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Abstract

The spin of a localized charge carrier in a semiconductor nanostructure can be
coherently controlled by external electromagnetic fields. At cryogenic temperatures,
the spin coherence time is limited by the hyperfine interaction with surrounding
nuclear spins. The generation of tailored nuclear spin states, however, may drastically
increase the electron spin coherence in comparison to the disordered nuclear spin
system. By means of a fully quantum mechanical description, we investigate two
particular nonequilibrium situations in which a highly ordered nuclear spin state
is achieved. First, we focus on the formation of the nuclear-spin polaron state
under optical cooling of the nuclear spins. Kinetic rate equations are developed
that account for different effective spin temperatures of the charge carrier and the
nuclei and provide analytical access to the crossover temperature of the polaron
formation. The rate equations are generalized to a Lindblad formalism enabling
the numerical investigation of a cooled system with arbitrary anisotropic hyperfine
interaction. The second nonequilibrium situation addressed in this thesis is the
periodic optical excitation of singly charged quantum dots subject to a transversal
magnetic field. Nuclei-induced frequency focusing of the electron spin precession
leads to mode-locked spin dynamics. A revival of the electron spin polarization
directly before each pump pulse reflects this synchronization of the spin dynamics
to the pumping periodicity. In experiments, a magnetic field dependence of the
emerging revival amplitude is observed. Our quantum mechanical approach allows
for attributing this dependence to the nuclear Zeeman term. Moreover, we discuss
various additional influences on the mode-locking effect. We examine the effect
of static nuclear-electric quadrupolar interactions, the characteristics of the laser
pulses, and the choice of the pulse train.
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Zusammenfassung

Der Spin eines lokaliserten Ladungsträgers in einer Halbleiternanostruktur kann
mit Hilfe äußerer elektromagnetischer Felder kohärent kontrolliert werden. Die
Kohärenzzeit des Spins ist bei kryogenen Temperaturen durch die Hyperfeinwech-
selwirkung mit umliegenden Kernspins begrenzt. Durch die Erzeugung von maßge-
schneiderten Kernspinzuständen kann die Kohärenzzeit im Vergleich zum ungeord-
neten Kernspinsystem drastisch erhöht werden. Mittels einer vollständig quanten-
mechanischen Beschreibung untersuchen wir zwei spezielle Nichtgleichgewichtssit-
uationen, in denen ein stark geordneter Kernspinzustand erreicht wird. Zunächst
betrachten wir die Entstehung eines Kernspinpolaronenzustands unter optischer Küh-
lung der Kernspins. Wir entwickeln kinetische Ratengleichungen, die verschiedene
effektive Temperaturen des Ladungsträgerspins und der Kernspins berücksichti-
gen und analytischen Zugang zur Übergangstemperatur für die Polaronenforma-
tion gewähren. Die Ratengleichungen werden zu einem Lindblad-Formalismus
verallgemeinert, der die numerische Untersuchung eines Systems mit beliebiger
Hyperfeinwechselwirkung ermöglichen. Die zweite Nichtgleichgewichtssituation,
die in dieser Arbeit untersucht wird, ist die periodische optische Anregung einfach
geladener Quantenpunkte in einem transversalen Magnetfeld. Die kernspininduzierte
Fokussierung der Elektronenpräzessionsfrequenz führt zu einer Modenkopplung der
Spindynamik. Eine Rephasierung der Elektronenspinpolarisation unmittelbar vor
den Laserpulsen spiegelt diese Synchronisation der Spindynamik mit der Periodizität
der optischen Anregung wider. Im Experiment wird eine Magnetfeldabhängigkeit
der entstehenden Polarisationsamplitude des Elektronenspins vor den Laserpulsen
beobachtet. Unsere quantenmechanischen Rechnungen führen diese Abhängigkeit
auf den Zeeman-Term der Kernspins zurück. Zudem analysieren wir die Auswirkun-
gen verschiedenster Einflüsse auf die Synchronisationseffekte. Wir betrachten unter
anderem die quadrupolaren Wechselwirkungen der Kernspins, die Eigenschaften der
Laserpulse sowie die Wahl der Pulsfolge.
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Chapter 1

Introduction

Quantum information science [1–3] has become a highly popular field of research
in the last decades. Innovative technologies [4, 5] and efficient new algorithms [6]
have progressed. Nowadays, the first realizations of quantum computers are capable
of solving specialized problems [7, 8]. Most recently, the first commercial quantum
computers were presented [9]. Moreover, the achievement of quantum supremacy
[10], i.e., a quantum computer solving a problem that cannot be solved by any
conventional computer in a feasible amount of time, was discussed [11–14]. However,
the stage at which quantum computers provide an asset for practical applications
remains in the distant future [15].

Historically, the concept of quantum computing [16, 17] dates back to the first
proposals by Manin [18] and Feynman [19] in the beginning of the 1980s. Feynman
suggested the use of quantum computers for the efficient simulation of quantum
mechanical systems. As the Hilbert space dimension of the quantum system grows
exponentially with the number of involved particles, the required computational
resources rapidly outgrow the capabilities of a conventional computer. Furthermore,
Feynman deemed the consistent probabilistic simulation of a quantum mechanical
system on a classical computer impossible due to the quantum correlations [19].
As a consequence, he suggested the usage of a quantum computer. Starting from
these early suggestions, many further applications for quantum computing have
been devised [20–23]. Most prominent are Shor’s algorithm [24, 25] for the prime
factorization of large numbers in polynomial time and Groover’s algorithm [26, 27]
for searching databases.

The basic building block for the realization of quantum information processing
devices implementing the quantum algorithms is the quantum mechanical analog to
a classical bit, the so-called ”qubit”. While the classical binary bit either has the
state ’0’ or ’1’, the qubit corresponds to a quantum mechanical two-level system that
can be in any superposition of the two states. Examples of such two-level systems
include the electron spin or the polarization of a photon. Five requirements for
potential physical implementations of qubits have been formulated by DiVincenzo
[28]. Among those criteria are the possibility to initialize the qubit in a well defined
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Chapter 1 Introduction

state, the manipulation via specific quantum gates, the readout of the qubit state, as
well as long decoherence times [29–31]. In addition, the system needs to be scalable
with well-characterized qubits. Various candidates fulfilling these demands to a
different extent have been proposed [32]. The suggestions range from nuclear spins
in molecules that are addressed via nuclear magnetic resonance (NMR) [33, 34] to
ions [35, 36] and neutral atoms [37, 38] trapped by electromagnetic fields. Other
approaches rely on superconducting qubits [39–41] or nitrogen-vacancy centers in
diamond [42, 43]. Moreover, several concepts based on semiconductor quantum dots
[44–46] using for instance the localized electron spin or the charge of the dot to
store the quantum information have been discussed [47–49].

In this thesis, we address the single localized electron spin in a semiconductor
nanostructure [50–53]. For this system, the loss of coherence due to the hyperfine
interaction of the electron spin with the surrounding nuclear spins poses a major
difficulty [54–61]. Therefore, we focus on nonequilibrium nuclear spin states that
promise to significantly increase the electron spin coherence time [62–65]. Two
particular scenarios are examined, namely, the nuclear-spin polaron formation [66]
under optical cooling of the nuclear spins and the mode-locking effect under periodic
optical excitation of quantum dots in a transversal magnetic field [67, 68]. The
theoretical foundation for these studies is provided by a fully quantum mechanical
description based on the Central Spin Model (CSM). The CSM was first introduced
by Gaudin [69] in 1976 and has a star-like topology: The central spin couples to
the surrounding nuclear spin bath via hyperfine interaction whereas there is no
interaction between the nuclear spins.

For the examination of the nuclear-spin polaron formation, the CSM is extended to
account for the optical cooling of the nuclear spin system. In 1998, Merkulov [66]
predicted the formation of this highly correlated nuclear spin state characterized by
the opposite alignment of the nuclear spins with respect to the electron spin below a
critical temperature. A theoretical exploration [70, 71] beyond Merkulov’s mean-field
approach includes nuclear spin fluctuations and suggests the experimental detection
of the polaronic state by spin-noise measurements. However, the polaronic state has
not been observed in experiments so far, even though the investigations are ongoing
[72, 73]. In this thesis, we provide a fully quantum mechanical description of the
electron-nuclear spin system and account for the complete quantum mechanical spin
fluctuations. The thermodynamic nonequilibrium situation of two differing effective
spin temperatures is captured by kinetic rate equations accounting for the coupling
of the electron-nuclear spin system to two external spin reservoirs. This description
proves especially useful in the Ising limit of the hyperfine interaction relevant for a
localized heavy hole spin. Subsequently, the approach is generalized to a Lindblad
formalism enabling the investigation of spin systems with arbitrary anisotropic
hyperfine interaction. In particular, the isotropic case relevant for the hyperfine
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coupling of a localized electron spin in a quantum dot or bound to a donor is
included. We connect the polaronic state to long living spin correlations and provide
an estimate for the effective spin temperatures below which the nuclear-spin polaron
state forms. While our predictions agree with the mean-field critical temperatures in
an intermediate temperature regime, the quantum fluctuations produce an altered
behavior for strongly differing effective spin temperatures of the charge carrier and
the nuclei.

The second part of this thesis addresses the mode-locking effect emerging in en-
sembles of singly charged (In,Ga)As quantum dots [67, 68, 74–79]. In pump-probe
experiments, the quantum dots are periodically excited with a repetition time
𝑇𝑅 = 13.2 ns while an external magnetic field is applied perpendicular to the axis
of optical excitation. The experiments demonstrate the frequency focusing of the
electron spin precession through a reorientation of the surrounding nuclear spins [80,
81]. This nonequilibrium nuclear spin orientation is preserved for tens of minutes
in darkness [68, 82]. Theoretical approaches investigating the mode-locking effect
are mostly based on a classical or semiclassical description [83–89] due to the large
system size of 𝑁 ≈ 105 nuclear spins in a real quantum dot [53]. A perturbative
quantum mechanical approach [90, 91] could include up to 𝑁 = 20 nuclear spins,
but was limited to 20000 repetition periods. Here, we focus on the full quantum me-
chanical spin dynamics during the pulse sequence and limit ourselves to a relatively
small system of 𝑁 = 6 nuclear spins. We develop an iterative approach that allows
for access to the converged spin dynamics under periodic optical excitation. Thereby,
it enables a detailed study of the emerging revival of the electron spin polarization
directly before each pump pulse which is governed by the nuclei-induced frequency
focusing. Moreover, Uhrig [92] outlined the concept of accessing the quasistationary
steady state of the mode-locked system from the eigendecomposition of a mapping
comprising the full quantum mechanical spin dynamics during one repetition period
and applied it to a system with up to 𝑁 = 6 nuclear spins. In this thesis, we provide
a detailed study of the full eigenspectrum of the mapping and extend the approach
by a truncation scheme to include up to 𝑁 = 500 nuclear spins in a box model
approximation [93]. Aside from periodic optical excitation with repetition time
𝑇𝑅 = 13.2 ns, we address the regime of a reduced pulse separation 𝑇𝑅 = 1 ns which
allows for the focusing of a single electron spin precession mode [94, 95].

This thesis is structured as follows: We provide the basics on singly charged
semiconductor quantum dots in Chapter 2. The optical excitation and readout of the
electron spin are addressed as well as the CSM for modeling the hyperfine interaction
of the localized charge carrier spin. Furthermore, other relevant spin interactions,
namely the static nuclear-electric quadrupolar interactions, are discussed. Chapter 3
is devoted to the investigation of the nuclear-spin polaron formation for a spin system
in the Ising limit of the hyperfine interaction. Here, we introduce the kinetic rate
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Chapter 1 Introduction

equations for the two-temperature situation. In Chapter 4, we focus on the polaron
formation in a system with arbitrary anisotropic hyperfine interaction by means of the
generalized Lindblad formalism. The foundation for the study of the mode-locking
effect in periodically pumped quantum dots is laid in Chapter 5. Experimental
basics as well as the related theoretical description are outlined. Chapter 6 presents
the results of the iterative calculation of the quantum mechanical spin dynamics
during a periodic pulse train. We study the emergence of the electron spin revival
and examine the magnetic field dependence of the nuclei-induced frequency focusing.
The eigendecomposition of the mapping for one repetition period of the periodic
optical excitation is analyzed in Chapter 7. Employing a truncation scheme, we
access the dynamics of a large spin system in the box model approximation of
the hyperfine coupling constants. Moreover, the quasistationary steady state for
repetition times in the range from 𝑇𝑅 = 1 ns to 𝑇𝑅 = 13.2 ns is investigated. The
conclusion in Chapter 8 sums up the findings and gives a brief outlook.
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Chapter 2

Singly charged quantum dots

In this chapter, the basics of singly charged semiconductor quantum dots are
discussed to provide a basis for the investigation of the embedded spin system
in various nonequilibrium situations. After briefly outlining the specifics of the
semiconductor nanostructures employed in the mode-locking experiments [67, 68],
the theoretical foundations for the modeling of the related spin dynamics are
introduced. We present a scheme for the optical excitation and address the readout
of the localized charge carrier spin. Furthermore, we establish the Hamiltonian for
the relevant spin interactions in the quantum dots: A central spin model captures
the hyperfine interaction of localized electrons and holes with the surrounding
nuclear spins as well as the effect of an external magnetic field. Moreover, static
nuclear-electric quadrupolar interactions may become important on longer time
scales for nuclear spins with spin length 𝐼 > 1/2. Additional weaker effects such
as nuclear dipole-dipole interactions [96–98] or potential interactions between the
individual electron spins in an ensemble of singly charged quantum dots [99–103]
are omitted in this thesis.

The reduced Planck constant is consistently set to ℏ = 1 in the following.

2.1 Semiconductor quantum dots

A quantum dot provides a zero-dimensional nanostructure that is typically composed
of semiconductor materials and allows for the spatial confinement of a few charge
carriers such as electrons or holes [97, 104]. As a result of the confinement, bound
states with discrete energy levels form for the charge carriers. Due to the resemblance
to the electronic wave functions in atoms, quantum dots occasionally are referred to
as ”artificial atoms” [97, 105].

For the fabrication of quantum dots, a variety of techniques have been developed
[97] which reach from methods based on colloidal chemistry [106–108] to molecular
beam epitaxy [109, 110] or metalorganic chemical vapor deposition [111, 112]. A
common technique for the self-assembled growth of quantum dots, which also was
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Chapter 2 Singly charged quantum dots

A B A cb

vb
Figure 2.1: Scheme of the energy levels in a semiconductor quantum dot. The
material B forming the quantum dot is enclosed by another material A which
provides a potential well confining the charge carrier.

employed for the samples utilized in the mode-locking experiments [67, 68], is the
molecular beam epitaxy via the Stranski-Krastanow method [104, 113]: Different
semiconductor materials are grown in layers on top of each other via vapor deposition.
One material A serves as a substrate and another material B is grown in atomic
layers on the substrate. As a consequence of the slightly different lattice constants
of the materials A and B, strain occurs at the surface between the materials. After
growing a few atomic layers of material B, which form a thin film called wetting layer,
elevations arise and form small three-dimensional islands. These islands constitute
the quantum dots. When the band gap 𝐸𝑔 between the conduction band (cb) and
the valence band (vb) of the dot material B is smaller than the band gap of the
surrounding semiconductor A, charge carriers such as electrons or holes may be
confined within the dot, see Fig. 2.1.

The present analysis focuses on singly charged semiconductor quantum dots which
mostly are assumed to be charged by an electron. Such a charging of quantum
dots is achieved by adding a doping layer in the growth process that provides free
charge carriers which tunnel into the dots. The proper adjustment of the donor (or
acceptor) density in the doping layer with respect to the dot density enables the
charging of the quantum dots with a single charge carrier on average.

The mode-locking experiments [67, 68] inspiring the investigations in Chapters 6
and 7 are conducted on an (In,Ga)As/GaAs quantum dot ensemble in which the self-
assembled quantum dots are mostly made up by indium gallium arsenide (InGaAs)
and the surrounding layers by gallium arsenide (GaAs). The utilized samples contain
multiple layers of quantum dots whose n-type doping is provided by silicon (Si)
donor layers in between the quantum dot layers. Within the quantum dot layers,
the dot density amounts to 1010 cm−2. The individual dots have a cylindrical shape
with roughly 25 nm diameter and 5 nm height and are charged by a single electron
spin on average [67, 68]. After production the samples are thermally annealed to
shift the ground state emission into experimentally convenient realms around 1.4 eV
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2.2 Energy scheme and optical excitation

[67, 68, 86]. Moreover, the heating of the sample leads to a diffusion of part of
the indium (In) out of the dots which homogenizes the quantum dot ensemble and
reduces strain within the sample [86, 114, 115].

2.2 Energy scheme and optical excitation

The discrete energy levels in a semiconductor quantum dot provide the basis for
versatile optical applications since individual charge carriers can be efficiently photo-
generated, manipulated and coherently controlled [116–119]. A detailed discussion
of the energy structures in different types of semiconductor quantum dots and the
resultant optical addressability may be found, for instance, in Ref. [120]. Here, we
restrict ourselves to the relevant aspects with respect to the present studies, i.e., we
focus on GaAs-type quantum dots and stick to the optical excitation close to the
band gap energy.

The energy bands of a bulk semiconductor transform into discrete energy levels for
a quantum dot, see Fig. 2.2. The twofold degenerate conduction band with a total
angular momentum 𝑗 = 1/2 turns into two electron states with the projection of
the total angular momentum 𝑗𝑧 = ±1/2. The valence bands closest to the band
gap have a total angular momentum 𝑗 = 3/2 in a GaAs-type bulk semiconductor
whereas the valence band with 𝑗 = 1/2 is split off in energy due to the spin-orbit
interaction and, therefore, is disregarded in the following. In a quantum dot, the
valence bands with 𝑗 = 3/2 split into two energy levels with twofold degeneracy
each. The states with 𝑗𝑧 = ±1/2 correspond to light hole states and the states with
𝑗𝑧 = ±3/2 form the heavy hole states. As a result of the intrinsic strain resulting
from the growth process of the sample and the spatial confinement of the charge
carriers, the light hole states have lower energy than the heavy hole states in the
quantum dot.

Optical excitation with a photon energy exceeding the band gap may induce transi-
tions of an electron in a state with 𝑗 = 3/2 to a state with 𝑗 = 1/2 leaving a hole
in the state formerly occupied by the electron. For circularly polarized light, the
photons carry an angular momentum ±1 in the direction of their propagation – set
to the 𝑧 axis here. In the case of 𝜎+ polarized light, the photon has an angular
momentum +1 such that according to the conservation of angular momentum an
electron with 𝑗𝑧 = −1/2 and 𝑗 = 3/2 can be exited to the state with 𝑗𝑧 = +1/2 and
𝑗 = 1/2 leaving behind a light hole. Likewise, the photon can excite an electron
from the state with 𝑗𝑧 = −3/2 and 𝑗 = 3/2 to the state with 𝑗𝑧 = −1/2 and 𝑗 = 1/2
generating a heavy hole. Here, the latter transition occurs with three times higher
probability than the former one. Analogous selection rules apply for the excitation
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Chapter 2 Singly charged quantum dots

lh
hh

Figure 2.2: Selection rules for optical transitions between the energy levels. The
transitions induced by circularly polarized light conserve the angular momentum.

with 𝜎− polarized light where the photon carries an angular momentum −1, see
Fig. 2.2.

For a quantum dot charged by a single electron, the optically excited electron and
the resident electron adhere to the Pauli principle, i.e., the optically excited electron
spin must have the opposite orientation compared to the resident electron spin.
When the excitation energy is adjusted to the gap between the heavy holes states
and the electron states with 𝑗 = 1/2, only electrons from the states with 𝑗𝑧 = ±3/2
can be excited. In this case, 𝜎+ polarized light can only excite the electron from
the state with 𝑗𝑧 = −3/2 and 𝑗 = 3/2 to the state with 𝑗𝑧 = −1/2 and 𝑗 = 1/2 if
the resident electron has an angular momentum 𝑗𝑧 = +1/2. If the resident electron
has an angular momentum 𝑗𝑧 = −1/2, photogeneration of an electron-hole pair
is inhibited due to the Pauli principle. This mechanism enables the experimental
manipulation and the readout of the electron spin polarization in quantum dots
and is employed in measurements of the electron spin noise [121–125] as well as in
pump-probe experiments [67, 68, 126].

After the excitation, the photo-generated electron-hole pair forms a bound state with
the resident electron in the singly charged quantum dot. This bound state is called
a negatively charged exciton or a trion and has a limited lifetime of several hundred
picoseconds [127] due to the rapid recombination of the photo-generated electron-
hole pair. A detailed discussion of the exploitation of the trion state excitation in
the mode-locking experiments is provided in Chapter 5. Here, we turn towards the
optical readout of the electron spin polarization in the quantum dots.
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2.3 Readout of electron spin polarization

2.3 Readout of electron spin polarization

The optical readout of the electron spin polarization in a quantum dot ensemble
can be performed via reflection or transmission setups. While the magneto-optic
Kerr effect provides access to the electron spin polarization in a reflection geometry,
the Faraday rotation and the Faraday ellipticity signal are obtained from light
transmitted through the sample. A magnetization of the sample related to an
electron spin polarization in the quantum dots changes the light propagation which is
exploited for the optical readout. Employing a linearly polarized laser for probing the
quantum dot sample, the laser beam is split into two linearly polarized components
after passing the sample. These two components have orthogonal polarizations that
are oriented with angle ±45∘ to the incident laser light. The Kerr rotation and
the Faraday rotation are then defined by the intensity difference between the two
components respectively. The Faraday ellipticity on the other hand is extracted from
splitting the transmitted light into two circularly polarized beams and recording
their difference in intensity.

As the off-diagonal elements of the dielectric tensor give rise to an anisotropic
permittivity of the sample for the magnetized material, the polarization orientation
of the transmitted (reflected respectively) light is rotated compared to the linearly
polarized incident light beam. The angle of rotation 𝛩𝐹 (𝛩𝐾) in the respective
scenario is expected to be proportional to the magnetization in the sample allowing
for measurements of the electron spin polarization along the optical axis.

In transmission, the anisotropic permittivity produces a dependence of the speed of
light in the magneto-optic material on the direction of the light polarization. As
a consequence, 𝜎+ and 𝜎− polarized light cross the sample with slightly different
speeds, which is known as circular birefringence. Since the linearly polarized light can
be decomposed into the two circularly polarized components with equal amplitudes
and the two components acquire a relative phase shift passing the material, a linearly
polarized laser beam is subject to the rotation of its polarization axis by the angle
𝛩𝐹.

While the Faraday rotation is connected to the real part of the refractive index
via the speed of light, the Faraday ellipticity is interrelated with the imaginary
part. Passing the sample, the linearly polarized incident light acquires an elliptic
component in its polarization which is proportional to the sample magnetization.
Assuming the electron spins to be in spin up state (𝑗𝑧 = 1/2), the 𝜎+ polarized light
component cannot excite the system, cf. Sec. 2.2, and hence passes the sample. The
𝜎− polarized component, however, may excite a trion state and thereby partially is
absorbed. Consequently, the transmitted light has a stronger proportion of 𝜎+ than
𝜎− resulting in an elliptic polarization.

9



Chapter 2 Singly charged quantum dots

Continuous optical readout of the electron spin polarization by one of the above
introduce measures employing a weak linearly polarized probe laser followed by a
Fourier transform of the time-dependent signal into the frequency domain is termed
spin noise spectroscopy. Since the laser beam has weak intensity only, the spin
system is not affected by the readout such that spin noise measurements provide
undisturbing access to the spin dynamics.

In more intricate situations, such as an additional optical excitation of the electron
spins, the Kerr rotation, the Faraday rotation, and the ellipticity signal may supply
complementary information on an ensemble of singly charged quantum dots [128,
129]. As a result of the differing spectral dependencies, a potential detuning between
the excitation energy and the probe beam becomes relevant. For the present analysis,
however, the assumption that the experimentally measured signal is proportional to
the electron spin polarization along the optical axis will be sufficient.

2.4 Central spin model

For a localized charge carrier spin in a semiconductor nanostructure, the predominant
interaction is the hyperfine coupling to the surrounding nuclear spins since the spin-
orbit interaction based effects relevant in bulk materials are strongly inhibited due
to the absence of translational motion. In fact, the hyperfine interaction of the
localized charge carrier is enhanced compared to bulk structures as a result of the
localized wave function which, e.g., spreads over typically 105 lattice sites for an
electron contained in a quantum dot [53]. The hyperfine interaction between the
charge carrier spin S and the surrounding nuclear spins I𝑘 is described by the general
Hamiltonian 𝐻HF,

𝐻HF =
𝑁

∑
𝑘=1

∑
𝛼,𝛽

𝐴𝛼,𝛽
𝑘 𝑆𝛼𝐼𝛽

𝑘 , (2.1)

where the sum over 𝑘 includes all nuclear spins within the charge carrier localization
volume. The coupling strength to an individual nuclear spin 𝑘 is given by the matrix
𝐴𝛼,𝛽

𝑘 with 𝛼, 𝛽 ∈ {𝑥, 𝑦, 𝑧} referring to the Cartesian axes. These couplings have
different physical origins depending on the respective scenario captured by 𝐻HF. We
address the specifics of the hyperfine coupling relevant in the case of the localized
electron or hole spin in a semiconductor nanostructure in Sec. 2.5.

As an additional component, an external magnetic field may be applied to the spin
system which acts on the charge carrier spin as well as on the nuclear spins I𝑘. The
Hamiltonian for the charge carrier spin S in a magnetic field with magnitude 𝐵 and
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2.4 Central spin model

Figure 2.3: Central Spin Model. The central spin S couples to the surrounding
nuclear spins I𝑘 via coupling constants 𝐴𝛼,𝛽

𝑘 .

orientation n𝐵 gives rise to a Zeeman splitting,

𝐻EZ = −𝑔𝑆𝜇𝐵𝐵n𝐵 ⋅ S, (2.2)

governed by the Bohr magneton 𝜇𝐵 and the charge carrier 𝑔 factor 𝑔𝑆. The 𝑔 factor
of the charge carrier in a semiconductor nanostructure typically differs from that
of a free electron, 𝑔𝑒 ≈ 2, due to spin-orbit coupling effects [130–132]. In 𝑛 doped
(In,Ga)As/GaAs quantum dots, for instance, a 𝑔 factor of 𝑔𝑒 ≈ 0.555 has been found
[67, 68]. Furthermore, the 𝑔 factor of hole spins in self-assembled quantum dots may
be anisotropic, i.e., it depends on the orientation of the applied magnetic field [133,
134].

For the nuclear spins, the coupling to the external magnetic field 𝐵 is roughly three
orders of magnitude smaller compared to an electron spin due to the higher mass of
the nuclei. Here, the product of the respective nuclear 𝑔𝑘 factor and the nuclear
magneton 𝜇𝑁 determines the coupling strength in the Zeeman Hamiltonian,

𝐻NZ = − ∑
𝑘

𝑔𝑘𝜇𝑁𝐵n𝐵 ⋅ I𝑘. (2.3)

For the different isotopes in (In,Ga)As/GaAs quantum dots an average ratio 𝑧 =
𝑔𝑘𝜇𝑁/𝑔𝑒𝜇𝐵 ≈ 1/800 has been estimated [91, 135].

The general hyperfine Hamiltonian 𝐻HF potentially combined with the effect of
an external magnetic field, 𝐻EZ and 𝐻NZ, has the topology of a Central Spin
Model (CSM) also called Gaudin model [69, 136]. The central spin S couples to all
surrounding nuclear spins whereas no interactions within the nuclear spin bath occur,
see Fig. 2.3. The CSM is a good approximation when depicting localized charge
carriers in a semiconductor since other spin interactions such as static nuclear-electric
quadrupolar interactions, see Sec. 2.7, or nuclear dipole-dipole interactions are several
orders of magnitude weaker than the hyperfine interaction and therefore contribute
on relatively long time scales only. Aside from singly charged quantum dots [57]
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Chapter 2 Singly charged quantum dots

and donor-bound charge carriers, the CSM is applied to nitrogen-vacancy centers
in diamond [137], triphenylphosphine molecules in a polycrystalline solid [138],
electrons in metallic grains [139], atomically thin transition metal dichalcogenides
[140], or a 13C nuclear spin qubit coupling to a 1H spin bath [141].

Theoretical studies of the CSM started in 1976 when Gaudin first showed that
the isotropic model is exactly solvable by means of a Bethe ansatz [69]. Since
then many further studies based on this approach have been conducted [139, 142–
146], however, these are either restricted to relatively small systems or require
certain specified initial conditions such as a polarized bath. The restrictions could
be partially overcome by the combination of the algebraic Bethe ansatz with a
stochastic Monte Carlo sampling [147, 148]. For a fully polarized initial state of
the nuclear spin system, exact solutions for the central spin dynamics [54, 149]
suggest a history-dependent behavior. Perturbative treatments using non-Markovian
master equations tailored for fluctuations in the nuclear spin bath [50, 150] and
using the Nakajima-Zwanzig or time-convolutionless projection operator technique
[151–154] have been developed. These treatments hold for the limit of large spin
baths or strong external magnetic fields. Later on, master equations have also been
employed in nonperturbative frameworks [155, 156] for various limiting situations and
under external control fields [157, 158]. Further numerical approaches to the CSM
include Chebyshev expansion techniques [159–161] for spin-noise spectroscopy, time-
dependent density matrix renormalization group [162, 163] applicable to the system’s
short time dynamics as well as cluster expansion techniques for the investigation
of the central spin decoherence [164–170]. Persisting quantum correlations in the
isotropic CSM have been extracted using a generalized Mazur inequality [171,
172]. The exact quantum mechanical dynamics has been addressed by various
sophisticated approaches [173–177] typically restricted to relatively small systems
due to the exponential growth of the Hilbert space with the number of bath spins.
Alternatively, (semi)classical approaches [55, 162, 178–181] valid for large bath sizes
(𝑁 ≫ 1) are employed.

2.5 Hyperfine interaction of electrons and holes

The origin of the hyperfine interaction between the localized charge carrier and the
surrounding nuclear spins in a semiconductor nanostructure differs for the cases of a
localized electron and hole. While the electron spin couples predominantly via Fermi
contact interaction [182] to the nuclear spins, the hyperfine interaction of a hole
spin results from the dipole-dipole coupling. Thus, the hyperfine coupling constants
𝐴𝛼,𝛽

𝑘 entering the general hyperfine Hamiltonian 𝐻HF, Eq. (2.1), are adapted in the
respective scenario.
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The Fermi contact interaction was first discussed by Fermi in 1930 [182]. In his theory,
Fermi calculated the hyperfine splitting for the spectra of alkaline atoms employing
a relativistic treatment of the electron. A nonrelativistic derivation of the hyperfine
Hamiltonian was performed later on and includes the Fermi contact contribution as
well as the dipole-dipole term relevant for hole spins. The nonrelativistic derivation
is based on an approach to the interaction between the charge carrier and the
magnetic moment of the nucleus within the framework of the standard quantum
mechanical theory of electromagnetism as outlined, for instance, in Refs. [96, 183].

The latter derivation yields the hyperfine Hamiltonian for the interaction of the
charge carrier with a single nucleus in first order perturbation theory [183],

𝐻𝑐−𝑛 = 2𝜇𝐵𝜇
𝐼

I ⋅ [ L
𝑟3 − S

𝑟3 + 3r (S ⋅ r)
𝑟5 + 8𝜋

3
S𝛿(𝑟)] , (2.4)

where the charge carrier has a spin S, an angular momentum L, and the position
r which is measured with respect to the location of the nucleus. For the nuclear
magnetic moment, the relation 𝝁 = 𝜇I/𝐼 was inserted.

The individual contributions in Eq. (2.4) can be interpreted according to their
physical origin: The first term accounts for the coupling of the nuclear magnetic
moment to the effective magnetic field generated by the orbital motion of the electron
with angular momentum L. The combination of the second and the third term yields
the dipole-dipole interaction between the charge carrier spin and the nuclear spin.
The last contribution constitutes the Fermi contact interaction which is proportional
to the probability of the electron being located at the position of the nucleus.

Let us now consider the respective scenario of a conduction electron or a hole in
the valence band. Since the conduction band in a GaAs-type semiconductor is
mostly made up of the atomic 𝑠 orbitals of the Ga compound, the conduction
electron has zero angular momentum, 𝑙 = 0. Thus, it has a finite nonzero probability
to be located at the position of the nucleus. Due to symmetry effects, all other
contributions in 𝐻𝑐−𝑛 except for the Fermi contact term vanish and the Hamiltonian
for the hyperfine interaction of a localized electron in a semiconductor is given by

𝐻FC = 16𝜋𝜇𝐵
3

∑
𝑘

𝜇𝑘
𝐼𝑘

|𝜓(R𝑘)|2 S ⋅ I𝑘 (2.5)

including the coupling to numerous nuclei labeled by the index 𝑘. The coupling
strength is determined by the electron wave function 𝜓(R𝑘) at the position of the
𝑘-th nucleus. Here, the nuclear magnetic moment 𝜇𝑘 and the spin length 𝐼𝑘 enter
as prefactors that differ for the various nuclear isotopes in a semiconductor. The
relevant nuclear magnetic moments for (In,Ga)As/GaAs quantum dots can be found
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Chapter 2 Singly charged quantum dots

in several tables, for instance, Ref. [135]. The spin length equals 𝐼 = 3/2 for Gallium
and Arsenic or 𝐼 = 9/2 for Indium.

Since the Fermi contact interaction is isotropic, it can be cast into the format of the
general hyperfine Hamiltonian, Eq. (2.1), with coupling constants 𝐴𝛼,𝛽

𝑘 = 𝛿𝛼,𝛽𝐴𝑘
and

𝐴𝑘 = 16𝜋𝜇𝐵𝜇𝑘
3𝐼𝑘

|𝜓(R𝑘)|2 . (2.6)

The electron wave function can be decomposed into a product of the rapidly changing
function 𝑢(R𝑘) respecting the atomic orbitals and a slowly varying envelope function
𝜙(R𝑘) resulting from the electron localization,

𝜓(R𝑘) = 𝑢(R𝑘)𝜙(R𝑘). (2.7)

Consequently, the hyperfine coupling constants become 𝐴𝑘 ∝ |𝑢(R𝑘)|2 |𝜙(R𝑘)|2.
Assuming identical nuclei and approximating |𝑢(R𝑘)|2 = 1, allows for the derivation
of a distribution of the coupling constants 𝐴𝑘 that respects the geometry of the
localizing potential, e.g., the geometry of the quantum dot, see Ref. [160] and Sec. 3.6
for more details.

The hyperfine interaction between a hole spin and the surrounding nuclei, in contrast,
is governed by the dipole-dipole interaction. Since the valence bands are built from
the atomic 𝑝 orbitals, the probability of finding the hole at the position of a nucleus
vanishes. Therefore, the Fermi contact interaction does not apply here. The
remaining terms in 𝐻𝑐−𝑛 yield the effective hyperfine Hamiltonian for light and
heavy holes respectively and have been evaluated by Testelin et al. [184],

𝐻HF,lh = 𝛺 ∑
𝑘

𝐶𝑘
3

|𝜙(R𝑘)|2 [−2 (𝑆𝑥𝐼𝑥
𝑘 + 𝑆𝑦𝐼𝑦

𝑘 ) + 𝑆𝑧𝐼𝑧
𝑘] , (2.8)

𝐻HF,hh = 𝛺 ∑
𝑘

𝐶𝑘 |𝜙(R𝑘)|2 𝑆𝑧𝐼𝑧
𝑘 , (2.9)

𝐶𝑘 = 16𝜇𝐵𝜇𝑘
5𝐼𝑘

⟨ 1
𝜌3 ⟩

𝑘
. (2.10)

Equations (2.8) and (2.9) make use of the unit cell volume 𝛺 containing two
atoms and a sample growth axis aligned in 𝑧 direction, [001]. The contribution
⟨ 1

𝜌3 ⟩
𝑘

= ∫
𝛺

𝑑𝝆𝐹 2
𝑥 (𝝆)/𝜌3 for the coupling constants 𝐶𝑘 stems from integration of the

orbital function of 𝑝 symmetry, 𝐹 2
𝑥 (𝝆), over the unit cell with 𝝆 measured from the

position of the 𝑘-th nucleus R𝑘. While the charge carrier spin S has the length 1/2
for an electron or a light hole, the spin S associated to the heavy hole is actually
a pseudospin with the length 1/2 whose spin states with projection 𝑠𝑧 = ±1/2
correspond the heavy hole states 𝑗𝑧 = ±3/2 [184, 185].
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2.6 Electron spin relaxation in the frozen Overhauser field approximation

Albeit their fundamentally differing origin, the hyperfine interaction of the electron
and hole spins, 𝐻FC, 𝐻HF,lh and 𝐻HF,hh, can be mapped onto a general Hamilto-
nian

𝐻HF = ∑
𝑘

𝐴𝑘 [𝜆 (𝑆𝑥𝐼𝑥
𝑘 + 𝑆𝑦𝐼𝑦

𝑘 ) + 𝑆𝑧𝐼𝑧
𝑘] (2.11)

by introducing the anisotropy parameter 𝜆 that accounts for the biaxiality of the
system. The hyperfine coupling constants 𝐴𝑘 in Eq. (2.11) absorb the coupling
constants 𝐶𝑘 as well as the remaining prefactors in Eqs. (2.8) and (2.9) for the
dipole-dipole interaction of a hole spin and adhere to Eq. (2.6) for the electron.
The anisotropy parameter 𝜆 captures the isotropic case of the conduction electron
at 𝜆 = 1, the anisotropic situation of the light hole at 𝜆 = −2 and the Ising limit
relevant for the heavy hole at 𝜆 = 0. In real systems, however, typically a mixture
of the light and heavy hole state occurs as a result of the valence band mixing due
to the spatial distribution of strain in the sample and the anisotropy of the quantum
dot shape [53]. Consequently, the effective anisotropy parameter 𝜆 may have any
value 𝜆 ∈ [−2; 0] depending on the specific admixture. Generally, it has been found
that the hyperfine interaction of the localized hole spin with ∑𝑘 𝐴𝑘 ≈ 10 μeV [185,
186] is roughly one order of magnitude smaller than the Fermi contact interaction
of an electron spin with ∑𝑘 𝐴𝑘 ≈ 100 μeV [55, 57, 187].

2.6 Electron spin relaxation in the frozen Overhauser
field approximation

The short time spin dynamics of the electron spin localized in a quantum dot,
governed by the Hamiltonian, Eq. (2.11) with 𝜆 = 1, has been calculated by
Merkulov et al. [55] within the approximation of frozen nuclear spins. Since the
precession frequency of the electron spin in the effective magnetic field generated by
all nuclei in the system is much larger than the precession frequency of a nuclear
spin in the hyperfine field produced by the electron spin, the approximation that the
electron spin sees a frozen random configuration of the nuclear spins is warranted.
We introduce the Overhauser field [188],

B𝑁 = 1
𝑔𝑒𝜇𝐵

∑
𝑘

𝐴𝑘I𝑘, (2.12)

which corresponds to the effective magnetic field produced by the nuclear spin
bath acting on the electron spin according to Eqs. (2.11) and (2.2) and consider
its quantum mechanical fluctuations ⟨B2

𝑁⟩. In the high-temperature limit, the
nuclear spin system is in a disordered state with randomly aligned spins producing
a three-dimensional Gaussian distribution 𝑝(B𝑁) of the Overhauser field B𝑁. The
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individual components 𝐵𝛼
𝑁 with 𝛼 ∈ {𝑥, 𝑦, 𝑧} are uncorrelated and obey a Gaussian

distribution respectively,

𝑝(𝐵𝛼
𝑁) = 1

√2𝜋𝛥2
𝐵

exp (−(𝐵𝛼
𝑁)2

2𝛥2
𝐵

) . (2.13)

Its variance 𝛥2
𝐵 is given by

𝛥2
𝐵 =

⟨B2
𝑁⟩

3
= 1

3𝑔2
𝑒𝜇2

𝐵
∑

𝑘
𝐴2

𝑘 ⟨I2
𝑘⟩ , (2.14)

where the quantum mechanical expectation value yields ⟨I2
𝑘⟩ = 𝐼𝑘(𝐼𝑘 +1) for nuclear

spins of an individual length 𝐼𝑘.

The dynamics of an electron spin subject to a fixed magnetic field of strength 𝐵
and orientation unit vector n𝐵, Eq. (2.2), is given by the equation of motion,

⟨S(𝑡)⟩ = (S0 ⋅ n𝐵)n𝐵 + [S0 − (S0 ⋅ n𝐵)n𝐵] cos(𝜔𝑒𝑡)
+ {n𝐵 × [S0 − (S0 ⋅ n𝐵)n𝐵]} sin(𝜔𝑒𝑡), (2.15)

where the initial orientation of the electron spin is set to ⟨S(0)⟩ ≡ S0. The associated
Larmor frequency of the electron spin precession in the magnetic field 𝐵 reads

𝜔𝑒 = 𝑔𝑒𝜇𝐵𝐵. (2.16)

Addressing an ensemble of singly charged quantum dots subject to randomly oriented
frozen hyperfine fields and identical S0, we identify the magnetic field in Eq. (2.15)
with the Overhauser field in the respective quantum dot, 𝐵n𝐵 ≡ −B𝑁 and average
Eq. (2.15) over the Overhauser field distribution 𝑝(B𝑁) of the ensemble. As a result,
we obtain the ensemble-averaged electron spin polarization as a function of time,

⟨S(𝑡)⟩ = S0
3

{1 + 2 [1 − 4
3

( 𝑡
𝑇 ∗ )

2
] exp [−2

3
( 𝑡

𝑇 ∗ )
2
]} . (2.17)

The fluctuations of the Overhauser field result in differing precession frequencies
and produce a dephasing of the electron spin with the characteristic time

𝑇 ∗ = 1
√3𝑔2

𝑒𝜇2
𝐵𝛥2

𝐵
= 1

√∑𝑘 𝐴2
𝑘𝐼𝑘(𝐼𝑘 + 1)

, (2.18)

which we will frequently employ as a reference time scale in the following. Alter-
natively, Eq. (2.17) can be interpreted in terms of a semiclassical approach to the
electron spin dynamics in a single dot, where the quantum mechanical time evolution
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Figure 2.4: Electron spin dephasing in the fluctuations of the frozen Overhauser
field according to Eq. (2.17) with initially oriented electron spin, S0 = (0, 0, 0.5)𝑇.

of the spin expectation value ⟨S(𝑡)⟩ is approximated by the average over various
classical nuclear spin configurations.

The dephasing process of an electron spin according to Eq. (2.17) is displayed in
Fig. 2.4 exemplarily for an initial spin orientation in 𝑧 direction, S0 = (0, 0, 0.5)𝑇.
The temporal evolution of the spin 𝑧 component ⟨𝑆𝑧(𝑡)⟩ exhibits a characteristic
dip at roughly 𝑡 = 3𝑇 ∗/2 and subsequently rises to a plateau at a third of the initial
electron spin polarization. This plateau is a direct consequence of the conservation
of the electron spin component parallel to an applied magnetic field according
to the first term in Eq. (2.15). Assuming an isotropic distribution of the axis
n𝐵, the average of this term yields a third of S0. Taking into account the spin
dynamics beyond the frozen Overhauser field approximation, a decay of the plateau
on prolonged time scales would be observed due to temporal fluctuations of the
Overhauser field produced by the hyperfine feedback of the electron spin onto the
nuclear spin bath. Moreover, static nuclear-electric quadrupolar interactions can
induce additional dynamics in the nuclear spin bath leading to a speed-up of the
decay.

2.7 Static nuclear-electric quadrupolar interactions

As a result of the combination of materials with different lattice constants in the
growth process, semiconductor nanostructures, in particular quantum dots, are
subject to lattice strain. This strain generates an inhomogeneous electric field within
the structures producing electric field gradients that act on the quadrupole moment
of a nucleus [189–192]. Since the nuclei do not have an electric dipole moment,
they do not couple to a homogeneous electric field. However, nuclei with a spin
length 𝐼 > 1/2 have a quadrupole moment resulting from the nonspherical charge
distribution, see Fig. 2.5(a). The quadrupole moment interacts with the electric
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Figure 2.5: (a) Decomposition of the nuclear quadrupole moment. (b) Distribution
of the electric field gradients in a quantum dot.

field gradients that arise when the symmetry of the quantum dot is broken due to
lattice strain or the interdiffusion of the substrate material into the dot.

For an electric field gradient along the 𝑧 direction, the quadrupole interaction of a
single nuclear spin I is described by the Hamiltonian [96, 183, 193],

𝐻𝑓−𝑛 = 𝑒𝑄𝑛
4𝐼(2𝐼 − 1)

{(𝑉𝑥𝑥 − 𝑉𝑦𝑦) [(𝐼𝑥)2 − (𝐼𝑦)2] + 𝑉𝑧𝑧 [3(𝐼𝑧)2 − I2]} . (2.19)

Here, 𝑒 is the elementary charge of the electron, 𝑄𝑛 is the nuclear quadrupole
moment and 𝑉𝛼𝛼 with 𝛼 ∈ {𝑥, 𝑦, 𝑧} is the second derivative of the electric potential
along the 𝛼 direction.

For In𝑥Ga1−𝑥As quantum dots with 0 < 𝑥 < 1, it was found that the local field
gradients at the positions of the nuclei follow a spatial distribution [194, 195], see
Fig. 2.5(b). The Hamiltonian for the quadrupolar interactions of the nuclear spins
in a quantum dot,

𝐻NQ = ∑
𝑘

𝑞𝑘 {𝜂𝑘
3

[(l𝑘 ⋅ I𝑘)2 − (m𝑘 ⋅ I𝑘)2] + (n𝑘 ⋅ I𝑘)2 − 𝐼𝑘(𝐼𝑘 + 1)
3

} , (2.20)

includes the local easy axis n𝑘 at the position of the respective nucleus as well as the
coupling strength 𝑞𝑘 of the individual spin, 𝑞𝑘 = 3𝑒𝑄𝑛,𝑘𝑉𝑧𝑧,𝑘/[4𝐼𝑘(2𝐼𝑘 − 1)]. The
anisotropy parameter 𝜂𝑘 = (𝑉𝑥𝑥,𝑘 − 𝑉𝑦𝑦,𝑘)/𝑉𝑧𝑧,𝑘 accounts for the degree of biaxiality
of the local field gradients. The unit vectors l𝑘 and m𝑘 constitute a Cartesian basis
in combination with n𝑘, whereas the specific orientation of l𝑘 and m𝑘 within the
plane perpendicular to n𝑘 is random.

For the determination of the quadrupolar parameter of the quantum dots, we
refer to Ref. [122]. The distribution of the local easy axis n𝑘 found in Ref. [194]
is approximated by a uniform distribution of the vector n𝑘 on the unit sphere
restricted to a cone around the growth direction of the sample identified as the 𝑧
axis here. Accordingly, the angle enclosed by n𝑘 and the 𝑧 axis, 𝜃𝑘 ∈ [0, 𝜃𝑀], is
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limited by a maximum angle 𝜃𝑀 = 34∘, while the polar angle 𝜙𝑘 ∈ [0, 2𝜋] within
the (𝑥𝑦) plane is uniformly distributed. The set of auxiliary vectors l𝑘 and m𝑘 is
established randomly in the plane perpendicular to n𝑘. For the biaxiality, a typical
value 𝜂𝑘 ≡ 𝜂 = 0.5 identical for all nuclei is inserted [122, 194].

The nuclear quadrupolar interactions are several orders of magnitude smaller than
the hyperfine interaction and therefore become relevant on longer time scales when
the CSM approximation is not sufficient anymore. Typical time scales on which
nuclear quadrupole effects come into play are in the order of hundreds of nanoseconds
[194, 196, 197]. Here, we employ a measure for the strength of the quadrupolar
coupling with respect to the hyperfine interaction [160],

𝑄 =
∑𝑘 𝑞𝑘

∑𝑘 𝐴𝑘
, (2.21)

which we establish by adjusting the quadrupolar coupling constants 𝑞𝑘 accordingly
after drawing them randomly from a uniform distribution in the interval [0.5; 1].
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Chapter 3

Nuclear-spin polaron formation for Ising-type
hyperfine interaction

The formation of a highly correlated nuclear spin state termed nuclear-spin polaron
under optical cooling of the nuclei surrounding a localized electron spin was first
predicted by Merkulov [66] in 1998 but has not been observed experimentally yet.
However, the experimental efforts of cooling down the electron-nuclear spin system
are ongoing [72, 73] as well as the related theoretical investigations [70, 71]. The
nuclear-spin polaron state is characterized by a collective alignment of the nuclear
spins in relation to the localized charge carrier spin, e.g., the opposite alignment
indicated in Fig. 3.1. In this chapter, we introduce the concept of two differing
effective spin temperatures for the charge carrier and the nuclei which accounts for
the situation of the optical cooling of the nuclear spins. Moreover, we generalize
the mean-field treatment employed by Merkulov to the case of a biaxial anisotropy
of the hyperfine interaction, Eq. (2.11). Subsequently, we focus on the Ising limit
of hyperfine interaction for a first analysis of the temperature dependence of the
spin state. Kinetic rate equations for the system’s distribution function applying
to the two-temperature situation are derived and their steady state is evaluated:
An analytic solution allows for the derivation of a temperature criterion for the
polaron formation whereas the system with randomly distributed hyperfine coupling
constants is addressed by a Monte Carlo simulation. Finally, the kinetics of the
polaron formation are examined.

(a) (b)

Figure 3.1: (a) Disordered spin state at high temperatures. (b) Nuclear-spin
polaron state in the low temperature regime.
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Chapter 3 Nuclear-spin polaron formation for Ising-type hyperfine interaction

Most of the results in this chapter have been published in Refs. [198, 199] and have
been obtained in equal parts by Andreas Fischer and the author of this thesis.

3.1 Two-temperature concept

For the theoretical description of the electron-nuclear spin system under the con-
ditions of the optical cooling of the nuclear spins, a two-temperature concept [96,
97, 183] has proven useful [66, 73]. The introduction of an effective temperature of
the nuclear spins which differs from the lattice temperature in the semiconductor
is justified for a nuclear spin system that couples only weakly to the environment.
At the same time, the spin-spin interactions among the nuclei such as dipole-dipole
interactions have to be well pronounced. Under these circumstances, the nuclear
spins adjust slowly to external influences whereas an equilibrium state within the
nuclear spin system is rapidly established. The emerging quasiequilibrium state
can be characterized by the occupation of spin states regarding their energy and
an effective temperature 𝑇𝑛, i.e., the Boltzmann ratio exp(−(𝜀𝑚 − 𝜀𝑛)/𝑘𝐵𝑇𝑛) be-
tween the probabilities to find the nuclear spin system in the state with energy
𝜀𝑚 or 𝜀𝑛 retrospectively is respected in the quasiequilibrium situation. Here, 𝑘𝐵
is the Boltzmann constant converting the effective nuclear spin temperature 𝑇𝑛
to energy units. The effective temperature 𝑇𝑛 might differ significantly from the
lattice temperature: In an optically cooled nuclear spin system, 𝑇𝑛 is considerably
lower than the lattice temperature 𝑇𝑙 [200, 201]. In contrast, the heating of the
nuclear spin system is characterized by 𝑇𝑛 > 𝑇𝑙. Typically, the sign of the effective
spin temperature 𝑇𝑛 is positive corresponding to a favoring of the states with low
energy. Generally, the description by an effective temperature can also be extended
to negative values of 𝑇𝑛 accounting for a nonequilibrium density operator in which
states of high energy are predominantly occupied. For the investigation of the
nuclear-spin polaron state, however, the relevant temperature range conforms to
positive values with 0 < 𝑇𝑛 < 𝑇𝑙.

In experiments, the cooling of the nuclear spins is achieved by elaborate optical
protocols [66, 97]. The electron spin is optically oriented along an externally applied
magnetic field. The electron spin polarization then is transmitted to the nuclear
spin system via the hyperfine interaction which allows for generating a substantial
polarization of the nuclei in direction of the external field under persistent optical
excitation. Finally, the external magnetic field is adiabatically switched off such
that the effective nuclear spin temperature is efficiently reduced. While the lattice
temperature in experiments typically amounts to 𝑇𝑙 ≈ 4 K due to cooling with
liquid helium, effective nuclear spin temperatures as low as 0.54 μK have been
achieved in a GaAs/(Al,Ga)As quantum [201]. The mean-field critical temperature
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Thermal
reservoir

Thermal
reservoir

Nuclei Electron

Hyperfine
interaction

Figure 3.2: Two-temperature concept implemented by distinct thermal reservoirs
coupled to the electron spin and the nuclear spin system respectively.

for nuclear-spin polaron formation estimated by Merkulov for a shallow donor in
GaAs amounts to roughly 0.1 μK which in principle is deemed to be achievable in
experiments [66].

For the theoretical approach via a rate equation formalism, we assume the two
effective spin temperatures, 𝑇𝑒 ≡ 𝑇𝑙 for the electron spin and 𝑇𝑛 for the nuclear
spins, to be installed via spin-flip coupling of the electron and nuclear spin system
to two distinct thermal reservoirs and thereby allow for energy exchange with the
environment, see Fig. 3.2. The microscopic origin of the spin interactions within
the nuclear system is omitted and the strength of these effects is absorbed in a
phenomenological rate 𝑊 0

𝑛 . Similarly, interactions of the electron spin such as the
coupling to the lattice are incorporated in the reservoir-induced spin flips with a
rate 𝑊 0

𝑒 . Due to the strong coupling of the electron spin to the environment, the
electron spin flip rate is typically some orders of magnitude larger than the nuclear
spin flip rate, 𝑊 0

𝑒 ≫ 𝑊 0
𝑛 . Since the coupling between the charge carrier spin and

the nuclear spin bath is crucial for the polaron formation, the hyperfine interaction
is taken into account explicitly in the theoretical description. Before introducing the
rate equation formalism incorporating the full quantum fluctuations of the spins, we
resort to a simplifying mean-field treatment of the nuclear-spin polaron formation
first.

For brevity, we make use of the effective inverse spin temperatures, 𝛽𝑒 = 1/𝑘𝐵𝑇𝑒
and 𝛽𝑛 = 1/𝑘𝐵𝑇𝑛 in the following.

3.2 Mean-field approach

As a first step towards theoretical examination of the nuclear-spin polaron formation
in the cooled electron-nuclear spin system, we explore a mean-field approach for
the two-temperature situation. The mean-field treatment was employed in 1998 by
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Chapter 3 Nuclear-spin polaron formation for Ising-type hyperfine interaction

Merkulov when he first predicted the formation of the nuclear-spin polaron state
below a critical temperature for the isotropic situation of a donor-bound electron [66].
Here, we generalize the approach to an arbitrary anisotropic hyperfine interaction
captured by the Hamiltonian in Eq. (2.11).

The hyperfine interaction of a charge carrier with the surrounding nuclei may be
interpreted as the coupling of the charge carrier spin to an effective magnetic field
generated by the nuclear spins. The quantum mechanical average of this effective
Overhauser field in the case of the anisotropic system, Eq. (2.11), is given by

⟨b𝑁⟩ = (𝜆 ∑
𝑘

𝐴𝑘 ⟨𝐼𝑥
𝑘 ⟩ , 𝜆 ∑

𝑘
𝐴𝑘 ⟨𝐼𝑦

𝑘 ⟩ , ∑
𝑘

𝐴𝑘 ⟨𝐼𝑧
𝑘⟩)

𝑇

(3.1)

employing units of energy for measuring the field. Analogously, we introduce the
effective magnetic field generated by the charge carrier spin that acts on the nuclear
spin I𝑘. This field is called the Knight field. Its average measured in energy units
reads

⟨b𝐾,𝑘⟩ = (𝜆𝐴𝑘 ⟨𝑆𝑥⟩ , 𝜆𝐴𝑘 ⟨𝑆𝑦⟩ , 𝐴𝑘 ⟨𝑆𝑧⟩)𝑇 . (3.2)

The Knight field includes the scaling of the hyperfine coupling within the (𝑥𝑦) plane
by the anisotropy parameter 𝜆, similarly to the definition of the Overhauser field,
Eq. (3.1).

In the mean-field approach, the electron spin is subject to the average Overhauser
field and a nuclear spin in turn experiences the average Knight field. Potential
spin fluctuations are neglected. Assuming the charge carrier spin and the nuclear
spins to be in thermal equilibrium at their respective temperatures, the standard
quantum mechanical expectation value of a spin subject to an external magnetic
field is applied,

⟨S⟩ = −𝑆 ⟨b𝑁⟩
|⟨b𝑁⟩|

tanh (𝛽𝑒 |⟨b𝑁⟩|
2

) , (3.3)

⟨I𝑘⟩ = −𝐼𝑘
⟨b𝐾,𝑘⟩
∣⟨b𝐾,𝑘⟩∣

tanh (
𝛽𝑛 ∣⟨b𝐾,𝑘⟩∣

2
) . (3.4)

The insertion of Eq. (3.4) into Eq. (3.3) provides the self-consistency equation for
the average electron spin polarization ⟨S⟩,

⟨S⟩ = 𝑆
|⟨b𝑁⟩|

tanh (𝛽𝑒 |⟨b𝑁⟩|
2

) ∑
𝑘

𝐴2
𝑘𝐼𝑘

∣⟨b𝐾,𝑘⟩∣
tanh (

𝛽𝑛 ∣⟨b𝐾,𝑘⟩∣
2

)

× (𝜆2 ⟨𝑆𝑥⟩ , 𝜆2 ⟨𝑆𝑦⟩ , ⟨𝑆𝑧⟩)𝑇 . (3.5)
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Figure 3.3: Mean-field approach to a system in the Ising limit of the hyperfine
interaction, 𝜆 = 0 in Eq. (2.11), with 𝐴𝑘 ≡ 𝐴0 and 𝐼𝑘 ≡ 1/2 for 𝑘 ∈ {1, … , 𝑁},
𝑁 = 105. (a) Right hand side of the self-consistency equation for ⟨𝑆𝑧⟩, Eq. (3.5).
At a fixed inverse electron spin temperature, 𝛽𝑒𝜔ℎ = 0.05, the inverse nuclear spin
temperature 𝛽𝑛 determines whether an intersection point of the right hand side
with the identity (gray line) exists with ⟨𝑆𝑧⟩ ≠ 0. (b) Anticorrelation of the electron
spin 𝑆𝑧 and the total nuclear spin 𝐽𝑧 = ∑𝑘 𝐼𝑧

𝑘 as a function of the inverse effective
nuclear spin temperature 𝛽𝑛 at fixed values of the inverse electron spin temperature
𝛽𝑒. The exact solution in thermal equilibrium, − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 = tanh(𝛽𝐴0/4)/4 with
𝛽𝑒 = 𝛽𝑛 ≡ 𝛽, is added for comparison (light blue dotted line).

Minding the definitions of the Overhauser field and the Knight field, the electron
spin enters in ⟨b𝐾,𝑘⟩ and indirectly in ⟨b𝑁⟩ via Eq. (3.4) as well.

The left hand and right hand side of the self-consistency equation for ⟨𝑆𝑧⟩ in
the Ising limit of the hyperfine interaction, 𝜆 = 0 in Eq. (2.11), are illustrated
in Fig. 3.3(a) as an example. For high inverse spin temperatures 𝛽𝑒 and 𝛽𝑛, a
nontrivial solution with ⟨𝑆𝑧⟩ ≠ 0 is found which we relate to the formation of a
polaron state. As a reference scale for measuring the temperatures, we employ the
frequency 𝜔ℎ = (∑𝑘 𝐴2

𝑘)1/2 which is proportional to the inverse of the dephasing
time 𝑇 ∗ of the electron spin in the disordered nuclear spin system assuming a fixed
nuclear spin length, 𝐼𝑘 ≡ 𝐼 for all 𝑘, cf. Eq. (2.18). In the case of equal hyperfine
coupling constants, 𝐴𝑘 ≡ 𝐴0 for all nuclei, as employed for Fig. 3.3, this reference
frequency simplifies to 𝜔ℎ = √𝑁𝐴2

0.

As a result of the biaxiality in the general hyperfine Hamiltonian, Eq. (2.11), it is
convenient to rewrite the self-consistency equation for ⟨S⟩ in spherical coordinates
where the azimuth angle 𝜃 ∈ [0; 𝜋] is measured with respect to the 𝑧 axis. Since
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Chapter 3 Nuclear-spin polaron formation for Ising-type hyperfine interaction

the polar angle within the (𝑥𝑦) plane does not play an important role due to the
rotational symmetry of the system, it is disregarded in the following.

To establish the critical temperature for the nuclear-spin polaron formation, we
first focus on the absolute value |⟨S⟩| and address the orientation of the spin state
afterwards. As the right hand side of the self-consistency equation, Eq. (3.5), is a
concave function, it is instructive to study its first order derivative to determine
if a nontrivial solution with |⟨S⟩| ≠ 0 corresponding to the formation of a polaron
state exists. Close to the critical temperature, the spin polarization is very small:
tanh 𝑥 ≈ 𝑥 for 𝑥 ≪ 1. Expanding Eq. (3.5) yields

|⟨S⟩| = 𝑆𝛽𝑒
2

∑
𝑘

𝐴2
𝑘𝐼𝑘𝛽𝑛

2
√𝜆4 sin2 𝜃 + cos2 𝜃 |⟨S⟩| . (3.6)

Thus, a state with nonzero electron spin polarization and therefore nonvanishing
nuclear spin polarization can form when the condition

𝛽𝑒𝛽𝑛 > 4
𝑆 ∑𝑘 𝐴2

𝑘𝐼𝑘√𝜆4 sin2 𝜃 + cos2 𝜃
(3.7)

is fulfilled. The above criterion indicates that the orientation of the polaron state
with respect to the 𝑧 axis enters the definition of the critical temperatures in
combination with the anisotropy parameter 𝜆.

The angle 𝜃 of the polaron formation is evaluated by means of its self-consistency
equation resulting from Eq. (3.5). To set up the self-consistency equation for 𝜃,
we employ the relation (⟨𝑆𝑥⟩ 2 + ⟨𝑆𝑦⟩ 2) / ⟨𝑆𝑧⟩ 2 = tan2 𝜃 where we insert the spin
expectation values ⟨𝑆𝛼⟩ according to the left hand and the right hand side of Eq. (3.5)
respectively requesting that the two sides are parallel. The resulting self-consistency
equation for 𝜃,

tan2 𝜃 = 𝜆4 tan2 𝜃, (3.8)

is fulfilled by different angles 𝜃 depending on the value of the hyperfine anisotropy
parameter 𝜆.

For |𝜆| = 1, the relation holds for any angle 𝜃 ∈ [0; 𝜋]. Naturally, in a system
with isotropic hyperfine interaction, 𝜆 = 1, the nuclear-spin polaron state forms
isotropically, and the charge carrier spin ⟨S⟩ is oriented randomly on the sphere
with radius 𝑆. The sign of the parameter 𝜆 does not affect the value of the hyperfine
energy but only defines whether a parallel or antiparallel alignment of the electron
spin and the nuclear spins within the (𝑥𝑦) plane is energetically favorable. Hence, a
similar situation as for 𝜆 = 1 is realized for 𝜆 = −1. The electron spin is oriented
randomly on the 𝑆 sphere in both cases. However, for 𝜆 = 1, the nuclear spin
expectation values ⟨𝐼𝑥

𝑘 ⟩ and ⟨𝐼𝑦
𝑘 ⟩ will have the opposite sign of ⟨𝑆𝑥⟩ and ⟨𝑆𝑦⟩
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respectively, whereas for 𝜆 = −1 the nuclear spin components will have the same
sign as the electron spin.

At |𝜆| ≠ 1, the self-consistency equation, Eq. (3.8), is consistent with three angles:
𝜃 = 0 and 𝜃 = 𝜋 related to the spin orientation along the 𝑧 axis as well as 𝜃 = 𝜋/2
corresponding to a spin orientation within the (𝑥𝑦) plane. To perform a stability
analysis of the three solutions in dependence of the hyperfine anisotropy parameter
𝜆, we rewrite Eq. (3.8),

𝜃 = arctan (±𝜆2 tan 𝜃) (3.9a)
≈ ± 𝜆2𝜃, (3.9b)

where we applied a Taylor expansion for small arguments in the second line of
the equation, tan 𝑥 ≈ 𝑥 and arctan 𝑥 ≈ 𝑥. Accordingly, a small perturbation 𝛿
to the point 𝜃 = 0 will grow for 𝜆2 > 1 indicating an unstable fix point, whereas
the fix point is stable for 𝜆2 < 1. For examination of the angle 𝜃 = 𝜋, we make
use of the relation tan(𝜋 + 𝑥) = tan 𝑥 and thereby obtain the same result as for
𝜃 = 0: The fix point 𝜃 = 𝜋 is unstable for 𝜆2 > 1 and is stable otherwise. The
third angle fulfilling Eq. (3.8), 𝜃 = 𝜋/2, is inspected using an alternate form of the
self-consistency equation. Instead of tan 𝜃 entering Eq. (3.8), we employ the relation
cot2 𝜃 = ⟨𝑆𝑧⟩ 2/ (⟨𝑆𝑥⟩ 2 + ⟨𝑆𝑦⟩ 2) and analogously obtain

cot2 𝜃 = 𝜆−4 cot2 𝜃. (3.10)

The rewriting of the equation and a subsequent Taylor expansion for 𝜃 ≈ 𝜋/2,
cot(𝜋/2 + 𝑥) ≈ −𝑥 and arccot 𝑥 ≈ 𝜋/2 − 𝑥 for small 𝑥, yield

𝜃 = arccot (±𝜆−2 cot 𝜃) (3.11a)

≈𝜋
2

∓ 𝜆−2 (𝜋
2

− 𝜃) . (3.11b)

Hence, a small perturbation 𝛿 to the fix point 𝜃 = 𝜋/2 produces 𝜋/2+𝛿 ≈ 𝜋/2±𝜆−2𝛿.
Accordingly, the fix point 𝜃 = 𝜋/2 is stable for 𝜆2 > 1 and is unstable for 𝜆2 < 1.

In summary, the mean-field approach predicts the formation of a nuclear-spin
polaron state below a critical temperature in that direction in which the hyperfine
interaction, Eq. (2.11), is strongest: For an anisotropy parameter with |𝜆| < 1, the
hyperfine interaction along the 𝑧 axis predominates such that the polaron state
is oriented along this axis. At |𝜆| = 1, the strength of the hyperfine interaction
is equal in any direction and the forming polaron state is isotropic. For |𝜆| > 1,
the transversal hyperfine coupling is enhanced and the nuclear-spin polaron forms
isotropically within the (𝑥𝑦) plane. As a consequence, the critical temperature below
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Chapter 3 Nuclear-spin polaron formation for Ising-type hyperfine interaction

which the nuclear-spin polaron state forms depends on the hyperfine anisotropy of
the system. The product of the inverse critical temperatures,

𝛽𝑒,𝑐𝛽𝑛,𝑐 = 4
𝑆 ∑𝑘 𝐴2

𝑘𝐼𝑘
× {

1, |𝜆| ≤ 1,
𝜆−2, |𝜆| > 1,

(3.12)

shifts the temperature regime of the polaron formation to higher spin temperatures
for |𝜆| > 1.

The mean-field results will be employed as a reference from time to time in Chapters 3
and 4. Here, we exemplarily present the mean-field data for the electron-nuclear
spin correlator in a system with Ising-type hyperfine interaction, 𝜆 = 0. Since the
related hyperfine Hamiltonian contains only the coupling of the spin 𝑧 components
of the electron and the nuclei, an anticorrelation of the electron spin 𝑆𝑧 and the
total nuclear spin 𝐽𝑧 = ∑𝑘 𝐼𝑧

𝑘 arises at low temperatures (for 𝐴𝑘 > 0). This
anticorrelation is directly connected to the polaron formation. Figure 3.3(b) displays
the anticorrelation, − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 as a function of the effective inverse nuclear spin
temperature 𝛽𝑛 for fixed values of the inverse electron spin temperature 𝛽𝑒. The
critical values 𝛽𝑛,𝑐 of the inverse nuclear spin temperature according to Eq. (3.12),
that result for the respective value of the inverse electron spin temperature, are
indicated by vertical gray lines. Below the inverse critical temperature, the correlator
yields ⟨𝑆𝑧𝐽𝑧⟩ = 0, since no nontrivial solution of Eq. (3.5) with ⟨𝑆𝑧⟩ ≠ 0 exists.
When cooling the nuclear spins, 𝛽𝑛 > 𝛽𝑛,𝑐, the electron-nuclear spin anticorrelation
related to the polaronic state forms with a square-root like behavior in the vicinity
of the critical temperature.

For comparison, Fig. 3.3(b) also presents the exact quantum mechanical solution of
− ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 in the case of equal temperatures 𝛽𝑒 = 𝛽𝑛 ≡ 𝛽 (light blue dotted line).
In thermal equilibrium, the density operator obeys the Boltzmann distribution,
𝜌 = exp(−𝛽𝐻HF)/𝑍 with the partition function 𝑍, from which the exact expectation
value of the electron-nuclear spin anticorrelation is calculated. The comparison of
the mean-field solution for 𝛽𝑒 = 𝛽𝑛 (dark blue line) to the exact quantum mechanical
solution reveals a significant discrepancy. Where the mean-field approach predicts
critical behavior, the spin system actually displays a smooth crossover provided by
the exact quantum mechanical result. Clearly, the mean-field treatment fails in this
temperature regime calling for a more sophisticated description of the spin system
covering the thermal equilibrium situation with equal temperatures as well as the
formation of the polaronic state at effective nuclear spin temperatures well below
the lattice temperature.
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3.3 Kinetic rate equation formalism

A theoretical description of the nuclear-spin polaron formation beyond the mean-field
approximation is provided by a kinetic rate equation formalism for the electron-
nuclear spin system that includes quantum fluctuations of the electron spin as well
as fluctuations in the nuclear spin system. In this formalism, the effective spin
temperatures 𝑇𝑒 and 𝑇𝑛 are established by coupling the electron spin and the nuclear
spins to two separate reservoirs inducing the respective temperatures. The rate
equations govern the temporal evolution of the diagonal elements of the density
operator in the eigenbasis of the hyperfine Hamiltonian and are valid over a broad
range of temperatures. The formalism presented in this section proves especially
valuable for capturing the system in the Ising limit of the hyperfine interaction
relevant for a heavy hole spin since it enables access to all relevant spin observables in
this situation. A generalized Lindblad formalism including an arbitrary anisotropic
hyperfine interaction is derived in Chapter 4.

For a general introduction to the concept of realizing the two-temperature situation
by external reservoirs, we focus on the electron-nuclear spin system with the general
hyperfine interaction 𝐻HF, Eq. (2.1), and add perturbations for the electron spin and
the nuclear spins, respectively. These perturbations stem from randomly fluctuating
effective magnetic fields, which are provided by the electron spin-lattice coupling or
the nuclear dipole-dipole interactions for example,

𝑉𝑒 = 𝐵0 ∑
𝛼

𝐵𝛼𝑆𝛼, (3.13a)

𝑉𝑛 = 𝑏0 ∑
𝑘

∑
𝛼

𝑏𝛼
𝑘 𝐼𝛼

𝑘 . (3.13b)

The effective magnetic fields are denoted by dimensionless operators 𝐵𝛼 (for the
electron) and 𝑏𝛼

𝑘 (for the nuclei) where 𝛼 ∈ {𝑥, 𝑦, 𝑧} refers to the Cartesian axis. The
coupling strength is controlled by dimensionless constants 𝐵0 and 𝑏0, respectively.
We assume that the standard spin relations hold for the operators of the effective
fields,

[𝑏𝛼
𝑘 , 𝑏𝛽

𝑘′] =𝑖𝛿𝑘,𝑘′𝜖𝛼,𝛽,𝛾𝑏𝛾
𝑘, (3.14a)

[𝐵𝛼, 𝐵𝛽] =𝑖𝜖𝛼,𝛽,𝛾𝐵𝛾, (3.14b)
[𝑏𝛼

𝑘 , 𝐵𝛽] =0, (3.14c)

where 𝛿𝑘,𝑘′ is the Kronecker delta and 𝜖𝛼,𝛽,𝛾 the Levy-Civita symbol. Since the
fields acting on different spins commute, no interference effects between 𝑉𝑒 and 𝑉𝑛
occur.
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As a next step, we address transitions between the eigenstates of the hyperfine
Hamiltonian, Eq. (2.1), induced by the perturbations 𝑉𝑒 and 𝑉𝑛. Let us denote the
eigenstates by |𝜓𝑚⟩ and the related eigenenergies by 𝜀𝑚, 𝐻HF |𝜓𝑚⟩ = 𝜀𝑚 |𝜓𝑚⟩, with
𝑚 ∈ {1, … , 𝑑} in the range of the Hilbert space dimension 𝑑. The transition rate
between the eigenstates |𝜓𝑛⟩ and |𝜓𝑚⟩ with energy difference 𝛥𝜀 = 𝜀𝑚−𝜀𝑛 is derived
according to Fermi’s golden rule under the assumption of weak perturbations,

𝑊𝑖,𝑚𝑛 = ∑
𝑅𝑖,𝑄𝑖

∑
𝛥𝜀=−𝛥𝐸

2𝜋
𝑍𝑖

exp (𝛽𝑖𝐸𝑅𝑖
) |⟨𝑄𝑖| ⟨𝜓𝑚|𝑉𝑖|𝜓𝑛⟩ |𝑅𝑖⟩|

2 (3.15)

with 𝑖 ∈ {𝑒, 𝑛} distinguishing between the electron and the nuclear spin system.
The reservoir eigenstates |𝑅𝑖⟩ and |𝑄𝑖⟩ have an energy difference 𝛥𝐸 = 𝐸𝑄𝑖

− 𝐸𝑅𝑖
matching −𝛥𝜀. The partition function of the respective reservoir is 𝑍𝑖.

The rate equation for a diagonal element of the density operator in the eigenbasis of
𝐻HF, 𝑓𝑚 = ⟨𝜓𝑚|𝜌|𝜓𝑚⟩, reads

∂𝑡𝑓𝑚 = ∑
𝑖

∑
𝑛

(𝑊𝑖,𝑚𝑛𝑓𝑛 − 𝑊𝑖,𝑛𝑚𝑓𝑚) , (3.16)

taking into account potential transitions between the eigenstate |𝜓𝑚⟩ and any other
eigenstate |𝜓𝑛⟩ that are generated by the fluctuations of the electron spin (𝑖 = 𝑒)
and the nuclear spins (𝑖 = 𝑛). The ratio of the rates for a specific transition and
the related reversed transition,

𝑊𝑖,𝑚𝑛

𝑊𝑖,𝑛𝑚
= exp (𝛽𝑖 (𝜀𝑚 − 𝜀𝑛)) , (3.17)

guarantees that the steady-state distribution in the thermodynamic equilibrium
𝛽𝑒 = 𝛽𝑛 ≡ 𝛽 is given by 𝑓𝑚 = exp (−𝛽𝜀𝑚) /𝑍 with the system’s partition function
𝑍.

3.3.1 Ising limit of the hyperfine interaction

In the Ising limit of the hyperfine interaction, 𝜆 = 0, the hyperfine Hamiltonian,
Eq. (2.11), reduces to

𝐻Is = ∑
𝑘

𝐴𝑘𝑆𝑧𝐼𝑧
𝑘 . (3.18)

Since the Ising Hamiltonian commutes with the electron and nuclear spin 𝑧 com-
ponent respectively, [𝐻Is, 𝑆𝑧] = [𝐻Is, 𝐼𝑧

𝑘 ] = 0, the energy eigenbasis can be ex-
pressed by direct product states |𝑆𝑧⟩ |{𝐼𝑧

𝑘}⟩ with related eigenenergies 𝜀(𝑆𝑧, {𝐼𝑧
𝑘}) =

𝑆𝑧 ∑𝑘 𝐴𝑘𝐼𝑧
𝑘 . Accordingly, the diagonal elements of the density operator in the

eigenbasis are collated into the distribution function 𝑓(𝑆𝑧, {𝐼𝑧
𝑘}).
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3.3 Kinetic rate equation formalism

For simplicity, the individual nuclear spins are attributed a spin length 𝐼𝑘 ≡ 𝐼 ≡ 1/2
in the following. Then, the rate equations specified for the Ising limit of the hyperfine
interaction read

∂𝑡𝑓(𝑆𝑧, {𝐼𝑧
𝑘}) =𝑊𝑒(−𝑆𝑧, {𝐼𝑧

𝑘})𝑓(−𝑆𝑧, {𝐼𝑧
𝑘}) − 𝑊𝑒(𝑆𝑧, {𝐼𝑧

𝑘})𝑓(𝑆𝑧, {𝐼𝑧
𝑘})

+ ∑
𝑘′

[𝑊𝑘′(𝑆𝑧, −𝐼𝑧
𝑘′)𝑓(𝑆𝑧, {𝐼𝑧

1 , … , −𝐼𝑧
𝑘′ , … , 𝐼𝑧

𝑁})

−𝑊𝑘′(𝑆𝑧, 𝐼𝑧
𝑘′)𝑓(𝑆𝑧, {𝐼𝑧

𝑘})] . (3.19)

The dynamics of the distribution function 𝑓(𝑆𝑧, {𝐼𝑧
𝑘}) is governed by individual spin

flip rates 𝑊𝑒(𝑆𝑧, {𝐼𝑧
𝑘}) and 𝑊𝑘′(𝑆𝑧, 𝐼𝑧

𝑘′) for the electron spin and the nuclear spin
due to the coupling to separate reservoirs. The rates for a specific transition in the
distribution function are determined by the energy difference between the final and
initial state connected by the spin flip as well as the temperature associated with the
related reservoir. We introduce the phenomenological flip rate 𝑊 0

𝑒 for transitions
produced by electron spin flips that reduce the system’s energy. In comparison,
energetically unfavorable transitions that increase the energy are exponentially
suppressed when decreasing the effective electron spin temperature,

𝑊𝑒(𝑆𝑧, {𝐼𝑧
𝑘}) = 𝑊 0

𝑒 × {
1, 𝜀(𝑆𝑧, {𝐼𝑧

𝑘}) > 0,
exp (−𝛽𝑒 ∣∑𝑘 𝐴𝑘𝐼𝑧

𝑘 ∣) , else.
(3.20)

For determining, whether the electron spin flip decreases or increases the energy
of the system, the sign of the eigenenergy 𝜀(𝑆𝑧, {𝐼𝑧

𝑘}) of the initial state is decisive
since the spin flip changes the sign of the energy but not the absolute value. The
energy decreases through the electron spin flip for an initial energy 𝜀(𝑆𝑧, {𝐼𝑧

𝑘}) > 0.
The opposite case, 𝜀(𝑆𝑧, {𝐼𝑧

𝑘}) < 0, is related to an energy increase. Here, the
flip rate is reduced by a factor of the exponential function of the product of the
inverse effective spin temperature 𝛽𝑒 and the energy difference produced by the flip,
∣∑𝑘 𝐴𝑘𝐼𝑧

𝑘 ∣.

Analogously, the flip rate for the nuclear spin with index 𝑘′ due to the coupling to
the reservoir with the inverse temperature 𝛽𝑛 is established,

𝑊𝑘′(𝑆𝑧, 𝐼𝑧
𝑘′) = 𝑊 0

𝑛 × {
1, 𝐴𝑘′𝑆𝑧𝐼𝑧

𝑘′ > 0,
exp (−𝛽𝑛 |𝐴𝑘′𝑆𝑧|) , else.

(3.21)

For transitions reducing the energy, which are characterized by 𝐴𝑘′𝑆𝑧𝐼𝑧
𝑘′ > 0, we

introduce the phenomenological rate 𝑊 0
𝑛 . Energetically unfavorable transitions are

exponentially suppressed where the inverse nuclear spin temperature 𝛽𝑛 and the
energy difference generated by the nuclear spin flip enter the exponential function.
We note that the rate for flipping the nuclear spin 𝑘′ is independent of the state of
the remaining nuclear spins and depends on the electron spin alone.
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Chapter 3 Nuclear-spin polaron formation for Ising-type hyperfine interaction

3.3.2 Analytical treatment

Analytic access to the steady-state solution of the rate equations, Eq. (3.19), is
provided by a simplifying assumption about the hyperfine coupling constants. To
this end, we assume the coupling constants 𝐴𝑘 to be identical for all nuclear spins,
i.e., we set 𝐴𝑘 ≡ 𝐴0 for all nuclei 𝑘. This approach is referred to as the box model
approximation [93]. We lift this assumption again in Sec. 3.6 where the effect of a
realistic distribution of the hyperfine coupling constants on the polaron formation
is discussed. The box model approximation allows for rewriting the hyperfine
Hamiltonian in terms of the total nuclear spin 𝐽𝑧 = ∑𝑘 𝐼𝑧

𝑘 ,

𝐻Is,box = 𝐴0𝑆𝑧𝐽𝑧. (3.22)

Thus, the energy eigenstates |𝑆𝑧⟩ |{𝐼𝑧
𝑘}⟩ related to the same quantum number 𝐽𝑧 are

degenerate and it becomes useful to introduce the distribution function 𝑔(𝑆𝑧, 𝐽𝑧)
that does not depend on the individual nuclear spins but 𝐽𝑧 instead. The kinetic
rate equations for 𝑔(𝑆𝑧, 𝐽𝑧) reduce to

∂𝑡𝑔(𝑆𝑧, 𝐽𝑧) =𝑊𝑒(−𝑆𝑧, 𝐽𝑧)𝑔(−𝑆𝑧, 𝐽𝑧) − 𝑊𝑒(𝑆𝑧, 𝐽𝑧)𝑔(𝑆𝑧, 𝐽𝑧)
+ ∑

𝜏=±1
[𝑊 𝜏

𝑛(𝑆𝑧, 𝐽𝑧 − 𝜏)𝑔(𝑆𝑧, 𝐽𝑧 − 𝜏) − 𝑊 𝜏
𝑛(𝑆𝑧, 𝐽𝑧)𝑔(𝑆𝑧, 𝐽𝑧)] .

(3.23)

The electron spin flip enters analogously to Eq. (3.19), whereas the flips of the
individual nuclear spins are replaced by the increase or reduction in the total spin 𝐽𝑧

of 𝜏 = ±1. Correspondingly, the transition rates related to the electron and nuclear
spin flips, Eqs. (3.20) and (3.21), are adjusted to the box model eigenstates,

𝑊𝑒(𝑆𝑧, 𝐽𝑧) = 𝑊 0
𝑒 × {

1, 𝐴0𝑆𝑧𝐽𝑧 > 0,
exp (−𝛽𝑒 |𝐴0𝐽𝑧|) , else,

(3.24)

𝑊 𝜏
𝑛(𝑆𝑧, 𝐽𝑧) = 𝑊 0

𝑛𝑁−𝜏(𝐽𝑧) × {
1, −𝜏𝐴0𝑆𝑧 > 0,
exp (−𝛽𝑛 |𝐴0| /2) , else,

(3.25)

where the index 𝜏 distinguishes between a nuclear spin flipping up (𝜏 = +1) and a
nuclear spin flipping down (𝜏 = −1). The number 𝑁+1(𝐽𝑧) of nuclear spins in the
spin up state or 𝑁−1(𝐽𝑧) = 𝑁 − 𝑁+1(𝐽𝑧) for the number of nuclear spins in the
spin down state that contribute to the respective transition has to be incorporated
in the rate 𝑊 𝜏

𝑛(𝑆𝑧, 𝐽𝑧).

For further simplification of the rate equations, we make use of the difference in
magnitude of the electron and nuclear spin flip rate, 𝑊 0

𝑒 ≫ 𝑊 0
𝑛 , cf. Sec. 3.1. When

the electron spin flips occur at a much faster rate than the spin flips in the nuclear
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3.3 Kinetic rate equation formalism

spin bath, the nuclear spins can be approximated as frozen on the time scale of the
electron spin flips. Thus, the occupation of the two electron spin states for a fixed
nuclear spin state with the quantum number 𝐽𝑧 instantaneously adjusts according
to the steady-state distribution with Boltzmann ratio,

𝑔(1/2, 𝐽𝑧)
𝑔(−1/2, 𝐽𝑧)

= exp(−𝛽𝑒𝐴0𝐽𝑧). (3.26)

Hence, it is useful to introduce the nuclear distribution function,

𝑔(𝐽𝑧) = 𝑔(1/2, 𝐽𝑧) + 𝑔(−1/2, 𝐽𝑧), (3.27)

where the electron spin states have been amalgamated. The kinetic rate equations
for the nuclear distribution function 𝑔(𝐽𝑧) result from Eq. (3.23) taking into account
the thermal spin flip rates, Eqs. (3.24) and (3.25),

∂𝑡𝑔(𝐽𝑧) = ∑
𝜏=±1

[𝛤 𝜏(𝐽𝑧 − 𝜏)𝑔(𝐽𝑧 − 𝜏) − 𝛤 𝜏(𝐽𝑧)𝑔(𝐽𝑧)] . (3.28)

The rate for transitions between states with quantum numbers 𝐽𝑧 − 𝜏 and 𝐽𝑧 results
from the combination of all contributions of a nuclear spin flipping up (𝜏 = +1) or
down (𝜏 = −1) according to Eq. (3.23),

𝛤 𝜏(𝐽𝑧) = 𝑊 0
𝑛𝑁−𝜏(𝐽𝑧) cosh(𝛽𝑒𝐴0𝐽𝑧/2 + 𝜏𝛽𝑛𝐴0/4)

cosh(𝛽𝑒𝐴0𝐽𝑧/2) + exp(𝛽𝑛𝐴0/4)
. (3.29)

The terms for the electron spin flips associated with 𝑔(𝐽𝑧, 1/2) and 𝑔(𝐽𝑧, −1/2)
cancel out. As a result, the total transition rate 𝛤 𝜏(𝐽𝑧) above is produced by
nuclear spin flip processes only, while the electron spin temperature enters via the
Boltzmann ratio of the occupation of the electron spin states at a fixed value of
𝐽𝑧.

Finally, the analytic solution for the steady state, ∂𝑡𝑔(𝐽𝑧) = 0, can be obtained
from the condition of detailed balance between states with neighboring quantum
numbers 𝐽𝑧 and 𝐽𝑧 + 1,

𝑔(𝐽𝑧)𝛤 (+1)(𝐽𝑧) = 𝑔(𝐽𝑧 + 1)𝛤 (−1)(𝐽𝑧), (3.30)

which guarantees that the transition from 𝐽𝑧 to 𝐽𝑧 + 1 and the reverse transition
are in equilibrium. Rearranging the condition and inserting the transition rate,
Eq. (3.29), provides an explicit expression for the occupation ratio of neighboring
nuclear spin states,

𝑔(𝐽𝑧 + 1)
𝑔(𝐽𝑧)

= 𝑁/2 − 𝐽𝑧

𝑁2 + 𝐽𝑧 + 1
× cosh(𝛽𝑒𝐴0(𝐽𝑧 + 1)/2)

cosh(𝛽𝑒𝐴0𝐽𝑧/2)

× cosh(𝛽𝑛𝐴0/4 + 𝛽𝑒𝐴0𝐽𝑧/2)
cosh(𝛽𝑛𝐴0/4 − 𝛽𝑒𝐴0(𝐽𝑧 + 1)/2)

. (3.31)
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Chapter 3 Nuclear-spin polaron formation for Ising-type hyperfine interaction

This expression in combination with the normalization,

𝑁/2

∑
𝐽𝑧=−𝑁/2

𝑔(𝐽𝑧) = 1, (3.32)

allows for direct access to the steady-state nuclear distribution function 𝑔(𝐽𝑧). The
probability ratio between the electron spin states results from Eq. (3.26) and the
full distribution function 𝑔(𝑆𝑧, 𝐽𝑧) of the electron-nuclear spin system is established.
In the following sections, we apply this analytic approach to study the nuclear-spin
polaron formation depending on the two effective spin temperatures. Later on, we
will also address a realistic distribution of the hyperfine coupling constants by a
Monte Carlo method and examine the temporal evolution governed by the rate
equations.

3.4 Indicators of nuclear-spin polaron formation

The correlation between the electron spin and the nuclear spins has proven a useful
indicator for the formation of the nuclear-spin polaron state, cf. Sec. 3.2. In terms
of the previously outlined formalism, the steady-state expectation value of a general
spin observable 𝑂 is calculated by

⟨𝑂⟩ = ∑
𝑆𝑧

∑
{𝐼𝑧

𝑘}
𝑓(𝑆𝑧, {𝐼𝑧

𝑘}) ⟨𝑆𝑧| ⟨{𝐼𝑧
𝑘} |𝑂| {𝐼𝑧

𝑘}⟩ |𝑆𝑧⟩ , (3.33)

where the steady-state distribution function of the kinetic equations, Eq. (3.19),
is inserted for 𝑓(𝑆𝑧, {𝐼𝑧

𝑘}). Here, we identify 𝑂 ≡ 𝑆𝑧𝐽𝑧 and exploit that the sum
over the nuclear spin states {𝐼𝑧

𝑘} in Eq. (3.33) reduces to a sum over the quantum
number 𝐽𝑧 for the box model limit. Since the hyperfine coupling constants are
positive, the correlator ⟨𝑆𝑧𝐽𝑧⟩ will be negative at low temperatures such that we
address the anticorrelation per nuclear spin, − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁, in the following. The
steady-state expectation value of the electron-nuclear anticorrelation as a function
of the inverse electron and nuclear spin temperatures, 𝛽𝑒 and 𝛽𝑛, is depicted in
Fig. 3.4(a). We note that the inverse temperatures are measured with respect to the
hyperfine coupling, 𝜔ℎ = (∑𝑘 𝐴2

𝑘)1/2 ≡ (𝑁𝐴0)1/2, as introduced in Sec. 3.2. The
system size with 𝑁 = 105 nuclear spins is set to a realistic value based on the number
of nuclear spins in the electron spin localization volume. The results in Fig. 3.4(a)
clearly indicate the formation of the polaron state at low temperatures. In the low
temperature regime (large 𝛽𝑒 and 𝛽𝑛), the anticorrelation approaches the maximum
value of one quarter per nuclear spin (yellow color coding) due to the opposite
alignment of the electron spin and the nuclear spins with respective length 1/2.
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Figure 3.4: Steady-state results of the kinetic rate equations, Eq. (3.23), for a
system with 𝑁 = 105 nuclear spins depending on the inverse electron and nuclear
spin temperatures. (a) Anticorrelation of the electron and nuclear spin 𝑧 component
color-coded in the (𝛽𝑛, 𝛽𝑒) plane. (b) Electron-nuclear anitcorrelation as a function
of 𝛽𝑛 at a fixed inverse electron spin temperature, 𝛽𝑒𝜔ℎ = 0.05. (c) Absolute
value of the total nuclear spin 𝑧 component in the (𝛽𝑛, 𝛽𝑒) plane. (d) Horizontal
cut through panel (c) at 𝛽𝑒𝜔ℎ = 0.05. The crossover temperature according to
Eq. (3.41) is indicated by a red dotted line respectively. Mean-field results are
added for comparison in the left hand panels. The mean-field critical temperature
is indicated by the white line in panel (a). The figure is taken from Ref. [198].

At high temperatures, the spins are randomly oriented such that − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 = 0
(blue color coding).

The crossover from the disordered high-temperature state to the correlated polaronic
state in the cooled system is resolved by the anticorrelation − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 as a function
of the inverse nuclear spin temperature 𝛽𝑛 for a fixed value of the inverse electron
temperature 𝛽𝑒𝜔ℎ = 0.05 even more clearly, see Fig. 3.4(b). The steady-state results
obtained from the kinetic rate equations display similar behavior as the mean-field
data, cf. Fig. 3.3, at the presented temperatures. Close to the mean-field critical
temperature, see the inset in Fig. 3.4(b), however, the two approaches slightly differ.
The mean-field approach predicts the critical behavior of the system with a sharp
transition to the polaron state at the critical temperature,

𝛽𝑒,𝑐𝛽𝑛,𝑐 = 16
𝑁𝐴2

0
, (3.34)
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Chapter 3 Nuclear-spin polaron formation for Ising-type hyperfine interaction

according to Eq. (3.12). At 𝛽𝑒𝜔ℎ = 0.05, this corresponds to 𝛽𝑛,𝑐𝜔ℎ = 320. In
contrast, the kinetic equation formalism yields a smooth crossover as expected for a
finite system where a phase transition is naturally absent.

We note that the close agreement of the steady-state results of the kinetic rate
equations and the mean-field predictions only holds for the temperature range
presented in Fig. 3.4(b): While the results of the approaches resemble each other
for differing electron and nuclear spin temperatures, 𝛽𝑒 < 𝛽𝑛, they deviate for
similar temperatures, 𝛽𝑒 ≈ 𝛽𝑛. At equal temperatures of the electron and nuclear
spins, 𝛽𝑒 = 𝛽𝑛, the mean-field treatment indicates critical behavior, cf. Fig. 3.3(b),
whereas the kinetic equations reproduce the exact quantum mechanical result
providing a smooth increase in the electron-nuclear spin anticorrelation which is a
direct consequence of the construction of the flip rates, Eq. (3.17). Moreover, we
expect deviations of the two approaches for 𝛽𝑒 ≪ 𝛽𝑛 as the mean-field treatment
neglects the electron spin fluctuations which become relevant at large electron spin
temperatures.

A further suitable quantity to indicate the formation of the nuclear-spin polaron
state is the expectation value of the absolute value of the total nuclear spin 𝑧
component. We introduce this expectation value as the sum

⟨|𝐽𝑧|⟩ = ∑
𝐽𝑧

𝑔(𝐽𝑧) |𝐽𝑧| (3.35)

with 𝐽𝑧 ∈ {−𝑁/2, … , 𝑁/2}. Alternatively, the expectation value ⟨|𝐽𝑧|⟩ is obtained
from the symmetry broken distribution function,

𝑔+(𝐽𝑧) = [𝑔(𝐽𝑧) + 𝑔(−𝐽𝑧)] 𝜃(𝐽𝑧) (3.36)

with the Heaviside function 𝜃(𝐽𝑧). Inserting the distribution function 𝑔+(𝐽𝑧) into
Eq. (3.33) with 𝑂 ≡ 𝐽𝑧 for the evaluation of the related nuclear spin 𝑧 polarization,
we obtain ⟨|𝐽𝑧|⟩ = ⟨𝐽𝑧⟩+. In literature [70, 202, 203], the quantity ⟨|𝐽𝑧|⟩ frequently
is employed to inspect the polarization in a finite system where a spontaneous
symmetry breaking naturally does not arise, i.e., where consistently ⟨𝐽𝑧⟩ = 0
without external symmetry breaking field.

The data for the steady-state polarization per nuclear spin, ⟨|𝐽𝑧|⟩ /𝑁, as a function
of the inverse temperatures 𝛽𝑒 and 𝛽𝑛 is displayed in Fig. 3.4(c). The results
closely resemble those of the electron-nuclear spin anticorrelation in Fig. 3.4(a).
In the low temperature range, the maximum value ⟨|𝐽𝑧|⟩ /𝑁 = 1/2 (yellow color
coding) determined by the nuclear spin length forms similarly to the buildup of the
electron-nuclear spin anticorrelation. However, the details of the behavior close to
the mean-field critical temperature differ for the two quantities. The comparison
of − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 and ⟨|𝐽𝑧|⟩ /𝑁 as a function of 𝛽𝑛 at the fixed inverse electron spin
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Figure 3.5: Steady-state results for the fluctuations 𝜎2
𝑆𝐽,𝑧 [panels (a) and (b)]

and 𝜎2
𝐽,𝑧 [panels (c) and (d)] obtained from the kinetic rate equations, Eq. (3.23),

for a system with 𝑁 = 105 nuclear spins. (a) and (c): Fluctuations depending
on the inverse electron and nuclear spin temperature, 𝛽𝑒 and 𝛽𝑛. (b) and (d):
Fluctuations as a function of 𝛽𝑛 at a fixed inverse electron temperature 𝛽𝑒𝜔ℎ = 0.05.
The crossover temperature according to Eq. (3.41) is indicated by a red dotted line
respectively. The figure is taken from Ref. [198].

temperature 𝛽𝑒𝜔ℎ = 0.05, see Figs. 3.4(b) and 3.4(d) respectively, reveals different
dependencies. The electron-nuclear spin anticorrelation exhibits a linear growth
when decreasing the nuclear spin temperature starting at the mean-field critical
temperature, whereas the absolute value of the nuclear spin polarization obeys a
square-root like behavior. These dependencies can be derived from the mean-field
results that yield

⟨𝑆𝑧⟩ , ⟨𝐽𝑧⟩ ∝ √𝛽𝑒𝛽𝑛 − 16
𝑁𝐴2

0
(3.37)

for the individual spin 𝑧 components close to the critical temperature and, there-
fore,

⟨𝑆𝑧𝐽𝑧⟩ ∝ (𝛽𝑒𝛽𝑛 − 16
𝑁𝐴2

0
) (3.38)

for the electron-nuclear spin correlation.

As an indicator for the crossover temperature, below which the nuclear-spin polaron
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Chapter 3 Nuclear-spin polaron formation for Ising-type hyperfine interaction

state forms, we examine the fluctuations of the two quantities, ⟨𝑆𝑧𝐽𝑧⟩ and ⟨|𝐽𝑧|⟩,

𝜎2
𝑆𝐽,𝑧 = ⟨(𝑆𝑧𝐽𝑧)2⟩ − ⟨𝑆𝑧𝐽𝑧⟩2 , (3.39)

𝜎2
𝐽,𝑧 = ⟨(𝐽𝑧)2⟩ − ⟨|𝐽𝑧|⟩2 . (3.40)

The temperature dependence of the steady-state fluctuations obtained from the
rate equation formalism for a spin system consisting of 𝑁 = 105 nuclear spins is
presented in Fig. 3.5. Since the correlator ⟨(𝑆𝑧𝐽𝑧)2⟩ is proportional to the hyperfine
energy of the system, its fluctuations 𝜎2

𝑆𝐽,𝑧 correspond to the heat capacity in
thermal equilibrium 𝛽𝑒 = 𝛽𝑛 ≡ 𝛽 except for a temperature-dependent prefactor.
The Landau theory of phase transitions [204] predicts a step-like behavior at the
critical temperature for the heat capacity as a function of 𝛽, which is reflected by the
fluctuations 𝜎2

𝑆𝐽,𝑧/𝑁 in the two-temperature situation, see Figs. 3.5(a) and 3.5(b).
The fluctuations 𝜎2

𝑆𝐽,𝑧/𝑁 rapidly grow, where a nonzero correlation of the electron
spin and the nuclear spins emerges, cf. Figs. 3.4(a) and 3.4(b). The fluctuations
𝜎2

𝐽,𝑧/𝑁 of the absolute value of the total nuclear spin 𝑧 component presented in
Figs. 3.5(c) and 3.5(d) can be interpreted by means of an effective finite-system
susceptibility. In case of equal temperatures, 𝛽𝑒 = 𝛽𝑛 ≡ 𝛽, the fluctuations of
⟨|𝐽𝑧|⟩ are proportional to the nuclear susceptibility related to the symmetry broken
distribution function 𝑔+(𝐽𝑧). In literature [202, 203], this susceptibility has been
introduced since it displays a divergence at the critical temperature even in a finite
system and thereby mimics the behavior of the ”true” susceptibility proportional
to the fluctuations of ⟨𝐽𝑧⟩ in the infinite system [204]. The steady-state results
for 𝜎2

𝐽,𝑧/𝑁 obtained by the kinetic equations reflect this divergence by a relatively
sharp peak indicating the temperature below which the nuclear-spin polaron forms.
In the (𝛽𝑛, 𝛽𝑒) plane, the maximum fluctuations 𝜎2

𝐽,𝑧 provide a temperature line
defining the crossover to the polaron regime, see Fig. 3.5(c).

3.5 Temperature criterion for polaron formation

To establish an analytic temperature criterion determining where the nuclear-spin
polaron state forms, we examine the nuclear distribution function 𝑔(𝐽𝑧) introduced
in Eq. (3.27) in the steady state of the rate equations. Its dependence on the inverse
nuclear spin temperature 𝛽𝑛 for the system with 𝑁 = 105 nuclear spins is displayed
in Fig. 3.6(a) at a fixed inverse electron spin temperature of 𝛽𝑒𝜔ℎ = 0.05. In the
high temperature regime, the individual nuclear spins are randomly aligned such
that 𝐽𝑧 obeys a Gaussian distribution centered around 𝐽𝑧 = 0, see the orange line in
Fig. 3.6(b). At zero effective temperatures, the polaronic state with maximum spin
alignment forms, and the weight in the distribution function 𝑔(𝐽𝑧) is split equally
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Figure 3.6: Steady-state nuclear distribution function 𝑔(𝐽𝑧) in a system with
𝑁 = 105 nuclear spins at a fixed inverse electron spin temperature 𝛽𝑒𝜔ℎ = 0.05.
(a) Formation of the two polaron orientations with increasing 𝛽𝑛. (b) 𝑔(𝐽𝑧) at
selected values of the inverse nuclear spin temperature, 𝛽𝑛𝜔ℎ = 10 (orange) and
𝛽𝑛𝜔ℎ = 3000 (blue). The figure is taken from Ref. [198].

between 𝐽𝑧 = ±𝑁/2 whereas all other values of 𝐽𝑧 have zero weight. In between
the two limits, the nuclear distribution function 𝑔(𝐽𝑧) exhibits a bifurcation point
from the single maximum placed at 𝐽𝑧 = 0 at high temperatures to two maxima at
𝐽𝑧 ≠ 0 in the cooled system, see the blue line in Fig. 3.6(b). These two peaks of
𝑔(𝐽𝑧) produce the two branches in Fig. 3.6(a) at large 𝛽𝑛 and correspond to the two
potential orientations of the polaron state along the 𝑧 axis. In the upper branch,
the nuclear spins are preferably in the spin up state and the electron is in the spin
down state; for the lower branch, the orientations are reversed. The bifurcation
point allows for the derivation of a temperature criterion for the polaron formation.
Accordingly, we define the crossover temperature as the temperature at which the
maximum of 𝑔(𝐽𝑧) at 𝐽𝑧 = 0 turns into a minimum with two maxima 𝐽𝑧 ≠ 0 placed
symmetrically around it.

As a mathematical criterion for the crossover, we employ the ratio 𝑔(1)/𝑔(0) (assum-
ing even 𝑁) since 𝑔(1) < 𝑔(0) in the disordered state and 𝑔(1) ≥ 𝑔(0) when 𝑔(𝐽𝑧)
exhibits two maxima. Hence, the crossover temperatures 𝛽𝑛,𝑝 and 𝛽𝑒,𝑝 are defined
by

1 = 𝑔(1)
𝑔(0)

= 𝑁
𝑁 + 2

cosh(𝛽𝑛,𝑝𝐴0/4) cosh(𝛽𝑒,𝑝𝐴0/2)
cosh(𝛽𝑛,𝑝𝐴0/4 − 𝛽𝑒,𝑝𝐴0/2)

, (3.41)

using the relation for 𝑔(𝐽𝑧 +1)/𝑔(𝐽𝑧) in Eq. (3.31) which was derived for the steady-
state distribution function of the kinetic rate equations. This implicit temperature
condition determines a temperature line (𝛽𝑛,𝑝, 𝛽𝑒,𝑝) which is added in Figs. 3.4(a),
3.4(c), 3.5(a) and 3.5(c) as a red dotted line. The analytic crossover temperature
coincides with the step in the fluctuations 𝜎2

𝑆𝐽,𝑧/𝑁, cf. Fig. 3.5(a), and the maxima
of the fluctuations 𝜎2

𝐽,𝑧/𝑁, cf. Fig. 3.5(c). The inverse nuclear crossover temperature
𝛽𝑛,𝑝𝜔ℎ = 327 for the given electron temperature 𝛽𝑒,𝑝𝜔ℎ = 0.05 is indicated in
Figs. 3.4(b), 3.4(d), 3.5(b) and 3.5(d) by a red dotted vertical line. For − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁
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Figure 3.7: Steady-state results of the kinetic rate equations, Eq. (3.23), for
different system sizes 𝑁. The upper panels display the electron-nuclear spin anti-
correlation per nuclear spin − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁; the lower panels present the fluctuations
of |𝐽𝑧| per nuclear spin 𝜎2

𝐽,𝑧/𝑁. The crossover temperature according to Eq. (3.41)
is indicated by a red dotted line. The mean-field critical temperature, Eq. (3.34),
is added as a white line in the upper panels.

and ⟨|𝐽𝑧|⟩ /𝑁, the nuclear crossover temperature matches the temperature value
where the quantities start to significantly increase, cf. Fig. 3.4(b) and 3.4(d). For
the fluctuations 𝜎2

𝑆𝐽,𝑧/𝑁 and 𝜎2
𝐽,𝑧/𝑁, 𝛽𝑛,𝑝 indicates the location of the peak, cf.

Fig. 3.5(b) and 3.5(d).

The implicit condition for the crossover temperature, Eq. (3.41), can be rewritten
into an explicit expression in the limit of large electron spin temperatures assuming
𝛽𝑒𝐴0 ≪ 1,

𝛽𝑛,𝑝 = 4
𝐴0

artanh ( 4
(𝑁 + 2)𝐴0𝛽𝑒,𝑝

) . (3.42)

The explicit relation coincides with the implicit condition within the numerical
accuracy for the presented temperature range and the chosen system parameter
in Figs. 3.5(b) and 3.5(c). It allows for the interpretation of the temperature
dependence of the nuclear-spin polaron formation: Generally, the nuclear spins
have to be cooled down to a greater extent at higher electron spin temperatures in
order to reach the polaronic state. However, above a certain electron temperature,
𝛽𝑒 > 4/(𝑁 + 2)𝐴0, the polaron cannot form even at zero nuclear spin temperature
due to the strongly fluctuating electron spin. In the expression, Eq. (3.42), this fact
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Figure 3.8: Steady-state fluctuations of |𝐽𝑧| per nuclear spin, 𝜎2
𝐽,𝑧/𝑁, as a

function of the inverse effective nuclear spin temperature 𝛽𝑛 for different system
sizes 𝑁. The inverse electron spin temperature is fixed to (a) 𝛽𝑒𝜔ℎ = 0.5 and (b)
𝛽𝑒𝜔ℎ = 0.05√105/𝑁 according to the system size.

is indicated by the divergence of artanh(𝑥) at |𝑥| = 1 which yields a lower bound
of 𝛽𝑒 in Eq. (3.42). This bound is shifted to higher electron spin temperatures
with growing system size 𝑁, see Fig. 3.7. In the mean-field calculations, such a
bound of 𝛽𝑒 is absent as a result of disregarding the spin fluctuations. Therefore,
the mean-field critical temperature (white lines in the upper panes of Fig. 3.7) and
the crossover temperature according to Eq. (3.41) (red dotted lines) differ in the
range 𝛽𝑒 > 4/(𝑁 + 2)𝐴0. For large systems (or low electron spin temperatures),
𝑁 ≫ (𝛽𝑒𝐴0)−1, however, the temperature criterion, Eq. (3.42), converges to the
mean-field critical temperature, Eq. (3.34).

The transition from the disordered spin system to the correlated polaron state by
decreasing the effective spin temperatures appears to be a crossover phenomenon
rather than a phase transition even with increasing the system size 𝑁 → ∞. This
conclusion is based on the scaling of the fluctuations with 𝑁. Since the fluctuations
𝜎2

𝐽,𝑧 are connected to the susceptibility, they are an extensive quantity that is
expected to scale with the system size 𝑁. Therefore, we displayed 𝜎2

𝐽,𝑧/𝑁 in the
previous figures. Similarly, we address the fluctuations 𝜎𝑆𝐽,𝑧/𝑁 related to the heat
capacity which is an extensive quantity as well. Examining 𝜎2

𝐽,𝑧/𝑁 for various
system sizes 𝑁, we find that the fluctuations per nuclear spin as a function of 𝛽𝑛 at
a fixed electron spin temperature 𝛽𝑒𝜔ℎ = 0.5 exhibit a peak of constant height, see
Fig. 3.8(a). The selected electron spin temperature does not allow for the polaron
formation in small systems, e.g., 𝑁 = 101 and 𝑁 = 102, such that the peak of
𝜎2

𝐽,𝑧/𝑁 is rather broad and not much pronounced. For systems with 𝑁 ≥ 103, the
distinct peak coincides in width and amplitude hinting at a crossover behavior rather
than an actual phase transition predicted by the mean-field treatment.

For further analysis, we adjust the electron spin temperature to correspond to the
value 𝛽𝑒𝜔ℎ = 0.05 chosen when presenting data for the system of size 𝑁 = 105,
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i.e., we set 𝛽𝑒𝜔ℎ = 0.05√105/𝑁. By this shift, we follow the lower bound for the
polaron formation according to Eq. (3.41) which scales ∝ 1/

√
𝑁. The fluctuations

𝜎2
𝐽,𝑧/𝑁 as a function of the inverse nuclear spin temperature for the adjusted values

of the electron spin temperature display a peak that increases in amplitude for
larger nuclear spin systems, see Fig. 3.8(b). Simultaneously, the nuclear crossover
temperature related to the adjusted values of the electron spin temperature decreases
shifting the peak of 𝜎2

𝐽,𝑧/𝑁 to larger 𝛽𝑛 with growing system size 𝑁. Thus, the
crossover sharpens with growing the system size and increasing the asymmetry of
temperatures 𝛽𝑛 ≫ 𝛽𝑒.

3.6 Effects of the distribution of hyperfine coupling
constants

In a semiconductor nanostructure with a localized charge carrier, the hyperfine
coupling constants are determined by the wave function of the charge carrier at
the position of the respective nucleus as outlined in Sec. 2.5. So far we restricted
ourselves to the box model approximation of the hyperfine interaction for the
investigation of the nuclear-spin polaron formation exploiting the analytic access
to the steady-state distribution function of the rate equations. In the following,
we lift the simplification of equal hyperfine coupling constants for all nuclei and
include a realistic distribution of the couplings 𝐴𝑘. The relevant distribution 𝑝(𝐴𝑘)
is obtained from the introduction of the envelope function of the charge carrier wave
function 𝜓(r),

𝜓(r) ∝ exp [−𝑟𝑚/(2𝐿𝑚
0 )] (3.43)

with a characteristic length scale of localization 𝐿0 such as the quantum dot size.
The distribution 𝑝(𝐴𝑘) for this ansatz has been derived in Ref. [181] and reads

𝑝(𝐴𝑘) = 𝑑
𝑚

𝐿𝑑
0

𝐴𝑘𝑅𝑑 [ln (𝐴max
𝐴𝑘

)]
𝑑/𝑚−1

(3.44)

for a 𝑑-dimensional system. For instance, 𝑑 = 2 corresponds to a flat cylindrical
quantum dot and 𝑑 = 3 to a spherical dot. The maximum coupling constant 𝐴max
and the cutoff radius 𝑅 determining the smallest coupling constant regularize the
distribution 𝑝(𝐴𝑘).

Since analytic access to the steady-state distribution function 𝑔(𝐽𝑧, 𝑆𝑧) is no longer
granted for a distribution of the coupling constants 𝐴𝑘, the spin flip processes
governed by the rate equations, Eq. (3.19), are implemented in a Monte Carlo
simulation. The Monte Carlo simulation starts from initially randomly aligned
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Figure 3.9: Steady-state results of the kinetic rate equations, Eq. (3.19), with
𝑊 0

𝑒 /𝑊 0
𝑛 = 105. The hyperfine coupling constants of the 𝑁 = 105 nuclear spins

following the distribution 𝑝(𝐴𝑘), Eq. (3.44). The upper panels present the fluc-
tuations of |𝐽𝑧|, 𝜎2

𝐽,𝑧/𝑁, in the (𝛽𝑛, 𝛽𝑒) plane. The parameters entering 𝑝(𝐴𝑘)
differ for the individual panels: (a) 𝑚 = 2, 𝑑 = 2, 𝑅 = 2.5𝐿0; (b) 𝑚 = 2, 𝑑 = 2,
𝑅 = 5.0𝐿0; (c) 𝑚 = 1, 𝑑 = 2, 𝑅 = 2.5𝐿0. The crossover temperature, Eq. (3.41),
for the box model approximation is indicated by a white dotted line respectively;
the corrected crossover temperature according to Eq. (3.41) with the effective
number of nuclear spins 𝑁eff is added as a red dotted line. Panel (d) displays
the electron-nuclear spin anticorrelation − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 in the (𝛽𝑛, 𝛽𝑒) plane; the
parameters of 𝑝(𝐴𝑘) are the same as in panel (a). Panel (e) compares the spin
anticorrelation − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 as a function of 𝛽𝑛 at a fixed value 𝛽𝑒𝜔ℎ = 0.1 for the
various distributions 𝑝(𝐴𝑘) to the box model data. Parts of the figure are taken
from Ref. [198].

spins and subsequently proposes flips of the electron spin or a random nuclear
spin respecting the ratio of the electron and nuclear spin flip rate, 𝑊 0

𝑒 /𝑊 0
𝑛 = 105.

The offered spin flips are accepted with a probability according to Eq. (3.20)
for the electron spin and Eq. (3.21) for a nuclear spin respectively. After the
equilibration, the spin expectation values are averaged over roughly 104 uncorrelated
measurements.

The steady-state results for the fluctuation of |𝐽𝑧| in a system with 𝑁 = 105 nuclear
spins with hyperfine coupling constants distributed according to Eq. (3.44) are
presented in the upper panels of Fig. 3.9 for three relevant parameter sets entering
𝑝(𝐴𝑘). The results indicate a shift of the temperature regime for the polaron
formation depending on the specific distribution 𝑝(𝐴𝑘). The original crossover
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temperature, Eq. (3.41), derived for the box model approximation (white dotted
line) does not match the maximum of the fluctuations 𝜎2

𝐽,𝑧/𝑁, instead the peak of
the fluctuations 𝜎2

𝐽,𝑧 is shifted to lower temperatures.

For a corrected crossover line, the number of nuclear spins which actually contribute
to the polaronic state has to be taken into account. Since the distribution 𝑝(𝐴𝑘)
includes coupling constants with a relatively small value for a generic choice of the
parameters 𝑚, 𝑑, and 𝑅, the number 𝑁eff of nuclear spins effectively relevant for
the dynamics can be smaller than 𝑁. For the distribution 𝑝(𝐴𝑘), Eq. (3.44), 𝑁eff
is controlled by the arbitrary cutoff radius 𝑅. Modeling a macroscopic system, 𝑅
has to be sent to infinity while keeping 𝐴max constant such that many nuclear spins
irrelevant to the polaronic state would be included. In the box model approximation,
in contrast, all nuclear spins contribute equally to the nuclear-spin polaron formation.
For quantification of this effect, we focus on the ratio of effectively contributing
spins in the system,

𝑁eff
𝑁

= ⟨𝐴𝑘⟩2

⟨𝐴2
𝑘⟩

, (3.45)

which is determined by the first two moments of the distribution 𝑝(𝐴𝑘). While the
box model yields 𝑁 = 𝑁eff, the effective number 𝑁eff is generally smaller 𝑁eff < 𝑁
for the distribution in Eq. (3.44).

Figure 3.9 presents the steady-state results for three relevant parameter sets of
𝑝(𝐴𝐾). In panels (a) and (d), we adjust 𝑚 = 2, 𝑑 = 2 and 𝑅 = 2.5𝐿0 for a Gaussian
envelope of the electron wave function in a flat quantum dot. For panel (b), the
cutoff radius is widened to 𝑅 = 5.0𝐿0 accommodating smaller values of 𝐴𝑘 in the
system with size 𝑁 = 105 while we keep 𝑚 = 2 and 𝑑 = 2. The data in panel
(c) is obtained for a three-dimensional system with an exponential wave function,
𝑚 = 1, 𝑑 = 3 and 𝑅 = 2.5𝐿0, which captures a donor-bound charge carrier. The
resulting number 𝑁eff differs in the three scenarios: (a) and (d) 𝑁eff/𝑁 ≈ 0.32, (b)
𝑁eff/𝑁 ≈ 0.08, and (c) 𝑁eff/𝑁 ≈ 0.73. We find that the analytic prediction for the
crossover temperature, Eq. (3.41), where we insert 𝑁eff instead of 𝑁 (red dotted
lines in Fig. 3.9) coincides with the maximum of the fluctuations 𝜎𝑧

𝐽,𝑧 obtained by
the Monte Carlo simulation. We conclude that the crossover temperature depends
primarily on the number of nuclear spins effectively contributing to the dynamics
which is defined by the first two moments of 𝑝(𝐴𝑘), whereas the details on the
distribution 𝑝(𝐴𝑘) of the hyperfine coupling constants play a minor role.

The formation of the electron-nuclear spin anticorrelation when decreasing the
nuclear spin temperature, however, is governed by the individual couplings 𝐴𝑘.
Figure 3.9(e) displays the anticorrelation − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 as a function of 𝛽𝑛 at the
fixed inverse electron spin temperature 𝛽𝑒𝜔ℎ = 0.1. The panel compares the
spin anticorrelation for the three selected parameter sets for 𝑝(𝐴𝑘) to the box
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3.7 Kinetics of polaron formation

model result (orange line). Additionally, Fig. 3.9(d) presents − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 in the
temperature plane for an exemplary parameter set. The full anticorrelation of a
quarter per nuclear spin is reached at much lower effective nuclear spin temperatures
for small ratios 𝑁eff/𝑁 such that the 𝛽𝑛 axis is prolonged up to 𝛽𝑛𝜔ℎ = 106 in
Fig. 3.9(e). The slope of the spin anticorrelation as a function of 𝛽𝑛 for large inverse
temperatures can be understood from the approximation of a frozen electron spin.
This approximation holds when the electron spin temperature is low compared to
the energy difference produced by an electron spin flip in the strong Overhauser field
emerging at low nuclear spin temperatures. Here, the electron spin flip processes
are strongly suppressed by the rate, Eq. (3.20), and the electron spin is effectively
frozen. For a frozen electron spin, the electron-nuclear spin system factorizes into the
subsystems of the individual spins. Accordingly, the electron-nuclear spin correlation
results from the sum of the contributions of the individual nuclear spins subject to
a fixed Knight field,

⟨𝑆𝑧𝐽𝑧⟩ ≈ −1
4

∑
𝑘

tanh (𝐴𝑘𝛽𝑛
4

) . (3.46)

These asymptotics are added in Fig. 3.9(e) as black dotted lines for the selected
sets of hyperfine coupling constants {𝐴𝑘}. At low nuclear spin temperatures (large
𝛽𝑛), the asymptotics precisely match the data of − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁. In the crossover
regime, quantum fluctuations dominate the physics such that the approximation
of a frozen electron spin is not valid. For 𝛽𝑛 < 𝛽𝑛,𝑝, the quantum fluctuations
suppress the polaron formation. Thus, the overall slope of the electron-nuclear spin
anticorrelation when decreasing the nuclear spin temperature is determined by the
individual coupling constants 𝐴𝑘 whereas the crossover temperature is governed by
the effective number 𝑁eff of nuclear spins.

3.7 Kinetics of polaron formation

The kinetic rate equation formalism allows for studying the temporal emergence of the
polaronic state. For simplification, we return to the box model approximation after
having established that a system with arbitrarily distributed hyperfine couplings can
be mapped onto a system with 𝐴𝑘 ≡ 𝐴0 by an effective system size 𝑁eff. To compute
the dynamics of the distribution function 𝑔(𝑆𝑧, 𝐽𝑧), the elements of 𝑔(𝑆𝑧, 𝐽𝑧) are
collated into a vector ⃗𝑔 that obeys the differential equation ∂𝑡 ⃗𝑔 = 𝑊 ⃗𝑔 with the
matrix 𝑊 defined by the rate equations, Eq. (3.23). Since the numerical evaluation
of the solution ⃗𝑔(𝑡) = exp(𝑊𝑡) ⃗𝑔(0) requires the matrix diagonalization of 𝑊 which
exceeds the computational resources for the system size 𝑁 = 105, we approximate
the time evolution by decomposing exp(𝑊𝑡) = (exp(𝑊𝑡/𝑁))𝑁 and approximate
exp(𝑊𝑡/𝑁) by a power series of order of four. Thus, we obtain ⃗𝑔(𝑡) for a given
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Figure 3.10: Temporal evolution of the electron-nuclear spin anticorrelation
governed by the kinetic rate equations, Eq. (3.23), for a system with 𝑁 = 105.
Different flip rates are compared with the electron spin temperature adjusted
(a) deep in the polaronic phase 𝛽𝑒𝜔ℎ = 5 or (b) close to the crossover regime
𝛽𝑒𝜔ℎ = 0.05, with 𝛽𝑛𝜔ℎ = 104 in both cases. Panel (c) addresses the effect of the
inverse nuclear spin temperature 𝛽𝑛; 𝛽𝑒𝜔ℎ = 0.05 and 𝑊 0

𝑒 /𝑊 0
𝑛 = 105 are fixed.

Parts of this figure are taken from Ref. [198].

starting condition ⃗𝑔(0). For the examination of the emergence of the polaronic state,
we start from a disordered system at 𝑡 = 0 and monitor the subsequent temporal
evolution at fixed effective spin temperatures. In the disordered initial state with
randomly aligned spins, the nuclear distribution function 𝑔(𝑆𝑧, 𝐽𝑧) is determined
by the degeneracy of the box-model spin states,

𝑔0(𝑆𝑧, 𝐽𝑧) = 1
2𝑁+1 ( 𝑁

𝑁+1(𝐽𝑧)
) (3.47)

with 𝑁+1(𝐽𝑧) = 𝑁/2 + 𝐽𝑧 and the binomial coefficient (𝑎
𝑏) = 𝑎!/(𝑏!(𝑎 − 𝑏)!). For

the subsequent time evolution of ⃗𝑔(𝑡) governed by the rate equations, Eq, (3.23),
we fix the temperatures in the polaronic regime and insert finite flip rates 𝑊 0

𝑒 and
𝑊 0

𝑛 . Finally, the time-dependent distribution function is employed to determine
the temporal evolution of the electron-nuclear anticorrelation from Eq. (3.33) with
𝑂 ≡ 𝑆𝑧𝐽𝑧.

At low temperatures deep in the polaronic regime, 𝛽𝑒𝜔ℎ = 5 and 𝛽𝑛𝜔ℎ = 104, the
buildup of the electron-nuclear spin anticorrelation follows a universal behavior
controlled by the nuclear spin flip rate 𝑊 0

𝑛 alone, whereas the electron spin flip rate
𝑊 0

𝑒 does not contribute to the dynamics, see Fig. 3.10(a). Scaling the time with
𝑊 0

𝑛 , the curves collapse onto the analytic relation

− ⟨𝑆𝑧𝐽𝑧⟩
𝑁

= 1
4

[1 − exp (−𝑊 0
𝑛𝑡)] (3.48)
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3.7 Kinetics of polaron formation

independent of the ratio 𝑊 0
𝑒 /𝑊 0

𝑛 . For an explanation, we focus on the energy
difference generated by the spin flips. The flip of an individual nuclear spin produces
a relatively small change in the system’s total energy whereas a flip of the electron
spin generates a large energy difference supported by the Overhauser field forming at
low temperatures. Consequently, electron spin flip processes are strongly suppressed
according to Eq. (3.24) and only nuclear spin flips can occur. Starting from the
disordered spin system, the full electron-nuclear spin anticorrelation can be reached
by flipping half of the nuclear spins without any flip of the electron spin. Therefore,
the formation of spin anticorrelation is solely governed by the nuclear spin flip rate
𝑊 0

𝑛 .

Closer to the crossover temperature, 𝛽𝑒𝜔ℎ = 0.05 and 𝛽𝑛𝜔ℎ = 104, the electron
spin flip rate 𝑊 0

𝑒 starts to play a role, see Fig. 3.10(b). While the maximum
anticorrelation is still reached, the buildup process is slowed down and exhibits a
more complex behavior than a purely exponential growth. For a fast electron spin
flip rate, 𝑊 0

𝑒 /𝑊 0
𝑛 > 1, random electron spin flips counteract the formation of the

nuclear polaron state. In the beginning, when the Overhauser field polarization is
not very pronounced yet, the electron spin can flip in the energetically unfavorable
state with parallel alignment to the nuclear spin polarization and thereby hinder
the buildup of the electron-nuclear anticorrelation. Random electron spin flips are
only prevented after a sufficiently strong Overhauser field polarization has formed.
From this point on, the further temporal evolution is again governed by the nuclear
spin flip processes and the related rate 𝑊 0

𝑛 . The effect of the electron spin flips
preventing the polaron formation strengthens with the increase in the rate 𝑊 0

𝑒 up to
the regime where the electron spin follows the nuclear spins almost instantaneously
such that a further increase in 𝑊 0

𝑒 has no additional effect on the dynamics anymore
(the light and dark blue curves coincide). For electron spin flip rates comparable to
the nuclear spin flip rate or smaller, however, the exponential behavior, Eq. (3.48),
is recovered.

The nuclear spin temperature has only little effect on the temporal evolution of
the anticorrelation − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 when it is adjusted in the polaron regime, see
Fig. 3.10(c). However, 𝛽𝑛 determines the maximum anticorrelation reached. For
nuclear spin temperatures slightly below the crossover temperature, the electron-
nuclear anticorrelation can be very small whereas it approaches the maximum value
of a quarter per nuclear spin in the low temperature limit. The overall shape of the
approach of − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 to the respective maximum is similar for the presented
nuclear spin temperatures.
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3.8 Chapter conclusion

We addressed the formation of a nuclear-spin polaron state characterized by an
antiparallel alignment of the localized charge carrier spin and the surrounding
nuclear spins by means of a two-temperature concept that accounts for the situ-
ation under optical cooling of the nuclear spin system. A kinetic rate equation
formalism was developed that captures the dynamics of the distribution function
and incorporates the coupling to two external spin reservoirs inducing separate
effective spin temperatures for the electron spin and the nuclear spins respectively.
The distribution function of the electron-nuclear spin system, which corresponds
to the diagonal elements of the density operator in the energy eigenbasis, provides
access to all spin observables commuting with the hyperfine Hamiltonian. Therefore,
the kinetic rate equation formalism was applied to the spin system with Ising-type
hyperfine interaction accounting for a localized heavy hole spin. Here, the dynamics
can be addressed in the spin 𝑧 product basis and the relevant spin observables 𝑆𝑧

and 𝐽𝑧 yield [𝐻Is, 𝑆𝑧] = [𝐻Is, 𝐽𝑧] = 0. Furthermore, we employed a box model
approximation for the hyperfine coupling constants to gain analytic access to the
system in the steady state at given inverse temperatures 𝛽𝑒 and 𝛽𝑛. By means of the
bifurcation point of the steady-state nuclear distribution function 𝑔(𝐽𝑧) that arises
when the nuclear spin temperature is reduced, we derived an analytic temperature
criterion for the polaron formation. This analytic prediction matches the maximum
line of the spin fluctuations in the (𝛽𝑛, 𝛽𝑒) plane. Due to ⟨𝐽𝑧⟩ ≡ 0 in the fully
symmetric system, we had to resort to the fluctuations of |𝐽𝑧| commonly employed
in literature when a spontaneous symmetry breaking is absent. Moreover, the
electron-nuclear spin anticorrelation − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 proved a valuable measure for
detecting the polaronic state. A Monte Carlo simulation allowed for the study of
the system with a realistic distribution of the hyperfine coupling constants. The
results could be mapped onto the box model data by the effective number of nuclear
spins relevant to the dynamics. Finally, we examined the temporal transition from
randomly aligned spins to the correlated polaronic state which we found mostly
governed by the reservoir-induced nuclear spin flips at low temperatures.
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Chapter 4

Nuclear-spin polaron formation for general
anisotropic hyperfine interaction

The hyperfine interaction of the localized electron spin or light hole spin includes
transversal coupling beyond the Ising limit. To account for the polaron formation
in these systems, a generalized approach to the nonequilibrium two-temperature
situation induced by the optical cooling is required. We develop a Lindblad for-
malism that includes the results for the Ising-type hyperfine interaction discussed
in the previous chapter but extends the theory to a general anisotropic hyperfine
Hamiltonian, Eq. (2.1). The differing effective spin temperatures of the electron
spin and the nuclear spins are established by the coupling of the spin system to two
separate external reservoirs similar as in the rate equations employed in Chapter 3.
We apply the Lindblad approach to the relevant physical scenarios of the hyperfine
interaction, Eq. (2.11), where the localized charge carrier spin relates to an electron,
light hole, or heavy hole respectively. As the nuclear-spin polaron state forms
along the direction of strongest hyperfine interaction, the nature of the polaronic
state differs significantly for these systems. We examine the polaron formation by
means of the electron-nuclear spin correlation for the various scenarios and find
that the crossover temperature depends on the hyperfine anisotropy. Furthermore,
the distribution functions of the nuclear spin components support the analysis of
the characteristics of the polaronic state. Their examination reveals a quantum
phase transition of the ground state of the hyperfine Hamiltonian as a function
of the hyperfine anisotropy parameter 𝜆. In dependence of 𝜆, the ground state is
either 𝑁-fold degenerate as for the isotropic system or twofold degenerate when
|𝜆| ≠ 1 and produces the respective orientation of the polaronic state. Moreover,
the quantum phase transition transfers to the dynamics in the cooled system. Long
living nuclear spin correlations are observed for the polaronic state in the Ising limit
of the hyperfine interaction as well as in the isotropic system. For strong in-plane
hyperfine interaction, however, the spin correlation is rapidly lost.

This chapter is based on the author’s publication [199].
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Chapter 4 Nuclear-spin polaron formation for general anisotropic hyperfine
interaction

4.1 Lindblad formalism

For the investigation of the nuclear-spin polaron formation in the spin system with
arbitrary anisotropic hyperfine interaction, the distinct effective spin temperatures of
the electron spin and the nuclear spins are established by separate thermal reservoirs
similarly as in the kinetic rate equation formalism. To account for the general
hyperfine coupling, we extend the description of the open quantum system to the
full density operator 𝜌 rather than relying on the diagonal elements alone. The
temporal evolution of 𝜌 is captured by a Lindblad master equation [205, 206] under
the assumption of Markovian dynamics,

∂𝑡𝜌 = ℒ𝜌 = −𝑖 [𝐻HF, 𝜌] −
𝑁

∑
𝑘=0

∑
𝛼

∑
𝑚,𝑛

{(𝐿𝑘𝛼
𝑚𝑛)†𝐿𝑘𝛼

𝑚𝑛𝜌 + 𝜌(𝐿𝑘𝛼
𝑚𝑛)†𝐿𝑘𝛼

𝑚𝑛

−2𝐿𝑘𝛼
𝑚𝑛𝜌(𝐿𝑘𝛼

𝑚𝑛)†} (4.1)

with the Liouvillian ℒ. The Lindblad equation comprises the dynamics governed by
the general hyperfine Hamiltonian 𝐻HF, Eq. (2.1), as well as the reservoir-induced
spin flips mediated by the Lindblad operators 𝐿𝑘𝛼

𝑚𝑛. The Lindblad operators 𝐿𝑘𝛼
𝑚𝑛

are expressed in terms of the eigenstates of 𝐻HF, 𝐻HF |𝜓𝑚⟩ = 𝜀𝑚 |𝜓𝑚⟩, such that
the sum in the Lindblad equation, Eq. (4.1), incorporates potential transitions
between any combination of eigenstates |𝜓𝑚⟩ and |𝜓𝑛⟩. The contributions of the
individual spins are indicated by the index 𝑘: The electron spin flips are included
at 𝑘 = 0, and the nuclear spins are labeled 𝑘 ∈ {1, … , 𝑁} in accordance with the
Hamiltonian. Furthermore, the spatial component is taken into account by the index
𝛼 ∈ {𝑥, 𝑦, 𝑧}.

In detail, the Lindblad operators are defined as

𝐿𝑘𝛼
𝑚𝑛 = √𝛤 𝑘𝛼

𝑚𝑛 ∑
𝑎,𝑏

𝛿𝜀𝑎,𝜀𝑚
𝛿𝜀𝑏,𝜀𝑛

⟨𝜓𝑎|𝑠𝛼
𝑘 |𝜓𝑏⟩ |𝜓𝑎⟩ ⟨𝜓𝑏| (4.2)

with the associated hermitian conjugate operators (𝐿𝑘𝛼
𝑚𝑛)†. The operators generate

transitions between any combination of eigenstates |𝜓𝑏⟩ and |𝜓𝑎⟩, which have the
same energy as the states |𝜓𝑛⟩ and |𝜓𝑚⟩ guaranteed by the Kronecker delta 𝛿𝜀𝑎,𝜀𝑚
and 𝛿𝜀𝑏,𝜀𝑛

. This construction ensures a free choice of basis states within the subspace
of energetically degenerate eigenstates. The transitions between the eigenstates
are mediated by the spin operators 𝑠𝛼

𝑘 and obey the rate 𝛤 𝑘𝛼
𝑚𝑛. The spin operator

corresponds to either the electron spin operator 𝑠𝛼
𝑘 ≡ 𝑆𝛼 (𝑘 = 0) or the operator of

an individual nuclear spin 𝑠𝛼
𝑘 ≡ 𝐼𝛼

𝑘 (𝑘 ∈ {1, … , 𝑁}) with orientation 𝛼 ∈ {𝑥, 𝑦, 𝑧}.
The transition rate comprised by the Lindblad operator,

𝛤 𝑘𝛼
𝑚𝑛 =

𝑊 𝛼
𝑘 ℎ𝛼

𝑘 (𝛥𝑚𝑛)
𝑔(𝜀𝑚)𝑔(𝜀𝑛)

, (4.3)

50



4.1 Lindblad formalism

is constructed in such a way that the steady-state solution of the Lindblad equation
in thermal equilibrium 𝛽𝑒 = 𝛽𝑛 ≡ 𝛽 equals the Boltzmann form 𝜌 = exp(−𝛽𝐻HF)/𝑍
with the partition function 𝑍. A phenomenological rate for the specific spin flip
process is installed by the factor 𝑊 𝛼

𝑘 , whereas the degrees of degeneracy of the
involved eigenenergies, 𝑔(𝜀𝑚) and 𝑔(𝜀𝑛), avoid double counting of transitions between
energetically degenerate subspaces. The function ℎ𝛼

𝑘 (𝛥𝑚𝑛) provides a dimensionless
temperature-dependent factor enhancing or attenuating transitions with respect
to the energy difference generated by the transition, 𝛥𝑚𝑛 = 𝜀𝑚 − 𝜀𝑛. For a
specific transition and the related reverse transition, the detailed balance condition
ℎ𝛼

𝑘 (𝛥𝑚𝑛)/ℎ𝛼
𝑘 (𝛥𝑛𝑚) = ℎ𝛼

𝑘 (𝛥𝑚𝑛)/ℎ𝛼
𝑘 (−𝛥𝑚𝑛) = exp(−𝛥𝑚𝑛𝛽𝑘) ensures the steady-

state Boltzmann density operator in case of equal temperatures 𝛽𝑘 ≡ 𝛽 for all
spins.

4.1.1 Dynamics of the density operator in matrix representation

The rate equations for the individual matrix elements of the density operator are
obtained from the Lindblad master equation, Eq. (4.1), after inserting the Lindblad
operators, Eq. (4.2),

∂𝑡𝜌 = −𝑖 [𝐻HF, 𝜌] − ∑
𝑘,𝛼

∑
𝑚,𝑛

∑
𝑎,𝑏

∑
𝑎′,𝑏′

𝑊 𝛼
𝑘 ℎ𝛼

𝑘 (𝛥𝑚𝑛)
𝑔(𝜀𝑚)𝑔(𝜀𝑛)

𝛿𝜀𝑎,𝜀𝑚
𝛿𝜀𝑏,𝜀𝑛

𝛿𝜀𝑎′,𝜀𝑚
𝛿𝜀𝑏′,𝜀𝑛

× {𝛿𝑎,𝑎′(𝑠𝛼
𝑘 )∗

𝑎′𝑏′(𝑠𝛼
𝑘 )𝑎𝑏 (|𝜓𝑏′⟩ ⟨𝜓𝑏| 𝜌 + 𝜌 |𝜓𝑏′⟩ ⟨𝜓𝑏|)

−2(𝑠𝛼
𝑘 )𝑎𝑏(𝑠𝛼

𝑘 )∗
𝑎′𝑏′ |𝜓𝑎⟩ ⟨𝜓𝑏|𝜌|𝜓𝑏′⟩ ⟨𝜓𝑎′ |} , (4.4)

where we abbreviated (𝑠𝛼
𝑘 )𝑎𝑏 = ⟨𝜓𝑎|𝑠𝛼

𝑘 |𝜓𝑏⟩ and employed ⟨𝜓𝑎|𝜓𝑎′⟩ = 𝛿𝑎,𝑎′ for an
orthonormal choice of the eigenbasis. Respecting the degree of degeneracy of the
energy levels 𝜀𝑚 and 𝜀𝑛,

∑
𝑚,𝑛

𝛿𝜀𝑎,𝜀𝑚
𝛿𝜀𝑏,𝜀𝑛

= 𝑔(𝜀𝑎)𝑔(𝜀𝑏), (4.5)

the sum over eigenstates with index 𝑚 and 𝑛 is eliminated such that the Lindblad
equation simplifies to

∂𝑡𝜌 = −𝑖 [𝐻HF, 𝜌] − ∑
𝑘,𝛼

∑
𝑎,𝑏

∑
𝑎′,𝑏′

𝑊 𝛼
𝑘 ℎ𝛼

𝑘 (𝛥𝑚𝑛)𝛿𝜀𝑎,𝜀𝑎′ 𝛿𝜀𝑏,𝜀𝑏′

× {𝛿𝑎,𝑎′(𝑠𝛼
𝑘 )∗

𝑎′𝑏′(𝑠𝛼
𝑘 )𝑎𝑏 (|𝜓𝑏′⟩ ⟨𝜓𝑏| 𝜌 + 𝜌 |𝜓𝑏′⟩ ⟨𝜓𝑏|)

−2(𝑠𝛼
𝑘 )𝑎𝑏(𝑠𝛼

𝑘 )∗
𝑎′𝑏′ |𝜓𝑎⟩ ⟨𝜓𝑏|𝜌|𝜓𝑏′⟩ ⟨𝜓𝑎′ |} . (4.6)

At this point, the reason for including the degrees of degeneracy, 𝑔(𝜀𝑚) and 𝑔(𝜀𝑛), as
prefactors in the definition of the transition rate, Eq. (4.3), becomes clear. Potential
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interaction

double counting of transitions between energetically degenerate eigenstates as a
result of the sums over eigenstates with index 𝑎 and 𝑏 in the definition of the
Lindblad operators, Eq. (4.2), is prevented.

The matrix representation of the Lindblad master equation, Eq. (4.1), in the
eigenbasis of the Hamiltonian 𝐻HF yields a set of coupled differential equations,

∂𝑡𝜌𝑚𝑛 = −𝑖𝛥𝑚𝑛𝜌𝑚𝑛 − ∑
𝑘,𝛼

𝑊 𝛼
𝑘 ∑

𝑎,𝑏
{𝛿𝜀𝑚,𝜀𝑏

ℎ𝛼
𝑘 (𝛥𝑎𝑚)(𝑠𝛼

𝑘 )∗
𝑎𝑚(𝑠𝛼

𝑘 )𝑎𝑏𝜌𝑏𝑛

+𝛿𝜀𝑛,𝜀𝑏
ℎ𝛼

𝑘 (𝛥𝑎𝑛)(𝑠𝛼
𝑘 )∗

𝑎𝑏(𝑠𝛼
𝑘 )𝑎𝑛𝜌𝑚𝑏

−2𝛿𝜀𝑚,𝜀𝑛
𝛿𝜀𝑎,𝜀𝑏

ℎ𝛼
𝑘 (𝛥𝑚𝑎)(𝑠𝛼

𝑘 )𝑚𝑎(𝑠𝛼
𝑘 )∗

𝑛𝑏𝜌𝑎𝑏} (4.7)

with the density matrix elements 𝜌𝑚𝑛 = ⟨𝜓𝑚|𝜌|𝜓𝑛⟩. While the hyperfine interaction
produces oscillations of the off-diagonal matrix elements, the exchange with the
external spin reservoirs induces transitions between the density matrix elements as
well as a decay of the off-diagonal matrix elements.

4.2 Specified master equations

The rate equations derived for the general hyperfine Hamiltonian, Eq. (2.1), are
specified for the Hamiltonian, Eq. (2.11), with uniaxial anisotropy of the hyperfine
interaction that accounts for the locally bound electron as well as the localized
spin of light and heavy hole. For analytic access to the energy eigenstates and
eigenenergies of 𝐻HF, we resort to the box model approximation, 𝐴𝑘 ≡ 𝐴0, in the
following, recalling that a realistic distribution of the hyperfine coupling constants
mostly produces a correction by the effective number of nuclei coupling to the charge
carrier spin, cf. Sec. 3.6. The box model approximation allows for the quantum
mechanical treatment of relatively large systems with 𝑁 ≈ 103 nuclear spins. The
relevant Hamiltonian,

𝐻HF = 𝐴0 [𝜆 (𝑆𝑥𝐽𝑥 + 𝑆𝑦𝐽𝑦) + 𝑆𝑧𝐽𝑧]

= 𝐴0 [𝜆
2

(𝑆+𝐽− + 𝑆−𝐽+) + 𝑆𝑧𝐽𝑧] ,
(4.8)

can be written in terms of the total nuclear spin similar to the box model approxima-
tion in the Ising limit, Eq. (3.22). In addition, the Hamiltonian, Eq. (4.8), comprises
spin flip terms where the electron spin transfers its 𝑧 component to the nuclear
spins and vice versa. These spin flips are produced by the spin flip operators of the
electron spin and the total nuclear spin respectively,

𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦, (4.9)
𝐽± = 𝐽𝑥 ± 𝑖𝐽𝑦. (4.10)

52



4.2 Specified master equations

4.2.1 Eigendecomposition of the anisotropic hyperfine Hamiltonian

The analytic diagonalization of the matrix representation of the anisotropic hyperfine
Hamiltonian in the box model approximation, Eq. (4.8), is straightforward. For a
system consisting of nuclear spins with individual length 𝐼𝑘 ≡ 1/2, the Hamilton
matrix is segmented into (2 × 2) and (1 × 1)-dimensional subblocks respectively.
The related eigenenergies 𝜀±

𝐽,𝐽𝑧 and eigenstates |𝜓±,𝜁
𝐽,𝐽𝑧,⟩ have been established by

Kozloz [207]. From the (2 × 2)-dimensional subblocks, one obtains

𝜀±
𝐽,𝐽𝑧 = −𝐴0

4
± 𝐴0

2
√(𝐽𝑧 − 1

2
)

2
+ 𝜆2 [𝐽(𝐽 + 1) − 𝐽𝑧(𝐽𝑧 − 1)], (4.11a)

|𝜓±,𝜁
𝐽,𝐽𝑧,⟩ = 𝑐±

𝐽,𝐽𝑧 |↓⟩ |𝐽, 𝐽𝑧, 𝜁⟩ + 𝑑±
𝐽,𝐽𝑧 |↑⟩ |𝐽, 𝐽𝑧 − 1, 𝜁⟩ , (4.11b)

with 𝐽 ∈ {0, … , 𝑁/2} (assuming an even number 𝑁) and 𝐽𝑧 ∈ {−𝐽 + 1, … , 𝐽}. For
the (1 × 1)-dimensional subblocks, the eigenenergies and eigenstates are directly
read off,

𝜀+
𝐽,−𝐽 = 𝐴0𝐽

2
, 𝜀+

𝐽,𝐽+1 = 𝐴0𝐽
2

, (4.12a)

|𝜓+,𝜁
𝐽,−𝐽⟩ = |↓⟩ |𝐽, −𝐽, 𝜁⟩ , |𝜓+,𝜁

𝐽,𝐽+1⟩ = |↑⟩ |𝐽, 𝐽, 𝜁⟩ , (4.12b)

with 𝐽 ∈ {0, … , 𝑁/2}. The eigenstates are expressed in terms of the spin 𝑧 product
basis of the electron and the total nuclear spin where |↑⟩, |↓⟩ label the electron
spin state, and |𝐽 , 𝐽𝑧, 𝜁⟩ refers to the total nuclear spin with the quantum number
of the spin length 𝐽 and the projection on the 𝑧 axis 𝐽𝑧. The quantum number 𝜁
is introduced to distinguish between energy degenerate subspaces with the same
quantum number 𝐽 arising from the spin addition theorem [207]: The block-diagonal
Hamilton matrix can be divided into subblocks with a fixed quantum number 𝐽,
whereby for each value of 𝐽 a number of identical blocks occur which are enumerated
by 𝜁 ∈ {1, … , 𝑔𝑁(𝐽)}. The degree of degeneracy originating from the number of
identical blocks is

𝑔𝑁(𝐽) = 2𝐽 + 1
𝑁/2 + 𝐽 + 1

( 𝑁
𝑁/2 + 𝐽

) (4.13)

for a given number 𝑁 of nuclear spin and a fixed total nuclear spin length 𝐽. The
coefficients 𝑐±

𝐽,𝐽𝑧 and 𝑑±
𝐽,𝐽𝑧 in the eigenstates, Eq. (4.11b), result from diagonalization

of the (2 × 2)-dimensional submatrix of the Hamiltonian represented in the basis
|↓⟩ |𝐽, 𝐽𝑧, 𝜁⟩ and |↑⟩ |𝐽, 𝐽𝑧 − 1, 𝜁⟩,

𝐻2×2
𝐽,𝐽𝑧 = (−𝐴0𝐽𝑧/2 𝑇𝐽,𝐽𝑧

𝑇𝐽,𝐽𝑧 𝐴0(𝐽𝑧 − 1)/2) , (4.14)
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with 𝑇𝐽,𝐽𝑧 = 𝜆𝐴0√𝐽(𝐽 + 1) − 𝐽𝑧(𝐽𝑧 − 1). It is noteworthy that the index 𝐽𝑧 in
the notation of the eigenstates and eigenenergies actually corresponds to the total
spin 𝑧 component 𝐹 𝑧 = 𝑆𝑧 + 𝐽𝑧 shifted by 1/2 such that in Eqs. (4.12a) and (4.12b)
the index 𝐽𝑧 has a value 𝐽𝑧 = 𝐽 + 1 which does not comply with the limits of the
actual quantum number 𝐽𝑧. However, the labeling allows for a general notation of
the eigenstates |𝜓𝜎𝜁

𝐽,𝐽𝑧⟩ and eigenenergies 𝜀𝜎
𝐽,𝐽𝑧 with 𝜎 ∈ {+, −}, 𝐽 ∈ {0, … , 𝑁/2}

and 𝐽𝑧 ∈ {−𝐽, … , 𝐽 + 1}.

4.2.2 Reduced rate equations

By means of the analytically established eigenstates, Eqs. (4.11b) and (4.12b), the
general master equation, Eq. (4.7), is customized for the hyperfine Hamiltonian in
the box model limit. To this end, the spin operator 𝑠𝛼

𝑘 is rewritten in terms of the
spin flip operators for which we use the notation 𝑠𝜏

𝑘 with an index 𝜏 ∈ {−1, 0, 1},

𝑠𝜏
𝑘 =

⎧{
⎨{⎩

𝑠−
𝑘 /

√
2, 𝜏 = −1,

𝑠𝑧
𝑘, 𝜏 = 0,

𝑠+
𝑘 /

√
2, 𝜏 = 1.

(4.15)

Insertion of the eigenstates, the eigenenergies and the operator 𝑠𝛼
𝑘 into Eq. (4.7)

yields the specified rate equation,

∂𝑡 ⟨𝜓𝜎𝑚,𝜁
𝐽,𝐽𝑧

𝑚
|𝜌|𝜓𝜎𝑛,𝜁

𝐽,𝐽𝑧
𝑛
⟩ = −𝑖𝛥𝜎𝑚,𝐽,𝐽𝑧

𝑚
𝜎𝑛,𝐽,𝐽𝑧

𝑛
⟨𝜓𝜎𝑚,𝜁

𝐽,𝐽𝑧
𝑚

|𝜌|𝜓𝜎𝑛,𝜁
𝐽,𝐽𝑧

𝑛
⟩ − ∑

𝑘,𝜏
∑
𝐽′,𝜁′

∑
𝜎,𝜎′

𝑊 𝜏
𝑘

× [𝛿𝜀𝜎𝑚
𝐽,𝐽𝑧𝑚

,𝜀𝜎′
𝐽,𝐽𝑧𝑚

ℎ𝜏
𝑘(𝛥𝜎,𝐽′,𝐽𝑧

𝑚+𝜏
𝜎𝑚,𝐽,𝐽𝑧

𝑚
) ⟨𝜓𝜎′,𝜁

𝐽,𝐽𝑧
𝑚

|𝜌|𝜓𝜎𝑛,𝜁
𝐽,𝐽𝑧

𝑛
⟩

× ⟨𝜓𝜎𝑚,𝜁
𝐽,𝐽𝑧

𝑚
|(𝑠𝜏

𝑘)†|𝜓𝜎,𝜁′

𝐽,𝐽𝑧
𝑚+𝜏⟩ ⟨𝜓𝜎,𝜁′

𝐽,𝐽𝑧
𝑚+𝜏|𝑠𝜏

𝑘|𝜓𝜎′,𝜁
𝐽,𝐽𝑧

𝑚
⟩

+ 𝛿𝜀𝜎𝑛
𝐽,𝐽𝑧𝑛

,𝜀𝜎′
𝐽,𝐽𝑧𝑛

ℎ𝜏
𝑘(𝛥𝜎,𝐽′,𝐽𝑧

𝑛𝜏
𝜎𝑛,𝐽,𝐽𝑧

𝑛
) ⟨𝜓𝜎𝑚,𝜁

𝐽,𝐽𝑧
𝑚

|𝜌|𝜓𝜎′,𝜁
𝐽,𝐽𝑧

𝑛
⟩

× ⟨𝜓𝜎′,𝜁
𝐽,𝐽𝑧

𝑛
|(𝑠𝜏

𝑘)†|𝜓𝜎,𝜁′

𝐽′,𝐽𝑧
𝑛𝜏⟩ ⟨𝜓𝜎,𝜁′

𝐽′,𝐽𝑧
𝑛+𝜏|𝑠𝜏

𝑘|𝜓𝜎𝑛,𝜁
𝐽,𝐽𝑧

𝑛
⟩

− 2𝛿𝜀𝜎𝑚
𝐽,𝐽𝑧𝑚

,𝜀𝜎𝑛
𝐽,𝐽𝑧𝑛

𝛿𝜀𝜎
𝐽′,𝐽𝑧𝑚−𝜏,𝜀𝜎′

𝐽′,𝐽𝑧𝑛−𝜏
ℎ𝜏

𝑘(𝛥𝜎𝑚,𝐽,𝐽𝑧
𝑚

𝜎,𝐽′,𝐽𝑧
𝑚−𝜏)

× ⟨𝜓𝜎,𝜁′

𝐽′,𝐽𝑧
𝑚−𝜏|𝜌|𝜓𝜎′,𝜁′

𝐽′,𝐽𝑧
𝑛−𝜏⟩

× ⟨𝜓𝜎𝑚,𝜁
𝐽,𝐽𝑧

𝑚
|𝑠𝜏

𝑘|𝜓𝜎,𝜁′

𝐽′,𝐽𝑧
𝑚−𝜏⟩ ⟨𝜓𝜎′,𝜁′

𝐽′,𝐽𝑧
𝑛−𝜏|(𝑠𝜏

𝑘)†|𝜓𝜎𝑛,𝜁
𝐽,𝐽𝑧

𝑛
⟩] . (4.16)

Each sum over the full set of eigenstates in the original equation, Eq. (4.7), initially is
replaced by sums over the box model quantum numbers 𝐽, 𝐽𝑧, 𝜎, and 𝜁 respectively.
In Eq. (4.16), we eliminated some of these sums already. First, we made use of
the fact that the matrix elements of type ⟨𝜓𝜎𝑚,𝜁

𝐽,𝐽𝑧
𝑚

|𝑠𝜏
𝑘|𝜓𝜎𝑛,𝜁′

𝐽′,𝐽𝑧
𝑛
⟩ only provide a nonzero
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4.2 Specified master equations

contribution when 𝐽𝑧
𝑚 = 𝐽𝑧

𝑛 + 𝜏 for the electron spin flips as well as the nuclear spin
flips. Thus, any sums over the box model index 𝐽𝑧 cancel out of the master equation.
Furthermore, we assume that the density operator is diagonal in the quantum
numbers 𝐽 and 𝜁 in accordance with the Hamiltonian, Eq. (4.8). As a consequence,
part of the sums over these quantum numbers are omitted such that only one sum
over 𝐽 ′ and one sum over 𝜁′ is left. The energy difference produced by a transition
between the box model eigenstates is abbreviated 𝛥𝜎,𝐽,𝐽𝑧

𝜎′,𝐽′,𝐽𝑧′ = 𝜀𝜎
𝐽,𝐽𝑧 − 𝜀𝜎′

𝐽′,𝐽𝑧′ .

For further reduction of the rate equations, we introduce matrix elements of the
type 𝑝𝐽

𝐽𝑧
𝑚,𝜎𝑚;𝐽𝑧

𝑛,𝜎𝑛
that comprise all elements of the density operator for a given

combination of the quantum numbers 𝐽, 𝐽𝑧 and 𝜎 by summing up the contributions
for varying the index 𝜁,

𝑝𝐽
𝐽𝑧

𝑚,𝜎𝑚;𝐽𝑧
𝑛,𝜎𝑛

= ∑
𝜁

⟨𝜓𝜎𝑚,𝜁
𝐽,𝐽𝑧

𝑚
|𝜌|𝜓𝜎𝑛,𝜁

𝐽,𝐽𝑧
𝑛
⟩

= 𝑔𝑁(𝐽) ⟨𝜓𝜎𝑚,𝜁
𝐽,𝐽𝑧

𝑚
|𝜌|𝜓𝜎𝑛,𝜁

𝐽,𝐽𝑧
𝑛
⟩ .

(4.17)

As the spin dynamics does not depend on 𝜁, we additionally make the assump-
tion that all density elements ⟨𝜓𝜎𝑚,𝜁

𝐽,𝐽𝑧
𝑚

|𝜌|𝜓𝜎𝑛,𝜁
𝐽,𝐽𝑧

𝑛
⟩ that solely differ in the index 𝜁 are

equally occupied. This is justified since the energy differences enter in the transition
rates only and allows us to write 𝑝𝐽

𝐽𝑧
𝑚,𝜎𝑚;𝐽𝑧

𝑛,𝜎𝑛
in terms of the degree of degen-

eracy 𝑔𝑁(𝐽) in the second line of the above equation with some representative
element ⟨𝜓𝜎𝑚,𝜁

𝐽,𝐽𝑧
𝑚

|𝜌|𝜓𝜎𝑛,𝜁
𝐽,𝐽𝑧

𝑛
⟩ with arbitrary index 𝜁. The rate equations for the elements

𝑝𝐽
𝐽𝑧

𝑚,𝜎𝑚;𝐽𝑧
𝑛,𝜎𝑛

are established from Eq. (4.16) by summing over 𝜁,

∂𝑡𝑝𝐽
𝐽𝑧

𝑚,𝜎𝑚;𝐽𝑧
𝑛,𝜎𝑛

= −𝑖𝛥𝜎𝑚,𝐽,𝐽𝑧
𝑚

𝜎𝑛,𝐽,𝐽𝑧
𝑛

𝑝𝐽
𝐽𝑧

𝑚,𝜎𝑚;𝐽𝑧
𝑛,𝜎𝑛

− { ∑
𝜏

∑
𝐽′,𝜎′

[𝛤 𝜏
𝐽′,𝐽(𝐽𝑧

𝑚 + 𝜏, 𝐽𝑧
𝑚 + 𝜏; 𝜎′, 𝜎′, 𝜎𝑚, 𝜎𝑚)

+𝛤 𝜏
𝐽′,𝐽(𝐽𝑧

𝑛 + 𝜏, 𝐽𝑧
𝑛 + 𝜏; 𝜎′, 𝜎′, 𝜎𝑛, 𝜎𝑛)] }𝑝𝐽

𝐽𝑧
𝑚,𝜎𝑚;𝐽𝑧

𝑛,𝜎𝑛

+ ∑
𝜏

∑
𝐽′,𝜎,𝜎′

2𝛤 𝜏
𝐽,𝐽′(𝐽𝑧

𝑚, 𝐽𝑧
𝑛; 𝜎𝑚, 𝜎𝑛, 𝜎, 𝜎′)𝑝𝐽

𝐽𝑧
𝑚−𝜏,𝜎;𝐽𝑧

𝑛−𝜏,𝜎′ , (4.18)

where we collate the transition rates into the rather complicated expression

𝛤 𝜏
𝐽,𝐽′(𝐽𝑧

𝑎 , 𝐽𝑧
𝑏 ; 𝜎𝑎, 𝜎𝑏, 𝜎𝑐, 𝜎𝑑) = 𝛿𝜀𝜎𝑎

𝐽,𝐽𝑧𝑎
,𝜀𝜎𝑏

𝐽,𝐽𝑧
𝑏
𝛿𝜀𝜎𝑐

𝐽′,𝐽𝑧𝑎+𝜏,𝜀𝜎𝑑
𝐽′,𝐽𝑧

𝑏 +𝜏
∑

𝑘

𝑊 𝜏
𝑘

𝑔𝑁(𝐽 ′)
ℎ𝜏

𝑘(𝛥𝜎𝑎,𝐽,𝐽𝑧
𝑎

𝜎𝑐,𝐽′,𝐽𝑧
𝑎−𝜏)

× ∑
𝜁,𝜁′

⟨𝜓𝜎𝑎,𝜁
𝐽,𝐽𝑧

𝑎
|𝑠𝜏

𝑘|𝜓𝜎𝑐,𝜁′

𝐽′,𝐽𝑧
𝑎−𝜏⟩ ⟨𝜓𝜎𝑑,𝜁′

𝐽′,𝐽𝑧
𝑏 −𝜏|(𝑠𝜏

𝑘)†|𝜓𝜎𝑏,𝜁
𝐽,𝐽𝑧

𝑏
⟩ ,

(4.19)

which will be evaluated in the following subsection.
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4.2.3 Transition rates

To determine the value of the transition rate, Eq. (4.19), we address the electron
and nuclear spin flips separately. The contribution induced by electron spin flips
with 𝑠𝜏

0 ≡ 𝑆𝜏 contains matrix elements of the type ⟨𝜓𝜎,𝜁
𝐽,𝐽𝑧 |𝑆𝜏|𝜓𝜎′,𝜁′

𝐽′,𝐽𝑧−𝜏⟩. For their
evaluation, we insert the eigenstates, Eqs. (4.11b) and (4.12b), and exploit the
orthonormality of the nuclear spin states,

⟨𝜓𝜎,𝜁
𝐽,𝐽𝑧 |𝑆𝜏|𝜓𝜎′,𝜁′

𝐽′,𝐽𝑧−𝜏⟩ = 𝛿𝐽,𝐽′𝛿𝜁,𝜁′ ×
⎧{
⎨{⎩

𝑐𝜎
𝐽,𝐽𝑧𝑑𝜎′

𝐽′,𝐽𝑧−𝜏/
√

2, 𝜏 = −1,
(𝑑𝜎

𝐽,𝐽𝑧𝑑𝜎′

𝐽′,𝐽𝑧−𝜏 − 𝑐𝜎
𝐽,𝐽𝑧𝑐𝜎′

𝐽′,𝐽𝑧−𝜏) /2, 𝜏 = 0,
𝑑𝜎

𝐽,𝐽𝑧𝑐𝜎′

𝐽′,𝐽𝑧−𝜏/
√

2, 𝜏 = 1.
(4.20)

Thus, the sums over 𝜁 and 𝜁′ in the transition rate, Eq. (4.19), reduce to a factor of
𝑔𝑁(𝐽) which cancels out with the term 𝑔𝑁(𝐽 ′) in the definition of the rate.

For transitions related to a nuclear spin flip, the matrix elements occurring in the
transition rate can be decomposed into

⟨𝜓𝜎,𝜁
𝐽,𝐽𝑧 |𝐼𝜏

𝑘 |𝜓𝜎′,𝜁′

𝐽′,𝐽𝑧−𝜏⟩ = 𝑐𝜎
𝐽,𝐽𝑧𝑐𝜎′

𝐽′,𝐽𝑧−𝜏 ⟨𝐽, 𝐽𝑧, 𝜁|𝐼𝜏
𝑘 |𝐽 ′, 𝐽𝑧 − 𝜏, 𝜁′⟩

+ 𝑑𝜎
𝐽,𝐽𝑧𝑑𝜎′

𝐽′,𝐽𝑧−𝜏 ⟨𝐽, 𝐽𝑧 − 1, 𝜁|𝐼𝜏
𝑘 |𝐽 ′, 𝐽𝑧 − 1 − 𝜏, 𝜁′⟩ , (4.21)

by rewriting the box model eigenstates into the spin 𝑧 basis via Eqs. (4.11b) and
(4.12b) and applying the orthonormality of the electron spin states. Subsequently,
the arising matrix elements in the nuclear spin 𝑧 basis can be evaluated by means
of Clebsch-Gordan coefficients. For this purpose, the nuclear spin bath consisting
of 𝑁 spins with individual length 1/2 is separated into the selected spin 𝑘 and the
spin bath of size 𝑁 − 1 comprising the remaining nuclear spins. Accordingly, a
nuclear spin state |𝐽 , 𝐽𝑧, 𝑗, 𝜁𝑗, 1/2⟩ is characterized by the total nuclear spin 𝐽, its
projection onto the axis of quantization 𝐽𝑧, the total nuclear spin 𝑗 in the reduced
nuclear spin bath excluding spin 𝑘, the index 𝜁𝑗 accounting for the degeneracy of
𝑗 (in analogy to 𝜁 in the full spin bath) and the spin length 𝐼𝑘 ≡ 1/2. Here, 𝑗, 𝜁𝑗,
and 𝐼𝑘 were previously amalgamated in the quantum number 𝜁. For brevity, the
degeneracy index 𝜁𝑗 is omitted in the following. Employing the Clebsch-Gordan
coefficients, the state |𝐽 , 𝐽𝑧, 𝑗, 1/2⟩ can be disassembled into states of the format
|𝑗, 𝑗𝑧; 1/2, 𝐼𝑧

𝑘⟩ with the spin 𝑧 projection 𝑗𝑧 in the reduced spin bath and the spin 𝑧
component 𝐼𝑧

𝑘 of spin 𝑘,

∣𝐽 , 𝐽𝑧, 𝑗 = 𝐽 ± 1
2

, 1
2

⟩ = ∓√1
2

(1 ∓ 𝐽𝑧

𝑗 + 1/2
) ∣𝑗, 𝐽𝑧 − 1

2
; 1
2

, 1
2

⟩

+ √1
2

(1 ± 𝐽𝑧

𝑗 + 1/2
) ∣𝑗, 𝐽𝑧 + 1

2
; 1
2

, −1
2

⟩ , (4.22)
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where either 𝐼𝑧
𝑘 = 1/2 or 𝐼𝑧

𝑘 = −1/2 and 𝑗𝑧 = 𝐽𝑧 − 𝐼𝑧
𝑘 respectively. This format

finally allows for the application of the spin operator 𝐼𝜏
𝑘 which results in

𝐼−1
𝑘 ∣𝐽 , 𝐽𝑧, 𝑗 = 𝐽 ± 1

2
, 1
2

⟩ = ∓1
2

√1 ∓ 𝐽𝑧

𝑗 + 1/2
∣𝑗, 𝐽𝑧 − 1

2
; 1
2

, −1
2

⟩ , (4.23a)

𝐼0
𝑘 ∣𝐽 , 𝐽𝑧, 𝑗 = 𝐽 ± 1

2
, 1
2

⟩ = ∓√1
8

(1 ∓ 𝐽𝑧

𝑗 + 1/2
) ∣𝑗, 𝐽𝑧 − 1

2
; 1
2

, 1
2

⟩

− √1
8

(1 ± 𝐽𝑧

𝑗 + 1/2
) ∣𝑗, 𝐽𝑧 + 1

2
; 1
2

, −1
2

⟩ , (4.23b)

𝐼+1
𝑘 ∣𝐽 , 𝐽𝑧, 𝑗 = 𝐽 ± 1

2
, 1
2

⟩ = 1
2

√1 ± 𝐽𝑧

𝑗 + 1/2
∣𝑗, 𝐽𝑧 + 1

2
; 1
2

, 1
2

⟩ . (4.23c)

As a next step, the matrix elements in the nuclear spin 𝑧 basis are evaluated,

⟨𝐽 ′, 𝐽𝑧 + 𝜏, 𝑗′ = 𝐽 ′ ± 1
2

, 1
2

∣ 𝐼𝜏
𝑘 ∣𝐽 , 𝐽𝑧, 𝑗 = 𝐽 ± 1

2
, 1
2

⟩

= 𝛿𝑗,𝑗′ ×

⎧
{{{
⎨
{{{
⎩

(𝐽 − 𝑗)√1
2 (1 + 2 (𝐽′−𝑗)(𝐽𝑧−1)

𝑗+1/2 ) (1 + 2 (𝑗−𝐽)𝐽𝑧

𝑗+1/2 ), 𝜏 = −1,

(𝐽 ′ − 𝑗)(𝐽 − 𝑗)√(1 + 2 (𝐽′−𝑗)𝐽𝑧

𝑗+1/2 ) (1 + 2 (𝐽−𝑗)𝐽𝑧

𝑗+1/2 )

−1
4√(1 + 2 (𝑗−𝐽′)𝐽𝑧

𝑗+1/2 ) (1 + 2 (𝑗−𝐽)𝐽𝑧

𝑗+1/2 ), 𝜏 = 0,

(𝐽 ′ − 𝑗)√1
2 (1 + 2 (𝐽′−𝑗)(𝐽𝑧+1)

𝑗+1/2 ) (1 + 2 (𝑗−𝐽)𝐽𝑧

𝑗+1/2 ), 𝜏 = +1.

(4.24)

These expressions have to be inserted in Eq. (4.21) for the transformation of the
matrix element into the eigenbasis of 𝐻HF.

Since the nuclear spins in the box model limit are all equal, we introduce an isotropic
transition rate 𝑊 𝜏

𝑘 = 𝑊 0
𝑛 for 𝜏 ∈ {−1, 0, 1}, which is identical for all nuclear spins

𝑘 ∈ {1, … , 𝑁}. Accordingly, we set ℎ𝜏
𝑘 = ℎ𝑛 for 𝜏 ∈ {−1, 0, 1} and 𝑘 ∈ {1, … , 𝑁}.

Analogously, the isotropic electron spin flip rate 𝑊 𝜏
0 = 𝑊 0

𝑒 is employed. Under
the assumption of the equivalence of all nuclear spins, the above evaluation of the
matrix element, Eq. (4.21), applies to any individual nuclear spin and the sum over
𝑘 in Eq. (4.19) only produces a prefactor of 𝑁 for the nuclear share. The sum over 𝜁
(𝜁′ respectively) in Eq. (4.19) splits into a sum over 𝑗 = 𝐽 ± 1/2 (𝑗′ = 𝐽 ′ ± 1/2) and
𝜁𝑗 (𝜁𝑗′) for the transition induced by a nuclear spin. When the system is diagonal
in the quantum number 𝜁 and therefore 𝜁𝑗, the sums over 𝜁𝑗 and 𝜁𝑗′ reduce to a
single sum with 𝜁𝑗 = 𝜁𝑗′ , which simplifies to the prefactor of 𝑔𝑁−1(𝑗′) for the nuclear
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contributions. Finally, the transition rate, Eq. (4.19), can be specified by

𝛤 𝜏
𝐽,𝐽′(𝐽𝑧

𝑎 , 𝐽𝑧
𝑏 ; 𝜎𝑎, 𝜎𝑏, 𝜎𝑐, 𝜎𝑑) = 𝛿𝜀𝜎𝑎

𝐽,𝐽𝑧𝑎
,𝜀𝜎𝑏

𝐽,𝐽𝑧
𝑏
𝛿𝜀𝜎𝑐

𝐽′,𝐽𝑧𝑎−𝜏,𝜀𝜎𝑑
𝐽′,𝐽𝑧

𝑏 −𝜏
[𝑊 0

𝑒 ℎ𝑒(𝛥𝜎𝑎,𝐽,𝐽𝑧
𝑎

𝜎𝑐,𝐽′,𝐽𝑧
𝑎−𝜏)

× ⟨𝜓𝜎𝑎,𝜁
𝐽,𝐽𝑧

𝑎
|𝑆𝜏|𝜓𝜎𝑐,𝜁′

𝐽′,𝐽𝑧
𝑎−𝜏⟩ ⟨𝜓𝜎𝑏,𝜁′

𝐽′,𝐽𝑧
𝑏 −𝜏|(𝑆𝜏)†|𝜓𝜎𝑏,𝜁

𝐽,𝐽𝑧
𝑏
⟩

+ 𝑁𝑊 0
𝑛 ∑

𝑗,𝑗′

𝑔𝑁−1(𝑗′)
𝑔𝑁(𝐽 ′)

ℎ𝑛(𝛥𝜎𝑎,𝐽,𝐽𝑧
𝑎

𝜎𝑐,𝐽′,𝐽𝑧
𝑎−𝜏)

× ⟨𝜓𝜎𝑎,𝜁
𝐽,𝐽𝑧

𝑎
|𝐼𝜏

𝑘 |𝜓𝜎𝑐,𝜁′

𝐽′,𝐽𝑧
𝑎−𝜏⟩ ⟨𝜓𝜎𝑑,𝜁′

𝐽′,𝐽𝑧
𝑏 −𝜏|(𝐼𝜏

𝑘)†|𝜓𝜎𝑏,𝜁
𝐽,𝐽𝑧

𝑏
⟩ ]
(4.25)

where the matrix elements of type ⟨𝜓𝜎𝑎,𝜁
𝐽,𝐽𝑧

𝑎
|𝑠𝜏

𝑘|𝜓𝜎𝑐,𝜁′

𝐽′,𝐽𝑧
𝑎−𝜏⟩ are evaluated according to

Eq. (4.20) (electron) and Eq. (4.21) (nuclei).

The dimensionless functions mediating the inverse electron and nuclear spin temper-
ature, 𝛽𝑒 and 𝛽𝑛 respectively, are set to

ℎ𝑒(𝜀) = {
𝑒−𝛽𝑒𝜀, 𝜀 > 0,
1, 𝜀 ≤ 0,

ℎ𝑛(𝜀) = {
𝑒−𝛽𝑛𝜀, 𝜀 > 0,
1, 𝜀 ≤ 0,

(4.26)

in compliance with the transition rates employed in the Ising limit, Eq. (3.20) and
Eq. (3.21). Transitions decreasing the energy of the system, 𝜀 ≤ 0, occur with
maximum rate, whereas transitions increasing the hyperfine energy, 𝜀 > 0 are
exponentially suppressed at low temperatures. This choice of the rates obeys the
detailed balance relation ℎ𝑖(𝜀)/ℎ𝑖(−𝜀) = exp(−𝛽𝑖𝜀) with 𝑖 ∈ {𝑒, 𝑛} and, therefore,
guarantees the correct Boltzmann form of the density operator in the steady state
at equal temperatures, 𝛽𝑒 = 𝛽𝑛.

4.3 Numerical implementation

As the Lindblad formalism, Eq. (4.18), couples the dynamics of specific matrix
elements of the density operator, it is useful to identify groups of coupled elements
𝑝𝐽

𝐽𝑧
𝑚,𝜎𝑚;𝐽𝑧

𝑛,𝜎𝑛
and address the dynamics within the subspaces separately. Due to

the structure of the spin flip matrix elements in the box model approximation,
we find two decoupled groups of density matrix elements: one group contains the
diagonal matrix elements and the other group comprises the off-diagonal elements.
Furthermore, the group of the off-diagonal elements can be decomposed into several
decoupled subgroups some of which contain a single matrix element only. The matrix
elements of a respective subspace are collated into the vector ⃗𝑓 whose dynamics is
governed by a differential equation of the format ∂𝑡

⃗𝑓 = 𝑊 ⃗𝑓 where the transition
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4.3 Numerical implementation

matrix 𝑊 is set up according to Eq. (4.18). The specific value of the matrix elements
of 𝑊 is obtained from the previously outlined evaluation of the transition rate,
Eq. (4.19). Accordingly, the steady-state density elements of ⃗𝑓 result from the
right eigenvector of the nonsymmetric matrix 𝑊 related to the eigenvalue zero. We
extract the relevant eigenvectors in the respective subspaces by means of an Arnoldi
method [208, 209]. To this end, the identity matrix normalized to a trace of one is
employed as a starting condition for the density operator 𝜌. After the evaluation in
the individual subspaces, the full steady-state density operator 𝜌0 is composed from
the steady-state matrix elements of all subspaces.

A unique steady state of the system is guaranteed at finite nonzero temperatures.
Here, the off-diagonal density matrix elements eventually decay to zero according to
the master equations, Eq. (4.18). The rates between the diagonal elements can be
rewritten in terms of a stochastic matrix 𝑀 = 1 + 𝛿𝑊 with 0 < 𝛿 ≪ 1 such that the
eigenvectors of 𝑊 remain eigenvectors of 𝑀 and the eigenvalues 𝛬𝑀,𝑖 of 𝑀 relate
to the eigenvalues 𝛬𝑊,𝑖 of 𝑊 via 𝛬𝑀,𝑖 = 1 + 𝛿𝛬𝑊,𝑖. Accordingly, the steady-state
solution of the rate equation matches the eigenvector of 𝑀 related to the eigenvalue
one. When 𝑀 allows for (indirect) transitions between any elements [210], i.e., 𝑀
is an irreducible matrix [211], the eigenvalue one is ensured to be nondegenerate
by the Perron-Frobenius theorem [212, 213] producing a unique steady state. This
condition on 𝑀 is fulfilled at finite nonzero temperatures due to the structure of the
master equations, Eq. (4.18), which produce transitions between the neighboring
values of 𝐽𝑧 while simultaneously changing the quantum number 𝐽 by ±1 or 0. At
zero temperatures, however, the above argumentation cannot be directly applied
since a large number of transitions is prohibited according to Eq. (4.26) as they are
related to an energy increase of the system.

The time evolution governed by the Lindblad equation is obtained from the diago-
nalization of the matrices 𝑊 for the individual subspaces of coupled matrix elements.
The Arnoldi method with an appropriate number of iterations 𝑁it is applied for the
calculation of 𝑁it Ritz eigenvalues approximating the eigenspectrum of 𝑊 for a given
initial state. The temporal evolution of the system ⃗𝑓(𝑡) = exp(𝑊𝑡) is approximated
in the Krylov space spanned by the Ritz eigenvectors whose overlap with the initial
state determines the contribution of the related Ritz eigenvalue to the dynamics.
This procedure is applied in Sec. 4.8 where we address the temporal dynamics of
the spin autocorrelation functions.
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4.4 Nuclear-spin polaron state in the anisotropic
system

The extended Lindblad formalism offers the chance to study the formation of the
nuclear-spin polaron state in the system with arbitrary biaxiality of the hyperfine
interaction, Eq. (4.8). Initially, we focus on the steady-state spin expectation values
to gain a profound understanding of the emerging polaronic state in the anisotropic
system. Since the formation of the nuclear-spin polaron state is accompanied by
the emergence of an anticorrelation of the electron spin and the nuclear spins for
positive hyperfine coupling constants and a positive anisotropy parameter, 𝐴0 > 0
and 𝜆 > 0, it is instructive to investigate the spin anticorrelation − ⟨𝑆𝛼𝐽𝛼⟩ /𝑁
with 𝛼 ∈ {𝑥, 𝑦, 𝑧}. The electron-nuclear spin anticorrelation reveals the orientation
of the polaronic state originating from the minimization of the hyperfine energy,
Eq. (4.8), by the opposite alignment of the electron spin and the nuclear spins at low
temperatures. For negative values of the hyperfine coupling constants, in contrast,
a parallel alignment of the electron and nuclear spins is expected. The following
investigations however are restricted to positive values of 𝐴0 and 𝜆, since their sign
only determines the sign of the electron-nuclear spin correlation but does not affect
the fundamental physics.

The steady-state anticorrelation − ⟨𝑆𝛼𝐽𝛼⟩ /𝑁 is obtained from the steady-state
density operator 𝜌0, ∂𝑡𝜌0 = 0 according to the master equations, Eq. (4.18), which
is inserted into the relation ⟨𝑂⟩ = Tr [𝑂𝜌0] for the expectation value of a general
observable 𝑂, here 𝑂 ≡ 𝑆𝑧𝐽𝑧. The rate equations allow for convenient treatment
of a quantum mechanical system with 𝑁 = 103 nuclear spins in the box model
limit, whose steady-state density operator is obtained numerically as outlined in the
previous section. For the transition rates, we use 𝑊 0

𝑒 = 10−3𝜔ℎ and 𝑊 0
𝑛 = 10−6𝜔ℎ to

ensure that electron spin flips occur with three orders of magnitude faster rate than
the nuclear spin flips. These rates provide a rough estimate: The main energy scale of
the system 𝜔ℎ is provided by the hyperfine coupling and corresponds to a time scale of
1 ns. We expect the electron spin to relax on a time scale of 1 μs [214] via spin-lattice
coupling whereas the nuclear spin flip rates are governed by the nuclear dipole-dipole
interactions which occur on a time scale of 1 ms. The choice of the system size and
the flip rates is kept for the following sections unless stated otherwise. As a reference
scale for measuring time and energy, we utilize 𝜔ℎ = (∑𝑘 𝐴2

𝑘)1/2 ≡ (𝑁𝐴2
0)1/2 as in

the examination of the Ising system in Chapter 3.

The dependence of the nuclear-spin polaron formation on the hyperfine anisotropy is
examined by three physically relevant scenarios: (a) the Ising limit 𝜆 = 0 applicable
to heavy hole spins, which was previously studied in Chapter 3, (b) the isotropic
system 𝜆 = 1 arising for the electron spin, and (c) an anisotropic system with
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Figure 4.1: Anticorrelation of the electron spin and the total nuclear spin. The
individual components as well as the total anticorrelation are presented for three
different values of the hyperfine anisotropy parameter 𝜆 in (a), (b), and (c). The
legend in panel (a) applies to the entire figure. The spin anticorrelation is displayed
as a function of the inverse nuclear spin temperature 𝛽𝑛 whereas the inverse electron
spin temperature is fixed to 𝛽𝑒𝜔ℎ = 0.5. The figure is taken from Ref. [199].

𝜆 = 2 capturing the light hole spin. We find that while the total anticorrelation,
− ⟨S ⋅ J⟩ /𝑁, matches in the three cases, the individual contributions − ⟨𝑆𝛼𝐽𝛼⟩ /𝑁
are clearly governed by the hyperfine anisotropy, see Fig. 4.1. At an electron
spin temperature fixed in the intermediate regime, 𝛽𝑒𝜔ℎ = 0.5, the total spin
anticorrelation (blue line) as a function of the inverse nuclear spin temperature
𝛽𝑛 starts at zero for high temperatures and approaches the maximum value of
a quarter per nuclear spin − ⟨S ⋅ J⟩ /𝑁 = 1/4 when decreasing the nuclear spin
temperature. For the spatial components, we display − ⟨𝑆𝑥𝐽𝑥⟩ /𝑁 (green line) which
equals − ⟨𝑆𝑦𝐽𝑦⟩ /𝑁 due to the axial rotation symmetry of the Hamiltonian (4.8) as
well as − ⟨𝑆𝑧𝐽𝑧⟩ /𝑁 (orange line).

In the Ising limit, 𝜆 = 0, the electron-nuclear spin correlation is solely made up by
the 𝑧 component whereas the transversal components ⟨𝑆𝑥𝐽𝑥⟩ = ⟨𝑆𝑦𝐽𝑦⟩ = 0 remain
zero even at low temperatures, see Fig. 4.1(a). Since only the spin 𝑧 components
enter the hyperfine energy at 𝜆 = 0 and the spin flip terms are absent, the polaron
state is oriented along the 𝑧 axis. It is noteworthy that similar behavior is observed
for any system with 𝜆 ∈ [0, 1), where the hyperfine interaction along the 𝑧 axis
dominates the transversal contributions. The results for 𝜆 ∈ [0, 1) would fully
coincide with those in Fig. 4.1(a) and therefore are not presented here.

The spin anticorrelation in the isotropic system, 𝜆 = 1, is equally distributed
between the individual components, ⟨𝑆𝑥𝐽𝑥⟩ = ⟨𝑆𝑦𝐽𝑦⟩ = ⟨𝑆𝑧𝐽𝑧⟩, such that at low
temperatures each component contributes with − ⟨𝑆𝛼𝐽𝛼⟩ /𝑁 = 1/12 per nuclear
spin, see Fig. 4.1(b). As a result of a lack of spatial preference in the hyperfine
Hamiltonian, the forming nuclear-spin polaron state is completely isotropic.

In an anisotropic system with |𝜆| > 1, the hyperfine interaction within the (𝑥𝑦) plane
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predominates. Consequently, the electron-nuclear spin anticorrelation forms in the
components − ⟨𝑆𝑥𝐽𝑥⟩ /𝑁 and − ⟨𝑆𝑦𝐽𝑦⟩ /𝑁 whereas the 𝑧 component remains zero.
For a light hole in a quantum dot, the anisotropy parameter 𝜆 = −2 is realized [184].
Since the sign of 𝜆 only determines whether a parallel or antiparallel orientation of
the electron spin and the nuclear spins in the (𝑥𝑦) plane forms, we restrict ourselves
to positive values of 𝜆 and exemplarily present the data for a system with 𝜆 = 2, see
Fig. 4.1(c). At a vanishing 𝑧 contribution of the spin correlation, the anticorrelation
is split equally between the 𝑥 and 𝑦 component such that ⟨𝑆𝑥𝐽𝑥⟩ constitutes half of
the full correlator ⟨S ⋅ J⟩ and reaches − ⟨𝑆𝑥𝐽𝑥⟩ /𝑁 = 1/8 at low temperatures. In
the system with |𝜆| > 1, the temperature at which the polaron formation starts is
shifted to higher values. This effect will be addressed in the subsequent section.

4.5 Crossover temperature for polaron formation

Since the crossover temperature for the nuclear-spin polaron formation depends on
the anisotropy of the hyperfine interaction, we derive a temperature criterion for
the polaron formation with respect to the anisotropy parameter 𝜆. The mean-field
calculations in Sec. 3.2 provide the critical temperatures,

𝛽𝑒,𝑐𝛽𝑛,𝑐 = 16
𝑁𝑎2

0
. (4.27)

Here, we rewrote Eq. (3.12) in terms of a rescaled hyperfine coupling constant 𝑎0.
The coupling constant 𝑎0 covers the complete prefactor in the electron-nuclear spin
interaction along the axis of polaron formation in the respective realization of the
hyperfine Hamiltonian,

𝑎0 = {
𝐴0, |𝜆| ≤ 1,
𝜆𝐴0, |𝜆| > 1.

(4.28)

The original coupling constant 𝐴0 is multiplied by the parameter 𝜆 for the polaron
formation within the (𝑥𝑦) plane and applies unaltered when the polaron state is
oriented along the 𝑧 axis.

In accordance with the findings of the mean-field treatment, we apply the analytically
derived criterion, Eq. (3.42), for the polaron formation in the Ising limit of the
hyperfine interaction and insert the adjusted hyperfine coupling constant 𝑎0,

𝛽𝑛,𝑝 = 4
𝑎0

artanh ( 4
(𝑁 + 2)𝑎0𝛽𝑒,𝑝

) . (4.29)

Aiming at the temperature line in the (𝛽𝑛, 𝛽𝑒) plane for the onset of polaron forma-
tion, we study the spin fluctuations as a function of the two inverse temperatures.
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Figure 4.2: Fluctuations 𝜎2
𝑆𝐽/𝑁 of the electron-nuclear spin correlation as a

function of the inverse electron and nuclear spin temperatures for three select
values of the hyperfine anisotropy parameter (a), (b), and (c). The color coding
in the three upper panels is the same (see the legend on the right). Panel (d)
displays the fluctuations 𝜎2

𝑆𝐽 at a fixed electron spin temperature, 𝛽𝑒𝜔ℎ = 0.4. The
nuclear crossover temperature according to Eq. (4.29) is indicated by the dashed
(𝛽𝑛,𝑝𝜔ℎ = 41.3 for |𝜆| ≤ 1) or dotted (𝛽𝑛,𝑝𝜔ℎ = 10.1 for |𝜆| = 2) red vertical line.
The figure is taken from Ref. [199].

Since the total electron-nuclear spin correlation ⟨S ⋅ J⟩ has proven to unambiguously
indicate the polaron formation independent of the hyperfine anisotropy, we focus on
the associated fluctuations,

𝜎2
𝑆𝐽 = ⟨(S ⋅ J)2⟩ − ⟨S ⋅ J⟩2 , (4.30)

which we expect to exhibit a peak at those temperatures at which the electron-
nuclear spin anticorrelation starts to rise. Figure 4.2 displays the fluctuations 𝜎2

𝑆𝐽/𝑁
as a function of the inverse temperatures 𝛽𝑛 and 𝛽𝑒 for three selected values of the
hyperfine anisotropy parameter, (a) 𝜆 = 0, (b) 𝜆 = 1, and (c) 𝜆 = 2, for a system
comprising 𝑁 = 103 nuclear spins. The maximum line of 𝜎2

𝑆𝐽/𝑁 (yellow color
coding) matches the analytic criterion, Eq. (4.29), (red dotted line) in all three cases.
For comparison, the mean-field critical temperature, Eq. (4.27), in the anisotropic
system is added (white line). A horizontal cut through the upper panels of Fig. 4.2
located at the inverse electron spin temperature of 𝛽𝑒𝜔ℎ = 0.4, see Fig. 4.2(d),
reveals that the inverse nuclear crossover temperature 𝛽𝑛,𝑝 is positioned at the rising
flank of the fluctuations 𝜎2

𝑆𝐽/𝑁 respectively. For |𝜆| ≤ 1 the nuclear-spin polaron
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Figure 4.3: Fluctuations 𝜎2
𝑆𝐽/𝑁 of the electron-nuclear spin correlation in the

isotropic system as a function of the inverse nuclear spin temperature. The inverse
electron spin temperature is fixed at (a) 𝛽𝑒𝜔ℎ = 0.4 and (b) 𝛽𝑒𝜔ℎ = 0.4√103/𝑁.
The legend indicating the system size 𝑁 in panel (b) applies to both panels. The
figure is taken from Ref. [199].

forms below the same crossover temperature, whereas for |𝜆| > 1 the crossover
regime is shifted to higher temperatures.

Similarly to the spin system with Ising-type hyperfine interaction for which we
presented the analysis of the fluctuations 𝜎2

𝑆𝐽,𝑧/𝑁 of the electron-nuclear spin 𝑧
correlation, cf. Fig. 3.5, the fluctuations 𝜎2

𝑆𝐽/𝑁 can be interpreted by means of the
heat capacity of the system in thermal equilibrium 𝛽𝑒 = 𝛽𝑛. At low temperatures,
the correlator ⟨S ⋅ J⟩ is proportional to the hyperfine energy under the assumption
that the spins align either completely within the (𝑥𝑦) plane or along the 𝑧 axis with
the respective scenario determined by the parameter 𝜆. The fluctuations 𝜎2

𝑆𝐽/𝑁 are
proportional to the heat capacity for 𝛽𝑒 = 𝛽𝑛 which would exhibit a discontinuity
at the critical temperature according to Landau theory of phase transitions [204].
Naturally, the finite system of size 𝑁 = 103 does not exhibit an actual phase
transition but rather a crossover that sharpens with increasing 𝑁.

For a detailed analysis of the scaling with the system size 𝑁, we examine the
extensive quantity 𝜎2

𝑆𝐽 per nuclear spin (as discussed in the previous chapter for
the Ising-type hyperfine interaction). Figure 4.3(a) presents the fluctuations 𝜎2

𝑆𝐽/𝑁
as a function of 𝛽𝑛 for various sizes of the isotropic system (see legend in panel
(b)) at a fixed inverse electron spin temperature 𝛽𝑒𝜔ℎ = 0.4 . Similarly as the
fluctuations 𝜎2

𝐽,𝑧/𝑁 of the absolute value of the total nuclear spin 𝑧 component
examined for the Ising-type hyperfine coupling, cf. Fig. 3.8, the fluctuations 𝜎2

𝑆𝐽/𝑁
of the electron-nuclear spin correlation per nuclear spin exhibit a peak whose height
is independent of the system size. Here, we present 𝜎2

𝑆𝐽/𝑁 in the system with
isotropic hyperfine interaction exemplarily; the results for any other value of the
anisotropy parameter 𝜆 resemble these data. The findings for 𝜎2

𝑆𝐽/𝑁 support the
assumption that nuclear-spin polaron formation is a crossover phenomenon rather
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than an actual phase transition.

Following the shift of the polaron formation to higher electron spin temperatures
with increasing 𝑁, we scale the value of the electron spin temperature by 1/

√
𝑁 in

accordance with Eq. (4.29) in order to correspond to 𝛽𝑒𝜔ℎ = 0.4 for the system size
𝑁 = 103. The electron-nuclear spin fluctuations, displayed as a function of 𝛽𝑛 in
Fig. 4.3(b), illustrate the sharpening of the crossover with increasing system size
𝑁. For larger values of 𝑁, the peak of 𝜎2

𝑆𝐽/𝑁 grows in amplitude while moving to
lower nuclear spin temperatures. As a result of including the full density operator
in the Lindblad formalism for the isotropic system, the investigation for 𝜆 = 1 is
limited to system sizes of several thousand nuclei and cannot reach realistic system
sizes of 𝑁 = 105.

4.6 Nuclear distribution functions

A detailed analysis of the nuclear spin reorientation at decreasing temperatures
is facilitated by the distribution functions of the quantum numbers of the total
nuclear spin. We define the distribution function 𝑔(𝐽𝑧) of the nuclear spin quantum
number 𝐽𝑧 based on the diagonal elements 𝑝𝐽

𝐽𝑧,𝜎;𝐽𝑧,𝜎 of the steady-state density
operator obtained from the master equation, Eq. (4.18). The diagonal elements are
transformed from the energy eigenbasis into the spin 𝑧 basis according to Eqs. (4.11b)
and (4.12b). Subsequently, all contributions to a fixed value of the spin projection
𝐽𝑧 are added up,

𝑔(𝐽𝑧) =
𝑁/2

∑
𝐽=−𝑁/2

∑
𝜎=±

[(𝑐𝜎
𝐽,𝐽𝑧)2𝑝𝐽

𝐽𝑧,𝜎;𝐽𝑧,𝜎 + (𝑑𝜎
𝐽,𝐽𝑧+1)2𝑝𝐽

𝐽𝑧+1,𝜎;𝐽𝑧+1,𝜎] . (4.31)

Accordingly, the definition, Eq. (4.31), comprises sums over the box model quantum
numbers 𝐽 and 𝜎 respectively. Respecting the axial rotation symmetry of the
hyperfine interaction, we introduce the perpendicular component of the total nuclear
spin,

𝐽𝑝2 = 𝐽(𝐽 + 1) − 𝐽𝑧2, (4.32)

as an additional observable that allows for the study of the transversal spin orienta-
tion. The transversal spin component 𝐽𝑝2 is deduced from the quantum numbers
of the total nuclear spin 𝐽 and the spin projection 𝐽𝑧, and according to Eq. (4.32)
is limited to values 𝐽𝑝2 ∈ {0, … , 𝑁/2(𝑁/2 + 1)}. The distribution function of the
transversal component 𝐽𝑝2 is implemented analogously to the distribution function
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of the quantum number 𝐽𝑧,

𝑔(𝐽𝑝2) =
𝑁/2

∑
𝐽=−𝑁/2

𝐽+1

∑
𝐽𝑧=−𝐽

∑
𝜎=±

[(𝑐𝜎
𝐽,𝐽𝑧)2𝑝𝐽

𝐽𝑧,𝜎;𝐽𝑧,𝜎

+(𝑑𝜎
𝐽,𝐽𝑧+1)2𝑝𝐽

𝐽𝑧+1,𝜎;𝐽𝑧+1,𝜎] 𝛿𝐽𝑝2,𝐽(𝐽+1)−𝐽𝑧2 , (4.33)

where all contributions to a fixed value of 𝐽𝑝2 from various combinations of the
box model quantum numbers 𝐽, 𝐽𝑧, and 𝜎 are accumulated. As a result of the
nonequidistant values of 𝐽𝑝2, the data for the distribution function 𝑔(𝐽𝑝2) is pro-
cessed as a histogram. The histogram typically consists of 200 bins in the range
𝐽𝑝2 ∈ {0, … , 250500} for 𝑁 = 103. Figure 4.4 displays the continuous change of the
distribution functions 𝑔(𝐽𝑧) and 𝑔(𝐽𝑝2) when increasing the inverse nuclear spin
temperature 𝛽𝑛 at a fixed inverse electron spin temperature of 𝛽𝑒𝜔ℎ = 0.5. The
nuclear distribution functions at exemplary values of the nuclear spin temperature
are provided in Fig. 4.5. Both figures present the results for the three relevant cases
of hyperfine anisotropy, 𝜆 = 0, 𝜆 = 1, and 𝜆 = 2.

The resulting distribution function at high temperatures is universal and does not
depend on the details of the hyperfine interaction: When the thermal energy exceeds
the energy scale of the system, the spins are randomly oriented forming a fully
isotropic spin state. In the distribution function of the nuclear spin projection onto
an arbitrary axis, e.g., the 𝑧 axis, this state translates to the Gaussian distribution,
𝑔(𝐽𝑧) ∝ exp(−2𝐽𝑧2/𝑁), see left panels of Fig. 4.5 (red lines). The transversal spin
component 𝐽𝑝2 reflects the disordered nuclear spin state at high temperatures by
a distribution function 𝑔(𝐽𝑝2) ∝ exp(−2𝐽𝑝2/𝑁), see right panels of Fig. 4.5 (red
lines). However, the distribution functions at lower temperatures are governed by
the hyperfine anisotropy.

For an Ising-type hyperfine interaction, 𝜆 = 0, the distribution function 𝑔(𝐽𝑧) has
already proven to be a valuable indicator for the polaron formation, cf. Sec. 3.5. The
distribution function, Eq. (4.31), defined for the results obtained by the Lindblad
formalism exactly coincides with the definition, Eq. (3.27), introduced for the rate
equations. In the Ising limit of hyperfine interaction, the Lindblad formalism with
appropriately adjusted parameters, such as the functions ℎ𝑒(𝜀) and ℎ𝑛(𝜀) as well
as the transition rates 𝑊 0

𝑒 and 𝑊 0
𝑛 , reproduces the steady-state results of the rate

equations as a special case. Accordingly, the distribution function 𝑔(𝐽𝑧) in Fig. 4.4(a)
matches the results in Fig. 3.6. We note however that the system size differs for
the two approaches. At high temperatures, the nuclear spins are randomly aligned
producing the Gaussian shape of 𝑔(𝐽𝑧) with the maximum at 𝐽𝑧 = 0. Cooling
the nuclear spins, 𝑔(𝐽𝑧) exhibits two maxima at 𝐽𝑧 ≠ 0 which reflect the polaron
orientation along the positive and negative 𝑧 direction. Figure 4.5(a) presents 𝑔(𝐽𝑧)
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Figure 4.4: Nuclear distribution functions of the quantum numbers 𝐽𝑧 (left panels)
and 𝐽𝑝2 (right panels) for different hyperfine anisotropy parameters: 𝜆 = 0 (upper
panels), 𝜆 = 1 (middle panels), and 𝜆 = 2 (lower panels). The distributions are
displayed as a function of the effective inverse nuclear spin temperature 𝛽𝑛 for
a fixed value of the inverse electron spin temperature 𝛽𝑒𝜔ℎ = 0.5. The figure is
taken from Ref. [199].

at three selected nuclear spin temperatures, i.e., it provides vertical cuts through
Fig. 4.4(a). We recall that the bifurcation point, at which the single peak of 𝑔(𝐽𝑧)
splits into two maxima, served as a basis for the derivation of the temperature
criterion for polaron formation, Eq. (4.29). The orientation of the nuclear spin along
positive or negative 𝑧 direction for Ising-type hyperfine interaction is accompanied
by the reduction of the transversal component 𝐽𝑝2. Figure 4.4(b) displays the
focusing of 𝑔(𝐽𝑝2) around 𝐽𝑝2 = 0, which cannot be resolved in Fig. 4.5(b), where
the distribution functions 𝑔(𝐽𝑝2) at the three selected nuclear spin temperatures
coincide as a result of the limited values of 𝐽𝑝2 for 𝑁 = 103.

For the spin system with isotropic hyperfine interaction, 𝜆 = 1, the polaron state is
isotropic such that the behavior of the spin components 𝐽𝑥, 𝐽𝑦, and 𝐽𝑧 is identical,
see Fig. 4.4(c) for 𝑔(𝐽𝑧). Starting from the crossover temperature, 𝛽𝑛,𝑝𝜔ℎ = 32.6 for
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Figure 4.5: Nuclear distribution functions 𝑔(𝐽𝑧) (left panels) and 𝑔(𝐽𝑝2) (right
panels) at fixed electron and nuclear spin temperatures. The inverse electron
temperature is set to 𝛽𝑒𝜔ℎ = 0.5. The inverse nuclear spin temperature is indicated
by the legend in panel (b). In panel (a), we added the results for 𝜆 = 0.5 as gray
dotted lines for comparison. The figure is taken from Ref. [199].

𝛽𝑒,𝑝𝜔ℎ = 0.5, the Gaussian distribution fans out to a uniform distribution which cov-
ers a range approaching the maximum range 𝐽𝑧 ∈ {−𝑁/2, … , 𝑁/2} with increasing
𝛽𝑛. Figure 4.5(c) presents 𝑔(𝐽𝑧) at exemplary nuclear spin temperatures. Here, the
emerging uniform distribution is resolved even more clearly. The distribution func-
tion of the transversal component approaches 𝑔(𝐽𝑝2) = (𝑁/2(𝑁/2 + 1) − 𝐽𝑝2)−1/2

at zero temperatures, see Figs. 4.4(d) and 4.5(d).

The nuclear distribution functions in the case of anisotropic hyperfine interaction
with |𝜆| > 1 show the formation of a nuclear-spin polaron state within the (𝑥𝑦)
plane. Here, we exemplarily study the system with an anisotropy parameter 𝜆 = 2.
Since the perpendicular spin component 𝐽𝑝2 reaches a maximum in the polaronic
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Figure 4.6: Distribution function of the total nuclear spin 𝐽 depending on the
inverse nuclear spin temperature 𝛽𝑛 for a fixed electron spin temperature 𝛽𝑒𝜔ℎ =
0.5.

state, see Fig. 4.4(f), the axial component 𝐽𝑧 minimizes, see Fig. 4.4(e). The
maximum of the distribution function 𝑔(𝐽𝑝2) moves from small values of 𝐽𝑝2 at
high temperatures to the limit 𝐽𝑝2 = 𝑁/2(𝑁/2 + 1), i.e, 𝐽𝑝2/𝑁2 ≈ 1/4 for large
𝑁, when lowering the nuclear spin temperature, see Fig. 4.5(f). Concurrently, the
Gaussian high-temperature distribution of 𝐽𝑧 sharpens around 𝐽𝑧 = 0 to allow for
the transversal spin alignment, see Fig. 4.5(e).

Albeit the spatial orientation of the nuclear-spin polaron state is determined by
the hyperfine anisotropy and transmits to the distribution functions of 𝐽𝑧 and 𝐽𝑝2,
the behavior of the quantum number of total nuclear spin 𝐽 agrees for the various
values of the anisotropy parameter 𝜆. The distribution function of 𝐽 is defined in
accordance with 𝑔(𝐽𝑧) and 𝑔(𝐽𝑝2),

𝑔(𝐽) =
𝐽+1

∑
𝐽𝑧=−𝐽

∑
𝜎=±

[(𝑐𝜎
𝐽,𝐽𝑧)2𝑝𝐽

𝐽𝑧,𝜎;𝐽𝑧,𝜎 + (𝑑𝜎
𝐽,𝐽𝑧+1)2𝑝𝐽

𝐽𝑧+1,𝜎;𝐽𝑧+1,𝜎] . (4.34)

Figure 4.6 displays 𝑔(𝐽) as a function of the inverse nuclear spin temperature 𝛽𝑛 for
a fixed value of the electron spin temperature, 𝛽𝑒𝜔ℎ = 0.5. At high temperatures,
small values of 𝐽 outweigh the larger ones whereas with lowering the temperature
the maximum weight in 𝑔(𝐽) approaches the maximum total nuclear spin 𝐽 = 𝑁/2.
This process starts at the inverse nuclear crossover temperature 𝛽𝑛,𝑝𝜔ℎ = 32.6.
We note that for 𝜆 = 2 the polaron formation is shifted to higher temperatures,
𝛽𝑛,𝑝𝜔ℎ = 8.0, such that 𝑔(𝐽) in Fig. 4.6(c) differs from the results in Figs. 4.6(a)
and 4.6(b) obtained for 𝜆 = 0 and 𝜆 = 1 respectively.
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4.7 Quantum phase transition

The change of the nuclear-spin polaron state as a function of the anisotropy parameter
𝜆 can be directly connected to the transformation of the ground state of 𝐻HF. The
minimum eigenenergy of the Hamiltonian, Eq. (4.8), is invariably given by 𝜀−

𝐽,𝐽𝑧

according to Eq. (4.11a), since the remaining eigenenergies, 𝜀+
𝐽,−𝐽 and 𝜀+

𝐽,𝐽+1 defined
in Eq. (4.12a) as well as 𝜀+

𝐽,𝐽𝑧 according to Eq. (4.11a), are unambiguously larger
in magnitude. For the determination of the quantum numbers 𝐽 and 𝐽𝑧 minimizing
𝜀−

𝐽,𝐽𝑧 , we rewrite Eq. (4.11a) into

𝜀−
𝐽,𝐽𝑧 = −𝐴0

4
− 𝐴0

2
√1

4
+ 𝜆2𝐽(𝐽 + 1) + (1 − 𝜆2)𝐽𝑧(𝐽𝑧 − 1) (4.35)

and find that the quantum number of total nuclear spin 𝐽 has to be consistently
maximized: 𝐽 = 𝑁/2 holds in the ground state for any value of 𝜆 which fully
complies with Fig. 4.6. Clearly, the sign of 𝜆 has no effect. Furthermore, the
quantum number 𝐽𝑧 that minimizes the energy depends on the absolute value of the
anisotropy parameter. For |𝜆| < 1, the hyperfine energy is minimized for the box
model quantum numbers 𝐽𝑧 = −𝑁/2 + 1 and 𝐽𝑧 = 𝑁/2. The twofold degenerate
ground state is given by |↑⟩ |𝐽 = 𝑁/2, 𝐽𝑧 = −𝑁/2⟩ and |↓⟩ |𝐽 = 𝑁/2, 𝐽𝑧 = 𝑁/2⟩.
For |𝜆| = 1, the quantum number 𝐽𝑧 does not enter Eq. (4.35) and the ground state
is 𝑁-fold degenerate, 𝐽𝑧 ∈ {−𝑁/2+1, … , 𝑁/2}. For |𝜆| > 1, the product 𝐽𝑧(𝐽𝑧 −1)
in Eq. (4.35) has to be minimized such that the twofold degenerate ground state
is provided by the box model eigenstates with index 𝐽𝑧 = 0 and 𝐽𝑧 = 1.1 The
resulting ground state energy 𝜀0 for the three cases is given by

𝜀0 = −𝐴0
4

−

⎧{{
⎨{{⎩

𝐴0
2 √1

4 + 𝑁
2 (𝑁

2 − 1) + 𝜆2𝑁, |𝜆| < 1,
𝐴0
2 √1

4 + 𝑁
2 (𝑁

2 + 1), |𝜆| = 1,
𝐴0
2 √1

4 + 𝜆2 𝑁
2 (𝑁

2 + 1), |𝜆| > 1.

(4.36)

The change of the ground state degeneracy as a function of the hyperfine anisotropy
parameter 𝜆 translates to a quantum phase transition at |𝜆𝑐| ≡ 1.

We draw attention to the profound difference between the twofold degenerate ground
states at |𝜆| < 1 and |𝜆| > 1 respectively. For |𝜆| < 1, no transition between
the two ground states can occur at zero temperatures as a result of the vanishing
transition rate, Eq. (4.25), between the respective ground state and the neighboring
spin states that can be reached by a single spin flip. Any transition between the

1Here, we assume an even number 𝑁. We note that for odd 𝑁 the ground state for |𝜆| > 1 would
be nondegenerate.
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Figure 4.7: Nuclear distribution function 𝑔(𝐽𝑧) at the inverse electron spin
temperature of 𝛽𝑒𝜔ℎ = 0.5. (a) 𝑔(𝐽𝑧) depending on the hyperfine anisotropy
parameter 𝜆 at the fixed inverse nuclear spin temperature 𝛽𝑛𝜔ℎ = 103. (b) 𝑔(𝐽𝑧)
depending on 𝛽𝑛 for 𝜆 = 0.99 < 𝜆𝑐. (c) 𝑔(𝐽𝑧) depending on 𝛽𝑛 for 𝜆 = 1.01 > 𝜆𝑐.
The figure is taken from Ref. [199].

eigenstates of 𝐻HF that is related to a single spin flip process would connect the
ground state to another spin state of higher energy. However, at 𝑇𝑒 = 𝑇𝑛 = 0 we
evaluate ℎ𝑒(𝜀) = ℎ𝑛(𝜀) = 0 for 𝜀 > 0 according to Eq. (4.26), and hence the total
transition rate vanishes. Thus, the two ground states for |𝜆| < 1 are disconnected
at low temperatures. The two ground states for |𝜆| > 1, in contrast, are directly
connected by a single spin flip. Since no energy change is required for this transition,
it can take place even at zero temperatures. This difference in the nature of the
ground state is reflected in the mean-field approach, cf. Sec. 3.2, by two separate
polaron states oriented along the 𝑧 axis for |𝜆| < 1 and continuously connected
polaron states within the (𝑥𝑦) plane for |𝜆| > 1.

The distribution function of the total nuclear spin 𝑧 component illustrates the change
of the ground states. We display 𝑔(𝐽𝑧) as a function of the anisotropy parameter
𝜆 for fixed inverse temperatures, 𝛽𝑒𝜔ℎ = 0.5 and 𝛽𝑛𝜔ℎ = 103, such that we expect
the formation of a polaron in the system comprising 𝑁 = 103 nuclear spin, see
Fig. 4.7(a). The change of quantum numbers 𝐽𝑧 constituting the nuclear polaron
state as a function of the parameter 𝜆 becomes clearly visible: For 𝜆 < 0, 𝑔(𝐽𝑧)
displays contributions at 𝐽𝑧/𝑁 = ±1/2 corresponding to the twofold degenerate
ground state. As these peaks of 𝑔(𝐽𝑧) are relatively sharp, they are hard to detect in
the figure. At 𝜆 = 1, the distribution function spreads uniformly from 𝐽𝑧/𝑁 = −0.5
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to 𝐽𝑧/𝑁 = 0.5 reflecting the 𝑁-fold degeneracy of the ground state. For 𝜆 > 1, the
distribution of 𝐽𝑧 narrows around 𝐽𝑧 = 0 with a remaining width that originates
from the nonzero temperatures in the calculations.

The temperature-dependent nuclear distribution reveals the convergence towards the
respective ground state with increasing 𝛽𝑛. As an example for an almost isotropic
system with an anisotropy parameter slightly below or above the value 𝜆𝑐 = 1,
we consider 𝜆 = 0.99 < 𝜆𝑐, see Fig. 4.7(b), and 𝜆 = 1.01 > 𝜆𝑐, see Fig. 4.7(c).
For 𝜆 = 0.99, the two branches related to the nuclear-spin polaron state oriented
along the 𝑧 axis form similar to the Ising limit, cf. Fig. 4.4(a). For 𝜆 = 1.01, the
weight of the distribution function 𝑔(𝐽𝑧) focuses around 𝐽𝑧 = 0 for low nuclear spin
temperatures and indicates the spin orientation within the (𝑥𝑦) plane. Compared to
the results for a larger anisotropy parameter, 𝜆 = 2, cf. Fig. 4.4(e), the distribution
function 𝑔(𝐽𝑧) for 𝜆 = 1.01 exhibits a somewhat blurred behavior close to the
crossover temperature. Decreasing the nuclear spin temperature below the crossover
temperature, 𝑔(𝐽𝑧) first spreads to a broader range of 𝐽𝑧 before it eventually focuses
around zero.

4.8 Temporal spin fluctuations

The nuclear polaron is a strongly correlated spin state and significantly differs from
the randomly aligned nuclear spins in the high temperature limit. As a consequence,
the overall spin dynamics in the system are massively affected by the formation
of the polaronic state. For the analysis of the temporal evolution of the system,
we examine the autocorrelation functions of the charge carrier spin and the total
nuclear spin respectively in the subsequent sections and reveal profound differences
in the temporal spin fluctuations depending on the selected temperature regime.
In particular, the autocorrelation functions at low temperatures exhibit long living
spin correlations for a hyperfine interaction with anisotropy parameter |𝜆| ≤ 1.

4.8.1 Autocorrelation function of the charge carrier spin

The autocorrelation function of the localized electron or hole spin is directly accessible
by spin noise measurements with optical techniques [121, 123, 125, 215–217]. These
noninvasive measurements allow for an undisturbed study of the temporal evolution
of the optically responsive charge carrier spin [218]. In the framework of the Lindblad
formalism, Eq. (4.1), the autocorrelation function 𝐶𝛼

𝑆 (𝑡) of the charge carrier spin
S with 𝛼 ∈ {𝑥, 𝑦, 𝑧} is given by

𝐶𝛼
𝑆 (𝑡) = ⟨𝑆𝛼(0)𝑆𝛼(𝑡)⟩ = Tr[𝜌0𝑆𝛼𝑆𝛼(𝑡)] = Tr[𝑆𝛼ℒ(𝑆𝛼𝜌0)], (4.37)
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Figure 4.8: Real part of the autocorrelation function of the charge carrier spin
coupled to 𝑁 = 103 nuclear spins. The flip rates are set to 𝑊 0

𝑒 = 10−3𝜔ℎ and
𝑊 0

𝑛 = 10−6𝜔ℎ respectively. The left panels present the spin 𝑧 autocorrelation,
and the right panels relate to the in-plane spin component 𝑥. Results for three
different values of the hyperfine anisotropy parameter are presented: 𝜆 = 0 (upper
panels), 𝜆 = 1 (middle panels), and 𝜆 = 2 (lower panels). The inverse electron
spin temperature is consistently fixed at 𝛽𝑒𝜔ℎ = 0.5 whereas the inverse nuclear
spin temperature is varied. The legend in panel (a) applies to the entire figure.
The figure is taken from Ref. [199].

where the Liouville operator ℒ governs the time evolution of the system. While
the superoperator ℒ is applied to the density operator 𝜌 in Eq. (4.1), it acts on
the operator product 𝑆𝛼𝜌0 in the definition above [219]. Since we are interested
in an observable whose measurement provides a real value, we examine the real
part of the correlation function 𝐶𝛼

𝑆 (𝑡) in the following which corresponds to the
symmetrized spin autocorrelation,

Re(𝐶𝛼
𝑆 (𝑡)) = 1

2
[⟨𝑆𝛼(0)𝑆𝛼(𝑡)⟩ + ⟨𝑆𝛼(𝑡)𝑆𝛼(0)⟩] . (4.38)

Figure 4.8 presents the data for Re(𝐶𝑧
𝑆(𝑡)) as well as Re(𝐶𝑥

𝑆(𝑡)) in the spin system
with size 𝑁 = 103 for three cases of the hyperfine anisotropy, 𝜆 = 0, 𝜆 = 1,
and 𝜆 = 2. For the charge carrier spin with the length 1/2, the initial value
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unambiguously yields Re(𝐶𝛼
𝑆 (0)) = 1/4. However, the subsequent evolution of the

spin autocorrelation depends strongly on the respective hyperfine scenario and the
installed temperatures.

In the system with Ising-type hyperfine interaction, 𝜆 = 0, the electron spin 𝑧
component decays at high temperatures on a timescale given by the electron spin
flip rate 𝑊 0

𝑒 , here 𝑊 0
𝑒 = 10−3𝜔ℎ, see Fig. 4.8(a) (red line). Decreasing the nuclear

spin temperature, the autocorrelation function does not decay completely to zero
anymore within the presented time range of up to 𝑡𝜔ℎ = 1010 but to a plateau
(orange line). This plateau lifts when reducing the nuclear spin temperature until
no decay is visible in the presented time range anymore (blue line). At finite
nonzero temperatures, however, we expect an eventual decay to zero on a prolonged
time scale, Re(𝐶𝑧

𝑆(𝑡)) = 0 for 𝑡 → ∞. This ultimate decay is a result of the
exponentially suppressed spin flips according to Eq. (4.26) which occur with a small
but nonvanishing rate at nonzero temperatures.

The autocorrelation function of the charge carrier spin 𝑥 component for the Ising
limit of the hyperfine interaction approaches zero relatively fast in contrast to
Re(𝐶𝑧

𝑆(𝑡)), see Fig. 4.8(b). At high temperatures (red line), the decay takes place
on the time scale determined by the hyperfine fluctuations, 1/𝜔ℎ, as the spin S
precesses around the randomly fluctuating 𝑧 component of the Overhauser field. At
lower nuclear spin temperatures, an oscillatory component to Re(𝐶𝑥

𝑆(𝑡)) emerges
in the system with 𝜆 = 0 (orange line). When the nuclear spins start to align
along the 𝑧 direction forming the nuclear-spin polaron state, the spin S precesses
in the (𝑥𝑦) plane. Lowering the temperature, the 𝑧 component of the Overhauser
field becomes stronger such that the electron precession frequency increases (green
line). Simultaneously, the reduced fluctuations of the Overhauser field produce a
prolonged envelope function of the oscillatory component. While the dephasing time
results from the hyperfine fluctuations with the rate 𝜔ℎ at high temperatures, the
envelope of Re(𝐶𝑥

𝑆(𝑡)) is governed by the rate 𝑊 0
𝑒 in the low temperature regime

(blue line).

We note that the equidistant spikes in the electron spin autocorrelation function
Re(𝐶𝑥

𝑆(𝑡)) for 𝜆 = 0 are an artifact of the box model approximation here. For
equal hyperfine coupling constants in the finite system (𝐴𝑘 ≡ 𝐴0), the Overhauser
field acting on the electron spin is quantized and the individual components are an
integer multiple of 𝑎0. As a consequence, all electron spin precession frequencies are
commensurate producing a rephasing at times 𝑇𝑛 = 2𝜋𝑛/𝑎0 with an integer 𝑛, i.e.,
at 𝑇𝑛𝜔ℎ = 2𝜋𝑛

√
𝑁 for |𝜆| ≤ 1 which yields 𝑇1𝜔ℎ ≈ 200 for 𝑁 = 103. This effect

becomes visible in the autocorrelation functions for 𝜆 = 1 and 𝜆 = 2 as well.

The autocorrelation functions in the isotropic system with 𝜆 = 1 exhibit similar
oscillatory behavior as Re(𝐶𝑥

𝑆(𝑡)) for 𝜆 = 0. Naturally, for 𝜆 = 1 the autocorrelation
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functions of the various spin components coincide, i.e., Re(𝐶𝑥
𝑆(𝑡)) = Re(𝐶𝑦

𝑆(𝑡)) =
Re(𝐶𝑧

𝑆(𝑡)), see Fig. 4.8(c) and Fig. 4.8(d) respectively. At high temperatures,
the electron spin autocorrelation functions (red lines) conform to the analytic
prediction, Eq. (2.17), derived by Merkulov et al. [55] for times 𝑡𝜔ℎ ≤ 102. As the
prediction was performed for the closed isotropic system in the frozen Overhauser
field approximation, deviations from Eq. (2.17) are found on longer time scales
exceeding 𝑡𝜔ℎ = 102. Here, the dynamics in the nuclear spin bath and the reservoir-
induced spin flips are no longer negligible. According to the prediction by Merkulov
et al., the spin autocorrelation reaches a plateau at a third of the starting value
Re(𝐶𝛼

𝑆 (0))/3 = 1/12 after roughly 𝑡𝜔ℎ = 10. At times 𝑡𝜔ℎ ≈ 103, however, the
plateau decays governed by the rate 𝑊 0

𝑒 for the coupling to the thermal reservoir. A
decrease in the nuclear spin temperature yields again an oscillatory component similar
to Re(𝐶𝑥

𝑆(𝑡)) for 𝜆 = 0. In the system with 𝜆 = 1, the autocorrelation functions
oscillate around the value 1/12 as a result of the isotropic polaron formation: The
emerging Overhauser field is isotropically oriented and therefore the component
parallel to the 𝛼 axis protects part of the autocorrelation function Re(𝐶𝛼

𝑆 (𝑡)) from
decay. The perpendicular Overhauser field components, in contrast, produce the
oscillations which again become faster with strengthening Overhauser field while
their dephasing to the plateau of 1/12 is prolonged from 1/𝜔ℎ to 1/𝑊 0

𝑒 when
increasing 𝛽𝑛.

At low temperatures, the plateau persists for times up to 𝑡𝜔ℎ ≈ 109 > 𝜔ℎ/𝑊 0
𝑒

which is longer than dictated by the electron spin flip rate 𝑊 0
𝑒 . Eventually, the

plateau decays to zero even at minimum temperatures. The specific rate of the
decay depends on the effective spin temperatures as well as the spin flip rates 𝑊 0

𝑒
and 𝑊 0

𝑛 . The reason for the decay is the rotation of the nuclear-spin polaron state
in the isotropic system. For instance, the polaron state, where the electron spin
is initially oriented along 𝑧 direction, may rotate on the Bloch sphere to a state
pointing in any other direction producing a loss of temporal spin correlation without
a change of the energy. For the rate of polaron rotation at low temperatures, we
obtain

𝑊𝑟 = 𝑊 0
𝑒

𝑁2 + 𝑊 0
𝑛

𝑁
(4.39)

from considering the diffusion process on the diagonal of the operator 𝑆𝑧𝜌0 which
enters 𝐶𝛼

𝑆 (𝑡) via the definition, Eq. (4.37). For a detailed derivation of the rotation
rate, Eq. (4.39), we refer to the next section. The evaluation for the applied
parameters (𝑊 0

𝑒 = 10−3𝜔ℎ, 𝑊 0
𝑛 = 10−6𝜔ℎ and 𝑁 = 103) yields 𝑊𝑟 = 2 × 10−9𝜔ℎ

which matches the data in Figs. 4.8(c) and 4.8(d) (blue lines respectively).

In the spin system with anisotropic hyperfine interaction with 𝜆 = 2, the hyperfine
interaction along the 𝑥 and 𝑦 direction is a factor of two stronger than along the 𝑧
axis. The autocorrelation functions Re(𝐶𝑥

𝑆(𝑡)) and Re(𝐶𝑧
𝑆(𝑡)) for this system, see
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Fig. 4.8(e) and Fig. 4.8(f) respectively, resemble the data for the isotropic case with
slight modifications. The high-temperature autocorrelation functions (red lines)
for shorter time scales match the analytically predicted behavior, Eq. (2.17), with
small deviations produced by the amplification of the hyperfine interaction in the
(𝑥𝑦) plane: The dip in Re(𝐶𝑥

𝑆(𝑡)) and Re(𝐶𝑧
𝑆(𝑡)) is shifted to earlier times and the

plateau is lowered (𝑧 component) or lifted (𝑥 component). For the low temperature
results, the electron precession about the emerging Overhauser field shows again.
The autocorrelation function Re(𝐶𝑧

𝑆(𝑡)) oscillates around zero as the Overhauser
field forms within the (𝑥𝑦) plane for |𝜆| > 1. When decreasing the temperature,
the oscillations become faster, and the envelope function passes from a dephasing
with the rate 𝜔ℎ in the disordered nuclear spin system to a prolonged envelope
function with a dephasing rate governed by reservoir-induced spin flips. We note
that the precession frequency of the electron spin at the same temperatures is faster
for 𝜆 = 2 than for 𝜆 = 1 due to the enhancement of the in-plane Overhauser field
components by a factor of two. The oscillatory behavior of the correlation function
Re(𝐶𝑥

𝑆(𝑡)) at lower temperatures is similar for 𝜆 = 1 and 𝜆 = 2. However, the spin
𝑥 fluctuations oscillate around half of the initial spin correlation Re(𝐶𝑥

𝑆(0))/2 = 1/8
for 𝜆 = 2, since the Overhauser field polarization related to the polaron state forms
isotropically within the (𝑥𝑦) plane. Interestingly, the plateau of 1/8 decays on
the time scale 𝑡𝜔ℎ ≈ 103 for 𝜆 = 2 even at low temperatures (blue line) which is
relatively fast compared to the isotropic system. The profound difference in the
long time behavior of the correlation function at low temperatures originates from
the differing nature of the polaronic ground state as demonstrated in Sec. 4.7. This
effect is discussed in more detail in the next section.

4.8.2 Rotation of the polaron state in the isotropic system

The long living electron spin correlations in the polaronic phase of the isotropic
system and their ultimate decay to zero on prolonged time scales raise the question
about the mechanism behind the loss of correlation. Previously, we phenomeno-
logically attributed the final decay of Re(𝐶𝛼

𝑆 (𝑡)) to the rotation of the isotropic
nuclear-spin polaron state and stated the related rotation rate 𝑊𝑟, Eq. (4.39).
Here, we extend the discussion employing the relevant rate equations and present a
comprehensive derivation of the rate 𝑊𝑟.

To this end, we focus on the temporal evolution of the operator product 𝑂𝜌0. The
product with 𝑂 ≡ 𝑆𝑧 enters the evaluation of the electron spin autocorrelation
function 𝐶𝑧

𝑆(𝑡) according to Eq. (4.37), however, the following analysis can also be
extended to 𝑂 ≡ 𝐽𝑧, which we address later. Previously, we aggregated the elements
of the density operator 𝜌 into the elements 𝑝𝐽

𝐽𝑧
𝑚,𝜎𝑚;𝐽𝑧

𝑛,𝜎𝑛
which combine different
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degeneracy indices 𝜁, cf. Eq. (4.17). In conformity with this procedure, we introduce
the elements 𝜒𝐽

𝐽𝑧
𝑚,𝜎𝑚;𝐽𝑧

𝑛,𝜎𝑛
of the product 𝑂𝜌0,

𝜒𝐽
𝐽𝑧

𝑚,𝜎𝑚;𝐽𝑧
𝑛,𝜎𝑛

= ∑
𝜁

⟨𝜓𝜎𝑚,𝜁
𝐽,𝐽𝑧

𝑚
|𝑂𝜌0|𝜓𝜎𝑛,𝜁

𝐽,𝐽𝑧
𝑛
⟩

= 𝑝𝐽
𝐽𝑧

𝑛,𝜎𝑛;𝐽𝑧
𝑛,𝜎𝑛

⟨𝜓𝜎𝑚,𝜁
𝐽,𝐽𝑧

𝑚
|𝑂|𝜓𝜎𝑛,𝜁

𝐽,𝐽𝑧
𝑛
⟩ .

(4.40)

Since the steady-state density operator 𝜌0 is diagonal in the energy eigenbasis, it
allows for the replacement by the associated diagonal elements 𝑝𝐽

𝐽𝑧
𝑛,𝜎𝑛;𝐽𝑧

𝑛,𝜎𝑛
in the

second line of Eq. (4.40). We note that the degeneracy index 𝜁 that occurs on the right
hand side of the definition can take an arbitrary exemplary value 𝜁 ∈ {1, … , 𝑔𝑁(𝐽)}
as the related elements all have the same value. The temporal evolution of 𝑂𝜌0,
which enters the spin autocorrelation function according to Eq. (4.37), is governed by
the Liouvillian ℒ that was originally introduced in the context of the time evolution
of the density operator, cf. Eq. (4.1). Accordingly, the differential equations for the
matrix elements 𝜒𝐽

𝐽𝑧
𝑚,𝜎𝑚;𝐽𝑧

𝑛,𝜎𝑛
comply with the rate equations for 𝑝𝐽

𝐽𝑧
𝑚,𝜎𝑚;𝐽𝑧

𝑛,𝜎𝑛
, see

Eq. (4.18).

Aiming at the low temperature dynamics, we set 𝑇𝑒 = 𝑇𝑛 = 0 in the following
analysis for simplicity. As a consequence, the density operator only has nonzero
entries in the elements 𝑝𝑁/2

𝐽𝑧,−;𝐽𝑧,− which are related to the ground state of the
hyperfine Hamiltonian characterized by 𝐽 = 𝑁/2 and 𝜎𝑚 = 𝜎𝑛 = −, cf. Sec. 4.7.
Moreover, the operator 𝑂 obeys the relations [𝑂, J2] = [𝑂, 𝐽𝑧 + 𝑆𝑧] = 0 for 𝑂 ≡ 𝑆𝑧

(or 𝑂 ≡ 𝐽𝑧). Hence, 𝑂 does not produce any transitions in the density operator
to subspaces with 𝐽 < 𝑁/2 nor a change of the box model index 𝐽𝑧, which as we
recall actually corresponds to the shifted total spin component 𝑆𝑧 + 𝐽𝑧 + 1/2. Thus,
it is sufficient to focus on matrix elements of the type 𝜒𝑁/2

𝐽𝑧,𝜎;𝐽𝑧,− since the remaining
elements of 𝑂𝜌0 vanish at zero temperatures.

The rate equations of these elements differ for diagonal and off-diagonal contributions,
𝜒𝑁/2

𝐽𝑧,−;𝐽𝑧,− and 𝜒𝑁/2
𝐽𝑧,+;𝐽𝑧,− respectively. For the off-diagonal elements, we obtain the

temporal evolution according to

∂𝑡𝜒
𝑁/2
𝐽𝑧,+;𝐽𝑧,− = −{𝑖𝛥+,𝐽,𝐽𝑧

−,𝐽,𝐽𝑧 +
1

∑
𝜏=−1

∑
𝐽′,𝜎′

[𝛤 𝜏
𝐽′,𝐽(𝐽𝑧 + 𝜏, 𝐽𝑧 + 𝜏; 𝜎′, 𝜎′, +, +)

+𝛤 𝜏
𝐽′,𝐽(𝐽𝑧 + 𝜏, 𝐽𝑧 + 𝜏; 𝜎′, 𝜎′, −, −)] }𝜒𝑁/2

𝐽𝑧,+;𝐽𝑧,− (4.41)

from adjusting Eq. (4.18) appropriately. Here, the coupling to other matrix el-
ements provided by the last line of Eq. (4.18) drops out, since the related rate
𝛤 𝜏

𝐽,𝐽′(𝐽𝑧, 𝐽𝑧; +, −, 𝜎, 𝜎′) is zero due to the energy mismatch in the first Kronecker
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delta in definition, Eq. (4.25). The rate equations for the off-diagonal elements
𝜒𝑁/2

𝐽𝑧,+;𝐽𝑧,− produces damped oscillations with frequency 𝛥+,𝐽,𝐽𝑧

−,𝐽,𝐽𝑧 = 𝐴0(𝐽 + 1/2)
whose decay rate is determined by the summed contributions in Eq. (4.41). The
decay rate is assumed to be roughly proportional to 𝑊 0

𝑒 + 𝑁𝑊 0
𝑛 based on Eq. (4.25)

from approximating the matrix elements ⟨𝜓𝜎𝑎,𝜁
𝐽,𝑧

𝑎
|𝑠𝜏

𝑘|𝜓𝜎𝑐,𝜁′

𝐽′,𝐽𝑧
𝑎−𝜏⟩ by a constant, exploit-

ing 𝑔𝑁(𝑁/2) = 𝑔𝑁−1((𝑁 − 1)/2) = 1 and minding that the function ℎ𝑘(𝜀) according
to Eq. (4.26) corresponds to the Heaviside function 𝛩(−𝜀) for 𝑇𝑒 = 𝑇𝑛 = 0. The
prefactor for the proportionality to 𝑊 0

𝑒 + 𝑁𝑊 0
𝑛 can be predicted by evaluating

⟨𝜓𝜎𝑎,𝜁
𝐽,𝑧

𝑎
|𝑠𝑧

𝑘|𝜓𝜎𝑐,𝜁′

𝐽′,𝐽𝑧
𝑎−𝜏⟩ ≈ 1/2 and ⟨𝜓𝜎𝑎,𝜁

𝐽,𝑧
𝑎

|𝑠±1
𝑘 |𝜓𝜎𝑐,𝜁′

𝐽′,𝐽𝑧
𝑎−𝜏⟩ ≈ 1/

√
8 according to Eq. (4.15)

such that the sum of their squares produces one half as a constant of propor-
tionality. In the low temperature result for 𝐶𝑧

𝑆(𝑡) (blue line in Fig. 4.8(c)), these
findings are reflected by the fast oscillatory component dephasing on the time scale
1/(𝑊 0

𝑒 + 𝑁𝑊 0
𝑛) = 500/𝜔ℎ for the given choice of parameters, where the prefactor of

a half is canceled out by the prefactors resulting from the definition of the Lindblad
equation, Eq. (4.1).

The rate equation for the diagonal elements 𝜒𝑁/2
𝐽𝑧,−;𝐽𝑧,− is obtained analogously from

Eq. (4.18) minding that 𝐽 ′ = 𝑁/2 and 𝜎 = 𝜎′ = − in the ground state,

∂𝑡𝜒
𝑁/2
𝐽𝑧,−;𝐽𝑧,− = 2

1
∑

𝜏=−1
{−𝛤 𝜏

𝑁/2,𝑁/2(𝐽𝑧 + 𝜏, 𝐽𝑧 + 𝜏; −, −, −, −)𝜒𝑁/2
𝐽𝑧,−;𝐽𝑧,−

+𝛤 𝜏
𝑁/2,𝑁/2(𝐽𝑧, 𝐽𝑧; −, −, −, −)𝜒𝑁/2

𝐽𝑧−𝜏,−;𝐽𝑧−𝜏,−} . (4.42)

In the above equation, the contribution for 𝜏 = 0 is canceled out since the two
terms in the brace equal one another except for the sign. Consequently, we restrict
our further analysis to 𝜏 = ±1 and obtain the corresponding rate according to
Eq. (4.25) where we insert 𝑔𝑁(𝑁/2) = 𝑔𝑁−1((𝑁 − 1)/2) = 1 and ℎ𝑘(𝜀) = 𝛩(−𝜀)
due to 𝑇𝑒 = 𝑇𝑛 = 0,

𝛤 𝜏
𝑁/2,𝑁/2(𝐽𝑧, 𝐽𝑧; −, −, −, −) =

𝑊 0
𝑒 ⟨𝜓−,𝜁

𝑁/2,𝐽𝑧 |𝑆𝜏|𝜓−,𝜁′

𝑁/2,𝐽𝑧−𝜏⟩ ⟨𝜓−,𝜁′

𝑁/2,𝐽𝑧−𝜏|(𝑆𝜏)†|𝜓−,𝜁
𝑁/2,𝐽𝑧⟩

+ 𝑁𝑊 0
𝑛 ⟨𝜓−,𝜁

𝑁/2,𝐽𝑧 |𝐼𝜏
𝑘 |𝜓−,𝜁′

𝑁/2,𝐽𝑧−𝜏⟩ ⟨𝜓−,𝜁′

𝑁/2,𝐽𝑧−𝜏|(𝐼𝜏
𝑘)†|𝜓−,𝜁

𝑁/2,𝐽𝑧⟩ . (4.43)

For the first rate occurring in Eq. (4.42), 𝐽𝑧 in the above expression has to be
replaced by 𝐽𝑧 + 𝜏.

For further simplification of the rate equation, Eq. (4.42), we again approximate the
matrix elements ⟨𝜓−,𝜁

𝑁/2,𝐽𝑧 |𝑠𝜏
𝑘|𝜓−,𝜁′

𝑁/2,𝐽𝑧−𝜏⟩ ≈ 1/
√

8 by a constant respecting definition,
Eq. (4.15). When the resulting rate 𝛤 𝜏

𝑁/2,𝑁/2(𝐽𝑧, 𝐽𝑧; −, −, −, −) = (𝑊 0
𝑒 + 𝑁𝑊 0

𝑛)/8
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is inserted into the Eq. (4.42), the simplified rate equation becomes

∂𝑡𝜒
𝑁/2
𝐽𝑧,−;𝐽𝑧,− = 𝑊 0

𝑒 + 𝑁𝑊 0
𝑛

4
(𝜒𝑁/2

𝐽𝑧−1,−;𝐽𝑧−1,− − 2𝜒𝑁/2
𝐽𝑧,−;𝐽𝑧,− + 𝜒𝑁/2

𝐽𝑧+1,−;𝐽𝑧+1,−) .
(4.44)

Due to the coupling to one neighboring matrix element only, the rate equations for
the outer elements 𝜒𝑁/2

𝐽𝑧,−;𝐽𝑧,− with 𝐽𝑧 = −𝐽 + 1 or 𝐽𝑧 = 𝐽 are obviously modified
to

∂𝑡𝜒
𝑁/2
−𝐽+1,−;−𝐽+1,− = 𝑊 0

𝑒 + 𝑁𝑊 0
𝑛

4
(−𝜒𝑁/2

−𝐽+1,−;−𝐽+1,− + 𝜒𝑁/2
−𝐽+2,−;−𝐽+2,−) , (4.45a)

∂𝑡𝜒
𝑁/2
𝐽,−;𝐽,− = 𝑊 0

𝑒 + 𝑁𝑊 0
𝑛

4
(𝜒𝑁/2

𝐽−1,−;𝐽,− − 𝜒𝑁/2
𝐽,−;𝐽,−) . (4.45b)

In a next step, we employ the continuum limit of 𝐽𝑧 realized for 𝑁 → ∞ and replace
the matrix elements 𝜒𝑁/2

𝐽𝑧,−;𝐽𝑧,−(𝑡) by a continuous function 𝜒(𝐽𝑧, 𝑡). The above rate
equation in the continuum limit is given by the differential equation

∂𝑡𝜒(𝐽𝑧, 𝑡) = 𝐷∂2
𝐽𝑧𝜒(𝐽𝑧, 𝑡) (4.46)

with the diffusion constant 𝐷 = (𝑊 0
𝑒 + 𝑁𝑊 0

𝑛)/4. This one-dimensional diffusion
equation has the fundamental solution

𝜒(𝐽𝑧, 𝑡) = 1√
4𝜋𝐷𝑡

exp (− 𝐽𝑧2

4𝐷𝑡
) . (4.47)

The characteristic time scale of the diffusion process on the diagonal elements 𝜒(𝐽𝑧, 𝑡)
that governs the rotation of the isotropic polaron state results from the temporal
evolution of the variance 𝜎2

𝜒(𝑡) = 2𝐷𝑡 of the Gaussian distribution of 𝐽𝑧 controlled
by Eq. (4.47). Demanding that the distribution of 𝐽𝑧 has the standard deviation
of half of the maximum range 𝐽𝑧 ∈ {−𝑁/2, … , 𝑁/2}, i.e., 𝜎2

𝜒(𝑡𝑟) = (𝑁/2)2 after
a characteristic time 𝑡𝑟, yields the relation 2𝐷𝑡𝑟 = (𝑁/2)2. The related rotation
rate is identified as the inverse of 𝑡𝑟 adjusted by a factor two originating from the
prefactors entering the Lindblad master equation, Eq. (4.1), such that 𝑊𝑟 = 1/(2𝑡𝑟).
Consequently, we obtain 𝑊𝑟 = 𝐷/(𝑁/2)2 which eventually results in the rotation
rate of the isotropic polaronic state stated in Eq. (4.39).

Interestingly, the isotropic polaron state causes a loss of the spin coherence on the
prolonged time scale 𝑡𝑟 even at zero effective spin temperatures. This provides a
sharp contrast to the anisotropic system with |𝜆| < 1 where we expect nondecaying
spin autocorrelation functions for 𝑇𝑒 = 𝑇𝑛 = 0. For |𝜆| < 1, the twofold degenerate
ground states are disconnected at zero temperatures since any flip rates 𝛤 𝜏

𝐽,𝐽′(…)
vanish either as a result of the associated energy increase or the inaccessibility of
the related eigenstates by a single spin flip mediated by the operator 𝑠𝜏

𝑘.
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For the analysis of the anisotropic system with |𝜆| > 1, we follow the above analysis
up to the rate equation, Eq. (4.42), and the simplifications of the related transition
rate, Eq. (4.43). However, the ground state at |𝜆| > 1 is restricted to 𝐽𝑧 = 0 and
𝐽𝑧 = 1 such that the coupled differential equations for the relevant diagonal elements
𝜒𝑁/2

0,−;0,− and 𝜒𝑁/2
1,−;1,− read

∂𝑡𝜒
𝑁/2
0,−;0,− = 𝑊 0

𝑒 + 𝑁𝑊 0
𝑛

4
(−𝜒𝑁/2

0,−;0,− + 𝜒𝑁/2
1,−;1,−) , (4.48a)

∂𝑡𝜒
𝑁/2
1,−;1,− = 𝑊 0

𝑒 + 𝑁𝑊 0
𝑛

4
(𝜒𝑁/2

0,−;0,− − 𝜒𝑁/2
1,−;1,−) . (4.48b)

A single spin flip between the two ground states at |𝜆| > 1 produces a complete loss
of spin correlation, whereas the correlation at 𝜆 = 1 is gradually lost by successive
spin flips. Thus, the autocorrelation function Re(𝐶𝑧

𝑆(𝑡)) for |𝜆| > 1 decays with
the rate (𝑊 0

𝑒 + 𝑁𝑊 0
𝑛)/2, which is by a factor of 𝑁2 faster than in the isotropic

case. Accordingly, the spin autocorrelation function 𝐶𝑧
𝑆(𝑡) for 𝜆 = 2 (blue line in

Fig. 4.8(e)) dephases on the time scale 1/(𝑊 0
𝑒 + 𝑁𝑊 0

𝑛) = 500/𝜔ℎ at the selected
flip rates.

4.8.3 Autocorrelation function of the nuclear spin

As the formation of the nuclear-spin polaron state implies a profound reorientation
of the nuclear spins, the question about the robustness of the nuclear spin state
arises. Albeit the nuclear spin autocorrelation function is not directly accessible
by optical techniques in experiments, it provides a valuable theoretical tool for the
investigation of the nuclear spin fluctuations [220, 221]. Analogously to 𝐶𝛼

𝑆 (𝑡) for
the charge carrier spin, we introduce the autocorrelation function 𝐶𝛼

𝐽 (𝑡) of the total
nuclear spin,

𝐶𝛼
𝐽 (𝑡) = ⟨𝐽𝛼(0)𝐽𝛼(𝑡)⟩ = Tr[𝜌0𝐽𝛼𝐽𝛼(𝑡)] = Tr[𝐽𝛼ℒ(𝐽𝛼𝜌0)], (4.49)

with 𝛼 ∈ {𝑥, 𝑦, 𝑧}.

Figure 4.9 presents the results of Re(𝐶𝑧
𝐽(𝑡)) for the three physically most relevant

hyperfine scenarios, (a) 𝜆 = 0, (b) 𝜆 = 1, and (c) 𝜆 = 2. The fast oscillations
observed in the electron spin autocorrelation functions are absent here, and we find a
plain decay process at rather long time scales. This decay depends on the hyperfine
anisotropy as well as on the spin temperatures and the reservoir-related spin flip
rates. Since we expect an ultimate decay of Re(𝐶𝑧

𝐽(𝑡)) → 0 for 𝑡 → ∞ at nonzero
temperatures for any value of the hyperfine anisotropy parameter, we introduce the
decay time 𝜏𝑑 as that time at which the nuclear spin autocorrelation function has
decreased to the fraction of 1/𝑒 of its initial value, i.e., Re(𝐶𝑧

𝐽(𝜏𝑑)) = Re(𝐶𝑧
𝐽(0))/𝑒.
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Figure 4.9: Autocorrelation function of the total nuclear spin 𝑧 component for
three different values of the hyperfine anisotropy parameter, (a) 𝜆 = 0, (b) 𝜆 = 1,
and (c) 𝜆 = 2 with 𝑁 = 103 respectively. The flip rates are set to 𝑊 0

𝑒 = 10−3𝜔ℎ
and 𝑊 0

𝑛 = 10−6𝜔ℎ. The inverse electron spin temperature is fixed at 𝛽𝑒𝜔ℎ = 0.5.
The inverse nuclear spin temperature 𝛽𝑛 is varied; the legend in panel (a) applies to
panels (b) and (c) as well. Panel (d) displays the decay time 𝜏𝑑 as a function of 𝛽𝑛
for the different values of 𝜆. The inverse nuclear crossover temperature 𝛽𝑛,𝑝 = 327
for |𝜆| ≤ 1 is indicated by the red dashed vertical line. The figure is taken from
Ref. [199].

The decay time 𝜏𝑑 as a function of the inverse nuclear spin temperature displays
strongly diverging behavior for the various values of 𝜆, see Fig. 4.9(d) for which
𝛽𝑒𝜔ℎ = 0.5. While the decay time is consistently governed by the nuclear spin flip
rate 𝑊 0

𝑛 (here 𝑊 0
𝑛 = 10−6𝜔ℎ) at high temperatures independent of the parameter 𝜆,

the behavior of 𝜏𝑑 when increasing 𝛽𝑛 differs depending on 𝜆. The high temperature
limit 𝜏𝑑 ≈ 1/(2𝑊 0

𝑛) is indicated by the lower dotted gray horizontal line in Fig. 4.9(d).
For |𝜆| < 1, the decay time 𝜏𝑑 strongly increases above the inverse crossover
temperature for polaron formation 𝛽𝑛,𝑝 = 327, see Fig. 4.9(d) (dark green line
for 𝜆 = 0, orange line for 𝜆 = 0.5). Similarly to the electron spin autocorrelation
function Re(𝐶𝑧

𝑆(𝑡)) depicted in Fig. 4.8(a), the nuclear spin fluctuations Re(𝐶𝑧
𝐽(𝑡)) for

the Ising-type hyperfine interaction do not decay visibly in the presented time frame
in Fig. 4.9(a). Due to the twofold degenerate polaronic ground state maximizing 𝐽
as well as 𝐽𝑧, the relevant elements of 𝐽𝑧𝜌0 can be mixed only by several consecutive
spin flips, each exponentially suppressed by the temperature-dependent flip rates.
Consequently, 𝜏𝑑 increases exponentially below the crossover temperature for |𝜆| <
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1.

For the isotropic hyperfine interaction, 𝜆 = 1, the decay time 𝜏𝑑 (blue line in
Fig. 4.9(d)) at low temperatures is bound to an upper limit provided by the rate 𝑊𝑟
of the rotation of the polaron state, Eq. (4.39), which yields 𝑊𝑟 = 2 × 10−9𝜔ℎ. The
related decay time 1/(2𝑊𝑟) = 0.25 × 109𝜔ℎ is indicated by the upper dotted gray
horizontal line in Fig. 4.9(d) and matches the upper bound of 𝜏𝑑. We note that the
derivation of the rotation rate of the polaronic state in the isotropic system presented
in the previous subsection can also be conducted for 𝑂 ≡ 𝐽𝑧 in Eq. (4.40). This
analysis directly provides 𝑊𝑟 as the characteristic rate for the diffusion process of
the diagonal elements of 𝐽𝑧𝜌0 which governs the loss of the autocorrelation 𝐶𝑧

𝐽(𝑡).

In the anisotropic system with 𝜆 = 2, the decay of the correlation function 𝐶𝑧
𝐽(𝑡)

is regulated by the coupled rate equations for the twofold degenerate ground state
with box-model quantum numbers 𝐽𝑧 = 0 and 𝐽𝑧 = 1, Eqs. (4.48a) and (4.48b).
Here, 𝜒𝐽

𝐽𝑧,𝜎;𝐽𝑧,𝜎 is introduced from 𝑂 ≡ 𝐽𝑧 in Eq. (4.40). Accordingly, Re(𝐶𝑧
𝐽(𝑡))

decays on the time scale 1/(𝑊 0
𝑒 + 𝑁𝑊 0

𝑛) = 500/𝜔ℎ similarly as Re(𝐶𝑧
𝑆(𝑡)). The

twofold degenerate ground state does not protect the spin system from a loss of
coherence, contrary to the Ising limit of the hyperfine interaction, since the two
ground state elements 𝜒𝑁/2

𝐽𝑧,−;𝐽𝑧,− with 𝐽𝑧 = 0 and 𝐽𝑧 = 1 are directly connected by
a single spin flip.

4.9 Chapter conclusion

In this chapter, we extended the investigation of the polaron formation under
optical cooling of the nuclear spins to the case of a general anisotropic hyperfine
interaction. The situation of differing effective spin temperatures for the localized
charge carrier spin and the surrounding nuclear spins was established by a Lindblad
formalism which incorporates the coupling to two separate temperature-inducing
reservoirs. The Lindblad master equation allows to access the dynamics of the
full density operator 𝜌 in contrast to the rate equations employed in the previous
chapter which were limited to the diagonal elements of 𝜌 in the eigenbasis of the
hyperfine Hamiltonian 𝐻HF. In the special case of the hyperfine interaction in the
Ising limit, the Lindblad formalism exactly reproduces the steady-state results of the
rate equations. Furthermore, the Lindblad equation enables the examination of the
polaron formation in the physically relevant cases of an isotropic system and strong
in-plane hyperfine interaction, e.g., 𝜆 = 2. These cases capture the localized electron
or light hole spin respectively. The distribution of the hyperfine coupling constants
only enters as an effective number of nuclear spins in the dynamics and does not
change the overall temperature-dependent behavior. Therefore, we applied the box
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model approximation of the hyperfine coupling constants which provides numerical
access to a system with 𝑁 = 103 nuclear spins. The anticorrelation of the charge
carrier spin and the nuclear spins in this system indicates the orientation of the
polaronic state along the axis of the strongest hyperfine interaction. Moreover, the
temperature criterion for the polaron formation derived from the rate equations was
generalized to arbitrary anisotropic hyperfine interaction. The distribution functions
of the total nuclear spin, 𝑔(𝐽𝑧) and 𝑔(𝐽𝑝2), reveal a quantum phase transition which
the system undergoes for a change of the hyperfine anisotropy parameter 𝜆. At the
value, 𝜆𝑐 ≡ 1, the degeneracy of the ground state of 𝐻HF changes from a twofold
degenerate ground state for 𝜆 < 𝜆𝑐 to an 𝑁-fold degenerate ground state at 𝜆𝑐
back to a twofold degenerate ground state for 𝜆 > 𝜆𝑐. Finally, the autocorrelation
functions of the charge carrier spin and the nuclear spin respectively were examined
with regard to the polaron formation. Long living nuclear spin correlations were
found for 𝜆 ≤ 1, whereas the correlation of the polaronic state is rapidly lost for
𝜆 > 1 as a result of the respective nature of the ground states.
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Chapter 5

Implementation of periodic optical excitation

The second part of this thesis focuses on the mode-locking effect [67, 68] that emerges
under periodic optical excitation of the localized electron spin in a quantum dot.
This chapter provides the fundamental basics of the realization of the mode-locking
effect in optical pump-probe experiments [67, 68, 74–79]. Moreover, we outline the
theoretical modeling of periodic pulse trains acting on the electron-nuclear spin
system. In the quantum mechanical description, the implementation of the pulse
sequence consists of two components, namely the optical pump pulses and the
time evolution between the pulses. The pump pulse excites the resident electron
spin to the bound trion state, and the subsequent temporal evolution comprises
the trion decay as well as the additional spin dynamics related to the hyperfine
interaction and the precession about the external magnetic field. We address these
two parts separately in the following and develop an efficient procedure for their
numerical implementation. In particular, the dynamics between pulses are tackled
since the straightforward approach would require the handling of nonhermitian
square matrices which have a row number of the squared Hilbert space dimension.
We present a procedure that circumvents this computationally expensive task and
allows for the calculation of the full quantum mechanical time evolution of a system
with 𝑁 = 6 nuclear spins over millions of repetition periods. Such a long simulation
time is required for the convergence of the spin dynamics to a quasistationary steady
state under the periodic optical excitation and enables the study of the mode-locking
effect. Finally, we introduce a configuration average to make up for the relatively
small system size and discuss the evaluation of the numerical results.

5.1 Pump-probe technique

Time-resolved optical measurements with pump-probe technique provide a valuable
tool for the experimental investigation of ultra fast spin dynamics. Pulsed lasers
periodically excite the spin system by pump pulses and record the resulting spin
dynamics via temporally delayed probe pulses. Typically, the pump and probe
beam originate from the same laser whose beam is split into a high intensity pump
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Figure 5.1: Scheme of a typical pump-probe experiment.

share and a much weaker probe proportion. Hence, pump and probe pulses have the
same repetition time 𝑇𝑅 respectively. The temporal delay 𝑇𝑅 between consecutive
pump pulses commonly is in the order of several nanoseconds. After separation
from the pump beam, the probe beam is directed through a mechanical delay line to
adjust the temporal displacement 𝛥𝑡 between excitation and readout, see Fig. 5.1.
Circularly polarized pump pulses are applied to the quantum dot ensemble for the
excitation of the trion state as discussed in Sec. 2.2. Thereby, an electron spin
polarization along the optical axis is generated. The probe beam in contrast is
linearly polarized in order to read out the electron spin polarization in the quantum
dots via Faraday rotation or ellipticity of the transmitted light, cf. Sec. 2.3. Since
the probe pulse is much weaker than the pump pulse, it is assumed to allow for
a nonperturbing measurement. Varying the temporal delay 𝛥𝑡 and averaging
the signal over several repetition periods 𝑇𝑅, a time-resolved signal proportional
to the electron spin polarization is obtained. For the mode-locking experiments,
additionally, an external magnetic field is applied to the sample perpendicular to
the optical axis.

Exemplary traces for the Faraday ellipticity of self-assembled (In,Ga)As/GaAs
quantum dots are presented in Fig. 5.2(a). Here, the optical axis coincides with the
growth direction of the semiconductor heterostructure. The laser repetition time is
𝑇𝑅 = 13.2 ns, and the delay of 𝑡 = 0 ns equals the incidence time of the pump pulse.
The individual traces were recorded for different external magnetic field strengths
and are vertically shifted for clarity. As a result of the transversal magnetic field, the
electron spin polarization initially oriented along the optical axis starts to precess
which is reflected by the oscillations of the ellipticity signal that become faster with
increasing magnetic field strength. The envelope function of the oscillations indicates
a dephasing of the electron spin precession due to the fluctuating hyperfine fields on
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(a) (b)

Figure 5.2: (a) Time-resolved ellipticity signal (in arbitrary units) measured for
periodically pulsed (In,Ga)As/GaAs quantum dots (Sample 2) at a temperature of
4.7 K. The curves recorded at different magnetic field strengths are shifted vertically
for clearness. (b) Amplitude of the revival before the pump pulse as a function of
the external magnetic field for two different samples. Both panels are taken from
Ref. [86].

the timescale of roughly a nanosecond. Furthermore, a shortening of the dephasing
with increasing the external magnetic field strength is observed which is explained
by the variation of the electron 𝑔 factor in the quantum dot ensemble. As the
laser pulses have a finite spectral width, they excite a subset of the inhomogeneous
quantum dots whose trion excitation energies match the laser spectrum. Due to the
linear dependence of the electron 𝑔 factor on the trion excitation energy [77, 101,
128, 222], the excited quantum dot subensemble is subject to a spread of the electron
spin precession frequencies which increases linearly with the applied magnetic field.
Additional modulations of the dephasing envelope originate from oscillations of the
trion hole spin [127] and vanish after the trion recombination time of roughly 400 ps
[127].

Interestingly, the ellipticity signal exhibits a revival directly before the incidence of
the pump pulse at negative pump-probe delay hinting at the synchronization of the
spin dynamics with the periodic excitation. Indeed, the periodic pump pulses give
rise to the mode-locking effect. As the nuclear spins in the quantum dot couple to
the optically driven electron spin via the hyperfine interaction, the periodicity of the
pump pulses is imprinted on the nuclear spin system. The nuclear spin orientation
adjusts in such a way that the electron spin performs a certain number of rotations
for the precession about the sum of the external magnetic field and the nuclear
Overhauser field during the repetition time 𝑇𝑅. This effect is called nuclei-induced
frequency focusing [68].

Since the data in Fig. 5.2(a) indicates a dependence of the electron spin revival
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amplitude on the external magnetic field, the revival amplitudes are extracted from
the time-resolved measurements systematically by fitting the data with a cosine with
Gaussian envelope function [86]. The fitted amplitudes are displayed as a function of
the applied magnetic field in Fig. 5.2(b). Results for two different samples with an
ensemble of self-assembled (In,Ga)As/GaAs quantum dots are provided for which the
In concentration in the dots differs due to the thermal annealing after production [86].
For both samples, the electron spin revival amplitude exhibits a clearly nonmonotonic
dependence on the applied magnetic field. Overall, the amplitude decreases with
increasing magnetic field strength. The increase is superimposed by additional
modulations that differ for the two samples. We attribute these differences to the
differing In and Ga content in the dots, see Sec. 6.6. However, the samples have a
profound minimum of the revival amplitude at roughly 4 T in common.

5.2 Modeling optical pulses

The mode-locking experiments [67, 68] employ circularly polarized pump pulses for
the periodic optical excitation of the electron spins in the singly charged quantum
dots. For the theoretical description of this excitation, we recollect the optical
selection rules presented in Sec. 2.2 and focus on 𝜎+ polarized light as an example.
The description of 𝜎− polarized pulses would be fully analogous. For simplicity,
however, we restrict ourselves to 𝜎+ polarization in this thesis. The 𝜎+ polarized
laser with appropriately adjusted photon frequency can excite an electron at the
conduction level with spin state |↑⟩ to a trion state |↑↓⇑⟩ by photo-generation of an
electron-hole pair, whereas the electron spin state |↓⟩ is left unaffected by the pulse.
We introduce |𝑇 ⟩ ≡ |↑↓⇑⟩ for the trion state and address the laser excitation by the
Hamiltonian for light-matter interaction assuming a classical light field,

𝐻𝐿(𝑡) = [𝑓(𝑡) exp(𝑖𝜀𝑃𝑡) + 𝑓∗(𝑡) exp(−𝑖𝜀𝑃𝑡)] (|𝑇 ⟩ ⟨↑| + |↑⟩ ⟨𝑇 |) . (5.1)

The envelope function of the pulse is determined by 𝑓(𝑡) and its complex conjugate
𝑓∗(𝑡); 𝜀𝑃 specifies the pump frequency. Furthermore, we account for the energy gap
𝜀𝑇 between the electron state |↑⟩ and the trion state |𝑇 ⟩ by the Hamiltonian

𝐻𝑇 = 𝜀𝑇 |𝑇 ⟩ ⟨𝑇 | . (5.2)

The transformation of the combination 𝐻𝑃(𝑡) = 𝐻𝐿(𝑡)+𝐻𝑇 into the rotating frame of
the trion resonance via the unitary operator 𝑈𝑇(𝑡) = |↑⟩ ⟨↑|+|↓⟩ ⟨↓|+exp(𝑖𝜀𝑇𝑡) |𝑇 ⟩ ⟨𝑇 |
provides an adjusted time-dependent Hamiltonian for the optical excitation,

�̃�𝑃(𝑡) = [𝑓∗(𝑡) exp(−𝑖[𝜀𝑃 + 𝜀𝑇]𝑡) + 𝑓(𝑡) exp(𝑖[𝜀𝑃 − 𝜀𝑇]𝑡)] |↑⟩ ⟨𝑇 |
+ [𝑓∗(𝑡) exp(−𝑖[𝜀𝑃 − 𝜀𝑇]𝑡) + 𝑓(𝑡) exp(𝑖[𝜀𝑃 + 𝜀𝑇]𝑡)] |𝑇 ⟩ ⟨↑| . (5.3)
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Based on the rotating-wave approximation, fast oscillating contributions with fre-
quency (𝜀𝑃 + 𝜀𝑇) are omitted as they quickly average out. The remaining terms
with frequency ±(𝜀𝑃 − 𝜀𝑇) are transformed back out of the rotating frame by the
operator 𝑈†

𝑇(𝑡). Finally, the Hamiltonian for the optical excitation by a pump pulse
reads

𝐻𝑃(𝑡) = 𝑓(𝑡) exp(𝑖𝜀𝑃𝑡) |↑⟩ ⟨𝑇 | + 𝑓∗(𝑡) exp(−𝑖𝜀𝑃𝑡) |𝑇 ⟩ ⟨↑| + 𝜀𝑇 |𝑇 ⟩ ⟨𝑇 | . (5.4)

The full dynamics during a pulse are governed by the complete Hamiltonian 𝐻(𝑡)
which comprises the pulse effect 𝐻𝑃(𝑡) as well as the additional spin dynamics in
the system,

𝐻(𝑡) = 𝐻HF + 𝐻EZ + 𝐻NZ + 𝐻𝑃(𝑡). (5.5)

Further effects included in the Hamiltonian are the hyperfine interaction 𝐻HF
according to Eq. (2.11) with 𝜆 = 1 as well as the effect of the external magnetic field
on the electron spin 𝐻EZ and the nuclear spins 𝐻NZ, Eqs. (2.2) and (2.3) respectively.
The radiative decay of the trion state, see Sec. 5.3, is disregarded on the timescale
of the pulse as the pulse duration amounts to a few picoseconds and therefore
is relatively short compared to the recombination time of the photo-generated
electron-hole pair which is of the order of several hundreds of picoseconds.

To capture the pulse effect onto the spin system, we address the transformation of the
density operator 𝜌 in the 𝑑-dimensional Hilbert space. The laser pulse incorporated
in 𝐻𝑃(𝑡) acts on the electron spin only such that it could be described within the
three-dimensional Hilbert space spanned by states, |↑⟩, |↓⟩ and |𝑇 ⟩. However, the
hyperfine interaction couples the electron spin to the nuclear spins during the pulse
such that the dynamics are extended to the full electron-nuclear spin Hilbert space
with the dimension 𝑑 = 3 ∏𝑘(2𝐼𝑘+1). For the numerical implementation of the pump
pulse, the full Hamiltonian 𝐻(𝑡) is transformed into the rotating frame of the laser
frequency via the unitary transformation 𝑈𝑃(𝑡) = |↑⟩ ⟨↑| + |↓⟩ ⟨↓| + exp(𝑖𝜀𝑃𝑡) |𝑇 ⟩ ⟨𝑇 |.
In the transformed Hamiltonian,

�̃�(𝑡) = 𝐻HF + 𝐻EZ + 𝐻NZ + 𝑓(𝑡) |↑⟩ ⟨𝑇 | + 𝑓∗(𝑡) |𝑇 ⟩ ⟨↑| − 𝛿𝑇 |𝑇 ⟩ ⟨𝑇 | , (5.6)

any fast oscillations with the laser frequency 𝜀𝑃 vanish. Above we introduce the
detuning of the laser energy with respect to the trion resonance, 𝛿𝑇 = 𝜀𝑃 − 𝜀𝑇.

The Hamiltonian �̃�(𝑡) varies only slowly with time through the pulse envelope
function 𝑓(𝑡) and allows for discretization in small time steps on which it can be
approximated as constant. Accordingly, the time evolution operator for the laser
pulse is approximated by a series of unitary operators,

𝑈 ′
𝑃(𝑡𝑛) = exp(−𝑖�̃�(𝑡𝑛)𝛥𝑡) (5.7)
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with 𝛥𝑡 = 𝑡𝑛−𝑡𝑛−1. For a sufficiently small step width 𝛥𝑡, the Trotter error becomes
negligible and the effect of the pump pulse is approximated by the product

𝑈𝑃 = exp(−𝑖𝜀𝑃𝑇𝑃 |𝑇 ⟩ ⟨𝑇 |) ∏
𝑛

𝑈 ′
𝑃(𝑡𝑛)

= exp(−𝑖𝜀𝑃𝑇𝑃 |𝑇 ⟩ ⟨𝑇 |)𝑈 ′
𝑃(𝑇𝑃) … 𝑈 ′

𝑃(𝑡1),
(5.8)

where we introduced the pulse duration 𝑇𝑃 and the front exponential function
originates from transforming out of the rotating frame of the laser frequency. The
above approximation becomes exact for 𝛥𝑡 → 0 at a finite pulse duration 𝑇𝑃.

Applying the operator 𝑈𝑃 to the density operator 𝜌, the evolution from the time
𝑡 = 𝑡0 directly before the pulse to the time 𝑡 = 𝑡0 + 𝑇𝑃 after the pulse is given by

𝜌(𝑡0 + 𝑇𝑃) = 𝑈𝑃𝜌(𝑡0)𝑈†
𝑝 . (5.9)

From a numerical point of view, this transformation requires two matrix multi-
plications where the matrix representation of 𝑈𝑃 is set up for the chosen pulse
shape, pump energy, and pulse duration once at the beginning of the calculation.
Afterward, the transformation in Eq. (5.9) is repetitively applied for the evaluation
of a periodic pulse train.

As an alternative to Eq. (5.8), the laser pulses can be approximated as instantaneous
assuming a short pulse duration and relatively slow spin dynamics in comparison.
Here, the pulse shape becomes irrelevant and the pulse effect is determined by the
effective pulse area,

𝐹 = 2 ∫
∞

−∞
𝑓(𝑡)𝑑𝑡, (5.10)

and the energy detuning 𝛿𝑇 alone. Under the assumption of an instantaneous pump
pulse, 𝑇𝑃 = 0, the density operator is transformed according to

𝜌(𝑡+
0 ) = 𝑈𝑃𝜌(𝑡−

0 )𝑈†
𝑃, (5.11)

where 𝑡−
0 marks the time directly before the incidence of the pulse and 𝑡+

0 denotes
the time directly after the pulse. Focusing on resonant 𝜋 pulses, i.e., 𝐹 = 𝜋, the
unitary pulse operator is given by

𝑈𝑃 = |𝑇 ⟩ ⟨↑| − |↑⟩ ⟨𝑇 | + |↓⟩ ⟨↓| . (5.12)

The approximation of instantaneous pulses is often well justified and, therefore, is
applied for a large number of numerical calculations in this thesis. However, for
instance, a strong external magnetic field induces rapid spin dynamics acting on
the time scale of the pulse duration [78]. At an exemplary magnetic field of 8 T,
the electron spin precession period of roughly 16 ps (assuming 𝑔𝑒 = 0.555) becomes
comparable to the pulse duration such that the related spin dynamics during the
pulse has a relevant effect on the pulse efficiency, see Sec. 6.4.
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5.3 Decay of the trion state

After the optical excitation, the trion state decays rapidly by the recombination of
the photo-generated electron-hole pair. A trion lifetime of 400 ps [127] was extracted
for the self-assembled (In,Ga)As/GaAs quantum dots employed in the mode-locking
experiments [67, 68]. To account for the decay of the trion state population, the
spin system is treated as an open quantum system, and the radiative trion decay is
incorporated in a Lindblad master equation [205, 206],

∂𝑡𝜌 = ℒ𝜌 = −𝑖[𝐻, 𝜌] − 𝛾(𝑠†𝑠𝜌 + 𝜌𝑠†𝑠 − 2𝑠𝜌𝑠†). (5.13)

The dynamics of the density operator 𝜌 in the 𝑑-dimensional Hilbert space is
regulated by the Liouvillian super operator ℒ that comprises the effect of the total
Hamiltonian 𝐻 as well as an additional term proportional to the rate 𝛾 which governs
the trion decay via the operators 𝑠 = |↑⟩ ⟨𝑇 | and 𝑠† = |𝑇 ⟩ ⟨↑|.

The Hamiltonian 𝐻 enters in the von Neumann part of the Lindblad equation
and includes the hyperfine interaction according to Eq. (2.11), the effect of the
external magnetic field introduced in Eqs. (2.2) and (2.3) as well as the trion state
contribution given in Eq. (5.2),

𝐻 = 𝐻HF + 𝐻EZ + 𝐻NZ + 𝐻𝑇. (5.14)

Furthermore, it can be extended by additional spin interactions such as the nuclear
quadrupolar interactions established in Eq. (2.20). The effect of the pump pulse
controlled by the envelope function 𝑓(𝑡) is not included in 𝐻, since 𝑓(𝑡) fully vanishes
at the times in between the pump pulses at which the Lindblad equation is applied.

The trion decay in the Lindlad equation, Eq. (5.13), is mediated by the operator
𝑠 = |↑⟩ ⟨𝑇 | and its hermitian conjugate 𝑠† = |𝑇 ⟩ ⟨↑| which map the trion state to
the spin up state along the optical axis and vice versa. Accordingly, the term 𝑠†𝑠 in
the above master equation equals the projection onto the trion state, 𝑠†𝑠 = |𝑇 ⟩ ⟨𝑇 |.
Based on the experimental estimate, we consistently set the decay rate of the trion
state to 𝛾 = 10 ns−1 in the following [127].

The Lindblad equation, Eq. (5.13), applies for the time range between consecutive
pump pulses, i.e., it is employed to obtain the time evolution of the density operator
from the time 𝑡0 after a pulse to the time 𝑡0 +𝑇𝐿 directly before the next pump pulse.
The duration 𝑇𝐿 = 𝑇𝑅 −𝑇𝑃 is determined from the difference between the repetition
time 𝑇𝑅 of the periodic optical excitation and the pulse duration 𝑇𝑃. According to
the above Lindblad equation, Eq. (5.13), the temporal evolution between the pump
pulses is given by the analytic solution

𝜌(𝑡0 + 𝑡) = exp(ℒ𝑡)𝜌(𝑡0), (5.15)
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where 𝜌(𝑡0) is the density operator after the pulse and 𝑡 ≤ 𝑇𝐿. However, the matrix
representation of the super operator ℒ has the dimension 𝐷 × 𝐷 with 𝐷 = 𝑑2 for
a Hilbert space dimension 𝑑. Assuming nuclei of identical spin length, 𝐼𝑘 ≡ 𝐼 for
all 𝑘, the Hilbert space dimension 𝑑 = 3(2𝐼 + 1)𝑁 grows exponentially with the
number 𝑁 of nuclear spins. As a result, the evaluation of Eq. (5.15) would require
the diagonalization of a matrix with the dimension (9(2𝐼 + 1)2𝑁) × (9(2𝐼 + 1)2𝑁).
This task straightly performed becomes quickly unmanageable with increasing 𝑁,
see also Chapter 7 for more details. Therefore, we outline an alternative approach
in the following that relies on the handling of matrices with the dimension 𝑑 × 𝑑
only.

5.4 Numerical implementation of a repetition period

For the quantum mechanical simulation of a pulse train, the Hamiltonian 𝐻 compris-
ing the spin interactions in the quantum dots is specified and the relevant physical
parameters are adjusted according to the mode-locking experiments [67, 68]. We
refer to singly negatively charged quantum dots such that the hyperfine Hamiltonian
𝐻HF is isotropic, i.e., 𝜆 = 1 in Eq. (2.11). The hyperfine coupling constants 𝐴𝑘
are set to produce a dephasing of the electron spin on the characteristic time scale
of 𝑇 ∗ = 1 ns, cf. Eq. (2.18), which is estimated from Fig. 5.2(a). In the electron
Zeeman term 𝐻EZ, the electron 𝑔 factor 𝑔𝑒 = 0.555 extracted for the self-assembled
(In,Ga)As/GaAs quantum dots [68, 77, 127] enters the Eq. (2.2). The nuclear 𝑔
factor 𝑔𝑘 in the Hamiltonian 𝐻NZ, Eq. (2.3), is assumed to be equal for all nuclear
spins for simplicity, i.e., 𝑔𝑘 ≡ 𝑔𝑁 for all nuclei 𝑘, and we fix 𝑔𝑁 to the average ratio
𝑧 = 𝑔𝑁𝜇𝑁/(𝜇𝐵𝑔𝑒) = 1/800 for the isotopes in the (In,Ga)As/GaAs quantum dots
[91]. The effect of nuclear quadrupolar interactions is neglected for the time being
due to the much weaker energy scale but will be addressed in Sec. 6.5. As a result,
the complete Hamiltonian for the spin dynamics specified from Eq. (5.14) reads

𝐻 = ∑
𝑘

𝐴𝑘S ⋅ I𝑘 − 𝜔𝑒𝑆𝑥 − 𝜔𝑛 ∑
𝑘

𝐼𝑥
𝑘 + 𝜀𝑇 |𝑇 ⟩ ⟨𝑇 | . (5.16)

Here, the external magnetic field 𝐵 is applied in the 𝑥 direction, perpendicular to
the optical axis along the 𝑧 direction. The strength of 𝐵 amounts to up to 10 T.
The electron and nuclear Larmor frequency, 𝜔𝑒 = 𝑔𝑒𝜇𝐵𝐵 and 𝜔𝑛 = 𝑔𝑁𝜇𝑁𝐵, include
the respective 𝑔 factor. For an exemplary magnetic field strength of 𝐵 = 2 T, this
produces a precession period of 𝑇𝑒 = 2𝜋/𝜔𝑒 = 2𝜋/(𝑔𝑒𝜇𝐵𝐵) ≈ 64 ps for the electron
spin and the much longer time 𝑇𝑛 = 2𝜋/𝜔𝑛 = 2𝜋/(𝑔𝑁𝜇𝑁𝐵) ≈ 51 ns for the nuclear
spins with a field independent ratio 𝑧 = 𝑇𝑒/𝑇𝑛.
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As indicated in Sec. 5.3, the numerical evaluation of the time evolution between the
pump pulses poses a computationally challenging task since it has to be repeated
several million times and the matrix dimensions grow exponentially with the number
of nuclear spins included in the dynamics. Therefore, we developed an efficient
scheme that limits the dimensions of the handled matrices to the Hilbert space
dimension 𝑑 rather than the dimension 𝐷 = 𝑑2 related to the Liouvillian super
operator ℒ. We start with the elimination of the nuclear Larmor precession during
the decay of the trion state. To this end, we transform into the frame, in which
all spins rotate with the frequency 𝜔𝑛, by the application of the unitary operator
𝑈𝑛 = exp(−𝑖𝜔𝑛𝐹 𝑥𝑡) that acts on the total spin 𝑥 component 𝐹 𝑥 = 𝑆𝑥 +∑𝑘 𝐼𝑥

𝑘 . Due
to [𝐻, 𝐹 𝑥] = [𝐻HF, 𝐹 𝑥] = 0, the transformed Hamiltonian �̃� = 𝑈𝑛(𝐻 + 𝜔𝑛𝐹 𝑥)𝑈†

𝑛
does not acquire any time dependency,

�̃� = ∑
𝑘

𝐴𝑘S ⋅ I𝑘 − (𝜔𝑒 − 𝜔𝑛)𝑆𝑥 + 𝜀𝑇 |𝑇 ⟩ ⟨𝑇 | . (5.17)

Analogously, we transform the density operator, ̃𝜌 = 𝑈𝑛𝜌𝑈†
𝑛, and the operator 𝑠

introduced for the Lindblad equation, Eq. (5.13), ̃𝑠 = 𝑈𝑛𝑠𝑈†
𝑛. The latter yields

̃𝑠 = 1√
2

{exp (𝑖𝜔𝑛𝑡
2

) |↑⟩𝑥 ⟨𝑇 | + exp (−𝑖𝜔𝑛𝑡
2

) |↓⟩𝑥 ⟨𝑇 |} (5.18)

with the hermitian conjugate ̃𝑠† resulting accordingly. Here, we employed the
electron spin 𝑥 basis along the magnetic field orientation,

|↑⟩𝑥 = (|↑⟩ + |↓⟩)/
√

2,

|↓⟩𝑥 = (|↑⟩ − |↓⟩)/
√

2,
(5.19)

for the direct evaluation of the time evolution induced by 𝑈𝑛.

After transformation into the rotating frame, the Lindblad master equation encom-
passes the new operators denoted by ”…̃”,

∂𝑡 ̃𝜌 = −𝑖 [�̃�, ̃𝜌] − 𝛾 ( ̃𝑠† ̃𝑠 ̃𝜌 + ̃𝜌 ̃𝑠† ̃𝑠 − 2 ̃𝑠 ̃𝜌 ̃𝑠†)

= −𝑖 [�̃�, ̃𝜌] − 𝛾 (|𝑇 ⟩ ⟨𝑇 | 𝜌 + 𝜌 |𝑇 ⟩ ⟨𝑇 |) + ⟨𝑇 | ̃𝜌|𝑇⟩ (|↑⟩𝑥 ⟨↑|𝑥
+𝑒𝑖𝜔𝑛𝑡 |↑⟩𝑥 ⟨↓|𝑥 + 𝑒−𝑖𝜔𝑛𝑡 |↓⟩𝑥 ⟨↑|𝑥 + |↓⟩𝑥 ⟨↓|𝑥) . (5.20)

For the second line of the above equation, the operators ̃𝑠 and ̃𝑠† according to
Eq. (5.18) have been inserted. The Lindblad equation in the rotating frame enables
direct analytic access to the decay of the trion state population. For brevity,
we introduce ̃𝜌𝑇 𝑇 ≡ ⟨𝑇 | ̃𝜌|𝑇⟩ which corresponds to the suboperator of the density
operator where the electron spin state is fixed to the trion state |𝑇 ⟩ and solely the
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nuclear spin degrees of freedom remain. Thus, the matrix representation of ̃𝜌𝑇 𝑇 has
dimension 𝑑𝑛 × 𝑑𝑛 with 𝑑𝑛 = (2𝐼 + 1)𝑁. From the above Lindblad equation, we
obtain the differential equation regulating the temporal evolution of the suboperator

̃𝜌𝑇 𝑇,
∂𝑡 ̃𝜌𝑇 𝑇 = −2𝛾 ̃𝜌𝑇 𝑇. (5.21)

The dynamics of ̃𝜌𝑇 𝑇 decouples from the remaining parts of the density operator
and is analytically solved by

̃𝜌𝑇 𝑇(𝑡0 + 𝑡) = 𝑒−2𝛾𝑡 ̃𝜌𝑇 𝑇(𝑡0), (5.22a)
𝜌𝑇 𝑇(𝑡0 + 𝑡) = 𝑒−2𝛾𝑡𝑒−𝑖𝐻NZ𝑡𝜌𝑇 𝑇(𝑡0)𝑒𝑖𝐻NZ𝑡, (5.22b)

where ̃𝜌𝑇 𝑇(𝑡0) = 𝜌𝑇 𝑇(𝑡0) denotes the suboperator directly after the pump pulse. The
matrix elements in the sector ̃𝜌𝑇 𝑇 of the full density operator ̃𝜌 decay exponentially
with a rate 2𝛾 without any further dynamics as a result of the transformation into
the rotating frame. When the system is transformed back into the original frame, i.e.,
we leave the rotating frame, the dynamics of the suboperator 𝜌𝑇 𝑇 is extended to the
precession of the nuclear spins about the external magnetic field, see Eq. (5.22b).

Similarly as for ̃𝜌𝑇 𝑇, we extract the dynamics of the eight remaining subopera-
tors ⟨𝑒| ̃𝜌|𝑒′⟩ with |𝑒⟩, |𝑒′⟩ ∈ {|↑⟩𝑥 , |↓⟩𝑥 , |𝑇 ⟩} from the Lindblad master equation,
Eq. (5.20). As a first step, we focus on the trion spin coherence suboperators,
i.e., those suboperators for which either |𝑒⟩ or |𝑒′⟩ corresponds to the trion state
|𝑇 ⟩. The differential equations of these four suboperators are coupled via the von
Neuman term in the Lindblad equation but do not relate to the dynamics of those
suboperators restricted to a combination of the resident electron spin states for
which |𝑒⟩, |𝑒′⟩ ∈ {|↑⟩𝑥 , |↓⟩𝑥}. Due to the first two terms within the parentheses in
Eq. (5.20), the matrix elements of the trion coherence suboperators decay exponen-
tially with the rate 𝛾. Since 𝛾𝑇𝑅 ≫ 1 for repetition times of several nanoseconds,
the matrix elements of the four trion coherence suboperators have fully vanished
within the numerical precision at the incidence time of the consecutive pump pulse.
Consequently, they do not enter the dynamics of the next repetition period and
consistently are omitted in the numerical calculations.

Finally, we are left with the determination of the dynamics of the four suboperators
⟨𝑒| ̃𝜌|𝑒′⟩ with |𝑒⟩, |𝑒′⟩ ∈ {|↑⟩𝑥 , |↓⟩𝑥} which we comprise in a combined density
operator ̃𝜌𝑆. The density operator ̃𝜌𝑆 incorporates the spin up and down state of the
resident electron as well as the nuclear spin degrees of freedom. Therefore, its matrix
representation has the dimension 𝑑′ × 𝑑′ with 𝑑′ = 2(2𝐼 + 1)𝑁. We substitute the
temporal evolution of the suboperator ̃𝜌𝑇 𝑇, Eq. (5.22a), into the Lindblad equation,
Eq. (5.20), and omit terms acting on the trion state. As a result, we obtain the
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differential equation of the suboperator ̃𝜌𝑆,

∂𝑡 ̃𝜌𝑆 + 𝑖 [�̃�𝑆, ̃𝜌𝑆] = 𝛾𝑒−2𝛾𝑡 ̃𝜌𝑇 𝑇(𝑡0) (|↑⟩ ⟨↑| + 𝑒𝑖𝜔𝑛𝑡 |↑⟩ ⟨↓|

+𝑒−𝑖𝜔𝑛𝑡 |↓⟩ ⟨↑| + |↓⟩ ⟨↓|) , (5.23)

�̃�𝑆 = ∑
𝑘

𝐴𝑘S ⋅ I𝑘 − (𝜔𝑒 − 𝜔𝑛)𝑆𝑥, (5.24)

where the Hamiltonian �̃�𝑆 is the projection of �̃� onto the Hilbert space of reduced
dimension 𝑑′ excluding the trion state.

Equation (5.23) is a nonhomogeneous differential equation with a homogeneous part
on the left hand side and a source term on the right hand side of the equation.
Accordingly, the temporal evolution of ̃𝜌𝑆 results from the combination of the
solution ̃𝜌𝑆,ℎ(𝑡0 + 𝑡) for the homogeneous part and a particular solution ̃𝜌𝑆,𝑝(𝑡 + 𝑡0)
which respects the full equation, Eq. (5.23), including the source term,

̃𝜌𝑆(𝑡0 + 𝑡) = ̃𝜌𝑆,ℎ(𝑡0 + 𝑡) + ̃𝜌𝑆,𝑝(𝑡0 + 𝑡). (5.25)

For the homogeneous part corresponding to a von Neumann type equation, the
solution is established utilizing the unitary time evolution operator,

̃𝜌𝑆,ℎ(𝑡0 + 𝑡) = exp (−𝑖�̃�𝑆𝑡) ̃𝜌𝑆,ℎ(𝑡0) exp (𝑖�̃�𝑆𝑡) . (5.26)

As an ansatz for the particular solution of the full Eq. (5.23), we choose

̃𝜌𝑆,𝑝(𝑡0 + 𝑡) = ∑
𝜏

̃𝜌(𝜏)
𝑆,𝑝(𝑡0)𝑒(−2𝛾+𝑖𝜏𝜔𝑛)𝑡 (5.27)

with 𝜏 ∈ {−1, 0, 1} taking into account the exponential functions in the source
term on the right hand side of Eq. (5.23). From the insertion of the ansatz into
the differential equation and a subsequent comparison of the prefactors for the
exponential functions, we obtain the initial conditions at the time 𝑡0 for the respective
values of 𝜏,

(−2𝛾 + 𝑖𝜏𝜔𝑛) ̃𝜌(𝜏)
𝑆,𝑝(𝑡0) + 𝑖 [�̃�𝑆, ̃𝜌(𝜏)

𝑆,𝑝(𝑡0)] = 𝛾 ̃𝜌𝑇 𝑇(𝑡0)𝑆(𝜏), (5.28)

where the associated operators for the electron spin,

𝑆(𝜏) =
⎧{
⎨{⎩

|↓⟩𝑥 ⟨↑|𝑥 , 𝜏 = −1,
|↑⟩𝑥 ⟨↑|𝑥 + |↓⟩𝑥 ⟨↓|𝑥 , 𝜏 = 0,
|↑⟩𝑥 ⟨↓|𝑥 , 𝜏 = +1,

(5.29)

are introduced. Based on the initial conditions, the matrix elements of ̃𝜌(𝜏)
𝑆,𝑝(𝑡0) for the

particular solution can be established from the trion state population ̃𝜌𝑇 𝑇(𝑡0) at the
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time 𝑡0. To this end, the eigenbasis of the Hamiltonian �̃�𝑆, �̃�𝑆 | ̃𝜓𝑆,𝑎⟩ = ̃𝜀𝑆,𝑎 | ̃𝜓𝑆,𝑎⟩
with eigenstates | ̃𝜓𝑆,𝑎⟩ and eigenenergies ̃𝜀𝑆,𝑎, serves as a basis. Accordingly, the
matrix elements for the particular solution read

⟨ ̃𝜓𝑆,𝑎| ̃𝜌(𝜏)
𝑆,𝑝(𝑡0)| ̃𝜓𝑆,𝑏⟩ = ̃𝐺(𝜏)

𝑎,𝑏 ⟨ ̃𝜓𝑆,𝑎| ̃𝜌𝑇 𝑇(𝑡0)𝑆(𝜏)| ̃𝜓𝑆,𝑏⟩ (5.30a)

with the coefficients

̃𝐺(𝜏)
𝑎,𝑏 = 𝛾

−2𝛾 + 𝑖𝜔𝑛𝜏 + 𝑖( ̃𝜀𝑆,𝑎 − ̃𝜀𝑆,𝑏)
. (5.30b)

Since the ansatz, Eq. (5.27), vanishes after the time 𝑇𝐿 due to the decaying expo-
nential functions, the contribution ̃𝜌𝑆,𝑝(𝑡0 + 𝑇𝐿) can be omitted in the evaluation
of the full time evolution, Eq. (5.25), at time 𝑡0 + 𝑇𝐿. As a consequence, the main
effect of the particular solution onto the temporal evolution, Eq. (5.25), consists
of an adjustment of the initial density operator ̃𝜌𝑆,ℎ(𝑡0) entering the unitary time
evolution, Eq. (5.26). Thus, the evolution of the density suboperator ̃𝜌𝑆 for a full
repetition period is determined from Eq. (5.26) with ̃𝜌𝑆,ℎ(𝑡0) resulting from the
starting condition ̃𝜌𝑆(𝑡0) = ̃𝜌𝑆,ℎ(𝑡0) + ̃𝜌𝑆,𝑝(𝑡0),

̃𝜌𝑆(𝑡0 + 𝑇𝐿) = exp (−𝑖�̃�𝑆𝑇𝐿) ̃𝜌𝑆,ℎ(𝑡0) exp (𝑖�̃�𝑆𝑇𝐿)

with ̃𝜌𝑆,ℎ(𝑡0) = ̃𝜌𝑆(𝑡0) − ∑
𝜏

̃𝜌(𝜏)
𝑆,𝑝(𝑡0). (5.31)

As a last step, the dynamics has to be transformed back out of the frame rotating
with the nuclear Larmor frequency 𝜔𝑛 via 𝜌𝑆(𝑡0 + 𝑇𝐿) = 𝑈†

𝑛 ̃𝜌𝑆(𝑡0 + 𝑇𝐿)𝑈𝑛. Finally,
we obtain the complete dynamics in the reduced Hilbert space denoted by 𝑆,

𝜌𝑆(𝑡0 + 𝑇𝐿) = 𝑒−𝑖𝐻𝑆𝑇𝐿 {𝜌𝑆(𝑡0) − ∑
𝜏

𝜌(𝜏)
𝑆,𝑝(𝑡0)} 𝑒𝑖𝐻𝑆𝑇𝐿 , (5.32)

where we inserted the relation, exp (𝑖𝜔𝑛𝐹 𝑥𝑇𝐿) exp (−𝑖�̃�𝑆𝑇𝐿) = exp (−𝑖𝐻𝑆𝑇𝐿), that
holds due to [�̃�𝑆, 𝐹 𝑥] = 0. Furthermore, we exploited the fact that the operators
𝜌𝑆(𝑡0) and 𝜌(𝜏)

𝑆,𝑝(𝑡0) at the time 𝑡0 coincide to the associated operators in the rotating
frame denoted by ”…̃”.

The time evolution, Eq. (5.32), can also be expressed conveniently in terms of the
eigenbasis of the Hamiltonian 𝐻𝑆,

𝐻𝑆 = 𝑈†
𝑛�̃�𝑆𝑈𝑛 = ∑

𝑘
𝐴𝑘S ⋅ I𝑘 − 𝜔𝑒𝑆𝑥 − 𝜔𝑛 ∑

𝑘
𝐼𝑥

𝑘 . (5.33)

We denote the related eigenstates and eigenenergies by |𝜓𝑆,𝑎⟩ and 𝜀𝑆,𝑎 respectively
with 𝐻𝑆 |𝜓𝑆,𝑎⟩ = 𝜀𝑆,𝑎 |𝜓𝑆,𝑎⟩, and address the dynamics of the associated matrix
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elements of the density operator 𝜌𝑆. Abbreviating the individual matrix elements
by 𝜌𝑎,𝑏 = ⟨𝜓𝑆,𝑎|𝜌𝑆|𝜓𝑆,𝑏⟩, the evolution from time 𝑡0 to time 𝑇𝐿 is given by

𝜌𝑎,𝑏(𝑡0 + 𝑇𝐿) = 𝑒−𝑖(𝜀𝑆,𝑎−𝜀𝑆,𝑏)𝑇𝐿 {𝜌𝑎,𝑏(𝑡0) − ∑
𝜏

⟨𝜓𝑆,𝑎|𝜌(𝜏)
𝑆,𝑝(𝑡0)|𝜓𝑆,𝑏⟩}

= 𝑒−𝑖(𝜀𝑆,𝑎−𝜀𝑆,𝑏)𝑇𝐿 {𝜌𝑎,𝑏(𝑡0) − ∑
𝜏

𝐺(𝜏)
𝑎,𝑏 ⟨𝜓𝑆,𝑎|𝜌𝑇 𝑇(𝑡0)𝑆(𝜏)|𝜓𝑆,𝑏⟩} .

(5.34)

The coefficients 𝐺(𝜏)
𝑎,𝑏 are rewritten in terms of the eigenenergies 𝜀𝑆,𝑎 of 𝐻𝑆 which

replace the eigenenergies ̃𝜀𝑆,𝑎 of �̃�𝑆 in the original definition, Eq. (5.30a),

𝐺(𝜏)
𝑎,𝑏 = 𝛾

−2𝛾 + 𝑖𝜔𝑛{𝜏 + (𝐹 𝑥
𝑎 − 𝐹 𝑥

𝑏 )} + 𝑖(𝜀𝑆,𝑎 − 𝜀𝑆,𝑏)
. (5.35)

Here, we employed the relation 𝐻𝑆 = �̃�𝑆 + 𝜔𝑛𝐹 𝑥 in combination with the commu-
tator [𝐻𝑆, 𝐹 𝑥] = [�̃�𝑆, 𝐹 𝑥] = [𝐻𝑆, �̃�𝑆] = 0, which provides 𝜀𝑆,𝑎 = ̃𝜀𝑆,𝑎 − 𝜔𝑛𝐹 𝑥

𝑎 as a
result of fixing |𝜓𝑆,𝑎⟩ as the common eigenbasis of the three operators,

𝐻𝑆 |𝜓𝑆,𝑎⟩ = 𝜀𝑆,𝑎 |𝜓𝑆,𝑎⟩ , �̃�𝑆 |𝜓𝑆,𝑎⟩ = ̃𝜀𝑆,𝑎 |𝜓𝑆,𝑎⟩ and 𝐹 𝑥 |𝜓𝑆,𝑎⟩ = 𝐹 𝑥
𝑎 |𝜓𝑆,𝑎⟩ .

(5.36)

For the investigation of a periodic train of pump pulses, the combination of the
unitary transformation capturing the effect of a pump pulse as outlined in Sec. 5.2
and the temporal evolution for the duration 𝑇𝐿 = 𝑇𝑅 −𝑇𝑃 according to the Lindblad
equation, Eq. (5.13), has to be iterated for a large number of repetition periods. The
starting operators 𝜌𝑆(𝑡0) and 𝜌𝑇 𝑇(𝑡0) of the solution, Eq. (5.32), of the Lindblad
equation are constructed from the density operator resulting after the pulse, Eq. (5.9)
or Eq. (5.11). In the numerical implementation, the combination of the pump pulse
and the subsequent time evolution comprises roughly eight matrix multiplications
of (𝑑 × 𝑑)-dimensional matrices and has to be iterated for up to 20 million times to
approach the quasistationary steady-state relevant in mode-locking experiments. As
a result of including the full quantum mechanical dynamics over this long period of
time, the numerical calculations are limited to six to eight nuclear spins with an
individual length 𝐼 = 1/2.

Other theoretical approaches aiming at the study of the nuclei-induced frequency
focusing of the electron spin precession under periodic optical excitation are often
based on (semi)classical approaches [80, 81, 84, 85, 87–89, 223, 224] or dynamical
mean-field theory [225] treating relatively large nuclear spin baths at the expense
of disregarding inherent quantum effects [83]. Moreover, a quantum mechanical
approach based on perturbation theory for the number of electron-nuclear spin flips
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during 𝑇𝑅 has been developed in Refs. [90, 91] and allows for incorporating 𝑁 = 20
nuclear spins. However, due to CPU runtime limitations, this approach was restricted
to roughly 104 repetition periods and did not reach the quasistationary steady state.
Recently, the full quantum mechanical time evolution between consecutive pump
pulses has been embedded into a linear mapping for the density operator by Ref. [92],
see also Chapter 7. The diagonalization of this mapping allows for direct access
to the quasistationary steady-state but is still limited to 𝑁 = 6 nuclear spins in
Ref. [92].

5.5 Ensemble averaging and distribution of the
hyperfine coupling constants

In order to compensate for the relatively small size of the nuclear spin bath in the
quantum mechanical treatment, we employ an ensemble average that bridges the
gap to real singly charged quantum dots where the hyperfine interaction mediates
the coupling of the electron spin to roughly 105 nuclear spins. As it was shown
that the spin dynamics in the system with a reduced nuclear bath size adequately
captures the generic features of a larger system [160], we introduce an additional
averaging over slightly different realizations of the spin system representing individual
quantum dots in the ensemble. These realizations differ in their hyperfine coupling
constants {𝐴1,𝑙, … , 𝐴𝑁,𝑙} where we introduce an index 𝑙 distinguishing the various
realizations, 𝑙 ∈ {1, … , 𝑁𝐶}. Typically, we choose 𝑁𝐶 ≈ 100 for the number of
averaged realizations. The individual realizations are treated separately during the
whole pulse sequence as described in the previous section and the results are merged
only at the end of a numerical simulation.

For the distribution 𝑝(𝐴𝑘,𝑙) of the hyperfine coupling constants, we employ a uniform
distribution since it was found [84] that the details of the distribution have a negligible
effect on the quasistationary steady state of a periodic pulse sequence. To exclude
nuclear spins, which have only a weak impact on the electron spin in the already
small system, we draw the hyperfine coupling constants randomly in the range
[0.2; 1] and subsequently scale them to produce a dephasing of the electron spin on
the experimentally observed time scale of a nanosecond. Referring to Eq. (2.18),
we introduce the ensemble-averaged dephasing time of the electron spin in the
disordered nuclear spin system,

𝑇 ∗ = ( 1
𝑁𝐶

𝑁𝐶

∑
𝑙=1

𝑁
∑
𝑘=1

𝐴2
𝑘,𝑙 ⟨I2

𝑘,𝑙⟩)
−1/2

, (5.37)
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which we employ for scaling the hyperfine coupling constants to 𝑇 ∗ = 1 ns consistently
throughout the following chapters.

The ensemble-averaged electron spin polarization ⟨𝑆𝛼(𝑡)⟩ with 𝛼 ∈ {𝑥, 𝑦, 𝑧} is defined
by the average over the quantum mechanical expectation values of the individual
realizations,

⟨𝑆𝛼(𝑡)⟩ = 1
𝑁𝐶

𝑁𝐶

∑
𝑙=1

⟨𝑆𝛼
𝑙 (𝑡)⟩ = 1

𝑁𝐶

𝑁𝐶

∑
𝑙=1

Tr[𝑆𝛼𝜌𝑗(𝑡)]. (5.38)

For illustration of the electron spin dephasing in the disordered nuclear spin system,
we plot the temporal evolution of ⟨𝑆𝑧(𝑡)⟩ in Fig. 5.3(a). Initially, the electron spins
are polarized in the 𝑧 direction, i.e, the electron spins in the individual realizations
are in the |↑⟩ state at 𝑡 = 0. We comprise 𝑁 = 6 nuclear spins with individual
length 𝐼𝑘,𝑙 ≡ 𝐼 ≡ 1/2 in each realization (𝑁𝐶 = 100) and choose the normalized
identity operator as a starting condition for the nuclear spin sector of the density
operator respectively. During the time evolution, the electron spins are subject
to an external magnetic field B = 𝐵n𝑥 with 𝐵 = 0.49 T producing oscillations in
the spin 𝑧 component. Moreover, the random nuclear Overhauser field governs the
dephasing with the envelope function

⟨𝑆𝑧(𝑡)⟩env = 𝑆0 exp (− 𝑡2

6𝑇 ∗2 ) . (5.39)

The analytically predicted Gaussian envelope function, which is indicated by the gray
dashed line in Fig. 5.3(a), matches the dephasing observed in the ensemble-averaged
⟨𝑆𝑧(𝑡)⟩ except for minor deviations which originate from the relatively small number
of nuclear spins included in the numerical calculation.

As a result of the setup of the hyperfine coupling constants, the dephasing time 𝑇 ∗
𝑙

in the individual realizations slightly differs. Since we fix the ensemble-averaged
dephasing time to 𝑇 ∗ = 1 ns via Eq. (5.37), the individual sets of coupling constants
{𝐴𝑘,𝑙} produce a variation of the dephasing time 𝑇 ∗

𝑙 in the respective realizations
labeled by the index 𝑙. We introduce the ratio 𝑇 ∗

𝑙 /𝑇 ∗ according to

(𝑇 ∗

𝑇 ∗
𝑙

)
2

=
𝑁

∑
𝑘=1

(𝑇 ∗𝐴𝑘,𝑙)2 ⟨I2
𝑘,𝑙⟩ (5.40)

and study the associated probability distribution 𝑝(𝑇 ∗
𝑙 /𝑇 ∗) in Fig. 5.3(b). To obtain

a smooth distribution, we randomly generated the set {𝐴𝑘,𝑙} of 𝑁 coupling constants
for 𝑁𝐶 = 100 realizations fulfilling 𝑇 ∗ = 1 ns and repeated this process 1000 times
to process all resulting dephasing times into a histogram. The comparison of the
distribution 𝑝(𝑇 ∗

𝑙 /𝑇 ∗) for different system sizes 𝑁 indicates a self-averaging with
increasing the number of nuclei in the system, i.e., the weight focuses around 𝑇 ∗

𝑙 = 𝑇 ∗
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Figure 5.3: Dephasing time 𝑇 ∗ of the electron spin in the disordered nuclear spin
bath (𝐼 = 1/2). (a) Dephasing of the initially oriented electron spin, ⟨𝑆𝑧(0)⟩ = 0.5,
with an externally applied magnetic field, B = 𝐵n𝑥. The width of the Gaussian
envelope function (gray dashed line) is determined by 𝑇 ∗, see Eq. (5.39). The
results were averaged over 100 realizations with differing sets of hyperfine coupling
constants (𝑁 = 6). (b) Distribution of the dephasing time 𝑇𝑙 in the individual
realizations 𝑙. To obtain a smooth curve, we processed the dephasing time 𝑇𝑙 of
1000 realizations, which each contain 100 sets of {𝐴𝑘,𝑙} scaled to 𝑇 ∗ = 1 ns, into a
histogram. The figure is taken from Ref. [86].

for 𝑁 → ∞ employing normalized coupling constants 𝑎𝑘,𝑙 = 𝑇 ∗𝐴𝑘,𝑙 in Eq. (5.40).
Mimicking a quantum dot ensemble by incorporating a large number of nuclear spins
in the simulation, the coupling constants 𝑎𝑘,𝑙 had to be replaced by ̃𝑎𝑘,𝑙 = 𝑇 ∗

𝑙 𝐴𝑘,𝑙
with dephasing times 𝑇 ∗

𝑙 of the individual quantum dots that are generated from
the experimentally relevant distribution 𝑝(𝑇 ∗

𝑙 ).

As the effect of the periodic optical excitation of the electron spin is expected to
imprint on the nuclear spin system leading to the mode-locking effect via nuclei-
induced frequency focusing of the electron spin precession, we require a suitable
quantity reflecting the nuclear spin state. To this end, we examine the probability
distribution of the Overhauser field component 𝐵𝑥

𝑁 along the orientation of the
external magnetic field [83, 84, 90, 91]. The ensemble-averaged Overhauser field in
accordance with Eq. (2.12) reads

⟨𝐵𝑥
𝑁⟩ = 1

𝑁𝐶

𝑁𝐶

∑
𝑙=1

⟨𝐵𝑥
𝑁,𝑙⟩ = 1

𝑁𝐶

𝑁𝐶

∑
𝑙=1

Tr[𝐵𝑥
𝑁,𝑙𝜌𝑙]

= 1
𝑁𝐶

𝑁𝐶

∑
𝑙=1

∑
𝑒,𝐾

⟨𝑒, 𝐾|𝜌𝑙|𝑒, 𝐾⟩ ⟨𝐾|𝐵𝑥
𝑁,𝑙|𝐾⟩ ,

(5.41)

where we employed the spin 𝑥 product basis with the electron spin degree of freedom
𝑒 and the nuclear spin state 𝐾 such that the operator 𝐵𝑥

𝑁,𝑙 is diagonal. The last
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line of the above equation allows for the interpretation in terms of the average over
a probability distribution, where the Overhauser field of value

𝐵𝑥
𝐾,𝑙 = ⟨𝐾|𝐵𝑥

𝑁,𝑙|𝐾⟩ (5.42)

occurs with the probability

𝑝𝐾,𝑙 = ∑
𝑒

⟨𝑒, 𝐾|𝜌𝑙|𝑒, 𝐾⟩
𝑁𝐶

. (5.43)

Exploiting that the spectrum of 𝐵𝑥
𝑁,𝑙 is dense, we introduce a continuous probability

distribution [90],

𝑝(𝐵𝑥
𝑁) = 1

𝑁𝐶

𝑁𝐶

∑
𝑙=1

∑
𝑒,𝐾

⟨𝑒, 𝐾|𝜌𝑙|𝑒, 𝐾⟩ 𝛿(𝐵𝑥
𝑁 − 𝐵𝑥

𝐾,𝑙), (5.44)

employing the delta distribution 𝛿(𝑥). The distribution 𝑝(𝐵𝑥
𝑁) is normalized by

construction [83] and is obtained as a histogram [90] with appropriate bin size for
the finite system here.

For brevity, the configuration index 𝑙 is omitted in the following unless we explicitly
address individual realizations of the spin system.
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Chapter 6

Synchronization effects under periodic optical
excitation

The full quantum mechanical approach outlined in the previous chapter is applied
for the investigation of the spin dynamics in singly charged quantum dots subject
to a periodic pulse train. In particular, we target an in-depth analysis of the mode-
locking effect [67, 68] emerging under the periodic optical excitation. A mode-locked
state characterized by the synchronization of the electron spin precession with the
driving periodicity provides the starting point for further studies. The electron
spin adapts to the periodic excitation within a couple of repetition periods while
the nuclear spins remain unaffected on this time scale. As a next step, we address
the mode-locking effect mediated by the nuclei-induced frequency focusing of the
electron spin precession that was realized in the pump-probe experiments performed
by Greilich et al. [67, 68]. This effect requires the application of several million
pump pulses in the quantum mechanical simulations since the synchronization with
the periodic optical excitation has to be transmitted to the nuclear spin bath via
the hyperfine interaction. The reorganization of the Overhauser field distribution
produces favored precession modes of the electron spin which govern the revival
of the electron spin polarization directly before the pump pulse. In pump-probe
experiments, the magnitude of the revival amplitude was found to be dependent
on the external magnetic field [86], cf. Sec. 5.1. We relate this dependence to the
nuclear Zeeman term 𝐻NZ which imposes a resonance condition for the nuclear
Larmor precession [91]. Moreover, we attribute the overall decrease in the revival
amplitude when increasing the external magnetic field to the finite nonzero duration
of the optical pulses. Finally, the quantum mechanical implementation is extended
to incorporate additional effects in the nuclear spin system. We include the static
nuclear-electric quadrupolar interactions and find that they significantly weaken the
nuclei-induced frequency focusing. Furthermore, the extended approach allows for
taking into account differing nuclear 𝑔 factors. In the (In,Ga)As/GaAs quantum
dots, the 𝑔 factors of the various nuclear isotopes are expected to produce contrasting
resonance conditions according to the respective Zeeman terms such that additional
modulations arise for the electron spin revival amplitude as a function of the external
magnetic field.
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Chapter 6 Synchronization effects under periodic optical excitation

Large parts of this chapter have been published in Ref. [86].

6.1 Electronic quasistationary steady state

At the beginning of a periodic pulse sequence, the electron spin starts to synchronize
with the driving periodicity whereas the nuclear spins are mostly left unaffected
on the timescale of a few repetition periods. We focus on this purely electronic
quasistationary steady state reached after roughly ten repetition periods before
addressing the imprint of the periodic pumping onto the nuclear spins in the later
sections. Figure 6.1(a) displays the electron spin dynamics after the first few pump
pulses. We approximate the pump pulses by instantaneous resonant 𝜋 pulses in
the first instance and employ Eqs. (5.11) and (5.12). At the beginning of the pulse
train, the nuclear spins are in a completely disordered state resulting from the
high-temperature limit which is valid at typical experimental temperatures of 4 K.
Here, the thermal energy of roughly 0.3 meV exceeds the relevant energy scale of the
hyperfine interaction since ∑𝑘 𝐴𝑘 is in the order of 10 μeV [48, 187, 226]. During
the first repetition periods, the nuclear spins retain the disordered state. As a result,
the electron spin polarization generated by the optical pulses along the negative
𝑧 direction dephases with an envelope function that is governed by the ensemble
dephasing time 𝑇 ∗, cf. Eq. (5.37). In Fig. 6.1(a), the incidence of the pump pulses
at times 𝑁𝑃𝑇𝑅 corresponds to 𝑡 = 0 ns, and the number 𝑁𝑃 of preceding pump
pulses is indicated in the legend. The oscillation of the electron spin 𝑧 component
in the external magnetic field 𝐵 = 1.95 T applied in 𝑥 direction cannot be resolved
on the timescale of the repetition time 𝑇𝑅 = 13.2 ns in Fig. 6.1(a), as the Larmor
precession period amounts to 66 ps for the electron 𝑔 factor 𝑔𝑒 = 0.555. Therefore,
we provide an inset with the zoomed electron spin dynamics directly before the next
pump pulse.

Starting from the second pump pulse (orange line), a revival of the electron spin
polarization before the incidence of the next pump pulse emerges which gains in
amplitude up to the tenth pulse (green line). The rephasing of the electron spin
precession before a pump pulse clearly indicates the synchronization of the electron
spin dynamics with the pumping periodicity. As the electron spin which is oriented
in negative 𝑧 direction after the pump pulse precesses in the (𝑦𝑧) plane perpendicular
to the external field, the electron spin polarization after the time 𝑇𝑅 may be aligned
with any angle within the (𝑦𝑧) plane. Thus, we define the electron spin revival
amplitude directly before a pump pulse as

𝑆⟂(𝑁𝑃) = √⟨𝑆𝑦(𝑁𝑃𝑇 −
𝑅 )⟩2 + ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩2. (6.1)

104



6.1 Electronic quasistationary steady state

0.0 4.4 8.8 13.2

t (ns)

−0.4

−0.2

0.0

0.2

0.4

〈S
z
(N

p
T
R

+
t)
〉

(a) B = 1.95 T

13.0 13.2
−0.1

0.0

0.1

NP = 1

NP = 2

NP = 10

0 2 4 6 8 10

NP

0.00

0.05

0.10

S
⊥

(N
P

)

(b)

analytical

B = 1.95 T

B = 3.90 T

B = 5.85 T

Figure 6.1: Emergence of the electronic quasistationary steady state in the disor-
dered nuclear spin bath (𝑁 = 6, 𝐼 = 1/2, 𝑁𝐶 = 100). (a) Temporal evolution of
the electron spin component ⟨𝑆𝑧⟩ between consecutive pump pulses with repetition
time 𝑇𝑅 = 13.2 ns. The evolution after different numbers 𝑁𝑃 of preceding instan-
taneous resonant 𝜋 pulses is displayed, where 𝑡 = 0 ns corresponds to the incidence
time of the 𝑁𝑃-th pump pulse. The external magnetic field, 𝐵 = 1.95 T, entails
rapid oscillations which are resolved in the inset only. (b) Amplitude 𝑆⟂(𝑁𝑃) of
the electron spin polarization directly before a pump pulse as a function of the
number 𝑁𝑃 of preceding pump pulses. Data for various external magnetic fields is
presented alongside the analytical prediction, Eq. (6.7). The figure is taken from
Ref. [86].

To inspect the emergence of the electron spin synchronization, the revival amplitude
𝑆⟂(𝑁𝑃) is displayed in Fig. 6.1(b) as a function of the number 𝑁𝑃 of preceding
pump pulses. We find that the revival amplitude exhibits a rapid increase with
the second pump pulse and subsequently increases in steps of two pump pulses
approaching a plateau. This behavior is mostly independent of the strength of the
applied magnetic field.

For a better understanding of the emergence of the revival, we employ a simplifying
analytical treatment of the electron spin dynamics during the repetition period.
According to Eqs. (5.11) and (5.12), the pump pulse induces an electron spin
polarization along the optical axis,

⟨𝑆𝑧(𝑁𝑃𝑇 +
𝑅 )⟩ = 1

2
(⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩ − 1
2

) , (6.2)

where ⟨𝑆𝑧(𝑁𝑃𝑇 −
𝑅 )⟩ and ⟨𝑆𝑧(𝑁𝑃𝑇 +

𝑅 )⟩ denote the electron spin polarization before
and after the incidence of the pump pulse, respectively. The spin components
⟨𝑆𝑥(𝑁𝑃𝑇 +

𝑅 )⟩ and ⟨𝑆𝑦(𝑁𝑃𝑇 +
𝑅 )⟩ however are set to zero by the pulse. To obtain

the electron spin dynamics between the pump pulses, we assume the nuclear spins
to be frozen, cf. Sec. 2.6, since the repetition time 𝑇𝑅 is short compared to the
time scale of the nuclear spin dynamics. Furthermore, a strong external magnetic
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field along the 𝑥 direction suppresses the effect of the transversal Overhauser field
components 𝐵𝑦

𝑁 and 𝐵𝑧
𝑁, | − B + B𝑁| ≈ −𝐵 + 𝐵𝑥

𝑁 employing a Taylor expansion
for |B𝑁|/|B| ≪ 1. Accordingly, we focus on the electron spin precession about the
constant total magnetic field 𝐵+𝐵𝑥

𝑁 aligned in 𝑥 direction for the analytic approach.
As a consequence, the electron spin dynamics between the pump pulses for a fixed
nuclear spin configuration 𝐾 simplifies to

⟨𝑆𝑧((𝑁𝑃 + 1)𝑇 −
𝑅 )⟩

𝐾
= ⟨𝑆𝑧(𝑁𝑃𝑇 +

𝑅 )⟩
𝐾

cos((𝜔𝑒 − 𝜔𝐾)𝑇𝑅), (6.3)

where we neglect the trion decay due to 𝛾 ≪ 𝜔𝑒 for simplicity. The electron spin
precession frequency 𝜔𝑒 − 𝜔𝐾 is the combination of the Larmor frequency 𝜔𝑒 in
the external field introduced in Eq. (2.16) and the frequency 𝜔𝐾 for the precession
about the Overhauser field of the nuclear configuration 𝐾,

𝜔𝐾 = 𝑔𝑒𝜇𝐵𝐵𝑥
𝐾 = ∑

𝑘
𝐴𝑘 ⟨𝐾|𝐼𝑥

𝑘 |𝐾⟩ . (6.4)

The revival amplitude at a fixed nuclear configuration 𝐾 after 𝑁𝑃 pump pulses, i.e.,
directly before the (𝑁𝑃 + 1)-th pump pulse, results from the iteration of the pulse
effect and the time evolution. Repetitive insertion of Eq. (6.2) into Eq. (6.3) and
vice versa yields

⟨𝑆𝑧(𝑁𝑃𝑇 −
𝑅 )⟩

𝐾
= −

𝑁𝑃

∑
𝑛=1

1
2𝑛+1 [cos((𝜔𝑒 − 𝜔𝐾)𝑇𝑅)]𝑛. (6.5)

We note that the instantaneous pump pulses do not act on the nuclear spin state
such that Eq. (6.2) holds for each nuclear configuration 𝐾 separately.

The total electron spin polarization is obtained from averaging the result of the
individual nuclear configurations 𝐾 over the occurring precession frequencies 𝜔𝐾
weighted by their probability distribution 𝑝(𝜔𝐾),

⟨𝑆𝑧(𝑁𝑃𝑇 −
𝑅 )⟩ = ∫

∞

−∞
𝑑𝜔𝐾𝑝(𝜔𝐾) ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩
𝐾

, (6.6)

where 𝑝(𝜔𝐾) is approximated as a continuous Gaussian distribution with stan-
dard deviation 1/

√
3𝑇 ∗ and zero mean in the high-temperature limit according to

Eq. (2.13). Since ⟨𝑆𝑧(𝑁𝑃𝑇 −
𝑅 )⟩

𝐾
is periodic in 𝜔𝐾 with the repetition period 𝑇𝑅, it

oscillates faster than the Gaussian distribution 𝑝(𝜔𝐾) whose width is governed by
𝑇 ∗ = 1 ns. Consequently, we approximate 𝑝(𝜔𝐾) as constant during one period of
⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩
𝐾

, and obtain the average ⟨𝑆𝑧(𝑁𝑃𝑇 −
𝑅 )⟩ by integration of ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩
𝐾
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over one period,

⟨𝑆𝑧(𝑁𝑃𝑇 −
𝑅 )⟩ = 𝑇𝑅

2𝜋
∫

2𝜋/𝑇𝑅

0
𝑑𝜔𝐾 ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩
𝐾

= −𝑇𝑅
2𝜋

𝑁𝑃

∑
𝑛=1

1
2𝑛+1 ∫

2𝜋/𝑇𝑅

0
𝑑𝜔𝐾 [cos((𝜔𝑒 − 𝜔𝐾)𝑇𝑅)]𝑛

= −
⌊𝑁𝑃/2⌋

∑
𝑛=1

(2𝑛)!
24𝑛+1(𝑛!)2 (6.7)

due to ∫∞
−∞

𝑑𝜔𝐾𝑝(𝜔𝐾) = 1. For the second line, we inserted the definition of
⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩
𝐾

in Eq. (6.5). The third line is obtained by exploiting the periodicity of
the cosine where we replaced the index 𝑛 in the second line by 𝑛/2 as the contributions
for odd 𝑛 vanish due to the antisymmetric integrand. Thus, ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩ is predicted
to increase in steps of two pulses as observed in Fig. 6.1(b). The analytic prediction
(black circles) matches the numerical results independently of the applied magnetic
field whose effect cancels out in Eq. (6.7) due to integration over a full period of the
cosine.

The electron spin 𝑦 component directly before the pump pulse results from replacing
the cosine originating from the final repetition period by a sine in Eq. (6.5),

⟨𝑆𝑦(𝑁𝑃𝑇 −
𝑅 )⟩

𝐾
=

𝑁𝑃

∑
𝑛=1

1
2𝑛+1 [cos((𝜔𝑒 − 𝜔𝐾)𝑇𝑅)]𝑛−1 sin((𝜔𝑒 − 𝜔𝐾)𝑇𝑅). (6.8)

The average over the electron spin precession frequency 𝜔𝐾 produces ⟨𝑆𝑦(𝑁𝑃𝑇 −
𝑅 )⟩ =

0 for the evaluation analogous to ⟨𝑆𝑧(𝑁𝑃𝑇 −
𝑅 )⟩. Therefore, the electron spin revival

amplitude is determined by the electron spin 𝑧 component alone in the analytic
approach, 𝑆⟂(𝑁𝑃) = | ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩ |.

Increasing the number of pump pulses to infinity in Eq. (6.7), 𝑁𝑃 → ∞, the revival
amplitude of the electronic quasistationary steady state approaches the value 𝑆⟂

ess,

𝑆⟂
ess = ∣1

2
− 1√

3
∣ ≈ 0.077, (6.9)

indicated by the dashed gray horizontal line in Fig. 6.1(b). However, on a prolonged
time scale exceeding ten repetition periods, the full hyperfine interaction becomes
relevant such that the approximation of frozen nuclear spins does not hold anymore.
Here, the synchronization of the electron spin with the driving periodicity transfers
to the nuclear spin bath. Accordingly, the electron spin revival amplitude under
continued optical excitation may differ significantly from 𝑆⟂

ess.
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6.2 Mode-locking effect and nuclei-induced frequency
focusing

In mode-locking experiments, the periodic optical excitation is typically applied over
several minutes [68] to enable the reorientation of the nuclear spins in the quantum
dot ensemble and thereby allow for nuclei-induced frequency focusing of the electron
spin precession. For the numerical simulations, we find further synchronization of
the coupled electron-nuclear spin dynamics beyond the previously discussed purely
electronic quasistationary steady state under a pulse train comprising thousands of
pump pulses. The numerical data indicates the progression of synchronization to
the nuclear spin system, for instance, by the electron spin revival amplitude evolving
further from the value 𝑆⟂

ess = 0.077. Here, we focus on the mode-locking effect at an
exemplary external magnetic field of 𝐵 = 1.95 T to provide a general understanding
of the synchronization effects. We extend the analysis to a broader range of external
magnetic field strengths in the following section.

Under continuous pumping with instantaneous resonant 𝜋 pulses, the revival am-
plitude 𝑆⟂(𝑁𝑃) grows, starting from the initial electronic steady-state value 𝑆⟂

ess
reached after ten pump pulses, see Figs. 6.2(a) and 6.2(b). This increase in the
revival amplitude is attributed to the realignment of the Overhauser field acting
on the electron spin [80, 81, 84, 87, 88, 90, 91]. The approximately Gaussian
initial distribution of the Overhauser field component 𝐵𝑥

𝑁 along the axis of the
external magnetic field, see Fig. 6.2(c), transforms into a peaked distribution 𝑝(𝐵𝑥

𝑁)
with Gaussian envelope function as a consequence of the periodic excitation, see
Fig. 6.2(d). At the external magnetic field of 𝐵 = 1.95 T, the Overhauser field
adjusts preferably in such a way that the electron spin performs an integer number
𝑚 of revolutions between consecutive pump pulses,

𝑇𝑅 = 𝑚 2𝜋
𝑔𝑒𝜇𝐵(𝐵 − 𝐵𝑥

𝑁)
. (6.10)

In the following, the external magnetic field is consistently set to a value

𝐵 = 𝑚′ 2𝜋
𝑔𝑒𝜇𝐵𝑇𝑅

(6.11)

with an integer number 𝑚′ respecting this finding. In the above definition, 𝑚′

corresponds to the number of electron spin revolutions during the repetition time 𝑇𝑅
at zero Overhauser field, e.g., 𝑚′ = 200 produces 𝐵 ≈ 1.95 T. The resonant values of
the Overhauser field 𝐵𝑥

𝑁, at which the number of electron spin revolutions 𝑚 in the
combination of the external magnetic field and the Overhauser field equals an integer
number, are indicated by black dotted vertical lines in Fig. 6.2(d) and subsequent

108



6.2 Mode-locking effect and nuclei-induced frequency focusing

0.0 4.8 8.8 13.2
t (ns)

−0.50

−0.25

0.00

0.25

0.50

〈S
z

(N
P
T
R

+
t)
〉 (a)

13.00 13.05 13.10 13.15 13.20

t (ns)

−0.4

−0.2

0.0

0.2
(b)

NP = 1

NP = 10

NP = 105

NP = 106

NP = 1.5× 106

−20 0 20
BxN (mT)

0.00

0.02

0.04

0.06

p
(B

x N
)

(c) NP = 0

−20 0 20
BxN (mT)

0.00

0.04

0.08

p
(B

x N
)

(d) NP = 1.5× 106

−20 0 20
BxN (mT)

−0.7

0.0

0.7

p
r
(B

x N
)

(e)

Figure 6.2: Mode-locking effect in the spin system (𝑁 = 6, 𝐼 = 1/2, 𝑁𝐶 = 100)
under periodic optical excitation with instantaneous resonant 𝜋 pulses. The external
magnetic field is fixed to 𝐵 = 1.95 T. (a) Temporal evolution of the electron spin
component ⟨𝑆𝑧(𝑁𝑃𝑇𝑅 + 𝑡)⟩ between two pump pulses. The incidence time of the
𝑁𝑃-th pump pulse corresponds to 𝑡 = 0 ns respectively. The number of preceding
pump pulses is color coded according to the legend in panel (b). (b) Zoomed
electron spin dynamics directly before the next pump pulse. (c) Initial Overhauser
field distribution 𝑝(𝐵𝑥

𝑁). The analytic Gaussian prediction, Eq. (2.13), is indicated
by a gray line. (d) Overhauser field distribution 𝑝(𝐵𝑥

𝑁) after periodic excitation
with 𝑁𝑃 = 1.5 × 106 pump pulses. (e) Relative Overhauser field distribution
𝑝𝑟(𝐵𝑥

𝑁) after various numbers of pump pulses. The color coding complies with the
legend in panel (b). The figure is taken from Ref. [86].

figures of the Overhauser field distribution. After a train of 𝑁𝑃 = 1.5 × 106 periodic
pump pulses, the distribution 𝑝(𝐵𝑥

𝑁) clearly favors these resonances and exhibits
peaks at the indicated positions.

To extract the nuclei-induced frequency focusing more clearly, we introduce the
relative Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) as the relative deviation of the prob-
ability distribution 𝑝(𝐵𝑥

𝑁) after a periodic pulse train from the initial probability
distribution 𝑝0(𝐵𝑥

𝑁) with approximately Gaussian shape [90],

𝑝𝑟(𝐵𝑥
𝑁) = 𝑝(𝐵𝑥

𝑁) − 𝑝0(𝐵𝑥
𝑁)

𝑝0(𝐵𝑥
𝑁)

. (6.12)

The relative Overhauser field distribution allows for detecting small changes in
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the orientation of the nuclear spins and therefore resolves the redistribution of the
Overhauser field component 𝐵𝑥

𝑁 at an earlier stage during the pulse train. The
numerical results of 𝑝𝑟(𝐵𝑥

𝑁) after different numbers 𝑁𝑃 of pump pulses are presented
in Fig. 6.2(e). During the pulse train, the peaks at the resonant Overhauser field
values emerge, and a steady-state distribution is approached after roughly one
million pulses. After ten pump pulses (light blue line), no notable reorientation of
the nuclear spins is visible yet. Continuing the periodic excitation up to 𝑁𝑃 = 105

pump pulses (orange line), peaks at the resonant modes emerge which increase
further under the prolonged pulse train. Finally, the distributions for 𝑁𝑃 = 106

(light green line) and 𝑁𝑃 = 1.5 × 106 (dark green line) fully coincide hinting at
the convergence to a quasistationary steady state under the periodic driving. The
quasistationary steady state is reflected by the matching revival of the electron spin
polarization in Fig. 6.2(b) as well.

6.3 Magnetic field dependence of the electron spin
revival amplitude

The mode-locking experiments indicate a nonmonotonic behavior of the electron
spin revival amplitude as a function of the applied magnetic field. Based on these
findings, we target the magnetic field dependence of the mode-locking effect by
quantum mechanical simulations. Figure 6.3(a) displays the emergence of the
electron spin revival amplitude 𝑆⟂(𝑁𝑃) under the periodic pulse train at distinct
strengths of the external magnetic field. At some magnetic field strengths (such
as 𝐵 = 1.95 T), the revival amplitude increases starting from the initial value
of 𝑆⟂

ess = 0.077 under continued optical excitation whereas the revival amplitude
decreases below 𝑆⟂

ess at other magnetic field strengths. In both scenarios, the revival
amplitude 𝑆⟂(𝑁𝑃) as a function of the number 𝑁𝑃 of pump pulses approaches a
steady-state value. This value is reached after roughly one million pump pulses for
relatively weak external magnetic fields, whereas longer pulse trains are required
for stronger external magnetic fields, e.g., at 𝐵 = 9.75 T we applied 20 million
consecutive pump pulses. The converged revival amplitude 𝑆⟂ as a function of the
external magnetic field 𝐵 in the range up to 10 T is presented in Fig. 6.3(b) (blue
markers). The revival amplitude clearly demonstrates a nonmonotonic dependence
on 𝐵. Similar to the experiments, cf. Fig. 5.2(b), we find a profound minimum
of 𝑆⟂ around 4 T. Furthermore, the revival amplitude exhibits a second minimum
around 8 T as well as two equally pronounced maxima at 2 T and 6 T respectively.
Overall, the numerical results indicate an oscillatory behavior of 𝑆⟂ in the range of
up to 10 T, whereas the experimental measurements provide an overall decrease in
the revival amplitude with increasing magnetic field strength which is superimposed
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Figure 6.3: Magnetic field dependence of the electron spin revival amplitude in the
spin system (𝐼 = 1/2, 𝑁 = 6, 𝑁𝐶 = 100) driven by periodic instantaneous resonant
𝜋 pulses. (a) Evolution of the revival amplitude 𝑆⟂(𝑁𝑃) during the pulse train for
various external magnetic fields. (b) Revival amplitude 𝑆⟂ in the quasistationary
steady state as a function of the external magnetic field (blue markers, the line is
provided as a guide to the eye). Additionally, we display the converged absolute
value | ⟨𝑆𝑧

𝑐 ⟩ | of the electron spin polarization along the optical axis directly before
the pump pulse (orange crosses) and the revival amplitude 𝑆⟂ calculated according
to Eq. (6.15) from the associated Overhauser field distributions (green diamonds).
The figure is taken from Ref. [86].

by additional modulations. This mismatch is a result of the theoretical modeling
missing relevant effects such as the duration of the pump pulses as well as the
differing 𝑔 factors of the nuclear isotopes in the quantum dots. We will address these
additional effects one by one in Sec. 6.4 and Sec. 6.6 respectively. Here, we aim at a
general understanding of the magnetic field dependence of the revival amplitude
first.

The emergence of either an enhanced or attenuated revival amplitude under the
prolonged pulse sequence originates from the nuclei-induced frequency focusing
effect. Hence, it is instructive to examine the reorientation of the nuclear spins
depending on the magnetic field strength. Jäschke et al. [84] derived two distinct
types of modes for the electron spin precession from the condition that the average
Knight field acting on the nuclear spins between consecutive pump pulses vanishes.
At these modes, the Overhauser field adjusts in such a way that the electron spin
performs either an integer or half-integer number 𝑚 of revolutions during 𝑇𝑅. For the
external magnetic field of 𝐵 = 1.95 T, we found already that the former resonances
are favored by the Overhauser field, cf. Fig. 6.2(d) and Fig. 6.2(e). In Ref. [91],
a resonance condition for the nuclear Larmor precession was proposed based on
the effect of the Hamiltonian 𝐻NZ which determines whether integer or half-integer
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Figure 6.4: Relative Overhauser field distribution 𝑝𝑟(𝐵𝑥
𝑁) in the quasistationary

steady state for different strengths of the external magnetic field 𝐵. The number of
instantaneous pump pulses applied to the spin system (𝑁 = 6, 𝐼 = 1/2, 𝑁𝐶 = 100)
is in the range 1.5×106 ≤ 𝑁𝑃 ≤ 2×107. Overhauser fields that produce an integer
(half-integer respectively) number of electron spin revolutions between consecutive
pump pulses are indicated by black dotted (gray dashed) vertical lines. The figure
is taken from Ref. [86].

numbers 𝑚 are favored. When the external magnetic field fulfills

𝐵 = 𝑛 × 𝜋
2𝑇𝑅𝑔𝑁𝜇𝑁

≈ 𝑛 × 1.95 T (6.13)

with an odd number 𝑛, the nuclear spins are predicted to form an Overhauser field
𝐵𝑥

𝑁 which produces an integer number 𝑚 of electron spin revolutions during 𝑇𝑅. An
even number 𝑛 in the above condition, however, indicates that half-integer numbers
𝑚 are favored. Here, 𝑛 corresponds to the number of quarter revolutions of the
nuclear spins between consecutive pump pulses. Figure 6.4 presents the converged
relative Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) after several million pump pulses for
selected values of 𝐵. For the magnetic field strengths 𝐵 = 1.95 T (𝑛 = 1), 𝐵 = 5.85 T
(𝑛 = 3) and 𝐵 = 9.75 T (𝑛 = 5), the Overhauser field distribution exhibits peaks
at the integer resonances of the electron spin precession indicated by the black
dotted vertical lines, see Figs. 6.4(a), 6.4(d) and 6.4(f) respectively. At an external
magnetic field of 𝐵 = 3.90 T (𝑛 = 2), the peak positions in 𝑝𝑟(𝐵𝑥

𝑁) correspond
to the half-integer resonances of the electron spin precession marked by the gray
dashed vertical lines, see Fig. 6.4(c). For 𝐵 = 7.80 T (𝑛 = 4), which exceeds the
magnetic field range considered in Ref. [91], the prediction according to Eq. (6.13)
does not hold anymore. While we would expect the favoring of the half-integer
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precession modes, the distribution 𝑝𝑟(𝐵𝑥
𝑁) in Fig. 6.4(e) displays peaks in between

the integer and half-integer resonances. When the external magnetic field does not
comply with Eq. (6.13) with an integer 𝑛, the Overhauser field distribution may
form peaks corresponding to both mode types. Figure 6.4(b) shows the distribution
for 𝐵 = 2.93 T (𝑛 = 3/2) as an example.

To connect the results for the Overhauser field distribution to the extracted revival
amplitudes, we perform an analytical analysis of ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩ employing the frozen
Overhauser field approximation. Focusing on a fixed nuclear spin configuration 𝐾, we
obtain the quasistationary steady state under the periodic pumping from the require-
ment that the electron spin revival has converged, ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩ = ⟨𝑆𝑧((𝑁𝑃 + 1)𝑇 −
𝑅 )⟩.

The insertion of Eq. (6.2) for the pulse effect into Eq. (6.3) for the temporal evolution
between the pulses and the subsequent application of the steady-state criterion
yields the electron spin 𝑧 polarization before a pump pulse for the nuclear spin
configuration 𝐾,

⟨𝑆𝑧(𝑁𝑃𝑇 −
𝑅 )⟩

𝐾
= − cos((𝜔𝑒 − 𝜔𝐾)𝑇𝑅)

2[2 − cos((𝜔𝑒 − 𝜔𝐾)𝑇𝑅)]
. (6.14)

The total electron spin revival amplitude is given by the sum over all contributions
⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩
𝐾,𝑙

of the individual nuclear spin configurations 𝐾 according to their
weight 𝑝𝐾,𝑙 defined in Eq. (5.43),

⟨𝑆𝑧(𝑁𝑃𝑇 −
𝑅 )⟩ = ∑

𝐾,𝑙
𝑝𝐾,𝑙 ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩
𝐾,𝑙

. (6.15)

Here, we reintroduced the index 𝑙 distinguishing the various realizations of the
spin system differing by the set of hyperfine coupling constants. The relation,
Eq. (6.15), allows for connecting the Overhauser field distribution obtained from
the numerical calculations directly to the electron spin revival amplitude. The
revival amplitude 𝑆⟂

ess of the electronic steady state, Eq. (6.9), which is related
to the Gaussian distribution of 𝐵𝑥

𝑁 in the disordered nuclear spin system, can be
extracted directly from the above equation. We added | ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩ | calculated
from the numerical data for 𝑝𝐾,𝑙 according to the analytic relation, Eq. (6.15),
in Fig. 6.1(b) as green diamonds. The results fully match the revival amplitude
𝑆⟂ extracted straight from the full quantum mechanical treatment for external
magnetic fields 𝐵 > 1 T. For weaker magnetic fields, the approximation of a fast
electron Larmor precession compared to the trion decay, 𝛾 ≪ 𝜔𝑒, does not hold, and
therefore the temporal evolution between the pulses is more intricate than Eq. (6.3).
Moreover, the approximation of a frozen Overhauser field becomes less justified for
small external magnetic fields.
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The agreement for 𝐵 > 1 T demonstrates that the revival amplitude of the electron
spin polarization in the mode-locked system is fully determined by the alignment
of the nuclear spins along the direction of the external magnetic field. Thus, the
magnetic field dependence of the revival amplitude can be directly connected to the
resonance condition, Eq. (6.13), arising from the nuclear Zeeman term. For odd
values of 𝑛, the integer modes of the electron spin precession are favored producing
an enhanced revival amplitude. For even values of 𝑛, however, the half-integer modes
of the electron spin precession attenuate the revival effect. Assuming 𝛿 peaks in the
Overhauser field distribution at either the integer or half-integer modes, the extreme
values of the electron spin 𝑧 component [84] result from Eq. (6.15): ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩ =
−1/2 for the integer modes where [𝜔𝑒 − 𝜔𝐾]𝑇𝑅 = 2𝑎𝜋 and ⟨𝑆𝑧(𝑁𝑃𝑇 −

𝑅 )⟩ = 1/6 for
the half-integer modes where [𝜔𝑒 − 𝜔𝐾]𝑇𝑅 = (2𝑎 + 1)𝜋 with 𝑎 ∈ ℤ respectively.1
Accordingly, the revival amplitude starting from the initial value 𝑆⟂

ess either increases
(integer modes) or decreases (half-integer modes) under continued optical excitation.
As the converged Overhauser field distributions in Fig. 6.4 exhibit peaks of finite
width, we observe a superposition of the contributions of the two mode types which
produces the evolution of the revival amplitude presented in Fig. 6.3(a).

6.4 Excitation with Gaussian shaped pump pulses

For a realistic description of the pump pulses, we replace the modeling with instan-
taneous resonant 𝜋 pulses by Gaussian shaped laser pulses of finite nonzero duration.
We employ the pulse Hamiltonian, Eq. (5.4), with a real Gaussian envelope function,
𝑓(𝑡) = 𝑓∗(𝑡), whose iterated area equals 𝜋. The full width at half maximum of 𝑓(𝑡)
is chosen to be 6 ps which is slightly longer than the laser pulses in experiments
but illustrates the relevant physical effects more clearly [78]. We capture the pump
pulse up to the time where the envelope function 𝑓(𝑡) has decayed to a hundredth
of its maximum value and therefore set the pulse duration to 𝑇𝑃 = 22 ps. The
temporal evolution during the pulse is discretized according to Eq. (5.8) into 103

equally spaced time steps. The spin dynamics for the subsequent period of duration
𝑇𝐿 = 𝑇𝑅 − 𝑇𝑃 up to the next pump pulse is calculated in accordance to Eq. (5.13)
by means of the procedure presented in Sec. 5.4.

As a first step, we address the periodic excitation with resonant Gaussian pump
pulses for which 𝜖𝑃 = 𝜖𝑇, i.e., the detuning yields 𝛿𝑇 = 0 meV. The repetition time
𝑇𝑅 = 13.2 ns as well as other physical parameters are kept from the previous section
for comparability. Figure 6.5(a) displays the emergence of the electron spin revival
amplitude 𝑆⟂(𝑁𝑃) under a pulse train consisting of resonant Gaussian pump pulses.

1The weight 𝑝𝐾,𝑙 for the population of the individual modes does not enter here.
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Figure 6.5: Revival amplitude of the electron spin polarization under periodic
excitation with Gaussian shaped pump pulses with 6 ps width (𝑁 = 6, 𝐼 = 1/2,
𝑁𝐶 = 100). (a) Emergence of the revival amplitude 𝑆⟂(𝑁𝑃) during the pulse
train for different external magnetic fields. (b) Revival amplitude 𝑆⟂ in the
quasistationary steady state as a function of the external magnetic field (green
markers – the line is provided as a guide to the eye). Additionally, the converged
absolute value | ⟨𝑆𝑧

𝑐 ⟩ | (orange crosses) as well as the converged revival amplitude
𝑆⟂ for instantaneous pump pulses (blue markers) are displayed. The latter is taken
from Fig. 6.3(b). The figure is taken from Ref. [86].

For accurately extracting the maximum revival amplitude, we now measure 𝑆⟂(𝑁𝑃)
in the middle of the pulse at times 𝑁𝑃𝑇𝑅 + 𝑇𝑃/2 where the envelope function 𝑓(𝑡) of
the pulse has its maximum respectively. In comparison to the instantaneous pump
pulses, cf. Fig. 6.3(a), the stationary revival amplitude at a select external magnetic
field emerges after a larger number 𝑁𝑃 of pump pulses for the Gaussian shaped
pulses as a consequence of the slower rate of change. In particular, at high magnetic
fields, the generation of electron spin polarization by the Gaussian pump pulses
of a finite duration becomes inefficient due to the notable electron spin precession
during the pulse. Hence, for 𝐵 = 9.75 T, the spin system has not fully reached the
nonequilibrium steady state after the maximum simulation time of 20 million pump
pulses (red dotted line).

The weakening polarization effect of the Gaussian pump pulses when increasing the
external magnetic field is reflected by the converged electron spin revival amplitudes
𝑆⟂ presented in Fig. 6.5(b). The overall periodic behavior of 𝑆⟂ as a function
of 𝐵 in the range of up to 10 T is similar to the results for the excitation with
instantaneous pulses. While the revival amplitude obtained for Gaussian pump
pulses (green markers) roughly matches the data for the instantaneous pulses (blue
markers) up to a magnetic field strength of 4 T, stronger deviations arise for larger
magnetic fields, 𝐵 > 4 T. The second maximum of the revival at 6 T is significantly
less pronounced in the case of the excitation with Gaussian pump pulses. This
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Figure 6.6: Relative Overhauser field distribution 𝑝𝑟(𝐵𝑥
𝑁) of the spin system

(𝑁 = 6, 𝐼 = 1/2, 𝑁𝐶 = 100) in the quasistationary steady state for different
strengths of the external magnetic field 𝐵. The data (green lines) is obtained
after periodic application of Gaussian shaped pump pulses with a width of 6 ps,
2.5 × 106 ≤ 𝑁𝑃 ≤ 2 × 107. For comparison, the distributions 𝑝𝑟(𝐵𝑥

𝑁) obtained for
instantaneous pump pulses taken from Fig. 6.4 are added as well (blue lines). An
even (odd respectively) number of electron spin revolutions between consecutive
pump pulses is indicated by black dotted (gray dashed) vertical lines. The figure
is taken from Ref. [86].

observation corresponds to the experimental findings of an overall decrease in the
revival amplitude for a strengthening magnetic field. We note that the minimum
at 8 T in Fig. 6.5(b) seems less pronounced as the results for magnetic fields larger
than 9 T have not fully converged, cf. Fig. 6.3(a). The converged absolute value of
the electron spin polarization along the optical axis measured at the maximum of
the pump pulse, | ⟨𝑆𝑧

𝑐 ⟩ | ≡ | ⟨𝑆𝑧(𝑁𝑃𝑇𝑅 + 𝑇𝑃/2)⟩ |, reveals that the revival amplitude
for the Gaussian pump pulses is mostly made up by the electron spin 𝑧 component
in the magnetic field range 1 T < 𝐵 < 7 T, see orange crosses in Fig. 6.5(b). Here,
the electron spin component | ⟨𝑆𝑦

𝑐 ⟩ | ≡ | ⟨𝑆𝑦(𝑁𝑃𝑇𝑅 + 𝑇𝑃/2)⟩ | vanishes. Differences
between 𝑆⟂ and | ⟨𝑆𝑧

𝑐 ⟩ | are detected for small magnetic fields similarly as for the
instantaneous pulses. Furthermore, additional deviations occur for the Gaussian
shaped pulses at large magnetic fields for which the pumping becomes inefficient.

To extract the effect of the Gaussian shaped pump pulses on the nuclei-induced
frequency focusing, we inspect the relative Overhauser field distribution of the spin
system in the nonequilibrium steady state. Figure 6.6 displays 𝑝𝑟(𝐵𝑥

𝑁) for the same
external magnetic fields as for the instantaneous pump pulses in Fig. 6.4. Alongside
the distribution 𝑝𝑟(𝐵𝑥

𝑁) resulting after periodic excitation with the Gaussian pulses
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(green lines), the data for the instantaneous pulses is added (blue lines) for compari-
son. Up to 𝐵 ≲ 3 T where the electron spin precession during the pulses is negligible,
the distributions 𝑝𝑟(𝐵𝑥

𝑁) for the two pulse types match. For larger external magnetic
fields 𝐵 > 3 T, modifications of the electron spin precession modes arise due to
the Gaussian pulse shape: At 𝐵 = 3.90 T (𝑛 = 2), where the half-integer modes
(gray dashed vertical lines) were favored exclusively for the instantaneous pulses,
the Overhauser field distribution exhibits tiny peaks corresponding to the integer
modes for the Gaussian pump pulses as well. At the odd resonance 𝐵 = 5.85 T
(𝑛 = 3), the peaks of 𝑝𝑟(𝐵𝑥

𝑁) are slightly shifted to larger Overhauser fields with
respect to the positions of the integer modes similarly as at 𝐵 = 9.75 T (𝑛 = 5). At
the magnetic field of 𝐵 = 7.80 T (𝑛 = 4), the peaks in between the resonant modes
of the electron spin precession are more pronounced on the right hand side of the
integer modes than on the left hand side. Thus, the deviations of the electron spin
revival amplitude in Fig. 6.5(b) from the results for instantaneous pump pulses in
Fig. 6.3(b) at large values of 𝐵 can be directly connected to deviations of 𝑝𝑟(𝐵𝑥

𝑁)
from the prediction according to Eq. (6.13) arising for strong external magnetic
fields.

6.4.1 Trion detuning

Now, we take into account a detuning of the optical pulses from the trion excitation
energy. We employ the modeling of Gaussian pump pulses with the same parameter
as before and add a finite nonzero energy detuning 𝛿𝑇. The magnitude of the
detuning is adjusted to the order of the spectral pulse width which amounts to a
standard deviation of 0.26 meV at the full width at half maximum of 6 ps in the time
domain. For the detuned excitation, the electron spin obtains a component along
the direction of the external magnetic field by the pump pulses, i.e., ⟨𝑆𝑥⟩ no longer
remains zero during the pulse sequence. The converged electron spin polarization
⟨𝑆𝑥

𝑐 ⟩ ≡ ⟨𝑆𝑥(𝑁𝑃𝑇𝑅 + 𝑇𝑃/2)⟩ under the periodic optical excitation with detuned
pump pulses with 𝛿𝑇 = 0.1 meV is shown in Fig. 6.7(a) as a function of the external
magnetic field (blue crosses). The steady-state electron spin polarization along
the external magnetic field axis increases with the magnetic field strength 𝐵. Via
the hyperfine interaction, the electron spin polarization can be transmitted to the
nuclear spins. Figure 6.7(b) reflects the nuclear polarization by a shift of the envelope
function of the Overhauser field distribution 𝑝(𝐵𝑥

𝑁) to the right at 𝐵 = 1.95 T. The
favoring of the integer precession modes of the electron spin according to the
resonance condition, Eq. (6.13) with 𝑛 = 1, however, is left unaffected. When
increasing the magnetic field strength, the polarization of the nuclear spin system
reduces, see the relative Overhauser field distributions 𝑝𝑟(𝐵𝑥

𝑁) in Fig. 6.7(c). At
𝐵 = 3.90 T and 𝐵 = 5.85 T respectively, the peaks of the distribution 𝑝𝑟(𝐵𝑥

𝑁) at
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Figure 6.7: Effect of the energy detuning 𝛿𝑇 of the Gaussian shaped pump pulses
(𝑁 = 6, 𝐼 = 1/2, 𝑁𝐶 = 100). (a) Converged electron spin revival amplitude 𝑆⟂

for a periodic train of Gaussian pump pulses with detuning 𝛿𝑇 = 0.1 meV; the
related spin component | ⟨𝑆𝑧

𝑐 ⟩ | and the polarization ⟨𝑆𝑥
𝑐 ⟩ are displayed as well. For

comparison, we add the revival amplitude 𝑆⟂ for resonant Gaussian pump pulses
(gray markers) taken from Fig. 6.5(b). (b) Overhauser field distribution 𝑝(𝐵𝑥

𝑁)
after 𝑁𝑃 = 4 × 106 detuned Gaussian pump pulses (𝛿𝑇 = 0.1 meV) at an external
magnetic field of 𝐵 = 1.95 T. (c) Relative Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) in
the nonequilibrium steady-state for detuned Gaussian pump pulses (𝛿𝑇 = 0.1 meV)
and different magnetic field strengths. (d) Relative Overhauser field distributions
𝑝𝑟(𝐵𝑥

𝑁) after 𝑁𝑃 = 4 × 106 Gaussian pump pulses with different detuning 𝛿𝑇 for
an external magnetic field of 𝐵 = 1.95 T.

the resonant electron spin precession modes are roughly equally pronounced in the
full range of 𝐵𝑥

𝑁 in contrast to the distribution at 𝐵 = 1.95 T. We attribute this
decrease in the nuclear polarization to the suppression of the spin flip terms of the
hyperfine interaction by a large external magnetic field. Accordingly, the electron
spin cannot transfer its polarization to the nuclear spin bath efficiently.

The electron spin revival amplitude, however, remains unaffected by a potential
polarization of the spin system along the magnetic field direction. Figure 6.7(a)
displays the steady-state revival amplitude 𝑆⟂ as a function of the external magnetic
field. The comparison of the results for Gaussian pump pulses with and without
energy detuning 𝛿𝑇 (red and gray markers respectively) reveals almost no differences.
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6.5 Effect of static nuclear-electric quadrupolar interactions

While a nuclear spin 𝑥 polarization may be induced by the detuning 𝛿𝑇, the Over-
hauser field distribution still favors the same type of electron spin precession modes
as for resonant excitation such that the weight of 𝑝(𝐵𝑥

𝑁) is solely redistributed
between modes of the same type which produce the same electron spin revival
amplitude according to Eqs. (6.14) and (6.15).

Finally, we note that the sign of the spin polarization along the magnetic field
axis is determined by the sign of the energy detuning of the pump pulses, see
Fig. 6.7(d). As the detuning affects the orientation of the electron spin after the
pump pulses and, in particular, determines the electron spin 𝑥 component, it governs
the polarization of the spin system. At a fixed external magnetic field of 𝐵 = 1.95 T,
the polarization induced in the nuclear spin system is oriented in positive 𝑥 direction
for a positive detuning 𝛿𝑇 > 0 meV whereas the polarization becomes negative for
𝛿𝑇 < 0 meV. Furthermore, a stronger detuning produces a more pronounced shift of
the Overhauser field distribution in the presented energy range of 𝛿𝑇. These findings
comply with experimental data [227] that hints at a broadening of the distribution
of the electron spin precession frequencies produced by the nuclei-induced frequency
focusing. As the experiment focuses on a quantum dot ensemble, we expect the
measurements to comprise contributions from quantum dots with positive and
negatively detuning with respect to the laser frequency. Therefore, the electron
spin precession frequencies in the quantum dot ensemble cover a broader range with
nuclei-induced frequency focusing than without.

6.5 Effect of static nuclear-electric quadrupolar
interactions

Since the emergence of the quasistationary steady state under the periodic pulse
train requires up to 20 million repetition periods which correspond to a duration of
roughly 0.3 s, the question about the effect of additional weaker spin interactions
arises. The nuclear quadrupolar interactions introduced in Sec. 2.7 have been
found to become relevant for times in the order of several hundred nanoseconds
[194, 196, 197]. We address their effect by extending the quantum mechanical
approach to incorporate the additional spin dynamics induced by the quadrupolar
interactions for the temporal evolution between the pump pulses. For modeling the
pump pulses, we return to instantaneous resonant 𝜋 pulses captured by Eqs. (5.11)
and (5.12) for simplicity. The repetition period remains 𝑇𝑅 = 13.2 ns. As the
full quantum mechanical treatment is limited to small system sizes due to the
exponentially growing Hilbert space dimension 𝑑 = 3(2𝐼 +1)𝑁, we focus on a system
with 𝑁 = 3 nuclear spins of the individual length 𝐼 = 3/2 which applies for Ga
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Chapter 6 Synchronization effects under periodic optical excitation

and As. The resulting Hilbert space dimension 𝑑 = 192 equals the dimension of
the previously treated system comprising 𝑁 = 6 nuclear spins with 𝐼 = 1/2. In
view of this limitation, we aim at a general understanding of the impact that the
nuclear quadrupolar interactions impose on the mode-locking effect rather than a
quantitative description of the real quantum dot ensemble.

6.5.1 Numerical implementation

To incorporate the quadrupolar interactions in the implementation of the spin
dynamics, the procedure outlined in Sec. 5.4 has to be adjusted. First, the Hamil-
tonian 𝐻, Eq. (5.16), is complemented by the static nuclear-electric quadrupolar
interactions 𝐻NQ introduced in Eq. (2.20),

𝐻 = 𝐻𝑇 + 𝐻HF + 𝐻EZ + 𝐻NZ + 𝐻NQ

= 𝜖𝑇 |𝑇 ⟩ ⟨𝑇 | + ∑
𝑘

𝐴𝑘S ⋅ I𝑘 − 𝜔𝑒𝑆𝑥 − 𝜔𝑛𝐼𝑥
𝑘

+ ∑
𝑘

𝑞𝑘 {𝜂
3

[(l𝑘 ⋅ I𝑘)2 − (m𝑘 ⋅ I𝑘)2] + (n𝑘 ⋅ I𝑘)2 − 𝐼(𝐼 + 1)
3

} . (6.16)

The extended Hamiltonian 𝐻 enters the Lindblad master equation, Eq. (5.13),
governing the temporal evolution of the density operator 𝜌 between consecutive
pulses. It is convenient to transform the Lindblad equation into the frame of
the Hamiltonian 𝐻0 = −𝜔𝑛𝐹 𝑥 + 𝐻NQ comprising the relatively slow nuclear spin
dynamics as well as the additional electron contribution 𝜔𝑛𝑆𝑥 as shown in Sec. 5.4.
Employing the redefined unitary operator 𝑈𝑛 = exp(𝑖𝐻0𝑡), we obtain the Lindblad
master equation for the transformed operators ̃𝜌 = 𝑈𝑛𝜌𝑈†

𝑛 and ̃𝑠 = 𝑈𝑛𝑠𝑈†
𝑛,

∂𝑡 ̃𝜌 = −𝑖 [�̃�, ̃𝜌] − 𝛾 ( ̃𝑠† ̃𝑠 ̃𝜌 + ̃𝜌 ̃𝑠† ̃𝑠 − 2 ̃𝑠 ̃𝜌 ̃𝑠†) . (6.17)

Here, the operator ̃𝑠 retains the form stated in Eq. (5.18). However, the transformed
Hamiltonian �̃�(𝑡),

�̃�(𝑡) = 𝑒𝑖(−𝜔𝑛𝐹 𝑥+𝐻NQ)𝑡 (𝐻HF − (𝜔𝑒 − 𝜔𝑛)𝑆𝑥 + 𝐻𝑇) 𝑒−𝑖(−𝜔𝑛𝐹 𝑥+𝐻NQ)𝑡, (6.18)

becomes time dependent since generally [𝐹 𝑥, 𝐻NQ] ≠ 0.

We continue along the same lines as in Sec. 5.4 and separate the temporal evolution
of the density suboperator ̃𝜌𝑇 𝑇 for the trion population from the dynamics of the
remaining parts of the density operator. The master equation for ̃𝜌𝑇 𝑇 complies with
Eq. (5.21) but with redefined operators �̃�. Thus, the time evolution of ̃𝜌𝑇 𝑇 is given
by Eq. (5.22a) but is supplemented by 𝐻NQ in the original frame,

𝜌𝑇 𝑇(𝑡0 + 𝑡) = 𝑒−2𝛾𝑡𝑒−𝑖(𝐻NZ+𝐻NQ)𝑡𝜌𝑇 𝑇(𝑡0)𝑒𝑖(𝐻NZ+𝐻NQ)𝑡. (6.19)
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6.5 Effect of static nuclear-electric quadrupolar interactions

The master equation for the remaining sector of the density operator ̃𝜌𝑆 related to
a reduced matrix dimension 𝑑′ × 𝑑′, which comprises the electron spin states |↑⟩
and |↓⟩, reads

∂𝑡 ̃𝜌𝑆 + 𝑖 [�̃�𝑆(𝑡), ̃𝜌𝑆] = 𝛾𝑒−2𝛾𝑡 ̃𝜌𝑇 𝑇(𝑡0) (|↑⟩ ⟨↑| + 𝑒𝑖𝜔𝑛𝑡 |↑⟩ ⟨↓|

+𝑒−𝑖𝜔𝑛𝑡 |↓⟩ ⟨↑| + |↓⟩ ⟨↓|) . (6.20a)

This equation is similar to Eq. (5.23), but the Hamiltonian �̃�𝑆(𝑡) is time depen-
dent,

�̃�𝑆(𝑡) = 𝑒𝑖(−𝜔𝑛𝐹 𝑥+𝐻NQ)𝑡 (𝐻HF − (𝜔𝑒 − 𝜔𝑛)𝑆𝑥) 𝑒−𝑖(−𝜔𝑛𝐹 𝑥+𝐻NQ)𝑡. (6.20b)

We note that for vanishing quadrupolar interactions, i.e., 𝑞𝑘 = 0 for all 𝑘, the
Hamiltonian �̃�𝑆(𝑡) simplifies to �̃�𝑆 = 𝐻HF − (𝜔𝑒 − 𝜔𝑛)𝑆𝑥 as in Eq. (5.24).

In the case of nonvanishing quadrupolar interactions, we tackle the time dependence
of �̃�𝑆(𝑡) by exploiting the fact that the dynamics governed by 𝐻0 is slow compared
to the time evolution resulting from 𝐻HF − (𝜔𝑒 − 𝜔𝑛)𝑆𝑥. We define small intervals
of time with duration 𝛥𝑡. In these intervals, we approximate �̃�𝑆 as constant in time
and employ a midpoint rule. For the individual steps of discretization, we proceed
as outlined in Sec. 5.4 and compose the time evolution of 𝜌𝑆 from a unitary part
solving the homogeneous part of Eq. (6.20a) and a particular solution of the full
nonhomogeneous equation, Eq. (6.20a).

The error 𝜖(𝛥𝑡) arising from the midpoint rule is determined by the second order
derivative of �̃�𝑆(𝑡) in time,

𝜖(𝛥𝑡) ≤ 𝛥3
𝑡

24
|[𝐻0, [𝐻0, 𝐻HF − (𝜔𝑒 − 𝜔𝑛)𝑆𝑥]]| = 𝛥3

𝑡
24

∣[𝐻0, [𝐻NQ, 𝐻HF]]∣ . (6.21)

Aiming at an upper bound of the error, we address the worst case scenario for 𝜖(𝛥𝑡)
and estimate the commutator analytically by four times the product of the maximum
eigenvalues of 𝐻0, 𝐻NQ and 𝐻HF. The maximum eigenvalues are approximated
by 𝜔𝑛/2 + 𝑁𝐼𝜔𝑛 + 𝑁 ̄𝑞𝑘𝐼2 − 𝐼(𝐼 + 1)/3 for 𝐻0, 𝑁 ̄𝑞𝑘𝐼2 − 𝐼(𝐼 + 1)/3 for 𝐻NQ, and
𝑁 ̄𝐴𝑘𝐼 for 𝐻HF respectively, where ̄𝐴𝑘 and ̄𝑞𝑘 denote the average hyperfine and
quadrupolar coupling constant respectively. The product of these estimates yields
that the step width has to be smaller than 0.9 ns for 𝑄 = 0.01 and 𝐵 = 2 T in
accordance with Eq. (6.21). The numerical evaluation of the commutator for various
sets of randomly distributed coupling constants generated as outlined in Sec. 2.7
and Sec. 5.5 produces the requirement of time steps that are smaller than 1.7 ns for
the same parameters as before.

For the practical application of the approach, a step width of 𝛥𝑡 = 0.6 ns has proven
reasonable. Figure 6.8 presents a comparison of the data obtained with different
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Figure 6.8: Discretization error arising from the numerical treatment including the
nuclear quadrupolar interactions (𝑄 = 0.01, 𝜂 = 0.5, 𝜃𝑀 = 34∘) in the spin system
(𝑁 = 3, 𝐼 = 3/2, 𝑁𝐶 = 800). (a) Time evolution of the electron spin ⟨𝑆𝑧(𝑡)⟩ for
the system in equilibrium. (b) Relative deviation 𝛥𝑆 due to the discretization from
the exact unitary time evolution extracted from the results in (a). (c) Relative
Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) in the mode-locked system (𝐵 = 1.95 T,
𝑁𝑃 = 105). The legend indicating the step width 𝛥𝑡 of the discretization in panel
(c) applies to the whole figure.

step widths 𝛥𝑡 at the quadrupolar strength 𝑄 = 0.01 with biaxiality 𝜂 = 0.5 and
maximum angle 𝜃𝑀 = 34∘. As a first step, we focus on the spin dynamics in
equilibrium, i.e., the external magnetic field and the periodic optical excitation
are absent, so that an exact unitary time evolution can serve as a reference, see
Figs. 6.8(a) and 6.8(b). In the beginning, 𝑡 = 0, the electron spin polarization is
set to ⟨𝑆𝑧(0)⟩ = 0.5 while the high-temperature limit is applied to nuclear spins,
cf. Sec. 2.6. The exact time evolution of ⟨𝑆𝑧(𝑡)⟩ (black line – not visible) and the
approximated data for different step widths of discretization presented in Fig. 6.8(a)
fully coincide on the time scale of 104 ns such that they cannot be distinguished
in the figure. Therefore, we provide the relative deviation 𝛥𝑆 of the discretized
calculation from the exact unitary evolution in Fig. 6.8(b). Minor deviations occur
especially for the step width 𝛥𝑡 = 1.2 ns. Since these deviations recede rapidly when
decreasing 𝛥𝑡, the choice 𝛥𝑡 = 0.6 ns proves a good balance between numerical
accuracy and computational effort.

The examination of the periodically driven spin system supports this choice. The
relative Overhauser field distributions 𝑝𝑟(𝐵𝑥

𝑁) of the mode-locked system at an
exemplary external magnetic field of 𝐵 = 1.95 T match almost perfectly for the
presented step widths 𝛥𝑡 in Fig. 6.8(c). In the case of the periodic optical excitation,
it is advantageous to exploit the rapidly decaying trion state, i.e., the fact that the
trion occupation is in the range of computational accuracy roughly 1.2 ns after the
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6.5 Effect of static nuclear-electric quadrupolar interactions

instantaneous pump pulse for the rate 𝛾 = 10 ns−1. Thus, we only need to employ
two steps of discretization for the period directly after a pump pulse. The remaining
time between two consecutive pump pulses, 𝑇𝑅 −2𝛥𝑡, is covered by an exact unitary
time evolution disregarding the trion state.

6.5.2 Weakening of the nuclei-induced frequency focusing

To analyze the effect of the nuclear-electric quadrupolar interactions on the nuclei-
induced frequency focusing, we initially focus on a fixed exemplary external magnetic
field of 𝐵 = 1.95 T. The parameters of the quadrupolar interactions, namely the
biaxiality 𝜂 and the easy axes n𝑘, are adjusted as discussed in Sec. 2.7. We employ the
extended quantum mechanical approach and iteratively compute the periodic pulse
train. Figure 6.9(a) displays the emergence of the electron spin revival amplitude
𝑆⟂(𝑁𝑃) for various strengths of the quadrupolar interactions measured by 𝑄 defined
in Eq. (2.21). At the selected external magnetic field of 𝐵 = 1.95 T corresponding
to 𝑛 = 1 in the resonance condition, Eq. (6.13), we observe an increase in the
revival amplitude starting from the value 𝑆⟂

ess = 0.077 without the quadrupolar
interactions which is indicated by black markers for comparison. Incorporating
the quadrupolar interactions, the emerging revival amplitude clearly decreases
with strengthening 𝑄. This decrease indicates that the quadrupolar interactions
counteract the synchronization of the spin system with the periodic optical excitation.
Similar observations have been made in Ref. [225] employing a dynamical mean-field
approach for a larger system in the box model limit of the hyperfine interaction.

Since the increasing revival amplitude at the external magnetic field of 𝐵 = 1.95 T
is connected to the nuclei-induced frequency focusing, we inspect the relative
Overhauser field distributions 𝑝𝑟(𝐵𝑥

𝑁) of the mode-locked system after ten million
pump pulses which are related to the steady-state revival amplitudes in Fig. 6.9(a),
see Fig. 6.9(b). The peaks in the Overhauser field distribution corresponding to
the integer modes of the electron spin precession become less pronounced when
increasing the strength of the quadrupolar interactions. We attribute this finding to
the additional disorder induced by the quadrupolar Hamiltonian 𝐻NQ in the nuclear
spin bath. At the quadrupolar strength of 𝑄 = 0.01, we still find minor peaks of
𝑝𝑟(𝐵𝑥

𝑁) (dark green line, mostly covered by the orange curve) which produce an
electron spin revival amplitude that does not exceed the electronic steady-state
value 𝑆⟂

ess by much. Quadrupolar interactions with strength 𝑄 = 0.1 (orange line),
however, completely prohibit the emergence of nuclei-induced frequency focusing.
Accordingly, the related revival amplitude does not reach the value 𝑆⟂

ess at all.
Indeed, quadrupolar interactions of this strength have been found to produce a
feedback effect onto the electron spin via the hyperfine coupling that leads to an
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Figure 6.9: Mode locking in the spin system (𝑁 = 3, 𝐼 = 3/2, 𝑁𝐶 = 800) with
quadrupolar interactions of varying strength 𝑄. The external magnetic field is
adjusted to 𝐵 = 1.95 T. The quadrupolar easy axes are randomly distributed in
a cone with opening angle 𝜃𝑀 = 34∘ around the 𝑧 axis; the anisotropy is 𝜂 = 0.5.
(a) Emergence of the electron spin revival amplitude 𝑆⟂(𝑁𝑃) with increasing the
number 𝑁𝑃 of pump pulses. (b) Relative Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁)
after 𝑁𝑃 = 106 pump pulses at varying values of 𝑄 [color coded according to the
legend in panel (a)]. The dark green line is mostly covered by the orange line.

electron spin dephasing on the time scale of roughly 100 ns. This dephasing time is
comparable to the time scale 𝑁𝑃𝑇𝑅 = 10 × 13.2 ns on which the electronic steady
state emerges, cf. Sec. 6.1, such that two effects become competitive.

For a more detailed analysis of the quadrupolar effects, we fit the electron spin
revival amplitude 𝑆⟂(𝑁𝑃) as a function of the number of preceding pump pulses by
the function

𝑆⟂(𝑁𝑃) = 𝑆⟂
∞ − 𝑆⟂

𝛥𝑒−𝑁𝑃/𝑁𝑅 . (6.22)

We use the revival amplitude 𝑆⟂
∞ in the nonequilibrium steady state, the increment

𝑆⟂
𝛥 during the pulse train, and a characteristic number 𝑁𝑅 of pump pulses required

to approach the steady-state revival amplitude as fit parameters. Exemplary fit
functions for the respective quadrupolar parameter are added in Fig. 6.9(a) as solid
lines. Figures 6.10(a) and 6.10(b) present the resulting fit parameter 𝑆⟂

∞ and 𝑁𝑅 as
a function of the quadrupolar coupling strength 𝑄. We provide the fit parameter
obtained for quadrupolar easy axes n𝑘 distributed in a cone with opening angle
𝜃𝑀 = 34∘ around the optical axis (blue markers) as well as for easy axes fixed either
along the external magnetic field direction (orange triangles) or the optical axis
(green squares), i.e., n𝑘 ≡ e𝑥 or n𝑘 ≡ e𝑧 for all nuclear spins respectively. The
quadrupolar anisotropy is consistently set to 𝜂 = 0 in the three scenarios.

The converged electron spin revival amplitude 𝑆⟂
∞ in the system with the quadrupolar

easy axes fixed along the 𝑧 direction decreases when increasing the quadrupolar
coupling strength 𝑄 and quickly approaches a plateau at 𝑆⟂

ess ≈ 0.077 (gray dotted
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Figure 6.10: Effect of the quadrupolar interactions on the mode-locking effect
in the electron-nuclear spin system (𝑁 = 3, 𝐼 = 3/2, 𝑁𝐶 = 800) at the external
magnetic field of 𝐵 = 1.95 T. (a) Steady-state revival amplitude 𝑆⟂

∞ fitted according
to Eq. (6.22) as a function of the quadrupolar interaction strength 𝑄. Data for
several scenarios for the quadrupolar easy axes n𝑘 are presented; 𝜂 = 0. (b)
Characteristic pulse number 𝑁𝑅 for the buildup of the revival amplitude fitted
according to Eq. (6.22). The quadrupolar parameters equal those in panel (a).
(c) Relative Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) after 𝑁𝑃 = 106 pump pulses
for different orientations of the quadrupolar easy axes; 𝑄 = 0.001 and 𝜂 = 0.
For comparison, the distribution for 𝑄 = 0 is added in black (mostly covered
by the orange line). (d) Relative Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) after
𝑁𝑃 = 106 pump pulses for different values of the quadrupolar anisotropy parameter
𝜂; 𝑄 = 0.001 and n𝑘 ≡ e𝑧.

horizontal line) which is preserved in the range up to 𝑄 = 0.01. This behavior
does not change much when the quadrupolar easy axes are distributed in a cone
with opening angle 𝜃𝑀 = 34∘ around the 𝑧 axis. For easy axes fixed along the
direction of the external magnetic field, however, the attenuation of the revival
effect is much weaker and 𝑆⟂

∞ remains significantly larger than 𝑆⟂
ess over the full

range up to 𝑄 = 0.01. For an explanation, we start with the case n𝑘 ≡ e𝑥. Here,
the quadrupolar interactions 𝐻NQ produce an additional effective magnetic field
in 𝑥 direction for the individual nuclear spins. Accordingly, the individual spin
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components 𝐼𝑥
𝑘 along the external magnetic field direction remain mostly conserved

when omitting the Knight field which we assume to average to zero as a result of the
fast electron spin precession. Quadrupolar contributions with a nonzero projection
of the easy axes onto the (𝑦𝑧) plane however lift the spin conservation of 𝐼𝑥

𝑘 and
therefore induce a disorder counteracting the nuclei-induced frequency focusing.
Thus, the quadrupolar contributions along the magnetic field direction affect the
nuclei-induced frequency focusing significantly less than the transversal components.
The quadrupolar contributions in 𝑥 direction produce slightly differing strengths of
the total effective magnetic fields 𝐵 + 𝑞𝑘𝐼𝑧

𝑘 acting on the individual nuclear spins.
Consequently, the nuclear spins obtain differing precession frequencies, and the
resonance condition, Eq. (6.13), disperses leading to a reduction of the electron spin
revival amplitude.

The characteristic number of repetition periods 𝑁𝑅 required to approach the non-
equilibrium steady state under the periodic optical excitation decreases alongside
the converged revival amplitude, see Fig. 6.10(b). The increased electron spin
revival amplitude at the fixed magnetic field 𝐵 = 1.95 T originates from pronounced
peaks in the Overhauser field distribution at the integer precession modes whose
emergence originates from a profound reorientation of the nuclear spins. Hence, the
more pronounced nuclei-induced frequency focusing at small values of 𝑄 requires a
stronger reorientation of the nuclear spins evolving on a longer time frame. In other
words, the additional perturbations due to the quadrupolar interactions produce a
faster convergence to a less ordered nuclear spin configuration in the quasistationary
steady state. The relative Overhauser field distributions 𝑝𝑟(𝐵𝑥

𝑁) of the mode-locked
system in Fig. 6.10(c) provide further insight. For quadrupolar easy axes aligned
along the external magnetic field (orange line), the peaks at the integer modes of
the electron spin precession are almost as pronounced at a quadrupolar coupling
strength of 𝑄 = 0.001 as without quadrupolar interactions (black line). Quadrupolar
easy axes deviating from the magnetic field direction inherently result in less distinct
peaks of 𝑝𝑟(𝐵𝑥

𝑁). All peaks are equally reduced to less than half of the original
amplitude for n𝑘 ≡ e𝑧 (dark green line) as well as for the uniform distribution in
the cone with arbitrary opening angle 𝛩𝑀 from the 𝑧 axis (blue and light green line
respectively).

Similar observations are made when focusing on the dependence of the nuclei-
induced frequency focusing on the quadrupolar biaxiality parameter 𝜂. The relative
Overhauser field distributions 𝑝𝑟(𝐵𝑥

𝑁) for various choices of 𝜂 (which previously
was set to zero) nearly coincide for 𝑄 = 0.001 and n𝑘 ≡ e𝑧, see Fig. 6.10(d).
Minor deviations of 𝑝𝑟(𝐵𝑥

𝑁) are only resolved in the inset and hint at a slightly
less pronounced nuclei-induced frequency focusing when increasing 𝜂. As the
quadrupolar easy axes are fixed perpendicular to the magnetic field direction, we
impose a maximum counter-effect to the reorganization of the Overhauser field by
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Figure 6.11: Magnetic field dependence of the mode-locking effect in the spin
system (𝑁 = 3, 𝐼 = 3/2, 𝑁𝐶 = 800) with quadrupolar interactions; 𝑄 = 0.001,
𝜂 = 0.5 and 𝜃𝑀 = 34∘. (a) Converged electron spin revival amplitude 𝑆⟂ (green
markers) and the related electron spin component | ⟨𝑆𝑧

𝑐 ⟩ | (orange crosses) as a
function of the magnetic field strength 𝐵. For comparison, the converged amplitude
𝑆⟂ of the system without quadrupolar interactions – taken from Fig. 6.3(b) – is
added (blue markers). (b) Relative Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) after
2 × 106 ≤ 𝑁𝑃 ≤ 2 × 107 pump pulses for different external magnetic fields.

this choice already and the mode-locking effect is not suppressed much further due
to the increasing biaxiality.

Finally, we extend the examination of the mode-locked spin system with nuclear
quadrupolar interactions to the dependence on the external magnetic field. To this
end, the quadrupolar parameters are adjusted as initially introduced in Sec. 2.7,
𝑄 = 0.001, 𝜂 = 0.5, and 𝜃𝑀 = 34∘. The converged electron spin revival amplitude 𝑆⟂

after up to 20 million pump pulses as a function of the magnetic field 𝐵 is presented
in Fig. 6.11(a) (green markers). The revival amplitude retains the nonmonotonic
behavior originating from the resonance condition, Eq. (6.13), with maxima at
roughly 2 T and 6 T respectively and minima in between, i.e., at 4 T and 8 T.
However, the maximum revival amplitudes are reduced compared to the data for
the spin system without quadrupolar interactions (blue markers). In particular,
the maximum revival amplitude at 2 T is affected. While the two maxima at 2 T
and 6 T have equal amplitude for 𝑄 = 0, the maximum at 2 T is considerably less
pronounced than the maximum at 6 T for 𝑄 = 0.001. Accordingly, the relative
Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) in the system with quadrupolar interactions
exhibits peaks of smaller amplitude at 𝐵 = 1.95 T compared to the distribution
at 𝐵 = 5.85 T, see Fig. 6.11(b). For 𝑄 = 0, in contrast, the peak amplitudes were
similar at these magnetic fields, cf. Fig. 6.4. Thus, the quadrupolar interactions
have a stronger effect at small external magnetic fields. We ascribe this behavior to
the suppression of the quadrupolar couplings by the nuclear Zeeman term at strong
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Chapter 6 Synchronization effects under periodic optical excitation

external magnetic fields as discussed in Ref. [228].

We conclude by noting that the quadrupolar interaction strength measured with
respect to the hyperfine coupling via the measure 𝑄 introduced in Eq. (2.21) is
relatively weak at the value 𝑄 = 0.001 compared to Ref. [122]. Since the small
system size in the quantum mechanical investigations does not allow for a detailed
portraying of the distribution of the quadrupole parameter [194] in real quantum
dots comprising up to 106 nuclear spins, the present analysis is aiming towards a
basic understanding of the interplay of the mode-locking effect and the quadrupolar
interactions rather than a quantitative analysis. The quadrupole parameter for the
individual isotopes in the (In,Ga)As/GaAs quantum dot ensemble differ significantly.
Furthermore, the strain-induced electric field gradients vary in the sample as well
as within the individual quantum dots. These interrelations potentially induce
a correlation between the hyperfine coupling constants 𝐴𝑘 and the quadrupolar
couplings 𝑞𝑘 of the individual nuclear spins. The modeling of this intricate situation
is beyond the scope of this thesis and is left as a task for future research.

6.6 Effect of different nuclear isotopes

The nonmonotonic dependence of the electron spin revival amplitude on the external
magnetic field measured in pump-probe experiments is superimposed by various
modulations, cf. Fig. 5.2(b), rather than displaying the straight periodic behavior
observed in the theoretical investigation, cf. Fig. 6.1(b). We tackle the question
about the additional modulations in the experimental data by addressing the
individual nuclear isotopes in the (In,Ga)As/GaAs quantum dots separately where
we previously employed a nuclear spin of average type. The five relevant isotopes
in the (In,Ga)As/GaAs quantum dots differ in the spin length 𝐼, the magnetic
moment 𝜇, and thereby the nuclear 𝑔 factor 𝑔𝑁 = 𝜇/(𝜇𝑁𝐼), see Tab. 6.1. Hence,
the Eq. (6.13) at a fixed external magnetic field implies different values of 𝑛 for
the nuclear Zeeman terms of the individual isotopes. Accordingly, the favoring
of different types of electron spin precession modes is predicted for the respective
nuclear isotopes. For comparison, we added a column in Tab. 6.1 with the external
magnetic field 𝐵2 corresponding to 𝑛 = 2 in Eq. (6.13) for the different nuclear
isotopes. At these magnetic fields 𝐵2, we would expect a minimum of the electron
spin revival amplitude due to the favoring of the integer precession modes taking into
account the respective nuclear isotope alone. For the composite system of (In,Ga)As
quantum dots, the interplay of these resonances becomes relevant. Previously, this
question has been addressed in Ref. [91] by a perturbative quantum mechanical
treatment that does not reach the quasistationary steady state, and by a classical

128



6.6 Effect of different nuclear isotopes

Isotope N. A. 𝐼 𝜇/𝜇𝑁 𝑔𝑁 𝑔𝑁𝜇𝑁 (MHz/T) 𝐵2 (T)
69Ga 0.601 3/2 2.02 1.34 10.25 3.70
71Ga 0.399 3/2 2.56 1.71 13.02 2.91
75As 1.000 3/2 1.44 0.96 7.32 5.18
113In 0.043 9/2 5.53 1.23 9.37 4.04
115In 0.957 9/2 5.54 1.23 9.39 4.04

Table 6.1: Stable nuclear isotopes in the self-assembled (In,Ga)As/GaAs quantum
dots and their properties. Listed are natural abundance (N. A.), spin length,
magnetic moment, 𝑔 factor, coupling strength to the magnetic field, and the
external magnetic field at which the minimum electron spin revival amplitude is
expected according to Eq. (6.13) with 𝑛 = 2. The data for 𝐼 and 𝜇/𝜇𝑁 are taken
from Ref. [135].

approach for the box model approximation of the hyperfine coupling constants in
Ref. [89].

For the investigation of the electron-nuclear spin system comprising nuclear spins
with different 𝑔 factors, we employ the extended quantum mechanical approach
outlined for including the nuclear quadrupolar interactions, cf. Sec. 6.5.1. Here, we
substitute the Hamiltonian, Eq. (6.16), by

𝐻 = 𝐻𝑇 + 𝐻HF + 𝐻EZ + 𝐻NZ (6.23a)

with

𝐻NZ = − ∑
𝑘

𝑔𝑘𝜇𝑁𝐵𝐼𝑥
𝑘

= −𝜔𝑛 ∑
𝑘

𝐼𝑥
𝑘 − ∑

𝑘
𝛥𝑘𝐼𝑥

𝑘 = 𝐻NZ + 𝐻NZ,𝛥
(6.23b)

such that each nuclear spin enters with its individual 𝑔 factor 𝑔𝑘. Furthermore,
we introduce the average Larmor frequency 𝜔𝑛 = 𝑔𝑘𝜇𝑁𝐵 based on the mean 𝑔
factor 𝑔𝑘 as well as the 𝑔 factor deviations 𝛥𝑘 = (𝑔𝑘 − 𝑔𝑘)𝜇𝑁𝐵 for the individual
nuclear spins. In the case of varying nuclear precession frequencies, it proves useful to
transform into the rotating frame of the redefined Hamiltonian 𝐻0 = −𝜔𝑛𝐹 𝑥+𝐻NZ,𝛥.
Subsequently, we proceed analogously as in Sec. 6.5.1 with 𝜔𝑛 replacing 𝜔𝑛 as well
as 𝐻NZ,𝛥 replacing 𝐻NQ. The time-dependent Hamiltonian in the rotating frame
analogous to Eq. (6.20b) reads

�̃�𝑆(𝑡) = 𝑒𝑖(−𝜔𝑛𝐹 𝑥+𝐻NZ,𝛥)𝑡 (𝐻HF − (𝜔𝑒 − 𝜔𝑛) 𝑆𝑥) 𝑒−𝑖(−𝜔𝑛𝐹 𝑥+𝐻NZ,𝛥)𝑡. (6.24)

Hence, the time dependence of the Hamiltonian �̃�𝑆(𝑡) would be lifted again when
returning to identical 𝑔 factors for all nuclear spins due to 𝐻NZ,𝛥 = 0.
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Figure 6.12: Magnetic field dependence of the mode-locked system (𝑁 = 6,
𝐼 = 1/2, 𝑁𝐶 = 100, 𝑁𝑃 = 107) comprising different nuclear species. (a) Electron
spin revival amplitude 𝑆⟂ as a function of the external magnetic field considering
the nuclear species separately. (b) Electron spin revival amplitude 𝑆⟂ in the system
containing three nuclear spins of Ga type and As type respectively. (c),(d) and (e)
Relative Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) at different external magnetic fields
examining the composite GaAs system with adjusted hyperfine coupling constants
of the two components.

For differing nuclear 𝑔 factors, the time dependence of �̃�𝑆(𝑡) is treated similarly as
for the nuclear quadrupolar interactions. The time evolution during the trion decay,
i.e., 1.2 ns after the pump pulse, is discretized in small time steps on which �̃�𝑆(𝑡)
is approximated as constant employing a midpoint rule such that the treatment
outlined in Sec. 5.4 can be applied to each individual step in time. The remaining
time evolution after the trion decay with duration 12.0 ns is covered by the exact
unitary evolution capturing the full dynamics of the Hamiltonian 𝐻, Eq. (6.23a).

As the full quantum mechanical treatment is limited to 𝑁 = 6 nuclear spins of
individual length 𝐼 = 1/2, we focus on the spin system comprising three nuclear
spins with the 𝑔 factor of As indicated in Tab. 6.1 and three nuclear spins with the
nuclear 𝑔 factor corresponding to the average of the two Ga isotopes weighted by
their natural abundance, i.e., 𝑔𝑁,Ga𝜇𝑁 = 11.35 MHz/T with 𝐵2,Ga = 3.34 T. For
simplicity, the nuclear quadrupolar interactions are omitted in this analysis. We
start by presenting the magnetic field dependence of the converged electron spin
revival amplitude 𝑆⟂ that is obtained when considering the two exemplary nuclear
species separately in Fig. 6.12(a). In the system consisting of six nuclear spins, the
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6.6 Effect of different nuclear isotopes

nuclear 𝑔 factor is chosen equally for all nuclear spins. Its value is either fixed to the
value of As (dark green markers) or the average value of the Ga isotopes (light green
markers). The data for the two scenarios clearly differs and the maxima and minima
of the nonmonotonic functions are placed at strongly differing external magnetic
fields as expected from the prediction by Eq. (6.13).

As a next step, we examine the interplay of the two exemplary nuclear 𝑔 factors.
The converged revival amplitude 𝑆⟂ for the spin system comprising three spins of
each of the two nuclear species is displayed in Fig. 6.12(b) (orange markers). Since
half of the nuclear spins have the average 𝑔 factor of Ga and the 𝑔 factor of As is
assigned to the other half of the nuclear spins, the nuclei-induced frequency focusing
is subject to two mostly counteracting components. Where the data for Ga exhibits
a peak of the revival amplitude, the nuclear spins of As type induce a minimum,
cf. Fig. 6.12(a). As a consequence, the maxima and minima of 𝑆⟂ in the composite
system are significantly less pronounced in Fig. 6.12(b).

We recall that the hyperfine coupling of the localized electron spin to the surrounding
nuclear spins results from the Fermi contact interaction. The hyperfine coupling
constants in the relevant Hamiltonian 𝐻FC, Eq. (2.5), scale with 𝜇𝑘/𝐼𝑘, i.e., 𝑔𝑘𝜇𝑁.
Accordingly, it is intuitive to multiply the hyperfine coupling constants by the
respective value of 𝑔𝑘 after drawing random values from a uniform distribution as
outlined in Sec. 5.5. Finally, the coupling constants are adjusted to produce the
collective dephasing time 𝑇 ∗ = 1 ns of the electron spin. The converged electron
spin revival amplitude 𝑆⟂ of the composite GaAs system with properly adjusted
hyperfine coupling constants of the two compounds is added in Fig. 6.12(b) (blue
markers). Since the 𝑔 factor of the Ga isotopes is stronger than that of As, we
find that the revival amplitude for the adjusted hyperfine coupling constants favors
the behavior of Ga, cf. the light green markers in Fig. 6.12(a). The minima of 𝑆⟂

as a function of the magnetic field at roughly 𝐵2,Ga = 3.34 T and 2𝐵2,Ga = 6.68 T
are more pronounced compared to the data for evenly weighted hyperfine coupling
constants of the two nuclear species.

For the examination of the nuclei-induced frequency focusing, we address the
relative Overhauser field distributions 𝑝𝑟(𝐵𝑥

𝑁) in the composite system with properly
adjusted hyperfine coupling constants. Figures 6.12(c), 6.12(d) and 6.12(e) present
the converged distributions for exemplary external magnetic field strengths. At
𝐵 = 1.95 T, the external magnetic field is close to the case 𝑛 = 1 in Eq. (6.13) for
the Ga-type 𝑔 factor which favors the integer modes of the electron spin precession in
Fig. 6.12(c). Due to the strong 𝑔 factor of Ga, the distribution 𝑝𝑟(𝐵𝑥

𝑁) is dominated
by these Ga-induced precession modes whereas the effect of the As compound with
weaker hyperfine coupling is suppressed. Similarly, the Overhauser field distribution
at 𝐵 = 2.93 T in Fig. 6.12(d) exhibits peaks corresponding to the half-integer modes
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Chapter 6 Synchronization effects under periodic optical excitation

of the electron spin precession, since this magnetic field strength is close to 𝐵2,Ga for
the average Ga 𝑔 factor. The integer modes predicted by Eq. (6.13) for the 𝑔 factor
of As however are vacated. When the external magnetic field fulfills Eq. (6.13) with
an integer 𝑛 for neither of the nuclear species, the behavior of 𝑝𝑟(𝐵𝑥

𝑁) is not as clear.
At 𝐵 = 3.90 T for example, the nuclei-induced frequency focusing favors the integer
modes as well as the half-integer modes, see Fig. 6.12(e).

6.7 Chapter conclusion

We employed the quantum mechanical approach developed in the previous chapter
to simulate the effect of a periodic pulse train on the spin dynamics in the singly
charged quantum dots. The quantum mechanical approach is based on the iterative
calculation of consecutive repetition periods and requires up to 20 million pump
pulses to reach the quasistationary steady state of the electron-nuclear spin system.
Due to the exponential growth of the Hilbert space dimension and the long pulse
trains, we restrict the present analysis to systems comprising 𝑁 = 6 nuclear spins
of individual length 𝐼 = 1/2 or equivalently 𝑁 = 3 spins with 𝐼 = 3/2.

By means of the full quantum mechanical calculations, we are able to connect the
magnetic field dependence of the electron spin revival amplitude in the mode-locked
system to the emergence of different types of electron spin precession modes. Jäschke
et al. [84] predicted two kinds of resonances at which the electron spin performs
either an integer or half-integer number of revolutions between consecutive pump
pulses. The semiclassical approach employed in Ref. [84] mostly indicated peaks in
the Overhauser field distribution at both types of precession modes which are more
or less pronounced depending on various physical parameters. A detailed analysis
of the dependence on the external magnetic field however is absent in Ref. [84]. A
quantum mechanical treatment based on perturbation theory for the number of spin
flips during one repetition period [90, 91] was able to connect the mode type favored
by the nuclei-induced frequency focusing to the nuclear Zeeman term. However,
the perturbative quantum mechanical approach including 20 nuclear spins was
limited to the simulation of 20000 repetition periods and therefore did not reach the
quasistationary steady state. The full quantum mechanical treatment in this thesis
finally allows for relating the resonance condition for the nuclear Larmor precession
proposed in Ref. [91] and the according electron spin precession modes favored by
the nuclei-induced frequency focusing to the electron spin revival amplitude. The
numerical results resemble the nonmonotonic behavior of the revival amplitude
as a function of the external magnetic field observed in pump-probe experiments
[86]. Both, quantum mechanical calculation and experimental measurement, have
a profound minimum of the revival amplitude at the external magnetic field of
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4 T in common. A classical approach [85, 87] shows a nonmonotonic dependence
of the revival amplitude on the magnetic field as well [86, 88, 89], but exhibits a
relatively narrow minimum at 8 T which is not as pronounced in the experimental
measurements and rather broad in the quantum mechanical results. We will return
to this aspect in Sec. 7.4 when addressing a larger system in the box model limit of
the hyperfine coupling constants.

The experimental data indicate an overall decrease in the revival amplitude for
stronger external magnetic fields. Our quantum mechanical investigations allow
for attributing this effect to a finite nonzero duration of the pump pulses. Due to
the electron Larmor precession during the pulses, the generation of electron spin
polarization through the pulse becomes inefficient. Furthermore, we attribute the
additional modulations observed in the mode-locking experiments to the diverging
resonance conditions for the spin precession of the various nuclear isotopes in
the quantum dots. Including nuclear quadrupolar interactions in the quantum
mechanical simulation of the pulse train, we found a significant weakening of the
nuclei-induced frequency focusing effect. Therefore, we conclude that these effects
induced by strain in the sample resulting from the growth process must not be
too strong in the quantum dots in order to enable the mode-locking effect via
nuclei-induced frequency focusing.
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Chapter 7

Steady-state analysis of the periodically
driven spin system

As an alternative to the iterative simulation of a periodic train of optical pulses
acting on the singly charged quantum dots, the quantum mechanical spin dynamics
can be obtained from the eigendecomposition of a linear mapping ℳ for the density
operator comprising the complete time evolution during one repetition period. Such
a procedure was applied by Uhrig in Ref. [92] to extract the mode-locked steady
state of a system with up to 𝑁 = 6 nuclear spins. The mapping ℳ contains the
effect of the pump pulse and the subsequent spin dynamics governed by the Lindblad
equation, Eq. (5.13). Accordingly, a matrix representation of the super operator ℳ
has the dimension 𝐷′ × 𝐷′ with 𝐷′ = 𝑑′2 corresponding to the square of the Hilbert
space dimension 𝑑′. In this chapter, we analyze the full eigenspectrum of the mapping
ℳ in detail. Moreover, we develop a truncation scheme that reduces the matrix
dimensions and thereby allows for the efficient computation of the quasistationary
steady state in the box model limit of the hyperfine coupling constants. Subsequently,
this scheme is employed for the evaluation of the magnetic field dependence of the
electron spin revival amplitude in systems comprising several hundred nuclear spins.
Based on recent pump-probe experiments [94, 95, 229] exploiting the mode-locking
effect in the GHz regime of the pumping periodicity, we investigate the periodic
optical excitation with a reduced repetition period of 𝑇𝑅 = 1 ns. Furthermore, we
implement an Arnoldi iteration for the efficient computation of the quasistationary
steady state and apply this method to a variety of pulse trains.

7.1 Mapping for a repetition period

The complete spin dynamics during one repetition period of the periodic pulse train
can be included in a linear mapping ℳ for the density operator 𝜌 as outlined in
Ref. [92],

ℳ ∶ 𝜌(𝑁𝑃𝑇 −
𝑅 ) → 𝜌((𝑁𝑃 + 1)𝑇 −

𝑅 ). (7.1)
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Here, 𝜌(𝑁𝑃𝑇 −
𝑅 ) denotes the density operator directly before a pump pulse, and

𝜌((𝑁𝑃 + 1)𝑇 −
𝑅 ) denotes the density operator directly before the subsequent pump

pulse. The mapping ℳ comprises the pulse action as well as the subsequent trion
decay and the dynamics of the coupled electron-nuclear spin system in the external
magnetic field. A matrix representation 𝑀 of the mapping ℳ requires the dimensions
𝐷′ × 𝐷′ with

𝐷′ = 𝑑′2 = 4(2𝐼 + 1)2𝑁. (7.2)

We exclude the trion state since the trion population decays to zero on the time
scale of 𝑇𝑅 after a pump pulse. Accordingly, the matrix elements 𝑀𝑎′,𝑏′

𝑎,𝑏 are assigned
four indices. The indices 𝑎 and 𝑏 denote the matrix element of the initial density
operator, and the index pair 𝑎′ and 𝑏′ labels the matrix elements of the density
operator after the application of the mapping,

𝜌𝑎′,𝑏′((𝑁𝑃 + 1)𝑇 −
𝑅 ) = ∑

𝑎,𝑏
𝑀𝑎′,𝑏′

𝑎,𝑏 𝜌𝑎,𝑏(𝑁𝑃𝑇 −
𝑅 ). (7.3)

We specify the matrix elements of 𝑀 for a general pump pulse captured by the
unitary operator 𝑈𝑃 according to Eq. (5.9) and the subsequent time evolution
of duration 𝑇𝐿. For the latter part, we include the trion decay as well as the
spin dynamics governed by the hyperfine interaction and the external magnetic
field. Previously, we derived the dynamics of the density matrix based on the
Lindblad equation, Eq. (5.13), with the Hamiltonian, Eq. (5.16), and obtained
Eq. (5.34). Thus, it is convenient to employ the common eigenbasis, Eq. (5.36), of
the Hamiltonian 𝐻𝑆, Eq. (5.33), and the total spin 𝐹 𝑥 as the basis for the matrix
representation of ℳ. To establish the matrix elements 𝑀𝑎′,𝑏′

𝑎,𝑏 , the matrix elements
of the density operator after the pulse according to Eq. (5.9) are inserted into the
time evolution, Eq. (5.34), as the starting condition at time 𝑡0,

𝑀𝑎′,𝑏′

𝑎,𝑏 = 𝑒−𝑖(𝜀𝑆,𝑎−𝜀𝑆,𝑏)𝑇𝐿 {(𝑈𝑃)𝑎′,𝑎 (𝑈𝑃)𝑏,𝑏′ − 𝐺(−1)
𝑎′,𝑏′𝑄𝑑

𝑎′,𝑎 (𝑄𝑢
𝑏′,𝑏)

∗

−𝐺(0)
𝑎′,𝑏′ [𝑄𝑢

𝑎′,𝑎 (𝑄𝑢
𝑏′,𝑏)

∗
+ 𝑄𝑑

𝑎′,𝑎 (𝑄𝑑
𝑏′,𝑏)

∗
] − 𝐺(+1)

𝑎′,𝑏′𝑄𝑢
𝑎′,𝑎 (𝑄𝑑

𝑏′,𝑏)
∗
} (7.4)

with the abbreviations

𝑄𝑢 = |↑⟩𝑥 ⟨𝑇 | 𝑈𝑃 and 𝑄𝑑 = |↓⟩𝑥 ⟨𝑇 | 𝑈𝑃. (7.5)

For the above format, we employed the unitary operator 𝑈𝑃 of a general pump pulse.
Moreover, we inserted the explicit form of the electron spin operators 𝑆(𝜏) specified
in Eq. (5.29) and use the coefficients 𝐺(𝜏)

𝑎′,𝑏′ defined in Eq. (5.35).

A matrix representation 𝑀 of the mapping ℳ is obtained by combining the indices
𝑎 and 𝑏 into a single index 𝑖 ∈ {1, … , 𝐷′}. The index pair 𝑎′ and 𝑏′ is analogously
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7.1 Mapping for a repetition period

condensed into 𝑖′ ∈ {1, … , 𝐷′} such that Eq. (7.4) produces matrix elements of the
type 𝑀𝑖′,𝑖. Accordingly, the matrix elements of the density operator are rearranged
into a vector with 𝐷′ components denoted as ⃗𝜌(𝑡). This allows for expressing the
mapping as a matrix-vector multiplication,

⃗𝜌((𝑁𝑃 + 1)𝑇 −
𝑅 ) = 𝑀 ⃗𝜌(𝑁𝑃𝑇 −

𝑅 ). (7.6)

The evolution of the spin system under a periodic pulse train in terms of the matrix
𝑀 is described by

⃗𝜌(𝑁𝑃𝑇 −
𝑅 ) = 𝑀𝑁𝑃 ⃗𝜌0 (7.7)

with the vector representations of the initial density operator 𝜌0 and the density
operator 𝜌(𝑁𝑃𝑇 −

𝑅 ) after 𝑁𝑃 repetition periods directly before the incidence of the
(𝑁𝑃 + 1)-th pump pulse. For access to the quasistationary steady state under the
periodic optical excitation, the eigendecomposition of the nonhermitian mapping
matrix is examined,

𝑀 = ∑
𝑖

𝛬𝑖 ⃗𝑟𝑖
⃗𝑙†𝑖 , (7.8)

with the complex eigenvalues 𝛬𝑖, the right eigenvectors ⃗𝑟𝑖 as well as the left eigen-
vectors ⃗𝑙†𝑖 that can be chosen pairwise biorthogonal, ⃗𝑙†𝑖 ⃗𝑟𝑗 = 𝛿𝑖,𝑗. The left and right
eigenvectors are transformed into their matrix versions in analogy to the density
matrix. They represent the right and left eigenoperators 𝑙𝑖 and 𝑟𝑖 of the mapping
ℳ in the common eigenbasis of 𝐻𝑆 and 𝐹 𝑥.

In Ref. [92], Uhrig showed that the eigendecomposition of the mapping ℳ has the
following properties:

1. The identity operator 𝟙𝑑′ is a left eigenoperator of ℳ related to the eigenvalue 1.
I.e., ℳ has at least one eigenvalue 1.

2. The eigenoperators 𝑟𝑖 related to an eigenvalue unequal to 1 are traceless.

3. At least one right eigenoperator 𝑟𝑖 to the eigenvalue 1 has a finite nonzero
trace.

4. No eigenvalue with an absolute value larger than 1 occurs.

5. If a nonreal eigenvalue 𝛬𝑖 occurs, the complex conjugate value 𝛬𝑗 ≡ 𝛬∗
𝑖 is

an eigenvalue as well. The related eigenoperators are hermitian conjugates,
𝑟𝑗 = 𝑟†

𝑖 .

As a periodic pulse train corresponds to the iterative application of 𝑀 to the initial
density vector ⃗𝜌0 according to Eq. (7.7), the eigendecomposition of 𝑀 implies,

⃗𝜌(𝑁𝑃𝑇 −
𝑅 ) = ∑

𝑖
𝛬𝑁𝑃

𝑖 𝑐𝑖 ⃗𝑟𝑖 (7.9)
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Chapter 7 Steady-state analysis of the periodically driven spin system

with complex coefficients

𝑐𝑖 = ⃗𝑙†𝑖 ⃗𝜌0. (7.10)

These coefficients are determined by the overlap of the vector representation of the
initial density operator with the respective left eigenvector. The quasistationary
steady state of the density matrix under periodic optical excitation results from
the eigenvectors related to eigenvalues |𝛬𝑖| = 1, since any other contributions in
Eq. (7.9) vanish for 𝑁𝑃 → ∞. Aiming at the mode-locking effect, it is instructive to
perform an eigendecomposition of the matrix 𝑀 and study the eigenvectors related
to the eigenvalues |𝛬𝑖| = 1.

7.2 Eigenspectrum of the mapping

As a first step for the investigation of the eigendecomposition of ℳ, we focus on
the electron-nuclear spin system as addressed in Sec. 6.3. I.e., we study the average
over 𝑁𝐶 = 100 realizations of the system comprising 𝑁 = 6 nuclear spins with
the individual length 𝐼 = 1/2. The hyperfine coupling constants in the respective
realizations are drawn randomly from a uniform distribution and are subsequently
scaled to the ensemble dephasing time 𝑇 ∗ = 1 ns, cf. Eq. (5.37). Furthermore,
the pump pulse is approximated to be instantaneous such that the unitary pulse
operator 𝑈𝑃 is given by Eq. (5.12). The eigendecomposition of the matrices 𝑀 in the
individual realization is obtained numerically from an exact diagonalization. Finally,
the results of the individual realizations are merged as outlined in Sec. 5.5.

In the system with random hyperfine coupling constants, we find a unique eigenvalue
with |𝛬0| = 1, that is 𝛬0 = 1. We label this eigenvalue by 𝛬0 and the related
left and right eigenvectors by ⃗𝑙†0 and ⃗𝑟0 respectively. The matrix version of ⃗𝑟0
has a finite nonzero trace, and the matrix version of ⃗𝑙†0 is proportional to the
identity operator. Targeting the steady-state density matrix, we scale the trace to
1 and denote the resulting matrix by 𝑅0. This matrix is hermitian and positive
semidefinite by construction. The properly scaled matrix version 𝐿0 of the left
eigenvector ⃗𝑙†0, �⃗�†

0�⃗�0 = 1, corresponds to the identity matrix 𝐿0 = 1𝑑′ . Figure 7.1
displays the relative Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) calculated from 𝑅0 (orange
lines) for two exemplary external magnetic field strengths (a) 𝐵 = 1.95 T and (b)
𝐵 = 3.90 T respectively. In addition, the numerical results for 𝑝𝑟(𝐵𝑥

𝑁) obtained
from the iterative calculation of the pulse train with two million pump pulses are
depicted (blue lines). The agreement between the two approaches indicates that the
quasistationary steady state is reached after 𝑁𝑃 = 2 × 106 repetition periods at the
given external magnetic field strengths. Hence, the matrix 𝑅0 completely captures
the mode-locked system.
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Figure 7.1: Results for the relative Overhauser field distribution 𝑝𝑟(𝐵𝑥
𝑁) obtained

by the iterative implementation of 𝑁𝑃 = 2 × 106 repetition periods (blue lines) and
from the right eigenoperator with eigenvalue 1 of the mapping ℳ (orange lines)
respectively. The system comprises 𝑁 = 6 nuclear spins with the individual length
𝐼 = 1/2; the results are averaged over 𝑁𝐶 = 100 realizations. Both approaches
employ the same sets of hyperfine coupling constants. The external magnetic field
is set to (a) 𝐵 = 1.95 T and (b) 𝐵 = 3.90 T.

7.2.1 Absolute value of the eigenvalues

The evolution of the electron-nuclear spin system under the periodic pulse train
before reaching the quasistationary steady state is determined by the eigenvalues
with |𝛬𝑖| < 1. For examination of the full eigenspectrum of ℳ, we start with the
probability distribution 𝑝(|𝛬|) of the absolute value of the eigenvalues. The data
of the eigenvalues for the 𝑁𝐶 = 100 realizations is processed into a histogram with
appropriate binning, typically 50 bins in the range [0; 1]. The resulting distribution
𝑝(|𝛬|) is treated as a continuous function due to the dense eigenspectra. Figure 7.2
displays 𝑝(|𝛬|) for the two magnetic field strengths presented in Fig. 7.1. Both
probability distributions demonstrate similar behavior: They exhibit a sharp peak
at |𝛬| = 0 which contains half of the total weight of the distribution and is cut off in
the figure to resolve the additional features of 𝑝(|𝛬|). Furthermore, the probability
distributions exhibit two broader peaks at |𝛬| = 1/2 and |𝛬| = 1, respectively.

To understand the individual contributions in 𝑝(|𝛬|), we address the spin dynamics on
the relatively short time scale of a couple of repetition periods. Here, we can neglect
the feedback mechanism of the hyperfine interaction onto the nuclear spins such
that the dynamics of the electron spin and the nuclear spins decouple. Accordingly,
the mapping for the electron spin and the nuclear spins can be analyzed separately,
and the related eigenvalues can be combined afterward. The nuclear spin dynamics
are predominantly determined by the precession about the external magnetic field.
Therefore, the temporal evolution of the nuclear subsystem corresponds to a unitary
transformation of the density operator which is related to eigenvalues of the mapping
with the absolute value 1. We will come back to the nuclear dynamics later when
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Figure 7.2: Distribution 𝑝(|𝛬|) of the absolute values of the eigenvalues of the
mapping ℳ. The system comprises 𝑁 = 6 nuclear spins with the individual length
𝐼 = 1/2; 𝑁𝐶 = 100. The external magnetic field amounts to 𝐵 = 1.95 T (blue
dotted line) or 𝐵 = 3.90 T (orange line) respectively. The analytic prediction
according to Eq. (7.18b) is added as a gray line.

addressing the complex phase of the eigenvalues 𝛬𝑖. First, we focus on the electron
spin dynamics which govern the short time scales and thereby the distribution 𝑝(|𝛬|)
for small values of |𝛬|.

The electron spin dynamics on short time scales can be obtained in the frozen Over-
hauser field approximation. We omit the Overhauser field components perpendicular
to the external magnetic field as they are suppressed by a strong external magnetic
field. Hence, the electron spin dynamics can be addressed in the subspace of the
density operator related to a fixed nuclear spin state producing the Overhauser field
𝐵𝑥

𝑁. We denote this suboperator of the density operator by 𝜌𝑒(𝑡) and evaluate the
dynamics of the matrix elements of 𝜌𝑒(𝑡) in the electron spin 𝑥 basis. The effect of
the instantaneous pump pulse is given by

𝜌𝑒(𝑡+
0 ) = 1

4
(|↑⟩𝑥 − |↓⟩𝑥) [𝜌𝑒

↑↑,𝑥(𝑡−
0 ) − 𝜌𝑒

↑↓,𝑥(𝑡−
0 ) − 𝜌𝑒

↓↑,𝑥(𝑡−
0 ) + 𝜌𝑒

↓↓,𝑥(𝑡−
0 )]

(⟨↑|𝑥 − ⟨↓|𝑥) , (7.11)

𝜌𝑇 𝑇(𝑡+
0 ) = 1

2
[𝜌𝑒

↑↑,𝑥(𝑡−
0 ) + 𝜌𝑒

↑↓,𝑥(𝑡−
0 ) + 𝜌𝑒

↓↑,𝑥(𝑡−
0 ) + 𝜌𝑒

↓↓,𝑥(𝑡−
0 )] . (7.12)

The subsequent time evolution governed by the Lindblad equation, Eq. (5.13), in
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7.2 Eigenspectrum of the mapping

the frozen Overhauser field approximation simplifies to

𝜌𝑒(𝑡0 + 𝑇 −
𝑅 ) = 𝜌𝑒

↑↑,𝑥(𝑡+
0 ) |↑⟩𝑥 ⟨↑|𝑥 + 𝑒−𝑖𝜔𝑇𝑅𝜌𝑒

↑↓,𝑥(𝑡+
0 ) |↑⟩𝑥 ⟨↓|𝑥

+ 𝑒𝑖𝜔𝑇𝑅𝜌𝑒
↓↑,𝑥(𝑡+

0 ) |↓⟩𝑥 ⟨↑|𝑥 + 𝜌𝑒
↓↓,𝑥(𝑡+

0 ) |↓⟩𝑥 ⟨↓|𝑥

+ 𝜌𝑇 𝑇(𝑡+
0 ) [1

2
(|↑⟩𝑥 ⟨↑|𝑥 + |↓⟩𝑥 ⟨↓|𝑥) + 𝑒−𝑖𝜔𝑇𝑅

𝛾
2𝛾 − 𝑖𝜔

|↑⟩𝑥 ⟨↓|𝑥

+𝑒𝑖𝜔𝑇𝑅
𝛾

2𝛾 + 𝑖𝜔
|↓⟩𝑥 ⟨↑|𝑥] . (7.13)

Here, the electron precession frequency 𝜔 = 𝑔𝑒𝜇𝐵(−𝐵 + 𝐵𝑥
𝑁) results from the

combination of the external magnetic field and the respective Overhauser field 𝐵𝑥
𝑁.

Inserting the density operator after the pulse, Eqs. (7.11) and (7.12), as a starting
condition into Eq. (7.13), we set up the (4 × 4)-dimensional matrix representation
of the mapping for the electron spin in the basis, |↑⟩𝑥 ⟨↑|𝑥, |↓⟩𝑥 ⟨↑|𝑥, |↑⟩𝑥 ⟨↓|𝑥,
|↓⟩𝑥 ⟨↓|𝑥,

𝑀𝑒 = 1
2

⎛⎜⎜⎜⎜
⎝

1 0 0 1
𝐸+ (𝐷+ − 1

2) 𝐸+ (𝐷+ + 1
2) 𝐸+ (𝐷+ + 1

2) 𝐸+ (𝐷+ − 1
2)

𝐸− (𝐷− − 1
2) 𝐸− (𝐷− + 1

2) 𝐸− (𝐷− + 1
2) 𝐸− (𝐷− − 1

2)
1 0 0 1

⎞⎟⎟⎟⎟
⎠

(7.14)

with 𝐸± = 𝑒±𝑖𝜔𝑇𝑅 and 𝐷± = 𝛾
2𝛾±𝑖𝜔 for brevity.

The eigenvalues of the above mapping for the electron spin read

𝛬𝑒
1,2 = 0, 𝛬𝑒

3 = 1
2

cos(𝜔𝑇𝑅) + 𝛾(2𝛾 cos(𝜔𝑇𝑅) + 𝜔 sin(𝜔𝑇𝑅)
4𝛾2 + 𝜔2 and 𝛬𝑒

4 = 1.

(7.15)

Exploiting the rapid electron spin precession, 𝛾 ≪ 𝜔, the third eigenvalue is approx-
imated by

𝛬3 = 1
2

cos(𝜔𝑇𝑅). (7.16)

In the limit 𝛾 ≪ 𝜔, the above matrix representation 𝑀𝑒 simplifies due to 𝐷± ≈ 0 such
that the right eigenvectors are established conveniently. Their matrix counterparts
read

𝑅𝑒
1 = 𝜎𝑥, 𝑅𝑒

2 = 𝜎𝑦, 𝑅𝑒
3 = cos(𝜔𝑇𝑅)𝜎𝑧 − sin(𝜔𝑇𝑅)𝜎𝑦

and 𝑅𝑒
4 = 1

2
𝜎0 − cos(𝜔𝑇𝑅)

2 − cos(𝜔𝑇𝑅)
𝜎𝑧 + sin(𝜔𝑇𝑅)

2 − cos(𝜔𝑇𝑅)
𝜎𝑦 (7.17)

making use of the Pauli matrices 𝜎𝑖. For a physical interpretation of the eigenvalues
𝛬𝑒

1,2 = 0, we focus on the effect of the resonant 𝜋 pulse: The pump pulse completely
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Chapter 7 Steady-state analysis of the periodically driven spin system

transfers the electron spin population in the |↑⟩ state into the trion state |𝑇 ⟩ which
leaves only the contribution of the electron spin |↓⟩ state. Therefore, the electron spin
components perpendicular to the optical axis vanish after the pulse. Accordingly, the
matrix versions 𝑅𝑒

1 and 𝑅𝑒
2 of the right eigenvectors to the eigenvalues 𝛬𝑒

1,2 = 0 are
proportional to the Pauli matrices 𝜎𝑥 and 𝜎𝑦 and map any electron spin contribution
perpendicular to the 𝑧 axis to zero. This mechanism applies to the fully coupled
electron-nuclear spin system as well, since the instantaneous pump pulse does not
act on the nuclear spins. The distribution 𝑝(|𝛬|) in Fig. 7.2 reflects these eigenvalues
by the well pronounced peak at |𝛬| = 0, which holds half of the total weight. The
eigenvalue 𝛬𝑒

4 = 1 captures the quasistationary steady state of the electron spin
dynamics at a fixed magnetic field. The related matrix 𝑅𝑒

4 has a finite trace which
we scaled to 1 in Eq. (7.17). Moreover, the steady state 𝑅𝑒

4 comprises electron spin
contributions perpendicular to the external magnetic field whose share is determined
by the combination of the precession frequency 𝜔 and the pulse separation 𝑇𝑅. For
the integer modes of the electron spin precession, 𝜔𝑇𝑅 = 2𝜋𝑎 with an integer 𝑎, the
electron spin directly before the pump pulse is aligned in negative 𝑧 direction, i.e.,
the prefactor for the 𝜎𝑧 matrix equals −1 and the prefactor for the 𝜎𝑦 matrix is zero.
For the half-integer modes, 𝜔𝑇𝑅 = 𝜋(2𝑎 + 1) with an integer 𝑎, the electron spin is
aligned in positive 𝑧 direction before a pump pulse. The eigenvalue 𝛬𝑒

3 ∈ [−1/2; 1/2]
captures the electron spin dynamics complementing the steady state behavior on
shorter time scales. This contribution vanishes during the pulse train due to |𝛬𝑒

3| < 1.
The related matrix 𝑅𝑒

3 is traceless and contains additional oscillatory components
perpendicular to the external magnetic field.

To understand the distribution 𝑝(|𝛬|) in Fig. 7.2, we address the distribution of 𝛬3
resulting from the randomly oriented Overhauser field which governs the precession
frequency 𝜔. Employing a Gaussian distribution 𝑝(𝐵𝑥

𝑁), Eq. (2.13), the probability
distribution of 𝛬3 ∈ [−1/2; 1/2] is given by

𝑝(𝛬3) = ∫
∞

−∞
𝑑𝐵𝑥

𝑁𝑝(𝐵𝑥
𝑁)𝛿 (𝛬3 − 𝑓(𝐵𝑥

𝑁)) (7.18a)

≈ 4
𝜋√1 − 4(𝛬3)2

(7.18b)

with 𝑓(𝐵𝑥
𝑁) = cos(𝑔𝑒𝜇𝐵(𝐵 − 𝐵𝑥

𝑁)𝑇𝑅)/2 introduced in compliance with Eq. (7.16).
For the evaluation in the second line, we exploited that 𝑇 ∗ introduced in Eq. (2.18)
determines the inverse width of 𝑝(𝐵𝑥

𝑁) and 𝑇 ∗ ≪ 𝑇𝑅. The analytic prediction
𝑝(|𝛬3|) = 2𝑝(𝛬3) is added in Fig. 7.2 as a gray line and roughly matches the
numerically obtained distribution 𝑝(|𝛬|) for |𝛬| < 1/2. In this range, additional
effects of the hyperfine interaction beyond the frozen Overhauser field approximation
are minor, and the precession of the nuclear spins about the external magnetic field
only produces a complex phase negligible for the study of the absolute value |𝛬|.
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However, 𝑝(|𝛬|) obviously does not display a divergence at |𝛬| = 1/2 as predicted
by Eq. (7.18b) but rather a sharp peak due to the finite number of eigenvalues. On
time scales related to |𝛬| ≳ 1/2, the frozen Overhauser field approximation does not
hold and the full hyperfine interaction comes into play. Accordingly, the eigenvalue
𝛬 = 1 occurs only once for the full mapping matrix 𝑀 rather than being (𝐷′/4)-fold
degenerate. The remaining weight in the distribution 𝑝(|𝛬|) is transferred to absolute
values |𝛬| < 1 producing a broadening of the peak at |𝛬| = 1.

7.2.2 Complex eigenvalues

The effect of the nuclear spin precession about the external magnetic field is included
in the complex part of the eigenspectrum of ℳ. Figure 7.3 depicts the probability
distribution 𝑝(𝛬) of the complex eigenvalues 𝛬 at four different external magnetic
field strengths corresponding to 𝑛 = 1, … , 4 in Eq. (6.13). The data of the 𝑁𝐶 = 100
realizations is processed as a histogram on a grid spanned by typically 50 × 50
bins in the range Re(𝛬) ∈ [−1; 1] and Im(𝛬) ∈ [−1; 1]. The main contribution of
the nuclear spin dynamics results from the precession about the external magnetic
field, whereas the Knight field is rather weak and, therefore, is neglected to obtain
a basic understanding of 𝑝(𝛬). Accordingly, the nuclear spin dynamics becomes
independent of the electron spin and is restricted to a density suboperator 𝜌𝑛(𝑡)
acting in a reduced Hilbert space of the dimension (2𝐼 + 1)𝑁. The dynamics of
𝜌𝑛(𝑡) are identical for all configurations of the electron spin. In the spin 𝑥 basis,
|𝐾⟩ ≡ |{𝐼𝑥

𝑘 }⟩ with total spin 𝐽𝑥 = ∑𝑘 𝐼𝑥
𝑘 , the temporal evolution of 𝜌𝑛(𝑡) during

one repetition period of the pulse train is given by

𝜌𝑛
𝐾,𝐿((𝑁𝑃 + 1)𝑇 −

𝑅 ) = 𝑒−𝑖𝜔𝑛(𝐽𝑥
𝐾−𝐽𝑥

𝐿)𝑇𝑅𝜌𝑛
𝐾,𝐿(𝑁𝑃𝑇 −

𝑅 ). (7.19)

The mapping matrix 𝑀𝑛 for the nuclear spin dynamics can be directly read off,

𝜌𝑛
𝐾′,𝐿′((𝑁𝑃 + 1)𝑇 −

𝑅 ) = ∑
𝐾,𝐿

𝑀𝐾′,𝐿′

𝐾,𝐿 𝜌𝑛
𝐾,𝐿(𝑁𝑃𝑇 −

𝑅 ) (7.20)

with matrix elements

𝑀𝐾′,𝐿′

𝐾,𝐿 = 𝛿𝐾,𝐾′𝛿𝐿,𝐿′𝑒−𝑖𝜔𝑛(𝐽𝑥
𝐾−𝐽𝑥

𝐿)𝑇𝑅 . (7.21)

Thus, the matrix 𝑀𝑛 is diagonal. Its eigenvalues 𝛬𝑛
𝑖 result from 𝑒−𝑖𝜔𝑛(𝐽𝑥

𝐾−𝐽𝑥
𝐿)𝑇𝑅

with any combination of the nuclear spin states 𝐾 and 𝐿. The eigenvalues 𝛬𝑛
𝑖 have

the absolute value 1 and provide a complex phase. This phase is determined by
𝐽𝑥

𝐾 − 𝐽𝑥
𝐿 which is an integer number in the range from −𝑁 to 𝑁 since 𝐽𝑥

𝐾 and
𝐽𝑥

𝐿 ∈ {−𝑁/2, … , 𝑁/2}.
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Figure 7.3: Distribution 𝑝(𝛬) of the complex eigenvalues 𝛬 of the mapping ℳ.
The system comprises 𝑁 = 6 nuclear spins with the individual length 𝐼 = 1/2;
𝑁𝐶 = 100. Results for different external magnetic fields are presented that fulfill
Eq. (6.13) with 𝑛 = 1, … , 4.

For the decoupled electron-nuclear spin system, the eigenvalues 𝛬𝑖 of the total
mapping matrix 𝑀 result from the product of any combination of the eigenvalues
𝛬𝑒

𝑖 and 𝛬𝑛
𝑖 . As a consequence, the real eigenvalues 𝛬𝑒

𝑖 of the electronic system
provide the absolute value of 𝛬𝑖, whereas the eigenvalues 𝛬𝑛

𝑖 of the nuclear mapping
determine the complex phase of 𝛬𝑖. The magnetic field strengths in Fig. 7.3
correspond to either a quarter, half, three half or full revolution of the nuclear spins
during 𝑇𝑅, i.e., 𝑛 = 1, … , 4 in Eq. (6.13). The eigenspectra reflect this condition for
the nuclear Larmor frequency: In Fig. 7.3(a), the nuclear spins perform a quarter
revolution in between consecutive pump pulses such that 𝜔𝑛𝑇𝑅 = 𝜋/2 enters the
exponent in the definition of 𝛬𝑛

𝑖 and produces the four branches of 𝑝(𝛬) in the
complex plane. At 𝐵 = 3.90 T, the nuclear spins make perform a revolution about
the external magnetic field, 𝜔𝑛𝑇𝑅 = 𝜋, resulting in a distribution of 𝛬 along the real
axis, see Fig. 7.3(b). A three quarter revolution of the nuclear spins, 𝜔𝑛𝑇𝑅 = 3𝜋/2,
produces a similar image as for the quarter revolution, see Fig. 7.3(c). Finally, a full
revolution of the nuclear spins during 𝑇𝑅, 𝜔𝑛𝑇𝑅 = 2𝜋, leads to a distribution 𝑝(𝛬)
whose weight is accumulated at the real axis, see Fig. 7.3(d). Here, the negative
contributions of Re(𝛬) stem from the negative values of 𝛬𝑒

3 according to Eq. (7.16).
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Figure 7.4: Distribution 𝑝(𝛬) of the complex eigenvalues 𝛬 of the mapping ℳ.
The system comprises 𝑁 = 6 nuclear spins with the individual length 𝐼 = 1/2;
𝑁𝐶 = 100. Results for different external magnetic fields are presented, where (a)
𝑛 = 21/20, (b) 𝑛 = 10/9, (c) 𝑛 = 11/9, and (d) 𝑛 = 4/3 in Eq. (6.13) respectively.

The additional blurring of the distributions 𝑝(𝛬) can be attributed to the electron-
nuclear spin feedback mechanism provided by the full hyperfine Hamiltonian which
renders the eigenspectrum of the full mapping ℳ more complex than the simplifying
analytical prediction.

When the external magnetic field does not produce an integer number of quarter
revolutions of the nuclear spins between consecutive pump pulses, the distribution
𝑝(𝛬) fans out and additional branches occur in the complex plane. Figure 7.4
presents the eigenspectrum of ℳ at four further external magnetic field strengths,
that do not fulfill the condition, Eq. (6.13), with an integer 𝑛. In Fig. 7.4(a), the
magnetic field is adjusted to 𝑛 = 1+1/20 such that the nuclear spins perform a little
more than a quarter revolution during 𝑇𝑅. Accordingly, the four branches of 𝑛 = 1
spread into several lines respectively. Moving further away from the resonance 𝑛 = 1,
the branches spread over the full complex plane, see Fig. 7.4(b) with 𝑛 = 1 + 1/9.
Here, the finite number of lines in the complex eigenspectrum is a result of the
finite system size for which 𝐽𝑥

𝐾 − 𝐽𝑥
𝐿 can only produce a limited number of integer

values. For 𝐵 = 2.38 T in Fig. 7.4(c), the branches of 𝑝(𝛬) adjust to the number
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Chapter 7 Steady-state analysis of the periodically driven spin system

𝑛 = 1 + 2/9 of quarter revolutions of the nuclear spin precession. At 𝑛 = 4/3, the
nuclear spins perform a third revolution between the pump pulses producing six
equally spread lines in Fig. 7.4(d). We note that the number of lines in the complex
eigenspectrum would still be finite for an irrational 𝑛 as a result of the finite system
size producing a limited number of integer values 𝐽𝑥

𝐾 − 𝐽𝑥
𝐿.

7.2.3 Overlap with the initial density operator

Depending on the initial density operator 𝜌0 before the periodic optical excitation,
a subset of the eigenoperators of ℳ contributes to the dynamics of 𝜌(𝑁𝑃𝑇 −

𝑅 ) during
the pulse train. According to Eq. (7.9), only those right eigenvectors with finite
nonzero overlap 𝑐𝑖 to ⃗𝜌0 as defined in Eq. (7.10) yield a contribution to the temporal
evolution of the system. For the evaluation of the respective overlap, we scale the
right eigenvectors ⃗𝑟𝑖 to the norm ‖ ⃗𝑟𝑖‖ = 1 and adjust the left eigenvectors to fulfill
⃗𝑙†𝑖 ⃗𝑟𝑖 = 1. As the initial condition, we use the vector representation of 𝜌0 = 𝟙𝑑′/𝑑′.

The distribution 𝑝(|𝛬|, |𝑐|) as a function of the absolute values of the eigenvalue
and the overlap, |𝛬| and |𝑐|, is displayed in Fig. 7.5(a) for the exemplary external
magnetic field of 𝐵 = 1.95 T. A broad band with relatively small overlap spreads
over the full range 0 ≤ |𝛬| ≤ 1. The peak at |𝛬| = 1/2 observed for 𝑝(|𝛬|) in
Fig. 7.2 is reflected by a vertical line in Fig. 7.5(a). Furthermore, an accumulation
of weight arises at |𝛬| = 0 connected to a notable overlap |𝑐| > 10−3. For |𝛬| < 1/2
several eigenvalues with relevant overlap occur, whereas the eigenvalues in the range
1/2 < |𝛬| < 1 are related to eigenvectors with minor overlap to the initial vector ⃗𝜌0.
Only for |𝛬| ≈ 1, eigenvectors producing a relevant overlap with ⃗𝜌0 exist.

The eigenspectrum 𝑝(𝛬) as a function of the complex eigenvalue 𝛬 obtained from
those eigenvalues 𝛬𝑖 related to a relevant overlap |𝑐𝑖| > 10−3 is presented in
Fig. 7.5(b). This selection of the eigenvalues 𝛬𝑖 corresponds to those eigenval-
ues above the horizontal cut indicated by the black dotted line in Fig. 7.5(a). In
contrast to the full eigenspectrum at the same magnetic field, presented in Fig. 7.3(a),
the four lines are cut off at |𝛬| = 1/2 respectively. Furthermore, the lines along
the imaginary axis are significantly less pronounced than those along the real axis.
At an absolute value |𝛬| > 1/2, we only find contributions for 𝛬 ≈ 1 which are
hard to detect in Fig. 7.5(b). These contributions are related to the quasistationary
steady state and other long living eigenstates. We conclude that the temporal
evolution starting from the initial density operator 𝜌0 is mostly governed by the
real eigenvalues with |𝛬| < 1/2 which are related to the purely electronic steady
state addressed in Sec. 6.1. Moreover, the long term dynamics associated with
the emergence of the mode-locking effect via nuclei-induced frequency focusing are
determined by the eigenvalues 𝛬 ≈ 1.
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Figure 7.5: Relation between the eigenspectrum of the mapping matrix 𝑀 and
the overlap 𝑐 of the right eigenvectors with the initial density vector ⃗𝜌0. A system
with 𝑁 = 6 nuclear spins (𝐼 = 1/2) is examined at the external magnetic field
𝐵 = 1.95 T; 𝑁𝐶 = 100. (a) Distribution 𝑝(|𝛬|, |𝑐|) of the absolute values of the
eigenvalue |𝛬| and the related overlap |𝑐|. (b) Eigenspectrum 𝑝(𝛬) as a function of
the complex eigenvalue 𝛬 taking into account only those eigenvalues 𝛬𝑖 related to
an overlap |𝑐𝑖| > 10−3.

7.3 Truncation scheme

As the numerical eigendecomposition of the full mapping ℳ with the (𝐷′ × 𝐷′)-
dimensional matrix representation is computationally expensive, we strive for an
approach reducing the computational effort. An efficient way to facilitate the
eigendecomposition of larger systems is the reduction of the employed matrix
dimensions. Therefore, we introduce a truncation scheme for the matrix elements
of the density operator. The initial density operator of the electron-nuclear spin
system before the pulse train is diagonal due to the applied high-temperature limit.
Moreover, the density operator of the quasistationary steady state under periodic
optical excitation proves to have nonzero entries mostly for the diagonal matrix
elements in the eigenbasis of the Hamiltonian, Eq. (5.33), as well. Hence, it is
convenient to focus on the relevant matrix elements of 𝜌 and omit those parts
that do not contribute to the dynamics. As a measure which elements of the
density operator in the energy eigenbasis can be excluded from the calculations, we
establish the difference between the total spin 𝑥 component of the left hand and
right hand spin state. Employing the common eigenbasis, Eq. (5.36), of 𝐻𝑆 and 𝐹 𝑥,
we include those density matrix elements 𝜌𝑎,𝑏(𝑡) for which |𝐹 𝑥

𝑎 − 𝐹 𝑥
𝑏 | ≤ 𝛥𝐹 with

a truncation parameter 𝛥𝐹S. Accordingly, the dimensions of the square mapping
matrix 𝑀, which equal the number of included density matrix elements, reduce
considerably. The truncation of the density matrix based on the difference |𝐹 𝑥

𝑎 −𝐹 𝑥
𝑏 |

is supported by the observation that the quantum number 𝐹 𝑥 is conserved by the
unitary time evolution with 𝐻𝑆 and can only be affected via the pump pulse or the
trion decay. The latter two effects, however, are limited to a change of the electron
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Figure 7.6: Comparison of different truncation parameters 𝛥𝐹 for the density
matrix entering the mapping 𝑀. We employ an instantaneous pump pulse and an
external magnetic field of 𝐵 = 1.95 T. (a) Relative Overhauser field distribution
𝑝𝑟(𝐵𝑥

𝑁) of the system with 𝑁 = 6 nuclear spins in the steady state (𝐼 = 1/2,
𝑁𝐶 = 100). The legend indicating 𝛥𝐹 applies to the entire figure. (b) Relative
deviation of 𝑝𝑟(𝐵𝑥

𝑁) for the truncated system from 𝑝𝑟(𝐵𝑥
𝑁) in the full calculation

based on the data in panel (a). (c) Steady-state distribution 𝑝𝑟(𝐵𝑥
𝑁) of the system

with 𝑁 = 50 nuclear spins (𝐼 = 1/2) in the box model approximation. (d) Relative
deviation of 𝑝𝑟(𝐵𝑥

𝑁) for the truncated system from 𝑝𝑟(𝐵𝑥
𝑁) in the full calculation

referring to the data in panel (c).

spin contribution 𝑆𝑥 by a maximum of ±1 during one repetition period.

We compare the results of the relative Overhauser field distribution 𝑝𝑟(𝐵𝑥
𝑁) of the

quasistationary steady state related to the eigenvalue 1 of 𝑀 for different truncation
parameter 𝛥𝐹 in Fig. 7.6. For the external magnetic field, we choose 𝐵 = 1.95 T
as an example. Thus, the integer modes of the electron spin precession indicated
by the black dotted vertical lines are favored by the Overhauser field. In the
system with 𝑁 = 6 nuclear spins of the individual length 𝐼 = 1/2, the distributions
𝑝𝑟(𝐵𝑥

𝑁) obtained with truncation parameters 𝛥𝐹 ≥ 2 fully match the result of the
full calculation without truncation, see Fig. 7.6(a). The calculation with 𝛥𝐹 = 1,
however, displays significant deviations from the steady-state solution of the full
mapping. To resolve potential deviations for 𝛥𝐹 ≥ 2, the relative deviation 𝛥𝑝
of the steady-state distribution 𝑝𝑟(𝐵𝑥

𝑁) for the truncated system from the data
of the full calculation is presented in Fig. 7.6(b). The absolute value |𝛥𝑝| of the
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relative deviation decreases when increasing the number of density matrix elements
included in the mapping, i.e., increasing 𝛥𝐹. For 𝛥𝐹 = 2, roughly 80% of the
density matrix elements are included which produces a relative deviation |𝛥𝑝| in
the order of 10−5.

The truncation scheme proves even more efficient in the case of large nuclear spin
lengths. Aiming at the investigation of a system comprising many nuclear spins,
we resort to the box model approximation. The hyperfine coupling constants are
set to the same value 𝐴0 for all nuclei guaranteeing the dephasing time 𝑇 ∗ = 1 ns.
Hence, the averaging over different realizations becomes redundant and therefore is
omitted. In the box model approximation, the spin dynamics can be decomposed
into subspaces with a fixed total nuclear spin 𝐽, 𝐽 ∈ {0, … , 𝑁/2} (for even 𝑁)
since the instantaneous pump pulse as well as the Lindblad master equation with
the Hamiltonian 𝐻𝑆 conserve the quantum number 𝐽. Accordingly, the mapping
matrix for the repetition period is established separately for the individual subspaces
reducing the involved matrix dimensions. After the diagonalization of the matrix
representation of the mapping for the subspaces, the results are combined to the
eigenspectrum of the full mapping ℳ. As a result of the conservation of 𝐽, the
eigenvalue 1 is degenerate for the full mapping ℳ in the box model approximation.
For each value of 𝐽, a number of identical subspaces arise whereby the degree of
degeneracy is given by Eq. (4.13). Each of these subspaces produces an eigenvalue
1 with the related right eigenoperator corresponding to the steady state in this
subspace. Consequently, the degree of degeneracy of the eigenvalue 1 of the full
mapping results from ∑𝐽 𝑔𝑁(𝐽) = ( 𝑁

𝑁/2). The quasistationary steady state ⃗𝜌ss of
the full system in dependence on the initial vector ⃗𝜌0 is established by summing the
steady-state contributions of the individual subspaces weighted by their overlap 𝑐𝑖
with ⃗𝜌0, Eq. (7.10),

⃗𝜌ss = ∑
𝑖

𝛬𝑖=1

𝑐𝑖 ⃗𝑟𝑖. (7.22)

We compare the steady-state Overhauser field distribution 𝑝𝑟(𝐵𝑥
𝑁) in the box model

limit for various truncation parameters 𝛥𝐹 with the full calculation in Fig. 7.6(c).
The system size is set to 𝑁 = 50 nuclear spins with the individual length 𝐼 = 1/2
which corresponds to the largest system accessible by the full treatment in the box
model approximation. Here, the truncation scheme with 𝛥𝐹 = 2 allows for reducing
the dimension of the mapping matrix for the subspace 𝐽 = 𝑁/2 ≡ 25 by a factor of
103. The results for 𝛥𝐹 ≥ 2 coincide with the full calculation whereas significant
deviations arise for 𝛥𝐹 = 1. The relative deviation of 𝑝𝑟(𝐵𝑥

𝑁) in the truncated
system from 𝑝𝑟(𝐵𝑥

𝑁) resulting from the full analysis is shown in Fig. 7.6(d). At
a fixed truncation parameter 𝛥𝐹, the relative error |𝛥𝑝| is similar to the case of
six nuclear spins with random hyperfine coupling constants. For 𝛥𝐹 = 2, |𝛥𝑝|
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Chapter 7 Steady-state analysis of the periodically driven spin system

remains in the order of 10−5. As a compromise between accuracy and numerical
effort, we employ the truncation scheme with 𝛥𝐹 = 2 in the following unless stated
otherwise.

7.4 Electron spin revival amplitude in the box model
approximation

The truncation scheme for the density matrix elements included by the mapping
enables the study of the quasistationary steady state in systems with up to 𝑁 = 500
nuclear spins in the box model approximation. We exploit this accomplishment
and address the magnetic field dependence of the mode-locking effect in such a
large system. For simplicity, we employ instantaneous pump pulses. The electron
spin revival amplitude 𝑆⟂ directly before the pump pulse is extracted from the
steady-state density operator. For evaluation of the electron spin expectation value
⟨𝑆𝛼⟩ = Tr(𝜌ss𝑆𝛼) with 𝛼 ∈ {𝑥, 𝑦, 𝑧}, the steady-state density operator 𝜌ss in the
energy eigenbasis is composed from the steady-state contributions of the subspaces
related to a fixed total nuclear spin 𝐽 according to Eq. (7.22). Figure 7.7 displays
the revival amplitude 𝑆⟂ as a function of the external magnetic field 𝐵 for two
different system sizes (a) 𝑁 = 200 and (b) 𝑁 = 500. The box model results of 𝑆⟂

reflect the nonmonotonic magnetic field dependence induced by the condition for
the nuclear Larmor precession, Eq. (6.13). Minima of the revival amplitude occur
at roughly 4 T and 8 T respectively. However, the maxima in between are placed
differently than for the system consisting of 𝑁 = 6 nuclear spins with randomly
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Figure 7.7: Electron spin revival amplitude 𝑆⟂ in the quasistationary steady
state as a function of the external magnetic field 𝐵 (blue markers, the lines are a
guide to the eye). Furthermore, the converged absolute value | ⟨𝑆𝑧

𝑐 ⟩ | of the electron
spin polarization directly before a pump pulse is added (orange markers). The
box model approximation is employed for systems of the size (a) 𝑁 = 200 and (b)
𝑁 = 500.
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Figure 7.8: (a) Overhauser field distribution 𝑝(𝐵𝑥
𝑁) in equilibrium (blue line) and

in the quasistationary steady state under periodic optical excitation at 𝐵 = 7.31 T
(green line, scaled by a factor of 1/10) and 𝐵 = 7.80 T (orange line) respectively.
The system comprises 𝑁 = 500 nuclear spins in the box model approximation. (b)-
(f) Relative Overhauser field distributions 𝑝𝑟(𝐵𝑥

𝑁) at various external magnetic field
strengths that comply with the Eq. (6.13) with different numbers 𝑛. Electron spin
precession modes with an integer (half-integer respectively) number of revolutions
during 𝑇𝑅 are indicated by black dotted (gray dashed) vertical lines.

distributed hyperfine coupling constants, cf. Fig. 6.3(b). In particular, the dip at
8 T becomes very narrow due to two maxima of 𝑆⟂ located close to the minimum.
The comparison of the data for 𝑁 = 200 and 𝑁 = 500 reveals that the dip at 8 T
becomes sharper with growing system size 𝑁 due to the increase in the maximum
value of 𝑆⟂. In comparison to the data in Fig. 6.3(b), the maximum value of 𝑆⟂

increases by roughly a factor of two for the box model results with 𝑁 = 500.

The Overhauser field distribution 𝑝(𝐵𝑥
𝑁) for 𝑁 = 500 nuclear spins in the box model

approximation provides a relatively smooth distribution approximating the Gaussian,
Eq. (2.13), in the high-temperature equilibrium situation, see Fig. 7.8(a) (blue line).
In the quasistationary steady-state under periodic optical excitation, peaks emerge at
the favored electron spin precession modes depending on the external magnetic field
(orange and green line respectively). In comparison to the steady-state distribution
of the spin system comprising 𝑁 = 6 nuclear spins with randomly distributed
hyperfine coupling constants, these peaks can become significantly more pronounced
at some values of 𝐵. The distribution 𝑝(𝐵𝑥

𝑁) at 𝐵 = 7.31 T (green line) for instance
exhibits extremely sharp peaks at the integer modes of the electron spin precession;
it is scaled by a factor of 1/10 to match the other distributions in the figure. For
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a detailed analysis, we add the relative Overhauser field distributions 𝑝𝑟(𝐵𝑥
𝑁) in

the quasistationary steady state at selected values of the external magnetic field
strength in Figs. 7.8(b)-7.8(f). At 𝐵 = 1.95 T, 𝑛 = 1 in Eq. (6.13), we observe
peaks of 𝑝𝑟(𝐵𝑥

𝑁) at the expected integer modes of electron spin precession, see
Fig. 7.8(b). At 𝐵 = 3.90 T corresponding to 𝑛 = 2, however, the distribution
𝑝𝑟(𝐵𝑥

𝑁) in Fig. 7.8(c) displays peaks in between the integer and half-integer modes,
whereas Eq. (6.13) predicts a favoring of the half-integer modes. The distribution
at 𝐵 = 5.85 T (𝑛 = 3) exhibits the expected favoring of the integer modes again,
see Fig. 7.8(d), and resembles the result at 𝐵 = 1.95 T. The integer modes become
even more pronounced at 𝐵 = 7.31 T (𝑛 = 15/4), see Fig. 7.8(e), which matches the
maximum of the electron spin revival amplitude. A similar distribution 𝑝𝑟(𝐵𝑥

𝑁) is
obtained at 𝐵 = 8.29 T (𝑛 = 17/4, not displayed) producing the maximum of 𝑆⟂ on
the other side of the dip. For the external magnetic field related to the minimum of
the electron spin revival amplitude, 𝐵 = 7.80 T (𝑛 = 4), the prediction of a favoring
of the half-integer modes by Eq. (6.13) holds true again, see Fig. 7.8(f).

Overall, the electron spin precession modes produced by the nuclei-induced frequency
focusing of a large system in the box model limit are slightly altered compared to a
small system with randomly distributed hyperfine coupling constants. Interestingly,
similar behavior of the electron spin revival amplitude as in the quantum mechanical
calculations for the box model limit has been observed by a classical approach
in Refs. [86, 88, 89, 224]. The classical data suggest a rather broad minimum
of the revival amplitude as a function of the external magnetic field at 𝑛 = 2 in
Eq. (6.13) and a sharp dip at 𝑛 = 4. Since this sharp dip does not match the
experimental measurements, the question of its origin arises. It could either be an
artifact of the theoretical modeling such as specific assumptions about the hyperfine
coupling constants, or it could be superimposed by additional effects in experiments,
e.g., nuclear quadrupolar interactions and dipole-dipole interactions broadening the
peaks in the Overhauser field distribution as well as the spin precession during the
noninstantaneous pump pulses.

7.5 Focusing of a single electron spin precession mode

Recent experiments [94, 95, 229] achieved the nuclei-induced frequency focusing of
a single electron spin precession mode via optical excitation with a GHz repetition
frequency, i.e., by a reduction of the repetition period to 𝑇𝑅 = 1 ns. We address this
regime by the diagonalization of the mapping ℳ for the shortened repetition period.
To this end, we adjust the trion decay rate to 𝛾 = 20 ns−1 which ensures a full
decay of the trion population within the numerical accuracy during one repetition

152



7.5 Focusing of a single electron spin precession mode
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Figure 7.9: Overhauser field distribution 𝑝(𝐵𝑥
𝑁) in the quasistationary steady

state. The repetition time between the instantaneous pump pulses is reduced to
𝑇𝑅 = 1 ns. The box model approximation of the hyperfine coupling constants
enables the examination of a large nuclear spin bath. (a) 𝑝(𝐵𝑥

𝑁) depending on
the system size 𝑁 at the fixed external magnetic field of 𝐵 = 1.93 T. (b) 𝑝(𝐵𝑥

𝑁)
depending on the external magnetic field at a fixed system size of 𝑁 = 200.

period. The pump pulse is modeled as instantaneous. For access to a large system,
we employ the box model limit of the hyperfine coupling constants.

Figure 7.9(a) presents the Overhauser field distribution 𝑝(𝐵𝑥
𝑁) in the mode-locked

state at a fixed external magnetic field 𝐵 = 1.93 T with 𝑚′ = 15 electron spin
revolutions during 𝑇𝑅 = 1 ns, cf. Eq. (6.11). Steady-state results for various system
sizes 6 ≤ 𝑁 ≤ 500 are compared. The common initial Gaussian distribution
governed by 𝑇 ∗ = 1 ns is indicated as a gray dashed line. We find that the nuclear
spins under periodic optical excitation with a GHz repetition rate produce a single
electron spin precession mode corresponding to an integer number 𝑚′ = 15 of
revolutions between consecutive pump pulses. The related peak in the Overhauser
field distribution sharpens when increasing the number of nuclear spins in the
system. We do not observe any further peaks in 𝑝(𝐵𝑥

𝑁) in this regime as the
next closest integer modes of electron precession would require an Overhauser field
𝐵𝑥

𝑁 ≈ ±130 mT. This significantly exceeds the standard deviation of the initial
Gaussian envelope function.

The magnetic field dependence of the Overhauser field distribution 𝑝(𝐵𝑥
𝑁) at a

fixed system size, 𝑁 = 200, is shown in Fig. 7.9(b). In the presented range
0.90 T ≤ 𝐵 ≤ 7.72 T, the distributions exhibit a single peak at 𝐵𝑥

𝑁 = 0 mT which
broadens when increasing the magnetic field strength. Here, the number 𝑚′ of
electron spin revolutions between consecutive pump pulses with separation 𝑇𝑅 = 1 ns
amounts to 7 ≤ 𝑚′ ≤ 60 according to Eq. (6.11). The presented distributions 𝑝(𝐵𝑥

𝑁)
all favor the integer precession mode of the electron spin, and the condition in
Eq. (6.13) does not apply due to 𝑛 ≪ 1 for the presented magnetic field strengths.
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Chapter 7 Steady-state analysis of the periodically driven spin system

The broadening of the single peak in 𝑝(𝐵𝑥
𝑁) with strengthening 𝐵 is attributed

to the suppression of the spin flips terms in the hyperfine Hamiltonian by strong
external magnetic fields [90]. In the experiments, an additional broadening due
to ensemble inhomogeneities, such as the variation of the electron 𝑔 factor in the
quantum dot ensemble, has to be overcome for a single mode operation of the system
[94]. These effects are omitted in the theoretical investigation for simplicity.

7.6 Sweeping of the external magnetic field

Evers et al. [95] demonstrated the repopulation of the electron spin precession modes
in an (In,Ga)As quantum dot ensemble by sweeping the external magnetic field
during the periodic optical excitation with a repetition time 𝑇𝑅 = 1 ns. Starting
from an initial value, the magnetic field strength is continuously increased while the
periodic optical pump pulses are switched on. The experimental data demonstrates
a dragging of the electron spin precession modes and the emergence of a strong
polarization of the Overhauser field which adjusts to the external magnetic field and
reaches up to 1.5 T in Ref. [95].

We investigate the effect of the magnetic field sweep by means of the quantum
mechanical superoperator ℳ for the repetition period. Employing the box model
limit of the hyperfine coupling constants for a system with 𝑁 = 200 nuclear spins,
we start from the disordered spin system 𝜌0. The initial external magnetic field
is adjusted to 𝐵1 = 1.93 T producing 𝑚′ = 15 electron spin revolutions during
𝑇𝑅 = 1 ns according to Eq. (6.11). We apply a select number 𝑁𝑃 of instantaneous
pump pulses and subsequently increase the external magnetic field strength by a
small amount. For the new field strength 𝐵2, we apply again 𝑁𝑃 pump pulses
with separation 𝑇𝑅 = 1 ns. This procedure is iterated until we reach the magnetic
field value 𝐵𝑁𝐵

= 2.06 T corresponding to 𝑚′ = 16. The number of magnetic field
steps for sweeping from 𝑚′ = 15 to 𝑚′ = 16 is set to 𝑁𝐵 = 100. This resolution is
deemed adequate since a further increase in 𝑁𝐵 does not change the physical results
(with properly adjusted 𝑁𝑃 per magnetic field step) but only generates additional
computational effort. For the implementation of the magnetic field sweep, we employ
the eigendecomposition of the mapping matrices 𝑀(𝑗) at the respective magnetic
field values 𝐵𝑗. The vector ⃗𝜌𝑗 for the magnetic field step 𝑗 is obtained iteratively
from ⃗𝜌𝑗−1 at the previous magnetic field,

⃗𝜌𝑗 = ∑
𝑖

(𝛬(𝑗)
𝑖 )

𝑁𝑃 𝑐(𝑗)
𝑖 ⃗𝑟(𝑗)

𝑖 (7.23)
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Figure 7.10: Overhauser field distribution 𝑝(𝐵𝑥
𝑁) when sweeping the external

magnetic field from 𝐵1 = 1.94 T (𝑚′ = 15, blue lines) to 𝐵100 = 2.06 T (𝑚′ = 16,
yellow lines) under periodic optical excitation with repetition time 𝑇𝑅 = 1 ns. The
system comprises 𝑁 = 200 nuclear spins in the box model approximation. The
external magnetic field is swept in 100 steps with (a) 𝑁𝑃 = 106 or (b) 𝑁𝑃 = 5×107

pump pulses per magnetic field step respectively. Panels (c) and (d) display 𝑝(𝐵𝑥
𝑁)

in the subspace of fixed total nuclear spin 𝐽 = 100 and refer to panel (a) and
(b) respectively. The integer modes of the electron spin precession for external
magnetic fields with an integer number 𝑚′ in Eq. (6.11) are indicated by black
dotted vertical lines at 𝐵𝑥

𝑁 = 0 mT and 𝐵𝑥
𝑁 ≈ ±130 mT respectively.

with coefficients

𝑐(𝑗)
𝑖 = ( ⃗𝑙(𝑗)

𝑖 )
†

⃗𝜌𝑗−1. (7.24)

Here, ⃗𝑟(𝑗)
𝑖 , ( ⃗𝑙(𝑗)

𝑖 )
†

and 𝛬(𝑗)
𝑖 denote the right eigenvectors, the left eigenvectors and

the eigenvalues of 𝑀(𝑗) respectively.

Figure 7.10 displays the evolution of the Overhauser field distribution 𝑝(𝐵𝑥
𝑁) during

the sweep. The distribution for every tenth magnetic field step is depicted with
color coding ranging from blue (𝐵1) to yellow (𝐵100). For Fig. 7.10(a), the number
of pump pulses per magnetic field step amounts to 𝑁𝑃 = 106, whereas 𝑁𝑃 = 5 × 107

in Fig. 7.10(b). Thus, the total duration covered by the numerical simulation
corresponds to 0.1 s and 5.0 s, respectively. In the beginning, the Overhauser field
distribution is centered symmetrically around 𝐵𝑥

𝑁 = 0 mT. The integer modes of
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Chapter 7 Steady-state analysis of the periodically driven spin system

the electron spin precession for 𝐵1 = 1.93 T (𝑚′ = 15) are indicated by black
dotted vertical lines in Fig. 7.10. When sweeping the magnetic field, the weight
of 𝑝(𝐵𝑥

𝑁) moves to positive values of 𝐵𝑥
𝑁 as the Overhauser field compensates for

the mismatch of the external magnetic field from an integer number of electron
spin revolutions during 𝑇𝑅. However, when the integer mode of the electron spin
precession moves out of the range in which the initial Gaussian distribution has
substantial weight, the distribution 𝑝(𝐵𝑥

𝑁) cannot follow the magnetic field sweep.
Thus, 𝑝(𝐵𝑥

𝑁) becomes symmetrically centered around 𝐵𝑥
𝑁 = 0 mT again. Finally,

the integer mode moves into the Overhauser field range at negative values of 𝐵𝑥
𝑁

and the weight of the distribution 𝑝(𝐵𝑥
𝑁) is shifted to negative Overhauser field

components. When the external magnetic field reaches 𝐵100 = 2.06 T (𝑚′ = 16),
the integer modes of the electron spin precession correspond again to the black
dotted vertical lines in Fig. 7.10. The comparison of the results with 𝑁𝑃 = 106 and
𝑁𝑃 = 5 × 107 pump pulses per magnetic field step respectively reveals significant
differences. The distributions 𝑝(𝐵𝑥

𝑁) in Fig. 7.10(b) correspond to the steady-state
distributions under a long pulse train at a fixed magnetic field of the respective field
strength due to the slow sweeping rate. For the faster sweeping in Fig. 7.10(a), the
system does not reach the quasistationary steady-state at the individual magnetic
field steps. Hence, the distributions 𝑝(𝐵𝑥

𝑁) exhibit only minor deviations from
the initial Gaussian distribution. Obviously, the mode dragging achieved in the
experiments [95] is absent in the numerical results. We attribute this observation to
the special symmetries of the box model approximation. The total nuclear spin 𝐽 is
conserved during the complete pulse train. Small values of 𝐽 carry much weight for
the initial density operator 𝜌0 due to the high level of degeneracy of the associated
subspaces, cf. Eq. (4.13). Therefore, the Overhauser field distribution will retain
most of its weight at small values of 𝐵𝑥

𝑁 rather than following the dragging of the
electron spin precession modes.

In the subspace with maximum value 𝐽 = 𝑁/2 = 100, however, the Overhauser
field can reach up to roughly ±170 mT. To extract a potential reorganization of the
nuclear spins in this subspace, we present the Overhauser field distribution obtained
for fixing 𝐽 = 100 in Figs. 7.10(c) and 7.10(d). In compliance with the previous
data, the number of pump pulses per magnetic field step amounts to 𝑁𝑃 = 106

and 𝑁𝑃 = 5 × 107 respectively. Accordingly, the results in Fig. 7.10(d) correspond
to the steady-state distributions at the respective external magnetic field, and the
distribution before the sweep at 𝐵1 = 1.93 T fully coincides with 𝑝(𝐵𝑥

𝑁) at the
end of the sweep with 𝐵100 = 2.06 T. For the faster sweep of the magnetic field in
Fig. 7.10(c), the distributions at 𝐵1 and 𝐵100 do not match. The comparison of
the distribution at the end of the sweep with 𝑁𝑃 = 106 pulses per magnetic field
step (yellow line in Fig. 7.10(c)) to the steady-state distribution at 𝐵100 = 2.06 T
(blue line in Fig. 7.10(d)) indicates a minor redistribution of the weight between
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Figure 7.11: Eigenvectors related to the three largest eigenvalues of 𝑀 at 𝐵 =
1.93 T. The box model approximation is applied for the system with 𝑁 = 200
nuclear spins. The results focus on the subspace of the largest total nuclear
spin 𝐽 = 100. (a) Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) extracted from the right
eigenvectors. The distribution related to the eigenvalue 𝛬2 is scaled by a factor of
three. (b) Distribution of 𝐵𝑥

𝑁 obtained from the left eigenvectors related to the
right eigenvectors in panel (a). The integer modes of the electron spin precession
are indicated by black dotted vertical lines at 𝐵𝑥

𝑁 = 0 mT and 𝐵𝑥
𝑁 ≈ ±130 mT

respectively.

the three relevant integer modes of the electron spin precession. As a result of
the magnetic field sweep with 𝑁𝑃 = 106 pump pulses per magnetic field step, the
peak at 𝐵𝑥

𝑁 ≈ −130 mT has a weaker amplitude than in the steady-state whereas
the amplitude of the peak at 𝐵𝑥

𝑁 ≈ 0 mT slightly increases. The peak of 𝑝(𝐵𝑥
𝑁) at

𝐵𝑥
𝑁 ≈ 130 mT has roughly equal amplitude in the two scenarios.

The relatively weak redistribution of the weight between the peaks of 𝑝(𝐵𝑥
𝑁) in

the subspace with a fixed value 𝐽 = 100 through the magnetic field sweep can be
connected to the eigendecomposition of 𝑀. Figure 7.11(a) presents the Overhauser
field distributions related to the three largest eigenvalues of the mapping in the
subspace with 𝐽 = 100 at an external magnetic field of 𝐵 = 1.93 T. The distribution
𝑝(𝐵𝑥

𝑁) in the quasistationary steady state (blue line) belongs to the eigenvalue
𝛬0 = 1, which equals 1 within the range of numerical accuracy, i.e., 10−15. The
two second largest eigenvalues 𝛬1 = 1 − 10−8 and 𝛬2 = 1 − 3 × 10−8 are real
and slightly smaller than 1. The Overhauser field distributions extracted from
the related right eigenvectors scaled by the overlap with ⃗𝜌0 (orange and green line
respectively) reflect the integer modes of the electron spin precession similar to
the steady-state distribution. However, the sign of the peaks corresponding to
the individual modes may be negative. Generally, the combination of the three
Overhauser field distributions allows for the formation of a distribution 𝑝(𝐵𝑥

𝑁) with
an arbitrary distribution of the weight between the three integer modes in the
Overhauser field range. The Overhauser field distributions 𝑝(𝐵𝑥

𝑁) obtained from
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Chapter 7 Steady-state analysis of the periodically driven spin system

the related left eigenvectors, see Fig. 7.11(b), indicate the overlap with the initial
distribution of 𝐵𝑥

𝑁 in ⃗𝜌0. While the quasistationary steady state has equal overlap
with any value of 𝐵𝑥

𝑁, the eigenvector to 𝛬1 produces a relevant contribution when
the initial Overhauser field distribution has an asymmetric distribution of the weight
for 𝐵𝑥

𝑁 > 0 mT and 𝐵𝑥
𝑁 < 0 mT. The eigenvector to 𝛬2 acquires relevant overlap

when small values of |𝐵𝑥
𝑁| have a substantially larger weight than large values of

|𝐵𝑥
𝑁| or vice versa.

The eigenvalues 𝛬1 and 𝛬2 produce a lower bound of the sweeping rate below
which the weight of 𝑝(𝐵𝑥

𝑁) redistributes between the modes according to the steady-
state rather than following the mode shift resulting from the magnetic field sweep.
Contributions in the density operator related to the eigenoperators belonging to
𝛬1 or 𝛬2 decay to the fraction 1/𝑒 on the time scale of 𝑁𝑃 = −1/ ln(𝛬𝑖) repetition
periods which equals 𝑁𝑃 ≈ 8 × 107 for 𝛬1 and 𝑁𝑃 ≈ 3 × 107 for 𝛬2 respectively.
The sweep with 𝑁𝑃 = 5 × 107 pump pulses per magnetic field step, which produces
𝑁𝑃 = 5 × 109 repetition periods in total, clearly exceeds this limit. Therefore, any
potential redistribution of the peak weights through the sweep is lost immediately.
For 𝑁𝑃 = 106 pump pulses per magnetic field step, the total number of 𝑁𝑃 = 108

repetition periods during the full sweep corresponds to the order of magnitude
of the decay time scale produced by 𝛬1 and 𝛬2. Thereby, it allows for a slight
redistribution of 𝑝(𝐵𝑥

𝑁). As the sweep rate is relatively fast here, the Overhauser
field cannot follow the mode shift, however. For the given setting, we find no window
of the sweeping rate for which a dragging of substantial weight in 𝑝(𝐵𝑥

𝑁) to a specific
mode can be achieved.

Overall, the minor redistribution of the weight between the electron spin precession
modes does not meet the extent of mode dragging observed in the experiments by
Evers et al. [95]. We attribute this discrepancy to the simplified theoretical modeling
which lacks the distribution of the hyperfine coupling constants and the dimension
of the real system with 𝑁 = 105 in (In,Ga)As quantum dots.

7.7 Variation of the pulse train

Tailoring of the pulse train applied to the quantum dot sample allows for coherent
control of the spin dynamics. Pump-probe experiments [68, 74, 76] employed
two pump pulses with different incidence times during the repetition period of
𝑇𝑅 = 13.2 ns, and achieved efficient manipulation of the electron spin precession
modes in the quantum dot ensemble. In particular, the revival of the electron
spin polarization could be controlled coherently. For the quantum mechanical
calculations, the computational effort scales with the number of applied pump pulses
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Figure 7.12: Variations of the pulse train at a fixed external magnetic field of
𝐵 = 3.90 T. The system comprises 𝑁 = 6 nuclear spins (𝐼 = 1/2) with randomly
distributed hyperfine coupling constants; 𝑁𝐶 = 100. The incidence time of the
pump pulses is indicated by gray bars at the bottom of panels (a)-(d) respectively.
(a) Single pulse per repetition period 𝑇𝑅 = 13.2 ns. (b) Two equidistant pump pulses
in the repetition period 𝑇𝑅 = 13.2 ns, equivalent to a shortened repetition period
𝑇𝑅 = 6.6 ns. (c) Four equidistant pump pulses in the repetition period 𝑇𝑅 = 13.2 ns,
equivalent to a shortened repetition period 𝑇𝑅 = 3.3 ns. (d) Two pump pulses per
repetition period 𝑇𝑅 = 13.2 ns at 𝑡 = 0 ns and 𝑡 = 3.3 ns respectively. (e) Relative
Overhauser field distributions 𝑝𝑟(𝐵𝑥

𝑁) associated to the electron spin dynamics in
panels (a)-(d). The color coding indicates the respective scenario. The red curve
was scaled by a factor of 1/2. The integer/half-integer modes of the electron spin
precession for 𝑇𝑅 = 13.2 ns are indicated by black dotted/gray dashed vertical
lines.

rather than with the time scale covered by the simulations. For efficient access
to the quasistationary steady-state under a pulse train with several pump pulses
per repetition period, we implement an Arnoldi method [208, 209]. Applied to the
mapping ℳ for one repetition period, the Arnoldi iteration provides the eigenvector
related to the largest eigenvalue, i.e., 𝛬0 = 1.

We focus on the system with 𝑁 = 6 nuclear spins with the individual length 𝐼 = 1/2
and employ randomly distributed hyperfine coupling constants as outlined in Sec. 5.5.
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Chapter 7 Steady-state analysis of the periodically driven spin system

For this scenario, we require roughly ten restarts of the Arnoldi method with 103

iterations each. Rather than implementing the matrix representation of the mapping
for the respective repetition period, we employ the procedure introduced in Sec. 5.4.
This prevents us from handling huge matrices in the superoperator space with
the dimensions 𝐷′ × 𝐷′ and restricts the matrix dimensions to the Hilbert space
dimension 𝑑′. In comparison to the complete iterative calculation of the pulse train
with 𝑁𝑃 = 106 repetition periods, the Arnoldi method in total requires a factor of
100 fewer iterations, and thereby significantly reduces the computational effort.

The results for the quasistationary steady state under various trains of instantaneous
pump pulses at a fixed external magnetic field 𝐵 = 3.90 T are presented in Fig. 7.12.
For a single pump pulse in the repetition period 𝑇𝑅 = 13.2 ns, the electron spin
evolution in Fig. 7.12(a) displays the expected revival directly before the incidence
of the next pump pulse. The magnitude of the revival amplitude is relatively small
due to the nuclei-induced frequency focusing of the half-inter modes of the electron
spin precession according to Eq. (6.13), see the related relative Overhauser field
distribution in Fig. 7.12(e) (blue line). The addition of a second pump pulse in the
middle of the repetition period effectively reduces the repetition time to 𝑇𝑅 = 6.6 ns,
see Fig. 7.12(b). Hence, the nuclear spins perform a quarter revolution between
consecutive pump pulses, and 𝑛 = 1 in the Eq. (6.13) predicts the favoring of the
integer precession modes. As a result, the electron spin revival amplitude increases
for 𝑇𝑅 = 6.6 ns in comparison to 𝑇𝑅 = 13.2 ns. Due to the reduced repetition
time, the peaks of the Overhauser field distribution 𝑝𝑟(𝐵𝑥

𝑁) in Fig. 7.12(e) (green
line) have the double distance as for 𝑇𝑅 = 13.2 ns and are located at every second
black dotted vertical line. Reducing the repetition time further to 𝑇𝑅 = 3.3 ns,
see Fig. 7.12(c), the electron spin polarization only partially dephases between the
pulses such that we do not observe a separate revival. The related Overhauser
field distribution in Fig. 7.12(e) (red line) exhibits a single strongly pronounced
peak at 𝐵𝑥

𝑁 = 0 mT. In this regime, the prediction according to Eq. (6.13) does
not hold anymore (𝑛 < 1) and further integer precession modes are out of the
relevant Overhauser field range in such a small system. For a pulse train with the
repetition period 𝑇𝑅 = 13.2 ns comprising two pump pulses with a delay of 3.3 ns,
see Fig. 7.12(d), the behavior is less clear. The electron spin polarization generated
by the pump pulses dephases with a prolonged envelope function. However, no
revival occurs. The pulse separation of 3.3 ns and 9.9 ns respectively produces several
peaks in the Overhauser field distribuiton in Fig. 7.12(e) (orange line).

The complex interplay of the condition, Eq. (6.13), and the electron spin precession
leads to differing quasistationary steady states of the pulse trains. The variation
of the repetition period not only produces a variation of the distance between the
equidistant electron spin precession frequencies but also a redistribution of weight
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between the two types of modes. Hence, the customization of the pulse train allows
for the adjustment of specific electron spin precession modes.

7.8 Chapter conclusion

The effect of one repetition period of a periodic pulse train can be captured by a
linear mapping ℳ for the density operator similar as outlined in Ref. [92]. The
eigendecomposition of this mapping encodes the dynamics of the electron-nuclear
spin system during a pulse train. In particular, the eigenvectors of 𝑀 related to the
eigenvalue 1 correspond to the quasistationary steady state and match the results of
the iterative approach after several million pump pulses. Additional eigenvalues are
complex as a result of the nonhermitian mapping matrix and govern the evolution
of the spin system under the periodic excitation before the quasistationary steady
state is reached. The square mapping matrix however has the dimension 𝐷′ × 𝐷′

of the squared Hilbert space dimension 𝑑′, 𝐷′ = 𝑑′2. Hence, the diagonalization of
this matrix is computationally expensive. To overcome this obstacle, we developed a
truncation scheme for the density matrix elements that allows for efficiently setting
up the eigendecomposition in the box model approximation of the hyperfine coupling
constants. The truncation scheme enables the investigation of systems consisting
of several hundred nuclear spins. For a pumping periodicity of 𝑇𝑅 = 13.2 ns, the
electron spin revival amplitude in such a large system reflects the nonmonotonic
magnetic field dependence governed by the nuclear Zeeman term, Eq. (6.13). The
revival amplitude exhibits a relatively sharp dip at roughly 8 T similar to classical
predictions [86, 88, 89, 224], whereas the quantum mechanical results for a small
system with random hyperfine coupling constants and the pump-probe experiments
indicate rather broad minima. The origin of this mismatch remains to be resolved
by future analysis.

A reduced repetition period of 𝑇𝑅 = 1 ns produces the nuclei-induced frequency
focusing of a single electron spin precession mode. The sweeping of the external
magnetic field in the GHz pumping regime is expected to lead to a substantial
polarization of the Overhauser field by mode dragging based on experimental
observations [95, 229]. As the quantum mechanical calculations in this thesis are
limited to 𝑁 = 200 nuclear spins in the box model approximation, our results do not
reproduce the extent of the Overhauser field redistribution of experimental findings.
Here, including a realistic distribution of the hyperfine coupling constants in the
large system would be crucial. We concluded by supplying an Arnoldi method that
reduces the number of simulated repetition periods by a factor of roughly 100 in
comparison to the iterative calculations. The Arnoldi iteration is exemplarily applied
to a variety of pulse trains comprising several pump pulses during the repetition
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time 𝑇𝑅 = 13.2 ns and opens the door to future investigations of more intricate
situations.
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Chapter 8

Conclusion

In this thesis, we achieved a fully quantum mechanical description of two nonequilib-
rium phenomena arising for localized charge carriers in semiconductor nanostructures.
We focused on the nuclear-spin polaron state predicted to form in the cooled spin
system as well as on the mode-locking effect via nuclei-induced frequency focus-
ing of the electron spin precession emerging in periodically excited quantum dots.
Both nonequilibrium situations are characterized by a profound reorientation of
the nuclear spin system compared to the high-temperature equilibrium state. In
the case of nuclear-spin polaron formation, the nuclear spins align oppositely to
the charge carrier spin to minimize the hyperfine energy. The specific orientation
of the polaronic state depends on the hyperfine anisotropy, i.e., the polaron state
will be aligned along the axes of the strongest hyperfine coupling. In the mode-
locked electron-nuclear spin system, the nuclear spins align in such a way that
the electron spin performs a well defined number of revolutions for the Larmor
precession between consecutive pump pulses. The nuclear Overhauser field acting
on the electron spin in addition to the external magnetic field adjusts to specific
modes corresponding to either an integer or half-integer number of electron spin
revolutions during the repetition time 𝑇𝑅. As a result of the ordering in the nuclear
spin bath, the nuclear-spin polaron state as well as the mode-locked spin system
exhibit significantly prolonged spin coherence times.

Our description by kinetic rate equations and a generalized Lindblad formalism
allowed for accurately capturing the nuclear-spin polaron formation over the full
range of the effective electron and nuclear spin temperatures. Establishing the two
differing spin temperatures via coupling to two separate external reservoirs inducing
spin flips with temperature-dependent rates ensured the correct thermodynamic
equilibrium for equal temperatures and enabled the investigation of a cooled nuclear
spin system at temperatures lower than the lattice temperature. In contrast to
previous theoretical approaches [66, 70], we included the quantum fluctuations of
the charge carrier spin as well as of the nuclear spins. Our calculations provide
a temperature criterion for the formation of the polaronic state that matches the
mean-field critical temperature in an intermediate temperature range but yields
a corrected crossover temperature when the spin fluctuations become relevant. A
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Monte Carlo simulation of the cooled spin system with a realistic distribution of the
hyperfine coupling constants allowed to map the observed crossover temperature to
the analytic temperature criterion obtained in the box model limit of the hyperfine
couplings by introducing an effective number of nuclear spins that determine the
dynamics. The dependence of the polaron orientation on the hyperfine anisotropy
parameter 𝜆 is connected to a change of the ground state of the hyperfine Hamiltonian.
Therefore, the nature of the nuclear-spin polaron state depends on the value of 𝜆:
At the quantum phase transition, 𝜆𝑐 = 1, the nuclear-spin polaron state changes
its character. These differences transfer to the spin autocorrelation functions. In
the Ising limit of the hyperfine coupling, we observe extremely long living spin
correlations at low temperatures due to two disconnected ground states. For the
isotropic system, the correlation time is significantly prolonged in the polaronic
regime compared to the disordered high-temperature state but is ultimately limited
by the rotation of the polaron state enabled by a lack of spatial preference. A strong
in-plane hyperfine interaction relevant for localized light holes, however, does not
protect the system from a loss of spin correlation at low temperatures. Our results
provide a basis for future experimental attempts of detecting the polaronic state.
The autocorrelation spectrum of the charge carrier is experimentally accessible
by spin noise measurements. Our calculations hint at a clear signature of the
polaron formation in the low frequency range of the spectrum. For future theoretical
approaches, a microscopic theory of the spin interactions beyond the hyperfine
interaction, e.g., the nuclear quadrupolar interactions, could be helpful since these
interactions are expected to affect the crossover temperature to polaron formation.
Moreover, an explicit treatment of the optical cooling could reveal how a nuclear-spin
polaron state is eventually realized and detected in experiments.

The quantum mechanical approach to the mode-locking effect in the periodically
driven electron-nuclear spin system reproduces the revival of the electron spin
polarization directly before the pump pulses observed in experiments [68, 86].
Moreover, the theoretical description enables a detailed study of the reorientation of
the nuclear spins by means of the Overhauser field distribution. The system favors
integer or half-integer modes of the electron spin precession between consecutive
pump pulses according to a resonance condition for the nuclear Larmor precession
established in Ref. [91]. Our findings reveal that the interplay of these two mode types
determines the revival amplitude. Thereby, we could attribute the nonmonotonic
magnetic field dependence of the revival amplitude to the nuclear Zeeman term.
As the experimental results for the electron spin revival amplitude as a function
of the external magnetic field show additional features, we performed an in-depth
investigation of additional influences. A finite nonzero pulse duration produces
an overall decrease in the revival amplitude for strong external magnetic fields
since the generation of electron spin polarization by the pump pulses becomes
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inefficient. Furthermore, a detuning of the trion energy with respect to the laser
frequency can induce a polarization of the Overhauser field but does not affect the
favored mode type and the revival amplitude. Nuclear quadrupolar interactions
significantly weaken the mode-locking effect and, therefore, constitute an obstacle
to the experimental realization of the mode-locking effect. Additional modulations
in the experimental data of the electron spin revival amplitude depending on the
external magnetic field are ascribed to the differing 𝑔 factors of the various nuclear
isotopes in the quantum dots.

While the first part of the quantum mechanical exploration of the mode-locking effect
in this thesis is based on a relatively small system comprising 𝑁 = 6 nuclear spins
with randomly distributed hyperfine coupling constants, we employ an extended
version of the mapping approach outlined in Ref. [92] for the second part. A newly
developed truncation scheme allows for the examination of larger systems with up to
𝑁 = 500 nuclear spins in the box model limit of the hyperfine couplings. For such
large spin baths, the Overhauser field distribution exhibits extremely sharp peaks
depending on the applied magnetic field. The resulting electron revival amplitude as
a function of the external magnetic field agrees with the periodicity predicted by the
nuclear Zeeman term. The specific shape with a sharp dip at roughly 8 T, however,
resembles classical calculations [86, 88, 89, 224] rather than the quantum mechanical
results for the smaller system and the experimental data. For future theoretical
approaches, the quantitative agreement with the experimental data constitutes a
major challenge. Reaching realistic system sizes of 𝑁 = 105 nuclear spins with a
realistic distribution of the hyperfine coupling constants [160] would be especially
desirable for reproducing the mode dragging achieved in pump-probe experiments
via sweeping the magnetic field during the periodic optical excitation [95].
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