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“We have a closed circle of consistency here: the laws of physics produce complex systems,
and these complex systems lead to consciousness, which then produces mathematics, which
can then encode in a succinct & inspiring way the very underlying laws of physics that gave
rise to it.”

Roger Penrose





Abstract

Cells in tissues and organisms operate in dynamic environments, continuously sens-
ing and responding to time-varying chemical signals. In order to accurately inter-
pret the complex information from their environment, biochemical networks in sin-
gle cells actively process these extracellular signals in real-time. The current con-
cept of biochemical computations places a strong focus on attractor based infor-
mation processing in cells. Recent studies however have shown that cells gener-
ate completely opposite phenotypic responses depending upon frequency of the
growth factor, independent of growth factor identity. This breaks down the steady-
state description of biochemical information processing. Therefore, we propose to
describe biochemical networks embedded in non-stationary environments as non-
autonomous systems whose solutions are the dynamic input-dependent trajectories.
We show that memory arising through metastable states will enable the system to
integrate time-varying signals such that, inputs resulting in different phenotypic
responses will be uniquely encoded in phase-space trajectories. The extracellular
information of different phenotypes is spread throughout the large signaling net-
works and represented by characteristically different classes of phase-space trajec-
tories. This encoded information will further be decoded downstream by early re-
sponse genes (ERG) in real-time, where we show that the feed-forward structure of
ERG is sufficient for this task.





Zusammenfassung

Zellen in Geweben und Organismen bewegen sich in einer dynamischen Umge-
bung, in der sie ständig zeitlich veränderliche chemische Signale wahrnehmen und
darauf reagieren. Um die komplexen Informationen aus ihrer Umgebung genau zu
interpretieren, verarbeiten biochemische Netzwerke in einzelnen Zellen diese ex-
trazellulären Signale aktiv und in Echtzeit. Das derzeitige Konzept der biochemis-
chen Berechnungen legt den Schwerpunkt auf die auf Attraktoren basierende Infor-
mationsverarbeitung in Zellen. Jüngste Studien haben jedoch gezeigt, dass Zellen
je nach Stimulationsfrequenz mit einem Wachstumsfaktor völlig entgegengesetzte
phänotypische Reaktionen hervorrufen können, unabhängig von der Identität des
Wachstumsfaktors. Dies bricht die Beschreibung des stationären Zustands der bio-
chemischen Informationsverarbeitung auf. Daher schlagen wir vor, biochemische
Netzwerke, die in nicht-stationäre Umgebungen eingebettet sind, als nicht-autonome
Systeme zu beschreiben, deren Lösungen die dynamischen, input-abhängigen Tra-
jektorien sind. Wir zeigen, dass das durch metastabile Zustände entstehende Gedächt-
nis das System in die Lage versetzt, zeitlich veränderliche Signale zu integrieren, so
dass Eingaben, die zu unterschiedlichen phänotypischen Reaktionen führen, ein-
deutig in Phasenraum-Trajektorien kodiert werden. Die extrazelluläre Information
der verschiedenen Phänotypen ist über weitläufige Signalnetzwerke verteilt und
wird durch charakteristisch unterschiedliche Klassen von Phasen-Raum-Trajektorien
dargestellt. Diese kodierten Informationen werden von frühen Reaktionsgenen (ERGs)
in Echtzeit dekodiert, wobei wir zeigen, dass die Feed-Forward-Struktur von ERGs
für diese Aufgabe ausreichend ist.
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Chapter 1

Introduction

The current understanding of cell signaling had its origins in the pioneering work of
Earl W. Sutherland, whose research led to a Nobel Prize in 1971. Sutherland’s work
suggested that cellular communication can be dissected into three stages: detection,
transduction, and response [93]. A chemical signal is “detected” when the signaling
molecule binds to a receptor protein located at the surface of a cell. The binding
of the signaling molecule changes the activity state of receptor protein, initiating
the process of transduction. The transduced signal finally triggers a specific cellular
response such as migration, proliferation, apoptosis or differentiation of cells.

1.1 Extracellular information processing in cells

In multi-cellular organisms, the extracellular environment is the space outside the
plasma membrane of a cell. The extracellular space consists of metabolites, ions,
proteins and other macro-molecules secreted by different cell types, which further
affect the functionality of cells. The signals present in the extracellular environment
regulate many important process including cellular proliferation, adhesion, migra-
tion, differentiation and tissue homeostasis [46]. Cells operating in dynamic envi-
ronments such as that of a developing organism or an adult tissue, continuously
sense and respond to chemical signals that vary in space and time. In order to ac-
curately interpret the complex information from their environment, the biochemical
networks in single cells sense the extracellular signals in real-time via membrane-
bound receptors. These receptors are organized on the plasma membrane of cells
and act as first receivers of the extracellular signals. Receptors in the monomeric
form interact with the membrane-bound proteins like phosphatases, which are part
of the spatially-distributed receptor networks that modulate the response of recep-
tors depending on the overall topology of the network [51].
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Figure 1.1: Cell membrane-bound different type of receptors. (Left) Ligand-gated ion chan-
nel (red) with an open channel allowing the flow of specific ions (green). (Center) In receptor
tyrosine kinase (RTK), binding of a ligand (purple) causes two receptor monomers to form
a dimer, resulting in phosphorylation of each monomer triggering signal transduction by
activating downstream signaling proteins. (Right) In G-protein coupled receptor (GPCR),
dimerization leads to activation and release of heterotrimeric G-protein complex (α, β and γ
subunits) that relays signal from ligand to intracellular proteins. PM: Plasma membrane.

The complexity in the understanding of regulatory networks within cellular func-
tionality increases with the intricate molecular details from receptor sensing to re-
sponse of a cell. Therefore, a detailed point of view is required to investigate dynam-
ical properties of receptor networks giving rise to complex responses. The extracel-
lular signal sensing initiates at the level of cell surface. Membrane-bound receptors
are the proteins that facilitates the interaction of cells with extracellular environment
and play an essential role in translating extracellular signals into different cellular
responses. Membrane-bound receptors are mainly divided by structure and func-
tion into 3 types: ion channel receptors, Receptor Tyrosine Kinases (RTKs) and G
protein-coupled receptors (GPCRs) [8, 93, 3].

A ligand-gated ion channel is a type of cell membrane receptor containing a region
that acts as a “gate” (Fig. 1.1 (left)). When a signaling molecule binds as a ligand
at a specific site on the extracellular part of the ion channel receptor, the shape of
the receptor changes thereby opening a channel. The ion channel allows or blocks
the flow of specific ions, such as Na+ or Ca2+. Ion-channels are involved in rapid
synaptic signaling between nerve cells and other electrically excitable target cells
such as muscle cells.

In GPCRs, each receptor is associated with an intracellular protein called a G-protein.
G-proteins are heterotrimeric, meaning that they contain three distinct subunits (α,
β, and γ subunits). The binding of signaling molecule to the receptor results in
conformational change of the G-protein, which releases GDP on the α subunit and
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binds GTP, resulting in the G-protein being activated [99, 36]. The activation of G-
protein can change the concentration of one or more small intracellular mediators,
also known as ’second messengers’ (Fig. 1.1 (right)). These intracellular mediators
act in turn to alter the behavior of yet other signaling proteins in the cell and there-
fore, such interactions triggers a signal transduction by activating the intracellular
components of downstream signaling network. GPCR-based signaling systems are
extremely widespread and diverse in their functions, including roles in embryonic
development and sensory reception. In humans, for example, vision, smell and taste
depend on GPCRs [93, 3].

RTKs are cell-surface receptors with intracellular domains that have intrinsic enzy-
matic activity. Signaling molecules called growth factors (or mitogens) stimulate
RTKs. The dimerization of monomeric RTKs takes place when a signaling molecule
binds to their extracellular domains. The intracellular domains of each RTK dimer
have kinase enzymatic activity that is active when the two subunits are brought
together after binding the signaling molecule on the surface of the cell (Fig. 1.1 (cen-
ter)). Upon dimerization, the RTK completes autophosphorylation by transferring
phosphate groups to tyrosine residues within the receptor itself. The phosphate
groups on the intracellular domains provide docking sites for adaptor proteins that
initiate an intracellular signaling cascade [56, 105]. However, RTKs have a propen-
sity to interact laterally and form dimers even in the absence of ligand [104, 57, 69].
Abnormal RTKs that function even in the absence of signaling molecules are asso-
ciated with many kinds of cancer. For example, breast cancer patients have a poor
prognosis if their tumor cells harbor excessive levels of a RTK called HER2 [93, 3].

RTKs and GPCRs are the most prominent families of receptors that recognize a va-
riety of extracellular ligands. They both are trans-membrane proteins that have ex-
tracellular domains that bind to ligand and undergo a ligand dependent canonical
activation. This activation event causes structural and functional modifications to
their intracellular regions and represents the first step in receptor-mediated signal
transduction.

1.1.1 Biochemical information flow from extracellular environment

to intracellular signaling network

The binding of a specific signaling molecule triggers the first step in the signal trans-
duction pathway - the chain of molecular interactions that leads to a particular
response within the cell. The signal-activated receptor activates the downstream
signaling molecules present in the cytoplasm, which activates the early response
genes (ERG) present inside the nucleus of the cell and eventually the final cellular
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response is generated [93, 3]. This chain of biochemical cascades is known as signal-
ing networks. There are several signaling networks responsible for various cellular
functionality, for instance, the cyclic AMP or cAMP-dependent network whose end
results include taste and tumor-promotion, and mitogen-activated protein kinase or
MAPK signaling module promotes cell division and is responsible for many forms
of cancer [97].

The MAPK is an important and conserved signaling module responsible for key
biological processes including cell proliferation, growth, and survival. Alterations
in MAPK signaling cascades are found to result in various diseases including can-
cer [12]. After activation of an RTK receptor, adaptor proteins bind to the phosphate
groups present on the intercellular domains of the receptor. The adaptor proteins re-
cruit the enzyme Ras, a GTPase. Active Ras (i.e., Ras-GTP) activates MAP Kinase Ki-
nase Kinase (MAPKKK) or RAF. MAPKKK then phosphorylates and activates MAP
Kinase Kinase (MAPKK) or MEK. The cascade terminates when MAPKK phospho-
rylates and activates MAP Kinase (MAPK) or ERK. Or simply, activated Ras acti-
vates the protein kinase activity of a RAF kinase. The RAF kinase phosphorylates
and activates a MEK Kinase which phosphorylates ERK. The phosphorylation of
ERK results in an activation of its kinase activity and leads to phosphorylation of its
many downstream targets involved in regulation of cell proliferation [12]. However,
experimental studies further suggest that MAPK signaling cascade can be activated
by interacting with multiple receptors present on the plasma membrane of cells that
becomes active upon binding to their specific growth factors [79, 75].

1.2 Cellular response to sustained stimulus

Cells selectively and differently responds to specific signaling entities present in the
extracellular environment which consists of a myriad of different signaling molecules,
ligands, ions and cytokines. This is known as the specificity feature of biochemical in-
formation processing where a cell generates different responses specific to receptor
stimulation [93]. Such a specific response behavior of cells to different extracellular
signals can be experimentally probed by exposing cells to a sustained stimulus of
different growth-factors and their response in the form of different phenotypes are
observed. For instance, experiments show that PC12 cells proliferates upon stimula-
tion with EGF, while differentiation has been reported upon stimulation with NGF
[75, 79]. This shows the ability of cells to selectively sense and process different
extracellular signals into specific biological responses.
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1.2.1 Same signaling proteins can generate multiple cellular re-

sponses

Figure 1.2: EGF and NGF activated MAPK signaling module. MAPK signaling module
with a negative feedback from ERK to RAF for sustained EGF stimulation resulting in pro-
liferation with a transient ERK activity over time (left) and a positive feedback for sustained
NGF stimulation resulting in differentiation with a sustained ERK activity over time (right).

Specific responses of cells to different signaling molecules have been explained us-
ing different receptor types. However, experimental studies suggests that cells re-
cruit same signaling module to generate multiple cellular responses [12, 75, 79].
A classic example is the MAPK signaling module which is activated by different
growth factors resulting in opposite cellular phenotypes.

In a study with PC12 cells, Santos et al. [79] demonstrated the details of the MAPK
signaling module, which is activated through the receptor tyrosine kinases TrkA
and epidermal growth factor receptor (EGFR) respectively by two different stimuli
NGF and EGF. With sustained NGF stimulation, ERK has been reported to show
a sustained activation, whereas sustained EGF induced a transient ERK response
(schematic in Fig. 1.2). The question of different ERK dynamics originating from
receptor level activity has been explained using growth-factor identity dependent
manifestation of different topological features in MAPK signaling network connec-
tivity. Using modular response analysis, (MRA) Santos et al. [79] demonstrated
that in the case of EGF stimulation a negative feedback is established from ERK to
RAF, explaining the transient activation of ERK for a sustained EGF stimulation. On
the other hand, the sustained ERK activity is explained using a positive feedback
between ERK and RAF. A positive feedback loop generates a bistable regime and
Santos et al. reported such bistablity, with a switch-like ERK activation for NGF
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dose-response. Santos et al. [79] further demonstrated that EGF stimulation can
also result in cell differentiation. A positive feedback mechanism from ERK to RAF
involves protein kinase C (PKC). Therefore, EGF stimulation in conjunction with
PKC activation by phorbol-12-myristate-13-acetate (PMA) gave rise to a sustained
ERK activation profile and cells differentiated as if stimulated by NGF.

The notion of conjugating cellular response with the identity of growth-factor has
been questioned by Santos et al. [79] suggesting the importance of information sens-
ing and processing mechanisms employed by membrane-bound receptor networks
for generating different cellular responses. However, under the current description,
different cellular responses are explained using context-dependent signaling mod-
ules with the assumption that they function in isolation from the rest of the proteins
present in the intra-cellular signaling network.

1.3 Biochemical network modules as autonomous sys-

tems

Biochemical networks including membrane-bound receptor networks and intracel-
lular signaling networks are commonly described using autonomous systems [40].
An autonomous differential equation is a system of ordinary differential equations
(ODE) that does not explicitly depend on the independent variable. Autonomous
systems are also called time-invariant systems, as time being an independent vari-
able [87]. An autonomous system can be represented by a general Eq. 1.1, where x
takes values in n-dimensional Euclidean space and t is time.

dx
dt

= f (x(t)) (1.1)

Since autonomous systems are time-independent, such systems reach steady state
in a finite time. In other words, the partial derivative of an ODE is zero with respect
to time and it’s solution called steady-state can be obtained using:

ẋ = 0 ⇒ f (x(t)) = 0 (1.2)

Not all steady-state solutions are equivalent. Some may be quickly abandoned if the
system is slightly perturbed; others may function as an attractor of the system, even
under a large perturbation. The stability of an equilibrium relates to the tendency
of the system to return to its position when perturbed. The number of steady-states
depends on the network topology of the underlying system. A system can change
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its activity by hopping from one steady-state to another under the influence of an
external signal, shown schematically in Fig. 1.3. However, the state of the system
remains stable in this final steady-state unless it is acted upon by another external
stimulus and jump to another state, if available. It is also possible that only a single
equilibrium point is present, in such case the system is poised to stay in that only
steady-state, even after being perturbed by an external stimulus. We elucidate these
two cases in the following example of RTK coupled to phosphatase (PTP).

Figure 1.3: System hopping between steady-states under the influence of external signal.
(left) Schematic of potential landscape with equilibrium states. An external signal triggers
the system to jump from stable steady-state-1 to steady-state-2. (right) Activity (x) of system
as state changes over time.

Rich dynamical behavior of membrane-bound RTKs appears when the activity of
PTP is coupled to that of RTK. Studies suggest that PTP (PTPRG) interacts with an
RTK (EGFR) in a double-nagative feedback loop or generating a toggle switch (Fig.
1.4 (a)) [6, 51, 84]. All the equilibrium points (stable and unstable) of the system can
be identified using bifurcation analysis with respect to a system parameter. Bifur-
cation analysis of the RTK-PTP system obtained using the XPPAUT software [26]
reveals a bistable regime in the system with a total of three solutions. Two are dy-
namically maintained low and high RTK phosphorylation states, both of which are
stable and can coexist in a given parameter interval, and an unstable solution that
acts as a threshold in the system (Fig. 1.4 (b)). In which stable solution the system
will end up is directly related to the initial conditions, that is, the initial phospho-
rylation level of the receptor. In a cellular context, this might be dependent on the
history of the cell in terms of prior growth factor-induced signaling states. If the sys-
tem is initially in the low phosphorylation states, it can reach the high phosphoryla-
tion states by external stimulus (Fig. 1.4 (d)). However, since this is the stable-state,
the system stays in this high phosphorylation state even if perturbed by an external

http://www.math.pitt.edu/~bard/xpp/xpp.html
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Figure 1.4: Different steady-state regimes for RTK and PTP interation in a double-
negative feedback manner. (a) Schematic of RTK and PTP interacting in a double-negative
feedback manner. (b) Bifurcation diagram of RTK and PTP toggle-switch showing re-
sponse of RTK. Time-profile of RTK activity in (c) high-monostable, (d) bistable and (e)
low-monostable regimes. (c) to (e) are the RTK time profiles in the presence of an input
pulse (blue). Inset: schematic of system potentials with equilibrium points in the respective
system parameterization regimes.

stimulus. This is regarded as a long-term memory of stimuli that a cell might have
sensed sometime in the past [30].

Apart from the bistable regime, RTK-PTP system also exhibits two monostable regimes
with high and low phosphorylation states for respective system parameters. In
terms of equilibrium points, monostable means only single steady-state is present
and system will remain in this equilibrium state irrespective of initial conditions.
In the high monostable regime, system abruptly reaches the high phosphorylation
state marking the irreversible pre-activation state even in the absence of external
stimulus (Fig. 1.4 (c)). In the low monostable regime, an external stimulus can per-
turb the system but it returns back to its initial low phosphorylation state as soon as
the stimulus is removed (Fig. 1.4 (e)).

The presence of a fixed number of steady-states depending on the underlying net-
work topology has been used to explain the features of biochemical networks by
approximating the biological system as autonomous system. However, cells con-
tinuously sense and respond to dynamic extracellular environment meaning that
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the underlying biochemical network parameters and external environment of the
biological system are dynamic over time and space. Therefore, approximation of
biological systems as autonomous might not be demonstrating the full dynamical
picture and the underlying information processing mechanisms of complex biolog-
ical systems.

1.4 Mechanisms of cellular responsiveness to time-varying

extracellular signals

Apart from sustained stimulus, experimental studies suggest that cells can also
sense time-varying extracellular signals and generate various responses. Recent
experimental study has shown that cell surface receptor networks can sense and
integrate dynamic growth-factor signals [84]. Furthermore, cells generate various
phenotypic responses depending on the temporal profiles of growth-factor signals
[78]. In this section, we will discuss the mechanisms explaining cellular respon-
siveness to dynamic extracellular signals. Furthermore, we will also discuss if the
autonomous framework used for describing biochemical systems will be able to ex-
plain cellular responsiveness to time-varying extracellular signals as well.

1.4.1 EGFR network as a complex signal sensing system

EGFR has been experimentally shown to sense the presence of extracellular growth
factors, and also to interpret the complex dynamic growth factor patterns that lead
to diverse and functionally opposed cellular responses including proliferation, sur-
vival, apoptosis, differentiation, and migration [52, 105]. A recent experimental
study of EGFR signaling has revealed that the major protein tyrosine phosphatases
(PTPs) that dephosphorylate EGFR are present on the plasma membrane and endo-
plasmic reticulum. Vesicular trafficking of phosphorylated EGFR unifies the interac-
tions with these PTPs into a network architecture whose sensing dynamics dictates
responsiveness to time-varying growth factor signals [84].

Experimentally established EGFR network consists of multiple feedback interac-
tions between EGFR and PTPs that are spatially segregated, schematically shown
in Fig. 1.5 (a). In the study, dynamic signatures of EGFR phosphorylation response
to EGF dose were analyzed to identify the type of underlying feedback motif and the
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Figure 1.5: Dynamics of EGF receptor network. (a) Schematic diagram of EGF receptor net-
work established through EGFR trafficking dynamics. (b) Bifurcation diagram of EGFRp in
the absence of input with respect to γ1 being the bifurcation parameter. γ1 is proportional to
PTPRGT/EGFRT. (c), (d), (e) Temporal profiles of EGFR response (EGFRp + EGFEGFRp)
for an input signal of 3 min pulses followed by 30 min inter-pulse-intervals, when the system
is respectively organized in monostable regime (orange), bistable regime (grey) and near the
saddle-node (SN2) bifurcation point (magenta).

findings were validated using genetic perturbations. It was identified that ligand-
less phosphorylated EGFR (or just EGFRp) interacts with two PTPs, namely PTP Re-
ceptor Type G (PTPRG) and PTP Receptor Type J (PTPRJ) at the plasma membrane
of MCF7 cells. Active PTPRG interacts with EGFRp in a double-negative feedback
manner, creating a EGFRp-PTPRG toggle switch. On the other hand, PTPRJ consti-
tutively interacts with both ligandless and liganded EGFR, and dephosphorylates
them with a negative regulation. Both ligandless and liganded EGFR also interacts
with an endoplasmic reticulum (ER) membrane bound PTPN2 with a negative feed-
back. This EGFR receptor network is modeled using the law of mass action which
enabled the use of bifurcation analysis to comprehend the mechanism behind the
sensing of dynamic EGF signals.

A bifurcation diagram of EGFRp response with respect to a system parameter (γ1)
proportional to PTPRGT/EGFRT reveals multiple dynamical regimes as shown in
Fig. 1.5 (b). A bistable regime (grey) exist between two monostable regimes which
are characterized by basal (orange) and high (white) EGFR phosphorylation. This
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region is marked by the presence of two saddle-nodes, SN1 and SN2 and the co-
existence of two stable states (solid lines) that represents high and low phospho-
rylation state together with an unstable state (dashed line) acting as a separatrix.
Parameter organization in the monostable (low) regime, an EGF signal of temporal
profile 3 minute pulses followed by 30 minute inter-pulse interval (IPI) stimulation
elicit a transient, reversible response that could not activate the system Fig. 1.5 (c).
For organization in the bistable region, EGFR can be in either in a basal or a high
phosphorylation state in the absence of any stimulus. When starting from the basal
EGFR phosphorylation state, the response shows abrupt activation in presence of
the first EGF pulse which sustained even after signal removal corresponding to the
irreversibility in the response Fig. 1.5 (d).

Both theory and experiments demonstrated that sensing growth factor signal changes
cannot be realized when the system organization is in either the bistable or the
monostable regime. The irriversible nature of the bistable regime limits the respon-
siveness of system to temporal growth factor changes by switching it to a high EGFR
phosphorylation state after the initial growth factor stimulus that leaves the system
in a non-responsive state (Fig. 1.5 (d)). Organization in the monostable (low) re-
gion, on the other hand, leaves the system with a linear response that follows the
growth factor profile, thus being unable to explain history-dependent response (Fig.
1.5 (c)). However, the authors have experimentally shown that the EGFR network
is organized near the saddle-node bifurcation (SN2) (Fig. 1.5 (b), magenta region)
for optimally sensing the time-varying external environment. As shown in Fig. 1.5
(e), when the EGFR network is critically organized near the saddle node, the EGFR
response profile shows an activation followed by a transient activity before the sys-
tem returns to basal state for each pulse of EGF. Such a short transient activity in
EGFR phosphorylation has been shown to follow the experimental observations in
MCF7 cells [84]. In a different theoretical study, Stanoev et al. [85] showed that
such a critical organization near SN2 bifurcation generates a ’ghost’ of saddle-node
which is responsible for producing high receptor activity state for a limited amount
of time after the removal of growth-factor stimulus. This explained the experimen-
tally observed transient EGFR activity was the dynamic ’transient’ memory enabled
by the ’ghost’ of saddle-node which endows EGFR network to sense and process dy-
namic extracellular environment. The authors further showed that such a dynamic
transient memory enables unique processing of different time-varying growth fac-
tor signals.
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1.4.2 Dynamic transient memory arising from ’criticality’ enables

integration of time-varying growth factor signals

Figure 1.6: Criticality enabled ’transient’ memory in receptor activity. (Center) Response
of a receptor (Ra) interacting with a PTP (PDNFa) in a double-negative feedback manner for
the system organization near the saddle-node (SN2) bifurcation (Fig. 1.4 (a, b)). An external
input pulse generates transitions in quasi-potential landscape of system: (i) low-monostable
state, (ii) high-monostable state and (iii) metastable state (cyan).

Stanoev et al. [85] proposed a minimal receptor network consisting of RTK (Ra)
and PTP (PDNF,a) interacting in a double-negative feedback manner i.e. generat-
ing a toggle switch (Fig. 1.4 (a)). The effective input for the cells is the fraction
of ligand-bound receptors (LRa) that reflects the extracellular ligand concentration
which directly receives the external input (LT) from the extracellular environment.
Following the law of mass action, the equation for this system can be written as:

dRa

dt
= RT(Ri(α1Ri + α2Raα3LRa)− γ̂DNFPDNF,aRa)

dPDNFa

dt
= k1(PDNF,i − k2/1PDNF,a − β̂DNFPDNF,a(Ra + LRa))

(1.3)

This minimal network motif is modeled using law of mass action. Both the recep-
tor and the deactivating enzyme have active (Ra, PDNFa) and inactive (Ri, PDNFi)
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states, and their state transition rates are described by the model equations. There-
fore, mass is conserved in the system and the total protein concentrations of both
species (RT, PDNFT ) are constant parameters. This allows Ri = 1− Ra and PDNFi =

1 − PDNFa to be expressed as fractions from the total protein concentrations. For
binding/unbinding of ligand LT to modulate LRa and additional term −konRaLT +

0.5ko f f LRa is added to the equation of Ra, and the dynamics of LRa was modelled
with dLa

dt = Kon(Ra + Ri)LT − Ko f f LRa.

Bistability in receptor activity is exhibited between two saddle-node bifurcation
points (SN1 and SN2). A ’transient’ memory is observed in the receptor activity
Ra when the receptor network is critically organized near the saddle-node bifurca-
tion point SN2 (magenta region in Fig. 1.5 (b)). Due to the vicinity to a saddle node,
the emergent metastable state gives rise to transient temporal memory in receptor
activity even after the removal of growth factor stimulus (Fig. 1.6 (b), center). A
quasi-potential of the system revealed that when the system is near SN2 bifurcation
point, there are two equilibrium points: monostable (low) and a metastable state,
which can be thought of as a ’ghost’ of saddle-node SN2. The "ghost" sucks trajecto-
ries, delaying the flow in phase space, rendering a metastable dynamics. The system
essentially starts from the monostable (low) state in the absence of an external stim-
ulus (Fig. 1.6 (i), green dot). In the presence of a stimulus, only monostable (high)
state is available (Fig. 1.6 (ii), orange dot). The dynamics become interesting when
the stimulus is removed. The receptor activity does not abruptly falls to monostable
(low) state but, rather it passes through the metastable state (Fig. 1.6 (iii), magenta
dot). As the name suggests, this ’ghost’ of SN2 slows down the dynamics of receptor
activity by creating a bottleneck with infinitesimally close nullclines [87]. Therefore,
a single pulse generates a full transition: (i)→ (ii)→ (iii)→ (i), during which the
number of available steady-states of the system changes. There will be a series of
such transitions in quase-potential landscape in case of multiple pulses. However,
the sequence of such transitions might vary depending on the length of dynamic
memory and the inter-pulse-intervals.

1.4.3 Self-organized positioning at criticality via vesicular traffick-

ing

The EGFR network is critically organized near a saddle-node bifurcation and such
a critical positioning uniquely endows the receptor network with the necessary fea-
tures for processing dynamic extracellular signals [84]. However, the mechanism of
such a critical organization of the receptor network is unknown. One can hypoth-
esize that either the receptor networks have been evolved in such a way that the
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total receptor concentration is positioned at ’criticality’ or it is dynamically main-
tained. The latter case has been proposed and investigated by Stanoev et al. [85]
using molecular features of the spatially extended EGFR network.

Figure 1.7: Dynamical mechanism of self-organization at criticality of EGFR network. (a)
At the plasma membrane, ligandless EGFR (R) is coupled to PTPRG (PDNF) in a double-
negative feedback manner and negatively regulated by PTPRJ (PNR). Activated receptors
are then endocytosed in the perinuclear area (RE), deactivated by PTPN2 (PNF) and recycled
back to the plasma membrane, which amounts to a spatially established negative feedback.
Ligand (L) binding converts R to ligand-bound species (LR) that are internalized (LRE) and
subsequently degraded. LR promotes autocatalytic activation of R (red arrows). (b) Two-
parameter (krec, RT) bifurcation diagram depicting the positioning of the saddle-node bifur-
cation point SN2 (magenta curve). Bistability region is shaded with grey and monostable
region in white. Black arrow represents the stimulus-induced nonlinear shift of system or-
ganization away from criticality. (c) Dynamically maintained transient memory in receptor
activity generated by multiple stimulus pulses. Adapted from Stanoev et al. [85].

The EGFR activity dynamics is regulated by a four-component spatially distributed
network as shown schematically in Fig. 1.7 (a). The interactions of EGFR (R) has
been observed to be coupled via the vesicular trafficking with three specific membrane-
associated enzymes [84]. Ligand-bound EGF receptors (LR) promote autocatalytic
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activation of ligandless receptors (red arrows) [6, 16, 61, 60]. Therefore, ligand-
bound EGF receptors transfer information about the dynamic extracellular envi-
ronment before they are internalized and degraded (LRE) [38, 61]. The ligandless
EGF-receptors are also internalized. However, the vesicular recycling brings the in-
ternalized and deactivated ligandless EGF-receptors (RE) back to the plasma mem-
brane, establishing the spatially distributed EGF signal processing network.

Experimental studies have shown that ligand-bound receptors are unidirectionally
internalized and degraded which decreases the EGFR concentration on the plasma
membrane [61, 38]. Such unidirectional degradation of ligand-bound EGFR recep-
tors rapidly shifts the operation of the system from critical organization into the
monostable regime [84, 85]. Thus, to balance the shift of the system away from the
SN bifurcation, the loss of EGFR receptors is compensated with an increase of the
recycling rate of ligandless receptors. Using two-parameter bifurcation analysis Sta-
noev et al. showed how the position of the SN bifurcation depends on total receptor
concentration RT and receptor recycling rate krec (Fig. 1.7 (b)). Starting from critical
organization (magenta), the SN positioning asymptotically approaches a minimal
receptor concentration below which the receptor recycling rate can no longer suf-
ficiently compensate for the loss of receptors from the membrane. As a result of
nonlinear decrease in RT, the system would effectively remain in the vicinity of the
SN for several subsequent growth factor pulses (Fig. 1.7 (c)). The duration and dose
of growth-factor pulses determines the number of pulses required to bring the sys-
tem to the limit when receptor network can no longer sense and process the dynamic
environment [85].

Therefore, the spatially extended EGFR network which is critically organized near
a saddle-node bifurcation has been shown using experiments and numerical simu-
lations, to sense and process a dynamic extracellular environment. Mechanistically,
these studies reveal that EGF-receptor networks use a dynamic ’transient’ memory
enabled by the ’ghost’ of a SN bifurcation to process such time-varying growth-
factor signals.

1.4.4 Growth-factor signal temporal frequency dependant oppo-

site cellular responses

The sensing of time-varying extracellular EGF signals by critically organized EGFR
network has been experimentally shown by Stanoev et al. [84] in MCF7 cells. The
physiological inference of dynamic growth-factor sensing behavior of cells has been
demonstrated by H. Ryu et al. [78] using experiments with PC12 cells. It has been re-
ported that stimulating PC12 cells in a microfludic device with various frequencies
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of a growth-factor signal generates opposite phenotypic responses. For instance,
signals of 25 ng/ml EGF with a consecutive temporal profile of 3 minutes of pulse
followed by 60 minutes interval (or 3’60’ in short) and 3’3’ results in proliferation.
Stimulation with same dose of EGF but with signals of frequencies 3’10’ and 3’20’, on
the other hand, result in differentiation in PC12 cells. In the classic experiments with
PC12 cells, proliferation has been previously reported using sustained EGF stimula-
tion while on the other hand, differentiation was observed for sustained NGF stim-
ulation [79]. Experiments with time-varying growth-stimulus, therefore, provide
further insight into the dynamic extracellular signal processing capabilities of bio-
chemical networks. PC12 cells are perfect to test the sensing and responsiveness of
cells to different frequencies of EGF and NGF stimulations, as this cell line contains
EGFR and also receptor tyrosine kinases (TrkA) [37]. H. Ryu et al. [78] reported
varying differentiation ratios and also no differentiation at all in response to stimu-
lation of PC12 cells with different frequencies of 50 ng/ml NGF signals, summarized
in Table. 1.1.

Table 1.1: Phenotypes generated by temporal frequencies of EGF and NGF signals.

Proliferation Differentiation
EGF [3′3′, 3′60′] [3′10′, 3′20′]
NGF [3′60′] [3′3′, 3′10′, 3′20′]

Different cellular responses to various frequencies of EGF and NGF signals has been
explained by H. Ryu et al. [78] using different signaling modules in the same PC12
cells. A conditioned negative feedback in the MAPK module has been used to ex-
plain the temporal profiles of ERK activation dynamics in case of EGF stimulation.
A negative feedback between ERK and RAF has been directly conditioned by the
receptor activity via an unknown protein and has been proposed to explain differ-
ent ERK profiles corresponding to different phenotypes. However, the same MAPK
proteins but with different interactions has been used to explain cellular responses
in the same PC12 cells for NGF stimulation. A positive feedback between ERK and
RAF is modified to be conditioned by the receptor activity via another unknown
protein to explain the ERK activity dynamics in case of stimulation by different fre-
quencies of NGF signal.

The observations made by H. Ryu et al. [78] exhibit that cellular responses can
also be specific to the frequency of growth-factor signals. The study has provided a
further insight into the dynamic extracellular signal processing capabilities of bio-
chemical networks, where it was well-established that cells generate phenotypic
responses specific to the identity of growth-factors. However, the explanation of
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different cellular responses to various frequencies of external signals using growth-
factor specific feedbacks in same signaling module is arguable. Nevertheless, the
observations made by H. Ryu et al. are important and show that growth-factors
can in fact, generate multiple phenotypic responses depending on the frequency of
external signals.

1.4.5 Specificity and generalization depending on temporal frequency

of inputs

The previous experimental observations of cells generating different phenotypes
upon stimulation by different growth-factors provides the growth-factor centric def-
inition of specificity. The specificity of cellular responses has been related to the ac-
tivation of different receptors upon binding by their corresponding ligands [49].
For instance, PC12 cells resulting in proliferation and differentiation respectively
when stimulated by sustained signal of EGF and NGF [79]. However, recent ex-
perimental studies reported that cells can sense time-varying extracellular signals
[84, 78, 11]. Furthermore, cells are also observed to generate different phenotypic
responses depending on temporal frequencies of growth-factor signals [78]. For in-
stance, PC12 cells start differentiating when stimulated by a certain frequency of
EGF signal (3′10′), while on the other hand, proliferation has been observed for a
different frequency (3′3′) of same growth-factor signal. This means that not just in
the identity of growth-factor signals, there is evidence of specificity of cellular re-
sponses depending on the temporal frequencies of just one growth-factor signals as
well.

Furthermore, it has been reported that there exists multiple frequencies of same
growth-factor signals that can generate same phenotypic response. For example,
H. Ryu et al. [78] observed that PC12 cells result in differentiation upon stimula-
tion by different frequencies (3′10′ and 3′20′) of EGF signals and also by a range
of frequencies (3′3′, 3′10′ and 3′20′) of NGF signals. This means that cells exhibit
a generalized response to a range of frequencies of different growth-factor signals.
In other words, contrary to the specificity feature, cells generate same phenotypic
response for a range of dynamic extracellular signals of different ligands in General-
ization feature, shown schematically in Fig. 1.8.

The specificity of cellular responses to growth-factor identity has been explained us-
ing signaling modules with different feedbacks and connectivities specific to growth-
factors. However, these signaling modules are highly interconnected and generate
large signaling networks contrary to the earlier concept of discrete linear pathways,
which relate extracellular signals to specific gene patterns [49, 8]. Furthermore, the
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Figure 1.8: Temporal signature of growth-factor signal dependant generalization and
specificity in cell response. Schematic showing different input signals for different receptor
types resulting in a generalized cellular response of phenotype A and B for a range of input
signals. Multiple cellular responses represent specificity in cellular responses depending on
the temporal signature of external signals.

protein complement that mediates signal transduction downstream of RTKs is sim-
ilar for all the RTK-mediated interconnected signaling modules. For example, same
downstream proteins complements in the MAPK signaling module are activated by
EGFR as well as TrkA receptors [79]. This means that specificity of cellular responses
to growth-factor identity needs to be explained using the entire intracellular signal-
ing network rather than using a selected module with context-dependent topology.
Moreover, as we discussed above, cells generate different phenotypic responses de-
pending on the temporal frequencies of extracellular signals while maintaining the
two completely opposed features of generalization and specificity. This mean that
these two opposed features are inherent part of time-varying information process-
ing mechanism of cells and need to be explained using the entire intracellular net-
work of the cell.
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1.4.6 Limitations of approximating biochemical networks as au-

tonomous systems

Experimental studies suggests that cells generate different phenotypic responses
maintaining opposite information processing features of generalization and specificity
depending on the temporal frequency of growth-factor signals. These experiments
implement the simplified version of the complex time-varying extracellular infor-
mation sensing, processing and responding features of biochemical networks that
occur in cells that are continuously subjected to complex dynamic extracellular sig-
nals present in different tissues or organs. However, the authors [78, 11] described
the underlying receptor and signaling networks using autonomous ordinary differ-
ential equations. By definition, autonomous systems describe only those systems
that do not explicitly depend on the independent variable, as we discussed in Sec-
tion 1.3.

Cells continuously sense and respond to dynamic extracellular signals which con-
sists of changing concentrations of growth-factors, cytokines and hormones. These
external dynamic signals change over time and space and act as inputs that cells
sense via receptor networks present on their plasma membranes. The concentra-
tions of receptors and signaling components vary along with their activity levels
when an external signal is detected. In other words, the dynamic extracellular sig-
nals are the independent variables that result in parametric and dynamical changes
in the entire biochemical network. For instance, experiments show that time-varying
EGF pulses result in total EGFR concentration to decrease over time, along with
the changing phosphorylation levels of EGFR and MAPK components which are
present in the cytosol of the cell [84, 78, 11]. This means that biochemical networks
explicitly depend on independent variables contrary to their current description as
autonomous systems [40]. These independent variables are the system parameters
that determine the dynamical state of biochemical network components. In other
words, changing system parameters can be considered as a direct change in the dy-
namical properties of a system. The number of steady-states present in a system
is given by its parameter organization meaning that the number and stability of
steady-states will keep changing if such parameter organization is dynamic in na-
ture [85, 45, 96]. There is also a possibility that these dynamic independent variables
will result in the generation of transiently stable-states.

Furthermore, attractor-based information processing introduces two additional prob-
lems: lack of memory of previous inputs and insensitivity to upcoming time-varying
signals. For instance, when the EGFR receptor network (Section 1.4.1) is parameter-
ized in the monostable regime i.e only one steady-state is present, the system cannot
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get activated in the presence of stimulus and therefore, quickly returns back to the
only steady-state having no memory at all of the past stimulus (Fig. 1.5 (c)). On the
other hand, in the bistable regime, a single pulse is enough to activate the system
to the high phosphorylation state and the system becomes insensitive to upcoming
growth-factor pulses (Fig. 1.5 (d)). This shows that the permanent memory of first
pulse is hindering the system to sense more dynamic signals.

Parametric reorganization of biochemical systems because of external dynamic sig-
nals corresponds to the generation or destruction of new and transiently stable
states. A sequential change in the number and stability of steady-states of membrane-
bound receptors has been described as a result of extracellular time-varying signals
by Stanoev et al. [85] using a minimal two-component receptor network. Con-
trary to the changing steady-states and stability in biochemical networks because
of external dynamic signals, a fixed number of steady-states are the solutions of
autonomous systems, as discussed in Section 1.3. Therefore, approximation of bio-
logical systems as autonomous might not be correctly portraying the actual under-
lying real-time dynamic information processing mechanisms of complex biological
systems.

1.5 Current mechanisms and concepts of time-varying

information processing

Steady-state formalism works for systems without any external perturbations or
those with sustained stimulus. In both the cases, system reaches a stable attractor
and remains there unless and until externally forced into another steady-state. As
discussed in the previous section, the steady-state formalism fails when a system is
perturbed by time-varying external signals and approximation of such systems as
autonomous becomes invalid. In this section, we will survey the known concepts
and mechanisms from various disciplines which people have attempted to solve
similar problems where time-varying external signals drives the dynamics of entire
system.

1.5.1 Criticality enabled integration of time-varying signals

Systems that sense time-varying signals require memory in order to integrate the
signal information continuously [35]. To integrate information contained in time-
varying signals such a memory must be dynamic in nature. For instance, in neuronal
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Figure 1.9: Working memory enables history-dependent single-cell migration in a chang-
ing chemoattractant field. (left) Simulation and (right) experiment with MCF10 cells, show-
ing response to the sequence of EGF gradients: two signals from top (green) and a third one
from bottom (orange). Red part of trajectory represents the migration of cells after removal
of EGF gradients which includes transient memory. Used with permission from Nandan
and Das et al. [70].

networks, the working memory has been proposed to store and process information
as a stream of continuously incoming input pulses [9]. Working memory is differ-
ent from short-term and long-term memories. In short-term memory, information
can only be stored temporarily but not manipulated while long-term memory refers
to permanent storage of information contrary to working memory. The reason that
information cannot be held and manipulated in either of short and long-term mem-
ories is that, both are based on stable attractors. The criticality enabled ’transient’
memory provides benefits over stable attractors based information processing. A
system organized in the critical region can hold the information of past stimuli in
its activity for a limited amount of time and at the same time it can also sense the
upcoming external stimulus. A recent experimental study by Nandan, Das et al.
[70] shows that such a criticality enabled ’transient’ memory helps in directional
migration of cells. The authors generated an artificial time-varying environment
using a microfluidic device resembling the dynamic extracellular environment in
multi-cellular organisms. When MCF10A cells were exposed to two consecutive
EGF stimulus from same direction, the cells integrated both the signals and con-
tinued migrating in the direction of this signal even after EGF removal. However,
the same cells quickly responded to another EGF stimulus from a completely op-
posite direction and started migration in that direction and again continued in that
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direction even after its removal (Fig. 1.9). Using reaction-diffusion model and ex-
perimentally obtained parameters, the authors derived the dynamical mechanism
of signal sensing and migrating behavior of cells where a saddle-node gives rise to a
‘ghost’ memory state upon signal removal for organization at criticality. Therefore,
Nandan, Das et al. [70] showed the underlying dynamical mechanism for how cells
to decipher complex chemical cues for migration which is based on critical orga-
nization of the system in the vicinity of a saddle-node rather than stable attractor.
Such an organization helps cells to sense, integrate and resolve multiple chemical
cues enabled by a transient memory and facilitate them to maintain polarization in
the direction of growth-factor signal gradients even after their removal. Therefore,
this ’transient’ memory has all the features of a ’working’ memory which equip the
system with an advanced signal integration property by holding the information of
past stimulus and at the same time being sensitive to upcoming extracellular stim-
uli.

1.5.2 Reservoir computing as a mechanism for dynamic signal pro-

cessing

Reservoir computing is another framework that has been proposed for real-time dy-
namic information sensing and processing mechanism in neuronal networks. Reser-
voir computing is a computational framework developed basically for temporal or
sequential data processing. This framework includes several recurrent neural net-
work (RNN) models, including echo state networks (ESN) and liquid state machines
(LSM) with recent advances in this field. In the early 2000s, ESNs [42] and LSMs [64]
were independently conceptualized by W. Maass and H. Jaeger respectively as real-
time computing models. A reservoir computing model consists of a reservoir for
mapping inputs into a high-dimensional space and a readout for pattern analysis
from the high-dimensional states in the reservoir. Maass et al. [64] asserted, using
theoretical analysis and computer simulations, that two emergent macro properties
as necessary and sufficient conditions for real-time computation based on transients:
separation property (SP) and approximation property (AP). SP addresses the amount
of separation between the trajectories of internal states of the system that are caused
by two different input signals. AP addresses the resolution and recording capabil-
ities of the readout mechanisms or its capability to distinguish and transform dif-
ferent internal states of the ′liquid′ into given target outputs. Whereas SP depends
mostly on the complexity of the liquid, AP depends mostly on the adaptability of
the readout mechanism to the required task [64].
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Figure 1.10: Structure of a Liquid State Machine. An LSM consisting of an input layer
(blue) which transmits multiple inputs to a large dimensional liquid or reservoir layer (or-
ange). Information encoded in the dynamics of reservoir nodes is decoded by the output
layer (grey) nodes corresponding to different tasks.

The main characteristic feature of reservoir computing is that the input weights
(W in) and the weights of the recurrent connections within the reservoir (Wres) re-
main fixed whereas only the readout weights (Wout) (Fig. 1.10) are trained with a
simple learning algorithm such as linear regression. In a physical implementation,
this liquid state consists of all information about the current internal state of a dy-
namical system that is accessible to the readout nodes. In mathematical terms, this
liquid state is simply the current output of some operator LM that maps input func-
tions u(·) onto functions xM(t) given by Eq. 1.4:

xM(t) =(LMu)(t) (1.4)

The memoryless output layer or the readout map f M transforms, at every time t, the
current liquid state xM(t) into the output:

y(t) = f M(xM(t)) (1.5)

In contrast to the liquid filter LM, this readout map f M is in general chosen in a task-
specific manner and there may be many different readout maps that extract different
task-specific information in parallel from the current output of LM.

Maass et al. [64] showed the separation property of LSM using separation between
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Figure 1.11: Separation and approximation properties of Liquid State Machines. (a) Emer-
gent separation property in a LSM with sparsely connected reservoir network of 50 nodes and
connection density of 0.037. Separation of full liquid state is shown for two different inputs
u and vi as a function of time t. Different inputs (vi) are generated to have a differing sep-
aration with respect to a reference input u. (b) Mean of liquid state separation over time
with respect to corresponding separation between inputs. (c) Approximation property ana-
lyzed using 10th order NARMA task with a uniform input of U(0.05, 0.25) (blue) giving a
real-time output of approximated NARMA function (green) with root-mean-square (RMS)
error of just 0.2586 with respect to the original output (dashed, orange). A separate set of
input drawn from the same uniform distribution was used to obtain output weights Wout

using ridge-regression Eq. 1.8.

internal states of the ’liquid’ using computer simulations. In other words, two dif-
ferent signals u(·) and v(·) were randomly generated and used as input signals.
The separation between the M-dimensional resulting trajectories xM

u (·) and xM
v (·)

of the liquid states were obtained (Fig. 1.11 (a)) and the resulting average distance
||xM

u (t) − xM
v (t)|| between the liquid states is found to be nonlinearly increasing

with increasing separation between the input signals ||u(·) − v(·)|| (Fig. 1.11 (b)).
The approximation property of reservoir computers has been estimated using various
nonlinear functions and used them for making predictions for instance, time-series
forecasting of chaotic functions, handwritten text classification, speech recognition
and stock price prediction [90]. A benchmark memory demanding task, 10th order
Nonlinear Auto-Regressive Moving Average (NARMA) task [7] is used to analyze
the approximation property of LSMs along with memory of previously encountered



1.5. Current mechanisms and concepts of time-varying information processing 25

inputs. The 10th order NARMA function is defined by Eq. 1.6:

y(t + 1) =0.3y(t) + 0.05y(t)
9

∑
i=0

y(t− i) + 1.5u(t− 9)u(t) + 0.1 (1.6)

This task consists of training the output weights of the LSM such that an input (u(t))
will be mapped to obtain an approximate NARMA output in real-time. Inputs are
usually drawn from a uniform distribution U(0.05, 0.25). Each node dynamics can
be defined by a activation functions (L) for instance, Tanh, ReLU and Sigmoid [90].
The LSM approximated real-time output Ỹ can be obtained using a linear combina-
tion of the liquid states given by the following Eq. 1.7:

Ỹ =WoutX (1.7)

Ridge regression is used to obtain the output weights Wout. It is a type of linear
regression in which the regression coefficients are obtained from the following Eq.
1.8:

Wout = YXT(XXT + γ2 I) (1.8)

where XT is the transpose of X and Y is the matrix with all expected outputs over
time t, I is the identity matrix, and γ is a regularization parameter. Ridge regres-
sion favors regression coefficients with smaller absolute values. Therefore, mem-
ory dependant functions like NARMA 10th-order task can be obtained using ridge-
regression method where even a minimal number of output nodes provides an ac-
curate real-time mapping of dynamic input to output (Fig. 1.11 (c)). Like the Turing
machines, the model of an LSM is based on a rigorous mathematical framework
that under idealized conditions guarantees universal computational power. Turing
machines have universal computational power for off-line computation on discrete
inputs, while LSMs have universal computational power for real-time computing
with fading memory on analog functions in continuous time. This real-time compu-
tation framework is described as non-autonomous dynamical systems.
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1.6 Non-autonomous systems

From the perspective of thermodynamics and based on the nature of the system-
environment interactions, a system can classified as one of the three classes: open,
closed and isolated [17]. A system is called isolated if it does not exchange neither
energy nor matter with its environment (Fig. 1.12 (a)). An open system, on the
contrary, exchanges both energy and matter with its environment. Finally, a closed
system exchanges only energy but not the matter with its environment. Living sys-
tems cannot be seen as isolated by nature, and need to be modelled as open systems.
The distinction between isolated and non-isolated systems manifests in an impor-
tant way for dynamical systems, namely in the distinction between autonomous dy-
namical systems and dynamical systems that are non-autonomous [86]. Thus, non-
autonomous systems are conceptually related to non-isolated systems such as open
systems: as illustrated in Fig. 1.12 (b), the evolution of an open system depends on
its own internal dynamics and also on external influences, which can come in many
forms. The evolution of the state x(t) over time of a non-autonomous dynamical
system can be written in general as Eq. 1.9, where the function f is deterministic
and explicitly depends on time. For autonomous dynamical systems the underly-
ing assumption is that the system parameters do not change with environment and
time.

Figure 1.12: Thermodynamically isolated and open system. (a) An isolated system with
closed boundary restricting exchange of matter and energy with its surrounding. (b) An
open system which can interact with its environment by exchanging matter and energy via
permeable boundary.
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The formal mathematical description of non-autonomous dynamical systems has
been applied to solve problems in various disciplines [50]. For instance, having ap-
plications in non-autonomous coupled oscillators [5], stability of networks [59] and
also in biological sciences [21]: in bacterial growth [41], epidemiology [91], tumor
drug treatment models [34] and cardiovascular systems [21]. In all these studies the
non-autonomous dynamical systems are carefully modeled only in low dimensions.
However, the non-autonomous dynamical systems theory has not yet been applied
to explore the information processing mechanism in living systems.

1.6.1 Complete trajectories are solutions of non-autonomous sys-

tems

The theory of autonomous differential equations and their solutions is well estab-
lished [87]. The solutions of an autonomous differential equation are the steady-
states. Which steady-state will be occupied the system depends on the stability
of the steady-states and also the initial state of the system. To describe the theory
and meaning of solutions of non-autonomous biological systems, we start with the
generic form of a non-autonomous ordinary differential equation which can be de-
scribed using Eq. 1.9:

ẋ = f (x(t), t) (1.9)

with x(s) = x0, where s is the initial time and t is the final time. The solution of
non-autonomous systems can be analytically represented by a family of solution
operators given by {S(t, s)}t≥s, which depend on both the initial and final times.
The solution of Eq. 1.9 at time t is denoted by S(t, s)x0, meaning the solution opera-
tor S(t, s) operates on initial state of the system x0. On the contrary, the solution of
autonomous equation depends only on t− s, meaning S(t, s) = T(t− s) for a fam-
ily of solution operators {T(t)}t∈R of autonomous system. Therefore, the notion
of steady states in autonomous system is replaced by complete trajectory in non-
autonomous system. The common definitions of trajectories generated by solution
operators of non-autonomous systems [1, 50, 19]:

Definition 1.1. The continuous map: R→ Rm is a complete trajectory if

S(t, s)x(s) = x(t) for all t, s ∈ R
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However, in general there will be many complete trajectories (stable and unstable),
since they are just solutions that exist for all t ∈ R. A complete trajectory is a partic-
ular example of an invariant set in a non-autonomous equation.

Definition 1.2. A time-varying family of sets {Σ(t)} is invariant if

S(t, s)Σ(s) = Σ(t) for all t, s ∈ R

This formal definition simply says that if x(s) ∈ Σ(s) then S(t, s)x(s) = Σ(t). In
other words, the full trajectory Σ(t) of a non-autonomous system in Eq. 1.9 will be
invariant if the initial state of the system x(s) belongs to a Σ(s). The set Σ(s) contains
all the initial states from where the trajectory Σ(t) could have been generated.

1.6.2 Pullback attraction and stability

In autonomous systems, an invariant set Σ is (locally) attracting, if there exists a
neighbourhood O of Σ such that

dist(S(t, 0)x0, Σ)→ 0 as t→ ∞ for all x0 ∈ O (1.10)

where the distance is Hausdorff semi-distance between two set A and B is the
longest distance from a point in one set to another set, dist(A, B) is defined as

dist(A, B) = sup
a∈A

inf
b∈B
|a− b| (1.11)

Figure 1.13: Pullback attraction. Starting at different initial times (s) long ago in the past,
the respective trajectories (dashed) converges to a stable attractor (red) as s→ −∞.
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We are accustomed to considering ’time-asymptotic’ behaviour as the limiting be-
haviour as t → ∞. The implication of this idea is that if we run the experiment for
long enough and then consider the state of the system at some future time, it is well
approximated by one of the states in the attractor. n the autonomous case, where
S(t, s) = T(t− s), the concept of attraction is entirely equivalent to the existence of
a neighbourhood O of Σ such that for each fixed t ∈ R,

dist(S(t, s)x0, Σ)→ 0 as s→ −∞ for all x0 ∈ O (1.12)

This is the idea of ’pullback’ attraction [50, 19, 1] that does not involve running
backwards in time rather we consider taking measurements in an experiment now,
at time t, which began some long ago some time s in the past with s < t, schemati-
cally shown in Fig. 1.13. If the experiment has been running long enough then the
state of the system is approximated by one of the attracting states. Stability of pull-
back attractors are defined using ’Lyapunov stability’, which constrains trajectories
to stay close to the invariant set.

Definition 1.3. Σ(·) is pullback Lyapunov stable if for every t ∈ R and ε > 0 there exists
a δ > 0 such that for any s < t, xs ∈ N(Σ(s), δ(t)) implies that S(t, s)xs ∈ N(Σ(s), ε).

where the notation N(X, ε) denotes the ε-neighbourhood of a set X:

N(X, ε) = {y : y = x + z, x ∈ X, z ∈ Rm with |z| ≤ ε} (1.13)

All the systems that explicitly depend on time and also their dynamic environment
are thermodynamically open systems. Since open systems exchange both energy
and matter with their respective environment, the internal variables of the system
also start to vary with the dynamics of external environment and therefore, their ap-
proximation as autonomously evolving system is no longer valid. Such systems are
modeled as non-autonomous systems, and their general solutions are not constant
over time rather rather the solutions are also dynamic in nature and are given by
trajectories in the euclidean space of the dimension same as that of the system.
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1.7 Hypothesis

Figure 1.14: Biochemical network as a non-autonomous system. Schematic diagram of
a biochemical network processing multiple external stimuli at the receptor level and trig-
gering different phenotypic responses. Different external input signals are integrated dif-
ferently by receptor networks and also encoded uniquely. Such information can be ex-
tracted by multiple read-outs from the signaling network and visualized in the form of
multi-dimensional phase-space trajectories.

With recent advancements in microfluidic devices several independent studies have
reported that cells sense and react to its time-varying extracellular environment [84,
78, 70]. Single cells, acting as an individual entities are shown to resolve conflicting
spatio-temporal environment with plasticity to quickly change its response accord-
ing to the information present in dynamic environment [70]. These experimental
studies proves that cells are open systems that sense their extracellular environment
not just for its survival but also to serve its purpose by integrating the informa-
tion present in the dynamic environment and generating various responses depend-
ing upon spatio-temporal signatures of external signals. The current mechanisms
to explain these dynamic behavior of cellular systems is based on the approxima-
tion that cells are autonomous systems. Such assumptions have worked to explain
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the steady-state dynamics of biochemical networks with time-invariant extracellu-
lar signals. However, to accurately elucidate the dynamic environment dependant
properties of biochemical networks such assumptions need to be revised accord-
ingly.

Inspired by the transient based real-time information processing mechanism of liq-
uid state machines, we propose a new theoretical framework where the entire in-
tracellular network is treated as a non-autonomous system whose solutions are the
signal dependent trajectories. This framework describes the multi-level processing
of dynamic chemical signals with transients in real-time, schematically shown in
Fig. 1.14. In this framework, the information from time-varying extracellular envi-
ronment is integrated at the level of cell surface receptor networks, constructing the
‘signal integration’ layer. The information is then encoded in the high-dimensional
phase-space trajectories of the downstream signaling network present in the cytosol
of the cell, constructing the ‘encoding’ layer. We propose that any complex network
of arbitrary structure will have real-time dynamical information processing capabil-
ities if the system is organized near a dynamic saddle node. The phenotype specific
information will be encoded in unique phase-space trajectories in such a way that
trajectories belonging to same phenotype will have similar characteristic features
in phase-space. On the other hand, trajectories belonging to different phenotypes
will be characteristically different and remain separated in phase-space (Fig. 1.14).
Furthermore, the temporal signature of external signal dependent specificity and gen-
eralisation will be an emergent property of such a dynamic information processing
by transients. Information encoded in the high-dimensional phase-space transients
will be interpreted into different phenotypic responses in real-time by early response
genes (ERG) constructing the ‘decoding’ layer.
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1.8 Objectives

The main objective of this thesis is to develop a new conceptual framework that
describes the real-time information processing mechanism utilized by cells to sense
and operate in time-varying extracellular environments. This new conceptual frame-
work will be based on the experimentally identified features of the biochemical net-
works and should explain the robust real-time information processing features of
biochemical networks while maintaining the completely opposed features of gen-
eralisation and specificity. First, we mathematically define and prove the theory of
real-time biochemical information processing mechanism by defining biochemical
networks as non-autonomous systems. We investigate the benefits of metastable
states in the signal integration layer of biochemical networks over attractor-based
information processing. Throughout the thesis, we address the question of benefits
of ’working’ memory over steady-state dynamics at different levels of information
processing. We define the general principles of information processing in large ar-
bitrary signaling network and then use an experimentally identified biochemical
networks to elucidate the realistic biochemical information encoding and decoding
mechanisms. Furthermore, we incorporated experimentally identified features and
noise levels in the simulations to make results more closure to real experimental
scenarios. We set out to use publicly available experimental data to compare the
predictions made with this novel real-time information processing mechanism. Fi-
nally, we addressed the question of abundance and conservation of proteins present
in different information processing levels of biochemical networks.
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Chapter 2

Results

2.1 Theoretical description of information processing

with transients

Biochemical networks are currently being formulated as autonomous systems with
the assumption that the biological systems are isolated systems, that do not ex-
change matter and energy with their surroundings. The solutions of autonomous
differential equations are the steady-states (Section 1.3). In other words, the im-
plication of such assumption is that the relevant dynamics of biological processes
occur near or at the steady-states, thereby placing a strong focus on attractors based
dynamic information processing. The consequence of steady-state formalism is that
different cellular responses are being assumed to have a correspondingly different
steady-states [79, 20]. As noted above, in order to address the question of map-
ping dynamic signals to phenotypic outputs, the steady-state paradigm must be ex-
tended when considering time-varying signals. In the presence of external signals
not only the state variables, but also the parameters of the intracellular network
change over time. Therefore, we start by formally describing biochemical networks
as non-autonomous systems whose solutions are the trajectories depending on the
extracellular signals, as discussed in Section 1.6.

2.1.1 Describing biochemical networks as non-autonomous systems

We start by considering a biochemical network that consists of n interacting pro-
teins. The activity of ith protein at any time t is given by xi(t). Defining an n-
dimensional vector x(t) which consists of all the protein activity levels at any time
t: x(t) = [x1(t), ...xi(t), ...xn(t)]T. A general protein interaction function f is defined
in such a way that all the interactions for a protein will be included in this function.
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Therefore, the generic form of this non-autonomous biochemical network which ex-
plicitly depends on external signal p(t) is given by:

ẋ = f (x(t), p(t)) (2.1)

with x(s) = x0, where s is the initial time and t is the final time. From the theory of
non-autonomous differential equations [50, 19] discussed in Section 1.6, the general
analytical solution of any non-autonomous differential equation of the form Eq. 2.1
is given by a family of solution operators {S(t, s)}t≥s , which depends on both the
initial and final times. Described in definitions 1.1, 1.2 and 1.3, these solution oper-
ators will result in complete, invariant and Lyapunov stable trajectories Σ(t) which
are the solutions of non-autonomous differential equations. This means that the so-
lutions of non-autonomous biochemical networks are the n-dimensional trajectories
that explicitly depends on time t.

The general form of non-autonomous differential equation given by Eq. 2.1, how-
ever, to define the underlying biochemical reactions and interactions of proteins in
the large signaling network there are several ways to model them. For instance, us-
ing law of mass action kinetics, Michaelis-Menten kinetics and using biochemical
systems theory (BST) equations. We use BST form of equations where the dynam-
ics of a species is modeled using power-law expansions of the system’s variables,
and all the activation and deactivation entities for a protein are separated. Further-
more, a separate external signal p(t) term is present in all the protein entities which
directly provides input to specified signaling proteins. For a biochemical network
with i = 1, ..N components, Eq. 2.1 takes the following general form for biochemical
networks:

ẋi = B f
i (1− xi)

C f e
i

N

∏
j=1

Aij=1

x
Fge

i
j − D f

i x
E fe

i
i

N

∏
j=1

Aij=−1

x
Fge

i
j + (1− xi)I l

1p(t) (2.2)

where B f , C fe represent the autonomous activation and D f , E fe represent the au-
tonomous deactivation rate constants. Aij ∈ [−1, 0, 1] is the connectivity matrix of
the arbitrary signaling network. Fge is the parameter controlling the rate of activa-
tion (Aij = 1) and deactivation (Aij = −1) of ith component by the jth component of
the network if there exists a link between them, i.e Aij 6= 0. We will use this general
non-autonomous differential equation with external stimulus p(t) for defining the
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non-autonomous biochemical networks in this thesis. Furthermore, the general so-
lutions of Eq. 2.2 will be trajectories depending on the time-varying external signal.
In the next section, we will discuss the formal mathematical definitions of different
solution trajectories of non-autonomous biochemical networks that will represent
various cellular processes.

2.1.2 Pullback attractors of different phenotypes are separated in

phase-space

We have hypothesized that the phenotype specific information will be encoded in
unique phase-space trajectories in such a way that trajectories belonging to same
phenotype will have similar characteristic features in phase-space while trajecto-
ries belonging to different phenotypes will be characteristically different and remain
separated in phase-space (Section 1.7, Fig. 1.14).

Figure 2.1: Trajectories ΣRc generated by receptor network Rc. Schematic of three pheno-
type sets (N = 3) with corresponding trajectories Σ

Pi,j
Rc . Each phenotype set ΣPi

Rc has trajecto-
ries with similar characteristic features in phase-space.

Consider a general N-dimensional non-autonomous biochemical network given by
Eq. 2.2 whose parametric organization is such that it generates a range of phase-
space trajectories specific to external time-varying signal p(t), under the process Rc.
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Defining all the possible trajectories in N-dimensional phase-space generated by this
process Rc as ΣRc(·). We have hypothesized that the information of different pheno-
types is encoded in different phase-space trajectories (Section 1.7). In other words,
trajectories corresponding to a phenotype will have similar characteristic features in
phase-space for instance, curves, volume covered or time spent in specific regions
of phase-space. On the other hand, trajectories of different phenotypes will be char-
acteristically different from each other with unique features in phase-space. Let us
consider that under process Rc, the non-autonomous biochemical network can pro-
cess extracellular time-varying signals to generate M different phenotypes. All the
trajectories resulting in a phenotype i are given by an invariant set {ΣPi

Rc(·)}. An in-
dividual trajectory a belonging to phenotype i is ΣPi,a

Rc ∈ ΣPi
Rc generated by a specific

signal. Therefore, all the invariant sets of trajectories generated in Rc will correspond
to N different phenotypes constituting ΣRc(·) set, shown schematically in Fig. 2.1
and described in the following definition:

Definition 2.1. In process Rc, the N-dimensional non-autonomous biochemical network
can uniquely sense and integrate extracellular signals to generate M different phenotypes.
The generated unique trajectories sets specific to each phenotype are as follows:{{

ΣP1
Rc

}
,
{

ΣP2
Rc

}
, ...
{

ΣPi
Rc

}
, ...
{

ΣPM
Rc

}}
⊂ ΣRc (2.3)

such that there exists no signal which can generate a trajectory common in any two given
trajectory sets:

ΣPi
Rc ∩ Σ

Pj
Rc = ∅ with i 6= j. (2.4)

Different classes of trajectories are defined in a way that trajectories resulting in
same phenotype will have similar characteristic features in phase-space as shown
schematically in Fig. 2.1. Quantitatively, any two trajectories of the same pheno-
type will remain close to each other in N-dimensional phase-space. In mathematical
terms, being close to each other means that the separation between the same class
of trajectories will remain bounded by an ε ≥ 0, given by the following definition:

Definition 2.2. If two trajectories ΣPi,a
Rc (·) and ΣPi,b

Rc (·) of same phenotype set ΣPi
Rc , are

globally pullback Lyapunov stable and attracting for every t ∈ R then there exists an εPi ≥ 0
such that

lim
s→−∞

∣∣∣ΣPi,a
Rc (t)− ΣPi,b

Rc (t)
∣∣∣ ≤ εPi .
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This defines the criteria for trajectories generated by distinct external signals and yet
generating same phenotype or same class of trajectories. Definition 2.2 also gives the
formal description of generalization property of biochemical information processing
where depending on the temporal signatures of different extracellular dynamic sig-
nals, cells result in same phenotypic responses whose information is encoded in tra-
jectories with similar characteristics that remain close to each other in phase-space.
Based on this definition, we make the following theorem defining the phase-space
properties of trajectories that belong to different phenotypes.

Theorem 2.3. If any two trajectories belonging to different phenotype sets of trajectories
exist:

ΣPi,a
Rc (·) ⊂ ΣPi

Rc and Σ
Pj,b
Rc (·) ⊂ Σ

Pj
Rc with i 6= j.

such that

1. Both the trajectories are globally pullback Lyapunov stable and attracting for every
t ∈ R.

2. There exist εPi , εPj (according to Definition 2.2) and εPij > 0 where εPij = max{εPi , εPj}

then

lim
s→−∞

∣∣∣ΣPi,a
Rc (t)− Σ

Pj,b
Rc (t)

∣∣∣ > εPij .

Proof. Let four trajectories from two different phenotype sets of trajectories exist:

ΣPi,a
Rc (·), ΣPi,c

Rc (·) ⊂ ΣPi
Rc and Σ

Pj,c′
Rc (·), Σ

Pj,b
Rc (·) ⊂ Σ

Pj
Rc

Then according to definition 2.2:

lim
s→−∞

∣∣∣ΣPi,a
Rc (t)− ΣPi,c

Rc (t)
∣∣∣ ≤ εPi (2.5)

lim
s→−∞

∣∣∣∣ΣPj,c′
Rc (t)− Σ

Pj,b
Rc (t)

∣∣∣∣ ≤ εPj (2.6)

Assume that Σ
Pj,c
Rc and Σ

Pj,c′
Rc ∈ ΣPi

Rc ∩ Σ
Pj
Rc and Σ

Pj,c
Rc = Σ

Pj,c′
Rc . Then adding Eq. 2.5 and

Eq. 2.6 gives:

lim
s→−∞

∣∣∣ΣPi,a
Rc (t)− ΣPi,b

Rc (t)
∣∣∣ ≤ εPi + εPj (2.7)
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Further, let εPi > εPj and consider that Σ
Pj,b
Rc exists with a δ > 0 such that

lim
s→−∞

∣∣∣ΣPi,a
Rc (t)− ΣPi,b

Rc (t)
∣∣∣ = εPi + δ

No other trajectory exists with any 0 < δ′ < δ. This means that the following
inequality is valid:

lim
s→−∞

∣∣∣ΣPi,a
Rc (t)− ΣPi,b

Rc (t)
∣∣∣ > εPi (2.8)

Theorem 2.3 states that if any two trajectories belonging to opposite phenotypic re-
sponses in cells then they will remain separated in phase-space. This provides a
distance based quantification method for distinguishing different phenotypic infor-
mation encoded in different class of trajectories. Theorem 2.3 is also the formal de-
scription of specificity feature of biochemical information processing in cell (Section
1.4.5). Depending on temporal signatures of different external signals, cells result in
different phenotypic responses whose information is encoded in characteristically
different trajectories that are separated in phase-space.

Under process Rc, the non-autonomous biochemical networks generating phenotype-
specific trajectory sets given by definition 2.1, is in line with the experimental obser-
vations. Stanoev et al. [84, 85] showed that cell surface receptor networks integrate
time-varying extracellular signals depending upon their temporal signatures and
this signal integration property is enabled by dynamic organization of the system
near ’criticality’. Furthermore, H. Ryu et al. [78] showed that cells generate simi-
lar and opposite phenotypic responses depending upon the frequency of dynamic
growth-factor signals. The generalization and specificity features (Section 1.4.5) of dy-
namic information processing in non-autonomous biochemical networks are math-
ematically formulated by definition 1.2 and theorem 2.3 respectively.
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2.2 Frequency dependent integration of time-varying

signals by ’critically’ organized receptor network

The solutions of non-autonomous biochemical networks are the phase-space trajec-
tories generated by time-varying extracellular signals. The information of distinct
cellular responses are encoded in unique trajectories with characteristic features in
phase-space. In the previous section, we provided mathematical formulation of our
hypothesis with definitions and theorem representing how phenotype-specific in-
formation is encoded in distinct phase-space trajectories while maintaining the fea-
tures of specificity and generalization. We will now use the simulations to provide the
numerical proof and elucidate the details of our hypothesis by modeling biochemi-
cal networks as non-autonomous systems.

Biochemical networks have cell surface receptors that sense and integrate the in-
formation present in extracellular time-varying signals. Experimental studies show
that receptor networks integrate the information from external inputs using a dy-
namic memory [84]. Using a minimal receptor network, Stanoev et al. [85] showed
that the dynamic memory in receptor activity arises when the system is organized
near a saddle-node bifurcation point, discussed in Section 1.4.2. This dynamic mem-
ory enables the receptor to hold the information of past stimulus at the same time,
the system remain sensitive to the upcoming input stimulus, to integrate informa-
tion contained in time-varying signals. Therefore, we explore the signal integration
properties of the saddle-node ’ghost’ enabled dynamic memory in minimal recep-
tor network (Fig. 2.2 (a)) using just two input pulses. For that, we will use just two
subsequent input pulses of same duration and vary the time duration in between
them which we call inter pulse interval or IPI in short.

First, we parameterize the system in bistable regime with γ̂DNF = 2, where the mem-
ory is permanent. Starting with two 3 minute input pulses and a fixed IPI of 15
minutes, the system senses the first pulse and reaches a high receptor activity state.
After the removal of the input pulse, the system stays in the high activity state and
becomes insensitive to the second stimulus (Fig. 2.2 (d)). Once activated, the system
remains in the high activity state irrespective of the IPI between two pulses. This
makes the total duration of receptor activity to be fixed irrespective of the IPI as
shown with grey curve in Fig. 2.2 (e). In case of no memory, when the system is
parameterized far in the monostable regime with γ̂DNF = 10 the system is not acti-
vated at all (Fig. 2.2 (f)) and therefore the total duration of receptor activity remains
zeros irrespective of IPI (Fig. 2.2 (e), orange curve).
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Figure 2.2: Frequency dependent integration of time-varying signals by minimal receptor
network. (a) Schematic of a minimal receptor network constituting the input layer of in-
tracellular network [85]. Temporal receptor response profiles for 2 consecutive input pulses
of 3 minutes and 15 minutes inter-pulse interval (IPI) when the receptor network is orga-
nized in (b) criticality, (d) bistable and (f) monostable regimes. (c) Response profile for 2
pulses of 36 minute IPI when system is organized near criticality. (e) Total receptor activity
for two consecutive 3 minute pulses with respect to changing IPI for system organization in
aforementioned regions.

When the system is organized near ’criticality’ with γ̂DNF = 2.954, the minimal re-
ceptor network senses the first pulse and reaches a high receptor activity state. How-
ever, after the removal of input pulse, the system is trapped in the ’ghost’ state and
transiently maintains the memory of first pulse. The second input pulse again make
the system reach high receptor activity state followed by a memory state of ∼ 34
minutes, after which the system returns back to the basal state. Therefore, both the
input pulses are integrated together when they are separated by an IPI of 15 min-
utes because of transient memory and therefore the total receptor activity duration
becomes ∼ 52 (Fig. 2.2 (b)). However, when the IPI (36 minutes) is more than the
receptor activity duration generated by a single stimulus then both the input pulses
generate similar looking activity patterns having a transient memory of ∼ 34 min-
utes followed by returning to basal state. The total receptor activity, in this case rises
to ∼ 70 minutes (Fig. 2.2 (c)). Therefore, the total receptor activity increases linearly
along with increasing IPI, where both the input pulses are integrated together as
shown with magenta curve in Fig. 2.2 (e). However, when the IPI becomes higher
than the memory duration generated by a single stimulus then the total receptor
activity generated by both pulses becomes constant, which is ∼ 70 minutes in this
case.
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This elementary analysis using two input pulses shows the feature of dynamic mem-
ory arising from the ’ghost’ of saddle-node that enables the receptor network to
uniquely integrate input pulses depending on the inter-pulse-interval, as described
by [85].

2.2.1 Signal classes of multiple input pulses with different tempo-

ral frequencies

The ’ghost’ of saddle-node bifurcation enables a transient dynamic memory in re-
ceptor activity, which enables signal integration property in the minimal receptor
network, which we showed using two pulses with variable IPIs. Now, we system-
atically analyze how any receptor network and the downstream signaling network
process the information from external signals with multiple pulses. For that, we will
use a reference signal of multiple pulses with a fixed inter-pulse interval between any
two consecutive pulses, to generate opposite classes of input signals, namely Ssim

and Sdi f f . We will use these opposite signal classes of inputs to stimulate the bio-
chemical network to further analyze the differences between the response profiles
of the network, using response profiles generated by the reference signal as a refer-
ence response curve. In this way, we will build a systematic method for analyzing
the extracellular information processing property of biochemical networks enabled
of the dynamic memory in receptor activity.

We start with generating a reference signal having a temporal profile of 3 minutes
pulses and 10 minutes inter-pulse intervals (or 3’10’ in short) as shown with red
curve in Fig. 2.3 (a). We designed similar and different classes of inputs based on
the following principle: each of the input pulses in reference signal will be probabilis-
tically shuffled to a different time point using a shuffling probability Pshu f f le ∈ [0, 1].
Where Pshu f f le = 0 means that all of the input pulses of reference signal will be reshuf-
fled to any other time point, while Pshu f f le = 1 implies no reshuffling of pulses at all.
Following this principle, a signal class having a temporal frequency signature simi-
lar to that of reference signal is generated with Pshu f f le = 0.95 and we call this calss:
similar signal class or Ssim. Three exemplar input signals belonging to Ssim class are
shown with blue in Fig. 2.3 (a). In a similar fashion, a signal class having a temporal
frequency signature completely different to that of reference signal is generated with
Pshu f f le = 0.1 and we call this calss: different signal class or Sdi f f . Three exemplar
input signals belonging to Ssim class are shown with green in Fig. 2.3 (a). Each of
these classes are generated to have 10 input signals. To quantify the difference of
each of these classes with respect to reference signal, we use a euclidean distance
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Figure 2.3: Input classes with different temporal frequencies. (a) Reference input (red) of
3 hours with a temporal frequency profile of 3’10’ is used to generate Ssim (blue) and Sdi f f
(green) classes of inputs with shuffling probability (Pshu f f le) of 0.1 and 0.95 respectively. (b)

Mean euclidean distance (EDInp) of inputs calculated with respect to reference input for all
generated signal classes. Each signal class contains 10 inputs.

(ED) measure. The mean separation (over time and signal repetitions in each class)
between a signal class with respect to reference signal can be calculated using Eq. 2.9:

EDInp
(SRe f , Sclass) =

1
N × T

N

∑
i=1

T

∑
t=0

∣∣∣(SRe f (t)− Sclass
i (t))2

∣∣∣ (2.9)

Using the same principle as described above, various signal classes were obtained
using a range of shuffling probability (Pshu f f le ∈ (0, 1)) and ED is measured for all
the obtained signal classes as shown in Fig. 2.3 (b). All the classes which are similar
to reference signal have a small EDInp

< 0.1 with respect to the reference signal, for
example, Ssim having EDInp ' 0.004 with respect to reference are shown with blue
in Fig. 2.3 (b). While classes which are different from reference signal have a large
ED with respect to the reference signal, for example, Sdi f f having EDInp ' 0.32 with
respect to reference are shown with green in Fig. 2.3 (b).

Therefore, we have systematically generated a number of signal classes and quan-
tified them based on ED measure with respect to reference signal. These classes of
signals will be used in the following sections to analyze the signal integration prop-
erty and to quantify the separation between response profiles of receptor activity
with respect to that of reference signal.
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2.2.2 Dynamic memory enables maximal separation of response

profiles for different class of signals

To analyze the time-varying information processing mechanism of receptor net-
works present in input layer of large biochemical networks, we use similar and differ-
ent classes of signals generated using method described in the previous section. We
aim to quantify the characteristic differences between response profiles of minimal
receptor network generated by these classes of input signal with respect to that of
reference signal. We compare this quantification of response profiles when the min-
imal receptor network is organized in ’criticality’ with that of bistable and monos-
table organization. This further will help in analyzing if the dynamic memory in the
input layer of biochemical networks arising from the saddle-node ’ghost’ have ben-
efits in signal integration and separation property over systems having permanent
or no memory.

We used Ssim and Sdi f f classs of signals along with reference signal to stimulate the
minimal receptor network when it is organized in bistable regime (γ̂DNF = 0.5).
Since the system is parameterized in bistable regime, it always remains in the high
receptor activity state once the first input pulse activates the system as shown in
Fig. 2.4 (a) with red, blue and green inputs respectively for reference signal, one
from each Ssim and Sdi f f classes respectively. The separation between the obtained
response profiles for each of these class inputs with respect to that of reference signal
can be obtained using the euclidean distance measure. Eq. 2.10 shows a general
expression of ED between n-dimensional signal responses x1 and x2 at a given time
t:

ED(x1, x2)(t) =

√
n

∑
i=1

(x1,i(t)− x2,i(t))2 (2.10)

We therefore used Eq. 2.10 to calculate the ED between response profiles of Ssim

class with respect to that of reference signal and took mean over the entire duration
(3 hours). The overall separation of signals that are similar to reference signal remains
below∼ 0.01 when the minimal receptor network have permanent memory with it’s
parameterization in the bistable regime Fig. 2.4 (c). The mean ED for Sdi f f class with
respect to that of reference signal is also remain small∼ 0.07. This shows that, in case
of bistable organization there is no separation between response profiles in either
of Ssim and Sdi f f classes as the mean ED remains below 0.2. When the system is
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Figure 2.4: Separation of trajectories in phase space for a minimal two component net-
work. Response profiles of the minimal two-component network (Fig. 2.2 (a)) for reference
signal (red), one inputs from each of Sdi f f (green) and Ssim (blue) classes when system is
organized respectively in (a) bistable regime (grey), (b) criticality (magenta) and (d) monos-
table regime (orange). (c) EDTrj between trajectories generated by input classes Ssim and
Sdi f f with respect to reference trajectory over the range of bifurcation parameter (γ̂DNF).

organized in the monostable regime with γ̂DNF = 10, the the receptor activity follows
the input signal and returns back to basal state as soon as the pulse is removed
irrespective of temporal signature of input pulses, as shown for reference signal, one
from each Ssim and Sdi f f classes in Fig. 2.4 (d). The results show that in the case of
monostable organization as well there is no separation between response profiles in
either of two classes as the mean ED remains below 0.2.

However, when this minimal receptor network is parameterized in the vicinity of
saddle-node bifurcation with γ̂DNF = 3.18, signals with small IPI are integrated
together while those have large IPI, their responses are separated and are charac-
teristically different. Since Ssim class have signals similar to that of reference signal,
their response curves also look similar. On the other hand, Sdi f f class is maximally
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different from reference signal and their response profiles in are completely differ-
ent, as shown in Fig. 2.4 (b). This is reflected in the mean ED where the separation
of Ssim class response relative to the reference signal response remain small ∼ 0.01.
While the the separation of Sdi f f class response relative to reference signal response
reaches a maximal value of ∼ 0.4. This analysis is systematically carried out for the
entire range of bifurcation parameter spanning bistable, monostable and criticality
regimes and mean ED is calculated using the method described above as shown in
Fig. 2.4 (c).

The mean ED between the receptor response profiles generated by Ssim class and
that of reference signal, remains bounded between' [0, 0.01] over the entire range of
bifurcation parameter. This suggests that the signals with similar temporal frequen-
cies are integrated similarly by the receptor network. In contrast, when the inputs
belong to Sdi f f signal class, the separation between the receptor response activity is
maximized in the critical region (shown with magenta color in Fig. 2.4 (c)). This
suggests that the signals with different temporal frequencies are integrated differ-
ently by the receptor network organized at ’criticality’. Furthermore, it is also evi-
dent that the dynamic memory realized via ’ghost’ of saddle-node enables efficient
frequency dependant integration of time-varying signals by the receptor network,
this property is completely missing when the system is parameterized in bistable
or monostable regimes. Therefore, this systematic analysis shows the benefits of
dynamic memory in efficient signal integration and separation property of receptor
networks organized near ’criticality’ over systems having permanent memory or no
memory at all. However, the maximal separation achieved at ’criticality’ is ∼ 0.4,
and the difference is relatively low when the system is parameterized in monostable
regime (∼ 0.15). This is due to the low dimensionality of the minimal receptor net-
work which has only two nodes, receptor Ra and an inactivating enzyme PDNFa. In
the following sections, we will therefore explore the high dimensionality case with
a biochemical network with several interconnected nodes.
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2.3 Dynamic memory in the ’input’ layer enables sep-

aration of phase-space trajectories in biochemical

networks

An arbitrary downstream signaling network of 27 nodes is generated using prob-
abilistic network generation method as explained in Section 2.3.2. The input layer
comprising of minimal receptor network is interconnected with the arbitrary sig-
naling network as shown schematically in Fig. 2.5 (a). The receptor network is
modeled using law of mass action as discussed in Section 1.4.2, reflecting the re-
sponse dynamics of cell surface receptors such as receptor tyrosine kinases [84, 85].
The encoding-network is modeled using biochemical systems theory (BST) [98, 95],
as described in Section 2.1.1. The activation and deactivation parameters are drawn
from distributions normal distributions.

The extracellular information processing and encoding property of biochemical net-
work is analyzed using a minimal time-varying signal consisting of just two consec-
utive pulses of 5 minutes each with an IPI of 15 minutes. The receptor network is
first parameterized in the bistable regime meaning a permanent memory at the level
of input layer. Shown with grey curve in Fig. 2.5 (b), the receptor once activated re-
mains in high activity state. This permanent memory makes the system insensitive
to upcoming dynamic signals which is reflected in the activity profiles of all the bio-
chemical network nodes, shown with different colors in Fig. 2.5 (b). However, when
the receptor network is organized in the ’criticality’ regime means that the dynamic
memory is present at the level of input layer. Both the pulses are integrated together
because of the presence of dynamic memory, receptor profiles are shown with ma-
genta curve in Fig. 2.5 (c). The receptor activity remains high till ∼ 45 minutes and
then rapidly returns back to the basal state. The dynamic memory effect is reflected
in the response profiles of all the biochemical network nodes constituting the input
and encoding layers. Finally, the receptor network is parameterized in the monos-
table regime where the system has no memory. The receptor follows the input signal
without reaching the high activity state and quickly returns back to its basal state
upon removal of external stimulus as shown with orange curve in Fig. 2.5 (d). The
encoding layer nodes follow the same pattern and remain close to their respective
basal states.

This arbitrary biochemical network consists of 30 nodes and therefore the activity of
multiple nodes can be visualized altogether in a phase-space diagram. For that, we
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Figure 2.5: Time-varying external signal processing in an arbitrary biochemical network
enabled by the dynamic memory in ’input’ layer. (a) Schematic of an arbitrary biochemical
network comprising of 30 nodes with a minimal two-component receptor network in the
’input’ layer connected with a synthetically generated signaling network representing the
’encoding’ layer. Protein activity temporal profiles of downstream signaling network for an
input signal of two consecutive 5 minutes pulses with a 15 minutes IPI when the receptor
network is organized in (b) bistable, (c) criticality and (d) monostable regimes respectively.
Receptor activity is shown in thick lines of grey, magenta and orange colors respectively in
(b), (c) and (d). (e, f) Phase-space trajectories generated by network nodes {i, j, k} and {l, m,
n} as marked in (a) respectively. Thin curves in trajectory represent when the input stimulus
is present and broad faded curves represent the when the stimulus is absent. Triangles
represent initial state at t=0 and stars represent the state of system at t=65 minutes.

randomly selected nodes from the entire biochemical network irrespective of input
or encoding layer, marked with {i, j, k, l, m, n} in the network scheme in Fig. 2.5
(a). Two 3D phase-space diagrams are plotted in Fig. 2.5 (e) and (f) comparing the
three dynamical regimes namely bistable, monostable and criticality of receptor net-
work shown with grey, orange and magenta curves respectively. In cases of bistable
regime, since the system has permanent memory, it is stuck forever in the high activ-
ity state (grey star). However, in the monostable case, the system follows the input
pulses and returns back to its basal state (orange star) as soon as the pulse is re-
moved thereby generating small loops in phase-space. Interesting is the case when
receptor is organized at ’criticality’, where high activity state is achieved when input
pulse is present (thin magenta curve), but when the stimulus is removed the system
gets trapped in the memory region (wide faded magenta curve). From this memory
state, it reaches again high activity state by second stimulus followed by trapping in
the memory state and eventual returning to the basal state. This is contrary to the
bistable and monostable cases where either the system is trapped permanently in
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the high activity state or returns back to its basal state. The unique signals integra-
tion property enabled by the dynamic memory results in a characteristic trajectory
in the high-dimensional phase-space of biochemical network.

This shows that the extracellular information sensed by the cell-surface receptors
present in the input layer, traverses throughout the interconnected biochemical net-
work. Furthermore, the dynamic memory present in the input layer, arising from
the ’critical’ organization of receptor network facilitates the encoding of informa-
tion present in the time-varying extracellular signals into characteristic phase-space
trajectories.

2.3.1 Dynamic memory enables efficient signal-to-phenotype class

mapping in biochemical networks

In the previous sections, we have described the signal processing property of bio-
chemical networks which is facilitated by the dynamic memory arising from the
’critical’ organization of receptor network. Using a minimal two-pulse input, we
determined the benefits of dynamic memory in encoding of information present in
time-varying signals over those systems that have permanent memory and systems
without memory in their ’input’ layers. In this section, we go one step further to in-
vestigate how signals are encoded in the biochemical network dynamics that have
similar and different temporal profiles.

We use the same arbitrary biochemical network of N = 30 nodes (Fig. 2.5 (a)) de-
scribed in the previous section. To understand the ’similar’ and ’different’ informa-
tion encoding property of biochemical networks, we use Ssim and Sdi f f classes of
signals as described in Section 2.2.1. All the inputs from these two opposite classes
of signals along with the reference signal are used to stimulate this biochemical net-
work. The information of a dynamic signal encoded in the phase-space trajectory
is quantified with respect to the trajectory generated by reference signal. Euclidean
distance (Eq. 2.10) is used to obtain the separation between trajectories generated by
a signal class with respect to that of reference signal in 30-dimensional phase-space.

The trajectories generated by Ssim signal class and that of reference signal remain
close to each other in the 30-dimensional phase-space with EDTrj ' [0, 0.1] over
the entire range of bifurcation parameter shown with blue curve in Fig. 2.6. This
suggests that the similar signals are encoded within same class of trajectories that
have same characteristic features, remain close to each other in phase-space and
stay bounded in a defined area in multidimensional phase-space. In contrast, when
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Figure 2.6: Separation of trajectories in phase space of an arbitrary biochemical network.
(a) EDTrj between trajectories generated by input classes Ssim (blue) and Sdi f f (green) with
respect to reference trajectory in 30-dimensional phase-space over the range of bifurcation
parameter (γ̂DNF ). (b) Maximum value of EDTrj of the trajectories over the entire bifurcation
parameter range with respect to the input class EDInp.

these inputs belong to different (Sdi f f ) class, the separation between the trajectories
is maximized in the critical region (magenta color) and remains above 0.4, shown
with green curve in Fig. 2.6 (a). When the receptor network is parameterized in
the bistable and monostable regimes this separation between trajectories becomes
small while in the case of ’critical’ organization, trajectories reach a maximal sepa-
ration of ∼ 0.75. This principle was systematically analyzed for various classes of
input signals, with a continuous increase of the EDInp from the equivalent (EDInp

' 0.004) to the different input class (EDInp ' 0.32). As shown in Fig. 2.6 (b), the
maximal of EDTrj between phase space trajectories increases linearly with increase
of the separation between input signals.

Depending on the temporal signature of extracellular signals, cells generate differ-
ent phenotypic responses while maintaining the completely opposed features of
specificity and generalization, as discussed in detail in Section 1.4.5. Specificity feature
of biochemical information processing arises when completely opposite phenotypic
responses are generated by extracellular signals irrespective of growth factor iden-
tity. On the other hand, generalization emerges when extracellular signals with dif-
ferent temporal signatures result in same cellular response. Whether it’s the same
or different cellular response, all the information from extracellular environment is
encoded in the biochemical network. The encoded information is then decoded by
early response genes (ERG), resulting in same or different phenotypic responses ac-
cordingly. We hypothesized that the information of same phenotypic response will
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be encoded in similar phase-space trajectories while one the other hand, trajecto-
ries belonging to different phenotypes will be characteristically different and remain
separated in phase-space (Section 1.7). The systematic analysis provided in this sec-
tion is in line of our hypothesis, that the extracellular signals are indeed encoded
in the form of phase-space trajectories in high dimensional phase-space. These tra-
jectories tend to stay close to each other in phase-space when extracellular signals
are similar to each other i.e belonging to Ssim class. However, when these signals
are different from each other (Sdi f f ), the information is encoded in different trajec-
tories which remains separated in phase-space, reflected by the large ED. Therefore,
the generation of characteristically similar and different phase-space trajectories in
case of Ssim and Sdi f f classes of signals, reflects the generalization and specificity fea-
ture of biochemical networks respectively. We can therefore conclude that these two
completely opposed features of generalization and specificity are the consequences of
signal processing and encoding properties of the biochemical networks enabled by
the presence of dynamic memory in the ’input’-layer of biochemical networks.

2.3.2 Role of ’encoding’ layer network structure in separation prop-

erty

The different phenotypic information is encoded through unique phase-space tra-
jectory classes, which can be quantified using a distance measure. In this section,
we systematically test the robustness of phenotypic information encoding property
of biochemical network against the network structure. In particular, we investigate
whether the architecture of ’encoding’ layer network affects the phenotype specific
information processing and encoding property of the biochemical network. For that,
we define network generation methods that changes the overall structure of the ini-
tial network controlled by rewiring probabilities as parameters. Different parameter
ranges will generate a uniquely structured biochemical network. Therefore, a num-
ber of networks with different structural properties can be generated by providing
a different range of parameters. First, we define these network generation methods
as described below:

1. Cascade and rewire method: Starting with N number of nodes connected in
a linear cascade (i.e node 1 → 2, 2 → 3 etc.) with activating links. If two
nodes are connected then the link will be removed and one of these nodes will
be connected to another random node within the network with probability
Pb ∈ [0, 1], with Pb = 0 represents no rewiring and Pb = 1 meaning all the links
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will be rewired. We add more activatory (+1) and inhibitory (-1) links to the
network respectively with probabilities Pp and Pn ∈ [0, 1].

2. Probabilistic method: Any two randomly selected nodes are connected with
probabilities Pp and Pn ∈ [0, 1] respectively with activatory (+1) and inhibitory
(-1), and if any node remains disconnected joining it randomly with any other
node present in the network.

Figure 2.7: Role of network structure in separation property. Maximum value (over the
bifurcation parameter range) of EDTrj of the trajectories with respect to network structural
properties of (a) ratio of activatory to inhibitory links (NA/NI), (b) reciprocity, (c) number
of communities present and (d) clustering coefficient in 15 different generated artificial bio-
chemical networks of size 30 nodes.

We use these two systematically defined network generation methods to obtain 15
different arbitrary ’encoding’ layer networks of size N = 27, using a range of pa-
rameters given in Appendix A, Table A.1. These network parameters are chosen in
such a way that the generated arbitrary networks have a range of the four differ-
ent network properties: NA/NI , reciprocity, communities and clustering coefficient.
NA/NI provides the ratio of activatory to inhibitory links, where 1 represents equal
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number of links of both the kind. Reciprocity provides a measure of the likelihood
of nodes in a directed network to be mutually linked (loop of 2 nodes). It is defined
as the ratio of the number of links pointing in both directions to the total number of
edges in the network. Third, the number of communities present in the network are
examined, where a community is defined as a subset of nodes within the network
such that connections between the nodes are denser than connections with the rest
of the network. Last, clustering coefficient is a measure of the degree to which nodes
in a graph tend to cluster together. In other words, it is measure which provides if
the neighbours of a node are also connected together i.e formation of triangle in the
network.

The minimal receptor network is connected to these arbitrary signaling networks as
described in the previous section, constituting a biochemical network of size N =

30 nodes. These networks are stimulated with similar (Ssim) and different (Sdi f f )
classes of input signals along with the reference signal described in Section 2.2.1. The
separation between trajectories in 30-dimensional phase-space is obtained for each
of the signals using ED measure (Eq. 2.10) when the receptor is critically organized
near the saddle-node bifurcation point. Maximum of (EDTrj

N ) for both the signal
classes, Ssim (blue) and Sdi f f (green) are represented against the aforementioned four
different network properties.

The maximum EDTrj between the trajectories of (Ssim) class and that of reference
signal remains bounded between ' [0, 0.1] for all the networks. While the maxi-
mal separation between the trajectories generated by (Sdi f f ) class of signals remains
> 0.6 for all the networks for entire range of all four diverse network structure prop-
erties, Fig. 2.7. In case of all four network properties there is no correlation found
suggesting the dependency of encoding property of large biochemical networks on
the structure of downstream signaling network. This points out the fact that ir-
respective of ’encoding’ network structure, the trajectories remain bounded in the
same area of phase-space for similar class of signals, but separate when signals have
different temporal profiles, provided that the dynamic memory is present in the ’in-
put’ layer which arises when the receptor network is organized near ’criticality’.

Moreover, this systematic analysis based on different network properties suggests
that the two completely opposed features of generalization and specificity are inde-
pendent of downstream signaling network structure. This observation is contrary
to the belief that these features arise because of particular structure of signaling net-
works [77, 76, 18]. Our results, on the other hand suggests that the features of gener-
alization and specificity are rather the consequences of efficient signal processing and
encoding properties of the biochemical networks enabled by the dynamic memory
arising at the ’input’ layer of biochemical network.
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2.4 Structure of experimentally identified EGFR network

The specificity and generalization features of signaling networks have been widely ar-
gued to arise from particularly organized structures of signaling networks [77, 76,
18]. Bow-tie or hourglass structure has been proposed to be such a network struc-
ture. In this network scheme, the information is projected on a relatively small sized
core part of the network, connected by diverse and redundant input and output
subnetworks with various feedback control loops. Such a structure of signaling net-
work has been proclaimed to exist in various signaling networks: epidermal growth
factor receptor (EGFR) [77], toll-like receptor (TLR) [76] and also in mammalian tar-
get of rapamycin (mTOR) [18] signaling network. We will discuss here in general
the EGFR signaling network that is a highly interconnected complex network (Fig.
2.8 (a)) with importance in regulating growth, survival, proliferation and differenti-
ation in mammalian cells.

A bow-tie is a directed network which can be divided basically into three layers: in-
put, core and output (I-C-O) layers, where the number of nodes in core (red) are less
as compared to input (green) and output (magenta) layers as schematically shown
in Fig. 2.8 (b). In mathematical term it can be represented as NC << N(I,O), where
NI , NC and NO represents number of nodes in input, core and output layers. In such
networks, the information from a broad input layer is compressed to a relatively less
number of core nodes, which is then distributed to the nodes of the broad output
layer. Recent developments in network structural analysis provides a systematic
way of rearranging any arbitrary directed network into a bow-tie architecture [92,
103]. These algorithms work by the identifying strongly connected component of
the network representing ’core’ where all the nodes are connected to each other,
then identifying the input and output layers by analyzing the direction of connec-
tions. We used this algorithm to identify the underlying bow-tie structure in the
EGFR network with N = 56 number of nodes. EGFR network is rearranged into
input, core and output layers as shown in Fig. 2.8 (c). The distribution of nodes
in I-C-O layers are 21-22-13 respectively, revealing a high number of core nodes
than in input and output layers i.e NEGFR

C > NEGFR
(I,O)

, which is completely opposite
to the definition of hourglass architecture that has less number of core nodes than
input and output layers. Therefore, this systematic graph-theoretic based network
structure analysis suggests that the EGFR signaling network likely does not have a
bow-tie architecture.
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Figure 2.8: Experimentally identified EGFR network. (a) Network structure of experimen-
tally identified EGFR network [77]. (b) Schematic of a typical bow-tie network with input
(green), core (red) and output (purple) (I-C-O) layers. (c) EGFR network after being rear-
ranged into 3 layers of bow-tie architecture.
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2.4.1 Comparision of EGFR signaling network with artificial bow-

tie and random networks

The information in a bow-tie network is projected to the core layer which has less
number of highly interconnected nodes relative to its large input and output lay-
ers. In other words, core layer has different network properties relative to the in-
put and output layers, in terms of fraction of nodes and their connectivity within
in the layer. Therefore, in order to systematically characterize the network struc-
tural properties of EGFR signaling network, it should be directly compared with
synthetically generated bow-tie or hourglass networks. Additionally, we also com-
pare the network properties of Erdős-Rényi random networks as reference networks
alongside EGFR and bow-tie networks. Both the network types are generated sys-
tematically to have network density comparable to that of EGFR signaling network
(δEGFR−Net. = 0.0295). The density of a directed network with N number of nodes
and M number of links is given by the following Eq. 2.11:

δ =
M

N(N − 1)
(2.11)

We start with generating synthetic bow-tie or hourglass networks to have input and
output layer nodes to be more than core nodes (NC << N(I,O)) using the following
steps: First, starting with nodes N ∈ [40, 60] and dividing them in three parts each
for I-C-O layer. Division of N nodes should be in such a away that core should al-
ways get least number of nodes, in order to preserve the hourglass structure. There-
fore, total nodes in core (NC) is always between 5 and 25% of N. Total number of
links M for each hourglass network is defined by M ' δEGFR ∗ N(N − 1), in order
to have a comparable network density with that of EGFR signaling network. Then
comes the part of specifying links within each layer and also between them. Ran-
domly dividing (M) edges among I-C-O layers such that:

(i) each node must have atleast 1 edge within the layer.
(ii) dividing rest of the edges in a way such that 75% connections are within the
core, 12.2% connections are from input to core and 12.2% connections are from core
to output layer.
(iii) rest 0.6% of edges: connecting them between any two randomly selected nodes
irrespective of the layer.
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The final obtained adjacency matrix will therefore represents a synthetic network
with bow-tie architecture. Random networks are generated in such a way to also
have their density relatable to that of EGFR signaling network, using the Networkx
package in Python. 100 networks are generated for each of the network type. The
generated random and bow-tie networks are rearranged into I-C-O layers of bow-
tie architecture using the same algorithm [92, 103] as used in the previous section
for EGFR network, to further analyze the properties arising from their global archi-
tecture. First, percent of total nodes divided in these layers for both the network
types are compared with that of EGFR network. The number of core nodes in syn-
thetic bow-tie networks remains less as compared to the input and output nodes,
NBow−tie

C << NBow−tie
(I,O)

as expected. Surprisingly, the distribution of EGFR signaling
network nodes into I-C-O layers remain similar to that of random networks with
relatively high percentage of core nodes, NRandom

C > NRandom
(I,O) as shown in Fig. 2.9

(a). This means that if any randomly generated network is rearranged into a bow-
tie/hourglass architecture having I-C-O layers, the core layer will end up having
more number of nodes contrary to the very definition of hourglass architecture. This
also suggests that the bow-tie networks are most fragile at the core layer, because if
any of those few core nodes are damaged, then the flow of information over entire
bow-tie network will be disrupted. On the other hand, the biochemical informa-
tion is spread throughout all the nodes of randomly interconnected EGFR signaling
network.

To further delineate the structural properties of I-C-O layer nodes, we use between-
ness centrality (BC) and clustering coefficient (CC) to compare the similarities and
differences with respect to that of synthetic bow-tie and Erdős-Rényi networks. BC
is a way of detecting the amount of influence a node has over the flow of informa-
tion in a graph. BC provides the extent to which a node lies on paths between other
nodes [73]. Nodes with high betweenness may have considerable influence within
a network by virtue of their control over information passing between others. They
are also the ones whose removal from the network will most disrupt communica-
tions between other vertices. Therefore, as expected core nodes have high BC in
case of bow-tie networks relative to its input and output nodes as show in Fig. 2.9
(b). However, Erdős-Rényi networks along with EGFR signaling network has even
higher BC values relative to their respective input and output layer nodes which is
starkly different to the bow-tie case.

Clustering coefficient is a measure of the degree to which nodes in a graph tend to
cluster together. When the connections are dense, the CC is high. It provides the
probability that 2 neighbors of a node are also neighbors i.e formation of a triangle
in a graph [73]. Core layer of a synthetic bow-tie network have a high CC relative
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Figure 2.9: EGFR network structure comparision with Random and Bowtie networks. (a)
Comparing distribution of nodes in input (green), core (red) and output (purple) layers in
EGFR network with (100) randomly connected networks and (100) pure bow-tie networks.
Using (b) Betweenness centrality and (c) clustering coefficient to further analyze the struc-
tural differences between the nodes in I-C-O layers in random and bowtie network types.
(d) Using relative non-randomness to compare the structural similarity of the entire afore-
mentioned networks with Erdős-Rényi networks which has 0 non-randomness values [106].

to its input and output layers, meaning that the bow-tie networks have uneven dis-
tribution of connections and are more densely connected with high CC at core layer
as shown in Fig. 2.9 (c). On the other hand, both EGFR and Erdős-Rényi random
networks has small CC in all three I-C-O layers, reflecting an even distribution of
connections all over the network and also that these networks do not have any lo-
cally clustered nodes carrying majority of the information, rather it is distributed
throughout the network evenly.

The analysis showed that the EGFR signaling network is similar to the structural



58 Chapter 2. Results

properties of an Erdős-Rényi network rather than that of bow-tie or hourglass net-
work. Therefore, to further understand the global property of EGFR signaling net-
work with that of synthetic bow-tie and Erdős-Rényi networks, we computed the
degree of non-randomness present in each of these networks using a relative non-
randomness measure [106]. This measure indicates to what extent a graph G is dif-
ferent from random graphs in terms of probability. When it is close to 0, the graph
tends to be more likely generated by an Erdős-Rényi model. If a network or graph
G(n, m) is a set of n nodes connected by a set of m links E. The network under con-
sideration is binary, symmetric, connected, and without self-loops. Let A = (aij)n×n

be its adjacency matrix, aij = 1 if node i and j are connected and aij = 0 otherwise.
Let λi be the eigenvalues of A and xi the corresponding eigenvectors. Then, the
graph non-randomness of the overall graph G can be calculated using the following
Eq. 2.12:

RG = ∑
(u,v)∈E

R(u, v) =
1
2 ∑

u∈G
R(u) =

k

∑
i=1

λi (2.12)

The relative non-randomness of the overall graph G(n, m) can be calculated as (Eq.
2.13):

R∗G =
RG − [(n− 2k)p + k]√

2kp(1− p)
(2.13)

where p = 2km
n(n−k) and k is the number of communities in graph G. Non-randomness

between two graphs G1 and G2 can be compared. If |R∗G1
| < |R∗G2

| then one can con-
clude that G1 is more random than G2. As expected, Erdős-Rényi(ER) networks
have relative non-randomness measure close to 0, shown with blue in Fig. 2.9 (d).
On the other hand, synthetic bow-tie networks (light brown) have large relative non-
randomness values, meaning that the bow-tie networks are less random because of
their specifically designed structure and distribution of nodes in different layers.
Moreover, the relative non-randomness value of EGFR signaling network (red dia-
mond) also remained close to 0 and thereby fall in the distribution of ER networks.
These 3 network types can be compared as |R∗EGFR| ∼ |R∗Erdos−Renyi| < |R∗Bow−tie|.

Therefore, using these systematic methods based on various network structural
analysis and measures from graph-theory, we found that EGFR network is struc-
turally more similar to a randomly connected network. This implies that the dy-
namic extracellular information sensed and processed by the signaling network is
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not compressed at any ‘core’ layer, rather it is distributed throughout the high di-
mensional encoding layer. This suggests that the mapping of inputs through pheno-
typic outputs likely occurs through signaling transients.

2.5 Experimental examples of specificity and general-

ization in signaling networks

In the previous section, using graph-theoretic methods we identified that experimen-
tally identified EGFR signaling network is structurally more similar to a random
graph. This suggested that the extracellular information sensed and processed by
the cell surface receptor network is distributed throughout the signaling network,
rather than being projected upon any low dimensional intermediate layer. To un-
derstand this observation in detail and to validate our generalized theory of bio-
chemical information processing based on transients, in this section, we will use
experimentally identified biochemical signaling networks.

Experimental studies have shown that stimulating PC12 cells in microfludic device
with various frequencies of EGF signals generate completely opposite phenotypic
responses [78, 11], discussed in Section 1.4.4. Different temporal frequencies of EGF
results in proliferation and differentiation. This represents a perfect example ex-
hibiting completely opposed signal processing features of biochemical networks:
generalization, where same cellular response is generated when frequency of exter-
nal signals are different and also specificity, when different frequencies of signals are
interpreted differently generating opposite phenotypic responses. We therefore use
the experimentally identified EGFR signaling network (Fig. 2.8 (a)) to probe nu-
merically whether the concept of information processing with transients provides
explanation for the PC12 cells observations. Further, we will particularly use the ex-
perimentally established epidermal growth factor sensing receptor network at the
plasma membrane.

EGFR network has been experimentally shown to exhibit dynamic extracellular sig-
nal processing capabilities which can interpret temporally and spatially complex
growth factor patterns [84, 70]. EGFR network, established on the plasma mem-
brane of the cells processes information as a function of stimulus history through
reaction kinetics and vesicular dynamics of the receptor along with spatially es-
tablished interactions with protein tyrosine phosphatases (PTPs). EGFR system is
dynamically organized at ’criticality’ which is regulated by a spatially-distributed
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network of PTPRG and PTPN2 by maintaining the vesicular trafficking of the re-
ceptors, discussed in Section 1.4.1. Therefore, considering the nodes that regulates
the activity of EGFR with direct feedbacks: PTPRG, PTPN2, SHP1 and SHP2. The
equations of the overall EGFR network can be written with the law of mass action,
given in Appendix A.

Figure 2.10: EGFR degradation and response temporal profile with a time-varying EGF
stimulation. (a) Tanh function used to control the rate of EGFRT degradation after every
pulse of EGF stimulation. (b) EGFR response temporal profile (black) for an input (blue) of
3 minutes consecutive pulses with 20 minutes of IPI or 3’20’.

These EGFR network equations are used to obtain the bifurcation diagram with re-
spect to EGFRT as the bifurcation parameter. The magenta region represents the
’critical’ regime of saddle-node bifurcation obtained at EGFRSN2

T = 1.23, where the
EGFR receptor network is dynamically organized [84, 85]. However, the ligand-
bound receptors are unidirectionally internalized and degraded while the ligand-
less receptors that have been internalized are deactivated and recycled back to the
plasma membrane. Furthermore, the unidirectional internalization of ligand-bound
receptors decreases the EGFR concentration on the plasma membrane. In other
words, this decreases the receptor’s steady-state concentration upon each growth
factor stimulus, effectively shifting the system towards monostable regime away
from ’critical’ organization near the saddle-node bifurcation [52]. Therefore, this
process results in the loss of dynamic memory which arises in the receptor activity
because of the ’ghost’ of saddle-node bifurcation. The decrease of the total receptor
concentration at the plasma membrane is modeled using a nonlinear Tanh function
as represented by the following Eq. 2.14:

EGFRNew
T = tanh(EGFROld

T ) (2.14)
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Starting from the ‘critical’ organization near SN2 at EGFRSN2
T = 1.23, receptor con-

centration is iteratively removed from the plasma membrane at the end of every
growth-factor pulse as shown in Fig. 2.10 (a). A representative response profile
(EGFRp + EGFEGFRp) is shown in Fig. 2.10 (b) when the EGFR receptor network
is organized near ’criticality’ and the degradation follows according to stimulation
by a time-varying signal having a temporal frequency of 3 minutes consecutive
pulses with 20 minutes inter-pulse intervals. The dynamic memory arising from
’critical’ organization of receptor network near the saddle-node enables the inte-
gration of first three input pulses altogether. The memory duration shortens after
the fourth pulse and the system eventually reaches the monostable regime, where
the input pulse cannot activate the system anymore and therefore it remains in the
basal steady state. This mimics the experimental observations where EGFR sensing
system integrates the consecutive EGF pulses and gradually shifts away from ’criti-
cally’ [84, 85].

2.5.0.1 Noise in biochemical networks

In order to get reasonably more close to experimental observations and real bio-
chemical networks, we also account for stochasticity in our simulations. For that,
we performed stochastic simulations using additive Gaussian white noise, where
the noise intensity was estimated from experimental measurements of temporal
EGFR and ERK activity profiles. The noise estimation method we employed, is
based on the functional dependency of coarse-grained correlation entropy K2(ε) on
the threshold parameter ε [47]. The correlation function K2(ε) depends on the stan-
dard deviation σ of the noise in a characteristic way. Therefore, by approximation
of K2(ε) one can estimate the noise level σ present in experimental data. The coarse-
grained correlation entropy can be approximated using Eq. 2.15:

K2 ≈ ln
〈n〉 − 1
〈n〉 − 2

(2.15)

where 〈n〉 is the average diagonal line of length greater than 1. To estimate the noise
level σ one can use correlation entropy Knoisy(ε) and fit Knoisy(ε)ε

p to corresponding
experimental data. Therefore, one needs to estimate five free parameters κ, σ, a, b,
and c for the function given by Eq. 2.16:
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Knoisy(ε)ε
p = −cεpg

( ε

2σ

)
ln ε + [κ + b ln(1− aε)]εp

(
1 +
√

π

√
ε2/3 + 2σ2 − ε/

√
3

ε

)
(2.16)

Figure 2.11: Noise level estimation in experimental EGFR and ERK activity profiles. (a)
EGFRp response time profile of 5 cells after stimulation by a single 5-min pulse of EGF. (b)
Knoisy(ε) function is fitted (in orange) for the entropy calculated from Eq. 2.15 for EGFRp
data. (c) ERK response time profile with EGF stimulation of signal frequencies 3’3’ (top) and
3’10’ (bottom). (d) Knoisy(ε) function is fitted (in orange) for entropy calculated from ERK
data. Average Knoisy(ε) value is taken over repetitions of cell numbers in both cases.

We used this method on single 5-minute EGF pulse experiments performed on
MCF7 cells to estimate the strength of noise present at the cell surface receptor level
[70]. EGFR phosphorilation time profiles used for noise estimation are shown in
Fig. 2.11 (a). Each of the EGFRp response curves are used to obtained the entropy
K2 using Eq. 2.15. Then, the correlation entropy Knoisy(ε) curve is fitted to the exper-
imental entropy using curve_fit function in scipy.optimize module of Python, as
shown in Fig. 2.11 (b). Of all other fitted parameters, σ gives the estimate of noise
present in experimental data, which is σ = 0.023± 0.0133. Therefore, the amount
of noise present at the receptor level is estimated to be O(10−2). We also estimated
the amount of noise present in downstream signaling network as well. For that we
used experimentally obtained ERK response profiles, with EGF stimulation by sig-
nals of temporal frequencies 3′3′ and 3′10′ as shown in Fig. 2.11 (c). Following the
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same procedure as described above, σ = 0.009 ± 0.0099 when the correlation en-
tropy Knoisy(ε) curve is fitted to the experimental entropy as shown in Fig. 2.11 (d).
Therefore, the amount of noise present in the downstream signaling network level
is estimated to be O(10−3). The noise level estimated to be present in downstream
signaling level is found to be less by an order of magnitude of O(10−1) relative to
the noise present in EGFR receptor level.

2.5.1 Proliferation and differentiation class trajectories remain sep-

arated in phase-space for EGF stimulation

With input signal dependent degradation of receptors from plasma membrane and
noise incorporated in receptor and downstream signaling nodes, the 56 nodes EGFR
signaling is used to test signals belonging to different phenotypic classes obtained
experimentally. The downstream EGFR signaling network is modeled using the
same BST Eq. 2.2 discussed in Section 2.1.1. EGFR signaling network is simulated
for various dynamic externals signals belonging to proliferation and differentiation
classes, summarized in Table. 1.1. Starting with time-varying signals belonging to
proliferation, time profiles of ERK responses corresponding to EGF stimulation with
3’3’ and 3’60’ signals are shown in Fig. 2.12 (a) with orange and blue curves respec-
tively. Trajectories generated in first 1 hour for both the signals in 3D phase-space
of [EGFRp, ERK, MEKK1] is shown in Fig. 2.12 (b). Darker parts of the trajectories
represent the presence of input pulses while the lighter parts represent the system
dynamics in IPI duration, or when the input pulse is not present. Trajectories for
both the signals remain close to each other and generate a characteristic shape in
phase-space. Time profiles and 3D phase-space trajectories corresponding to differ-
entiation signals [3’10’, 3’20’] are shown in Fig. 2.12 (c, d) respectively with green
and red curves. Both the differentiation class trajectories cover the same area of
phase-space and generate a characteristic shape that is distinct from that of prolif-
eration class. The trajectories generated in case of signals belonging to proliferation
class remain in the outer periphery of the volume covered by the trajectories of dif-
ferentiation class.

These characteristic differences (and similarities) between trajectories generated by
signals of different (and same) phenotypic classes can be quantified using a eu-
clidean distance (ED) given by Eq. 2.10 in Section 2.2.2. In order to compare the
shapes of trajectories within the same phenotype class, the trajectories belonging to
same class are first dynamically time warped to remove the temporal dependen-
cies using dynamic time warping (DTW) method. The DTW is carried out using
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Figure 2.12: Simulations of large EGFR network with different frequencies of EGF stim-
ulation corresponding to proliferation and differentiation. (a) ERK response temporal
profiles for input signals 3’3’ (orange) and 3’60’ (blue) corresponding to proliferation and
(b) phase-space trajectories in 3-dimensions of respective input signals in 1 hour of input
stimulus. (c) ERK response temporal profiles for input signals 3’10’ (green) and 3’20’ (red)
corresponding to differentiation and (d) phase-space trajectories in 3-D of respective input
signals in 1 hour of input stimulus. (e) Mean euclidean distance (EDTrj

N=3) in 3-D calculated
in 1 hour for all combinations of signals belonging to same class i.e within proliferation and
differentiation class and across these two classes.
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the DTAIDistance package in Python. Mean ED is calculated for 10 repetitions of
each input signal and over 1 hour of duration. First, the separation is calculated
between the same class of trajectories, meaning within the proliferation class and
also within the differentiation class, shown in Fig. 2.12 (e). The mean ED remains
low and for both cases it is < 0.3. Low ED value represents that the considered
trajectories remain close to each other in phase-space. Then, the separation of tra-
jectories for all possible combinations of signals belonging to different phenotypic
classes is calculated. As shown in Fig. 2.12 (e), the mean ED remains above 0.3 for
all the combination of signals. High ED represents that the considered trajectories
have different characteristic curves and are separated in phase-space.

Figure 2.13: Earliest time-point of separation between same and different phenotypic
class trajectories. (a) Mean ED over time between trajectories of inputs belonging to same
phenotypic class: differentiation - 3’10’ and 3’20’ (magenta) while ED between that of dif-
ferent phenotypic classes: 3’60’ (proliferation) and 3’10’ (differentiation) (red). (b) p-values
over time of Kolmogorov-Smirnov (KS) test between the two EDs in (a).

The results demonstrate that the phase-space trajectories generated by inputs result-
ing in same phenotypic responses are characteristically similar to each other. On the
other hand, trajectories resulting in opposite phenotypic responses have distinctive
trajectories spanning different areas of phase-space. In other words, inputs resulting
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in same phenotypic outcomes will generate trajectories having similar characteristic
features in phase-space.

This observation raises another important question: if the information of cellular
responses are encoded via transients, then how long after the stimulation by a dy-
namic signal the information about a phenotype is present in the dynamics of the
protein interaction network. This can found by identifying the time when these
trajectories get separated in phase-space. Therefore, we obtained the ED between
trajectories of same phenotypic class [3’10’, 3’20’] and also between trajectories of
different phenotypic classes [3’60’, 3’10’] over every time point as shown in Fig. 2.13
(a) with red and purple curves respectively. As expected, the ED between the tra-
jectories generated from different classes of inputs remain higher as compared to
the ED between trajectories of same input class, but the separation is observed ∼ 27
minutes, shown by a blue triangle in Fig. 2.13 (b).

Therefore, the dynamic signals belonging to different phenotypic classes are inte-
grated differently by the EGFR signaling network. This information is transmitted
and encoded in the downstream signaling network in the form of characteristically
different phase-space trajectories enabled by the dynamic memory in the input layer.
Furthermore, information about the same phenotype is encoded in similar trajecto-
ries which have characteristically similar features and remain close to each other
in phase-space. Trajectories belonging to different phenotypic classes, however re-
main close-by for ∼ 27 minutes and separate afterwards. This gives an insight into
the duration a cell takes for making decision about completely opposite phenotypic
response for instance, proliferation or differentiation, depending on the time vary-
ing extracellular signals.

2.5.2 Experimental evidence for the encoding of phenotypic infor-

mation via phase-space trajectories

We next used the publicly available experimental data in which external dynamic
signals are used to generate completely opposite phenotypic responses of prolif-
eration and differentiation, depending on their temporal profiles [78]. The data
available is only of ERK response profiles i.e 1D time series. Therefore, we use
the method of reconstructing multidimensional trajectories in phase-space using
time-delay embedding method [89, 48, 66]. The single dimensional observations
are a projection of the multidimensional state space of the system onto the one-
dimensional axis. The purpose of the time-delay embedding is to unfold the projec-
tion back to a multivariate state space that is representative of the original system
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[48]. The minimum embedding dimension is obtained using False Nearest Neighbor
(FNN) method proposed by Kennel et al. [48]. A false neighbor is a point in the
data set that is a neighbor when the embedding space is too small for the attractor.
However, when a large enough embedding space is achieved, all the neighbors of
every attractor point in the multivariate phase-space will be the true neighbors. The
optimal time-delay (τ) is obtained using the mutual information (MI) which was
suggested by Fraser and Swinney [28]. The MI takes into account nonlinear correla-
tions and if the time delayed mutual information exhibits a marked minimum at a
certain value of τ, then this is a good candidate for a reasonable time delay.

ERK response profiles with time-varying external signals of 25 ng/ml EGF stimu-
lation is used for reconstructing the trajectories in multidimensional phase-space.
First, the data of each cell (total 30 cells) is denoised using signal_savgol_filter
in Scipy module of Python. The average was taken over all cells of denoised data
for each of the signal frequency i.e [3’3’, 3’10’, 3’20’, 3’60’]. MI is calculated for each
signal frequency data, and obtained the time-delays of [3, 2, 3, 3] respective to sig-
nal frequencies as shown in Fig. 2.14 (a). The minimum embedding dimensions are
estimated to be 3 for all signal frequencies, Fig. 2.14 (b).

Figure 2.14: Mutual Information (MI) and False Nearest Neighbor. (a) For EGF stimu-
lation, Mutual Information is calculated for first 1-hour of ERK response. First minimums
marked with dots of same color of respective signal frequency data. (b) Minimal sufficient
embedding dimension obtained using false nearest neighbor method.

3D phase-space trajectories are reconstructed from individual ERK time profiles us-
ing the obtained time-delays for each of the given signal frequency data. Recon-
structed trajectories for the signals belonging to proliferation class i.e 3’3’ and 3’60’
are shown in Fig. 2.15 (a) with orange and blue trajectories respectively, where the
mean trajectory is shown with thick curve and thin curves represents the individual
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Figure 2.15: Reconstructed trajectories from ERK experimental data resulting in Prolifera-
tion and differentiation for EGF stimulation. (a, b) Reconstructed phase-space trajectories
from experimental data for input frequencies resulting in proliferation and differentiation
respectively. (c) Mean euclidean distance (EDTrj

N=3) in 3-D calculated in 1 hour for all com-
binations of signals belonging to same class i.e within proliferation and differentiation class
and across these two classes. (d) Mean ED between 3’60’ 3’10’ (purple) and between 3’10’
3’20’ (red) for reconstructed trajectories. (e) KS-p test over time between the two EDs in (d).

reconstructed trajectories. Similarly, reconstructed trajectories for the signals be-
longing to differentiation class i.e 3’10’ (green) and 3’20’ (red) are shown in Fig. 2.15
(b). Both the reconstructed trajectories of differentiation class signals have char-
acteristic curves and loops in the phase-space as observed in the simulations. On
the other hand, trajectories belonging to proliferation class are completely opposite
and stays in the periphery of the volume covered by differentiation class trajecto-
ries. In order to quantify the separation between trajectories of same and different
class of signals, we used the ED measure. Trajectories of same phenotype class are
dynamically time warped to compare the shape of same trajectories and remove
temporal dependencies. Mean ED is calculated with 48 different cell-combinations
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over 1 hour of duration. Separation between reconstructed trajectories belonging
to same class of signals: [3’3’, 3’60’] i.e within proliferation class and [3’10’, 3’20’]
i.e within differentiation class, remains small i.e below 0.08 as shown in Fig. 2.15
(c). On the other hand, the mean ED remains above 0.09 for all the combination of
signal trajectories belonging to different phenotypic classes. The ED remains small
between reconstructed trajectories belonging to same class of signals while that of
belonging to different phenotypic classes remain high. Separation of trajectories in
both these cases are significantly different when tested with Kolmogorov-Smirnov
(KS) test with p-value < 10−11. Furthermore, we obtained the earliest time point of
separation between trajectories belonging to same and different phenotypic classes.
For that, ED over time is obtained between [3’60’, 3’10’] shown with purple curve
in Fig. 2.15 (d) and also between [3’10’, 3’20’] shown with red. To obtain the earliest
separation time between these two EDs, we carried out KS-p test which appears at
∼ 28 minutes, shown with blue triangle in Fig. 2.13 (e). The earliest time of separa-
tion between reconstructed trajectories also closely follows the observations made
using stochastic simulations.

These results confirm the predictions that the phase-space trajectories generated by
inputs resulting in same phenotypic responses are characteristically similar to each
other, contrary to the distinct trajectories of different phenotypic class signals. All
the trajectories generated by signals belonging to differentiation class have charac-
teristic loops and curves covering a large volume of phase-space. On the the other
hand, trajectories generated by signals belonging to proliferation class always re-
main characteristically on the periphery of the volume covered by differentiation
class trajectories. These distinct features of proliferation and differentiation class tra-
jectories are observed equivalently both in stochastic simulations and reconstructed
trajectories from the experimental data. Aligned with the simulations, the quantifi-
cation of separation between trajectories based on ED measure between the trajecto-
ries from different phenotypic classes always remain higher as compared to the ED
between trajectories of same phenotypic class.
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2.5.3 Differentiation and proliferation class trajectories stay sepa-

rated in phase-space for NGF stimulation

Stimulation of PC12 cells with nerve growth factor (NGF) have been shown to gen-
erate sustained ERK activity which result in differentiation [79]. However, recent
studies show that stimulating PC12 cells with different frequencies of NGF induces
differentiation, as well as proliferation [78, 11]. This provides us with another ex-
ample where different phenotypic responses are generated depending on temporal
frequency of growth factor signal. Therefore, we tested our hypothesis by stochastic
simulations and using publicly available experimental data for PC12 cells stimu-
lation with different frequencies of NGF signals. Tropomyosin receptor kinase A
(TrkA) is the high affinity receptor for NGF, which mediates neuronal differenti-
ation, proliferation and programmed cell death. TrkA receptors have been found
to remain on cell membrane for longer duration [31] as compared to EGFR recep-
tors. To perform the simulations based on different temporal frequencies of NGF
stimulus, we employ the same method used to model the decrease of receptor con-
centration on the plasma membrane for EGFR stimulation by dynamic EGF signals,
as discussed in Section 2.5. The degradation of receptors from the cell membrane
is modeled using a nonlinear Tanh function as represented by Eq. 2.14, however
the rate of degradation of TrkA receptors from plasma membrane is decreased by
∼ 33% with respect to that of EGFR case.

Using same noise levels as estimated before, we performed stochastic simulations
on EGFR signaling network for different frequencies of input signals given in Table
1.1 for NGF case. Proliferation class contains only one signal with a temporal fre-
quency of 3’60’, while differentiation class contains three signals [3’3’, 3’10’, 3’20’].
ERK time profiles for both the phenotype classes are given in Fig. 2.16 (a) and (c)
respectively. Slow degradation rate of receptors from the plasma membrane of the
cell results in longer and characteristically different ERK response profiles with re-
spect to that of EGF stimulation case. 3 dimensional phase-space trajectories for
both phenotype class signals are shown in Fig. 2.16 (b) and (d). Again, the trajec-
tories in the proliferation class are completely different to those of differentiation
class. The proliferation class trajectory remain characteristically on the periphery
of the volume covered by differentiation class trajectories, similar to as observed
in the case of EGF stimulation. The quantification of separation is obtained using
the mean ED measure between dynamically time-warped trajectories. As shown in
Fig. 2.16 (e), trajectories belonging to the differentiation class remain close to each
other in 3D phase-space marked by a small ED between all possible combinations
of signals falling within the same phenotype class. On the other hand, trajectories of
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Figure 2.16: Simulations with different frequencies of NGF stimulation corresponding to
proliferation and differentiation. ERK response temporal profiles and phase-space trajec-
tories for input signals corresponding to (a, b) proliferation and (c, d) differentiation classes
respectively. (e) Mean euclidean distance (EDTrj

N=3) in 3-D calculated in 1 hour for all com-
binations of signals belonging to same class i.e within proliferation and differentiation class
and across these two classes. (f) Mean ED over time between trajectories of inputs belong-
ing to same phenotypic class: differentiation - 3’10’ and 3’20’ (magenta) while ED between
that of different phenotypic classes: 3’60’ (proliferation) and 3’10’ (differentiation) (red). (g)
p-values over time of KS-test between the two EDs in (f).
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opposite phenotype classes are maximally separated, quantified by large ED mea-
sure. Separation of trajectories in both cases are significantly different when tested
with KS test with a p-value < 10−17. Furthermore, comparison of ED measure over
time between same phenotypic class trajectories [3’10, 3’20’] and between opposite
phenotypic class trajectories [3’60, 3’10’], shows that trajectories start close to each
other and separate quickly after ∼ 17.6 minutes, as shown in Fig. 2.16 (f).

These stochastic simulations mimicking NGF stimulation case based on experimen-
tal observations and estimated experimental noise demonstrate phenotypic class de-
pendent encoding of extracellular information in phase-space trajectories of ’encod-
ing’ layer network. Slow degradation of receptors from the cell membrane resulted
in longer memory duration and therefore external signals are integrated differently.
This resulted in a different categorization of signals into differentiation and prolif-
eration classes as compared to the phenotype classes in EGF stimulation case (Ta-
ble 1.1). However, the features of each of these phenotype class trajectories remain
same to what we observed in EGF stimulation case. Trajectories belonging to oppo-
site phenotype class signals are characteristically distinct contrary to the same class
trajectories which have similar features and curves in phase-space. The separation
between trajectories is further quantified using ED measure, where maximal separa-
tion between different phenotypic class trajectories remain significantly larger than
the small separation between same class trajectories. These observations are similar
to what we found in both the simulations and reconstructed trajectories from exper-
imental data in case of EGF stimulation.
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2.5.3.1 Reconstructed trajectories follow phenotypic class specific features in phase-
space for NGF stimulation

We next used the publicly available experimental data [78] of ERK response profiles
for different frequencies of dynamic NGF signals. Generating the phase space trajec-
tories from this NGF experimental data using the time-delay embedding method as
previously. We used 50 ng/ml NGF stimulation data available for signals of tempo-
ral frequencies [3’3’, 3’10’, 3’20’, 3’60’]. Using the same procedure, first the average
of each signal frequency denoised data is obtained for 30 cells. Calculation of mu-
tual information gave time-delays of [4, 3, 3, 3], with an embedding dimension of 3
obtained using false nearest neighbor method.

3D phase-space trajectories are reconstructed from individual ERK time profiles us-
ing the obtained time-delays for each of the given signal frequency data. Recon-
structed trajectory for the signal belonging to proliferation class i.e 3’60’ is shown
in Fig. 2.17 (a) with mean trajectory shown with thick curve and thin curves rep-
resent the individual reconstructed trajectories. Similarly, reconstructed trajectories
for the signals belonging to differentiation class i.e 3’3’ (orange), 3’10’ (green) and
3’20’ (red) are shown in Fig. 2.17 (b). All the reconstructed trajectories of differenti-
ation class signals have characteristic curves and loops in phase-space as observed
in simulations and also in the case of EGF stimulation. On the other hand, trajec-
tory belonging to proliferation class is stays in the periphery of the volume covered
by differentiation class trajectories as observed in the simulations as well as for the
EGF stimulation case. This separation between same and different phenotype class
trajectories is obtained using the mean ED measure of dynamically time-warped
trajectories. Similar to the simulations, the separation is maximal between different
phenotypic class trajectories which remain significantly larger (p < 10−7, KS test)
than the low separation between same class trajectories (Fig. 2.17 (c)). Furthermore,
comparing the EDs over time of trajectories within the same and different pheno-
type classes (Fig. 2.17 (d)), reveals the earliest time-point of separation between the
trajectories, which appears at ∼ 11 minutes (Fig. 2.17 (e)).

Reconstructed phase-space trajectories from experimental data of NGF stimulation
show characteristic differences and quantified separation between those of differen-
tiation and proliferation classes, these results closely follows all the observations
made based on stochastic simulations. Furthermore, we observed consistencies
not just with the NGF based simulations but also with the results obtained using
stochastic simulations and reconstructed trajectories from EGF stimulation exper-
imental data. First, same characteristic features of trajectories in 3D phase-space
generated by signals of same phenotypic class. In case of trajectories generated by
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Figure 2.17: Reconstructed trajectories from ERK experimental data resulting in Prolifera-
tion and differentiation for NGF stimulation. (a, b) Reconstructed phase-space trajectories
from experimental data for input frequencies resulting in proliferation and differentiation
respectively. (c) Mean euclidean distance (EDTrj

N=3) in 3-D calculated in 1 hour for all com-
binations of signals belonging to same class i.e within proliferation and differentiation class
and across these two classes. (d) Mean ED between 3’60’ 3’10’ (purple) and between 3’10’
3’20’ (red) for reconstructed trajectories. (e) KS-p test over time between the two EDs in (d).

signals of differentiation class, trajectories are shown to have characteristic loops
and curves covering a large volume of phase-space for both EGF and NGF stimu-
lation. For proliferation class, trajectories remain characteristically on the periphery
of the volume covered by differentiation class trajectories. Not just the characteris-
tic observations of trajectory features, the quantification of separation between these
trajectories are also consistent for both the growth-factors. The ED measure between
same phenotypic class trajectories is found to be significantly lower than the sepa-
ration between different class trajectories. This suggests that trajectories belonging
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to the same phenotypic class elapses the same volume in 3D phase-space and re-
main close to each other, while they remain separated in different parts of phase-
space with different characteristics when trajectories belong to opposite phenotype
classes. This observation also remain consistent for both EGF and NGF stimulation.
Therefore, the similarities in same phenotype class trajectories for EGF and NGF
stimulation, suggests that the information of same phenotype is encoded similarly
in the ’encoding’ layer network for both the growth factors.

2.5.4 Conserved proliferation and differentiation class trajectories

irrespective of growth factor identity

In the previous section, we used stochastic simulations and experimental data to
reconstruct phase-space trajectories of differentiation and proliferation classes. Sim-
ilarities are found in phase-space characteristics and in separation property between
same phenotype class trajectories in both the cases of EGF and NGF stimulation. To
verify these findings, we calculated the separation when the trajectories are gener-
ated by different growth-factors and categorize them accordingly if both the consid-
ered trajectories are generated by the same or different phenotypic class. We used
this systematic method on stochastic simulations as well as on reconstructed trajec-
tories from EGF and NGF stimulation experimental data.

Trajectories belonging to same phenotypic class can further be classified into two
sub-categories: one belonging to proliferation class denoted by [PEGF, PNGF] and
the other, differentiation class denoted by [DEGF, DNGF]. In all the cases, we fixed
the first trajectory to be that of EGF while the second one of NGF stimulation. Start-
ing with simulations, the separation between same phenotype class trajectories re-
mains small (≤ 0.3) for both the cases as shown in Fig. 2.18 (a) with filled circles.
Then, all the trajectory combinations are taken when they belong to opposite pheno-
type classes and arranged into two categories: [PEGF, DNGF] and [DEGF, PNGF]. The
mean ED between different phenotype class trajectories remain high (> 0.4) shown
with filled squares in Fig. 2.18 (a). The separation between different classes of tra-
jectories remains significantly higher than those of same phenotypic classes, tested
with KS test with p < 10−47. Similarly, the separation between reconstructed tra-
jectories from EGF and NGF stimulation experimental data is obtained for the two
cases and subcategories using the same procedure as mentioned for simulations.
The mean EDs between different classes of reconstructed trajectories remains signif-
icantly higher than those of same phenotypic classes with a p-value < 10−21 for KS
test between the two cases, shown in Fig. 2.18 (b).
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Figure 2.18: Conserved proliferation and differentiation class trajectories and separation
between them. Mean euclidean distance (EDTrj

N=3) in 3-D calculated in 1 hour for all combi-
nations of signals belonging to same class i.e within proliferation(P) and differentiation(D)
class and between these two classes where first trajectory belonging to EGF stimulation
while second that of NGF. EDs in (a) simulations and (b) reconstructed phase-space trajec-
tories from experimental data.

This confirms that the extracellular information processed by different receptors for
same phenotype class is encoded in similar phase-space trajectories. Same class of
trajectories have similar characteristic features in phase-space and remain close to
each other. On the other hand, opposite phenotype classes are encoded differently,
with distinct characteristic features in phase-space and remain separated with each
other, quantified by large ED measure. Furthermore, these characteristic features
and quantification of separation between trajectories remain same even if generated
by different growth-factors and respective receptors. This means that the informa-
tion about same phenotype is processed similarly by different cell surface receptors
and also encoded similarly in the ’encoding’ layer network. This also proves the
extracellular signal frequency dependent mapping of information to specific pheno-
type class trajectories irrespective of the growth-factor identity.
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2.5.5 The information from the extracellular inputs is distributed

throughout the encoding network

Figure 2.19: Community structure of EGFR network. (a) Rearranged EGFR network ac-
cording to communities present within the network. ED calculation with different choices
of nodes according to communities in (b) 3D and (c) 4D. Comparing EDs distribution when
all the nodes are from same community (red and purple) and all from different communities
(grey and green) respectively in 3D and 4D.

Using network structural analysis and graph-theoretic methods we found that EGFR
signaling network is similar to Erdős-Rényi random networks. Extracellular infor-
mation of different phenotypes is sensed by the cell surface receptors and there-
fore, distributed throughout the signaling network instead of passing via any in-
termediate bottleneck layer. The phenotypic information encoded in the phase-
space trajectories of EGFR signaling network was obtained using the [EGFRp, ERK,
MEKK1] nodes, in the previous section. However, since the information is dis-
tributed throughout the signaling network and therefore, it can be retrieved from
any node within the network. In order to investigate this, we next analyzed whether
the community structure of the signaling network can be utilized to optimize the
selection of nodes to extract the phenotypic information. In network science, a com-
munity is defined as a subset of nodes within the graph such that connections be-
tween the same community nodes are denser than connections with the rest of the
network [32, 72, 73]. We inspected if the given number of nodes selected from differ-
ent communities carry more phenotypic information than the nodes selected from
the same community.
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First, we rearranged the EGFR signaling network according to different communi-
ties present in the network using greedy modularity community algorithm. For that,
we used the Networkx function of same name in Python. We identified that EGFR
signaling network can be sorted into 6 different communities as shown in Fig. 2.19
(a), nodes falling under same community are shown with same color. According to
different communities present in the network, we have multiple ways of selecting
the nodes. We made the selection of nodes based on two categories: (A) all nodes
from same community, (B) all nodes from different communities. First we selected
only 3 nodes to obtain the ED separation for same phenotype class trajectories [3’10’,
3’20’](red, grey) and for different phenotype classes [3’60’, 3’10’](purple, green) as
shown in Fig. 2.19 (b). When the nodes are selected from different communities
there is negligible separation between same and different class trajectories as com-
pared to nodes selection from same community. However, in 4D, this separation
enhances when all the 4 nodes are selected from different communities of EGFR
signaling network as shown in Fig. 2.19 (c). This suggests that different communi-
ties carry more phenotypic information than the same community. Therefore, the
extraction of phenotypic information encoded in signaling network transients can
be maximized if all the considered nodes belong to different communities of the
network.

2.6 Feed-forward early response gene networks decode

the information of the phenotypic states

We provided a general framework for the processing of time-varying extracellular
signals at the ’input’ layer level and encoding of this receptor-processed information
in phenotype-specific trajectories by the ’encoding’ layer network. In this section,
we provide a basic framework explaining how these unique phenotype-specific tra-
jectories in phase-space are interpreted and translated into corresponding pheno-
typic outputs. The first responders to the characteristic signaling network activation
profiles are the immediate early genes, which are directly responsible for triggering
the expression of the delayed early genes [81]. We propose that a minimal network
structure that can decode the phenotypic information encoded in phase-space tra-
jectories is the feed-forward network structure. In this way, we provide a general and
complete framework for sensing, encoding and decoding of extracellular informa-
tion by biochemical networks at ’input’, ’encoding’ and ’output’ layers respectively.
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2.6.1 Classifying extracellular dynamic signals as that of differen-

tiation or proliferation using feed-forward network

Feed-forward structure of the ’output’ network is the minimal and least complex net-
work structure that is considered to resolve the information encoded in signaling
network transients. In this section, we test the capabilities of a feed-forward network
structure to decode the phenotypic information encoded in the phase-space trajec-
tories of a signaling network. For that, we use a 30 node feed-forward ’output’ layer
network to resolve the different phase-space trajectories of EGFR signaling network
corresponding to differentiation or proliferation, schematically shown in Fig. 2.20.

Multilayer feed-forward networks (FFN), by definition have several input nodes via
which internal nodes of the network receives information and an output node. In
this study, we used a 3-layered FFN with each layer having 10 nodes and 3 input
nodes. The dynamics of the internal FFN nodes are defined by the rectified linear
activation (ReLU) function given by Eq. 2.17. The output of this function linearly
increases with positive input.

f (x) =

0 if x < 0

x if x ≥ 0.
(2.17)

The full biochemical network consisting of EGFR signaling network with [ERK1/2,
MKK1, Ras] (green nodes) as input for the ’output’ layer (yellow nodes) is shown
in Fig. 2.20 (a). The ’output’ layer network is parameterized to generate an output
of 1 for all those 3D phase-space trajectories corresponding to differentiation signals
(3’10’ and 3’20’), while 0 for that of proliferation signals (3’3’ and 3’60’). As shown
with red dots in Fig. 2.20 (b), both the trajectories belonging to differentiation signals
(with inter-pulse interval of 10 and 20) are classified as that of differentiation while
the trajectories corresponding to proliferation signals (with inter-pulse interval of 3
and 60) are classified with a low differentiation value (∼ 0.1) meaning proliferation.
Based on this parameterization, a range of EGFR signaling network trajectories gen-
erated by external signals of fixed 3 minute input pulses with an IPI ∈ (3, 60) are
classified as that of differentiation or proliferation shown with blue dots in Fig. 2.20
(b). It is evident that multiple trajectories are classified to result in differentiation,
specially in the range with IPI ∈ (8, 20).

Furthermore, in order to elucidate how the information contained in these phenotype-
specific trajectories is decoded by the ’output’ layer, we observed the responses of
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Figure 2.20: Experimentally identified EGFR network with an arbitrary ’Output Layer’
for prediction of differentiation and proliferation class dynamic input signals. (a) Exper-
imentally identified EGFR network with an arbitrary feedforward ’Output Layer’ network
(yellow nodes). (b) A 35 node feedforward network arranged in 4 layers (5-10-10-10) is used
for predicting trajectories generated by ’Encoding Layer’ nodes as differentiation percent-
age. All inputs have 3 minutes of pulse followed by mentioned IPI. Network is parameter-
ized using trajectories of red colored input signals and blue colored ones are the predictions
by ’Output Node’ of feedforward network. (c) Phase-space trajectories of selected ’Output
Layer’ nodes for mentioned input signal frequencies of proliferation (left) and differenti-
ation (right) classes. (d, e) EDFFNet. over time between same (red, orange) and different
(magenta, blue) phenotypic classes of trjectories generated by ’Output Layer’ nodes [a, b, c]
in panel (c).

three randomly selected FFN nodes namely [a, b, c]. Trajectory in the phase-space
of ’output’ layer nodes [a, b, c] belonging to proliferation class signal 3’60’ is shown
with blue in Fig. 2.20 (c) (left). Two more exemplar trajectories of signals classi-
fied as that of proliferation, 3’50’ (pink) and 3’45’(olive) are also plotted along-with.
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This shows that just like the trajectories of signaling network, the decoded informa-
tion is represented in the form of transients of the ’output’ layer node dynamics.
Decoded information belonging to proliferation is represented by distinct ’output’
network trajectories, than those corresponding to differentiation signals [3’10’, 3’8’,
3’12’] shown in Fig. 2.20 (c) (right). It is also evident that the decoded information
of same phenotype class is represented in similar ’output’ layer node trajectories.
The separation between trajectories of ’output’ layer nodes [a, b, c] for experimen-
tally found signals of same and different phenotype classes is obtained using ED as
shown in Fig. 2.20 (d). The ’output’ layer trajectories of different class of signals
[3’60’, 3’10’] (magenta) are maximally separated with high ED while those of same
class [3’10’, 3’20’] (red) remain close-by which is reflected in small ED over the entire
time. This is similar to the observations made for the signaling network trajectories
when the information of different phenotypes are encoded by distinct phase-space
trajectories of ’encoding’ layer. Furthermore, the separation property of decoded
phenotypic information is also present in the new signals classified as that of dif-
ferentiation and proliferation shown in Fig. 2.20 (e), where [3’8’, 3’12’] (orange) are
classified result in differentiation and therefore remain together while [3’50’, 3’8’]
are classified to result in opposite phenotypes and therefore they are separated by
large ED.

The feed-forward structured ’output’ layer network decodes and accurately classi-
fies all the experimentally determined time-varying signals according to the ob-
served phenotypes. Furthermore, the ’output’ layer classified signaling network
trajectories of completely new dynamic external signals as that of proliferation or
differentiation. Therefore, with the feed-forward structured ’output’ layer network
we predicted new external signals that will result in proliferation or differentiation.
Probing into the decoding mechanism of FFN revealed that signaling network tra-
jectories of same phenotype class generates similar responses trajectories in ’output’
layer network.
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2.6.2 Efficient decoding of phenotypic information by feedforward

’output’ layer irrespective of node distribution

A three layered feed-forward network as ’output’ layer accurately decoded the phe-
notypic information encoded in EGFR signaling network trajectories. The consid-
ered ’output’ network had a total of 30 nodes divided equally in 3 internal layers.
We next asked the question whether the node and layer distribution of the ’output’
layer affect its information decoding features?

Figure 2.21: Separation of ’Output Layer’ node trajectories irrespective of nodes distri-
bution in feedforward network structure of ERG. (a, b) EDFFNet. in 3D between same (red
(a), orange (b)) and different (magenta (a), blue (b)) phenotypic classes of trajectories gener-
ated by ’Output Layer’ nodes with respect to different distributions of 30 nodes in feedfor-
ward network structure of ’Output Layer’. 100 combinations of 3 randomly selected ’Output
Layer’ nodes are used for ED calculation.
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We approached this problem from the perspective of resource-constraint, where we
restricted only 30 nodes to be rearranged in different number of internal layers of
’output’ network, and also by changing the ratio of nodes in these layers. This rear-
rangement of nodes into various layers can be categorized into 4 groups consisting
of 1, 2, 3 and 4 internal layered ’output’ networks. Using the same concept as de-
fined for signaling networks, the response trajectories in phase-space of ERG will
be separated for input signals generating different phenotypic responses. We previ-
ously observed that these ’output’ layer trajectories remain close to each other when
decoding information of same phenotypic response and separate for different phe-
notypic responses. We evaluated whether this feature of ’decoding’ layer will arise
independent of number of layers and distribution of nodes in the output network.
For that, we selected 3 random nodes from each of the ’output’ networks irrespec-
tive of any specific layer and calculated ED over 1 hour of response time, between
the trajectories generating same phenotypic output (3’10’ and 3’20’) (red) and also
between the trajectories generating different phenotypic outputs (3’60’ and 3’10’)
(magenta), shown in Fig. 2.21 (a). Furthermore, we also calculated the EDs between
EGFR signaling network trajectories of new signals classified as that of differentia-
tion and proliferation in the previous section, shown in Fig. 2.21 (b).

It is evident from this analysis that the response trajectories of nodes in feed-forward
structured ’output’ layer network are also characteristically unique corresponding
to those unique trajectories in signaling network. These trajectories are therefore,
equivalently separated in the phase-space corresponding to different phenotypic re-
sponses and remain close to each other for same response, which we showed using
euclidean distances. Therefore, the information decoding property and separation
of trajectories is equivalently observed in all different arrangements of feedforward
structured ’output’ layer networks. This suggests that the number of internal lay-
ers in a feedforward structured GRN do not significantly contribute in the separation
property.
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2.6.3 Experimentally identified IEG-network decodes phenotypic

information from EGFR signaling network trajectories

An artificial feed-forward network was employed in the previous section to decode
the phenotypic information encoded in the EGFR signaling network trajectories,
which gave us insight into the decoding mechanism of immediate early gene (IEG)
networks. In this section, we used an experimentally identified IEG network to test
if the realistic ERG networks also have a feed-forward structure. We will further verify
that ERG networks employ the same decoding mechanism that we identified in the
previous section.

Figure 2.22: EGFR network with experimentally identified IEG-network (MCF7_EGF1)
as ’Output Layer’. (a) Experimentally identified EGFR network with experimentally identi-
fied IEG-network (MCF7_EGF1) as ’Output Layer’ (orange nodes) arranged in feedforward
structure. (b) MCF7_EGF1 IEG-network is parameterized using red colored input signals to
identify differentiation percentage using trajectories generated by ’Encoding Layer’ nodes.
Blue colored ones are the predictions by ’Output Node’ of MCF7_EGF1 IEG-network.

We considerd MCF7_EGF1 network consisting of 9 immediate early genes: FOS,
FOSB, XBP1, ATG12, LINC00476, DLEU2, MIR3654, GNAS and EHD1 [94]. IEGs
are activated rapidly, sometimes within minutes after stimulus and transmits the
information to late-response genes, eventually generating a phenotypic response.
Furthermore, MCF7_EGF1 IEGs are shown to have a conserved activation network
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with a feedforward structure, schematically shown in Fig. 2.22 (a). Therefore, we
used MCF7_EGF1 as an ’output’ layer of EGFR signaling network receiving inputs
from [ERK1/2, MKK1, Ras]. As described in previous section, the ’output’ layer
network is parameterized to generate an output of 1 for all 3D phase-space trajec-
tories corresponding to differentiation signals (3’10’ and 3’20’), while 0 for that of
proliferation signals (3’3’ and 3’60’). MCF7_EGF1 is part of a larger gene regula-
tor network, however, with only 9 nodes it properly classified the EGFR signaling
network trajectories of experimentally determined proliferation and differentiation
signals as shown with red dots in Fig. 2.22 (b). Furthermore, it was also able to clas-
sify phase-space trajectories of new time-varying signals as that of differentiation or
proliferation shown with blue dots.

The classification closely follows the results obtained using generic feed-forward ’out-
put’ network in the previous section. Qualitatively, the classification curve shows
that the EGFR signaling network trajectories generated by external signals of IPI
∈ (3′8′, 3′25′) will undergo differentiation. Therefore, this systematic analysis and
predictions with the experimentally identified feed-forward MCF7_EGF1 as ’output’
layer network suggests that the phenotypic information encoded in the signaling
network transients is likely decoded by minimal and sufficient feed-forward struc-
tured gene regulatory networks.

2.7 Signaling networks remain conserved at ’encoding’

layer with a highly variable ’input’ layer proteins

across different cell types

In a diverse and changing extracellular environment, ’input’ layer of biochemical
networks plays an important role in sensing and processing different external sig-
nals present in the form of changing concentrations of growth-factors and cytokines.
Therefore, cells operating in different extracellular environments must have special-
ized ’input’ layers for sensing and processing these external signals specific to their
environments, with a high cell to cell type variability. On the other hand, ’encod-
ing’ layer have a property of encoding the phenotypic information present in the
dynamic extracellular environment into phase-space trajectories. In other words,
’encoding’ network provides a high-dimensionality to encode the information re-
ceived by the cell-surface receptors and transfer this information to GRN. This sug-
gests that ’encoding’ layer proteins act as a carrier of extracellular information be-
tween ’input’ and ’output’ layers, and therefore, they need not to acquire properties
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specific to different extracellular environments. Therefore, ’encoding’ layer proteins
should be conserved across different cell types relative to ’input’ and ’output’ layer
proteins. The ’output’ layer, on the other hand, decodes the phenotype-specific in-
formation encoded in signaling transients. Furthermore, different cell types perform
different functions by generating various phenotypic responses. Therefore ’output’
layer likely have specialized protein species and transcription factors.

Figure 2.23: Phylogenetic tree of 14 species considered for calculating conservation score
of proteins. Full phylogenetic tree of species used for calculating conservation score as a
fraction of sum of branches in a sub-tree to sum of all branches in full tree, given by Eq. 2.18.
An exemplar sub-tree for a protein conserved in given species is shown with blue. Adapted
from [80].

We used the publicly available mass spectroscopy data of proteins for 11 different
human cancer cell lines [88]. The cell types include A549 (lung carcinoma epithelial
cells), GAMG (Glioblastoma cell line), HEK293 (exhibiting epithelial morphology),
HeLa (cervical cancer cells), HepG2 (nontumorigenic cells with high proliferation
rates), Jurkat (leukemia), K562 (lymphoblasts), LnCap (prostate adenocarcinoma),
MCF7 (breast cancer cell line), RKO (colon carcinoma cell line) and U2OS (osteosar-
coma). Homology information for 1532 proteins were obtained from NCBI database
for the following 14 species: Homo sapiens, Pan troglodytes, Mus musculus, Rattus
norvegicus, Danio rerio, Gallus gallus, Anopheles gambiae, Drosophila melanogaster, Caenorhab-
ditis elegans, Schizosaccharomyces pombe, Eremothecium gossypii, Saccharomyces cere-
visiae, Arabidopsis thaliana and Oryza sativa. A phylogenetic tree of all these species
was used to obtain a conservation score of each protein, full tree shown in Fig. 2.23.
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This score reflects the evolutionary distance across the species in which the protein
is conserved [80]. The conservation score (Si) of a protein is defined as the ratio of
sum of branch lengths in a pruned phylogenetic tree in which that protein is con-
served to the sum of all the branch lengths in the full phylogenetic tree, given by Eq.
2.18:

Si =

∑
e∈Ei

w(e)

∑
f∈E

w( f )
(2.18)

For instance, a pruned phylogenetic tree is shown by blue color in Fig. 2.23 for
a protein which is conserved across a few species. The sum of branch lengths in
this pruned tree is 0.11527 and the sum of branch length of full phylogenetic tree is
2.33187, then the conservation score according to Eq. 2.18 is Si = 0.04943. A protein
which is conserved across all these 14 species will have a maximum conservation
score of Si = 1.

Figure 2.24: Conservation and variability obtained for different biochemcial network
layers across species. (a) Conservation score and (b) variability of proteins relative to ’in-
put’, ’encoding’ and ’output’ layers of the biochemcial network across 11 different human
cell lines. Conservation and variability of EGFR signaling network and MCF7_EGF1 GRN
species are represented with colored circles.

Uniprot IDs are used to obtain Uniprot and Gene Ontology (GO) keywords asso-
ciated with each protein from Uniprot Knowledgebase [22]. Uniprot keywords are
used to categorize proteins into: membrane bound receptors, kinase, phosphatase,

https://www.uniprot.org/
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GTPase and transcription factors (TF). GO keywords are used to identify adaptors.
Only those proteins were considered that were unambiguously mapped to single
Uniprot ID. All the proteins are further categorized into ’input’, ’encoding’ and
’output’ layers such that : [Kinase, Phosphatase, Adaptor, GTPase] ∈ ’encoding’,
membrane bound receptors in ’input’ layer and TFs in ’output’ layer. Using this cat-
egorization of proteins into different layers of biochemical network, we described
the conservation properties of proteins in these layers. The obtained conservation
scores for all the proteins are represented according to ’input’, ’encoding’ and ’out-
put’ layers in Fig. 2.24 (a). The ’encoding’ layer have higher conservation score
when compared to ’input’ and ’output’ layers. This suggests that the proteins com-
prising the ’encoding’ layer remain more conserved across 14 different considered
species relative to ’input’ and ’output’ layer proteins.

Variability between the cell types was estimated using the available label-free quan-
tification (LFQ) of all the proteins. First, all the LFQ values were standardized by
subtracting from each measurement the sample mean (over 3 repetitions of each
cell type) and dividing by the sample standard deviation. Standardized LFQ values
were used to obtain F-values by dividing the between cell variance by within cell
variance. The mean of F-values across 11 different cell types gave abundance vari-
ability of each protein. The results show that the ’input’ layer has high abundance
variability than the ’encoding’ and ’output’ layers, shown in Fig. 2.24 (b). Whereas,
the proteins comprising the ’encoding’ layer have least abundance variation across
11 different cell types.

Conservation and abundance variability of EGFR signaling network along with
MCF7 _EGF1 GRN proteins and TFs are also obtained using the aforementioned
methods. Conservation and variability scores of EGFR signaling network is over-
laid with rest of the protein data shown with colored cricles in Fig. 2.24 (a) and (b)
respectively. Majority of the EGFR signaling network proteins are classified as that
of ’encoding’ layer, their high conservation score (green circles) aligns with rest of
the ’encoding’ layer proteins.

This analysis showed that the proteins comprising the ’input’ layers which are re-
sponsible for sensing and processing time-varying extracellular information are less
conserved with a high cell-to-cell type variability. This suggests that ’input’ layer
proteins have specialized sensing properties according to their organ/tissue specific
environments. On the other hand, ’encoding’ layer proteins encodes the phenotype-
specific information in the phase-space trajectories, are evolutionarily conserved
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and least variable across different cell types. This suggests that the ’encoding’ net-
work proteins have a more general property of information encoding, irrespective
of cell type or any specific tissue. These observations are in agreement with the
previous studies suggesting how different cell types recruit common networks to
generate responses specific to cell type [67]. ’Output’ layer proteins are found to be
less conserved across different species with a slightly high cell-to-cell type variabil-
ity as compared to that of ’encoding’ layer network. This suggests their cell-type
specific function of ’decoding’ different information specific to various phenotypes
from ’encoding’ layer in real-time.
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Chapter 3

Discussion

Cells operate in dynamic environments by continuously sensing, processing and
responding to time-varying extracellular chemical signals. In order to accurately in-
terpret the complex information from their environment, intracellular networks in
single cells actively process these extracellular signals in real-time. The current con-
cept explaining information processing is based on cellular dynamics near or at the
steady-states which fails to explain cellular decision making in dynamic environ-
ments. Several recent studies have shown that cells respond to different frequencies
of the growth factors and generate completely opposite phenotypic responses [78,
84]. The main objective of this thesis was to provide a novel framework for describ-
ing intra-cellular information processing mechanism that elucidates the processing
of dynamic time-varying signals. The new framework described in this thesis, is
based on experimentally identified properties of receptor and signaling networks
providing a real-time transient based information processing in biochemical net-
works. Furthermore, the framework explains how working-memory arising at the
’input’ layer level of biochemical networks enables the external signal frequency-
dependent phenotypic responses of cells.

3.1 Utilizing community structure of signaling networks

to control information propagation

Emergence of community structures are quite common in real complex networks
[32], where individual communities play important role in maintaining the overall
complexity of the entire network. However, different communities within the same
network have differing properties, for instance, large social networks are found to
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Figure 3.1: Decrease in separation property of liquid state machines with isolated com-
munities. The reservoir or liquid is rearranged according to different communities present
in the sparsely connected reservoir network of 50 nodes and connection density of 0.037.
Same community nodes are clustered together and shown with same color. (left to right)
Communities are isolated (marked with grey) by removing incoming links from other com-
munities. (right) Only intra-community links (black) remain after all 6 communities are
isolated from each other. The separation property of full liquid state is shown when the LSM
is stimulated with an input vi as a function of time t. Separation property is calculated with
respect to the liquid-state of reference input u. Inputs vi are generated to have differing dis-
tance (ED(u, vi)) for a given reference input u. Starting with a fully connected reservoir at
t = 0, one community is isolated after every 100th time point.

have community groups based on various interests, occupation and common loca-
tion [33]. Communities are often organized in a hierarchical way and are interde-
pendent on each other for their structural organization, as the nodes are weakly con-
nected between different communities as compared to dense connections within a
same community. Furthermore, these communities play an important role in trans-
fer of information from one end of the network to another, as they dependent on
each other for exchange of information. Number of nodes and connectivity dif-
fer between different communities resulting in unique projection and processing of
information within each community. For instance, we found the presence of six dif-
ferent communities in EGFR signaling network with the smallest community con-
taining just 6 nodes and largest, 16 nodes (Fig. 2.19 (a)). We observed that the same
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community nodes process and encode information in a similar fashion as compared
to nodes belonging to different communities. The presence of unique information
in different communities can be utilized to control the propagation of information
in signaling networks by isolating these interdependent communities.

The recurrent structure of the reservoir/liquid of liquid-state-machines can be uti-
lized to understand the changes in flow of information by deforming community
structure of the reservoir. LSMs have an emergent property of separation of inter-
nal states of the liquid which enables the encoding of different inputs in different
response profiles, discussed in Section 1.5.2. Therefore, to control the flow of infor-
mation, one needs to control the separation of these internal states of the liquid by
deforming the structural organization of the entire network. One way to do that is
by randomly checking the effect of each link on separation property or it can also be
achieved systematically, by exploiting the underlying community structure. The en-
tire recurrent structure of the liquid can be distorted by removing the links between
communities. The separation between the phase-space trajectories of different in-
puts decrease drastically when the communities are completely isolated from each
other by removing the inter-community links, Fig. 3.1. This suggests that the infor-
mation present in the liquid or a recurrent network can be suppressed by isolating
the underlying communities. When the communities cannot share information with
each other via inter-community links, the information processed and encoded by
each community remains confined within itself.

Network structure based strategies to control the propagation of unwanted infor-
mation in intra-cellular networks have gained a significant attention in recent years
[55], but requires specific protein activity levels and kinetic parameter values for
implementation. Such an unwanted flow of biochemical information within sig-
naling networks can result in cancer which is an unchecked cell growth, as cells
no longer respond to signals controlling the cellular growth and programmed cell
death. The initiation, progression, invasion, and metastasis processes of cancer in-
volve multiple molecular signaling mechanisms. One way to control the growth
of cancer cells is the use of inhibitors that target specific components of these sig-
naling networks. Methods involving the use of inhibitors are in clinical use, but
the success of these agents has been limited by the resistance to inhibitor therapy
that ultimately develops. Studies show that cancer cells or cell populations adapt
or evolve in response to targeted therapies by rewiring molecular mechanisms to
overcome the inhibitory effects of initial treatments. This rewiring involve alter-
ations of signaling networks, such as addition or deletion of edges in the network,
modification of reaction rates, and changes in molecular concentrations, all of which
ultimately contribute to treatment resistance, either directly through rendering the
drug ineffective or indirectly by leading to activation of alternative pro-survival or
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anti-apoptotic mechanisms [100]. Cancer cells adapt their signaling circuitry as a
counter-response to chronic drug treatment by taking advantage of redundancy of
links in the signaling networks to maintain their functionality [39]. For instance, in
breast cancer cells, EGFR activation can mediate resistance to ErbB2 antibody in-
hibitors and activation of ErbB2 signaling can bypass the block induced by EGFR
antibody inhibitors [58].

The recurrent architecture of signaling networks provide a completely new perspec-
tive in addressing the problem of controlling the propagation of unwanted infor-
mation. As described in this thesis, the recurrent structure of signaling networks
have a property of information encoding in high-dimensional phase-space trajec-
tories, similar to separation property of liquid-state-machines (Section 2.3). There-
fore, community structures provide a completely new insight in the understanding
of complex signaling networks. Systematic control of such underlying communi-
ties can prove to be helpful in controlling the overall information propagation in
intra-cellular signaling networks. Specific communities can be isolated that contain
proteins or transcription-factors directly responsible for activating onco-genes [43].
Furthermore, several studies has shown the presence of recurrent network architec-
ture for information processing in large neuronal networks [54, 2]. Therefore, on a
completely different scale of processing and propagation of neuronal information,
the same principle can also be applied in large neuronal networks by identifying
and controlling the underlying community structure for curating several neuronal
diseases [23, 83, 101, 102].

3.2 Multiple receptors with dynamic memory activat-

ing the same downstream signaling network

Cells contain multiple receptor types that work simultaneously to carry out cellular
functions by sensing and responding to the dynamic extracellular cues. Different
receptor species are found to be associated with corresponding critical cellular pro-
cesses, such as cell survival, proliferation, migration and differentiation. PC12 cells
are the classic example of such a cellular behavior resulting in proliferation and dif-
ferentiation upon respective activation of TrkA and EGF receptors [79]. In Humans,
the family of 58 known RTKs fall into 20 subfamilies with similar molecular archi-
tecture: having a ligand binding domains in the extracellular region and a protein
tyrosine kinase in the cytoplasmic region [56]. After the receptor activation on the
cell surface level, the biochemical information reaches the common signaling net-
work nodes which are present in the cytosol of the cell. The cells, therefore, employ
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common downstream signaling networks to encode the dynamic extracellular in-
formation processed at the ’input’ layer by the receptor-networks. The similarities
and differences in the activity profiles of signaling network proteins for case of in-
formation arriving from multiple input streams relative to the case of stimulation by
a single input needs a detailed and systematic study.

Changes in the information encoding property of the same downstream signaling
network upon simultaneous activation by multiple cell surface receptor networks
is largely unknown [44]. This problem can be analyzed by extending the formal-
ism of biochemical networks as non-autonomous systems proposed in this thesis,
for multiple receptor networks in the ’input’ layer. Therefore, an extended frame-
work addressing the simultaneous functioning of multiple receptors and activation
of same downstream signaling components will provide us further insight into the
information processing mechanism of simultaneous signals by different receptor
types. Such a study will largely contribute in the further understanding of com-
plex information processing mechanisms employed by cells operating continuously
in dynamic environments.

3.3 Signaling between cells as non-autonomous systems

Cells are open systems that exchange energy and matter with the dynamic extra-
cellular environment that are crucial for their survival and functionality. Therefore,
in this thesis, we redefined the current understanding of intra-cellular biochemical
networks as non-autonomous systems where trajectories in the high-dimensional
phase-space are the solutions instead of steady-states (Section 1.6). However, cells
do not operate individually rather they can send signals to each other and interpret
the signals they receive from other cells directly or indirectly via the extra-cellular
environment. Both animal and plants have cell junctions that directly connects the
cytoplasms of adjacent cells where signaling molecules can pass freely between
neighbouring cells. Moreover, animal cells communicate with their neighbouring
cells where signaling molecules travel short distances. This type of local signaling,
also kown as paracrine signaling, is especially important in embryonic develop-
ment and the immune response [93]. In this case, signaling molecules are secreted
by specific cells that travel only short distances and influence other cells in the lo-
cal vicinity. For instance, growth factors are the compounds that stimulate nearby
target cells to grow and divide. Numerous cells can simultaneously receive and re-
spond to the growth factors produced locally by a single cell in their vicinity. This
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type of signaling is spatially restricted where all the secreted signaling molecules are
absorbed locally. This establishes a closed system of multiple interacting cells which
generates and consumes the signaling molecules within themselves. By definition
of closed systems, cells interacting in such a way can be dynamically considered as
autonomous which are coupled locally (Section 1.6). However, recent experimen-
tal studies show that one cell type can alter the response of a different cell type via
unidirectional interaction, thereby generating an open system [10]. For instance,
during embryonic development germ cells are guided to the gonad by one or more
environmental cues. In many vertebrates, the somatic cells attract migratory germ
cells by secreting chemoattractant SDF-1, which binds to the CXCR4 GPCR in the
migratory germ cell. This means that the response of one cell type to the dynamic
environment can drive the response of another, locally present cell type in a non-
autonomous manner.

In long-distance signaling which is also known as endocrine signaling, specialized
cells release signaling molecules like hormones which travel via the circulatory sys-
tem to different parts of the body, where they reach target cells that sense these
signaling molecules and respond accordingly. Such a long-distance signaling con-
stitutes the endocrine system comprising of internal glands that releases hormones
directly into the circulatory system, regulating the distant target organs. Changing
levels of hormones in the extra-cellular environment affects, in a non-autonomous
way, the cellular functionality in various organs situated in different parts of the
body. Immune system response is another example of such a long-distance inter-
cellular communication. The primary task of immune system is to distinguish the
antigens that belong to the body from those of foreign cells and to eliminate the
invading pathogens. Eliminating pathogens typically involves several types of im-
mune cells that coordinate their actions by communicating across wide spatial and
temporal scales with myriad of cytokines [24]. To mount an efficient and accu-
rate response, immune cells must coordinate their individual activation into global
tissue-level responses: this requirement underscores the crucial relevance of cell-to-
cell communication. Cytokines function by strongly binding to specific receptors
on target cells and activating a cascade of downstream signalling events that cul-
minate in the expression of a set of genes necessary for a specialized task [4]. For
instance, consider a skin inflammation that occurs because of the skin being injured
or invaded by pathogens [71]. Keratinocytes that reside in the epidermis sense the
pathogen invasion and respond by secreting cytokines such as IL-1α. Macrophages,
which are strategically positioned close to the blood vessels underneath the skin
sense IL-1α and recruit other cells such as the dendritic cells, CD8+ T-cells, and neu-
trophils to the infected site. A short-range communication initially clusters nearby
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immune cells to halt the spread of pathogens, and a long-range communication re-
sults in initially distant immune cells being recruited to the site of injury to elimi-
nate the trapped pathogens. In this way, a complex inter-cellular network consist-
ing of several different cell types constituting the innate-immune response is non-
autonomously activated by an injury on skin or pathogens.

In another recent experimental study, it has been found that individual neutrophils
exhibit extremely coordinated chemotaxis and cluster formation resembling of the
swarming behaviour of insects [53]. A critical role for inter-cellular signal relay
among neutrophils is mediated by the lipid leukotriene B4, which amplifies the local
cell death signals to enhance the radius of highly directed interstitial neutrophil re-
cruitment. In this newly formed environment, integrins, in concert with neutrophil-
derived leukotriene B4 and other chemoattractants, promote local neutrophil inter-
action while forming a tight wound seal. This wound seal has borders that cease
to grow in kinetic concert with late recruitment of monocytes and macrophages
at the edge of the displaced collagen fibres. This reveals that the initial signals
from a wound are propagated over large-range distances in a cascade of molecu-
lar events via unique inter-cellular communication signal between neutrophils in
a non-autonomous manner, that allows rapid integrin-independent neutrophil re-
cruitment through the tissue. Such a coordinated neutrophil-swarming behaviour
isolates the wound or infectious site from surrounding viable tissue [53].

These are the experimentally identified examples where inter-cellular communica-
tion is established over short and long distances. The concentrations of hormones
and chemoattractants has been experimentally found to change over space and time
[74]. Whether they are cells responding to changing hormonal levels or the immune
cells that communicate and recruit more cells for wound healing, the subsequent
collective response of cells to external dynamic signals are examples of inter-cellular
non-autonomous systems, where the cells not just sense and respond to external dy-
namic signals but they also communicate with each other simultaneously. Further-
more, network analysis suggests that the immune-cells are organized as the densest
of complex networks yet studied and composed of hierarchically organized genes,
proteins, and cellular components [82, 27]. All these suggests that the collective re-
sponse of a complex network of immune cells to external dynamic signals also varies
over space and time, which is consistent with both the experimental observations
[53, 29] and theory of non-autonomous systems. This suggests that the solution of
inter-cellular non-autonomous systems are the high-dimensional phase-space tra-
jectories instead of steady-state solutions, similar to what we have discussed previ-
ously in Section 1.6 for intra-cellular networks. Further research is needed in this
direction to develop a generalized theory and formalism of non-autonomous inter-
cellular communication.
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3.4 Specificity and generalization in neuronal networks

Neuronal networks have been extensively studied as computational systems, but
they also serve as communications networks in transferring large amounts of infor-
mation between different regions of brain. Once the external information is sensed
at the sensory layer, the basic principles governing the subsequent flow and pro-
cessing of this information by various neuronal networks is an active area of re-
search. Recent work suggests that the structural organization of neuronal networks
plays an important role in processing of different information in specific areas of the
brain [54, 65, 15]. For instance, cerebral cortex is the largest site of neuronal infor-
mation integration in the central nervous system responsible for cognition with a
key role in attention, perception, memory, language and consciousness [93]. It has
been found that the circuitry of cerebral cortex is dominated by local connections,
and long-distance connections constitute only about 20% of total cortical connec-
tivity. Furthermore, local networks conform to a canonical microcircuit that spans
all cortical layers and includes recurrent excitation presumed to shape and amplify
the sparse inputs from subcortical and distant cortical sources [25]. Studies involv-
ing graph theoretic methods used for investigating complex networks are providing
clearer insight into the architectural organization of these networks. For example, in
macaque brain, there exists a tightly integrated core circuit, spanning parts of pre-
motor cortex, prefrontal cortex, temporal lobe, parietal lobe, thalamus, basal gan-
glia, cingulate cortex, insula, and visual cortex, that play a special role in higher
cognition and consciousness [68]. Further studies showed that this central core of
neurons has a very high density comprising of 92% nodes [2]. The nearby periph-
ery nodes are further found to interact directly with the core neurons, in a layered
structure generating an overall three layered network. The information from the
periphery neurons goes to the highly interconnected and large core area for cen-
tral processing and eventually reaches the output layer [54]. However, in-spite the
large core network and a few neurons in the peripheral layers, such a structure is
sometimes misunderstood as ’bow-tie’ network where a few number of nodes in
the central layer is the hallmark of such an architecture, as we discussed in Section
2.4.1. Drosophila Melanogaster’s connectome is an another example of a large and ran-
domly connected neuronal network. In a recent study of Drosophila connectome at
the mesoscopic scale [83], a hierarchical structure has been found between the sen-
sory modalities: olfactory, mechanoauditory, two-visual and the pre-motor center.
The overall network structure is recurrent with interdependent sensory modules,
exchanging the information locally processed within the respective subnetworks.
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A recent theoretical and experimental work suggests that the real-time spatiotem-
poral information processing in neuronal networks emerges from the interaction be-
tween incoming stimuli and the internal dynamic state of neuronal networks [14].
These observation suggests that the information processing in large neuronal net-
works is similar to that in intra-cellular biochemical networks as we described in
this thesis, but on a completely different scale. The information from the external
dynamic environment is sensed by the receptors of the cell, constituting the input
layer and the information is spread throughout the intra-cellular network, and de-
coded into different cellular phenotypes by the ’output’ layer consisting of gene-
regulatory-network. Similarly, in neuronal networks, the external information is
sensed by the sensory layer which is further processed by specialized dense neu-
ronal networks in different brain regions and as a result different voluntary or in-
voluntary responses are generated. Similar to highly interconnected signaling net-
works, neuronal information is processed and encoded in the densely connected
core layer of the neuronal network [14].

Furthermore, it has been shown that the cortical networks are inherently capable
of processing complex spatiotemporal stimuli as a result of the interaction between
external stimuli and the state of the internal network. Studies demonstrate that
different stimuli elicit distinct spatiotemporal patterns of activity meaning external
signal dependent different neuronal trajectories [62]. For instance, in an experimen-
tal study based on leech nervous system, stimulation by identical sensory inputs
that elicit crawling and swimming behaviors are marked by completely different set
of trajectories of neuronal activity separated in phase-space [13]. This suggests that
cortical networks are inherently capable of processing complex spatiotemporal stim-
uli as a result of the interaction between external stimuli and the state of the internal
network, which is in line with our conceptual framework of real-time information
processing in biochemical networks based on signaling transients. Additionally, this
also suggests that the sets of read-out neurons can extract information from the time-
varying neural trajectories represented in high-dimensional space, meaning com-
putations away from the steady-state dynamics of the network [63]. Therefore, the
principles of information processing based on high-dimensional phase-space trajec-
tories should remain same from intra-cellular networks to large neuronal networks
which span different areas of nervous system. Subsequently, neuronal networks
should be modeled in a non-autonomous way where external inputs drives the neu-
ronal dynamics away from the steady-state organization. Analogous to phenotype-
specific trajectories of non-autonomous intra-cellular networks, specific behaviors
will be represented by characteristically different neuronal phase-space trajectories
while a generalized response will be represented by characteristically similar trajec-
tories.
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Appendix A

A.1 EGFR receptor network equations

The equations of EGFR network corresponding to Fig. 2.10 (a), are adapted from
Stanoev et al. [84]:

dEGFRp

dt
= EGFR(α1 ∗ EGFR + α2EGFRp + α3 ∗ EGFEGFRp)

− EGFRp(γ1RGa + γ2N2a + γ3SHP1a + γ4SHP2a)

− kon ∗ 2 ∗ (EGFR2
p) ∗ EGF + ko f f ∗ EGFEGFRp (A.1)

dEGFEGFRp

dt
= k5 ∗ EGFEGFR− γ1 ∗ RGa ∗ EGFEGFRp − γ2 ∗ N2a ∗ EGFEGFRp

+ kon ∗ (EGFR2
p + EGFR2) ∗ EGF− ko f f ∗ EGFEGFRp (A.2)

dEGFEGFR
dt

= − k5 ∗ EGFEGFR + γ1 ∗ RGa ∗ EGFEGFRp + γ2 ∗ N2a∗

EGFEGFRp − ko f f ∗ EGFEGFR (A.3)
dRGa

dt
= k1 ∗ RGi − k2 ∗ RGa − b1 ∗ RGa ∗ (EGFRp + 2 ∗ EGFEGFRp)

(A.4)
dN2a

dt
= ε ∗ (k1 ∗ N2i − k2 ∗ N2a + b2 ∗ (EGFRp + 2 ∗ EGFEGFRp) ∗ N2i)

(A.5)
dSHP1a

dt
= k1S1 ∗ SHP1i − k2S1 ∗ SHP1a + b1S1 ∗ SHP1a ∗ EGFRp (A.6)

dSHP2a

dt
= k1S2 ∗ SHP2i − k2S2 ∗ SHP2a + b1S2 ∗ SHP2a ∗ EGFRp (A.7)

Where the parameters are as follows: EGFR = EGFRT − (EGFRp + EGFEGFR +

EGFEGFRp). kd = 5.56, α1 = 0.001, α2 = 0.3, α3 = 0.7, γ1 = 1.9, γ2 = 0.1, ε =

0.01, k1 = 0.5, k2 = 0.5, k5 = 1.613, b1 = 11, b2 = 1.1, kon = 0.001 and ko f f = kd ∗ kon.
k1S1 = 0.1, k2S1 = 0.9, b1S1 = 1, k1S2 = 0.15, k2S2 = 0.85, b1S2 = 1. RGi = RGT −
RGa, N2i = N2T − N2a, SHP1i = SHP1T − SHP1a, SHP2i = SHP2T − SHP2a with
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RGT = 1, N2T = 1, SHP1T = 1 and SHP2T = 1.

A.2 Network parameters corresponding to arbitrary net-

works

The network parameters of the 15 different arbitrary biochemical networks gener-
ated in Section 2.3.2 are as follows:

Table A.1: Cascade and rewire method (left) and probabilistic method (right) network pa-
rameters.

Method 1
Parameters

Pb Prob(p) Pp Pn

Net. 1 5/N 0.5 1/N2 1/N2

Net. 2 15/N 0.5 10/N2 1/N2

Net. 3 15/N 0.5 10/N2 8/N2

Net. 4 15/N 0.5 5/N2 2/N2

Net. 5 15/N 0.5 5/N2 2/N2

Net. 6 18/N 0.5 5/N2 2/N2

Net. 7 12/N 0.4 5/N2 2/N2

Net. 8 12/N 0.4 8/N2 2/N2

Method 2
Parameters

Probp Probn

Net. 9 0.5/N 0.5/N

Net. 10 0.1/N 0.75/N

Net. 11 0.1/N 0.5/N

Net. 12 0.1/N 0.75/N

Net. 13 0.1/N 0.75/N

Net. 14 0.75/N 0.5/N

Net. 15 0.25/N 0.15/N
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