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Abstract
The minimax principle for eigenvalues in gaps of the essential spectrum in the form
presented by Griesemer et al. (Doc Math 4:275–283, 1999) is adapted to cover certain
abstract perturbative settings with bounded or unbounded perturbations, in particular
ones that are off-diagonal with respect to the spectral gap under consideration. This in
part builds upon and extends the considerations in the author’s appendix to Nakić et al.
(J Spectr Theory 10:843–885, 2020). Several monotonicity and continuity properties
of eigenvalues in gaps of the essential spectrum are deduced, and the Stokes operator
is revisited as an example.

Keywords Minimax values · Eigenvalues in gap of the essential spectrum · Block
diagonalization · Stokes operator
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1 Introduction andMain Result

The standard Courant minimax values λk(A) of a lower semibounded operator A on
a Hilbert space H are given by

λk(A) = inf
M⊂Dom(A)
dimM=k

sup
x∈M‖x‖=1

〈x, Ax〉 = inf
M⊂Dom(|A|1/2)

dimM=k

sup
x∈M‖x‖=1

a[x, x]
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for k ∈ N with k ≤ dimH, see, e.g., [23, Theorem 12.1] and also [31, Section 12.1
and Exercise 12.4.2]. Here, 〈·, ·〉 denotes the inner product ofH, and a with a[x, x] =
〈|A|1/2x, sign(A)|A|1/2x〉 for x ∈ Dom(|A|1/2) is the form associated with A.

The above minimax values have proved to be a powerful description of the eigen-
values below the essential spectrum of A; in fact, they agree with these eigenvalues in
nondecreasing order counting multiplicities as long as the latter exist and else equal
the bottom of the essential spectrum. A standard application in this context is that the
eigenvalues below the essential spectrum exhibit a monotonicity with respect to the
operator: for two lower semibounded self-adjoint operators A and B with A ≤ B in
the sense of quadratic forms one has λk(A) ≤ λk(B) for all k, see, e.g., [31, Corol-
lary 12.3].

Matters get, however, much more complicated when eigenvalues in a gap of the
essential spectrum are considered. If A+ is the (lower semibounded) part of A asso-
ciated with its spectrum in an interval of the form (γ,∞), γ ∈ R, then the minimax
values for A+ still describe the eigenvalues of A+ below its essential spectrum, and
thus the eigenvalues of A in (γ,∞) below the essential spectrum of A above γ . How-
ever, the subspaces over which the corresponding infimum is taken are chosen within
the spectral subspace for A associated with the interval (γ,∞) and therefore usually
depend on the operator itself rather than just its domain. This makes it difficult to
compare minimax values in spectral gaps of two different operators A and B, even if
their domains agree.

An adapted minimax principle taking this problem into account was first proposed
by Talman [34] and Datta and Devaiah [2] in the context of Dirac operators. A corre-
sponding mathematically rigorous result was announced by Esteban and Séré in [9]
and proved together with Dolbeault in [5]. To the best of the authors knowledge, the
first abstract theorem in this direction is due to Griesemer and Siedentop [12], the
hypotheses of which have an overlap with [5, 9] but do not seem suitable to handle
Dirac operators efficiently. In an attempt to overcome this and as a step towards finding
the optimal assumptions, Griesemer, Lewis, and Siedentop [11] provided an alterna-
tive set of hypotheses. In a parallel development, Dolbeault, Esteban, and Séré [6]
obtained an abstract theorem in an operator setting with yet another set of hypotheses
that has an overlap with those of [11] but allows to deal with more potentials for Dirac
operators. However, the abstract result of [11] does not seem to be contained in [6].
The result in [6] has later been extended to a form setting byMorozov andMüller [25],
and recently by Schimmer, Solovej, and Tokus [28] to a class of symmetric operators
with a distinguished self-adjoint extension. There has also been some activity regard-
ing variational principles for block operator matrices, see, e.g., [19, 21] and triple
variational principles, see, e.g., [7, 22]. They, however, follow a different approach
and are not pursued here.

The aim of the present work is to complement the above works in an abstract frame-
work. To this end, the result by Griesemer, Lewis, and Siedentop in [11] is adapted
to a perturbative setting. In the particular case of bounded additive perturbations, this
has already been done by the present author in the appendix to [27] with hypotheses
that can, under reasonable assumptions, be verified explicitly by means of the Davis-
Kahan sin 2� theorem from [3] or variants thereof. The latter has been successfully
applied in [27] to study lower bounds on the movement of eigenvalues in gaps of
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the essential spectrum and of edges of the essential spectrum. In the current work, the
considerations from [27,AppendixA] are extended and supplemented to cover also cer-
tain unboundedperturbations, in particular ones that are off-diagonalwith respect to the
spectral gap under consideration. The results obtained here seem not suitable to handle
Dirac operators with Coulomb potentials since either the perturbation is assumed to
be sufficiently small (Theorem 1.2) or of an off-diagonal structure (Theorem 1.4) or
since they assume a semibounded setting (Theorems 1.3 and 1.5). However, weaker
perturbations and other important situations such as perturbed periodic Schrödinger
operators seem to be a natural context in which they can be applied. It should also be
mentioned that some of the results and applications discussed here might at least in
parts also be obtained with the approaches from earlier works such as [6, 22, 25, 28].
This is commented on at various spots below, see, e.g., Remarks 1.6, 2.2 (2), 2.11, and
2.13. The present work focuses on [11] as a starting point for mainly two reasons:
Firstly, the proof of that result is remarkably elementary and short, while the proofs
of [6, 22, 25, 28] are each a lot longer and much more technical, and, secondly, the
techniques employed in Sects. 4 and 5 below to apply the approach from [11] promise
to be of independent interest. In any case, to the best of the author’s knowledge, nei-
ther the main results presented here nor their applications have been stated explicitly
anywhere before. Rare exceptions to the latter are commented on accordingly.

Main Results

In order to formulate our main results, it is convenient to fix the following notational
setup tailored towards spectral gaps to the right of 0; other gaps can of course always
be reduced to this situation by spectral shift, cf. Remark 3.2 below.

Hypothesis 1.1 Let A be a self-adjoint operator on a Hilbert space. Denote the spectral
projections for A associated with the intervals (0,∞) and (−∞, 0] by P+ and P−,
respectively, that is,

P+ := EA
(
(0,∞)

)
, P− := I − P+,

and let

D± := Ran P± ∩ Dom(A), D± := Ran P± ∩ Dom(|A|1/2).

Moreover, let B be another self-adjoint operator on the same Hilbert space with anal-
ogously defined spectral projections

Q+ := EB
(
(0,∞)

)
, Q− := I − Q+,

and denote by b the form associated with B, that is,

b[x, y] = 〈|B|1/2x, sign(B)|B|1/2y〉

for x, y ∈ Dom[b] = Dom(|B|1/2).
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Here, EA and EB stand for the projection-valued spectral measures for the operators
A and B, respectively, and Ran P± denotes the range of P±. We have also used the
notation I for the identity operator.

Denoting the form associated with A by a, the minimax values of the positive part
A|Ran P+ of A can clearly be written as

λk(A|Ran P+) = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

〈x, Ax〉 = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

a[x, x]

for k ∈ N with k ≤ dim Ran P+. The point of interest is now to find conditions on B
under which the minimax values for the positive part B|Ran Q+ of B admit the same
representations with 〈x, Ax〉 and a[x, x] replaced by 〈x, Bx〉 and b[x, x], respectively,
but with the infima taken over the same respective families of subspaces as for A above.
It is natural to consider this in a perturbative framework where B is obtained by an
operator or form perturbation of A and, thus, one has Dom(A) = Dom(B) and/or
Dom(|A|1/2) = Dom(|B|1/2).

In the situation of Hypothesis 1.1, a representation for the minimax values of
B|Ran Q+ of the above mentioned form is guaranteed by [25,Theorem 1] in the form
setting with Dom(|A|1/2) = Dom(|B|1/2) if

sup
x−∈D−

b[x−, x−] ≤ 0 < inf
x+∈D+\{0} sup

x−∈D−

b[x+ + x−, x+ + x−]
‖x+ + x−‖2 , (1.1)

or by [6,Theorem1.1] in the operator settingwithDom(A) = Dom(B) if the analogous
condition with D± replaced by D± is satisfied; as pointed out in [28], for the latter
additionally the restriction P−B|Ran P− should be essentially self-adjoint on D−, and
it is very likely that a similar additional assumption is also necessary in the form
setting of [25,Theorem 1], namely that the restriction of the form b to D− × D− is
closable. Obviously, (1.1) and its operator analogue do not need any knowledge of Q±.
Moreover, in case of (1.1), the right-hand sideof (1.1) then agreeswithλ1(B|Ran Q+), so
that the strict inequality in (1.1) is also a necessary condition for such a representation
to hold if B has a spectral gap to the right of zero. On the other hand, this strict
inequality is not always very convenient to verify or it is sometimes not even entirely
clear how to verify it, cf. Remarks 1.6 (2) and 2.2 (2) below. However, for an example
where it can be verified analytically in terms of a Hardy-type inequality in the case of
the Coulomb-Dirac operator, see [4]; cf. also [8] and [28,Section 3].

Instead of (1.1), [11] used the conditions

sup
x−∈D−

b[x−, x−] ≤ 0 and ‖(|A| + I )1/2P+Q−(|A| + I )−1/2‖ < 1, (1.2)

cf. Remark 3.3 below, which the authors were able to handle in case of Dirac oper-
ators but where especially the second condition seems to be hard to deal with in a
general abstract setting. However, although (1.1) can treat more Coulomb-like poten-
tials than (1.2) in case of the Dirac operator, (1.2) does not seem to imply (1.1) directly.
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In themain results below the aim is to discuss situations where the second condition
in (1.2) can be replaced by ‖P+Q−‖ < 1, ‖P+ − Q+‖ < 1, or by a certain explicit
structural assumption on how B is related to A. Here, especially the first two conditions
seem to be natural since they relate the subspaces Ran P+ and Ran Q+. Four results
in this direction are presented here, each addressing a different situation, which are
not contained in the previously known results in the sense that their hypotheses do
not seem to imply (1.1), its operator analogue, or (1.2) directly. We first treat the case
of operator perturbations and start with the direct extension of [27,Theorem A.2] to
infinitesimal perturbations. Recall that an operator V with Dom(V ) ⊃ Dom(A) is
called A-bounded with A-bound b∗ ≥ 0 if for all b > b∗ there is some a ≥ 0 with

‖V x‖ ≤ a‖x‖ + b‖Ax‖ for all x ∈ Dom(A)

and if there is no such a for 0 < b < b∗. If b∗ = 0, then V is called infinitesimal with
respect to A.

Theorem 1.2 Assume Hypothesis 1.1. Suppose, in addition, that B is of the form B =
A + V , Dom(B) = Dom(A), with some symmetric operator V that is infinitesimal
with respect to A. Furthermore, suppose that we have ‖P+Q−‖ < 1 and that

〈x, Bx〉 ≤ 0 for all x ∈ D−.

Then,

λk(B|Ran Q+) = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

〈x, Bx〉 = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

b[x, x]

for all k ∈ N with k ≤ dim Ran P+.

It is worth to note that every operator of the form B = A + V as in Theorem 1.2
is automatically self-adjoint on Dom(B) = Dom(A) by the well-known Kato-Rellich
theorem. Two more remarks regarding Theorem 1.2 are in order: (1) also certain
perturbations V that are not infinitesimal with respect to A can be considered here,
but at the cost of a stronger assumption on ‖P+Q−‖, see Remark 4.2 below; (2) the
condition ‖P+Q−‖ < 1 is satisfied if the stronger inequality ‖P+ − Q+‖ < 1 holds.
In the latter case, the subspaces Ran P+ and Ran Q+ automatically have the same
dimension, that is, dim Ran P+ = dim Ran Q+, see Remark 3.5 (a) below.

The stronger condition ‖P+−Q+‖ < 1 just mentioned in fact also opens theway to
employ a different approach than the one used to prove Theorem 1.2. This alternative
approach has previously been used in the context of block diagonalization of operators
and forms, see Sect. 5 below, and is particularly attractive if the unperturbed operator
A is semibounded.

Theorem 1.3 Assume Hypothesis 1.1. Suppose, in addition, that A is semibounded
and that ‖P+ − Q+‖ < 1.
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If Dom(|A|1/2) = Dom(|B|1/2) and b[x, x] ≤ 0 for all x ∈ D−, then

λk(B|Ran Q+) = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

b[x, x] (1.3)

for all k ≤ dim Ran P+ = dim Ran Q+. If evenDom(A) = Dom(B) and 〈x, Bx〉 ≤ 0
for all x ∈ D−, then also

λk(B|Ran Q+) = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

〈x, Bx〉 (1.4)

for all k ≤ dim Ran P+ = dim Ran Q+.

It should be emphasized that the conditions Dom(A) = Dom(B) and 〈x, Bx〉 ≤ 0
for all x ∈ D− in Theorem 1.3 indeed imply that one has also Dom(|A|1/2) =
Dom(|B|1/2) and b[x, x] ≤ 0 for all x ∈ D−, see Lemma 3.4 below. Note also that in
contrast to Theorem 1.2, Theorem 1.3 makes no assumptions on how the operator B is
related to A. The latter will, however, be relevant when the hypotheses of Theorem 1.3
are to be verified in concrete situations.

The condition 〈x, Bx〉 ≤ 0 for all x ∈ D− plays an important role in both Theo-
rems 1.2 and 1.3. In the case where B = A + V with some A-bounded symmetric
operator V , this condition is automatically satisfied if 〈x, V x〉 ≤ 0 for all x ∈ D−
since 〈x, Ax〉 ≤ 0 holds for all x ∈ D− by definition. The latter is certainly the case
for nonpositive V . Another instance of perturbations satisfying 〈x, V x〉 ≤ 0 for all
x ∈ D− are so-called off-diagonal perturbations with respect to the decomposition
Ran P+ ⊕ Ran P−, in which case also the condition ‖P+ − Q+‖ < 1 can be verified
efficiently. In comparison with Theorem 1.2, we may even relax the assumption on
the A-bound of V here.

Theorem 1.4 Assume Hypothesis 1.1. Suppose, in addition, that B has the form B =
A + V , Dom(B) = Dom(A), with some symmetric A-bounded operator V with
A-bound smaller than 1 and which is off-diagonal on Dom(A) with respect to the
decomposition Ran P+ ⊕ Ran P−, that is,

P+V P+x = 0 = P−V P−x for all x ∈ Dom(A).

Then, one has dim Ran P+ = dim Ran Q+ and

λk(B|Ran Q+) = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

〈x, Bx〉 = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

b[x, x]

for all k ∈ N with k ≤ dim Ran Q+.

It is again worth to note that every operator of the form B = A + V as in The-
orem 1.4 is automatically self-adjoint on Dom(B) = Dom(A) by the Kato-Rellich
theorem. Moreover, although off-diagonal perturbations may seem a bit restrictive,
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they appear quite naturally when a general, not necessarily off-diagonal, perturbation
is decomposed into its diagonal and off-diagonal parts. How Theorem 1.4 may then be
applied is demonstrated in Proposition 2.12 below and the considerations thereafter.

The method of proof for Theorem 1.4 can to some extend be carried over to off-
diagonal form perturbations, at least in the semibounded setting. The latter restriction
is commented on in Sect. 5 below.

Theorem 1.5 Assume Hypothesis 1.1. Suppose, in addition, that B is semibounded
and that its form b is given by b = a + v, Dom[b] = Dom[a], where a is the form
associated with A and v is a symmetric sesquilinear form satisfying

v[P+x, P+y] = 0 = v[P−x, P−y] for all x, y ∈ Dom[a] ⊂ Dom[v]

and

|v[x, x]| ≤ a‖x‖2 + b|a[x, x]| for all x ∈ Dom(|A|1/2) = Dom[a] (1.5)

with some constants a, b ≥ 0.
Then, one has dim Ran P+ = dim Ran Q+ and

λk(B|Ran Q+) = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

b[x, x]

for all k ∈ N with k ≤ dim Ran Q+.

The semiboundedness of B in Theorem 1.5 forces A to be semibounded as well,
see the proof of Theorem 1.5 below. In this regard, Theorem 1.5 can be interpreted as
a particular case of the first part of Theorem 1.3 with Dom(|A|1/2) = Dom(|B|1/2),
in which the remaining hypotheses are automatically satisfied due to the structure of
the perturbation.

Remark 1.6 (1) If B in Theorem 1.5 is lower semibounded, then the operator
(|B| + I )1/2Q− is everywhere defined and bounded, and so is the operator
(|B| + I )1/2Q−P+. Taking into account that b[x, x] = a[x, x] ≤ 0 for x ∈ D−
and b[x, x] = a[x, x] > 0 for x ∈ D+, Theorem 1.5 therefore reproduces in this
situation a particular case of the earlier result [12,Theorem 3].

(2) If in Theorems 1.4 or 1.5 the unperturbed operator A has a spectral gap to the
right of 0, then considerations as in part (1) show that (1.1) or the corresponding
analogue in the operator framework is satisfied; cf. also Corollaries 2.5 and 2.7
(a) below. In this regard, Theorems 1.4 and 1.5 then can also be deduced from
[6] and [25], respectively. However, if A does not have such a gap, it is a priori
not clear how to derive the two theorems from [6, 25].

The rest of this note is organized as follows. In Sect. 2 we discuss applications of the
main theorems and revisit the Stokes operator as an example in the framework of The-
orem 1.5. It is also explained there how the framework for off-diagonal perturbations
in Theorem 1.4 can be applied to general, not necessarily off-diagonal, perturbations
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by decomposing the perturbation into its diagonal and off-diagonal parts. Section 3 is
devoted to an abstract minimax principle based on [11]. Two approaches are then used
to verify the hypotheses of this abstract minimax principle, the graph norm approach
and the block diagonalization approach, respectively, which are discussed separately
in Sects. 4 and 5 below. Theorem 1.2 is proved in Sect. 4, which is based on the
author’s appendix to [27] and extends the corresponding considerations to certain
unbounded perturbations. Theorems 1.3–1.5 are proved in Sect. 5, which builds upon
recent developments on block diagonalization of operators and forms from [24] and
[14], respectively. Finally, Appendix A reproduces the proof from [11] for the abstract
minimax principle discussed in Sect. 3, and Appendix B provides some consequences
of the well-known Heinz inequality that are used at various spots in this work and are
probably folklore.

2 Applications and Examples

In this section, we use themain results from Sect. 1 to provemonotonicity and continu-
ity properties of minimax values in gaps of the essential spectrum in various situations
and also revisit the well-known Stokes operator in the framework of Theorem 1.5
as an example. We finally discuss how to apply the off-diagonal framework from
Theorem 1.4 to general, not necessarily off-diagonal, perturbations.

We first consider the situation of indefinite or semidefinite bounded perturbations,
which has partially been discussed in a slightly different form in [27]. For a bounded
self-adjoint operator V we define bounded nonnegative operators V (p) and V (n) with
V = V (p) − V (n) via functional calculus by

V (p) := (1 + sign(V ))V /2, V (n) := (sign(V ) − 1)V /2. (2.1)

We clearly have ‖V (p)‖ ≤ ‖V ‖ and ‖V (n)‖ ≤ ‖V ‖.
The following result can be proved in several ways. The proof below is based on

Theorem 1.2 and is in its core close to the proofs of Theorems 3.14 and 3.15 in [27].
An alternative proof for part (b) based on Theorem 1.4 is discussed after Remark 2.13
below. The result itself extends Theorem 5 in [12], which was formulated there for
bounded nonpositive V that are relatively compact with respect to the unperturbed
operator A.

Proposition 2.1 Let the finite interval (c, d) belong to the resolvent set of the self-
adjoint operator A, and let V be a bounded self-adjoint operator on the same Hilbert
space satisfying ‖V (p)‖ + ‖V (n)‖ < d − c with V (p) and V (n) as in (2.1). Set P :=
EA([d,∞)) and Q := EA+V ([d − ‖V (n)‖,∞)). Then:

(a) The interval (c+‖V (p)‖, d−‖V (n)‖) belongs to the resolvent set of the operator
A + V , and we have ‖P − Q‖ < 1.

(b) With D+ := Ran P ∩ Dom(A) and D− := Ran(I − P) ∩ Dom(A) we have

λk
(
(A + V )|Ran Q

) = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

〈x, (A + V )x〉
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for all k ∈ N with k ≤ dim Ran Q.
(c) With E+ := Ran Q ∩ Dom(A) and E− := Ran(I − Q) ∩ Dom(A) we have

λk
(
A|Ran P

) = inf
M+⊂E+
dimM+=k

sup
x∈M+⊕E−‖x‖=1

〈x, Ax〉

for all k ∈ N with k ≤ dim Ran P.

Proof (a). This is Proposition 2.1 and Theorem 1.1 in [33], respectively; cf. also
[36,Theorem 3.2]. More precisely, the variant of the Davis–Kahan sin 2� the-
orem in [33,Theorem 1.1] gives

‖P − Q‖ ≤ sin
(1
2
arcsin

‖V (p)‖ + ‖V (n)‖
d − c

)
<

√
2

2
< 1.

In particular, the subspaces Ran P and Ran Q have the same dimension; cf. also
Remark 3.5 (1) below.

(b). Pick γ ∈ (c+‖V (p)‖, d−‖V (n)‖). By part (a) we then have EA−γ ((0,∞)) = P
and EA+V−γ ((0,∞)) = Q. Moreover, for x ∈ D− we have

〈x, (A + V − γ )x〉 = 〈x, (A − γ )x〉 + 〈x, V (p)x〉 − 〈x, V (n)x〉
≤ (c − γ + ‖V (p)‖)‖x‖2 < 0.

(2.2)

In light of part (a), the claim now follows from Theorem 1.2 with P+ = P and
Q+ = Q upon a spectral shift by γ .

(c). Similarly as in (b), pick γ ∈ (c + ‖V (p)‖ + ‖V (n)‖, d). We then have
EA−γ ((0,∞)) = P and for some chosen ρ ∈ (c + ‖V (p)‖, d − ‖V (n)‖) also
EA+V−ρ((0,∞)) = Q. Moreover, for x ∈ E− we have

〈x, (A − γ )x〉 = 〈x, (A + V − γ )x〉 − 〈x, V (p)x〉 + 〈x, V (n)x〉
≤ (c + ‖V (p)‖ − γ + ‖V (n)‖)‖x‖2 < 0.

(2.3)

In light of part (a), the claim now follows analogously from Theorem 1.2 with
switched roles of A and A + V and with P+ = Q and Q+ = P . ��

Remark 2.2 (1) A corresponding representation of the minimax values in terms of the
forms associated with A + V and A, respectively, as in Theorems 1.2–1.4 holds
here as well. However, for the sake of simplicity and since this is not needed in
Corollaries 2.3 and 2.4 below, this has not been formulated in Proposition 2.1.

(2) Part (b) of Proposition 2.1 can also be deduced from [6]. Indeed, for y ∈ D+ we
analogously have

〈y, (A + V − γ )y〉 ≥ (d − γ − ‖V (n)‖)‖y‖2 > 0,

which together with (2.2) implies that the operator analogue to condition (1.1) is
satisfied. However, the situation is less clear for part (c) of Proposition 2.1. Here,
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for y ∈ E+ we get

〈y, (A − γ )y〉 ≥ (d − ‖V (n)‖ − γ − ‖V (p)‖)‖y‖2,

which is positive only if γ < d − ‖V (p)‖ − ‖V (n)‖. Together with the condi-
tion γ > c + ‖V (p)‖ + ‖V (n)‖ in (2.3), this requires the stronger assumption
‖V (p)‖ + ‖V (n)‖ < (d − c)/2. The latter can be somehow remedied with a
continuity argument, but in the end the approach presented in the proof of Propo-
sition 2.1 above is just more convenient.

The above proposition includes the particular cases where V satisfies the condition
‖V ‖ < (d−c)/2 and where V is semidefinite with ‖V ‖ < d−c, which in the context
of part (c) have essentially been discussed in the proofs of Theorems 3.14 and 3.15
in [27]. However, Proposition 2.1 allows also certain indefinite perturbations V with
(d−c)/2 ≤ ‖V ‖ < d−c that were not covered before and may thus be used to refine
the results in [27].

As immediate corollaries to Proposition 2.1, we obtain the following monotonicity
and continuity statements for the minimax values in gaps of the essential spectrum,
which, in essence, reproduce particular cases of results in [36].

Corollary 2.3 Let A be as in Proposition 2.1, and let V0 and V1 be bounded
self-adjoint operators on the same Hilbert space satisfying the condition max

{‖V (p)
0 ‖ + ‖V (n)

0 ‖, ‖V (p)
1 ‖ + ‖V (n)

1 ‖} < d − c

.
If, in addition, V0 ≤ V1, then

λk
(
(A + V0)|Ran EA+V0 ([d−‖V (n)

0 ‖,∞))

) ≤ λk
(
(A + V1)|Ran EA+V1 ([d−‖V1‖(n),∞))

)

for k ≤ dim Ran EA([d,∞)) = dim Ran EA+Vj ([d − ‖V (n)
j ‖,∞)), j ∈ {0, 1}.

Corollary 2.4 Let A and V be as in Proposition 2.1. Then, the open interval
(c+‖V (p)‖, d −‖V (n)‖) belongs to the resolvent set of every A+ tV , t ∈ [0, 1], and
for each k ≤ dim Ran EA([d,∞)) = dim Ran EA+tV ([d − t‖V (n)‖,∞)), t ∈ [0, 1],
the mapping

[0, 1] � t �→ λk((A + tV )|Ran EA+tV ([d−t‖V (n)‖,∞)))

is Lipschitz continuous with Lipschitz constant ‖V ‖.
Proof Taking into account that

〈x, (A + sV )x〉 − |t − s|‖V ‖ ≤ 〈x, (A + tV )x〉 ≤ 〈x, (A + sV )x〉 + |t − s|‖V ‖

for all x ∈ Dom(A), the claim follows immediately from Proposition 2.1. ��
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It should again be mentioned that the above statements include the particular cases
where the normof the perturbations is less than (d−c)/2 orwhere the perturbations are
semidefinite with a norm less than d − c. These cases have essentially been discussed
in [27]. There, especially lower bounds on the movement of eigenvalues in gaps of the
essential spectrum under certain conditions and the behaviour of edges of the essential
spectrum have been studied. However, since this is not the main focus of the present
work, this is not pursued further here.

As a consequence of Theorem 1.4, we obtain the following lower bound for the
minimax values in the setting of off-diagonal operator perturbations.

Corollary 2.5 In the situation of Theorem 1.4, we have

λk(A|Ran P+) ≤ λk(B|Ran Q+)

for all k ≤ dim Ran P+ = dim Ran Q+.

Proof Let M+ ⊂ D+ with dimM+ = k. Since 〈x, V x〉 = 0 for all x ∈ D+ by
hypothesis, we have

sup
x∈M+‖x‖=1

〈x, Ax〉 = sup
x∈M+‖x‖=1

〈x, (A + V )x〉 ≤ sup
x∈M+⊕D−‖x‖=1

〈x, (A + V )x〉.

Taking the infimum over all such subspacesM+ proves the claim by Theorem 1.4 and
the standard minimax values for A|Ran P+ . ��

As in Corollary 2.4, we also obtain a continuity statement in the situation of The-
orem 1.4 with bounded off-diagonal perturbations. Here, however, we do not have to
impose any condition on the norm of the perturbation.

Corollary 2.6 Let A and V be as in Theorem 1.4, and suppose that V is bounded. Then,
for each k ≤ dim Ran EA((0,∞)) = dim Ran EA+tV ((0,∞)), t ∈ R, the mapping

R � t �→ λk
(
(A + tV )|Ran EA+tV ((0,∞))

)

is Lipschitz continuous with Lipschitz constant ‖V ‖.
In the particular case where B is semibounded, Theorem 1.5 allows us to extend

Corollaries 2.5 and 2.6 to some degree to off-diagonal form perturbations. Recall
here, that semiboundedness of B implies that also A is semibounded, see the proof of
Theorem 1.5 below.

Corollary 2.7 Assume the hypotheses of Theorem 1.5.

(a) For each k ∈ N with k ≤ dim Ran P+ = dim Ran Q+ one has λk(A|Ran P+) ≤
λk(B|Ran Q+).

(b) Denote for t ∈ (−1/b, 1/b) by Bt the self-adjoint operator associated with
the form bt := a + tv with form domain Dom[bt ] := Dom[a]. Then, for each
k ≤ dim Ran EA((0,∞)) = dim Ran EBt ((0,∞)), the mapping

(−1/b, 1/b) � t �→ λk(Bt |Ran EBt ((0,∞)))
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is locally Lipschitz continuous.

Proof (a). Taking into account that v[x, x] = 0 for all x ∈ D+ by hypothesis, the
inequality λk(A|Ran P+) ≤ λk(B|Ran Q+) is proved by means of Theorem 1.5 in a
way analogous to Corollary 2.5.

(b). Recall that each Bt is indeed a semibounded self-adjoint operatorwithDom[bt ] =
Dom(|Bt |1/2) by the well-known KLMN theorem, and note that each tv satisfies
the hypotheses of Theorem 1.5.
Pick t, s ∈ (−1/b, 1/b) with b|t − s| ≤ 1 − b|s|.
Consider first the case where A (and hence a) is lower semibounded with lower
bound m ∈ R. We then have |a[x, x]| ≤ a[x, x] + (|m| − m)‖x‖2 for all x ∈
Dom[a]. With ã := a + b|m| − bm, this gives

|v[x, x]| ≤ ã‖x‖2 + ba[x, x] ≤ ã‖x‖2 + bbs[x, x] + b|s||v[x, x]|

and, hence,

|v[x, x]| ≤ ã

1 − b|s| ‖x‖
2 + b

1 − b|s|bs[x, x]

for all x ∈ Dom[a] = Dom[bs]. Since bt = bs + (t − s)v, we thus obtain

− ã|t − s|
1 − b|s| +

(
1 − b|t − s|

1 − b|s|
)
bs ≤ bt ≤ ã|t − s|

1 − b|s| +
(
1 + b|t − s|

1 − b|s|
)
bs .

Abbreviating λk(t) := λk(Bt |Ran EBt ((0,∞))), Theorem 1.5 then implies that

− ã|t − s|
1 − b|s| +

(
1 − b|t − s|

1 − b|s|
)
λk(s) ≤ λk(t) ≤ ã|t − s|

1 − b|s| +
(
1 + b|t − s|

1 − b|s|
)
λk(s)

and, therefore,

|λk(t) − λk(s)| ≤ ã|t − s|
1 − b|s| + b|t − s|

1 − b|s| |λk(s)|. (2.4)

This proves that t �→ λk(t) is continuous on (−1/b, 1/b) and, in particular,
bounded on every compact subinterval of (−1/b, 1/b). In turn, it then easily
follows from (2.4) that this mapping is even locally Lipschitz continuous, which
concludes the case where A is lower semibounded.
If A is upper semibounded with upper bound m ∈ R, we proceed similarly. We
then have |a[x, x]| ≤ −a[x, x] + (m + |m|)‖x‖2 for all x ∈ Dom[a]. With
ã := a + bm + b|m|, this leads to

|v[x, x]| ≤ ã

1 − b|s| ‖x‖
2 − b

1 − b|s|bs[x, x]
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for all x ∈ Dom[a] = Dom[bs]. Analogously as above, we then eventually obtain
again (2.4), which proves the claim in the case where A is upper semibounded.
This completes the proof. ��

Remark 2.8 In part (a) of Corollary 2.7, one can also give an upper bound for
λk(B|Ran Q+) in terms of the form bounds of v: If A is lower semibounded with
lower bound m ∈ R, then we have as in the proof of part (b) of Corollary 2.7 that

|v[x, x]| ≤ (a + b|m| − bm)‖x‖2 + ba[x, x]

for all x ∈ Dom[a], leading to

λk(B|Ran Q+) ≤ (1 + b)λk(A|Ran P+) + (a + b|m| − bm)

for all k ≤ dim Ran P+ = dim Ran Q+. Similarly, if A is upper semibounded with
upper bound m ∈ R, we have

|v[x, x]| ≤ (a + b|m| + bm)‖x‖2 − ba[x, x]

for all x ∈ Dom[a]. If, in addition, b ≤ 1, this then leads to

λk(B|Ran Q+) ≤ (1 − b)λk(A|Ran P+) + (a + b|m| + bm)

for all k ≤ dim Ran P+ = dim Ran Q+.

An Example: The Stokes Operator

We now briefly revisit the Stokes operator in the framework of Theorem 1.5. Here, we
mainly rely on [15], but the reader is referred also to [14,Section 7], [29,Chapter 5],
[10], and the references cited therein.

Let � ⊂ R
n , n ≥ 2, be a bounded domain with C2-boundary, and let ν > 0 and

v∗ ≥ 0. On the Hilbert spaceH = H+ ⊕H− withH+ = L2(�)n andH− = L2(�),
we consider the closed, densely defined, and nonnegative form a with Dom[a] :=
H1
0 (�)n ⊕ L2(�) and

a[v ⊕ q, u ⊕ p] := ν

n∑

j=1

∫

�

〈∂ jv(x), ∂ j u(x)〉Cn dx

for u ⊕ p, v ⊕ q ∈ Dom[a]. Clearly, a is the form associated to the nonnegative
self-adjoint operator A := −ν� ⊕ 0 on the Hilbert space H = H+ ⊕ H− with
Dom(A) := (H2(�) ∩ H1

0 (�))n ⊕ L2(�) and Dom(|A|1/2) = Dom[a], where � =
	 · ICn is the vector-valued Dirichlet Laplacian on �. Moreover, P+ := EA((0,∞))

and P− := EA((−∞, 0]) = EA({0}) are the orthogonal projections ontoH+ andH−,
respectively. In particular, we have

D+ := Ran P+ ∩ Dom(|A|1/2) = H1
0 (�)n ⊕ 0
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and

D− := Ran P− ∩ Dom(|A|1/2) = 0 ⊕ L2(�).

Define the symmetric sesquilinear form v on H = H+ ⊕ H− with domain
Dom[v] := Dom[a] by

v[v ⊕ q, u ⊕ p] := −v∗〈div v, p〉L2(�) − v∗〈q, div u〉L2(�)

for u ⊕ p, v ⊕ q ∈ Dom[a]. One can show that ν‖ div u‖2
L2(�)

≤ a[u ⊕ 0, u ⊕ 0]
for all u ∈ D+ = H1

0 (�)n , see, e.g., [29,Proof of Theorem 5.12]. Using Young’s
inequality, this then implies that v is infinitesimally form boundedwith respect to a, see
[29,Remark 5.1.3]; cf. also [15,Section 2]. Indeed, for ε > 0 and f = u⊕ p ∈ Dom[a]
we obtain

|v[ f , f ]| ≤ 2v∗|〈p, div u〉L2(�)| ≤ 2v∗‖p‖L2(�)‖ div u‖L2(�)

≤ εν‖ div u‖2L2(�)
+ ε−1ν−1v2∗‖p‖2L2(�)

≤ εa[u ⊕ 0, u ⊕ 0] + ε−1ν−1v2∗‖ f ‖2H
= εa[ f , f ] + ε−1ν−1v2∗‖ f ‖2H.

(2.5)

Thus, by the well-known KLMN theorem, the form bS := a + v with Dom[bS] =
Dom[a] = Dom(|A|1/2) is associated to a unique lower semibounded self-adjoint
operator BS onH with Dom(|BS|1/2) = Dom(|A|1/2), the so-called Stokes operator.
It is a self-adjoint extension of the (non-closed) upper dominant block operator matrix

( −ν� v∗ grad
−v∗ div 0

)

defined on (H2(�) ∩ H1
0 (�))n ⊕ H1(�). In fact, the closure of the latter is a self-

adjoint operator, see [10,Theorems 3.7 and 3.9], which yields another characterization
of the Stokes operator BS .

By rescaling, one obtains from [10,Theorem 3.15] that the essential spectrum of
BS is given by

specess(BS) =
{
−v2∗

ν
,− v2∗

2ν

}
,

cf. [15,Remark 2.2]. In particular, the essential spectrum of BS is purely nega-
tive. In turn, the positive spectrum of BS , that is, spec(BS) ∩ (0,∞), is discrete
[15,Theorem 2.1 (i)].

The above shows that the hypotheses of Theorem 1.5 are satisfied in this situation,
so that we obtain from Theorem 1.5 and Corollary 2.7 the following result.

Proposition 2.9 Let BS be the Stokes operator as above. Then, the positive spectrum of
BS, spec(BS)∩ (0,∞), is discrete, and the positive eigenvalues λk(BS|Ran EBS ((0,∞))),
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k ∈ N, of BS, enumerated in nondecreasing order and counting multiplicities, admit
the representation

λk(BS|Ran EBS ((0,∞))) = inf
M+⊂H1

0 (�)n

dimM+=k

sup
u⊕p∈M+⊕L2(�)

‖u‖2
L2(�)n

+‖p‖2
L2(�)

=1

bS[u ⊕ p, u ⊕ p].

The latter depend locally Lipschitz continuously on ν and v∗ and satisfy the two-sided
estimate

νλk(−�) ≤ λk(BS|Ran EBS ((0,∞))) ≤ νλk(−�) + v2∗
ν

.

Proof In view of the above considerations, the representation of the eigenvalues
follows from Theorem 1.5, and the lower bound on the eigenvalues follows from
Corollary 2.7 (a). Moreover, by rescaling, the continuity statement is a consequence
of Corollary 2.7 (b). It remains to show the upper bound on the eigenvalues. To this
end, let M+ ⊂ H1

0 (�)n with dimM+ = k ∈ N, and let f = u ⊕ p ∈ M+ ⊕ L2(�)

be a normalized vector with u �= 0. Then, μ := a[u ⊕ 0, u ⊕ 0]/‖u‖2
L2(�)n

=
a[ f , f ]/‖u‖2

L2(�)n
is positive and satisfies

μ ≤ sup
v∈M+

‖v‖2
L2(�)n

=1

a[v ⊕ 0, v ⊕ 0] (2.6)

and

ν‖ div u‖2
L2(�)

μ
=

‖u‖2
L2(�)n

ν‖ div u‖2
L2(�)

a[u ⊕ 0, u ⊕ 0] ≤ ‖u‖2L2(�)n
≤ 1.

Similarly as in (2.5), we now obtain by means of Young’s inequality that

|v[ f , f ]| ≤ 2v∗‖p‖L2(�)‖ div u‖L2(�) ≤ μ‖p‖2L2(�)
+

v2∗‖ div u‖2
L2(�)

μ

≤ μ‖p‖2L2(�)
+ v2∗

ν
.

Since a[ f , f ] = μ‖u‖2
L2(�)n

, this gives

bS[ f , f ] ≤ a[ f , f ] + μ‖p‖2L2(�)
+ v2∗

ν
= μ + v2∗

ν
. (2.7)
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In light of bS[0⊕ p, 0⊕ p] = a[0⊕ p, 0⊕ p] = 0, we conclude from (2.6) and (2.7)
that

sup
u⊕p∈M+⊕L2(�)

‖u‖2
L2(�)2

+‖p‖2
L2(�)

=1

bS[u ⊕ p, u ⊕ p] ≤ sup
v∈M+

‖v‖2
L2(�)n

=1

a[v ⊕ 0, v ⊕ 0] + v2∗
ν

,

and taking the infimum over subspacesM+ ⊂ H1
0 (�)n with dimM+ = k proves the

upper bound. This completes the proof. ��
Remark 2.10 (1) Choosing ε = 1 in (2.5), the upper bound from Remark 2.8 (1) reads

λk(BS|Ran EBS ((0,∞))) ≤ 2νλk(−�) + v2∗
ν

for all k ∈ N, while the choice ε = v∗ in (2.5) leads to

λk(BS|Ran EBS ((0,∞))) ≤ (1 + v∗)νλk(−�) + v∗
ν

for all k ∈ N.
(2) For the particular case of k = 1, a similar upper bound has been established in

the proof of [15,Theorem 2.1 (i)]:

νλ1(−	) ≤ λ1(BS|Ran EBS ((0,∞))) ≤ νλ1(−	) + v∗‖ div u0‖L2(�),

where u0 ∈ (H2(�) ∩ H1
0 (�))n is a normalized eigenfunction for −� corre-

sponding to the first positive eigenvalue λ1(−�) = λ1(−	).

Remark 2.11 Since BS is lower semibounded, Proposition 2.9 can alternatively be
proved via [12], see Remark 1.6 (1). Moreover, since A = −ν�⊕0 has a spectral gap
to the right of 0, the same is true with [25], see Remark 1.6 (2). In fact, [28] gives for
λk = λk(BS|Ran EBS ((0,∞))), k ∈ N, with the same reasoning also the representation

λk = inf
M+⊂(H2(�)∩H1

0 (�))n

dimM+=k

sup
u⊕p∈M+⊕H1(�)

‖u‖2
L2(�)n

+‖p‖2
L2(�)

=1

〈u ⊕ p, BS(u ⊕ p)〉.

Reducing to the Off-diagonal Framework

Apart from the Stokes operator from the previous subsection, the consideration of
off-diagonal perturbations in Theorems 1.4 and 1.5 may seem a bit restrictive. How-
ever, such perturbations naturally appear when the perturbation is decomposed into
its diagonal and off-diagonal part. If the diagonal perturbation can then be handled
efficiently in a suitable way, the discussed off-diagonal framework can be applied to
the remaining part of the perturbation. The following result makes this precise in the
setting of operator perturbations.
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Proposition 2.12 Assume Hypothesis 1.1. Suppose, in addition, that B is of the form
B = A + V , Dom(B) = Dom(A), with some symmetric A-bounded operator V .
Denote A± := A|Ran P± , and decompose V |Dom(A) as V |Dom(A) = Vdiag + Voff ,
where Vdiag = V+ ⊕ V− is the diagonal part of V |Dom(A) and Voff is the off-diagonal
part of V |Dom(A) with respect to the decomposition Ran P+ ⊕ Ran P−. Suppose that
the following hold:

(i) A + Vdiag is self-adjoint on Dom(A + Vdiag) = Dom(A),
(ii) Voff is (A + Vdiag)-bounded with (A + Vdiag)-bound smaller than 1,
(iii) sup spec(A− + V−) ≤ inf spec(A+ + V+), and
(iv) Ker(A+ + V+ − μ) = {0} with μ := sup spec(A− + V−).

Then, setting Q := EB((μ,∞)), one has dim Ran P+ = dim Ran Q and

λk(B|Ran Q) = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

〈x, Bx〉 = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

b[x, x]

for all k ∈ N with k ≤ dim Ran Q.

Proof By (iii) and (iv) we obviously have

P+ = EA+Vdiag

(
(μ,∞)

)
and P− = EA+Vdiag

(
(−∞, μ]).

Upon a spectral shift by μ, the claim now follows from Theorem 1.4 with A, V , and
Q+ replaced by A + Vdiag, Voff , and Q, respectively. ��
Remark 2.13 Conditions (iii) and (iv) in Proposition 2.12 are satisfied if μ < ν :=
inf spec(A+ + V+) holds. In this case, the interval (μ, ν) belongs to the resolvent set
of the operator A + Vdiag, and by [26,Theorem 1] (cf. also [1,Theorem 2.1]) to the
one of A + V = (A + Vdiag) + Voff as well. In particular, we have EA+V ((μ,∞)) =
EA+V ([ν,∞)). This is the situation encountered in the alternative proof of Proposi-
tion 2.1 (b) and the proof of Corollary 2.15 below. However, the conclusions can then
alternatively be obtained also via [6, 25], cf. Remark 1.6 (2).

Since conditions (i) and (ii) in Proposition 2.12 are clearly satisfied if V is bounded,
the above provides an alternative way to prove part (b) of Proposition 2.1:

Alternative proof of Proposition 2.1(b) By spectral shift we may assume without loss
of generality that c < 0 < d. We then have P = P+ with P+ as in Hypothesis 1.1. Let
A± and Vdiag be defined as in Proposition 2.12, and for • ∈ {p, n} denote by V (•)

diag =
V (•)

+ ⊕V (•)
− the diagonal part of V (•). Clearly, we have V (•)

± ≥ 0 and ‖V (•)
± ‖ ≤ ‖V (•)‖,

and Vdiag decomposes as Vdiag = V (p)
diag − V (n)

diag = (V (p)
+ − V (n)

+ ) ⊕ (V (p)
− − V (n)

− ).
Now,

A− + V (p)
− − V (n)

− ≤ c + ‖V (p)‖ and d − ‖V (n)‖ ≤ A+ + V (p)
+ − V (n)

+

in the sense of quadratic forms. In light of c+‖V (p)‖ < d−‖V (n)‖ and Remark 2.13,
applying Proposition 2.12 proves the claim. ��
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It is worth to note that an analogous reasoning for part (c) of Proposition 2.1
suffers from similar obstacles as the alternative proof based on [6, 25] mentioned in
Remark 2.2 (2).

If V is not bounded, conditions (i) and (ii) in Proposition 2.12 can still be guaranteed
via the well-known Kato-Rellich theorem by means of a sufficiently small A-bound
of V , as the following lemma shows.

Lemma 2.14 In the situation of Proposition 2.12, let V have A-bound smaller than
1/2. Then Vdiag and Voff both have A-bound smaller than 1/2, and Voff has (A+Vdiag)-
bound smaller than 1.

Proof By hypothesis, there are constants a, b ≥ 0, b < 1/2 such that we have ‖V x‖ ≤
a‖x‖ + b‖Ax‖ for all x ∈ Dom(A). Using Young’s inequality, this gives for every
ε > 0 that

‖V x‖2 ≤ (
a‖x‖ + b‖Ax‖)2 ≤ a2

(
1 + 1

ε

)
‖x‖2 + b2(1 + ε)‖Ax‖2

for all x ∈ Dom(A); cf. [17, SectionV.4.1]. Since AP±x = P±Ax for all x ∈ Dom(A)

and the ranges of P± are orthogonal, this implies that

‖Vdiagx‖2 = ‖P+V P+x‖2 + ‖P−V P−x‖2

≤ a2
(
1 + 1

ε

)
‖x‖2 + b2(1 + ε)‖Ax‖2

for all x ∈ Dom(A). We choose ε > 0 such that β := b(1 + ε)1/2 < 1/2 and set
α := a(1 + 1/ε)1/2. It then follows from the above that

‖Vdiagx‖ ≤ α‖x‖ + β‖Ax‖ for all x ∈ Dom(A)

and analogously the same for Voff . This shows that Vdiag and Voff indeed have A-bound
smaller than 1/2.

Using standard arguments as, for instance, in [35, Lemma 2.1.6], we obtain

‖Vdiagx‖ ≤ α

1 − β
‖x‖ + β

1 − β
‖(A + Vdiag)x‖ for all x ∈ Dom(A)

and, in turn,

‖Voff x‖ ≤ α‖x‖ + β‖Ax‖ ≤ α‖x‖ + β‖(A + Vdiag)x‖ + β‖Vdiagx‖

≤
(
α + αβ

1 − β

)
‖x‖ +

(
β + β2

1 − β

)
‖(A + Vdiag)x‖

= α

1 − β
‖x‖ + β

1 − β
‖(A + Vdiag)x‖

for all x ∈ Dom(A + Vdiag) = Dom(A), where β/(1 − β) < 1. This shows that Voff
has (A + Vdiag)-bound smaller than 1 and, hence, completes the proof. ��
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A suitable smallness assumption on the perturbation may also be used to guar-
antee condition (iii) and (iv) in Proposition 2.12 in the sense of Remark 2.13 if the
unperturbed operator has a gap in the spectrum. This is demonstrated in the following
corollary to the above.

Corollary 2.15 Let A, (c, d), andD± be as in Proposition 2.1, and let V be a symmetric
operator that is A-bounded with A-bound smaller than 1/2. Suppose, in addition, that
c < 0 < d, and define A± and V± as in Proposition 2.12. Suppose that there are
constants a±, b± ≥ 0, b± < 1, with

|〈x, V±x〉| ≤ a±‖x‖2 ± b±〈x, A±x〉 for all x ∈ D± (2.8)

and

a+ + a− + b+d − b−c < d − c. (2.9)

Then, the interval (a− + (1 − b−)c, (1 − b+)d − a+) belongs to the resolvent set of
A + V , and one has dim Ran EA([d,∞)) = dim EA+V ([(1 − b+)d − a+,∞)) and

λk((A + V )|Ran EA+V ([(1−b+)d−a+,∞))) = inf
M+⊂D+
dimM+=k

sup
x∈M+⊕D−‖x‖=1

〈x, (A + V )x〉

for all k ∈ N with k ≤ dim Ran EA+V ([(1 − b+)d − a+,∞)).

Proof By Lemma 2.14 and the Kato-Rellich theorem, conditions (i) and (ii) in Propo-
sition 2.12 are satisfied. By (2.8) we have

A− + V− ≤ a− + (1 − b−)c and (1 − b+)d − a+ ≤ A+ + V+

in the sense of quadratic forms. Since a− + (1 − b−)c < (1 − b+)d − a+ by (2.9),
the claim now again follows from Proposition 2.12 and Remark 2.13. ��

Remark 2.16 (1) It is easy to see that the left-hand side of (2.9) is invariant under a
spectral shift in A. In this respect, an analogous statement as in Corollary 2.15
holds for arbitrary spectral gaps (c, d), not just ones satisfying c < 0 < d.

(2) It follows from Lemma 2.14 that V± is A±-bounded with A±-bound smaller than
1/2. In turn, since both A± are semibounded, constants a±, b± ≥ 0, b± < 1/2,
satisfying (2.8) always exist by [17,Theorem VI.1.38]. Condition (2.9) can then
be guaranteed for tV instead of V for t ∈ R with sufficiently small modulus.

(3) As indicated in Remark 2.13, Corollary 2.15 can also be proved via [6, 25] by
verifying the operator analogue to (1.1). In fact, that approach even allows to
weaken the assumption on the A-bound of V from being smaller than 1/2 to
merely being smaller than 1 since it is then not necessary to have that Voff has
(A + Vdiag)-bound smaller than 1.
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3 An Abstract Minimax Principle in Spectral Gaps

We rely on the following abstract minimax principle in spectral gaps, part (a) of which
is extracted from [11] and part (b) of which is its natural adaptation to the operator
framework; cf. also [27,Proposition A.3]. For the convenience of the reader, its proof
is reproduced in Appendix A below.

Proposition 3.1 Assume Hypothesis 1.1.

(a) If we have Dom(|B|1/2) = Dom(|A|1/2), b[x, x] ≤ 0 for all x ∈ D−, and
Ran(P+Q+|D+) ⊃ D+, then

λk(B|Ran Q+) = inf
M+⊂D+

dim(M+)=k

sup
x∈M+⊕D−‖x‖=1

b[x, x]

for all k ∈ N with k ≤ dim Ran P+.
(b) If we have Dom(B) = Dom(A), 〈x, Bx〉 ≤ 0 for all x ∈ D−, and

Ran(P+Q+|D+) ⊃ D+, then

λk(B|Ran Q+) = inf
M+⊂D+

dim(M+)=k

sup
x∈M+⊕D−‖x‖=1

〈x, Bx〉

for all k ∈ N with k ≤ dim Ran P+.

Remark 3.2 The above proposition is tailored towards spectral gaps to the right of 0,
but by a spectral shift we can of course handle also spectral gaps to the right of any point
γ ∈ R. Indeed, we have EA−γ ((0,∞)) = EA((γ,∞)) for γ ∈ R and analogously
for B. Moreover, the form associated to the operator B − γ is known to agree with
the form b− γ . The latter can be seen for instance with an analogous reasoning as in
[31,Proposition 10.5 (a)]; cf. also Lemma B.6 in Appendix B below.

Remark 3.3 Since P+ and Q+ are spectral projections for the respective operators,
we have Ran(P+Q+|D+) ⊂ D+ and Ran(P+Q+|D+) ⊂ D+. In this respect, the
condition Ran(P+Q+|D+) ⊃ D+ in part (a) of Proposition 3.1 actually means that
the restriction P+Q+|D+ : D+ → D+ is surjective. This has not been formulated
explicitly in the statement of [11,Theorem 1] but has instead been guaranteed by the
stronger condition

‖(|A| + I )1/2P+Q−(|A| + I )−1/2‖ < 1.

In fact, taking into account thatD+ = Ran((|A|+ I )−1/2|Ran P+), a standardNeumann
series argument in theHilbert spaceRan P+ then even gives bijectivity of the restriction
P+Q+|D+ , see Step 2 of the proof of [11,Theorem 1]. In this reasoning, the operators
(|A| + I )±1/2 can be replaced by (|A| + α I )±1/2 for any α > 0; if |A| has a bounded
inverse, also α = 0 can be considered here.

Of course, the above reasoning also applies in the situation of part (b) of Proposi-
tion 3.1, but with (|A| + α I )±1/2 replaced by (|A| + α I )±1.
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In the context of our main theorems, the restriction P+Q+|Ran P+ , understood as an
endomorphism of Ran P+, will always be bijective, cf. Remark 3.5 (1) below. It turns
out that then the hypotheses of part (b) in Proposition 3.1 imply those of part (a), in
which case both representations for the minimax values in Proposition 3.1 are valid.
More precisely, we have the following lemma, essentially based on the well-known
Heinz inequality, cf. Appendix B below.

Lemma 3.4 Assume Hypothesis 1.1 with Dom(A) = Dom(B).

(a) One has Dom(|A|1/2) = Dom(|B|1/2).
(b) If 〈x, Bx〉 ≤ 0 for all x ∈ D−, then b[x, x] ≤ 0 for all x ∈ D−.
(c) If the restriction P+Q+|Ran P+ : Ran P+ → Ran P+ is bijective and

Ran(P+Q+|D+) ⊃ D+, then also Ran(P+Q+|D+) ⊃ D+.

Proof (a). This is a consequence of the well-known Heinz inequality, see, e.g., Corol-
lary B.3 below. Alternatively, this follows by classical considerations regarding
operator and form boundedness, see Remark B.4 below.

(b). It follows from part (a) that the operator |B|1/2(|A|1/2 + I )−1 is closed and
everywhere defined, hence bounded by the closed graph theorem. Thus,

‖|B|1/2x‖ ≤ ‖|B|1/2(|A|1/2 + I )−1‖ · ‖(|A|1/2 + I )x‖

for all x ∈ Dom(|A|1/2) = Dom(|B|1/2). Since D− is a core for the operator
|A|Ran P−|1/2 = |A|1/2|Ran P− with Dom(|A|1/2|Ran P−) = D−, the inequality
b[x, x] ≤ 0 for x ∈ D− now follows from the hypothesis 〈x, Bx〉 ≤ 0 for all
x ∈ D− by approximation.

(c). We clearly have Ran(P+Q+|D+) = D+, D+ = Dom(A|Ran P+), and D+ =
Dom(|A|Ran P+|1/2). Applying Corollary B.5 belowwith the choices1 = 2 =
A|Ran P+ and S = P+Q+|Ran P+ therefore implies that Ran(P+Q+|D+) = D+,
which proves the claim. ��

Remark 3.5 (1) In light of the identity P+Q+ = P+ − P+Q−, the bijectivity of
P+Q+|Ran P+ : Ran P+ → Ran P+ can be guaranteed, for instance, by the condi-
tion ‖P+Q−‖ < 1 via a standard Neumann series argument. Since P+ − Q+ =
P+Q− − P−Q+ and, in particular, ‖P+Q−‖ ≤ ‖P+ − Q+‖, this condition holds
if the stronger inequality ‖P+ − Q+‖ < 1 is satisfied. In the latter case, there
also is a unitary operatorU with Q+U = U P+, see, e.g., [17,Theorem I.6.32], so
that automatically dim Ran P+ = dim Ran Q+. It is this situation we encounter in
Theorems 1.3–1.5.

(2) In the case where B is an infinitesimal operator perturbation of A, the inequality
‖P+Q−‖ < 1 already implies that Ran(P+Q+|D+) ⊃ D+, see the following
section; the particular case where B is a bounded perturbation of A has previ-
ously been considered in [27,Lemma A.6]. For more general, not necessarily
infinitesimal, perturbations, this remains so far an open problem.
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4 Proof of Theorem 1.2: The Graph Norm Approach

In this section we show that the inequality ‖P+Q−‖ < 1 in the context of Theo-
rem 1.2 implies that Ran(P+Q+|D+) ⊃ D+, which is essentially what is needed to
deduce Theorem 1.2 from Proposition 3.1 and Lemma 3.4. The main technique used
to accomplish this can in fact be formulated in a much more general framework:

Recall that for a closed operator  on a Banach space with norm ‖ · ‖, its domain
Dom() can be equipped with the graph norm

‖x‖ := ‖x‖ + ‖x‖, x ∈ Dom(),

which makes (Dom(), ‖ · ‖) a Banach space. Also recall that a linear operator
K with Dom(K ) ⊃ Dom() is called -bounded with -bound β∗ ≥ 0 if for all
β > β∗ there is an α ≥ 0 with

‖Kx‖ ≤ α‖x‖ + β‖x‖ for all x ∈ Dom() (4.1)

and if there is no such α for 0 < β < β∗.
The following lemma extends part (a) of [27,Proposition A.5], taken from

Lemma 3.9 in the author’s Ph.D. thesis [32], to relatively bounded commutators.

Lemma 4.1 Let  be a closed operator on a Banach space, K be -bounded with
-bound β∗ ≥ 0, and let S be bounded with Ran(S|Dom()) ⊂ Dom() and

Sx − Sx = Kx for all x ∈ Dom().

Then, the restriction S|Dom() is bounded with respect to the graph norm for , and

the corresponding spectral radius r(S) = limk→∞ ‖(S|Dom())
k‖1/k satisfies

r(S) ≤ ‖S‖ + β∗.

Proof Only small modifications to the reasoning from [32,Lemma 3.9],
[27,Proposition A.5] are necessary. For the sake of completeness, we reproduce the
full argument here:

Let β > β∗ and α ≥ 0 such that (4.1) holds. Then, for x ∈ Dom() one has

‖Sx‖ ≤ ‖S‖‖x‖ + ‖Kx‖ ≤ (‖S‖ + β)‖x‖ + α‖x‖,

so that

‖Sx‖ = ‖Sx‖ + ‖Sx‖ ≤ (‖S‖ + β
)‖x‖ + α‖x‖.

In particular, S|Dom() is bounded with respect to the graph norm ‖ · ‖ with ‖S‖ ≤
‖S‖ + β + α.
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Now, a straightforward induction yields

‖Skx‖ ≤ (‖S‖ + β
)k‖x‖ + kα

(‖S‖ + β
)k−1‖x‖, x ∈ Dom(),

for k ∈ N. Hence, ‖(S|Dom())
k‖ ≤ (‖S‖ + β)k + kα(‖S‖ + β)k−1, so that

r(S) = lim
k→∞ ‖(S|Dom())

k‖1/k ≤ lim
k→∞

(
(‖S‖ + β)k + kα(‖S‖ + β)k−1)1/k

= ‖S‖ + β.

Since β > β∗ was chosen arbitrarily, this proves the claim. ��
We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2 We mainly follow the line of reasoning in the proof of
[27,LemmaA.6].Only a fewadditional considerations are necessary in order to accom-
modate unbounded perturbations V by means of Lemma 4.1. For convenience of the
reader, we nevertheless reproduce the whole argument here.

Define S, T : Ran P+ → Ran P+ by

S := P+Q−|Ran P+ , T := P+Q+|Ran P+ = IRan P+ − S.

Byhypothesis, we have ‖S‖ ≤ ‖P+Q−‖ < 1, so that T is bijective. In light of Proposi-
tion 3.1 and Lemma 3.4, it now remains to show the inclusion Ran(P+Q+|D+) ⊃ D+,
that is, Ran(T−1|D+) ⊂ D+. To this end, we rewrite T−1 as a Neumann series,

T−1 = (IRan P+ − S)−1 =
∞∑

k=0

Sk .

Clearly, S maps the domain D+ = Dom(A|Ran P+) into itself, so that the inclusion
Ran(T−1|D+) ⊂ D+ holds if the above series converges also with respect to the
graph norm for the closed operator  := A|Ran P+ . This, in turn, is the case if the
corresponding spectral radius r(S) of S is smaller than 1.

For x ∈ D+ ⊂ Ran P+ we compute

Sx = AP+Q−x = P+(A + V )Q−x − P+V Q−x
= P+Q−(A + V )x − P+V Q−x
= Sx + Kx

with

K := (P+Q−V − P+V Q−)|Ran P+ .

We show that the operator K is -bounded with -bound 0. Indeed, let b > 0, and
choose a ≥ 0 with ‖V x‖ ≤ a‖x‖ + b‖Ax‖ for all x ∈ Dom(A); recall that V is
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infinitesimal with respect to A by hypothesis. Then,

‖V Q−x‖ ≤ a‖Q−x‖ + b‖AQ−x‖ ≤ a‖x‖ + b‖(A + V )x‖ + b‖V Q−x‖,

so that

‖V Q−x‖ ≤ a

1 − b
‖x‖ + b

1 − b

(‖Ax‖ + ‖V x‖)

≤ a(1 + b)

1 − b
‖x‖ + b(1 + b)

1 − b
‖Ax‖.

Thus,

‖Kx‖ ≤ ‖P+Q−‖‖V x‖ + ‖V Q−x‖
≤ a

(
‖P+Q−‖ + 1 + b

1 − b

)
‖x‖ + b

(
‖P+Q−‖ + 1 + b

1 − b

)
‖x‖ (4.2)

for x ∈ Dom() = D+. Since b > 0 was chosen arbitrarily, this implies that K is -
boundedwith-bound 0. It therefore follows fromLemma 4.1 that r(S) ≤ ‖S‖ < 1,
which completes the proof. ��

Remark 4.2 (1) Estimate (4.2) suggests that also relatively bounded perturbations V
that are not necessarily infinitesimal with respect to A can be considered here.
Indeed, if b∗ ∈ [0, 1) is the A-bound of V , then by (4.2) and Lemma 4.1 we have

r(S) ≤ ‖P+Q−‖ + b∗
(
‖P+Q−‖ + 1 + b∗

1 − b∗

)
,

and the right-hand side of the latter is smaller than 1 if and only if

‖P+Q−‖ <
1 − 2b∗ − b2∗

1 − b2∗
.

This is a reasonable condition on the norm ‖P+Q−‖ only for b∗ <
√
2 − 1.

(2) A similar result as in (1) can be obtained in terms of the (A + V )-bound of V :
If for some b̃ ∈ [0, 1) and ã ≥ 0 one has ‖V x‖ ≤ ã‖x‖ + b̃‖(A + V )x‖ for all
x ∈ Dom(A) = Dom(A + V ), then standard arguments as in the above proof of
Theorem 1.2 (see also [35,Lemma 2.1.6]) show that

‖V x‖ ≤ ã

1 − b̃
‖x‖ + b̃

1 − b̃
‖Ax‖



On a Minimax Principle in Spectral Gaps Page 25 of 36 29

and, in turn,

‖V Q−x‖ ≤ ã‖x‖ + b̃‖(A + V )x‖ ≤ ã‖x‖ + b̃‖Ax‖ + b̃‖V x‖

≤ ã
(
1 + b̃

1 − b̃

)
‖x‖ + b̃

(
1 + b̃

1 − b̃

)
‖Ax‖

= ã

1 − b̃
‖x‖ + b̃

1 − b̃
‖Ax‖

for all x ∈ Dom(A). Plugging these into (4.2) gives

‖Kx‖ ≤ ‖P+Q−‖‖V x‖ + ‖V Q−x‖

≤ (1 + ‖P+Q−‖)
( ã

1 − b̃
‖x‖ + b̃

1 − b̃
‖x‖

)

for all x ∈ Dom() = D+, which eventually leads to

r(S) ≤ ‖P+Q−‖ + b̃(1 + ‖P+Q−‖)
1 − b̃

= ‖P+Q−‖ + b̃

1 − b̃
.

The right-hand side of the latter is smaller than 1 if and only if

‖P+Q−‖ < 1 − 2b̃,

which is a reasonable condition on ‖P+Q−‖ only for b̃ < 1/2.

5 The Block Diagonalization Approach

In this section, we discuss an approach to verify the hypotheses of Proposition 3.1 and
Lemma 3.4 which relies on techniques previously discussed in the context of block
diagonalizations of operators and forms, for instance in [24] and [14], respectively;
cf. also Remark 5.4 below.

Recall that for the two orthogonal projections P+ and Q+ from Hypothesis 1.1 the
inequality ‖P+ − Q+‖ < 1 holds if and only if Ran Q+ can be represented as

Ran Q+ = { f ⊕ X f | f ∈ Ran P+} (5.1)

with some bounded linear operator X : Ran P+ → Ran P−; in this case, one has

‖P+ − Q+‖ = ‖X‖
√
1 + ‖X‖2 , (5.2)
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see, e.g., [18,Corollary 3.4 (i)]. The orthogonal projection Q+ can then be represented
as the 2 × 2 block operator matrices

Q+ =
(

(IRan P+ + X∗X)−1 (IRan P+ + X∗X)−1X∗
X(IRan P+ + X∗X)−1 X(IRan P+ + X∗X)−1X∗

)

=
(

(IRan P+ + X∗X)−1 X∗(IRan P− + XX∗)−1

(IRan P− + XX∗)−1X XX∗(IRan P− + XX∗)−1

) (5.3)

with respect to Ran P+ ⊕ Ran P−, see, e.g., [18,Remark 3.6]. In particular, we have

P+Q+|Ran P+ = (IRan P+ + X∗X)−1, (5.4)

which is in fact the starting point for the current approach: With regard to the desired
relations Ran(P+Q+|D+) ⊃ D+ and Ran(P+Q+|D+) ⊃ D+, we need to establish
that the operator IRan P+ + X∗X maps D+ and D+ into D+ and D+, respectively.

Define the skew-symmetric operator Y via the 2 × 2 block operator matrix

Y =
(
0 −X∗
X 0

)
(5.5)

with respect to Ran P+ ⊕ Ran P−. Then, the operators I ± Y are bijective with

(I − Y )(I + Y ) =
(
IRan P+ + X∗X 0

0 IRan P− + XX∗
)

. (5.6)

The following lemma is extracted from various sources. We comment on this after-
wards in Remark 5.2 below.

Lemma 5.1 Suppose that the projections P+ and Q+ from Hypothesis 1.1 satisfy
‖P+ − Q+‖ < 1, and let the operators X and Y be as in (5.1) and (5.5), respectively.
Moreover, let C be an invariant subspace for both P+ and Q+ we have such that
C = (C ∩ Ran P+) ⊕ (C ∩ Ran P−) =: C+ ⊕ C−.

Then, the following are equivalent:

(i) IRan P+ + X∗X maps C+ into itself;
(ii) IRan P− + XX∗ maps C− into itself;
(iii) Y maps C into itself;
(iv) (I + Y ) maps C into itself;
(v) (I − Y ) maps C into itself.

Proof Clearly, the hypotheses imply that P+Q+ maps C into C+ and P−Q+ maps C
into C−.

(i)⇒(ii). Let g ∈ C−. Using the first representation in (5.3), we then have identity
(IRan P+ + X∗X)−1X∗g = (P+Q+|Ran P−)g ∈ C+. Hence, X∗g ∈ C+ by (i) and, in
turn, h := (IRan P+ + X∗X)X∗g ∈ C+. Using again (5.3), this yields

(IRan P− + XX∗)g = g + XX∗g = g + X(IRan P+ + X∗X)−1h

= g + (P−Q+|Ran P+)h ∈ C−.
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As a byproduct, we have also shown that X∗ maps C− into C+.
(ii)⇒(i). Using the identities (IRan P− + XX∗)−1X = P−Q+|Ran P+ and X∗

(IRan P− +XX∗)−1 = P+Q+|Ran P− taken from the second representation in (5.3), the
proof is completely analogous to the implication (i)⇒(ii). In particular, we likewise
obtain as a byproduct that X maps C+ into C−.

(i),(ii)⇒(iii). We have already seen that X maps C+ into C− and that X∗ maps C−
into C+. Taking into account that C = C+ ⊕ C−, this means that Y maps C into itself.

(iii)⇔(iv),(v). This is clear.
(iv),(v)⇒(i),(ii). This follows immediately from identity (5.6). ��

Remark 5.2 The proof of the equivalence (i)⇔(ii) and the one of the implication
(i),(ii)⇒(iii) in Lemma 5.1 are extracted from the proof of [14,Theorem 5.1]; see
also [29,Theorem 6.3.1 and Lemma 6.3.3].

The equivalence (iv)⇔(v) can alternatively be directly obtained from the identity

(
IRan P+ 0

0 −IRan P−

)
(I + Y )

(
IRan P+ 0

0 −IRan P−

)
= I − Y .

Such an argument has been used in the proof of [24,Proposition 3.3].
The implication (iv),(v)⇒(i) can essentially be found in the proof of

[14,Theorem 5.1] and [29,Remark 6.3.2].

Below, we apply Lemma 5.1 with C = Dom(A) = Dom(B) = D+ ⊕ D−
or C = Dom(|A|1/2) = Dom(|B|1/2) = D+ ⊕ D−, depending on the situation.
The easiest case is encountered in Theorem 1.3, where we are in the semibounded
setting:

Proof of Theorem 1.3 Let Dom(|A|1/2) = Dom(|B|1/2) and b[x, x] ≤ 0 for all
x ∈ D−. We then have D− = Ran P− if A is bounded from below and
D+ = Ran P+ if A is bounded from above. Hence, item (ii) or (i), respectively,
in Lemma 5.1 with C = D+ ⊕ D− is automatically satisfied. In any case, we have
by Lemma 5.1 that IRan P+ + X∗X mapsD+ intoD+, which by identity (5.4) means
that Ran(P+Q+|D+) ⊃ D+. The representation (1.3) now follows from Proposi-
tion 3.1 (a) and Remark 3.5 (1). If even Dom(A) = Dom(B) and 〈x, Bx〉 ≤ 0 for
all x ∈ D−, we use the same reasoning as above with D+ and D− replaced by D+
and D−, respectively, and obtain representation (1.4) from Proposition 3.1 (b) and
Remark 3.5 (1). The representation (1.3) is then still valid by Lemma 3.4 and the first
part of the proof. ��

While certain conditions for Proposition 3.1 and Lemma 3.4 are part of the hypothe-
ses of Theorems 1.2 and 1.3, in the situations of Theorems 1.4 and 1.5 these need to be
verified explicitly from the specific hypotheses at hand. Here, we rely on previous con-
siderations on block diagonalizations for block operator matrices and forms. In case
of Theorem 1.4, the crucial ingredient is presented in the following result, extracted
from [24]. An earlier result in this direction is commented on in Remark 5.4 (2) below.

Proposition 5.3 (see [24,Theorem 6.1]) In the situation of Theorem 1.4 one has
inequality
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‖P+ − Q+‖ ≤ √
2/2 < 1, and the operator identity

(I − Y )(A + V )(I − Y )−1 = A − YV (5.7)

holds with Y as in (5.5).

Proof Set V0 := V |Dom(A), so that we have B = A + V = A + V0 as well as
A − YV = A − YV0. Clearly, the hypotheses on V ensure that V0 is A-bounded with
A-bound b∗ < 1 and off-diagonalwith respect to the decompositionRan P+⊕Ran P−.
By [24,Lemma 6.3] we now have

Ker(A + V0) ⊂ Ker A ⊂ Ran P−.

In light of (5.2), the claim therefore is just an instance of [24,Theorem 6.1]. ��
Remark 5.4 (1) Let A± := A|Ran P± be the parts of A associated with the subspaces
Ran P±, and write

V |Dom(A) =
(

0 W
W ∗ 0

)
,

where W : Ran P− ⊃ D− → Ran P+ is given by Wx := P+V x , x ∈ D−. Then,

A − YV =
(
A+ − X∗W ∗ 0

0 A− + XW

)
.

In this sense, identity (5.7) can be viewed as a block diagonalization of the operator
A+ V . For a more detailed discussion of block diagonalizations and operator Riccati
equations in the operator setting, the reader is referred to [24] and the references cited
therein.

(2) In the particular case where 0 belongs to the resolvent set of A, the conclusion
of Proposition 5.3 can be inferred also from [35,Theorems 2.7.21 and 2.8.5].

Proof of Theorem 1.4 For x ∈ D−, we have

〈x, V x〉 = 〈P−x, V P−x〉 = 〈x, P−V P−x〉 = 0

and, thus,

〈x, (A + V )x〉 = 〈x, Ax〉 ≤ 0.

Moreover, by Proposition 5.3 the inequality ‖P+ − Q+‖ < 1 is satisfied. Let Y be
as in (5.5). Since Dom(A + V ) = Dom(A) = Dom(A − YV ), it then follows from
identity (5.7) that I−Y mapsC := Dom(A) = D+⊕D− into itself. In turn, Lemma5.1
implies that IRan P+ + X∗X maps D+ into itself, which by identity (5.4) means that
Ran(P+Q+|D+) ⊃ D+. The claim now follows from Proposition 3.1, Lemma 3.4,
and Remark 3.5 (1). ��
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To the best of the author’s knowledge, no direct analogue of Proposition 5.3 is
known so far in the setting of form rather than operator perturbations. Although
the inequality ‖P+ − Q+‖ ≤ √

2/2 can be established here as well under fairly
reasonable assumptions, see [14,Theorem 3.3], the mapping properties of the opera-
tors I ± Y connected with a corresponding diagonalization related to (5.7) are much
harder to verify. The situation is even more subtle there since also the domain equality
Dom(|A|1/2) = Dom(|B|1/2) needs careful treatment. The latter is conjectured to
hold in a general off-diagonal form perturbation framework [13,Remark 2.7]. Some
characterizations have been discussed in [30,Theorem 3.8], but they all are hard to
verify in a general abstract setting. A compromise in this direction is to require that
the form b is semibounded, see [30,Lemma 3.9] and [14,Lemma 2.7], which forces
the diagonal form a to be semibounded as well, see below. As in the situation of
Theorem 1.3 above, this simplifies matters immensely:

Proof of Theorem 1.5 For x ∈ D− = Ran P− ∩ Dom[a] we have

v[P−x, P−x] = 0

and, thus,

b[x, x] = a[x, x] ≤ 0.

In the same way, we see that b[x, x] = a[x, x] for x ∈ D+, which by the iden-
tity a[x, x] = a[P+x, P+x] + a[P−x, P−x] for all x ∈ Dom[a] implies that along
with b also the form a is semibounded; cf. the proof of [14,Lemma 2.7]. Since also
Dom(|B|1/2) = Dom[b] = Dom[a] = Dom(|A|1/2) by hypothesis and in view of
Theorem 1.3, it only remains to show that ‖P+ − Q+‖ < 1.

To this end, we first show that b is a semibounded saddle-point form in the sense
of [14,Section 2]: Let m ∈ R be the lower (resp. upper) bound of a. We then have

|(a − m)[x, x]| = ‖|A − m|1/2x‖2 ≤ ‖|A − m|1/2(|A|1/2 + I )−1‖‖(|A|1/2 + I )x‖2

for all x ∈ Dom[a], where |A−m|1/2(|A|1/2+ I )−1 is closed and everywhere defined,
hence bounded by the closed graph theorem. From this and the hypothesis on v we
see that

|v[x, x]| ≤ β
(‖|A|1/2x‖2 + ‖x‖2) for all x ∈ Dom[a]

with some β ≥ 0, which means that b = a+v = a+v0 with v0 := v|Dom[a] is indeed
a semibounded saddle-point form.

It now follows from [30,Theorem 2.13] that

Ker B ⊂ Ker A ⊂ Ran P−.

In turn, [14,Theorem 3.3] and (5.2) give ‖P+ − Q+‖ ≤ √
2/2 < 1, which completes

the proof. ��
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Appendix A: Proof of Proposition 3.1

The following abstract minimax principle is extracted from [11,Theorem 1] and its
proof follows the one in [11] almost literally. However, the result below is formulated
in such a way that the operator and form settings can be handled simultaneously. To
this end, we use a suitable subset C of Dom(|B|1/2) satisfying Dom(B) ⊂ C. Part (a)
of Proposition 3.1 then agrees with the choice C = Dom(|B|1/2), whereas Part (b) of
Proposition 3.1 corresponds to C = Dom(B).

Proposition A.1 (cf. [11,Theorem 1]) Assume Hypothesis 1.1. Moreover, let C be
a subspace satisfying Dom(B) ⊂ C ⊂ Dom(|B|1/2) such that P+ maps C into
Dom(|B|1/2). Define the subspaces C± := Ran(P±|C) ⊂ Dom(|B|1/2), and suppose
that b[x, x] ≤ 0 for all x ∈ C−.

(a) For all k ∈ N with k ≤ dim Ran Q+ we have k ≤ dim Ran P+ and

inf
M+⊂C+
dimM+=k

sup
x∈M+⊕C−‖x‖=1

b[x, x] ≤ λk(B|Ran Q+).

(b) If, in addition, Ran(P+Q+|C+) ⊃ C+ and Ran(Q+P+|C) ⊂ C, then for all k ∈ N

with k ≤ dim Ran P+ we have k ≤ dim Ran Q+ and

inf
M+⊂C+
dimM+=k

sup
x∈M+⊕C−‖x‖=1

b[x, x] = λk(B|Ran Q+).

Proof We first show that the restriction

P+|C∩Ran Q+ : C ∩ Ran Q+ → C+ (A.1)

http://creativecommons.org/licenses/by/4.0/
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is injective. Indeed, assume to the contrary that P+x = 0 for some non-zero x ∈
C ∩ Ran Q+. Then, on the one hand we have b[x, x] > 0, and on the other hand
x ∈ Ran P−, that is, x = P−x ∈ C−. The latter gives b[x, x] ≤ 0 by hypothesis, a
contradiction.

(a). Let k ∈ N with k ≤ dim Ran Q+. Let ε > 0 be arbitrary, and abbreviate
λk = λk(B|Ran Q+). Consider the subspace

M := Ran EB((0, λk + ε)) ⊂ Dom(B) ∩ Ran Q+ ⊂ C ∩ Ran Q+,

and denote by PM the orthogonal projection onto M. We clearly have dimM ≥ k.
Choose any subspace N ⊂ M with dimN = k. The injectivity of (A.1) then gives
dim Ran P+ ≥ dim Ran P+|N = dimN = k.

Let x = P+u ⊕ w, ‖x‖ = 1, with u ∈ N and w ∈ C−. Then, x = u + v with
v = w − P−u ∈ C−. Moreover, M is reducing for B, that is, PM commutes with B
and, hence, also with |B|1/2 and sign(B), see, e.g., [37,Satz 8.23]. With PMv ∈ M
we therefore have

b[v, PMv] = b[PMv, v] = b[PMv, PMv] ≥ 0. (A.2)

Set x1 := u + PMv ∈ M and x2 := v − PMv ∈ (C− + M) ∩ M⊥. From (A.2) it
follows that

b[x2, x2] = b[v, v] − b[PMv, PMv] ≤ b[v, v] ≤ 0.

In turn, taking into account that x = u+v = x1⊕x2 and thatM andM⊥ are reducing
for B, we obtain

b[x, x] = b[x1, x1] + b[x2, x2] ≤ b[x1, x1] < (λk + ε)‖x1‖2 ≤ λk + ε.

In light of dim Ran P+|N = k as observed above, we thus conclude that

inf
M+⊂C+
dimM+=k

sup
x∈M+⊕C−‖x‖=1

b[x, x] ≤ sup
x∈Ran P+|N⊕C−‖x‖=1

b[x, x] ≤ λk + ε.

Since ε was chosen arbitrarily, this proves (a).
(b). The additional assumptions guarantee that the restriction (A.1) is also surjective,

hence bijective. Let k ∈ N with k ≤ dim Ran P+, and let M+ be any subspace of C+
with dimM+ = k; note that C+ is dense in Ran P+, so that such a subspace indeed
exists. By bijectivity of (A.1), there is a subspaceM ⊂ C ∩Ran Q+ with dimM = k
and M+ = Ran P+|M. In particular, we have k ≤ dim Ran Q+. Since M ⊂ C, we
have M ⊂ M+ ⊕ C− and, therefore,

sup
x∈M+⊕C−‖x‖=1

b[x, x] ≥ sup
x∈M‖x‖=1

b[x, x] ≥ inf
N⊂C∩Ran Q+

dimN=k

sup
x∈N‖x‖=1

b[x, x] ≥ λk(B|Ran Q+).
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Since M+ was chosen arbitrarily, together with part (a) this proves (b) and, thus,
completes the proof. ��
Remark A.2 (1) If C is invariant for P+, then the subspaces C± provide a splitting of

C as C = C+ ⊕ C−. Moreover, if C is invariant also for Q+, then the additional
assumption Ran(Q+P+|C) ⊂ C in part (b) of Proposition A.1 is automatically
satisfied. This is the situation encountered in Proposition 3.1.

(2) The proof of part (b) of Proposition A.1 actually only requires that the
restriction (A.1) is also surjective. This surjectivity follows from the inclusion
Ran(P+Q+|C+) ⊃ C+ a priori only if C is invariant for Q+P+ since only then
Ran(Q+|C+) ⊂ C ∩ Ran Q+.

Appendix B: Heinz Inequality

In this appendix we discuss some consequences of the well-known Heinz inequality.
These consequences or particular cases thereof are used at various spots of the main
part of the paper, but they may also be of independent interest. They are probably
folklore, but in lack of a suitable reference they are nevertheless presented here in full
detail.

Throughout this appendix, we denote the norm associated with the inner product
of a Hilbert space H by ‖ · ‖H.

The following variant of the Heinz inequality is taken from [20].

Proposition B.1 ( [20,Theorem I.7.1]) Let 1 and 2 be strictly positive self-adjoint
operators on Hilbert spacesH1 andH2, respectively. Moreover, let S : H1 → H2 be
a bounded operator mapping Dom(1) into Dom(2), and suppose that there is a
constant C ≥ 0 such that

‖2Sx‖H2 ≤ C‖1x‖H1 for all x ∈ Dom(1).

Then, for all ν ∈ [0, 1], the operator S maps Dom(ν
1) into Dom(ν

2), and for all
x ∈ Dom(ν

1) one has

‖ν
2Sx‖H2 ≤ Cν‖S‖1−ν

H1→H2
‖ν

1x‖H1 .

The above result admits the following extension to closed densely defined operators
between Hilbert spaces. For a generalization of Proposition B.1 to maximal accretive
operators, see [16].

Proposition B.2 Let H1, H2, K1, and K2 be Hilbert spaces, and let 1 : H1 ⊃
Dom(1) → K1 and 2 : H2 ⊃ Dom(2) → K2 be closed densely defined oper-
ators. Moreover, let S : H1 → H2 be a bounded operator mapping Dom(1) into
Dom(2), and suppose that there is a constant C ≥ 0 such that

‖2Sx‖K2 ≤ C‖1x‖K1 for all x ∈ Dom(1).

Then, for all ν ∈ [0, 1], the operator S maps Dom(|1|ν) into Dom(|2|ν).
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Proof Recall that ‖ j y‖K j = ‖| j |y‖H j for all y ∈ Dom( j ) = Dom(| j |),
j = 1, 2. Moreover, the operator S maps domain Dom(|1|+ IH1) = Dom(1) into
Dom(|2| + IH2) = Dom(2) by hypothesis. We estimate

‖(|2| + IH2)Sx‖H2 ≤ ‖2Sx‖K2 + ‖Sx‖H2 ≤ C‖1x‖K1 + ‖Sx‖H2

≤ C̃‖(|1| + IH1)x‖H1

for all x ∈ Dom(1) with

C̃ := C‖1(|1| + IH1)
−1‖H1→K1 + ‖S(|1| + IH1)

−1‖H1→H2 .

Here, we have taken into account that 1(|1| + IH1)
−1 is a closed and everywhere

defined operator fromH1 to K1, hence bounded by the closed graph theorem.
Applying Proposition B.1 now yields that S maps Dom((|1| + IH1)

ν) into
Dom((|2| + IH2)

ν) for all ν ∈ [0, 1]. It remains to observe that by functional calcu-
lus one has Dom((| j | + IH j )

ν) = Dom(| j |ν) for j ∈ {1, 2}, which completes the
proof. ��

We now obtain several easy corollaries.

Corollary B.3 (cf. [30,Corollary 3.3]) Let H, K1, and K2 be Hilbert spaces, and let
1 : H ⊃ Dom(1) → K1 and2 : H ⊃ Dom(2) → K2 be closed densely defined
operators.

If Dom(1) ⊂ Dom(2), then Dom(|1|ν) ⊂ Dom(|2|ν) for all ν ∈ [0, 1].
Moreover, if Dom(1) = Dom(2), then also Dom(|1|ν) = Dom(|2|ν) for all
ν ∈ [0, 1].
Proof Suppose that Dom(1) ⊂ Dom(2). Since Dom(|1|) = Dom(1), we have
as in the proof of the preceding proposition that 2(|1| + IH)−1 is a closed every-
where defined, hence bounded, operator fromH to K2. Thus,

‖2x‖K2 ≤ ‖2(|1| + IH)−1‖H→K2 · ‖(|1| + IH)x‖H
for all x ∈ Dom(1), and applying Proposition B.2 with S = IH yields that

Dom(|1|ν) = Dom((|1| + IH)ν) ⊂ Dom(|2|ν).

If also Dom(1) ⊃ Dom(2), the above with switched roles of 1 and 2 yields
that also Dom(|2|ν) ⊂ Dom(|1|ν), which completes the proof. ��
Remark B.4 In the particular case of ν = 1/2, Corollary B.3 can alternatively be
proved with classical considerations regarding operator and form boundedness:

If Dom(1) ⊂ Dom(2), then also Dom(|1|) ⊂ Dom(|2|), so that |2| is rela-
tively operator bounded with respect to |1|, see, e.g., [17,Remark IV.1.5]. In turn, by
[17,Theorem VI.1.38], |2| is also form bounded with respect to |1|, which extends
to the closure of the forms. The latter includes that Dom(|1|1/2) ⊂ Dom(|2|1/2).
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Corollary B.5 Let 1 and 2 be as in Proposition B.2, and suppose that operator
S : H1 → H2 is bounded and bijective with Ran(S|Dom(1)) = Dom(2). Then, one
has Ran(S|Dom(|1|ν )) = Dom(|2|ν) for all ν ∈ [0, 1].
Proof Consider the closed densely defined operator 3 := 1S−1 with domain
Dom(3) = Ran(S|Dom(1)) = Dom(2). By definition, S maps Dom(1) onto
Dom(3). Moreover, we have 3Sx = 1x and, in particular,

‖3Sx‖K1 = ‖1x‖K1

for all x ∈ Dom(1). Proposition B.2 now implies that S maps Dom(|1|ν) into
Dom(|3|ν). Since Dom(|3|ν) = Dom(|2|ν) for all ν ∈ [0, 1] in light of Corol-
lary B.3, this proves the inclusion Ran(S|Dom(|1|ν )) ⊂ Dom(|2|ν).

Since S is bijective and S−1 maps Dom(2) onto Dom(1) by hypothesis, one
verifies in an analogous way that S−1 maps Dom(|2|ν) into Dom(|1|ν). This shows
the converse inclusion and, hence, completes the proof. ��

The last corollary discussed here is related to the question whether an operator
sum represents the sum of the corresponding forms. Part (b) of this corollary can in
some sense also be regarded as an extension of [29,Lemma 2.2.7] to not necessarily
off-diagonal perturbations.

Corollary B.6 (cf. [29,Lemma 2.2.7]) Let  be a self-adjoint operator on a Hilbert
space with inner product 〈·, ·〉, and let K be an operator on the same Hilbert space.

(a) If K is symmetric with Dom(K ) ⊃ Dom(||1/2), then the operator sum  + K
defines a self-adjoint operator with

〈| + K |1/2x, sign( + K )| + K |1/2y〉 = 〈||1/2x, sign()||1/2y〉
+〈x, Ky〉

for all x, y ∈ Dom(||1/2) = Dom(| + K |1/2).
(b) If K is self-adjoint with Dom(K ) ⊃ Dom() such that  + K is self-adjoint on

Dom( + K ) = Dom(), then

〈| + K |1/2x, sign( + K )| + K |1/2y〉
= 〈||1/2x, sign()||1/2y〉 + 〈|K |1/2x, sign(K )|K |1/2y〉

for all x, y ∈ Dom(||1/2) = Dom(| + K |1/2).
Proof (a). For x, y ∈ Dom() = Dom( + K ), both sides of the claimed identity
clearly agree. For general x, y ∈ Dom(||1/2) = Dom(| + K |1/2), we use that
Dom() is an operator core for ||1/2 and approximate both x and y within Dom()

with respect to the graph norm of ||1/2. In order to conclude the claim, it only remains
to show that x and y are then also approximated with respect to the graph norms of K
and | + K |1/2, respectively. For this it suffices to establish that K and | + K |1/2
are operator bounded with respect to ||1/2.
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That K is operator bounded with respect to ||1/2 follows immediately from
the inclusion Dom(||1/2) ⊂ Dom(K ) and the fact that K is closable, see, e.g.,
[17,Remark IV.1.5 and Section V.3.3]. Moreover, the same properties yield by Corol-
lary 2.1.20 in [35] that K is operator infinitesimal with respect to . In particular,
the operator sum  + K is self-adjoint on Dom( + K ) = Dom() by the well-
known Kato-Rellich theorem. In turn, Corollary B.3 implies that Dom(|+K |1/2) =
Dom(||1/2), so that also |+K |1/2 is operator bounded with respect to ||1/2. This
completes the proof of (a).

(b). Corollary B.3 implies that Dom(| + K |1/2) = Dom(||1/2) and Dom
(||1/2) ⊂ Dom(|K |1/2). In turn, as in part (a), both | + K |1/2 and |K |1/2 are
relatively bounded with respect to ||1/2. The claimed identity now follows just
as in part (a) by approximation upon observing that it certainly holds for x, y ∈
Dom(). ��
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