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ABSTRACT
The dynamics of congruency effects in conflict tasks can be analyzed by means of 
delta plots which depict the reaction-time differences between incongruent and 
congruent conditions across the quantiles of the reaction-time distributions. Delta 
plots exhibit a variety of different shapes. Here we test the hypothesis that staggered 
onsets of processing task-relevant and task-irrelevant features for response selection 
(together with a declining influence of the irrelevant feature) produce such variety. 
For this purpose, staggered onsets were implemented in two extensions of the Leaky, 
Competing Accumulator model. We show the cardinal capability of these models to 
produce different shapes of delta plots with different assumptions about temporal 
offsets between processing relevant and irrelevant stimulus features. Applying the 
models to experimental data, we first show that they can reproduce the delta plots 
observed with a conflict task with stimulus size as the irrelevant feature. For this task 
congruency effects are delayed and appear only at longer reaction times. Second, we fit 
the models to the results of two new Simon-task experiments with an experimentally 
controlled temporal offset in addition to the internal one. The experimentally induced 
variations of the shape of delta plots for this task could be reasonably well fitted by 
one of the two models that assumed an early start of response selection as soon as 
either the relevant or the irrelevant stimulus feature becomes available. We conclude 
that delta plots are crucially shaped by staggered onsets of processing relevant and 
irrelevant features for response selection.
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INTRODUCTION
In conflict tasks, participants respond intentionally to a task-relevant feature of a stimulus, but 
in addition, there is an unintended influence of a task-irrelevant feature on reaction time and 
accuracy. A prominent example is the Simon task (Lu & Proctor, 1995; Simon, 1969). In this 
task, a typical relevant feature is the color of a circle, and the irrelevant feature is the position 
of the circle on the left or right side of a fixation point. When responses to two different colors 
are made with the left or right hand, the irrelevant feature dimension (left vs right position 
of the stimulus) overlaps with the spatial response dimension (left vs right position of the 
response key). With this dimensional overlap, the irrelevant stimulus feature can be congruent 
or incongruent with the relevant response feature and thereby facilitate or inhibit responding 
(cf. Kornblum, Hasbroucq, & Osman, 1990). 

The difference between congruent and incongruent conditions of a conflict task, the congruency 
effect, can be observed in mean reaction times and accuracies. However, the means of the 
reaction-time distributions provide no information on the dynamics of the congruency effect, 
that is, on its time course across the range of reaction times. Such information is provided 
by so-called effect functions (e.g., Wiegand & Wascher, 2005) or delta plots (e.g., Van den 
Wildenberg, Wylie, Forstmann, Burle, Hasbroucq, & Ridderinkhof, 2010) which show the 
congruency effect across the bins of vincentized reaction-time distributions (cf. Ratcliff, 1979). 
Here we give a brief overview of the variety of delta plots reported in the literature and propose 
a specific hypothesis to account for a major part of the diversity, namely staggered onsets of 
processing task-relevant and task-irrelevant features. We implement this hypothesis in two 
extensions of sequential-sampling models for conflict tasks and test it with four data sets, two 
taken from the literature and two new ones. 

DYNAMICS OF CONGRUENCY EFFECTS
Mean reaction times in congruent and incongruent conditions of conflict tasks fall short of 
exploiting the information inherent to the reaction-time distributions. This is amended by 
the analysis of congruency effects for vincentized distributions (or for selected quantiles of 
the distributions). In vincentizing a distribution, mean reaction times are computed for bins 
bounded by increasing quantiles. For example, quantiles can be defined by 20% steps, so that 
there are five bins. The results of such analyses are often presented in the format of delta plots 
where the sample means of the differences between the individual means in incongruent and 
congruent conditions are plotted against the sample means of the averages of these individual 
means for each of the bins of the reaction-time distributions. This type of analysis has been 
introduced by De Jong, Liang, and Lauber (1994). The results are considered to reflect the time 
course of congruency effects and thus the time course of the activation by irrelevant stimulus 
features (cf. Proctor, Miles, & Baroni, 2011).

Delta plots are shaped by the differences between reaction-time distributions in incongruent 
and congruent conditions, and vice versa, they allow certain inferences about the relation 
between these distributions (Speckman, Rouder, Morey, & Pratte, 2008). For example, the 
variability of reaction times typically increases with the mean (Wagenmakers & Brown, 2007), 
and often not only mean reaction time is longer in the incongruent condition of a conflict task 
than in the congruent condition, but reaction-time variability is larger as well. A by-product of 
this difference is an increasing delta plot (Zhang & Kornblum, 1997). In fact, the most common 
type of delta plot is a monotonic increase with increasing reaction time, with congruency 
effects already present for the fastest responses. Such increase is typical for the Eriksen flanker 
task (Burle, Spieser, Servant, & Hasbroucq, 2014; Eriksen & Eriksen, 1974, Mittelstädt, Miller, 
Leuthold, Mackenzie, & Ulrich, 1921) or the Stroop task (Pratte, Rouder, Morey, & Feng, 2010; 
Stroop, 1935). However, the classical Simon task typically exhibits decreasing delta plots 
(Burle, Possamaï, Vidal, Bonnet, & Hasbroucq, 2002; De Jong et al., 1994; Mittelstädt et al., 
2021; Wiegand & Wascher, 2007), though with vertically arranged positions of stimuli and 
responses delta plots tend to increase (cf. Töbel, Hübner, & Stürmer, 2014; Vallesi, Mapelli, 
Schiff, Amodio, & Umiltà, 2005; Wiegand & Wascher, 2005; for an exception see Wühr & Biebl, 
2011). Decreasing delta plots have also been observed for Eriksen flanker task when arrows or 
orientations of gratings served as stimuli (Pratte, 2021).



3Heuer et al.  
Journal of Cognition  
DOI: 10.5334/joc.252

Reviewing a large range of Simon-task variants, Proctor et al. (2011) listed the following types 
of delta plots: decreasing, increasing, stable, stable then decreasing, stable then increasing, 
increasing then decreasing. Essentially all the observed delta plots – decreasing as well as 
increasing ones – start with a congruency effect already at the fastest bin of the reaction-time 
distributions. Contrary to this typical feature, in a re-analysis of data of Wühr and Seegelke 
(2018, Exp. 2) and Richter and Wühr (2022, Exp. 2), who studied a conflict task with color as 
the task-relevant stimulus feature and stimulus size as the task-irrelevant one, we observed 
delta plots that were initially close to zero, and congruency effects emerged only at longer 
reaction times. Similar delta plots with delayed appearance of congruency effects have been 
observed before in a variant of the Simon task when irrelevant spatial stimuli were presented 
with short delays after presentation of the relevant color stimuli (Burle, van den Wildenberg, & 
Ridderinkhoff, 2005). This similarity of findings suggests a role of a delayed onset of processing 
the irrelevant stimulus feature for the particular shape of delta plots with delayed congruency 
effects even when temporal offsets are not experimentally controlled. These findings motivated 
the current extensions of sequential-sampling models. 

THEORETICAL IMPLICATIONS OF DIFFERENT SHAPES OF DELTA 
PLOTS
Given the typical increase of the variability of reaction times with their mean (Wagenmakers & 
Brown, 2007), increasing delta plots appear more or less natural and do not call for explanations 
related to the nature of particular tasks. In contrast, decreasing delta plots violate the normal 
relation between means and variances of reaction times and call for a dedicated explanation. 
The currently prevailing account assumes initial activation by the irrelevant stimulus feature, 
which produces the congruency effect for the shortest reaction times, followed by subsequent 
suppression (e.g., Ridderinkhof, 2002; Van den Wildenberg et al., 2010) or decay (Hommel, 
1994), which produces the decline of the congruency effect and – in case suppression is too 
strong – even its reversal (e.g., Hübner & Mishra, 2013). The activation-suppression hypothesis 
can be conceived as an extension of the dual-route model (Kornblum et al., 1990): the notion 
that relevant and irrelevant stimulus features are processed via distinct, but converging routes, 
is supplemented with the hypothesis of different dynamics by positing that the initial activation 
along the automatic route – and thus the activation by the irrelevant stimulus feature – is 
suppressed later on (cf. Kornblum, Stevens, Whipple, & Requin, 1999; Simon, Acosta, Mewaldt, 
& Speidel,1976; Zorzi & Umiltá, 1995).

The activation-suppression account of decreasing delta plots faces a somewhat subtle 
problem that is rooted in the fact that reaction times measure durations of processes, but not 
current states (cf., Heuer, 1981; McLeod, 1980). The analogy of a race illustrates the problem: 
immediately after the start, runner A (representing a congruent condition) is faster than runner 
B (representing an incongruent condition) as a result of the initial activation and inhibition, 
respectively, by the irrelevant stimulus feature. When the initial effect of the irrelevant 
stimulus feature is suppressed later, runner A will lose its advantage in terms of speed, but will 
nevertheless reach the finishing line earlier than runner B. Thus, the early activation/inhibition 
by congruent and incongruent task-irrelevant stimulus features will produce a reaction-time 
difference that will persist even when the effect of the irrelevant stimulus feature is fully 
suppressed later on. The reaction-time difference will be reduced only when the suppression of 
the instantaneous effect of the irrelevant feature is turned into its reversal so that an activating 
effect becomes inhibiting and vice versa. Suppression of the instantaneous influence of task-
irrelevant stimulus features by itself cannot account for decreasing delta plots. 

The subtle problem of the activation-suppression account of decreasing delta plots becomes 
less subtle when one considers formal models of speeded decisions in conflict tasks. Sequential-
sampling models are the dominant processing models for speeded decisions and thus for 
reaction-time tasks (Evans & Wagenmakers, 2020; Forstmann, Ratcliff, & Wagenmakers, 
2016). Their basic assumption is the progressive accumulation of evidence (or activation) until 
a criterion is reached at which a response is initiated (cf. Bogacz, Brown, Moehlis, Holmes, & 
Cohen, 2006; Ratcliff, Smith, Brown, & McKoon, 2016; Smith & Ratcliff, 2004). Until about a 
decade ago, decreasing delta plots were considered to be at odds with this class of models (cf. 
Pratte et al., 2010). 
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In more recent years, sequential-sampling models with suppression or passive decay of the 
activation by a task-irrelevant stimulus feature have been proposed for the Eriksen flanker 
task (e.g., Hübner, Steinhauser, & Lehle, 2010; White, Ratcliff, & Starns, 2011). For this task, 
delta plots typically do not decline. Decreasing delta plots, as observed for the Simon task, 
will emerge when the instantaneous effect of the irrelevant stimulus feature is not only 
suppressed, but even reversed, as implemented in the Diffusion Model for Conflict Tasks (DMC) 
by Ulrich, Schröter, Leuthold, and Birngruber (2015). In this model, a diffusion process and an 
influence of the irrelevant stimulus feature are superimposed, with the cumulative influence of 
the irrelevant feature taking the form of a re-scaled Gamma density function which increases 
and declines during a single speeded decision. The decline of this function implies that the 
instantaneous influence of the irrelevant stimulus feature is reversed, that is, the first derivative 
of the function becomes negative (Ulrich et al., 2015; Figure B1 and eq. 5). Although the model 
is quite powerful in accounting for different shapes of delta plots, the assumption that in the 
course of a rapid decision an inhibitory instantaneous influence of an irrelevant stimulus feature 
is inverted to become facilitating (and vice versa) lacks plausibility in our view.

Given suppression or passive decay of the instantaneous influence of an irrelevant stimulus 
feature, decreasing delta plots can also be explained without the assumption of an inversion 
of the irrelevant activation at longer reaction times. Specifically, they can result from a variable 
delay of processing the task-relevant stimulus feature during which the activation by the 
irrelevant stimulus feature is already partly suppressed (Miller & Schwarz, 2021; Wühr & Heuer, 
2018). In fact, for the Simon task the assumption that processing of the irrelevant stimulus 
feature (stimulus position) starts earlier than processing of the relevant feature such as color or 
shape appears plausible, as argued, e.g., by Zorzi and Umiltá (1995). 

The variety of shapes of delta plots does not only call for an explanation of decreasing delta 
plots which violate the typical relation between reaction-time means and variances, but also 
for an explanation of the very existence of different shapes. Such accounts are of basically two 
types, namely in terms of qualitative differences such as different processes or codes involved 
(e.g., De Jong et al., 1994; Gade, Paelecke, & Rey-Mermet, 2020; Wiegand & Wascher, 2005; 
Wühr & Biebl, 2011) or in terms of quantitative differences such as variations of temporal 
overlap of processing relevant and irrelevant stimulus features (e.g., Mackenzie, Mittelstädt, 
Ulrich, & Leuthold, 2022). Although these two claims can be contrasted (e.g., Töbel, Hübner, 
& Stürmer, 2014), qualitative differences such as the involvement of spatial codes in the 
horizontal but verbal codes in the vertical Simon task (Gade et al., 2020; Wühr & Biebl, 2011) 
will likely go along with quantitative differences of the temporal overlap of processing relevant 
and irrelevant features. Here we shall focus on the role of such quantitative variations for the 
shape of delta plots, that is, for the time course of congruency effects.

Variations of temporal overlap can result from faster or slower suppression (or decay) of the 
influence of the irrelevant stimulus feature or from staggered onsets of processing the relevant 
and irrelevant features. As noted above, for the classic Simon task processing of the irrelevant 
stimulus feature should lead processing of the relevant feature, but with a broader perspective 
on conflict tasks, processing delays of the different features should be variable and, depending 
on what these features are, the one or the other of them should lead systematically. Here we 
hypothesize that these variations give rise to a substantial part of the variety of delta plots 
observed for conflict tasks. 

The most obvious test of this hypothesis requires the introduction of stimulus-onset 
asynchronies between relevant and irrelevant stimulus features. Previous studies have probed 
the effects of such experimentally induced delays for different conflict tasks. Independent of 
the details of the procedure, the typical result both for the Simon task and the Eriksen flanker 
task is a reduced increase or stronger decrease of the delta plot when the irrelevant feature 
is presented in advance of the relevant one (e.g., Burle et al., 2005; Hübner & Töbel, 2019; 
Mackenzie et al., 2022); with a sufficient lead of the irrelevant feature the congruency effect 
can even be absent beginning already at the shortest reaction times (Hübner & Mishra, 2013). 
In contrast, when the irrelevant feature is presented after the relevant one, delta plots increase 
with sometimes a delayed appearance of congruency effects (e.g., Burle et al., 2005; Mackenzie 
et al, 2022). An exception from this pattern has been found for the Stroop task, suggesting that 
other factors than temporal overlap – and delays of processing in particular – also modulate 
the shape of delta plots (Mackenzie et al., 2022).
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Whereas stimulus-onset asynchronies (SOA) are a straightforward means to manipulate the 
order of processing onsets of relevant and irrelevant stimulus features, similar differences 
should also exist when irrelevant and relevant stimulus features are presented simultaneously, 
but processed differently before they start to exert an influence on response selection. For 
example, irrelevant stimulus position in a Simon task has a quite direct relation to the position 
of the left or right hand, whereas the relation of stimulus size to hand position is rather indirect. 
Thus, regarding the influence of the irrelevant stimulus feature on response selection, it 
appears plausible that the stimulus position leads the influence of a relevant feature such as 
color, whereas stimulus size lags. In a similar vein, Pratte (2021) speculated that the critical 
characteristic of those stimuli in the Eriksen flanker task that went along with decreasing 
instead of the typical increasing delta plots was their early processing in the visual cortex. 

Previously we had added a variable lead of processing the irrelevant feature to a sequential-
sampling model to account for decreasing delta plots as observed in the classic Simon task 
(Wühr & Heuer, 2018). Here we generalize this approach and make use of two extensions of a 
sequential-sampling model that allow not only a lead of processing the irrelevant feature of 
a conflict task, but also the relevant feature. The purpose of these models is to demonstrate 
the power of staggered onsets of processing different stimulus features as an account of the 
observed variety of delta plots.

LEAKY, COMPETING ACCUMULATOR MODELS WITH STAGGERED 
PROCESSING ONSETS
Sequential-sampling models vary in detail (cf. Bogacz, Brown, Moehlis, Holmes, & Cohen, 
2006; Evans & Wagenmakers, 2020; Ratcliff, Smith, Brown, & McKoon, 2016; Smith & Ratcliff, 
2004). A basic distinction is between models with a single state (or decision) variable, also 
designated as random-walk models, and models with two or more state variables, also known 
as accumulator models (cf. Heath, 1984; Smith & Ratcliff, 2004). Perhaps the most popular and 
mathematically elaborated sequential-sampling model is of the first type, the diffusion model 
originally proposed by Ratcliff (1978; cf. Ratcliff & Tuerlinckx, 2002; Voss, Nagler, & Lerche, 
2013). Accumulator models are less popular; currently prominent among them is the leaky 
competing accumulator (LCA) model proposed by Usher and McClelland (2001). Here we use 
extensions of this model as we have done before (e.g. Wühr & Heuer, 2017, 2018, 2020, 2022) 
to explore the consequences of staggered onsets of processing relevant and irrelevant stimulus 
features for the shapes of delta plots. Although we focus on the LCA model, we want to stress 
that the principle of staggered onsets can be applied to other types of sequential-sampling 
models as well, where it should produce comparable results.

Our choice of the LCA model is motivated by the cumulative evidence of a tight relation between 
perceptual decisions and preparation of associated actions, as reviewed, e.g., by Verdonck, 
Loossens, and Philiastides (2021). For example, outcomes of perceptual decisions do not only 
depend on the sensory input, but also on the relative effort required by the associated actions 
(Hagura, Haggard, & Diedrichsen, 2017) and on the physical relation between them (Heuer, 1987; 
Wühr & Heuer, 2018). Furthermore, during rapid decisions, reflex gains are modulated depending 
on the forthcoming response (Selen, Shadlen, & Wolpert, 2012), and so is attention allocation 
to potential movement goals (Schonard, Heed, & Seegelke, 2022). In monkeys, decision-related 
increasing activity has been observed specifically in neurons of the lateral intraparietal cortex 
(LIP) whose response fields were related to the correct eye movement that served to indicate 
the direction of moving random dots (Steinemann, Stine, Trautmann, Zylberberg, Wolpert & 
Shadlen, 2022), and this decision-related activity was postponed when the eye-movement 
targets were presented with a delay (Shushruth, Zylberber, & Shadlen, 2022).

The notion of an intricate relation between perceptual decisions and associated actions gave 
rise to extensions of sequential-sampling models which relate muscle activity and overt 
movements to different thresholds (Servant, White, Montagnini, & Burle, 2015; Servant, Logan, 
Gajdos, & Evans, 2021) or which add movement preparation (Verdonck et al., 2021; Heuer, 
1995) or overt movement (Lepora & Pezzulo, 2015) to the basic perceptual decision. Even 
without action-related extensions, however, accumulator models can be conceptualized in 
a way that respects the tight relation between perceptual analysis and motor preparation. 
Specifically, the formally defined accumulators of the models can be conceived as response 
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codes that are progressively activated by the perceptual input. The activation of these codes 
reflects the current state of motor preparation, which includes the modulation of reflex gains 
(e.g., Brunia, Haagh, & Scheirs, 1985) and the direction of attention to potential targets (e.g., 
Baldauf & Deubel 2010; A.Heuer, Crawford, & Schubö, 2017). Different costs associated with 
the alternative responses in a choice task can be modelled in terms of different thresholds 
for the response codes (cf. Hagura et al., 2017), and the physical relation between alternative 
actions can be modelled in terms of forward or lateral inhibition between them (e.g., Heuer, 
1987; Wühr & Heuer, 2018). Lateral inhibition between response codes as a free parameter is a 
distinguishing feature of the LCA model.

In the basic LCA model, noisy incremental activation is added to two response codes for correct 
and error responses, respectively, during each time step. A major component of the incremental 
activation is external input related to the task-relevant stimulus feature (‘relevant input’ for the 
sake of brevity). For conflict tasks, the basic model is extended by a second external input, which 
is related to the task-irrelevant feature (‘irrelevant input’). The irrelevant input differs from the 
relevant input by its dynamics: whereas the relevant input is time-invariant, the irrelevant input 
declines with the passage of time (cf. Hübner, Steinhauser, & Lehle, 2010; Kornblum et al., 
1999; Ulrich et al., 2015; White, Ratcliff, & Starns, 2011; Zorzi & Umiltá, 1995), reflecting passive 
decay (e.g., Hommel, 1994) or active suppression (e.g., Van den Wildenberg et al., 2010). We 
previously added random delays of the relevant input to the model, which served to capture 
the declining delta plots observed in Simon tasks (Wühr & Heuer, 2018). Here we generalize 
the random delays of the relevant input to random temporal offsets between relevant and 
irrelevant external inputs, allowing not only lags of the relevant, but also of the irrelevant input. 
This generalization is essential for probing the hypothesis that different shapes of delta plots 
result from staggered onsets of processing relevant and irrelevant stimulus features. 

We implemented staggered onsets of relevant and irrelevant inputs in two LCA models for 
conflict tasks, which differ only with respect to processing leading irrelevant input. Model A is 
similar to the model of Wühr and Heuer (2018) in that activation of response codes starts only 
when the relevant input becomes available. The irrelevant input declines during its lead, but has 
not yet an effect on the activation of response codes. In Model B, activation of response codes 
starts immediately when the first of the two inputs becomes available, similar to a network 
model proposed by Zorzi and Umiltá (1995). 

The core of the LCA model is the difference equations that govern the incremental activations 
Δac(i) and Δae(i) of the two response codes for correct and error responses during each time 
interval i (cf. Usher & McClelland, 2001, Eq. 3): 

(1a) ( ) ( ) ( ) ( ) ( ) ( ) ( )l xé ùD = b D t +  D tê úë ûc c ea i I i –  a i –  a i t / i t /

(1b) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )e e ca i 1 I i –  a i –  a i t / i t /l xD = - b D t +  D té ù
ê úë û

with self-inhibition gain λ, lateral-inhibition gain β, and Gaussian noise ξ(i) with zero mean 
and standard deviation σn. I(i) and 1–I(i) are the external inputs which add to 1 (cf., Usher & 
McClelland, 2001, p.559); for I(i) = 0.5 they are thus identical for the correct- and error-response 
codes, and for I(i) > 1 the external input to the error-response code, 1–I(i), becomes negative. 
Thus, in addition to the lateral inhibition with gain β there can also be forward inhibition of the 
error-response code when the external input to the correct-response code becomes sufficiently 
strong. 

The incremental activations of each response code (Eq. 1a, b) can be positive or negative. They 
are accumulated, beginning with ac(0) = ae(0) = 0. The total cumulated activation of each code 
is bounded to be non-negative:

(2a) ( ) ( ) ( )ú= -é + ùêë ûDc c ca i max 0, a i 1 a i

(2b) ( ) ( ) ( )+é ùê úë û= - De e ea .i max 0, a i 1 a i

A response is initiated when the activation of the respective response code, ac(i) for correct 
responses or ae(i) for errors, reaches a threshold θ. To cover the duration of sensory processing 
and motor outflow, a non-decision or residual time R with uniform distribution is added to the 
time needed for the decision. The assumption of a uniform distribution (with mean μR and width 
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wR) is somewhat arbitrary, but fairly common for sequential-sampling models (e.g. Ratcliff & 
McKoon, 2008), though not undebated (e.g. Verdonck & Tuerlinckx, 2016). 

For all simulations we set Δt = 0.001 and τ = 0.1, so that Δt/τ = 0.01. In the simulations we 
computed the incremental activations and updated the response-code activations in two 
steps for each cycle i. In the first step only the external inputs I(i) and 1–I(i) and the noise ξ(i) 
were used and the activations of the response codes were updated preliminarily. In the second 
step, the preliminary updates of the activations of the response codes were used to apply self-
inhibitions and lateral inhibitions to the incremental activations, and then the response-code 
activations of cycle i–1 were updated by these increments.

The basic LCA model is extended by the addition of a declining external input related to the 
task-irrelevant stimulus feature in conflict tasks and a variable offset D between processing 
the irrelevant and relevant inputs. These two extensions differ somewhat from those of 
the model of Wühr and Heuer (2018). First, rather than defining the total external input as 
a weighted mean of the time-invariant relevant and the exponentially declining irrelevant 
input, we here define the total input I(i) as the sum of two components: the time-invariant 
contribution Irel of the relevant stimulus feature (relevant activation) and the additive time-
varying contribution g(t)*ΔIirr of the irrelevant stimulus feature (irrelevant activation), with 
g(t) declining exponentially. More important than this difference to the previous model is the 
difference with respect to the variable offset D: rather than a uniform distribution between a 
maximal lead of the irrelevant feature and a zero lead, we now assume a uniform distribution 
with mean μD and width wD. We define the time at which the relevant input becomes available 
as t = 0; with d < 0 the irrelevant input leads, and with d > 0 the relevant input leads. Models A 
and B differ with respect to the activation of the response codes for d < 0. 

For Model A, the incremental activations are zero for t ≤ 0; activation of the response codes 
starts only when the relevant input becomes available. For t > 0 and d < 0, the external input is 
I(t) = Irel + g(t) *ΔIirr, t = i*Δt, g(t)= e–(t–d)/δ with δ as the time constant of the exponential decline. 
In this model, the irrelevant input declines during the lead; at time t=0, when activation of the 
response codes starts, it is already smaller than its initial strength ΔIirr. With t > 0 and d > 0, that 
is, when the relevant input leads, I(t) = Irel for t ≤ d and I(t) = Irel + g(t)*ΔIirr, g(t) = e–(t–d)/δ, for t > 
d. In this case, the irrelevant input drives the incremental activations only after the (positive) 
delay d, beginning with its initial strength ΔIirr.

Model B differs from Model A for leading irrelevant input (d < 0), but not for leading relevant 
input (d ≥ 0), in that incremental activation of response codes starts already when the irrelevant 
input becomes available. For d < t < 0 (d < 0), external input to the incremental activation is 
I(t) = 0.5 + g(t) *ΔIirr with g(t)= e–(t–d)/δ. At t = 0 the dummy input 0.5, which corresponds to an 
assumed relevant input that drives both response codes equally, is replaced by the actual Irel. 
Thus, during the lead of the irrelevant input, response codes are driven equally except for the 
additional influence of the irrelevant input. For an incongruent trial, Figure 1 illustrates the 

Figure 1 External inputs to 
response codes, response-
code activations, and 
differences between response-
code activations for Model 
A (upper row of graphs) 
and Model B (lower row of 
graphs). Continuous lines are 
for correct responses, dashed 
lines for error responses. The 
first vertical dotted line marks 
the end of the lead of the 
irrelevant input, the second 
vertical dotted line marks the 
end of the decision (reaching 
the threshold). Parameters 
were λ = .2, β = .2, σn = 0, 
Irel = .7, ΔIirr = –.2, δ = .1, d = –.1, 
θ = 1. The figures show an 
incongruent trial only.
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external inputs to the correct and error response codes, the total activations of these codes, 
and the difference between them. 

As shown in Figure 1, in Model A the leading irrelevant input does not result in response-code 
activation, which starts only when the relevant input becomes available (after 100 ms in the 
example); however, during the lead time the irrelevant input declines. (The initial time course of 
the external input is not shown in Figure 1 because it is not yet an input to the response codes). 
In Model B, in contrast, response-code activation starts already when only the irrelevant input 
is available; as soon as the relevant input becomes available, there is a discontinuity in the 
signal because the dummy of 0.5 is replaced by the actual Irel. Even before the relevant input 
becomes available, the activation of both response codes increases, mimicking non-specific 
preparation. In addition, there is an asymmetry between the activations depending on the 
irrelevant input. Importantly, in incongruent trials there is an initially stronger activation of 
the error-response code so that the difference between the activations of the codes shows an 
initial “dip” (rightmost graph of the lower row). As noted by Zorzi and Umilta (1995), such a dip 
matches the well-established initial dip of the lateralized readiness potential in incongruent 
trials of a Simon task (cf. Leuthold, 2011, for a review). 

Figure 2 illustrates basic types of delta plots that the models can produce. Each delta plot 
was derived from a congruent and an incongruent condition that differed only in the sign 
of ΔIirr, a simplification that we kept in fitting actual data. The main difference between the 
delta plots is in the mean temporal offsets μD: with negative μD (lead of the irrelevant input) 
declining delta plots can be observed, with μD = 0 delta plots will generally be increasing, and 
with positive μD congruency effects can be delayed. Note that both models are identical as long 
as the temporal offset D is always positive, which is the case for the dotted curves in Figure 2 
(cf. Table 1). For Model A only the width of the distribution of the temporal offset was adjusted 
in addition to the mean to produce the declining delta plot. For Model B additional parameter 
adjustments were made to deal with the activation of the response codes during the lead of 

Figure 2 Different shapes 
of delta plots generated 
with Models A and B, using 
the parameters listed in 
Table 1, showing decreasing 
(continuous lines), increasing 
(dashed lines), and delayed 
(dotted lines) congruency 
effects. For each congruent 
(positive ΔIirr) and incongruent 
condition (negative ΔIirr) 
100,000 trials were simulated.

MODEL A MODEL B

PARAMETER DECREASING INCREASING DELAYED DECREASING INCREASING DELAYED

λ .25 .25 .25 .25 .25 .25

β .20 .20 .20 .20 .20 .20

σn .20 .20 .20 .20 .20 .20

Irel .70 .70 .70 1.20 .70 .70

ΔIirr ±.15 ±.15 ±.15 ±.15 ±.15 ±.15

δ .10 .10 .10 .05 .10 .10

μD -.10 0 .20 -.30 0 .20

wD .20 .10 .10 .20 .10 .10

θ 1.00 1.00 1.00 1.30 1.00 1.00

μR .10 .15 .15 .02 .15 .15

wR 0 0 0 0 0 0

Table 1 Parameters used to 
generate the delta plots of 
Figure 2.
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the irrelevant feature, namely an increase of the response threshold and an increase of Irel to 
avoid an excessive number of errors, particularly in incongruent conditions. For the declining 
delta plot also the time constant of the decay of the irrelevant input was adjusted. The residual 
duration μR was chosen as to make the shortest reaction times similar with the different model 
parameters. Thus, with Models A and B somewhat different parametrizations are required to 
produce basic shapes of delta plots.

Having shown that the models can produce different shapes of delta plots in principle, we applied 
them to data of four experiments with two different conflict tasks. In both tasks, the task-relevant 
feature was color. In one task, the task-irrelevant feature was stimulus size and in the other task, 
it was stimulus position (Simon task). Stimulus position has a quite direct relation to response 
position so that irrelevant input likely leads relevant input, resulting in the typical declining delta 
plots observed for the Simon task. In contrast, the relation of stimulus size to response position 
is rather indirect. It can be conceived as an instance of cross-modal correspondence although 
the associated features – size and position – are both visual (cf. Parise, 2016; Spence, 2011). 
Similar associations between magnitude of stimuli and lateral location of response keys have 
been observed for numbers in the well-known SNARC effect (Dehaene, Bossini, & Giroux, 1993) 
and for other stimuli that can be ordered on a magnitude dimension (e.g., Ren, Nicholls, Ma, & 
Chen, 2011; Walsh, 2003). Given the only indirect relation between stimulus size and response 
position, the irrelevant input could lag the relevant input, resulting in delayed congruency effects. 

STUDY 1: SIZE AS TASK-IRRELEVANT STIMULUS FEATURE
We re-analyzed the data of two experiments that have been described in detail by Wühr 
and Seegelke (2018, Exp. 2) and Richter and Wühr (2022, Exp. 2). In the experiment of Wühr 
and Seegelke, the stimuli were green or red squares with side lengths of 20 or 40 mm; in the 
experiment of Richter and Wühr, the green or red squares had side lengths of 10, 20, 30, 40, 50 
or 60 mm. Color was the task-relevant stimulus feature, and the mapping of the two colors to 
left-hand and right-hand responses was balanced across participants. In both experiments, the 
4 or 12 color-size combinations were presented in random order in each block of trials (with the 
constraint of equal frequencies). Trials were classified as congruent when left-hand responses 
were made to small stimuli and right-hand responses to large stimuli; in incongruent trials, left-
hand responses were made to large stimuli and right-hand responses to small stimuli. 

For the present re-analyses, we collapsed responses with the left and right hand. Thus, in the 
experiment of Wühr and Seegelke (2018, Exp. 2) there were a congruent condition, in which 
the left hand responded to stimuli of 20 mm side length and the right hand to stimuli of 40 
mm side length, and an incongruent condition, in which the left hand responded to 40-mm 
stimuli and the right hand to 20-mm stimuli. For the data of Richter and Wühr (2022, Exp. 2) we 
defined three pairs of congruent and incongruent conditions which differed with respect to the 
size difference. With the large difference, the congruent condition covered left-hand responses 
to 10-mm stimuli and right-hand responses to 60-mm stimuli and the incongruent condition 
left-hand responses to 60-mm stimuli and right-hand responses to 10-mm stimuli; with the 
intermediate size difference, the congruent and incongruent conditions included stimuli with 
side lengths of 20 and 50 mm, and with the small difference, stimulus sizes were 30 and 40 
mm. For each participant and for each of these conditions, we computed the percentage of 
error responses, the mean and standard deviation of reaction times of correct responses, the 
bin means of the vincentized distributions of correct reaction times (with bins bounded by 
20, 40, 60, and 80% of the distributions), and the delta plot for each pair of congruent and 
incongruent conditions. We dropped responses with RTs < 100 ms from all analyses reported 
in this article. 

There are different ways of fitting sequential-sampling models to data, and none of them is 
without problems. Perhaps most important, for different types of sequential-sampling models 
and different fitting procedures, the parameters of simulated data sets cannot be reliably 
recovered (e.g. Hübner & Pelzer, 2020; Miletić et al., 2017; White et al., 2017). Among the other 
problems are the following: Different cost functions, which summarize the deviations between 
observed and predicted data, can produce different results because they place different weights 
on different aspects of the deviations. For locating the minimum of a multidimensional cost 
function, the risk of running into local minima is notorious. Even with a reasonable goodness-
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of-fit the parameter estimates can vary considerably (Miletić et al., 2017), suggesting “flat 
regions” of the multidimensional cost functions, that is, of the multidimensional surface where 
the minimum is sought. Fitting is particularly time-consuming for models for which there are no 
closed forms of the predicted distribution functions so that they have to be estimated by way of 
simulation of large numbers of trials. With such models, including the present ones, the search 
for a minimum of the cost function is analogous to finding the lowest point on a surface that 
changes its height at each measurement – with the variations being the stronger the smaller 
the simulated samples are. Thus, whatever fitting procedure is actually chosen, its results are 
afflicted with uncertainties.

Here we chose a rather pragmatic approach to fitting the models, similar to the one of Ulrich et 
al. (2015). We minimized the weighted sum of the squared deviations from the data we were 
primarily interested in, namely the sample means of the individual relative error frequencies 
and the sample means of the individual bin means. More specifically, the minimized cost 
function was
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where j = 1, …,m are the experimental conditions, p is mean error probability, and P10, P30, 
P50, P70, and P90 are the sample means of the individual bin means in seconds (bins being 
bounded by the 2nd, 4th, 6th, and 8th deciles of the individual distributions of reaction times of 
correct responses). Subscripts ob and pr indicate the observed and predicted data, respectively. 
Multiplication by 1000 improves readability. We started each search with 1000 simulated trials 
per condition, which were increased up to 100,000 trials. For the search of the minimal costs 
we used the MATLAB function fminsearch; the search was ended when a criterion was reached 
that included changes of the parameters and the function value (parameters of fminsearch 
were TolX = 0.3 and TolFun = 0.15). In some cases, we stopped a search also when successive 
runs with 75 or 100 iterations did not result in a reduction of costs. After the end of the search, 
we used the parameter estimates to re-compute the minimal costs and the predictions with 
another run of 100,000 simulated trials. 

Table 2 presents the parameter estimates, which were constrained to be identical for congruent 
and incongruent conditions except for ΔIirr, which was positive for congruent and negative for 

PARAMETER WÜHR & SEEGELKE RICHTER & WÜHR

λ (self-inhibition gain) 0.270 (0.269) 0.269 (0.269)

β (lateral-inhibition gain) 0.349 (0.345) 0.306 (0.305)

σn (standard deviation of noise) 0.282 (0.282) 0.272 (0.265)

Irel (relevant input) 0.708 (0.707) 0.719 (0.719)

ΔIirr (irrelevant input) for sizes 20–40: ± 0.064 (0.062)

10–60: ± 0.127 (0.126)

20–50: ± 0.141 (0.141)

30–40: ± 0.042 (0.042)

δ (time constant for irrelevant input) 0.071 (0.069) 0.031 (0.031)

μD (mean temporal offset) 0.180 (0.172) 0.208 (0.208)

wD (width of temporal-offset distribution) 0.053 (0.052) 0.093 (0.093)

θ (response threshold) 1.068 (1.070) 1.018 (1.018)

μR (mean residual time) 0.180 (0.180) 0.176 (0.176)

wR (width of residual-time distribution) 0.059 (0.060) 0.063 (0.063)

costs 4.7 (4.7) 6.0 (6.0)

Table 2 Parameter estimates 
for Model B (in brackets for 
model A). Congruent and 
incongruent conditions 
differed only in the algebraic 
sign of ΔIirr, positive values 
for congruent and negative 
values for incongruent 
conditions, respectively. For 
the data of Richter and Wühr 
(2022) the absolute value of 
ΔIirr could also vary across 
the three pairs of conditions 
with different size differences 
(sizes are italicized). Time 
parameters (δ, μD, wD, μR, and 
wR) are in seconds.
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incongruent conditions. Importantly, the mean temporal offset μD was positive, indicating a 
lagged influence of the irrelevant stimulus feature on activation of response codes, and the 
width wD of the distribution of lags did not include 0. Thus, all temporal offsets D were positive, 
that is, in a range where Model A and Model B are identical. Therefore, the parameter estimates 
for both models differ only by chance. (The parameters of Model B are listed first because 
for the Simon task, described below, this model provided a better fit when temporal offset 
D could be negative.) Across both experiments, the parameter estimates were similar with 
few exceptions. These mainly related to the processing of the task-irrelevant feature. In the 
experiment of Richter and Wühr with six different stimulus sizes, the irrelevant signals were 
stronger initially than in the experiment of Wühr and Seegelke with only two different stimulus 
sizes (except for the smallest size difference), but declined more rapidly: according to the 
different time constants of the exponential decline, about 37% of its initial values was reached 
already after 31 rather than 71 ms. In addition, the width of the temporal-offset distribution 
was larger. 

Table 3 shows the observed and predicted means of the individual error percentages (EP), of 
the individual mean reaction times of correct responses (MRT), and of the individual standard 
deviations of the reaction times (SDRT) for all pairs of congruent and incongruent conditions 
in both experiments. For the observed means, the standard errors are added. The predictions 
of Model A are in brackets; they differ from those of Model B slightly by chance. For Model 
B only one of the 24 predicted means deviated more than two standard errors from the 
observed mean, and six of the predicted means deviated more than one standard error. 
The observed and predicted distribution functions for reaction times as well as the delta 
plots are shown in Figure 3. The predictions are those of Model B, which were essentially 
indistinguishable from those of Model A. The observed and the predicted delta plots were 
quite similar. They gave evidence of delayed congruency effects, that is, there were no 
congruency effects for the shortest reaction times, but only for the higher quantiles of the 
reaction-time distributions. 

The re-analyses of the data of Wühr and Seegelke (2018, Exp.2) and Richter and Wühr (2022, 
Exp. 2) revealed delta plots for size as the irrelevant stimulus feature that showed no difference 
between congruent and incongruent conditions at the shortest reaction times. Rather a 
congruency effect emerged only at longer reaction times. This characteristic of the delta plots 
is consistent with the hypothesis of a lag of processing the task-irrelevant feature relative to 
processing the task-relevant feature, as indicated by the estimated mean temporal offset of 
the LCA models. A similar shape of delta plots has also been observed when irrelevant features 
were presented after the relevant ones in a Simon task or an Eriksen flanker task (Burle et al., 
2005; Mackenzie et al., 2022). Our next step is fitting the models to a Simon task, for which we 

OBSERVED PREDICTED

STIMULUS SIZES (MM) CONGRUENT INCONGRUENT CONGRUENT INCONGRUENT

20–40 EP (%) 2.3 ± 0.45 3.0 ± 0.55 2.1 (2.2) 3.0 (3.1)

MRT (ms) 394 ± 11.8 403 ± 12.1 392 (393) 400 (400)

SDRT (ms) 98 ± 9.7 107 ± 8.6 90 (91) 100 (100)

10–60 EP (%) 2.0 ± 0.39 3.0 ± 0.38 2.0 (1.8) 3.0 (2.3)

MRT(ms) 374 ± 5.1 377 ± 5.4 368 (368) 377 (373)

SDRT (ms) 86 ± 5.3 88 ± 4.7 77 (76) 88 (83)

20–50 EP (%) 1.9 ± 0.28 2.2 ± 0.36 2.0 (1.6) 2.7 (2.3)

MRT (ms) 368 ± 5.1 375 ± 5.8 367 (368) 372 (373)

SDRT (ms) 86 ± 5.1 95 ± 5.9 77 (75) 84 (83)

30–40 EP (%) 2.1 ± 0.35 2.4 ± 0.42 2.1 (1.9) 2.4 (2.1)

MRT (ms) 370 ± 5.4 374 ± 5.8 369 (369) 370 (371)

SDRT (ms) 91 ± 4.8 90 ± 5.2 79 (78) 81 (80)

Table 3 Observed and 
predicted mean error 
percentages (EP) as well 
as means of the individual 
means (MRT) and standard 
deviations (SDRT) of reaction 
times of correct trials (in 
milliseconds). For the observed 
means the standard errors 
are added. Predicted values of 
Model A are in brackets.
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hypothesize a lead rather than a lag of processing the task-irrelevant stimulus feature when 
both features are presented simultaneously. 

STUDY 2: POSITION AS TASK-IRRELEVANT STIMULUS FEATURE
In two Simon-task experiments, we varied the delay of the presentation of the task-irrelevant 
stimulus feature (position) relative to the presentation of the task-relevant feature (color). In 
Exp. 1, stimulus-onset asynchrony (SOA) was –200, –100, 0, +100, or +200 ms, and in Exp. 2, 
it was –300, –150, 0, +150 or +300 ms, with negative SOAs for leads of the irrelevant feature 
and positive SOAs for lags. By these SOAs, a constant external temporal offset between the 
relevant and the irrelevant stimulus feature was added to the variable internal one. As seems 
to be typical for the classical Simon task, the mean internal temporal offset should be negative 
rather than positive as found for size as the irrelevant stimulus feature. Therefore, differences 
between Model A and Model B should appear with SOA = 0, and even more so with negative 
SOAs. With positive SOAs, the total temporal offset will turn positive again, so that delta plots 
should increase above zero only at longer reaction times, like the delta plots seen with size as 
the task-irrelevant stimulus feature and in previous studies (e.g., Burle et al., 2005; Mackenzie 
et al, 2022). 

METHODS

Twenty-nine students (20 female, 9 male) with mean age of 22 years (range 20 – 28 years) 
participated in Experiment 1, and 24 students (20 female, 4 male) with mean age of 24 years 
(range 20 – 32 years) participated in Experiment 2 for course credit. All participants were 
naïve with respect to the purpose of the study and reported normal (or corrected-to-normal) 
vision. One participant of each sample was excluded from the statistical analyses because of 
exceptionally long and variable reaction times; one of them had exceptionally large error rates 
as well so that the analyses were based on 28 and 23 participants, respectively.

Participants sat in a dimly lit room in front of a 17-inch monitor with unconstrained viewing 
distance of approximately 50 cm. A computer program written in ERTS language (Experimental 
Run Time System; BeriSoft, Frankfurt am Main, Germany) controlled stimulus presentation 
and response registration. Participants responded by pressing the left and right control keys 
of a standard keyboard with the index fingers of their hands held in parallel. The mapping 
of responses to the task-relevant stimulus feature – the red or green color of a square – was 
balanced across participants. The task-irrelevant feature was the left or right position of the 
square.

The two experiments were identical except for the SOAs of the relevant and the irrelevant 
stimulus feature. At the beginning of each experiment, the instructions were presented on the 
monitor. They described a typical sequence of events in each trial and the stimulus-response 
mapping. Participants read the instructions at leisure and pressed the space bar to start a 

Figure 3 Upper row of 
graphs: observed (filled and 
open circles) and predicted 
(continuous and dashed 
lines) bin means in the format 
of cumulative distribution 
functions for congruent 
(filled and continuous) and 
incongruent (open and 
dashed) conditions. Lower 
row of graphs: Observed 
(filled circles) delta plots with 
95% confidence range (t 
distributions) and predicted 
delta plots (continuous lines). 
Above each column of graphs 
stimulus sizes are given.
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practice block of 22 trials. The practice block was followed by ten experimental blocks, each 
consisting of 2 warm-up trials (which were not recorded) and 40 experimental trials (2 stimulus 
colors ⋅ 2 stimulus locations ⋅ 5 SOA conditions ⋅ 2 repetitions).

Each trial started with a blank screen for 500 ms, after which a gray square with a side length 
of 15 mm (approximately 1.4°) was presented at screen center. The square changed its color 
to red or green 500 ms after its onset and stayed for another 500 ms. Depending on the SOA 
condition, the square jumped to a lateral position located 80 mm to the left or right of fixation 
200/300 ms before (SOA: –200/–300), 100/150 ms before (SOA: –100/–150), simultaneously 
with (SOA: 0), 100/150 ms after (SOA: +100/+150), or 200/300 ms (SOA: +200/+300) after its 
color changed from gray to green or red. Independent of the SOA, the square was shown (in 
two colors at two locations) for a total of 1,000 ms in each trial. 

Response monitoring started with the presentation of the gray square at screen center and 
lasted for 2,000 ms. This allowed us to detect premature responses within a period of 500 ms 
before the square changed its color to red or green. An error message (in German) was presented 
for 2 seconds (a) if participants had pressed a wrong key, (b) if participants had responded 
prematurely or (c) if a response took longer than 1.5 s after presentation of the red or green 
color. Reaction time was measured from the onset of the task-relevant stimulus feature (green 
or red color of the square) or the onset of the task-irrelevant feature (lateral position of the 
square), whatever was first, until the keypress. In this way, we treat the experimentally defined 
temporal offset as if it were an internally generated offset, which differs from other studies in 
which presentation of the relevant feature triggered reaction-time measurements (e.g., Burle 
et al., 2005; Mackenzie et al., 2022). As the only consequence of this difference, reaction times 
for negative SOAs were longer than at SOAs ≥ 0 in the present experiments rather than shorter 
as when the SOA is not a part of the reaction time. 

For the analyses we collapsed right-hand and left-hand responses so that there were 10 
experimental conditions: for each of the 5 SOAs there were congruent (square and correct 
response key in the same relative position: left-left or right-right) and incongruent (square and 
correct key in different relative positions: left-right or right-left) trials. For each condition and 
participant, we computed the error rate and the mean and standard deviation of reaction times 
of correct responses.1 From the bin means of each pair of congruent and incongruent conditions, 
we computed the delta plot for each participant and SOA and characterized its overall increase 
or decrease across reaction-time bins by the slope of a linear regression (cf. Mackenzie et al., 
2022). For these dependent variables, we report the results of statistical analyses.

Our main interest is in the variations of delta plots across SOAs and their modeling by way 
of staggered onsets of processing relevant and irrelevant stimulus features. Models A and B 
were fitted to the sample means of the relative frequencies of errors and of the bin means of 
each pair of congruent and incongruent conditions with a certain SOA by the same procedures 
as used for study 1. We fitted the models to the data of each SOA separately because fitting 
the models to all 10 conditions simultaneously turned out infeasible. Any attempt to keep 
the number of free parameters reasonably small requires the assumption that almost all 
model parameters are invariant across SOAs. This, however, is an unrealistic simplification 
because the different SOAs likely affect processing in more ways than just by variation of the 
temporal offset (cf. Mackenzie et al., 2022). For example, when the (task-irrelevant) position 
of the stimulus is presented in advance of the (task-relevant) color, it can serve as a warning 
signal for the forthcoming presentation of the relevant stimulus feature, and simultaneous 
presentation of stimulus features might change their processing as compared with successive 
presentation. 

RESULTS

Tables 4 and 5 present the mean error percentages as well as the sample means of the 
individual means and standard deviations of reaction times of correct responses in Experiments 
1 and 2. These three dependent variables were subjected to 2-way ANOVAs with the within-
participant factors congruency and SOA. The sample means of the bin means are shown in 

1 There were 26 trials without response, and 11 trials with RT < 100 ms in the dataset from Experiment 1 
(total number of trials = 11,600). There were 7 trials without response, and 5 trials with RT < 100 ms in the 
dataset of Experiment 2 (total number of trials = 9,600).
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Figures 4 and 5 as filled and open circles in the top and bottom row of graphs; the row of graphs 
in-between shows the delta plots derived from them. The slopes which served to indicate the 
overall increase or decrease of the delta plots were compared across SOAs by 1-way ANOVAs. 
When appropriate, we report the Greenhouse-Geisser-corrected p together with the correction 
factor ε; as effect size we report partial eta-squared. 

Reaction times were slower in incongruent than in congruent conditions by 25 ms in Exp. 1, 
F(1,27) = 98.311, p < .001, 2

ph  = 0.785, MSE = 441.133, and by 15 ms in Exp. 2, F(1,22) = 60.125, 
p < .001, 2

ph  = 0.732, MSE = 213.836. Across SOAs, the congruency effect varied between 18 and 
30 ms in Exp. 1, and between 0 and 27 ms in Exp. 2 with the more extreme SOAs. The interaction 
of congruency and SOAs was not significant in Exp. 1, F(4,108) = 1.424, p = .237, ε = .87, 2

ph  = 

OBSERVED PREDICTED

SOA (MS) CONGRUENT INCONGRUENT CONGRUENT INCONGRUENT

–200 EP (%) 5.4 ± 0.91 9.5 ± 1.23 3.4 (5.3) 10.6 (9.4)

MRT (ms) 550 ± 5.5 575 ± 6.8 549 (557) 567 (561)

SDRT (ms) 71 ± 4.1 67 ± 3.7 63 (60) 59 (60)

–100 EP (%) 4.9 ± 0.77 11.2 ± 1.47 3.5 (4.0) 12.4 (11.2)

MRT (ms) 462 ± 6.2 492 ± 6.6 461 (469) 487 (478)

SDRT (ms) 74 ± 4.1 66 ± 3.6 64 (56) 64 (56)

0 EP (%) 1.3 ± 0.44 3.2 ± 0.79 0.7 (0.3) 3.7 (3.2)

MRT (ms) 361 ± 5.5 387 ± 6.2 358 (360) 385 (385)

SDRT (ms) 71 ± 3.7 71 ± 5.2 59 (50) 63 (61)

+100 EP (%) 0.8 ± 0.35 2.5 ± 0.50 0.7 (0.6) 2.6 (2.8)

MRT (ms) 384 ± 6.9 410 ± 7.2 383 (385) 409 (409)

SDRT (ms) 65 ± 4.9 72 ± 4.2 60 (60) 67 (66)

+200 EP (%) 1.3 ± 0.40 2.4 ± 0.50 1.0 (0.9) 2.8 (2.6)

MRT (ms) 395 ± 6.0 413 ± 8.7 394 (393) 410 (412)

SDRT (ms) 73 ± 4.0 87 ± 4.7 68 (71) 80 (81)

Table 4 Observed and 
predicted results for Exp. 1; 
predicted results are those of 
Model B (predictions of Model 
A are in brackets).

OBSERVED PREDICTED

SOA (MS) CONGRUENT INCONGRUENT CONGRUENT INCONGRUENT

–300 EP (%) 7.1 ± 1.39 8.7 ± 1.38 5.9 (7.1) 8.9 (8.8)

MRT (ms) 656 ± 6.1 666 ± 7.3 656 (659) 663 (661)

SDRT (ms) 63 ± 3.1 70 ± 5.3 56 (53) 54 (54)

–150 EP (%) 6.3 ± 1.27 8.2 ± 1.15 4.9 (5.2) 9.3 (9.1)

MRT (ms) 518 ± 5.5 538 ± 7.3 521 (523) 530 (527)

SDRT (ms) 70 ± 5.2 63 ± 4.8 55 (51) 53 (50)

0 EP (%) 1.7 ± 0.43 6.1 ± 0.81 1.1 (0.5) 6.2 (6.3)

 MRT (ms) 375 ± 6.8 403 ± 6.7 374 (373) 399 (398)

SDRT (ms) 64 ± 4.1 68 ± 4.1 51 (51) 54 (54)

+150 EP (%) 1.0 ± 0.26 2.0 ± 0.52 0.7 (0.5) 2.0 (1.8)

 MRT (ms) 406 ± 7.9 422 ± 7.8 403 (402) 422 (420)

SDRT (ms) 67 ± 4.0 79 ± 5.7 57 (58) 79 (66)

+300 EP (%) 1.3 ± 0.35 1.0 ± 0.34 1.0 (1.1) 1.5 (1.8)

 MRT (ms) 421 ± 10.2 421 ± 10.5 416 (417) 419 (419)

SDRT (ms) 75 ± 4.3 85 ± 4.6 63 (63) 67 (69)

Table 5 Observed and 
predicted results for Exp. 2; 
predicted results are those of 
Model B (predictions of Model 
A are in brackets).
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0.050, MSE = 187.231, but in Exp. 2, F(4,88) = 7.553, p < .001, ε = .91, 2
ph  = 0.256, MSE = 159.740. 

The shortest mean reaction time was observed with SOA=0 (374 and 389 ms in Exp. 1 and 2, 
respectively). It increased with increasing lead of the irrelevant feature (SOA < 0) by almost the 
duration of the lead, and it also increased with increasing lead of the relevant feature (SOA > 
0). The main effect of SOA was significant in both experiments, F(4,108) = 921.347, p < .001, 
ε = .66, 

2
ph  = 0.972, MSE = 360.411, and F(4,88) = 878.423, p < .001, ε = .44, 2

ph  = 0.976, MSE = 
669.378, respectively.

Error percentages were larger in incongruent than in congruent conditions by 3.0 % in Exp. 1, 
F(1,27) = 26.525, p < .001, 2

ph  = 0.496, MSE = 24.222, and by 1.7% in Exp. 2, F(1,22) = 10.846, p 
= .003, 

2
ph  = 0.330, MSE = 15.204. In Exp. 1 the congruency effect was stronger for SOA < 0 than 

for SOA ≥ 0, paralleling the difference in overall error rates. Both the main effect of SOA, F(4,108) 
= 40.805, p < .001, ε = .61, 2

ph  = 0.602, MSE = 14.071, and the interaction of congruency and 
SOA, F(4,108) = 5.168, p = .003, ε = .70, 2

ph  = 0.161, MSE = 12.412, were significant. In Exp. 2 the 
pattern was different, with the largest congruency effect at SOA=0 and slightly smaller effects 
at SOA < 0 despite larger overall error rates. For SOA = +150 ms the congruency effect was small 
and for SOA = +300 ms it was absent, as was the congruency effect for mean reaction time. 
Again both the main effect of SOA, F(4,88) = 24.937, p < .001, ε = .53, 2

ph  = 0.531, MSE = 18.243, 
and the interaction of congruency and SOA, F(4,88) = 2.818, p = .049, ε = .71, 2

ph  = 0.114, MSE = 
11.902, were significant.

In Exp. 1, the mean standard deviation was smaller in incongruent than in congruent conditions 
for SOA < 0 and larger for SOA > 0; in Exp. 2 the smaller standard deviation in incongruent 

Figure 4 upper and lower 
row of graphs: Observed 
and predicted bin means of 
Exp. 1 plotted as cumulative 
distribution functions. Filled 
and open circles show 
observed means in congruent 
and incongruent conditions 
for each SOA, continuous and 
dashed lines show predicted 
means of model A (upper row) 
and Model B (lower row) for 
congruent and incongruent 
conditions, respectively. 
Middle row of graphs: 
Observed delta plots (filled 
circles) with 95% confidence 
band and predicted delta plots 
by Model A (continuous line) 
and model B (dotted line).

Figure 5 upper and lower 
row of graphs: Observed 
and predicted bin means of 
Exp. 2 plotted as cumulative 
distribution functions. Filled 
and open circles show 
observed means in congruent 
and incongruent conditions 
for each SOA, continuous and 
dashed lines show predicted 
means of model A (upper row) 
and Model B (lower row) for 
congruent and incongruent 
conditions, respectively. 
Middle row of graphs: 
Observed delta plots (filled 
circles) with 95% confidence 
band and predicted delta plots 
by Model A (continuous line) 
and model B (dotted line).
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conditions was found only with SOA = –150 ms, but not with SOA = –300 ms. The interaction of 
congruency and SOA was significant for Exp. 1, F(4,108) = 3.589, p = .011, ε = .91, 

2
ph  = 0.117, 

MSE = 315.140, but not for Exp. 2, F(4,88) = 1.798, p = .148, ε = .85, 
2
ph  = 0.076, MSE = 372.919, 

whereas the main effect of congruency was significant only for Exp. 2, F(1,22) = 6.248, p = 
.020, 

2
ph  = 0.221, MSE = 219.899, but not for Exp. 1, F(1,27) = 0.663, p = .423, 

2
ph  = 0.024, MSE 

= 406.053 . In both experiments the main effect of SOA was significant primarily because of 
larger variability at SOAs of +150 ms and longer, F(4,108) = 3.361, p = .021, ε = .78, 

2
ph  = 0.111, 

MSE = 374.001, for Exp. 1 and F(4,88) = 5.383, p = .004, ε = .64, 
2
ph  = 0.197, MSE = 325.273, for 

Exp. 2.

The delta plots shown in the middle row of graphs of Figures 4 and 5 (filled circles) confirm 
previous observations (e.g., Burle et al., 2005; Mackenzie et al., 2022): When irrelevant features 
lead (SOA < 0), congruency effects tend to decrease as reaction times become longer (after 
an initial increase that is strongest at SOA of –150 ms in Exp. 2, weaker at SOAs of –100 and 
–200 ms in Exp. 1, and absent at SOA of –300 ms in Exp. 2). When relevant features lead (SOA 
> 0), congruency effects tend to increase at longer reaction times. The overall tendencies to 
decrease or increase are indicated by the slopes of the delta plots. For the SOAs from –200 
to +200 ms in Exp. 1, the mean slopes (with SE) were –0.015 ± 0.046, –0.103 ± 0.054, –0.057 
± 0.049, 0.146 ± 0.058, and 0.193 ± 0.044, and their variation across SOAs was significant, 
F(4,108) = 6.507, p < .001, ε = .93, 

2
ph  = 0.194, MSE = 0.073. For Exp. 2 with a range of SOAs from 

-300 to +300 ms, the mean slopes were –0.013 ± 0.046, –0.019 ± 0.048, 0.045 ± 0.047, 0.198 
± 0.062, and 0.051 ± 0.047. Their variation across SOAs was significant as well, F(4,88) = 3.124, 
p = .026, ε = .84, 

2
ph  = 0.124, MSE = 0.056.

In addition to the observed data, Tables 4 and 5 present the predictions of both models; the 
predicted bin means are shown in Figures 4 and 5. As described in more detail below, the fit of 
Model B was better than that of Model A for SOA ≤ 0 (for SOA > 0, that is, for positive temporal 
offsets the models become formally identical as soon as the constant positive experimental 
temporal offset is larger than the largest negative internal offset). The predicted error rates and 
mean reaction times of Model B were close to the observed data, but the reaction-time standard 
deviations were consistently underestimated. A systematic underestimation was also observed 
when the models were fit to the data obtained with irrelevant stimulus size (cf. Table 2). The 
reasons for this underestimation are not obvious. Possibly, it results from differences between 
congruent and incongruent conditions that are not captured by different signs of ΔIirr, which 
were the only differences in fitting the models to these conditions. For example, the decrease 
of the influence of the irrelevant stimulus feature could be faster when it is incongruent with 
the response location than when it is congruent. 

Tables 6 and 7 present the parameter estimates for Exp. 1 and 2. As indicated by the minimal 
costs, the fit of the models was better for positive SOAs than for negative ones. For negative 

SOA (MS)

PARAMETER –200 -100 0 +100 +200

λ .256 (.259) .241 (.273) .263 (.253) .207 (.232) .237 (.235)

β .211 (.226) .220 (.232) .194 (.234) .210 (.215) .243 (.232)

σn .184 (.199) .202 (.203) .222 (.234) .257 (.266) .235 (.258)

Irel 1.172 (.721) .946 (.719) .941 (.807) .790 (.779) .709 (.725)

ΔIirr ±.136 (.258) ±.151 (.242) ±.127 (±.221) ±.141 (±.185) ±.106 (±.094)

δ .065 (.139) .069 (.135) .105 (.124) .072 (.074) .100 (.086)

μD –.104 (–.095) –.084 (–.095) –.081 (–.081) –.101 (–.085) -.059 (-.103)

wD .170 (.131) .194 (.121) .240 (.132) .215 (.227) .203 (.219)

θ 1.271 (.447) 1.090 (.479) 1.074 (.736) 1.076 (.964) 1.011 (1.071)

μR .202 (.197) .224 (.206) .185 (.185) .218 (.224) .214 (.208)

wR .076 (.140) .090 (.124) .081 (.107) .093 (.049) .119 (.103)

costs 9.6 (12.3) 8.5 (13.9) 7.5 (9.6) 3.0 (2.5) 4.0 (3.5)

Table 6 Exp. 1, Parameter 
estimates for Model B (in 
brackets for model A). 
Congruent and incongruent 
conditions differed only in 
the algebraic sign of ΔIirr, 
positive values for congruent 
and negative values for 
incongruent conditions, 
respectively. Time parameters 
(δ, μD, wD, μR, and wR) are in 
seconds.
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SOAs (except for –300 in Exp. 2) the fit of Model B was better than that of Model A. For these 
SOAs, the predicted delta plots (middle row of graphs in Figures 4 and 5) of Model A deviated 
strongly from the observed ones (for the SOA of –150 ms, Exp. 2, the predicted delta plot of 
Model B did also deviate notably from the observed one). Therefore, we focus on the results 
obtained with Model B. 

As the parameters of the present LCA models have functional meaning, their variations across 
experimental conditions should indicate functional variations. The caveat, however, is the noise 
of the parameter estimates and the risk of grossly wrong estimates, for example, when the 
cost minimization ended in a local minimum or somewhere on a flat multidimensional surface 
where the proper minimum could not be identified vis a vis noisy estimates of the surface. 
Despite these caveats, for some parameters there are systematic variations that are suggestive 
of functional variations. 

First, the mean temporal offset μD, which is an estimate of the internal component of the offset 
that is added to the experimentally controlled SOA, was negative for all conditions of both 
experiments, indicating an “internal” lead of the irrelevant feature. This is in contrast with the 
positive estimates for the experiments with size as irrelevant stimulus feature (cf. Table 1). For 
negative SOAs, when the irrelevant feature was presented before the relevant one, the lead 
tended to be larger. For the same conditions, the width of the distributions of the temporal 
offsets, wD, was smaller. This suggests that the relative lead of the irrelevant feature was longer 
and less variable when this feature was presented alone and before the relevant one than 
when it was presented while processing of the relevant feature was already on the way. For 
positive SOAs, the noise of the incremental activations was stronger than for negative SOAs, as 
indicated by a larger parameter σn.

The relevant input Irel declined for Model B, but not for Model A, as the SOA turned from negative 
to positive. Only for Model B the activation of response codes starts as soon as the irrelevant 
input becomes available (cf. Figure 1), that is, for conditions with SOA≤0. This only slightly 
asymmetric activation would increase the error rate, more so in incongruent than in congruent 
conditions. In fact, an overall higher error rate for negative than for positive SOAs is quite a 
consistent finding (Burle et al., 2005; Mackenzie et al., 2022). With Model B, there are two 
countermeasures to prevent too high error rates. The first is a strong relevant input Irel, which 
has the effect of not only activating the correct-response code, but also inhibiting the error-
response code (forward inhibition). The second countermeasure is an increase of the response 
threshold θ for negative SOAs. (Note that with Model A the response threshold for the very 
same SOAs is reduced to take account of the increased error rate.)

The estimated initial strength of the irrelevant input, ΔIirr, behaved somewhat differently across 
the two experiments. In Exp. 2 it had a maximum at SOA = 0 and declined at negative and 

SOA (MS)

PARAMETER –300 –150 0 +150 +300

λ .180 (.216) .187 (.257) .228 (.224) .233 (.191) .225 (.224)

β .128 (.253) .196 (.242) .184 (.214) .198 (.168) .200 (.237)

σn .153 (.245) .160 (.205) .217 (.217) .247 (.251) .241 (.238)

Irel 1.215 (.726) 1.106 (.736) .996 (.765) .775 (.759) .735 (.729)

ΔIirr .054 (.263) .055 (.277) .146 (.256) .099 (.104) .064 (.207)

δ .068 (.136) .075 (.119) .097 (.103) .078 (.104) .145 (.122)

μD –.120 (–.100) –.110 (–.102) –.098 (–.093) –.096 (–.090) -.082 (-.029)

wD .136 (.110) .143 (.108) .209 (.081) .307 (.266) .229 (.163)

θ 1.584 (.596) 1.216 (.437) 1.040 (.687) 1.019 (1.072) 1.013 (1.008)

μR .198 (.172) .221 (.211) .209 (.190) .241 (.231) .244 (.242)

wR .084 (.091) .101 (.112) .057 (.117) .083 (.078) .110 (.096)

costs 5.4 (4.1) 8.5 (10.0) 4.3 (6.3) 3.1 (3.5) 4.7 (4.0)

Table 7 Exp. 2, Parameter 
estimates for Model B (in 
brackets for model A). 
Congruent and incongruent 
conditions differed only in 
the algebraic sign of ΔIirr, 
positive values for congruent 
and negative values for 
incongruent conditions, 
respectively. Time parameters 
(δ, μD, wD, μR, and wR) are in 
seconds. 
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positive SOAs, that is, whenever the relevant and irrelevant stimulus feature were presented 
in succession rather than simultaneously. In Exp. 1, such a pattern was not present, but the 
variations of ΔIirr across SOAs appeared more erratic. The time parameter for the decay of the 
irrelevant input, δ, showed the same variation in both experiments: decay was fast for negative 
SOAs, slow for SOA = 0, and faster again for positive SOAs except for the longest ones of +200 
and +300 ms, where the decay became slow again.

DISCUSSION
Delta plots for conflict tasks show the time course of congruency effects across percentile bins 
of the reaction-time distributions. Their shape varies across different types of conflict tasks and 
across different variants of the same type of task. What causes this variety of time courses of 
congruency effects across different types and variants of conflict tasks? In the following, we 
discuss the validity of the hypothesis that guided the present analyses, namely that staggered 
onsets of processing task-relevant and task-irrelevant features can account for a major part of 
the diversity. In closing, we briefly touch upon some limitations of the models that we used for 
the formal representation of the hypothesis.

TEMPORAL OVERLAP AS A DETERMINANT OF THE SHAPE OF DELTA PLOTS

Different shapes of delta plots could arise because of qualitative differences between conflict 
tasks such as different processes or different codes involved (e.g., Gade et al., 2020; Pratte, 
2021; Wiegand & Wascher, 2005; Wühr & Biebl, 2011). However, different shapes of delta 
plots can also be observed when temporal offsets between presentations of relevant and 
irrelevant stimulus features are introduced for otherwise identical tasks, suggesting a critical 
role of temporal overlap (e.g., Burle et al., 2005; Hübner & Mishra, 2013; Hübner & Töbel, 2019; 
MacKenzie et al., 2022). These two perspectives on the shape variations of delta plots are not 
mutually exclusive because qualitative differences likely give rise to quantitative differences 
in the temporal overlap of processing relevant and irrelevant stimulus features. Vice versa, 
different time courses of congruency effects could reflect different mechanism (cf. Vallesi, 
Mapelli, Schiff, Amodio, & Umiltà, 2005). Overall, the role of temporal overlap for the time 
course of congruency effects can hardly be called into question.

Here we show a critical role of two manifestations of temporal overlap: the decay or suppression 
of the influence of the irrelevant feature and the temporal offset between the availabilities of 
relevant and irrelevant input for response selection. The declining influence of the irrelevant 
feature is widely accepted and an ingredient of several formal models (Hübner, Steinhauser, 
& Lehle, 2010; Ulrich et al., 2015; White, Ratcliff, & Starns, 2011; Zorzi & Umiltá, 1995). Critical 
evidence of such a decline has been the observation of decreasing congruency effects at 
longer reaction times. However, as explained in more detail above, increasing and decreasing 
influences of irrelevant stimulus features are not directly parallel to observed increases and 
declines of congruency effects. The reason is that the (theoretical) influence of irrelevant 
stimulus features represents instantaneous variations of the states of the processing system, 
whereas (observed) congruency effects are differences between reaction times, that is, between 
durations of processes that reflect variations of processing states in a cumulative manner. 
Therefore, a declining influence of irrelevant stimulus features cannot account for declining 
delta plots, except when the decline turns into a reversal of the instantaneous influence.

Declining delta plots can be modelled when a variable lead of processing the irrelevant stimulus 
feature is added to the assumption of its declining influence (Miller & Schwarz, 2021; Wühr & 
Heuer, 2018). Here we extend the notion of a variable lead of processing the irrelevant feature 
to a variable temporal offset between processing relevant and irrelevant features. Taking the 
LCA model as an example of a sequential-sampling model, we show that the appropriately 
extended model can produce different shapes of delta plots, including delta plots with a 
delayed congruency effect as we found with size as relevant stimulus feature or with a Simon 
task and a delayed presentation of the irrelevant stimulus position. Importantly, the models 
cannot only produce different shapes of delta plots as they can be found for different types of 
task and experimental conditions, but also mimic the observed distribution functions with a 
reasonable degree of accuracy. 
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STAGGERED PROCESSING ONSETS IN CONFLICT TASKS

Staggered processing onsets of relevant and irrelevant stimulus features have been induced 
experimentally in different ways, resulting in different shapes of delta plots. However, staggered 
processing onsets likely exist also when the stimulus features are presented simultaneously. 
For example, Zorzi and Umiltá (1995) argued for a faster processing of the irrelevant stimulus 
feature than of the relevant one in the Simon task. In fact, for the present models the negative 
estimates of the mean temporal offsets between relevant and irrelevant activations of 
response codes were consistent with this suggestion, as were previous estimates with a slightly 
different variant of an LCA model (Wühr & Heuer, 2018). In contrast, with stimulus size as 
the irrelevant feature the estimates of the mean temporal offsets were positive, suggesting a 
faster processing of the relevant stimulus feature. A conspicuous difference between position 
and size as irrelevant stimulus features appears to be the complexity of translating them into 
activations of responses with the left or right hand.

We are not aware of a systematic analysis of delta plots for different variants of conflict tasks 
from the perspective of hypothesized processing delays of task-relevant and task-irrelevant 
stimulus features for response selection – except for those studies in which temporal offsets 
are introduced explicitly. However, a few studies provide relevant data. For example, Mapelli, 
Rusconi, and Umiltá (2003) had their participants judge the parity of numbers 1–9 (without 5) 
which were presented to the left or right of the fixation point; responses were with the left or 
right hand. Thus, there were two irrelevant stimulus features, stimulus position and magnitude 
of the number presented. Both features could be congruent or incongruent with the response 
locations, allowing the determination both of the Simon effect (for stimulus position) and the 
SNARC effect (for number magnitude). Reaction-time distributions were split into 20% bins. 
The Simon effect varied significantly across bins and could even be reversed at the longest 
reaction times, whereas for the SNARC effect the variation across bins was not statistically 
significant (although the distribution functions for congruent and incongruent number 
magnitudes appear identical initially with an only slowly increasing SNARC effect as reaction 
times increase). The differences between Simon and SNARC effects have been confirmed by 
Gevers, Caessens, and Fias (2005), who also suggested that faster versus slower activations of 
spatial response codes could have played a role. This hypothesis is consistent with the present 
analysis according to which the differences between delta plots indicate a delay of processing 
the number magnitude and a lead of processing the number location relative to processing the 
relevant stimulus feature.

Recent findings by Pratte (2021) suggest that the relative complexity of mapping relevant and 
irrelevant stimulus features to response codes may not be the only factor that determines 
temporal offsets. Pratte studied Eriksen flanker tasks with different types of stimuli, but with 
targets and flankers always being of the same type. For color and motion stimuli, delta plots 
were increasing, but for oriented gratings and arrows they were decreasing (after an initial 
increase). In these experiments, the complexity of mapping relevant and irrelevant stimulus 
features on the left and right responses should be the same for each stimulus type, so there is 
no obvious reason to assume consistent temporal offsets. As noted by Pratte, decreasing delta 
plots were observed for those features that are processed early in the visual cortex (location and 
orientation), whereas increasing delta plots were found for features that require higher-level 
processing (color, motion; also letters as they have been used in several studies). Somewhat 
speculatively, low-level and rapid irrelevant spatial information could affect response selection 
earlier via the involuntary, automatic route of the dual-route model than the relevant spatial 
information via the intentional route. 

The relation between experimentally controlled temporal offsets and different shapes of delta 
plots could be taken to suggest that shapes of delta plots could be used to infer temporal 
offsets that originate from different processing of simultaneously presented stimulus features. 
The findings of Pratte (2021), however, cast doubt on the validity of such inferences. First, there 
may be other and not yet known factors that shape delta plots. Second, and more important 
in the present context, temporal offsets exert their effects in combination with suppression of 
the irrelevant input. For example, without such suppression leads of the irrelevant input would 
not result in declining delta plots. Because of the combined effects of temporal offsets and 
suppression, the strength of suppression cannot be directly inferred from the slopes of delta 
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plots (cf. Van den Wildenberg et al., 2010). For example, individual or group differences of the 
slopes could also reflect differences in temporal offsets rather than differences in the strength 
of suppression.

THE EXTENDED LCA MODEL

We used extensions of the LCA model for a formal representation of the notion of staggered 
onsets of processing relevant and irrelevant stimulus features. Although we chose the LCA 
model for reasons explained in some detail above, we do not claim that it captures the existing 
data better than other models would do, particularly if staggered processing were added to 
them. Thus, it is not the model by itself that is important for our purpose, but what matters 
are the ideas that it formalizes – staggered onsets together with suppression (or decay) of 
irrelevant input. 

Despite the specific purpose of the extensions of the LCA model and the reservations against 
the estimated parameters, the model-based analyses allow some tentative conclusions. Here 
we briefly discuss the differences between Models A and B, which differ only for leads of the 
irrelevant stimulus feature. For the corresponding data sets, Model B provided a somewhat 
better fit than Model A, though there was still room for improvement. This is most obvious with 
the SOA of -150 ms where the shape of the observed delta plot is not well captured by the 
model (see Figure 5), although LCA models with staggered onsets in principle can also produce 
delta plots with inverted U-shapes. According to Model B, response-code activation does not 
wait until the relevant input is available (as in the model of Wühr & Heuer, 2018), but starts 
as soon as the leading irrelevant input is available (as in the model of Zorzi & Umiltá, 1995). A 
preference for the assumptions implemented by Model B may not only be based on its better 
fit, but also on some other parallels to experimental findings. As noted by Zorzi and Umiltá 
(1995), the differences between response-code activations are consistent with the well-known 
early “dip” in the lateralized readiness potential observed in the incongruent condition of the 
horizontal Simon task. The early activation implemented in Model B also results in a higher error 
rate which is typical for conditions in which irrelevant stimulus features are presented before 
relevant ones (Burle et al., 2005; Hübner & Mishra, 2013; MacKenzie et al., 2022). 

The models used for the present purpose have some limitations, and there are some obvious 
directions for improvement, which however, generally result in making them less tractable 
because of an increasing number of parameters. For example, the early activation implemented 
in Model B raises the error rate too much, and this excessive increase of the error rate is 
compensated by higher response thresholds and a stronger influence of the relevant stimulus 
feature, which has the effect of a forward inhibition of the error-response code. The excessive 
increase of the error rate could be avoided by downscaling of the external input during the 
time the relevant input is not yet available. An obvious limitation of the models, too, is that 
they cannot account for inversions of the Simon effect as reaction times increase. Different 
from, for example, the DMC of Ulrich et al. (2015), the instantaneous influence of the irrelevant 
stimulus can decline to zero in the present models, but not reverse. This could be remedied by 
the addition of another parameter, namely an asymptote for the decline.
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	ABSTRACT
	ABSTRACT
	The dynamics of congruency effects in conflict tasks can be analyzed by means of delta plots which depict the reaction-time differences between incongruent and congruent conditions across the quantiles of the reaction-time distributions. Delta plots exhibit a variety of different shapes. Here we test the hypothesis that staggered onsets of processing task-relevant and task-irrelevant features for response selection (together with a declining influence of the irrelevant feature) produce such variety. For thi
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	Reviewing a large range of Simon-task variants, Proctor et al. () listed the following types of delta plots: decreasing, increasing, stable, stable then decreasing, stable then increasing, increasing then decreasing. Essentially all the observed delta plots – decreasing as well as increasing ones – start with a congruency effect already at the fastest bin of the reaction-time distributions. Contrary to this typical feature, in a re-analysis of data of Wühr and Seegelke (, Exp. 2) and Richter and Wühr (, Exp
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	THEORETICAL IMPLICATIONS OF DIFFERENT SHAPES OF DELTA PLOTS
	Given the typical increase of the variability of reaction times with their mean (), increasing delta plots appear more or less natural and do not call for explanations related to the nature of particular tasks. In contrast, decreasing delta plots violate the normal relation between means and variances of reaction times and call for a dedicated explanation. The currently prevailing account assumes initial activation by the irrelevant stimulus feature, which produces the congruency effect for the shortest rea
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	The activation-suppression account of decreasing delta plots faces a somewhat subtle problem that is rooted in the fact that reaction times measure durations of processes, but not current states (cf., ; ). The analogy of a race illustrates the problem: immediately after the start, runner A (representing a congruent condition) is faster than runner B (representing an incongruent condition) as a result of the initial activation and inhibition, respectively, by the irrelevant stimulus feature. When the initial
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	The subtle problem of the activation-suppression account of decreasing delta plots becomes less subtle when one considers formal models of speeded decisions in conflict tasks. Sequential-sampling models are the dominant processing models for speeded decisions and thus for reaction-time tasks (; ). Their basic assumption is the progressive accumulation of evidence (or activation) until a criterion is reached at which a response is initiated (cf. ; ; ). Until about a decade ago, decreasing delta plots were co
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	In more recent years, sequential-sampling models with suppression or passive decay of the activation by a task-irrelevant stimulus feature have been proposed for the Eriksen flanker task (e.g., ; ). For this task, delta plots typically do not decline. Decreasing delta plots, as observed for the Simon task, will emerge when the instantaneous effect of the irrelevant stimulus feature is not only suppressed, but even reversed, as implemented in the Diffusion Model for Conflict Tasks (DMC) by Ulrich, Schröter, 
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	Given suppression or passive decay of the instantaneous influence of an irrelevant stimulus feature, decreasing delta plots can also be explained without the assumption of an inversion of the irrelevant activation at longer reaction times. Specifically, they can result from a variable delay of processing the task-relevant stimulus feature during which the activation by the irrelevant stimulus feature is already partly suppressed (; ). In fact, for the Simon task the assumption that processing of the irrelev
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	The variety of shapes of delta plots does not only call for an explanation of decreasing delta plots which violate the typical relation between reaction-time means and variances, but also for an explanation of the very existence of different shapes. Such accounts are of basically two types, namely in terms of qualitative differences such as different processes or codes involved (e.g., ; ; ; ) or in terms of quantitative differences such as variations of temporal overlap of processing relevant and irrelevant
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	Variations of temporal overlap can result from faster or slower suppression (or decay) of the influence of the irrelevant stimulus feature or from staggered onsets of processing the relevant and irrelevant features. As noted above, for the classic Simon task processing of the irrelevant stimulus feature should lead processing of the relevant feature, but with a broader perspective on conflict tasks, processing delays of the different features should be variable and, depending on what these features are, the
	The most obvious test of this hypothesis requires the introduction of stimulus-onset asynchronies between relevant and irrelevant stimulus features. Previous studies have probed the effects of such experimentally induced delays for different conflict tasks. Independent of the details of the procedure, the typical result both for the Simon task and the Eriksen flanker task is a reduced increase or stronger decrease of the delta plot when the irrelevant feature is presented in advance of the relevant one (e.g
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	Whereas stimulus-onset asynchronies (SOA) are a straightforward means to manipulate the order of processing onsets of relevant and irrelevant stimulus features, similar differences should also exist when irrelevant and relevant stimulus features are presented simultaneously, but processed differently before they start to exert an influence on response selection. For example, irrelevant stimulus position in a Simon task has a quite direct relation to the position of the left or right hand, whereas the relati
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	Previously we had added a variable lead of processing the irrelevant feature to a sequential-sampling model to account for decreasing delta plots as observed in the classic Simon task (). Here we generalize this approach and make use of two extensions of a sequential-sampling model that allow not only a lead of processing the irrelevant feature of a conflict task, but also the relevant feature. The purpose of these models is to demonstrate the power of staggered onsets of processing different stimulus featu
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	LEAKY, COMPETING ACCUMULATOR MODELS WITH STAGGERED PROCESSING ONSETS
	Sequential-sampling models vary in detail (cf. ; ; ; ). A basic distinction is between models with a single state (or decision) variable, also designated as random-walk models, and models with two or more state variables, also known as accumulator models (cf. ; ). Perhaps the most popular and mathematically elaborated sequential-sampling model is of the first type, the diffusion model originally proposed by Ratcliff (; cf. ; ). Accumulator models are less popular; currently prominent among them is the leaky
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	Our choice of the LCA model is motivated by the cumulative evidence of a tight relation between perceptual decisions and preparation of associated actions, as reviewed, e.g., by Verdonck, Loossens, and Philiastides (). For example, outcomes of perceptual decisions do not only depend on the sensory input, but also on the relative effort required by the associated actions () and on the physical relation between them (; ). Furthermore, during rapid decisions, reflex gains are modulated depending on the forthco
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	The notion of an intricate relation between perceptual decisions and associated actions gave rise to extensions of sequential-sampling models which relate muscle activity and overt movements to different thresholds (; ) or which add movement preparation (; ) or overt movement () to the basic perceptual decision. Even without action-related extensions, however, accumulator models can be conceptualized in a way that respects the tight relation between perceptual analysis and motor preparation. Specifically, t
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	In the basic LCA model, noisy incremental activation is added to two response codes for correct and error responses, respectively, during each time step. A major component of the incremental activation is external input related to the task-relevant stimulus feature (‘relevant input’ for the sake of brevity). For conflict tasks, the basic model is extended by a second external input, which is related to the task-irrelevant feature (‘irrelevant input’). The irrelevant input differs from the relevant input by 
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	We implemented staggered onsets of relevant and irrelevant inputs in two LCA models for conflict tasks, which differ only with respect to processing leading irrelevant input. Model A is similar to the model of Wühr and Heuer () in that activation of response codes starts only when the relevant input becomes available. The irrelevant input declines during its lead, but has not yet an effect on the activation of response codes. In Model B, activation of response codes starts immediately when the first of the 
	2018
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	The core of the LCA model is the difference equations that govern the incremental activations Δa(i) and Δa(i) of the two response codes for correct and error responses during each time interval i (cf. , Eq. 3): 
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	with self-inhibition gain , lateral-inhibition gain β, and Gaussian noise ξ(i) with zero mean and standard deviation σ. I(i) and 1–I(i) are the external inputs which add to 1 (cf., ); for I(i) = 0.5 they are thus identical for the correct- and error-response codes, and for I(i) > 1 the external input to the error-response code, 1–I(i), becomes negative. Thus, in addition to the lateral inhibition with gain β there can also be forward inhibition of the error-response code when the external input to the corre
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	The incremental activations of each response code (Eq. 1a, b) can be positive or negative. They are accumulated, beginning with a(0) = a(0) = 0. The total cumulated activation of each code is bounded to be non-negative:
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	A response is initiated when the activation of the respective response code, a(i) for correct responses or a(i) for errors, reaches a threshold θ. To cover the duration of sensory processing and motor outflow, a non-decision or residual time R with uniform distribution is added to the time needed for the decision. The assumption of a uniform distribution (with mean μand width w) is somewhat arbitrary, but fairly common for sequential-sampling models (e.g. ), though not undebated (e.g. ). 
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	For all simulations we set Δt = 0.001 and τ = 0.1, so that Δt/τ = 0.01. In the simulations we computed the incremental activations and updated the response-code activations in two steps for each cycle i. In the first step only the external inputs I(i) and 1–I(i) and the noise ξ(i) were used and the activations of the response codes were updated preliminarily. In the second step, the preliminary updates of the activations of the response codes were used to apply self-inhibitions and lateral inhibitions to th
	The basic LCA model is extended by the addition of a declining external input related to the task-irrelevant stimulus feature in conflict tasks and a variable offset D between processing the irrelevant and relevant inputs. These two extensions differ somewhat from those of the model of Wühr and Heuer (). First, rather than defining the total external input as a weighted mean of the time-invariant relevant and the exponentially declining irrelevant input, we here define the total input I(i) as the sum of two
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	For Model A, the incremental activations are zero for t ≤ 0; activation of the response codes starts only when the relevant input becomes available. For t > 0 and d < 0, the external input is I(t) = I+ g(t) *ΔI, t = i*Δt, g(t)= e with δ as the time constant of the exponential decline. In this model, the irrelevant input declines during the lead; at time t=0, when activation of the response codes starts, it is already smaller than its initial strength ΔI. With t > 0 and d > 0, that is, when the relevant inpu
	rel 
	irr
	–(
	t
	–
	d
	)/
	δ
	irr
	rel
	rel 
	irr
	–(
	t
	–
	d
	)/
	δ
	irr

	Model B differs from Model A for leading irrelevant input (d < 0), but not for leading relevant input (d ≥ 0), in that incremental activation of response codes starts already when the irrelevant input becomes available. For d < t < 0 (d < 0), external input to the incremental activation is I(t) = 0.5 + g(t) *ΔI with g(t)= e. At t = 0 the dummy input 0.5, which corresponds to an assumed relevant input that drives both response codes equally, is replaced by the actual I. Thus, during the lead of the irrelevan
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	As shown in , in Model A the leading irrelevant input does not result in response-code activation, which starts only when the relevant input becomes available (after 100 ms in the example); however, during the lead time the irrelevant input declines. (The initial time course of the external input is not shown in  because it is not yet an input to the response codes). In Model B, in contrast, response-code activation starts already when only the irrelevant input is available; as soon as the relevant input be
	Figure 1
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	 illustrates basic types of delta plots that the models can produce. Each delta plot was derived from a congruent and an incongruent condition that differed only in the sign of ΔI, a simplification that we kept in fitting actual data. The main difference between the delta plots is in the mean temporal offsets μ: with negative μ (lead of the irrelevant input) declining delta plots can be observed, with μ = 0 delta plots will generally be increasing, and with positive μ congruency effects can be delayed. Note
	Figure 2
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	Having shown that the models can produce different shapes of delta plots in principle, we applied them to data of four experiments with two different conflict tasks. In both tasks, the task-relevant feature was color. In one task, the task-irrelevant feature was stimulus size and in the other task, it was stimulus position (Simon task). Stimulus position has a quite direct relation to response position so that irrelevant input likely leads relevant input, resulting in the typical declining delta plots obser
	Parise, 2016
	Spence, 2011
	Dehaene, Bossini, & Giroux, 1993
	Ren, Nicholls, Ma, & 
	Chen, 2011
	Walsh, 2003

	STUDY 1: SIZE AS TASK-IRRELEVANT STIMULUS FEATURE
	We re-analyzed the data of two experiments that have been described in detail by Wühr and Seegelke (, Exp. 2) and Richter and Wühr (, Exp. 2). In the experiment of Wühr and Seegelke, the stimuli were green or red squares with side lengths of 20 or 40 mm; in the experiment of Richter and Wühr, the green or red squares had side lengths of 10, 20, 30, 40, 50 or 60 mm. Color was the task-relevant stimulus feature, and the mapping of the two colors to left-hand and right-hand responses was balanced across partic
	2018
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	For the present re-analyses, we collapsed responses with the left and right hand. Thus, in the experiment of Wühr and Seegelke (, Exp. 2) there were a congruent condition, in which the left hand responded to stimuli of 20 mm side length and the right hand to stimuli of 40 mm side length, and an incongruent condition, in which the left hand responded to 40-mm stimuli and the right hand to 20-mm stimuli. For the data of Richter and Wühr (, Exp. 2) we defined three pairs of congruent and incongruent conditions
	2018
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	There are different ways of fitting sequential-sampling models to data, and none of them is without problems. Perhaps most important, for different types of sequential-sampling models and different fitting procedures, the parameters of simulated data sets cannot be reliably recovered (e.g. ; ; ). Among the other problems are the following: Different cost functions, which summarize the deviations between observed and predicted data, can produce different results because they place different weights on differ
	Hübner & Pelzer, 2020
	Miletić et al., 2017
	White et al., 2017
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	Here we chose a rather pragmatic approach to fitting the models, similar to the one of Ulrich et al. (). We minimized the weighted sum of the squared deviations from the data we were primarily interested in, namely the sample means of the individual relative error frequencies and the sample means of the individual bin means. More specifically, the minimized cost function was
	2015
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	where j = 1, …,m are the experimental conditions, p is mean error probability, and P10, P30, P50, P70, and P90 are the sample means of the individual bin means in seconds (bins being bounded by the 2, 4, 6, and 8 deciles of the individual distributions of reaction times of correct responses). Subscripts ob and pr indicate the observed and predicted data, respectively. Multiplication by 1000 improves readability. We started each search with 1000 simulated trials per condition, which were increased up to 100,
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	 presents the parameter estimates, which were constrained to be identical for congruent and incongruent conditions except for ΔI, which was positive for congruent and negative for incongruent conditions. Importantly, the mean temporal offset μ was positive, indicating a lagged influence of the irrelevant stimulus feature on activation of response codes, and the width w of the distribution of lags did not include 0. Thus, all temporal offsets D were positive, that is, in a range where Model A and Model B are
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	 shows the observed and predicted means of the individual error percentages (EP), of the individual mean reaction times of correct responses (M), and of the individual standard deviations of the reaction times (SD) for all pairs of congruent and incongruent conditions in both experiments. For the observed means, the standard errors are added. The predictions of Model A are in brackets; they differ from those of Model B slightly by chance. For Model B only one of the 24 predicted means deviated more than two
	Table 3
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	The re-analyses of the data of Wühr and Seegelke (, Exp.2) and Richter and Wühr (, Exp. 2) revealed delta plots for size as the irrelevant stimulus feature that showed no difference between congruent and incongruent conditions at the shortest reaction times. Rather a congruency effect emerged only at longer reaction times. This characteristic of the delta plots is consistent with the hypothesis of a lag of processing the task-irrelevant feature relative to processing the task-relevant feature, as indicated 
	2018
	2022
	Burle et al., 
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	Mackenzie et al., 2022

	STUDY 2: POSITION AS TASK-IRRELEVANT STIMULUS FEATURE
	In two Simon-task experiments, we varied the delay of the presentation of the task-irrelevant stimulus feature (position) relative to the presentation of the task-relevant feature (color). In Exp. 1, stimulus-onset asynchrony (SOA) was –200, –100, 0, +100, or +200 ms, and in Exp. 2, it was –300, –150, 0, +150 or +300 ms, with negative SOAs for leads of the irrelevant feature and positive SOAs for lags. By these SOAs, a constant external temporal offset between the relevant and the irrelevant stimulus featur
	Burle et al., 2005
	Mackenzie 
	et al, 2022

	METHODS
	Twenty-nine students (20 female, 9 male) with mean age of 22 years (range 20 – 28 years) participated in Experiment 1, and 24 students (20 female, 4 male) with mean age of 24 years (range 20 – 32 years) participated in Experiment 2 for course credit. All participants were naïve with respect to the purpose of the study and reported normal (or corrected-to-normal) vision. One participant of each sample was excluded from the statistical analyses because of exceptionally long and variable reaction times; one of
	Participants sat in a dimly lit room in front of a 17-inch monitor with unconstrained viewing distance of approximately 50 cm. A computer program written in ERTS language (Experimental Run Time System; BeriSoft, Frankfurt am Main, Germany) controlled stimulus presentation and response registration. Participants responded by pressing the left and right control keys of a standard keyboard with the index fingers of their hands held in parallel. The mapping of responses to the task-relevant stimulus feature – t
	The two experiments were identical except for the SOAs of the relevant and the irrelevant stimulus feature. At the beginning of each experiment, the instructions were presented on the monitor. They described a typical sequence of events in each trial and the stimulus-response mapping. Participants read the instructions at leisure and pressed the space bar to start a practice block of 22 trials. The practice block was followed by ten experimental blocks, each consisting of 2 warm-up trials (which were not re
	Each trial started with a blank screen for 500 ms, after which a gray square with a side length of 15 mm (approximately 1.4°) was presented at screen center. The square changed its color to red or green 500 ms after its onset and stayed for another 500 ms. Depending on the SOA condition, the square jumped to a lateral position located 80 mm to the left or right of fixation 200/300 ms before (SOA: –200/–300), 100/150 ms before (SOA: –100/–150), simultaneously with (SOA: 0), 100/150 ms after (SOA: +100/+150),
	Response monitoring started with the presentation of the gray square at screen center and lasted for 2,000 ms. This allowed us to detect premature responses within a period of 500 ms before the square changed its color to red or green. An error message (in German) was presented for 2 seconds (a) if participants had pressed a wrong key, (b) if participants had responded prematurely or (c) if a response took longer than 1.5 s after presentation of the red or green color. Reaction time was measured from the on
	Burle 
	et al., 2005
	Mackenzie et al., 2022

	For the analyses we collapsed right-hand and left-hand responses so that there were 10 experimental conditions: for each of the 5 SOAs there were congruent (square and correct response key in the same relative position: left-left or right-right) and incongruent (square and correct key in different relative positions: left-right or right-left) trials. For each condition and participant, we computed the error rate and the mean and standard deviation of reaction times of correct responses. From the bin means o
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	Mackenzie et al., 
	2022

	Our main interest is in the variations of delta plots across SOAs and their modeling by way of staggered onsets of processing relevant and irrelevant stimulus features. Models A and B were fitted to the sample means of the relative frequencies of errors and of the bin means of each pair of congruent and incongruent conditions with a certain SOA by the same procedures as used for study 1. We fitted the models to the data of each SOA separately because fitting the models to all 10 conditions simultaneously tu
	Mackenzie et al., 2022

	RESULTS
	 and  present the mean error percentages as well as the sample means of the individual means and standard deviations of reaction times of correct responses in Experiments 1 and 2. These three dependent variables were subjected to 2-way ANOVAs with the within-participant factors congruency and SOA. The sample means of the bin means are shown in 
	Tables 4
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	1 There were 26 trials without response, and 11 trials with RT < 100 ms in the dataset from Experiment 1 (total number of trials = 11,600). There were 7 trials without response, and 5 trials with RT < 100 ms in the dataset of Experiment 2 (total number of trials = 9,600).
	1 There were 26 trials without response, and 11 trials with RT < 100 ms in the dataset from Experiment 1 (total number of trials = 11,600). There were 7 trials without response, and 5 trials with RT < 100 ms in the dataset of Experiment 2 (total number of trials = 9,600).
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	 as filled and open circles in the top and bottom row of graphs; the row of graphs 
	in-between shows the delta plots derived from them. The slopes which served to indicate the 
	overall increase or decrease of the delta plots were compared across SOAs by 1-way ANOVAs. 
	When appropriate, we report the Greenhouse-Geisser-corrected 
	p
	 together with the correction 
	factor 
	ε
	; as effect size we report partial eta-squared. 

	Reaction times were slower in incongruent than in congruent conditions by 25 ms in Exp. 1, F(1,27) = 98.311, p < .001,  = 0.785, MSE = 441.133, and by 15 ms in Exp. 2, F(1,22) = 60.125, p < .001,  = 0.732, MSE = 213.836. Across SOAs, the congruency effect varied between 18 and 30 ms in Exp. 1, and between 0 and 27 ms in Exp. 2 with the more extreme SOAs. The interaction of congruency and SOAs was not significant in Exp. 1, F(4,108) = 1.424, p = .237, ε = .87,  = 0.050, MSE = 187.231, but in Exp. 2, F(4,88) 
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	Error percentages were larger in incongruent than in congruent conditions by 3.0 % in Exp. 1, F(1,27) = 26.525, p < .001,  = 0.496, MSE = 24.222, and by 1.7% in Exp. 2, F(1,22) = 10.846, p = .003,  = 0.330, MSE = 15.204. In Exp. 1 the congruency effect was stronger for SOA < 0 than for SOA ≥ 0, paralleling the difference in overall error rates. Both the main effect of SOA, F(4,108) = 40.805, p < .001, ε = .61,  = 0.602, MSE = 14.071, and the interaction of congruency and SOA, F(4,108) = 5.168, p = .003, ε =
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	In Exp. 1, the mean standard deviation was smaller in incongruent than in congruent conditions for SOA < 0 and larger for SOA > 0; in Exp. 2 the smaller standard deviation in incongruent conditions was found only with SOA = –150 ms, but not with SOA = –300 ms. The interaction of congruency and SOA was significant for Exp. 1, F(4,108) = 3.589, p = .011, ε = .91,  = 0.117, MSE = 315.140, but not for Exp. 2, F(4,88) = 1.798, p = .148, ε = .85,  = 0.076, MSE = 372.919, whereas the main effect of congruency was 
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	The delta plots shown in the middle row of graphs of  and (filled circles) confirm previous observations (e.g., ; ): When irrelevant features lead (SOA < 0), congruency effects tend to decrease as reaction times become longer (after an initial increase that is strongest at SOA of –150 ms in Exp. 2, weaker at SOAs of –100 and –200 ms in Exp. 1, and absent at SOA of –300 ms in Exp. 2). When relevant features lead (SOA > 0), congruency effects tend to increase at longer reaction times. The overall tendencies t
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	In addition to the observed data,  and  present the predictions of both models; the predicted bin means are shown in  and . As described in more detail below, the fit of Model B was better than that of Model A for SOA ≤ 0 (for SOA > 0, that is, for positive temporal offsets the models become formally identical as soon as the constant positive experimental temporal offset is larger than the largest negative internal offset). The predicted error rates and mean reaction times of Model B were close to the obser
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	 and  present the parameter estimates for Exp. 1 and 2. As indicated by the minimal costs, the fit of the models was better for positive SOAs than for negative ones. For negative SOAs (except for –300 in Exp. 2) the fit of Model B was better than that of Model A. For these SOAs, the predicted delta plots (middle row of graphs in  and ) of Model A deviated strongly from the observed ones (for the SOA of –150 ms, Exp. 2, the predicted delta plot of Model B did also deviate notably from the observed one). Ther
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	As the parameters of the present LCA models have functional meaning, their variations across experimental conditions should indicate functional variations. The caveat, however, is the noise of the parameter estimates and the risk of grossly wrong estimates, for example, when the cost minimization ended in a local minimum or somewhere on a flat multidimensional surface where the proper minimum could not be identified vis a vis noisy estimates of the surface. Despite these caveats, for some parameters there a
	First, the mean temporal offset μ, which is an estimate of the internal component of the offset that is added to the experimentally controlled SOA, was negative for all conditions of both experiments, indicating an “internal” lead of the irrelevant feature. This is in contrast with the positive estimates for the experiments with size as irrelevant stimulus feature (cf. ). For negative SOAs, when the irrelevant feature was presented before the relevant one, the lead tended to be larger. For the same conditio
	D
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	The relevant input I declined for Model B, but not for Model A, as the SOA turned from negative to positive. Only for Model B the activation of response codes starts as soon as the irrelevant input becomes available (cf. ), that is, for conditions with SOA≤0. This only slightly asymmetric activation would increase the error rate, more so in incongruent than in congruent conditions. In fact, an overall higher error rate for negative than for positive SOAs is quite a consistent finding (; ). With Model B, the
	rel
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	The estimated initial strength of the irrelevant input, ΔI, behaved somewhat differently across the two experiments. In Exp. 2 it had a maximum at SOA = 0 and declined at negative and positive SOAs, that is, whenever the relevant and irrelevant stimulus feature were presented in succession rather than simultaneously. In Exp. 1, such a pattern was not present, but the variations of ΔI across SOAs appeared more erratic. The time parameter for the decay of the irrelevant input, δ, showed the same variation in 
	irr
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	DISCUSSION
	Delta plots for conflict tasks show the time course of congruency effects across percentile bins of the reaction-time distributions. Their shape varies across different types of conflict tasks and across different variants of the same type of task. What causes this variety of time courses of congruency effects across different types and variants of conflict tasks? In the following, we discuss the validity of the hypothesis that guided the present analyses, namely that staggered onsets of processing task-rel
	TEMPORAL OVERLAP AS A DETERMINANT OF THE SHAPE OF DELTA PLOTS
	Different shapes of delta plots could arise because of qualitative differences between conflict tasks such as different processes or different codes involved (e.g., ; ; ; ). However, different shapes of delta plots can also be observed when temporal offsets between presentations of relevant and irrelevant stimulus features are introduced for otherwise identical tasks, suggesting a critical role of temporal overlap (e.g., ; ; ; ). These two perspectives on the shape variations of delta plots are not mutually
	Gade et al., 2020
	Pratte, 
	2021
	Wiegand & Wascher, 2005
	Wühr & Biebl, 2011
	Burle et al., 2005
	Hübner & Mishra, 2013
	Hübner & Töbel, 2019
	MacKenzie et al., 2022
	Vallesi, 
	Mapelli, Schiff, Amodio, & Umiltà, 2005

	Here we show a critical role of two manifestations of temporal overlap: the decay or suppression of the influence of the irrelevant feature and the temporal offset between the availabilities of relevant and irrelevant input for response selection. The declining influence of the irrelevant feature is widely accepted and an ingredient of several formal models (; ; ; ). Critical evidence of such a decline has been the observation of decreasing congruency effects at longer reaction times. However, as explained 
	Hübner, Steinhauser, 
	& Lehle, 2010
	Ulrich et al., 2015
	White, Ratcliff, & Starns, 2011
	Zorzi & Umiltá, 1995

	Declining delta plots can be modelled when a variable lead of processing the irrelevant stimulus feature is added to the assumption of its declining influence (; ). Here we extend the notion of a variable lead of processing the irrelevant feature to a variable temporal offset between processing relevant and irrelevant features. Taking the LCA model as an example of a sequential-sampling model, we show that the appropriately extended model can produce different shapes of delta plots, including delta plots wi
	Miller & Schwarz, 2021
	Wühr & 
	Heuer, 2018

	STAGGERED PROCESSING ONSETS IN CONFLICT TASKS
	Staggered processing onsets of relevant and irrelevant stimulus features have been induced experimentally in different ways, resulting in different shapes of delta plots. However, staggered processing onsets likely exist also when the stimulus features are presented simultaneously. For example, Zorzi and Umiltá () argued for a faster processing of the irrelevant stimulus feature than of the relevant one in the Simon task. In fact, for the present models the negative estimates of the mean temporal offsets be
	1995
	Wühr & Heuer, 2018

	We are not aware of a systematic analysis of delta plots for different variants of conflict tasks from the perspective of hypothesized processing delays of task-relevant and task-irrelevant stimulus features for response selection – except for those studies in which temporal offsets are introduced explicitly. However, a few studies provide relevant data. For example, Mapelli, Rusconi, and Umiltá () had their participants judge the parity of numbers 1–9 (without 5) which were presented to the left or right o
	2003
	2005

	Recent findings by Pratte () suggest that the relative complexity of mapping relevant and irrelevant stimulus features to response codes may not be the only factor that determines temporal offsets. Pratte studied Eriksen flanker tasks with different types of stimuli, but with targets and flankers always being of the same type. For color and motion stimuli, delta plots were increasing, but for oriented gratings and arrows they were decreasing (after an initial increase). In these experiments, the complexity 
	2021

	The relation between experimentally controlled temporal offsets and different shapes of delta plots could be taken to suggest that shapes of delta plots could be used to infer temporal offsets that originate from different processing of simultaneously presented stimulus features. The findings of Pratte (), however, cast doubt on the validity of such inferences. First, there may be other and not yet known factors that shape delta plots. Second, and more important in the present context, temporal offsets exer
	2021
	Van den Wildenberg et al., 2010

	THE EXTENDED LCA MODEL
	We used extensions of the LCA model for a formal representation of the notion of staggered onsets of processing relevant and irrelevant stimulus features. Although we chose the LCA model for reasons explained in some detail above, we do not claim that it captures the existing data better than other models would do, particularly if staggered processing were added to them. Thus, it is not the model by itself that is important for our purpose, but what matters are the ideas that it formalizes – staggered onset
	Despite the specific purpose of the extensions of the LCA model and the reservations against the estimated parameters, the model-based analyses allow some tentative conclusions. Here we briefly discuss the differences between Models A and B, which differ only for leads of the irrelevant stimulus feature. For the corresponding data sets, Model B provided a somewhat better fit than Model A, though there was still room for improvement. This is most obvious with the SOA of -150 ms where the shape of the observe
	Wühr & Heuer, 2018
	Zorzi & Umiltá, 1995
	1995
	Burle et al., 2005
	Hübner & Mishra, 2013
	MacKenzie et al., 2022

	The models used for the present purpose have some limitations, and there are some obvious directions for improvement, which however, generally result in making them less tractable because of an increasing number of parameters. For example, the early activation implemented in Model B raises the error rate too much, and this excessive increase of the error rate is compensated by higher response thresholds and a stronger influence of the relevant stimulus feature, which has the effect of a forward inhibition o
	2015
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	Figure 1 External inputs to response codes, response-code activations, and differences between response-code activations for Model A (upper row of graphs) and Model B (lower row of graphs). Continuous lines are for correct responses, dashed lines for error responses. The first vertical dotted line marks the end of the lead of the irrelevant input, the second vertical dotted line marks the end of the decision (reaching the threshold). Parameters were λ = .2, β = .2, σ= 0, I= .7, ΔI= –.2, δ = .1, d = –.1, θ =
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	Figure 2 Different shapes of delta plots generated with Models A and B, using the parameters listed in Table 1, showing decreasing (continuous lines), increasing (dashed lines), and delayed (dotted lines) congruency effects. For each congruent (positive ΔI) and incongruent condition (negative ΔI) 100,000 trials were simulated.
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	Figure 3 Upper row of graphs: observed (filled and open circles) and predicted (continuous and dashed lines) bin means in the format of cumulative distribution functions for congruent (filled and continuous) and incongruent (open and dashed) conditions. Lower row of graphs: Observed (filled circles) delta plots with 95% confidence range (t distributions) and predicted delta plots (continuous lines). Above each column of graphs stimulus sizes are given.
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