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Kurzfassung

 1 Kurzfassung

Die  Entdeckung von Arzneimitteln ist  ein langwieriger  und sehr  kosten-  und ressourcenintensiver 

Prozess. Daher wurden Screening-Technologien (physisch und virtuell) eingesetzt, um solche Prozesse 

zu optimieren und zu beschleunigen. DNA-kodierte Bibliotheken (DELs) haben sich in den letzten 30 

Jahren  als  Alternative  zum  Hochdurchsatz-Screening  herauskristallisiert,  da  sie  zahlreiche  Vorteile 

bieten, wie z. B. Lagerung, Aufreinigung und vereinfachte Handhabung. In einer DEL ist jedes Mitglied 

mit  einer  spezifischen DNA-Sequenz  markiert,  die  während des  gesamten Verfahrens  als  Barcode 

verwendet wird. Diese Eigenschaft ermöglicht die Identifizierung der Moleküle (Hits),  welche nach 

kombinatorischer Synthese und Affinitätstests zusammengeführt wurden. Die DEL-Technologie birgt 

jedoch drei große Herausforderungen: der Erhalt des DNA-Barcodes, die Abdeckung des chemischen 

Raums und die Identifizierung der Hits. Diese Faktoren werden durch die Größe der DNA-kodierten 

Bibliotheken und die daraus resultierende Menge der erzeugten Daten noch erschwert. Daher wurden 

chemoinformatische Ansätze  entwickelt,  um die  Technologie  zu unterstützen,  ihre  Wirksamkeit  zu 

verbessern und sie zu optimieren. 

Diese  Arbeit  konzentriert  sich  auf  solche  Chemoinformatischen  Werkzeuge  und  schlägt  neuartige 

Lösungen zur Unterstützung des Designs, der Datenanalyse und der Validierung der DEL-Technologie 

vor.  Dabei  wird  hauptsächlich  die  KNIME  Analytics  Platform  aufgrund  ihrer  Einfachheit  und 

Zugänglichkeit für Chemiker und Biologen verwendet. 

Im  ersten  Kapitel  (Chemistry  selection)  wird  ein  Algorithmus  vorgestellt,  der  den  Raum  der 

chemischen Reaktionen kartiert und sortiert, um Reaktionen auszuwählen, die potenziell für die DEL-

Synthese verwendet werden können. Solche Reaktionen müssen Anforderungen erfüllen, welche mit 

der  Kompatibilität  der  DEL-Umgebung  und  der  kombinatorischen  Synthese  zusammenhängen.  Sie 

müssen  ein  gewisses  Maß  an  Wasser  tolerieren,  attraktive  Gerüste  für  die  Entdeckung  von 

Arzneimitteln erzeugen und Vielfalt einbringen. Starke Säuren, Basen, Oxidationsmittel und mutagene

Reaktanten  sind  zu  vermeiden  und  die  Reaktionstemperaturen  sind  auf  einen  DNA-kompatiblen 

Bereich zu beschränken. Diese Einschränkungen sind wichtig, um die Integrität des DNA-Barcodes zu 

erhalten und eine optimale Leistung der Technologie zu gewährleisten. Darüber hinaus beschreibt der 
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Algorithmus die Reaktionen anhand spezieller molekularer Deskriptoren, die den Kern der Reaktion, d. 

h. den Teil der Reaktanten, der in Produkte umgewandelt wird, berücksichtigen. 

Auf  der  Grundlage  solcher  Deskriptoren  wurden  die  Reaktionen  geclustert,  um  den  chemischen 

Reaktionsraum  abzubilden.  Reaktionen  werden  so  in  ähnliche  und  unähnliche  geordnet,  um  den 

menschlichen  Aufwand  auf  ein  Minimum  zu  reduzieren.  Aus  den  Clustern  konnten  fesselnde 

Reaktionen auf der Grundlage der Bedeutung des erzeugten Gerüsts ausgewählt und erfolgreich auf 

DNA-kodierte Substrate angewendet werden. Auch zusätzliche Informationen könnten so extrahiert 

werden. 

Im zweiten Kapitel (Building blocks selection) wurde die KNIME Analytics Platform eingesetzt, um die 

Bausteine (BBs)  für  die  Bibliothekssynthese auszuwählen,  mit  dem Ziel,  die  strukturelle  Vielfalt  zu 

erhöhen. Nach Anwendung der entsprechenden Filter wurden virtuelle Bibliotheken entsprechend der 

ausgewählten BBs und der etablierten DNA-kompatiblen Chemien aufgelistet. Die Reaktionen wurden 

virtuell mit den KNIME-Erweiterungen durchgeführt, und die Endprodukte der Bibliotheken wurden 

hinsichtlich ihrer Vielfalt und Ähnlichkeit mit großen Datenbanken arzneimittelähnlicher Verbindungen 

untersucht. 

Im dritten Kapitel (DNA-encoded library validation by molecular docking) wurden die Hit-Moleküle, die 

durch  den  Selektionsassay  einer  100.000-gliedrigen  Bibliothek  erzeugt  wurden,  mit  molekularer 

Docking-Software  validiert.  Drei  Proteine  wurden  detailliert  beschrieben  und  ihre  jeweiligen  Hits 

wurden als Liganden im Docking-Verfahren verwendet. Vor dem Docking wurden die häufigsten Hits 

identifiziert  und  die  Daten  mit  KNIME  aufbereitet.  Das  Docking  wurde  mit  zwei  verschiedenen 

Programmen durchgeführt,  um die  Robustheit  zu gewährleisten.  Die  Anwendung des  Dockings als 

Validierungsmethode erwies sich als nützlich für die Bestätigung von Treffern, für die Vorhersage der 

Bindungspositionen und für die Empfehlung einer eventuellen QSAR-Modifikation.
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Abstract

 2 Abstract

Drug  discovery  is  a  long and  highly  intense process  in  terms of  costs  and resources.  Therefore, 

screening technologies (tangible and virtual) have been implemented to optimize and accelerate it. 

DNA-encoded libraries (DELs) emerged in the last 30 years as an alternative to the high-throughput  

screening, due the numerous advantages. such as storage, purification and procedural ease. In a DEL,  

each member  is  tagged by a specific  DNA sequence,  which is  used as  a  barcode over  the whole  

procedure. This characteristic enables the identification of the molecules (hits) after pooling them all 

together for the combinatorial  synthesis and after the affinity assay. However,  the DEL technology 

presents three main challenges, among others: the preservation of the DNA barcode, the chemical 

space coverage and the hit identification. Such considerations are further complicated by the size of 

DNA-encoded  libraries  and  the  consequent  load  of  produced  data.  Therefore,  chemoinformatics 

approaches have come to light to support the technology, improving its efficacy and optimizing it.

This thesis focuses on such chemoinformatics tools and proposes novel solutions to aid the design, the 

data analysis and the validation of the DEL technology, mainly using the KNIME Analytics Platform for 

its simplicity and accessibility to chemists and biologists.

In the first chapter, an algorithm is reported to chart the chemical reactions space and sort it out in 

order to select reactions that could potentially be applied to DEL synthesis. Such reactions must fulfil  

requirements linked to the compatibility to the DEL environment and to the combinatorial synthesis. 

They  must  tolerate  a  certain  extent  of  water,  produce attractive  scaffolds  for  drug  discovery  and 

introduce diversity. Strong acids, bases, oxidants and mutagenic reactants are to be avoided and the 

reaction temperatures are to be restricted to a DNA-compatible range. This limitations are essential to  

preserve  the  integrity  of  the  DNA  barcode  in  order  to  ensure  an  optimal  performance  of  the 

technology.  Furthermore,  the  algorithm  described  the  reactions  according  to  peculiar  molecular 

descriptors which consider the reactions core, i.e. the reactants part that get converted into products.

Based on such descriptors, the reactions were clustered in order to map the chemical reactions space  

and  order  similar  and  dissimilar  reactions,  to  reduce  the  human effort  to  a  minimum.  From  the 

clusters, captivating reactions could be selected based on the significance of the produced scaffold and 

successfully applied to DNA-encoded substrates. Additional information could be extracted as well.
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In the second chapter, the KNIME Analytics Platform was employed to select the building blocks (BBs) 

for  library  synthesis  with  the  purpose  of  increasing  structural  diversity.  After  applying  the proper 

filters,  virtual  libraries  were  enumerated  according  to  the  selected  BBs  and  established  DNA-

compatible chemistries. The reactions were virtually performed with the KNIME extensions and the 

final products of the libraries were investigated in terms of diversity and similarity with big databases  

of drug-like compounds. 

In the third chapter, the hit molecules produced by the selection assay of a 100,000 membered library 

were validated with molecular docking software. Three proteins were reported in details and their 

respective hits were employed as ligands in the docking procedure. Prior to docking, frequent hitters 

were identified and the data prepared using KNIME. The docking was performed using two distinct  

programs in order to ensure robustness. Applying the docking as validation method revealed useful for 

confirming hits, for predicting the binding poses and for recommending eventual QSAR modification.
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General introduction

Drug discovery is an indispensable yet complex process and its cost can raise to approximately 2.8  

billions. Moreover, due to optimization phases, multiple assessments and clinical trials, on average 12 

years  are  required from the design  of  experiments  until  a  drug enters  the market.  [1] The most 

common routine in drug discovery begins with in vitro assays, which produce hits and their respective 

activity or affinity results. Such results are further verified via in vivo biological assays, which also serve 

the optimization of the hits to lead compounds that represent clinical candidates. Finally, after passing 

the clinical trials, the molecules can be considered drugs. 

 3.1 HTS and DNA-encoded libraries

Since the 90's, the process of drug discovery has been dominated by screening technologies, especially 

high-throughput  screening (HTS),  wherein  huge  collections  of  compounds  are  evaluated  for  their 

activity against all  kinds of targets. HTS carries two advantages if  compared to other conventional  

pharmacological assays. Firstly, a preliminary structural knowledge about the interrogated protein is 

not necessary, and additionally, the identified hit shows directly activity, without further assessment. 

[2]

However, the sampling of the chemical space by such collections remains unsatisfactory, because they 

only partially cover all possible feasible chemical compounds, that is the definition of the chemical  

space. [3], [4]. It has been estimated that approximately 250,000 dollars are required to screen 1 to 20  

compounds in HTS campaign,  not to  mention the infrastructure necessary to store all  compounds 

separately.  [5]  Therefore,  in  recent  years  other  technologies  have  emerged  to  overcome  these 

drawbacks,  such as DNA-encoded libraries (DELs).  DELs are based on a similar principle as  phage-

display technologies, in which the object of study is tagged with unique DNA codes, used as barcodes.  

[6] This principle brings two main advantages. Firstly, the genetic code enables to differentiate large 

numbers of unique DNA sequences, and additionally the DNA-encoded substructures can be all stored 

in one single vial, dramatically reducing the cost of necessary infrastructures. Due to the combinatorial 

nature of DELs, the library size easily grows to 6-digits numbers. In fact, a one million membered DEL  

can be constructed via three synthetic steps with 100  building blocks per step. Building blocks,  or 

synthons, are  substructures  characterized  by  appropriate  functional  groups  which  enable  the 

connectivity via specific chemistries to build up the final encoded molecules.  [7] Furthermore, the 
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DELs technology presents other advantages due to the very hydrophilic  DNA tag, especially in the 

purification, which can constitute a bottleneck in HTS. [8] 

Once DELs are ready, they can be panned over multiple targets in the selection assay. A prototype of 

the hit identification process is illustrated in Figure 1. In contrast to the HTS, no special optimization 

needs to be performed in the DEL selection assay as  long as  the proteins native conformation is  

preserved. Although only the affinity of the molecules to the target proteins is interrogated in DEL 

screening assays, this feature remains essential for the biological activity and it furnishes a very good 

starting point for optimization. 

A peculiar step that characterizes DEL only, in comparison to HTS, is surely the sequencing procedure, 

based today on readily  available  next  generation sequencing (NGS) methodologies.  [9] During the 

selection  procedure,  the  molecules  with  low  or  no  affinity  are  washed  away  and  the  remaining 

barcode are amplified by PCR (polymerase chain reaction). Hence, NGS is performed to read the DNA 

barcodes conjugated to the binding molecules. With the sequencing results at hand, the enrichment 

factors (EFs) can be calculated. EFs enable to highlight the most frequent binders,  which are thus 

considered hits. Several approaches have been investigated to calculated the EFs, [10] yet one of the 

most straightforward proposals relies on counting the copies of each sequence and normalize them 

over  their  abundance  in  control  experiments.  [11]  Finally,  the  selected  hits are  synthesized  by 

conventional organic chemistry in proper amounts for the appropriate biochemical assays. 
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results are analysed and the hit is identified.
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 3.2  DELs technology and challenges

 3.2.1 DEL synthesis

The most  widely  used technique for  DNA-encoded libraries  synthesis  is  the "split&pool" method, 

which is characteristic of combinatorial libraries. [12] A sequence of DNA that contains the primer for 

the DNA-polymerase is split in as many vessels as the number of selected building blocks for the first  

synthetic step. The primer sequence is necessary for the PCR amplification sequential to the selection 

assay. This general DNA sequence presents on one side a linker with a functional group for initializing  

the chemical synthesis. On the other side, the primer sequence is ligated with the first set of DNA  

codes. The chemical reaction involving the first set of building blocks is performed on the linker moiety 

and the new set of intermediate products are pooled together and split again to ensure that each of 

them react  with  each of  the following participants  of  the  next  step.  The alternation of  chemical 

synthesis and DNA sequence elongation is called cycle. The second DNA code is ligated to the existing 

DNA sequence and the same process is repeated for as many cycles as many sets of building blocks are 

needed until  the final  library members  are  completed.  The process of  synthesizing  a  three-cycles 

library is  depicted in  Figure  2.  The DNA barcodes  are colored in  the same hue as  the respective 

building blocks. Notably, over the synthetic cycles the library size grows exponentially as an effect of its 

combinatorial nature, as mentioned above. Therefore, chemoinformatics tools to assist the scientist in 

tracking  this  process  might  be  of  use.  In  Figure  2,  the  features  of  the  building  blocks  (BBS)  are 

highlighted: BBs in the first  and second cycle are in general  multifunctional  as the synthesis  must 

continue, whereas the BBs in the third cycle are monofunctional as they finalize the molecules and 

reactive groups are to be avoided.

In the context of these synthetic cycles,  three essential  aspects are to be considered: the ligation 

procedure, the utilized chemistry and the building blocks. Ligations procedures have been investigated 

extensively and can be either "splint"  for single-stranded DNA or "sticky ends"  for double-stranded 

DNA.  [13],[14]  The  most  challenging  decisions  are  to  be  made  regarding  the  chemistry  and  the 

building blocks. These two factors define to distinct extents the library diversity and, by consequence, 

the  coverage  of  the  chemical  space.  Notably,  libraries  based  on  different  chemistries  have  been 

demonstrated more effective in  hit  identification than libraries based on one single chemistry but 

13
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characterized  by  diverse  synthons.  [15]  For  this  reason,  suitable  reactions  for  DEL  synthesis  are 

constantly being developed. [16], [17], [18], [19] However, both factors need to be considered when 

designing a DEL.

 3.2.1.1 Chemistry

DNA-encoded  chemistry  is  a  narrow  branch  of  organic  chemistry  and  involve  a  peculiar  kind  of  

reactions,  namely  robust  transformations  with  a  broad  substrate  scope.  [16]  These  factors  are 

fundamental because in DELs synthesis it is not possible to ensure product formation at each step of  

the synthesis due to the exponential growth of the library and the pooling steps. In fact, in the analysis  

of the pooled library, the products can not be distinguished and analysing every single vessel when 

preparing ultra-large DELs is not efficient. [8] Therefore, robust transformations must deliver product 

in good yields and must tolerate water, as it constitutes the solvation sphere invariably surrounding 

the  DNA  atoms.  A  broad  substrate  scope  is  essential  for  the  chemistry  to  be  applicable  in  the 

combinatorial  context.  Additional  criteria could be the connotation as multi-component (MCRs) or 

heterocycles  forming  reactions.  MCRs  implement  multiple  diversity  points  in  the  same  step  and 

14

Figure 2: DEL synthesis by split&pool technique. The primer sequence is split in as many vessel as the number of the 
selected building blocks (BBs) for the first cycle. The first code is ligated to the primer sequence and the coupling with  
the first set of BBs is  performed. All  library members are pooled together and split  again to repeat the cycle of  
chemical synthesis and ligation. With the progress in the synthesis the library size grows exponentially due to its  
combinatorial nature. In the figure, the functionalities of the building blocks are highlighted as well. For the first and  
the second cycle, multifunctional BBs are required for the coupling with the DNA barcode and for proceeding with the  
synthesis, respectively. In contrast, the third cycle BBs must be monofunctionalized.
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heterocyclic  scaffolds  are  widely  detected  in  drugs.  [20]  Exemplary  chemistries  that  meet  those 

requirements  are,  for  example,  the  amide  coupling  or  the  click reaction.  [19]  However,  DNA 

compatibility represents the most crucial and challenging requirement. This concept is essential in DEL 

as reactions that harm the DNA or mutate it in any ways would interfere with hit identification after 

sequencing the DNA barcodes at the end of the selection assay, rendering the whole DEL process 

inefficient. 

 3.2.1.1.1 DNA-damage

DNA,  the  acronym for  deoxyribonucleic  acid,  is  the physiological  macromolecule  that  encodes  all  

functions of life. The most fascinating feature of DNA is,  in fact, the genetic code, formed by four  

components, the nucleotides. Nucleotides are divided into two pairs according to the respective base,  

showing  pyrimidine  (thymidine  and  cytidine)  and  purine  scaffolds  (adenosine  and  guanosine),  

respectively.  Beside  the  bases,  the  nucleotides  are  composed  by  the  sugar  deoxyribose  and  the 

phosphate group which connects the sugar substructures. The three-dimensional structure of DNA, 

the  double  helix,  is  arranged  by  the  hydrogen  bonds  forming  between  the  four  bases,  precisely  

adenosine with thymidine and guanosine with cytidine. Those interactions are named Watson and 

Crick base pairing after the scientists that uncovered them for the first time in 1953. [21] The function 

of DNA as physiological instructions manual is mediated by the genetic code, therefore its integrity 

must  be  preserved.  Especially  in  the  field  of  DNA-encoded  libraries,  a  mutation  or  any  kind  of 

disruption of the DNA used as barcode would be disastrous,  as the whole technology is based on 

reading the DNA barcodes for  hit identification. Therefore, the chemical reactions employed in the 

library synthesis must ideally leave the DNA barcode untouched. With this rationale,  the effect of  

various agents on DNA have been explored and some general rules can be summarized as follow. [22] 

Mutagenic  agents  are  not  suitable  for  DEL  as  they  would  irreversibly  modify  the  DNA  barcode,  

impairing the final read-out. Extreme pH values are responsible for  depurination, on one side, and 

possible deamination, on the other side. In particular, depurination is the acid-mediated mechanism 

that leads to the loss of the purine bases Adenine and Guanine, while deamination depends on basic 

conditions and metal-catalysts and provokes mismatching of the DNA bases. [17] Additionally, DNA 

suffers  the presence  of  strong oxidants  which may form the  8-oxo-Guanosine (8-oxo-G)  from the 

Guanosine. A strong oxidant can be considered a chemical entity with oxidation potential higher than 

1.29  ±  0.03  V,  which is  characteristic  of  the  base Guanine  at  neutral  pH.  The oxidation has  high 

mutagenic potential because 8-oxoG lesions are more readily depurinated and lead to base-flipping. 
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Additionally, 8-oxo-G could interact with either the cytosine or the adenosine, transforming the base 

pair  GC  into  the  AT.  [23]  A  more  detailed  discussion  about  DNA-encoded  chemistries  and  novel 

techniques to expand the DEL chemical space is reported in the respective chapter of this thesis. 

 3.2.1.2 Building blocks

As  depicted  in  Figure  2, building  blocks  or  synthons for  library  synthesis  need  to  show  specific 

properties according to which cycle of synthesis they are employed in. Bi- or tri-functional building 

blocks are necessary in the first  cycle,  while mono-functional  building blocks are preferred in the 

eventual  third cycle.  The factors  that  influence the selection of building blocks for DEL and some  

general criteria are further evaluated in the appropriate section of this thesis.

 3.2.2 Selection assay and hit identification

Once the library is synthesized with satisfying purity, its members can be screened against the selected 

targets. The choice of the targets to be investigated is  arbitrary and depends on the focus of the  

research group. This subject is discussed more in details in the section Protein selection in DEL. The 

selection assay have been tackled with different approaches over time. At first, soluble proteins were 

incubated  with  DELs  on  solid  support,  the  so  called  OBOC-DELs   (one-bead-one-compound DNA-

encoded libraries), and, after the assay, the beads bound to the proteins were identified by a specific  

antibody. [24] After the advent of the solution phase DEL synthesis by "split&pool"  technique, the 

most common approach is to conjugate the target protein on a solid support and incubate it with the  

DNA-encoded library in solution. In this case, parameters such as the buffer, the target concentration 

or the beads material play an important role. Testing a range of concentrations and different buffers as 

well as beads made of varying materials is advisable in order to validate the hits. [25] Furthermore, the 

DEL selection assay has been performed on membrane proteins of living cells or even inside living 

cells.  [26],  [27]  However,  some challenges characterize both techniques.  The concentration of  the 

library plays a crucial role for membrane proteins, and the delivery of the library, the crowding effect 

and the stability of the DNA in intracellular selections assay are to be investigated further. 

Independently on the approach, the selection assay bare uncertainties that need validation. A first 

instance for the purpose of removing false positives is represented by control experiments, performed 

in  parallel  to  the selection assay.  The most  common negative control  is  executed without  target,  

namely by incubating the library with empty beads that do not carry the protein [28], [11] The control 

16

https://doi.org/10.1002/ange.202006280
https://doi.org/10.1021/jm300449x
https://doi.org/10.1021/jacs.0c09213
https://doi.org/10.1021/jacs.9b08085
https://doi.org/10.1021/ja00074a063
https://doi.org/10.3390/ijms21218360


General introduction

experiments are employed, after the selection assay, in the calculation of the enrichment factors, for 

identifying hit compounds.

In summary, the uncertainties presented by the DEL selection assay affect the confidence of the read-

out  after  NGS.  Therefore,  not  only  statistical  methods  are  necessary  to  identify hit from  the 

sequencing data, but also computational methods are necessary to reduce the noise and distinguish 

true and false positives as well as true and false negatives. [29]
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 3.3 Chemoinformatics in drug discovery

As mentioned above, the costs, resources and time required for developing a drug are exorbitant.  

Therefore, nowadays chemoinformatics tools are utilized to accelerate and optimize this process. [30]

"Chemoinformatics is  the mixing of  information resources to transform data into information, and 

information into knowledge, for the intended purpose of making better decisions faster in the arena of 

drug lead identification and optimisation" [31] This early definition, coined by F. K. Brown in 1998, 

pointedly describes the purpose and the approach of chemoinformatics in drug discovery. The data 

produced by chemical or biological experiments are collected and processed to extract information 

that guide in designing further experiments, optimizing time and resources (Figure 3).

Figure  3:  Mutual  relationship  between  experimental  procedures  and 
chemoinformatics  in  the  process  of  drug  discovery.  Experimental  data  are 
employed  to  predict  similar  outcomes  and  improve  decision-making  in 
designing experiments.

This purpose is pursued by processing experimental data using statistical methods, in order to predict  

and better understanding immeasurable chemical phenomena.  For example, the three-dimensional 

structure,  confirmed  by  X-ray  crystallography,  is  known  for  approximately  1%  of  the  available  

compounds and, with chemoinformatics methods, it is possible to predict conformations of molecules 

according to the existing data.[32] The same principle is applicable for predicting chemical properties 

or activity for molecules which share similarities. [30] Additionally, the exponentially growing amount 

of data produced by high-throughput techniques,  such as HTS or proteomics,  can not be handled  

18

chemoinformatics

data for modelling

guidance for design  
of experiments

HTS / 
Combinatorial chemistry

https://doi.org/10.2477/jccj.5.53


General introduction

without using computers and information technology. [33] These figures highlight the importance of 

chemoinformatics in an efficient drug discovery process. 

 3.3.1 Databases 

Chemoinformatics  is  placed  at  the  intersection  of  information  technology  and  many  aspects  of 

chemistry:  from  synthetic  chemistry  or  analytical  chemistry,  to  physical  chemistry  or  even 

biochemistry. [34] According to the area of interest, the experimental data can range from chemical 

structures, to yields, to biological activities, to resolved crystallographic structures of proteins, and 

such data  are  employed to  generate  models  for  predictions.  To  facilitate  the accessibility  for  the 

scientific community,  this  information is  collected and stored into databases.  The most commonly 

known freely  available  database  of  molecules  with  the respective activity  data  is  ChEMBL,  which 

contains  2.2  millions  compounds.  [35]  Other  commercial  examples  are  the  Enamine  screening 

collection or the Aldrich Market Select with 2.9 and 14 millions molecules, respectively. [36], [37] Such 

compound collections can be purchased and used in screening campaigns such as HTS or can be used 

to predict the activity of novel chemical entities. Databases can also be generated virtually and can be 

used in  virtual screening (VS), which is the virtual counterpart of HTS. In VS, the binding between 

target proteins and virtually generated libraries is simulated, in a process called  docking. A detailed 

introduction for the docking and its application is reported in the respective section of this thesis.  Two 

main examples of such collections are the GDB-17 (Generated Database) and the ZINC15 with 200 

millions and 200 trillions molecules, respectively. [38], [39] 

 3.3.2 Chemoinformatics representation for chemical entities

In order to predict properties of chemical or biochemical entities, reliable models can be generated 

based on similar sets. However, the similarity assessment of chemical entities would be a challenging 

task for a machine if specific machine-readable formats did not exist. With such formats, machines can 

store and process chemical data, calculate chemical properties and perform similarity search.

SMILES (simplified molecular input line system) is a string format for exemplifying chemical structures. 

The string format is preferable for processing data in machines because it lacks indents and multi-lines  

that make reading them more complicated. Atoms are represented by their symbols, bonds by signs 

according to the type, branches by brackets, and rings by numbers. [40] An exemplary structure with 

the respective SMILES string is depicted in Figure 4. 
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Figure  4: Example of SMILES string: atom symbols appear in uppercase if 
aliphatic and lowercase if aromatic. Aromatic bonds and single bonds are 
omitted because considered default, while double bonds and triple bonds 
are represented by "=" and "#",  respectively.  Rings  are distinguished by 
Arabic  numbers.  The  blue  numbers  in  the  2D  structure  represent  the 
numbering followed during the generation of the SMILES string.

Since  it  uses  chemical  symbols  and  clear  rules,  this  format  allows  for  an  easy  interpretation  by 

machines and by human eyes. However, the sequence of atoms characterizing the string can start with 

different atoms of the molecules (blue numbers in Figure 4), rendering the conventional SMILES not 

unique.  Therefore,  the  canonical  SMILES  have  been  introduced  by  Daylight  Information  System, 

generating one unique string for each molecule. [41] Sometimes, instead of one exact structure, it is 

necessary to search for a pattern to detect similarities. For this purpose the format SMARTS (SMILES 

arbitrary  target  specification)  has  been  developed  by  the  same  company.  The  same  exemplary 

molecules depicted above is converted in SMARTS format in Figure 5.
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FC(C#C)C(=O)C1=CNc2cccnc12

Figure  5: Example of SMARTS pattern: atoms are represented by their atomic 
number  according  to  the  periodic  table.  The  single  bonds  are  explicit,  in 
contrast  to  the  SMILES  strings.  The  X in  the  2D  depiction  represents  any 
halogen and it is translated in SMARTS as a collection of the halogen atoms.

[F,Cl,Br,I]-[#6](C#C)-[#6](=O)-[#6]-1=[#6]-[#7]-c2cccnc-12
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The SMARTS guarantees a very precise specification of atoms and particular features, especially useful 

in substructure search. [42]

 3.3.3 Descriptors for similarity and clustering

Once the machine is  able to recognize chemical structures, measuring a sort  of distance between 

molecules is necessary to assess the similarity (or dissimilarity). Such distance can be calculated over 

descriptors, which are parameters characterizing the molecules. Descriptors can be classified in three 

categories: one-, two- and three-dimensional. 1D descriptors represent properties of the molecules, 

such as LogP,  number of hydrogen bond donors or acceptors etc.,  and they account for chemical  

similarity. 2D and 3D descriptors, on the other hand, account for the structural similarity, because they 

consider  substructures  and  conformational  flexibility,  respectively.  [34]  The  issue  with  structural 

similarity is that it varies according to the representation, so it is not absolute. Therefore, chemical  

similarity is often preferred, especially when it is used to compare chemical spaces. A more detailed 

discussion about 1D descriptors used in drug discovery and their connection with the chemical space is 

reported in the respective section of this thesis. 

In  order  to  observe  patterns  in  the  data,  draw  conclusions  and  improve  predictions  for  better 

decisions, grouping similar object is necessary. Clustering is the elected statistical methodology for this 

purpose. By definition, clustering is  an unsupervised classification because it  is  based on naturally  

grouping data according to their inherent similarity. [43] Clustering techniques are divided into two 

main  categories:  hierarchical  and  partitional.  [44]  The  hierarchical  clustering  (HC)  can  follow  two 

routes: top-down or bottom-up. In the former the whole data set is divided iteratively by dissimilarity,  

while in the latter the first single object is grouped with other similar objects until the whole dataset is  

clustered. [45] In Figure  6, the hierarchical clustering dendrogram of the Enamine collection of 646 

FDA approved drugs is depicted. 
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Due to their complexity, HC approaches require high computational resources and this factor prohibits 

their  usage  for  large  databases.  Partitional  clustering  (PC)  are  based  on  the  Euclidean  distance 

between objects,  assigning close objects  to the same cluster.  [46]  One of the most  renowned PC 

algorithm is the k-means which divide the data set in k number of clusters. It proceeds by assigning 

random centroids to each cluster,  calculating the distance of each data point to the centroids and 

grouping them according to the minimum distance. The centroids are then moved and the affiliation 

optimized until the centroids are stable  (Figure 7). [46] 
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Figure 6: Hierarchical clustering dendrogram and respective affiliated molecules of the Enamine collection of 646 FDA  
approved drugs. The attributes used for the clustering were the MQN descriptors (please see section XX of this thesis) 
and the number of clusters was set to eight. Molecules are clustered according to chemical properties: in the right 
area of  the dendrogram, compounds with  long aliphatic chains  are grouped, whereas in  the left part  molecules  
containing many hydrogen bond donors and acceptors can be spotted. In the centre, molecules with average values of 
the descriptors are reported.
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However,  the  k-mean clustering  present  some limitations:  firstly,  the number  of  k and  the initial 

centroids are arbitrary. Additionally, similar to the HC, this method is sensitive to outliers, because 

values that highly differ from the rest of the data are forcefully assigned to a cluster. For noisy and 

incomplete data set, the fuzzy c-means algorithm is more suitable than the k-means. [47] It is based on 

the same procedure but the data points can belong to different clusters. 

Clustering represents one of the most exploited intersection between chemistry and statistics, as it can 

be used to group chemical objects, as well as conformations of molecules or chemical reactions. [48]

 3.3.4 KNIME 

Due  to  the  increasing  need  for  data  analysis  skills  to  improve  decisions  quality,  platforms  with 

graphical  interfaces,  such  as  KNIME,  have  been  developed  to  process  data  and  retrieve  useful 

information. [49] KNIME is an open source software for building pipelines (workflows) of functions 

(nodes), in a modular fashion: the output of one function becomes the input of the following. This 

concept  can be  defined as  graphical  programming and  it  revealed extremely  useful  for  scientists 

lacking  prior  knowledge  in  conventional  programming.  The  nodes  can  be  divided  by  functions: 
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Figure 7: Scatter plot of the k-means clustering on the Enamine collection of 646 FDA approved drugs. The number of 
clusters, k, was set to eight and the clustering was based on the MQN descriptors. The colors depend on the cluster  
affiliation and the big data points represent the cluster centres.
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input/output  nodes read or  write data files,  processing nodes apply  functions to data in order to 

perform an analysis, visualization nodes allow for graphical reproduction of the results, with graphs or 

plots.  Loop  nodes  enable  iterating  the  same  operation  over  multiple  data  according  to  some 

parameters. In the KNIME interface (Figure 8) there are several sections, including a Node Repository, 

to store all  available nodes,  and the Description section, which introduces each node, to facilitate  

novices. 

Moreover,  chemistry-oriented  extensions  can  easily  be  installed,  allowing  for  reading  chemical 

formats, such as SMILES and SMARTS, performing chemical reactions and processing chemical data in 

general. The most important open source extensions for this purpose are RDKit, Indigo and CDK, [ 50], 

[51] whereas the ChemAxon extension is partially available for academic use, especially the Marvin 

package. [52] Finally, one of the most attractive aspect of KNIME is the constant assistance by the 

community, guaranteed via the KNIME Hub and Forum. [53]

KNIME and its extensions have been successfully employed within drug discovery projects [54], [55], 

allowing chemists or biologists for mining their experimental data. KNIME is particularly useful when 
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Figure  8:  KNIME interface.  In  the centre,  the workflow can  be constructed  by  connecting  nodes,  which  can  be  
searched in the Node Repository, highlighted in red. On the top right, the Description section introduces the selected  
node.
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dealing with large data sets produced by combinatorial libraries, such as DELs, and with selection assay 

data. To date, scarce software exists which focus on single aspects of the DEL technology and they are  

further analysed in the devoted sections of this thesis. However, no unique platform is available to 

support the DEL technology from design to validation. 
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 4 Aim of the thesis

Due to its combinatorial nature, the DNA-encoded library technology presents the challenge of dealing 

with big data sets of either molecules or sequencing data, that can not be handled manually. Analytical 

platforms  and  methods  can  be  employed  to  automatize  such  process.  In  this  thesis,  the  use  of  

chemoinformatics methodologies for supporting DEL design is explored. The design of a DNA-encoded 

library includes the selection of the chemistry and the building blocks accordingly. On the one hand, 

the chemistry must be DNA-compatible and possibly generate drug-like scaffolds. On the other hand, 

the building blocks must be adapted to the chemistry and present specific functionalities depending 

on the synthetic cycle in a given DNA-encoded library synthesis.  Furthermore,  they should enable 

covering  a  large  portion of  chemical  space,  to  increase  the  probability  of  hit  identification.  Both 

chemical reactions and building blocks can be selected from chemistry databases according to case-

dependent criteria. 

Additionally,  the  validation  of  DEL  hits  is  currently  a  pressing  topic  in  medicinal  chemistry.  [8] 

Computational  techniques such as  docking can be employed to reduce the noise in analysing the 

sequencing data.  For example,  docking can support in identifying false positives due to unspecific 

interactions  within  the  selection assay.  A  careful  analysis  of  the  docking  results  might  serve  the 

purposes of improving the selection assay and of predicting the binding poses of the elected hits. 

In the ideal case, the whole procedure would be developed via a common platform, namely KNIME.  

Such platform would allow for computer-assisted DEL design and validation, operated by chemists and 

biologists without programming skills. This set up would optimize the design of the library, reducing  

required times and resources to a minimum. In addition, it would increase the effectiveness of the 

libraries by improving the hit identification rate. 
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 5.1 Introduction

One of the challenges characterizing DNA-encoded libraries is the coverage of chemical space and it  

can be tackled by diversifying the library members, by structure and by chemical properties. It has 

been confirmed computationally that forming different scaffolds using a variety of reactions affects the 

diversity of the library more than combining different building blocks using the same reaction. [ 56], 

[15] In recent years, large efforts have been made in developing DNA-compatible reactions. [8], [16], 

[17] Beside applying chemical transformations on DNA-tagged substrates and adapting the procedures 

to  conditions  that  can be  tolerated by  the oligonucleotides  (see  the DNA damage section of  the 

general introduction), other approaches include protecting the DNA covalently by a solid support, [22], 

[57]  by  electrostatic  interactions  with  resins  [58],  by  micelles  [59]  or  by  using  PNA  [60].  These 

techniques enable the use of various reaction conditions on DNA-encoded substrates. However, the 

question remains: which reactions provide DNA-compatible conditions that form relevant scaffolds for 

screening libraries in a drug discovery project?

In response to the advances in the DEL technology, mapping the chemical reaction space and identify 

DNA-compatible  reactions  would  greatly  aid  the  design  of  DELs.  Nowadays,  the  identification  of 

potential reactions to test and apply to DEL design would require sorting hundreds of scientific articles, 

if algorithms such as the eDESIGNER did not exist. [61] This method is comprehensive because it helps 

in the selection of reactions and building blocks for DELs. However, it considers only established DNA-

encoded chemistries, neglecting all the remaining reactions that would allow for venturing outside the 

beaten track of DEL chemistry. 

Several  tools  have  been  developed  to  predict  chemical  reactions,  especially  to  optimize  the 

retrosynthetic  route  knowing  the  target  molecule.  Two  noteworthy  examples  are  Chematica, 

developed in the Grzybowski's group [62] and the work of Segler et al. [63]. These computational tools 

are able to identify the best synthetic procedures in terms of speed and resources, surpassing the 

human counterpart. Further essential aspects of reactions prediction are optimizing the conditions 

and eventually balancing reactions in a database, addressed by Gong et al. with DeepReact+ [64] and 

by Delannèe  et  al. with the  ReactionCode  [65], respectively. The former predicts yield and optimal 

conditions  for  the  input  reactions,  whereas  the  latter  unifies  the  reactions  format,  enabling  the 

classification, the similarity search and the corrections of unbalanced reactions in large databases. 
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When neither the target molecule nor the specific reactions are known in advance, algorithms that 

classify reactions are useful for library design, such as the Reaction Class Recommender, developed by 

Ghiandoni et al. to improve the practical applicability of the predicted routes, [66] and the Reactions 

Atlas, developed by Schwaller et al., to chart the reactions according to similarity. [67] 

All those approaches are based on machine learning methodologies, which involve two major aspects:  

big databases and data accessibility for chemists. Machine learning approaches need large amount of  

data for training reliable models. Commercial databases of reactions are not as common as databases 

of molecules. The Reaxys® database, trademark of Elsevier,[68] is one example, as well as the CAS data 

set.  [69]  Beside commercial  records,  a  collection of  reactions from US patents was made publicly  

available  by  Daniel  M.  Lowe  [70]  and,  recently,  the  ORD  (open-reaction  database)  was  founded, 

especially for the purpose of supporting machine learning. [71] Such repositories are built on mining 

scientific articles or patents to extract reaction schemes, conditions and other relevant information. 

However, the mining process often requires intervention by experts for constant data curation. The 

accessibility for chemists to algorithms based on machine learning is  limited to the functionalities 

implemented  by  the  developers.  In  fact,  due  to  lack  of  background  knowledge  in  programming, 

chemists might find it challenging to adapt such algorithms to their needs. For this purpose, platforms 

that  save  chemists  from  the  burden of  programming  have  been  developed,  in  particular  for  the 

purpose of data mining. The most common examples are RapidMiner [72] which requires a license and 

the  open-source  KNIME  [73].  This  platform  enables  scientists  with  little  experience  in 

chemoinformatics to perform calculations and process data according to their research focus. In the 

DNA-encoded libraries context, a straightforward tool for library design is lacking today.
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 5.2 Aim

The  vastness  of  chemical  reaction  space  has  unfortunately  been  unexplored  in  the  DEL  context, 

primarily due to the limited applicability of chemical reactions in the presence of a DNA-tag. However,  

recent advances in DEL technology have expanded the reaction conditions that can be explored, and a 

tool  to  select  reactions  for  library synthesis  is  required.  Such tool  is  demanded to  examine large 

databases of reactions, such as the Reaxys® database, and to apply relevant filters due to idiosyncratic 

requirements  for  DEL  chemistry  such  as  the  oxidation  potential  of  the  reagents  involved  in  the 

reactions, pH, temperature and solvent. Additionally, the algorithm should project the reactions in a  

three-dimensional plot for visualization of chemical reaction space and uncomplicated interpretation 

of the data. Finally, it should suggest potential chemistries for DEL synthesis. The whole process must 

be  faster  than  the  manual  search  and  easily  accessible  to  scientists  without  prior  knowledge  in 

chemoinformatics. 
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 5.3 Methods

 5.3.1 KNIME workflow

The final  KNIME workflow for  this  work was executed on a machine with the following technical  

features: memory: 7.6 GB, processor: Intel® Core™ i7-6498DU CPU @ 2.50GHz × 4, graphics: Mesa 

Intel® HD Graphics 510 (SKL GT1).

The complete scheme of the workflow is depicted in Figure  9 and the five modules are coloured in 

different hues. Beside a preliminary phase for data preparation, the first two modules filtered the data 

set according to reaction conditions and to combinatorial significance, respectively. Reactions which 

featured duplicate reactants or that produced more than one compound were excluded. The third 

module was dedicated to the description of the reactions which was utilized by the fourth module to 

arrange them in the three-dimensional chemical reaction space. The fifth module included insights 

into the final data set and the selection of reactions for application on DNA-tagged substrates.

 5.3.2 Input database

The aromatic aldehyde was the elected functional group to start developing the algorithm. This class  

of building blocks are very versatile and they allow for accessing a plethora of different scaffolds by a  

large number of reactions. Therefore, they are privileged building blocks for DELs. [74] A sample of 

100,000 reactions starting with aldehydes represented the initial data set.

 5.3.3 Data preparation

The  algorithm  started  with  a  data  preparation  section  to  select  only  reactions  containing  both 

reactants and products and with commercially available components. Hence, as the Reaxys® data set  

presents  reactions  conditions  along  with  the  scheme,  the  database  was  filtered  according  to 

conditions such as temperature, reagents, catalysts and solvents. At first, for standardizing the format, 

the temperature column was treated with a small workflow. Reactions involving temperatures higher 

than 200°C were excluded because normally these temperatures are incompatible with DELs, since it 

leads to DNA denaturation. Although 200°C was a significantly high threshold for reactions involving a 

DNA-tag, reactions conducted at high temperatures (close to 200° C) were still considered since it  

could  be  possible  to  drive  such  reactions  to  completion  by  increasing  the  concentration  of  the 

reagents at suitable (lower than 100° C) temperatures.
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Figure 9: Complete scheme of the KNIME workflow, with its five modules: the first two for filtering, the third for  
reaction description and the fourth for clustering in the 3D space. The fifth module included all the results of the 
analysis. rxns =reactions.
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 5.3.4 Filtering by conditions

The reagents and catalysts were treated together because,  in the Reaxys® database,  they are not 

distinctive  and  were  scored  according  to  DNA  compatibility.  The  scoring  ranged  from  zero  for 

incompatible reagents to four for certainly compatible reagents. Reagents that are surely incompatible 

were identified as mutagens, strong acids and bases, and oxidants. Certainly compatible reagents are 

represented by neutral buffers or salts, aminoacids or ligands. The intermediate values of 1 and 3 were 

assigned to reagents that were most likely incompatible and compatible, respectively. Such reagents 

would show similarity with a reagent classified with a 0 or a 4. The score 2 was assigned to reagents 

with  unknown  effect.  The  scoring  was  done  manually  after  extracting  all  the  reagents  form  the 

database and a complete list of the scored reagents can be found in the Appendix as KNIME report. 

Reagents and catalysts were also scored according to practical applicability, wherein the filtering was 

tailored for  the synthesis  on solid  support,  in  our case CPG (controlled pore glass),  which carries 

protected DNA tags that are cleaved under basic conditions. Furthermore, reagents that remain in 

solid state throughout the reaction, such as resins, were considered not suitable for the synthesis on 

CPG. Since this strategy allows for usage of organic solvents, they were prioritizes according to their 

boiling points. Solvents with high boiling point are preferred in DEL synthesis, due to the set up in 

polypropylene tubes that can not be air-tight sealed and long reaction times. With all these factors in 

mind, the reactions were ranked with the Pareto ranking protocol,  a multi-parameter optimization 

method. [75] In this way, reactions with temperature between 20°C and 80°C, high reagents score and 

high solvent boiling point received a higher ranking. Reactions with score zero were discarded as they 

would not be applicable to DNA-encoded chemistry. 

 5.3.5 Further refinement 

The scored reactions were submitted to further filtering. At first, reactions yielding aldehyde or acetal  

structures were excluded. The former because the reaction occurred on another reactive group of the 

molecules leaving the aldehyde unreacted and thus, it did not represent an option for our workflow. 

The latter because acetals  are highly  susceptible to hydrolysis  and usually  not  desirable  in  drugs.  

Reactions producing metal complexes were excluded as well, as such products do not represent viable  

options in terms of  DNA-encoded libraries.  Salts,  such as  hydrochlorides,  were removed from the 

reaction schemes since they would be considered reagents otherwise, impairing future steps of the 
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workflow. For this purpose,  a list  of salts extracted from the database was compiled (Appendix as 

KNIME report). 

Some filtering criteria were also applied to reactants and products. On one hand, reactions involving 

two or more identical reactants reactants were discarded because such transformations would not 

improve  the  diversity  of  the  final  product,  only  rising  the  molecular  weight.  On  the  other  hand,  

reactions with multiple side products were excluded as well, because, during DEL synthesis a complex 

mixture  is  formed  making  it  impossible  to  separate  the  side  products.  Stereoisomers  were  not 

considered as separate products since they are not distinguished in the DEL technology.

 5.3.6 Reference reactions

In the data set, 33 reactions were inserted manually to function as landmark in the final map. Those 

entries represented well-known DEL compatible reactions, published in the literature, such as the Ugi, 

the Povarov or the SnAP reactions. [22],  [57],  [76] Although such reactions already accounted for 

examples, their simplest and most general schemes were used as landmarks (Appendix as schemes).

 5.3.7 Analysis of the elements 

After analysing the intermediate results, it became evident that not all reactions presented the same 

atomic count in reactants and products. Essentially, a part of the reactions was not balanced in mass  

and  this  feature,  similar  to  the  presence  of  salt,  could  impair  the  calculations  of  the  reaction 

descriptors.  Therefore,  each  element  was  counted  and  the  differences  between  reactants  and 

products for each atom were calculated. Reactions with a null difference were balanced and therefore 

could access the rest of the workflow untouched. In reactions with a positive difference, mass was 

added to the products but it did not appear among the reactants in the reaction scheme. In fact, in  

such reactions, some reactants were missing or not correctly represented due to data management 

errors.  Violating  the law of  mass  conservation,  those entries  were  not  corrected  in  any  way and 

discarded. In contrast, reactions with a negative difference showed the presence of leaving groups 

(LGs), i.e. parts of the reactants there were lost during the reactions. Common examples of this group  

of reactions are nucleophilic substitutions or the Suzuki coupling. To correct those entries, a list of LGs  

was compiled (Appendix as KNIME report) based on the data and the LGs were matched with the 

reactants which contained them as substructures. While matching the LGs, the atoms of the LG were  

subtracted from the respective reactant prior to the descriptors calculation, within a parallel workflow.
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 5.3.8 Reaction descriptors calculation

The balanced reactions were then described according to molecular descriptors inspired by the work 

of  Feher  et  al. [77]  The  21  features  listed  in  Table  1 were  chosen  among  others  because  they 

accounted  for  substructures  contained  in  the  molecules  involved  in  the  reactions.  With  these 

descriptors, the focus was placed on the changes happening during the reactions, in order to group  

them by similarity and map the chemical reaction space. For this reason, after counting the chemical 

substructures present in the products and the reactants, they were subtracted. In this way, only the 

information about the modifications was stored, neglecting other moieties which did not participate 

directly in the reaction, such are substituents or peripheral groups. The idea of calculating reaction 

descriptors as difference was already described in literature by Schneider et al. [78] 

Table 1: Descriptors with respective type in brackets and meaning.

Descriptor (type) Meaning
NumRings (Number (integer)) number of rings

NumAromaticRings (Number (integer)) number of aromatic rings
NumAliphaticRings (Number (integer)) number of aliphatic rings

NumAromaticHeterocycles (Number (integer)) number of aromatic heterocylcles
NumAliphaticHeterocycles (Number (integer)) number of aliphatic heterocycles
NumAromaticCarbocycles (Number (integer)) number of aromatic carbocycles
NumAliphaticCarbocycles (Number (integer)) number of aliphatic carbocycles

NumRotatableBonds (Number (integer)) numer of rotatable bonds
NumAmideBonds (Number (integer)) number of amide bonds

NumAliphaticBonds (Number (integer)) number of aliphatic bonds
NumAromaticBonds (Number (integer)) number of aromatic bonds
NumCisTransBonds (Number (integer)) number of cis/trans bonds

Csp3 (Number (integer)) number of sp3 carbons
C-C (Number (integer)) number of carbon-carbon bonds
C-N (Number (integer)) number of carbon-nitrogen bonds
C-O (Number (integer)) number of carbon- oxygen
C-S (Number (integer)) number of carbon-sulfur

NumNInR (Number (integer)) number of nitrogen in rings
NumOInR (Number (integer)) number of oxygen in rings
NumPInR (Number (integer)) number of phosphor in rings
NumSInR (Number (integer)) number of sulfur in rings

 5.3.9 Feature extraction

The 21 features characterizing the reactions represented the dimensions of  the chemical  reaction 

space but, as they were, it was hard to interpret them and impossible to visualize them in the three-
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dimensional space. Therefore, they were summed forming three variables, as shown in Figure 10. In 

particular,  the  features  related  to  cyclic  substructures  were  grouped  together  after  performing  a 

correlation filter. This filter avoided redundant information which could bias the clustering and it was 

necessary because some correlations were noted among the 21 features (Figure 11). Redundancy of 

an information could affect the clustering and further analysis because that information would be 

considered more important than others. Correlations can be positive, if two variables' values grow or 

decline proportionally, or negative, if growth of one variable correspond to decline of the second one.  

For example, it was worth noticing the negative correlation between the number of C-O bonds and the 

number of C-N bonds, typical of substitution or condensation reactions. This finding would mean that 

considering only the number of C-O bonds or the number of C-N bonds would be sufficient to describe 

the reactions. The same procedure was applied to features related to bonds and to heteroatoms. At 

the end, three variables described the reactions, rings, bonds and heteroatoms, and they represented 

the dimensions of the chemical reaction space.

Figure 10: Grouping of the 21 features into the three new variables.
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Figure  11:  Correlation matrix highlighting the correlation between features. Deep blue and deep red characterize 
strong positive and negative correlation, respectively. 
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 5.3.10 Reaction classification

Notably, the three variables could assume positive or negative values if the described substructure was 

formed or converted during the reaction. For example, if one ring was closed the variable rings would 

assume a value of 1, whereas if one ring was opened the same variable would assume the value of -1.  

This distinction between forming (above zero) or breaking (below zero) variables was employed for 

classifying the reactions according to hard rules (Table 2). 

Table 2: Hard rules and corresponding classes for the reactions classification.

Rule Class

$BONDS$ = "breaking" AND $RINGS$ = "forming" AND $HETEROATOMS$ = 

"forming" => TRUE

Multi-rings or N-heterocycles 

formation

$BONDS$ = "breaking" AND $RINGS$ = "breaking" AND $HETEROATOMS$ = 

"breaking" => TRUE

Aldol condensation, ring 

opening/closure

$BONDS$ = "forming" AND $RINGS$ = "breaking" AND $HETEROATOMS$ = 

"breaking" => TRUE

Aldol condensation, ring 

opening/closure

$BONDS$ = "breaking" AND $RINGS$ = "forming" AND $HETEROATOMS$ = 

"breaking" => TRUE
Ring formation

$BONDS$ = "forming" AND $RINGS$ = "forming" AND $HETEROATOMS$ = 

"breaking" => TRUE
Ring formation

$BONDS$ = "forming" AND $RINGS$ = "forming" AND $HETEROATOMS$ = 

"forming" => TRUE
Heterocycles formation

$BONDS$ = "forming" AND $RINGS$ = "breaking" AND $HETEROATOMS$ = 

"forming" => TRUE

Grignard reaction, cyanation, 

aminoalkylation

$BONDS$ = "breaking" AND $RINGS$ = "breaking" AND $HETEROATOMS$ = 

"forming" => TRUE
Aminoalkylation
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 5.3.11 Clustering

The three variables were employed as attributes to apply the clustering protocol. The "fuzzy" c-means 

clustering  algorithm  was  chosen  because  it  has  been  proved  that  it  performs  better  than  other 

algorithms with sparse data sets. [79] In fact, even after normalization, the variables could assume 

integer values, since they described substructures that could be present in total or not at all.  The 

cluster quality was assessed by the silhouette coefficient, calculated as:

Sc= (b−a)
max (a ,b)

(Eq. 1)

The  terms  b and a are referred  to  as  separation coefficient  (inter-cluster  distance)  and  cohesion 

coefficient (intra-cluster distance), respectively. The Equation 1 implies that the more separated (big  b) 

the clusters are among each other and the more cohesive (small a) they are within each other, the 

better is the clustering quality. Before using the silhouette coefficient as measure of the cluster quality, 

its correlation with a chemically sound clustering was assessed. For this purpose, the data set was 

sampled by extracting central and peripheral entities (or reactions) from each cluster and the sample 

was validated by visual inspection. The same visual inspection permitted the identification of clusters  

of interest, that could be investigated deeply to select the reactions to be translated into DNA-encoded 

chemistry.  A  short  sub-workflow was  designed to  optimize  the clustering  parameters  "number  of 

cluster" and "lambda". The lambda parameters refers to the shape of the clusters and to improve the 

clustering it must be adapted to the data set. [80] With the optimized conditions, the clustering was 

performed and important information was extracted from the data set, as shown in the following 

sections.

 5.3.12 Reactants and catalysts versatility

In order to prioritize reactants and catalysts for their use in DNA-encoded chemistry, the versatility of 

both  was  analysed.  The  term  versatility  in  this  case  signified  the  occurrence  of  the  considered 

reactants or catalysts within the data set, especially within many distinct clusters. Considering that 

each cluster corresponded to at least one reaction type, if a reactant was part of many clusters, it  

could potentially be used in library synthesis to build different scaffolds, greatly improving the diversity 

of the final library. On the other hand, catalysts promoting many types of reactions could be worth 

screening in the DEL context, to assess their DNA compatibility. Since the DEL chemical space is limited 

by the lack of DNA compatibility of metal catalysts, this information has the potential to expand the  
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DEL toolbox. In particular, in our group the damaging effect of metal catalysts has been investigated 

and it has been proved that metal catalysts are more problematic than, for example, organocatalysts, 

especially  in  combination  with  forcing  reaction  conditions.  [22]  Therefore,  their  versatility  was 

investigated at first. Additionally, for the same reason, the correlation between the clusters and the 

metal catalysts was explored. Catalysts promoting attractive reaction types would be prioritized in the 

screening experiments. 

 5.3.13 Scaffolds in drugs

To analyse the data set in terms of accessible drug-like scaffolds, 15 of the most commonly found rings 

were compiled and searched throughout the data set as substructures. This allowed us to uncover the 

landscape of accessible products from the aldehyde building block.

 5.3.14 Anti-reactions

One group of reactions attracted our attention because it  involved nucleosides.  This  characteristic 

renders such reactions not practical in a DEL context as they could potentially occur on the DNA tag,  

modifying it and hindering the sequencing step. Therefore, we extracted and excluded all reactions 

involving nucleosides by substructure search.
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 5.4 Results and discussion

The set of workflows developed in this work formed an algorithm which from a database of chemical  

reactions  extracted  potential  candidates  for  library  design.  Additionally,  the  algorithm  provided 

important insights into the available reactions starting from the aldehyde building blocks. At first, the  

reactions were classified according to the signs of the value of the three variables using hard rules: 

breaking (-1) or forming (1) of substructures such as bonds and rings. Although by the combination of 

values (positive and negative) and the variables (rings, bonds, heteroatoms) one would expect eight 

classes (23), after visual inspection, four out of the eight classes were merged into two making a total  

of 6 classes. An analysis of the classes proportion throughout the data set is represented by the pie 

chart in Figure  44. Notably, aldol condensations and reactions yielding linear scaffolds dominated in 

this data set with roughly 10,000 reactions out of 18,000. They are followed by ring-forming reactions 

accounting for approximately 7,000 reactions. 

Despite the simplicity of this approach and the hard rules, this classification successfully covered most 

of  the  reactions.  However,  this  methodology  could  be  implemented  with  machine  learning 

approaches, similar to the work of Schwaller et al. [67] 

Since the three variables represented the dimensions of the 3D chemical reaction space, they divided 

it in sections as depicted by the scatter plot in Figure 13. The additional lines in the centre correspond 

to the null in all axes, so they split them by the sign, positive on one side and negative on the other 

side. Additionally, in Figure 13, two reactions are depicted as examples. The one in the blue box, is an 
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example of aldol condensation and it is placed in the negative part of the dimension rings but in the 

positive part of the dimension bonds, meaning that no rings are formed but only bonds. In this case, 

the presence of the leaving group did not influenced the projection of the reaction, as unbalanced  

reactions were priorly processed and corrected. [81] The one in the purple box, represents reactions 

forming heterocycles and/or more than one ring.  In fact,  it  is  placed in the positive area for both 

variables rings and heteroatoms, meaning that both substructures are formed during the reaction.[82]

Figure  13: Scatter plot of the chemical  space defined by the three dimensions  rings,  bonds and 
heteroatoms. The data point are reactions and they are colored according to the clusters. The lines 
correspond  to  the  value  zero  in  each  dimension,  dividing  the  plot  in  sections.  Each  section 
correspond to one class for a total of six classes.

In Figure 14, the data points in the scatter plot representing the chemical reaction space are coloured 

according  to  their  affiliation to  the  clusters.  The  integral  nature  of  the variables  emerged in  the 

geometrical  planes  visible  in  the  scatter  plot.  However,  each  geometrical  plane  was  divided  into 

different clusters according to the similarity among the reactions. The data points with bigger size in 

Figure 14 represent the reference reactions which were inserted manually in the database to function 
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as landmarks in the reaction landscape. The descriptors calculation and the clustering quality could 

already be confirmed by the fact  that the Ugi and the Cushman reactions belonged to very close 

clusters, compared to the Petasis reaction which was projected farther away. 

Figure 14: Scatter plot of the clustered reactions within the chemical reaction space defined by the three variables  
rings,  bonds  and  heteroatoms.  Reactions  are  colored  according  to  the  cluster  affiliation.  The  big  data  points 
represent the reference reactions, in particular the Ugi (indigo), Cushman (purple) and Petasis (green) reactions.

The quality  of  the  clustering  was  also  assessed  from a  statistical  point  of  view by  the  Silhouette 

coefficient, used for optimization of the clustering parameters such as number of clusters and lambda. 

With  the  optimal  parameters,  the  clustering  protocol  produced  58  clusters  and  45  unclustered 

reactions (Table 3).
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Table 3: Summary of all clusters with the respective number of reactions.

Cluster number of 
reactions Cluster number of 

reactions Cluster number of 
reactions Cluster number of 

reactions

cluster_29 1520 cluster_53 383 cluster_28 166 cluster_13 72

cluster_48 1455 cluster_51 375 cluster_9 149 cluster_41 67

cluster_52 1195 cluster_4 362 cluster_20 118 cluster_46 67

cluster_11 1046 cluster_50 338 cluster_23 117 cluster_1 48

cluster_47 1045 cluster_26 324 cluster_7 117 cluster_36 48

cluster_37 915 cluster_43 319 cluster_12 113 NoiseCluster 45

cluster_24 877 cluster_55 319 cluster_44 113 cluster_0 45

cluster_56 816 cluster_10 266 cluster_21 110 cluster_39 39

cluster_45 557 cluster_35 248 cluster_40 110 cluster_31 30

cluster_54 557 cluster_33 218 cluster_42 110 cluster_38 29

cluster_5 553 cluster_34 218 cluster_32 92 cluster_49 26

cluster_57 526 cluster_14 204 cluster_19 86 cluster_2 23

cluster_27 448 cluster_22 189 cluster_17 83 cluster_8 23

cluster_30 443 cluster_18 178 cluster_25 80 cluster_6 19

cluster_15 394 cluster_3 170 cluster_16 75

The largest clusters, with over thousand reactions per cluster, show aldol condensations or reactions 

producing scaffolds from a linear bond formation, confirming the reaction classification.

Although the noise cluster was highly assorted, it contained some important reactions such as one 

involving a ring opening reaction (Figure 15A) and a reaction forming sp3 rich scaffolds (Figure 15 B). 
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These  two  examples  present  DEL-relevant  reactions,  revealing  that  the  noise  cluster  cannot  be 

neglected. [83], [84]
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Figure 15: Examples of unclustered reactions from the noise: (A) ring-opening reaction [83] and (B) reaction forming 
an sp3-rich scaffold.[84]
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 5.4.1 Additional findings

Beside  confirming  the  quality  of  the  clustering  and  extracting  potential  reactions  for  DELs,  the 

algorithm provided further insights into the database, in relationship to the aldehyde functional group.

 5.4.1.1 Versatile reactants

The most common reactants excluding aldehydes and amines presented the malononitrile which took 

part in 552 reactions from 41 clusters, and dimethylcyclohexane-1,3-dione, reacting in 266 reactions 

out of 38 clusters (Table 4).

Table  4:  Top  five  versatile  reactants,  excluding  aldehydes  and 
amines.

These  two  reactants  were  involved  in  multi-component  reactions  forming  attractive  heterocyclic  

scaffolds (Figure 16).
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Reactant Cluster  
count

RXNs  
count

41 552

38 266

32 205

22 167

26 162
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Figure 16: Example reactions with (A), (B), (C) malononitrile and with (D), (E)  dimethylcyclohexane-1,3-dione. 
[85], [86], [87], [88], [89]
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 5.4.1.2 Metal catalysts analysis

These results were uncovered in collaboration with the bachelor students in the Brunschweiger group, 

Lars Grützbach and Felix Biesenkamp. At first,  all  the metal centres, i.e.  metals as part of salts or  

coordinated  by  ligands,  were  extracted  manually  from  the  data  set  and  the  respective  reactions 

counted. It is worth noticing that almost 10,000 reactions did not report any metal catalyst in the data  

set, which accounted for about 70 % of the entries. In such reactions, either no catalyst or reagent was 

reported at all in the initial table or the reported catalyst did not contain a metal centre. In the first  

scenario, only a more accurate report of data in scientific publications might solve the issue (except for 

reactions  that  occur  without  catalyst),  whereas  in  the  second  scenario,  including  organocatalysts 

would improve the performance of the analysis. The most often utilized catalyst in this database was 

zinc,  promoting  365  reactions,  followed by  titanium with 280  entries.  The complete  list  of  metal 

centres, with the respective counts is provided in Table 5. 

Furthermore, a correlation between the metal  centres and the reaction type was investigated. Since 

the quality assessment of the clustering proved that each cluster featured the same reaction type or 

very similar ones, the relationship between the clusters and the metal  centres was explored (Figure 

17). 
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Table 5: Metal centres with respective frequencies.

Query metal centre Occurency count Query metal centre Occurency count

missing 8348 [As] 8

undefined 1712 [Cr] 7

[Zn] 365 [Ga] 7

[Ti] 280 [Mn] 7

[Cu] 202 [Ru] 6

[Ag] 197 [Hf] 4

[Pd] 181 [Pb] 4

[Al] 97 [V] 4

[Yb] 94 [Y] 4

[Fe] 82 [Mo] 3

[Sn] 77 [Nd] 3

[Sb] 54 [Pt] 3

[Ce] 52 [Lu] 2

[Bi] 40 [Pr] 2

[In] 25 [Re] 2

[Ni] 21 [Te] 2

[Zr] 21 [Er] 1

[Nb] 18 [Hg] 1

[W] 14 [Sm] 1

[Au] 12 [Ta] 1

[La] 10 [U] 1

[Co] 9
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Figure 17: Heat map of the correalation btween metal centres (y-axis) and clusters (x-axis). The cells  
are colored according to the number of reactions as illustrated by the scale legend.
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Zinc and titanium proved to catalyse mostly aldol condensations or A3-couplings such as the ones 

depicted in Figure 18. [90], [91]

 5.4.1.3 Accessible scaffolds 

Finally, the accessibility of 15 most common scaffolds in drugs structures was investigated and the 

results of the analysis are listed in Table 6. Although Table 6 is sorted according to the frequency in the 

initial publication,[20] it is noticeable that tetrahydropyran accounted for 34 reactions, followed by the 

pyridine with 19 reactions.
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Figure 18: Example reactions: (A) A3-coupling catalysed by the metal zinc and (B) addition 
catalysed by the metal titanium.
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Table  6: Table  of  accessible  scaffolds.  The  reference  count  refers  to  the  publications 
reporting the most common rings in drugs. [20]

Scaffold Cluster  
count

RXNs  
count

Reference  
count

7 8 538

8 19 54

3 7 54

1 1 51

7 17 38

8 34 32

6 10 30

7 14 29

2 3 28

5 11 27

6 15 25

5 7 20
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 5.4.2 Experimental validation of applicable reactions

After performing the clustering, each cluster was sampled by extracting five reactions close to the 

cluster  centre and five reactions  at  the periphery of  the cluster.  This  process  allowed for  visually 

inspecting the representative reactions for each cluster and select the most significant in the context 

of  library  synthesis.  Two  reactions  were  selected  and  tested  on  DNA-tagged  substrates  for  their  

compatibility with the DEL process.

 5.4.2.1 Pyrrole synthesis starting with aldehyde, amine and ethylacetoacetate

This reaction was selected from a cluster of multicomponent reactions for the formation of the pyrrole 

scaffold, which is common in drugs. [20] It fulfilled the requirements of potential reactions for DNA-

encoded  chemistry,  being  a  multi-component  reaction  and  showing  a  large  scope  of  substrates.  

Although  in  the  original  publication  the  reaction  temperature  was  set  to  the  boiling  point  of 

nitromethane (103°C), it  could be applied at lower temperature on DNA, due to the excess of the 

other reagents (Scheme 1). [92] The results in terms of conversion and DNA degradation are shown in 

Table  7. An increase in temperature to 80 °C was found to be necessary to drive towards product 

formation since 60 °C proved inadequate,  independent of the metal  catalyst.  However,  at  80°C,  a 

reaction time longer than 6 hours caused degradation of the DNA barcode, reducing the conversion. 

The optimal ratio between conversion and degradation was reached at 80°C for 6 hours using the 

metal  salt  FeCl3 with 25% conversion and 30% degradation.  In contrast,  with the metal  salt  NiCl2 

conversion and degradation accounted for 19% and 52% respectively. The high value of degradation 

could be attributed to the formation of hydrochloric acid during the reaction. However, in the HPLC 

trace in Figure 19, it is shown that the product can be easily separated from the starting material and 

eventual degradation products, so the reaction can be used for library synthesis. 
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Table 7: Optimization of pyrrole synthesis on a CPG-bound DNA-aldehyde conjugate 1.a

Entry Metal salt T (°C) Time (h) Conversion [%]b Degradation [%]c

1 FeCl3 60 6 0 20

2 FeCl3 60 8 N.d. N.d.

3 FeCl3 80 6 25 30

4 FeCl3 80 8 14 45

5 NiCl2 60 6 4 25

6 NiCl2 60 8 N.d. N.d.

7 NiCl2 80 6 19 52

8 NiCl2 80 8 11 27

a The suspension of DNA-aldehyde conjugate 1 (20 nmol), benzylamine 2a (250 µM), ethylcetoacetate 3 (250 µM) and 
metal salt (25 µM) in solvent (40 µL) was shaken at the given temperature for the given time. DNA cleavage with 32%  
aq. Ammonia solution at ambient temperature for 4 h. b Determined by RP-HPLC analysis based on the ratios of 1 to 
4a (AUC). c  Determined by RP-HPLC analysis and scaled to the purity of the CPG-coupled DNA-aldehyde conjugate 1. 
MeNO2 = nitromethane. N.d. = not detected, 10mer ATGC = 5 -NH2-C6-GTCATGATCT-3 -CPG.′ ′

Figure 19: HPLC trace of the crude mixture after the pyrrole synthesis performed at 80°C for 6 hours  
with FeCl3. The peaks at 2.3 and 3.1 minutes are degradation products (37% area), while the peak at 
5.8 minutes is the starting material (32% area). The exact masses of the materials were measured by 
MALDI-TOF, whose spectra are reported in Table 22 of the Experimental part. Product is detected at 
9.8 minutes (30% area).

Using the optimized conditions, a scope of amines was investigated to assess the applicability of this 

reactions in the combinatorial context. A set of substrates, which shows diverse substitutions pattern 

and  reactivity.  Therefore,  benzylamine,  p-methoxyaniline,  p-nitroaniline,  2-aminopyridine  and 

cyclopentylamine were reacted with the DNA-aldehyde conjugate  1 under the optimized conditions 

(Scheme  2 and  Table  8).  The  benzylamine,  being  the  best  performing  substrate  in  the  original 
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publication, [92] showed the highest conversion of 28%. The  p-methoxyaniline reacted equally well, 

most likely due to the activating methoxy group. In contrast, the p-nitroaniline did not perform well, 

not delivering the product, due to the deactivating nitro group in para position to the amino group. 

Finally, 2-aminopyridine did not form the desired product and cyclopentylamine yielded only traces of  

product with high degradation. The reason for the degradation with the last amine could only be  

connected with the reactivity of the amine, since the metal salt concentration and the temperature 

were  maintained  the  same as  the other  experiments.  Overall,  the  reaction delivered  the desired 

product,  it  was  applied  to  diverse  starting  materials  and  the  respective  products  were  detected 

according to their reactivity. 
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Scheme 2: Scope of amines for the pyrrole synthesis on the DNA-aldehyde conjugate.
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Table 8: Amine scope for pyrrole synthesis on a CPG-bound DNA-aldehyde conjugate 1.a 

Entry Product 4 Amine 2 Conversion 
[%]b

Degradation 
[%]c

1 4a 2a 28 30

2 4b 2b 28 53

3 4c 2c 0 62

4 4d 2d 0 0

5 4e 2e 3 78

a The suspension of DNA-aldehyde conjugate 1 (20 nmol), amine 2 (250 µM), ethylacetoacetate 3 (250 µM) and FeCl3 

(25  µM) in MeNO2 (40 µL) was shaken at 80 °C for 6 h. DNA cleavage with 32% aq. Ammonia solution at ambient  
temperature for 4 h. b Determined by RP-HPLC analysis based on the ratios of 1 to 4. c Determined by RP-HPLC analysis 
in ratio to the purity of the CPG-coupled DNA-aldehyde conjugate 1. MeNO2 = nitromethane. 10mer ATGC = 5 -NH2-′
C6-GTCATGATCT-3 -CPG.′

 5.4.2.2 Pyrrolidine synthesis starting with aldehyde, aniline and thioester

This  reactions  produced  an  attractive  scaffold  as  well,  rich  in  Csp3  which  increases  the  three-

dimensionality of the structure. Interestingly, the reaction undergoes a ring expansion to form a 5-

membered pyrrolidine ring  starting from a 3-membered cyclopropane ring.  It  proceeded at  room 

temperature  constituting  a  valid  option for  DNA-encoded chemistry.  [93]  The  reaction was  firstly 

tested on a pyrimidine-based DNA under the conditions from the original publication, adapted to DNA-

encoded chemistry (Scheme 3). The results of these experiments are summarized in Table 9. Despite 

two metal salts being explored for this reaction, none of them enabled the formation of product.

Scheme 3: Test reaction for pyrrolidine synthesis on DNA-amine conjugate.
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Table 9: Test reaction for pyrrolidine synthesis on a CPG-bound pyrimidine DNA-amine conjugate 5.a

Entry Metal salt Conversionb Identified side productb

1 Et2AlI n.d.

2 MgI2 n.d.

a The suspension of DNA-amine conjugate 5 (20 nmol), thioester 6 (200 mM) and benzaldehyde 7 (200 mM) and metal 
salt (200 mM) in DCE (40 µL) was shaken at ambient temperature for 1 h. DNA cleavage with 32% aq. ammonia  
solution at ambient temperature for 30 min. b Determined by MALDI-TOF analysis, DCE = dichloroethane. n.d. = not 
detected, 10mer TC = 5’-TTC CTC TCC T-3’-CPG.

Instead, two side products could be detected by MALDI-TOF analysis (compound 9 and 10). The former 

was formed by the reaction between the amino group of the DNA-aniline conjugate and the thioester,  

meaning that the nucleophilic substitution was faster than the cyclization. The latter derived from the 

cleavage of the C6-amino linker of the DNA barcode, caused by the metal salt MgI2. [94] This finding 

rendered this metal salt unsuitable for DELs and might help in improving the filtering cascade. 
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 5.5 Conclusions

In  this  chapter,  the  design  of  a  novel  algorithm  to  select  reactions  for  DNA-encoded  libraries  is  

reported. Such reactions are extracted from large chemistry databases and must meet requirements 

linked to compatibility with DNA and with the combinatorial process. The elected functional group to 

start  the search was the aldehyde  for  its  ample  usage in  medicinal  chemistry.  [74]  To adapt  the 

reactions  to  DNA-encoded  chemistry,  the  algorithm  included  an  initial  filtering  cascade  which 

removed reactions involving harsh conditions, followed by a filtering step to optimize the efficacy in 

the combinatorial context. An original set of descriptors was utilized to describe the reactions and 

project  them  in  the  chemical  reaction  space.  Such  descriptors  revealed  their  effectiveness  in 

discerning similar and dissimilar reactions projecting them in different areas of the chemical space 

accordingly. Furthermore, the reactions were clustered and the clusters sampled in order to reduce to 

a minimum the data to be manually inspected. Attractive reactions for library design were extracted 

from the clusters and translated onto DNA-conjugates:  a multicomponent  pyrrole synthesis  and a 

pyrrolidine synthesis by ring expansion. The former successfully delivered product, whereas the latter 

uncovered a metal  salt  which degraded the DNA code before the reaction could take place.  This  

information might result essential for improving the filtering cascade and it underlined the need to 

generate more experimental data about DNA-compatible reagents. Additionally, insightful information 

could be gained about versatile reactants, accessible scaffolds from the aldehyde building block and 

about the most used catalysts or reagents. In summary, the algorithm provided insightful information 

about a data set of reactions starting with aldehydes. Such information could not have been retrieved 

manually and in a short time. In fact, the whole analysis progresses over approximately two-three 

hours depending on the CPU. Although not necessary, the human intervention can be implemented at 

different stages of the workflow. For example, the filtering cascade can be completely customized 

according to other contexts, such as peptides chemistry. Modifying the descriptors and the clustering 

method is  not advisable,  but it  could  become necessary  when using very different  data as input.  

Finally,  further information can be extracted from the data depending on the research focus.  The 

whole algorithm was developed in KNIME, especially for this reason: allowing chemists, lacking prior 

experience in programming, to operate it and adapt it to their needs. Over the course of the chapter, 

some limitations for the generalization of the algorithm emerged, such as the manual enumeration of 

leaving groups or the reactions classification. These two limitations might be overcome by employing 
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machine learning techniques.  The leaving group enumeration could be improved using the current 

results  as  training  data  and  predicting  eventual  leaving  groups  present  in  other  data  sets.  The 

reactions classification could be translated into something similar to the Reaction Atlas developed by 

Schwaller et al. [67] Lastly, data curation remains the most important challenge in this field, as good 

models derive from good data. Great attention is to be put in mining scientific publications or lab 

notebooks,  to  extract  complete  information  that  can  be  processed  by  chemoinformatics 

methodologies, and to include all those information in publicly available databases. [66], [71]
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 6.1 Introduction

The design of DNA-encoded libraries is oriented in two directions. The first is represented by focused 

libraries that are designed for a specific target. A focused library contains specific features and known 

motives in order to bind to the selected target. The second direction is represented by libraries that  

are not target specific. In this second case, library members are as diverse as possible in order to cover 

a larger chemical properties space. While in the first  case the chance of success is  higher due to 

established binding modes, in the second case hits might show completely novel binding modes and 

unexpected features. The unpredictability of the hit matter  for diverse libraries renders them riskier 

but the novelty in the case of hit identification is higher. 

 6.1.1 Chemical space coverage 

Reported literature on DELs suggests  that  the chemical  diversity  of  library members has a bigger  

impact  on  DEL  productivity  than  other  factors  such  as  library  size.   In  fact,  very  large  libraries 

characterized by low scaffold diversity have a lower hit identification rate than smaller but structurally 

diverse  libraries.[95]  To  define  diversity,  though,  a  premise  about  chemical  space  is  to  be  made. 

Chemical space is defined as the ensemble of all feasible chemical entities, and the properties space 

can be described as the chemical space delimited by specific properties. [96] Diversity in the library 

context can be defined as extensive coverage of chemical space and it is essential to ensure an extent 

of success in hit identification. However, despite its finity, chemical space is so vast (1026 synthesizable 

molecules) [97] that intense effort is necessary for charting it to explore the boundaries. This led to the 

development of concepts such as DOS (diversity-oriented synthesis) [98] and BIOS (biology-oriented 

synthesis) [99]. In screening campaigns of diverse libraries, the number of unique core structures is  

higher and therefore more informative about binding affinities.  By consequence,   diversification in 

library design greatly increases the probability of finding biologically active compounds. [100]

 6.1.2 Chemical space and molecular properties

Chemical diversity can be characterized by structural diversity, side-chain diversity, functional group 

diversity,  and stereochemical  diversity.  Such properties can be expressed by drug- or lead-likeness 

parameters as well as topological or pharmacophoric descriptors, which have been grouped into rules  

over  time.  Drug-likeness  is  mostly  related  to  physico-chemical  properties  that  impact 
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pharmacokinetics and bioavailability.  They have e.g.  an effect  on the permeation through the cell 

membrane, so the considered properties describe the hydrophilicity/hydrophobicity balance and the 

molecular weight among other factors. The most widely used example of such rules is the Lipinski Rule 

of five (RO5) for orally administered drugs, [101] consisting of four major constraints: 

· molecular weight ≤ 500

· Log P, octanol/water partition coefficient, ≤ 5

· H-bond donors, atoms bound to a hydrogen, ≤ 5

· H-bond acceptors, atoms without formal positive charge, ≤ 10

Molecules that stay within those limits are more prone to pass through the lipid bilayer of the cell 

membrane.  [102]  Thus,  the  absorption  at  the  gastrointestinal  level  is  increased  and  the  oral 

administration  effective.  However,  despite  constituting  a  good  starting  point,  the  RO5  does  not 

account  for  all  important  criteria  in  differentiating  between drug-  and  non-drug-like,  such  as  the 

number of rotatable bonds or the impact of selective transporters on the cell membrane. Additionally, 

it is worth mentioning that nowadays nearly half of the FDA-approved drugs are not compliant with 

the RO5. [103] Therefore, various adjustments followed the RO5. First of all, the Veber’s rule includes 

two additional parameters: the number of rotatable bonds, excluding bonds to hydrogens, and the 

topological polar surface area (TPSA), calculated as the sum of fragments’ contributions to the polarity 

of the molecule. According to the Veber's rule, the number of rotatable bonds and the TPSA should 

not  exceed 10 and 140 Å2,  respectively.  [104]  Figure  20 shows the distribution of  the mentioned 

descriptors in the Enamine database of 646 approved FDA drugs. [105]. The box plot presents the 

descriptors in the x-axis and the respective values on the y-axis. In Table 10, the statistical measures 

are  summarized for  each descriptor  for  clarity  and it  is  notable  that  FDA approved drugs  do not 

necessarily respect the RO5, as they show, for example, molecular weight up to 900 Da (instead of 500  

Da) and number of hydrogen bonds acceptors up to 21 (instead of 10). In recent years, research in the  

field of natural products and macrocycles has gradually gained momentum. Despite such molecules 

largely  exceeding  the RO5 and other related drug-likeness rules,  they can be actively  transported 

inside the cell, so the RO5 is being gradually abandoned as a strict set of guidelines. [102]
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Table  10. Statistical measures of the six descriptors included in the Lipinski's and Veber's rules, calculated for the 
Enamine database of FDA approved drugs.

Statistic measure LogP HBA HBD MW(desalted)
Rotatable 

bonds 
TPSA

Minimum -10.498 5.0 0.0 75.067 1.0 0.0

Lower Whisker -4.56 5.0 0.0 75.067 1.0 0.0

Lower Quartile 0.085 7.5 0.0 225.284 7.0 53.16

Median 2.053 11.0 2.0 303.538 14.5 77.9

Upper Quartile 3.669 17.5 13.0 392.4 23.0 109.57

Upper Whisker 8.945 21.0 13.0 627.94 40.0 193.91

Maximum 10.967 21.0 13.0 958.224 40.0 347.32

Lower Quartile: value of the variables at 25% of the dataset;  Median: value of the variables at 50% of the dataset; 
Upper Quartile:  value of the variables at the 75% of the dataset; IQR: interquartile range, difference between the 
upper  quartile  and  the  lower  quartile;  Lower  Whisker:  1.5  below the  IQR;  Upper  Whisker:  1.5  above  the  IQR; 
Minimum: actual smaller value of the data set; Maximum: actual larger value of the data set.
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Figure 20: Box plot of the six descriptors included in the Lipinski's and Veber's rules for the Enaminedatabase of FDA 
approved drugs. The descriptors are on the x-axys and the respective values on the y-axis. The values inside the box 
plot represent the median, the interquartile ranges and the whiskers (see Table 10).
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Beside the drug-likeness related properties, other descriptors have been explored, which focus more 

on molecular substructures. Examples of such properties are the number of rings or heteroatoms in 

rings included in the chemoinformatics package RDKit. [50] Those features are covered by the MQN 

(molecular  quantum  number)  descriptors.[106]  This  set  of  features  accounts  for  all  significant 

structural properties related to atoms or connectivities and they were largely employed in medicinal 

chemistry to map the chemical space in search of novel drug-like compounds. [96] Lastly, molecules 

can be described by their three-dimensional shape, which is an important criterion related to binding 

affinity. This topic is discussed in detail in the section Chemical space visualization. 

The diversity within the library members'  space is  connected with the reactants space due to the 

combinatorial connotation of DELs. [107]. Thus, to ensure heterogeneous collections of products, the 

building blocks must be carefully selected. This endeavour is especially challenging when huge data 

sets of fragments are provided by companies such as Enamine [36], Merck [37] or UCSF [108]. [109] 

Such databases contain millions of compounds and all are potentially valid building blocks for library  

synthesis.  Therefore,  chemoinformatics  tools  come into the field  for  applying  filters  and selecting 

diverse sets of fragments. 

 6.1.3 Building blocks selection by chemoinformatic tools

To date,  the most  noteworthy  algorithm to  design  DELs  is  the  eDESIGNER,  developed by  Martìn, 

Nicolau and Toledo at Ely Lilly in 2020 [110]. The  eDESIGNER focuses on the choice of the proper 

reactions to optimally connect building blocks defined by their functional group. Less attention is put 

on the selection of building blocks for diversity purposes and on the filters for big databases, beside 

special functionalities that react with water and would cause problems in a DEL context. In a recent 

publication  from  Prof.  Varnek's  group  [111]  which  attempted  to  characterize  the  potential  DEL 

chemical  space,  another  algorithm called  SynthI [112]  was  employed prior  to  the  eDESIGNER for 

selecting  the  building  blocks.  These  two  publications  show  the  importance  of  the  number  of 

functionalities  in  each  building  block.  In  particular,  bifunctional  or  trifunctional  fragments  are 

preferred in the first steps (cycles) of the DEL synthesis, to enable successive library synthesis. On the 

other hand, bifunctional building blocks are necessary in the first cycle to be coupled to the DNA tag,  

whereas abundantly available monofunctional building blocks can only be used in the last cycle of a  

DEL synthesis, or if trifunctionalized scaffolds had been coupled in the first step.
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In designing a DEL, especially if the diversity is the main priority, special attention needs to be paid to 

the scaffold, as it has been proved that scaffold diversity impacts the effectiveness of the library more 

than  the  building  blocks  diversity.  [15],[113]  Therefore,  the  filters  applied  to  large  collections  of 

building blocks for selection are based on the chemistry that characterize the library. However, few 

criteria can be considered quite general and widely applicable. Fragments displaying functionalities 

that can disturb biological assays, called PAINS (Pan-assay interference compounds) are to be avoided. 

[114] The second group of criteria is embedded in a rule, similar to the RO5, but adapted to fragments,  

the Goldberg’s rule of two, which quotes: MW < 200 Da, cLogP < 2, number of H-bond donors ≤2, and 

number of H-bond acceptors≤ 4. Following this rule may ensure an acceptable compound size and 

compliance with the RO5 of the final library members. [115] Once the building blocks are adapted to 

the chemistry and they conform with the Goldberg’s rule of two, they can be selected for diversity.

 6.1.4 Chemical space visualization and similarity

Diversity is by definition the opposite of similarity. The more intuitive way to understand the similarity 

between molecules is to project them in the chemical space according to the values of the descriptors 

and calculate the Euclidean distance as presented in Equation 2. Here, D is the distance or the plane in 

a three-dimensional space, and a and b the projection of the molecules on the axes of the chemical 

space. [116]

D=√a2+b2 (Eq. 2)

 6.1.4.1 Principal component analysis (PCA)

The chemical space is delimited by chemical properties that represent its dimensions. Therefore, for 

visualization and interpretation, up to three variables can be easily employed, whereas more than that 

becomes complicated. The MQN (molecular quantum number) descriptors constitute a good example 

for  this  concept  as  they  account  for  42  variables  which  are  all  equally  important  for  describing 

molecules.  In such cases,  reducing the dimensions of the data is  essential and the most practised 

algorithm for this purpose is the PCA (principal component analysis).  [117] The PCA identifies the 

variables that impact the most the considered dataset and, by linearly combining them, it generates 

new variables called principal components or eigenvector. In particular, the first component coincides 

with the variable with the highest variance, the second component is orthogonal to the first and the 

rest likewise. 
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The dots in Figure 21 are variables which describe structural features of a set of molecules. They are 

placed in the 3D space, defined by three orthogonal planes, according to their values and correlated 

variables  are  depicted  in  the  same  hue.  Some  correlations  are  clear:  for  example  the  variables 

describing aromatic rings and aromatic bonds (bonds in aromatic rings) show similar information, as 

well as the two variables rotatable bonds and molecular weight. In this model, there are nine variables  

and their values cannot be plotted together as nine dimensions are too many. Therefore, the PCA 

comes into play and generates three principal components which account for all the nine variables. In  

this way, it is possible to display a dataset with many dimensions. In Figure 22, the dots in the chemical 

space  defined by  the  three  principal  components  are  molecules  projected  in  the chemical  space 

according to the values of the variables combined in the principal components. Peculiar characteristics 

can be deduced by looking at the plot in Figure 22. For example, molecules on the bottom left in Figure 

22 are  characterized  by  aliphatic  substructures  while  molecules  on  the  top  feature  aromatic 

substructures. With this procedure, complex data sets can be plotted aiding data analysis.
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Figure  21:  PCA.  The  variables  describing  a  data  set  (nine  dimensions)  are  linearly  combined  into  the  principal  
components or eigenvectors. The dots in the 3D space represent the variables and they are colored with the same hue 
if  correlated. After the PCA, the initial variables are grouped according to correlation and form the new principal  
components.
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 6.1.4.2 Principal moment of inertia (PMI)

Beside chemical properties, molecules can be described by geometry as well.  This parameter is as 

important as the chemical descriptors because molecules bind to target proteins when their shape is  

complementary to the binding pocket. [56] Although basing the binding affinity only on shape would 

be an oversimplification, this parameter can be considered to obtain a more comprehensive overview 

on chemical space coverage by a screening library. The shape of the molecules can be described as a  

combination of the three principal moments of inertia (PMIs), which correlate the shape and size of 

the molecules with the axes of inertia. In Figure 23 A, as an example, the PMIs of the water molecule 

are depicted in relation to the centre of mass of the molecule. The centre of mass of the molecule is  

defined  as  the  point  in  which  the  sum  of  all  the  distributed  masses  equals  to  zero.  [56]  The 

normalization of the first two PMIs over the third one generates the triangle plot displayed in Figure 23 

B. In this case, the considered dataset is the Enamine database for FDA approved drugs. At the vertices 

of the triangle are the three extreme shapes (rod, sphere and disc) and the molecules can assume all  

shades  of  those  three.  It  is  noticeable  that,  with  some  exceptions,  approved  drugs  account 

predominantly for the rod-like shape and slightly for the disc-like.
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Figure 22: The chemical space is delimited by the three principal components extracted 
by PCA. In this scatter plot, the data points represent the Enamine database of 646 FDA 
approved drugs, characterized by the properties included in the principal components.
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In the context of combinatorial libraries, such as DELs, and especially for untargeted libraries,  diversity 

of the members is an essential feature to enhance the probability in identifying relevant hits. This can 

be achieved by accurately selecting the building blocks prior to library synthesis from larger collections 

of  fragments.  To  date,  no  selection tool  which  aim  for  diversity  has  been reported.  Additionally, 

visualization options that assess the significance of the virtual library prior to synthesis could serve in 

optimizing resources and efforts. In fact, by observing the chemical space covered by the virtually  

designed library,  it  could  be possible  to  improve decision making  and to  prioritize chemistry  and 

building blocks before starting the synthesis.
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Figure 23: PMI analysis. (A) PMIs for the water molecules, as example, in function of the centre of mass. The origin  
of the three PMI axes (I1, I2 and I3) is the centre of mass. (B) The triangle plot delimited by the normalized values of  
the first two PMIs over the third, where the molecules are placed according to their shape: rod-, disc- or sphere-
like. The data points are the Enamine database of FDA approved drugs.
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 6.2 Aim

The objective of this chapter is to develop an algorithm which automatizes the selection of building 

blocks for DNA-encoded libraries. It should contain all the filters reflecting the above mentioned rules 

such as the Goldeberg's rule of two, to reduce the manual effort for building block selection to a  

minimum. However, the chemist's intervention is needed to input the chemistry which connects the 

building blocks.  In fact,  the building blocks selection is  based on the chemistry  characterizing the 

library and on the cycle for which the building blocks are selected. As mentioned before, the number 

of functionalities depends on the cycle. After connecting the building blocks according to the designed 

chemistry and forming the members of the library, the workflow should present the data in graphs 

which enhance the interpretation of the results and guide further decisions. Aiming for diversity, the 

library members should cover a large chemical space. This translates, for example, into occupying large 

portions of a scatter plot defined by the PCA (principal  component  analysis)  dimensions obtained 

combining molecular properties. Additionally, the library members should vary in shape and geometry 

and this parameter can be verified by the PMI (principal moment of inertia) analysis. In order to assess 

their  significance,  virtually generated libraries can be compared to drug-like molecules in terms of 

chemical space and shape and, to render the whole workflow accessible to chemists, the open source  

KNIME Analytics Platform is the software of choice. 
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 6.3 Methods

In our laboratory, three reactions were tested by Dr. Marco Potowski (postdoctoral fellow in the PD 

Brunschweiger's group) on DNA conjugates, namely the Povarov, Biginelli and aza-Diels-Alder reaction 

(Scheme 4). [22] 

Due to the good yields and wide substrate scope, they were considered as potential candidates for 

library  design  and  synthesis.  For  the  purpose  of  creating  three  virtual  libraries  based  on  the 

aforementioned reactions, the building blocks were selected from the Aldrich Market Select database 

via the KNIME Analytic Platform. This database was chosen because it contains a comprehensive list of  

commercially  available  building  blocks.  In KNIME,  the molecular  weight  threshold was set  to  200 

Dalton following the rule of two. Building blocks with secondary functional groups, which could yield 
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Scheme 4. Reactions tested on DNA-tagged substrates: Povarov, Biginelli and aza-Diels-
Alder. In the dotted square the respective scaffolds are emphasized.
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side products were excluded. Another regarded criterion in the selection was the substitution pattern 

on the aromatic ring, wherein sterically bulky substituents and electron withdrawing groups in the 

ortho position were ruled out. The filters were also based on the reactivity of some specific building 

blocks  such  as  heteroaromatic  amines  which  were  therefore  removed  from  the  data  set.  After 

selecting all the necessary classes of molecules to build the virtual libraries, the chemistry-oriented 

extensions of KNIME were used for simulating the chemical reactions. Although experimentally multi-

component reactions occur in one pot, they were split in series of subsequent steps to obtain the final 

molecules. The size of the three libraries was kept more or less constant to allow for comparison at 

later stages. The properties of each library member were then determined in order to predict the final 

chemical and geometrical space coverage. We choose to define the chemical space by physicochemical 

features  grouped  into  42  topological  and  pharmacophoric  descriptors  called  MQN  because  we 

considered them to be very comprehensive.  [106] The complete list  of MQN descriptors  with the 

respective meaning in terms of count of atoms or substructures is explicated in Table 11. 
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Table 11: Overview on the MQN descriptors and the respective meaning in terms of count of atoms or substructures.

MQN descriptors counts MQN descriptors counts

MQN1 carbon MQN22 H-bond donor sites

MQN2 fluorine MQN23 H-bond donor atoms

MQN3 chlorine MQN24 negative charges

MQN4 bromine MQN25 positive charges

MQN5 iodine MQN26 acyclic single valent nodes

MQN6 sulfur MQN27 acyclic divalent nodes

MQN7 phosphorous MQN28 acyclic trivalent nodes

MQN8 acyclic nitrogen MQN29 acyclic tetravalent nodes

MQN9 cyclic nitrogen MQN30 cyclic divalent nodes

MQN10 acyclic oxygen MQN31 cyclic trivalent nodes

MQN11 cyclic oxygen MQN32 cyclic tetravalent nodes

MQN12 heavy atoms MQN33 3-membered rings

MQN13 acyclic single bonds MQN34 4-membered rings

MQN14 acyclic double bonds MQN35 5-membered rings

MQN15 acyclic triple bonds MQN36 6-membered rings

MQN16 cyclic single bonds MQN37 7-membered rings

MQN17 cyclic double bonds MQN38 8-membered rings

MQN18 cyclic triple bonds MQN39 9-membered rings

MQN19 rotatable bonds MQN40 ≥10-membered rings

MQN20 H-bond acceptor sites MQN41 nodes shared by ≥2 rings

MQN21 H-bond acceptor atoms MQN42 edges shared by ≥2 rings

The geometrical  space was defined by the PMI (principal moment of inertia) properties which are 

related to the three-dimensional shape of the molecules. This prediction could function as feedback 

for  the building  blocks  selection as  it  could  underline  the effect  of  the starting materials  on the 

properties of the final molecules. The properties of the final library members were compared with 
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Enamine catalogues of drug-like compounds since it provides an estimate for the value of the chemical 

and geometrical space coverage of the potential library. The comparison may lead to two possible  

scenarios: on the one hand, the library chemical and geometrical space might overlap with existing 

databases, meaning that the molecules produced by the library might show similar properties and 

presumably similar biological activity.  This outcome might be considered promising in terms of  hit 

identification rate  but  does  not  produce  novelty.  If,  on  the  other  hand,  the  two  data  sets  cover 

different chemical and geometrical space, this characteristic might pave the way for discovering new 

classes of  bioactive molecules or  for  expanding the biological  space by exploring  not-yet  drugged 

targets. Furthermore, such comparisons allow for better allotting resources in the laboratory practice. 

One could prioritize the synthesis of library covering either a wider or a very specific chemical and 

geometrical space according to the current requirements. 

A very similar procedure was applied to the creation of another virtual library based on subsequent 

reductive amination and Suzuki coupling (Scheme 5).

The  starting  materials,  namely  arylaldehydes  containing  a  halide  moiety,  were  selected  from  the 

Enamine REAL space database and the molecular weight threshold of 200 Da was applied as well. For  

the purpose of  optimizing  the building blocks selection and predicting the properties of  the final  

molecules, the library was enumerated according to the selected starting materials and the resulting 

coverage of chemical and geometrical space was compared with three Enamine collections: the FDA 

approved  drugs,  natural  products-  and  lead-like  compounds.  For  this  second  application  of  the 
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Scheme 5. Design of the library based on reductive amination and Suzuki coupling. The initial building block 
is the diamine which is coupled to the DNA via amide bond. The aldehyde with the halide moiety reacts by  
reductive amination with the free amine and the Suzuki coupling takes place with the boronic acid. The last  
step is the final coupling with a carboxylic acid after boc-deprotection of the second amine.
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enumeration procedure, the descriptors were chosen to be closely related to the Lipinski's RO5 and 

the Veber's rule: the molecular weight (MW), the hybrid LogP (SlogP), the number of hydrogen bond 

donors and acceptors (HBD and HBA), the topological polar surface area (TPSA) [118] and the number 

of  rotatable  bonds. The SlogP  (hybrid  logP)  was  chosen because,  in  addition to  the  conventional 

atomic LogP, it takes into consideration the effect of the neighbouring atoms and is therefore more  

suitable for more complex systems. [119] With only six variables to delimit the chemical space, the 

dimensionality reduction by PCA (principal component analysis) was not essential and was therefore 

omitted. This omission was possible because the descriptors could be alternatively employed as axes 

in the scatter plot defining the chemical space and thus each molecule in the plot could be directly  

correlated to the value of the considered descriptor. Furthermore, the usage of the PCA causes a loss 

of information and interpretability, since the PCA dimensions hardly reflect a clear combination of the 

initial variables. Therefore, for this study case, two maps of the chemical space were generated by 

plotting the MW vs HBD vs HBA and the SlogP vs TPSA vs rotatable bonds, respectively. Comparing the 

chemical  space  covered  by  those  data  sets  was  intrinsically  informative  as  we  expected  natural 

product-like  molecules  to  cover  a  different  space  than  drug-like  compounds.  Via  this  similarity 

assessment,  it  was possible to  clarify  whether the library members were in the right  direction to 

become drugs after an optimization process. Moreover, the coverage of similar chemical space might 

hint to a similar bioactivity and this information might be beneficial in choosing the target proteins to  

screen during the selection assay. If the virtual library members and the ligands for a specific protein  

resemble in terms of chemical space, this protein might constitute an attractive option for screening.
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 6.4 Results and discussion 

 6.4.1 Libraries based on Povarov, Biginelli and aza-Diels-Alder reactions

After  appropriately  selecting the building  blocks,  the  three  libraries  based  on tetrahydroquinoline 

(Povarov, P), dihydro-pyrimidinone (Biginelli, B) and dihydro-pyridinone (aza-Diels-Alder, DA) scaffolds 

were enumerated with KNIME (examples shown in Table 12). In Table XX, the molecules are depicted 

with the respective affiliations.

Table 12: Example molecules extracted from the P, B and DA libraries.

Molecule Scaffold

Biginelli

Povarov

Povarov

aza-Diels-Alder

80



Building blocks selection

The MQN descriptors were calculated for randomly picked samples of 1000 molecules for each library  

and for the Enamine drug-like compounds database and the dimensionality was reduced from 42 to 

three  by  PCA.  The  scatter  plot  in  Figure  24 illustrates  the  chemical  space  defined  by  the  PCA 

dimensions resulting from the dimensionality reduction and normalization of the four data sets. In  

particular, the x-, y- and z- axes represented the PCA dimension 0, 1 and 2 respectively, namely the 

three  principal  components.  Overall,  the  four databases  overlap to some extent,  especially  in the 

centre of the plot. The subset that overlaid the most with the drug-like molecules space was the DA 

occupying  in  prevalence  the  centre,  whereas  the  Biginelli  and  Povarov  reactions-based  libraries 

covered the bottom left and right areas of the plot, respectively. The Biginelli library settled a lower 

value of PCA dimensions 0 and 1, while the Povarov library covered lower values of the PCA dimension 

1 and higher values of the PCA dimension 0. The Enamine data set stood out for occupying regions  

with higher values of the PCA dimension 1. 

To understand in depth the meaning of this projection, the PCA dimensions needed to be tracked back  

to  the initial  variables  that  influenced them the most.  After  extracting the three most  influential  

eigenvector,  corresponding  to  the  three  PCA  dimensions,  the  variables  connected  to  them  were 

analysed. The correlations between the eigenvectors and the three most influencing variables each are 
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Figure 24: Scatter plot of the distribution of the P, B and DA libraries in comparison with the Enamine database of  
drug-like compounds. The dimensions of the scatter plot are represented by the principal components from the PCA.
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depicted in Table  13 and the analysis resulted in the following assumptions. The eigenvector 0 was 

related mostly to acyclic single bonds, cyclic divalent nodes, acyclic single valent nodes, whereas the 

eigenvector 1 to heavy atoms, cyclic trivalent nodes, hydrogen bond acceptor atoms and eigenvector 2 

with acyclic triple bonds,  5-membered rings,  cyclic nitrogen. By consequence,  the PCA dimensions 

were considered to be affected by the same parameters. To give a more chemical interpretation, the 

first  principal  component  seemed to  prioritize aliphatic  structures  as  well  as  saturated  rings.  The 

second  principal  component  could  relate  to  the  presence  of  heavy  atoms  which  acted  as  HBA 

(hydrogen bond acceptor), such as carbonyl oxygen. Notably, heavy atoms in this context represent all  

atoms except  hydrogen.  Finally,  the third  principal  component  could be correlated with nitrogen-

containing heterocycles, in particular 5-membered rings.

Table 13: Correlation of each principal component (or eigenvector) with three initial variable, in order to interpret the 
PCA.

eigenvector MQN descriptor

0. eigenvector acyclic single bonds

0. eigenvector cyclic divalent nodes

0. eigenvector acyclic single valent nodes

1. eigenvector heavy atoms

1. eigenvector cyclic trivalent nodes

1. eigenvector H-bond acceptor atoms

2. eigenvector acyclic triple bonds

2. eigenvector 5-membered rings

2. eigenvector cyclic nitrogen

With this in mind, the position of the Enamine data set on the upper part of the graph meant that  

drug-like molecules contained a higher number of heavy atoms in comparison to the library members.  

On the other hand, the comparison between the Povarov and Biginelli libraries confirmed the nature 

of the two different scaffolds. In fact, the former contained preferentially saturated rings compared to 

the latter. Overall, in terms of structural properties, the aza-Diels-Alder library placed itself the closest 
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to the drug-like space, representing an excellent candidate to be investigated further with different 

combinations of building blocks. This finding was also confirmed in terms of geometrical properties as 

shown in the PMI plot in Figure 25.

Here, the dots were colored according to the affiliation of the molecule to the database: the three 

libraries or the Enamine database of drug-like compounds. It is noticeable that drug-like compounds 

tend to take the shape of a rod and this common inclination was also detectable for the other data  

sets. Despite that, the  aza-Diels-Alder library, containing the highest Csp3 fraction, presented some 

examples of  spherical  compounds (Figure  26),  followed by the Biginelli  and Povarov libraries.  The 

roundness of the molecule depends on the occupancy of the 3D space in all directions. Molecules with  

aromatic rings tend to be more two-dimensional since their atoms are disposed in planes, whereas 

molecules with sp3 bonds stretch over all directions of the space.
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Figure  25: PMI triangle plot  for the three P,  B  and DA libraries  and the Enamine database of  drug-like 
compounds. Particular molecules are highlighted by the letters A, B and C (structures shown in Figure 26).
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 6.4.2 Library based on reductive amination and Suzuki coupling

The  building  blocks,  in  this  case,  were  extracted  from  the  Enamine  REAL  database  and  filtered 

according to different criteria. First of all, the required functional groups to react in the library were 

the aldehyde and the Bromine/Iodine groups for the reductive amination and the Suzuki coupling,  

respectively. From this set, molecules containing sulphur atoms were excluded as well as PAINS and 

fragments  including  more  than  one  ring  as  they  would  be  to  heavy  for  one  cycle  in  the  library  

synthesis. After that, among additional filtering steps, we ensured that no sterically hindering moiety 

was placed in ortho position to the aldehyde and we picked a diverse set of five as show in Table 14 

where the related properties are displayed as well. As noticeable, the building blocks were diversely 

substituted and heteroaromatic rings were present to increase the diversity of the library. The Bromine 

or Iodine substituents were placed in different positions on the aromatic ring in order to expand the 

shape scope, as they could orient the ring coupled by the Suzuki reaction in different directions. 
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Figure 26: Molecules corresponding to the data points in the PMI plot in Figure XXX. (A) DA molecule 
with the most spherical shape, followed by (B) the B molecules and (C) the P molecule.
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Table 14: Five selected aldehydes with halogen moieties, with few respective properties.

Molecule Catalogue_ID ExactMW NumRings
NumAromatic

Rings

NumAromatic

Heterocycles

EN300-20799 201.94 1 1 0

EN300-305394 228.94 1 1 0

EN300-112542 231.94 1 1 0

EN300-300047 214.96 1 1 1

EN300-345166 198.96 1 1 1

These  building  blocks  were  virtually  reacted  with  a  mono-boc-protected  diamine  by  reductive 

amination and then with randomly selected boronic acids from the same database via Suzuki coupling.  

The last step of the virtual synthesis was a t-boc-deprotection/amide coupling virtual reaction in which 
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the t-boc (tert-butyloxycarbonyl) group on the boc-protected amine was substituted by the carboxylic 

acid.  The final  products were properly labelled according to the utilized building blocks to ensure 

traceability over the whole library synthesis and screening process. In Table 15, a random sample of 5 

molecules is illustrated with the respective labels. The molecules are composed by four parts which  

derive, respectively, from the aldehyde, the diamine, the boronic acid and the final carboxylic acid.  

Notably, on the diamine side, there is another t-boc group, which correspond to the attachment point 

to the DNA. The "BB_comb" column contains the labels which are characterized by three alphabet 

letters A, B and C for cycle 1, 2 and 3 respectively and by numbers defining the specific substructure. 

This  labelling  step  is  essential  with  DELs,  and  combinatorial  libraries  in  general,  due  to  the  vast 

numbers of compounds in the data set. The same labelling procedure could be applied to a 96-well  

plate in which each compound is labelled according to the respective well.
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Table  15:  Examples of molecules resulting from the reactions between the five aldehydes and boronic acids, with 
respective labels for traceability.

BB_comb Molecules

A2_B3_C53

A3_B15_C22

A4_B10_C73
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The descriptors for those molecules were calculated and, in contrast to the previous analysis,  only 

descriptors related to the Lipinski RO5 and the Veber's rule were considered such as the number of 

HBD (hydrogen bond donors), the number of HBA (hydrogen bond acceptors), the SlogP (hybrid LogP),  

MW  (molecular  weight)  and  TPSA  (topological  polar  surface  area).  In  order  to  improve  the 

interpretability of the results, the PCA (principal component analysis) was omitted and the descriptors 

were  alternatively  plotted  in  the  3D  chemical  space.  The  synthesized  and  described  library  was 

compared  to  the  Enamine  collections  as  illustrated  in  Figure  27-30. In  particular,  the  Enamine 

collections included FDA approved drugs as well as natural products-like and lead-like compounds. 

Lead-like compounds differ from drug-like compounds as they normally show lower molecular weight, 

which allow for further optimization in terms of pharmacokinetics. An overview of the six descriptors  

over  the  four  data  sets  is  illustrated  in Figure  27. It  is  noticeable  that  drugs  surpass  all  other 

descriptors from all points of view, whereas the library and the lead-like compounds are the most 

similar. They coincide regarding the TPSA and the number of rotatable bonds, while they are very close 

for MW, NumHBA and SLogP. This is certainly a good sign, as DEL hits are submitted to optimization 

steps that would, for example, increase the MW or the TPSA to increase affinity and bioavalibaility.

Figure  27:  Descriptors values over the four data sets: library (red), Enamine databases of FDA approved  
drugs (orange), lead-like (green) and natural products-like (blue) compounds. On the x-axis the descriptors  
are listed, while on the y-axis the respective values are represented. The bar chart is split in two because  
the MW and the TPSA would be out  of  scale,  rendering the differences among the other  descriptors  
invisible. NP = natural products, MW= molecular weight, TPSA = topological polar surface area, NumHBA =  
number of hydrogen bond acceptor, NumHBD = number of hydrogen bond donors. 
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In 28 the four data sets are depicted in different colours in the 3D chemical space defined by the SlogP, 

MW and TPSA. 

Regarding these three variables, the four data sets mostly overlap, except some molecules from the 

drug-like database that presented either a very hydrophilic structure, such as modified nucleotides 

(Figure 29 A), with negative SLogP or long saturated chains that made the number of rotatable bonds 

increase drastically (Figure  29B). The variable TPSA compressed the data points in one region of the 

chemical space, meaning that in terms of balance between polar and unpolar groups the four data sets 

were  very  similar.  Only  the  drug-like  molecules  differed  and  scattered  away  from  the  densely 

populated area, reporting examples of very high TPSA. In fact, the exemplary molecule pictured in 

Figure 29 C features predominantly the polar oxygen and nitrogen atoms.
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Figure  28: 3D scatter plot delimited by the variable SLogP,  TPSA and number of rotatable bonds. Particular  
molecules are highlighted by the letters A, B and C (structures shown in Figure XXX).  Library members are 
colored in red, FDA approved drugs in green, natural products-like  (NP-like) and lead-like compounds in blue 
and purple respectively. 
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In  Figure  30, the same scatter plot is displayed but, in this case, the axes represent the molecular  

weight, the numbers of hydrogen bond donors and acceptors. One feature that stands out was the  

presence of linear patterns due to the integer nature of the HBD and HBA descriptors,  which can 

assume only whole numeric values. In contrast to Figure XX, here the three data sets are not overlaid 

and, while the drug database is spread all over the chemical space, the library members, the natural 

products- and the lead-like molecules are differentiated by the molecular weight. In fact, the library 

members cover higher molecular weights compared to the other data sets and average values of HBA.  

Notably, the drugs database stood out for providing HBA and HBD rich compounds. A positive outcome 

in  this  case  is  represented  by  the  similarity  between  the  library  and  the  lead-like  compounds, 

especially in the centre of the plot.  This means that the library members are similar in molecular  

properties  to  lead-like  compounds,  which  represent  the  penultimate  stage  in  the  drug  discovery 

process.
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Figure 29: Molecules corresponding to the data point highlighted by the respective letters in the scatter plot  
in Figure  28: (A) compound with low SLogP, (B) compound with high number of rotatable bonds and (C)  
compound with high TPSA. These molecules are all examples of the Enamine database of FDA approved  
drugs. n.rot.bon. = number of rotatable bonds.
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It appeared clear from this second analysis that the results were more easily interpretable than after 

reducing the dimensions by PCA. In designing a not targeted library, the choice of building blocks that  

allow for wide chemical space coverage and for the similarity of library members with existing drugs or  

drug-like molecules are essential parameters to be considered. 

Similar to the first case study, we analysed the libraries from a geometrical point of view according to 

the PMI properties (Figure 31). For this analysis the library members were compared to databases of 

existing drugs,  lead-like  compounds,  and natural  products-like molecules.  The presence of  natural 

product-like  compounds  at  the  edge  between  the  rod-  and  disc-like  shapes  delineate  structures 

showing linear structures, as depicted in Figure 32 A. Although the four data sets take mostly shapes 

between the rod and the disc, the library appeared to be the only set pointing towards the spherical  

shape (Figure 32 B). This feature is highly desirable in a library for expanding the scope of proteins that 

could interact with its members.
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Figure 30: 3D scatter plot delimited by the variables MW, HBD and HBA and representing the Suzuki-based  
library in comparison with the Enamine databases of FDA approved drugs, lead- and natural products-like  
(NP-like) compounds.
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Figure  31:  PMI trangle plot of the library base on reductive amination and Suzuki coupling compared 
with the Enamine databases of approved drugs, lead- and natural product-like compounds.

A

B

Figure  32:  Molecules corresponding to the data points highlighted by the letters in the PMI plot in  
Figure 31. (A) Natural product -like compounds at the edge between the disc- and rod-like shape. (B)  
Library member tending to sphere-like shape.
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 6.5 Conclusions

This chapter introduces a novel and easily applicable method for assessing building blocks for DEL 

design, using the KNIME platform. Since the libraries did not target any specific protein, diversity was 

the predominant criteria for the selection to increase the probabilities of hit identification. It is worth 

mentioning that diversity was intended in terms of chemical properties as well as geometrical shape.  

The building blocks were selected according to the chemistries that could potentially be utilized on 

DNA tagged substrates. For the first time, a library based on the Povarov, Biginelli and aza-Diels-Alder 

reactions was designed providing  an access  to  the tetrahydroquinoline,  dihydro-pyrimidinone and 

dihydro-pyridinone scaffolds, respectively.  In the second part, the Suzuki coupling was the elected 

reactions coupled with a preliminary reductive amination.  Based on the selected building blocks, the 

virtual  libraries  were  enumerated  and  appropriately  labelled.  The  molecules  resulting  from  the 

enumeration displayed high diversity,  which confirmed the assumption that diverse building block 

selection  ensure  diverse  final  products.  The  libraries  members  were  compared  with  available 

databases of drug-like compounds and, especially the subsets based on the aza-Diels-Alder and the 

Suzuki  scaffolds,  showed  high  similarity  with  drug-like  compounds  both  in  terms  of  chemical 

properties  and shape.  In  summary,  these chemistries  constitute valid  options  for  practical  library 

synthesis. 
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 7.1 Introduction

 7.1.1 Molecular docking for hit identification

In drug discovery,  a  large part  of new compounds derive from screening campaigns such as  high 

throughput screening (HTS),  which supported hit  identification for years.[120] However,  nowadays 

larger library sizes are required and those methods revealed to be inadequate for the task. [2] Larger 

libraries allow for wider investigation of the chemical space and by consequence may increase the 

possibilities to uncover novel binders. DNA-encoded libraries (DELs), due to their combinatorial nature, 

allow for exponential library growth and render the process of library synthesis more suitable for ultra-

large  screening  campaigns.  Therefore  they  constitute  a  valid  alternative  to  screening  of  discrete 

compounds libraries. 

A second option for hits identification are computational methods such as docking. A hit molecule is 

defined as the chemical entity that shows high activity or affinity in screening campaigns, but it needs  

to be optimized via the hit-to-lead procedure. The docking protocol, which could be considered as a 

virtual screening, consists of two phases, the posing and the scoring. The posing is the prediction of 

the conformations assumed by the ligand in the binding pocket of the target proteins. [121] The posing 

performs a conformational search on the ligand within the binding site of the target protein by varying  

parameters  such as rotatable bonds coordinates or bonds length,  until  the energy converges to a 

minimum  (Figure  33).  In the convergence condition,  a  conformational  change does not  affect  the 

calculated energy. 
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Figure  33: Example  of  conformational  search  by  varying 
torsion angles  Φ. The energy E changes in function of the 
torsion  angle  Φ and,  according  to  the starting point,  an 
absolute or relative minimum can be reached.

E

Φ

starting point of the  
conformational search

absolute minimum

relative minimum



Hits validation by molecular docking

The scoring part consists of ranking the conformations according to the calculated energy which gives 

information about the affinity between the protein and the ligand. The scoring is calculated via scoring 

functions (SFs)  which  can  be  divided  in  different  categories:  physics-based,  empirical,  knowledge-

based and machine learning-based. [122] The difference between them lies in the type of regression 

method utilized for predicting the energy of the conformation: the first three rely on linear regression, 

whereas the fourth on nonlinear regression, based on machine learning algorithms. For the scope of 

this thesis, only the first class of scoring functions is considered. The force fields-based SFs calculate 

the binding energy as enthalpy contribution, including the van der Waals and electrostatic potentials. 

[123] Force fields (FFs) are approximations used to calculate the enthalpic contribution to the Gibbs 

free energy of the protein-ligand complex.  An exemplary function for a  force field is  illustrated in 

Equation 3. [124] 

E=∑Ebonds +∑Eangles +∑Edihedral + ∑Enon-bonded (Eq. 3)

Ebonds , Eangles and Edihedral represent the energies of bonds, angles and dihedral (three-dimensional angles 

formed at the intersection of planes), respectively. The Enon-bonded parameter is related to Coulomb and 

van der Waals interactions. This calculation is repeated for all atoms of the molecules every time a 

conformational change occurs. The conformation that gives the overall minimal energy is considered 

to be the most realistic.

Since  the  FFs-based  scoring  functions  omit  the  entropy  and  the  solvent  effect,  they  were  soon 

improved by including solvation models in the calculation, therefore increasing the reliability of the 

results. [125] The previous equation could be approximated to the Equation 4, where an additional 

parameter accounts for the hydration contribution. 

E = ∑Ebonds + ∑Eangles + ∑Edihedral + ∑Enonbonded + ∑Eσ∆SA (Eq. 4)

Let σ be the solvation parameters and  ∆SA the difference in  SASA (solvent accessible surface area) 

between the unbound and the bond states. [126] 

In the pose calculations, two levels of accuracy have been achieved over time. The earliest approach is 

the rigid docking and it is mostly based on the key-lock assumption. The ligand is searched within six 

degrees  of  freedom  and  translational  changes.  [127.]  In  this  approach,  the  changes  in  energy 

stemming from the binding event are ignored, yet later, the flexible docking was developed to increase 

the accuracy. This protocol also considers the conformational changes of the protein backbone which 
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also influence the position of many residues. [128] Although most of the available docking software 

nowadays can validate experimental data and therefore are considerably reliable, the flexibility of the 

target proteins remains challenging to predict. 

Docking  algorithms  are  based  on  combinations  of  the  aforementioned  features,  so  they  are 

characterized by distinctive assumptions and approximations. In this work, two algorithms in particular 

are introduced:  Hyde, as part of the SeeSAR package developed by BiosolveIT [129] in collaboration 

with the group of Prof. Rarey at the university of Hamburg,  and Glide, belonging to the Schrödinger 

suite. [130] 

Hyde calculates the affinity between the ligand and the protein as a function of the difference in  

energy due to the displacement of water molecules surrounding the ligand and filling the binding  

pocket of the protein during the binding event. Moreover, it considers the increase in energy due to 

the favourable hydrophobic interactions between the ligand and hydrophobic aminoacid residues of 

the protein that would otherwise be solvent-exposed. Docking calculations performed by Hyde result 

in the pose of the ligand into the binding pocket, in which atoms are surrounded by coloured spheres 

according  to  their  effect  on  the  interactions.  If  the  specific  atom's  interactions  are  considered 

favourable,  the  sphere  is  green,  otherwise  red.  Additionally,  the  affinity  is  expressed  in  terms of 

concentration to assist those who are not familiar with the concept, to interpret the docking results. 

[131] 

Glide is based on force fields, therefore, the scoring function calculates the energy of each atom of the 

ligand, including its torsion energies, the electrostatic and van der Waals potentials, and additionally, 

the solvation model. Although this may appear highly demanding in terms of computational resources 

and time,  Glide performs a funnel-like search which become more stringent only when the possible 

conformations  are  reduced  by  preliminary  selection  phases.  In  fact,  Glide  presents  two  levels  of 

accuracy:  the  “standard  precision”,  a  softer  sampling  of  conformational  space,  and  the  “extra 

precision”, more complex calculations considering all the aforementioned factors. The result of this 

docking protocol are poses with the respective scores representing the difference in binding energy 

(∆Gbind).  Therefore,  the lower the score, the lower the energy of the complex is,  compared to the 

unbound ligand. In other words, poses with lower docking scores are more reliable as hits. [132]
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 7.1.2 Critical steps in a docking procedure 

 7.1.2.1 Ligands preparation

 In this step, all possible ligand conformations are generated by varying all torsion angles sequentially.  

Additionally, the hydrogenation patterns and charges are applied according to the pH.[3]

 7.1.2.2 Protein preparation

Prior to any calculation the protein structure must be chosen and prepared. Generally, structures with 

high resolution are to be preferred and the holo (complexed) state performs better than the apo (free) 

state  in  docking  experiments.  The  preparation  is  necessary  to  overcome  artifacts  due  to  the 

crystallization process such as mutations, buffer components such as PEG, cofactors and missing loops 

or  side  chains.  Moreover,  the  protonation  pattern  of  the  protein  has  to  be  defined  newly  since 

hydrogen atoms are usually not well resolved in crystal structures. This aspect is particularly important 

for  residues  that  might  be  charged  such  as  Glutamate  and  Aspartate,  as  their  protonation  state 

impacts coulomb interactions and hydrogen bonds formation. Finally, the conformation of the protein 

has  to  be  optimized  by  energy  minimization  since  during  the  crystallization process,  the  protein 

solution is highly concentrated to permit the crystallization. However, this situation does not reflect 

physiological  conditions  and  due  to  the  concentration,  the  protein  may  assume  unnatural 

conformations. [3]

All  this  applies  when  an  experimental  structure  of  the  protein  is  available,  otherwise  Homology 

modeling can be employed to generate plausible structures according to preexisting three-dimensional 

structures  with  high  similarity.  [133]  The  most  noteworthy  software  for  Homology  modeling is 

AlphaFold,  which outperformed other  options as  demonstrated by J.  P.  Roney and S.  Ovchinnikov 

[134]. Nevertheless, some limitations still remain, especially related to disordered domains, [135] so 

scientists prefer to rely on experimental structures.

 7.1.2.3 Definition of the binding site

In the case of unknown binding site and interaction mode for a resolved structure, the computational 

software can help with exploring the protein surface for druggable pockets. Those areas are generally  

unoccupied and slightly buried surfaces that could potentially host a ligand. Moreover, they should 

contain specific pharmacophoric  features that allow the interaction with an external  molecule.  An 

example of such functions is the protocol SiteMap implemented in Maestro as part of the Schrödinger 
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suite.  This  methodology evaluates  the  size  and  the  openness  of  the  pocket  as  well  as  the 

hydrophobic/hydrophilic character. The openness of the pocket here is related to the exposition of the 

aminoacid residues to the solvent. If multiple pockets are detected, a score is assigned according to 

the above mentioned criteria. After separating the ligand from the protein, the SiteMap protocol was 

applied and was able to identify the same binding site as the initial ligand in most of the experiments.  

[136]

 7.1.3 DEL and docking

To increase the confidence in hit  identification, DNA-encoded libraries and docking might be used in 

series. The docking in this case would function as validation methodology to counterbalance some 

experimental artefacts due to the presence of the DNA tag and the set up of the DEL screening. In fact,  

the calculation of the EFs after the selection assay can be influenced by unspecific interactions with 

beads or by the protein denaturation due to the buffer or other conditions. In this way, the docking 

would aid in the identification of eventual false positives, i.e. compounds that, despite their high EF 

(enrichment factor) result to be inactive in further biological assays. Additionally, the visual inspection 

of docking poses and the analysis of the scores might hint to possible modification for the hit-to-lead 

optimization process. Thus, not only the identified hit is to be submitted to organic synthesis but also 

congeneric series. This strategy would increase the chance of success.[137] 

Alternatively,  the  docking  could  be  utilized  in  parallel  or  even  prior  to  the  library  synthesis  and 

screening. If used in parallel,  the docking could detect false negatives, i.e.  molecules that resulted 

good  binders  in  the  docking  procedure  but  not  in  the  selection  assay.  By  consequence,  the 

investigation of those molecules might serve the improvement of the DEL technology. In fact, after the 

synthesis or purchase of those molecules from big databases, [108],[109] biological tests might follow. 

If the tests confirm the activity, the reasons behind the lack of affinity in the selection assay could be 

inspected. Similar to the previous case, also in this case the docking might serve the hit optimization 

process. [138] In summary, the combining the DEL screening and the docking can be more effective in 

identifying active compounds than using them separately.

 7.1.4 Protein selection in DEL

In a DEL screening campaign, as well as in docking experiments, the choice of the proteins to assess is  

a crucial criterion to ensure success and novelty. In general, for untargeted libraries proteins belonging 

to distinct families are selected according to medical need or to assess ligandability. Soluble proteins 
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without known ligands are preferred, yet unexplored proteins represent more attractive targets to find 

original ligands. However, the challenging membrane proteins have become a viable options as well. 

[139] Additionally, for the selection assay in which the protein is bound to a solid support and the 

library is in solution, the proteins must tolerate to be modified with Histidine or Glutathione tags to  

bind the beads. Even before the protein meet all those requirements, its biological significance is to be 

estimated. Cancer-related proteins acquired high interest in the latest years so they represent valid 

target choice.[140] Special attention is directed towards proteins controlling the apoptotic cycle, such 

as the Bcl 2 (B cell lymphoma 2) family members and the MDM2 (murine double minute 2) protein, or 

the cellular growth such as MKK7 (mitogen-activated protein kinase kinase 7). 

The Bcl 2 family is characterized by two classes of proteins: pro-survival, such as BAK and BAX, and pro-

apoptotic, such as BCL-2 and BCL-XL. In case of cellular stress, the pro-apoptotic proteins oligomerise 

and  provoke  mitochondrial  outer  membrane  permeabilization  (MOMP),  whereas  the  pro-survival 

proteins explicate their function by sequestering the pro-apoptotic proteins (Figure 34). The delicate 

regulation of this phenomenon plays a role in the balance between cell death and cancer. [141] 

The interaction between pro-survival and pro-apoptotic proteins takes place in correspondence of the 

BH3 domain (Figure  35 A), which has been therefore used as model for potential inhibitors of this  

interaction (Figure 35 B). 
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Figure 34: BCL-XL and BCL-2 mechanism in sequestering the pro-apoptotic proteins BAX 
and BAK, through the BH3 domain. In case of stress, the BAK and BAK would oligomerize 
and  provoke  the  mithocondrial  outer  membrane  permeabilization  (MOMP),  which 
initialize the apoptotic process.
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The resulting compound  ABT-737 proved to be effective against  solid  tumors [144] This  discovery 

paved the way for other compounds targeting the BCL-XL protein which revealed to be active (Figure 

36). [145], [146]. 
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Figure 36: Drug candidates for targeting the BCL-XL/BH3 domain interaction. [145], [146]

A B

A B
Figure  35:  Three-dimensional  structure of  BCL-XL in complex with (A) the BH3 domain of a proapoptotic 
protein (PDB: 4QVE [142]) and (B) the ABT-737 ligand (PDB: 2YXJ [143]). ABT-737 occupies the same pocket as 
the BH3 domain.
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MDM2  is  the  ubiquitin  ligase  E3  which  promotes  the  degradation  of  p53  in  normal  cells  by 

ubiquitination. The transcription factor p53, called “the guardian of the genome”, is a potent tumor  

suppressor as it induces cell cycle arrest in conditions of stress or genomic instability (FIgure 37). [147] 

The inhibition of this PPI (protein-protein interaction) (Figure 38 A) leads to higher production of the 

p53 protein, which has a beneficial effect against tumour cells. 

The discovery of the activity of Nutlins (Figure 38 B) against this target [148] enabled the exploration 

of multiple inhibitors which are currently under clinical trials (Figure 39). [149]
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Figure 38: Three-dimensional visualization of the MDM2 protein in complex with (A) the p53 domain (PDB:  
3V3B) [150] and (B) a member of the Nutlin family (PDB:4HG7). The Nutlin occupies the same pocket as the 
p53 domain. [148]

Figure  37:  MDM2-p53  regulation  mechanism.  MDM2  ubiquitinates  the  p53 
protein, that in case of stress initiates the apoptotic process. The ubiquitination of  
p53 lead to its degradation, cell survival and proliferation. 
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Figure 39: Drug candidates targeting the MDM2/p53 interaction.[149]
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MKK7,  also known as MEK7 or MAP2K7, is part of the kinase signaling pathway which control cell  

growth,  proliferation and apoptosis.  In particular,  it  activates the c-Jun N-terminal  kinase (JNK) by 

threonine-phosphorilation (Figure 40). The functional contrariety of JNK is still under research and it 

involves  regulation of  responses  against  stress  and inflammation towards  either  apoptosis  or  cell 

proliferation according to the distinct downstream substrates. [151] 

The MKK7 protein seems to activate the JNK towards the latter direction, so inhibitors against this 

target have been researched. The challenge concerning kinase inhibitors is that they target the ATP-

site, called hinge domain, which is highly conserved among all kinase families, making the discovery of 

selective  kinase  inhibitors  challenging.  This  challenge  may  be  overcome  by  designing  covalent 

inhibitors to non-conserved Cysteine residues in the active site. In particular, a successful strategy sees 

the covalent bond between the acrylamide moiety of such inhibitors and the sulphur of Cysteine 218 

(Figure 41 and 42). [152], [153]
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Figure 40: MKK7 mechanism. The kinase activates by Threonine phosphorilation 
the protein JNK which according to the downstream substrates can induce or  
repress apoptosis.

https://doi.org/10.1016/j.chembiol.2018.10.011
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For their role in cancer research and their affiliation to very different families, those three proteins 

constitute a useful set for validating the DEL technology with the aid of molecular docking.
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Figure 42: Drug candidates covalently targeting the ATP binding site of MKK7.[152],  [153]

Figure  41:  Three-dimensional  structure  of  MKK7  in  complex  with  the  covalent  inhibitor  Ibrutinib.  
Interestingly, the same molecules reversibly interacts with an allosteric site, beside binding to the ATP site of  
the protein. PDB: 6YG2. [154]
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 7.2 Aim

DNA-encoded libraries selection assays allow for panning huge numbers of molecules against multiple 

proteins at the same time and this is made possible by the unique DNA tag coupled to each library  

member. The data load generated by the selection assay and the following sequencing protocols could 

result overwhelming if tackled without the proper tools. Moreover, due to different factors that may 

affect the reliability of the selections assay, a proof of validation is needed, to reduce noise and to 

increment the confidence in hit  identification.  An established procedure for DEL validation and hit 

selection is currently missing and this is the purpose of this part of the thesis. In particular, the focus is  

put  on chemoinformatics  and  computational  methods  that  aid  in  selecting  the  more  significant 

molecules  that  are  worth synthesizing  for  biological  tests,  discarding  compounds  that  could  have 

unspecific interactions and may reveal inactive.
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 7.3 Methods

In our laboratories, a 100,000-membered library was synthesized and screened against 16 targets. 

The library was based on three multi-component reactions (MCRs), namely Povarov, SnAP and Ugi-

aza-Wittig, forming tetrahydroquinoline (THQ), piperidine and oxadiazole scaffolds respectively. 

MCRs are the most suitable tool for DEL synthesis as they provide high structural diversity in only 

one step.  The 16 screened proteins range over many different target  classes,  from kinases to 

protein-protein interaction (PPI) targets. After the selection assay and following sequencing, in 

order to prioritize the molecules for resynthesis off-DNA, the enrichment factors (EFs) for each 

molecule were calculated. The EF were intended as the frequency of each sequence per protein  

(rank abundance, RA) after the selection assay normalized over the same count in the native DEL  

before the selection experiment (Eq. 5). [11]

EF=
RAselection
RA nativeDEL

(Eq. 5)

The KNIME workflow for prioritizing  hits was applied on the 16 proteins screened during the 

selection assay but only MDM2, BCL-XL and MKK7 were reported within the scope of this thesis. 

Those proteins were considered a good validation as they belong to very different families.

Initially  a  so-called  Structure  sheet file,  containing  all  the  building  blocks  and  the  respective 

sequences,  was  employed  to  track  back  the  substructures  and  assemble  them  into  the  final 

molecules. The control experiments, such as the selection against empty beads, were excluded 

from the analysis as not interesting for prioritizing hits and only molecules with EF higher than the  

median for  each protein were considered for  further processing.  As a first  step,  the frequent 

hitters were excluded, defined as molecules which interacted with more than four proteins. This 

number depended on the composition of the set of screened proteins. In fact, it was plausible that 

molecules such as kinase binders would show a high EF for all the four members of this target 

class screened in our assay. In this way, we reduced to some extent the chance of privileging false 

positives, which is in general quite challenging in combinatorial libraries screening assays. Hence,  

the remaining combinations of cycle 1, 2 and 3 molecules were labeled in order to identify them 

after  the  docking  procedure  and  the  fragments  were  assembled  within  the  KNIME  Analytics 
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Platform. Although the library was based on MCRs, the virtual synthesis was split into sequential  

steps. Firstly, the connection to the DNA was substituted by a short linker via an amide bond 

formation, because a longer linker would greatly affect the binding affinity of the molecules for  

the protein. The interference of the DNA tag on the affinity between the molecule and the target 

could be objected for the library screening as well. Nevertheless, the absence of a long linker is 

compatible with the logic of  hit re-synthesis, as molecules with a long linker would hardly show 

drug-like properties. The final molecules were then virtually synthesized for each proteins in an 

automatic fashion. With the virtual molecules in hand, the docking simulations were performed 

using two different algorithms in order to confirm or contradict the EFs calculation. The additional 

function of the docking in our hands was to suggest modifications that could potentially increase 

the affinity between the compounds and the target proteins. This would improve the process of 

hit-to-lead optimization in terms of time and effectiveness, as instead of the single  hit, series of 

derivatives could be synthesized. The first  algorithm was  SeeSAR,  trademark of the  BiosolveIT. 

After preparing the protein and ligands with the respective functions implemented in SeeSAR, the 

docking protocol was carried out. In the preparation of the protein the co-crystallized ligand as 

well as other species were eliminated in order to not bias the docking towards specific pockets.  

This strategy was named blind docking, as the preparation of the proteins was not affected by any 

additional  ligand  and  the  docking  poses  were  calculated  without  any  constraints.  The  blind 

docking was applied because the molecules resulting from the DEL are usually different from co-

crystallized ligands,  so  constraints  based on known binding  mode would  not  help  in  the  hits 

identification. Moreover, we did not want to force the compounds to follow a specific binding 

pattern as this library was not conceived as target-based and the binding mode was unknown. In 

fact, we employed the docking for this reason as well: if after resynthesis, one hit confirmed to be 

active, the docking algorithm could suggest the most probable pose. Therefore, the druggable 

pockets were identified by the software and the docking was performed over all of them. A similar  

procedure was employed with the second docking program Maestro from the Schrödinger suite, 

whose docking protocol is  called  Glide.  Similar to the docking with SeeSAR, the proteins were 

prepared after removing all additive species, the binding pockets were identified via the  SiteMap 

protocol and the blind docking was performed. 
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 7.4 Results and discussion

The sequencing data were firstly submitted to EFs calculation which was performed by Nils Jannick 

Schüsser, master student in Prof. Fried group at the department of statistics at the TU Dortmund.  

The final output table contained information about each combination of building blocks per each 

protein, as exemplified by the extract in Table  16. As the calculation was performed for every 

protein, the first column referred to the protein number. Each row represent a combination of 

building blocks which were characterized by the IDs in the second, third and fourth columns. The  

EF column included the EF values, normalized over the overall abundance (rank abundance)  as 

exemplified in the Methods section, and the last column contained information about the control 

experiments utilized as validation of the sequencing protocol. Since this table did not provide any 

information  neither  about  the  molecular  structure  of  the  final  molecules nor  about  the  hit 

identification, it was processed with the software KNIME.

Table 16: Extract of the initial table with the EF calculation.

 Protein 
entry cycle 1 ID cycle 2 ID cycle 3 ID enrichment 

factor
rank 

abundance
control 

experiment
1 Aldehyde15 Scaffold3 Acid138 1 74744.5 Streptavidin beads
1 Aldehyde15 Scaffold32 Acid100 0 75913.0 Streptavidin beads
1 Aldehyde15 Scaffold4 Acid15 3 69233.5 Streptavidin beads
1 Aldehyde15 Scaffold45 Acid148 1 73248.0 Streptavidin beads
1 Aldehyde2 Scaffold1 Acid32 1 34481.0 Streptavidin beads
1 Aldehyde2 Scaffold1 Acid37 27 67680.5 Streptavidin beads
1 Aldehyde2 Scaffold11 Acid37 9 77468.0 Streptavidin beads
1 Aldehyde2 Scaffold2 Acid37 1276 79013.0 Streptavidin beads
1 Aldehyde2 Scaffold24 Acid37 43244 79023.0 Streptavidin beads
1 Aldehyde2 Scaffold3 Acid137 6 51079.5 Streptavidin beads
1 Aldehyde3 Scaffold1 Acid127 0 78884.0 Streptavidin beads
1 Aldehyde3 Scaffold1 Acid132 0 78966.0 Streptavidin beads
1 Aldehyde3 Scaffold1 Acid37 0 72612.5 Streptavidin beads
1 Aldehyde3 Scaffold2 Acid127 2 70881.0 Streptavidin beads
1 Aldehyde3 Scaffold2 Acid37 218 78879.0 Streptavidin beads
1 Aldehyde3 Scaffold2 Acid43 2 76655.0 Streptavidin beads
1 Aldehyde3 Scaffold24 Acid37 11 76304.5 Streptavidin beads

 7.4.1 KNIME workflow

In order to visualize the structures and to generate the corresponding molecules, this resulting 

table was combined with the initial file that was used in designing the library, in which each BB ID 

was related to the corresponding SMILES. Moreover, the protein number was joined to the actual  

name of the targets present in the same file. After this essential step, the resulting table was more 
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interpretable and an extract of randomly picked entries is depicted in Table 17. Here, the BB IDs 

are coupled with the respective chemical structure in the sixth, seventh and eighth columns and 

the protein name is appended as well. It is worth mentioning that the "cycle 2 SMILES" column 

represent the whole scaffolds of the molecules that could be based on the Povarov, Ugi-aza-Wittig 

or SnAP reactions. However, the IDs depended on the synthons utilized in the reactions so they are 

unique like the others.

Table  17: Resulting table after combining the BBs IDs with the respective molecular structure and the protein ID  
number with the respective name.

Protein 
entry cycle 1 ID cycle 2 ID cycle 3 ID EF cycle 1 

SMILES
cycle 2 
SMILES

cycle 3 
SMILES

Protein name

8 Aldehyde2 Scaffold22 Acid38 358 MKK7

12 Aldehyde11 Scaffold24 Acid37 155 MDM2

12 Aldehyde4 Scaffold1 Acid9 18 MDM2

13 Aldehyde4 Scaffold1 Acid107 672 MDM2

13 Aldehyde11 Scaffold24 Acid37 88 MDM2

13 Aldehyde6 Scaffold24 Acid37 61 MDM2

14 Aldehyde10 Scaffold3 Acid19 312 BCL-XL

14 Aldehyde3 Scaffold24 Acid19 239 BCL-XL

 7.4.1.1 Frequent hitters identification

Similar to other screening technology, DEL suffers the issue of false positives, defined as highly 

enriched molecules that reveal to not bind the target protein in biological assays. Our preliminary 

solution to face this problem was to exclude molecules binding more than four target proteins.  

The  first  reason  for  this  was  that  even  if  they  were  actual  binders,  they  would  have  been 

unspecific  and  therefore  not  attractive  for  optimization.  The  second  reason  is  related  to  the 
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technology itself, as highly enriched molecules in most screening experiments might bind not to 

the  proteins  but  to  the  beads  or  other  materials  used  in  the  assay.  In  our  evaluation,  nine  

combination were therefore excluded from further analysis. In Table 18, these nine combinations 

are listed as rows, displaying the BB IDs and the respective chemical structures. The last column 

refers to the sum of proteins that interacted with each of those building blocks combinations. It is 

noticeable  that  beside  combinations  binding  five  or  six  proteins,  the  combination  between 

aldehyde 15, scaffold 24 and acid 37 formed interactions with 13 proteins, which accounted for 

almost all screened proteins.

Table 18: Frequent hitters.

cycle 1 ID cycle 2 ID cycle 3 ID cycle 1 
SMILES

cycle 2 
SMILES

cycle 3 
SMILES protein count

Aldehyde10 Scaffold24 Acid37 6

Aldehyde11 Scaffold24 Acid37 5

Aldehyde15 Scaffold2 Acid37 9

Aldehyde15 Scaffold24 Acid37 13

Aldehyde2 Scaffold24 Acid37 7

Aldehyde3 Scaffold2 Acid37 5

Aldehyde4 Scaffold24 Acid37 8

Aldehyde9 Scaffold2 Acid37 7

Aldehyde9 Scaffold24 Acid37 5
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Notably, the combinations, and not the single synthons, were considered as frequent hitters not to 

narrow down too much the molecules scope and risk to exclude actual binders. Moreover, the 

final  library  members  should  be  composed  by  all  three  cycles  building  blocks.  Although  this 

assumption cannot be proofed during the library synthesis due the split&pool technology, it is 

expected  that  all  parts  of  the  molecule  account  for  the  interactions.  For  this  reason,  the 

combinations of the three cycles BBs were considered and counted.

Overall, specific structures could be recognized in the case of cycle 2 and cycle 3 building blocks,  

while the cycle 1 aldehyde showed more variety. In particular for cycle 2, scaffold2 and scaffold24 

appeared  in  all  frequent  hitters.  Scaffold  2  was  based  on  the  Povarov  reaction  and  it  was 

characterized by the 2-ethyl aniline, for which the lipophilic character most likely played a role in 

binding the polypropylene of the tubes. Scaffold 24 was based on the Ugi-aza-Wittig reaction and 

it  was constituted by the 4-bromo-phenyl carboxylic acid whose unpolar character might have 

affected the interaction with many target pockets. For cycle 3, the BB acid37 prevailed overall, 

most likely due to unspecific binding with the magnetic beads. In general, such structures are to 

be avoided in library design and can be filtered  a priori by chemoinformatics tools. Finally, the 

most frequent cycle 1 fragment was aldehyde 15, followed by other six aldehydes: 4, 2, 9, 10, 11  

and 3. A structural similarity can be identified between aldehyde 15, 10 and 11, sharing the 2-

phenoxypropionic  acid  moiety,  and between aldehyde 9  and aldehyde 4  characterized by  the 

indole substructure binding up to eight targets. The combination of aldehyde 15, scaffold 24 and 

acid 37 was above all the most frequent, binding almost all the considered proteins (13 out of 16).  

The  exchange  of  the  cycle  2  structure  with  scaffold24  produced  the  second  most  common 

combination binding 9 out of  16 proteins.  It  is  noteworthy that the single synthons were still  

present in the dataset but within different combinations. 

 7.4.1.2 Molecule generation and labelling

For the purpose of docking we needed to enumerate the selected hits based on the combination 

of  building  blocks  and,  in  order  to  track  the docked poses  to  the  specific  combinations,  one 

essential step in this directions was to label  them beforehand. An extract of  randomly picked 

entries  in  the  table  after  the  labelling  step  is  illustrated  in  Table  19.  To  each  building  block 
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combination  an  ID  was  assigned,  composed  by  the  prefix  "comb"  and  a  numeric  sequence 

generated automatically (last column in the table). 

Table 19: Examples of labelled combinations.

Protein 
entry

cycle 1
ID

cycle 2 
ID

cycl
e 3 
ID

EF RA cycle 1 
SMILES

cycle 2 
SMILES

cycle 3 
SMILE

S

protein 
name

combina-
tion ID

12 Aldehyde
14

Scaffold
1

Acid
9 958 75733 MDM2 comb_84

8

12 Aldehyde
1

Scaffold
29

Acid
106 657 76711.

5 MDM2 comb_85
4

14 Aldehyde
1

Scaffold
17

Acid
19

117
2

78276.
5 BCL-XL comb_10

04

14 Aldehyde
1

Scaffold
9

Acid
38 816 78684.

5 BCL-XL comb_10
09

8 Aldehyde
12

Scaffold
28

Acid
75 2306 78713.5 MKK7 comb_535

8 Aldehyde
10

Scaffold
21

Acid
49 1056 78684.5 MKK7 comb_554

After  the  labelling  step,  the  cycle  1,  2  and  3  building  blocks  were  combined  employing  the 

chemistry-oriented extensions in KNIME, ChemAxon and RDKit. A randomly picked extract of the 

final outcome is depicted in Table20. 
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Table 20: Final products of the library after the synthetic steps.

EF cycle 1 
SMILES

cycle 2 
SMILES

cycle 3 
SMILES

protein 
name

combination 
ID product

1701 MDM2 comb_841

852 MDM2 comb_850

1908 BCL-XL comb_999

6443 MKK7 comb_527

4367 MKK7 comb_530

1984 MKK7 comb_537

1056 MKK7 comb_554

In the final structure of the products (seventh column in the table), the carboxylic acid moiety was  

transformed into an amide group. This approximation needs to be considered in comparing the 

selection assay and the docking results, as the linker and the DNA tag might play a role in the 

affinity during the selection assay, while this effect is ignored during the docking procedure.  In 

silico experiments involving a linker containing a long unsaturated hydrocarbon chain (where the 
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DNA tag in attached in the DNA-encoded molecule) demonstrated that there were interactions 

between the  linker’s  amide  bond and  aminoacid  residues  in  the  binding  site,  while  the  long 

unsaturated chain tended to occupy hydrophobic pockets on the protein surface (Figure43). For 

example, in the case of the protein BCL-XL, the binding pocket is formed by two sub-pockets and 

one of them is relatively hydrophobic,[143] so in this case the presence of the linker occupying the 

second sub-pocket greatly increased the calculated affinity between the molecule and the protein. 

Although such a linker mimics the steric hindrance of the DNA and therefore better represents the 

experimental conditions in a DEL selection assay, such molecules would be irrelevant from the 

point of view of hit-resynthesis and hit-to-lead optimization. 

Therefore,  we decided to  disregard  the DNA/linker  effect  on the affinity  calculations and the 

following experiments were performed with a short methyl amido linker which influenced the 

ligand-protein interaction to a lesser extent. The carbonyl moiety of the amide group, acting as  

hydrogen bond acceptor, affected to some extent the affinity calculation anyway but this  was 

considered irrelevant. 

Figure 43: Position of linker with a long and unsaturated chain inside the pocket of the BCL-X L protein. Figure 
generate by SeeSAR.
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 7.4.1.3 Correlations between building blocks and proteins

After generating all ligands per each protein, some trends were observed regarding the preference 

of some proteins towards specific building blocks. The cycle 1 or cycle 3 fragments were plotted in 

the heat maps depicted in Figure44 and 45. 

Among the cycle 1 aldehyde building blocks, a clear pattern was in general not detectable, except  

for target MKK7 towards Aldehyde3 and 10. In Figure 44, the red cell at the intersection between 
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Figure 44: Correlations between the cycle 1 building blocks and proteins. The cells of the heat map are color-
coded  according  to  the  count  of  molecules  presenting  the  specific  substructure  for  each  of  the  three 
considered proteins.
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the  column "MKK7" and  the  two  rows  corresponding  to  Aldehyde  10  and  3  highlights  this 

correlation. It In contrast, MDM2 bound predominantly the indole-based acid Acid 106 and BCL-X L 

tended towards the 2-thien-2-ylpropionic acid Acid 19 (Figure 45).
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Figure  45: Correlation between the cycle 3 BBs and proteins. The cells of the heat map are color-coded 
according to the count of molecules presenting the specific substructure for each of the three considered 
proteins.
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 7.4.2 Docking experiments

A preliminary docking calculation was performed with SeeSAR (BiosolveIT) and then the results  

were verified by Maestro (Schrödinger).  The two software programmes are based on different 

assumptions and computations, as Hyde is based on solvation/desolvation calculations while Glide 

is based on force fields. Therefore, molecules that showed high affinity in both simulations were 

considered to be more reliable and were selected for resynthesis. The selection was performed in 

KNIME,  where  the  Pareto  ranking  algorithm  was  applied,  so  that  only  the  molecules  that  

performed the best in both the selection assay and the docking studies were reviewd. As for the 

purpose  of  hit  resynthesis  we  first  focused  on  the  THQ  scaffold  obtained  from  the  Povarov 

reaction, the results of which are reported in the following sections. 

 7.4.2.1 BCL-XL

The first protein analysed was BCL-XL whose scatter plot is shown in Figure XX. In the scatter plot 

each dot represents a hit from the selection assay, so data points on the top right corner describe  

hits with higher EF than data points on the bottom left corner. The color code corresponds to the 

Pareto ranking, which also considers the docking results, so molecules with high EF, high affinity, 

low  docking  score  were  depicted  in  red  and  were  considered  for  resynthesis  off-DNA.  The 

molecules corresponding to the four red dots in the scatter plot are depicted in Figure 46. The two 

red dots on the top, indicated by the letters A and B, showed the piperazine scaffold obtained 

from the SnAP reaction, while the three data point with letters B, C and D were considered in this 

analysis as they belong to the group consisting of the THQ scaffold. 
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rank abundance

EF A
B

CD

E

Figure 46: Scatter plot relating the EF vs RA for the protein BCL-XL.

Although, their analysis is not covered in this thesis, it is worth noticing that the carboxylic acid 

inserted in the third cycle, visible in Figure 47 A and C, is common to two out of four considered 

hits. Although it may appear significant, the 6-fold difference in EF between the SnAP reaction-

based and Povarov reaction-based hits is not significant because it was demonstrated in previous 

publications that  after  a  certain  number of  cycles  the PCR efficiency reaches a  plateau.  [155] 

Compounds 1, 2 and 3 were investigated further via docking experiments.
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Figure 47: Hit molecules for the protein BCl-XL. (A) and (B) are based on the SnAP reaction, while 
(C), (D) and (E) contain the THQ scaffold obtained by Povarov reaction. The letters correspond to the 
scatter plot in the previous figure.

The first hit for BCL-XL with the Povarov reaction-based scaffold was compound 1 with EF of 1409. 

The two docking algorithms identified the same binding pocket  and this  could be considered 

already a proof of validation as this pocket was exactly the binding site of the co-crystallized ligand 

ABT-737. [143] Despite the slightly different perspective, in Figure 48 A and B, it is visible how the 

different moieties of the ligand occupied similar space within the binding pocket. In particular, the 

binding pocket is formed by the aminoacid residues Ala-104, Arg-139 and Glu-129 in both docking  

simulations,  whereas the ligand differently interacts with those residues according to the two 

softwares. In Figure 48 A and B, the ligand is depicted after docking with Hyde (Figure 48 A) and 

Glide (Figure 48 B). 
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Hits validation by molecular docking

Figure  48:  Docking  results  for  compound 1. (A)  Hyde  3D view of  the  binding  site  with  the  pose 
calculated by Hyde. To locate the binding site, important amino acids are labelled. (B) 3D view of the 
binding site and the pose calculated by Glide. (4) 2D view of the interactions calculated by Glide.
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Overall,  Hyde  calculated an affinity falling into the nM range for this molecule.  In the  SeeSAR 

renderer,  atoms  are  surrounded  by  an  aura,  coloured  in  green  or  red  for  favourable  or 

unfavourable interactions, respectively.  For example, the methoxy group as substituent on the 

aniline ring in the THQ scaffold was surrounded by a green circle due to the carboxylic acid of the 

Glutamate 129, which created a hydrophilic environment. According to  Hyde, the indole moiety 

did not form favourable interactions most likely due to the guanidine group of Arginine 139 in 

close  distance.  In  this  case,  a  group able  to  accept  the  hydrogen  bond from the  protonated 

guanidine, such as amino or carbonyl groups, could increase the affinity. Interestingly,  Glide did 

not position the above mentioned methoxy group close to Glutamate 129, but to Arginine 139 

instead. The latter formed intense interactions with both hydroxyl groups on the aromatic ring. 

Additionally,  Glide emphasized a hydrophobic interaction between the trifluoromethyl group of 

the cycle 3 acid and the residues Alanine 104, Phenylalanine 105 and Leucine 108 (Figure XX C). 

The three aminoacids formed a strongly hydrophobic pocket that in the original publication was 

occupied by the biphenyl moiety of  ABT-737. [143] The  Glide  docking score was -7.1 which is a 

moderate result. Indeed, a score below -7 signifies that the algorithm could position the molecule 

with some certainty, the lower the score the higher the confidence. Importantly, in both poses the 

linker moiety did not occupy a deep subpocket, but only slightly protruded towards the second 

pocket  of  the  binding  site  or  was  exposed  to  the  solvent  according  to  Hyde and to Glide, 

respectively.  as  highlighted  by  the  grey  aura  surrounding  the  linker  atoms in  Figure  XX  C.  In 

conclusion, despite the dissimilar interaction pattern between the ligand and the binding pocket 

according to the two algorithms (Hyde and Glide), the molecule still offers a similar docking pose, 

making it a promising candidate for resynthesis. 

The second identified hit for BCL-XL was compound 2 with EF of 1229. Similar to compound 1, the 

two docking  algorithms positioned it  in  a  very  similar  fashion as  clarified by  the  comparison 

between Figure XX A and B. Hyde assigned it to the µM range of affinity and Glide scored it with a 

-8.1, meaning that this pose was more realistic than the one for compound 1. 

Interestingly,  the  nitrogen in  position 2  of  the  tetrahydroquinoline  ring  was  considered in  an 

unfavourable position by Hyde (Figure 49 A), while the same atom was acting as a hydrogen bond 

donor towards the carbonyl group of the residue Alanine 104 when docked by Glide (Figure 49 B 

and C). 
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Figure 49: Docking results for compound 2. (A) Hyde 3D view of the binding site with the pose calculated 
by Hyde. To locate the binding site, important amino acids are labelled. (B) 3D view of the binding site  
and the pose calculated by Glide. (C) 2D view of the interactions calculated by Glide.

125

GLU-129

A B

ARG-139

GLU-129

ALA-104

C
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The  pose  assigned  by  Hyde  might reflect  the  actual  binding  mode  considering  the  oxidation 

process that might have taken place during library synthesis and screening. In fact, the THQ ring  

has a high tendency to oxidize by losing hydrogen atoms allowing it to fulfil its aromaticity. Such 

oxidation reactions are enabled by water as a solvent, which is predominant in the DEL context. 

Furthermore, the oxidation and consequent aromatization of the ring deprives this scaffold from 

acting as a hydrogen bond donor, while also greatly changing the polarity of the molecule.  The 

linker, in this case, improved the interaction pattern according to Glide, forming a hydrogen bond 

with the protein backbone corresponding to Glycine 125. On the other hand, it affected negatively 

the affinity according to Hyde, highlighted by the red aura surrounding the carbonyl oxygen of the 

amide bond. This negative influence might be contrasted by the absence of the linker and a more 

hydrophobic moiety as substituent of the aromatic ring. It is worth mentioning here that the cycle 

3 carboxylic acid appeared in 4 out of 18 hits. The position of the sulphur atom of the thiophene 

ring was well evaluated by Hyde as visible in the size of the aura around it and it even formed an 

interaction with the backbone of BCL-XL.  Glide  did not confirmed the interaction but positioned 

the ring in a hydrophobic pocket defined by the residues Alanine 142 and Phenylalanine 143. 

Finally, the third hit for BCL-XL isolated for the scope of this thesis was compound 3, with an initial 

EF  of  913,  which is  still  in  a  very  high  range  for  this  specific  protein.  In  this  case,  the  Hyde 

algorithm assigned it to the nanomolar range of affinity and Glide calculated a docking score of -

7.2. The comparison between Figure 50 A and B exhibit the different positioning of the molecules 

adopted by the two docking algorithms: the cycle 3 acid and the aniline moiety which is part of 

the THQ scaffold are swapped in the pocket. In fact, for  Hyde the methoxy group of the cycle 3 

carboxyl  acid  interacted  with  the  guanidine  group of  Arginine  139,  while  for  Glide the  same 

aminoacid was closer to the ethyl group of the aniline. Similar to compound  2, the nitrogen in 

position 2 in the scaffold interacted with the residues in the binding pocket, in this case forming a 

hydrogen bond with  Glutamate 129  (Figure  50 C).  The  linker  in  this  case  seemed to  play  an 

important role, although in both simulations resulted to be exposed to the solvent. For  Glide the 

linker participated in the interaction with Glutamate 129, whereas for  Hyde all atoms involved in 

the amide bond were surrounded by an evident red aura, especially the nitrogen, meaning that  

probably the molecule without the linker would constitute a better candidate for resynthesis and 

biological testing.
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Figure 50: Docking results for compound 3. (A) 3D view of the binding site with the pose calculated by Hyde. 
To locate the binding site, important amino acids are labelled. (B) 3D view of the binding site and the pose 
calculated by Glide. (4) 2D view of the interactions calculated by Glide.
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 7.4.2.2 MKK7

The analysis of the sequenced hits for the target MKK7 produced the scatter plot in Figure  51 

displaying the EF vs the rank abundance as axes and the hit molecules as dots coloured according 

to the Pareto ranking. In particular, red dots refer to molecules with high EF, affinity in the nM or 

µM range and low docking score. The molecules corresponding to the red dots highlighted with  

the letters in the plot are depicted in Figure 52 under the corresponding letter. Molecules in Figure 

52 A, B and D presented SnAP reaction-based scaffolds so they did not belong to the scope of this  

thesis, while the one in Figure  52 C presented the THQ scaffold, so it was further analysed as 

compound 4. 

Figure 51: Scatter plot relating the EF vs RA for the protein MKK7.

Figure 52: Hit molecules for the protein MKK7. (A), (B)  and (D) are based on the SnAP reaction, while (C) 
contains the THQ scaffold obtained by Povarov reaction. The letters correspond to the scatter plot in the  
previous figure.

It performed well in the selection assay, with an EF of 2393, and was excellently evaluated by both 

docking algorithms. 
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Hyde assigned  it  a  nanomolar  range  of  affinity  and  Glide a  docking  score  of  -10.1,  which 

underlined high confidence in the positioning of the molecule. 

For this hit,  both algorithms agreed on the interaction pattern, involving the cycle 1 aldehyde 

moiety with two residues in the binding site. In details,  Glide highlighted a pi-cation interaction 

between  the  pyrrole  ring  and  Lysine  165.  The  Methionine  215,  on  the  other  hand,  formed 

hydrogen bonds with the nitrogen of the linker moiety according to Hyde (Figure  53A) and with 

the oxygen in para position to the pyrrole on the benzyl ring according to Glide, as emphasized by 

the yellow arrows in Figure 53A and C respectively.
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Figure 53: Docking results for compound 4. (A) 3D view of the binding site with the pose calculated by Hyde. 
To locate the binding site, important amino acids are labelled. (B) 3D view of the binding site and the pose 
calculated by Glide. (4) 2D view of the interactions calculated by Glide.

Interestingly, the linker moiety points towards the Cysteine 218, used for the covalent bond for 

inhibitors such as Ibrutinib. Therefore, in the case of a covalent inhibitor, the acrylamide could be 

reacted with the carboxylic acid of the cycle 1 building block to obtain the same effect. The fact  

that two docking algorithms based on so different assumptions predicted a very similar pose with 

high confidence is a clear sign that compound 4 was worth being tested in biological assays.
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 7.4.2.3 MDM2

The calculation and comparison of the EFs for the third protein MDM2 produced the scatter plot in 

Figure 54. It is noticeable the fourfold gap in EF between the first and the second highest enriched 

compounds, which might lead to consider the first molecule an outlier. Although this hit consisted 

of  a  SnAP reaction-based scaffold,  a  closer  look  elucidated that  the cycle  3 acid  contained a  

pyrazolo[1,5- α]pyridine moiety (Figure  55 A) which showed high structural  similarity with the 

indole group. This group has been considered an anchor for this target as its respective aminoacid,  

Tryptophan, is involved in the interaction between MDM2 and p53. This finding supported the 

validation of the selection assay because the indole-based carboxylic acid in the third cycle of the 

library synthesis accounted for 4 out of 21 identified hits for MDM2 (Figure 55). Since the software 

SeeSAR could not assign any of the Povarov reaction-based hits to the nM or µM range, two hits 

with  high  EF  and  good  Glide  docking  score  were  reported  in  Figure  56 with  the  respective 

interaction patterns.

Figure 54: Scatter plot relating the EF vs RA for the protein MDM2.
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Hits validation by molecular docking

Figure 55: Hit molecules for the protein MDM2. (A) is based on the SnAP reaction, while (B)  and (C) contain the THQ 
scaffold obtained by Povarov reaction. The letters correspond to the scatter plot in the previous figure.

Compound  5 (Figure  56 A and C) contained the indole group at the aldehyde for the first cycle of  

library synthesis, which fit deeply inside the binding site. As the linker moiety was always bound to the 

first cycle aldehyde, it was also buried inside the pocket, rendering the pose unrealistic in the context 

of the selection assay. However, the docking score of -9.2 might suggest that a synthesis omitting the 

linker could lead to successful biological experiments. In compound 6 (Figure 56 B and D), the linker is 

exposed to the solvent and the docking score was -8.9.
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Hits validation by molecular docking

 

Figure 56: Analysis of the docking results for compound 5 and 6. (A) and (B) Glide 3D view of the molecules  
in the binding pocket and (C) and (D) 2D interaction schemes.

The two hits display the same carboxylic acid, the α-fluorobenzenacetic acid, which occupied different 

spaces in the pocket. Finally, the two compounds constituted good candidates for resynthesis firstly for 

their high EFs, 1701 and 1578 respectively, and in addition for their good docking scores.
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The results of the whole analysis are summarized in Table 21.

Table 21: Results of the whole analysis.

Protein Compound EF SeeSAR nM affinity range Glide docking score

BCL-XL

1 1409 yes -7.1

2 1229 no -8.1

3 913 yes -7.2

MKK7 4 2393 yes -10.1

MDM2
5 1701 no -9.2

6 1578 no -8.9
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 7.5 Conclusions

In this chapter, chemoinformatics and computational methods have been employed to interpret the 

calculations  deriving  from  the  selection  assay  of  a  DEL  screening  campaign.  In  the  process, 

supplementary  analyses  were  performed.  At  first,  frequent  hitters  were  identified  as  molecules 

binding more than four  proteins  and considered as  false positives.  Further  investigation on these 

molecules might reveal interactions with the material used in the selection assay. In particular, the 

substructure  1,3-dihydro-2H-imidazol-2-one  was  found  in  all  frequent  hitters,  highlighting  its  high 

reactivity. In addition, trends could be detected in terms of preference from the proteins side towards 

specific substructures, such as the known MDM2-indole predilection. Once the hit molecules were 

refined, they were subjected to the docking protocol, with two aims. Firstly, the docking protocol was  

intended as validation method for the selection assay. In fact, only molecules performing well in all  

practical and simulated experiments were selected for resynthesis and further biological test.  Two 

docking  algorithms were employed,  which  are  based  on very  distinct  assumptions,  rendering  the 

validation protocol more robust. Additionally, in case a hit resulted active against a target, the docking  

algorithm could suggest the binding mode, which would otherwise be unknown. 

The  procedure  was  recurred  for  three  proteins  and  focused  on  the  molecules  showing  the  THQ 

scaffold obtained with the Povarov reaction. While for the protein BCL-X L the docking algorithms and 

the selection assay agreed on three molecules, for the protein MDM2 the first docking algorithm could 

not  identify  any  affine  molecules  in  contrast  with  the  second  docking  procedure  which  showed 

encouraging  results.  For  the  last  considered  protein,  MKK7,  the  selection  assay  and  the  docking 

protocols strongly agreed on one molecules from the THQ scaffold class, which was definitely worth to 

be further analysed. 

Finally,  not  only  the  single  hits are  going  to  be  submitted  to  further  testing,  but  also  series  of 

congeneric compounds carrying features that could improve the affinity, based on the docking results.  

The selected molecules are currently under synthetic procedure and will be analysed in bioactivity 

assays.
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 8 General conclusions and future perspectives
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Over  the  course  of  this  thesis,  chemoinformatics  and  computational  methodologies  have  been 

employed to support and optimize the technology of DNA-encoded libraries from the design to the 

validation. In particular, the chemoinformatics aspects of such objective were accomplished within the 

KNIME  Analytics  Platform.  In  the  first  place,  a  novel  algorithm  was  designed  to  select  potential 

chemistries  from large databases and employ them in the DEL synthesis.  One chemistry  that was 

extracted by the algorithm could be successfully applied to DNA-encoded substrates and it is currently 

under investigation as candidate for the synthesis of a DNA-encoded library. In parallel, a workflow for 

selecting building  blocks  was generated as  well.  The main aim of  such selection process was the  

products'  chemical  and  geometrical  diversity  and  the  building  blocks  were  adapted  to  chemical 

transformations  that  have been already established for  DELs.  Finally,  the respective libraries  were 

enumerated and compared with drug-like compounds to assess their significance in a drug discovery 

project.  The  combination  of  multiple  chemistries  and  diverse  building  blocks  guaranteed  a  wide 

coverage of chemical space, which is a promising feature in terms of hits identification. Lastly, the 

validation of DEL hits was aided by docking, for the purpose of reducing noise and removing false 

positives.  At  first,  the  sequencing  results  were  analysed  with  KNIME  and  the  data  set  could  be 

decluttered  from  frequent  hitters.  Hence,  the  remaining  structures  were  docked  onto  the  target 

proteins to assess their affinity and their binding modes. The chemoinformatics and docking results  

guided  towards  identifications  of  trends  and  optimization of  the molecules.  As  mentioned in  the 

introduction, the results of the chemoinformatics analysis shall guide scientists towards data-driven 

solutions and optimized design of experiments,  as highlighted by the green arrow in Figure  57.  In 

Figure 57, the main contributions to each stage of the DEL process are highlighted on top. The design 

of the library can certainly be aided by machines and databases, whereas the synthesis and screening 

requires manual effort, although progress in the direction of lab automation has been made. [156], 

[157], [158] The validation of hits, beside biological tests, can be performed in silico as well via docking 

or via machine learning methods. 
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Figure  57:  Whole computer-aided DEL process.  The DEL design  has  been  supported by  KNIME for  the 
selection  of  the  chemistry  and  the  building  blocks  from  chemical  databases.  On  the  other  hand,  the  
synthesis and selection of the library has not been supported by machines so far, whereas the identified hits 
have been validated by docking experiments, coupled with ongoing biochemical tests. Inside the monitors,  
the software utilized for the considered step is specified, except for the screen in the centre, where instead  
there is a screenshot of the Fujitsu Electronic Laboratory Notebook System. This represents a guideline that 
would improve consistency in the DEL process. The insights gained from the chemoinformatics analysis and 
computational simulations can serve the data-driven design of further DEL design (green arrow). Indeed, 
building blocks that caused unspecific interactions will be avoided in the future as well as chemistries which  
do  not  guarantee  a  large  coverage  of  chemical  space.  Part  of  the  figure  has  been  generated  by 
Biorender.com.

DEL design
DEL synthesis and screening

validation

com
pound  

collections

reaction  
databases

hit

chem
istry

data analysis

docking

Created with BioRender.com

building blocks



General conclusions and future perspectives

However, two important notes are to be made regarding the computer-aided design and synthesis:  

databases needs large efforts in data curation. Nowadays, chemistry databases are largely based on 

mining scientific articles, yet laboratory journals constitute a key source of primary data,  including  

negative results that are so precious to machine learning methodologies. [159], [160], [161] In fact, 

suboptimal results are as fundamental as successful results for models to make reliable predictions. 

For example, intense efforts are directed towards the creation of a freely available data set of balanced 

reactions.  [162]  The  text  mining  technologies  would  be  enhanced by  routinely  using  a  universal, 

unambiguous  and  machine-readable  chemical  language.  [163]  Such  system  would  improve 

reproducibility  not  only  by  humans  but  also  by  robots,  lifting  the  chemists  from  the  burden  of 

repetitive or dangerous procedures. This concept has been already applied to flow-chemistry [164], 

but it is currently investigated for a broader scope of reactions and approaches. [165] 

Lastly, the unification of all stages of the DEL technology under one workflow would be possible if one 

common platform was utilized for the purpose, together with a universal chemical language which 

could be decoded by both humans and machines. The common platform could be represented by 

KNIME, for its simplicity and all the extensions that are currently implemented, including biology tasks, 

docking and machine learning. In summary, a computer-aided DEL process has been reported, which 

can still  be improved by unifying all  modules under one workflow and eventually coupling it  with 

laboratory  automation.  However,  for  this  purpose  the  adjoining  infrastructure,  such  as  electronic 

laboratory notebooks, is to be implemented as well.
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 9 Experimental part

 9.1 Chemistry selection 

 9.1.1 KNIME workflow and tables

The complete KNIME workflow with a sample of 100 reactions from the Reaxys® database is available  

at the following link: https://kni.me/s/R8gFmu9rgDDqVxtp. 

In the Appendix at the end of the thesis, the tables utilized over the course of the workflow are listed  

as KNIME reports, generated with the BIRT extention.

 9.1.2 Procedures for the selected reactions and analytical data

 9.1.2.1 Materials and instruments

Unless  otherwise  noted,  chemicals  were  purchased  from  abcr,  Acros  Organics,  Alfa  Aesar,  Fisher 

Scientific, Merck, Sigma Aldrich, TCI and VWR and were used as provided without further purifications. 

Dry solvents (MeCN, DCE, DMA, DMF, DMSO, EtOH) were used as commercially available. 

5’-Aminolinker-modified DNA oligonucleotides on controlled pore glass  solid support (CPG, 1000 Å 

porosity) were synthesized by Ella Biotech GmBH (Planegg, Germany). 

CPG  with  oligonucleotide-small  molecule  conjugates  were  filtered  and  washed  through  synthesis 

columns using a vacuum manifold (Vac-Man®) from Sigma Aldrich.

Analytical RP-HPLC:  HPLC analysis was performed on a  Shimadzu Prominence using a C18 stationary 

phase column (Phenomenex, Gemini; 4.6 x 100 mm, 110Å, 5 µm) and a gradient of 10mM aqueous 

triethylammonium acetate (pH=8.0)/MeOH. HPLC traces were recorded at 254nm wavelength.

Method: Step gradient of 10% to 60% MeOH in  10mM aqueous triethylammonium acetate 

(pH=8.0) within 22 min at a flow rate of 0.6 mL/min.

MALDI-TOF:  Mass analysis  was  performed on  a  MALDI  TOF/TOF  MS  from  Bruker  Daltonics using 

2’,4’,6’-trihydroxyacetophenone (THAP) matrix (Dichrom).
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 9.1.2.2 General procedures (GP)

 9.1.2.2.1 Amide coupling (GP1)

Step  1:  DMT-protecting  group  of  CPG-bound  oligonucleotide  (250  nmol,  9-10  mg  of  solid  phase 

material) was removed by addition of 200 µL 3% trichloroacetic acid in DCM for 1 min. An orange 

colouring  of  the  solution indicated  successful  removal  of  protecting  group.  The deprotection was 

repeated 3-5 times until no further colouring of the solution was observed. CPG-bound deprotected 

DNA was washed three times with each 200 μL of 1% TEA in ACN, DMF, MeOH, ACN and DCM and 

dried in vacuo. 

Step 2: CPG-coupled oligonucleotide, carboxylic acid and HATU were dried in vacuo for 30 min. Stock 

solutions of all reactants in dry DMF were prepared before the reaction was started. HATU (25 μmol, 

100 equiv., 111 mM calculated for the final volume of 225 μL) dissolved in 75 μL dry DMF and DIPEA 

(62.5 μmol, 250 equiv. 277 mM calculated for the final volume of 225 μL) were added to the solution 

of carboxylic acid (25 μmol, 100 equiv., 111 mM calculated for the final volume of 225 μL) in 75 μL dry  

DMF.  The  mixture  was  shaken  for  5  min  and  added  to  CPG-coupled  DNA  (250  nmol,  1  equiv.)  

suspended in 75 μL dry DMF. The amide coupling reaction was shaken at ambient temperature for 2 h.  

Next, the CPG-coupled conjugate was filtered over a filter column, washed three times with each 200 

μL  of  DMF,  MeOH,  ACN and DCM and dried  in  vacuo.  Amide  coupling  was  repeated  two times. 

Completeness  of  amide  coupling  was  controlled  by  cleaving  off  a  small  portion  of  CPG-coupled 

oligonucleotide conjugate (0.7–0.9 mg, ~20 nmol) with 500 μL AMA (AMA = aqueous ammonia (30%) /  

aqueous  methylamine  (40%),  1:1,  vol/vol)  for  30  min  (TC)  or  4  h  (ATGC-sequences)  at  ambient  

temperature. Afterwards 20 μL of 1 M Tris buffer (pH = 7.5) were added, the mixture was dried under 

reduced pressure (SpeedVac) and DNA was dissolved in 200 μL distilled water. The crude reaction 

mixture was analysed by analytical RP-HPLC and MALDI-MS. In case of uncompleted coupling (< 90%) 

the reaction was repeated a third time.  Unreacted amines were capped with acetic acid anhydride 

(three times 200 μL, 30 s, 1:1 mixture of THF/methylimidazole, 9:1, vol/vol, and THF/pyridine/acetic 
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acid anhydride 8:1:1, vol/vol). The capped CPG-coupled oligonucleotide conjugate was washed three 

times with each 200 μL of DMF, MeOH, ACN and DCM and dried in vacuo.

 9.1.2.2.2 Pyrrole synthesis on DNA-aldehyde conjugate (GP2)

The amine 2 (200 eq., 4 μmol), the ethylacetoacetate 3 (200 eq., 4 μmol), and FeCl3 (10%, 20 eq., 0.4 

μmol) were solved in nitromethane and added to 20 nmol of the CPG-bound DNA for a final volume of 

40 µL and a concentration of 250 µM for all reagents except the metal salt whose concentration was 

25  µM. The reaction mixtures were stirred,  then transferred to  a  filter  column and washed with  

dimethylformammide. Firstly, the samples were incubated with EDTA for 30 seconds and then washed 

3 times with 200 µL dimethyformammide,  metanol,  acetonitrile  and dichloromethane.  Finally,  the 

DNA-conjugates were cleaved from the solid support by dispersion in 32% aq. solution of ammonia, 

which was stirred for four hours. Subsequently, 20 μL of 1 M Tris buffer (pH = 7.5) were added and the 

mixture was dried under reduced pressure (SpeedVac). After re-dispersion in ddH2O and filtration, the 

samples were further purified by adding 5µL of 1,3,5-Triazine-2,4,6-trithiol trisodium salt solution to 

45 µL of sample and stirring for 30 minutes. Then, the dispersion was centrifuged for 30 min at 4 °C at 

11000 rpm and to the supernatant 5 µL of 3% sodium acetate aq. solution and 220 µL ethanol were  

added. The solution was then incubated at -80 °C overnight, then centrifuged, decanted and the pellet 

was  re-dispersed  in  200  µL  of  ethanol,  incubated  for  1  hour  at  -80°C  and  then  centrifuged  and  

decanted. The pellet was solved in water and analysed by RP-HPLC and MALDI-TOF. 
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 9.1.2.2.3 Pyrrolidine synthesis on DNA-amine conjugate (GP3)

The oligonucleotide-amine conjugate on CPG (20 nmol), the thioester 6 (1000 eq., 20 µmol) and the 

benzaldehyde 7  (1000 eq., 20 µmol) were dried under low pressure for three hours, then they were 

separately solved in dichloroethane. The reagents including the metal salt (1000 eq., 20 µmol) were 

added to the DNA/dichloroethane dispersion, and the reaction was stirred. Afterwards, the reaction 

was  stopped  by  washing  the  CPG-bound  DNA  three  times  with  200  µL  dimethyformammide, 

methanol, acetonitrile and dichloromethane. For the analysis, the DNA conjugate was cleaved from 

the CPG by dispersion in a 32% aq. solution of ammonia and incubation for 30 minutes. Then, 20 μL of 

1 M Tris buffer (pH = 7.5) were added, the mixture was dried under reduced pressure (SpeedVac) and 

redissolved in water to filter the CPG. The water phase was analysed by MALDI-TOF to assess the 

presence of product.

 9.1.2.3 Analytical data

DNA conjugate 1: CPG-bound 10mer ATCG-(CH2)6-NH2 conjugate was reacted with 4-formyl-benzoic 

acid according to the procedure GP1.

HPLC trace of crude reaction mixture 7 (Analytical RP-HPLC).
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MALDI-MS spectrum of crude reaction mixture 1

Table 22: Optimization of pyrrole synthesis on a CPG-bound DNA-aldehyde conjugate 1 according to GP2.a

Entry Reaction 
conditions

MALDI spectrum of the crude reaction mixture
RP-HPLC trace of the crude reaction mixture

1 FeCl3

60 °C
6 h

=> conversion 0%
=> degradation 
20%

147

calc. mass = 3543.3
found mass = 3332.2

(starting material)

calc. mass = 3330.2

found mass = 3334.2
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3 FeCl3

80 °C
6 h

=> conversion 
25%
=> degradation 
54%

148

calc. mass = 3543.3
found mass = 3544.0
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4 FeCl3

80 °C
8 h

=> conversion 
13%
=> degradation 
72%

5 NiCl2

60 °C
6 h

=> conversion 6%
=> degradation 
39%

149

calc. mass = 3543.3
found mass = 3455.9

(side product)

calc. mass = 3543.3
found mass = 3551.2

(side product)
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7 NiCl2

80 °C
6 h

=> conversion 
11%
=> degradation 
37%

150

calc. mass = 3543.3
found mass = 3435.2

(side product)
3544.0
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8 NiCl2

80 °C
8 h

=> conversion 
19%
=> degradation 
26%

a The suspension of DNA-aldehyde conjugate 1 (20 nmol), benzylamine 2a (250 µM), ethylcetoacetate 3 (250 µM) and 
metal salt (25 µM) in solvent (40 µL) was shaken at the given temperature for the given time. DNA cleavage with 32%  
aq. Ammonia solution at ambient temperature for 4 h. b Determined by RP-HPLC analysis based on the ratios of 1 to 
4a (AUC). c  Determined by RP-HPLC analysis and scaled to the purity of the CPG-coupled DNA-aldehyde conjugate 1. 
MeNO2 = nitromethane. N.d. = not detected, 10mer ATGC = 5 -NH2-C6-GTCATGATCT-3 -CPG.′ ′
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calc. mass = 3543.3
found mass = 3437.8

(side product)
3544.0
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Table 23: Amine scope for the pyrrole synthesis on the CPG- bound DNA-aldehyde conjugate 1 according to GP2.a 

Entry
Product
Amine

MALDI spectrum of the crude reaction mixture
RP-HPLC trace of the crude reaction mixture

1 Product 4a
 Amine 2a

=> conversion 
45%

152

calc. mass = 3543.3
found mass = 3545.1
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2 Product 4b
Amine 2b

=> conversion 
45% 

3 Product 4c
Amine 2c

=> conversion 0%

153

calc. mass = 3576.4
found mass = 3649.4

calc. mass = 3558.4
found mass = 3558.3
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4 Product 4d
Amine 2d

=> conversion 0%

154

calc. mass = 3520.2
found mass = 3435.9

calc. mass = 3529.5
found mass = 3332.5

(starting material)
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5 Product 4e
Amine 2e

=> conversion 0%

a The suspension of DNA-aldehyde conjugate 1 (20 nmol), amine 2 (250 µM), ethylcetoacetate 3 (250 µM) and FeCl3 

(25  µM) in MeNO2 (40 µL) was shaken at 80 °C for 6 h. DNA cleavage with 32% aq. Ammonia solution at ambient  
temperature for 4 h. b Determined by RP-HPLC analysis based on the ratios of 1 to 4. c Determined by RP-HPLC analysis 
in ratio to the purity of the CPG-coupled DNA-aldehyde conjugate 1. MeNO2 = nitromethane. 10mer ATGC = 5 -NH2-′
C6-GTCATGATCT-3 -CPG.′
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DNA conjugate 5: CPG-bound 10mer TC-(CH2)6-NH2 conjugate was reacted with 4-amino-benzoic acid 

according to GP1.

HPLC trace of crude reaction mixture 5 (Analytical RP-HPLC).

MALDI-MS spectrum of crude reaction mixture 5
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calc. mass = 3217.0

found mass = 3217.1
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Table  24:  Test reaction for pyrrolidine synthesis on a CPG-bound pyrimidine DNA-amine conjugate  5 according to 
GP3.a

Entry
Reaction 

conditions
MALDI spectrum of the crude reaction mixture

1 thioester 6 
(200 mM)
benzaldehyde 7 
(200 mM)
Et2AlI (200 mM)

=> conversion 
n.d.b

2 thioester 6 
(200 mM)
benzaldehyde 7 
(200 mM)
MgI2 (200 mM)

=> conversion 
n.d.b

a The suspension of DNA-amine conjugate 5 (20 nmol), thioester 6 (200 mM) and benzaldehyde 7 (200 
mM) and metal  salt  (200 mM) in DCE (40 µL)  was shaken at  ambient  temperature  for  1 h.  DNA  
cleavage with 32% aq. ammonia solution at ambient temperature for 30 min. b Determined by MALDI-
TOF analysis, DCE = dichloroethane. n.d. = not detected, 10mer TC = 5’-TTC CTC TCC T-3’-CPG.
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calc. mass = 3484.0
found mass = 3271.9

(side product 9)

calc. mass = 3484.0
found mass = 2982.3

(side product 10)
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 9.2 Building blocks selection

As the KNIME workflow for building block selection was adapted to the molecules class according to 

the considered library or to different requirements for designing each library, the most utilized nodes  

are reported.

· SDF Reader, to read the catalogue from which the building blocks were selected, such as the 

Enamine REAL space [166] or the Aldrich Market Select [37].

· RDKit Functional Group Filter, to divide the data set according to functional group. In this case, 

mono functional or bifunctional building blocks could be selected depending on which cycle of 

the library was being designed.

· RDKit Molecule Catalogue Filter, to filter out PAINS (Pan-Assay INterference compoundS). In 

this node the three groups PAINS-A, –B and –C were selected. 

· MarvinSketch / RDKit Molecule Substructure Filter, to filter specific unwanted substructures. 

Building  blocks  containing  sulfur  or  bulky  substituents  in  ortho-position  to  the  reacting 

functional group were excluded with this method. The same combination of nodes was used to 

constrain the rings size or the presence of heteroatoms in rings.

· RDKit  R-Group  Decomposition as  an  alternative  to  the  previous  combination of  nodes,  to 

exclude fragments with hindered functional groups. By splitting the molecules in MCS (Multiple 

Common  Substructure  –  defined  by  the  MarvinSketch node)  and  R-groups,  this  method 

allowed for identification of each substituent in each position. After that, building blocks with 

bulky substituents in  ortho-position could be eliminated.  Additionally,  the set of molecules 

could be refined according to activating or deactivating groups affecting the reactivity in the 

specific reaction. For example, if  the initial functional moiety was a deactivating group, we 

ensured that the meta-position of all fragments was free.

· RDKit  Descriptor Calculation / Row Splitter,  to  calculate specific molecular  features such as 

molecular weight and trim accordingly. The molecular wight threshold was kept to 200 Da per  

each class of fragments per each cycle not to grow the molecules too much beyond the Lipinski  

rule of five. For aromatic structures, the number of aromatic rings was maintained to only one  

in order to not generate very planar and rigid molecules.

· RDKit Diversity Picker, to narrow down the size of the selection for big data set of building 

blocks without loosing diversity.
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For the library enumeration the following nodes were employed:

· MarvinSketch, to draw the reaction scheme. In this passage, the scheme was kept as minimal 

as  possible  and  special  attention  was  put  into  mapping  reacting  atoms  in  reactants  and 

products. The output format was set to RXN.

· RDKit Two Component Reaction, to perform the reactions according to the previously sketched 

scheme. For the combinatorial nature of DELs, in this node the options “Uniquify products” 

and “Do matrix  expansion”  were flagged.  This  node was used for  each step of  the library 

synthesis and, in the case of MCRs (Multi Component Reactions),  the reaction was split  in 

additional steps.

· Constant Value Column / Counter Generation / Column Aggregator, to label the building blocks 

before the reaction (Figure SX). This step was essential to track back the products after all the 

reaction steps. Alternatively, an initial Structure sheet could be used where each building block 

per each step was listed with the respective SMILES string, label and code. 

· MolConverter / RDKit From Molecule / Joiner, to homogenize the formats before and after the 

reaction and append the label to the respective fragment. This sequence was repeated for 

each step in order to label the final product as well.

· RDKit Descriptor Calculation, to compute the molecular properties of the virtually synthesized 

libraries. With this node, the Lipinski descriptors could be calculated such as the MW, SLogP,  

TPSA  (Topological  Polar  Surface  Area),  NumHBD  (Number  of  Hydrogen  Bond  Donors)  and 

NumHBA (Number of Hydrogen Bond Acceptors). Alternatively, the 42 MQN descriptors could 

be calculated, which consider all topological and pharmacophoric molecular properties.

· Constant  Value  Column,  to  differently  label  the library  members  and  the catalog  used  for 

comparison.  In  this  way,  the  two  data  sets  were  colored  differently  in  the  scatter  plot 

representing the chemical space and in the PMI triangle plot representing the shape diversity.

· RDKit Generate Coords / Principal Moment of Inertia (PMI)-Derived Properties / PMI Triangle 

Scatter Plot,  to visualize trends in molecular shape within the libraries. The 3D coordinated 

were generated and they were used to calculate the PMI properties PMI 1, 2 and 3 and the npr 

1 and 2. 

· Normalizer  /  PCA / 2D/3D Scatterplot,  to  visualize the library member in  the 3D chemical 

space. At first, the MQN descriptors values were normalized via the z-score method and then 

the  PCA  (Principal  Component  Analysis)  was  performed  to  reduce  the  dimensions  of  the 
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database to three, preserving more than 97% of information. Finally, the three PCA dimensions 

were used as axes in the scatter plot defining the chemical space. In the final scatter plot the 

color value was set according to the affiliation with the different data set, the library or the 

database for comparison.

This procedure was applied to the virtual generation of libraries based on Povarov,  aza-Diels-Alder- 

and Biginelli scaffolds. The three libraries were initialized with the same set of aldehyde-acid building 

blocks comprising 490 molecules and the rest of the substructures were selected according to the 

reaction. For the Povarov library 1000 anilines were diversely picked after filtering them by molecular 

weight and sterical hindrance at the ortho-position, while the dihydropyrrole was kept constant. For 

the  aza-Diels-Alder  library  1000  amines  and  anilines  were  diversely  picked  and  the  Danishefsky's 

diene was kept constant. For the Biginelli library 319 Ureas and 100 α-ketoesters were selected. The 

final sizes of the Povarov,  aza-Dield-Alder and Biginelli libraries were approximately 340000, 310000 

and 380000 respectively. Finally, they were compared with drug-like molecules in the Enamine REAL 

space, which at that time comprised 24 million compounds filtered by the Lipinski rule of five and 

Veber criteria [104]. From the database only 500,000 entries were randomly picked to scale it to the 

size of the three libraries. [22]

Additionally,  prior to library synthesis,  building blocks were selected for the first  cycle of a library 

based on reductive amination and Suzuki coupling. This specific library was initiated by coupling a 

diamine, containing a t-boc protecting group on one of the two secondary amines, to the DNA tag. In 

this case,  the selection involved fragments from the Enamine REAL space catalogue containing an 

aldehyde moiety for the reductive amination with the free secondary amine and a Bromine or Iodine 

for the Suzuki coupling with the boronic acid in the second cycle. With the combination of the above  

mentioned nodes a set of five aldehyde-halide fragments were selected and were reacted with 17 

boronic  acids.  The  last  step  was  the substitution of  the t-boc group with 100  carboxylic  acids  to 

introduce the third diversity point. This process produced an 8500 membered library which was, then, 

compared with the Enamine diverse REAL catalogue of drug-like compounds in terms of shape and 

chemical space coverage. This dataset contains roughly 38 million diverse compounds which comply 

with  the  rule  of  five  and  the  Veber's  criteria  [101],  [104]  and  does  not  contain  PAINS  or  toxic 

compounds. For this purpose of comparing it to the library, the catalogue was trimmed to ca. 104,000 

compounds filtering by molecular weight in the 400-550 range and then 10,000 entries were diversely  

picked with the appropriate node. Additionally, three Enamine databases were utilized:
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· the BioReference Library, containing 2100 compounds with a broad biological activity, including 

almost 700 FDA approved drugs.

· the FDA approved drugs collection, used for completeness, containing 7 more FDA approved 

molecules.

· lead-like molecules with the following characteristics: MW≤460, -4≤SlogP≤4.2, HBA≤9, HBD≤5, 

rings≤4, rotatable bonds≤10.

· natural products - like compounds. 
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 9.3 Hits validation by molecular docking

 9.3.1 KNIME workflow

The enrichment factor (EFs) calculations were performed by Nils Yannik Schüssler, master student in 

Prof. Fried group at the Statistics department of the TU Dortmund, and the outcome consisted in an 

Excel file made of as many sheets as the number of proteins. In the first screening campaign 16 targets 

were screened, but for developing the KNIME workflow and for improving hit identification by docking 

only the three following proteins were considered: MKK7, MDM2, BCL-XL.

Each sheet (one for each protein) of the excel file consisted of the following columns:

ProteinCode_ID, an identification number per protein

Region1Code_ID, an identification string per each cycle 1 building block

Region2Code_ID, an identification string per each cycle 2 scaffold

Region3Code_ID, an identification string per each cycle 3 carboxylic acid

reads.protein, number of all detected proteins

reads.control, number of control experiments

freq.protein, frequency of the considered protein

freq.control, frequency of the respective control

promille.protein, parts per thousand connectivity of the protein of interest

promille.control, parts per thousand connectivity of the respective control

enrichmentFactor, frequency of each sequence over the rank abundance

rank.Abundance, count of each unique sequence 

Control, experiments used as control with which the enrichment factor was calculated

The workflow to read the above mentioned excel file is depicted in Figure 58and started with an Empty 

Table Creator node followed by a  Counter Generation and a  Table Row To Variable Loop Start node. 

This combination of nodes allowed for reading iteratively all sheets, and consequently all proteins, of 

the excel  file.  Then,  the  variable  output  port  of  the  Table  Row to  Variable  Loop  Start node  was 

connected to the  Excel Reader (XLS) node, whose input was set to be the excel file and in the flow 

variable section the SHEET_NAME parameter was controlled by the variable Counter. 
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Figure 58: Input workflow for a preliminary filtering of the sequencing data.

The  Excel Reader was followed by three  Row Filter nodes which excluded the control experiments 

calculations from the analysis. Subsequently, a Sorter node ordered the enrichmentFactor column in a 

descending way. An additional  Row Filter excluded the control  Streptavidine Beads from the Control 

column and was connected to the Statistics node. This node calculated statistical parameters per each 

column of the input table transposing the columns into rows. The first output of this node was filtered 

to include only the enrichmentFactor row and this row was transformed into a variable via the Table 

Row to Variable node. The mean value used in the following Row Filter node as variable for controlling 

the lower bound parameter. The whole process was iterated for the rest of the proteins via a Loop End. 

In this way, the sequences and by consequence the molecules showing an EF higher than the average 

EF per each proteins were selected. 

The next section of the workflow was necessary for appending the molecules structures to the table.  

First of all the Excel Reader node was used to open the Structure sheet, a file where the SMILES, codes 

and names were present per each building block and protein. The respective SMILES strings for the 

three cycles  molecules  were converted to  structures  with  the  Molecule  Type  Cast nodes  and the 

structures were appended via three Joiner nodes. Additionally, the protein name was extracted from 

the Structure Sheet and joined to the table as well (Figure 59).
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Figure 59: Workflow to assign the chemical structures to the respective labels.

Hence, the so-called frequent hitters were excluded from the data, as they are unspecific (Figure 60). 

For this purpose, a GroupBy node grouped the three cycles IDs and counted the unique proteins IDs. 

After that, the Row Splitter node excluded the combinations that bound more than four proteins. The 

second output of the Row Splitter was connected to the second input ports of three Reference Row 

Splitter nodes, one for each cycle. The first input port of the first node was fed by the Joiner that  

appended the protein name, and the columns to match were set to the Region1Code_ID, namely the 

cycle 1 aldehyde.  The first  output  port  of this  node was connected to the second  Reference Row 

Splitter node and this time the scaffold ID was matched. The same procedure was repeated for the 

cycle 3 carboxylic acid. At the end, an additional Reference Row Splitter node matched the RowIDs to 

select the entries from the joined table containing the at the same time frequent cycle 1, 2 and 3 

molecules.
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Figure  60: Workflow to exclude the frequent hitters: molecules which bound more than four 
targets.

 At this point, the data were split according to the control experiments and the control Amplified DEL 

was  considered,  because  more  relevant  to  our  analysis.  To  label  the  combinations  (Figure  61)  a 

Constant Value Column was used which appended the column “Comb_ID” with value “comb”. Then, 

the  Counter  Generation node  was  employed  to  assign  an  integer  to  each  row  and  a  Column 

Aggregator to concatenate the constant value and the counter, in order to assign to each combination 

a unique ID. As some combination bound different proteins some duplicates with different IDs were 

present. This problem was addressed by employing a Duplicate Row Filter which was set to create an 

additional  column  with  the  ID  of  the  duplicate.  The  duplicates  were  named after  the  respective 

reference combinations via a Row Splitter, a Column Filter and a Column Rename nodes, so that each 

combination showed a unique ID. After that, the columns created by the  Duplicate Row Filter node 

were excluded by a Column Filter node. 
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The cycle 1, 2 and 3 molecules were then connected to form the complete structures. To do so, a loop 

through the targets was initialized by a Group Loop Start. Firstly, the cycle 1 aldehydes, presenting a 

carboxylic acid moiety for coupling to the DNA, were submitted to the RDKit Chemical Transformation 

node  which  generated  an  thioester  on  the  carboxylic  acid,  to  differentiate  it  from  any  other 

substructure in the dataset that could interfere with the product formation.  For this purpose,  the 

MarvinSketch node  employed.  Subsequently,  the  scaffold  SMILES  were  modified  via  a  String 

Manipulation with the expression: “replace($Scaffold_Smiles$, "[R]", "*")” to be converted in structure 

with an exit vector via the  Molecule Type Cast. The exit vector was then substituted by the cycle 1 

aldehydes via a RDKit Two Component Reaction node and the right formed product was selected via 

visual inspection of the first rows of the table. As the correct product was differentiated by the RowID  

sequence number, the RowID node was used to translate the RowIDs into a column and the Row Filter  

node include only the rows containing the pattern “*_*_1_*”. The output of the RowID node fed the 

second input port of the RDKit Two Component Reaction node, whose first output was connected with 

the initial  table coming from the  Group Loop Start node to retrieve the structures of the cycle 3 

carboxylic acids. The last input port of the RDKit Two Component Reaction node received the amide 

bond formation reaction in RXN format from the  MarvinSketch node. As in the case of the Povarov 

scaffold two amino-groups were available for amide bond formation, the GroupBy node was needed to 

filter the undesired product. The thioester linker was substituted by an amide bond with the  RDKit 

Chemical  Transformation node  and  the  respective  reaction  drawn  in  MarvinSketch.  The  formed 

products were then to be labelled again with their proper combination IDs, so a Column Filter node 

from the initial Group Loop Start node included only the relevant columns and they were appended to 

the products by a  Column Appender node. The last important step of this process was to save the 

structures in  SDF format  in  order  to  export  them to the docking  software.  To do so,  the  Column 
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Appender node was connected to the  Table Row to Variable node and the column containing the 

protein  name  was  converted  into  variable.  Then,  the  path  of  the  file  was  added  via  a  String 

Manipulation (Variable) node and its output port was connected to the variable input port of a  SDF 

Writer node, which wrote the SDF file in the proper folder with the proper name. The loop was then 

closed by a  Loop End node in order to repeat the same process per each and every target protein 

(Figure 62).

Figure 62: Workflow for the chemical reactions to form the final products.

 9.3.2 Molecular Docking

 9.3.2.1 Docking with SeeSAR

Initially, the proteins and the ligands were prepared in SeeSAR according to default settings and then 

the docking procedure was applied via the appropriate function. The molecules that were predicted to 

bind in a nmolar to molar range were exported and compared within KNIME. 

 9.3.2.2 Docking with Glide

Where not explicitly stated, the software settings were left unchanged. The protein structures were 

retrieved from the Protein  Data  Bank (PDB)  using  the codes  shown in  Table  25 via  the  Get  PDB 

function of the software Maestro. 

Table 25: Target proteins with respective PDB codes.

Target protein PDB code

BCL-XL 2YXJ

MDM2 MDN4

MKK7 6YG7

Subsequently, the protein crystallographic structures were prepare via the Protein Preparation Wizard. 

In particular, the missing loops were filled with Prime, while other species, including the co-crystallized 

ligands,  were  removed.  This  step  allowed  us  to  perform  a  blind  docking,  without  biasing  the 
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calculation with pre-existing constraints. The charges were calculated for pH=7.2 ± 0.2. The remaining 

settings  were  left as  default  including  the radius  at  which  the water  molecules  were  considered. 

Finally, the proteins were minimized according to the OPLS4 force field. The molecules generated by 

the KNIME workflow were prepared with the LigPrep function in Maestro. The charges were calculated 

for pH=7.2 ± 0.2 and 32 possible conformations per ligand were generated. The prepared proteins 

were submitted to the  SiteMap protocol,  which searched for druggable pockets  over the proteins 

surface area. Very small pockets were discarded due to the size of the molecules output of the library.  

Each pocket identified by the SiteMap was used as centre in the Glide Grid Generation protocol. In this 

case, the grid box was expanded to 20 Å in each direction. For the docking procedure, each site-based 

grid was employed sequentially and the Glide Docking function was performed at a standard precision 

level (SP). The number of poses per ligand was set to 50 and the strain energy for ligands was applied. 

The output of the docking protocol was exported in a table to be used in KNIME and being compared 

with  the  Enrichment  Factors  and  the  calculated  affinity  by  SeeSAR.  For  this  purpose,  the  Pareto 

Ranking node  in  KNIME  was  used,  minimizing  the  docking  score  and  the  calculated  affinity  and 

maximizing the enrichment factor. 
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∆G increment in Gibbs energy

A adenosine

Ala alanine

AMA aqueous ammonia (30%) / aqueous methylamine (40%), 1:1, vol/vol

AMS aldrich market select

Arg arginine

B Biginelli scaffold

BAK BCL2 antagonist/killer

BAX BCL2 associated X

BB building block

BCL-XL B cell lymphoma XL

BCL2 B cell lymphoma 2

BIOS biology-oriented synthesis

boc/t-boc tert-butyloxycarbonyl

C cytidine

CLogP calculated LogP

CPG controlled pore glass

CPU central processing unit

DA aza-Diels-Alder scaffold

DCE dichloroethane

DCM dichloromethane

DEL DNA-encoded library

DIPEA N,N-Diisopropylethylamine

DMA dimethylacetamide

DMF dimethylformamide

DMSO dimethyl sulphoxide

DNA deoxyribonucleic acid

DOS diversity-oriented synthesis
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EF enrichment factor

EtOH ethanol

FDA food and drug administration

FF force field

G guanosine

Glu glutamate

HATU Hexafluorophosphate Azabenzotriazole Tetramethyl Uronium

HBA hydrogen bond acceptor

HBD hydrogen bond donor

HC hierarchical clustering

HTS high-throughput screening

JNK c-Jun N-terminal kinase

KNIME konstanz information miner

LG leaving group

MALDI-TOF Matrix-Assisted Laser Desorption/Ionization-Time Of Flight

MCR multi-component reaction

MCS multiple common substructure

MDM2 murine double minute 2

MeCN acetonitrile

MeOH methanol

MKK7 mitogen-activated protein kinase kinase 7

MOMP mitochondria outer membrane permeabilisation

MQN molecular quantum number

MW molecular weight

NGS next generation sequencing

nM nanomolar

NP natural product

OBOC one-bead-one-compound

ORD open-reaction database

P Povarov scaffold
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PAINS pan-assay interference compounds

PC partitional clustering

PCA principal component analysis

PCR polymerase chain reaction

PDB protein data bank

PEG polyethylene glycole

PMI principal moment of inertia

PPI protein-protein-interaction

RA rank abundance

RO5 rule of five

RotBonds number of rotatable bonds

RP-HPLC reverse phase – high performance liquid chromatography

rxns reactions

Sc silhouette coefficient

SF scoring function

SLogP hybrid LogP

SMARTS SMILES arbitrary target specification

SMILES simplified molecular input line system

T thymidine

TEA triethylamine

THF tetrahydrofurane

THQ tetrahydroquinoline

TPSA topological polar surface area

VS virtual screening

µM micromolar
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((R)-2,2'-bis(3,5-tBu2-2-HO-C6H2CH=N)-1,1'-binaphthyl)AlCl] 4

((S)-(PhCH(Me))N=C(Me)(Rp-OH[2,2-paracyclophane]) 2

((S)-(PhCH(Me))N=C(Phe)(Rp-OH[2,2-paracyclophane]) 2

(+)-(1S)-camphor-10-sulphonic acid 4

(+)-(3,2,10-eta-pinene)palladium(II) chloride 0

(+)-1-t-Bu-2-TsO-2H-[1,2]azaborolyl*(CO)2*Me3Si*iron 1

(+)-diisopinocampheylboron triflate 4

(+/-)-MIB 3

(-)-1,2-bis((2R,5R)-2,5-dimethylphospholano)benzene 3

(-)-MIB 3

(-)-N-methylephedrine 2

(-)-diisopinocampheylboron triflate 4

(-)-sparteine 2

(1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloride 0

(1,2-bis(diphenylphosphanyl)ethane)dichloridopalladium(II) 0

(1,2-dimethoxyethane)dichloronickel(II) 4

(1,3-dimesitylimidazol-2-ylidene)gold(I) chloride 4

(10,10-dimethyl-5-(pyridin-2-yl)-6-
azatricyclo[7.1.1.02,7]undeca-2(7),3,5-trien-8-yl)diphenylmethanol

3

(11aR)-(+)-10,11,12,13-tetrahydrodiindeno[7,1-de:1',7'-fg]
[1,3,2]dioxaphosphocin-5-bis[(R)-1-phenylethyl]amine

2

(11bR)-2,6-di-9-phenanthrenyl-4-hydroxy-dinaphtho[2,1-d:1?,2?-f ]
[1,3,2]-dioxaphosphepin-4-oxide

2

(1R)-1-[(1R)-1-[bis[3,5-bis(trifluoromethyl)-
phenyl]phosphino]ethyl]-2-[2-]bis(4-methoxy-3,5-dimethyl-
phenyl)phosphino]-phenyl]ferrocene

2

(1R)-3-di-(3,5-dimethylphenyl)phosphino-(4-diphenylphosphino-2,5-
dimethylthienyl-3)-1,7,7-trimethylbicyclo[2.2.1]heptene-2

3

(1R,2R)-2-[(diphenylphosphoroso)amino]-1,2-diphenylethyl]
(propan-2-yl)amine

2

(1R,2S)-(+)-2-(N,N-di-n-butylamino)-1-phenylpropan-1-ol 2

(1R,2S)-(-)-2-[N-(3?,5?-di-tert-butylsalicylidene)amino]-1,2-
diphenylethanol

2

(1R,2S)-1-phenyl-2-(1-pyrrolidinyl)-1-propanol 3

(1R,2S)-2-(4-methylbenzenesulfonylamino)-1,3-diphenyl-1-propanol 3

(1R,2S)-2-Amino-1,2-diphenylethanol 2

(1S)-1-((S)-1-methylpropyl)-(2-morpholin-4-ylethyl)amine 4

(1S)-10-camphorsulfonic acid 4

(1S,2R)-(+)-N-methylephedrine 2

(1S,2R)-(-)-2-(N,N-di-n-butylamino)-1-phenylpropan-1-ol 4

(1S,2R)-(-)-2-(N,N-di-n-propylamino)-1-phenylpropan-1-ol 4
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(1S,2S)-2-N,N-dimethylamino-1-(p-nitrophenyl)-3-(tert-
butyldimethylsilyloxy)propan-1-ol

2

(1S,2S,4S,5S)-N2,N2,N5,N5-tetramethylbicyclo[2.2.1]heptane-2,5-
diamine

2

(2,7-dimethyl-1,8-biphenylenedioxy)bis(dimethoxyaluminum) 2

(2-hydroxy-ethyl)ammonium acetate 3

(2-methylpropyl)lithium 0

(2R)-(+)-3,3'-diphenyl-[2,2'-dinaphthalene]-1,1'-diol 2

(2R)-(+)-3-exo-N-morpholinoisoborneol 4

(2R,3R)-1,4-dioxaspiro[4.5]decane-alpha,alpha,alpha',alpha'-
tetrakis(1-naphthyl)-2,3-dimethanol

4

(2R,3R)-4-dimethylamino-3-methyl-1,2-diphenyl-butan-2-ol 2

(2R,3R)-tartaric acid-derived bis-benzimidazole 4

(2R,3S,3aS,4aR,6R,8aS)-2-isopropyl-6,9,9-trimethyl-3-
phenyldecahydro-4aH-pyrrolo[2,1-b][1,3]benzoxazin-3-ol

2

(2S)-(-)-3,3'-diphenyl-(2,2'-binaphthalene)-1,1'-diol 3

(2S)-(?)-3-exo-(morpholino)isoborneol 4

(2S)-2-{diphenyl[(trimethylsilyl)oxy]methyl}pyrrolidine 3

(2S)-N-(2-pyrrolidine-2-carbonyl)-benzenesulfonamide 3

(2S,3S)-2,3-bis(diphenylphosphino)butane 3

(2S,5R)-2-(methylaminomethyl)-1-methyl-5-phenylpyrrolidine 3

(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']di-naphthalen-4-yl)-bis-
(1-phenyl-ethyl)-amine

2

(3S)-(+)-2,2'-diphenyl-(3,3'-biphenanthrene)-4,4'-diol 2

(3aR)-1-methyl-3,3-diphenyl-tetrahydro-pyrrolo[1,2-c]
[1,3,2]oxazaborole

2

(4R,4'R)-2,2'-(propane-2,2'diyl)bis(4-phenyl-4,5-dihydrooxazole) 2

(4R,5R)-2,2-dimethyl-alpha,alpha,alpha?,alpha?-tetra(naphthalen-1-
yl)-1,3-dioxolane-4,5-dimethanol

4

(4R,5R)-2-bromo-1,3-bis[(4-methylphenyl)sulfonyl]-4,5-
diphenyl-1,3,2-diazaborolidine

4

(4R,5R)-Ph2-1,3-Me2-2-oxo-2-(CH2)5N-1,3,2-diazaphospholidine 2

(4S)-Bn-3-(4-FPhSO2)-2-PhCH2CH2-[1,3,2]-oxazaborolidin-5-one 3

(4S,4'S)-2,2'-(3,6-diphenyl-9H-carbazole-1,8-diyl)bis(4-methyl-4,5-
dihydrooxazole)

2

(4S,4'S)-2,2'-(4-chloropyridine-2,6-diyl)bis(4-tert-butyl-4,5-
dihydrooxazole)

4

(4S,4S')-(-)-2,2'-(1-methylethylidene)bis[4,5-dihydro-4-
(phenylmethyl)oxazole]

2

(4S,5S)-1,3-dimethyl-4,5-diphenyl-2-(1-piperidinyl)-1,3,2-
diazaphospholidine 2-oxide

0

(4S,5S)-2-bromo-1,3-bis[(4-methylphenyl)sulfonyl]-4,5-
diphenyl-1,3,2-diazaborolidine

4

(5S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one trifluoroacetic acid 
salt

4

(5aR,10bS)-2-mesityl-5a,10b-dihydro-4H,6H-indeno[2,1-b]
[1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium tetrafluoroborate

1
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(5aS,10bR)-5a,10b-dihydro-2-(2,4,6-trimethylphenyl)-4H,6H-
indeno[2,1-b]-1,2,4-triazolo[4,3-d]-1,4-oxazinium chloride

2

(6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11]-tetraazacyclo-
tetradecinato)nickel(II)

4

(C2H5)2AlSnClF2 0

(E)-1,1-bis(3,5-dimethylphenyl)-N-(pyridin-2-yl-
methylene)methanamine iron(II) chloride dichloromethane solvate

4

(E)-diazene-1,2-diylbis(cyclohexylmethanone) 2

(IPr)Au(NTf2) 0

(R)-((4,4?-bi-1,3-benzodioxole)-5,5?-diyl)bis(bis(3,5-di-t-butyl-4-
methoxyphenyl))phosphine

2

(R)-(-)-3,3?-bis(3,5-diphenylphenyl)-1,1?-binaphthalene-2,2?-
sulfonimide

3

(R)-(3,3'-bis(1-naphthyl)-1,1'-binaphthanele-2,2'-yl)phosphoric acid 3

(R)-(?)-1-[(R)-2-(2?-
diphenylphosphinophenyl)ferrocenyl]ethylbis(di-3,5-
trifluoromethylphenyl)phosphine

3

(R)-1,1'-Bi-2-naphthol 1

(R)-1,1'-binaphthalene-2,2'-diol lithium salt 2

(R)-1,1'-binaphthyl-2,2'-phosphoric acid 4

(R)-1-{(RFc)-2-[2-(diphenylphosphino)phenyl]ferrocenyl}
ethylbis[3,5-bis-(trifluoromethyl)phenyl]phosphine

3

(R)-10-camphorsulfonic acid 4

(R)-2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl 4

(R)-2,2'-bis[bis(3-methylphenyl)phosphino]-1,1'-binaphthyl 4

(R)-2,2'-dihydroxy-1,1'-binaphthyl 4

(R)-2,2?-diphenyl-(4-biphenanthrol) 4

(R)-2,6-bis(naphthalen-2-yl)-4-oxo-3,5-dioxa-4lambda5-
phosphacyclohepta[2,1-a;3,4-a']dinapthalen-4-ol

2

(R)-2-(diphenyl(trimethylsilyloxy)methyl)pyrrolidine 3

(R)-2-methyl-1-(2-(3,3-dimethylbut-1-ynyl)pyrimidin-5-yl)propan-1-
ol

3

(R)-3,3',6,6'-tetraiodo-1,1'-binaphthalene-2,2'-diol 3

(R)-3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-
diylhydrogenphosphate

4

(R)-3,3'-bis(2,4,6-triisopropylphenyl)binol phosphoric acid 4

(R)-3,3'-bis(4-trifluoromethylphenyl)-1,1'-binaphthyl-2,2'-
diylphosphoric acid

4

(R)-3,3'-bis(9-anthracenyl)-1,1'-binaphthyl-2,2'-diyl 
hydrogenphosphate

4

(R)-3,3'-bis(dimethylphenylsilyl)-1,1'-binaphthyl-2,2'-dicarboxylic 
acid

4

(R)-3,3'-bis(triphenylsilyl)-1,1'-bi-naphthyl-2,2'-diyl 4

(R)-3,3'-di(anthracen-9-yl)-5,5',6,6',7,7',8,8'-octahydro-[1,1'-
binaphthalene]-2,2'-diyl hydrogen phosphate

3

(R)-3,3'-dibromo-1,1'-bi-2-naphthol 1

(R)-3,3'-dichloro-1,1'-binaphthalene-2,2'-diol lithium salt 2

(R)-3,3'-diiodo-2,2'-dihydroxy-1,1'-binaphthyl 4
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(R)-3,3?-bis(2,4,6-triisopropylphenyl)-BINOL-phosphoric acid 0

(R)-3,3?-difluoro-1,1'-bi-2-naphthol 1

(R)-3-(3,5-diphenylphenyl)-2,2'-dihydroxy-5,5',6,6',7,7',8,8'-
octahydro-1,1'-binaphthyl

4

(R)-3-diphenylhydroxymethyl-2,2'-dihydroxy-1,1'-bi-naphthalenyl 3

(R)-BINAPHANE 2

(R)-DHTP 3

(R)-SEGPHOS-I 1

(R)-methylaluminum beta-binaphthoxide 0

(R)-p-Tol-BINAP*AgF 0

(R)-segphos 1

(R)?2,2'?bis(diphenylphosphoryl)?1,1'?binaphthyl 4

(R,R')-N,N'-bis(5-tert-butyl-2-hydroxybenzylidene)-1,2-
cyclohexanediamine

2

(R,R)-1,2-bis(2,5-diphenylphospholanyl)ethane 3

(R,R)-1,2-diphenylethandiol (2-methoxy)ethyldiether 2

(R,R)-N,N'-dimethylstilbene-1,2-diamine chiral phosphoramide 2

(R,R)-TADDOL 0

(R,R)-hydroxybenzoin 3

(R,R)-walphos 3

(R,S)-2-OH-3,5-Cl2-C6H2-SO2-NH-CH(CH2Ph)-CH(Ph)OH 2

(Ra)-5,6,7,8,5',6',7',8'-octahydro-[1,1']binaphthalenyl-2,2'-diol 3

(Ra)-N-[(1S,2R)-1,2-diphenyl-2-hydroxyethyl]-3,5-dihydro-4H-
dinaphtho[2,1-c:1',2'-e]-azepine

3

(Re(CO)3(THF)Br)2 0

(RhCl(diene*))2 0

(S)-(-)-2,2'-dihydroxy-1,1'-binaphthalene 3

(S)-(-)-2,2'-dihydroxy-1,1'-binaphthyl 4

(S)-(1,1'-binaphthalene)-2,2'-diylbis(diphenylphosphine) 3

(S)-1,1'-binaphthalene-2,2'-diylbis(diphenylphosphineoxide) 3

(S)-1-methyl-2-(1-naphthylaminomethyl)pyrrolidine 3

(S)-2'-methoxy-2-methylthio-1,1'-binaphthalene 3

(S)-2,2',5,5'-tetramethyl-4,4'-bis-(diphenylphoshino)-3,3'-bithiophene 
oxide

2

(S)-2-(((tert-butyldimethylsilyl)oxy)diphenylmethyl)pyrrolidine 3

(S)-2-(1-pyrrolidinylmethyl)pyrrolidine 3

(S)-2-(diphenyl((triethylsilyl)oxy)methyl)pyrrolidine 3

(S)-2-[bis(3,5-bis(trifluoromethyl)phenyl)-triethyl-siloxy-methyl]-
pyrrolidine

3

(S)-3,3'-bis(2,4,6-tri-iso-propylphenyl)-1,1'-bi-naphthyl-2,2'-diyl 
hydrogenphosphate

4

(S)-3,3'-bis(4''-tert-butylphenyl)-2,2'-(2,2-bisbromo-2-
stannopropane-1,3-diyl)-1,1'-binaphthyl

4

(S)-3,3'-diiodo-2,2'-dihydroxy-1,1'-binaphthyl 4

(S)-3,3'-dimethyl-[1, 1'-binaphthalene]-2, 2'-diol 3
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(S)-3,3?-bis(9-anthracenyl)-1,1?-binaphthyl-2,2?-diyl N-triflyl-
phosphoramide

4

(S)-3,5-dichloro-N-(6-(4-isopropyl-4,5-dihydrooxazol-2-yl)-2,3-
dimethoxyphenyl)benzenesulfonamide

3

(S)-5-benzhydryl-2-(perfluorophenyl)-6,7-dihydro-5H-pyrrolo[2,1-c]
[1,2,4]triazol-2-ium tetrafluoroborate

1

(S)-5-benzyl-2-(2,6-dimethoxyphenyl)-6,6-dimethyl-6,8-dihydro-5H-
[1,2,4]triazolo[3,4-c][1,4]oxazin-2-ium tetrafluoroborate

1

(S)-5-benzyl-2-mesityl-6,6-dimethyl-5,6-dihydro-8H-
[1,2,4]triazolo[3,4-c][1,4]oxazin-2-ium tetrafluoroborate

1

(S)-6,6'-bis(2,4,6-triisopropylphenyl)-1,1'-spirobiindane-7,7'-diyl 
hydrogenphosphate

2

(S)-6,6'-di(naphthalen-1-yl)-1,1'-spirobiindane-7,7'-diyl phosphate 2

(S)-AlCl[2,2'-[O-3,5-(t-Bu)2-C6H2-CH=N)]2-1,1'-binaphthyl] 4

(S)-N-((3-methylpyridin-2-yl)carbamothioyl)pyrrolidine-2-
carboxamide

4

(S)-[1,1'-binaphthalen]-2-yldiphenylphosphine 3

(S)-[1,1']-binaphthalenyl-2,2'-diol 3

(S)-bis(4-fluorophenyl)(1-methylpyrrolidin-2-yl)methanol 3

(S, S)-6,6?-bis(1-hydroxy-2,2-dimethylpropyl)-2,2?-bipyridine 3

(S,R)-N-PINAP 2

(S,S)-(+)-2,6-bis[2-(hydroxydiphenylmethyl)-1-pyrrolidinyl-
methyl]-4-methylphenol

3

(S,S)-1,1'-(6,6',7,7'-tetrahydro-5H,5'H-[1,1'-bi(cyclo-
penta[c]pyridine)]-3,3'-diyl)bis(2,2-dimethylpropan-1-ol)

4

(S,S)-2,2'-methylenebis(4-tert-butyl-2-oxazoline) 2

(S,S)-4-tBu-2,6-bis[2-(HOPh2C-)pyrazolidin-1-ylmethyl]phenol 2

(S,S)-Bn-bod 2

(carbonyl)chloro(hydrido)tris(triphenyl-phosphine)ruthenium(II) 0

(eta6-toluene)Ni(1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) 4

(lIpc)2BH 2

(methyl benzoate)chromium tricarbonyl 0

(mu3,eta2,eta3,eta5-acenaphthylene)Ru3(CO)7 4

(o,o'-biphenylenedioxy)methylaluminium 0

(oxydi-2,1-phenylene)bis(diphenylphosphine)Pd(pi-allyl)Cl 0

(pi-allyl)palladium chloride 0

(polyallyl)scanduium trifylamide ditriflate 4

(tricyclohexylphosphine)gold(I) chloride 4

(triphenyl phosphite)gold(I) chloride 4

(triphenylphosphine)gold(I) chloride 4

(±)N,N?-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediami 
nocobalt(II)

0

1,1'-(1,2-ethanediyl)bisbenzene 2

1,1'-bi-2-naphthol 4

1,1'-binaphthyl-2,2'-diyl hydrogenphosphate 4

1,1'-biphenyl-2,2'-diyl hydrogen phosphate 2

1,1'-bis(di-tertbutylphosphino)ferrocene 2
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1,1'-bis(dicyclohexylphosphinocyclopentadienyl iron 4

1,1'-bis(diisopropylphosphino)ferrocene 2

1,1'-bis-(diphenylphosphino)ferrocene 3

1,1'-carbonyldiimidazole 3

1,1,1,3',3',3'-hexafluoro-propanol 2

1,1,1,3,3,3-hexamethyl-disilazane 0

1,1,3,3-tetramethylguanidine 4

1,1-dicyclohexyl-N-(dicyclohexylphosphino)-N-methylphosphinamine 2

1,1-dimethoxyethane 2

1,10-Phenanthroline 2

1,1?-bi-2-naphthol 4

1,1?-binaphthalene-2,2?-diylbis[bis(4-methylphenyl) phosphine] 3

1,2,2,6,6-pentamethylpiperidine 4

1,2,3-Benzotriazole 4

1,2-bis(2,5-dimethylphospholano)benzene 3

1,2-bis(dimethylphosphanyl)ethane 2

1,2-bis(diphenylphosphino)ethane nickel(II) chloride 4

1,2-bis-(diphenylphosphino)ethane 3

1,2-bisethane 2

1,2-dichloro-ethane 4

1,2-dimethyl-3-[4-(1,2-dimethyl-1H-imidazol-3-ium-3-yl)butyl]-1H-
imidazol-3-ium dibromide

4

1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine 3

1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydro-imidazolium chloride 4

1,3-bis(2,6-(i-Pr)2-phenyl)-4,5-dihydroimidazolin-2-ylidene 4

1,3-bis(2,6-diethylphenyl)-1H-imidazol-3-ium chloride 2

1,3-bis(cyclohexyl)imidazolium tetrafluoroborate 1

1,3-bis(mesityl)imidazolium chloride 4

1,3-bis-(diphenylphosphino)propane 3

1,3-bis[2,6-diisopropylphenyl]imidazolium chloride 4

1,3-dibenzyl-1H-benzo[d]imidazol-3-ium chloride 2

1,3-dimethyl-2-imidazolidinone 4

1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)pyrimidinone 3

1,3-dimethylimidazolim iodide 4

1,4-di(diphenylphosphino)-butane 3

1,4-diaminobutane 4

1,4-diaza-bicyclo[2.2.2]octane 2

1,4-dimethyl-1,2,4-triazolium iodide 4

1,4-phenylenediacetic acid 4

1,5-diazabicyclo[5.4.0]-undec-7-ene 4

1,5-diazabicyclo[5.4.0]undecene 4
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1,8-diazabicyclo[5.4.0]undec-7-ene 4

1-(2,6-diisopropylphenyl)-3-(2-(phenylthio)phenyl)-4,5-
dihydroimidazolinium chloride

4

1-(3,5-Bis-trifluoromethyl-phenyl)-3-((1R,2R)-2-dimethylamino-
cyclohexyl)-thiourea

3

1-(3,5-Bis-trifluoromethyl-phenyl)-3-[(S)-quinolin-4-yl-
((2R,4S,5R)-5-vinyl-1-aza-bicyclo[2.2.2]oct-2-yl)-methyl]-thiourea

3

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R)-(6-meth-oxyquinolin-4-yl)
(3-vinylquinuclidin-7-yl)methyl)urea

2

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R,2R)-2-(piperidin-1-
yl)cyclohexyl)thiourea

3

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R,2R)-2-(pyrrolidin-1-
yl)cyclohexyl)thiourea

3

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1S)-(6-hydroxyquinolin-4-yl)
((5R)-5-vinylquinuclidin-2-yl)methyl)thiourea

3

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1S)-(6-meth-oxyquinolin-4-yl)
(5-vinylquinuclidin-2-yl)methyl)thiourea

2

1-(3,5-bis(trifluoromethyl)phenyl)-3-((S)-(6-meth-oxyquinolin-4-yl)
((2S,4S,8R)-8-vinylquinuclidin-2-yl)methyl)thiourea

2

1-(phenylsulfonyl)propyne 2

1-(tert-butoxycarbonyl)-L-proline 4

1-[3,5-bis(trifluoromethyl)phenyl]-3-[(1S,2S)-2-
(dimethylamino)cyclohexyl]thiourea

3

1-[3,5-bis(trifluoromethyl)phenyl]-3-phenyl-2-thiourea 3

1-[bis(trifluoromethanesulfonyl)methyl]-2,3,4,5,6-pentafluorobenzene 2

1-acetoxy-1,2-benziodoxol-3-one 3

1-butyl-3-methylimidazolium Tetrafluoroborate 0

1-butyl-3-methylimidazolium hydroxide 0

1-fluoro-2,4,6-trimethylpyridin-1-ium tetrafluoroborate 1

1-hydrosilatrane 2

1-hydroxy-3H-benz[d][1,2]iodoxole-1,3-dione 2

1-methoxy-2-methyl-1-trimethylsiloxy-1-propene 2

1-methyl-1H-imidazole 4

1-methyl-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine 3

1-methyl-3-(2,4,6-trimethylphenyl)-3H-benz-imidazol-1-ium iodide 4

1-methyl-3-(4-sulfobutyl)-1H-imidazol-3-ium hydrogensulfate 4

1-methyl-3-methylimidazol-3-ium dimethyl phosphate 2

1-methyl-piperazine 2

1-methyl-pyrrolidin-2-one 3

1-methylimidazole-3-sulfonic acid hydrochloride 4

1-n-butyl-3-methylimidazolim bromide 4

1-naphthalenesulfonic acid 0

1-pyrroline 3

1-{3,5-bis(trifluoromethyl)phenyl}-3-{(1R,2R)-2-
(dimethylamino)cyclohexyl}thiourea

3

1-{3,5-bis(trifluoromethyl)phenyl}-3-{(1R,2R)-2-(pyrrolidin-1-
yl)cyclohexyl}urea

3
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10 percent chiral ammonium fluoride 0

10 wt\% Pd(OH)2 on carbon 1

10-camphorsufonic acid 4

10-camphorsulfonic acid 4

10-methyl-9-(2,4,6-trimethylphenyl) acridinium tetrafluoroborate 1

10V/SiO2-25 4

15-crown-5 1

18-crown-6 ether 1

18O-labeled water 4

1H-imidazole 4

2,2'-bis(diphenylphosphino)-5,5',6,6',7,7',8,8'-octahydro-1,1'-
binaphthyl

4

2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl 4

2,2,2-trifluoroethanol 4

2,2,6,6-Tetramethyl-1-piperidinyloxy free radical 0

2,2,6,6-tetramethyl-piperidine 4

2,2,6,6-tetramethyl-piperidine-N-oxyl 0

2,2,6,6-tetramethylpiperidinyl-lithium 0

2,2,6,6-tetramethylpiperidinylmagnesium chloride 4

2,2,6,6-tetramethylpiperidinylmagnesium chloride lithium chloride 
complex

4

2,2-dimethylthiolane 2

2,2?-azobis(4-methoxy-2,4-dimethyl)valeronitrile 4

2,2?-methylene bis[(4R,5S)-4,5-diphenyl-2-oxazoline] 2

2,3,4-trimethoxy-N-((R)-quinolin-4-yl((1S,2S,4S,5R)-5-
vinylquinuclidin-2-yl)methyl)benzenesulfonamide

3

2,3-dicyano-5,6-dichloro-p-benzoquinone 0

2,3-dihydro-1H-1,3-dimesylimidazole-2-carbene 4

2,4,6-trimethyl-pyridine 4

2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphinane-2,4,6-trioxide 0

2,4-dinitrobenzoic acid 3

2,5-dimethyl-piperazine 2

2,6-bis((R)-4-phenyl-4,5-dihydrooxazol-2-yl)pyridine 4

2,6-bis(bis(3,5-bis(trifluoromethyl)phenyl)(hydroxy)-methyl)-
dinaphtho-[2,1-d:1',2'-f][1,3,2]dithiazepine 3,3,5,5-tetraoxide

3

2,6-bis(hydroxybis(3-(trifluoromethyl)phenyl)methyl)dinaphtho[2,1-
d:1',2'-f][1,3,2]dithiazepine 3,3,5,5-tetraoxide

3

2,6-bis(pyrazole)pyridine 4

2,6-bis-(4-chloro-phenyl)-4-oxo-3,5-dioxa-4-lambda5-phospha-
cyclohepta[2,1-a;3,4-a']di-naphthalen-4-ol

2

2,6-bis<5',5'-diphenyl-4'-(S)-isopropyl oxazolin-2'-yl>pyridine 4

2,6-bis[(R,R)-4-(1-TPSO-ethyl)-2-oxazolin-2-yl]pyridine 4

2,6-bis[4?-(S)-(tert-butyl)oxazolin-2?-yl]pyridine 4

2,6-di-tert-butyl-4-methylpyridine 4

2,6-di-tert-butyl-pyridine 4

2,6-dimethylpyridine 4
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2,7-dimethyl-1,8-biphenylenediol 2

2-(((1R,2R)-2-(3-(3,5-
bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)carbamoyl)-3,4,5,6-
tetrabromobenzoic acid

3

2-(((2,6-diisopropylphenyl)imino)methyl)pyridine 4

2-(2-hydroxyethyl)-3,4-dimethylthiazolium iodide 4

2-(3-(cyclopropylmethoxy)phenoxy)-4-fluorobenzaldehyde 3

2-(4-bromophenyl)-acetic acid 4

2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-5,5-dimethyl-1,3,2-
dioxaborinane

2

2-(N,N-dimethylamino)athanol 2

2-(aminomethylcyclohexyl)ethylamine 2

2-(di-tert-butylphosphino)-1,1'-biphenylgold(I) chloride 4

2-(diphenylphosphino)-N-((S)-((1S,2S,4S,5R)-5-ethyl-quinuclidin-2-
yl)(6-methoxyquinolin-4-yl)methyl)benzamide

3

2-(tert-butylethynyl)pyrimidine-5-carbaldehyde 3

2-(trimethylsilyl)phenyl trifluoromethanesulfonate 2

2-Methylpiperidin 4

2-amino-2-hydroxymethyl-1,3-propanediol 3

2-aminopyridine 4

2-chloropyridine 4

2-cyano-2-(hydroxyimino)acetic acid methylester 3

2-fluoro-2-iodo-1,3-benzodithiole-1,1,3,3-tetraoxide 2

2-hydroxy-p-toluic acid 1

2-hydroxyethanethiol 2

2-iodoxybenzoic acid 4

2-isopropoxy-4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxasilolane 2

2-mesityl-2,5,6,7-tetrahydropyrrolo[2,1-c][1,2,4]triazolium chloride 4

2-mesityl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium chloride 2

2-mesityl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium 
tetrafluoroborate

1

2-methyl-but-2-ene 4

2-nitropropane 4

2-pentafluorophenyl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-
ium tetrafluoroborate

1

2-phenyl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazol-2-ium 
tetrafluoroborate

1

2-tert-butylanthraquinine 0

2.9-dimethyl-1,10-phenanthroline 1

20% palladium hydroxide-activated charcoal 0

20percent iron-modified mesoporous silica SBA-15 4

2ClO4(1-)*7.25H2O*Fe(2+) 4

2V/SiO2-500 4

3 A molecular sieve 0

3 Angstroem MS 0
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3,3'-(1,4-phenylenebis(methylene))bis(5-(2-hydroxyethyl)-4-methyl-
thiazol-3-ium) bromide

3

3,3'-bis-pyrrolidin-1-ylmethyl-[1,1']binaphthalenyl-2,2'-diol 2

3,3?-di(9-phenylanthryl)BINOL phosphoric acid 0

3,3?-dibromo-2,2?-dihydroxy-1,1'-binaphthyl 4

3,4,5,6-tetrahydropyrimidin-2(1H)-one 3

3,4-dimethyl-2-(alpha-hydroxybenzyl)thiazoliumiodide 4

3,4-dimethyl-5-(2-hydroxyethyl)thiazolium iodide 4

3,5,3',5'-tetra-tert-butyl-4,4'-diphenoquinone 0

3,5-difluoropyridine 4

3,6-di(2'-pyridyl)-1,2,4,5-tetrazine 2

3,6-di-tert-butyl-9,10-dimesitylacridinium tetrafluoroborate 1

3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile 0

3-((3,5-bis(trifluoromethyl)benzyl)amino)-4-(((1S)-(6-methoxy-
quinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-
yl)methyl)amino)cyclobut-3-ene-1,2-dione

3

3-Dimethylamino-1-propanol 2

3-Methyl-1-phenyl-2-phospholene 1-oxide 0

3-Methylpiperidine 4

3-amino propanoic acid 4

3-azapentane-1,5-diamine 1

3-benzyl-4,5-dimethylthiazol-3-ium bromide 3

3-benzyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium chloride 3

3-chloro-benzenecarboperoxoic acid 2

3-ethyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium bromide 4

3-ethyl-5-(2-hydroxymethyl)-4-methyl-1,3-thiazolium bromide 4

3-iodo-2-methylcyclohexenone 2

3-nitrobenzoic acid 4

4 A molecular sieve 0

4 A molecular sieves 0

4 Angstroem M.S 2

4 Angstroem MS 0

4 Angstroems MS 0

4'-(4-methylphenyl)-2,2':6',2'-terpyridine 4

4,4'-di-tert-butyl-2,2'-bipyridine 4

4,4'-di-tert-butylbiphenyl 2

4,4'-dibromobpy-NiCl2 4

4,5-bis(diphenylphos4,5-bis(diphenylphosphino)-9,9-
dimethylxanthenephino)-9,9-dimethylxanthene

3

4-[(5S)-3-ethyl-4-oxa-1-azatricyclo[4.4.0.03,8]decan-5-yl]quinolin-6-
yl (2,2,2-trichloroacetyl)carbamate

3

4-fluorobenzylic alcohol 4

4-hydroxy-2,6-di(naphthalen-2-yl)dinaphtho[2,1-d:1',2'-f]
[1,3,2]dioxaphosphepine 4-oxide

2

4-methoxy-2,2,6,6-tetramethylpiperidin-1-oxyl radical 0

4-methoxy-N-(pyridin-4-ylmethylene)benzenamine 3
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4-methoxy-N-[(E)-phenylmethylidene]aniline 4

4-methoxy-aniline 4

4-methoxy-phenol 3

4-methyl-morpholine 4

4-methylpiperidin 4

4-morpholineethanesulfonic acid 4

4-nitraminopyridine N-oxide 4

4-nitro-benzoic acid 4

4-toluenesulfonyl azide 0

4A MS 0

5 wtpercentFe-H-Beta-SiO2/Al2O3=150 zeolite 4

5%-palladium/activated carbon 1

5,10,15,20-tetrakis(p-chlorophenyl)porphyrin iron(III) chloride 4

5,5'-dimethyl-2,2'-bipyridine 4

5,5?-bis[di(3,5-di-tert-butyl-4-methoxyphenyl)phosphino]-4,4?-bi-1,3-
benzodioxole

2

5-(2-hydroxy-ethyl)-3,4-dimethyl-thiazolium chloride 4

5-ethyl-2-methylpyridine borane complex 4

5-iodo-2,3-dihydrobenzofuran 2

5-methoxy-1H-benzimidazole 2

5A molecular sieve 0

5a(S),10b(R)-5a,10b-dihydro-2-(pentafluorophenyl)-4H,6H-
indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazinium tetrafluoroborate

1

5percent iron-modified mesoporous silica SBA-15 4

7b-phenyl-7bH-oxazirino<2,3-b><1,2>benz-isothiazole 3,3-dioxide 2

9,10-phenanthrenequinone 0

9-BBN triflate 4

9-benzylfluorene lithium salt 2

AD-mix-beta 2

ATP 4

Adam?s catalyst 0

Ag*ClO4(1-)=AgClO4(1-) 4

AlPO4 supported ethylenediamine-chromium(III)-salen complex 
nanoparticles

0

Amberlite G-50 ion-exchange resin 1

Amberlite IRA-400 1

Amberlyst 15 1

Amberlyst A-21 ion-exchange resin 1

Ambersep 900 OH resin 1

Au(OAc)3 0

B-(trifluoromethanesulfonyloxy)-9-borabicyclo[3.3.1]nonane 3

BCl(C6H11)2 2

BF3*(OEt)2 2



Date: 29 Apr 2022 08:35 Author: Silvia Chines 12 of 44

www.knime.com

"column1" "Min*(Score)"

BF4(1-)*2C8H12*Rh(1+) 0

BF4(1-)*C18H13Cl3N3O(1+) 2

BF4(1-)*C18H17F5N3O(1+) 2

BF4(1-)*C21H22N3O(1+) 2

BF4(1-)*Cu(2+)*6H2O 2

BIPHEP-I 2

Bis<2-(N,N-dimethylamino)aethyl>aether 2

Bromotrichloromethane 4

Bu3SnN(Ph)C(OMe)=NPh 0

BuLi 0

C42H63AuO3P(1+)*C2F6NO4S2(1-) 0

C49H68AuNP(1+)*F6Sb(1-) 0

C5H5BrMnO5 0

CH3BN(1-)*C10H15NPol(1+) 0

CH3BN(1-)*H(1+)*H2NPol 0

Candida rugosa lipase 2

Carbonate buffer 4

Celite 4

Cinchonin 2

Cl(3)HO4 2

Co(3,5-DitBu-Ibu-Phyrin) 0

Co(meso-tetraphenylporphyrin) tetrakis[3,5-
bis(trifluoromethyl)phenyl]borate

0

Coenzyme A 4

CrCl2*(THF)1.4 0

CrCl2*DMF 0

CuCl*2LiCl 0

CuF(PPh3)3 methanol solvate 0

CuF*(R)-tolBinap 0

CuF-(R)-DTBM-SEGPHOS 0

CuI*2LiBr 0

CyJohnPhos 2

D-Prolin 4

DBN 2

DIMCARB 2

DL-dithiothreitol 2

DTBP 2

Dess-Martin periodane 1

Diethoxy-methyl-(6-amino-hexylaminomethyl)-silan 2

Difluoroacetic acid 4

Diphenyl(N-methyl-2-pyrrolidinyl)methanol 3
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Eaton?s reagent 0

Echavarren's catalyst 4

Ethyl diphenylphosphinite 3

Ethyl propionate 3

Fe(TCP)Cl 4

GeCl2*dioxane 0

GeCl2-dioxane 0

Grotjahn?s catalyst 4

H2SO4-SiO2 0

HATU 4

Hexamethylbenzene 0

Hexamethyldisiloxane 2

Hexamethylphosphorous triamide 0

Hf(OTf)4 0

Hoveyda-Grubbs catalyst second generation 3

In(OSO2CF3)3 0

Indion-130 resin 4

Iron(III) nitrate nonahydrate 4

Isopropyl acetate 4

K10 montmorillonite clay 4

L-(+)-diisopropyl tartrate 4

L-Cysteine 4

L-Leucine supported on superparamagnetic silica encapsulated 
gamma-Fe2O3 nanoparticles

4

L-Tartaric acid 4

L-diisopinocampheylborane 0

L-proline 4

L-prolinium sulfate 4

Lawessons reagent 1

Lewatit S 100 ion exchange resin 4

Li(2,2,6,6-tetramethylpiperidide)*Al(iBu)3 0

LiHMDSA 0

Lindlar's catalyst 4

MANDELIC ACID 0

MIL-101-SO3H 2

MP-BH(OAc)3 resin 4

MP-BH3CN 2

MP-CNBH3 2

MP-cyanoborohydride 0

MP-triacetoxyborohydride 0

MP-triacetoxyborohydride resin 4
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MS 4 Angstroem 0

Mesitol 4

Methyltrichlorosilane 0

Mg-Al hydrotalcite 2

Mn89Cr11 0

MnBr(CO)5 0

Mo(CO)3(CN-t-Bu)3 1

Montmorillonite K 10 4

Montmorillonite K10 clay 4

Montmorillonite KSF 0

N+C5Ala2C16 2

N,N'-((11bS,11b'S)-azanediylbis(2,6-bis(3,5-bis(pentafluoro-lambda6-
sulfanyl)phenyl)-4lambda5-dinaphtho[2,1-d:1',2'-f]
[1,3,2]dioxaphosphepine-4-yl-4-ylidene))bis(1,1,2,2,2-
pentafluoroethane-1-sulfonam ide)

2

N,N'-((11bS,11b'S)-azanediylbis(2,6-bis(3,5-
bis(perfluoropropyl)phenyl)-4lambda5-dinaphtho[2,1-d:1',2'-f]
[1,3,2]dioxaphosphepine-4-yl-4-ylidene))bis(1,1,1-
trifluoromethanesulfonamide)

0

N,N'-Dimethylurea 3

N,N'-dimethylpiperazine 2

N,N,N',N'',N'''-pentamethyldiethylenetriamine 2

N,N,N',N'-Tetraethylethylenediamine 4

N,N,N',N'-tetramethyl-1,4-butanediamine 2

N,N,N',N'-tetramethyl-1,8-diamin onaphthalene 4

N,N,N',N'-tetramethyl-1,8-diaminonaphthalene 4

N,N,N',N'-tetramethylguanidine 4

N,N,N,N,-tetramethylethylenediamine 4

N,N,N,N,N,N-hexamethylphosphoric triamide 1

N,N,N-triethyl-N-(propanesulfonic acid)ammonium hydrogensulfate 0

N,N,N?,N?-tetramethyl-N?-tert-butylguanidine 4

N,N-di(propan-2-yl)-4H-1,3,2-benzo-dioxaborinin-2-amine 2

N,N-dibutyl amino-2 ethanol 1

N,N-diisopropyl-1,2-ethanediamine 2

N,N-dimethyl acetamide 4

N,N-dimethyl-aniline 4

N,N-dimethyl-ethanamine 2

N,N-dimethyl-formamide 4

N,N-dimethylalanine 4

N,N-dimethylammonium chloride 1

N,N-dimethylethylenediamine 4

N,N?-bis(2,6-diisopropylphenyl)imidazol-2-ylidene hydrochloride 4

N,N`-dimethylethylenediamine 4

N,O-bis-(trimethylsilyl)-acetamide 4

N-(2-acetamido)-3-iminodiacetic acid 4
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N-(3,5-bis(trifluoromethyl)phenyl)-3-((2-(((S)-(6-methoxy-quinolin-4-
yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)amino)-3,4-
dioxocyclobut-1-en-1-yl)amino)-5-(trifluoromethyl)benzamide

3
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N-(p-toluenesulfonyl)-L-valine 4

N-(tert-butyl)benzenesulfinimidoyl chloride 2

N-3,5-(CF3)2-C6H3-N'-[9-dehydroxy-quinidin-9(S)-yl]thiourea 3

N-Bromosuccinimide 4

N-[3,5-bis(trifluoromethyl)phenyl]-N'-[(9R)-6'-methoxycinchonan-9-
yl]thiourea

2

N-benzyl-N,N,N-triethylammonium chloride 1

N-benzyl-trimethylammonium hydroxide 0

N-benzylidenephenylsulfonamide 2

N-butylamine 2

N-chloro-succinimide 4

N-cyclohexyl-cyclohexanamine 2

N-ethyl-N,N-diisopropylamine 3

N-ethylmorpholine 4

N-fluorobis(benzenesulfon)imide 2

N-iodo-succinimide 4

NAD 4

Na(1+)*HSO4(1-)*SiO2 = NaHSO4*SiO2 0

Na(OAc)3BH loaded resin 1

Na2H2S2O5 0

Ni(acetylacetate)2 4

NiCl(o-tolyl)(tetramethylethylenediamine) 4

Noyori's catalyst 4

O,O-Diethyl hydrogen phosphorodithioate 0

O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyl-uronium 
hexafluorophosphate

1

O-(4-nitrobenzoyl) hydroxylamine 0

O4S(2-)*2Al(3+)*4CH3(1-) 2

Oxone 0

P(p-C6H4F)3 2

P(p-CH3OC6H4)3 2

PL-cyanoborohydride resin 4

PS-CNBH3 2

PS-Trisamine 0

PS-cyanoborohydride 0

PS-diisopropylethylamine 4

PS-isocyanate scavenger resin 4

PS-p-toluensulfonyl hydrazide scavenger resin 4

PS-triacetoxyborohydride 0

PYRIMIDINE 3

PdCl(dppb)(C3H5) 0

Pentafluorobenzoic acid 4

Pic-BH3 2
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Quinuclidine 0

Rh2(OAc)4 0

Rh2(esp)2 0

Rh2(trifluoroacetate)4(1,3-bis(2,6-diisopropylphenyl)imidazol-2-
ylidene)2

0

Rh2[3S-3-(1,3-dioxobenzo[f]isoindol-2-yl)-2-piperidinonate]4 0

RhHCl2(PPh3)3 0

Ru(2 wt\%)/CeO2 4

Ru2(OAc)4 4

RuBr(CO)3(eta-C3H5) 4

S-pyrrolidine-2-carbaldehyde 3

SL-J009-1 2

SPhosAuNTf2 0

Schwartz's reagent 2

Selectfluor 1

TEA 4

Tetrakis(dimethylamino)ethylen 2

Tosyl isocyanate 0

Tri(p-tolyl)phosphine 0

Trifluoromethanesulfonamide 1

Triisopropyl borate 0

Trimethyl borate 0

Trimethyl orthoacetate 4

Trimethylacetic acid 4

Trimethylmethoxysilane 0

Triphenylphosphine oxide 0

Tris(3,6-dioxaheptyl)amine 2

Tris(4-methoxyphenyl)phosphine oxide 2

TurboGrignard 2

VANOL-B3 3

W(CO)5 2

WA30 basic resin 1

Wilkinson's catalyst 0

XPhos 2

Yb(OTf)3 immobilized on sodium propylsulphonate and phenyl 
group co-functionalized magnetic core?mesoporous silica shell 
composite

4

Yb(hfc)3(+) 3

YerE from Yersinia pseudotuberculosis 2

Zn(2+)*CF3O3S(1-)*C6H18NSi2(1-) 4

[(1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene)3Zn3(H)4(THF)]
[BPh4]2

0

[(1,3-bis(diphenylphosphino)propane)Pd(H2O)2](BF4)2 0

[(1,5-cyclooctadiene)(OH)iridium(I)]2 0
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[(C6H6)(PCy3)(CO)RuH]+*BF4 4

[(DPEphos)Rh(COD)]BF4 0

[(R)-(+)-1,1'-bi(2-naphthol)]Ti(Oi-Pr)2 2

[(eta5-C5Me5)RuCl(mu2-SMe)2Ru(eta5-C5Me5)Cl] 4

[1,1'-bis(diphenylphosphino)ferrocene]nickel(II) chloride 4

[1,3-bis(2,6-diisopropyl-phenyl)imidazol-2-ylidene] silver(I) chloro 0

[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold 
bis(trifluoromethanesulfonyl)imidate

0

[2,2]bipyridinyl 4

[3,5-bis(trifluoromethyl)phenyl]-3-{(2S)-3,3-dimethyl-1-
[(triphenylphosphoranylidene)amino]butan-2-yl}thiourea

3

[AuCl(IPr)] 0

[Cd2(tren)2(dl-alaninato)](ClO4)3*H2O 0

[Cp(P-iPr3)Ru(CH3CN)2](1+)*B(C6F5)4(1-) 4

[Cp*Co(C6H6)][B(C6F5)4]}2 0

[Cp*Rh(CH3CN)3](BF4)2 0

[Cp*Rh(CH3CN)3][SbF6]2 0

[D3]phosphoric acid 0

[D]-sodium hydroxide 0

[Fe(5,10,15,20-tetraphenylporphyrin)]BF4 4

[Fe(5,10,15-triphenylcorrole)]BF4 4

[Fe{N(SiMe3)2}2]2 4

[In(S,S)-iPr-pybox](OTf)3 0

[Ir(1,5-cyclooctadiene)2]triflate 4

[Ir(2-(2,4-difluorophenyl)-4-(trifluoromethyl)pyridine)2(5,5'-
bis(trifluoromethyl)-2,2'-bipyridine)]PF6

4

[Ir(COD)2]BF4 0

[IrH2(thf)2(PPh2Me)2]PF6 0

[MoO2Cl2(dmf)2] 1

[Ni(dimethylglyoxime)Cl2] 4

[Rh(OH)(cod)]2 0

[Rh(dppe)]ClO4 0

[Rh(dppp)]BF4 0

[Rh(nbd)(R,R)-Me-Duphos]ClO4 0

[Rh2(S-BPTPI)4]*3H2O 0

[Ru(kappa1-OAc)(kappa2-OAc)(kappa3-1,1,1-
tris(diphenylphosphinomethyl)ethane)]

3

[bis(acetoxy)iodo]benzene 3

[bis(trifluoromethanesulfonyl)imidate](triphenylphosphine)gold(I) 4

[iridium(CH2CHCH2)(C6H2(Cl)(NO2)COO)((R)-2,2'-
bis(diphenylphosphino)-5,5'-dichloro-6,6'-dimethoxy-1,1-biphenyl)]

3

[ruthenium(II)(eta6-1-methyl-4-isopropyl-benzene)(chloride)(mu-
chloride)]2

4

[{(R)-H8-BINOLate}Ti(O-i-Pr)2]x 2

acetaldehyde 4

acetamide 4
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acetic acid 4

acetic acid hydrazide 0

acetic anhydride 4

acetonitrile 4

acetophenone 4

acetyl chloride 4

acetylacetonatodicarbonylrhodium(l) 0

acetylhydroxamic acid 1

acidic ion exchange resin 0

acidic ion-exchange resin P-SO3H 0

air 4

alkali hydroxide 0

allyl(cyclopentadiene)palladium(II) 0

alpha cyclodextrin 2

alpha-picoline borane 0

alpha-picoline-borane 0

alumina*KF supported on silica 1

alumina-supported iron(III) chloride 1

aluminium 0

aluminium oxide hydroxide 0

aluminium trichloride 0

aluminium tris(2,6-diphenylphenoxide) 0

aluminium(III) triflate 4

aluminum (III) chloride 0

aluminum oxide 0

aluminum tri-bromide 0

aluminum tri-tert-butoxide 0

amberlyst-15 0

aminosulfonic acid 0

ammonia 0

ammonium acetate 4

ammonium bicarbonate 0

ammonium bromide 4

ammonium cerium(IV) nitrate 2

ammonium chloride 4

ammonium fluoride 0

ammonium formate 0

ammonium hexafluorophosphate 1

ammonium hydroxide 0

ammonium iodide 4
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ammonium metavanadate 0

ammonium peroxydisulfate 4

aniline 4

antimony pentafluoride 2

aqueous extract of the tamarind fruits 2

askanite-bentonite clay 0

barium dihydroxide 0

barium hydroxide monohydrate 0

barium hydroxide octahydrate 0

barium manganate 0

barium permanganate 0

barium(II) hydroxide 0

barium(II) iodide 0

barium(II) oxide 0

bathophenanthroline 1

benzaldehyde 4

benzaldehyde dimethyl acetal 3

benzenesulfonic acid 0

benzo[1,3,2]dioxaborole 0

benzoic acid 4

benzotriazol-1-ol 4

benzotriazol-1-yloxyl-tris-(pyrrolidino)-phosphonium 
hexafluorophosphate

3

benzotrifuroxan 1

benzylamine 3

benzylmagnesium chloride 1

benzyltriethylammonium 3

benzyltriethylammonium bromide 3

beta-Zeolite 0

biphenyl 2

bis(1,5-cyclooctadiene)diiridium(I) dichloride 0

bis(1,5-cyclooctadiene)iridium(I) tetrafluoroborate 1

bis(1,5-cyclooctadiene)nickel (0) 4

bis(1,5-cyclooctadiene)nickel(0) 4

bis(1,5-cyclooctadiene)rhodium(I) tetrafluoroborate 0

bis(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate 0

bis(1-methyl-1-phenylethyl)peroxide 0

bis(2,2'-diamino-1,1'-binaphthyl)-based chiral phosphoramide 0

bis(2,2,6,6-tetramethylpiperidin-1-yl)magnesium-bis(lithium 
chloride) complex

4

bis(2,6-diisopropylphenyl)imidazol-2-ylidene 3

bis(acetonitrile)(1,5-cyclooctadiene)rhodium(I) tetrafluoroborate 0
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bis(acetylacetonate)nickel(II) 4

bis(benzonitrile)palladium(II) dichloride 0

bis(bis(trimethylsilyl)amido)zinc(II) 4

bis(cyclohexanyl)borane 2

bis(cyclopentadienyl)titanium dichloride 1

bis(dibenzylideneacetone)-palladium(0) 0

bis(dicyclohexylphosphino)methane 0

bis(diethylamino)cyclopropenium tetraphenylborate 0

bis(eta3-allyl-mu-chloropalladium(II)) 0

bis(ethylene)rhodium(I) chloride dimer 0

bis(norbornadiene)rhodium(l) tetrafluoroborate 0

bis(pinacol)diborane 0

bis(tertbutylcarbonyloxy)iodobenzene 4

bis(tri-n-butyltin) 0

bis(tricarbonyl(eta-cyclopentadienyl)tungsten) 0

bis(trifluoromethane)sulfonimide lithium 0

bis(trifluoromethanesulfonyl)amide 2

bis(triphenylphosphine) palladium (Il) acetate 0

bis(triphenylphosphine)copper(I) tetrahydroborate 0

bis(triphenylphosphine)nickel(II) chloride 4

bis-diphenylphosphinomethane 3

bis-triphenylphosphine-palladium(II) chloride 0

bis[-(R)-MeCH-O-CH2-2-yl-pyridine-6-yl-CH2-O-(R)-MeCH-] 4

bis[2-(diphenylphosphino)phenyl] ether 3

bis[dichloro(pentamethylcyclopenta-dienyl)iridium(III)] 0

bisacetonitrile[norbornadiene]rhodium(I) hexafluoroantimonate 0

bismuth(III) bromide 3

bismuth(III) chloride 3

bismuth(III) iodide 3

bismuth(lll) trifluoromethanesulfonate 3

bis{rhodium[3,3'-(1,3-phenylene)bis(2,2-dimethylpropanoic acid)]} 0

borane pyridine 4

borane pyridine complex 4

borane tert-butylamine 1

borane-THF 0

borane/tetrahydrofuran 4

boric acid 4

boric acid tributyl ester 4

boric anhydride 0

boron tribromide 1
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boron trichloride 1

boron trifluoride 1

boron trifluoride diethyl etherate 1

boron trioxide 1

brominated hydroxymethylbenzoic acid resin 4

bromine 2

bromopentacarbonylmanganese(I) 0

brucine N-oxide 2

buta-1,3-diene 2

butyl magnesium bromide 1

caesium carbonate 0

calcium carbonate 0

calcium carbonate pentahydrate 0

calcium chloride 4

calcium hydride 0

calcium oxide 2

calcium sulfate 0

calcium(II) bis-(trifluoromethanesulfonimide) 2

calcium(II) trifluoromethanesulfonate 2

camphor-10-sulfonic acid 4

carbocationic species *B(C6F5)4(-) 2

carbon dioxide 4

carbon monoxide 4

carbon tetrabromide 4

carbon-SO3H 4

carbonic acid dimethyl ester 2

carbonochloridic acid 1-chloro-ethyl ester 1

carbonyl bis(hydrido)tris(triphenyl-phosphine)ruthenium(II) 0

carboxypolystyrene 2

cellulose sulphuric acid 0

cerium(III) chloride 2

cerium(III) chloride heptahydrate 2

cesium acetate 4

cesium fluoride 4

cesium hydroxide 0

cesium pivalate 4

cetyltrimethylammonim bromide 3

cetyltrimethylammonium chloride 3

chiral amino alcohol ligand 2

chiral bis(1-naphthyl)methyl-amine-derived ligand 2
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chiral bis-pyridino-18-crown-6 1

chiral camphor-derived [2.2.1] bicyclic sulfide 1

chiral catalyst 2

chiral deriv. of [2-thiabicyclohept-3-yl]bicycloheptanone 2

chiral dipeptide N-acylethylenediamine-based ligand 0

chiral phosphoramide catalyst 2

chiral thiazolyl-L-threonine-derived catalyst 2

chiral triazolium salt 2

chloranil 0

chloro(1,3-bis(2,6-di-i-propylphenyl)imidazol-2-ylidene)gold(I) 4

chloro(1,5-cyclooctadiene)rhodium(I) dimer 0

chloro(triphenylphosphine)gold(I) 4

chloro-trimethyl-silane 2

chloro[1,3-bis(2,6-di-i-propylphenyl) imidazol-2-ylidene]copper(I) 0

chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold(I) 4

chloro[tris(2,3,4,5,6-pentafluorophenyl)phosphine]gold(I) 4

chlorobis(ethylene)rhodium(I) dimer 0

chlorodicarbonyl(eta5-pentaphenylcyclopentadienyl)ruthenium(II) 4

chloroform 3

chlorosulfonic acid 0

chlorosulfonic acid supported piperidine-4-carboxylic acid 
functionalized Fe3O4 nanoparticles

0

cholin hydroxide 4

chromium chloride 0

chromium dichloride 0

chromium tricarbonyl 0

chromium(VI) oxide 0

cis-dichlorobis(triphenylphosphine)platinum(II) 0

citric acid 3

clay 0

cobalt(II) bromide 0

cobalt(II) bromide-[1,2-bis(diphenylphosphino)ethane] 3

cobalt(II) chloride 0

cobalt(II) phthalocyanine 0

cobalt(III) acetylacetonate 0

copper 0

copper (I) acetate 2

copper (I) trifluoromethane sulfonate benzene 0

copper (II) trifluoroacetate hydrate 4

copper acetylacetonate 4

copper diacetate 4
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copper dichloride 4

copper(I) 3-metthylsalicylate 2

copper(I) bromide 2

copper(I) bromide dimethylsulfide complex 2

copper(I) oxide 1

copper(I) trifluoromethanesolfonate toluene complex 2

copper(I) trifluoromethanesulfonate * 1/2 toluene 2

copper(II) 2-ethylhexanoate 4

copper(II) acetate monohydrate 4

copper(II) acetylacetonate 4

copper(II) bis(trifluoromethanesulfonate) 4

copper(II) choride dihydrate 4

copper(II) ferrite 4

copper(II) iodide 4

copper(II) nitrate hexahydrate 4

copper(II) oxide 4

copper(II) sulfate 4

copper(l) chloride 2

copper(l) cyanide 2

copper(l) iodide 2

copper(ll) bromide 4

copper(ll) sulfate pentahydrate 4

cucurbituril 2

cyanoborane 0

cyclo-octa-1,5-diene 2

cyclohexanone 2

cyclohexylamine 4

cyclohexyldiphenylphosphine 3

cyclopentyl methyl ether 2

cyclopentylmagnesium chloride 1

d-Ipc2BH 2

d8-isopropanol 2

dacarbazine 2

decacarbonyldirhenium(0) 0

deuteriated sodium hydroxide 0

di(n-butyl)(iodo)tin hydride 0

di-isopropyl azodicarboxylate 2

di-mu-bromobis(tri-tert-butylphosphino)dipalladium(I) 0

di-mu-chlorobis(norbornadiene)dirhodium(I) 0

di-n-butylboryl trifluoromethanesulfonate 2
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di-n-butyliodotin hydride 0

di-n-butylzinc 1

di-tert-butyl dicarbonate 0

di-tert-butyl peroxide 1

di-tert-butyl(1,1'-biphenyl)-2-ylphosphinegold(I)bis(trifluoro-
methanesulfonimidate)

4

di-tert-butyl(methyl)phosphonium tetrafluoroborate salt 1

di[(eta-1,2,5,6)-1,5-cyclooctadiene]rhodium hexafluoroantimonate 0

diallyl 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate 4

diammonium sulfide 4

diazomethyl-trimethyl-silane 0

dibenzo-18-crown-6 1

dibenzoyl peroxide 0

dibenzylamine 3

diboron trioxide 1

dibromoborane 4

dibutyl tin diiodide 0

dibutylamine 4

dibutylbis(cyclopentadienyl)zirconium 0

dibutyldimethoxytin 1

dibutyltin chloride 0

dibutyltin diacetate 0

dicarbonylacetylacetonato rhodium (I) 0

dichloro bis(acetonitrile) palladium(II) 0

dichloro(1,1'-
bis(diphenylphosphanyl)ferrocene)palladium(II)*CH2Cl2

0

dichloro(pentamethylcyclopentadienyl)rhodium (III) dimer 0

dichlorogallane 2

dichloromethylsilane 4

dicyclohexyl-(2',6'-dimethoxybiphenyl-2-yl)-phosphane 2

dicyclohexyl-carbodiimide 4

dicyclohexylboron chloride 1

dicyclohexylphenylphosphine 0

dicyclopentylboron trifluoromethanesulfonate 1

diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate 4

diethyl chlorophosphate 0

diethylaluminum iodide 0

diethylamine 2

diethylamino-sulfur trifluoride 0

diethylazodicarboxylate 0

diethylzinc 1

dihydrogen peroxide 0
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diiodomethane 2

diisobutylaluminium acetylacetonate 1

diisobutylaluminium hydride 0

diisopinocamphenylborane 0

diisopinocampheylborane 0

diisopropoxy(eta2-propene) titanium(II) complex 1

diisopropyl zinc 1

diisopropyl-carbodiimide 4

diisopropylamine 3

dilithium (R)-3,3'-diphenylbinaphtholate 0

dilithium tetra(tert-butyl)zincate 2

dimesitylmagnesium 4

dimethyl sulfoxide 4

dimethyl zinc(II) 1

dimethylaluminum chloride 0

dimethylfumarate 4

dimethylphenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)silane 2

dimethylsulfide 4

dimethylsulfide borane complex 0

dimethylsulfide gold(I) chloride 4

diphenyl hydrogen phosphate 0

diphenyl hydrogen phosphite 0

diphenyl((R)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol 4

diphenyl((S)-1-((S)-1-phenylethyl)aziridin-2-yl)methanol 4

diphenyl(methyl)phosphine 0

diphenyl-((S)-1-((S)-1-phenylethyl)aziridin-2-yl)-methanol 4

diphenylborinic acid 4

diphenylboronchloride 1

diphenylsilane 0

dipotassium hydrogenphosphate 1

dipotassium peroxodisulfate 1

dirhodium tetraacetate 0

dirhodium(II) tetrakis(perfluorobutyrate) 0

dirhodium(II) tetrakis<(3S)-phthalimido-2-piperidinonate> 0

dmap 4

dodecacarbonyl-triangulo-triruthenium 4

dysprosium 0

dysprosium(III) trifluoromethanesulfonate 2

epi-cinchonidine 2

epiCDT 2
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erbium triisopropoxide 0

ethanol 4

ethanolamine 4

ethoxy(potassiosulfanyl)methanethione 1

ethyl 2-[2-(4-chlorophenyl)-2-oxoethyl]sulfonylacetate 4

ethyl acetate 4

ethyl bromide 3

ethyl iodide 2

ethylacrolein 2

ethylaluminum dichloride 0

ethylene dibromide 3

ethylene glycol 4

ethylenediamine 0

ethylenediamine diacetate 4

ethylenediamine diacetic acid 4

ethylenediaminediacetic acid 4

ethylenediaminetetraacetic acid 4

ethylmagnesium bromide 1

ethylmagnesium chloride 1

ethyltriphenylphosphonium bromide 1

europium(III) trifluoromethanesulfonate 2

ferric(III) bromide 4

fluoride 0

fluorous reverse-phase silica 1

formaldehyd 4

formamide 4

formic acid 4

furan 4

gadolinium(III) isopropoxide 0

gadolinium(III) trifluoromethanesulfonate 0

gallium(III) trichloride 4

gallium(III) triflate 4

germanium(II) chloride dioxane 4

girard's reagent T 0

glycine 4

gold bromide 4

gold(I) chloride 4

gold(III) bromide 0

gold(III) chloride 0

gold(lll) acetate 0



Date: 29 Apr 2022 08:35 Author: Silvia Chines 28 of 44

www.knime.com

"column1" "Min*(Score)"

gold-on-silver film 4

graphene?mesoporous anatase nanocomposite 2

guanidine hydrochloride 4

hex-3-yne 2

hexafluorophosphoric acid 0

hexamethyldisilathiane 0

hydrazine 0

hydrazine hydrate 0

hydrazinium sulfate 0

hydrochloric acid diethyl ether 0

hydrogen 0

hydrogen bromide 0

hydrogen cation 0

hydrogen fluoride 0

hydrogen sulfide 0

hydroquinidein 1,4-phthalazinediyl diether 2

hydroquinine 2,5-diphenyl-4,6-pyrimidinediyl diether 2

hydroquinone 2

hydroxyapatite-encapsulated-gamma-Fe2O3 supported sulfonic acid 
nanoparticles

0

hydroxylamine 0

hydroxylamine acetate 4

hydroxylamine hydrochloride 0

hydroxylamine potassium salt 1

hypophosphorous acid 0

i-Pr2Et 2

iPr2NCOO (R)-2-[(S)-CH(4-Br-C6H4)OH]-2-Bu-cC6H8-(Z)=CH 
ester

2

iPr2NCOO (R)-2-[(S)-CH(C6H5)OH]-2-Bu-cC6H8-(Z)=CH ester 2

immobilized Co(II) Schiff base complex supported on multi?wall 
carbon nanotubes

0

indium 0

indium (III) iodide 0

indium iodide 0

indium tribromide 0

indium(I) bromide 0

indium(II) bromide 0

indium(III) bromide 0

indium(III) chloride 0

indium(III) triflate 4

iodine 2

iodosylbenzene 2

iron 0
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iron oxide 4

iron(II) chloride 4

iron(II) dodecylsulfate 4

iron(II) triflate 4

iron(II,III) oxide 4

iron(III) chloride 4

iron(III) chloride adsorbed on silica gel 4

iron(III) chloride hexahydrate 4

iron(III) paratoluenesulfonate 4

iron(III) trifluoromethanesulfonate 4

isopropyl alcohol 4

isopropyl bromide 2

isopropyl chloride 1

isopropyl magnesium chloride - lithium chloride complex 1

isopropyl magnesium lithium chloride 1

isopropyllithium 0

isopropylmagnesium bromide 1

isopropylmagnesium chloride 1

lanthanium (III) chloride bis(lithium chloride) complex 4

lanthanum(lll) triflate 4

lead 0

lead dioxide 0

lead(II) chloride 0

lead(II) iodide 0

lead(IV) acetate 0

lithium 0

lithium (10R)-9-dihydro-10-trimethylsilyl-9-borabicyclo[3.3.2]decane 
diethyl etherate

0

lithium (S)-B-H2-(10)-trimethylsilyl-9-borabicyclo[3.3.2]decane 0

lithium acetate 4

lithium aluminium tetrahydride 0

lithium borohydride 0

lithium bromide 4

lithium bromide monohydrate 4

lithium carbonate 0

lithium chloride 4

lithium cyanide 0

lithium di-n-butylcuprate 0

lithium dihydronaphthylide radical 0

lithium diisopropyl amide 0

lithium ethoxide 0
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lithium fluoride 4

lithium hexamethyldisilazane 0

lithium hydroxide 0

lithium hydroxide monohydrate 0

lithium iodide 4

lithium methanolate 0

lithium n-propoxide 0

lithium pentane-2,4-dionate 0

lithium tert-butoxide 0

lithium tetrafluoroborate 1

lithium triethylborohydride 0

lithium trifluoromethanesulfonate 0

lithium-B-H2-(10R)-trimethylsilyl-9-borabicyclo[3.3.2]decane 0

macroporous cyanoborohydride 0

magnesia 0

magnesium 0

magnesium bromide 4

magnesium bromide ethyl etherate 4

magnesium chloride 4

magnesium hydrogen sulfate 4

magnesium iodide 4

magnesium methanolate 0

magnesium oxide 4

magnesium sulfate 4

magnesium sulphate 4

magnesium triflate 4

maleic acid 0

manganese 0

manganese(II) chloride hexahydrate 0

manganese(II) sulfate 0

manganese(IV) oxide 0

manganese(ll) chloride 0

mercaptoacetic acid 4

mercury dichloride 0

mercury(II) diacetate 0

mesitylcopper(I) 0

mesityllithium 0

meso-tetraphenylporphyrin iron(III) chloride 4

mesoporous aluminosilicate Al-MCM-41 1

mesoporous silica supported copper nano catalyst 1
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methanesulfonamide 1

methanesulfonic acid 0

methanesulfonyl chloride 0

methanol 4

methoxide 0

methoxy(cyclooctadiene)rhodium(I) dimer 0

methyl iodide 2

methyl magnesium iodide 1

methyl zinc (1+); methylate 0

methyl-((R)-1-phenyl-2-piperidin-1-yl-ethyl)-amine 2

methylamine 4

methylcyclopentadienyl manganese(I) tricarbonyl 0

methyllithium 0

methyllithium lithium bromide 0

methylmagnesium bromide 1

methylmagnesium chloride 1

methylthioninium chloride hydrate 0

methyltin(IV) trichloride 0

modified germanium 4

modified silica-supported 1-propyl-3-methyl- imidazolium?HSO4 
catalyst

1

molecular sieve 0

montmorillonite K 10 1

montmorillonite K 10 clay 1

montmorillonite K-10 1

montmorillonite K10 1

montmorillonite K10 Clay 1

montmorillonite K10 clay 1

montmorillonite clay K10 1

morpholine 4

morpholinium acetate 4

mutant sperm whale myoglobin Mb(F43V,V68F) 2

n-Bu2SnClH 0

n-butanethiol 2

n-butylammonium acetate 4

nano-Fe3O4 4

naphthalen-1-yl-lithium 0

naphthalene 0

neodymium 0

neodymium(III) trifluoromethanesufonate 1

neopentylmagnesium bromide 4
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nickel 0

nickel dibromide 4

nickel dichloride 4

nickel(II) acetate tetrahydrate 4

nickel(II) bromide dimethoxyethane 4

nickel(II) chloride hexahydrate 4

nickel(II) nitrate hexahydrate 4

nickel(II) perchlorate hexahydrate 4

nickel(II) triflate 4

nido-decaborane 0

niobium pentachloride 4

niobium(V) oxide 4

nitrobenzene 2

nitromethane 2

octylmagnesium bromide 1

ortho-(diphenyl-phosphino)-benzene sulphonic acid 0

ortho-diphenylphosphinobenzoic acid 3

ortho-ethylaniline 0

ortho-methylbenzoic acid 4

ortho-methylphenyl iodide 2

ortho-nitrobenzoic acid 4

orthoformic acid triethyl ester 0

oxalic acid 0

oxone 0

oxygen 2

oxygen-18 2

ozone 0

p-benzoquinone 2

palladium 10\% on activated carbon 1

palladium dichloride 0

palladium on activated carbon 1

palladium on activated charcoal 1

palladium on calcium fluoride poisoned with lead 0

palladium(II) chloride benzonitrile complex 0

palladium(II) hexafluoroacetylacetonate 0

palladium(II) iodide 3

palladium(II) trifluoroacetate 0

palladium(II)[(1,3-bis(diphenylphosphino)propane)
(C6H5CN)2]*2BF4

0

pepsin from porcine gastric mucosa [EC 3.4.23.1] 2

per-rhenic acid 0
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perchloric acid 0

phenol 2

phenylborondichloride 1

phenylboronic acid 4

phenyllithium 0

phenylmagnesium bromide 1

phenylmagnesium chloride 1

phenylphosphinic acid 0

phenylsilane 0

phenyltrimethylammonium tribromide 3

phosphate buffer 4

phosphazene base-P4-tert-butyl 0

phosphomolybdic acid 1

phosphonic acid diethyl ester 0

phosphoric acid 0

phosphorus pentachloride 0

phosphorus pentoxide 0

phosphorus tribromide 0

phosphotungstic acid 0

phthalic anhydride 0

pi-allyl-palladium chloride 0

picoline-borane complex 2

pipecolic Acid 4

piperazine 2

piperdinium acetate 4

piperidin-2-one 4

piperidine 4

pivalaldehyde 4

platinum(II) chloride 0

platinum(IV) oxide 0

poly(methylhydrosiloxane) 2

polyethylene supported arsine 0

polymer-bound dimethylaminopyridine 1

polymer-bound trimethyl ammonium cyanoborohydride 1

polymer-supported 1,8-diazabicyclo[5.4.0]undec-7-ene 1

polymer-supported BH(OAc)3 1

polymer-supported chiral lithium amide 0

polymer-supported cyanoborohydride 1

polymethylhydrosiloxane 2

polyphosphoric acid 0
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polyphosphoric acid containing 84percent of P2O5 0

polystyrene cyanoborohydride 0

polystyrene-bound 4-(N-benzyl-N-methylamino)pyridine 1

polystyrene-bound super Broensted acid 2

polystyrene-supported sulfonic acid 0

potassium 0

potassium 2-methylbutan-2-olate 0

potassium 3,7-dimethyloctan-3-olate 0

potassium acetate 4

potassium bromide 4

potassium carbonate 0

potassium chloride 4

potassium cyanide 0

potassium diazodicarboxylate 2

potassium dihydrogenphosphate 1

potassium ethoxide 0

potassium fluoride 4

potassium fluoride 18-crown-6 1

potassium fluoride on aluminum oxide 1

potassium fluoride on basic alumina 1

potassium formate 1

potassium hexacyanoferrate(III) 4

potassium hexafluorophosphate 4

potassium hexamethylsilazane 3

potassium hydride 0

potassium hydrogen bifluoride 1

potassium hydrogen difluoride 1

potassium hydrogencarbonate 0

potassium hydrogenfluoride 1

potassium hydrogensulfate 1

potassium hydroxide 0

potassium iodide 4

potassium methanolate 0

potassium peroxymonosulfate 1

potassium phosphate 4

potassium sulfate 4

potassium tert-butylate 0

potassium tetrachloroaurate(III) 0

potassium thioacetate 4

potassium titanium oxalate dehydrate 2
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potassium triethylborohydride 0

potassium trifluoroacetate 4

potassium trimethylsilonate 1

praseodymium(III) isopropoxide 0

praseodymium(III) trifluoromethanesulfonate 2

propan-1-ol 2

propionic acid 4

propylamine 4

propylene diammonium diacetate 4

pyridine 4

pyridine N-oxide 4

pyridine hydrochloride salt 4

pyridine hydrogenfluoride 4

pyridinium chlorochromate 0

pyridinium p-toluenesulfonate 4

pyridinium triflate 4

pyrrole 4

pyrrolidine 3

quinindine 4

quinine 4

rac-Ala-OH 4

rac-Pro-OH 4

racemic BINOL derived phosphoric acid catalyst 0

racemic TBAT 0

resin Amberlyst A-31 1

rhenium(I) pentacarbonyl chloride 0

rhodium (II) octanoate dimer 0

rhodium(II) acetate 0

rhodium(II) pivalate 0

rhodium(III) chloride hydrate 0

rubidium hydroxide 0

ruphos 2

salicylic acid 4

samarium 0

samarium diiodide 2

scandium(III) acetate 2

sec.-butyllithium 0

selenium 0

silica gel 1

silicon carbide 4
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silicon-supported cyanoborohydride reagent 0

silicotungstic acid hydrate 0

silver 0

silver (II) carbonate 0

silver carbonate 0

silver fluoride 4

silver hexafluoroantimonate 2

silver nitrate 4

silver tetrafluoroborate 1

silver trifluoroacetate 4

silver trifluoromethanesulfonate 4

silver(I) acetate 4

silver(I) hexafluorophosphate 4

silver(I) triflimide 4

silver(l) oxide 4

silver-graphite 4

sodium 0

sodium (triacetoxy)borohydride 0

sodium acetate 4

sodium amalgam 0

sodium amide 0

sodium azide 3

sodium bis(2-methoxyethoxy)aluminium dihydride 0

sodium bis(trifluoromethanesulfonyl)imide 2

sodium borohydride acetate 0

sodium butanolate 0

sodium carbonate 1

sodium chloride 4

sodium chlorite 2

sodium cyanide 2

sodium cyanoborohydride 0

sodium cyanoborohydride resin 4

sodium cyanotrihydroborate 0

sodium deuterium cyanoborohydride 0

sodium diacetoxy(acetyl)boranuide 0

sodium dihydrogen phosphate 4

sodium dihydrogen phosphate monohydrate 4

sodium dihydrogenphosphate 4

sodium disulfate 0

sodium disulfite 0
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sodium dithionate 4

sodium dithionite 0

sodium dodecyl-sulfate 4

sodium ethanolate 0

sodium formate 0

sodium hexafluoroantimonate 2

sodium hexamethyldisilazane 0

sodium hydride 0

sodium hydrogen sulfate 0

sodium hydrogencarbonate 0

sodium hydrogensulfite 0

sodium hydroxide 0

sodium iodide 0

sodium metabisulfite 0

sodium methoxide 0

sodium methylate 0

sodium nitrite 0

sodium ortho-iodobenzoate 2

sodium perborate 0

sodium perborate tetrahydrate 0

sodium periodate 0

sodium persulfate 0

sodium phenoxide 0

sodium phosphate 4

sodium pyrosulfate 4

sodium salt of sulphur oxide 2

sodium sulfate 4

sodium sulfide 0

sodium sulfite 0

sodium t-butanolate 0

sodium tert-pentoxide 0

sodium tetrachloroaurate(III) dihyrate 0

sodium tetrahydroborate 0

sodium tetrakis[(3,5-di-trifluoromethyl)phenyl]borate 0

sodium tri(benzoyloxy)borohydride 0

sodium triacetoxy borohydride 0

sodium triacetoxyborane hydride 0

sodium triacetoxyborohydride 0

sodium tris(acetoxy)borohydride 0

solid phase supported Sc(III) 2
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stannic bromide 0

succinic acid 2

sulfonated graphene 2

sulfonic acid supported on hydroxyapatite-encapsulated-gamma-
Fe2O3

0

sulfur 0

sulfuric acid 0

suspension of male Wistar rat liver mitochondria 2

t r i s ( 4 , 4 ?-methoxydibenzylideneacetone)dipalladium(0) 0

t-butoxide 0

t-butyldimethylsiyl triflate 4

tBu4ZnLi2 2

tbepc 2

tellurium 0

tert-Butyl peroxybenzoate 0

tert-butyl (2S,3R)-2-amino-3-hydroxybutanoate 2

tert-butyl alcohol 4

tert-butyl carbazate 2

tert-butylammonium hexafluorophosphate(V) 1

tert-butyldimethylsilyl chloride 0

tert-butyldimethylsilyl triflate 4

tert-butyldiphenylphosphine 3

tert-butyldiphenylsilyloxy 4-hydroxyproline 4

tert-butylhypochlorite 0

tert-butylisonitrile 0

tert-butylmagnesium chloride 1

tert.-butyl lithium 0

tert.-butylhydroperoxide 0

tetra(4-chlorophenyl)porphyrin iron chloride 4

tetra(n-butyl)ammonium hydrogensulfate 2

tetra(n-butyl)ammonium hydroxide 0

tetra-(n-butyl)ammonium iodide 2

tetra-N-butylammonium tribromide 2

tetra-n-butylammoniumfluoride trihydrate 0

tetrabutoxytitanium 2

tetrabutyl ammonium fluoride 0

tetrabutyl-ammonium chloride 1

tetrabutylammomium bromide 2

tetrabutylammonium acetate 4

tetrabutylammonium borohydride 0

tetrabutylammonium triphenyldifluorosilicate 4
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tetrabutylammonium triphenyldifluorostannate 0

tetrachlorobis(tetrahydrofuran)titanium(IV) 3

tetrachloromethane 4

tetrachlorosilane 2

tetraethoxy orthosilicate 4

tetraethylammonium fluoride 0

tetraethylammonium iodide 2

tetrafluoroboric acid 1

tetrafluoroboric acid diethyl ether 1

tetrafluoroboric acid diethyl ether complex 1

tetrahydrofuran 4

tetrakis(4-phenyl)methane-benzimidazole containing porous organic 
polymer

4

tetrakis(acetato)dimolybdenum(II) 1

tetrakis(acetonitrile)copper(I)tetrafluoroborate 1

tetrakis(acetonitrile)palladium(II) bis(tetrafluoroborate) 0

tetrakis(acetonitrile)palladium(II) tetrafluoroborate 0

tetrakis(actonitrile)copper(I) hexafluorophosphate 0

tetrakis(trifluoroacetato)rhodium(II) 0

tetrakis(triphenylphosphine) palladium(0) 0

tetramethlyammonium chloride 4

tetramethoxymethane 4

tetramethylammonium triacetoxyborohydride 0

tetramethylenebis(magnesium chloride) 4

tetramethylpiperidyl MgCl LiCl 0

theophylline 4

thiamine diphosphate 4

thiazolium bromide 4

thionyl chloride 2

thiophene 4

thiophenol 2

tin 0

tin(II) chloride dihdyrate 0

tin(II) iodide 0

tin(II) trifluoromethanesulfonate 0

tin(IV) chloride 0

tin(ll) chloride 0

titanium tetra-n-propoxide 0

titanium tetrachloride 1

titanium tetraisopropoxide 0

titanium tris(diethylamido)chloride 2



Date: 29 Apr 2022 08:35 Author: Silvia Chines 40 of 44

www.knime.com

"column1" "Min*(Score)"

titanium(III) triisopropoxide 0

titanium(IV) bromide 2

titanium(IV) dichlorodiisopropylate 2

titanium(IV) iodide 2

titanium(IV) isopropylate 3

titanium(IV) tetraethanolate 0

titanium(IV) trichloride isopropoxide 0

titanium(IV)isopropoxide 0

titanocene(III) chloride 2

tol uene-4-sulfonic acid 0

toluene-4-sulfonic acid 0

toluene-4-sulfonic acid hydrazide 0

tri tert-butylphosphoniumtetrafluoroborate 1

tri-1-napthylphosphine 0

tri-n-butyl-tin hydride 0

tri-n-butyltin lithium 0

tri-tert-butyl phosphine 0

triacetoxy sodium borohydride 0

triacetoxyborane 2

tributyl borane 0

tributyl-amine 4

tributylphosphine 0

tricarbonylcyclopentadienyltungsten(II) chloride 0

trichloroacetic acid 4

trichloroacetonitrile 4

trichlorophosphate 0

trichlorosilane 0

tricyclohexylphosphine 0

tricyclohexylphosphine[1,3-bis(2,4,6-trimethylphenyl)-4,5-
dihydroimidazol-2-ylidine][benzylidene]ruthenium(II) dichloride

4

tricyclopentylphosphine 0

triethanolamine 0

triethyl borane 0

triethyl borate 0

triethyl gallium 4

triethyl phosphate 0

triethyl phosphite 0

triethyl-sulfopropylammonium dihydrogen phosphomolybdate 1

triethylamine 4

triethylamine hydrochloride 4

triethylammonium methylpolystyrene triacetoborohydride 2
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triethylbutylammonium chloride 4

triethylphosphine 0

triethylsilane 3

triethylsilyl trifluoromethyl sulfonate 2

trifluoroacetic acid-d1 4

trifluoroacetic anhydride 4

trifluoroborane diethyl ether 2

trifluoromethylsulfonic anhydride 0

trifluorormethanesulfonic acid 0

trifuran-2-yl-phosphane 2

triisopropoxytitanium(IV) chloride 2

triisopropyl phosphite 0

triisopropylsilyl chloride 0

trimethoxysilane 0

trimethyl orthoformate 4

trimethylaluminum 0

trimethylamine 4

trimethylamine-N-oxide 0

trimethylphenylsilane 0

trimethylphosphane 3

trimethylsilyl acetate 4

trimethylsilyl bromide 0

trimethylsilyl iodide 0

trimethylsilyl trifluoromethanesulfonate 0

trimethylsilylazide 0

trimethylsilylmethyllithium 0

trimethylsilylphosphate 1

trimethylsilyltributyltin 0

triphenyl phosphite 1

triphenyl-arsane 2

triphenylacetic acid 4

triphenylborane 0

triphenylphosphine on polystyrene 0

triphenylsilyl perrhenate 0

tris hydrochloride 4

tris(2,4-di-tert-butylphenyl)phosphite gold(I) chloride 4

tris(acetonitrile)(eta5-pentamethylcyclo-pentadienyl)rhodium(III) 
hexafluoroantimonate

0

tris(dibenzylideneacetone)dipalladium (0) 0

tris(dibenzylideneacetone)dipalladium(0) chloroform complex 0

tris(dimethylamino) sulphonium bifluoride 0
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tris(dimethylamino)sulfonium trimethylsilyldifluoride 0

tris(ethoxy)monochloro titanium 2

tris(methoxyethoxyethyl)amine 4

tris(p-bromophenylammoniumyl) hexachloroantimonate 2

tris(pentafluorophenyl)borate 1

tris-(2,2'-bipyridine)ruthenium(II) chloride 4

tris-(2-carboxyethyl)-phosphine hydrochloride 4

tris-(dibenzylideneacetone)dipalladium(0) 0

tris-(m-sulfonatophenyl)phosphine 0

tris-(o-tolyl)phosphine 0

tris-(triphenylsiloxy)-vanadium oxide 0

trityl tetrakis(pentafluorophenyl)borate 0

tungstosilicic acid hydrate 0

urea 3

vanadyl acetylacetonate 0

vanadyl triflate 4

water 4

water-d2 4

ytterbium(III) triflate 4

ytterbium(III) trifluoromethanesulfonate hydrate 3

ytterbium(III) trifluoromethanesulfonate nonohydrate 3

yttrium(III) chloride 0

yttrium(III) trifluoromethanesulfonate 0

yttrium(lll) nitrate hexahydrate 0

zinc 0

zinc acetate dehydrate 4

zinc chloride diethyl ether 2

zinc diacetate 4

zinc dibromide 4

zinc dichloro(N,N,N?,N?-tetramethylethylenediamine) 4

zinc trifluoromethanesulfonate 4

zinc(II) chloride 4

zinc(II) hydroxide 0

zinc(II) iodide 4

zinc(II) oxide 4

zinc(II) sulfate 4

zinc(II) tetrahydroborate 4

zirconium (IV) butoxide 0

zirconium complex of (R)-3,3'-diiodo-BINOL on 3 A MS 0

zirconium triflate 4
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zirconium(IV) chloride 0

zirconium(IV) tert-butoxide 0

zirconocene dichloride 0

{(2-methyl-2-phenyl-propylidene)((2,6-
dimethylphenyl)imido)molybdenum(VI)bis(hexafluoro-tert-but 
oxide)}

0

{(2-methyl-2-phenyl-propylidene)((2,6-
dimethylphenyl)imido)molybdenum(VI)bis(hexafluoro-tert-butoxide)}

0

{(R)-H8-BINOL}Ti(O-i-Pr)2 3

(S)-3,3'-bis(4''-trifluoromethylphenyl)-2,2'-(2,2-bisbromo-2-
stannapropane-1,3-diyl)-1,1'-binaphthyl

1

(1,4,7,10-tetraoxacyclododecane) 4

(1,3,5-triaza-7-phosphaadamantane) 3

(3R,5R,7R)-N-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-
vinylquinuclidin-2-yl)methyl)adamantane-1-sulfamide

3

(R)-(+)-(4,4'-bi-1,3-benzodioxole)-5,5'-diylbis(di(3,5-
dimethylphenyl)phosphine)

2

(R)-2-(piperidin-1-yl)-1,1,2-triphenylethanol 4

1,2-bis-(dicyclohexylphosphino)ethane 4

1,3,5-trichloro-2,4,6-triazine 4

1,3-bis-(2,6-diisopropylphenyl)-imidazol-2-ylidene 4

1-(2,6-diisopropylphenyl)-3-(3-sulfonatopropyl)imidazolium 3

1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride 4

1-ethyl-3-methylimidazolium hexafluorophosphate 3

2,2'-azobis(isobutyronitrile) 2

2,2'-iminobis[ethanol] 4

2,2-bis[(4S)-4-isopropyloxazolin-2-yl]propane 3

2,3-diazobicyclo[2.2.1]heptane bis-hydrochloride 4

2,3-dimethyl-buta-1,3-diene 3

2,4,6-triisopropyl-N-((S)-(6-methoxy-2-phenylquinolin-4-yl)
((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)benzenesulfonamide

2

2,6-di-tert-butyl-4-methyl-phenol 4

3-butyl-1,2-dimethyl-1H-imidazol-3-ium hydroxide 3

3-methyl-N-(3-methylbutyl)-1-butanamine 4

3-quinuclidinol 4

4-(benzyloxy)-N-(2-{1-[(4-fluorophenyl)methyl]piperidin-4-yl}
ethyl)benzamide

3

4-chloro-benzenesulfonic acid 2

4-chlorobenzophenone 4

4-hydroxy-4-[2-(2,2,2-trifluoro-ethanoyl-amino)-ethyl]-piperidine-1-
carboxylic acid tert-butyl ester

4

9-bora-bicyclo[3.3.1]nonane 3

9-borabicyclo[3.3.1]nonane 3

9-borabicyclo[3.3.1]nonane dimer 3

Acetyl bromide 4

(1R,2R)-1,2-bis[(2-diphenylphosphanyl)benzoylamino]cyclohexane 2
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1,4-dichlorocyclohexane 3

p-toluenesulfonic acid monohydrate 2

p-toluenesulfonyl chloride 3

triphenylphosphine 2
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[CI-]

[Br-]

[Br]

[BH4-]

[Cl]

[F-]

[F-][B+3]([F-])([F-])[F-]

[F-][P+5]([F-])([F-])([F-])([F-])[F-]

[H][N]([H])([H])[H]

[I-]

[I]
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[N]

[N](=O)(O)O

[NH4]

[NH4+]

[O-][Cl]=O

[O-]Cl(=O)(=O)=O

[O-]Cl=O

[O-]N(=O)=O

[O-]P([O-])([O-])=O

[O-]S([O-])(=O)=O

[O-]S(=O)(=O)C(F)(F)F

[O-]S(O)(=O)=O
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[O-2]

[OH-]

[O]

[P](=O)(O)(O)O

[P](F)(F)(F)(F)(F)F

[S-2]

[S](=O)(=O)(O)O

B

Br

C[Si](C)(C)[O-]

Cl

Cl.Cl
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Cl[Sb](Cl)(Cl)(Cl)(Cl)Cl

Cl[Sn](Cl)(Cl)Cl

ClCCl

F

F[B-](F)(F)F

F[B](F)(F)F

F[B](F)(F)F

F[P-](F)(F)(F)(F)F

F[P](F)(F)(F)(F)F

F[Sb-](F)(F)(F)(F)F

F[Sb](F)(F)(F)(F)F

I
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N

NO

O

O[Cl](=O)(=O)=O

O=S(=O)([N-]S(=O)(=O)C(F)(F)F)C(F)(F)F

O=S(=O)([N-]S(=O)(=O)C(F)(F)F)C(F)(F)F

O=S(=O)(O)O

OC(=O)C(F)(F)F

OCl(=O)(=O)=O

ON(=O)=O

S

[Ag+]
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[57Fe++]

[Al+3]

[Ba+2]

[Bi+3]

[Ca]

[Ca++]

[Cd]

[Cd+]

[Cd+2]

[Ce]

[Ce+4]

[Cl-][Fe+3]([Cl-])([Cl-])[Cl-]
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[Co]

[Co++]

[Co+2]

[Co+3]

[Cs+]

[Cu]

[Cu+]

[Cu++]

[Cu+2]

[Er+3]

[Eu+3]

[Fe]
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[Fe++]

[Fe+2]

[Fe+3]

[Ga+2]

[Ga+2]Ga+2]

[Gd+3]

[H]

[H+]

[H-]

[I-][Zn++]([I-])([I-])[I-]

[I-][Zn+2]1([I-])[I-][Zn+2]([I-])([I-])[I-]1

[Ir+3]
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[K]

[K+]

[KH]

[La]

[La+3]

[Li]

[Li+]

[LiH]

[Lu+3]

[Mg]

[Mg++]

[Mg+2]
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[Mn]

[Mn+2]

[Mo]

[Mo+6]

[Mo+6][Mo+6]

[Na]

[Na+]

[NaH]

[Ni]

[Ni+2]

[Pb+2]

[Pd]
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[Pd++]

[Pd+2]

[Pt+2]

[Re+]

[Ru]

[Sn]

[Sn+4]

[Sr]

[SrH2]

[Ta+5]

[Tc+2]

[Ti]



Date: 1 May 2022 11:47 Author: Silvia Chines 12 of 17

www.knime.com

"salt string" "salt smiles"

[Ti+4]

[Tm+3]

[Yb+3]

[Zn]

[Zn]

[Zn+2]

[Zr+4]

C[N+](C)(C)C

F[As](F)(F)(F)(F)F

Mo

Ni

O=[Mo++]=O
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O=[Mo+2]=O

O=[Tc-](Cl)(Cl)(Cl)Cl

O=[U+2]=O

O=[V+2]

[C]

[cH-]1cccc1

[CH3][S](=O)(=O)(O)

[CH3]C(=O)O

[O-]C

[O-]C=O

C

C(=O)(C(=O)[O-])[O-]
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C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O

C[O-]

c1cc([CH3])ccc1[S](=O)(=O)(O)

CC(=O)[O-]

CC(O)C(=O)O

CC[O-]

CCCCCCCCCCCCCCCCCC(O[Al](O)O)=O

ClCCl

COC([S-])=S

COC([S-])=S

COS(O)(=O)=O

CS([O-])(=O)=O
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FC(F)(F)C(=O)O

[Dy]

[Zn++]

[Cl-]

[Hg++]

[Hg]

[Dy+++]

S([O-])(=O)=O

Cc1ccc(cc1)S([O-])(=O)=O

COS([O-])(=O)=O

S([O-])(=O)=O

Cc1ccc(cc1)S([O-])(=O)=O
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COS([O-])(=O)=O

[O-]S(=O)(=O)c1ccccc1

CS(O)(=O)=O

OS(O)(=O)=O

Cc1cc(C)c(c(C)c1)S([O-])(=O)=O

OS(=O)(=O)C(F)(F)F

Cc1ccc(cc1)S(O)(=O)=O

CC[S+](CC)CC

OS([O-])(=O)=O

COS(=O)(=O)OC

O=[S-](=O)c1ccccc1

CS(C)=O
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C[S+](C)(C)=O

Fc1c(F)c(F)c(c(F)c1F)[B-](F)
(c1c(F)c(F)c(F)c(F)c1F)c1c(F)c(F)c(F)c(F)c1F



Reference reactions as landmarks
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