
Evolution of Ecosystems for Language-Driven Engineering

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Steve Boßelmann

Dortmund
2023

Tag der Disputation:
23.03.2023

Dekan:
Prof. Dr.-Ing. Gernot A. Fink

Gutachter:
Prof. Dr. Bernhard Steffen
Prof. Dr. Dr. h.c. Martin Wirsing

Acknowledgements

My utmost gratitude goes to my supervisor Bernhard Steffen for providing me with invaluable
guidance throughout the process of writing my thesis and for granting me the privilege of
working at his chair, which was characterized by a collaborative, supportive, and productive
atmosphere that fostered creativity and critical thinking. He always had an open ear to
innovative ideas and made sure that the team pursues a common goal while each individual,
including myself, could progress and develop.

I want to express my sincere appreciation to the other referee of my thesis, Martin Wirsing, as
well as to Heinrich Müller for chairing my doctoral committee.

I am also particularly grateful to Tiziana Margaria for her support, especially in my early
post-Diplom research, in aiding me making abstract concepts more concrete and applicable to
real-world situations and understandable for non-technical audiences, which greatly contributed
to the clarity and accessibility of my subsequent work.

Many thanks go to my awesome colleagues who shared the office room with me over the
years. At the beginning, it was Christian Wagner helping create a welcome, collaborative
and motivating atmosphere in a new environment. And then Stefan Naujokat with whom I
had many productive discussions about all the meta-stuff and meta-meta-stuff, which greatly
contributed to understanding of the subject matter and the development of new ideas.

I would like to extend my appreciation to all of my other colleagues who provided me with
valuable input and feedback. While I am hesitant to list each person individually out of fear
of forgetting someone, please know that your contributions greatly helped to shape my work
and enhance its quality.

I would also like to express my deep gratitude to my mother, who gave me life and started
me on this journey, and give a big shout-out to my sister. Both of you have been a constant
source of support and encouragement and I am truly fortunate to have such wonderful family
members in my life.

Finally, I would like to express my deepest gratitude from the bottom of my heart to my wife
and kids for their unwavering support and understanding during this challenging journey. I
am so grateful for their patience and encouragement, and for granting me the necessary leeway
to work on the thesis, even when it meant putting other activities and plans on hold. I could
not have completed this without their love and support. Thank you for being my biggest
cheerleaders and for always believing in me!

iii

iv

Abstract

Language-Driven Engineering (LDE) is a means to model-driven software development by
creating Integrated Modeling Environments (IMEs) with Domain/Purpose-Specific Languages
(PSLs), each tailored towards a specific aspect of the respective system to be modeled, thereby
taking the specific needs of developers and other stakeholders into account. Combined with
the powerful potential of full code generation, these IMEs can generate complete executable
software applications from descriptive models. As these products themselves may again be
IMEs, this approach leads to LDE Ecosystems of modeling environments with meta-level
dependencies.

This thesis describes new challenges emerging from changes that affect single components,
multiple parts or even the whole LDE ecosystem. From a top-down perspective, this thesis
discusses the necessary support by language definition technology to ensure that corresponding
IMEs can be validated, generated and tested on demand. From a bottom-up perspective, the
formulation of change requests, their upwards propagation and generalization is presented.
Finally, the imposed cross-project knowledge sharing and transfer is motivated, fostering
interdisciplinary teamwork and cooperation.

Based on multifaceted contributions to full-blown projects on different meta-levels of an
exemplary LDE ecosystem, this thesis presents specific challenges in creating and continuously
evolving LDE ecosystems and deduces a concept of Path-Up/Tree-Down (PUTD) effects to
systematically address various dynamics and appropriate actions to manage both product-
level requests that propagate upwards in the meta-level hierarchy as well as the downward
propagation of changes to ensure product quality and adequate migration of modeled artifacts
along the dependency paths.

Finally, the effect of language-driven modeling on the increasingly blurred line between
building and using software applications is illustrated to emphasize that the distinction
between programming and modeling becomes a mere matter of perspective.

v

vi

Attached Publications

Listed below are the publications attached to this dissertation. They were written and co-
published with other authors. My specific contribution to each of these papers is outlined
in section 1.1. Throughout this document, the provided labels will be utilized for citation,
e.g. [AP1], to enable convenient identification of an attached publication.

AP1 Barry D. Floyd, Steve Boßelmann:
ITSy - Simplicity Research in Information and Communication Technology
In: Computer, vol. 46, no. 11, IEEE, 2013
DOI: 10.1109/MC.2013.332

AP2 Steve Boßelmann, Markus Frohme, Dawid Kopetzki, Michael Lybecait, Stefan Naujokat,
Johannes Neubauer, Dominic Wirkner, Philip Zweihoff, Bernhard Steffen:
DIME: A Programming-Less Modeling Environment for Web Applications
In: Leveraging Applications of Formal Methods, Verification and Validation. Lecture
Notes in Computer Science (LNCS), vol 9953, Springer, Cham, 2016
DOI: 10.1007/978-3-319-47169-3 60

AP3 Steve Boßelmann, Dennis Kühn, Tiziana Margaria:
A Fully Model-Based Approach to the Design of the SEcube™ Community
Web App
In: 12th International Conference on Design & Technology of Integrated Systems in
Nanoscale Era (DTIS), IEEE, 2017
DOI: 10.1109/DTIS.2017.7930159

AP4 Dominic Wirkner, Steve Boßelmann:
Towards Reuse on the Meta-Level
In: Electronic Communication of the European Association of Software Science and
Technology, vol. 74, ECEASST, 2018
DOI: 10.14279/tuj.eceasst.74.1047

AP5 Alexander Bainczyk, Steve Boßelmann, Marvin Krause, Marco Krumrey, Dominic
Wirkner, Bernhard Steffen:
Towards Continuous Quality Control in the Context of Language-Driven
Engineering
In: Leveraging Applications of Formal Methods, Verification and Validation. Lecture
Notes in Computer Science (LNCS), vol. 13702, Springer, Cham, 2022
DOI: 10.1007/978-3-031-19756-7 22

AP6 Steve Boßelmann, Stefan Naujokat, Bernhard Steffen:
On the Difficulty of Drawing the Line
In: Leveraging Applications of Formal Methods, Verification and Validation. Lecture
Notes in Computer Science (LNCS), vol. 11244, Springer, Cham, 2018
DOI: 10.1007/978-3-030-03418-4 20

vii

https://doi.org/10.1109/MC.2013.332
https://doi.org/10.1007/978-3-319-47169-3_60
https://doi.org/10.1109/DTIS.2017.7930159
https://doi.org/10.14279/tuj.eceasst.74.1047
https://doi.org/10.1007/978-3-031-19756-7_22
https://doi.org/10.1007/978-3-030-03418-4_20

viii

Contents

1 Introduction . 1
1.1 My Contribution . 3

2 Language-Driven Engineering (LDE) . 7
2.1 Code Generation . 9
2.2 Application Generation . 12
2.3 Integrated Modeling Environments (IMEs) . 14

3 LDE Ecosystems . 17
3.1 CINCO (built with EMF) . 17

3.1.1 Meta-Model Modularity . 18
3.1.2 Language Integration . 18
3.1.3 Application Generation . 19

3.2 DIME (built with CINCO) . 19
3.2.1 Application Modeling . 19
3.2.2 Modeling Environment . 25
3.2.3 Application Generation . 27
3.2.4 Application Deployment . 27

3.3 EquinOCS (built with DIME) . 27
3.4 The CINCO-based LDE Ecosystem . 33
3.5 Generalization . 34

4 LDE Ecosystem Dynamics . 37
4.1 Product Evolution (local) . 38

4.1.1 Source Model Management . 39
4.1.2 Continuous Integration and Deployment 40
4.1.3 Data Migration . 40

4.2 Language Evolution (step-up) . 42
4.3 Adoption of Language Changes (step-down) 44
4.4 Multi-Level Language Evolution (path-up) . 46
4.5 Multi-Level Adoption of Language Changes (tree down) 47

4.5.1 Multi-Level Quality Assurance . 48
4.5.2 Quality Feedback Loop . 50

5 Related Work . 53

6 Conclusion . 59

7 Future Work . 61

Abbreviations . 69

Print References . 71

Online References . 81

ix

1
Introduction

The concepts of Domain-Specific Languages (DSLs) [16, 17] as well as the steps to create a DSL
have now been studied for decades, even before the term was introduced in the 1990s [18, 19].
To support the main tasks of creating DSLs, so-called language workbenches [19] have emerged
and continuously evolved. With them, users can define the language syntax in an appropriate
grammar language from which the language workbench generates the required utility tools
originally known from classical compilers (Lexer, Parser, Linker, etc.) to parse given input
and create in-memory models for further processing. This way, at least from a technical
perspective, several cumbersome and repetitive tasks have been continuously simplified to
reduce the amount of work and effort to build DSLs [19].

In this sense, the SCCE Meta-Tooling Suite Cinco [20, 21], a simple yet powerful workbench
for graphical languages, has been developed at the Chair for Programming Systems at Technical
University Dortmund. Besides the outstanding achievements regarding simplicity of language
definition and implementation, the Cinco project has also evolved the aspect of code generation
towards a powerful approach for full application generation [22]. Finally, by combining dedicated
DSLs with the potential of full code generation, Cinco matches the characteristics of an
Integrated Modeling Environment (IME) that can produce executable software applications
completely from models. Each generated Cinco-product is a graphical modeling environment
on its own which, when equipped with an appropriate code generator, can again be evolved
into a complete IME.

Following this meta-modeling approach, Cinco has been used to develop Dime [AP2], the
first IME that generates full enterprise web applications completely from descriptive models.
The experiences gathered while developing and using Cinco, Dime and similar IMEs led
to the advanced concept of Language-Driven Engineering (LDE) [23] promoting Purpose-
Specific Languages (PSLs) [24] tailored towards the specific needs of developers and other
stakeholders involved. Finally, the creation of Cinco, and Dime in particular, has proven
that the decades-old vision of building sophisticated productive systems with a set of DSLs,
each tailored towards a specific aspect of the system, has finally turned into reality. Moreover,
the fact that the main modeling steps are quite easy to handle, particularly in comparison to
mastering the technology stack underlying modern web applications, makes Dime accessible
even for non-programmers.

Since its early days, Dime has been used to build Equinocs, the new conference management
system of Springer Nature and after an initial proof-of-concept phase, Equinocs was finally
rolled out into production to serve thousands of users. This success not only proves that the
Dime-based approach to modeling and generating production-ready applications is applicable
in real-world scenarios, but has also shown that the LDE approach could potentially make
a significant difference to the development, deployment and operation of software systems.
However, there are challenges to be considered emerging from the fact that Equinocs is a
Dime product and Dime is a Cinco product, i.e. they are all part of the same ecosystem and

1

Chapter 1. Introduction

cannot be seen in isolation. In general, the approach of using IMEs like Cinco or Dime to
model and generate software products, which themselves may again be IMEs, almost naturally
leads to LDE ecosystems of modeling environments with meta-level dependencies that can be
represented as hierarchical tree structures (cf. Fig. 1.1).

DIME

CINCO

EquinOCS

...

...

Figure 1.1: Meta-model dependency path in an LDE ecosystem

From the dependency paths between modeling environments and their corresponding meta-
modeling environments in LDE ecosystems so-far unexplored dynamics emerged across those
development paths that cross one or more meta levels. Consequently, new challenges emerged
not only from the composition of multiple interlinked languages with regards to modularity,
consistency and reusability but also from a broader perspective on evolution which not only
takes changes of a single language into account but in particular considers changes that affect
multiple parts or even the whole ecosystem. This means, from a top-down perspective the LDE
approach must be supported by language definition technology to ensure that corresponding
IMEs can be validated, generated and tested on demand. In turn, from a bottom-up perspective,
the upwards propagation and generalization of new requirements and change requests must be
supported to foster the evolution of the ecosystem on the appropriate levels in a structured
manner. A main challenge in this context is the development of technological solutions
supporting such ecosystem dynamics and facilitating cross-project knowledge sharing and
transfer, while enabling participants to focus on their particular projects instead of becoming
experts of the whole ecosystem.

Based on these observations, this dissertation deduces a concept of Path-Up/Tree-Down
(PUTD) effects, systematically addresses the various dynamics in LDE ecosystems and proposes
appropriate actions to manage both product-level requests that propagate upwards in the meta-
level hierarchy as well as the downward propagation of changes to ensure product quality and
adequate migration of modeled artifacts along the dependency paths. Based on multifaceted
contributions to Cinco, Dime and Equinocs, i.e. projects on different meta-levels, this
dissertation presents and discusses the particular challenges in creating and continuously
evolving LDE ecosystems and effectively managing change in this context.

Finally, the effect of language-driven modeling on the increasingly blurred line between
building and using software applications is illustrated to emphasize that the distinction
between programming and modeling becomes a mere matter of perspective [AP6]. As a result,
the strict separation of meta levels may be weakened or completely overcome through language
technology and tool support, without losing track of who uses which language to achieve
certain goals.

2

1.1. My Contribution

1.1 My Contribution

From the very start, the intrinsic motivation of my work was grounded in the conviction that
simplicity in application and systems engineering is a key driver for successful development
projects and high-quality results. For this reason, my early work was focused on promoting
a better understanding of the nature and meaning of simplicity in scientific research and
technology. In this context, my work as a research fellow in the EU Seventh Framework
Programme (FP7) project IT Simply Works (ITSy) [25, 26] on establishing a culture of
simplicity in IT resulted in the following journal publication:

Attached Publication [AP1]

Barry D. Floyd, Steve Boßelmann

ITSy - Simplicity Research in Information and Communication
Technology
in Computer, vol. 46, no. 11, IEEE 2013

My contribution to this work was (1) a systematic review of IT literature for
articles addressing the concept of simplicity and (2) the conduction and evaluation
of interviews with discussion groups, focus groups, and individuals to collect insights
and identify current thinking about simplicity and its applications among researchers
and practitioners in computer science, software engineering, and the IT industry.

The investigations led to the conclusion that although simplicity can be regarded as a key driver
for various applications it is only vaguely understood and receives little formal attention in
the computer science community. Another finding of my studies in this field is that simplicity
cannot be regarded as a universal feature as it depends on the mindset, experience and
knowledge of the respective user. This result has since influenced all of my further work on
tailored solutions in terms of developed software products in general as well as the design of
languages for modeling environments in particular. In fact, these findings on the notion of
simplicity directly lay the foundations for the concept of purpose-specific languages, which
play a vital role for the conception of LDE ecosystems as presented in this dissertation.

Driven by the desire to build a simple yet powerful workbench for graphical languages, the
SCCE Meta-Tooling Suite Cinco has been developed at the Chair for Programming Systems
at Technical University Dortmund and continuously evolved to a sophisticated development
tool for integrated modeling environments based on interconnected graph models. Since the
very beginning, and over the subsequent years, I contributed to the Cinco project as part
of the core developer team by developing and integrating new languages and core functions,
as well as by establishing a course for teaching its application and underlying principles at
Technical University Dortmund.

The Cinco workbench has also been used to create the integrated modeling environment Dime
for the development of web applications from various interconnected graphical models of data,
control flow and the user interface. Dime was initially introduced by the following publication:

3

Chapter 1. Introduction

Attached Publication [AP2]

Steve Boßelmann, Markus Frohme, Dawid Kopetzki, Michael Lybecait, Stefan Naujokat,
Johannes Neubauer, Dominic Wirkner, Philip Zweihoff, Bernhard Steffen

DIME: A Programming-Less Modeling Environment for Web
Applications
in Lecture Notes in Computer Science (LNCS), vol. 9953, Springer 2016

My contribution to this article has been the demonstration and explanation of
the design and actual intent of Dime’s graphical DSLs, as well as their horizontal
and hierarchical relationships. Furthermore, I presented the overall ease of use, in
particular by describing the built-in user-level guidance by means of the various
available views.

I have contributed to the Dime project since the very beginning, and over the subsequent
years, as part of the core developer team by designing and integrating new modeling languages
and developing core features in terms of model editing, UI components and code generation.
Having started off as an academic project, Dime is open source and now widely adopted in
practice by both academia and industry. So-called ”Dime Days” events have been associated
with the ISoLA conferences since 2020. And recently, I have been teaching its application and
underlying principles in an innovative learn-by-doing course of study on Immersive Software
Engineering (ISE) at University of Limerick. Meanwhile, I am leading the Dime development
team at the Chair for Programming Systems. In the position of lead software architect, I
am responsible for managing the project in an agile manner to plan and shape the ongoing
development, comprising the conceptualization, design and implementation of textual and
graphical modeling languages, user interface components and code generators.

Besides working on Dime, I have also used Dime in externally funded projects on developing
web applications for industry partners. An early proof of concept is the development of the
SEcube™ Community Web App as presented in the following publication:

Attached Publication [AP3]

Steve Boßelmann, Dennis Kühn, Tiziana Margaria

A Fully Model-Based Approach to the Design of the SEcube™ Community
Web App
in 12th International Conference on Design & Technology of Integrated Systems
in Nanoscale Era (DTIS), IEEE 2017

My contribution to this article comprises the presentation of the basic modeling
concepts in Dime as well as its application in terms of modeling the web application,
with focus on describing the relationship of models and final outcome in the
generated product.

A much larger-scale project, and also a full-scale proof of concept regarding the generation of
production-ready products with Dime, is the development of Equinocs, the new conference
management system of Springer Nature, which currently is used to host more than 150
conferences per year while the user base is continuously growing. Leading the Equinocs

4

1.1. My Contribution

development team since 2019, I am responsible for the conceptualization and implementation of
the full-stack web application with Dime. Additionally, as a consultant, I am also responsible for
the requirements engineering in meetings with the project management and other stakeholders
from Springer Nature.

Although Equinocs is a closed-source project, in order to explain its place in the LDE ecosystem
this dissertation comprises the first publication of project insights, still in accordance with the
nondisclosure obligation.

The creation of Equinocs with Dime and Dime with Cinco is a perfect example for a
development path with dependencies between different modeling environments crossing meta-
level boundaries. In this constellation, change requests are directed upwards the meta-level
hierarchy and typically the main products of a modeling environment become the key drivers
for its further development and the continuous evolution of meta-level features. In this manner,
while using Cinco for building various modeling languages into Dime a need for an efficient
reuse concept regarding common language features has been recognized and presented in the
following publication:

Attached Publication [AP4]

Dominic Wirkner, Steve Boßelmann

Towards Reuse on the Meta-Level
in Electronic Communication of the European Association of Software Science
and Technology (ECEASST), vol. 74, 2018

My contribution to this article has been the explanation of recurring constructs and
patterns in Dime models, how their creation and update are managed in terms of
manually written code and the formulation of required language features to support
these patterns in terms of language features to be implemented on the meta level.

The requirements presented in this publication on meta-level reuse have been adopted and
built into Cinco over the following years in terms of language modularity achieved via the
realization of an inheritance concept. As the eventual release of this feature has meant major
change on the meta-level, these changes had to be adopted from all Cinco-based projects,
which demonstrated first hand how change requests propagate upwards in the meta-level
hierarchy while the resulting need for adaption and migration of existing models affects the
whole ecosystem rooting in Cinco.

This dissertation presents and generalizes the aforementioned effect as part of the PUTD
dynamics in LDE ecosystems as well as the challenges emerging from these dynamics for the
effective and efficient management of change and evolution propagating through the product
landscape. One major aspect in this context is continuous quality control, as presented in
the following publication that illustrates how to ensure the adequate migration of products
generated from corresponding modeled artifacts when meta-level changes propagate down the
meta-level hierarchy in an LDE ecosystem. In this context, it presents a concept of design for
testability envisaged to support automatic validation of runtime properties using learning-based
testing techniques.

5

Chapter 1. Introduction

Attached Publication [AP5]

Alexander Bainczyk, Steve Boßelmann, Marvin Krause, Marco Krumrey, Dominic
Wirkner, Bernhard Steffen

Towards Continuous Quality Control in the Context of Language-Driven
Engineering
in Lecture Notes in Computer Science (LNCS), vol. 13702, Springer 2022

My contribution to this article has been the assessment of scalability based on
path-up/tree-down dynamics in LDE ecosystems and, in particular, the formulation
of the need for quality control that considers aspects crossing meta-level boundaries
as potential unintended effects of change might only be recognized in products
multiple levels deeper in the meta-level hierarchy.

Another finding is that in LDE ecosystems with the progression of automated system integration
the boundaries between building and using software applications become increasingly blurred.
While the LDE approach generally supports this development, it leads to a slightly different
perception of DSLs and IMEs becoming integral parts of the whole system life cycle from the
viewpoint of both system developers and system users. Thereby, switching the abstraction
layer does not necessarily mean switching from system level to development level, as presented
in the following publication:

Attached Publication [AP6]

Steve Boßelmann, Stefan Naujokat, Bernhard Steffen

On the Difficulty of Drawing the Line
in Lecture Notes in Computer Science (LNCS), vol. 11244, Springer 2018

My contribution to this article has been the presentation of a concrete example
from the development of Equinocs about how the need for languages or language
features on different meta-levels may change in the course of a project and, deduced
from this finding, how this dynamic may be supported by the LDE ecosystem in
terms of enabling dynamic transfer of control over a modeling language.

One of the conclusions of this publication is that in the context of LDE ecosystems the
distinction between programming and modeling becomes a mere matter of perspective. Hence,
a clear understanding and appropriate tool support for LDE are mandatory requirements
for introducing and maintaining simplicity for the actual users of this complex development
environment. Taking up this idea, this dissertation presents some requirements to be met and
discusses the main challenges to be addressed in this context.

6

2
Language-Driven Engineering (LDE)

The following sections explain the foundations needed to introduce the concept of LDE and
thereby lay the groundwork for the definition of LDE ecosystems.

In software engineering, the different mindsets of the involved stakeholders, i.e. the differences
in their specific way of thinking, has been recognized as a main reason for the so-called
semantic gap [27], which denotes the difference in meaning within different representations
and conceptions [28, 29]. Language-Driven Engineering (LDE) is a paradigm envisaged to
bridge this semantic gap by addressing the different mindsets of stakeholders involved in
application and system development by providing them with dedicated modeling languages
tailored towards their specific needs regarding both mindset and capabilities [23]. In particular,
the LDE approach addresses the domain experts and application experts without programming
skills and aims at tightly integrating them into the model-driven development process by means
of providing them with dedicated modeling languages tailored to their specific mindsets [24] in
order to improve the personal modeling experience (cf. [30]). It is the result of the systematic
further development of eXtreme Model-Driven Design (XMDD) [31] and, conceptually, follows
the One Thing Approach (OTA) [32] that propagates a global, consistent model at the core of
the development.

The LDE approach promotes DSLs to first class citizens of the development process and refines
their objectives and scope. In the general context of Model-Driven Engineering (MDE), the DSL
notion is a well-established concept, yet only vaguely defined. Hence, the term is very loaded.
While some see DSLs as languages focusing specific application domains that have nothing to
do with programming in the first place [33], others propagate a strong programming-related
perspective when defining them as ”small languages, focused on a particular aspect of a software
system” [16]. Definitions like the latter are typically referred to when considering programming-
related specification languages like Structured Query Language (SQL) or Hypertext Markup
Language (HTML) as being good examples of DSLs. In contrast, several (graphical) DSLs used
by people without programming skills became very successful in certain application domains,
like MatLab/Simulink [34], ladder diagrams [35] and Modelica [36]. Actually, DSLs can be used
in a wide range of non-programming contexts to improve communication, productivity and
problem-solving within specific domains. By providing a more natural and intuitive language
for expressing ideas within a particular domain, DSLs can make it easier for domain experts
to collaborate with each other.

Furthermore, there is a distinction between external and internal DSLs. While external DSLs
are standalone languages that come with their own parser, an internal DSL is rather a special
form of Application Programming Interface (API) in a programming language that makes
it easier to program with because it is designed in a way that using it feels like writing in a
dedicated language.

Modeling languages, in particular DSLs, are used to create models that represent particular

7

Chapter 2. Language-Driven Engineering (LDE)

things of interest. This approach can also be applied to the design of modeling languages
themselves. This means modeling languages are used to create models that describe other
modeling languages. Consequently, as illustrated by Figure 2.1, this introduces an indirect
relation between a particular model and the model of its language. When the latter is called
meta-model the prefix meta refers to this exact relation.

Model M1

Model M0

...

Language L1

Language L0

M
M

ML0

O
L
M0

M models O
M conforms to L
ML0 is meta-model of M0

Model ML1

Model ML0

Figure 2.1: Relations between models and meta-models

As typically such a meta-model prescribes the language, i.e. changing the meta-model means
changing the language, both terms become interchangeable and may be considered synonymous.
Hence, in the following, the phrases ”changing a model’s language” and ”changing the meta-
model” are used synonymously.

While a classical DSL focuses a particular domain, the LDE approach takes different dimensions
of specialization into account. It facilitates dedicated modeling languages that are tailored
towards specific aspects of the target domain, the intent and purpose of each particular
language as well as the specific capabilities and mindsets of involved stakeholder groups or
even individuals.

Domain-Specific aspects comprise the prevailing terminology as well as constraints and
regulations from a particular field or the identified domain. Think of technical or special
terms used in a particular field as well as a set of ground rules associated with the respective
surroundings. In this context, sophisticated guidance by means of tool support means taking
all these aspects into account and validating the generated models against identified boundary
conditions.

Purpose-Specific aspects address the goal and task orientation of a particular modeling
approach. Providing an appropriate tool set to choose from may very well depend on what
concrete goal and task has to be supported. The better the tool set is adapted to specific
tasks the better the overall guidance and support. General-purpose tools might be universally
usable but less useful for a range of specific tasks.

Mindset-Specific aspects address the knowledge, skills and expertise of the respective
individual. Different stakeholders involved may have different views, opinions and beliefs on a
range of issues. Addressing these different views and perspectives is key for an effective tool to
provide guidance, support knowledge sharing and increase the overall user experience. The
goal is to enable in particular non-technical stakeholders to specify an intended solution in
their established mindset.

To emphasize these unique characteristics, the languages in context of LDE are called PSLs [24].

8

2.1. Code Generation

Examples of templates for the design of such PSLs can be found in various application domains
in terms of dedicated (graphical) languages, like network layouts, workflow graphs, or piping
and instrumentation diagrams but also business models and other strategic notions, as well
as spreadsheets or data flow graphs for data analytics. In general, illustrative charts and
diagrams used by domain experts for the documentation of specific relationships or factual
connections are a good starting point for creating efficient PSLs aligned with the mindsets of
the respective stakeholders.

The IMEs that support the LDE approach by providing involved stakeholders with the means
to adapt the adequate PSLs required to support their mindsets are referred to as Mindset-
Supporting Integrated Development Environments (mIDEs) [24]. By combining multiple PSLs
that support the mindset of specific stakeholders into an mIDE the latter itself is tailored
towards stakeholder needs to increase the personal modeling experience [30]. Additionally,
available tools and features of the mIDE can be tailored to the respective purpose and thus
provide maximum guidance in support of effective and safe modeling, e.g. by integrating
appropriate analysis and verification tools to minimize accidental misuse. In this context, the
powerful approach of code generation applied to the development of mIDEs allows for building
specific mIDEs even for small stakeholder groups or individuals. However, the fundamental
prerequisites for this are simplicity and efficiency in PSL design along with the support of
reuse concepts for languages and language constructs. The orchestration and aggregation of
corresponding artifacts on different meta-levels is a major challenge.

Note that in the course of this work mIDEs are considered specialized types of IMEs providing
access and usage of mindset-supporting PSLs. And while the discussion and findings of this
work are formulated for the more general concepts of IMEs and language-driven ecosystems,
they are very well applicable in specific contexts where mIDEs with PSLs are involved.

2.1 Code Generation
The goal of MDE is to transform abstract representations, i.e. models, into executable code
that implements an application’s structure as well as its behavior. Model-Driven Software
Development (MDSD), on the other hand, can be considered a more specific form of MDE that
focuses on the use of models to automate the software development process. This typically
involves the use of code generators, which automatically generate source code from higher-level
specifications or models. In model-driven approaches, it closes the gap between abstract
representations and concrete software systems and thus can be considered equivalent to what
compilers are to high-level languages [37].

This is done for a variety of purposes, such as to reduce the amount of manual coding that
needs to be done, to improve the efficiency of the development process, or to generate code
that is optimized for a specific target platform or architecture. While code generation can
save time and improve consistency, it can also lead to a loss of control over the code and can
result in less flexible and less maintainable code. However, there exist best practices that can
be followed to prevent this:

• Define clear and concise specifications that capture the requirements and design of
the system. This will ensure that the generated code meets the desired requirements
and that it is possible to trace the generated code back to the specifications.

• Use templates or models to specify the code generation process. This helps ensure
that the generated code is consistent and follows a predefined set of rules. It also provides
a higher level of control over the generated code, as the templates or models can be
modified as needed.

9

Chapter 2. Language-Driven Engineering (LDE)

• Validate the generated code to ensure that it meets the requirements and that it is
free of errors. This can be done through manual code review or automated testing.

• Document the code generation process to keep a detailed record including the
specifications, templates, and models used. This can help ensure that the generated
code is easily maintainable and that it is possible to understand the intent behind the
generated code.

In general, the models from which code generators automatically create source code do not
necessarily have to reflect application structure or behavior directly. As first and foremost,
DSLs are used to express crucial aspects of interest in the language of a particular domain,
the modelers focus on what to achieve instead of on how this is implemented in a particular
software application. This level of abstraction maintains the possibility of deriving various
kinds of software applications from the same models. And these applications could even behave
very differently yet supporting the same tasks and objectives.

The development of code generators is supported by so-called template engines which let
developers efficiently define text templates to express static text with dynamic parts that are
rendered based on provided data. Template engines typically use placeholders or special syntax
to indicate where data should be inserted, and may also include control structures such as
loops and conditionals for more complex logic. The text parts of such a template then confirms
to the syntax of the respective programming language of choice, like C/C++ or Java, so that
the outcome are files that contain class definitions with fields and methods, just as produced
in manual programming. There are several popular template engines available for different
programming languages. For example, in the Python [38] programming language, the Jinja2 [39]
template engine is widely used, while in the JavaScript [40] ecosystem, Handlebars [41] and
Mustache [42] are popular choices. In the Java [43] world, very common template engines
are Freemarker [44] and Velocity [45]. For the development of code generators by using such
template engines, there also exists model-driven approaches that involve the use of models
to specify the code to be generated as well as the code generation process itself [37]. This
can improve the quality and maintainability of code generators by providing a higher level of
abstraction and a clear separation of concerns.

Partial Code Generation

One of the early approaches to MDSD became known as partial code generation, which means
creating code skeletons, also known as stubs, that must be manually completed by hand-written
code afterwards. Hence, this generation process can be considered a one-time event at an
adequate moment during the development, as it cannot be repeated in later stages of the
project because regenerating the code would overwrite or even erase all manual progress made
since the last generation.

To tackle this drawback of partial code generation, one can demarcate protected areas [46] or
protected regions [47] in the generated code by using specific comments to be recognized by the
code generator during regeneration steps, telling it to modify or overwrite only those specific
regions. In turn, any manual modifications are restricted to the areas outside of these protected
regions. However, these constraints may not always be technically enforced by appropriate
tooling, so that compliance relies on the programmers’ discretion. An alternative yet similar
approach aims at completely separating manually written code from generated code [48]. In
Object-Oriented Programming (OOP) [49], this can be achieved by generating interfaces or
classes to be extended by hand, or vice versa [16].

10

2.1. Code Generation

Full Code Generation

The approach of full code generation overcomes the described issues by producing the entire
code needed automatically. This implies that the code generated is fully operational and does
not require manual adjustments as in the partial code generation scenario. This saves time,
reduces the chance of errors and thus increases the overall code quality. However, it also has
some drawbacks, such as making it more difficult to understand and maintain the generated
code or the generation process itself, especially if the generator is not well-documented or the
generated code is not well-organized.

In terms of code quality, the existing approaches and best practices that can be used to write
readable and maintainable code are also applicable on automatically generating code. As
code generation basically imitates and automates the work of programmers, apparently, when
generating code there is no reason for neglecting the virtues that have proven to be effective
for manually writing good code. In fact, the opposite is the case because the generated code
is the product of the code generator and thus the central artifact for its analysis, validation,
debugging and continuous improvement. Generating good code will make it much easier to
understand the generation process and thus to maintain and improve the code generator.

The generation of full code, by means of not leaving gaps to be filled manually, does not per
se prohibit manual changes to the generated code. As code generation has an impact on the
flexibility of the produced code, in order to adapt to new requirements or changes in the project,
the project’s development approach may foresee the customization of the generated code by
means of manually adding custom logic. As a consequence, the preservation of consistency
introduces the need for so-called round-trip engineering to synchronize changes in code with
changes in models and vice versa. However, in particular the inference of changes in models
from changes in code is challenging, especially when the code and the models are large and
complex. Although for specific, limited purposes there exist tools that support this round-trip
engineering process by means of automatically synchronizing code with models, in general, it
is not always possible to accurately infer changes in the models from changes in the code for
several reasons:

• Ambiguity: The code may not provide enough information to accurately infer a definite
mapping on adequate changes in the models. This can occur due to different degrees of
expressiveness or the lack of a bijective function between model components and code
constructs. Whenever there exist multiple suitable solutions, the inference algorithm
cannot select the appropriate one automatically.

• Complexity: The code and the models may be large and complex, making it difficult to
accurately infer changes in the models from changes in the code. This can be especially
challenging in the context of legacy code, where the code and the models may be poorly
documented and understood.

• Inconsistency: The code or the models may be inconsistent, making it difficult or
impossible to accurately infer changes in the models from changes in the code. This
can occur when a previous synchronization run produced inconsistent output or the
programmers did not follow certain rules and constraints for writing code that can
effectively be processed.

• Limited tool support: The tools used for modeling and code generation may not
provide adequate support for automatically inferring changes in the models from changes
in the code.

In practice, development projects following this approach are often reaching a point where
the customized code eventually becomes inconsistent with the models. Unfortunately, in

11

Chapter 2. Language-Driven Engineering (LDE)

these cases, they see themselves forced to manually change the models until they fit the
handwritten code, just to restore an adequate level of consistency. However, the best way to
overcome this round-tripping issue is a full-code generation policy: always generate the full
codebase and never touch the generated artifacts. This has been formulated as one of the core
strategies for full code generation in the Cinco project [21]. By prohibiting any modifications
to the generated code, any future changes must be applied on the model level, followed by a
regeneration process that overwrites all of the previously generated code on purpose.

In turn, this means any customization, like custom code or custom components in general,
needs to be supported on model level and modeling environments need to support this by
means of custom model components that can be integrated in the models in a service oriented
fashion. The code associated with these custom components would then be injected into
the generated artifacts and placed at the foreseen location by the code generator. This way,
full-code generation provides a more straightforward and complete way to keeping code and
models in sync.

The actual code generation process might be preceded by a sequence of model-to-model
transformations, for example, as a bootstrapping approach by first creating a high-level,
domain-specific model of the desired software. This model can then be transformed or mapped
into a lower-level, implementation-specific model, from which finally the code can be generated.
Additionally, by using a series of transformations, the model can be mapped to multiple
different implementation languages or frameworks, allowing for the generation of code in a
variety of environments.

2.2 Application Generation
While the result of the classical code generation process are code files in the first place, the
overall goal of LDE is nothing less than the full generation of executable applications. Hence,
the term application generation is more appropriate. This goes even further than full code
generation [47], which refers to the process of automatically generating all of the source code,
i.e., all of the classes, methods and functions that make up the software application.

Application generation goes further than classical code generation as it also includes the next
development steps required to thoroughly prepare the build of the application from generated
source code. Hence, the application generation process is much more complex and challenging.

Typically, even full code generators do not directly produce every single line of code of a target
application. Instead, as code generation basically imitates and automates the work of software
developers, it mostly tends to follow similar software development approaches when it comes
down to using frameworks or integrating existing third-party libraries. Furthermore, modern
applications - in particular web applications - are not only programmed by means of classical
source code but also require various additional files to operate, for example:

• Configuration files, like the so-called application configuration resource files for Java-
EE-based web applications.

• Descriptor files, like the so-called bean archive descriptor for the CDI dependency
injection framework included in Java EE.

• Binary files, like icons or images.

Besides configuration files that are needed for running the application, there are configuration
files needed for building the application from the resources in its development project. These
files contain properties to configure so-called build management tools. As an example, the

12

2.2. Application Generation

build management tool Maven [50] requires a so-called project object model (POM) that defines
the project structure as well as configuration for the actual build process, comprising the
declaration of project properties and dependencies.

<abc>
 <abc>abcabc</abc>
 <abc>abc</abc>
 <abc>abcabc</abc>
</abc>
<abc>
 <abc>abcabc</abc>
 <abc>abc</abc>
</abc>

Models Code

01000101010
10001010101
10100010101
01000101010
10001010101
10100010101
01000101010
10001010101

Binaries Application

design usedeliver / deploybuild & packgenerate

Figure 2.2: Model-driven application generation

Finally, after the build phase, the deployment of the application might need additional
configuration and definition files comprising Infrastructure as Code (IaC) [51] needed for virtual
runtime environments, like the container virtualization solutions Docker [52] or Kubernetes [53,
54].

Altogether, the generation of full applications makes use of so-called project archetypes, i.e.
templates that represent the folder structure of a project to be filled and enriched with
generated resources. The latter are either pre-defined binary files or text files whose content is
automatically created by a generator based on the consumed models.

Continuous Integration and Delivery
Over the last years, the manual tasks of building and deploying software applications became
increasingly automated by using Continuous Integration/Deployment (CI/CD) pipelines that
provision complete testing, staging and production environments. CI/CD is a software
development practice that involves regularly integrating code changes into a shared repository
and then automatically building, testing and deploying the application. This allows development
teams to detect and fix integration bugs early, and to quickly and easily release updates and
new features to software products. This way, the overall cycle time for delivering new versions
of software systems is reduced while risks become efficiently manageable because deployments,
e.g. for integration testing, can be done on a regular basis [55]. Some improvements that
CI/CD pipelines can introduce into the development process include:

• Simplified integration: By breaking down the whole process into small and manageable
tasks, CI/CD pipelines can help to manage the complexity of the integration process
and make it easier to integrate different tools and systems. This can also help to detect
and fix integration bugs early.

• Improved quality: By automating the process of running tests, CI/CD pipelines
can help to ensure that tests are run regularly and that they are comprehensive and
reliable. Developers can catch potential bugs early in the development process, before
they make their way into production. This reduces the number of bugs that are released
to customers and improves the overall quality and reliability of the software system.

• Improved speed: By automating the deployment process, developers can ensure that
changes are deployed quickly and safely. This reduces the risk of human error in the
deployment process. It can also improve the perceived quality of the product by reducing
the time it takes for new features to reach customers.

• Improved scalability: CI/CD pipelines can be designed to handle a large number of
code changes and deployments, and to scale to accommodate a growing team and user
base.

13

Chapter 2. Language-Driven Engineering (LDE)

• Improved security: By integrating automated security testing into the pipeline,
developers can catch vulnerabilities early in the development process, before they make
their way into production. This can reduce the risk of security breaches and improve
the overall security of the product. Additionally, CI/CD pipelines provide integrated
solutions to protect sensitive data from unauthorized access, e.g. by encrypting the
information during transit and storage.

• Improved consistency: By automating the process of deploying software, CI/CD
pipelines can help to ensure that the same software is deployed consistently across
different environments.

• Manageable complexity: By breaking down the process into small and manageable
tasks, CI/CD pipelines can help to effectively manage the complexity of the integration
process in a repeatable and reliable manner.

All these benefits make automation via CI/CD pipelines particularly useful in situations where
full application generation is desired and thus the generate-build-deploy pipeline depicted in
Figure 2.2 needs to be executed on source models repeatedly.

Another aspect that plays a critical role in enabling and improving continuous delivery is
DevOps [56]. While CI/CD provides a powerful framework for automating and streamlining
software delivery, to truly unlock its benefits, organizations introducing DevOps started to
embrace a more comprehensive approach to software development. DevOps is a cultural and
organizational approach to software development that emphasizes collaboration, communication,
and integration between development and operations teams [57]. In addition to cultural changes,
DevOps involves adopting a set of technical practices such as IaC, automated testing and
continuous monitoring.

Although there exist first promising approaches to the graphical modeling of CI/CD pipelines [58,
59], both CI/CD and DevOps typically involve the use of configuration files to define, automate
and standardize various aspects of the software development and delivery process. These
include configuration files for the build, deploy and test stages as well as settings and parameters
for managing infrastructure resources, such as servers, databases and networking components.
However, if full application generation including the automation of the complete process
from source models to a deployed and running application is desired, then handling these
configuration files becomes a crucial aspect in the design of an appropriate code/application
generator.

2.3 Integrated Modeling Environments (IMEs)
An Integrated Modeling Environment (IME) comprises everything that is needed to design
models and generate full applications from it. Its users, i.e. the modelers, are provided
with editors for various model types addressing both textual as well as graphical models.
The models’ syntactical correctness is enforced via constraints implemented by these editors
whereas semantic checks are performed by means of validation routines applied to the models
themselves as well as to more complex structures resulting from mutually linked models.
Additionally, various views may provide an overview and support the modelers in accessing
the models and their properties as well as the model validation results.

To support full application generation from models, an appropriate generator is an imperative
part of a complete IME. A generator may consist of multiple subunits targeting the generation
of specific types of artifacts, comprising the application’s project structure as well as all
necessary code, configuration and descriptor files in different languages. These configuration

14

2.3. Integrated Modeling Environments (IMEs)

<abc>
 <abc>abcabc</abc>
 <abc>abc</abc>
 <abc>abcabc</abc>
</abc>
<abc>
 <abc>abcabc</abc>
 <abc>abc</abc>
</abc>

Models Code

01000101010
10001010101
10100010101
01000101010
10001010101
10100010101
01000101010
10001010101

Binaries Application

deliver / deploybuild & pack

edit

read

configure

configure

IM
E

Ed
ito

rs

G
en

er
at

or

generate

Pr
od

uc
t

Figure 2.3: Code generation and CI/CD pipeline configuration

and descriptor files may as well comprise the specifications needed to configure the subsequent
steps of the deployment pipeline, as illustrated by Figure 2.3 which shows the generate step of
Figure 2.2 in more detail.

Finally, as an IME may very well support different generation targets (dektop / web / mobile
applications) it may as well provide multiple application generators consuming the same model
types but producing different outputs.

The editors and generators are inseparable parts of an IME that refer to syntax and semantics
of its modeling languages, respectively. Hence, the evolution of an IME may affect both its
integrated editors and generators, just like changes of a modeling language may affect both its
syntax and semantics.

15

Chapter 2. Language-Driven Engineering (LDE)

16

3
LDE Ecosystems

This section introduces the Cinco language workbench as the root of an unfolding LDE
ecosystem that currently spans three meta-levels. In this ecosystem the particular development
path along the tools Cinco → Dime → Equinocs is described and then exemplarily used in
the next chapters to present PUTD dynamics observed during their development.

3.1 CINCO (built with EMF)

The Cinco SCCE Meta-Tooling Framework [20–22] is a language workbench tailored for the
design of graphical languages based on graph models with nodes and edges. For the definition
of these languages Cinco provides two powerful modeling languages. In the Meta Graph
Language (MGL) the available types of graph models, nodes and edges as well as associated
attributes can be defined. The Meta Style Language (MSL) is used to define the visualization of
nodes and edges by means of different shapes with customizable appearances. From the models
defined with MGL and MSL, Cinco can generate a tailored graphical modeling environment,
generally referred to as Cinco-product. To further customize the Cinco-product to be
generated, Cinco provides the Cinco Product Definition (CPD) language. With the CPD
users can define the features to be available in the Cinco-product as well as the languages to
be included, along with texts and images for custom product naming and branding.

MGL, MSL and CPD are textual languages designed with the powerful grammar language
of the Xtext framework [60]. From defined syntax rules Xtext generates the required editor,
tools and infrastructure for efficiently using the specified language, including parser, linker and
more. Xtext is part of the Eclipse Modeling Framework (EMF) [61, 62] that provides tools
and runtime support for model-driven development. Hence, parts of Cinco, including the
editing support for its textual languages, have been generated from meta-models themselves.

The generated Cinco-product comprises not only the graphical editors for viewing and editing
the specified languages but also additional UI components that support the modeling tasks, e.g.
by listing available model components or providing access to model properties. Furthermore,
Cinco-products provide integrated tools for model validation and model checking. The core
of each product is the generated model code, i.e. a set of Java interfaces and classes for each
model type and its components that constitute a model API which enables reading, exploring
and command-based editing of model instances at product runtime. Hence, this model API
not only backs the Cinco-product’s control layer but also builds the basis for the development
of code generators that consume models designed with the Cinco product. By building and
integrating such a code generator into the Cinco product, the resulting application can itself
become a complete IME again. In fact, this is exactly the approach followed to build Dime
(cf. 3.2).

17

Chapter 3. LDE Ecosystems

3.1.1 Meta-Model Modularity

Language modularity is a common requirement and feature of many language engineering
concepts and tools as it supports reuse of meta-model patterns, e.g. through subtyping by
extensions [63, 64].

In Cinco language modularity is implemented by means of extension and modularity concepts.
While each MGL file holds one language module, it can be imported in other MGL files and
referenced by the respective modules. This means, the definitions of node types and edge
types contained in one module can be reused by means of defining extending types in the
importing modules. Thereby, the elements must be of the same type (graph model types, node
types, edge types) in order to extend each other. By doing so, the sub-types inherit the parent
type’s features and can modify them to the respective needs, just as with inheritance concepts
in common object-orientated programming languages. As an example, sub-types can define
additional attributes as well as add or modify constraints regarding contained node types or
in-/outgoing edge types.

This overriding of properties and constraints of model element types effectively means partial
sub-typing [63]. This level of reuse and modification of existing patterns facilitates modularity
on the meta-level and supports modular language composition. Furthermore, it enables
efficient language engineering as it is possible to import and use recurring concepts, including
components defined by other users, in newly engineered languages, and thus improves the
overall user experience. Hence, it prevents issues that may arise without such support, e.g.
from occurring redundancies across different modules instead of being able to define certain
patterns only once.

3.1.2 Language Integration

Cinco not only effectively addresses the economic definition of languages and their corresponding
IMEs by providing dedicated meta-modeling support for graph model types during language
definition. It also addresses LDE’s major challenge of integrating languages and their IMEs into
multi-language IMEs. Cinco addresses this by supporting two ways of language integration,
deep integration and shallow integration. While deep integration aims at providing an entire
IME as a service, for example to be integrated in an including, global IME, shallow integration
(only) provides the artifacts that have been built with specific PSLs by means of atomic
building blocks to be used as model components in a service-oriented fashion. However, both
types of integration typically require some form of referencing mechanism that allows for
interconnecting models in a consistent manner. Because, in the end the LDE approach strives
for a fully specified system by means of interconnecting various models to form the one, global
model that represents the system to be build.

On the other hand, to preserve simplicity it is mandatory to avoid an overly complex set
of interwoven models that becomes too difficult to comprehend. Thus, Cinco’s meta-level
functionality provides only one simple feature for model referencing denoted as prime reference.
The self-imposed restriction is that only one attribute of a node can hold a reference to another
model and at product runtime this reference is set automatically when the respective node is
created. This leads to a clear conception of special node types that can represent a referenced
model within the current model. In terms of usability for the modeler, at product runtime
such nodes can only be created via drag-and-drop from a component library, thereby adding to
the feeling that a representative node is created in the current model for some already existing
component elsewhere. This way, technically, arbitrary languages can be easily included in
different languages and systems, just like a function from a library in classical programming.

18

3.2. DIME (built with CINCO)

3.1.3 Application Generation
Cinco provides different generators for various target platforms, ranging from Eclipse-based
modeling environments, like Dime [AP2, 65], to collaborative web-based modeling environments,
like Pyro [66]. Its further development aims at implementing the Language Server Protocol
(LSP) [67] to generate a language server that provides language features for any editor that
supports LSP.

The type of the target platform as well as the actual range of available tools and features in
the generated Cinco-product can be configured on the meta-level, i.e. with language features
of MGL, MSL or CPD. Depending on this configuration Cinco generates the respective code
required for a particular tool or feature into the Cinco-product and thus enables its execution
at product runtime. This way, in the sense of LDE, not only the languages but also the whole
modeling environment can be tailored towards the target domain, its intended purpose as well
as the specific capabilities and mindsets of targeted users. In particular, Cinco is perfectly
suited to efficiently build an Mindset-Supporting Integrated Development Environment (mIDE)
and appropriate PSLs with it.

3.2 DIME (built with CINCO)
Dime [AP2, 65] is an IME tailored towards straightforward modeling and full generation of
web applications and the most extensive Cinco-product developed so far. Dime provides
both graphical and textual modeling languages as well as various editors and views specifically
tailored towards supporting the recurrent modeling steps.

From a technical perspective, the Dime-products, i.e. the generated web applications, use
AngularDart for their frontend, a JavaEE stack running on a Wildfly application server for
its backend, while the frontend/backend communication is realized via a set of specifically
generated REST interfaces. However, none of these technical details needs to be known to the
users. Instead, they can focus on modeling the desired UI and behavior by means of creating
and interconnecting respective GUI and Process models, while the full application stack is
then generated from these models and executed within a virtualized environment, like Docker
(for local testing) or Kubernetes (for productive deployments).

Dime has meanwhile been applied in various industrial, educational, and research projects,
such as the DBDIrl-HistorianWebApp [68], an application developed at University of Limerick
to query and analyze historic Irish data about death and coroner records, historic maps, and
more. The largest and most notable Dime application, though, is Equinocs, a web-based
conference management system, to be presented in 3.3.

3.2.1 Application Modeling
From a formal point of view, the different languages come with different meta-models and
hence the models defined with these languages are heterogeneous. Each of them allows for
referencing other models or model elements defined elsewhere in a consistent manner. Such
cross-model references are first-class citizens in Dime. This mechanism leverages model-level
reuse and almost naturally encourages the modeling user to build a set of models that are
closely intertwined.

Dime’s graphical PSLs have been developed with Cinco, while the textual languages have
been developed with the Xtext framework. Hence, each Dime model type is based on a
well-defined meta-model. The graphical languages rely on graph model structures with nodes
and edges as their basic components, and on containers, which are nodes that can contain

19

Chapter 3. LDE Ecosystems

other nodes. The textual languages utilize various features known from text editors in modern
Integrated Development Environments (IDEs), like syntax highlighting, completion proposals
as well as scoped linking of objects. Both language types - graphical and textual - come with
static semantics model validation that guides the users to create sound models.

In accordance with LDE, the languages in Dime are purpose-specific: each defines a part of a
single model (the ‘one thing’ in the sense of OTA) that entirely describes the web application
under development. From a formal point of view, the different languages come with different
metamodels, hence the collection of models defined with these languages is heterogeneous.
Each model references other models or model elements defined elsewhere in a consistent
manner. Such cross-model references are first-class citizens in Dime. This mechanism leverages
model-level reuse and naturally encourages the user to build a set of models that are closely
intertwined.

In the following, the Data, Process, GUI and DAD models are described.

ProcessProcess

Data

GUI

Figure 3.1: Model types and inter-model dependencies in Dime (from [8])

Data Models

The Dime Data models are graphical models of the relevant application domain, modelled as
data types with specific attributes. The relations between data types express the type hierarchy
as well as uni- and bi-directional associations. Graphically, these relations are modeled with
different edge kinds.

A data type’s attributes can be of primitive types or complex types. Available primitive types
are Text, Integer, Real, Boolean, Timestamp and File. Complex attributes correspond with
the modeled associations between data types, where the types of these attributes match the
respective data types. For any actual attribute type, Dime supports single value and list of
values.

Enum types hold literals (a fixed set of values). A dedicated User type holds user data (like a
user’s first and last name) as well as the user credentials (like username and password) to be
used to log into the web application under development. If different web applications have

20

3.2. DIME (built with CINCO)

the same user base, their respective Dime projects may share the same User type in the data
models.

For illustration, the Data model in Figure 3.1 comprises a User type as well as an Enum type
for the weekday.

The data types and attributes of Data models have two main purposes. On the one hand, they
represent the basis for any data-flow-related aspects across Dime’s other modeling languages,
like the type of input and output of any modeled component. On the other hand, Data models
define the structure of data objects at application run time, and hence prescribe requirements
for the application’s persistence layer.

Process Models

With Process models, Dime users create graphical models of the business logic of the envisaged
application. Hence, according to typical business logic implementations, Process models
combine control-flow aspects and data-flow aspects.

Control Flow. The control flow of Process models is defined with directed control-flow edges
connecting basic components called Service-Independent Building Blocks (SIBs). These SIBs
are reusable modeling components that represent some service to be executed. This concept
reaches back to the Java Application Building Center (jABC) framework, where an application’s
business logic was graphically modelled with so-called Service Logic Graphs (SLGs) [69], using
SIBs, in fact an early part of my research work [13, 15].

The control flow of a Process model defines the execution order of its services. A Start SIB and
one or more End SIBs are special built-in SIBs that define the process’ single starting point
and its one or more end points. This way, a Process model defines a well-formed executable
service, with its Start SIB as the entry point and its End SIBs delivering the possible outcomes.

The body of the control flow is modeled with an arbitrary number of SIBs. While so-called
Native SIBs directly reference a specific service implementation, other types of SIBs reference
existing models or model elements from the current workspace. The most prominent ones are
Process SIBs and GUI SIBs to reference other Process models and GUI models, respectively.
Hence, these SIB types enable the reuse of models and in particular the creation of hierarchical
model structures [70].

Figure 3.1 shows a Process model that references two sub-models: a GUI SIB labeled Overview
and a Process SIB labeled Unsubscribe. SIBs consist of a main node representing the actual
service, and multiple connected branches that represent the different outcomes of the service
call and its continuations. In terms of Native SIBs, these outcomes correspond to the possible
results of a method call: in essence, either its successful execution producing an optional return
value, or an error caused by any kind of exception. In terms of Process SIBs, the outgoing
branches correspond to the End SIBs of the referenced Process and represent the different
outcomes of the (nested) process execution. For GUI SIBs, buttons and other events are
represented as branches (cf. the Unsubscribe branch of the Overview GUI SIB in Fig. 3.1).

Data Flow. The data flow of Process models is defined with directed data-flow edges between
so-called ports and variables in the so-called data context.

The SIBs in Process models may have Input Ports, expressing that data objects can be provided
as arguments to the represented service. Output Ports are located in the branches: an Output
Port on a branch expresses that when the service terminates with that branch outcome, the

21

Chapter 3. LDE Ecosystems

corresponding data objects are provided. This is a refinement of the usual concept of signature
that provides more context as which outputs are produced under which circumstances. In
fact, different outcomes may produce different outputs, so it makes sense to locate the output
ports not on the service, but on the branch-specific edge(s). This is one of the innovations
that make Dime much more user friendly than the common API-oriented environments. All
ports are typed, either by specifying any of the built-in primitive types or by referencing a
data type defined in a Data model.

To define the inputs and outputs of Process models themselves, its Start SIB can have Output
Ports while its End SIBs can have Input Ports. When referenced by means of a Process SIB
the Start SIB’s Output Ports become the Input Ports of the Process SIB with matching port
names and types. In turn, an End SIB’s Input Ports become the Output Ports of the respective
branch of a Process SIB with matching port names and types.

To express that data flows from an Output Port to an Input Port, these ports can be connected
by a Direct Data-Flow edge. As it might be necessary to temporarily hold and manipulate
data objects between service calls, Dime’s Process models provide a dedicated Data Context
container that represents the run time context of the modeled application. This container
holds Variable nodes to represent data objects in the data context. Just like ports, all variables
are typed, either by specifying any of the built-in primitive types or by referencing a data type
defined in a Data model.

Complex variables can be unfolded to reveal the attributes of their data type, depicted as
nested Attribute nodes inside the variable. In order to enable the very same unfold operation
on complex attributes, the Attribute nodes may be moved to the data context to lie on the
same level as the variable they originate from. In this case, a connecting edge between an
Attribute node and its parent (either variable or another attribute) depicts the attribute’s
origin. The resulting tree structure can be used to access attributes in any nesting depth.

Data flow is modeled by connecting variables and attributes with the ports of SIBs. The
Process model in Figure 3.1 illustrates the use of data-flow edges as well as variables in the
data context. In this example, the variable user is unfolded to use the courses list attribute
as input for the Overview SIB.

Process Types. Different types of process models are used for specific purposes throughout
the modeling steps to express specific aspects of an application’s behaviour. Besides the basic
process models, there are Long-Running, Security and File-Download Security process types.

While the syntax is identical, the different types of process models require the presence of
specific model elements in order to conform to predefined requirements, just like an interface
implementation. For example, Security Processes are used to control access to the application
or specific areas of it, like an internal member area. The predefined interface requires that the
Start SIB must have a port to pass the current user as an argument, and there must exist End
SIBs labeled with granted, denied and permanently denied, to be taken depending on the
outcome of the process execution.

Native SIBs. The Native SIBs for Dime’s Process models are defined with a textual language
for the specific purpose of building so-called Native SIB Libraries. Within this language, the
structure of a Native SIB is defined by specifying its name and a set of Input Ports as well as
its branches with corresponding Output Ports. The types of these ports may be either one of
Dime’s built-in primitive types or a referenced data type defined in a Data model.

The execution behaviour of a Native SIB is specified by referencing a Java method that

22

3.2. DIME (built with CINCO)

contains the actual implementation. At run time, the linked Java code is executed and the
outcome is mapped on the Native SIB’s branches to affect the control flow path choice within
the containing Process model.

The basic concept behind Native SIBs is motivated by two aspects. On the one hand, they
help to keep a high level of abstraction, avoiding the need to define low-level operations with
high-level modeling languages when programming languages are better suited for the job. On
the other hand, they facilitate service orientation on a behavioural level, and enable the reuse
of existing service implementations that are not based on models within the current workspace.
As the actual service implementation is not visible on the modeling level, even complex services
may be integrated and used by users without programming skills.

GUI Models

With GUI models, Dime users create graphical models of structured web pages that are the
user interface of the target web application.

Besides components for structuring pages, the GUI language provides a rich set of basic
component types for inputting user-provided data (like form fields, file upload components,
combo boxes, etc.) as well as for the visualization of content (like headlines, text areas, lists,
tables, etc.). Additionally, the look and feel of these components is highly customizable, to
create individual page styles on demand.

When GUI models are included in Process models as GUI SIBs, this expresses that at
application run time an interaction with the user starts at this point and the further control
flow depends on the user’s input. The Process model in Figure 3.1 illustrates that when the
control flow reaches the GUI SIB labeled Overview, the web page defined by the referenced
GUI model is shown to the user.

Just like Dime’s Process models, the GUI models can contain Process SIBs and GUI SIBs to
reference Process models and GUI models, respectively. Hence, these SIB types enable the
reuse of models and in particular the creation of hierarchical model structures.

Data Binding. As user interfaces are data-driven, GUI models comprise data-binding
mechanisms very similar to the data-flow modeling in Dime’s Process models, i.e. GUI
models also contain data contexts with variables. However, as GUI models do not comprise
control-flow constructs, the data input is specified directly in the data context by marking
variables as Input Variables. When a GUI model is referenced by means of a GUI SIB these
Input Variables correspond to this SIB’s Input Ports. As an example, Figure 3.1 on the right
shows the GUI model referenced by the GUI SIB labeled Overview in the Process model on
the left. The Input Variable courses in the data context matches the identically-named port
of the SIB. For data binding, there exist various types of data-flow edges to connect variables
in the data context with data-sensitive UI components. This model-level data binding ensures
that every part of the page is always up-to-date, thereby abstracting from the technical details
that define how this update is done. This way, both read operations (for data visualization) as
well as write operations (for data input) can be modeled.

Furthermore, template expressions are used to inject data into static text displayed by UI
components. The GUI model in Figure 3.1 shows an example that illustrates how double
curly braces mark the template expression {{current.name}} wherein dot-notation is used to
navigate through the attributes of the data type of the bound variable.

23

Chapter 3. LDE Ecosystems

Directives. When binding variables in the data context to GUI model components, dedicated
IF edges can be used to model conditions to be fulfilled in order for the respective component
to be rendered. Besides the obvious evaluation of Boolean values, the evaluation of values
depends on their actual type. In general, null values are evaluated as false. Integers and
real numbers must not be 0 and texts as well as lists must not be empty to be evaluated to
true. The GUI model in Figure 3.1 shows the usage of IF edges (or their negated form IF
NOT) to define that the table component should only be shown if the list in variable courses
is not empty.

In the same manner, FOR edges can be used on list variables and attributes to repeat the
connected UI component for every element of the list. To access the attributes of a list element,
all list variables and list attributes can be extended by a respective iteration variable that is
available only in the scope of the UI component targeted by the FOR edge.

GUI Plugins. Just like Native SIBs for Dime’s Process models, Dime’s GUI models allow
the use of GUI Plugins that are defined with a textual language for the specific purpose of
building so-called GUI Plugin Libraries.

With this language, the structure of a GUI Plugin is defined by specifying its name and a set
of Input Ports as well as its branches with corresponding Output Ports. The types of these
ports may either be one of Dime’s built-in primitive types or a referenced data type defined in
a Data model.

The rendering as well as the runtime behaviour of a GUI Plugin is specified by means of
referencing an AngularDart component. At runtime, the linked Dart code is executed and
potential events are mapped on the GUI Plugin’s branches to affect the control flow path of
the Process model that contains the GUI SIB referencing the GUI model which contains the
GUI Plugin.

The basic concept behind GUI Plugins is motivated mainly by two aspects. On the one hand,
they help to keep a high level of abstraction and avoid the need to define low-level operations
with high-level modeling languages where programming languages are better suited for the job.
On the other hand, they facilitate service orientation on an abstract level and enable the reuse
of existing UI components that are not based on models within the current workspace. As
the actual implementation is not visible on the modeling level, even complex UI components
(ideally self-contained) may be integrated and used by users without programming skills.

DAD Models

With Dime Application Descriptor (DAD) models, users define relevant components and
settings that together form the configuration of the target application.

The required components comprise a start-up process to be executed at the first start of the
application as well as a root process to be executed whenever a user enters the web application
via its base URL. Furthermore, the used Data models need to be provided, along with the
relevant User type for the user management. Optionally, additional entry points may be
defined by registering Process models for specific path segments of the web application’s URL
to be executed whenever a user navigates to this specific URL.

Figure 3.2 shows an example of a minimal definition comprising start-up and root processes as
well as the relevant Data model and the User type.

The available application-specific settings in the DAD model span the definition of an applica-
tion name and additional resources, like a Favicon as well as CSS and Javascript files to be

24

3.2. DIME (built with CINCO)

Figure 3.2: Exemplary DAD model in Dime.

considered.

A DAD model represents the configuration for the product generation phase in which source
code of the target web application is generated along with additional deployment-relevant
artifacts (cf. subsection 3.2.4).

3.2.2 Modeling Environment
Dime is a Cinco-product, hence a desktop application based on the Eclipse-Rich Client
Platform (RCP) [71] with a set of Dime-specific plugins providing support for effective model
editing and various views on the current workspace. The following subsections provide an
overview and a brief insight into their functionality.

Diagram Editors

Each modeling language in Dime comes with its own editor. While the textual languages
provide a text editor generated by the Xtext framework, the graphical languages provide a
diagram editor generated by the Cinco framework.

The diagram editors are typically placed in the center of Dime’s application window. The
window contains the canvas where graphical modeling components are placed on. The palette
on its right side contains the basic modeling components, that differ depending on the type of
the current model. New nodes are created via drag-and-drop of entries either from the palette
or from other views that provide lists of models or model components. Figure 3.3 shows an
example of the diagram editor for Process models in Dime.

It is possible to have multiple models open at the same time as the corresponding editors are
arranged in tabs. However, only one model can be active at a time, which means the active
model determines the content of all the other views typically arranged around the editors.

Properties View

The Properties View enables access to the properties of the currently selected model component
in the diagram editor and also form-based editing of the basic property values. If a model
component has structured property groups, the Properties View shows a nested tree view with
these property groups as its entries. In this case, the editing form shows the properties of the
currently selected property group. The Figure 3.4 shows an example of the Properties View
showing the properties of a nested content group for a Form component in a GUI model.

Model Component Views

Dime provides a set of different tree views that give quick access to available model elements
in the workspace.

25

Chapter 3. LDE Ecosystems

Figure 3.3: Exemplary diagram editor in Dime.

Figure 3.4: Exemplary Properties View in Dime.

The Data View lists all data models in the current project along with all the data types there
defined. Users can drag-and-drop entries from this Data View to the current editor to create
data-type-specific model components that reference the respective entry, like SIBs, ports or
variables in the data context.

The Control View is a tree view that lists all components that represent services implementing
some kind of business logic. In particular, all Process models and Native SIBs in the current
workspace are listed there. Users can drag-and-drop entries from this Control View to the
current editor if the current model can contain components (like SIBs) that reference the
respective entry.

The UI View is a tree view that lists all GUI models and UI Plugins in the current workspace.
Users can drag-and-drop entries from this UI View to the current editor if the current model
can contain components (like SIBs) that reference the respective entry.

Finally, a Hierarchy View lists all models in the current workspace along with all nested models
in any depth. It provides a convenient overview of which model is referenced from within
another model.

26

3.3. EquinOCS (built with DIME)

3.2.3 Application Generation
When using Dime, whole web applications are generated. Not only the source code required
for these applications itself is generated, but artifacts that support domain experts beyond the
usual tasks of programming respectively modeling. Therefore, Dime’s code generators handle
a variety of configuration files. Dime provides a custom-tailored development environment
and generates IaC to properly deploy to production as well. This includes server configuration,
basic networking, monitoring of provided services, and even tooling to deliver and deploy
continuously. Additionally, a modern fully-fledged web application is generated including all
components required by a Model-View-Controller (MVC) scheme.

The whole generated web application, including the web app itself and all IaC, can be deployed
in multiple ways.

3.2.4 Application Deployment
Dime apps can be deployed on local as well as on remote environments. Both follow the
same approach based on Docker container images, i.e. lightweight, executable packages that
include everything needed to run the Dime app. Besides manual deployment, Dime also
provides the Deployment View to support one-click local delivery. The deployment on a target
environment is based on the CI/CD pipeline defined with Rig [59]. The pipeline is triggered
automatically for each push into the Dime app’s GitLab repository to build and test the
app’s latest state. The outcome are Docker images uploaded into a container image registry.
Although auto-deployment of these images is possible, the final deployment remains a manual
task, intentionally. The final decision rests with the DevOps team.

In our Dime app projects we strive to follow a structured release management based on multiple
deployment environments for different purposes, each of them running on a Kubernetes cluster.

• The testing environment is a volatile environment to quickly try out even unstable
development versions.

• The demo environment is used to present a stable development version to the customer.
Users can click around and try out new features. In particular, this environment is
publicly available.

• The staging environment is used for the final quality assurance of release candidates.
Ideally, this environment uses anonymized live data from the production environment to
assert that the to-be-released state of the application can be seamlessly applied on the
current data.

• The production environment is for the live application. It is publicly available to be
used by the Dime app’s user base.

The automated CI/CD pipeline with its resulting Docker images makes it an easy task to
rapidly deploy specific app versions on different environments.

3.3 EquinOCS (built with DIME)
EquinOCS [72] is a web-based conference management system used to organize the full paper
life-cycle, from the paper submission over the bidding and peer reviewing to the production of
conference proceedings (cf. Figure 3.5). It is the largest and most notable Dime-product so
far and has been developed for Springer Nature1 to replace its predecessor Online Conference

1https://www.springernature.com

27

https://www.springernature.com

Chapter 3. LDE Ecosystems

Service (OCS)2.

Figure 3.5: The configuration, bidding, decision, and proceedings pages in Equinocs

Application Usage

As soon as the Equinocs admins have set up a new conference via the dedicated admin interface,
the conference organizers (i.e. PC Chairs) can configure it to their needs. Configuration
options span the basic conference meta data (name, date, location, etc.) as well as options
that influence various aspects of the paper submission phase (e.g. paper categories) and
the reviewing process (e.g. single/double blind review mode). Furthermore, they can invite
conference members to join the committee. Figure 3.6 shows an example of a configuration
page in Equinocs.

As soon as the submission phase has started, the authors use Equinocs to submit their papers.
To do so, they need to sign up with Equinocs and create a user account. The submission
form provides the authors with input fields for the paper’s data (title, abstract, keywords, etc.)
and leads them through the process of signing a copyright agreement. Figure 3.7 shows an
example of the submission page in Equinocs.

For members of a conference, the intent-based menu of the Equinocs user interface offers
entries according to their rights and roles in that conference. As soon as authors have submitted
their papers, the conference committee members can bid for papers to communicate whether
they would like to review a paper or not. Figure 3.5 shows an example of the bidding page in
Equinocs.

To start the peer reviewing phase, the conference organizers can assign papers to reviewers,
thereby considering the bidding as well as the actual workload of the potential reviewers. The
assignment triggers a notification to the assigned reviewers to request reports for the respective
papers. If reports are ready, they can be uploaded to Equinocs.

Considering the submitted reports, the conference organizers (PC Chairs) can accept or reject
papers based on the ratings and comments by the reviewers. Figure 3.5 shows an example of
the decision page in Equinocs. The authors of the accepted papers are notified to upload a
final version of their papers.

2https://ocs.springer.com

28

https://ocs.springer.com

3.3. EquinOCS (built with DIME)

Figure 3.6: Configuration page for conference meta data in Equinocs.

Figure 3.7: The submission page in Equinocs.

All final versions of the accepted papers are considered for the proceedings production. The
proceedings editors define the proceedings volume data (title, volume number, etc.) as well
as the volume’s ’front matter’, and arrange the papers into topical parts in the desired order.
The result can be downloaded as a combined PDF file or uploaded to the Springer Nature

29

Chapter 3. LDE Ecosystems

production team as an archive with structured content. Figure 3.5 shows an example of the
proceedings page in Equinocs.

Application Modeling

Equinocs is completely generated from models created with Dime. The model base has grown
with the extension of the application over time and today it spans almost a thousand models.
This makes it by far the biggest Dime app created so far.

The Equinocs development utilizes every aspect of Dime, foremost the prominent Data,
Process and GUI models but also the highly practical features regarding service integration.
It needs to be stressed that these models are all intertwined, i.e. mutually linking to each
other. Together, they form the central development artifact, i.e. a consistent model of the
application (OTA’s ‘one thing’).

Thanks to Dime following the LDE paradigm with its purpose-specific languages, despite the
number of models involved, each of them clearly illustrates specific aspects of the application
in terms of both the structure of the application’s user interface (via the GUI models) as well
as the application’s behaviour (via the Process models). As an example, Figure 3.8 shows a
Process model which, based on the entry selected in Equinocs’ main menu, leads the control-
and data-flow to the respective process model that handles the corresponding page.

Figure 3.8: The Process model SwitchIntent in Equinocs.

On the other hand, some models, like data models, tend to grow bigger over time. Dime can
handle such models in a performant manner by keeping them accessible. To give an impression,
Figure 3.9 shows the Equinocs Data model from a bird’s-eye perspective.

Big modeling projects like Equinocs would not be manageable without sound support for
hierarchical model structures and consistent integration. The match between models and the
actual user experience is crucial for keeping the app development comprehensible. Tracing
the control- and data-flow in Dime is easy: starting from a bird’s-eye perspective, iteratively
double-click into the respective sub-models all the way down, until eventually reaching basic
building blocks (i.e. low-level services).

Another great help in overseeing the modeling state comes from Dime’s validation views.
Due to the complete interconnection of the models, any change to a particular model may
cause inconsistencies throughout the workspace. The Project Validation View helps to identify
erroneous models in the workspace while the Model Validation View points out the specific
locations in a particular model to be fixed. Any interruption in the control- or data-flow as
well as inconsistency in the model hierarchy would be immediately detected and made visible.

30

3.3. EquinOCS (built with DIME)

Figure 3.9: The Data model of Equinocs.

Service Integration

In terms of the application’s behaviour, the service integration via Dime’s Native SIBs enables
the use of existing code libraries and reuse of complex services, like an assignment algorithm
calculating a suitable paper-reviewer assignment based on the reviewer’s preferences as reflected
in their bidding.

Another example is the creation of low-level services to send specific SQL queries at those
points in the application logic where very customized search mechanisms are needed.

Independently of whether small low-level services or whole code libraries have been integrated,
at the modeling level the handling of the corresponding Native SIBs assimilates seamlessly
into the process modeling workflow, as they are just another set of SIBs.

In terms of UI and UX, the Equinocs developers made use of various model-level customization
features for GUI model components. Additionally, the service integration via Dime’s GUI
Plugins enables to address even very individual requirements of the customer, in particular
regarding the look-and-feel of user interface components. As an example, Figure 3.10 shows
the BidResult GUI Plugin that realizes a custom component for the visualization of a user’s
bid for a specific paper.

Application Deployment

The deployment of Equinocs on a target environment is based on the structured release
management described in subsection 3.2.4. The automated CI/CD pipeline with its resulting

31

Chapter 3. LDE Ecosystems

Figure 3.10: The BidResult GUI Plugin in Equinocs. (a) Usage in a GUI model. (b)
Definition in the GUI Plugin Language. (c) Visualization in the Equinocs system.

Docker images makes it an easy task to rapidly deploy specific Equinocs versions on multiple
deployment environments for different purposes.

32

3.4. The CINCO-based LDE Ecosystem

3.4 The CINCO-based LDE Ecosystem

Having introduced the web application Equinocs as product of the Dime modeling environment
and the latter as a product of the Cinco language workbench this section now scheds light on
the big picture, i.e. the LDE ecosystem that has its origin in Cinco and unfolds along the
generated Cinco-products as well as the products built with these Cinco-products. Figure 3.11
shows the resulting tree-shaped structure that provides an overview of the landscape of tools
and depicts the corresponding meta-level dependencies. Naturally, the inner nodes of the
tree are IMEs while its leafs represent non-IME products. Although theoretically an LDE
ecosystem can have arbitrary depth, in practice the Cinco-based ecosystem currently has only
three layers due to the fact that, in the first place, none of the Cinco-products was meant to
be used to build other IMEs.

Integrated Modeling
Environment (IME)

PyrusState Charts

Data AnalyticsControl Flow and
Workflow

Digital TwinDBDIrl Forest GUMP

Type

Project

EquinOCS

IPSUM Rig

CI/CD
Configuration

Industrial
Automation

CINCO

Meta Tooling
Framework

Generator

DIME

Web Application

Non-Disclosed

Web-Based

is-a
generates

SEcube™
Web App

Figure 3.11: Cinco-based LDE ecosystem

Figure 3.11 shows the selected Cinco products Pyrus [73], IPSUM [74], Rig [59] and Dime [AP2].
Although, in the horizontal dimension, the ecosystem comprises more Cinco-products as well
as Dime-products, Figure 3.11 depicts the most prominent ones. It is noteworthy that all
of these tools and projects are fully functional and, except for the non-disclosed ones, are
open-source and accessible online as part of the SCCE group in GitLab [75].

While Dime is a multi-language IME for web applications, the other Cinco-products, like the
State Charts IME or Rig [59, 76–78] for CI/CD pipelines, are less complex by means of only
comprising a single PSL. With focus on Cinco, Dime and Equinocs, Figure 3.12 shows a
compact overview of the managed data and the modeled product on the different meta levels.

33

Chapter 3. LDE Ecosystems

Figure 3.12: Managed data on different meta levels

The depicted table can be read row-wise as follows:

Meta-Level 3: EMF is used to model Cinco by specifying the languages used in Cinco
(MGL, MSL, CPD). In turn, any changes to Cinco (e.g. MGL language features) are realized
by using EMF to change the model of Cinco and generate a new version of the Cinco
application.

Meta-Level 2: Cinco is used to model Dime by specifying the languages used in Dime
(Data, GUI, Process, etc.). In turn, any changes to Dime (e.g. GUI language features) are
realized by using Cinco to change the model of Dime and generate a new version of the Dime
application.

Meta-Level 1: Dime is used to model Equinocs by specifying the structure and behavior of
the Equinocs application by means of various models (Data, GUI, Process, etc.). In turn, any
changes to Equinocs (e.g. the review report structure) are realized by using Dime to change
the model of Equinocs and generate a new version of the Equinocs application.

Meta-Level 0: Equinocs is used to model conferences by specifying conference-related entities
(papers, reports, members, etc.). In turn, any changes to conference-related entities (e.g. paper
title) are realized by using Equinocs to change the respective entity.

3.5 Generalization
Using an IME like, for example, Cinco to design models and generate full applications from
it already leads to a family of products that share the same types of meta-models, i.e. the
same languages they were built with. However, from a meta-level perspective this covers only
a single step in the meta-level dependency tree, i.e. from the used IME to the generated
products. Hence, this step builds a flat hierarchy of depth one, as illustrated in Figure 3.13.

More levels in the meta-level hierarchy can only be achieved if at least one of the generated
products again is an IME used to model and generate other products. However, on each
meta-level different modeling languages and code generators are involved. While languages
introduced on higher meta-levels may be reused for similar modeling tasks on lower meta-levels,

34

3.5. Generalization

P1.1 P1.n

...

IME
E1

Figure 3.13: Flat meta-level hierarchy of an IME and its products

the generators on lower meta-levels typically are independent from those used on higher
meta-levels.

P1.1.1 P1.1.n P1.n.1 P1.n.n

... ...

. . .

IME
E1

IME
E1.1

IME
E1.n

Figure 3.14: Deep meta-level hierarchy of an LDE ecosystem

The tree that emerges from multiple meta-level dependencies will be called meta-level hierarchy
in the following. Figure 3.14 illustrates a generic meta-level hierarchy of depth two, emerging
from multiple meta-level dependencies, as the products E1.x of the IME E1 are themselves
IMEs again.

In the following, whenever multiple IMEs and their products form a landscape of language-
driven development tools whose mutual dependencies can be arranged as meta-level hierarchy,
this landscape will be called LDE ecosystem.

Throughout the remaining document, along with the discussion of LDE ecosystem dynamics
on an abstract and conceptual level, the introduced tools Cinco, Dime and Equinocs are
used to illustrate selected aspects by means of specific real-world examples. Each of these
examples will be surrounded by a grey box, like the following, so that the context switch can
easily perceived visually.

Real-World Example

Dime is only one of many Cinco products while Equinocs is only one of many Dime
products. Hence, these three tools are already capable of forming a meta-level hierarchy
that could be visualized by means of a trivial tree structure.

Having introduced an exemplary LDE ecosystem as well as its theoretical foundations we are
well-prepared to discuss more sophisticated aspects regarding its intrinsic dynamics in the
context of evolution.

35

Chapter 3. LDE Ecosystems

36

4
LDE Ecosystem Dynamics

LDE ecosystems are subject to continuous change as evolution happens in multiple dimensions.
First of all, each software product generated by an IME frequently changes due to feature
requests, bug fixes or necessary security patches of third-party libraries. Furthermore, the IMEs
themselves underlie frequent changes that may affect both the involved modeling languages as
well as different parts of the product generator.

The challenging aspect in the context of an IME is that changes may affect the whole family
of products that have been built with it, i.e. modeled with the respective modeling languages
and generated from the created models. Hence, whenever a new version of an IME is adopted
for the development of a specific product, this may mean migration of the existing models as
well as thorough testing of the generated product to assert functionality and correctness.

P1.1.1 P1.1.n P1.n.1 P1.n.n

... ...

. . .
IME
E1.1

change request

change adoption

generalization

2
3

1

6

8

IME
E1.n migration

7

9

4
IME
E1

implementation

5

Figure 4.1: LDE evolution with path-up/tree-down effects

Overall, the creation and evolution of LDE ecosystems poses major challenges regarding the
effective and consistent change management of IMEs themselves as well as the products built
with them. This means, apart from a local perspective on a specific software product, the
meta-level dependencies between IMEs and their products add to the overall complexity by
introducing various effects along the paths of this meta-level hierarchy. Feature requests
originating in lower meta-levels may escalate to higher meta-levels (steps (1) and (3) in
Figure 4.1) and, after appropriate generalization (steps (2) and (4) in Figure 4.1), may trigger
changes to the parent modeling environments. In turn, the adoption of these changes may
propagate downwards the child nodes within the meta-level hierarchy (steps (6) and (8) in
Figure 4.1) and may eventually require migration of existing data on lower levels (steps (7)
and (9) in Figure 4.1).

The sections of this chapter address some of these path effects in detail and point out the
major challenges for LDE ecosystems in providing effective support and guidance for the users.

37

Chapter 4. LDE Ecosystem Dynamics

4.1 Product Evolution (local)

From a meta-level perspective, changes to a specific product can be considered as local changes
if they only affect a single node in the meta-level hierarchy (cf. Figure 4.2). Such changes are
implemented by using existing IME features and capabilities but do not require any changes
of the IME itself. In particular, no changes to the modeling languages are required.

P1.1 P1.n

...

IME
E1

implementation

Figure 4.2: Local changes to the meta-level hierarchy

Evolution of a software product, in general, means producing new versions of it over time
by adding features or adapting existing ones either to meet changed requirements or to fix
erroneous behavior. In general software development, the efficient and effective handling of such
changes is subject of the classical field of Software Product Lifecycle Management (SPLM) [79].
It comprises the process of managing the entire lifecycle of a software product, including
the product’s requirements, design, development, testing and deployment as well as ongoing
support and maintenance. The goal is to ensure that the product meets the needs of its users
and stakeholders, and that it is developed and maintained efficiently and effectively throughout
its lifecycle.

Today, the DevOps teams in agile development projects typically work with shared code
repositories, like Git [80, 81], which allows multiple team members to work on the same
codebase simultaneously and keep track of changes made to the code over time. There exist
well-defined workflow strategies like Git Flow [82, 83] that support teams in performing
deployments regularly and managing different product versions. These workflows are intended
to help teams collaborate effectively and maintain a clear and organized codebase by creating
repository branches for any changes to the project and then conducting tests and reviews
before merging the changes back into the main branch. In the same way, multiple deployment
environments (testing, staging, production, etc.) can be managed, e.g. via separate branches
for each of them. With such a setup, releases could be prepared on dedicated release branches
that, after sufficient reviewing and testing, can finally be merged into the branch of the desired
deployment environment. With appropriate CI/CD pipelines in place, the merged changes
would then automatically be built and deployed to the respective environment on the target
platform to replace the previous product version.

From an abstract perspective, these existing approaches and best practices to manage change,
e.g. by adopting Git Flow, are also applicable in the rigorous model-driven context of LDE
ecosystems. An essential change, though, is the switch from source code to source models,
which introduces challenges for IMEs by means of providing similar support and guidance
for modelers as already exists for programmers, which is especially challenging if graphical
modeling is involved.

38

4.1. Product Evolution (local)

4.1.1 Source Model Management

In LDE ecosystems, the development of a product is done by using an IME to change the
models that prescribe this product (i.e. the Models in Figure 2.3) and re-generate the source
code and all other resources required to build and deploy the new product version. Figure 4.3
illustrates the process of formulating change requests, then implementing these changes on the
model level and finally generating a new product version. Overall, this indicates a shift of focus
from source code to source models, not only in terms of the perceived origins of a software
product, but specifically in terms of the resources that need to be managed. As a consequence,
the common approach of agile development projects working on shared code repositories cannot
be adopted immediately without certain drawbacks. Version control systems, like Git, are
tools that track changes made to files, allowing users to collaborate on projects by working
on the same files simultaneously by merging the respective changes and handling potential
conflicts. Git also maintains a complete history of all changes made to the files in a project,
allowing users to see who made specific changes and when they were made.

migrate

v2

v.1

M
od

el
s

change

M
od

el
s

v.2

ch
an

ge
re

qu
es

t build &
deploy

IM
E

Pr
od

uc
t

useuse
v1

Figure 4.3: Product evolution via model evolution

Although Git can manage any type of files, it is widely used to manage source code because the
mentioned features are specifically tailored towards text files. However, even if the models are
stored in a textual format it is hard to read and especially difficult to understand differences
in model versions or to merge conflicting versions of model files. This also makes it difficult
to track changes to a model over time and to collaborate with others on the same model.
Additionally, because graphical models can be complex and large, they can take up a lot of
storage space and make it difficult to maintain a readable history of changes.

As a summary, with particular focus on graphical modeling, the challenges for IMEs in LDE
ecosystems to establish such support are:

• Collaboration: Allow multiple users to work on the same project, and in particular on
the same models, simultaneously. Provide visual presentations of model differences and
functionality for automatically merging changes made by different contributors. Support
conflict resolution or avoid conflicts completely.

• Traceability: Provide a way to keep track of the evolution of a project by maintaining
a complete history of all changes made to the models in a project. Allow users to see
who made specific changes and when they were made. This helps to understand how
the project has changed over time and allows for better decision making as well as for
identifying problems and their causes.

39

Chapter 4. LDE Ecosystem Dynamics

• Reverting changes: Allow users to roll back to previous versions of files, and models
in particular, so that they can easily undo changes that introduced bugs or caused other
problems.

• Branching and merging: Allow to work on multiple versions of models at the same
time and to easily merge them together when they are ready. This supports experimenting
with new features or bug fixes without affecting the main product version.

• Sharing: Provide an easy way to share models with others. This is especially useful for
open-source projects where multiple people contribute to the same project.

There are specialized version control systems specifically designed for graphical models, but
they are less common than general-purpose version control systems, like Git, as they are
usually directly integrated with modeling environments or frameworks, and provide specific
features for managing graphical models, such as visual presentations of model differences and
merging capabilities. An example for such a built-in version control system is Simulink [34], a
graphical environment for modeling, simulating and analyzing dynamic systems, where the user
can save different versions of a model and compare them with each other. Another example is
the modeling environment Daffodil [84], which has an integrated version control system for
data flow diagrams.

However, in the context of LDE ecosystems an adequate generative approach is desired towards
providing the appreciated features and benefits of version control systems, but on the model
level.

4.1.2 Continuous Integration and Deployment
To automate the build and deployment tasks depicted in Figure 4.3 based on source models
requires the used IME to support the effective creation of an appropriate CI/CD pipeline,
either directly in the modeling environment or via the provision of all resources and artifacts
required for executing a pipeline on a suitable CI/CD platform, like GitLab or GitHub. First
and foremost this means providing a standalone code generator to be called and executed
in an early step of the pipeline to perform the code generation task on the provided source
models and produce the source code as well as other resources required for the subsequent
build, integration and deployment steps (cf. section 2.2 on application generation).

As LDE aims at directly involving stakeholders into the development process, ideally, there
would be no programming required to apply certain changes to a product. This in turn
means the modelers totally rely on the features and capabilities of the used IME as well as
on the consistency and quality of the generated artifacts used for building and deploying the
product. As these artifacts, too, may not be within the modelers’ area of expertise, whenever a
particular stakeholder should be enabled to decide and control anything related to these build,
integration and deployment steps, e.g. what is deployed on a particular environment, the IME
must provide an appropriate language for these configurations that is tailored towards the
mindset and capabilities of the respective modeler.

4.1.3 Data Migration
Virtually every software system operates on a specific data model consisting of well-defined data
types and data fields. It is a conceptual representation that defines the structure, relationships
and constraints of the data. It serves as a blueprint for how data should be organized and
processed within a software system. Especially in regard to web applications, this data is often
stored as key/value pairs in rows and columns of tables within relational databases following
schemas that reflect the actual data model.

40

4.1. Product Evolution (local)

If a new product version is meant to replace a previous version that has been used in production
(cf. Figure 4.3), particular attention needs to be paid to existing data that might need to be
migrated to a new structure, i.e. transformed to be conform with a new data model. This
can be a complex and error-prone task and may require significant testing and validation to
ensure that the data is correctly migrated and still consistent and accurate.

This careful handling of production data applies independent of the actual type of product
built with an IME and, in particular, if the product itself again is an IME. In this case,
the main difference is the type of data that might require transformation, because the data
processed by an IME are models and the meta-level changes are changes to the modeling
languages. This aspect will be discussed in the upcoming section 4.2.

In general, data migration involves a number of challenges and pitfalls, including:

• Data loss or corruption: When the data model changes, it is important to ensure that
existing data is not lost or corrupted in the process. This can be a particular concern
when adding or removing fields, or when changing the structure of tables or other data
objects.

• Compatibility issues: Changing a data model can also cause compatibility issues with
existing systems and applications that rely on the old data structure. This can require
significant effort and testing to ensure that these systems continue to function correctly
with the new data model.

• Performance impact: Changes to a data model can also have an impact on the
performance of the system, particularly when it comes to querying and indexing data. It’s
important to consider these performance implications and to test the system thoroughly
to ensure that it can handle the expected load and usage patterns.

• Complexity: Data models can become complex as the number of entities and relationships
increase. Understanding the dependencies and relationships between different entities
and tables can be difficult. If not done correctly, data model changes can introduce bugs
and errors that are difficult to detect and fix.

• Lack of documentation: Data models that lack documentation can make it difficult
to understand the relationships and dependencies between different entities and tables,
and can make it difficult to make changes to the data model without introducing errors.

For productive environments, here are several aspects to be considered in regards to efficient
strategies for data migration, including data backup and restore, incremental migration vs.
switchover, downtime minimization and many more. The best strategy depends on the specific
requirements of the migration and the type, size, complexity, and criticality of the data being
migrated. However, it is important to plan the migration process carefully, and to test the new
system thoroughly before going live to minimize the risk of downtime. Consultation with the
cloud provider and database experts as well as testing the migration scenarios before going
live are recommended.

In the context of LDE, these considerations introduce challenges for the respective IMEs
by means of providing appropriate support and guidance for the modelers at model design
time. The consequences of changes, in particular with regards to potential need for data
migration, should be clearly presented to the modelers for them to decide whether to apply
these changes or work on an alternative solution. If data migration is inevitable, ideally, the
IME would provide an automated or semi-automated way to speed up the migration process,
which means that certain steps of the migration process are done by adequate tools. But
still, the process might involve human intervention by means of carefully planning and maybe
testing the migration before automation to ensure data integrity and consistency.

41

Chapter 4. LDE Ecosystem Dynamics

4.2 Language Evolution (step-up)
During product evolution, the available language features of an IME eventually are not sufficient
to realize the functionality demanded by a change request for a specific product. In this case,
a change request can be formulated towards the IME on a higher meta-level to demand new or
improved language features. Hence, this approach can be considered a step-up in the meta-level
hierarchy as depicted in Figure 4.4.

P1.1 P1.n

...

IME
E1

change request

generalization

implementation

Figure 4.4: Step up in the meta-level hierarchy

In general, if the available language features of an IME are not sufficient the developers of a
product (i.e. the users of the IME) have the following options:

• Provide a custom implementation. The developers of the product may create a
custom-build component tailored towards the specific purpose without using the available
modeling language features. However, this approach is recommended only if the IME
natively supports service integration, i.e. the integration of custom-build components
at model design time. Otherwise, it is hard to maintain consistency at design time
and the use of custom-build components without IME support must be regarded as a
workaround.

• Escalate the change request. If the available language features are insufficient, the
product developers may formulate a feature request towards the used IME explaining
the specific use case and demanding the additional functionality.

• Reject the original change request. If the requested functionality is not worth the
effort of a custom implementation nor of escalating the change request towards the used
IME, the original change request for the product may be rejected or postponed to a
later date. However, in real-life scenarios this hardly ever is considered a suitable option
as mostly there are substantial reasons for such change requests that cannot just be
omitted.

In general, the escalation of the change request is the preferred way of dealing with this kind of
issue. Because, even if the IME supports the integration of custom components, the formulation
and publication of any improvement potential supports the continuous optimization process of
the IME and hence of the complete LDE ecosystem. Custom implementations can be seen as
intermediate solution or fallback if the escalated change request is rejected and the requested
language features will not be implemented.

Real-World Example

The Equinocs system comprises a user interface for the proceedings production, i.e. the
arrangement of papers into topical parts of a proceedings book. A recurring task of the
Equinocs users is moving papers within and between topical parts to change their order.

42

4.2. Language Evolution (step-up)

During the project, eventually, a particular new requirement for greater user convenience
has been introduced, that papers should be movable via drag-and-drop. The Equinocs
user interface, and the graphical representation of lists in particular, is defined with table
components of Dime’s GUI modeling language and at the time when this drag-and-drop
requirement came up, these table components lacked drag-and-drop support for both
resorting entries within the same table as well as moving entries between different tables.

Fortunately, following a service-oriented paradigm, Dime supports the use of product-
specific components, i.e. custom components to be integrated into the GUI models.
However, the realization of such native components requires programming expertise and
thorough knowledge not only of the frameworks used for the frontend application (i.e.
AngularDart, HTML and CSS) but also about Dime’s code generator as these native
components need to integrate seamlessly into the generated code. In a nutshell, it requires
more advanced skills than the typical Dime user brings in and can be seen as a costly
fallback to compensate missing language features.

In this concrete Equinocs example, a custom table component providing the required
drag-and-drop behavior would need to be implemented to replace the built-in tables of
Dime’s GUI language. The latter fact even adds to the already very high costs and
complexity of this task because the custom table would need to support all the features
that built-in tables provide in order to constitute a sufficient replacement. Hence, an
extension of the GUI language features (i.e. the built-in tables) was preferred.

In contrast to non-IME products, any changes that affect the IME itself, like changes to the
modeling languages, may also affect the products that have been built with it. Therefore, from
a meta-level perspective, such changes are considered as vertical changes because they affect
multiple meta levels in the meta-level hierarchy.

Generalization on the Meta Level
If the product developers formulate a feature request towards the used IME they need to
explain their specific use case and may elaborate on the generalization potential. Preferably,
they team up with the IME developers to discuss possible solutions in a joint and coordinated
manner.

In general, every feature request regarding an IME has to be evaluated concerning its
generalization potential. This means the IME developers need to evaluate whether the
requested language feature may be useful for a variety of both already existing products as
well as future products to be eventually built with the IME. It should be avoided to inflate
the modeling environment with features that are mere product-specific or can only be used
in very narrow or complex scenarios. As modeling languages are designed to provide only a
restricted set of language features to strive for efficiency and simplicity, new language features
need to be effective and comprehensible to maintain the ease of use and make them available
to a multitude of users.

If the feature request is accepted and new language features are implemented and eventually
released, the product developers can adopt the new version of the IME and realize the originally
requested product feature with it.

If the feature request is not accepted, however, the product developers need to implement the
required product feature by means of custom components. This would also be necessary if the
new product feature is required immediately and the product developers cannot wait for the
IME to eventually evolve. However, these custom components may later be used as basis for

43

Chapter 4. LDE Ecosystem Dynamics

the required generalization on the meta level. It may be seen as reference implementation for
the new IME feature to be developed and as such comprise the targeted requirements to be met.
Hence, even if the product developers realize the required functionality by means of custom
components, it might be useful to formulate a change request for the IME to promote its
continuous improvement and eventually adopt new language features in the future. However,
at the end It should be possible to achieve a similar outcome by applying the new IME features
as has been achieved with the custom components to be replaced.

Real-World Example

The Equinocs developers filed a request for a drag-and-drop feature of the table compo-
nents of Dime’s GUI language, which has eventually been accepted. Its development was
supported by means of formulating specific requirements originating from the planned
application.

The drag-and-drop feature could be generalized on the meta level successfully, as not
only Equinocs but many other Dime products (i.e. web applications) benefit from such
a drag-and-drop feature for tables. Even in Equinocs, once available, this new feature
has eventually been adopted for other tables than originally requested for.

4.3 Adoption of Language Changes (step-down)
If the feature request is accepted and new language features are implemented and eventually
released, the product developers can adopt the new version of the IME and realize the originally
requested product feature with it.

Once the new feature has been implemented and integrated into the models the new version
of the product can be generated, built and deployed via the CI/CD pipeline.

P1.1 P1.n

...

IME
E1

implementation

change adoption

migration

Figure 4.5: Step down in the meta-level hierarchy

While in general evolution of a software product means producing new versions over time by
adding or removing features as well as adapting existing ones, in the context of an IME this
might very well involve changing the corresponding modeling languages. Hence, in contrast
to non-IME products, such changes not only affect the IME itself in a tree-down fashion this
might affect all products that have been built with the IME. Therefore, such changes are
considered as vertical changes because they affect multiple meta levels.

Real-World Example

The implementation of the requested drag-and-drop support required syntactic as well as
semantic changes of the table components of Dime’s GUI language.

44

4.3. Adoption of Language Changes (step-down)

Syntactically, the two requirements of reordering table entries and moving entries between
different tables have been met by adding a configuration option for table components in
Dime’s GUI language to specify so-called drop targets. i.e. those tables where entries can
be moved to. If this list of drop targets contains the respective table component itself
this is interpreted as support for reordering of its entries.

Semantically, the new drop target configuration option for table components in Dime’s
GUI language required changes in Dime’s code generator to introduce the required
drag-and-drop functionality for tables. This comprised both the drag-and-drop support
in the user interface, i.e. the frontend application, as well as the necessary functionality
in the backend application to deal with re-arranging elements in a list as well as moving
elements from one list to a specific location in another list.

Model Transformation
From an abstract perspective, data transformation may become necessary whenever the meta-
model changes. This holds independent of the actual type of data. In particular, the statements
4.1.3 about data transformation particularly hold true if the considered software application is
an IME where the actual data created and processed by this IME comprises models. Each of
these models conforms to a specific modeling language (i.e. the meta-model) where the defined
model element types are the actual data types.

As a result, the general approach of data transformation is very well applicable independent of
whether the considered software application is the product of an IME or the IME itself. More
vividly, any change to a node in the meta-level hierarchy (cf. Figure 3.14) has an eventual
effect on its child nodes concerning the need of data transformation. If the affected node is an
IME, the term model transformation is used synonymous to data transformation.

In general, model migration due to language changes can present several challenges, including:

• Language Compatibility: Ensuring that the new language is backwards-compatible
with the previous version, so that existing models can be easily migrated. If the new
language is not compatible with the existing models, it may be difficult to migrate the
models without significant modifications.

• Learning Curve: Addressing the challenge of retraining the modelers, e.g. domain
experts, who are familiar with the previous version of the language, to become proficient
in the new version.

• Validation and Testing: Ensuring that the new language and migrated models are
thoroughly validated and tested to guarantee that they are functioning correctly and are
of sufficient quality for deployment.

• Expressiveness and Accuracy: Making sure that the new language is as expressive
and accurate or better than the previous version.

• Simplicity: Ensuring that the new version is as easy to use or better than the previous
version.

The model transformation process may prove to be very cumbersome, especially if the number
of models is very large. Hence, ideally, the model transformation is carried out automatically
without any user interaction. The actual logic which applies certain transformation rules on
the existing models may either be programmed by developers or, ideally, generated from the
differences of specific meta-model versions. However, there is existing and ongoing research in
the field of MDE on effectively generating migration logic from the differences of two specific

45

Chapter 4. LDE Ecosystem Dynamics

meta-models to transform an old version of a model to a new version [85, 86]. The overall goal
is to provide a migrator with every new version of a modeling language which automatically
transforms existing models that have been created with a previous version to be conform with
the new one.

Quality Assurance
Once a new language feature has been implemented the target code of the new version of the
IME can be generated, built and deployed via the CI/CD pipeline. Users can then grab this
new version and, after eventually having solved syntactical issues with existing models, use
it to build new features into their products. But even if the syntax is intact and the models
did not break, the semantics, i.e. the code generator, may have changed independently and
produce code that causes a different structure or behavior of the products generated with the
IME. This might happen even without any changes to the product models at all and hence,
initially, go unnoticed at design time.

Real-World Example

The introduced drop targets language feature of Dime’s GUI language is a pure language
extension, i.e. a new feature is introduced while existing features remain untouched.
Existing models, however, lack this new configuration option because it did not exist
when they were created.

In this specific case, breaking the existing models could be avoided by dealing with the
absence of this configuration option gracefully, e.g. by falling back on a default value. But
when doing so it had to be made sure that using this default value results in the original
behavior. As an example, if drag-and-drop for tables would have been enabled per default,
all products that have been built with Dime would suddenly behave differently when
using the new Dime version to generate these products’ code.

While anomalies due to semantic changes might be avoidable in specific use cases (e.g. by
introducing appropriate defaults that match the prior semantics), in general, however, this
is a hard task as sometimes the effects can only be observed at product runtime when the
generated code is executed. Tackling such issues introduces new challenges regarding effective
and efficient quality assurance, to be discussed in section 4.5.1.

4.4 Multi-Level Language Evolution (path-up)
In LDE ecosystems it very well happens that feature requests affect meta levels other than the
one directly above. Instead, they may indirectly escalate further up the meta-level hierarchy.
As an example, a feature request originating from a non-IME product on the lowest level of
the meta-level hierarchy may escalate up to an IME two meta levels higher. Generally spoken,
this escalation chain builds a change request path that crosses multiple meta-level boundaries
in a path-up manner.

Real-World Example

The discussed new drop targets feature of Dime’s GUI language has been realized by

46

4.5. Multi-Level Adoption of Language Changes (tree down)

linking the respective table component with other table components to express that at
runtime of the built web application the entries of one table can be moved to the other
tables via drag-and-drop.

For this, on language level, the table components received a new complex attribute to
hold a list of references on other table components. This is only possible if on the meta
level the language workbench, i.e. Cinco in this case, supports the definition of such
complex attributes in the first place. If not, the Dime developers would have filed a
feature request which, just like the step from Equinocs up to Dime on the next meta
level, this time would affect the language workbench Cinco on the next meta level above
Dime.

In turn, the change request path that targets Cinco has been formulated by Dime
developers but has its origin in new requirements formulated for a Dime product, i.e.
Equinocs two meta levels deeper.

P1.1.1 P1.1.n P1.n.1 P1.n.n

... ...

. . .
IME
E1.1

change request

generalization

IME
E1.n

IME
E1

implementation

Figure 4.6: Path-up effect in the meta-level hierarchy

In general, the path-up propagation of changes happens step-wise, by means of filing a change
request, generalizing the requirements and eventually filing another change request towards
the next meta-level. While LDE and the involved IME projects should support this step-
wise propagation, it is typically not necessary, or even counter-intuitive, to concern about
development tasks higher than the next meta-level.

Real-World Example

It is a coincident that the Equinocs development team overlaps with Dime’s development
team, and even with Cinco’s development team. In general, the development of Equinocs
with Dime has nothing to do with the development of Dime with Cinco. In particular,
Equinocs developers would not need to know about the existence of Cinco at all.

4.5 Multi-Level Adoption of Language Changes (tree down)
While the general management processes regarding feature requests, product evolution
and continuous integration are basically the same for different types of software products
(desktop/web application vs. IME), a particular specialty arises from the meta-level-dependencies
between these products (cf. Figure 3.14) which causes the aforementioned PUTD effects.

If a feature request at the end of a change request path is accepted and the requested feature
is implemented, the new version of the respective IME can be generated, built and delivered,

47

Chapter 4. LDE Ecosystem Dynamics

... ...

. . .

P1.1.1 P1.1.n P1.n.1 P1.n.n

change adoption

IME
E1.n

migration

IME
E1

implementation

IME
E1.1

Figure 4.7: Tree-down effect in the meta-level hierarchy

e.g. via a CI/CD pipeline. Users can grab this new version to build new features into their
mIDEs. This is where, again, the aspect of migration comes into play. But in this scenario,
the tree-down effect is even bigger because changes of the language workbench may have effect
on all IMEs built with it. And in the course of the necessary migration of these IMEs as well
as the subsequent migration of all products that have been built with any of these IMEs, the
original changes to the language workbench may affect even all of these products, although in
an indirect manner.

Real-World Example

If Cinco changes, users can grab its new version to build a new version of Dime or other
similar IMEs with it. However, as the meta-models may have changed, the migration
of Dime and these other IMEs may be necessary to adapt to these changes. Hence, in
this scenario, the tree-down effect means that changes of Cinco affect all IMEs built
with it and may even propagate further. Because these IMEs, due to the necessary
migration, need to be changed, too, this effect may propagate to all of their products as
well, including Equinocs as a Dime product in this concrete example.

Small changes on the meta-level, however, may have huge effects on lower meta levels, which
even more stresses that the successful management of these effects needs appropriate and
effective quality assurance processes, to be discussed in the next section.

4.5.1 Multi-Level Quality Assurance

In contrast to the evolution of non-IME products (i.e. the leaves in the meta-level hierarchy),
the evolution of IMEs concern the involved modeling languages, and hence completely different
meta levels.

In an LDE ecosystem, any change to an IME may cause effects that propagate downwards in
a tree-down manner. The changes to one IME node in the meta-level hierarchy may affect
all descendant nodes, although in an indirect manner (cf. Fig. 4.7). This is because with the
changes of an IME all of its products may need to be migrated to assert conformance with the
new meta-model. If the products are IMEs themselves, the changes carried out by migration
may then have effect on the products of those IMEs so that the overall effect may propagate
to all of their products as well.

The successful management of this tree-down effect requires appropriate and effective quality
control that surpasses classical approaches as it must consider aspects across meta-level

48

4.5. Multi-Level Adoption of Language Changes (tree down)

boundaries. While syntactical changes to modeling languages will eventually lead to non-
conform models, semantic changes, i.e. changes to the generator consuming these models, can
lead to structural or behavioral differences in the generated products two or more meta-levels
deeper. Hence, observing semantic changes eventually requires building or even executing the
products of an IME. This stresses why in the context of evolution of any IME in an LDE
ecosystem, quality control should be an eminent part of the release process.

Real-World Example

In terms of quality control, when assessing the effect of changes to Cinco, we cannot only
focus on Cinco itself and the products built with it (like Dime), because the potentially
unintended effects of a particular change might only be recognizable in tests applied
on products multiple levels deeper in the meta-level hierarchy. In particular, as the
Dime generator uses the model API generated by Cinco, any error that may have been
introduced by changes may lead to unintended behavior of the running Equinocs system,
even without getting noticed on Dime level.

As already motivated, the assessment of test results by means of path-up feedback loops to
be established is essential. Building support for tree-down effects into meta-model-driven
development approaches is equally challenging. Here, too, the respective projects are located
on completely different levels of the meta-level hierarchy and involve completely different
stakeholders as well as separate development teams working on independent code repositories.
On the other hand, automation, again, is a key enabler in this context due to the potentially
huge number of products down the tree. The huge advantages in terms of quality control one
would gain from a successful implementation of this approach motivates research on how to
effectively build this into a meta-model-driven development stack.

Real-World Example

For any new version of Dime one automatically could generate all Dime products, i.e.
web applications, then trigger the dynamic tests built for these products and evaluate the
test results with focus on changed and unintended behavior. This may require comparing
these test results with those generated in preceding steps, just like done in regression
testing. However, this approach would mean a very powerful way to iteratively yet
naturally improve Dime itself.

Altogether, in the context of vertical changes in an LDE ecosystem, Quality Assurance (QA)
becomes an eminent part of the release process of all IMEs. It involves both, validation rules
(i.e. static analysis) on the meta level as well as runtime testing on the product level. However,
QA is a challenging task in this context because of the potentially different stakeholders
involved on the various meta levels.

As discussed in [AP5], a very promising approach to support multi-level quality assurance in
LDE ecosystems is lifelong learning [87] as a form of continuous quality control. A suitable
lifelong learning cycle, as depicted in Figure 4.8, has been conceptualized for the IME-based
generation of web applications [88] based on the experiences with Dime and Equinocs in
operative practice. It comprises applying active automata learning on the web application and
verifying certain behavioral properties via model checking as well as monitoring its runtime
behavior to report observed errors to the modeler [89].

49

Chapter 4. LDE Ecosystem Dynamics

IME
(DIME)

Runtime Monitor

Learner
uses

learns
infers

observes traces

Behavior

represents
Model Checker

verifies

Reports to

triggers

triggers

Application
(EquinOCS)

Figure 4.8: Lifelong learning of web applications (from [AP5])

4.5.2 Quality Feedback Loop

The dynamic validation of IME products, such as web applications, cannot be scaled horizontally
as it is product-specific and requires custom test cases for each product. However, the process
of creating these test cases can have a positive indirect scaling effect. Given a specific IME,
the code generator for this IME’s products works on the meta-models of the IME’s modeling
languages and thus is developed alongside the IME itself. To ensure the generator produces
accurate results, it must process the models designed with the IME to generate and run code
of the IME products.

The key point is that testing any IME product provides feedback on the overall quality of the
generator, which is developed two meta-levels higher. This observation can be considered a
path-up effect in the meta-level hierarchy. If any errors are discovered during testing, they
can be reported upward, leading to a change request for the generator’s development and
eventually to quality improvement. The same goes for change requests originating from IME
products. If from the viewpoint of the product’s development team, a desired outcome cannot
be achieved because the IME’s language capabilities are insufficient, a respective feature request
can be passed to the next meta-level and may eventually be considered for further language
enhancements.

Measuring the impact of releases on the stability of affected systems could be a means to assist
developers in building more reliable systems [55]. By accessing the valuable information from
test results of IME products in a structured way, we could naturally improve the quality control
of an IME’s code generator, as more test cases are implemented and reported upwards the
meta-level hierarchy for various IME products. Essentially, this implies that instead of solely
building test applications for an IME’s generator, we could also utilize the tests developed
for productive products to verify and enhance the overall quality of the product generator.
However, accessing and evaluating this test data is difficult because the corresponding projects
are not linked directly in the meta-level hierarchy. Typically, these projects involve distinct
DevOps teams working on separate code repositories at different meta-levels and hence must
not even know from each other. Secondly, automation plays a crucial role in this scenario
due to the potentially large number of IME products involved, each associated with a likely
significant amount of test cases.

The research on how to exploit these effects and dynamics that transcend meta-level boundaries
is still at the beginning and effective methods of integrating generic feedback loops for enhanced

50

4.5. Multi-Level Adoption of Language Changes (tree down)

quality control into each layer still need to be explored. This might take advantage of the
recently formulated concept regarding a lingualization strategy [90] for knowledge sharing
based on the DevOps lifecycle, which might be applied on PUTD dynamics of LDE ecosystems.
Part of this concept is the introduction of so-called Meta DevOps teams that discover, store
and distribute knowledge by means of developing and distributing appropriate PSLs.

51

Chapter 4. LDE Ecosystem Dynamics

52

5
Related Work

The foundation of the LDE approach lies in the combination of two aspects. Conceptually, its
goal is to allow all involved stakeholders to collaborate on software development without coding
by providing them tailored IMEs comprising (graphical) languages, ideally based on those
they are already familiar with. Technologically, this requires suitable meta tooling support
to efficiently create highly specialized low-code development environments that are capable
of generating complete applications from the created models. To the best of my knowledge,
these two aspects, tailored solutions for stakeholders and full application generation, are rarely
addressed in combination.

Furthermore, the core topic of this dissertation is less a matter of how to develop languages,
language workbenches or modeling environments, but focuses on the consequences from
rigorously doing so wherever it seems appropriate. Basically, LDE can be implemented using
any language workbench that supports the types of languages (such as graphical or textual)
needed for the addressed user groups and provides comprehensive support for constructing a
consistent model structure from multiple interconnected models. The focus of this dissertation
lies on dynamics and challenges emerging from using meta-modeling tools to apply LDE
in ambitious software development projects, including the development projects of IMEs
themselves to eventually construct LDE ecosystems.

While there exists quite some related work with regards to languages, language workbenches,
modeling environments, code generation, low-code platforms and others, the interplay and
dynamics of respective tools across multiple meta-levels, to the best of my knowledge, are
barely researched and discussed. Therefore, the discussion of related work is divided into
different sections that address these related aspects in a separate manner.

Meta-Modeling Frameworks

Meta-modeling frameworks, like the EMF [61, 62] and the MetaObject Facility (MOF) [91],
on their own do not provide the full range of functionality typically expected from a language
workbench, such as syntax highlighting, parsing, and error reporting. However, they can be
used in conjunction with other tools to effectively build custom DSLs.

MOF is a standard for defining the structure of meta-models, and it provides a way of
representing and manipulating models in a common, machine-readable format. Ecore is a
subset of the MOF meta-model and is specifically designed for use in the Eclipse modeling
ecosystem [92] and central to the development of applications using EMF. Ecore is the
meta-model at the heart of EMF for defining the structure of models and the relationships
between different model elements.

EMF is a framework for creating, storing, and manipulating models based on a way of
representing models in a common, machine-readable format. EMF provides a range of features

53

Chapter 5. Related Work

for building tools and applications based on meta-models defined in Ecore, including model
transformations and code generation. It can also be used in conjunction with other tools, such
as Xtext, to provide a complete solution for building custom textual languages. Here, Xtext
provides the language-specific functionality, such as syntax highlighting and parsing, while
EMF provides the infrastructure for storing and manipulating models.

In the Eclipse context, Acceleo [93] is an open-source code generation framework that is used
to generate code from models written in a variety of modeling languages, including UML and
Ecore. Acceleo provides a way of defining code generation templates based on relationships
between models and code and generating consistent code from the models automatically. It
supports a range of features for customizing the code generation process, such as defining
custom generation rules, using conditional statements, and invoking custom code. It also
provides a range of tools for working with the generated code, such as debugging and testing.

Language Workbenches
Language workbenches provide an integrated environment for the creation and maintenance
of DSLs for arbitrary domains. They can automate many of the tasks involved in building
a language, such as parsing, syntax highlighting and code generation, e.g. for the respective
(graphical) editors and other utility tools that make it easier to adopt and work with the DSL.

There exist some renowned language workbenches, including Meta Programming System
(MPS), Xtext, Spoofax, Graphical Modeling Environment (GME), Rascal, MetaEdit+ and
KIELER, which provide tools for defining custom syntaxes, generating parsers and editors
for the new languages, and integrating them into existing development environments, such as
Eclipse [94] or Visual Studio [95], making it easier for developers to use these languages in their
development workflows. Also of notable mention in this context are Pounamu/Marama [96–98],
Sirius [99, 100], and DeVIL [101, 102] for generating graphical modeling tools from meta-model
specifications.

Xtext [60, 103] is an open-source toolset for building custom acpDSLs and IDEs. Xtext provides
a range of features for defining the syntax and semantics of textual languages, generating
parsers and editors, and integrating the new languages into existing development environments.
With Xtext, developers can define the syntax and grammar of a new language using a simple
and concise grammar syntax, and Xtext generates the necessary code and tools for parsing,
validating, and editing code written in the defined language. Xtext also provides features
for customizing the user experience, such as syntax highlighting, code completion, and error
reporting. Overall, Xtext is a powerful and flexible tool for building custom domain-specific
languages and it is well-suited for use in a wide range of development scenarios, from small
internal projects to large, complex systems.

Spoofax [104, 105] is an open-source language workbench for developing custom domain-specific
languages. Spoofax is based on the Stratego transformation language [106] and it provides
a declarative, composable and reusable way of building custom languages. It supports the
development of both textual and graphical languages and provides a range of features for
customizing the user experience, such as syntax highlighting, code completion and error
reporting.

The GME [107–109] is a software framework for building custom modeling languages and
environments for use in model-driven development. GME provides a way of defining the syntax
and semantics of both graphical and textual languages and generating custom editors and
visualizations for working with models written in those languages. It supports the development
of both graphical and textual languages and provides a range of features for customizing the
user experience, such as syntax highlighting, code completion, and error reporting.

54

Rascal [110–112] considers itself a meta-programming language [113]. Meta-programming is a
technique in which a program generates or modifies other programs. With Rascal, developers
can create tools for analyzing, transforming and manipulating code, such as code refactoring
tools, code generators and code quality checkers. It supports the development of both textual
and graphical languages and provides a range of features for customizing the user experience,
such as syntax highlighting, code completion, and error reporting.

MetaEdit+ [114, 115] is a commercial tool for defining and using domain-specific languages
and modeling environments. MetaEdit+ supports the definition of both textual and graphical
languages and provides a range of tools for customizing the user experience, such as syntax
highlighting, code completion, and error reporting. In addition to its language definition
features, MetaEdit+ also provides a range of tools for working with models, including support
for model transformations and model validation. MetaEdit+ is widely used in a variety of
domains, including software engineering, telecommunications, finance, and more. It is well-
suited for use in a wide range of development scenarios, from small internal projects to large,
complex systems. It is often referred to as the reference implementation for Domain-Specific
Modeling (DSM) [47]

KIELER [116, 117] is an open-source framework for developing graphical modeling environments
and integrating them into existing development tools, such as Eclipse. It is by now generalized
as the Eclipse incubation project Eclipse Layout Kernel (ELK) [118]. KIELER provides a range
of libraries for transforming and querying models as well as for visualizing and laying out models.
It is widely used in a variety of domains, including software engineering, telecommunications,
and more. Furthermore, it provides means to automatically generate domain-specific graphical
views for textual DSLs realized in the Eclipse modeling context. However, its primary goal is
to provide application experts with graphical notations for illustrative purposes, e.g. to better
communicate with non-programmers, while creating the actual (textual) models still requires
programmers or highly technically skilled domain experts.

MPS [119, 120] is a language workbench developed by JetBrains [121], which provides a
platform for creating custom programming languages, language extensions and DSLs. It
provides a visual language definition and supports the full language development life cycle,
including parsing, type checking, code generation, and more. Due to the comprehensive and
powerful approach of MPS to language specialization by means of projectional editing [122],
and the meanwhile enhanced support for graphical editors, MPS can best be compared to
Cinco [22]. As the MPS project shares the assessment that a single DSL per development
environment may not be sufficient, it supports true language modularity, just like Cinco.
In fact, the service-oriented language extension and DSL-based refinement using the Cin-
co framework (cf. [23]) can be regarded as light-weight language specialization for building
component libraries, reminiscent of language concepts used in MPS, which are the building
blocks of custom DSLs in MPS. While developing languages with MPS is very complex due
to an extremely steep learning curve, the objective of developing Cinco from the outset was
simplicity to overcome the major obstacle often faced in language-driven approaches, that
the effort required for developing an appropriate IME exceeds the benefits, especially if the
created modeling solution is highly specialized as in the context of LDE. The experience from
practice gained from various industry projects shows that this is a main reason for why the
resulting solution often tends to be rather general-purpose than highly domain-specific. To
address this, simplicity was a key focus and prioritized over the generality offered by other
language workbenches during the development of Cinco. This is reflected by Cinco’s support
for code generation by means of providing a dedicated model API specifically generated for
each different Cinco product that is thus more intuitive and powerful than the underlying
generic Ecore API. In contrast, cost-effectively building good LDE solutions with MPS is
probably reserved for a few experts who are really well-versed with all the intricate details of

55

Chapter 5. Related Work

the framework.

Along with the general trend towards developing software as web applications, in recent years,
there has been a trend towards shifting development environments to the web. This is because
web applications can be accessed from any device with an internet connection, making them
more convenient, flexible and accessible for users as they can be updated more easily and
rapidly, without requiring users to download and install new software. In this course, the
graphical modeling features of Cinco have been ported to the web with the Pyro project [66]
so that users can easily use the software hosted in a cloud environment. Currently, the feature
set is yet slightly restricted as some of the secondary Cinco features developed for the Eclipse
RCP [71] have not been migrated yet. As can be experience with the data-flow modeling tool
Pyrus [73] , the editors provided by Pyro support collaborative modeling, similar to real-time
document editing features of well-established cloud-based solutions, like Google Docs [123] or
Microsoft 365 [124]. This means that multiple users can access and edit the same model at the
same time, without needing to worry about overwriting each other’s changes.

In a similar manner, the ROCCO tool [125] based on Eclipse EuGENia [126] makes graphical
modeling languages accessible in a web-based development platform [127]. While the EuGENia
framework allows users to define their own modeling languages and then generate code from
those models, ROCCO extends the EuGENia framework to generate graphical web editors for
these languages. The corresponding migration to a web-based platform is done by generating
diagram models for evaluation in the Psi Engine [127], a web-based low-code environment.
Compared to Pyro, the modeling environment generated by ROCCO to date does not offer
collaborative editing of the diagram models.

Low-Code Development

Low-code development describes a type of software development that enables faster and more
efficient application development by reducing the amount of manual coding required, thus
reducing the risk of errors and allowing organizations to respond more quickly to changing
business requirements. The approach is particularly designed to empower non-technical users,
such as domain experts, application experts, subject matter experts and other stakeholders to
contribute directly to the development process without requiring extensive programming skills.
Here, directly means that the artifacts constructed by these users are accurate and sufficient to
make changes to applications without further human translation, e.g. by programming experts.
The origin of the term ”low-code” is not entirely clear, and it has been used in various contexts
over the years. However, one of the earliest references to the term in its current meaning was
made in a 2014 blog post by Forrester Research analysts [128].

Although DSLs can be involved in low-code development, they are not always necessary as
low-code platforms typically include pre-built components and templates, a visual interface
for designing and arranging application components via drag-and-drop, as well as tools for
integrating with external data sources and systems. Some low-code platforms also include
built-in functionality for testing, deployment, and ongoing maintenance.

Low-code approaches are continuously growing in popularity. It is hard to provide a comprehensive
overview, as today there exist more than 300 vendors in the market and every low-code
development platform is different [129]. Big software companies are heavily pushing their
low-code platforms, like for instance Google’s AppSheet [130] (a successor to App Maker) or
Microsoft’s Power Apps [131]. Both AppSheet and Power Apps enable users to connect to
data sources, such as spreadsheets or other tabular data sources, allowing users to quickly
bring data into the platform and use it to build custom applications. They both also provide
tools for customizing the look and feel of the applications, as well as for integrating with

56

other systems and services. These platforms, in essence, can be considered manually built
development solutions that resemble a spreadsheet-oriented mindset in their approach to
application development. This approach is designed to be intuitive and accessible to those
users who are familiar with spreadsheets and other data-focused tools. In turn, it provides
simplicity only for those users with spreadsheet-oriented mindsets.

Although DSLs can be involved in low-code development, they are not always necessary as,
typically, low-code development platforms provide pre-built components and visual interfaces
for common tasks, without the need for users to create or understand a specific DSL. Some
prominent platforms that use DSLs to provide a higher level of abstraction for non-technical
users are OutSystems [132], Mendix [133], Appian [134], Bubble [135] and Lightning [136]
from Salesforce [137]. Mendix, for example, uses a visual modeling language called ”Domain
Modeler” to define the data models and business logic of an application, while OutSystems uses
a visual modeling language called ”Service Studio” to define the user interface, business logic
and data models of an application. Appian includes a rule engine and a workflow modeling
language called ”Process Modeler” that allows users to define complex workflows and decision
logic without the need for traditional coding.

The mentioned platforms are particularly well-suited for developing custom business appli-
cations by defining workflows, forms and data-centric views, like dashboards. To extend the
available components, developers can write custom code in programming languages specifically
supported by the respective platform. For example, OutSystems provides the option of
writing custom code in the dedicated ”OutSystems Language”, while Mendix supports multiple
programming languages, including Java [43], Python [38] and Ruby [138]. Appian supports
JavaScript [40], and Lightning provides the option of writing Apex, a proprietary programming
language from Salesforce.

With regards to workflow modeling, these platforms focus on specifying workflows in a
(graphical) flowgraph style using the (manually programmed) application-specific activity
blocks. Similar to the spreadsheet-oriented mindset discussed above, the adequacy of solutions
based on a process-oriented mindset strongly depends on a good fit with the mindset inherent
in the target application. These approaches address situations where a process-oriented
combination of predefined building blocks is adequate. Thus, it can best be compared to the
approach taken by the jABC project [69], a predecessor of the Cinco workbench project,
developed decades ago. In general, generating executable code from graphical process models
has long been the underlying principle of process modeling tools, and in particular for the
jABC framework, whose SLGs heavily inspired Dime’s process models. In turn, one could
argue that jABC and other early modeling frameworks supported the low-code approach long
before the term was invented. However, just like the spreadsheet-centric or process-oriented
approaches mentioned above, jABC was less flexible as it did not build on top of any language
workbench. In general, it is noticeable that the modeling features of popular low-code platforms
are provided as-is and meant to be adopted by users in terms of adapting their mindset to the
one supported by the platform. With regard to jABC, this changed when the Cinco language
workbench was created to provide a powerful yet flexible foundation for the development of
Dime (comprising jABC‘s SLGs) and other IMEs. Because the approach tackling the mindset
issue underlying LDE, i.e. how to best address and fit the mindset of the domain and target
audience, is explicitly addressed by those low-code modeling approaches that rely on language
workbenches [19], as they allow tailoring the language of their development environments
towards skills and needs of the targeted domain experts. This way, they can flexibly play with
a simplicity/generality trade-off. However, this flexibility comes at the price of substantial
costs for meta-level development [22].

To summarize, the LDE approach supports the goal of low-code development, i.e. to empower

57

Chapter 5. Related Work

non-technical users, such as domain experts, application experts, subject matter experts
and other stakeholders to contribute directly to the development process. However, LDE
promotes a simplicity-oriented language engineering approach, i.e. by means of supporting
different language purposes and user mindsets to engineer adequate languages accordingly.
Language-Oriented Programming (LOP) [139, 140] is a software development paradigm similar
to LDE that focuses on creating DSLs as an integral part of the development process. LOP
takes the idea of using a language to describe a problem and extends it to include creating
custom languages tailored to a specific problem domain, which can then be used by developers
to work at a higher level of abstraction and solve that problem more naturally and efficiently.
This involves not only writing code in these languages but also designing the language itself
and its associated tools, such as compilers and interpreters. This may also involve the
composition of multiple languages that work together to solve a specific problem, and thus
LOP fosters a language-oriented approach to software development. LOP is used in a variety
of applications, from writing web applications to modeling complex systems and simulations.
Its use is becoming increasingly popular, especially in domains where software is used to solve
complex problems, such as finance, scientific computing, and gaming. However, LOP primarily
focuses on providing programmers with a more effective and efficient way to write software, as
indicated by their motivation to ”provide software developers tools for formulating solutions in
the languages of problem domains.” [140].

58

6
Conclusion

This dissertation is concerned with the evolution of LDE ecosystems and demonstrates the
inherent PUTD dynamics between their meta-levels. These dynamics are discussed based
on observations and findings from concrete development projects within the Cinco-based
ecosystem and generalized towards generic LDE ecosystems in order to identify challenges and
opportunities regarding efficient and effective tool support.

The intrinsic idea underlying the LDE approach is to understand all forms of evolution on
various meta-levels as integral part of the development life cycle of a specific software product.
This generalizes the common conception that a software system is continuously evolving to
encompass the entire development and evolution scenario. All elements including the system
itself, the infrastructure it operates on, the DSLs used for system modeling and the meta-
metamodels for constructing these DSLs co-evolve concurrently to adapt to ever-changing
requirements on the respective meta-levels. The effective handling of possible effects induced
by this concurrent evolution requires an LDE ecosystem to be flexible and responsive but also
demands the utilization of comprehensive methods and strategies to maintain consistency and
coherence across different meta-levels.

My extensive research and development efforts on the tools and technologies at the heart of the
presented Cinco-based ecosystem has significantly influenced and shaped not only the involved
tools themselves but also the view of the big picture and the conceptual framework of the
LDE approach on the whole. In particular, the identification and investigation of the PUTD
effects crossing meta-level boundaries as described in this dissertation represent immediate
results of my work on various projects at different meta-levels, which allowed for an analysis of
these dynamics in the first place. In turn, these results would not have been possible without
first building an appropriate ecosystem comprising tools powerful enough to generate software
products suitable for productive use. Hence, working on specific meta-levels and at the same
time establishing a holistic view on ecosystem evolution are mutually reinforcing tasks.

As a starting point, the development of the integrated modeling environment Dime based on
meta-models created with the Cinco workbench has paved the way for generating complete,
full-stack web applications solely from conceptional models. What began with some proof-
of-concept products developed with Cinco and Dime has since successively evolved into an
extensive ecosystem, thereby constantly incorporating lessons learned and experiences gained
into its ongoing development. Finally, by applying the LDE approach in the course of my
work with Dime on the Equinocs project in cooperation with an industry partner I have
ultimately proven the practical applicability of the approach and demonstrated its benefits,
thereby providing validation and improving credibility of the overall LDE-related research.

The Equinocs project demonstrated how the LDE approach performs in a real-world environment
and helped identifying challenges and limitations from which improvements of the whole
ecosystem could be derived accordingly. In total, my work on the Equinocs project generated
valuable feedback from the involved stakeholders and profound insights into the process of

59

Chapter 6. Conclusion

building, deploying, operating and maintaining a productive web application in the cloud with
LDE technology. I have then managed to successively adopt and generalize these insights
(in a step-up manner, cf. section 4.2) towards generic web applications in order to formulate
new requirements and drive the further development of Dime’s code generator and modeling
languages. Some lessons learned were even propagated upwards in the meta-level hierarchy (in
a path-up manner, cf. section 4.4) and influenced the further development of Cinco’s language
features. Overall, this also meant experiencing and assessing the so-far unexplored ecosystem
dynamics set out in this dissertation and developing solutions to effectively handle the induced
effects.

The LDE approach already comes with technical challenges comprising the effective and efficient
definition of modeling languages, their provisioning by means of building corresponding IMEs
and the integration of languages (and their IMEs) into consistent multi-language IMEs. To
solve these challenges, various approaches have been discussed comprising meta-level modularity
supporting the reuse of language features and approaches for shallow versus deep integration of
languages for efficiently building multi-language IMEs. Although from a meta-level perspective,
these topics seem to address foremost local aspects of an LDE ecosystem the introduction of a
new IME to an existing ecosystem already means exposing it to the prevailing PUTD dynamics
crossing meta-levels. To handle the induced effects, LDE needs integrated support to guide
involved users and stakeholders. In this context, this dissertation addressed corresponding
requirements and outlined the need for enhanced tool support.

60

7
Future Work

The utilization of DSLs, and in particular graphical notation, results in a closer integration of
domain experts into the system development process due to its innate intuitiveness and ability
to facilitate the desired mindset and objectives and thus effectively bridge the communication
gap between domain experts and technical teams. Graphical modeling languages provide a
visual representation that facilitates a more intuitive and accessible way to represent complex
systems and processes, making it easier for non-technical stakeholders to understand and
provide input which ultimately leads to better alignment between them and more successful
development outcomes. Additionally, these languages often have a lower barrier to entry, as
they rely on graphical symbols and diagrams rather than code, reducing the overall learning
curve for domain experts. And as organizations seek to increase collaboration and integration
between domain experts and technical teams, advanced software development methodologies,
such as Agile and DevOps, emphasize the importance of collaboration and integration across
teams and often provide guidelines and best practices for achieving these goals. Hence, It
is anticipated that the number of languages utilized in individual projects will experience
significant growth. The LDE approach generally supports this welcome development. Examples
can be found in various application domains in terms of dedicated (graphical) languages, like
network layouts, workflow graphs, or piping and instrumentation diagrams but also business
models and other strategic notions, as well as spreadsheets or data flow graphs for data analytics.
In general, illustrative charts and diagrams used by domain experts for the documentation
of specific relationships or factual connections are a good starting point for creating efficient
PSLs aligned with the mindsets of the respective stakeholders. However, as thereby some
so-far clear boundaries become increasingly blurred some additional care is needed to manage
associated effects.

Blurring Line between Meta-Levels

The meta-level dependencies of an LDE ecosystem have been introduced as a tree structure
that represents a meta-level hierarchy. However, with the advancing developments of the
LDE concept and lessons learned over years of use in academia and industrial practice, a slow
but steady shift of focus can be observed from separate, distinct IMEs to shared modeling
platforms that provide access to various modeling languages for different purposes. In this
context, modeling languages and meta-models still exist and meta-level dependencies need to
be managed but the concept of meta-level hierarchies needs to focus less on IMEs as complete,
standalone tools but rather understand them as dynamic modeling environments that, for
example, can be set up on demand for a particular project. Still, assembling such environments
and tailoring them towards the mindsets and capabilities of involved stakeholders remains
challenging, especially with regards to simplicity.

Another aspect that adds to the perceived blurring of boundaries is that, in general, an IME

61

Chapter 7. Future Work

may be used to extend itself in a bootstrapping fashion. This approach has initially been
formulated for Cinco [21], in particular by elaborating that with Cinco graphical languages
can be designed for Cinco by means of generating Cinco plugins providing the respective
model editors to be integrated. However, the approach may as well be applied on similar
meta-modeling environments in a straight-forward manner. following the same logic, an IME,
like Cinco, could also be used to build another IME that is then used to extend the original
one, hence inducing mutual dependencies.

These considerations regarding dynamic modeling environments can further be backed up by
the observation that the LDE ecosystem dynamics investigated up to today are not complete.
In fact, there are more complex scenarios with regards to ecosystem evolution that need to be
considered, including:

• Adding IMEs: Users may use existing IMEs, like Cinco, to develop new IMEs to be
added to the ecosystem. This may either be done by creating a completely new branch
or by means of introducing a new layer in between two existing IMEs in the meta-level
hierarchy. The latter approach can be used to, for example, create product-specific
IMEs, i.e. modeling environments that are more tailored towards the specific needs of
a particular project than the IME previously used. As an example, one could add a
Equinocs-specific IME, i.e. a Meta-EquinOCS environment, that provides modeling
languages specifically tailored towards the development of Equinocs. This new Meta-
EquinOCS would most probably generate Dime models and then re-use the existing
Dime generator to produce the same source code and resources as before.

• Forking IMEs: If the capabilities of the available IMEs are not sufficient for building
a specific class of products, an appropriate IME project from the ecosystem could be
forked to build a similar IME that is more tailored towards the respective use cases.
As an example, one could fork the Dime project that is tailored towards generating
single-page web applications in order to build a Dime variant that is more suited for
generating static or progressive web applications.

• Merging IMEs: In opposite to forking, two sperate IMEs could be merged to form a
single IME with joined functionality by means of a new multi-language environment.
Existing products would need to be migrated to use the resulting IME.

• Removing IMEs: Existing IMEs may be discontinued and thus finally vanish from
the ecosystem, for example if there are no particular products anymore to build with it.
Otherwise, existing products would need to be migrated to a different IME in orderor its
development needs to

There is need for comprehensive tools and methods that support the handling of these types of
changes and derived effects. Such tools would aid in the efficient management of the ecosystem,
promoting seamless evolution and reduce the risk of adverse impacts on specific products and
the whole ecosystem.

In the context of constructing dynamic modeling environments and managing their evolution,
these types of changes would need to be supported on language basis, i.e. by means of adding,
removing, merging and splitting languages to the environment.

Blurring Line between Building and Using
With the progressive development of the LDE approach, the distinction between building
and using applications increasingly becomes a mere matter of perspective. To explain and
support this argumentation, in the following a comprehensive explanation is given from a

62

language-centric perspective. The provided examples are based on actual insights from the
Equinocs project but can easily be transferred to similar projects as the described dynamics
can be considered common for current development scenarios.

EquinOCS supports a peer review process during which assigned reviewers upload their reports
for submitted papers. For this, a simple report form is provided that comprises two dropdown-
boxes ’Evaluation’ and ’Confidence’ as well as a ’Comment’ text area for their argumentation.
Figure 7.1 shows a simplified illustration of the form on the right side. Early in the project,
this report form was static, i.e. the same form was used in all conferences managed by the
system. The structure and appearance of the form were modeled with Dime’s GUI language.
And being a static feature, eventual changes to the form required changing its model and then
re-generating and re-deploying a new application version. Then eventually the stakeholders
requested to change the form and make its fields configurable in terms of allowing to enable
or disable them dynamically at system runtime. This meant transforming the static report
form into a configurable form and creating a second one with which the report form could be
configured at runtime via the admin interface. Figure 7.1 shows both forms and their relations
by means of the IF -edges, which express that the respective field in the report form is only
then shown if the corresponding checkbox in its configuration is checked.

Configure Report Form

Save Submit

Show 'Evaluation'

Show 'Confidence'

The paper should be accepted.
Comment

Cancel

AcceptEvaluation

HighConfidence

Create Report

IF

IF

CONFIGURATION TIME RUNTIME

Figure 7.1: Report form configuration (from [AP6])

This example shows that switching the abstraction layer does not necessarily mean switching
from system level to development level. On the other hand, by enabling the administrator and
other stakeholders to configure this form at system runtime a small part of what previously has
been building the application and thus reserved for the system developers has now become using
the application. However, this effect can already be observed in classical software development
where it is actually bound to the perception of how changes are realized, i.e. it depends on
whether the affected feature can be configured at system runtime (configurable feature) or
development effort is required to change its source code (static feature). Note how the sheer
existence of differences between the change process of configurable features compared to that
of static features causes different perceptions between building and using a system in this
context. These differences include:

1. Languages: Simply setting in-system properties via a provided user interface to configure
certain features at runtime is basically different from writing source code in a programming
language.

2. Users: While runtime configuration can be done by an administrator or other stakeholders,

63

Chapter 7. Future Work

source code editing is typically carried out by programmers or other software developers.

3. Platforms: While the configuration of features can be done directly in the running web
application, code editing is done, for example, in a separate IDE, which typically is a
desktop application.

4. Implementations: The current feature configuration can be evaluated dynamically at
system runtime while the source code created by programmers has to be compiled, built
and packaged to finally get re-deployed and replace the previous application version.

By extending the report form example and continuously shifting control from programming
level to system level it is shown that the LDE approach can overcome these differences
simultaneously and thus completely blur the line between building and using a system by
changing the overall perspective on system design. So far, the report form is configurable
but which fields are available is still predefined. Adding additional fields would still require
changes on programming level. To change this, the configuration form could be extended to
allow stakeholders to create new report form fields at system runtime. This can be realized by
introducing a manageable list of available report form fields with actions to add and remove
fields on demand. Figure 7.2 shows the resulting forms and their relations by means of the
FOR-edge, which expresses that the available fields in the report form depends on the defined
entries in the configuration form.

Create ReportConfigure Report Form

Save Submit

The paper should be accepted.
Comment

Cancel

FOR
Form Fields Add

Evaluation Delete

Confidence Delete

CONFIGURATION TIME RUNTIME

< values >< name >

Figure 7.2: Report form field creation (from [AP6])

In comparison to the first version depicted in Figure 7.1 the feature set of the configuration
form and hence the control over the report form has increased. It is another good example of
how aspects that previously were associated with building the application are now associated
with using the application. This increased control on the one hand means increased flexibility
but on the other hand also increased complexity. The process of shifting control over the report
form from development level to system level could be continued by adding editing functionality
for texts, images, buttons, and other components until eventually administrators and other
stakeholders would have full control over something that could be considered a complete user
interface editor to change every little bit of the report form according to their needs. But in
turn, the resulting complexity may not be manageable by this user group anymore. Because
they now basically have access to instruments of a system developer and thus would need
knowledge and skills that are traditionally associated with the programming domain to use
such instruments effectively. They provide all flexibility but were not tailored towards the
respective mindset and capabilities and thus cannot achieve an adequate level of simplicity.

Another interesting aspect in this context is the blurred line between configuration and system
design. In the process of continuously shifting control it is hard to locate the exact point

64

ReportForm DSL

Report DSL

languageOf

Report

languageOf

GUI DSL

languageOf

PC Chair

Reviewer

usedBy

usedBy

creates

creates

Developer
creates

usedBy
Development level

System level

Figure 7.3: Top-down DSL creation (from [AP6])

where changing the report form would stop being mere configuration and actually become user
interface design. But is this even necessary, or may both be considered being the same thing?
A slightly different perspective on the purpose of DSLs may help shed light on this. While from
a technical viewpoint models represent relevant aspects of a system and DSLs are considered
necessary means used to create and edit these models, in the perception of the system user, the
DSLs themselves provide an interface for directly changing a system’s structure or behavior.
Because, in this context, models can be considered a rather technical concept hidden from
these users’ view as they only exist by means of data in the memory or database. From this
perspective, classical user interfaces, like the configuration forms mentioned above cannot be
distinguished from graphical model editors as they both are means to create and edit data that
may be a model for some kind of system structure or behavior. Consequently, any user interface
that creates or manipulates some kind of data can be considered a DSL tailored to this specific
use case, including the report form in the above example which, from this viewpoint, is used
to create a model of a report that may later be used for some kind of analysis, reasoning or
decision making. Following this line of thought, the consecutive changes to the configurability
of report forms can be seen as the creation of specific DSLs tailored towards the respective
requirements. This means step-wise transfer of control from development level to system level,
as depicted in Figure 7.3 that shows the different DSLs involved in the described Equinocs
scenario.

Adopting this new perception of user interfaces being DSLs and thinking this idea further,
other aspects in system development become blurred, including:

• Interfaces: As LDE promotes source models instead of source code, any changes may
be carried out using adequate DSLs, like graphical modeling languages. This applies
independent of whether the modeling is done upfront during the initial development
or later at system runtime to change existing features on demand. Consequently, even
those features that previously were considered static can now be changed via a unified
(graphical) user interface at system runtime. The only difference that remains is how
the changes are implemented, process may be hidden from the modeling users (see
”Implementation” below).

• Users: When using tailored DSLs certain modeling tasks can be performed by stakeholders
without programming skills or technical backgrounds. There might still be different
types of users involved, though not necessary anymore for a wide range of use cases.

65

Chapter 7. Future Work

Ideally, in most scenarios there should be no need for involving programmers or other
software developers anymore. Hence, who develops and who configures/uses the system
becomes blurred.

• Platforms: With IMEs becoming available in the web, like the upcoming Cinco
Cloud [24, 66, 141, 142], there may be no distinction between the system and the
development platform anymore. Additional adjustment and alignment of the user
interface of the modeling environment with that of the modeled web application (e.g. by
adapting the appearance or appropriate branding) could further eliminate the perceived
distinction between the modeling environment and the modeled application. As an
alternative, by integrating the respective model editors into the web application directly
the perceived distinction between the different applications may be overcome completely.

• Implementation: Following the LDE approach, the application code is generated
from models and then built, packaged and deployed in a predefined manner, e.g. by
means of an automated CI/CD pipeline. This process is consistent and repeatable,
independent of whether the modeling is done upfront during the initial development
steps or later at runtime when changing existing features on demand. In the latter case,
the newly generated version of the application would replace the previously deployed
version. However, this implementation process may be hidden from the modeling users so
that the foremost distinction between runtime configuration and software programming
becomes blurred and the only remaining difference may be the actual time it takes to
deploy (vs. apply) the changes.

Summarizing, certain development tasks that previously involved programming can be replaced
by modeling tasks carried out by stakeholders without programming knowledge and by doing
so formerly clear system boundaries become increasingly blurred. However, as the above report
form examples show, this is a welcome development demanded by involved stakeholders to be
addressed and supported by future enhancements of the LDE approach, especially by means
of integrating the idea of dynamic modeling environments into the overall concept.

Blurring Line between Abstraction Layers

The described findings are also consistent with very similar observations I made as a sidearm
of my research in the slightly different application domain of business modeling [7, 9, 11, 12,
14]. Business modeling is the process of creating a simplified representation of a business idea
or concept, which includes various elements such as the business’s value proposition, revenue
streams, target customers, and key resources. It is typically used to help entrepreneurs and
business owners plan and develop their businesses, and to communicate their ideas to others.
There are various methods and frameworks for business modeling, such as the Business Model
Canvas (BMC) [143] or Lean Startup [144] methodology.

In this context, there exist various strategic notions and many of them have a canvas-based
visualizations. Here, a canvas is a visual framework that provides a simple and intuitive
way to capture the key components, e.g. of a business model, and are used to structure and
organize information about a business or product. In this domain, the BMC established a
de-facto standard modeling technique based on a structured template along nine essential
components [145, 146]. It is a one-page template divided into tiles that are meant to hold the
key elements of a business model, including customer segments, value propositions, channels,
customer relationships, revenue streams, key resources, key activities, key partnerships, and
cost structure. It is a useful tool for entrepreneurs and business owners to map out their
business ideas and to test and refine them. Compared to an empty-page approach, this

66

lightweight canvas-based approach already provides a level of support that decreased potential
pitfalls of overlooking relevant aspects and eased communication.

Figure 7.4: Tile arrangement for a custom canvas (from [12])

To ease collaboration, these canvases are often copied to and filled out on generic collaboration
platforms, like Miro [147]. There even exist a few dedicated modeling tools, like the well-known
Strategyzer [148] app. It is a web application that can be regarded as a starting point for the
advent of various IT-supported, canvas-based business modeling tools.

Figure 7.5: Definition of containment rules (from [12])

The blurring line in this context can be observed in terms of two different user groups emerging
from the work with these canvas-based approaches. On the one hand, entrepreneurs and
business owners fill out these canvases to sketch their business ideas. On the other hand,
some business methodologists create new canvases or amend existing ones to better fit to
individual mindsets or specific domains (cf. Figure 7.4). The latter task can be seen as a
process of creating a new modeling language, here carried out by domain experts for domain
experts. Hence, it is another example that fits the general concept of language-centered feature
definition and shows how switching the abstraction layer does not necessarily mean switching
from system level to development level. Instead, it means replacing certain development tasks
that previously involved programming with modeling tasks carried out by stakeholders without
programming knowledge, i.e. blurring formerly clear system boundaries.

Regarding syntax, the task of defining and arranging tiles to create custom layouts is fairly
simple. The more challenging part is the definition of constraints. As the canvas designers

67

Chapter 7. Future Work

are interested in specifying containment constraints, i.e. which components can be inserted
into which tiles, they need access to the type information within appropriate taxonomies of
building blocks. Then again, defining the relation between these types and the tiles is an
easy task, as in graphical modeling languages it may be performed simply in a drag-and-drop
fashion (cf. Figure 7.5).

Altogether, this business modeling use case fits the general concept of language-centered feature
definition which might be supported by the LDE approach in terms of providing modeling
support for various abstraction layers and dynamic yet controlled switching for end users.
However, a particular challenge in this application domain is simplicity for the users, which
in this case are business professionals on both, the template definition level as well as the
template instantiation level. Hence, comprehensive tool support is needed for guiding the users
in fulfilling these complex tasks without actually making them feel complex.

68

Abbreviations

API Application Programming Interface . 7

BMC Business Model Canvas . 66

CI/CD Continuous Integration/Deployment . 13

CPD Cinco Product Definition . 17

DAD Dime Application Descriptor . 24

DSL Domain-Specific Language . 1

DSM Domain-Specific Modeling . 55

EMF Eclipse Modeling Framework . 17

ELK Eclipse Layout Kernel . 55

GME Graphical Modeling Environment . 54

HTML Hypertext Markup Language . 7

IaC Infrastructure as Code . 13

IDE Integrated Development Environment . 20

IME Integrated Modeling Environment . 1

ISE Immersive Software Engineering . 4

jABC Java Application Building Center . 21

LDE Language-Driven Engineering . 1

LOP Language-Oriented Programming . 58

LSP Language Server Protocol . 19

MDE Model-Driven Engineering . 7

MDSD Model-Driven Software Development . 9

mIDE Mindset-Supporting Integrated Development Environment 19

MGL Meta Graph Language . 17

MOF MetaObject Facility . 53

MPS Meta Programming System . 54

MSL Meta Style Language . 17

69

Chapter 7. Future Work

MVC Model-View-Controller . 27

OCS Online Conference Service . 27

OOP Object-Oriented Programming . 10

OTA One Thing Approach . 7

PSL Purpose-Specific Language . 1

PUTD Path-Up/Tree-Down . v

QA Quality Assurance . 49

RCP Rich Client Platform . 25

SCCE Sustainable Computing for Continuous Engineering

SIB Service-Independent Building Block . 21

SLG Service Logic Graph . 21

SPLM Software Product Lifecycle Management . 38

SQL Structured Query Language . 7

UI User Interface

UX User Experience

XMDD eXtreme Model-Driven Design . 7

70

Print References

Each of the URLs listed beneath has been last visited on February 1st, 2023.

[AP1] Barry D. Floyd and Steve Boßelmann. “ITSy–Simplicity Research in Information
and Communication Technology”. In: Computer 46.11 (2013), pp. 26–32.
doi: 10.1109/MC.2013.332

[AP2] Steve Boßelmann, Markus Frohme, Dawid Kopetzki, Michael Lybecait, Stefan
Naujokat, Johannes Neubauer, Dominic Wirkner, Philip Zweihoff, and Bernhard
Steffen. “DIME: A Programming-Less Modeling Environment for Web Applications”.
In: Proc. of the 7th Int. Symp. on Leveraging Applications of Formal Methods,
Verification and Validation, Part II (ISoLA 2016). Vol. 9953. Lecture Notes in
Computer Science. Springer, 2016, pp. 809–832.
doi: 10.1007/978-3-319-47169-3_60

[AP3] Steve Boßelmann, Dennis Kühn, and Tiziana Margaria. “A fully model-based
approach to the design of the SEcube™ community web app”. In: 2017 12th
International Conference on Design & Technology of Integrated Systems In Nanoscale
Era (DTIS). IEEE. 2017, pp. 1–7.
doi: 10.1109/DTIS.2017.7930159

[AP4] Dominic Wirkner and Steve Boßelmann. “Towards Reuse on the Meta-Level”. In:
Electronic Communications of the EASST 74 (2018).
doi: 10.14279/tuj.eceasst.74.1047

[AP5] Alexander Bainczyk, Steve Boßelmann, Marvin Krause, Marco Krumrey, Dominic
Wirkner, and Bernhard Steffen. “Towards Continuous Quality Control in the Context
of Language-Driven Engineering”. In: Leveraging Applications of Formal Methods,
Verification and Validation. Software Engineering. Ed. by Tiziana Margaria and
Bernhard Steffen. Cham: Springer Nature Switzerland, 2022, pp. 389–406.
doi: 10.1007/978-3-031-19756-7_22

[AP6] Steve Boßelmann, Stefan Naujokat, and Bernhard Steffen. “On the Difficulty of
Drawing the Line”. In: Proc. of the 8th Int. Symp. on Leveraging Applications
of Formal Methods, Verification and Validation, Part I Modeling (ISoLA 2018).
Vol. 11244. Lecture Notes in Computer Science. Springer, 2018, pp. 340–356.
doi: 10.1007/978-3-030-03418-4_20

[7] Barbara Steffen and Steve Boßelmann. “Domain-Specificity as Enabler for Global
Organization aLignment and Decision”. In: Leveraging Applications of Formal
Methods, Verification and Validation. Practice. Ed. by Tiziana Margaria and Bernhard
Steffen. Cham: Springer Nature Switzerland, 2022, pp. 340–365.
doi: 10.1007/978-3-031-19762-8_26

[8] Tim Tegeler, Steve Boßelmann, Jonas Schürmann, Steven Smyth, Sebastian Teumert,
and Bernhard Steffen. “Executable Documentation: From Documentation Languages
to Purpose-Specific Languages”. In: Leveraging Applications of Formal Methods,

71

https://doi.org/10.1109/MC.2013.332
https://doi.org/10.1007/978-3-319-47169-3_60
https://doi.org/10.1109/DTIS.2017.7930159
https://doi.org/10.14279/tuj.eceasst.74.1047
https://doi.org/10.1007/978-3-031-19756-7_22
https://doi.org/10.1007/978-3-030-03418-4_20
https://doi.org/10.1007/978-3-031-19762-8_26

Chapter 7. Future Work

Verification and Validation. Software Engineering. Vol. 13702. Springer International
Publishing, 2022.
doi: 10.1007/978-3-031-19756-7_10

[9] Barbara Steffen and Steve Boßelmann. “GOLD: Global Organization aLignment and
Decision - Towards the Hierarchical Integration of Heterogeneous Business Models”.
In: International Symposium on Leveraging Applications of Formal Methods. Springer.
2018, pp. 504–527.
doi: 10.1007/978-3-030-03427-6_37

[10] Steve Boßelmann, Johannes Neubauer, Stefan Naujokat, and Bernhard Steffen.
“Model-Driven Design of Secure High Assurance Systems: An Introduction to the
Open Platform from the User Perspective”. In: The 2016 International Conference
on Security and Management (SAM 2016). Special Track ’End-to-end Security and
Cybersecurity: from the Hardware to Application’. Ed. by T.Margaria and Ashu
M.G.Solo. CREA Press, 2016, pp. 145–151

[11] Barbara Steffen, Steve Boßelmann, and Axel Hessenkämper. “Effective and Efficient
Customization Through Lean Trans-Departmental Configuration”. In: International
Symposium on Leveraging Applications of Formal Methods. Springer. 2016, pp. 757–
773.
doi: 10.1007/978-3-319-47169-3_57

[12] Steve Boßelmann and Tiziana Margaria. “Domain-Specific Business Modeling with
the Business Model Developer”. In: International Symposium On Leveraging App-
lications of Formal Methods, Verification and Validation. Springer. 2014, pp. 545–
560.
doi: 10.1007/978-3-662-45231-8_45

[13] Tiziana Margaria, Steve Boßelmann, and Bertold Kujath. “Simple Modeling of
Executable Role-Based Workflows: An Application in the Healthcare Domain”. In:
Journal of Integrated Design and Process Science 17.3 (2013), pp. 25–45.
doi: 10.1007/978-3-642-34032-1_8

[14] Steve Boßelmann. “Simplicity in Application Development for Business Model
Design”. In: International Conference of Software Business. Springer. 2013, pp. 225–
226.
doi: 10.1007/978-3-642-39336-5_24

[15] Tiziana Margaria, Steve Boßelmann, Markus Doedt, Barry D. Floyd, and Bernhard
Steffen. “Customer-Oriented Business Process Management: Visions and Obstacles”.
In: Conquering Complexity. Ed. by Mike Hinchey and Lorcan Coyle. Springer London,
2012, pp. 407–429.
doi: 10.1007/978-1-4471-2297-5_16

[16] Martin Fowler and Rebecca Parsons. Domain-specific languages. Addison-Wesley /
ACM Press, 2010

[17] Markus Voelter. DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages. Createspace Independent Publishing Platform, 2013

[18] W. Aitken, B. Dickens, P. Kwiatkowski, O. de Moor, D. Richter, and C. Simonyi.
“Transformation in Intentional Programming”. In: Proceedings of the 5th International
Conference on Software Reuse. ICSR ’98. USA: IEEE Computer Society, 1998, p. 114

[21] Stefan Naujokat. “Heavy Meta. Model-Driven Domain-Specific Generation of Generative

72

https://doi.org/10.1007/978-3-031-19756-7_10
https://doi.org/10.1007/978-3-030-03427-6_37
https://doi.org/10.1007/978-3-319-47169-3_57
https://doi.org/10.1007/978-3-662-45231-8_45
https://doi.org/10.1007/978-3-642-34032-1_8
https://doi.org/10.1007/978-3-642-39336-5_24
https://doi.org/10.1007/978-1-4471-2297-5_16

Domain-Specific Modeling Tools”. Dissertation. Dortmund, Germany: TU Dortmund
University, Aug. 2017.
doi: 10.17877/DE290R-18076
url: http://hdl.handle.net/2003/36060

[22] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard Steffen. “CINCO:
A Simplicity-Driven Approach to Full Generation of Domain-Specific Graphical
Modeling Tools”. In: Software Tools for Technology Transfer 20.3 (2017), pp. 327–
354.
doi: 10.1007/s10009-017-0453-6

[23] Bernhard Steffen, Frederik Gossen, Stefan Naujokat, and Tiziana Margaria. “Language-
Driven Engineering: From General-Purpose to Purpose-Specific Languages”. In:
Computing and Software Science: State of the Art and Perspectives. Ed. by Bernhard
Steffen and Gerhard Woeginger. Vol. 10000. Lecture Notes in Computer Science.
Springer, 2019.
doi: 10.1007/978-3-319-91908-9_17

[24] Philip Zweihoff, Tim Tegeler, Jonas Schürmann, Alexander Bainczyk, and Bernhard
Steffen. “Aligned, Purpose-Driven Cooperation: The Future Way of System Development”.
In: Leveraging Applications of Formal Methods, Verification and Validation. Ed. by
Tiziana Margaria and Bernhard Steffen. Cham: Springer International Publishing,
2021, pp. 426–449.
doi: https://doi.org/10.1007/978-3-030-89159-6_27

[26] Tiziana Margaria, Barry D. Floyd, and Bernhard Steffen. “IT Simply Works:
Simplicity and Embedded Systems Design”. In: IEEE 35th Annual Computer
Software and Applications Conference Workshops (COMPSACW), 2011. July 2011,
pp. 194–199.
doi: 10.1109/COMPSACW.2011.42

[27] Peter Naur and Brian Randell, eds. Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968.
Scientific Affairs Division, NATO, Brussels 39 Belgium, 1969

[28] Chitra Dorai and Svetha Venkatesh. “Bridging the semantic gap with computational
media aesthetics”. In: Multimedia, IEEE 10 (May 2003), pp. 15–17.
doi: 10.1109/MMUL.2003.1195157

[29] Andreas Makoto Hein. “Identification and Bridging of Semantic Gaps in the Context
of Multi-Domain Engineering”. In: 2010

[30] Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty H. C.
Cheng, Philippe Collet, Benoit Combemale, Robert B. France, Rogardt Heldal,
James Hill, Jörg Kienzle, Matthias Schöttle, Friedrich Steimann, Dave Stikkolorum,
and Jon Whittle. “The Relevance of Model-Driven Engineering Thirty Years from
Now”. In: Proc. of the 17th Int. Conf. on Model Driven Engineering Languages
and Systems (MODELS ’14). Lecture Notes in Computer Science 8767. Springer
International Publishing, 2014, pp. 183–200.
doi: 10.1007/978-3-319-11653-2_12

[31] Tiziana Margaria and Bernhard Steffen. “Service-Orientation: Conquering Complexity
with XMDD”. English. In: Conquering Complexity. Ed. by Mike Hinchey and Lorcan
Coyle. Springer London, 2012, pp. 217–236.
doi: 10.1007/978-1-4471-2297-5_10

73

https://doi.org/10.17877/DE290R-18076
http://hdl.handle.net/2003/36060
https://doi.org/10.1007/s10009-017-0453-6
https://doi.org/10.1007/978-3-319-91908-9_17
https://doi.org/https://doi.org/10.1007/978-3-030-89159-6_27
https://doi.org/10.1109/COMPSACW.2011.42
https://doi.org/10.1109/MMUL.2003.1195157
https://doi.org/10.1007/978-3-319-11653-2_12
https://doi.org/10.1007/978-1-4471-2297-5_10

Chapter 7. Future Work

[32] Tiziana Margaria and Bernhard Steffen. “Business Process Modelling in the jABC:
The One-Thing-Approach”. In: Handbook of Research on Business Process Modeling.
Ed. by Jorge Cardoso and Wil van der Aalst. IGI Global, 2009

[33] Arie Deursen, Paul Klint, and Joost Visser. “Domain-Specific Languages: An
Annotated Bibliography”. In: SIGPLAN Notices 35 (Jan. 2000), pp. 26–36

[35] Karl-Heinz John and Michael Tiegelkamp. IEC 61131-3: Programming Industrial
Automation Systems: Concepts and Programming Languages, Requirements for
Programming Systems, Decision-Making Aids. 2nd ed. Springer, 2010

[36] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. John Wiley & Sons, 2004

[37] Sven Jörges. Construction and Evolution of Code Generators - A Model-Driven and
Service-Oriented Approach. Vol. 7747. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, Germany, 2013.
doi: 10.1007/978-3-642-36127-2

[46] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice. Morgan & Claypool, 2012

[47] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Apr. 2008.
doi: 10.1002/9780470249260

[48] John Vlissides. Pattern Hatching: Design Patterns Applied. Addison-Wesley Professional,
1998

[49] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,
1994

[51] Kief Morris. Infrastructure as Code: Managing Servers in the Cloud. 1st. O’Reilly
Media, Inc., 2016

[54] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
“Borg, omega, and kubernetes”. In: Communications of the ACM 59.5 (2016), pp. 50–
57

[55] Patrick Debois, Jez Humble, Joanne Molesky, Eric Shamow, Lawrence Fitzpatrick,
Michael Dillon, Bill Phifer, and Dominica DeGrandis. “Devops: A software revolution
in the making”. In: Journal of Information Technology Management 24.8 (2011),
pp. 3–39

[56] G. Kim, J. Humble, P. Debois, J. Willis, and N. Forsgren. The DevOps Handbook:
How to Create World-Class Agility, Reliability, & Security in Technology Organizations.
IT Revolution Press, 2021
url: https://books.google.de/books?id=8kRDEAAAQBAJ

[57] Jennifer Davis and Ryn Daniels. Effective DevOps: Building a Culture of Collaboration,
Affinity, and Tooling at Scale. 1st. O’Reilly Media, Inc., 2016

[59] Tim Tegeler, Sebastian Teumert, Jonas Schürmann, Alexander Bainczyk, Daniel
Busch, and Bernhard Steffen. “An Introduction to Graphical Modeling of CI/CD
Workflows with Rig”. In: Leveraging Applications of Formal Methods, Verification

74

https://doi.org/10.1007/978-3-642-36127-2
https://doi.org/10.1002/9780470249260
https://books.google.de/books?id=8kRDEAAAQBAJ

and Validation. Ed. by Tiziana Margaria and Bernhard Steffen. Cham: Springer
International Publishing, 2021, pp. 3–17.
doi: 10.1007/978-3-030-89159-6_1

[62] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework (2nd Edition). Addison-Wesley, Boston, MA, USA, 2008

[63] Clément Guy, Benoı̂t Combemale, Steven Derrien, Jim R. H. Steel, and Jean-Marc
Jézéquel. “On Model Subtyping”. In: Modelling Foundations and Applications. Ed.
by Antonio Vallecillo, Juha-Pekka Tolvanen, Ekkart Kindler, Harald Störrle, and
Dimitris Kolovos. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 400–415

[64] Markus Völter. “Language and IDE modularization, extension and composition with
MPS”. In: Pre-proceedings of Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE) (2011), pp. 395–431

[66] Philip Zweihoff, Stefan Naujokat, and Bernhard Steffen. “Pyro: Generating Domain-
Specific Collaborative Online Modeling Environments”. In: Proc. of the 22nd Int.
Conf. on Fundamental Approaches to Software Engineering (FASE 2019). 2019.
doi: 10.1007/978-3-030-16722-6_6

[68] Rachel Murphy Ciara Breathnach and Tiziana Margaria. “From No- to Low-Code:
Transcribathons as Practice-Based Learning for Historians and Computer Scientists”.
In: Proc. OER 2021: The 5th IEEE Int. Workshop on Open Education Resources
for Computer Science & Information Technology, at COMPSAC 2021, July 16th,
2021, IEEE Computer society. 2021

[69] Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Jörges, and Christian Kubczak.
“Model-Driven Development with the jABC”. In: Hardware and Software, Verification
and Testing. Ed. by Eyal Bin, Avi Ziv, and Shmuel Ur. Vol. 4383. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2007, pp. 92–108.
doi: 10.1007/978-3-540-70889-6_7

[70] Bernhard Steffen, Tiziana Margaria, Volkar Braun, and Nina Kalt. “Hierarchical
Service Definition”. In: Annual Review of Communications of the ACM 51 (1997),
pp. 847–856

[71] Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse Rich Client
Platform. 2nd. Addison-Wesley Professional, 2010

[73] Philip Zweihoff and Bernhard Steffen. “Pyrus: An Online Modeling Environment
for No-Code Data-Analytics Service Composition”. In: Leveraging Applications of
Formal Methods, Verification and Validation. Ed. by Tiziana Margaria and Bernhard
Steffen. Cham: Springer International Publishing, 2021, pp. 18–40

[74] Nils Wortmann, Malte Michel, and Stefan Naujokat. “A Fully Model-Based Approach
to Software Development for Industrial Centrifuges”. In: Proc. of the 7th Int. Symp.
on Leveraging Applications of Formal Methods, Verification and Validation, Part
II (ISoLA 2016). Vol. 9953. Lecture Notes in Computer Science. Springer, 2016,
pp. 774–783.
doi: 10.1007/978-3-319-47169-3_58

[77] Tim Tegeler, Frederik Gossen, and Bernhard Steffen. “A Model-driven Approach
to Continuous Practices for Modern Cloud-based Web Applications”. In: 2019 9th
International Conference on Cloud Computing, Data Science Engineering (Confluence).
2019, pp. 1–6.
doi: 10.1109/CONFLUENCE.2019.8776962

75

https://doi.org/10.1007/978-3-030-89159-6_1
https://doi.org/10.1007/978-3-030-16722-6_6
https://doi.org/10.1007/978-3-540-70889-6_7
https://doi.org/10.1007/978-3-319-47169-3_58
https://doi.org/10.1109/CONFLUENCE.2019.8776962

Chapter 7. Future Work

[78] Sebastian Teumert. “Visual Authoring of CI/CD Pipeline Configurations”. Bachelor’s
Thesis. TU Dortmund University, Apr. 2021
url: https://archive.org/details/visual-authoring-of-cicd-pipeline-
configurations

[79] John Stark. Product Lifecycle Management. Springer International Publishing, 2011.
doi: 10.1007/978-0-85729-546-0

[81] Scott Chacon and Ben Straub. Pro git: Everything you need to know about Git.
English. Second. Apress, 2014

[85] Louis Rose, Markus Herrmannsdoerfer, James Williams, Dimitrios Kolovos, Kelly
Garcés, Richard Paige, and Fiona Polack. “A Comparison of Model Migration Tools”.
In: vol. 6394. Oct. 2010.
doi: 10.1007/978-3-642-16145-2_5

[86] Wael Kessentini and Vahid Alizadeh. “Semi-automated metamodel/model co-evolution:
a multi-level interactive approach”. In: Software and Systems Modeling 21 (Apr.
2022).
doi: 10.1007/s10270-022-00978-2

[87] Antonia Bertolino, Antonello Calabrò, Maik Merten, and Bernhard Steffen. “Never-
stop Learning: Continuous Validation of Learned Models for Evolving Systems
through Monitoring.” In: ERCIM News 2012.88 (2012), pp. 28–29
url: http://ercim- news.ercim.eu/en88/special/never- stop- learning-
continuous-validation-of-learned-models-for-evolving-systems-through-
monitoring

[88] Alexander Bainczyk, Bernhard Steffen, and Falk Howar. “Lifelong Learning of Reactive
Systems in Practice”. In: The Logic of Software. A Tasting Menu of Formal Methods:
Essays Dedicated to Reiner Hähnle on the Occasion of His 60th Birthday. Ed. by
Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, and Einar Broch Johnsen.
Cham: Springer International Publishing, 2022, pp. 38–53.
doi: 10.1007/978-3-031-08166-8_3
url: https://doi.org/10.1007/978-3-031-08166-8_3

[89] Alexander Bainczyk, Alexander Schieweck, Malte Isberner, Tiziana Margaria, Johannes
Neubauer, and Bernhard Steffen. “ALEX: Mixed-Mode Learning of Web Applica-
tions at Ease”. In: Leveraging Applications of Formal Methods, Verification and
Validation: Discussion, Dissemination, Applications. Ed. by Tiziana Margaria and
Bernhard Steffen. Cham: Springer International Publishing, 2016, pp. 655–671.
doi: 10.1007/978-3-319-47169-3_51

[90] Tim Tegeler. “A Lingualization Strategy for Knowledge Sharing in Large-Scale
DevOps”. PhD thesis. TU Dortmund University, 2023

[92] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Boston, MA, USA, 2008

[97] Nianping Zhu, John Grundy, and John Hosking. “Pounamu: A Meta-Tool for Multi-
View Visual Language Environment Construction”. In: 2004 IEEE Symposium on
Visual Languages and Human Centric Computing. 2004.
doi: 10.1109/VLHCC.2004.41

[98] John Grundy, John Hosking, Karen Na Li, Norhayati Mohd Ali, Jun Huh, and
Richard Lei Li. “Generating Domain-Specific Visual Language Tools from Abstract

76

https://archive.org/details/visual-authoring-of-cicd-pipeline-configurations
https://archive.org/details/visual-authoring-of-cicd-pipeline-configurations
https://doi.org/10.1007/978-0-85729-546-0
https://doi.org/10.1007/978-3-642-16145-2_5
https://doi.org/10.1007/s10270-022-00978-2
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
https://doi.org/10.1007/978-3-031-08166-8_3
https://doi.org/10.1007/978-3-031-08166-8_3
https://doi.org/10.1007/978-3-319-47169-3_51
https://doi.org/10.1109/VLHCC.2004.41

Visual Specifications”. In: IEEE Transactions on Software Engineering 39.4 (2013),
pp. 487–515.
doi: 10.1109/TSE.2012.33

[100] Vladimir Viyovic, Mirjam Maksimovic, and Branko Perisic. “Sirius: A rapid development
of DSM graphical editor”. In: IEEE 18th International Conference on Intelligent
Engineering Systems INES 2014. IEEE, July 2014.
doi: 10.1109/ines.2014.6909375

[101] Uwe Kastens, Peter Pfahler, and Matthias T. Jung. “The Eli System”. In: Proc. of
the 7th Int. Conf. on Compiler Construction (CC ’98). Vol. 1383. Lecture Notes in
Computer Science. Springer, 1998, pp. 294–297.
doi: 10.1007/BFb0026439

[102] Carsten Schmidt, Bastian Cramer, and Uwe Kastens. Generating visual structure
editors from high-level specifications. Tech. rep. University of Paderborn, Germany,
2008

[103] Lorenzo Bettini. Implementing Domain Specific Languages with Xtext and Xtend.
2nd. Packt Publishing, 2016

[105] Lennart C.L. Kats and Eelco Visser. “The Spoofax Language Workbench: Rules
for Declarative Specification of Languages and IDEs”. In: Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and
Applications. OOPSLA ’10. Reno/Tahoe, Nevada, USA: Association for Computing
Machinery, 2010, pp. 444–463.
doi: 10.1145/1869459.1869497

[106] Eelco Visser and Zine-el-Abidine Benaissa. “A Core Language for Rewriting”. In:
Electronic Notes in Theoretical Computer Science 15 (1998), pp. 422–441.
doi: 10.1016/S1571-0661(05)80027-1

[108] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Chuck
Thomasson, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi. “The Generic
Modeling Environment”. In: Workshop on Intelligent Signal Processing (WISP 2001).
2001

[109] Akos Lédeczi, Miklós Maróti, and Péter Völgyesi. The Generic Modeling Environment.
Tech. rep. Nashville, TN, 37221, USA: Institute for Software Integrated Systems,
Vanderbilt University, 2003
url: http://www.isis.vanderbilt.edu/sites/default/files/GMEReport.pdf

[111] Paul Klint, Tijs van der Storm, and Jurgen Vinju. “RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation”. In: 2009 Ninth IEEE
International Working Conference on Source Code Analysis and Manipulation. 2009,
pp. 168–177.
doi: 10.1109/SCAM.2009.28

[112] Paul Klint, Tijs van der Storm, and Jurgen Vinju. “EASY Meta-programming with
Rascal”. In: Generative and Transformational Techniques in Software Engineering
III: International Summer School, GTTSE 2009, Braga, Portugal, July 6-11, 2009.
Revised Papers. Ed. by João M. Fernandes, Ralf Lämmel, Joost Visser, and João
Saraiva. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 222–289.
doi: 10.1007/978-3-642-18023-1_6

[113] Paul Klint, Jurgen Vinju, and Tijs Storm. “Language Design for Meta-Programming
in the Software Composition Domain”. In: Proceedings of the 8th International

77

https://doi.org/10.1109/TSE.2012.33
https://doi.org/10.1109/ines.2014.6909375
https://doi.org/10.1007/BFb0026439
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1016/S1571-0661(05)80027-1
http://www.isis.vanderbilt.edu/sites/default/files/GMEReport.pdf
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1007/978-3-642-18023-1_6

Chapter 7. Future Work

Conference on Software Composition. SC ’09. Zurich, Switzerland: Springer-Verlag,
2009, pp. 1–4.
doi: 10.1007/978-3-642-02655-3_1

[115] Steven Kelly, Kalle Lyytinen, and Matti Rossi. “MetaEdit+: A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment”. In: CAiSE. Vol. 1080.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 1996, pp. 1–21.
doi: 10.1007/3-540-61292-0_1

[117] Hauke Fuhrmann and Reinhard von Hanxleden. “Taming Graphical Modeling”.
In: Proc. of 13th Int. Conf. on Model Driven Engineering Languages and Systems
(MODELS 2010), Part I. Lecture Notes in Computer Science 6394. Springer, 2010,
pp. 196–210.
doi: 10.1007/978-3-642-16145-2_14

[120] Fabien Campagne. The MPS Language Workbench, Vol. 1. 1st. North Charleston,
SC, USA: CreateSpace Independent Publishing Platform, 2014

[122] Markus Völter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. “Towards User-
Friendly Projectional Editors”. In: Proc. of 7th Int. Conf. on Software Language
Engineering (SLE 2014). 2014.
doi: 10.1007/978-3-319-11245-9_3

[125] Fatima Rani, Pablo Diez, Enrique Chavarriaga, Esther Guerra, and Juan de Lara.
“Automated Migration of EuGENia Graphical Editors to the Web”. In: Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings. MODELS ’20. Virtual Event,
Canada: Association for Computing Machinery, 2020.
doi: 10.1145/3417990.3420205

[127] Fatima Rani, Pablo Diez, Enrique Chavarriaga, Esther Guerra, and Juan de Lara.
“Automated Migration of EuGENia Graphical Editors to the Web”. In: Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings. MODELS ’20. Virtual Event,
Canada: Association for Computing Machinery, 2020.
doi: 10.1145/3417990.3420205
url: https://doi.org/10.1145/3417990.3420205

[139] Sergey Dmitriev. “Language Oriented Programming: The Next Programming Paradigm”.
In: JetBrains onBoard Online Magazine 1 (2004)
url: http://www.onboard.jetbrains.com/is1/articles/04/10/lop/

[140] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,
Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. “A Programmable Programming
Language”. In: Communications of the ACM 61.3 (Mar. 2018), pp. 62–71.
doi: 10.1145/3127323

[141] Philip Zweihoff. “Aligned and Collaborative Language-Driven Engineering”. Dissertation.
Dortmund, Germany: TU Dortmund, 2022.
doi: 10.17877/DE290R-22594
url: https://eldorado.tu-dortmund.de/handle/2003/40736

[142] Alexander Bainczyk, Daniel Busch, Marco Krumrey, Daniel Sami Mitwalli, Jonas
Schürmann, Joel Tagoukeng Dongmo, and Bernhard Steffen. “CINCO Cloud: A
Holistic Approach for Web-Based Language-Driven Engineering”. In: Leveraging
Applications of Formal Methods, Verification and Validation. Software Engineering.

78

https://doi.org/10.1007/978-3-642-02655-3_1
https://doi.org/10.1007/3-540-61292-0_1
https://doi.org/10.1007/978-3-642-16145-2_14
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1145/3417990.3420205
https://doi.org/10.1145/3417990.3420205
https://doi.org/10.1145/3417990.3420205
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
https://doi.org/10.1145/3127323
https://doi.org/10.17877/DE290R-22594
https://eldorado.tu-dortmund.de/handle/2003/40736

Ed. by Tiziana Margaria and Bernhard Steffen. Cham: Springer Nature Switzerland,
2022, pp. 407–425.
doi: 10.1007/978-3-031-19756-7_23

[143] Alexander Osterwalder. “The business model ontology a proposition in a design
science approach”. PhD thesis. Université de Lausanne, Faculté des hautes études
commerciales, 2004

[144] Mark A Hart. “The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses”. In: Journal of Product
Innovation Management 29.3 (2012), pp. 508–509.
doi: 10.1111/j.1540-5885.2012.00920_2.x

[145] Alexander Osterwalder and Yves Pigneur. Business Model Generation. John Wiley
& Sons, Inc., 2010

[146] Alexander Osterwalder, Yves Pigneur, Manuel Au-Yong Oliveira, and João José
Pinto Ferreira. “Business Model Generation: A Handbook for Visionaries, Game
Changers and Challengers”. In: African journal of business management 5.7 (2011),
pp. 22–30

79

https://doi.org/10.1007/978-3-031-19756-7_23
https://doi.org/10.1111/j.1540-5885.2012.00920_2.x

Chapter 7. Future Work

80

Online References

Each of the online references listed beneath has been last visited on February 1st, 2023.

[19] Martin Fowler. Language Workbenches: The Killer-App for Domain Specific Languages?
June 2005
url: http://martinfowler.com/articles/languageWorkbench.html

[20] Cinco SCCE Meta Tooling Suite
url: https://cinco.scce.info

[25] EU Seventh Framework Programme (FP7). ITSy - IT Simply Works
url: https://cordis.europa.eu/project/id/258058

[34] MathWorks. Simulink
url: http://www.mathworks.com/products/simulink

[38] Python Software Foundation. Python
url: https://www.python.org

[39] Jinja
url: https://palletsprojects.com/p/jinja/

[40] Mozilla Foundation. JavaScript
url: https://developer.mozilla.org/JavaScript

[41] Handlebars
url: https://handlebarsjs.com

[42] Mustache
url: https://mustache.github.io

[43] Oracle Corporation. Java
url: https://www.java.com

[44] Apache Software Foundation. Freemarker
url: https://freemarker.apache.org

[45] Apache Software Foundation. The Apache Velocity Project
url: https://velocity.apache.org/

[50] Apache Software Foundation. Maven
url: https://maven.apache.org

[52] Docker Corporation. Docker
url: https://www.docker.com

[53] The Kubernetes Authors. Kubernetes
url: https://kubernetes.io

[58] Sebastian Teumert. Rig — Low-Code CI/CD Modeling
url: https://scce.gitlab.io/rig/

81

http://martinfowler.com/articles/languageWorkbench.html
https://cinco.scce.info
https://cordis.europa.eu/project/id/258058
http://www.mathworks.com/products/simulink
https://www.python.org
https://palletsprojects.com/p/jinja/
https://developer.mozilla.org/JavaScript
https://handlebarsjs.com
https://mustache.github.io
https://www.java.com
https://freemarker.apache.org
https://velocity.apache.org/
https://maven.apache.org
https://www.docker.com
https://kubernetes.io
https://scce.gitlab.io/rig/

Chapter 7. Future Work

[60] Xtext - Language Engineering Made Easy!
url: http://www.eclipse.org/Xtext/

[61] Eclipse Modeing Framework
url: http://www.eclipse.org/modeling/emf/

[65] DIME Integrated Modeling Environment
url: https://dime.scce.info

[67] Official page for Language Server Protocol
url: https://microsoft.github.io/language-server-protocol/

[72] Springer International Publishing AG. Equinocs
url: https://equinocs.springernature.com

[75] SCCE - Sustainable Computing for Continuous Engineering
url: https://gitlab.com/scce

[76] Rig
url: https://gitlab.com/scce/rig

[80] Git
url: https://git-scm.com

[82] Git Flow
url: https://www.gitkraken.com/learn/git/git-flow

[83] Vincent Driessen. A successful Git branching model
url: http://nvie.com/posts/a-successful-git-branching-model/

[84] Apache Software Foundation. Daffodil
url: https://daffodil.apache.org/

[91] Object Management Group (OMG). OMG Meta Object Facility (MOF) Core
Specification Version 2.4.1
url: http://www.omg.org/spec/MOF/2.4.1/PDF

[93] Eclipse Foundation Corporation. Acceleo
url: https://www.eclipse.org/acceleo

[94] The Eclipse Foundation
url: https://www.eclipse.org/

[95] Microsoft. Visual Studio
url: https://visualstudio.microsoft.com

[96] Marama
url: https://wiki.auckland.ac.nz/display/csidst/

[99] Eclipse Sirius
url: http://www.eclipse.org/sirius/

[104] Spoofax: The Language Designer’s Workbench
url: https://spoofax.dev

[107] WebGME
url: https://webgme.org/

[110] Eclipse Foundation Corporation. Rascal
url: https://www.rascal-mpl.org

82

http://www.eclipse.org/Xtext/
http://www.eclipse.org/modeling/emf/
https://dime.scce.info
https://microsoft.github.io/language-server-protocol/
https://equinocs.springernature.com
https://gitlab.com/scce
https://gitlab.com/scce/rig
https://git-scm.com
https://www.gitkraken.com/learn/git/git-flow
http://nvie.com/posts/a-successful-git-branching-model/
https://daffodil.apache.org/
http://www.omg.org/spec/MOF/2.4.1/PDF
https://www.eclipse.org/acceleo
https://www.eclipse.org/
https://visualstudio.microsoft.com
https://wiki.auckland.ac.nz/display/csidst/
http://www.eclipse.org/sirius/
https://spoofax.dev
https://webgme.org/
https://www.rascal-mpl.org

[114] MetaCase - Domain-Specific Modeling with MetaEdit+
url: http://www.metacase.com

[116] KIELER Project
url: https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER

[118] Eclipse Layout Kernel
url: http://www.eclipse.org/elk/

[119] JetBrains. Meta Programming System
url: https://www.jetbrains.com/mps/

[121] JetBrains
url: https://www.jetbrains.com

[123] Google Corporation. Google Docs
url: https://docs.google.com

[124] Microsoft Corporation. Microsoft 365
url: https://www.microsoft.com/microsoft-365

[126] Eclipse EuGENia. Graphical Model Editor development with EuGENia/GMF
url: https://www.eclipse.org/epsilon/doc/eugenia/

[128] Clay Richardson and John Rymer. New Development Platforms Emerge For Customer-
Facing Applications
url: https : / / www . forrester . com / report / New - Development - Platforms -
Emerge-For-CustomerFacing-Applications/RES113411

[129] Mendix. The Definitive Guide to Low-Code Development
url: https://www.mendix.com/low-code-guide

[130] AppSheet. App Sheet
url: https://www.appsheet.com/

[131] Microsoft Corporation. Microsoft Power Apps
url: https://powerapps.microsoft.com

[132] Outsystems
url: https://www.outsystems.com

[133] Mendix Technology BV. Mendix
url: https://www.mendix.com/

[134] Appian
url: https://appian.com

[135] Bubble
url: https://bubble.io

[136] Salesforce Corporation. Lightning
url: https://www.salesforce.com/lightning

[137] Salesforce Corporation
url: https://www.salesforce.com

[138] Ruby Programming Language
url: http://www.ruby-lang.org/

[147] Miro
url: https://www.miro.com/

83

http://www.metacase.com
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER
http://www.eclipse.org/elk/
https://www.jetbrains.com/mps/
https://www.jetbrains.com
https://docs.google.com
https://www.microsoft.com/microsoft-365
https://www.eclipse.org/epsilon/doc/eugenia/
https://www.forrester.com/report/New-Development-Platforms-Emerge-For-CustomerFacing-Applications/RES113411
https://www.forrester.com/report/New-Development-Platforms-Emerge-For-CustomerFacing-Applications/RES113411
https://www.mendix.com/low-code-guide
https://www.appsheet.com/
https://powerapps.microsoft.com
https://www.outsystems.com
https://www.mendix.com/
https://appian.com
https://bubble.io
https://www.salesforce.com/lightning
https://www.salesforce.com
http://www.ruby-lang.org/
https://www.miro.com/

Chapter 7. Future Work

[148] Strategyzer
url: https://www.strategyzer.com/app

84

https://www.strategyzer.com/app

	Introduction
	My Contribution

	Language-Driven Engineering (LDE)
	Code Generation
	Application Generation
	Integrated Modeling Environments (IMEs)

	LDE Ecosystems
	CINCO (built with EMF)
	Meta-Model Modularity
	Language Integration
	Application Generation

	DIME (built with CINCO)
	Application Modeling
	Modeling Environment
	Application Generation
	Application Deployment

	EquinOCS (built with DIME)
	The CINCO-based LDE Ecosystem
	Generalization

	LDE Ecosystem Dynamics
	Product Evolution (local)
	Source Model Management
	Continuous Integration and Deployment
	Data Migration

	Language Evolution (step-up)
	Adoption of Language Changes (step-down)
	Multi-Level Language Evolution (path-up)
	Multi-Level Adoption of Language Changes (tree down)
	Multi-Level Quality Assurance
	Quality Feedback Loop

	Related Work
	Conclusion
	Future Work
	Abbreviations
	Print References
	Online References

