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Steady‑state solutions of split 
beams in electron storage rings
Marc Andre Jebramcik*, Shaukat Khan & Wolfram Helml

Recently, a novel operation method for synchrotron light sources with transversely split beams has 
been explored to fulfill the rising demand for flexible and high‑throughput X‑ray sources required 
in such diverse fields as time‑resolved X‑ray spectroscopy, molecular chemistry in organic cells, 
high‑resolution medical imaging, quantum materials science or sustainable energy research. Within 
that novel operation mode, additional stable regions are produced in the horizontal phase space 
by operating an electron storage ring on a resonance that is driven by the nonlinear sextupole or 
octupole magnets. In the longitudinal phase space, a similar split can be produced by introducing an 
oscillation of the synchrotron phase via a modulation of the phase of the radiofrequency resonator. 
Strong radiation damping in electron storage rings, however, has to be overcome before additional 
regions in phase space can become populated by particles and form stable islands. This damping 
mechanism changes the dynamics of the system and causes diffusion between the different islands 
in phase space, raising the question what kind of equilibrium state exists in the asymptotic temporal 
limit. In this paper, a finite‑differences approximation in rotating action‑angle coordinates is used 
to solve the Vlasov–Fokker–Planck equation and to study the obtained equilibrium states for the 
longitudinal as well as the transverse case. The number of solution vectors and the magnitude of the 
corresponding singular values of the matrix of the underlying finite‑differences equation are used as 
abstract indicators to define the required parameter set that provides stable additional beamlets. As a 
consequence, the beamlets have a stability that is close to that of the main beam in terms of diffusion 
caused by the radiation damping and quantum excitation.

Besides the development of free-electron lasers as state-of-the-art X-ray sources, also synchrotron light sources 
have seen a tremendous boost in performance in recent years. Today, fourth-generation electron storage rings, 
like MAX  IV1 in Lund, Sweden, or the new ESRF-EBS2 in Grenoble, France, provide unprecedentedly low beam 
emittance and thus offer the potential for ultrabright and coherent synchrotron radiation. These highly special-
ized machines are based on different versions of multi-bend achromatic lattice designs and combine MHz repeti-
tion rates for simultaneous experiments at multiple beamlines within a wavelength range from the THz to the 
hard X-ray regime. They can serve as broadband sources for ultrashort pulse generation and as monoenergetic 
devices for high-energy-resolution X-ray diffraction, imaging or spectroscopy, or for a combination of these 
schemes. Improved electron beam characteristics lead to a growing demand for experiments by research groups 
from such different areas of science as structural biology, material science and photochemistry. New methods 
for data analysis on-the-fly with techniques from the machine learning community open the chance of utilizing 
novel and previously unconsidered operation modes of synchrotron light sources that enhance the flexibility of 
the facilities while allowing multiple measurements at the same time. One candidate for such a modern operation 
mode is to set the betatron tune close to a resonance of the storage ring, introducing additional electron orbits, 
so-called transverse resonance island buckets (TRIBs) that have recently been applied in electron storage rings 
to achieve highly desirable goals like the production of helicity-flipped synchrotron  light3, a hybrid filling mode 
to provide high-intensity single bunches on one orbit for timing users while providing a dense, high-brightness 
bunch train on another  orbit4. Operation with transversely split beams has been used in the CERN SPS to pro-
vide slow extraction for more than a  decade5. A schematic top view of the orbit with three additional transverse 
resonance islands is given in Fig. 1a.

Nevertheless, the novel operation mode is still actively investigated and not fully understood in terms of the 
feasibility since it requires the careful operation of the storage ring close to a nonlinear resonance to produce the 
additional stable areas in the transverse phase space to accommodate supplementary beamlets. The operation 
close to these nonlinear resonances was long considered destructive for the beam, and the usual procedure is 
to place the machine’s working point cautiously between resonances. One of the uncertainties of the operation 
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mode with resonance islands is the potential diffusion of particles between the islands in electron machines, 
since emission of synchrotron radiation in combination with the resulting quantum excitation may cause par-
ticle exchange between the islands. Such a behaviour can be observed at BESSY II, Berlin, Germany, when it is 
operated close to a third-order resonance driven by sextupoles. The diffusion process is important to understand 
and cautiously optimize the injection procedure into the additional orbits, where poorly placed islands in fixed 
points that continuously lose particles to, e.g., the centre orbit would make matters worse.

Because the description of the nonlinear dynamics in the transverse phase space seems complicated consider-
ing the large number of nonlinear magnets that may contribute to the particle dynamics, this paper will derive 
the required principles for the longitudinal phase space in the presence of radiofrequency (RF) phase modula-
tion first and then apply the same principles to the transverse phase space. These investigations are fully based 
on solving the Vlasov-Fokker-Planck (VFP) equation on a grid. This approach is superior to tracking method 
or to solving the time-dependent VFP equation since these approaches require a long simulation time to reach 
equilibrium and it is unclear whether multiple equilibrium states may exist. Deriving a time-independent Ham-
iltonian instead allows all possible orthogonal equilibrium states to be computed directly.

RF phase modulation
An RF phase modulation is commonly used at light sources like DELTA at TU Dortmund  University6,7 to enhance 
the beam lifetime by increasing the phase space volume and thus reducing the loss rate due to the Touschek effect. 
In addition, longitudinal coupled-bunch instabilities excited by, e.g., the RF cavity are effectively suppressed. The 
phase modulation modifies the RF wave according to

with the peak RF voltage U0 , the RF angular frequency ωRF , the modulation amplitude Am , and the modulation 
frequency ωm . If the modulation frequency is chosen close to an integer multiple of the synchrotron frequency 
ωs , i.e., ωm ≈ nωs with n ∈ N

+ , resonant excitation is achieved and islands, additional stable fixed points besides 
the bunch centre, are obtained with a cautiously selected modulation frequency and amplitude as is displayed 
by the streak-camera pictures given in Fig. 1b-e.

Hamiltonian at an arbitrary integer resonance. Neglecting the localized nature of the RF cavity, the 
Hamiltonian for the longitudinal phase space with a single RF cavity and active RF phase modulation  reads8–10

with the normalized momentum coordinate δ = (�E/E0)hη/Qs and the phase angle φ being measured with 
respect to the synchronous phase angle φs . Here, h is the harmonic number, η is the slippage factor, Qs is the 
synchrotron tune, and �E is the energy deviation from the nominal energy E0 . The Hamiltonian is quite unhandy 

(1)Umod = U0 sin(ωRFt + Am sinωmt)

(2)H(φ, δ, t) = 1

2
ωsδ

2 + −ωs

cosφs
(φ sinφs + cos(φs + φ + Am sin(ωmt)))

Figure 1.  (a) Schematic top view of the orbit in a storage ring when operated on a horizontal third-order 
resonance. While the nominal orbit (black) closes after one revolution, the three additional orbits of the 
resonance islands merge into each other leading to a fully closed orbit after three revolutions in the machine. 
The orbit excursion in the horizontal coordinate x is strongly exaggerated. (b–e) Dual-scan streak camera 
images for different RF phase modulation parameters close to the second integer resonance ( ωm ≈ 2ωs ) 
at DELTA. The color-coded radiation intensity, which corresponds to the electron density in the bunch, is 
shown as function of time on a picosecond (abscissa) and a microsecond scale (ordinate, here in units of the 
synchrotron period Ts ). While keeping the modulation frequency constant, the synchrotron frequency was 
tuned by changing the RF voltage. From left to right: (b) modulation off, (c) ωm > 2ωs , (d) two-island regime 
with ωm close to 2ωs , (e) three-island regime with ωm < 2ωs.
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and time-dependent making it difficult to identify potential fixed points in phase space. In a first step, a transfor-
mation into action-angle coordinates (�, I) is performed via the generating function F1(φ,�) = −(φ2/2) tan� 
leading to the substitutions δ = −

√
2I sin� , φ =

√
2I cos� . Since this still does not eliminate the time depend-

ence of the Hamiltonian, a second transformation into a rotating coordinate system (� , J) is performed via the 
generating  function8,9,11 F2(�, J) = J(�− ωmt/n− π/(2n)) of second kind to achieve the substitutions I = J and 
� = � + ωmt/n+ π/(2n) . After time averaging to eliminate time-varying terms and a small-angle approxima-
tion with regard to the perturbation term, one reaches the final time-independent  Hamiltonian8,11

with the scalar constant

Note that the absolute value of c(n) drops rapidly with increasing n.

Stable fixed points in longitudinal phase space. The Hamiltonian K in Eq. (3) can easily be investi-
gated for stable fixed points (SFPs) by solving

for JFP and �FP . The stability of the fixed points can be checked by inspecting the Hessian

to be positive definite, which implies eigenvalues on the complex unit circle and consequently Ljapunov stability. 
Unstable fixed points (UFPs) that are also obtained via Eq. (5) do not yield a positive definite Hessian.

Fixed points for n = 2 and n = 3. The results of the stability analysis of the fixed points for n = 2 and 
n = 3 are given in the following for illustrative purposes, since for these cases the Vlasov-Fokker-Planck equa-
tion is going to be solved later on. Figure 2a,c show examples in which the stable fixed points are marked in green 
while the unstable fixed points are indicated in red. The fixed points for various resonances are well  known8–10,12. 
For n = 2 for example, they are located at the  actions8,11

These expressions indicate a bifurcation condition for the islands to exist, i.e., 4|1− ωm/(2ωs)| ≥ |Am tanφs| . 
The SFPs and UFPs alternate in terms of the angle, and the angular distance is �� = π/2 as can also be seen in 
Fig. 2a. The centre island may also vanish depending on the RF phase modulation parameters, i.e., it becomes 
an UFP. This behaviour is shown in the bifurcation diagram in Fig. 2b. Calculations for n = 2 have shown that 
the modulation amplitude Am has to exceed the value Am ≥ 4γd

√

1+ ω2
m/(16ω

2
s γ

2
d )/(ωs| tan φs|) with the 

longitudinal damping rate γd to overcome radiation damping in the bunch centre to clear out the centre  UFP8,13; 
however, this threshold is not easily calculable for an arbitrary resonance m.

The third integer resonance behaves similarly as the second integer resonance. The stability between the 
lateral islands changes alternately in terms of angle as shown in Fig. 2c. The angular distance between the stable 
and unstable fixed points is �� = π/3 . The action of the fixed points  is9,11,12

The bifurcation diagram in Fig. 2d directly results from the expression within the square root in Eqs. (9)–(10), 
i.e., ωm/(3ωs) ≤ 1+ A2

m/64 . The stability of the centre island, however, is always guaranteed since high-order 
amplitude detuning terms are not present, only the face area of the centre island may vary. It is worth mention-
ing that the �� = π/3 distance between stable and unstable fixed points does not apply at a small frequency 
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window close to the resonance frequency 1 ≤ ωm/(3ωs) ≤ 1+ A2
m/64 . In this region, stable and unstable fixed 

points share the same � coordinate with the stable (unstable) fixed point having the larger (smaller) action.

Vlasov–Fokker–Planck equation in the presence of RF phase modulation
The Vlasov–Fokker–Planck (VFP) equation is a partial differential equation describing the evolution of the 
density function ρ in phase space under the influence of quantum excitation and radiation damping. The general 
VFP equation using the Hamiltonian H from Eq. (2) in the longitudinal phase space  reads9

with [ρ,H]φ,δ being the Poisson brackets with respect to the coordinate φ and the conjugate momentum δ , γd 
being the longitudinal damping coefficient and D is the diffusion coefficient. With the same coordinate trans-
formation as in the previous section, the VFP equation in rotating action-angle coordinates with K taken from 
Eq. 3  reads9,11

after time averaging and elimination of the oscillating terms. The term ∂ρ/∂t is also dropped since the goal is to 
obtain a steady-state solution in rotating action-angle coordinates. In the absence of RF phase modulation, the 
VFP equation is solved by ρ(J) = k exp (−2γdJ/D) with k ∈ R

+ and D = 2γdσ
2 . This expression for ρ simply 

corresponds to the natural distribution in (φ, δ) space. The bunch length σ is the same in φ and δ due to the choice 

(11)
∂ρ

∂t
+ [ρ,H]φ,δ =

∂

∂δ

(

2γdρδ + D
∂ρ

∂δ

)

(12)[ρ,K]� ,J = 2γd

(

ρ + J
∂ρ

∂J

)

+ D

(

∂ρ

∂J
+ J

∂2ρ

∂J2
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4J

∂2ρ
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)

Figure 2.  (a) Three-islands regime at the second integer resonance n = 2 with ωm/(2ωs) = 0.9 and 
Am tan φs = 0.1 . The green markers indicate the SFPs while the red markers indicates the UFPs. (b) The 
diagram shows for which combinations of the modulation amplitude and frequency at the second integer 
resonance ( n = 2 ) either only the centre island, two lateral islands, or three islands (centre island and two lateral 
islands) exist. (c) Four-islands regime at the third integer resonance n = 3 with ωm/(3ωs) = 0.9 and Am = 0.1 . 
The green markers indicate the SFPs while the red markers indicate the UFPs. (d) The diagram displays for 
which combination of modulation amplitude and modulation frequency at the third integer resonance ( n = 3 ) 
only the centre island or four islands (centre island and three lateral islands) exist.
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of coordinates. When the RF phase modulation is switched on, numerical calculations have to be performed 
to obtain ρ as is shown in the following. Diffusion between the islands due to the Touschek effect or RF voltage 
jitters is not considered.

The VFP equation on a grid. To solve the VFP equation numerically, the phase space is discretized in the 
action-angle coordinates with N� knots in angle and NJ knots in action as sketched in Fig. 3. The increments 
between adjacent grid knots are fixed at �� and �J in the two coordinates. Since the action-angle coordinates 
are a nonlinear transformation of the Cartesian (φ, δ) plane, the grid appears non-equidistant in (φ, δ) space. 
With the innermost ring at J = �J/2 , the singularity appearing in the VFP equation at the coordinate origin 
J = 0 is avoided (singularity due to division by J = 0 ). Furthermore, ρ at the edge of the domain, in which the 
VFP equation is solved, is set to zero. This is not arbitrary, because in reality the energy acceptance will cause any 
density function to drop to zero at a sufficiently large action.

A feature of the discretization in action-angle coordinates is the determinant of the Jacobian being equal to 
unity, i.e., 

∫∫

G f (δ,φ)dδdφ =
∫∫

G f (δ(� , J)),φ(� , J))d�dJ for a function f on a given domain G. With a second-
order approximation of the first partial derivative and a first-order approximation of the second-order partial 
derivative with respect to angle and action, the VFP equation modifies locally  to11

in the finite-differences approach. Here, ρi,j is the value of the density function at the coordinates � = i�� and 
J = (1/2+ j)�J . The equation can be rearranged to obtain the homogeneous equation

with x being the solution vector of length l = N�NJ containing the different ρij at the grid knots, and M is the 
highly sparse matrix of size l × l.

For n ≥ 2 , the symmetry of the system can be exploited: Eq. (13) is symmetric if � is translated by the angle 
2π/n . Hence, with cyclic boundary conditions, the domain can be restricted to 2π/n , which heavily reduces the 
number of required grid knots in the � coordinate.

Solving the VFP equation. Since Eq.  (14) is homogeneous, a vanishing determinant of the matrix M 
is required to have non-trivial solutions besides the trivial solution ( x = 0 ). In order to find the solutions to 
Eq. (14) (the kernel of M ), a singular value decomposition (SVD) is performed that reads

with � = diag(σ1, ..., σl) being a diagonal matrix containing the singular values σi in descending order and V and 
U being non-unique orthonormal matrices. At this point, it is assumed that N0 singular values in � are zero. The 
kernel of M corresponds to the span of the N0 column vectors ui with i ∈ (1, ...,N0) of the matrix U associated 
with the N0 singular values that are zero. The span of these orthonormal vectors constitutes the desired solutions 
for x in Eq. (14). Hence, the solutions are
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Figure 3.  The (φ, δ) phase space is discretized in a time-dependent action-angle frame (� , J) with NJ = 4 
and N� = 8 knots in this particular example. The centre at J = 0 (red marker) is not part of the grid to avoid 
singularities when solving the VFP equation. The first ring of equal action is at a distance J = �J/2 from the 
centre of the grid.
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with the scalar coefficients bi . Finding these solutions via iterative algorithms like Gauss-Seidel or Jacobi iteration 
would not lead to all solutions with the final result heavily depending on the initial solution vector. This is the 
main reason why these iterative methods are avoided in addition to their poor performance. Our approach also 
overcomes the downsides of particle tracking: With the inclusion of some random changes of the momentum 
to simulate quantum excitation, particle tracking takes too much computation time to reach equilibrium and 
the final state depends on the initial condition. In addition, only one solution vector is obtained even if multiple 
solutions may exist.

A drawback of solving the matrix equation directly via SVD is the potential existence of non-physical solu-
tions for which the solution vector x contains positive as well as negative values. For a solution to be physical, 
all vector entries have to be either positive or negative, since a fully negative vector x can be multiplied by −1 to 
obtain positive values. The coefficients bi may therefore also be all negative. It is important to note that a base 
vector ui that appears non-physical on the first glance may be combined with one or more of the other ui to 
obtain a physical solution (more detailed explanation will follow). Nevertheless, all those ui have to display a 
corresponding singular value equal to zero. A way to obtain the physical solutions from the solution vectors ui 
is given in the “Methods” section.

Now, a helpful twist to the argument is made. In the previous explanation, N0 singular values were assumed 
to be zero. This assumption does not necessarily prove true as the determinant of M is not even close to zero 
in most cases and may easily exceed det(M) > 104 (assuming several 10,000 grid nodes). This behaviour is no 
coincidence: The density function at the edge of the domain has to be set to zero in a similar fashion as in the 
RF phase modulation case. The domain edge being set to zero will cause the full destruction of the beam in the 
temporal asymptotic limit due to the diffusion in the system. It therefore follows that only the trivial zero solution 
to Eq. (14) can exist as an equilibrium state. Nevertheless, we are interested in those solutions ui that correspond 
to the smallest singular values and are in this sense the solutions that are the closest to an equilibrium state. These 
momentary equilibrium states may have a sufficient lifetime to be observed in the machine. It turns out handy 
that for a large enough domain the condition number κ becomes large even though the determinant exceeds, e.g., 
104 . The condition number κ = σmax/σmin is the ratio of the largest ( σmax ) and smallest singular value (σmin) , 
usually indicating an ill-conditioned inverse of M if κ is large. In our case, a sparse matrix M with a large κ means 
that at least one solution exists with a corresponding small singular value even when the determinant is large, 
thus providing us with a suitable equilibrium state to the VFP equation.

Until now, it has been tacitly assumed without explicit proof that a vector ui obtained from the SVD (see 
Eq. 15) with a corresponding small relative singular value is more or less an equilibrium state that does not change 
over time. The correctness of this assumption can be derived by re-introducing the time-dependence in Eq. (11) 
into the discretized VFP equation in Eq. (14) and substituting x = ui

A simple integration in time can be achieved via the explicit Euler method that would lead to the modification 
of the density vector ui by adding the difference vector �ui = �tMui in the integration step with �t being the 
step size in terms of time. From the well-known properties of the SVD one directly obtains the relation

for the 2-norms of the increment vector and the state vector. Equation (18) indicates that the 2-norm of the dif-
ference vector is negligible even in the presence of a large integration step in time in comparison to the original 
state vector once the singular value becomes sufficiently small.

In the context of the solutions to Eq. (14), the question remains what a small singular value and large enough 
grid size is. To investigate this, let us assume one finds a solution vector x for Eq. (14). Multiplying x with a sca-
lar α leaves αx in the kernel. This is equivalent to scaling the bunch intensity that does not influence the bunch 
length or shape since collective effects are neglected and radiation damping as well as quantum excitation are 
single-particle processes. Hence,

is also fulfilled besides Eq. (14). Substituting the SVD from Eq. (15) into Eq. (19) and rearrangement leads to

This demonstrates that the scalar α can be moved onto the singular values in � . Consequently, only the ratio 
between the singular values with respect to the largest one matters since the scaling can make them arbitrarily 
small without changing the dynamics of the system (the condition number κ of the matrix remains unchanged).

Overlapping versus disjoint islands. In this section, the difference between independent (disjoint) 
islands and those that interact via synchrotron radiation damping and quantum excitation is elaborated using the 
example of RF phase modulation at the second integer resonance. The third integer resonance is going to be ana-
lyzed in the context of transverse resonance island buckets in a separate section. The following example is carried 

(16)x =
N0
∑

i=1

biui

(17)Mui =
∂ui

∂t
.

(18)
||�ui||
||ui||

= �tσi

(19)M(αx) = 0

(20)V(α�)UT
x = 0.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18383  | https://doi.org/10.1038/s41598-022-22857-y

www.nature.com/scientificreports/

out with the parameters Am tan φs = 0.1 and ωm/(2ωs) = 0.9 (three-island regime) on a NJ × N� = 308× 88 
grid. The damping constant is here γd = 260s−1 and the bunch length measured in terms of the RF phase angle 
is σz = 0.16rad . The ratio of the singular values to the maximum singular value of the equilibrium solutions is 
in the range of 10−9 to 10−6 as is displayed in Fig. 4.

In this particular case (black dots), there are three equilibrium solutions (the fourth singular value is separated 
by a step of more than two orders of magnitude). The respective solution vectors ui are depicted in Fig. 5a–c.

Although u2 and u3 display partly negative ρ values, a sum x =
∑3

i=1 biui can be found that yields solely 
positive ρ values and therefore there are three valid equilibrium states. Negative ρ values are produced due to the 
choice of basis vectors for the solution space. Rotating the basis of the kernel would lead to exclusively positive 
ρ values; however, this is not of interest in the following. There are three solutions since the three islands are 
disjoint, i.e., not connected via particle transfer due to radiation damping or diffusion, and the vectors ui can be 
summed in a way that only a single island exists (either one of the lateral islands or the centre island). To give an 
example of overlapping islands, the only existing equilibrium solution for Am tan φs = 0.1 and ωm/(2ωs) = 1.01 
(two-island regime) is given in Fig. 5d, i.e., the two islands will always have the same shape and intensity and the 
islands cannot exist independently of each other since a ridge connects them. The ratio of the singular values for 
this particular scenario is also given in Fig. 4 (magenta markers).

Dependence of the equilibrium states at n = 2 on the modulation frequency. In the following, 
the base vectors u of the kernel of M are analysed for n = 2 . For illustrative purposes, a scan of the modulation 
frequency is performed with constant modulation amplitude ( Am tan φs = 0.1 ). This scan is also shown in the 
Supplementary Video S1. This analysis for different modulation frequencies ωm/(2ωs) studies the behaviour 
of the singular values corresponding to the equilibrium solutions at the bifurcation frequencies and identifies 
the frequencies at which islands become disjoint from each other. The latter points are identified by the loca-
tions where the singular values of the equilibrium states u have reached roughly the same amplitude and are 
clearly distinguishable from the non-physical solution states that ideally have singular values several orders 
of magnitude larger than the equilibrium states. The evolution of the singular values during the scan of the 
modulation frequency is shown in Fig.  6. Below each of the two bifurcation frequencies ωm/(2ωs) = 1.025 
(green line) and ωm/(2ωs) = 0.975 (blue line), one additional singular value starts to decrease towards smaller 
modulation frequencies. The second singular value reaches the level of magnitude of the first singular value 
at ωm/(2ωs) = 0.97 . This indicates that the two lateral islands have become disjoint and the centre island has 
vanished. Consequently, long-term stability of the lateral islands can be expected in the limit of the approxima-
tions made within the presented framework. The third singular value reaches a similar level as the other two 
at ωm/(2ωs) = 0.93 , while the first singular value is again decreasing for even lower modulation frequencies. 
Here, three islands exist with both lateral islands having become disjoint from the centre one. Hence, the three 
states are expected to have comparable lifetimes in terms of diffusion (does not necessarily refer to the beam 
lifetime). The main reason for the significantly asymmetric behaviour observed in the plot around the resonance 
frequency at ωm/(2ωs) = 1 (grey line) is the distance of the stable fixed points from the bunch centre ( J = 0 ). 
Following Eqs.  (7)–(8), the action of the stable fixed points vanishes at the upper bifurcation frequency and 
increases towards lower modulation frequencies.

It is important to note that one does not see a rapid jump of the smallest singular values at the crossing of 
a bifurcation frequency, since the stable fixed points move apart slowly in terms of action. At the bifurcation 
frequencies, additional stable fixed points appear or disappear in immediate vicinity of each other causing an 
overlap of beamlets. As an example, one may look at a bifurcation at which a stable fixed points splits into two 

Figure 4.  Sorted singular values normalized to the largest one. These singular values arise from an RF phase 
modulation scenario with n = 2 , Am tan φs = 0.1 and ωm/(2ωs) = 0.9 (black) and ωm/(2ωs) = 1.01 (magenta) 
on a 308× 88 grid. In the ωm/(2ωs) = 0.9 case, the first three singular values show a much lower ratio in the 
range of σi/σmax < 10−6 and are therefore considered the physical equilibrium solutions of the VFP equation, 
since there is a step of more than two orders of magnitude to the next singular value that has σi/σmax ≈ 10−4 . In 
the ωm/(2ωs) = 1.01 case, there is only one equilibrium state with σi/σmax ≪ 10−4.
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stable fixed points ( ωm/(2ωs) ≈ 1.025 in Fig. 6). Right after the bifurcation has taken place, the two stable fixed 
points are so close to each other that the resulting density function is indistinguishable from the state just before 
the bifurcation has taken place (a single stable fixed point), and the two islands are only slowly moving apart 
to finally become disjoint for ωm/(2ωs) ≈ 0.97 . This behavior is not a result of the applied approximation or 
concept; instead, it is a physical feature that is observed in a real storage ring.

Transverse resonance islands
The previous sections dealt with the longitudinal phase-space distribution under the influence of an RF phase 
modulation. Surprisingly, the Hamiltonian of the transverse phase space when the storage ring is operated on 
an optical resonance at, e.g., the horizontal tune being Qx = 1/3 , is nearly identical. In the following, the symbol 
Qx will only refer to the fractional part of the tune. These resonances in the transverse planes are driven in first 
order by the lattice sextupoles, leading to a Hamiltonian that is analogous to that for RF phase modulation in 
the longitudinal plane with n = 3 . Of course, the dimensions of the longitudinal plane and the transverse planes 
as well as the sources of excitation are highly different. Nevertheless, a one-to-one correspondence between the 
parameters in the different planes can be made as is demonstrated in the following.

Operating a synchrotron or storage ring on a transverse resonance to achieve a transversely split beam 
(transverse resonance islands) may have many reasons. At synchrotron light sources, radiation with different 
helicity may be achieved due to the different transverse angles x′ of the beamlets in elliptical  undulators3. At 
hadron accelerators like the PS at CERN (see, e.g., Ref.5), a multi-turn extraction with transversely split beams 
is performed to artificially enlarge the PS circumference in terms of the extracted bunch train (resonant orbit 
closes after multiple turns).

The Hamiltonian in the horizontal plane with an arbitrary sextupole distribution. In the fol-
lowing, the vertical plane is neglected from the analysis of the transverse phase space. The vertical tune is ideally 
placed far away from an optical resonance and sufficiently integrable. The Hamiltonian in the transverse plane 

Figure 5.  The base vectors u1 (a), u2 (b), u3 (c) for the RF phase modulation scenario with n = 2 , 
Am tan φs = 0.1 and ωm/(2ωs) = 0.9 . Although u2 and u3 display partly negative density values, linear 
combinations of the three base vectors yield three disjoint islands with exclusively positive density values. (d) 
Equilibrium state u1 for the RF phase modulation scenario with n = 2 , Am tan φs = 0.1 and ωm/(2ωs) = 1.01 . 
This is the only equilibrium state since the two islands are connected via a ridge and therefore depend on each 
others’ densities.
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in action angle coordinates (ψx , Ix) in the storage ring then reads H(Ix) = µC
x Ix with the total horizontal phase 

advance µC
x =

∫

C ds/βx(s) , the horizontal beta function βx , and the horizontal action Ix . The Hamiltonian

can be derived using Lie algebra up to first order in the sextupole strength and in the approximation of thin 
 sextupoles14. Here, Ns is the number of sextupoles, Si is the integrated sextupole strength of the ith sextupole at 
location si defined via the integrated kick of a sextupole �x′ = Six

2 in thin-lens approximation (different defini-
tion for Si in Ref.14), µx(s) =

∫ s
0 ds/βx(s) is the phase advance at location s, and s0 is the point of observation along 

the circumference. Equation (21) indicates that integer resonances as well as 1/3 resonances are driven in first 
order by sextupoles since at least one of two sine functions in the denominators approaches zero in these cases.

The Hamiltonian in Eq. (21), however, lacks amplitude detuning that is required for deriving (stable) fixed 
points in phase space, since sextupoles generate amplitude detuning only in second order of the sextupole 
strength. That second-order effect therefore vanishes in the first-order approximation previously made. For 
this reason, the linear detuning parameter in the horizontal plane αxx = dQx/dIx is artificially supplemented to 
the Hamiltonian. The parameter αxx comprises first-order octupole and second-order sextupole contributions. 
The respective expressions can be found in the standard literature, e.g.,  Reference15. In the following, only the 
linear detuning contribution will be considered; however, the presented formalism and the approach of solving 
the VFP equation are not restricted to the linear detuning term and high-order terms can be supplemented to 
achieve better accuracy if desired.

The Hamiltonian at the third-order resonance, i.e., 3µC
x = n2π + 3ε , with n ∈ Z

+ and a small offset ε , signify-
ing the resonance-proximity parameter, reduces to

In order to find the fixed points, a transformation into a rotating reference frame is once again required as was 
performed to obtain a time-independent Hamiltonian for the RF phase-modulation case. To do so, the phase 
advance at the observation point µx(s0) is going to rotate with the tune Qx = 1/3 of the nearby resonance, i.e., 

(21)

H(Ix ,ψx , s0) = µC
x Ix + µC

x

Ns
∑

i

Si(2βx(si)Ix)
3/2

8

(

cos
(

3(ψx + µx(si)− µx(s0)− µC
x /2)

)

sin
(

3µC
x /2

) +
cos

(

ψx + µx(si)− µx(s0)− µC
x /2

)

sin
(

µC
x /2

)

)

(22)H(Ix ,�x , s0) = µC
x Ix + παxxI

2
x + µC

x

Ns
∑

i

Si(2βx(si)Ix)
3/2

8 sin(3µC
x /2)

cos
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(
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µC
x

2

)]

.

Figure 6.  Ratio between the four smallest singular values (SVs) σi and the largest one σmax under the variation 
of the modulation frequency of the phase modulation scenario with n = 2 and Am tan φs = 0.1 on a 308× 88 
grid. Below the upper bifurcation frequency (green line), the second smallest singular value (green squares) 
starts to decrease since the lateral islands drifts away from the centre and the two islands become disjoint at 
ωm/(2ωs) ≈ 0.97 . Below the lower bifurcation frequency (blue line), the third singular value (blue triangles) 
starts to decrease since the islands in the three-island regime become more and more disjoint towards 
ωm/(2ωs) ≈ 0.93 , where all three states show roughly the same magnitude in terms of singular value compared 
to the fourth singular value (black diamonds), which constitutes the first non-physical mode remaining at large 
amplitude independently of the modulation frequency.
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µx(s0) = 2πnτ/3 with the time-like variable τ . This requires a coordinate transformation of (ψx , Ix) : The gen-
erating function F2 = (ψx − 2πnτ/3− µC

x /2)Ix results in the substitutions φx = ψx − 2πnτ/3− µC
x /2 and 

Jx = Ix . With the generating function and these substitutions, Eq. (22) transforms into the location-independent 
Hamiltonian

This Hamiltonian still contains a sum over all sextupoles; however, since the argument of the cosine functions 
is the same among all terms with the exception of the phases 3µx(si) , the sum can be combined into a single 
cosine function

with the amplitude At and the phase φx0 which is set to zero in the following by redefinition of φx . The explicit 
transformation to obtain Eq. (24) from Eq. (23) follows

with ϕi = µx(si) and ai = µC
x Si(2βx(si))

3/2/(8 sin(3µC
x /2)).

The one-to-one correspondence of the Hamiltonian in Eq. (24) with respect to the Hamiltonian of the RF 
phase modulation in Eq. (3) is clearly visible: In both cases, there is a type of resonance-proximity parameter ( ε 
and ωs/(mωm) , respectively), detuning with increasing particle action ( αxx and ωs/16 , respectively) and some 
sort of modulation amplitude ( At and Am , respectively). The newly introduced amplitude At is a function of the 
sextupole resonance driving term (see, e.g., Refs.16,17)

that dwarfs all other resonances at Qx ≈ 1/3 . The index of h3000 describes the dependence of the driving term 
on the two transverse actions Jx,y and the phases µx,y . For a more detailed explanation, the reader is referred to, 
e.g.,16,17. The Eqs. (25) and (26) demonstrate the absence of lateral islands in a fully periodic accelerator lattice at 
Qx ≈ 1/3 since the sum and therefore the amplitude At cancels out if the sextupoles are distributed periodically 
with the cell period which is usually the case to suppress resonance driving terms. Breaking the symmetry to 
achieve a non-vanishing magnitude of the ht driving term is therefore required. The stability of the fixed points 
as well as the bifurcation diagram correspond to the expressions given in Eqs. (9)–(10) for the third integer 
resonance in the case of RF phase modulation with the respective substitutions.

Dependence of the equilibrium states at Q
x
= 1/3 on the modulation amplitude. The VFP in 

the transverse plane corresponds to the VFP in the longitudinal plane with the exception of different parameters 
in the Fokker-Planck collision term: The horizontal damping rate is usually half as large as the longitudinal one 
and consequently the diffusion coefficient Dx is different due to the different damping rate and equilibrium 
emittance. Nevertheless, the VFP remains otherwise unchanged and the discretization in Eq. (13) is applica-
ble. In the following, a fractional betatron tune of Qx = 0.305 (the resulting resonance-proximity parameter 
is ε = 2π(Qx − 1/3) = −0.178 ), a bunch size of σx = 1.0× 10−4m at βx = 1m , αxx = 6.7× 104m−1 and a 
ratio of the damping factor γd to the revolution frequency f0 of γd/f0 = 5.0× 10−5 is assumed. Since the time-
like variable τ is a measure of the turn number, the normalization of the damping parameter γd = 130s−1 to 
the revolution frequency f0 = 2.6MHz is required. These parameters are typical for the 1.5-GeV synchrotron 
light source DELTA at the TU Dortmund University that is taken here as an example. The VFP is solved on a 
400× 80 grid (32,000 grid nodes) with cyclic boundary conditions on 1/3 of the domain in terms of the angle 
φx ∈ [0; 2π/3[ , exploiting the three-fold rotational symmetry of the system.

Analysis of disjoint transverse islands. Exploiting the rotation symmetry, i.e., restricting the angle to 
φx ∈ [0; 2π/3[ , reduces the number of potential disjoint modes to two since only the centre islands and one 
lateral island are covered while two lateral islands are outside the φx range. Solving the VFP for 2π , would enable 
the possibility of four disjoint modes (four potential islands in the domain).

A scan of the modulation amplitude At is performed in the following while the linear detuning αxx is held 
constant during this procedure. The scan is shown in Fig. 7. An increase of the modulation amplitude drives the 
lateral islands away from the bunch center. At small amplitudes At < 100m−1/2 , the radiation damping has to 
be overcome by the excitation and the SFPs have to move out of the bunch core before stable lateral islands can 
be observed. Hence, only a single equilibrium solution is observed early on ( σ1 ≪ σ2).

Once the amplitude increases, the action of the stable fixed points also increases. At At = 181m−1/2 , the 
lateral islands become disjoint from the centre islands, i.e., the modes corresponding to the centre island and 
to the lateral islands display roughly equal singular values in terms of magnitude. The two possible orthogonal 
solution vectors that have exclusively positive density values are shown in Fig. 8a,b. When both modes have 
become disjoint, it is expected that a minimum amount of particles will travel between the bunch core and the 
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lateral islands and they should roughly share the same lifetime in terms of diffusion. Choosing this particular 
modulation amplitude may be the optimal mode of operation since maximum stability of the transverse reso-
nance islands can be inferred.

Above At = 181m−1/2 , the singular values corresponding to the lateral islands increase once again since the 
lateral islands drift towards the domain edge. Towards large amplitudes ( At > 300m−1/2 ), also the singular value 
corresponding to the bunch core increases since the dynamic aperture for the bunch core shrinks. To demonstrate 
the shrinkage of the separatrix, Fig. 8c,d shows contour lines of the Hamiltonian K for At = 44m−1/2 and for 
At = 583m−1/2 . The radius of the stable region around the coordinate origin has decreased by roughly a factor 
of three. With At > 300m−1/2 , multiple standard deviations of the beam size σx = 1.0× 10−4 m no longer easily 
fit into the stable region. Consequently, an increased singular value for the mode corresponding to the bunch 
core is observed since particles diffuse out of the core.

Conclusion
Throughout this paper, a numerical solution using a finite-differences approach to the VFP equation has been 
described. A subtle indicator, i.e., the magnitude of the singular values of the matrix, has been introduced to 
infer the long-term stability of the steady-state solutions of the VFP equation under the influence of quantum 
excitation and radiation damping in the longitudinal phase space (RF phase modulation) and the transverse phase 
space (transverse resonance islands). The approach avoids tracking studies that are not only time-consuming, but 
also cannot reliably identify all different equilibrium states since the number of simulated turns and the initial 
distribution have major effects on the final outcome. The concept of disjoint and overlapping lateral islands in 
both the longitudinal and transverse phase space has been introduced and successfully demonstrated with the 
examples of the second integer resonance for RF phase modulation and the sextupole resonance at Qx ≈ 1/3 in 
the transverse phase space. This approach also allows to determine a setup with the smallest amount of particle 
leakage between the different islands.

Although simplifying approximations have been made, this novel approach of inspecting the singular values 
to infer long-term stability may prove handy even when the system complexity increases by, e.g., the inclusion 
of high-order detuning terms. The only requirement is the successful derivation of the time-independent Ham-
iltonian to avoid solving the VFP in the temporal domain. Overall, with the outlined formalism the general 
problem of long-time stability for novel bunch filling patterns in modern electron storage rings may become 
more accessible for a quick theoretical assessment. Thus, the search for innovative operational schemes at fourth-
generation synchrotron facilities like MAX  IV1 or ESRF-EBS2 could be relieved and completely new design lattices 
be explored, opening the door to future even more powerful and specialized X-ray machines.

Methods
Obtaining the physical solutions. As previously mentioned, the obtained solution vectors ui are not 
necessarily identical with the actual physical solutions, since they may display density values smaller and larger 
than zero and depend on the algebraic software that is used (SVD is non-unique). We only consider cases in 
which there is at least one singular value sufficiently small with respect to the larger singular values, since other-

Figure 7.  Ratio between the three smallest singular values σi and the largest singular value σmax versus the 
modulation amplitude At ( αxx = const. ) obtained by solving the VFP equation with Q = 0.31 on a 400× 80 
grid (three-fold rotation symmetry exploited). At At = 181m−1/2 , the two smallest singular values (purple 
circles and green squares) have roughly the same magnitude while the third smallest one remains comparably 
large (blue triangles) as a reference.
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wise there will be no equilibrium states to hold on to any stored beam. Hence, N0 � 1 singular values that are at 
least a few orders of magnitude smaller than the next larger one are assumed from now on. Such a system has to 
feature N0 beamlets because of symmetry reasons (Since the Hamiltonian is symmetric in � , either all or none 
of the islands overlap. If they all overlap, there is only a single distinct singular value that is sufficiently small 
( N0 = 1 ). This single solution vector has to be physical in any case or the beam cannot be stored otherwise). 
Each of the solution vectors ui is a superposition of the physical solutions ej we want to solve for. This can be 
written in matrix form

with U containing the solution vectors ui from the SVD row-wise, C being an orthonormal N0 × N0 coefficient 
matrix and E containing the physical solutions we want to solve for row-wise. Solving directly for E is not possible 
since C is unknown; however, there is an intuitive way to obtain the transformation: Each of the solution vectors 
ui will display positive and/or negative peaks at the center of each of the beamlets (see, e.g., Fig. 5). For each ui , 
one can construct a new vector ûi = ki(ρi,1, . . . , ρi,N0) with ρi,j being the density value of the corresponding ui 
vector read from the grid at the location of the peak (may it have positive or negative sign) of the jth island, and 
ki being a scalar that ensures a unit vector length. The idea behind the construction of these vectors is that the 
ρi,j is proportional to the contribution of ej to ui , i.e., ρi,j ∝ Ci,j . With the matrix Ĉ = (û1, . . . , ûN0)

T , one can 
calculate its inverse Ĉ−1 . The matrix Ĉ−1 is equal to C−1 after restoring unit length of the row vectors of Ĉ−1 . As 
a last step, the simple formula E = C

−1
U yields the physical solutions.

Data availibility
The datasets that were produced, analyzed and presented during the current study are available from the cor-
responding author on reasonable request.

(27)U = CE

Figure 8.  (a) Example of a physical solution vector obtained by linear combination of the two base vectors 
x1 = 0.77u1 + 0.63u2 for the Q = 0.305 scenario with At = 181m−1/2 with βx = 1m . The domain is artificially 
filled up since only the angle φx ∈ [0; 2π/3[ has been calculated. (b) The second physical solution vector 
obtained via the linear combination x2 = −0.63u1 + 0.77u2 . Note that x1 and x2 are orthogonal. (c) Contour 
lines of a constant Hamiltonian K (no constant increment of K between contour lines) for At = 44m−1/2 . (d) 
Contour lines of a constant Hamiltonian K for At = 583m−1/2 with βx = 1m . The available dynamic aperture 
for the bunch core is much smaller in this picture compared to the one on the left. Here, multiple standard 
deviations of the beam size σx = 1.0× 10−4m no longer fit into the stable region.
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