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Abstract

Containers have been widely adopted for deployment of high availability ap-
plications and services. This adoption is in part due to the native support
of fault tolerance mechanisms in container orchestration frameworks such as
Kubernetes. While Kubernetes provides service replication as a fault toler-
ance mechanism for stateless applications, service replication does not satisfy
requirements for stateful applications. Currently this shortcoming is addressed
by data replication in databases. This requires a tight coupling and modifica-
tion of the stateful application to support high availability. Thus, this thesis
proposes a new Checkpoint/Restore (C/R) Kubernetes operator to achieve
fault tolerance for stateful applications without any modification of the appli-
cation. The operator takes a checkpoint in a configurable interval. In case
of a fault a new application container is created automatically from the most
recent checkpoint. We compare the proposed approach with a more conven-
tional approach in which we pull and restore the application state from the
application through an API. We measure the overhead of both methods, the
service interruption and the recovery time in case of faults. We find the C/R
Operator has similar performance in recovery time as the traditional approach,
but does not need any application modification. The results signify C/R as a
promising technology for a fault tolerance mechanism for stateful applications.
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Chapter 1

Introduction

1.1 Motivation

Containers are a lightweight virtualization scheme, that has gained popularity in recent
years. They isolate different applications and confine them to a separate process space,
networks and disk through Linux kernel features such as seccomp, cgroups, network and
mount namespaces. In 2015, the Open Container Initiative (OCI) [58] was founded to
standardize two specifications for the image format and the runtime of containers. Multiple
implementations for containers exist on Linux at the moment.

For applications with availablity and scalability requirements, running containers on
one single machine is not sufficient. Orchestration frameworks help system administrators
to deploy and manage multiple containers on multiple nodes in a cluster. A prominent
orchestration framework mainly developed by Google is Kubernetes [46]. It provides the
abilities to automatically deploy replicated services, manage networking, load-balancing
and persistent storage.

Fault tolerance or high availability is one of the central features of orchestration frame-
works. For stateless applications replication is a way to achieve high availability as no
state needs to be synchronised. If one replica fails any other replica can continue serving
the requests. On the other hand, replication for stateful applications is more challenging.
State synchronisation between the replicas is the major reason for this. This problem can
be solved by state machine algorithms such as Raft [57] or Paxos [47]. These algorithms
can be implemented by the application itself or the state can be transferred to a data store
implementing a state machine algorithm.

Another approach to state replication is redundancy. In this approach all inputs to the
application are redundantly done on two different nodes. This necessitates deterministic
applications.

A new fault tolerance mechanism is the employment of Checkpoint/Restore (C/R) to
restore the running application on another node from a memory checkpoint made pre-
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2 CHAPTER 1. INTRODUCTION

viously. The advantage of this procedure is a lowered application complexity, as state
synchronisation algorithms are not required anymore. Furthermore, it requires less re-
sources on the second standby node. On the other hand, checkpointing an application
regularly introduces an overhead, because processes need to be frozen to save a consistent
snapshot of the processor state and the memory.

Recently, there have been efforts to integrate minimal checkpoint functionality into
Kubernetes [2], but no evaluation of C/R in combination with Kubernetes exists currently.

1.2 Contributions

Achieving fault tolerance for stateful applications is inherently more difficult than for state-
less containers, as the state needs to be taken into account while designing fault tolerance
mechanisms. This work evaluates an approach for fault tolerance in Kubernetes using C/R
as the fault tolerance mechanism. This is achieved by first designing and implementing the
architecture proposed in this work and subsequently performing experiments to evaluate
the performance of the proposed approach.

First, failover scenarios are identified by exploring possible faults in applications. Next,
fault tolerance mechanisms for stateful containers are outlined. Moreover, two of the
outlined mechanisms are implemented in the Kubernetes orchestration framework. Both
approaches achieve a recovery time of 3.5-6.5 seconds in the Experimental evaluation.
While the C/R Operator has more overall overhead, it does not need any modification of the
application. In failover scenarios some amount of state will be lost and it requires a uniform
CPU architecture across source and target node. Although the C/R Operator needs some
prerequisites to function, it is a promising technology for use in failover scenarios.

1.3 Organization

Chapter 2 presents related works and summarises the current state of scientific works.
First, it shows failover scenarios, then it illustrates fault tolerance mechanisms, container
orchestration and adds some reflections about the technologies. Chapter 3 details the fun-
damental technologies used in this work. It describes Kubernetes, C/R, the OCI image
format and the internals of container runtimes. In Chapter 4 the design for the implemented
system is described. After the design description, Chapter 5 presents the implementation.
First, it details processes of the operators. Then it describes some obstacles and debug-
ging methods used in the implementation process. Chapter 6 presents the experimental
evaluation of the implemented method and discusses the results. It shows overhead and
recovery time in case of failover. Lastly, Chapter 7 summarizes the findings and presents
future work.



Chapter 2

Literature Review

First, the literature review shows failover scenarios in Section 2.1. Then different fault
tolerance mechanisms are presented in Section 2.2. Lastly, Section 2.4 adds some thoughts
about the presented mechanisms.

2.1 Failover Scenarios

There are several failover scenarios mentioned in the literature. More specifically for con-
tainer systems, faults can happen at the node, container or application level [48]. Faults
on the node level are either hardware failures [49] or failures of the virtual machine [6].
On the Container level failures are described as pod process failures by Vayghan et al.
[67]. These types of failures happen when the orchestration framework detects that the
process running inside the container has stopped. This is similar to the fail-stop model
used by Zhou and Tamir [73, 74]. Application level failures can happen through bugs in
the application [51]. Other failures include network failures at the node level or resource
exhaustion at the application level.

2.2 Fault Tolerance Mechanisms

As stated in Section 1.1, there are fundamentally three approaches to make stateful appli-
cations fault tolerant. One commonly used replication scheme that provides scalability in
addition to fault tolerance is replication with state synchronisation. Another approach is
to let the application run redundantly on two nodes and switch over to the second node
should the first one fail. Recently, C/R is discussed in the literature as an alternative to
the two aproaches mentioned above.
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4 CHAPTER 2. LITERATURE REVIEW

2.2.1 Replication

For stateless applications replication is one easy solution to get better fault tolerance. The
replicas can be completely independent of each other as no state has to be synchronised
between them. Stateful applications on the other hand require consensus protocols to be
replicated as they require a consistent state between all the replicas to function. Replication
is always subject to the PACELC theorem [1], which is an extended version of the CAP
theorem. The CAP theorem states that in a case of a partition, either availability or
consistency needs to be sacrificed in order to be partition tolerant. PACELC is an extension
of this theorem to include latency. Under normal operation, replication schemas need to
choose between latency or consistency.

Netto et al. [53, 55, 54] show an algorithm based on the raft consesus protocol, that
guarantees availability and partition tolerance while only guaranteeing eventual consis-
tency. This type of state synchronisation is optimal for applications where absolute con-
sistency is not required.

Gray et al. [17] implement a redundancy scheme, that is configurable for either high
latency with consistency or only eventual consistency with lower latency. The authors also
discuss the advantages and disadvantages regarding latency and consistency.

2.2.2 Redundancy

Redundancy relies on the fact that the application being redundantly run is deterministic.
Both copies of the application get the same exact input and compute the exact same result.
If a fault is detected in the main application, failover to the second application happens
and resumes normal operation.

Vayghan et al. [67, 68] propose such a redundancy mechanism implemented as a
Kubernetes controller and a forwarding process that replicates the network traffic to the
standby node.

Johansson et al. [20] compare a redundant setup with hot standby to a setup with
cold standby in the contexts of virtual distributed controller nodes. Hot and cold standby
are concepts that describe how fast a standby system can take over in the case of failure.
While hot standby systems are optimized for the fastest recovery possible, cold standby
systems have more leeway in the recovery process, use less resources and are often more
cost effective.

2.2.3 Checkpoint Restore

C/R is a technique primarily used for migration of containers from one machine to another
[21, 18, 62, 16, 6, 52, 56, 70, 64, 50, 65, 66]. The cited works use different strategies and
highlight different aspects of the process. Minimizing downtime and transferred data is a
major objective of these works.
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Work Migration Failover Kubernetes Customized C/R

Juniot et al [21] ✓ ✗ ✓ ✗

Gundall et al [18] ✓ ✗ ✗ ✗

Rattihalli et al [62] ✓ ✗ ✓ ✗

Govindaraj et al [16] ✓ ✗ ✗ ✗

Cao et al [6] ✓ ✓ ✗ ✗

Nadgowda et al [52] ✓ ✗ ✗ ✗

Oh et al [56] ✓ ✗ ✗ ✗

Xu et al [70] ✓ ✗ ✗ ✗

Schrettenbrunner [64] ✓ ✗ ✓ ✗

Ma et al [50] ✓ ✗ ✗ ✗

Yokata et al [65] ✓ ✗ ✗ ✗

Terneborg et al [66] ✓ ✓ ✗ ✗

Zhou et al [73] ✗ ✓ ✗ ✓

Zhou et al [74] ✗ ✓ ✗ ✓

Venkatesh et al [69] ✗ ✗ ✗ ✓

Chen et al [7] ✗ ✓ ✗ ✓

Kannan et al [22] ✗ ✓ ✗ ✓

Müller et al [51] ✓ ✓ ✓ ✗

Table 2.1: Comparison of the reviewed fault tolerance mechanisms

Another research direction is the optimization of the C/R process, especially the opti-
mization of Checkpoint/Restore in Userspace (CRIU) [9], the prevalent tool used for C/R
[73, 74, 69, 7, 22]. These works dive deep into the checkpointing process and optimize for
checkpoint and recovery speed.

Rattihalli et al. [62] explores C/R for fast auto-scaling and adjusts the allocation of
containers in a Kubernetes cluster using container migration. They improve CPU and
memory allocation by migrating containers to underutilized nodes.

Schrettenbrunner [64] implements integrated Kubernetes components to enable migra-
tion of Kubernetes pods to other machines. The author argues that pods should be first
copied to the new machine and deleted on the source in a subsequent step.

Finally, Müller et al. [51] propose an architecture for migration and failover with Ku-
bernetes pods while maintaining and replaying network connections using an interceptor.
Even though their work constitutes a good starting point for integration of C/R into Ku-
bernetes, they omit any experimental evaluation of the proposed architecture.
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2.3 Container Orchestration

The explored works focus mainly on two different container orchestration frameworks. By
far, the most popular one is Kubernetes or derivates of Kubernetes in the cloud. One
notable alternative is Docker Swarm [4].

Kubernetes is a modular and extensible framework that manages the deployment and
administration of containers on multiple nodes. It is able to detect failures of components
in the system and restart failed components on the same or other nodes. As shown in
Table 2.1, many works concentrate on Kubernetes as their orchestration framework. The
table also shows no works expect from Müller et al. [51] exists, that uses C/R for failover
scenarios in Kubernetes.

Other works explore Docker Swarm as the Orchestration Framework of their choice
[19, 71, 72]. Docker Swarm is simpler than Kubernetes in the sense that most of the
components are fixed and hidden from the user. So the user is not responsible for managing
those components. Furthermore Docker Swarm is not as extensible as Kubernetes with no
way to extend the control components.

2.4 Reflections

The presented fault tolerance mechanisms have very different properties depending on the
assumptions and implementation details. Using replication faulty replicas can be detected
even when they do not adhere to the fault-stop model as there is a majority vote to
determine a consensus in the cluster. Redundancy as well as C/R rely on other fault
detection mechanisms like a heartbeat signal that is not able to detect semantic faultiness
of a node.

One advantage of redundancy and C/R with respect to replication is the possibility
of implementing both techniques in an application transparent manner. This means no
modification to the source code of the application is necessary. In cases where the cost of
modification is prohibitive such as certification cost or legacy application, where the source
code is lost, this is an important factor.

Although redundancy works without modifying the application, this requires the ap-
plication to be deterministic in its execution. Otherwise, only replaying all inputs from
one copy to the other does not produce the same state changes on both copies. The same
is true for replay of cached requests after a checkpoint is restored as suggested by Müller
et al. [51].

If inconsistency is acceptable, both redundancy and C/R can be used even on non-
deterministic applications. In the non-deterministic case, redundancy is almost guaranteed
to yield different results, whereas C/R mitigates this as long as most of the execution of
the application is deterministic.
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Redundancy on the other hand has a better recovery time than C/R, as the only
operation needing to happen on a fault is the switchover itself, while C/R needs to first
restore the checkpoint, replay missing inputs and then do the switchover.

This thesis focuses only on C/R and its implementation using the Kubernetes orches-
tration framework. It also only focuses on experimental evaluation while responding to
node faults.
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Chapter 3

Fundamentals

The fundamentals chapter details fundamental technologies used in this work. Section 3.1
describes the Kubernetes architecture, resources, operator fundamentals and node architec-
ture. A description of the C/R technology is given in Section 3.2. Section 3.3 illustrates the
standard image format used by Container Runtime Engine (CRE)s. Section 3.4 presents
the kernel features used by container runtimes to implement containers.

3.1 Kubernetes

Kubernetes is a Container Orchestration Framework widely used in the industry [8]. It has
a modular architecture and enables users to manage containers across multiple nodes. It
handles scheduling, networking, access control and provides capabilities for data storage.

3.1.1 Architecture

The basic Kubernetes architecture is displayed in Figure 3.1. In its base configuration, Ku-
bernetes differentiates between the control plane and compute machines (also called worker
nodes). The control plane runs all the components needed for managing the cluster and the
worker nodes run the actual applications hosted on the cluster. For High Availability, mul-
tiple nodes can run the control plane. Control plane nodes are by default configured to only
run control plane components, but can also be configured to run application workloads.

Every node has a Kubelet [41] process running on it that communicates over a REST-
API with the API server. Kubelet is responsible for interacting with the underlying con-
tainer runtime through the Container Runtime Interface (CRI). It is able to start and
stop containers, get logs, run commands in containers and generally get information of
the running containers on the node. One new capability of Kubelet is the ability to make
checkpoints of running containers. This feature was merged very recently and is still in
the experimental stage. [3]

9



10 CHAPTER 3. FUNDAMENTALS

Figure 3.1: Kubernetes Architecture [63]

The kube-controller-manager [38] is a component that contains all the standard con-
trollers for the default resources available in Kubernetes. Controllers are responsible for
implementing the behaviour specified by the resources.

All the configuration information as well as the resources of the cluster are stored in etcd
[15]. Etcd is a highly available distributed key-value store. In the context of Kubernetes,
the configuration information is mostly all the resources that were either created by the
user such as deployments or services or other resources created by components of the cluster
itself. It also usually stores configuration information for flannel. Flannel is a technology
that provides overlay networking for the cluster. It implements routing for cluster internal
IP addresses.

The kube-proxy [40] component is responsible for implementing part of the Service (see
Section 3.1.2) behaviour. It works on top of the overlay network created by flannel and
the Container Networking Interface (CNI). For service instances defined by the Service
resource it handles implementing round-robin routing between all the Pods. There are
multiple routing backends kube-proxy can use. The simplest is iptables and works by
inserting iptables rules with the forwarding information into the host system.

Pods are the actual running instances of the application. They consist of multiple
containers that share the same network namespace.
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Supporting systems for a Kubernetes cluster include persistent storage and a container
registry. As the name suggests, the persistent storage provides storage for containers and
can be easily connected to the cluster. The container registry stores the necessary container
images needed for the cluster.

3.1.2 Resources

Kubernetes works by managing resources in a cluster. These resources are watched by
controllers.

Pod Pods [43] are an abstraction over containers and can contain multiple containers.
Containers in the same Pod share the network stack with each other so that other containers
are accessible on localhost.

In Kubernetes, Pods are the smallest schedulable unit. Pods are scheduled through
the kube-scheduler. The scheduler examines the available nodes and their properties to
find a suitable node for the given Pod. As soon as a suitable node is chosen the kube-
scheduler creates a binding resource. The kubelet process on the node listens to these
binding resources and instantiates the containers for the Pod.

ReplicaSet A ReplicaSet [44] is a resource that deploys multiple Pods. In the event that
Pods are stopped or deleted, the ReplicaSet will recreate them. It always tries to have the
specified number of Pods running.

DaemonSet A DaemonSet [36] is similar to a ReplicaSet in the sense that multiple
Replicas are managed. The big difference is that the DaemonSet starts a replica on every
node. This is useful for daemons or other helper applications like a logging agent that need
to run on every node in the cluster.

Deployment The Deployment [37] is an extension of the ReplicaSet. It manages cre-
ating, deleting and updating ReplicaSets for new configurations. Deployments will create
a new ReplicaSet for new configurations and slowly scale down the old ReplicaSet while
scaling up a ReplicaSet with the new configuration.

Service Services [45] in Kubernetes are used to route or load-balance requests to the
correct Pods. As Pods in the cluster are assigned dynamic IPs, networking between dif-
ferent Pods is difficult. This problem is solved by Services by providing a single IP for all
replicas of an application. It dynamically updates the list of Pods so applications trying
to access an application only need to communicate with the Service. Services also provide
capabilities to expose applications outside the cluster.
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3.1.3 Operator

Operators [42] are a concept in Kubernetes to automate the management of application
Pods. An Operator can contain multiple Controllers and Custom Resource Definitions
(CRDs). Controllers implement functionality and resources store information about the
cluster.

A CRD defines fields and their types for the custom resource. After the CRD is
installed, resources of that type can be created in Kubernetes. Resources themselves only
hold data and do not define any functionality. They often contain a specification of the
state and the current status of the system. Section 3.1.2 explores some of the standard
resources in Kubernetes and the functionality the standard controllers implement based
on these resources.

Controllers add functionality to resources through the reconcile loop. Their goal is to
bring the system into the state specified by the resource. For this purpose, the Kubernetes
Application Programming Interface (API) provides the capability to watch resources. This
is typically used by controllers to watch the specific resources belonging to their operator.
Standard resources can also be watched by controllers to add additional functionality
to existing resources. For example, annotations can be used to store operator-specific
information in Deployments. Configuration values can be set through this mechanism.
Every change in the resource triggers a reconcile cycle in the controller. The controller
then uses this reconcile cycle to change the real state of the system to match the specified
state in the resource. It also updates the status of the resources to match the state of the
system. The controller can end the reconcile cycle in one of three ways. First, the reconcile
was a success and this resource does not need to be reconciled again. Second, there was an
error in the reconciliation process and it will be scheduled again. Third, no error occurred
but the reconciliation needs to happen at a later point.

3.1.4 Kubernetes Node Architecture

As explained before Kubelet runs on each node. Kubelet is responsible for synchronising
the state of the node with the state of the API server. So if a new Pod or Binding resource
is created in the API server, the kubelet reacts to this event and creates the corresponding
containers on the node. It can also load static Pods from other sources like files or HTTP
Servers. Static Pods are then reflected as mirror Pods in the API server. Kubelet can
communicate with several different CREs through the CRI.

Figure 3.2 shows the node architecture. CRI-O, cri-dockerd and containerd all im-
plement the CRI and can communicate with Kubelet through this interface. In previous
versions, dockerd was directly supported as a backend for Kubelet, but this support has
been removed and now needs the cri-dockerd adapter. Dockerd in turn uses containerd
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Kubelet

cri-dockerdCRI-O containerd

dockerd

conmon containerd-shim

runc crun

CRI

CLI

Figure 3.2: Kubernetes Node Architecture

as a backend for running containers. The CRI abstraction allows the Kubelet to support
multiple CREs.

In detail the CRI uses gRPC with protobuf messages, usually over UNIX Sockets, for
communication. There is also a command line tool called crictl that can be used to send
CRI messages to container engines. Rather than documenting the specification for the CRI
in written text, the specification is done through code and comments only.

In the lower layers of the stack, the container runtime engines use runc or crun to run
containers on the host. In addition, conmon and containerd-shim are used by CRI-O and
containerd, respectively. Both of these programs keep namespaces alive and monitor the
process running in a container.

The components marked in blue are used in this thesis to run the experiments in Chap-
ter 6. Containerd does not support checkpointing containers over CRI yet. In containerd
it is only possible to do it through their own command line client.

3.2 Checkpoint/Restore

Checkpointing is a technique to save the complete runtime state of a process. CRIU [9]
is a tool that implements this in userspace. The CRIU project implemented several linux
kernel patches [14] to be able to implement checkpointing from userspace.

The basic procedure to checkpoint a process as executed by CRIU is to stop the process
using either ptrace system calls or cgroups freezer [10]. In practice not only one process
needs to be checkpointed, but the whole process tree starting with the process. This is
important for processes that start child processes while running. Freezing the process is
needed for the memory to be kept consistent while checkpointing.
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Figure 3.3: Layout of a OCI-Image

After freezing the process tree, CRIU writes all information it can gather about the
processes to image files. This is mostly information found in /proc, such as file descriptor
information, pipe parameters, memory mapped files and processor state information such
as registers.

To save the memory, all memory pages of the process need to be exported. This is
done by injecting a parasitic code snippet [12] via ptrace system calls into the process and
jumping to it. The parasitic code snippet exports all used memory pages by using the
vmsplice [11] system call to copy memory pages to pipes opened by CRIU. CRIU reads
from these pipes and writes the memory content into image files.

One problem while checkpointing is the handling of open TCP socket connections [13].
With kernel version 3.5, it is now possible to repair established TCP connections. For the
use-case in this thesis, we use CRIU’s tcp-close option to close open TCP connections
on restore. Clients then need to reconnect to the server as soon as the restore is finished.

When checkpointing containers, CRIU also deals with cgroups and namespaces. Some
namespaces are created by the CRE and some namespaces are restored by CRIU.

Usually, CRIU shuts down the process after successful checkpointing to avoid inconsis-
tent state for example with open socket connections. For fault tolerance this is not desired
and can be disabled with the caveat of inconsistencies in socket data.

3.3 OCI Image format

Starting a container is usually done through images in the OCI image format. This image
format specifies how the state of the container filesystem should be set up during startup.
It also allows to add annotations that designate useful metadata. Fundamentally, the OCI
image format consists of only two files and a folder full of blobs as shown in Figure 3.3.
The two root files are the oci-layout file, that designates the specific version of the layout
used and the index.json, which includes a pointer to all manifest files in the blobs. The
simplest OCI image only includes one manifest file, but more can be added for different
architectures. Usually the blobs directory includes a sha256 directory in which all files are
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named after their sha256sum. References to files work through these sha256sums, called
digests. The manifest file in the OCI image includes a reference to an image config file,
which includes specific configuration options for this image and references the other blobs
in the directory and designates a file type for them. In the image config file, we see a
declaration of layers for the finished file system. These layers correspond to the blobs
present in the image, but often are referenced through a different digest. The reason for
this is that blobs are often compressed, but the layers in the image config include the digest
of the uncompressed tar archive.

The job of CRI-O is to create the correct file system for the container to start in. To do
this overlay filesystems are used, to stack the different layers contained in the OCI image
on top of each other. All layers are mounted as read only, except the topmost layer which
then represents the actual filesystem of the container.

At this stage, runc started through conmon can create a running container. To do
this runc needs to allocate new namespaces for the container, set the correct cgroups,
capabilities and possibly activate seccomp.

3.4 Container runtime

Container runtimes need special kernel features to set up a running container. The following
sections detail the kernel features used by containers.

3.4.1 seccomp

seccomp [26] or secure computing mode is a linux kernel feature that restricts the access
to system calls for a given process. There are two versions of seccomp available. The first
version of seccomp restricts access to all system calls expect for the ones that allow to exit
the process. The second version also called seccomp-bpf is an extension of the previous
version and allows a fine grained access control to system calls.

3.4.2 cgroups

cgroups [24, 25] are a linux kernel technology to limit or reserve physical resources used
by processes. They can be used to manage resources such as CPU, memory, Disk I/O or
networking for a given process tree. Accounting is also provided for cgroups so that all
the processes runnning under the same cgroup can be measured together. Furthermore,
cgroups enable the freezing of all processes inside of the group. On most systems Systemd
is managing cgroups and CREs should request their cgroups through Systemd.
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3.4.3 capabilities

Similar to seccomp, capabilities are a mechanism to enable processes to access specific
subsystems of the kernel [23]. In contrast to seccomp, capabilities are usually used to
grant processes running as a non-root user additional rights. In the context of containers
this is useful to grant special privileges to a process running in a container as every process
in the container runs as non-root.

3.4.4 namespaces

The namespace feature in the linux kernel [30] provides isolation of various aspects of the
system to containers. Namespace types include: net, mnt, pid, user, ipc, uts and time

net namespace Network namespaces [31] isolate the network stack for processes. This
means all the network interfaces, routing tables and firewall rules are isolated.

mnt namespace The mount namespace [29] isolates the different mounts between pro-
cesses. Containers use this kind of namespace to isolate the filesystem of the container.
Bind mounts can be used to connect the filesystem of the host to the filesystem of the
container.

pid namespace PID namespaces [32] isolate the visibiliy of processes and can be nested.
PID numbers inside the namespace start again from 1 and only the processes in the current
and child PID namespaces are visible. For containers this leads to the container processes
only being able to interact with processes inside the container.

user namespace A user namespace [33] isolates the UID and GID spaces and other
security related features such as keys and capabilities. This gives processes the ability to,
e.g. run as the root user in their namespace but still be restricted in the parent namespace.
Namespaces get associated with the user namespace that the creating process is in upon
creation of the namespace.

ipc namespace Inter process communication namespaces [28] isolate access to SYS V in-
ter process communication resources and posix message queues. Sysv ipc resources include
message queues, shared memory and semaphores.

uts namespace UNIX time sharing namespaces [34] enable the isolation of hostname
and NIS domain names. In the container context this is often used, to give the container
a unique hostname.
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time namespace Time namespaces [27] isolate time and date settings for the current
system and where introduced in Kernel version 5.6. As time namespaces are so new, no
container engine has added support for this feature yet.
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Chapter 4

System Design

This chapter describes the system design of the Kubernetes operator for fault tolerance with
C/R in Section 4.1. The alternative Pull State approach is also described in Section 4.2.
The Pull State Operator is used as a comparison to the C/R Operator.

4.1 C/R Operator

The C/R Operator implements C/R operations for use in failover scenarios. It is using
experimental features from Kubernetes to implement checkpointing. Restore is handled
directly by the CRE.

This section contains the design principles (Section 4.1.1), an overview (Section 4.1.2)
and a description of the components (Section 4.1.3) of the C/R Operator.

4.1.1 Design Principles

The operator was designed with the following principles in mind. First, full Kubernetes
integration using the latest features. Second, application transparency meaning the appli-
cation itself needs to implement as little as possible for the fault tolerance to work.

4.1.2 Overview

Figure 4.1 shows the basic architecture of the operator. The operator is built around
the new Kubernetes alpha feature released in v1.25 that enables checkpointing through
Kubelet. As shown in the figure, the Controller Manager requests a checkpoint from the
Kubelet. This request travels through some layers until it reaches CRIU and creates a
checkpoint. Another communication is coordinated between the Agents, for transferring
the checkpoints to the correct nodes for restore.
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Figure 4.1: C/R Architecture overview

4.1.3 Components

There are only two main components in the operator: the Controller Manager and the
Agent. The Controller Manager contains all the controllers needed for the operator and
is responsible for coordinating the Agents running on each node. The Agents are check-
pointing containers, creating checkpoint images and transferring them between nodes.

Controller Manager

The Controller Manager consists of four controllers and two handlers. Each controller
watches changes to one resource type in the cluster. To watch a resource in the cluster, the
controller subscribes to new messages concerning the resource and in turn receives updates
from the API server for the resources. The two handlers are responsible for checking the
liveness of Pods and for creation of checkpoints.

Node Controller This controller watches node resources and is notified if the state of
the nodes changes. It keeps an internal list of nodes and also adds a label to the node to
identify them by their internal cluster IP. Although this information is available in other
parts of the node data structure, only labels can be used to select a specific node for
scheduling. These labels are later used by the Liveness Handler to select the appropriate
node for scheduling Pods.

Agent Controller This controller watches DaemonSets. Filtering of the correct Dae-
monSet is done manually by the controller As the Agents are deployed as a DaemonSet,
the controller listenes to changes in this DaemonSet and records changes in the available
Agents.
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C/R Controller This controller watches Deployments and filters them based on a well
known annotation. This annotation called cr_mode is identifying the Deployments that
should be monitored. There are also additional configuration information provided by
the annotations of the Deployment. The interval for checkpointing is supplied by the
cr_interval annotation. Every annotation is prefixed by hitachienergy.com/. The C/R
Controller keeps an internal list of monitored Deployments and notifies the Checkpoint
Handler and the Liveness Handler of new Deployments.

Pod Controller Finally, there is a Pod controller that listens for changes in Pods. This
controller responsible for keeping track of all the Pods belonging to the Deployments con-
figured for checkpointing. The Pod Controller will also already determine the target node
for recovery using the node information provided by the Node Controller.

Checkpoint Handler The Checkpoint Handler starts a thread for every monitored De-
ployment. It uses the information provided by the Pod Controller, Node Controller and
C/R Controller to checkpoint the Pods of the Deployment. The C/R Controller provides
the Checkpoint Handler with the configured interval. The Pod Controller supplies the
information about Pods belonging to the Deployment. The Node Controller keeps a list
of the Nodes. From the Node list the Checkpoint Handler gets the information about how
to reach Kubelet. The ContainerCheckpoint feature flag [3] enables an HTTP API on
Kubelet to create checkpoints using CRIU.

After the checkpoint is created the Checkpoint handler will instruct the Agent running
on the node of the checkpointed Pod to transform the checkpoint into an OCI image.
Subsequently the Agent gets instructed to transfer the OCI image to the predetermined
target node for recovery.

Liveness Handler The Liveness Handler also starts a thread for every monitored De-
ployment. It uses the information gathered from the C/R controller to execute liveness
probes. The liveness of Pods is checked in the Liveness Handler as a means of detecting
Pod failures faster than Kubernetes can. In the standard Kubernetes architecture liveness
probes are executed by Kubelet on the corresponding node. If a node goes down there is
a fairly generous timeout of 40 seconds (configured by node-monitor-grace-period [39])
until the node is considered NotReady. This grace period cannot be reduced arbitrarily
as this can lead to an unstable system with continuous and quick state changes of the
nodes. After that the standard Pod toleration timeout of 5 minutes will start [35]. After
both timeouts are exceeded the Pods are restarted on other Nodes. Even if liveness probe
intervals are configured shorter, the restart for Pods only happens after Pods are evicted
from the unreachable node. To mitigate this long detection of the Pod failure a manual
liveness probe is fired by the Liveness Handler. Liveness probes are HTTP requests to the
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configured endpoint. The liveness probe is considered failed if either the request fails or
if the status code is outside the range 200-299. If three consecutive liveness probes fail,
the Liveness Handler will initiate recovery. Recovery is done by deleting the old Pod and
creating a new Pod on the target node with the checkpoint image as the container image.
The CRE of the target node will detect that the provided image is a checkpoint image and
restore the container using CRIU.

Agent

As described earlier the Agents are running as a DaemonSet, which starts one instance
of the Agent on every node (see Section 3.1.2). A checkpoint generated by Kubelet can
not be restored as is and needs to be converted into an image readable by the underlying
CRE. The Agent is responsible for creating these checkpoint images in OCI format from
the checkpoint archives generated by Kubelet.

The Agent also features a file transfer capability which is used to transfer the built
image to other Agents. Transferred images are inserted into the corresponding image store
so that the CRE can create containers from these images.

4.1.4 Limitations

Our C/R Operator assumes that Pods have exactly one container, i.e., it cannot check-
point Pods with more than one container. Since it is considered best practice to have
one container per Pod and Pods with more than one container are rare in practice, this
limitation is acceptable. Similarly, the Kubelet API does not support checkpointing Pods
with multiple containers. Although it is possible to checkpoint a single container from a
Pod with multiple containers.

4.2 Pull State Operator

The Pull State Operator was developed as a parallel fault tolerance approach to the C/R
Operator. This allows us to compare the performance of both approaches and use the Pull
State Operator as a baseline.

This section describes the design principles (Section 4.2.1), an overview (Section 4.2.2)
and a description of the controllers (Section 4.2.3) of the Pull State Operator. It also
presents the configuration of the Pull State Operator in Section 4.2.4.

4.2.1 Design principles

We evaluated two approaches for the Pull State Operator considering it’s usage as a base-
line. First, we evaluated a push based design in which the application can write the
application state to the operator periodically or after every state change. In case of a
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Figure 4.2: Architecture Overview: Pull State Operator

fault, the application would be restarted by Kubernetes and request the last state from
the operator and continue. Such a push based approach is similar to a replicated database
because the application has full control over the data flow. However it requires the appli-
cation to be familiar with all the details on how to connect to the operator and how to
store data with the operator.

Second a pull based design, in which the application provides an API for the operator
to get and restore the state. The operator periodically pulls the state from the application
and transfers it to the target node. In case of a fault, the application is started on the
target node and the operator calls the restore API to restore the state. This approach is
similar to the builtin probes that Kubernetes uses to determine readiness or liveness of the
application.

We decided to use the pull based design for two main reasons:

• The design is closer to the C/R approach for stateful failover and is therefore easier
to compare.

• Kubernetes already has the concept of probes so adding another probe is more aligned
with existing functionality.

4.2.2 Overview

Figure 4.2 shows the architecture overview of the Pull State Operator. The operator
consists of two components: the Controller Manager and the Helper Pods.
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The Controller Manager is responsible for getting the state from monitored applications,
selecting target nodes and coordinating the Helper Pods. The Helper Pods are responsible
for holding the state on the target nodes and restoring the state in case of failover. The
Helper Pods are deployed as a DaemonSet. Therefore, there is always one Helper Pod
running per node.

In normal operation the Controller Manager requests the state from monitored Pods in
a configurable interval. This state is distributed to the corresponding Helper Pods. Should
a fault occur, Kubernetes restarts the Pod. The Controller Manager observes new Pod
arrivals and sends a signal to the helper Pod to restore the state whenever a new Pod has
arrived. This only happens if the Pod is restarted because of a Fault. New Pods for a
Deployment can also arrive if a Deployment is scaled up. For example if the user requests
a higher number of replicas. Such Pods are ignored by the Pull State Operator because
the new Pod is not replacing a faulty Pod.

4.2.3 Controllers

The Controller Manager contains and manages multiple controllers and three handlers.
Every controller in the Controller Manager is responsible for watching one resource type
and reconciling it.

Helper Controller The Helper Controller listens for changes in DaemonSet resources
and keeps the internal list of the Helper Pods up to date.

Node Controller The Node Controller adds a label to the node to identify them by
their internal cluster IP. Although this information is available in other parts of the node
data structure, only labels can be used to select a specific node for scheduling. These labels
are later used by the Restore Handler (See Section 5.1) to select the appropriate node for
scheduling Pods.

Pod Controller The Pod Controller listens for changes in Pods. This controller manages
a Pod list for every monitored Deployment. Changes in the Pod metadata are captured
and the internal list is kept up to date with the state of the Pods in the cluster. The Pod
Controller also generates deleted Pod every time a Pod is deleted and a new Pod event
every time a Pod is created. These events are passed to the Restore Handler.

Pull State Controller This controller listens for changes in Deployments. With oper-
ator specific annotations Deployments can configure parameters for the state pulling.

Liveness Handler The Liveness Handler is similar to the Liveness Handler in the C/R
Operator. To mitigate the long detection of Pod failures in Kubernetes as described in
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option purpose

ps_mode If this option is set to http-sf, it identifies the Deployment as monitored
by the Pull State Operator.

ps_interval The time interval in seconds for pulling the state.
ps_port The port inside the container.
ps_path The path of the state request. A GET request is used to retrieve the

state. A POST request to this endpoint is used to restore the state.

Table 4.1: Pull State Operator Configuration options

Section 4.1.3 a manual liveness probe is fired by the Liveness Handler. Liveness probes are
HTTP requests to the configured endpoint. The liveness probe is considered failed if either
the request fails or if the status code is outside the range 200-299. If three consecutive
liveness probes fail, the Liveness Handler will initiate recovery. Recovery is done by deleting
the old Pod and creating a new Pod on the target node.

State Handler The State Handler uses the information gathered by the Pull State
Controller and Pod Controller to request the state in the configured interval for the De-
ployments. For every Deployment a thread is started. This thread gets the state from all
Pods of the Deployment and distributes it to all Helper Pods.

Restore Handler The Restore Handler runs in a separate thread and reacts to deleted
Pod and new Pod events. The events are combined to detect Pods that need to be restored.
If a Pod that needs to be restored is detected, the Restore Handler instructs the Helper Pod
that is running on the node of the Pod to restore the state over the configured endpoint.

4.2.4 Configuration

Deployments can specify the options specified in Table 4.1 as annotations to influence the
behaviour of the operator. As with the C/R Operator these configuration options are
prefixed by hitachienergy.com/. The annotations are read by the Pull State Controller
and are made available to the other parts of the operator as indicated in the Sections
before.
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Chapter 5

Implementation

This Chapter is divided in two Sections. Section 5.1 shows the implementation details
of the Pull State Operator. The next Section (Section 5.2) describes the implementation
details of the C/R Operator. Section 5.3 discusses some obstacles in the implementation
process and also describes an approach to debugging the communication between runc and
CRIU.

5.1 Pull State Operator

We used the Operator Software Development Kit (SDK) [59] for the implementation of
the Pull State Operator. The Operator SDK is a SDK that helps bootstrapping operators
with all the necessary components and Kubernetes resources. First, the Operator SDK
creates a ServiceAccountRole, ServiceAccountRoleBinding, ConfigMap and Deployment
for the operator. All these resources are needed for the Controller Manager to be deployed
and connected to the Kubernetes API-Server.

While many operators deploy custom resources with CRDs, the Pull State Operator
does not require custom resources but only adds metadata to Deployments. This metadata
is used as the source of all necessary information. The following paragraphs detail the core
processes of the Operator.

Deployment Registration Process The deployment registration process is initiated
when a new Deployment is detected. The Pull State Controller is registered as a listener
for Deployment changes at the API server. Therefore, the API server notifies the Pull
State Controller of new Deployments. If a Deployment has the ps_mode annotation with
correct values, it will be registered with the operator. The operator keeps a list of registered
Deployments and their respective configuration.

Listing 5.1 shows an excerpt of a Deployment. The displayed Deployment is configured
with an interval of 10 seconds, the endpoint to retrieve and restore state is /state and
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the port is 8080. The liveness probe is configured for endpoint /health on the same port.
This liveness probe configuration is used by Kubernetes and our Liveness Handler.

ap iVers ion : apps/v1
kind : Deployment
metadata :

name : the−count−deployment
annotat ions :

h i t a ch i ene rgy . com/ps_mode : ’ http−s f ’
h i t a ch i ene rgy . com/ ps_inte rva l : ’ 10 ’
h i t a ch i ene rgy . com/ps_path : ’/ s ta te ’
h i t a ch i ene rgy . com/ps_port : ’8080 ’

spec :
. . .

template :
. . .

spec :
c on ta i n e r s :

− name : the−count
image : the−count : l a t e s t
l i v ene s sProbe :

httpGet :
path : / hea l th
port : 8080

i n i t i a lDe l aySe cond s : 3
per iodSeconds : 1

Listing 5.1: Example Deployment

For every new Deployment the State Handler is notified and starts a new goroutine.
The state handler then starts requesting the state periodically in the configured interval.
The state of the Pod is replicated and sent to every Helper Pod over gRPC1.

If http-sf is configured as the ps_mode the Liveness Handler is also notified of the new
Deployment and also starts a new goroutine for the Deployment. The Liveness Handler
uses the standard liveness probe configuration of the Pod and executes the same liveness
requests as Kubelet. This is done to detect node failures in addition to Pod failures.

The standard mechanism of detecting node failures in Kubernetes is deliberately slow to
mitigate continuous and quick node readiness state changes in poor network connectivity
scenarios. Standard liveness probes rely on Kubelet to report Pod failures to the API-
Server and are therefore not detected, if the node fails. The Pull State Operator also
supports using the standard Kubernetes node failure detection with ps_mode set to http.
However this is not further discussed, as it is slow.

In http-sf mode the Liveness Handler sends liveness probes in addittion to Kubelet.
Assuming the workload and Controller Manager are running on different nodes, the liveness

1https://grpc.io/
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Figure 5.1: Restore Channel Combination

probes will fail if a node failure occurs. Doing this enables the Controller Manager to detect
failures faster than the standard Kubernetes fault detection mechanisms.

Restore Process The restore process is triggered by new Pod and deleted Pod events.
Figure 5.1 shows the flow of events from the Pod Controller to the Restore Handler. Both
event types have their own channel per Deployment and are generated by the Pod Con-
troller. The channels are created lazily on first use. A restore channel combines both the
new Pod channel and the deleted Pod channel into one restore channel as shown in the
Figure. The combination takes the first new Pod event after a deleted Pod event and
combines them into a restore event.

The Restore Handler runs in a goroutine and continuously listens for restore events
from the restore channel. If a restore appears the restore event is sent to the correct
Helper Pod, which in turn executes the actual restore request.

In http-sf mode the Liveness Handler will delete the old Pod and create a new Pod as
soon as the fault is detected. The new Pod is currently scheduled randomly on the next
available node. At this point in time Kubernetes has not detected the failing node yet and
if the scheduling is left to Kubernetes, there is a chance that the new Pod will be scheduled
on the failing node. This necessitates the use of a node selector to guarantee the new Pod
is not scheduled on the failing node. The node selector is set to match the internal-ip

label added to Nodes by the Node Controller to schedule the new Pod on the correct node.

Creating new Pods The ability to create a new Pod for an existing ReplicaSet is not
provided by Kubernetes, but the operator needs this ability to function correctly. It is not
enough to delete Pods, because the ReplicaSet will try to create the Pod on the same node
a few times, before trying to schedule the Pod on another node. The operator needs to
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guarantee that new Pods are scheduled on functioning nodes. To achieve this the operator
first deletes the Pod and then creates a new Pod with the correct labels for the ReplicaSet.
This prevents the ReplicaSet from creating a new Pod itself.

5.2 C/R Operator

The C/R Operator is similar in design to the Pull State Operator. There are two major
differences between the Pull State Operator and the C/R Operator. First, the way state
needs to be handled and second how the restore works.

Checkpointing process The checkpointing process is performed by the Checkpoint
Handler as described in Section 4.1.3. From the point of view of the operator checkpoint-
ing is done by first requesting the checkpoint from Kubelet and then transforming the
checkpoint into an OCI image. As of Kubernetes version 1.25, the checkpointing feature is
in alpha stage and can be enabled by the ContainerCheckpoint feature gate of Kubelet. A
simple HTTP request is required to create a checkpoint. Kubelet then requests checkpoint-
ing of the container from the CRE through the CRI. CRI-O then receives this checkpoint
request and gathers metadata and passes the checkpoint request to runc. Runc in turn
calls CRIU to perform the checkpoint as described in Section 5.3.2.

CRIU now needs to first stop the process using ptrace system calls, dump all the
information contained in the various namespaces and finally dump all the memory pages
from the process. The CRIU image files and the metadata added by CRI-O are combined
into an tar archive and are written to disk.

This tar archive is then processed by the Agent into an OCI image. This transformation
adds some metadata to the checkpoint and enables it to be imported into the CRE. The
OCI image format for checkpoints is not yet standardized and is therefore specific to the
used CRE. For CRI-O it is only necessary to add the standard manifest, index, config and
a layer containing the compressed archive. There also needs to be a special annotation
called io.kubernetes.cri-o.annotations.checkpoint.name in the manifest to mark the
image as a checkpoint image.

Restore process Restoring a checkpoint is done by starting a Pod with the OCI image
generated from the checkpoint. When comparing the Pod creation process between a
normal Pod and a checkpointed Pod is at first largely the same. At the time the container
with the checkpoint image is created CRI-O will identify the checkpoint based on the
added annotation. For restoring to work CRI-O needs to first setup all the container
mounts correctly. If there is any difference in the mounts, restoring will fail. This can be
the case when e.g. the filesystem on source and target system is different. After setting up
the mounts CRI-O delegates the actual restore to runc. Runc takes the provided mounts,
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sets up all the namespaces and starts CRIU for restore. CRIU then starts transforming
itself into the checkpointed process, restoring all namespaces, memory and processor state.

To restore the process successfully everything needs to be exactly the same as while
checkpointing. The exact same image needs to be available for restore to work. A Bug
in CRI-O is currently a missing check of the image version. CRI-O matches the image
name and the tag to restore containers. This is a problem if two different versions of the
same image exist on the source and target node. Another problem are different bundle
paths of Pods with and without infrastructure containers. Infrastructure containers are
used by CRI-O to bind namespaces that need a running process for them to be retained. If
such namespaces are not needed for a Pod the infrastructure container is not created. The
information about the existence of the infrastructure container is not yet recorded in the
checkpoint metadata. As the support for dropping infrastructure containers is not stable
yet, it can be disabled in the configuration. If the configuration of source and target node
is different restoration will fail.

Another problem is the lacking support for cgroup namespaces in CRIU in conjunction
with cgroups version 2. Cgroups are bound to the Pod instead of the container, so CRIU
needs to map the existing cgroups to the new cgroups of the new Pod. For this task runc
provides a mapping from the old to the new Pod cgroups to CRIU. With cgroups version 2
a new cgroups namespace feature is introduced to isolate cgroups. This feature removes the
need to provide the mapping as the restored cgroups are isolated by the namespace. CRIU
does not support these namespaces yet and restores the cgroups without a namespace. This
means with cgroups version 2 the Pod has two sets of cgroups attached to it after restore.
Kubelet is running a garbage collection process periodically to remove orphaned cgroups.
As the restored cgroups have no attached Pod the Kubelet removes them as part of this
garbage collection, killing every process running inside the cgroup. To mitigate this issue
cgroup support in CRIU needs to be disabled. This has the disadvantage of dropping any
cgroups created inside the container. As creating cgroups is rare for application containers
this feature can safely be disabled.

5.3 Overcoming Implementation Obstacles

This Section first details an obstacle with the implementation concerning clusters with
heterogeneous CPU architectures in Section 5.3.1. Then it describes the debugging process
for intercepting the messages between runc and CRIU in Section 5.3.2.

5.3.1 CPU Architecture

An important factor while restoring processes from one machine on another machine is
the CPU architecture. Incompatibilities between the source and target system often lead
to illegal instructions being executed upon restoring a process. Most applications that
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Figure 5.2: Communication between runc <-> CRIU

support different CPU flags scan these at the start of the program and do not expect the
hardware to change while the process is running. So while checkpointing the exact flags
of the CPU need to be recorded. The restore can only happen on systems with the same
architecture and a subset of the flags.

One possible solution is to implement a signal handler for SIGILL and perform a rescan
of CPU flags and to recover to a save point in program execution. This can only be imple-
mented in application code. Therefore, it would not satisfy the application transparency
of the C/R approach.

The easiest and most efficient solution is to require the target machine to have a superset
of the CPU flags of the source machine.

5.3.2 Debugging the communication between runc and CRIU

One major aspect that is lacking in the current implementation of the C/R features in
Kubernetes is error reporting. Being able to look at the communication between runc and
CRIU enables more debugging options as one can better analyze the cause of CRIU failures
with the provided options.

Communication between runc and CRIU works through raw RPC messages passed
through a UNIX_SEQPACKET socket. To start the communication runc creates a socketpair
and opens all the necessary files, that CRIU needs. Thereafter, runc forks and execs itself
and gives CRIU the file descriptor number of one end of the socket pair, through which
runc and CRIU communicate. This works because open file descriptors are inherited to
child processes unless the file is opened with the FD_CLOEXEC flag or later marked as non-
inheritable.
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After establishing this communication link protobuf encoded messages are passed be-
tween runc and CRIU. Inside of these messages references to open file descriptors are made
that designate for example the directory containing a checkpoint. Sniffing on this process
is achieved by replacing the CRIU executable with a sniffer program that opens a socket
pair itself. The sniffer then receives messages from the runc socket, captures them into a
file and forwards them through its own socket pair to CRIU. Other open file descriptors
from runc must be replicated at the exact same file descriptor number to enable CRIU to
access the correct files. Conceptually, this is relatively simple as the linux kernel increments
the file descriptors for every open call that is made with file descriptors 0, 1 and 2 being
reserved for stdin, stdout and stderr respectively. To not block the lower file descriptor
numbers the sniffer first opens /dev/null 100 times and then proceeds to open the socket
pair, the capture files and everything else it needs. After this step is complete the 100
dummy file descriptors are closed and can be reused for replicating open files in runc.
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Chapter 6

Evaluation

This chapter describes the experimental setup that was used to evaluate the proposed
Kubernetes operator, as well as an analysis of the obtained performance results. Section 6.1
describes the experimental setup including the used applications, the cluster hardware and
the procedure of the failover experiments. Section 6.2 presents the performed experiments
measuring overhead in regards to CPU usage, memory usage, disk usage, network traffic
and service disruption. The checkpoint performance for the different applications is shown
in Section 6.3. Next, Section 6.4 presents the results of the failover experiments. Section 6.5
compares the recovery times between the Pull State and the C/R Operator and Section 6.6
discusses the state quality of both methods. At last, Section 6.7 adds a discussion of the
presented results.

6.1 Experimental Setup

This section describes the setup for the performed experiments. In Section 6.1.1 the used
applications for the experiments are presented. Section 6.1.2 describes the hardware setup
of the cluster. Section 6.1.3 gives an overview over the gathered metrics and performed
experiments.

6.1.1 Applications

There are mainly two applications used for the experiments, the count and Redis1.

The count is a Nodejs2 application using the expressjs3 framework. The count has
internal state in form of a counter which is counted up every 100ms. This state can be
requested using a GET request with path /state and modified using a POST request with

1https://redis.com/
2https://nodejs.org/en/
3https://expressjs.com/de/
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Name CPU AVX RAM

Source node Intel Xeon E5-2660 v2 AVX 64GB
Target node Intel Xeon E5-2660 v3 AVX2 64GB

Table 6.1: Experimental machines

the same path. The count also includes a /health endpoint which is used to check the
liveness of the application.

Redis is a lightweight key-value store. In our experiments we used Redis without any
data, Redis with 1MB, 10MB and 100MB of random data inserted. The Redis variants
are named redis, redis-1m, redis-10m and redis-100m respectively.

6.1.2 Cluster

The experiments were performed on a two node cluster with two different physical ma-
chines. Table 6.1 shows the CPU and RAM of both nodes. Both machines are connected
over a 100 Mbit/s Fast Ethernet switch.

All of the Kubernetes control plane components as well as the operator are running on
the target node. The Kubernetes version is 1.25.4, which was installed through Kubeadm
with the ContainerCheckpoint feature flag enabled. A modified version of CRI-O is used
as the container runtime engine for the nodes. The modified version of CRI-O includes a
small bugfix and disables the cleanup of the CRIU logs. At the lowest level, runc is used
to run the containers. Container networking is setup using flannel and the flannel CNI
plugin.

6.1.3 Experiments

We are interested in multiple metrics of the implemented Pull State and C/R Operator.
First, we are interested in the overhead both operators incur on the system. The overhead
is measured in terms of overall CPU, memory, network and disk usage. Furthermore, the
service disruption is measured through requests round trip times. Next, we are looking
into checkpoint performance in terms of process freezing time and dumped memory.

In case of failover, we are interested in the actual service disruption as measured from
outside the cluster, recovery time and the state quality. Service disruption is measured in
terms of request round trip times. Recovery time is the time between fault injection and
the return to normal operation. With state quality we describe how much state is lost due
to the fault. As both operators can not guarantee perfect state recovery, we are interested
in the recency of the recovered state.

Failover experiments are always conducted in the following way. The monitored appli-
cation is started on the source node and the operator is allowed to register and checkpoint
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Figure 6.1: Overhead CPU statistics

the new Pod. The source node is disconnected from the cluster through an iptables rule.
After disconnection, the proposed operator detects the fault and restores the Pod on the
target node. Checkpoints of the count application on the target node cannot be restored
on the source node, as the target node supports AVX2, but the source node only supports
AVX (see Section 5.3.1). If AVX2 support is available openssl uses these instructions to
speed up hash calculations. Restoring the application leads to illegal instructions being
executed.

6.2 Overhead

Overhead is the overall impact on the system by using both operators. This includes the
impact on the major resources of the system such as CPU, memory, network and disk.
Overhead is also a measure of the impact on the monitored process. Such as measuring
the impact on the service provided by the application.

We use Prometheus [61] and node exporter [60] to measure the overall impact on the
system. These programs help monitoring the overall system load. Prometheus is set to
gather performance data every second as recommended in their documentation as the
lowest possible value [5]. Each experiment is run over 30 minutes and gathers data in that
amount of time.

In Figure 6.1 the average CPU load is shown for different checkpoint intervals with
the C/R Operator and the Pull State Operator. Measurements are performed using the
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Figure 6.2: Overhead Memory statistics

example count application running on the source node. The operator is running on the
target node along with all the control plane services for Kubernetes. The graphic shows
the average CPU usage over every core while varying the checkpointing interval from one
checkpoint every second to one checkpoint every ten seconds. As is apparent from the data
an increase in checkpoint interval or decrease of checkpoint frequency leads to lower CPU
consumption on source and target node. It is also clear that the Pull State Operator is
more resource efficient than the C/R Operator. This result is expected as the Pull State
Operator only needs to request a single value from the count. The checkpointing process for
the C/R Operator is vastly more complex as the whole memory and all process resources
need to be written to disk and converted to an OCI image.

Figure 6.2 shows the same measurements for memory consumption. In this case, we
do not observe any significant correlation between memory consumption and checkpoint
interval. From an analytical standpoint this is expected, as the checkpointing with the
C/R Operator only temporarily consumes more memory to process the data. The Pull
State Operator also holds one instance of the state in memory.

Statistics about the network consumption are also important, as the checkpoints need
to be continuously transferred to the target node. Figure 6.3 shows the transmitted (TX)
and received (RX) data for the source and target node. The y-axis of the plot is in a
logarithmic scale. From the graphic it is clear that RX from the target and TX from the
source are nearly identical in case of the C/R Operator. On the other hand, the data from
the Pull State Operator shows inflated values for the transmitted bytes. These high values



6.2. OVERHEAD 39

Figure 6.3: Overhead Network statistics

for the transmitted data are easily explained by the data gathering mechanism. The Pull
State Operator uses so little data transmission that the data is dominated by the gathering
of statistics.

The most severe increase in traffic is by 1410 KB/s comparing the transmission and
reception from the source and target node with 1s checkpoint interval. This corresponds
to a low amount of traffic compared to the overall link capacitiy of 100 Mbit/s. TX from
source and RX from target being the same is to be expected, as we are transferring the
checkpoints from one node to the other and no other significant network traffic is happening
on the machines.

Figure 6.4 shows the overall disk writes and reads on both nodes. The y-axis is in
logarithmic scale. The disk reads do not seem correlated at all with the experiments. Disk
writes seem to be correlated similarly to the rest of the statistics, with lower checkpoint
interval leading too higher disk writes.

Another aspect of overhead for the system is the service interruption incured on the
application. This is measured using a client which makes requests as fast as possible and
records the answer time. The measurements are performed over five minutes and result
in the graph shown in Figure 6.5. Figure 6.5-a shows measurements of roundtrip time
for requests against the count application. Figure 6.5-b shows the duration distribution
of the delayed requests. The experiments were performed using a 10s interval time for
checkpointing. The figure shows the expected behaviour. Every 10s there is a requests
that gets delayed by the checkpointing time. The duration of the checkpointing is roughly
one second.
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Figure 6.4: Overhead Disk statistics

Figure 6.5: Request round trip times
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Figure 6.6: Checkpoint freezing time & memory dumped

6.3 Checkpoint performance

Checkpoint performance is the time it takes for the checkpoint to be created. Additionally
CRIU reports the amount of memory written to disk while checkpointing.

Figure 6.6-a shows how long processes are frozen. The applications shown are the count
application and our variants of redis. Figure 6.6-b shows the amount of memory dumped for
the processes. The two figures show a correlation between frozen time during checkpointing
and memory written to disk. The data is gathered over roughly 2000 data points for every
application. As we can see checkpointing the count requires dumping roughly 25MB of
memory, while the empty redis variant only requires approximately 1MB. This is due to
the high amount of memory used by Nodejs.

6.4 Failover

The durations corresponding to the different steps of the failover process are measured for
the count example application, redis and the redis variants with 1MB, 10MB and 100MB
of random data inserted.

Figure 6.7 shows a timeline of the failover process for the C/R Operator. Every section
in the timeline designates a phase of the failover process. First, Pod scheduling and creation
is executed by Kubernetes. In this phase, Kubernetes decides on which node the Pod should
be scheduled and creates the Pod in CRI-O. The next phase shows how much time CRI-O
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Figure 6.7: Failover timeline

needs to create all the resources for the restore and prepare everything conmon needs for
the restore. Conmon setup is the time conmon is running until it calls runc in the next
phase. runc first sets up the namespaces, mounts and any other resources the container
needs and subsequently calls CRIU for a version check. After the confirmed version check,
the real restore process with CRIU happens. This is also the time at which CRI-O reports
the container as started. The last second of most of the restore operation is spent on
network setup until the container is reachable again from the outside. In Figure 6.7, we
omit a roughly 3 second long fault detection time for clarity. The fault detection time
is similar for all applications and is comprised of 3 failed liveness probes executed every
second.

We can see that the two phases growing the most with higher amount of memory
dumped are the CRI-O restore and the CRIU restore time. This is probably due to the
larger amount of data that needs to be copied for the restore.

From the outside, the failover appears like an outage of approximately 6 seconds. In
Figure 6.8 a failover event is shown as seen from an external application that sends re-
quests to the count application during a failover event. The graphs show the durations
observed by such requests. The graphs shows the request durations to the the-count exam-
ple application during a failover event. Smaller spikes indicate checkpoint events similar
to Figure 6.5. In the large spike we see 6 failed requests that experienced the timeout of 1
second while requesting the application. After this time the application is available again
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Figure 6.8: Requests to application while failover

Figure 6.9: Comparisons of recovery times

and can be used normally. The experiments were performed over 100 runs and the graph
shows the average times over all 100 runs.

6.5 Recovery time comparison

Figure 6.9 shows a comparison of the C/R Operator and the Pull State Operator in terms
of recovery times. Recovery time is here measured as the time elapsed from fault injection
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Figure 6.10: State quality of Pull State vs C/R Operator

to the time at which the application is reachable with recovered state. As can be seen in
the figure the recovery times of both operators are fairly similar.

6.6 State Quality

Another metric to be considered to benchmark C/R for fault tolerance is the state quality.
This refers to the amount of state lost during failover. Figure 6.10 shows the difference in
state before and after failover using different checkpointing intervals I. The experiemnts are
performed using the-count example application, which increments its count every 100ms.
The state lost during failover is therefore expected to be between 0 and 10 ∗ I. Values
below zero are encountered, should the reconnection to network mentioned earlier take so
long that the new count is already higher than the old count. The data for 1s and 2s

interval checkpoints shows irregularities, because the checkpointing happens so frequently,
that instabilities start to occur in the process. Otherwise, the trend in the data is as
expected.

6.7 Discussion

In our work we design and implement a new approach for fault tolerance of stateful appli-
cations using C/R technology. This approach is integrated into the Kubernetes container
orchestration framework in form of an operator and is using the latest features regarding
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C/R. The implemented operators are evaluated based on their overhead and performance
in a network failure scenario.

The analysis of the overhead of the presented C/R Operator shows no significant in-
crease in regards to memory and disk usage. The CPU overhead shows an increase of CPU
usage of 2-6%, which for mast clusters is negligible. The network overhead depends on
the checkpoint size and interval as the checkpoint needs to be transferred to the target
node. Depending on the cluster network setup and the amount of transferred data this can
have a significant impact on the cluster. Another significant impact on the system is the
service availability. Freezing the process for one second every 10 seconds means reduces
the available processing time to 90%. Lower checkpointing intervals reduce he performance
of the monitored application further.

The failover measurements indicate 4.5-7.5 seconds of recovery time after failover. De-
pending on application startup, recovery times for the C/R Operator can be vastly superior
to recovery times of the Pull State Operator. The C/R Operator can skip application ini-
tialization on restore which can significantly speed up recovery time. A consideration for
these measurements is that new Pod IPs were requested manually from Kubernetes to
measure recovery time. If applications use Kubernetes Services to route requests to Pods,
there will be intermittent failures. This is illustrated in Appendix A.1.

State quality for the Pull State Operator and the C/R Operator are similar and depend
on the state saving interval. Both approaches are only viable for applications that do
not need to recover exact state or will reach the same state after recovery. Similar to
the redundancy approach this is only guaranteed for applications that are deterministic.
Deterministic applications do not use any source of random data i.e. the current time,
random numbers or timing differences in threads of the application to update their state.
Another challenge in the context of state recovery is explicit or implicit state stored outside
of the container, e.g. session tokens for authentication with external services.

A further consideration for using the C/R Operator is the requirement of homogeneous
CPU architecture. Restore is only possible on nodes that implement a superset of the
source node instruction set. In heterogeneous clusters this limits the available nodes for
restore considerably.

An advantage of the C/R Operator when compared to the Pull State Operator is com-
plete application transparency. No modification of the monitored application is required
for the C/R Operator to work. The Pull State Operator needs an interface to pull the
state and an interface for restoring the state. This is an advantage in case modification
of the application is cost prohibitive or calculation of the internal state is computationally
expensive.

Overall the C/R Operator can be considered for use in situations that satisfy the
following conditions:
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• not sensitive to intermittent service interruption

• do not require exact state recovery on failover

• executed in a homogeneous cluster

• cost prohibitive to modify

Another considerations is longer checkpointing times with higher memory consumption
of the monitored application. On the other hand long startup times of applications are
mitigated by the C/R Operator.
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Conclusion & Future Work

7.1 Conclusion

The thesis shows a promising new technology for fault tolerance with stateful applications
in the Kubernetes container orchestration framework. Two approaches for fault tolerance
were implemented and evaluated based on multiple metrics. The first approach is the Pull
State Operator which pulls state in an configurable interval from the monitored application.
The second approach is the C/R Operator which uses Checkpoint/Restore technology to
implement fault tolerance. Both approaches have similar recovery times of 4.5-7.5 seconds
from the fault till the application is available again. The C/R approach results in a higher
performance overhead in CPU, network traffic and service disruption as the Pull State ap-
proach. The advantages of the C/R approach lie in the application transparency, meaning
the application has no need to be adapted and ease of use as long as all prerequisites for
usage of the technology are fulfilled.

7.2 Future Work

Future work includes multiple avenues for improvement of the technology.

First the standardization of the checkpoint image format for use with all CREs is
an important step for maturity in the technology. Currently no standard image format
exists for checkpoints. Every CRE implements their own format with slightly different
metadata. The OCI community is in the process of specifying a standard for an image
format for checkpoints. With this standard checkpoint images become interchangeable
between CREs.

One improvement not explored in this work is the use of incremental checkpoints and
tracking of changed memory pages. This approach could be used to improve checkpoint
performance and lower network overhead. Incremental checkpointing allows CRIU to first
take one full checkpoint and enable memory tracking. Every subsequent checkpoint saves

47
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all memory pages that have changed since the last checkpoint instead of every memory
page. For processes with substantial memory usage incremental checkpointing allows faster
checkpointing because not all memory needs to be dumped. Incremental checkpointing
also reduces the amount of transferred data between the nodes because each incremental
checkpoint is smaller.

Another improvement would be faster fault detection in Kubernetes. The manual way
to mark Pods as failed by the operators is not ideal and should be more closely integrated
with Kubernetes. Currently the operators first recover the Pod and then transfer ownership
of the Pod to the corresponding ReplicaSet. ReplicaSets are not meant to take ownership
of Pods created by other controllers. Sometimes this leads to the ReplicaSet deleting the
transferred Pod and replacing it with a new Pod. Also the integration with Services is
not ideal at the moment. Using a Service to access the Pods leads to intermittent failures
because Kubernetes needs to mark the failed Pod as faulty before the Service stops routing
requests to the failed Pod. Improvements in this regard are left to future work.
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Appendix

A.1 Failover with Kubernetes Service

Figure A.1 shows how the requests look in case of a failover with a Kubernetes service
between the Pods and the requester. We can see intermittent failures until Kubernetes
registeres the node as NotReady and drains all Pods from the failed node. The intermittent
failures are caused by the load balancing performed by the Service. This problem not
only exists with our approach, but is a general problem with replicated applications in
Kubernetes.

Figure A.1: Failover with a Kubernetes Service
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