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Abstract
Wepropose inference procedures for general factorial designs with time-to-event
endpoints. Similar to additive Aalen models, null hypotheses are formulated in
terms of cumulative hazards. Deviations are measured in terms of quadratic
forms in Nelson–Aalen-type integrals. Different from existing approaches, this
allows to work without restrictive model assumptions as proportional hazards.
In particular, crossing survival or hazard curves can be detected without a sig-
nificant loss of power. For a distribution-free application of the method, a per-
mutation strategy is suggested. The resulting procedures’ asymptotic validity is
proven and small sample performances are analyzed in extensive simulations.
The analysis of a data set on asthma illustrates the applicability.
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1 INTRODUCTION

Kristiansen (2012) reviewed 175 studies with time-to-event
endpoints published in five renowned journals. In 47%
of these studies, crossing survival curves were present.
The alarming observation of his review was: “Among
studies with survival curve crossings, Cox regression
was performed in 66% and log-rank-test in 70% of the
studies.” Under the assumption of proportional hazards,
the log-rank test and the Cox regression are indeed
very powerful tools. Otherwise, however, log-rank tests
significantly lose power, and Cox regressions cannot
be interpreted appropriately, in particular, when the
survival curves cross. Thus, as stated by Bouliotis and
Billingham (2011): “There is a need in the clinical com-
munity to clarify methods that are appropriate when
survival curves cross.” This especially holds in oncology,
where crossing survival curves are frequently observed
(Gahrton et al., 2013; Smith et al., 2014) due to a delayed
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treatment effect of immunotherapy (Mick and Chen,
2015).
In the two-sample setting, various inferences methods

have been designed to detect nonproportional hazard alter-
natives, especially crossing curves. We refer to Li et al.
(2015) for a review up until the year 2014, where a two-
stage procedure (Qiu and Sheng, 2008) showed the most
convincing performance. Recently, Fernández and Rivera
(2020), Gorfine et al. (2020), Liu et al. (2020) proposed
methods based on reproducing kernel Hilbert spaces,
sample-space partitioning, and the area under the curve.
Other tempting approaches are extensions of weighted
log-rank tests (Gill, 1980; Andersen et al., 1993; Bathke
et al., 2009), for which the power is optimized for certain
nonproportional hazard alternatives by adding a respec-
tive weight function. For example, the weights of Har-
rington and Fleming (1982) can be used for late treat-
ment effects, as recently recalled by Su and Zhu (2018).
Such weights probably would have helped Jacobs et al.
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(2016) to confirm their initial assumption in an ovarian
cancer screening trial. Instead, they used the log-rank test
and stated: “The main limitation of this trial was our
failure to anticipate the late effect of screening in our
statistical design. Had we done so, the weighted log-rank
test could have been planned in line withmany other large
cancer screening trials.” This quote illustrates the problem
of the (weighted) log-rank tests: they are designed for spe-
cific alternatives and prior knowledge is needed to choose
the optimal weight. To overcome this selection problem,
Brendel et al. (2014) introduced a combination approach of
several weights leading to procedures with broader power
functions. Recently, their approach was revisited and sim-
plified leading to computationally more efficient test ver-
sions (Ditzhaus and Pauly, 2019; Ditzhaus and Friedrich,
2020).
As “evaluating more than 1 new intervention concur-

rently increases the chances of finding an effective inter-
vention” (Juszczak et al., 2019), we aim to extend their
idea to more general factorial designs. This way we not
only address the multiarm problem with crossing survival
curves for which only a handful of relevant methods exist
(Bathke et al., 2009; Chen et al., 2016; Liu and Yin, 2017;
Gorfine et al., 2020) but also develop methods that fully
exploit the structure of factorial survival designs. To the
best of our knowledge, the proposed methods are the first
to tackle the problem of nonproportional hazards in gen-
eral factorial designs. Such methods will not only allow
the detection of main factor effects but also infer poten-
tial interaction effects (Kurz et al., 2015) as, for example,
also stated by Lubsen and Pocock (1994): “it is desirable
for reports of factorial trials to include estimates of the
interaction between the treatments.” In contrast to Cox,
Aalen, or Cox-Aalen regressionmodels (Cox, 1972; Scheike
and Zhang, 2003), there is no need to introduce multi-
ple dummy variable for nominal factors (e.g., treatments)
in the factorial design setup, which is even favorable in
uncensored situations (Green, 2012). In the context of sur-
vival data, just a few nonparametric methods account for
factorial designs: the approaches of Akritas and Brunner
(1997), which require a strong assumption on the under-
lying censoring distribution that is often too strict from a
practical point of view, and the procedures of Dobler and
Pauly (2020) and Ditzhaus et al. (2021) formulating null
hypotheses in terms of certain concordance effects, that
restricts their analysis to a pre-specified time range [0, 𝜏],
and medians, respectively. All three approaches are not
flexibly adaptable to detect certain crossing structures.
In contrast, we follow the spirit of the additive model of

Aalen (1980) and formulate our null hypotheses utilizing
cumulative hazard functions. Inspired by Neuhaus (1993)
and Janssen and Mayer (2001), we derive critical values
employing a permutation procedure. Under exchangeable
data, for example, when the survival and the censoring

distributions are the same over all groups, respectively, the
permutation strategy leads to a finitely exact test under
the null hypothesis (Lehmann and Romano, 2006). It
is, however, less known that valid permutation tests can
also be constructed without this restrictive assumption.
In fact, to overcome the problem of potentially different
censoring distributions, Wang et al. (2010) suggested a
permutation imputation strategy. In detail, they proposed
to impute censored observations from the conditional
Kaplan–Meier-estimates for the groups’ censoring dis-
tributions whenever they change the group during the
permutation step. Recently, Gorfine et al. (2020) followed
this strategy to derive a 𝑘-sample procedure. But the per-
mutation imputation method does not tackle the problem
of potential different survival curves, which may occur
in factorial designs, nor preserves the favorable property
of permutation tests being finitely exact under exchange-
ability. To tackle both limitations, we follow a different
permutation scheme, namely, the idea of studentized
permutation tests. These were mainly explored for testing
means and other functionals in the two-sample case
(Janssen and Pauls, 2003; Ditzhaus et al., 2021). Later, the
concept of studentization was extended to one-way layouts
by Chung and Romano (2013), and finally, reached its
full potential under general factorial designs (Pauly et al.,
2015; Ditzhaus et al., 2021). Thereof, only Ditzhaus et al.
(2021) treated factorial survival models, but with a less
flexible median-based approach. Therefore, the aims of
the present paper are to derive a permutation procedure:

(a) without any restrictive assumption on the censoring
distribution or the time range,

(b) with reasonable power under proportional hazards
and crossing curve scenarios,

(c) for general factorial designs allowing the study ofmain
and interaction effects, and

(d) being asymptotically validwith satisfactory small sam-
ple size performance.

This will be achieved by combining a weighted combina-
tion approach with the studentized permutation strategy.
In Section 2, we introduce the survival model and the

null hypotheses formulated in terms of cumulative haz-
ard rate functions. To test for certain main or interaction
effects, we propose respective Wald-type statistics based
on weighted Nelson–Aalen-type integrals, see Section 3.
We prove their asymptotic validity and derive their power
behavior under local alternatives. Motivated by the lat-
ter, we suggest to combine different weight functions into
a joint Wald-type statistic to obtain a powerful method
for various alternatives simultaneously, for example, pro-
portional hazards and crossing survival curves. Respec-
tive permutation versions of them, promising a better
finite sample performance, are shown to be asymptotically
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exact in Section 4. A simulation study presented in Sec-
tion 5 reveals an actual improvement when using the
permutation approach and show that the combination
strategy actually results in a powerful test for alterna-
tives with proportional hazards and with crossing curves.
Finally, the tests’ applicability is illustrated by analyzing
data from a recent study on asthma.

2 THE SETUP

Our general survival model is given by mutually indepen-
dent positive random variables

𝑇𝑗𝑖 ∼ 𝐹𝑗, 𝐶𝑗𝑖 ∼ 𝐺𝑗 (𝑗 = 1,… , 𝑘; 𝑖 = 1, … , 𝑛𝑗), (1)

where 𝑇𝑗𝑖 is the actual survival time with continuous dis-
tribution function 𝐹𝑗 and 𝐶𝑗𝑖 denotes the corresponding
right-censoring time with continuous distribution func-
tion 𝐺𝑗 . This setup allows the consideration of simple one-
way but also of higher way layouts. For illustration, con-
sider a two-way design with factors 𝐵 (having 𝑏 levels) and
𝐶 (possessing 𝑐 levels). In this scenario, we set 𝑘 = 𝑏 ⋅ 𝑐 and
split up the group index 𝑗 into 𝑗 = (𝑗𝐵, 𝑗𝐶) for 𝑗𝐵 = 1,… , 𝑏
and 𝑗𝐶 = 1,… , 𝑐. More complex designs, for example, hier-
archical designs with nested factors, can be incorporated
into this framework as well, see Dobler and Pauly (2020)
for more details.
Based on the observation time 𝑋𝑗𝑖 = min(𝑇𝑗𝑖, 𝐶𝑗𝑖) and

its censoring status 𝛿𝑗𝑖 = 𝐼{𝑋𝑗𝑖 = 𝑇𝑗𝑖}, where 𝐼(⋅) denotes
the indicator function, we like to infer hypotheses for-
mulated in terms of the cumulative hazard rate functions
𝐴𝑗(𝑡) = ∫ 𝑡

0
(1 − 𝐹𝑗)

−1𝐹𝑗 (𝑡 ≥ 0):

0 ∶ 𝑯𝑨 = 𝟎𝑑, 𝑨 = (𝐴1, … ,𝐴𝑘)
′, (2)

where 𝑯 ∈ ℝ𝑑×𝑘 is a contrast matrix, that is, 𝑯𝟏𝒌 = 𝟎𝑑,
and 𝟎𝑑 as well as 𝟏𝑑 are vectors in ℝ𝑑 consisting of 0’s
and 1’s only. Here and subsequently, we use the following
standard matrix notation: 𝑩′ is the transpose and 𝑩+ is the
Moore–Penrose inverse of a matrix 𝑩. The contrast matrix
in (2) is chosen in regard to the underlying question of
interest. For example, in a one-way layout, the null hypoth-
esis 0 ∶ {𝐴1 = ⋯ = 𝐴𝑘} = {𝑷𝑘𝑨 = 𝟎𝑘} of no group
effect can be expressed in terms of the contrast matrix
𝑷𝑘 = 𝑰𝑘 − (𝑱𝑘∕𝑘), where 𝑰𝑘 is the 𝑘 × 𝑘-dimensional
unity matrix and 𝑱𝑘 = 𝟏

′
𝑘
𝟏𝑘 ∈ ℝ

𝑘×𝑘 consists of
1 only.
Switching to a two-way layout (𝑘 = 𝑏 ⋅ 𝑐) with the factors

𝐵 (having 𝑏 levels) and𝐶 (with 𝑐 levels), the relevantmatri-
ces are 𝑯𝐵 = 𝑷𝑏 ⊗ (𝑱𝑐∕𝑐), 𝑯𝐶 = (𝑱𝑏∕𝑏) ⊗ 𝑷𝑐 and 𝑯𝐵𝐶 =

𝑷𝑏 ⊗ 𝑷𝑐, where ⊗ is the Kronecker product. They can be
used to check the null hypotheses

∙ No main effect B: {𝑯𝐵𝑨 = 𝟎𝑘} = {�̄�1⋅ = ⋯ = �̄�𝑏⋅}.
∙ No main effect C: {𝑯𝐶𝑨 = 𝟎𝑘} = {�̄�⋅1 = ⋯ = �̄�⋅𝑐}.
∙ No interaction effect: {𝑯𝐵𝐶𝑨 = 𝟎𝑘} = {�̄�⋅⋅ − �̄�⋅𝑗𝐶 −

�̄�𝑗𝐵⋅ + 𝐴𝑗𝐵𝑗𝐶 = 0}.

Here, �̄�𝑗𝐵⋅, �̄�⋅𝑗𝐶 , and �̄�⋅⋅ are the means over the
dotted indices. Suppose for a moment that haz-
ard rates 𝛼𝑗(𝑡) = 𝑑𝐴𝑗(𝑡)∕𝑑𝑡 (𝑡 ≥ 0) exist. Having
the additive Aalen model in mind, we can rewrite
the null hypotheses more lucidly by decompos-
ing the hazard rate 𝛼𝑗 = 𝛼𝑗𝐵𝑗𝐶 into 𝛼𝑗𝐵𝑗𝐶 (𝑡) =

𝛼0(𝑡) + 𝛽𝑗𝐵 (𝑡) + 𝛾𝑗𝐶 (𝑡) + (𝛽𝛾)𝑗𝐵𝑗𝐶 (𝑡) with side condi-
tions

∑
𝑗𝐵
𝛽𝑗𝐵 =

∑
𝑗𝐶
𝛾𝑗𝐶 =

∑
𝑗𝐵
(𝛽𝛾)𝑗𝐵𝑗𝐶 =

∑
𝑗𝐶
(𝛽𝛾)𝑗𝐵𝑗𝐶 = 0.

Then we can rewrite {𝑯𝐶𝑨 = 𝟎𝑘} = {𝛾𝑗𝐶 = 0 for all 𝑗𝐶} or
{𝑯𝐵𝐶𝑨 = 𝟎𝑘} = {(𝛽𝛾)𝑗𝐵𝑗𝐶 = 0 for all 𝑗𝐵, 𝑗𝐶}. More com-
plex designs, for example, crossed three- and higher-way
layouts, can be treated similarly, see the Supporting
Information for details.
As in analysis-of-variance settings (Pauly et al., 2015),

it is preferable to work with the projection matrix 𝑻 =
𝑯′(𝑯𝑯′)+𝑯 over 𝑯 itself. Beside from being unique,
𝑻 is symmetric and idempotent, and describes the same
null hypothesis as 𝑯 does. We will therefore work with
𝑻 when formulating our testing procedure. In addition,
we need the usual counting process notation. Thus, let
𝑁𝑗(𝑡) =

∑𝑛𝑗
𝑖=1

𝐼{𝑋𝑗𝑖 ≤ 𝑡, 𝛿𝑗𝑖 = 1} be the number of observed
events within group 𝑗 until time 𝑡 and introduce 𝑌𝑗(𝑡) =∑𝑛𝑗
𝑖=1

𝐼{𝑋𝑗𝑖 ≥ 𝑡}, the number of individuals being at risk
just before 𝑡 in the same group. These processes allow
us to define the Nelson–Aalen estimator for 𝐴𝑗 given
by 𝐴𝑗(𝑡) = ∫ 𝑡

0
𝐼{𝑌𝑗(𝑠) > 0}∕𝑌𝑗(𝑠) d𝑁𝑗(𝑠) (𝑗 = 1,… , 𝑘; 𝑡 ≥

0). For our purposes, the Kaplan–Meier estimator is
only required for all 𝑛 =

∑𝑘

𝑗=1
𝑛𝑗 observations without

distinguishing between the groups. This pooled version
𝐹 can be expressed in terms of the pooled counting
processes 𝑁 =

∑𝑘

𝑗=1
𝑁𝑗 and 𝑌 =

∑𝑘

𝑗=1
𝑌𝑗 by 1−𝐹(𝑡) =∏

(𝑗,𝑖)∶𝑋𝑗𝑖≤𝑡[1 −{Δ𝑁(𝑋𝑗𝑖)∕𝑌(𝑋𝑗𝑖)}](𝑡 ≥0), where Δ𝑁(𝑡) =
𝑁(𝑡) − 𝑁(𝑡−) denotes the increment at 𝑡. In the same
way, 𝐴(𝑡) = ∫ 𝑡

0
𝐼{𝑌 > 0}∕𝑌 d𝑁 (𝑡 ≥ 0) denotes the pooled

Nelson–Aalen estimator.

3 ASYMPTOTIC RESULTS

3.1 Wald-type test

Throughout, we assume nonvanishing groups 𝑛𝑗∕𝑛 →
𝜅𝑗 ∈ (0, 1) as min(𝑛𝑗 ∶ 𝑗 = 1,… , 𝑘) → 0. Moreover, we
exclude the trivial case of purely censored observations in
any of the groups by assuming that 𝐹𝑗(𝑡) > 0 and𝐺𝑗(𝑡) < 1
for all 𝑗 = 1,… , 𝑘 and some 𝑡 > 0.

 15410420, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13575 by T
echnical U

niversity D
ortm

und, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



206 DITZHAUS et al.

Weighted log-rank statistics (Andersen et al., 1993, e.g.)
of the form

(
𝑛

𝑛1𝑛2

)1∕2
∫

∞

0

𝑤{𝐹𝑛(𝑡−)}
𝑌1(𝑡)𝑌2(𝑡)

𝑌(𝑡)

{
d𝐴1(𝑡) − d𝐴2(𝑡)

}
,

will later build the fundament of our new test statistics.
Here, 𝑡 ↦ 𝐹𝑛(𝑡−) is the left continuous version of 𝐹𝑛 and
𝑤 is a weight function taken from the space  consist-
ing of all continuous functions 𝑤 ∶ [0, 1] → ℝ of bounded
variations with 𝑤(𝑡) ≠ 0 for some 𝑡 ∈ [0, 1]. Fleming and
Harrington (1991) considered a subclass of these weights
having the shape 𝑤(𝑡) = 𝑡𝑟(1 − 𝑡)𝑔 (𝑟, 𝑔 ∈ ℕ0), see their
Definition 7.2.1. Setting 𝑟 = 𝑔 = 0, we obtain the log-rank
test and the choice (𝑟, 𝑔) = (1, 0) leads to the Prentice–
Wilcoxon test. In general, these weights can be used to pri-
oritize (mid-)late, (mid-)early, or central times by choos-
ing 𝑟, 𝑔 appropriately. For our purposes, weights, for exam-
ple, 𝑤(𝑡) = 1 − 2𝑡, intersecting the 𝑥-axis are of special
interest because they are designed for crossing hazard
alternatives.
Having all these weights at hand, the question arises:

which weight should be chosen? We address this question
in detail in the next two sections, but first, we introduce
the relevant components of the new test statistic. For ease
of presentation, we restrict ourselves to nontrivial poly-
nomial weights 𝑤 ∈ covering the main relevant cases.
However, more general weight functions can be treated
analogously as discussed in the Supporting Information.
First, we extend the weighted log-rank integrand to the
present situation of multiple subgroups

𝑤𝑛(𝑡) = 𝑤{𝐹𝑛(𝑡−)}
𝑌1(𝑡) …𝑌𝑘(𝑡)

𝑛𝑌(𝑡)𝑘−1
(𝑡 ≥ 0), (3)

and then define the Nelson–Aalen-type integral over
𝑍𝑛𝑗(𝑤𝑛) = 𝑛

1∕2 ∫ ∞
0
𝑤𝑛(𝑡) d𝐴𝑗(𝑡). By standard martingale

theory (Gill, 1980; Andersen et al., 1993), 𝑍𝑛𝑗(𝑤𝑛) =
𝑛1∕2 ∫ ∞

0
𝑤𝑛(𝑡) {d𝐴𝑗(𝑡) − d𝐴𝑗(𝑡)} is asymptotically

𝑁{0, 𝜎2
𝑗
(𝑤)}-distributed with 𝜎2

𝑗
(𝑤) > 0. The latter can be

consistently estimated by 𝜎2
𝑗
(𝑤𝑛) = 𝑛 ∫ ∞0 {𝑤𝑛(𝑡)

2∕𝑌𝑗(𝑡)}

d𝐴𝑗(𝑡), see the Supporting Information. It follows (Rao
and Mitra, 1971, Th. 9.2.2) that, under 0 ∶ 𝑻𝑨 = 𝟎𝑘, the
Wald-type statistic

𝑆𝑛(𝑤𝑛) = [𝑻𝒁(𝑤𝑛)]
′(𝑻�̂�(𝑤𝑛)𝑻)

+𝑻𝒁(𝑤𝑛),

�̂�(𝑤𝑛) = diag{𝜎2
1
(𝑤𝑛), … , 𝜎

2
𝑘
(𝑤𝑛)} (4)

is asymptotically 𝜒2
𝑓
-distributed with 𝑓 = rank(𝑻) degrees

of freedom. Tomotivate a sensible combination of weights,
we study the asymptotic power of 𝑆𝑛(𝑤𝑛) under local alter-
natives.

3.2 Local alternatives

To this end, we start with a fixed null setting 𝑨 =

(𝐴1, … ,𝐴𝑘)
𝑇 with 𝑻𝑨 = 𝟎𝑘 and corresponding hazard

rates 𝛼𝑗(𝑡) = d𝐴𝑗(𝑡)∕ d𝑡 (𝑡 ≥ 0). Disturbing them as fol-
lows, we get a local alternative (𝐴1𝑛, … ,𝐴𝑛𝑘) tending with
a rate of 𝑛−1∕2 to the null setting 𝑨:

𝛼𝑛𝑗(𝑡)

𝛼𝑗(𝑡)
= 1 + 𝑛−1∕2𝛾𝑗(𝑡) (𝑗 = 1,… , 𝑘; 𝑡 ≥ 0), (5)

where the right hand side is nonnegative and
∫ 𝑡
0
𝛾𝑗(𝑢)𝛼𝑗(𝑢) d𝑢 ∈ ℝ for all 𝑡 ≥ 0 fulfilling 𝐹𝑗(𝑡) < 1.

To simplify the situation, we may restrict to perturba-
tions

𝛾𝑗(𝑡) = 𝜃𝑗𝛾{𝐹0(𝑡)}. (6)

in the same direction 𝛾 but with possibly different
strengths 𝜃𝑗 > 0. Here, 𝐹0 is the limit function of the
pooled Kaplan–Meier estimator, see the Supporting Infor-
mation for its concrete shape. Moreover, we introduce
𝑦𝑗 = 𝜅𝑗(1 − 𝐺𝑗)(1 − 𝐹𝑗) (𝑗 = 1,… , 𝑘), which is the limit of
𝑛−1𝑌𝑗 .

Theorem 1. Under Assumption (5), 𝑆𝑛(𝑤𝑛) converges to
a noncentral 𝜒2

𝑓
(𝛿)-distribution with 𝑓 = rank(𝑻) and 𝛿 =

(𝑻𝝁)′(𝑻𝚺𝑻)+𝑻𝝁, where 𝝁 = (𝜇1, … , 𝜇𝑘)′ and

𝜇𝑗 = ∫
∞

0

𝑤{𝐹0(𝑡)}
𝑦1(𝑡) … 𝑦𝑘(𝑡)

𝑦(𝑡)𝑘−1
𝛾𝑗(𝑡) d𝐴𝑗(𝑡), 𝑦 =

𝑘∑
𝑗=1

𝑦𝑗.

The effect of the weight function on the power under
certain local alternatives can be illustrated best for the 𝑘-
sample setting under (6). In this case,

𝛿 =

[
∫

∞

0

𝑤{𝐹0(𝑡)}𝛾{𝐹0(𝑡)}
𝑦1(𝑡) … 𝑦𝑘(𝑡)

𝑦(𝑡)𝑘−1
d𝐴1(𝑡)

]2

× (𝑻𝜽)′(𝑻𝚺𝑻)+𝑻𝜽,

where 𝜽 = (𝜃1, … , 𝜃𝑘)
′ and 𝚺 = diag{𝜎2

1
(𝑤), … , 𝜎2

𝑘
(𝑤)}.

Consequently, choosing 𝑤 as a multitude of 𝛾 leads to the
highest value for 𝛿 and, consequently, to the highest power
of 𝑆𝑛(𝑤). However, the direction 𝛾 of the departure from
the null hypothesis is unknown and again the question
arises: how to choose 𝑤? The task of finding the optimal
𝑤 is impossible. The most popular choice is the log-rank
test (𝑤 ≡ 1) that, however, lacks to detect crossing hazard
departures. To compensate for that, we follow Ditzhaus
and Friedrich (2020) and suggest to combine the log-rank
weight and a weight for crossing hazard alternatives, for
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DITZHAUS et al. 207

example,𝑤(𝑥) = 1 − 2𝑥 (0 ≤ 𝑥 ≤ 1), into a jointWald-type
statistic. In general, the new approach is not restricted to
these two weights and even more than two weights can
be combined that is particularly useful if there is prior
knowledge of alternatives to be discovered.

3.3 Combination of different weights

Let us start with an arbitrary number of prechosenweights
𝑤1,… ,𝑤𝑚 corresponding to alternatives of interest, for
example, proportional, late, early, or crossing hazards.
Moreover, let𝑤𝑛1, … ,𝑤𝑛𝑘 be the corresponding integrands
of the form (3) for the Nelson–Aalen-type integrals. To
exclude redundant cases, as too similar or even equal
weights,we followDitzhaus andPauly (2019) andDitzhaus
and Friedrich (2020) and restrict to weights fulfilling the
following.

Assumption 1. Let 𝑤1,… ,𝑤𝑚 ∈ be linearly indepen-
dent, nontrivial polynomials.

The basic idea is to combine 𝒁𝑛(𝑤𝑛1), … , 𝒁𝑛(𝑤𝑛𝑚) into
one joint Wald-type statistic. For this purpose, we intro-
duce the block diagonal matrix 𝑻(𝑚) = diag(𝑻, … , 𝑻) ∈
ℝ𝑘𝑚×𝑘𝑚. As 𝑍𝑛𝑗(𝑤𝑛𝑟) and 𝑍𝑛𝑗(𝑤𝑛𝑟′ ) are highly dependent,
the vectors 𝒁𝑛(𝑤𝑛𝑟) and 𝒁𝑛(𝑤𝑛𝑟′ ) are so as well. Thus, the
covariance matrix estimator required for the joint Wald-
type statistic is not a simple diagonal matrix as in (4). In
fact, the updated estimator has a block matrix represen-
tation �̂� = (�̂�(𝑟𝑟′))𝑟,𝑟′=1,…,𝑚, where each submatrix �̂�(𝑟𝑟

′) =

diag(𝜎2,(𝑟𝑟
′)

1
, … , 𝜎

2,(𝑟𝑟′)

𝑘
) is a diagonal matrix with entires

𝜎
2,(𝑟𝑟′)
𝑗

= 𝑛 ∫ ∞
0
{𝑤𝑛𝑟(𝑡)𝑤𝑛𝑟′ (𝑡)∕𝑌𝑗(𝑡)} d𝐴𝑗(𝑡). To sum up, we

obtain the following updated Wald-type statistic:

𝑆𝑛 = (𝑻
(𝑚)𝒁𝑛)

′(𝑻(𝑚)�̂�𝑻(𝑚))+𝑻(𝑚)𝒁𝑛,

𝒁𝑛 = {𝒁𝑛(𝑤𝑛1)
′, … , 𝒁𝑛(𝑤𝑛𝑘)

′}′. (7)

Theorem 2. Under Assumption 1 and 0 ∶ 𝑻𝑨 = 𝟎𝑘 , 𝑆𝑛
tends to a 𝜒2

𝑓
-distribution with 𝑓 = 𝑚 ⋅ rank(𝑇) degrees of

freedom as 𝑛 → ∞.

By Theorem 2, an asymptotically exact test 𝜙𝑛 = 𝐼{𝑆𝑛 >
𝜒2
𝑓,𝛼
}, that is, 𝐸0

(𝜙𝑛) → 𝛼 as 𝑛 → ∞, is derived by com-
paring the joint Wald-type statistic 𝑆𝑛 with the (1 − 𝛼)-
quantile 𝜒2

𝑓,𝛼
of the 𝜒2

𝑓
-distribution. However, simulation

results from Section 5 reveal a very conservative behavior
of 𝜙𝑛 under small sample sizes. To tackle this problem,
we suggest a permutation strategy leading to a better finite
sample performance as can be seen in Section 5.

4 PERMUTATION TEST

Resampling methods and, in particular, permutation pro-
cedures are well-accepted tools to improve the finite sam-
ple performance of asymptotic tests. The advantage of per-
muting over other resampling methods is the finite sam-
ple exactness of the test under exchangeable data, that
is, under the restrictive null hypothesis ̃0 ∶ 𝐴1 = ⋯ =

𝐴𝑘, 𝐺1 = ⋯ = 𝐺𝑘 in our scenario. At the same time, the
asymptotic exactness of the test beyond exchangeability
can often be transferred to its permutation counterpart
when working with studentized statistics, as the present
joint Wald-type statistic. That is why we promote the fol-
lowing permutation strategy for our setting: To obtain a
permutation sample {(𝑋𝜋

𝑗𝑖
, 𝛿𝜋
𝑗𝑖
) ∶ 𝑗 = 1,… , 𝑘; 𝑖 = 1, … , 𝑛𝑗},

we randomly interchange the group memberships of the
observation pairs (𝑋𝑗𝑖, 𝛿𝑗𝑖). With this, we calculate the
permutation version of the joint Wald-type statistic 𝑆𝜋𝑛 =
𝑆𝑛((𝑋

𝜋
𝑗𝑖
, 𝛿𝜋
𝑗𝑖
)𝑗,𝑖).

Theorem 3. Under Assumption 1, the permutation coun-
terpart 𝑆𝜋𝑛 of 𝑆𝑛 always asymptotically mimics its null
distribution, that is, under 0 as well as under fixed
and local alternatives (5), we have sup𝑡∈[0,∞) |𝑃{𝑆𝜋𝑛 ≤ 𝑡 ∣

(𝑋𝑗𝑖, 𝛿𝑗𝑖)𝑗𝑖} − 𝜒
2
𝑚⋅rank(𝑻)(−∞, 𝑡]| 𝑝

_→ 0 as 𝑛 → ∞.

As, for example„ elaborated by Dobler and Pauly
(2014), care has to be taken when applying permu-
tation techniques in combination with continuous
martingale theory. To prove Theorem 3, we therefore
transfer the proof technique of Ditzhaus and Janssen
(2020) relying on discrete martingales to the present
setup.
Theorem 3 allows to compare the joint Wald-type

statistic 𝑆𝑛 with the (1 − 𝛼)-quantile 𝑐𝜋𝑛,𝛼 of 𝑡 ↦ 𝑃{𝑆𝜋𝑛 ≤
𝑡 ∣ (𝑋𝑗𝑖, 𝛿𝑗𝑖)𝑗𝑖} (instead of the asymptotic 𝜒2

𝑓
-quantile).

This results in the permutation test 𝜙𝜋𝑛 = 𝐼{𝑆𝑛 > 𝑐𝜋𝑛,𝛼}
having type-I error as well as power behavior under
fixed and local alternatives (Janssen and Pauls, 2003,
Lemma 1).

5 SIMULATIONS

5.1 Simulation setup

In addition to the asymptotic findings, we conduct a sim-
ulation study to examine the tests’ small sample perfor-
mance.
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208 DITZHAUS et al.

F IGURE 1 Crossing survival curve alternatives

5.1.1 Designs

First, we consider a 2 × 2 layout with factors 𝐵 and 𝐶 and
infer the null hypotheses {𝑯𝐶𝑨 = 𝟎4} of no main effect
of 𝐶 and of no interaction effect {𝑯𝐵𝐶𝑨 = 𝟎𝑘}. Here, we
discuss balanced and unbalanced scenarios given by sam-
ple size vectors 𝐧bal = (𝑛11, 𝑛12, 𝑛21, 𝑛22) = (15, 15, 15, 15)
and 𝐧unb = (10, 20, 10, 20) as well as their multiples 𝐾𝐧bal
and 𝐾𝐧unb for 𝐾 = 2, 4, respectively. We also study four
different censoring settings 𝐜𝐫1 = (𝑐𝑟11, 𝑐𝑟12, 𝑐𝑟21, 𝑐𝑟22) =
(7%, 12%, 12%, 7%) (low), 𝐜𝐫2 = (29%, 38%, 25%, 35%)

(medium), 𝐜𝐫3 = (12%, 38%, 7%, 29%) (low/medium),
𝐜𝐫4 = (55%, 65%, 55%, 65%) (high).

5.1.2 Survival times

Under the null hypotheses, the survival times are
simulated according to the same distribution in each
(sub-)group, where we consider the standard Exponential
distribution Exp(1), a Weibull distribution Weibull(1.5, 5)
with parameters (𝜆shape, 𝜆scale) = (1.5, 5) and a stan-
dard log-normal distribution LogN(0, 1). To obtain
relevant alternatives, we disturb these null settings by
choosing three different crossing curve alternatives,
see Figure 1, and two proportional hazard alternatives:
Weibull(1.5, 5(2.5)−2∕3) and Weibull(1.5, 5) as well as
Exp(2.5) and Exp(1) for group 1 and 2, respectively. In
both cases, the respective hazard ratio equals 2.5. In the
present two-way layout, the observations of the first sub-
group, (𝑗𝐵, 𝑗𝐶) = (1, 1), for testing of no interaction effect,
and of the first and third subgroups (𝑗𝐵, 𝑗𝐶) = (1, 1), (2, 1)
for testing of no main effect 𝐶 are generated according
to these alternative distributions, whereas the remaining
observations follow the respective null distribution.

5.1.3 Censoring times

The censoring times are simulated by uniform distri-
butions Unif[0, 𝑈𝑗]. The upper limit 𝑈𝑗 of the inter-
val in group 𝑗 is determined by a Monte-Carlo simula-
tion such that the average censoring rate 𝑃(𝑇𝑗1 > 𝐶𝑗1) =
∫ ∞
0
min{𝑥∕𝑈𝑗, 1} d𝐹𝑗(𝑥) equals the prechosen rate 𝑐𝑟𝑗 .

As suggested by a referee, we also consider the situa-
tion of heterogeneous censoring patterns to study the
robustness of the permutation procedure under the null
hypothesis. For that purpose, we consider two censor-
ing distributions depending on the level 𝑗𝐶 of the sec-
ond factor 𝐶. For 𝑗𝐶 = 2, we keep the above censoring
mechanism, while for 𝑗𝐶 = 1, we replace it by respective
exponentially distributed censoring times, where again
the appropriate parameter is determined by Monte-Carlo
simulation.

5.1.4 Methods

For the type-I error rate and power comparisons, we
include the proposed singly-weightedWald-type tests with
the log-rank weight 𝑤1(𝑡) = 1 and a crossing weight
𝑤2(𝑡) = 1 − 2𝑡, respectively, as well as the joint Wald-type
test combining these two. We compare the performance
of the respective asymptotic and permutation procedures.
The simulation study is complemented by the well-known
Aalen- and Cox-regression methods. For both, we include
themain effects when testing for nomain effects, and addi-
tionally, the interaction effect when testing for no interac-
tion. All simulations are conducted by means of the com-
puting environment R (R Core Team, 2020), version 3.6.2.
For each setting,𝑁sim = 5000 simulation runs and𝑁perm =

1999 permutation iterations were generated.
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DITZHAUS et al. 209

TABLE 1 Type-I error rates in % (nominal level 𝛼 = 5%) in the 2 × 2-layout under the mixed censoring setting

Low cens. Low/Medium Medium cens. High cens.
Effect Distr 𝒏 Asy Per Asy Per Asy Per Asy Per
Interaction Exp 𝐧𝑢𝑛𝑏 3.3 4.8 3.2 5.0 2.9 4.8 2.7 4.6

𝐧𝑏𝑎𝑙 3.7 5.0 3.9 4.9 4.2 5.0 3.6 5.3
2𝐧𝑢𝑛𝑏 4.4 5.2 3.7 4.8 4.3 5.3 3.6 5.1
2𝐧𝑏𝑎𝑙 4.8 5.3 4.0 4.5 4.5 5.1 4.2 5.1
4𝐧𝑢𝑛𝑏 4.6 5.0 5.0 5.5 4.8 5.4 4.3 5.1
4𝐧𝑏𝑎𝑙 4.9 4.8 5.0 5.1 4.8 5.1 4.7 5.3

logN 𝐧𝑢𝑛𝑏 3.4 4.9 3.7 5.3 3.6 5.0 2.7 5.4
𝐧𝑏𝑎𝑙 3.6 4.7 3.5 4.7 3.5 4.5 3.1 4.6
2𝐧𝑢𝑛𝑏 4.5 5.2 3.7 4.7 4.5 5.4 4.0 5.1
2𝐧𝑏𝑎𝑙 4.8 5.2 4.3 4.9 4.2 4.6 3.7 4.9
4𝐧𝑢𝑛𝑏 4.6 4.8 4.6 5.3 4.9 5.3 3.8 4.4
4𝐧𝑏𝑎𝑙 4.7 4.8 4.7 5.0 4.6 4.8 4.2 4.7

Weibull 𝐧𝑢𝑛𝑏 3.5 4.9 3.0 5.0 3.6 5.4 2.8 5.3
𝐧𝑏𝑎𝑙 3.6 4.9 3.1 4.4 3.5 4.6 3.0 4.8
2𝐧𝑢𝑛𝑏 4.3 4.9 4.0 5.0 4.3 5.0 3.7 4.9
2𝐧𝑏𝑎𝑙 4.7 5.1 4.0 4.4 4.2 4.9 4.3 5.3
4𝐧𝑢𝑛𝑏 4.6 4.8 4.5 5.1 4.8 5.1 4.7 5.6
4𝐧𝑏𝑎𝑙 5.0 5.1 4.6 4.8 5.0 5.2 4.2 4.8

Main Exp 𝐧𝑢𝑛𝑏 4.3 4.9 4.7 5.3 4.1 4.7 3.9 3.9
𝐧𝑏𝑎𝑙 3.5 4.5 3.5 4.9 4.0 5.6 3.7 5.4
2𝐧𝑢𝑛𝑏 5.0 5.3 4.8 5.2 4.3 4.6 4.8 5.1
2𝐧𝑏𝑎𝑙 4.4 4.7 4.4 5.2 4.4 4.9 4.4 5.4
4𝐧𝑢𝑛𝑏 4.4 4.6 4.9 5.1 5.0 5.4 4.9 4.9
4𝐧𝑏𝑎𝑙 4.8 4.9 5.0 5.3 5.2 5.3 4.7 5.3

logN 𝐧𝑢𝑛𝑏 4.2 4.9 4.6 5.2 3.7 4.4 4.3 4.4
𝐧𝑏𝑎𝑙 4.1 5.1 4.1 5.5 4.2 5.5 3.6 5.4
2𝐧𝑢𝑛𝑏 5.0 5.4 5.4 5.7 4.0 4.4 4.1 4.5
2𝐧𝑏𝑎𝑙 4.4 4.7 4.0 4.6 5.0 5.4 4.3 5.6
4𝐧𝑢𝑛𝑏 4.9 5.3 4.6 4.9 4.2 4.5 4.7 4.9
4𝐧𝑏𝑎𝑙 5.0 5.1 4.4 4.6 4.9 5.1 4.3 4.9

Weibull 𝐧𝑢𝑛𝑏 4.0 4.8 4.1 4.7 3.9 4.6 4.7 4.9
𝐧𝑏𝑎𝑙 4.1 5.3 3.3 4.8 3.6 5.0 3.3 5.3
2𝐧𝑢𝑛𝑏 5.2 5.5 4.7 5.2 4.2 4.6 4.4 4.8
2𝐧𝑏𝑎𝑙 4.0 4.6 4.8 5.3 4.8 5.4 4.4 5.4
4𝐧𝑢𝑛𝑏 4.9 5.0 4.9 5.0 5.2 5.3 4.5 4.7
4𝐧𝑏𝑎𝑙 5.2 5.3 5.0 5.3 4.7 5.1 4.5 5.1

Asy: joint Wald-type test based on the 𝜒2
𝑓
-approximation; Per: joint permutation Wald-type test.

Values inside the 95% binomial interval [4.4,5.6] are printed in bold.

5.2 Simulation results

5.2.1 Type-I errors

Table 1 presents the empirical sizes of the asymptotic
jointWald-type test and its permutation counterpart under
the heterogeneous censoring setting, for example, uniform

and exponential censoring. The results for the pure uni-
form censoring settings are presented in the Supporting
Information and are slightly less extreme regarding the
asymptotic test and equally convincing for the permutation
approach. Besides, the Supporting Information contains
all results for the Cox- and Aalen-regression, indicating a
slight liberality for Cox and a slight conservativeness for
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210 DITZHAUS et al.

Aalen in case of the no interaction hypotheses and small
sample sizes, and good control for both in the remaining
settings. From Table 1, it is apparent that the asymptotic
approach leads to rather conservative decisions for small
sample sizes with values reaching down to 2.9%. In fact,
out of the 48 small sample size settings, just in three of
them the empirical size of the asymptotic test is within the
95% binomial confidence interval [4.4%, 5.6%] for the esti-
mated sizes. Doubling the sample sizes lead to an improve-
ment of the asymptotic test’s type-I error control. Now, just
6 out of 24 empirical sizes for themain effect but still 17 out
of 24 empirical sizes for the interaction effect are outside
the interval [4.4%, 5.6%]. For larger sample sizes 4𝐧bal and
4𝐧unb, the empirical sizes all lie inside the interval for the
low, low/medium, and medium censoring settings, and 7
out of 12 sizes lie inside the interval under high censoring.
Overall, it can be seen that the conservativeness is more
pronounced when the censoring is high. As the latter situ-
ation provides less information about the data, this obser-
vation is not surprising. In contrast, the permutation strat-
egy leads to an accurate type-I error control even for small
sample sizes: only two empirical size lie outside the confi-
dence interval.

5.2.2 Power

In Figure 2, all tests’ power curves are displayed when test-
ing for no interaction effects in the unbalanced sample size
setting with sample size vectors 𝐾𝐧unb, 𝐾 ∈ {1, 2, 4}. The
results for the balanced cases are comparable and, thus,
shown in the Supporting Information. It is apparent that
for the small sample size setting 𝐧 = 𝐧unb, the permuta-
tion joint Wald-type test leads to slightly higher power val-
ues than its respective asymptotic counterpart. The dif-
ference in terms of power becomes smaller or even van-
ishes for increased sample sizes. These observations are in
linewith the simulations under the null hypotheses, where
the asymptotic joint Wald-type test exhibits a conserva-
tive behavior for smaller sample sizes. Comparing the joint
Wald-type test with the two singly-weighted Wald-type
tests and the two regression methods, we can draw two
main conclusions: (1) Under the two proportional hazard
alternatives, the Aalen- and Cox-regression as well as the
singly-weighted Wald-type test with the log-rank weight
leads to the highest power values. Their power curves are
quite close, followed by the ones of the asymptotic and per-
mutation joint Wald-type tests. The singly weighted Wald-
type test with the crossing weight shows the lowest power
values. (2) The prior findings completely change under the
three crossing curve alternatives. Here, the asymptotic and
permutation joint Wald-type tests exhibit the best power
results. Although the singly-weighted Wald-type test with

a crossing weight is slightly better under the Weibull dis-
tribution setting, the two joint Wald-type tests lead to sig-
nificantly higher power values under the exponential and
lognormal setups. In contrast to the proportional hazard
alternatives, the two regression methods as well as the
singly weighted Wald-type test with the log-rank weight
lead to a rather poor detection rate. Under high censor-
ing, the observations partially change. The first observa-
tion is that the detection rate of the regression methods
and of the singly weightedWald-type test with the log-rank
weight improves significantly under the Weibull crossing
setting, whereas it remains poor for the other two cross-
ing settings. This can be explained by the rather late cross-
ing in the Weibull scenario, see Figure 1, which is hardly
observable under high censoring. Thus, this setting cannot
be seen as a crossing situation anymore. The second obser-
vation is the higher power of the singlyweightedWald-type
test with the crossing weight compared to the combina-
tion approach under the proportional hazard settings. Due
to the high censoring, the pooled Kaplan–Meier estimator
remains in average on a low level, that is, does not exceed
0.5 significantly. Thus, the crossing weight 𝑤2(𝐹(𝑡)) = 1 −
2𝐹(𝑡) in (3) just emphasizes early times.
Summarizing the results, the combination approach

offers a reasonable compromise with a convincing power
performance under proportional hazards and crossing
curves. It even outperforms the singly weightedWald-type
test with a crossing weight under two of the three cross-
ing curve alternatives. This observation can be explained
by interpreting the Wald-type statistic 𝑆𝑛 as a projection,
see Brendel et al. (2014) for details regarding the two-
sample setting. The take-home message is that combin-
ing the weights 𝑤1 and 𝑤2 as well as combining 𝑤1 and
𝑤3 = 𝑤2 + 𝜆𝑤1 for some 𝜆 ∈ ℝ results in the same statis-
tic 𝑆𝑛. Although 𝑤2 is designed for crossings near to the
center, the hazard rates in the exponential setting cross at
a mid-early time, and thus, another crossing weight, for
example, 𝑤3 = 𝑤2 − 0.25, would be more appropriate. But
the choice between𝑤2 or𝑤3 does not affect the final result
of the combination approach. To sum up, the advantages
of the combination approach are that we neither need to
choose between proportional and crossing hazard alter-
natives nor between different crossing points. For small
sample sizes, we recommend the permutation test over
its asymptotic counterpart due to the unstable type-I error
rate behavior of the latter.

6 ILLUSTRATIVE DATA ANALYSIS

We illustrate our approach using a longitudinal study
on the well-established observations that (i) asthma
occurs less often among children who grew up on farms

 15410420, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13575 by T
echnical U

niversity D
ortm

und, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DITZHAUS et al. 211

F IGURE 2 Power curves for testing of no interaction effect in the two-way layout using Aalen- and Cox-regression, the joint Wald-type
test based on the 𝜒2

𝑓
-approximation (Asy), and the permutation approach (Per) as well as the singly weighted permutation tests based on 𝑤1

(LR) and 𝑤2 (Cross), respectively, under increasing unbalanced sample size 𝒏 = 𝐾𝒏unb, 𝐾 = 1, 2, 4
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212 DITZHAUS et al.

F IGURE 3 Kaplan–Meier curves for the asthma study

compared to children without contact to farming envi-
ronments (Genuneit, 2012) and (ii) boys develop asthma
more often in childhood compared to girls, whereas this
ratio inverts during adolescence (Zein and Erzurum, 2015).
Baseline assessment was a survey among elementary
school children in southern Germany in the years 2006/07
(Genuneit et al., 2011). Interim analysis of the follow-up
data until 2013 suggested a statistically significant interac-
tion between child sex and living on a farm on the inci-
dence of asthma (Genuneit, 2014). Here, we use all follow-
up data until 2016, when the 𝑛 = 2230 participants had
reached 16–20 years of age. The data can be divided into
four subgroups: 479 girls growing up on a farm (group
1, where 90.2% of the data are censored), 450 boys grow-
ing up on a farm (group 2, 86.7% censored), 648 girls not

growing up on a farm (group 3, 84.9% censored), and 653
boys not growing up on a farm (group 4, 83.6% censor-
ing). The Kaplan–Meier curves of these subgroups are dis-
played in Figure 3. The main questions of interest are:
(1) Is there an effect of being raised on a farm? (2) Are
there gender-specific differences? (3) Is there an inter-
action effect between these two factors? All three ques-
tions can be addressed using the presented combination
approach by treating the data set as a 2 × 2 design and
choosing the respective contrast matrices from Section 2.
Due to rather large sample sizes, we apply the asymp-
totic Wald-type tests with the single weights 𝑤1 ≡ 1 and
𝑤2(𝑥) = 1 − 2𝑥 as well as the combination of them. Addi-
tionally, we perform a Cox- and Aalen-regression, respec-
tively, with and without including the interaction effects.
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TABLE 2 𝑝-Values in % for the data example

With Interaction Without Interaction
Comb LR Cross Cox Aalen Cox Aalen

Farm 0.4 0.2 0.3 89.2 69.8 0.2 0.2
Sex 1.3 9.0 5.9 42.0 41.9 10.3 10.5
Interaction 80.1 53.6 68.4 37.5 54.6 – –

Note: Comb: joint Wald-type test (Comb); LR: the singly weighted tests based on 𝑤1(𝑡) = 1; Cross: the singly weighted tests based on 𝑤2(𝑡) = 1 − 2𝑡; Cox: the
Cox-regression with and without interaction effect; Aalen: the Aalen-regression with and without interaction effect.

Ties have been broken by small random noise. The 𝑝-
values of allmethods are displayed in Figure 2. For decision
making, we choose the level 𝛼 = 5%.
All tests, except the two regression methods when an

interaction effect is incorporated, reveal a significant effect
of being raised on a farm. This confirms the findings of
our simulation study, where the inclusion of (additional)
interaction effects may lead to a significant power loss.
However, only the joint Wald-type test (𝑝-value: 1.3%) can
detect a gender effect. Here, the diverse testing results,
in particular, the difference between the combination
approach and the cox regression, can be explained by per-
forming somediagnostics regarding the assumption of pro-
portional hazards. On the one hand, we applied the test
of Grambsch and Therneau (1994) for the gender variable.
The resulting 𝑝-values of 2.1% and 2.2% for the model
with and without the interaction effect, respectively, indi-
cate a violation of the proportional hazard assumption.
Moreover, plots of kernel-based estimators for the hazard
rates provided in the supplement show a clear violation of
the proportional hazards assumption and crossings of the
hazard rates for the two different genders. Altogether this
underpins the strength of the combination approach that
is independent of a specific model assumption. Both find-
ings, that is, amain effect of the two factors, are in linewith
a naive graphical comparison in Figure 3. Finally, no test
finds a significant interaction effect.

7 DISCUSSION AND OUTLOOK

We proposed new inference methods for general facto-
rial designs with right-censored time-to-event data. Com-
pared to existing regression methods, we utilize a flex-
ible nonparametric framework that works without any
restrictive model assumptions. The basic ingredients of
the newmethods are extensions of weighted log-rank tests
to the factorial design setup. In the two-sample situation,
weighted log-rank tests are known to be optimal (Fleming
and Harrington, 1991; Gill, 1980) for specific hazard alter-
natives. However, the weight needs to be calibrated to the
typically unknown shape of the alternative and a wrong
guess of the weight can lead to a very poor power perfor-

mance. To address this tricky question ofweight choice and
to avoid blind guessing, Brendel et al. (2014), Ditzhaus and
Pauly (2019), andDitzhaus and Friedrich (2020) followed a
combination approach of different weighted log-rank tests
for the two-sample scenario. We extended this approach
to general factorial survival designs. The advantage of the
combination idea is that the respective tests do not have
only a reasonable power in the directions of the chosen
weights but covers even a larger alternative space, that is,
more alternative directions. This can be seen in the simula-
tion section and in the illustrative data analysis, where the
combination approach (consisting of the log-rank weight
and a crossing weight) possesses larger power than the
singly weighted version with the crossing weight in most
of the simulated settings with crossing hazard curves. The
reason is that the crossing weight was not the optimal
weight for these crossing alternatives and a shifted weight
would have been a better guess. The advantage of the com-
bination approach now is that all linear combinations of
the prechosen weights are implicitly included. This par-
ticularly holds for the desired shifted weight. A more for-
mal description on this issue is given in the Supporting
Information. In the paper, we prove that our methods are
asymptotically correct.
To facilitate application for small or moderate-sized

studies, we suggested a permutation procedure and proved
its theoretical validity under heterogeneous settings. Sim-
ulation studies for two-way designs confirm the result-
ing procedures’ satisfactory type-I-error control and power.
In the Supporting Information, these studies are comple-
mented by additional simulations for one- and four-way
designs. These results confirm the findings from the two-
way situation: the combination approach is more flexible
than the Cox- and Aalen-regression and leads to signifi-
cantly higher power values under crossing hazard alterna-
tives, while having reasonable power under proportional
hazards. Besides, it turned out that including too many
interaction effects into the two regression models lead to
a significant loss in power, for example, including three-
way interactions when testing for no two-way interaction.
For the one-way setup, the simulations additionally illus-
trate that the proposed combination approach can com-
pete with recently proposed testing methods (Qiu and
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214 DITZHAUS et al.

Sheng, 2008; Chen et al., 2017; Gorfine et al., 2020) that
were explicitly designed to handle nonproportional hazard
alternatives.
The resulting inference toolbox is coined CASANOVA

abbreviating the presented cumulative Aalen survival
analysis-of-variance approach. To bring the presented
procedures into statistical practice, the authors imple-
mented the combination test into the R-package GFD-
surv available on CRAN, which contains additionally
survival methods for factorial designs based on medi-
ans (Ditzhaus et al., 2021) and the concordance measure
(Dobler and Pauly, 2020). Beside the implementation, the
authors currently work on convincing medical doctors
and epidemiologists to apply the methods in biostatistical
cooperations.
We remark some possible extensions: The proofs for

the asymptotic Wald-type tests rely on the fact that 𝑁 =

(𝑁1, … ,𝑁𝑘) fulfills the multiplicative intensity model of
Aalen (1978). More complex filtering mechanisms, for
example, left truncation or certain interval censorings, can
be endowed in the same methodology (Andersen et al.,
1993). In fact, the results from Sections 3.1 and 3.2 remain
true and the Wald-type statistic with a 𝜒2

𝑓
approxima-

tion can be applied. However, the permutation technique’s
validity is unclear. That is why multiplier resampling as
investigated in Lin (1997); Dobler et al. (2017, 2019) would
be our first choice to approximate the asymptotic 𝜒2

𝑓
-

quantile in these general cases. Due to the permutation
approach’s beneficial properties for our setup, however, we
omit this here and postpone corresponding investigations
to future research, where we plan to study factorial designs
in more complex multistate models (Bluhmki et al.,
2018).
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