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Abstract

We study the numerical behavior of the meshless Radial Basis Func-
tion Finite Difference method applied to the stationary incompressible
Stokes equations in two spatial dimensions, using polyharmonic splines
as radial basis functions with a polynomial extension on two separate
node sets to discretize the velocity and the pressure. On the one hand,
we show that the convergence rates of the method correspond to the
known convergence rates of numerical differentiation by the polyhar-
monic splines. On the other hand, we show that the main condition for
the stability of the numerical solution is that the distributions of the
pressure nodes has to be coarser than that of the velocity everywhere in
the domain. There seems to be no need for any complex assumptions
similar to the Ladyzhenskaya-Babuška-Brezzi condition in the finite
element method. Numerical results for the benchmark driven cavity
problem are in a good agreement with those in the literature.
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1 Introduction
Standard methods for approximating the numerical solution of partial dif-
ferential equations are mesh-dependent and their performance is strongly
influenced by the quality of the mesh. This becomes a considerable drawback
when either a lot of work concerning reconstruction, refinement or alignment
of the mesh during the simulation phase is necessary, or when there is not
enough information or time to construct an appropriate mesh during the pre-
processing phase. To overcome this restriction, a variety of meshless methods
have been proposed, see, e.g., the review articles [3, 12,18,21].

One of the most promising meshless approaches is the radial basis function
finite difference (RBF-FD) method suggested by Tolstykh and Shirobokov in
2003 [29]. Rapidly growing research on this method demonstrates that the
RBF-FD method is capable to deliver accurate numerical solutions for complex
problems, e.g., geo-modeling on spheres such as the simulation of the shallow-
water equations [16,17], the incompressible Navier-Stokes equations [15], or
the reaction-diffusion-convection equations on manifolds [26,27].

One of the issues that has not been sufficiently addressed in the RBF-
FD community remains in the application to saddle point problems and its
stability. In this paper, we focus on the Stokes equations and its velocity and
pressure solution as one of the most important representatives of this class. In
the finite element method, the answer to the stability question is obtained with
the help of the well-known Ladyzhenskaya-Babuška-Brezzi (LBB) condition,
see e.g. [5]. Recall that LBB describes a complicated interplay between finite
element spaces used for discretizing velocity and pressure. Only those pairs
of finite element spaces for which LBB is known to hold are recommended for
the practical use in solving the Stokes equations. A major goal of our work
was to identify stability conditions in numerical experiments that can serve as
an analogue of LBB for the RBF-FD methods. Our experiments suggest that
the only condition to be met is that the discretization nodes for the velocity
should be denser than those for the pressure everywhere in the computational
domain. In particular, the degrees of the polynomial extensions are only
relevant for the convergence order, but have no influence on the stability.

The second point of interest in this paper is the accuracy of the resulting
method and whether convergence orders expected from the theory and nu-
merical experiments of numerical differentiation by RBFs are confirmed for
the saddle point system of the Stokes equations.

The paper is organized as follows. In Section 2, we briefly describe the
RBF-FD method based on polyharmonic splines (PHS) with polynomial
extension. After that, in Section 3 we discuss discretization aspects for the
Stokes equations, in particular how to handle non-uniqueness of the pressure
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numerically. The numerical experiments are divided into two parts. In the
first part (Section 4), we run a number of experiments for a test problem with
a known smooth solution in order to investigate stability and convergence
properties of the RBF-FD method for various choices of the discretization
parameters for velocity and pressure. In the second part, see Section 5, we
demonstrate the performance of the method for a well-known benchmark
problem, the driven cavity problem (DCP). The last Section 6 is dedicated to
a short conclusion.

2 Radial Basis Function Finite Difference
Method

Meshless kernel-based finite difference discretizations of a linear differential
operator D acting on scalar valued functions u in a computational domain
Ω ⊂ Rd are obtained in the following way. The derivation with respect to a
vector valued function u is done similarly.

In the first step, we choose a set of N nodes in Ω

ΩN := {zi : i = 1, . . . , N} ⊂ Ω.

For a recent survey on how to generate suitable discretizations ΩN of a
computational domain Ω, see [28].

In the second step, Du(zi) is approximated as a linear combination of the
values u(zk) at zk ∈ ΩN with coefficients (weights) ωi,k,

Du(zi) ≈ DNu(zi) :=
N∑
k=1

ωi,ku(zk). (1)

In contrast to the classical FDM, the numerical differentiation weights ωi,k are
not predefined by a stencil, but are instead found by solving a certain linear
system for each zi. More precisely, for each zi we choose a set of influence
Si ⊂ {1, . . . , N} with #Si � N and assume that

ωi,k = 0 for all k /∈ Si.

The weights ωi,k are obtained by requiring exactness of the numerical differ-
entiation formula (1) for all functions of the form

u(x) =
N∑
i=1

αiΦ(x, zi) +
M∑
k=1

γkpk(x) (2)

3



satisfying
N∑
i=1

αipk(zi) = 0, k = 1, . . . ,M (3)

where αi and γk are some coefficients, Φ is a conditionally positive definite
kernel of order at most m ∈ Z+, and {pk}Mk=1 is a basis of the space Πm(Rd)
of d-variate polynomials of degree less than m, with dimension

M = dim Πd
m =

(
m+ d− 1

d

)
.

In the case m = 0 we get M = 0, which means that the polynomial extension
in (2) and condition (3) disappears. Most kernels Φ used in this method are
radial basis functions, in which case it is called radial basis function finite
difference method [17].

Recall that a symmetric kernel Φ : Rd×Rd → R is said to be conditionally
positive definite of order s if for any finite set {x1, . . . ,xn} ⊂ Rd the quadratic
form ∑n

i,j=1 αiαjΦ(xi,xj) is positive for all α such that ∑n
i=1 αip(xi) = 0 for

all p ∈ Πs(Rd). In the case s = 0 we have Π0(Rd) = {0} and the kernel
Φ is said to be (unconditionally) positive definite. A positive definite or
conditionally positive definite kernel Φ is called a radial basis function if
Φ(x,y) = φ(‖x − y‖), x,y ∈ Rd, for some function φ : R+ → R. The use
of RBFs is an established tool for the interpolation of multivariate data at
scattered points, see [6, 14,30].

The exactness of (1) for all functions u of the form (2) satisfying (3) is
equivalent (see [8]) to the following linear system with respect to the unknown
weights ωi,k and polynomial coefficients γk,

∑
k∈Si

ωi,kΦ(zj, zk) +
M∑
k=1

γkpk(zj) = D1Φ(zi, zj), j = 1, . . . , N (4)
∑
k∈Si

ωi,kpj(zk) = Dpj(zi), j = 1, . . . ,M, (5)

where D1 means that D is applied to the first argument of the kernel Φ.
According to [8] there exists a unique vector of weights [ωi,k]Nk=1 satisfying
(4) and (5) as soon as there is any solution to the linear system (5). This
condition is often significantly weaker than the standard approach [30] of
requiring the unisolvence of the set {zk}∈Si with respect to the polynomial
space Πm(Rd). In particular, it provides RBF-FD weights for the Laplacian
D = ∆ on certain ‘deficient’ sets with cardinality less than M , making the
method less sensitive to the choice of the sets of influence Si.
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Although positive definite RBFs, e.g. the Gaussian function φ(r) = e−(εr)2 ,
have the advantage that no polynomial term is needed and there is no
restriction on the sets of influence, they are very sensitive to the choice of the
shape parameter ε and suffer from high condition numbers for the computation
of the weights ωi,k when the distances between nodes in the set of influence
become small. Therefore, we use PHS φ(r) = r` with an odd ` ∈ N, which are
conditionally positive definite of order b`/2c+ 1, see [2] for a comprehensive
discussion of their advantages in the RBF-FD method.

The right choice of the set of influence Si is important for an efficient
performance of the method. It includes both the cardinality of Si and
a reasonable selection of its nodes, e.g. to avoid one-sided constellations,
especially if ΩN is rather irregular. On the one hand, the set of influence
should not be too small to ensure solvability of (5) and reasonable accuracy
of the numerical differentiation formula (1). On the other hand, it should
not be too large to keep the computation time low. Elaborate algorithms
for the selection of the sets of influence to be as small as possible without
compromising the accuracy, have been proposed, e.g., in [7, 9, 10, 22], and
allow in particular a competitive performance of RBF-FD with respect to
the sparsity of the system matrices for the Poisson problem. For the sake of
simplicity in this paper we follow the suggestion of [2] that choosing {zk}k∈Si
as the set of at least 2M nearest neighbors of zi produces a good influence
set if the nodes in ΩN are well distributed.

In the third step, the computed weights are used in a global system to
find the approximations of the unknown values u(zi), which is similar to the
classical FD approach.

3 Discretization of the Stokes problem
We consider the bivariate stationary incompressible Stokes equations in the
primitive variable form. The corresponding system of differential equations
reads:

−∆u+∇p = f (6)
∇ · u = 0 (7)

where u is the velocity vector field in two dimensions, p is the scalar pressure
p and f is an external force.

In this work we treat the discretization of the velocity and pressure differ-
ently, so that we have two discretized domains: Ωu with the number of degrees
of freedom Nu = #Ωu and Ωp with Np = #Ωp. Similar to the notation of
the previous section, we identify Si,∆ and Si,∇· as the sets of influence for the
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Laplacian and divergence operators, respectively, corresponding to the node
zi ∈ Ωu, and Si,∇ as the set of influence for the gradient operator correspond-
ing to the node zi ∈ Ωp. All operators can be treated componentwise, and
so the weights in (1) are computed for each component using the RBF-FD
method of Section 2.

By setting all weights of every operator together, we obtain the following
strongly coupled system L B

D 0

uh
ph

 =
fh

0

 (8)

to be solved for a velocity-pressure tuple (uh, ph)T . Here, L ∈ R2Nu×2Nu rep-
resents the discretized Laplace operator, B ∈ R2Nu×Np the gradient operator
and D ∈ RNp×2Nu the divergence operator. This system has the following two
noticeable properties:

• Looking at the size of the matrix B we conclude that in the case
2Nu < Np the rank of the matrix of the system (8) is at most 4Nu, by
Np− 2Nu smaller than its size, which certainly makes the discretization
unreasonable, see similar argumentation by Elman et al. [13, Chapter
3.3] in the case of the finite element method. Therefore, the relation
Nu ≥ Np/2 must always be respected. We will see in the numerical
experiments that a stronger inequality Nu > Np must be preserved in
order not to lose the stability of the method.

• In contrast to the finite element method, the discretization of the Stokes
equations with the RBF-FD method does not lead to a saddle point
system in the classical sense, since B 6= DT , but to a generalized saddle
point system as considered e.g. by Benzi et al. [4].

Because the Stokes and Navier-Stokes equations are commonly used to
model a fluid in a special domain, for example in a tunnel [24], the velocity
boundary conditions are often a mixture of Dirichlet (DC) and Neumann
(NC) conditions. In the most cases we have an inflow (DC), an outflow (NC)
and a so-called no-slip boundary condition where the velocity is set to zero
(DC). A natural condition for the outflow boundary part is the do-nothing
boundary condition

∂nu− pn = 0.
This condition in particular makes the pressure unique. However, if this
boundary condition is not used, then the pressure remains ambiguous up to a
constant.
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One application is the simulation of the Stokes equations in a closed
domain where only Dirichlet boundary conditions are specified for the velocity
so that its normal component is set to zero (so-called enclosed flow, see
e.g. [13]). Then no in- or outflow region is defined, and the pressure is only
unique up to a constant because it is not involved in any boundary condition.
In particular, the Driven Cavity Problem (DCP) as a classic test case belongs
to this class. In order to obtain a unique solution for the pressure, in this
case we extend the system (8) with a uniqueness condition

xTuuh + xTp ph = xf , (9)

where xu ∈ RNu and xp ∈ RNp are appropriately chosen vectors, and xf is a
scalar. We need to exercise certain care when choosing this condition because
it may generate some artifacts in the computed solution. There are different
ways to realize the uniqueness condition which can be roughly divided into
two categories. On the one hand, there are local conditions, e.g. setting only
one (pressure) point to some nominal value. This may result in some local
distortion of the solution shape, but there will be no artifacts away from
this point. On the other hand, there are global conditions, e.g. a zero mean
condition, which influence the solution globally so that no local artifacts can
be seen in the entire solution.

By adding the new condition instead of the classical approach of over-
writing rows in the system matrix, the new matrix is not quadratic anymore.
Even though we can use least squares algorithms to solve such systems, and
get very small residuals in our experiments, a quadratic system has a big
advantage for large scale problems, since standard iterative solvers may be
used. In order to get a quadratic structure of the matrix, we introduce a
dummy variable γ ∈ R, which we call the uniqueness variable, and two more
vectors yu, yp to fill a new linearly independent column of the matrix. We
observe in the numerical experiments of Section 4 that γ is normally much
smaller than the discretization error. The new system has the form

L B yu

D 0 yp

xTu xTp 0



uh

ph

γ

 =


fh
0
xf

 . (10)

An approach that worked well in most numerical tests was to use a zero mean
for the pressure, e.g. xu = yu = 0, xf = 0 and xp = yp = (1, . . . , 1)T ∈ RNp .
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4 Numerical Test I - Stability & Convergence
In the first test, we analyze the stability and convergence of the RBF-FD
method applied to the Stokes equations with a prescribed analytical solution.
We investigate numerically how the number of nodes and their distribution
in the computational domain influence the stability of the discrete problem.
After that we study the convergence of the velocity and the pressure with
respect to

• a fixed order of PHS and a varying order of polynomial extensions,

• a varying order of PHS and a fixed order of polynomial extensions.

The test problem for this section has the analytical solution

u(x, y) =
 sin(πx) cos(πy)
− cos(πx) sin(πy)

 and p(x, y) = sin(πx) cos(πy)

defined on the unit square Ω = [−1, 1]2. It is easy to see that the velocity
u satisfies the incompressibility condition (7). The external force in (6)
associated with this solution is given by

f(x, y) = π

π sin(πx) cos(πy) + cos2(πx)
π cos(πy) sin(πx)− sin2(πy)

 .
We set Dirichlet boundary conditions for the velocity on the whole boundary
of the computational domain Ω. As a result, the pressure and the incom-
pressibility are only discretized inside of Ω. The zero mean pressure condition
is used for the uniqueness condition (9) and the attached column w.r.t. the
uniqueness variable is chosen symmetrically.

4.1 Test: Stability Condition
First, we discretize the domain Ω by equidistantly placed nodes for both
velocity and pressure variables:

Ωu =
{
xij ∈ Ω | xij = (−1 + ihu,−1 + jhu)T , i, j = 0, . . . , 2

hu

}
,

Ωp =
{
xij ∈ Ω | xij =

(
−1 +

(
i+ 1

2

)
hp,−1 +

(
j + 1

2

)
hp

)T
, i, j = 0, . . . , 2

hp
− 1

}
,

where hu and hp are the step sizes. The PHS

Φ(x, y) = ‖x− y‖3
2
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with a quadratic polynomial extension (mκ = 3) is applied to all differential
operators. The cardinality of the sets of influence is 20, which is greater than
2M = 12, as suggested in Section 2.

In order to evaluate the stability of the solutions for different step sizes
experimentally, the error in the maximum-norm is listed in Tables 1 and 2. In
Table 3, the uniqueness variable γ is also provided and is equal to the value
‖yp‖∞ · γ.

hp\hu 2−1 2−2 2−3 2−4 2−5 2−6 2−7 Np

2−2 7.006e-01 6.272e-02 1.597e-02 1.091e-02 7.973e-03 7.364e-03 7.261e-03 64
2−3 7.344e-01 3.566e+00 1.384e-02 7.755e-03 3.969e-03 1.977e-03 9.893e-04 256
2−4 6.348e-01 8.006e+00 1.422e+00 7.594e-03 3.946e-03 1.985e-03 9.915e-04 1024
2−5 6.357e-01 8.028e+00 2.430e+00 3.128e+00 3.923e-03 1.983e-03 9.928e-04 4096
2−6 6.419e-01 2.063e+00 9.628e-01 1.192e+00 1.745e+00 1.979e-03 9.927e-04 16384
2−7 7.037e-01 1.687e+00 1.934e+00 1.876e+00 1.201e+00 3.349e+00 9.917e-04 65536
Nu 25 81 289 1089 4225 16641 66049

Table 1: Velocity error in the maximum norm.

hp\hu 2−1 2−2 2−3 2−4 2−5 2−6 2−7 Np

2−2 Inf 3.219e+01 1.502e-01 8.917e-02 9.715e-02 9.284e-02 8.886e-02 64
2−3 Inf Inf 2.972e-01 1.092e-01 6.525e-02 3.926e-02 2.491e-02 256
2−4 Inf Inf Inf 2.372e-01 6.211e-02 3.336e-02 1.876e-02 1024
2−5 Inf Inf Inf Inf 8.693e-02 3.202e-02 1.633e-02 4096
2−6 Inf Inf Inf Inf Inf 3.852e-02 1.620e-02 16384
2−7 Inf Inf Inf Inf Inf Inf 2.768e-02 65536
Nu 25 81 289 1089 4225 16641 66049

Table 2: Pressure error in the maximum norm.

hp\hu 2−1 2−2 2−3 2−4 2−5 2−6 2−7 Np

2−2 8.554e-02 -3.061e-03 -2.173e-04 1.651e-05 -2.597e-05 -1.543e-05 -1.048e-05 64
2−3 -2.354e-02 -4.741e-01 -6.415e-04 -1.978e-05 2.037e-06 -3.883e-06 -2.503e-06 256
2−4 -1.362e-02 -1.723e-03 -2.199e-03 -5.288e-05 -1.213e-06 8.337e-08 -1.578e-07 1024
2−5 2.578e-02 1.209e-02 6.270e-04 -4.353e-04 -3.539e-06 -7.142e-08 2.183e-09 4096
2−6 1.549e-02 4.339e-03 1.127e-03 1.407e-04 3.209e-05 -2.250e-07 -4.289e-09 16384
2−7 1.168e-03 -6.043e-03 -5.080e-04 6.503e-04 -9.135e-06 6.317e-05 -1.414e-08 65536
Nu 25 81 289 1089 4225 16641 66049

Table 3: Uniqueness variable γ.

As expected, the values in both error tables demonstrate that in order to
obtain a converging solution, the pressure has to be discretized coarser than
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the velocity, so that Nu > Np must be satisfied. This is consistent with
the algebraic condition Nu ≥ Np/2 mentioned in Section 3. It can also be
observed that choosing Nu � Np does not indicate a significant influence onto
the stability. All in all, these numerical experiments show that the number of
nodes for velocity and pressure must satisfy the following stability condition:

Np

Nu
< 1, (11)

where Np has to be high enough to not undersample the domain.
A lower limit cannot be derived here, but our numerical experiments show

that the above ansatz is stable at least for a relation of 64
66049 ≈ 10−3.

The values of the uniqueness variable γ are decreasing if Np and/or Nu
increase but they are not significantly high even in the unstable cases. This
shows that γ is not a stability identifier but rather can be interpreted as an
identifier for the overall discretization error.

Let us now focus on the local stability behavior. For example, in the case
of the DCP, the flow of a fluid near corners or walls may have a complex
vortex-like structure. In order to capture a high order behavior of velocity in
such subdomains, one has to wisely distribute a significant quantity of velocity
nodes there. At the same time, the number of pressure nodes has to remain
bounded to guarantee the stability condition. To implement this, we attempt
to reorganize the equidistant velocity nodes to get a finer node configuration
near the boundary without changing Nu significantly as shown in Figure 1.
As a result, the new velocity step size in the middle of the domain hu = 4

51 is
higher than the pressure one hp = 1

17 . This has the effect that the solution of
the pressure is mainly unstable, which in turn has a direct influence on the
solution of the velocity as can be seen in Figure 2, even though the stability
condition (11) is violated only locally. However, if the step size in the middle
of the domain is adjusted so that (11) holds locally in every subdomain, see
Figure 3, whereby the global degrees of freedom are not changed significantly,
then the solution is stable, as can be seen in Figure 4 for the new velocity
step size hu = 1

18 < hp.
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Figure 1: Structure of the locally refined node configuration for velocity (left)
and pressure (right) with Nu = 4129 and Np = 11567.

Figure 2: Solution for velocity (left) and pressure (right) for the locally refined
nodes satisfying the stability condition (11) only globally with Nu = 4129
and Np = 1156.
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Figure 3: Structure of the locally refined node configuration for velocity (left)
and pressure (right) with Nu = 4145 and Np = 1156.

Figure 4: Node configuration for velocity (left) and pressure (right) for locally
refined nodes satisfying the stability condition (11) locally, Nu = 4145 and
Np = 1156.

4.2 Test: Convergence Analysis I
In this subsection, we study how the solution of the Stokes equations depends
on the PHSs with fixed exponent and varying order of polynomial extensions.
For discretization of velocity and pressure, equidistant steps with the relation
hp = 2 · hu, resp. Np/Nu = 0.25, are chosen to satisfy (11). The experimental
order of convergence is computed as

EoC =
log

(
errork
errork+1

)
log

(
hk
hk+1

) =
log

(
errork
errork+1

)
log (2) .
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We use the fixed PHS
Φ(x, y) = ‖x− y‖3

2

with the variable order of the polynomial extension mκ ∈ {0, . . . , 6}. Here,
mκ = 0 stands for no polynomial extension, mκ = 1 stands for a polynomial
extension with constant polynomials and so on. Because the accuracy of the
RBF-FD method depends on the differential operator, we distinguish between
κ = 1 for the first order operators (divergence of u and gradient of p) and
κ = 2 for the second order of operator (Laplacian of u). We adapt the size
of the set of influence to mκ according to Table 4, independently of whether
velocity or pressure is discretized. In all cases the size is greater than 2M .

mκ 0 1 2 3 4 5 6
#Si,(·) 10 10 10 20 25 35 50

Table 4: Cardinality of the set of influence of the operator (·) w.r.t. mκ.

In Figures 5–11 we show the root mean square error (RMSE) of the velocity
and the pressure. If one considers the plots corresponding to m1 = 0, . . . , 6, it
is noticeable that the higherm1, the better the convergence rate of the velocity
and the pressure is for increasing m2. At the same time, the velocity and the
pressure do not converge for m1 < 2 and m2 < 3. This is consistent with the
properties of the Stokes equations: The pressure only occurs in connection
with the first order differentiation whereas the velocity with the first and the
second order differentiation. If the order of the polynomial extension is less
than the order of the differential operator, then the polynomial extension
has no effect on the approximation and the pure application of the PHS is
unstable.

Figure 5: RMSE comparison for m1 = 0 and various values of m2 for veloc-
ity (left) and pressure (right).
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Figure 6: RMSE comparison for m1 = 1 and various values of m2 for veloc-
ity (left) and pressure (right).

Figure 7: RMSE comparison for m1 = 2 and various values of m2 for veloc-
ity (left) and pressure (right).

Figure 8: RMSE comparison for m1 = 3 and various values of m2 for veloc-
ity (left) and pressure (right).
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Figure 9: RMSE comparison for m1 = 4 and various values of m2 for veloc-
ity (left) and pressure (right).

Figure 10: RMSE comparison for m1 = 5 and various values of m2 for
velocity (left) and pressure (right).

Figure 11: RMSE comparison for m1 = 6 and various values of m2 for
velocity (left) and pressure (right).

To compare the convergence rates of the velocity and the pressure more
precisely, the orders of convergence from the errors are listed in Table 5 where
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each cell contains the order of convergence w.r.t. the velocity (left value) and
the pressure (right value). The "n.s." stands for "not stable" and is consistent
with the above reason for no convergence in the cases m1 = 0 and m2 = 0, 1.
The special cases m1 = 1 (m2 > 2) and m2 = 2 (m1 > 1) get nonconverging
solutions, too, but at the same time the approximation will not be worse
when the step size reduces, so that we may speak of a "convergence rate of
zero".

m2\m1 0 1 2 3 4 5 6
0 n.s.|n.s. n.s.|n.s. n.s.|n.s. n.s.|n.s. n.s.|n.s. n.s.|n.s. n.s.|n.s.
1 n.s.|n.s. n.s.|n.s. n.s.|n.s. n.s.|n.s. n.s.|n.s. n.s.|n.s. n.s.|n.s.
2 n.s.|n.s. 0|0 0|0 0|0 0|0 0|0 0|0
3 n.s.|n.s. 0|0 1|1 1|1 1|1 1|1 1|1
4 n.s.|n.s. 0|0 1|1 2|2 2|2 2|2 2|2
5 n.s.|n.s. 0|0 1|1 2|2 3|3 3|3 3|3
6 n.s.|n.s. 0|0 1|1 2|2 3|3 4|4 4|4

Table 5: Order of convergence for velocity (left value of each cell) and pressure
(right value of each cell) with respect to m1 and m2.

From Figures 5–11 and Table 5 the following two concluding remarks can
be drawn:

1. The convergence rates of the velocity and the pressure are approximately
the same whereas the explicit error of the velocity is lower than that of
the pressure. This might be explained by the fact that due to stability
reasons we have to assign much fewer degrees of freedom to the pressure
than to the velocity field.

2. The experimental order of convergence is

EoC = min{m1 − 1,m2 − 2}. (12)

Since smaller m1,m2 are preferable to achieve the same convergence
order, the formula (12) suggests taking m1 one lower than m2, i.e.
m2 = m1 + 1.

These numerical observations are consistent with those reported in the lit-
erature. In particular, in [17, Chapter 5.1.7], Fornberg and Flyer report
the results of their numerical experiments showing that the numerical dif-
ferentiation error for approximating the κth order derivatives by PHS and a
polynomial extension up to order mκ is of the size O (hmκ−κ). Theoretical
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results confirming the same rates are given in [11]. Therefore, the combined
numerical differentiation error for velocity and pressure in −∆u+∇p is of
the size O(hm1−1 + hm2−2), which is in a good agreement with (12). Since
we see the same rate for the numerical solution of the Stokes equation, this
indicates a good stability of the method.

While analyzing the RMSE for the RBF-FD method, it is worth to take a
look at the condition number of the global system matrix. Because of the
non-symmetric property of the system matrix S, the condition number is
computed with

√
cond2(STS). The corresponding results for different m1

and m2 = m1 + 1 are shown in Table 6. It can be seen that the condition
number increases by a factor of eight when the number of degrees of freedom
is multiplied by four. It is remarkable that mκ has no significant influence
on the condition number although the cardinality of the set of influence and
consequently the number of nonzero entries in the system matrix gets larger
with increasing mκ.

m1|m2 1|2 2|3 3|4 4|5 5|6
hu = 2−3 5.525e+04 4.627e+04 3.930e+04 4.405e+04 4.647e+04
hu = 2−4 4.571e+05 3.802e+05 3.159e+05 3.586e+05 3.826e+05
hu = 2−5 3.693e+06 3.065e+06 2.532e+06 2.884e+06 3.083e+06
hu = 2−6 2.964e+07 2.459e+07 2.028e+07 2.311e+07 2.471e+07

Table 6: Condition numbers of the global system matrix, m1 = m2 − 1.

4.3 Test: Convergence Analysis II
In contrast to the previous chapter, we now focus on the question of how the
solution of the Stokes equations depends on the PHSs with variable exponent
and fixed order of polynomial extensions. We use the variable PHS

Φ(x, y) = ‖x− y‖λκ2

with the exponent λκ ∈ {3, 5, 7, 9} and a polynomial extension of order 5.
As in the previous chapter, the index κ indicates the order of a differential
operator being discretized. Figures 12 and 13 show the RMSEs of velocity and
pressure for λ1 ∈ {3, 9} and for different λ2. The RMSEs for λ1 ∈ {5, 7} and
different λ2 have the same convergence behavior and are therefore not plotted
separately. Note that the error of both, velocity and pressure, decreases if
λ2 increases. In the velocity case, the error of λ2 = 9 is ten times lower than
the error of λ2 = 3. In general, the convergence rate does not increase if a
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higher exponent is chosen. In contrast to λ2, increasing λ1 does not lead to
any improvement of the velocity error, and only a slight improvement of the
pressure error for larger step sizes.

Figure 12: RMSE comparison for λ1 = 3 and various values of λ2 for veloc-
ity (left) and pressure (right).

Figure 13: RMSE comparison for λ1 = 9 and various values of λ2 for veloc-
ity (left) and pressure (right).

After analyzing the convergence rates for various choices of λk, let us take a
look at the behavior of the condition number of the global system matrix. The
condition numbers for different choices of λ1 = λ2 are demonstrated in Table 7.
It can be seen that the condition number does not depend significantly on the
choice of the PHS exponent and behaves similarly to the test with increasing
the polynomial order before.
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λ1|λ2 3|3 5|5 7|7 9|9
h = 2−3 5.156e+04 4.527e+04 5.285e+04 6.707e+04
h = 2−4 4.228e+05 3.724e+05 4.344e+05 5.503e+05
h = 2−5 3.405e+06 3.005e+06 3.505e+06 4.439e+06
h = 2−6 2.730e+07 2.411e+07 2.811e+07 3.560e+07

Table 7: Condition numbers of the global system matrix, λ1 = λ2.

4.4 Summary of Stability & Convergence Tests
Summarizing our results, on the one hand we see that the higher the order of
the polynomial extension, the higher the convergence rate for velocity and
pressure is. Furthermore, the polynomial extension for first order operators
should be one lower than for second order operators, but it must be high
enough so that the application of the differential operator does not annihilate
the polynomial term. On the other hand, increasing the exponent does not
increase the convergence order, but the exponent reduces the error at a
numerical cost comparable to that of a lower exponent.

Thus, we may conclude that for the above smooth case a combination
of a high exponent and a high polynomial order of the extension for all
operators with m2 = m1 + 1 results in a convergent and stable combination to
approximate the solution of the Stokes equations if the cardinality of the set
of influence is adapted in a proper way and the relation (11) is not violated.

5 Numerical Test II - Driven Cavity
The smooth test case of the previous chapter does not represent a challenging
problem. Therefore, in this chapter we consider a more complex representative
of the Stokes equations - the Driven-Cavity-Problem (DCP). It arises, for
example, in the modeling of a short-dwell coater [1] and generally describes
the fluid motion in a restricted domain that is influenced only by a certain
part of the boundary. For more details on the DCP, we refer to [19] by
Kuhlmann and Romanò.

5.1 DCP on the unit square
In the first example we consider the unit square Ω = [−1, 1]2. The boundary
Γ = ∂Ω is separated into two parts: the moving wall Γm = [−1, 1]× {1} and
the solid wall Γs = Γ \ Γm. The velocity is subject to the following Dirichlet
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boundary conditions:

u(x, y)|Γs = (0, 0)T and u(x, y)|Γm = (1, 0)T .

In order to get a unique solution for the pressure, one can exploit, e.g.,
the symmetry of the DCP for the Stokes equations by setting one point
of the pressure at the centerline (y = 0) to zero. This symmetry is valid
for the Stokes equations but not for the nonlinear Navier-Stokes equations.
Therefore, we tend to the zero mean condition as in the previous tests, so that
an extension to the Navier-Stokes equations is possible without any changes.

Following the quintessence of Chapter 4.4, we choose λ1 = λ2 = 9 and
m1 = 5, m2 = 6. The sets of influence w.r.t. the differential operators are
chosen from Table 4. From Figure 14, it can be seen that even with very
few nodes the RBF-FD method delivers a reasonable approximation of the
DCP, where the pressure is anti-symmetric at the vertical centerline and has
singularities at the upper corners.

Figure 14: Solutions for the velocity (left) with Nu = 332 and pressure (right)
with Np = 162.

Except of the zero vertical centerline of the pressure, there are no other
exact values available to measure the numerical error. Nevertheless, it is
possible to estimate the accuracy by adopting a very accurate solution obtained
in Schumack et al. [25, Chapter 4] by a high order spectral method that takes
into account a priori information about the strength of singularities of the
pressure. The errors of our numerical solutions on equidistant discretizations
for velocity and pressure against these reference solutions are presented in the
third and fourth columns of Table 8. The errors are computed on the 11× 11
equidistant grid tabulated in [25], excluding the pressure at the singularity
corners. The last column of Table 8 contains the pressure RMSE at the
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vertical centerline where the pressure vanishes. We see that all errors decrease
monotonically whereby the global pressure error is higher in comparison to
the other errors. This is in particular related to the coarser discretization
of the pressure due to the stability condition. Another reason is its lower
smoothness because of the singularities at the upper corners of the domain.
Comparing to the results presented in the upper plots of Figure 9 of [25],
we see that the velocity and pressure errors in Table 8 for our method are
comparable to those in [25] for a comparable number of degrees of freedom
when a spectral method without special treatment of corner singularities is
applied even if the number of degrees of freedom for the pressure is much
smaller than that used in [25].

hu hp RMSu RMSp RMSp,centerline

2−3 2−2 1.382e-02 7.179e-01 2.361e-02
2−4 2−3 4.525e-03 4.932e-01 6.147e-03
2−5 2−4 2.669e-03 2.027e-01 1.708e-03
2−6 2−5 1.389e-03 2.681e-02 5.525e-04
2−7 2−6 6.970e-04 9.563e-03 2.461e-04

Table 8: RMSE of RBF-FD method vs. solution given in [25], and on the
centerline.

Now, let us consider the properties of the velocity solution in the DCP.
The motion of just one wall of the boundary has the effect that not only a big
vortex appears in the middle of the domain, but also eddies of much smaller
scale emerge at the bottom corners. These eddies are known as Moffatt
Eddies, see e.g. [20]. In Figure 15, we demonstrate using the streamslice
function of MATLAB how our RBF-FD method captures velocity streamlines
in the case of an equidistant node configuration with Nu = 4225 nodes for
velocity and Np = 1024 nodes for pressure which represents line 3 in Table 8.
It should be mentioned that the streamlines looking like they were coming
out of the boundary are artifacts of the visualization when the streamslice
function is applied on a too coarse node configuration near the boundaries.
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Figure 15: Streamlines of the velocity in the whole domain (upper-left), in
the lower-right corner (upper right) and a zoomed version of the lower-right
corner (below).

From the bottom plot of Figure 15, it can be seen that the Moffatt Eddy
is not approximated accurately enough. This is due to the coarse velocity
discretization near the corner of the computational domain. To get a better
approximation, we exploit the meshless nature of the RBF-FD method by
adding extra points in this subregion whereby the number of global degrees
of freedom is approximately preserved and the relation (11) is not violated
locally. An example of the new node configuration is visualized in Figure 16.
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Figure 16: A corner-refined structure of nodes for velocity (left) and pres-
sure (right).

In Figure 17, the velocity streamlines are visualized for the corner-refined
case when Nu = 4225 and Np = 1024. One can see now that the Moffatt
Eddies are significantly smoother and the second Moffatt Eddy can be guessed
without getting any instabilities just by reordering the velocity nodes while
respecting the stability condition.
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Figure 17: Streamlines of the velocity in the whole domain (upper-left),
in the lower-right corner (upper-right) and zoomed version (below) for a
corner-refined node configuration.

5.2 DCP on the wedge
Let us now use the RBF-FD method to approximate a fluid flow in a wedge
between two lateral boundaries. The computational domain Ω belongs to a
class of domains considered by Rønquist [23, Chapter 2.4.1]. It is a triangle
with the vertices (0, 2), (1, 2) and (0.5, 0). The boundary conditions are
similar to those of the square domain with Γm = [0, 1]×{2} and Γs = Γ \ Γm.
As in the square case, the pressure is singular at the upper corners and the
velocity exhibits an infinite sequence of Moffatt Eddies.

We generate a sequence of discretizations obtained by repeated refine-
ments of the initial velocity and pressure nodes shown in Figure 18. The
velocity nodes are the vertices of quadrilaterals that are split into four sub-
quadrilaterals in each refinement step, and the pressure nodes are the centroids
of these quadrilaterals.

24



Figure 18: Initial node configuration for velocity (left) and pressure (right).

As in Chapter 5.1, we choose λ1 = λ2 = 9 and m1 = 5 and m2 = 6
with the related sizes of the sets of influence. In contrast to the above test
with a square domain, we obtain the uniqueness condition (9) by setting the
pressure at one node in the upper section near the centerline to zero. This
has the advantage over a global zero mean condition that only one node or a
local subarea is influenced by this artificial condition, so that the solution in
the important areas, here the area near the wedge, is not distorted by this
condition.

In Figure 19, the streamlines for the fifth refinement level are illustrated,
where five Moffatt Eddies without a zoom and the sixth and the seventh
eddies under the zoom can be observed.

Figure 19: Streamlines of the velocity (left) and its zoomed version (right)
for refinement level 5 with the local minima of the velocity of each Moffatt
Eddy (red).
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In [20, Chapter 3], Moffatt states that the eddies are in such a relation to
each other that the distances rn from the centers of the eddies to the wedge
satisfy

rn
rn+1

= ρ, (13)

where ρ > 0 depends only on the angle of the wedge. Since the angle of
the wedge is 28.07◦, Moffatt’s calculations result in ρ ≈ 2.01. In Table 9 we
present our estimates of rn and ρ, where the center of each Moffat Eddy is
computed as the corresponding local minimum of the velocity on the centerline.
The minima are evaluated at interpolation points on the centerline with the
step size 10−5. Centers for the fifth level of the refinement are marked with
red crosses in Figure 19. One can clearly observe that more Moffatt Eddies
can be captured in the simulation with a larger number of nodes, and the
approximations of ρ are in a good agreement with the results of Moffatt.

Moffatt Eddy Level 1 Level 2 Level 3 Level 4 Level 5
rn ρ rn ρ rn ρ rn ρ rn ρ

1. 1.81250 - 1.81250 - 1.79688 - 1.80469 - 1.80469 -
2. 0.90625 2.00 0.90625 2.00 0.90625 1.98 0.90625 1.99 0.90625 1.99
3. 0.44844 2.02 0.44922 2.02 0.44922 2.02 0.44922 2.02 0.45220 2.00
4. - - 0.22500 2.00 0.22500 2.00 0.22500 2.00 0.22500 2.01
5. - - 0.11151 2.02 0.11211 2.01 0.11211 2.01 0.11211 2.01
6. - - - - - - 0.05654 1.98 0.05486 2.04
7. - - - - - - - - 0.02724 2.01

Table 9: Centers of the Moffatt Eddies and the related parameter ρ.

Similar to the case of the square domain, the symmetry of the pressure
implies that it is zero on the vertical centerline, and this can serve as a
good identifier for convergence. Corresponding values of the RMSEs for the
pressure on the centerline for each level of refinement are shown in Table 10.
We see that the error decreases significantly in each refinement.

Level RMSEp,centerline

1 7.490e-02
2 2.069e-02
3 5.606e-03
4 1.775e-03
5 8.498e-04

Table 10: RMSE of the pressure on the vertical centerline.
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6 Conclusion
In this paper, the RBF-FD method with PHS radial basis functions has
been applied to the incompressible stationary Stokes equations. We study
various configurations of the polyharmonic splines and polynomial extensions.
Through our numerical experiments, we make an attempt to experimentally
derive a stability condition for the discretizations of the velocity and the
pressure. The experiments show that the only stability condition is that
the number of pressure points should be globally and locally smaller than
the number of velocity points. Furthermore, if the order of the polynomial
extension is chosen high enough so that the polynomial extension is not
annihilated, there are no further stability conditions on the PHS. These
results have shown that no stability conditions similar to the LBB condition
are necessary, and may serve as a numerical background for future theoretical
derivations, as well as guidelines for the generation of nodes with more complex
configurations.

It is also shown that the convergence rate of the coupled velocity-pressure
system depends only on the order of the polynomial extension, but not on
the parameters of the polyharmonic splines. Nevertheless, the error can be
further decreased by choosing a higher exponent of the PHS.

In comparison to the finite element method, the convergence rate can
be increased simply by increasing the degree of the polynomial extension
and increasing the size of the sets of influence, but without changing the
discretization sets Ωu and Ωp themselves. In particular, the nodes carry
degrees of freedom of the solution, and do not need to be treated differently
depending on whether they correspond to the interiors or edges or vertices of
some geometric figures (elements), which complicates the implementation of
the higher order finite element method.

As seen at the end of Section 5.2, the error also depends on the right
choice of the set of influence. Here, further studies and experiments are
required to investigate why and when a better approximation can be obtained
by choosing the sets of influence in a more sophisticated way.

The application of the considered method to the driven cavity problems
shows that it is capable of providing accurate numerical results for application-
relevant benchmark test cases. Here, the meshless nature of the RBF-FD
method in combination with the stability condition derived in preceding
experiments makes it possible to obtain numerical results that compete well
with those reported in the literature, and in particular reproduce a specific
deep-vortex behavior established by analytical methods by Moffatt [20].

The use of an extra "uniqueness variable" to circumvent the uniqueness
problem of the pressure in the case of the enclosed flow is a good alternative
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to the classical approach by substituting a row of the system matrix. In
particular, the resulting system matrix is non-singular.

All in all, we have demonstrated that the RBF-FD method with a high
exponent of the PHS and a high order of the polynomial extension is a
good candidate for simulating the Stokes equations. We expect that the
settings of the RBF-FD method developed in this paper will be useful for
the numerical solution of the nonlinear systems of the incompressible Navier-
Stokes equations.
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