior of this kind is not desirable. Our theoretically justified strategy should be
preferred over these heuristic strategies.
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The results of this thesis allow us to draw several conclusions about the machine learning
aspects of acquiring knowledge in astro-particle physics. Our scope is defined by the iter-
ative process of knowledge expansion from Fig. 1.1, by the fundamental physics questions
from Sec. 3.1, and by the physics analysis tasks from Secs. 3.3–3.5.

The core of this thesis is concerned with the three machine learning tasks, which we have
addressed in Chapters 4–6: ordinal quantification, class-conditional label noise learning,
and active class selection. Despite their practical relevance for astro-particle physics,
our insights into these tasks contribute, first and foremost, to the fundamental research
of computer science. This contribution stems from the fundamental nature of the three
machine learning tasks, which also appear in other areas of application, e.g., in text quan-
tification [96], in the social sciences [97], in support log analyses [93], in brain computer
interaction [149], in the calibration of gas sensor arrays [19], and more.

The following Secs. 7.1–7.3 discuss our findings with respect to each of the three machine
learning tasks. In Sec. 7.4, we conceive several topics for future work.

7.1. Ordinal Quantification

Our unification of algorithms from literature on quantification and from literature on un-
folding demonstrates that quantification and unfolding are indeed the samemathematical
problem. Consequently, we can employ quantification algorithms also in astro-particle
physics and we can employ unfolding algorithms also in applications outside of astro-
particle physics. This claim is supported by our empirical evaluation, where our pro-
posed methods o-ACC and o-PACC, which are ordinally regularized variants of existing
quantification methods, provide excellent performances in the reconstruction of energy
spectra from the data of the FACT telescope.

Our unification also includes a discussion of multiple multi-class extensions for the bi-
nary ACC method, a central method in quantification literature. These extensions differ
in terms of the constraints they employ and in terms of their resulting performances.
Among the existing multi-class extensions, we consider a numerical optimization of a
least squares objectivewith a unit simplex constraint to be themost appropriate one.

Beyond the existing proposals for numerically solving multi-class quantification, we have
proposed a novel, unconstrained optimization task that employs a soft-max layer to cir-
cumvent constraints in the optimization procedure. Through this layer, the necessary
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unit simplex constraint becomes an invariant part of the quantification model, which the
optimization algorithm does not have to address, anymore. This soft-max “trick” can be
employed in all numerically optimized quantification methods, including also the unfold-
ing methods RUN and SVD. Our experiments suggest that our novel “RUN (softmax)”
method, which stems from the soft-max trick, outperforms the original RUN algorithm
by a considerable margin. Also, the quantification methods ACC and PACC are shown to
benefit from our soft-max proposal.

Unfolding methods employ regularization to promote smooth solutions. We argue that
this inductive bias addresses ordinal quantification in general because neighboring classes
are typically similar and hence should exhibit similar prevalences. Moreover, smoothness
would not be properly defined if the classes were not totally ordered. Due to this concep-
tion, we have proposed to introduce ordinality into non-ordinal quantification methods
by regularizing their solutions in the same ways in which unfolding methods regularize.
To this end, we have proposed o-ACC, o-PACC, o-HDx, o-HDy, and o-SLD, the ordinal
counterparts of several widely-acknowledged quantificationmethods. In our experiments
with ordinal data, we have demonstrated that these ordinal counterparts indeed outper-
form the non-ordinal, original methods in ordinal settings.

These fundamental findings about quantification practically benefit astro-particle physics
as a use-case. In particular, astro-particle physicists require precise estimates of the en-
ergy spectra of cosmic gamma ray sources to interpret the telescope data in terms of
physical theories. Through our advancements of ordinal quantification methods, we have
paved the way for more accurate estimations of these energy spectra. Indeed, physicists
have confirmed to us that our soft-max improvement of the RUN algorithm and our reg-
ularized quantification methods o-ACC, o-PACC, o-HDx, o-HDy, and o-SLD have a great
potential of supporting the future expansion of scientific knowledge in their field.

7.2. Class-Conditional Label Noise Learning

We have successfully employed “on” and “off” annotations as a form of weak supervision
for learning strong gamma hadron classifiers. In particular, our weakly supervised classi-
fiers even outperform the strongly supervised state-of-the-art in gamma hadron classifi-
cation in terms of their source detection efficiency, if they are trained on large samples of
the real telescope data. With smaller samples, our weakly supervised classifiers already
perform on par with the existing state-of-the-art.

While pursuing the goal of supervising models with the “on” and “off” annotations of real
telescope data, we have discovered a novel setting of learning under class-conditional
label noise, PK-CCN, where one of the class-wise noise rates is known and the other is not.
Beyond this assumption, PK-CCN inherits the theoretical properties of the general class-
conditional label noise setting. One of these properties is that, indeed, optimal classifiers
can be learned from the noisy labels.
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In order to establish the feasibility of learning under class-conditional label noise, we have
proven that the hypothesis test by Li and Ma [76] is applicable to testing the fundamental
assumption of class-conditional label noise learning in general. A practical limitation of
this test is, however, that it requires data that is both cleanly and noisily labeled.

We circumvent this limitation with a heuristic that uses the test statistic by Li and Ma as a
quality metric. Unlike supervised measures, such as accuracy or the F1 score, this quality
metric does not require clean ground-truth labels; noisy labels suffice for an assessment of
model performance. Therefore, we have proposed to employ this heuristic quality metric
as an objective function in consistent, noise-aware decision thresholding. Moreover, we
have shown that a decision tree induction algorithm can even optimize this metric over
the entire model space, without being limited to an optimization of the decision thresh-
old. Both of our algorithms are heuristic, but demonstrate competitive performances on
standard imbalanced data sets and in gamma hadron classification.

In demonstrating the feasibility of class-conditional label noise learning from “on” and
“off” annotations, we have shown that accurate gamma hadron classifiers can be learned
even without any simulated data. For astro-particle physics, this finding translates to a
reduced resource footprint of the analyses because the simulations, otherwise, contribute
considerably to this footprint. Moreover, by learning directly from the real telescope
data, we can circumvent the domain gap that otherwise occurs between the real telescope
and the simulation. Hence, we can outperform the existing state-of-the-art in gamma
hadron classification. Our findings allow for more effective detections of cosmic gamma
ray sources. Moreover, the existing theory on class-conditional label noise learning allows
us to optimize a large set of quality measures, e.g., the F1 score or the Gmeasure, through
the cheap, noisily labeled data from the real telescope.

7.3. Active Class Selection

We have argued that the free choice of class proportions in active class selection leads
to a domain gap in terms of prior probability shift. The severity of this gap depends on
the data set and on the amount of data that is generated. In particular, we have seen that
small domain gaps have almost no influence on the performance of a classifier, but that
ensuring a small domain gap is becoming increasingly essential as the size of the data
set increases. In active class selection, this increase of the data set size happens naturally
because the whole purpose of this learning task is to generate additional training data.
In these terms, we have provided a comprehensive picture of the behavior that can be
expected from active class selection techniques.

By developing PAC bounds for active class selection, we have evolved this general pic-
ture into a quantitative assessment of prediction performance. This assessment is also
applicable in any other learning task that suffers from prior probability shift. Our PAC
bounds give rise to a certificate of model robustness, which provides faithful assessments
of the model performance by declaring a set of class proportions for which the model is
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probably and approximately correct. These faithful assessments of model performance
are capable of building trust in prediction models, particularly if the models are trained
with a free choice of class proportions. Astro-particle physicists have confirmed to us the
great practical value of these assessments.

Our PAC bounds also give rise to a novel data acquisition strategy for active class se-
lection. Unlike other strategies, which are mostly heuristic, our strategy is theoretically
well-justified. Moreover, it is capable of considering existing uncertainties about the class
proportions, which have to be handled during deployment. These uncertainties are ubiq-
uitous in astro-particle physics, making their consideration an essential requirement for
any suitable data acquisition strategy.

In astro-particle physics, active class selection has the potential to optimize the acqui-
sition of data from a simulation. Since the simulation is indeed a class-conditional data
generator, some decision for the class proportions always has to be made before any data
can be generated. Today, physicists employ fixed ad-hoc class proportions that do not
match the deployment data, due to the extreme class imbalances that are faced during
deployment. Our data acquisition strategy paves the way for a theoretically grounded
choice of class proportions, in spite of class imbalances, in spite of uncertainties, and in
spite of data acquisition costs.

7.4. Outlook

Our findings pave the way for strengthened and persisted interdisciplinary efforts be-
tween computer science and astro-particle physics. In particular, we conceive the follow-
ing topics for future work.

Regularizations for Other Quantification Tasks We have seen how regularization
towards smooth solutions addresses ordinality in quantification. A natural question to
ask is whether other regularization schemes can be developed, which address other types
of quantification tasks. For instance, an L1 regularizer could promote sparse solutions
in multi-label quantification [172], assuming that only few labels contribute to the quan-
tification outcomes. Another regularizer could penalize some distance to the class preva-
lences of the training set [113] to address the assumption that only some limited amount
of prior probability shift occurs in a particular quantification setting.

BackgroundSubtraction inQuantification The estimation of energy spectra is com-
plicated by the same background events, which also complicate the detection of gamma
ray sources [98]. These background events distort the spectrum if they are not properly
handled by the quantification method. Since these background events are difficult to syn-
thesize in experiments, we have, for now, not yet considered this issue in our experiments
and methods. We aim to fill this gap in the near future, in order to obtain quantification
results with proper physical interpretations.
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Regarding the methods of quantification, considering background events only requires a
slight adaptation of the existing loss functions. In particular, the loss functions have to
be extended with fixed terms that represent a measurement of the background.

Multi-Class Certification andData Acquisition Our certificate of model robustness
and our data acquisition strategy for active class selection are currently limited to binary
classification. Therefore, we cannot employ them in multi-class settings, although the
general ideas of model certification and uncertainty-based data acquisition have a certain
potential for being applied to multi-class classification tasks.

As a first step in this direction, we have developed a multi-class generalization of our cer-
tificate, which builds on Hölder’s inequality [13]. Since other generalizations are conceiv-
able, we are continuing our work on this topic. Recently, we have supervised a Master’s
thesis, which explores multiple generalizations of this kind.

Non-Decomposable QualityMeasures in Active Class Selection Our certificate of
model robustness and our data acquisition strategy for active class selection are currently
limited to quality measures that can be decomposed into example-wise losses. However,
several non-decomposable measures, see Tab. 2.1, can be optimized through an appro-
priately chosen decision threshold. We expect that these other measures also lend them-
selves for being optimized through active class selection because the choice of a decision
threshold bears strong similarity to a weighting of the classes in terms of actively cho-
sen class proportions. Therefore, we intend to extend our certificate and our acquisition
strategy to the non-decomposable quality measures from Tab. 2.1.

Unsupervised Domain Adaptation Our identical mechanism assumption is a slight
simplification because the real telescope and the simulation are actually different data
generating processes. One of our ongoing efforts is to address this simplification through
unsupervised domain adaptation [50], [173], [174], a learning task that handles settings
of this kind. So far, we have not been able to considerably improve our prediction models
through domain adaptation techniques. On the one hand, this momentary inability actu-
ally supports our claim that the identical mechanism assumption is sufficiently accurate
for our use case. On the other hand, we are continuing our work on this topic to ensure
that we leverage domain adaptation to its full potential.
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A. Covered Publications

The foundation of this thesis are several scientific publications by us. The following, com-
mented bibliography gives an overview of these publications. If a publication emerged
from the collaboration with other students, we detail the contributions of all students that
were involved.

Ordinal Quantification

We have covered our publications on the unification of quantification algorithms [2], on
the unification of unfolding algorithms [1], [6], on multi-class extensions of Adjusted
Classify and Count [3], and on regularization for ordinal quantification [5].

Our early works on the unification of unfolding algorithms [1], [6] emerged as extensions
of Mirko Bunse’s Master’s thesis, who was thus the main author of these papers. The
other authors contributed their feedback to the manuscripts.

Our work on the unification of quantification algorithms [2] was taken out on a research
visit of Mirko in Pisa, Italy. Martin Senz implemented a part of the experiments.

Regarding our submission to the LeQua competition [4], Mirko suggested to participate
with o-SLD, a quantification method that Mirko already had implemented. Martin Senz
implemented all experiments for the competition, all experiments for the paper, and he
wrote the manuscript. Mirko gave feedback on these matters.

[1] M. Bunse, N. Piatkowski, K. Morik, T. Ruhe, and W. Rhode, “Unification of decon-
volution algorithms for Cherenkov astronomy,” in Int. Conf. on Data Sci. and Adv.
Analyt., 2018, pp. 21–30. doi: 10.1109/DSAA.2018.00012.

[2] M. Bunse, “Unification of algorithms for quantification and unfolding,” inWorksh.
on Mach. Learn. for Astropart. Phys. and Astron., 2022, pp. 459–468. doi: 10.18420/
INF2022_37.

[3] M. Bunse, “Onmulti-class extensions of adjusted classify and count,” in Int.Worksh.
on Learn. to Quantify: Meth. and Appl., 2022, pp. 43–50.

[4] M. Senz and M. Bunse, “DortmundAI at LeQua 2022: Regularized SLD,” in Conf.
and Labs of the Eval. Forum, 2022, pp. 1911–1915.

[5] M. Bunse, A. Moreo, F. Sebastiani, and M. Senz, “Ordinal quantification through
regularization,” in Europ. Conf. on Mach. Learn. and Knowl. Discov. in Databases,
Accepted for publication, 2022.
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A. Covered Publications

[6] M. Bunse, N. Piatkowski, and K. Morik, “Towards a unifying view on deconvolu-
tion in Cherenkov astronomy,” in Lernen, Wissen, Daten, Analysen, 2018, pp. 73–
77.

Class-Conditional Label Noise Learning

Our chapter on class-conditional label noise is based on a manuscript that is currently
under review. An earlier version of this manuscript [7] is already published on the arXiv
pre-print repository.

Our manuscript is based on Lukas Pfahler’s initial idea of using the Li&Ma significance
as a learning criterion for machine learning models. Our joint discussions established
that the “on” and “off” annotations, which the approach employs, effectively serve as
class-conditional noisy labels. Due to this finding, Mirko Bunse developed our baselines,
which use existing approaches for class-conditional label noise learning. Mirko also de-
veloped our theoretical re-framing of the Li&Ma test, which establishes this test as a
hypothesis test for the feasibility of class-conditional label noise learning in general. Our
implementations of the experiments and methods are joint work.

[7] L. Pfahler, M. Bunse, and K. Morik, “Noisy labels for weakly supervised gamma
hadron classification,” CoRR, 2021.

Active Class Selection

We have covered our publications on a meta-study of existing experiments [10], on a
distinction between active class selection and active learning [11], on our information-
theoretic investigation [8], on the certification of model robustness [12], on an uncertain
strategy for data acquisition [9], and on a multi-class extension of our certificate [13].
These works are preceded by an early, empirical study on data acquisition strategies in
astro-particle physics [14].

Our distinction between active class selection and active learning [11] evolvedwhenAmal
Saadallah and Mirko Bunse tried to bring together their previous work on machine learn-
ing from simulated data. In our joint discussions, we found that our respective areas of
application use entirely different simulation mechanisms, which amount to the difference
between active learning and active class selection. The contributions by Amal and Mirko
are equal.

The initial plan of the collaboration between Dorina Weichert and Mirko was to evaluate
Bayesian optimization techniques for active class selection. However, we were not able to
achieve convincing results from this conception. As a consequence, Mirko developed the
information-theoretic analysis and the experiments, which became the basis of our joint
publication [8]. Dorina, Mirko, and Alexander Kister intensively discussed the implica-
tions of this analysis, answered potential questions, and clarified the story line of our pa-
per. DorinaWeichert contributed an extensive literature survey to the manuscript.
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Our work on multi-class certification [13] stems from the Master’s thesis of Martin Senz,
who wrote the manuscript and implemented all experiments on this topic. Mirko con-
tributed the seminal suggestion of employing Hölder’s inequality as a foundation of our
multi-class extension.

[8] M. Bunse, D. Weichert, A. Kister, and K. Morik, “Optimal probabilistic classifica-
tion in active class selection,” in Int. Conf. on Data Mining, 2020, pp. 942–947. doi:
10.1109/ICDM50108.2020.00106.

[9] M. Bunse and K. Morik, “Active class selection with uncertain deployment class
proportions,” in Worksh. on Interact. Adapt. Learn., 2021, pp. 70–79.

[10] M. Bunse and K. Morik, “What can we expect from active class selection?” In
Lernen, Wissen, Daten, Analysen, 2019, pp. 79–83.

[11] M. Bunse, A. Saadallah, and K. Morik, “Towards active simulation data mining,”
in Int. Tutorial and Worksh. on Interact. Adapt. Learn., 2019, pp. 104–107.

[12] M. Bunse and K. Morik, “Certification of model robustness in active class se-
lection,” in Europ. Conf. on Mach. Learn. and Knowl. Discov. in Databases, 2021,
pp. 266–281.

[13] M. Senz, M. Bunse, and K. Morik, “Certifiable active class selection in multi-class
classification,” in Worksh. on Interact. Adapt. Learn., 2022, pp. 68–76.

[14] M. Bunse, C. Bockermann, J. Buss, K.Morik,W. Rhode, and T. Ruhe, “Smart control
of monte carlo simulations for astroparticle physics,” inAstron. Data Analys. Softw.
and Syst., Astron. Society of the Pacific, 2017, pp. 417–420.
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