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Abstract
We study families of faces for convex semi-algebraic sets via the normal cycle which
is a semi-algebraic set similar to the conormal variety in projective duality theory.
We propose a convex algebraic notion of a patch—a term recently coined by Ciripoi,
Kaihnsa, Löhne, and Sturmfels as a tool for approximating the convex hull of a semi-
algebraic set. We discuss geometric consequences, both for the semi-algebraic and
convex geometry of the families of faces, as well as variations of our definition and
their consequences.
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1 Introduction

The main topic of our paper is the boundary structure of convex semi-algebraic sets.
The faces in the boundary of such a set come in semi-algebraic families which cover
the boundary. Our goals are first to make precise what the geometrically meaningful
notions of families are in this setup and second to study the basic topological properties
of the covering of the boundary. We propose a definition of a patch and discuss its
properties and variations, also with a view to computations.
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There aremany natural examples of convex semi-algebraic sets coming from a vari-
ety of different sources. When we think about the facial structure, we might first look
at polytopes, which exhibit a finite number of faces in every intermediate dimension,
the structure of which is encoded in a finite lattice. On the other end of the spectrum are
convex bodies with a smooth, positively curved boundary made up entirely of extreme
points. But many convex bodies in convex algebraic geometry and applications fall
somewhere in between these two extremes. This is especially true for many exam-
ples arising as convex sets of matrices, like spectrahedra, or sets that are presented
as the convex hull of some lower dimensional set. Spectrahedra (and more generally
hyperbolicity cones) are central objects at the intersection of convex algebraic geom-
etry and optimization (Blekherman et al. 2013; Renegar 2006). Convex hulls of real
algebraic sets appear, for instance, in the context of attainable regions of dynamical
systems (Ciripoi et al. 2019) and in the study of quantum systems (Plaumann et al.
2021) and have been studied in classical projective geometry (Ranestad and Sturmfels
2011, 2012).

A computational approach to identify families of faces for convex hulls of curves
was presented in Ciripoi et al. (2019) where the authors introduce the concept of a
patch and give a numerical algorithm to compute the boundary structure. We propose
a definition of a patch based on semi-algebraic geometry rather than using analytical
notions and derive the main analytical features from our geometric definition.

The fact that the boundary of a convex semi-algebraic set is covered by (semi-
)algebraic families of faces follows essentially from duality theory in convex geometry
combinedwith quantifier elimination (or, more generally, cylindrical algebraic decom-
position). Our approach exploits these elements to define a patch geometrically. A
(primal) patch is a primal-dual object that encodes a (exposed) face as the set of points
given by a supporting hyperplane and a family of faces by varying the supporting
hyperplane in a connected semi-algebraic set, see Definition 3.4. This all takes place
in the normal cycle from convex geometry—a notion that is quite similar to conor-
mal varieties from classical projective geometry. As a general reference for duality in
convex algebraic geometry, in particular the interplay of convex duality and projective
duality theory, see (Sinn 2015). We discuss the relevant features of the normal cycle
in Sect. 2. We then turn our attention to geometric and topological properties (in both
the euclidean and the Zariski topology) of the covering of the boundary of the convex
sets by the family of faces in a patch. The first general result is Theorem 3.16, connect-
ing patches to projective duality. The first step towards Hausdorff continuity of faces
varying in a patch is Lemma 3.20. There is a technical issue with Hausdorff continuity
of the family of “faces” in a patch that we illustrate by example (see Example 3.6
and Example 3.19). In fact, patches can cut faces into parts and produce a family of
subsets of faces, and the subset in each face is not even necessarily connected.

The main reason for our distinction between patches (which are contained in the
biregular locus of the appropriate conormal varieties) and their closures which we call
closedpatches isTheorem3.16:Thedimensionof the faces in the family corresponding
to a patch is constant. However, by taking closure, we might get faces of higher
dimension in the family corresponding to the closed patch (as illustrated for instance
by the elliptope in Example 3.8). The family of faces corresponding to a patch is
Hausdorff continuous under the additional assumption that for every patch the interior
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of a face is either entirely contained in it or disjoint to it. This is proved in Sect. 5,
along with the fact that this assumption is always satisfied for hyperbolicity cones.

The normal cycle as a tool to study families of faces relies on duality, which is
technically simpler and less prone to exceptions in the homogeneous setup, that is
to say, for convex cones and projective varieties. On the other hand, some of our
geometric intuition, as well as metric questions like convergence in the Hausdorff
metric, are more easily phrased for compact convex sets. We will therefore adopt both
points of view and go back and forth as needed.

2 The normal cycle

In this section, we discuss the basics of the normal cycle in convex geometry from our
point of viewmotivated by convex algebraic geometry. For basics in convex geometry,
we refer to Barvinok (2002). For basics in (projective) algebraic geometry, we refer
to Harris (1992), and for semi-algebraic geometry to Bochnak et al. (1998).

We denote by (Rn)∗ the dual space of R
n . For a linear functional � ∈ (Rn)∗ and

x ∈ R
n , we write 〈�, x〉 = �(x).

Let K ⊂ R
n be a compact convex semi-algebraic set. We usually assume that the

origin is an interior point of K . The (polar) dual of K , denoted by K ◦, is the convex
set {� ∈ (Rn)∗ | 〈�, x〉 ≥ −1 for all x ∈ K }. The polar dual of K is semi-algebraic by
quantifier-elimination. It is compact if the origin is an interior point of K . In fact, the
separation theorem implies that (K ◦)◦ = conv(K ∪ {0}).

Weuse the samedefinitionof the normal cycle asCiripoi,Kaihnsa,Löhne, Sturmfels
in Ciripoi et al. (2019), namely

N (K ) = {
(x, �) ∈ ∂K × ∂K ◦ | 〈�, x − x ′〉 ≤ 0 for all x ′ ∈ K

} ⊂ R
n × R

n .

Thus the normal cycle consists of all pairs of points (x, �), where x is in the boundary
of K and � corresponds to an inward normal vector of a supporting hyperplane to K
containing x . The normal cycle comes with the two projections π1 and π2 onto the
first and second factor.

Usually, we work with convex cones, especially in proofs, and further pass from
affine to projective space: By a proper cone C ⊂ R

n , we will mean a closed convex
cone with the tip at the origin, with non-empty interior and not containing any lines.
The latter condition is equivalent to C ∩ −C = {0}. The polar dual of a convex
cone coincides with the usual notion of the dual cone C∨ = {� ∈ (Rn)∗ | �(x) ≥
0 for all x ∈ C}. The dual of a proper cone is again proper and satisfies biduality
(C∨)∨ = C .

Given a compact convex semi-algebraic set K ⊂ R
n with non-empty interior, we

may homogenize and obtain the proper cone

K̂ = {(λx, λ) | x ∈ K , λ ≥ 0} ⊂ R
n × R.

Every proper cone can be obtained as such a homogenization with an appropriate
choice of coordinates.
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WeuseP
n(R) to denote n-dimensional real projective space andP

n(R)∗ for the dual
projective space. For any proper cone C in R

n+1, we may take the image of C \ {0} in
P
n(R) under the canonical surjectionR

n+1\{0} → P
n(R) and obtain a semi-algebraic

subset with non-empty interior in P
n(R). Wewill usually not distinguish betweenC as

a subset of R
n+1 and C as a subset of P

n(R), and likewise for the dual cone. Note that
in passing to projective space in this way, the dimension of a semi-algebraic proper
cone C drops from n + 1 to n.

Definition 2.1 Let C ⊂ R
n+1 be a proper cone. The (conic) normal cycle of C is the

set

N+(C) = {
(x, �) ∈ ∂C × ∂C∨ | �(x) = 0

} ⊂ P
n(R) × (Pn(R))∗.

Remark 2.2 The normal cycle of a convex body K (i.e., a compact convex set contain-
ing the origin in its interior) and the conic normal cycle of its homogenization K̂ are
essentially the same. More precisely, we have N+(K̂ ) = N̂ (K ), where N̂ (K ) is the
image of N (K ) ⊂ R

n × R
n under the embedding R

n × R
n → P

n(R) × (Pn(R))∗,
(x, �) �→ ((x : 1), (� : 1)).
Lemma 2.3 Let C ⊂ R

n+1 be a proper convex cone. The normal cycle is self-dual,
i.e., N+(C) = N+(C∨) ⊂ R

n+1 × (Rn+1)∗ (after appropriate permutation of the
factors).

Proof. This follows from the biduality theorem in convex geometry, which, in our
case, implies that (C∨)∨ = C holds .

Of course, the same holds for the normal cycle N (K ) of a compact convex set
K containing the origin in its interior (by Remark 2.2 or with the same proof using
biduality for convex bodies).

Next, we show that the normal cycle N+(C) of a proper semi-algebraic cone C ⊂
R
n+1, regarded as a subset of P

n(R) × P
n(R)∗, has pure dimension n − 1. To show

this, we restrict to a compact base and show that the normal cycleN (K ) of a compact
convex set containing the origin in its interior is semi-algebraically homeomorphic to
the boundary of theMinkowski sum of K with the unit ball B(0, 1) = {x ∈ R

n | ‖x‖ ≤
1} ⊂ R

n .

Notation 2.4 Let K ⊂ R
n be a compact convex semi-algebraic set containing the

origin in its interior. Since K is compact, the function K → R, y �→ ‖x − y‖
achieves its minimum for every x ∈ R

n . Moreover, the convexity of K implies that
this minimum is achieved at a unique point for every x . For these two functions, we
fix the notation

(1) dK : R
n → R, x �→ min

y∈K‖x − y‖
(2) pK : R

n → K , x �→ argmin
y∈K

‖x − y‖

The map pK is called the “metric projection”.

123



Beitr Algebra Geom

Proposition 2.5 Let K be a compact convex set containing the origin in its interior.
The functions dK : R

n → R and pK : R
n → K are semi-algebraic and continuous.

Moreover, the function uK : R
n \ K → ∂K ◦, x �→ x−pK (x)

〈pK (x)−x,pK (x)〉 is well-defined,
semi-algebraic, and continuous as well.

Proof. The map dK is semi-algebraic and continuous, see for example (Bochnak et al.
1998, Proposition 2.2.8) (by quantifier elimination and the triangle inequality). By
Schneider (2013, Theorem 1.2.1) the map pK is contracting and hence continuous.
The map pK is semi-algebraic by quantifier elimination because its graph is the set
{(x, y) ∈ (Rn \ K ) × K | ∀ z ∈ K | ‖x − y‖ ≤ ‖x − z‖}.

We simply write d and p for dK and pK for the remainder of the proof.
Clearly p(x) ∈ ∂K for any x ∈ R

n \K . It remains to show that for every x ∈ R
n \K

we have

〈p(x) − x, p(x)〉 �= 0 and
x − p(x)

〈p(x) − x, p(x)〉 ∈ ∂K ◦.

We first show that

∀y ∈ K : 〈x − p(x), y〉 ≤ 〈x − p(x), p(x)〉.

Let y ∈ K . Set f (t) := ‖x − (
p(x) + t(y − p(x))

)‖2. Since f has a minimum at 0
on [0, 1], we have

0 ≤ f ′(0) = 2〈x − p(x), p(x) − y〉.

Since the origin is an interior point of K , we can choose a point y ∈ K such that
〈x − p(x), y〉 > 0. This implies that 〈p(x) − x, p(x)〉 < 0 for all x ∈ R

n \ K .
Computing 〈uK (x), p(x)〉 = −1 shows that x−p(x)

〈p(x)−x,p(x)〉 lies in the boundary of K ◦
as claimed.

The map uK is continuous and semi-algebraic as the composition of continuous
and semi-algebraic functions.

Lemma 2.6 Let K ⊂ R
n be a compact semi-algebraic set containing the origin in

its interior. The set d−1
K ([0, 1]) is the Minkowski sum of K and the unit ball B(0, 1)

and therefore a compact convex semi-algebraic set containing K . Its boundary is the
preimage of 1 under dK .

Proof. Write K1 for d−1
K ([0, 1]). It is semi-algebraic as the preimage of a semi-

algebraic set with respect to a semi-algebraic function. The set K1 contains K =
d−1
K ({0}). It is convex because dK is a convex function by the triangle inequality. It is

closed because dK is continuous and it is bounded and hence compact.
So we only have to show that ∂K1 ⊃ d−1

K ({1}), as we get ∂K1 ⊂ d−1
K ({1}) from

continuity. Let x ∈ d−1
K ({1}) and y ∈ K . We consider the function g(t) = ‖y −(

x + t(x − p(x))
)‖2. We saw in the proof of Proposition 2.5 that 〈x − p(x), y〉 ≤

〈x − p(x), p(x)〉 holds for all y ∈ K . Hence

g′(0) = 〈y − x, p(x) − x〉
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= 〈y − p(x), p(x) − x〉 + 〈p(x) − x, p(x) − x〉
≥ 0 + ‖p(x) − x‖2 = 1.

Therefore dK (x + t(x − p(x)) > 1 for all sufficiently small t > 0, which shows that
x is in the boundary of K1.

Theorem 2.7 Let K ⊂ R
n be a compact semi-algebraic convex set containing the

origin in its interior and let K1 be the Minkowski sum of K and the unit ball B(0, 1).
Let pK be the metric projection onto K and let uK be the map uK : R

n \ K → ∂K ◦,
x �→ x−pK (x)

〈pK (x)−x,pK (x)〉 The map

ϕ : ∂K1 −→ N (K ),

x �−→ (pK (x), uK (x))

is a semi-algebraic homeomorphism. In particular, the normal cycleN (K ) is a com-
pact semi-algebraic set of pure dimension n − 1.

Proof. The map ϕ is a semi-algebraic and continuous function. Let

ψ : N (K ) −→ ∂K1,

(x, �) �−→ x − �

‖�‖
The map ψ is well defined by Lemma 2.6 because ψ(x, �) has distance 1 from x and
‖y − ψ(x, �)‖2 ≥ 1 for all y ∈ K . It is clearly semi-algebraic and continuous. For
every y ∈ K

‖ψ(x, �) − y‖2 = ‖y‖2 − 2〈y, ψ(x, �)〉 + ‖ψ(x, �)‖2

= ‖y‖2 − 2〈y, x〉 + 2

‖�‖ 〈y, �〉
︸ ︷︷ ︸
≥−1

+‖x‖2 − 2

‖�‖ 〈x, �〉︸ ︷︷ ︸
=−1

+1

≥ ‖y‖2 − 2〈y, x〉 + ‖x‖2 + 1 = ‖x − y‖2 + 1,

showing that pK (ψ(x, �)) = x . Now

uK (ψ(x, �))

= x − �
‖�‖ − x

〈x − x + �
‖�‖ , x〉

= − �

〈�, x〉 = �.

Therefore ϕ ◦ ψ = idN (K ). Next

ψ(ϕ(x)) = pK (x) − uK (x)

‖uK (x)‖
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= pK (x) − (x − pK (x))|〈pK (x) − x, pK (x)〉|
〈pK (x) − x, pK (x)〉
︸ ︷︷ ︸

<0 by proof of 2.5

‖x − pK (x)‖

= pK (x) + x − pK (x)

‖x − pK (x)‖
︸ ︷︷ ︸

=1

= x .

Hence ψ ◦ ϕ = id∂K1 . Therefore ψ = ϕ−1 and we are done.

3 The conormal variety and patches

We use P
n to denote complex projective n-space, containing real projective space

P
n(R) as a subset. A real projective variety is a projective variety defined over R.

Such a variety is the common zero setV( f1, . . . , fr ) of real homogeneous polynomials
f1, . . . , fr in n+ 1 variables. For a real projective variety X , we denote the real locus
of X by X(R) and the regular locus of X by Xreg. The (projective) tangent space of X
at a regular point x ∈ Xreg, regarded as a linear subspace of P

n , is denoted by Tx (X).
For a subset S of P

n , we denote the closure of S in the (real) Zariski topology
by clZar(S), i.e., the smallest (real) projective variety containing S. The notation S is
reserved for the euclidean closure of S in real or complex projective space.

Definition 3.1 Let S ⊂ P
n(R) be a semi-algebraic set. The algebraic boundary of S

is the Zariski-closure of the euclidean boundary ∂S and is denoted by ∂a S.

The algebraic boundary of S is therefore a projective variety in P
n , typically with

both real and complex points. For any open semi-algebraic subset S of P
n(R), the

algebraic boundary is a real hypersurface, i.e., it is of pure algebraic dimension n − 1.
By our usual abuse of notation, the algebraic boundary ∂aC of a proper coneC ⊂ R

n+1

is the algebraic boundary ofC regarded as a subset of P
n(R). AsC is the closure of its

interior, its algebraic boundary is thus a hypersurface, possibly with several irreducible
components.

Definition 3.2 Let X be a real projective variety embedded into P
n . The conormal

variety of X is the projective variety

CN(X) = clZar
({

(x, �) ∈ P
n × (Pn)∗ | x ∈ Xreg and � ≡ 0onTx (X)

})
.

The image ofCN(X) under the projection onto the second factor is called the projective
dual of X and is denoted by X∗. We will refer to the open subvariety

CNbireg(X) = {
(x, �) ∈ CN(X) | x ∈ Xreg and � ∈ (X∗)reg

}

as the biregular locus of CN(X).

Remark 3.3 If X ⊂ P
n is an irreducible hypersurface defined by the vanishing of

an irreducible real homogeneous polynomial f , and if x is a regular point of X ,
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then (x,∇ f (x)) ∈ CN(X) and moreover π−1
1 (x) = {(x,∇ f (x))}, where π1 is the

projection of CN(X) ⊂ P
n × P

n onto the first factor.

Definition 3.4 Let C ⊂ R
n+1 be a proper cone and let Y be an irreducible component

of ∂aC . A (primal) patch ofC (over Y ) is a connected component of the semi-algebraic
subset of N+(C) ∩ CNbireg(Y ) consisting of pairs (x, �) such that x is not contained
in any irreducible component of ∂aC other than Y . The euclidean closure of a patch
(in P

n(R)×P
n(R)∗) is called a closed (primal) patch of C (over Y ). The finite family

of all primal patches of C is denoted by P(C). A dual patch of C is a patch of the
dual cone of C .

While this definition certainly looks complicated, we will now examine a series of
examples that should help to visualize it and to explain why we settled on these exact
terms.Our exampleswill be convex bodies K ⊂ R

n , regarded as affine sections of their
homogenizations K̂ = {(λx, λ) ∈ R

n×R |λ ≥ 0, x ∈ K }, as explained in the previous
section. As the normal cycleN (K ) of K viewed as a subset of P

n(R)×P
n(R)∗ is the

same as the normal cycleN+(K̂ ) (see Remark 2.2), we can interpret the homogeneous
Definition 3.4 of a patch for K̂ in the affine chart containing K .

Remark 3.5 Let K ⊂ R
n be a compact convex set containing the origin in its interior

and let X be an irreducible component of the algebraic boundary of K . We write
C = K̂ for its homogenization, which is a cone in R

n × R. We saw in Remark 2.2
that the normal cycle N (K ) of K and the projective normal cycle N+(C) of C are
semi-algebraically homeomorphic. The algebraic cone over X embedded into C

n ×C

as {(x, 1) | x ∈ X} is an irreducible component of the algebraic boundary of C if
we interpret it as a subvariety Y of P

n . As such, Y is the projective closure of X
with respect to the embedding A

n → P
n , x �→ (x : 1). So by a (primal) patch

of K (over X ) we mean a connected component of the semi-algebraic set N+(C) ∩
CNbireg(Y ) identifiedwith a subset ofN (K )via the semi-algebraic homeomorphism in
Remark 2.2.

Example 3.6 (Circle and a stick) Let K ⊂ R
3 be the convex hull of the following set

{(−1, 0,−1), (−1, 0, 1)} ∪ {(x, y, 0) ∈ R
3 | x2 + y2 = 1},

a unit circle in the (x, y)-plane and an interval parallel to the z-axis. Then K is a
convex body, its algebraic boundary consists of two quadratic cones

(x − z)2 + y2 − (z + 1)2, (x + z)2 + y2 − (z − 1)2.

The singular locus of ∂aK in ∂K is the circle and the “stick”

conv{(−1, 0,−1), (−1, 0, 1)}

attached to it. The dual convex body K ◦ is a “bellows” (Fig. 1), it is the convex hull
of the two ovals

{(x, y, x − 1) ∈ R
3 | x2 + y2 = 1} in the hyperplane {� | 〈(−1, 0, 1), �〉 = −1}
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Fig. 1 The convex body K and its dual body K ◦ from Example 3.6

{(x, y, 1 − x) ∈ R
3 | x2 + y2 = 1} in the hyperplane {� | 〈(−1, 0,−1), �〉 = −1}

which meet in the point (1, 0, 0).
There are two primal patches of K , one for each quadratic cone. The patch for each

cone contains the points in the intersection of the cone with the boundary of K that
are neither on the circle nor the stick, together with the unique supporting hyperplane
at each such point, which is equal to the tangent hyperplane to the quadratic cone. The
closed patches also contain the circle and the upper or respectively the lower half of
the stick with the appropriate supporting hyperplane at these points .

Note that both cones are smooth at the points in the relative interior of the stick.
By demanding in our definition of patch that the points x lie on only one irreducible
component of ∂aK , we ensure pure dimensionality of the closed patch and that the
protruding half of the stick is excluded. By taking the closure, only a subset of the face
that is the stick is added, namely the part that makes it continuous in the Hausdorff
metric.

While the condition that a point x ∈ ∂K lies on only one irreducible component of
∂aK is sufficient for the boundary of K to locally coincide with one of the irreducible
components of ∂aK , it is not essential. Let Y be an irreducible component of ∂aC .
Then a necessary and sufficient condition for ∂K to coincide locally with Y at a
x ∈ ∂K ∩ Yreg would be that Y is the only irreducible component of the algebraic
boundary such that its intersection with ∂K has local dimension n − 1 at x . This
condition also distinguishes the two halves of the stick and puts them in separate
patches. Apart from the algebraic structure of the boundary, this separation of the
stick into two halves also reflects the convex geometric fact that the stick is not the
Hausdorff limit of either family of edges. ♦
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Most of the theory below could be developedwith the property “only one irreducible
component of ∂aK has local dimension n − 1 at x” substituting the condition that “x
lies on only one irreducible component of ∂aK ”. In some ways, this might even be
considered more intuitive. On the other hand, it is a much more difficult condition to
check in practice, because it is semi-algebraic in nature. We have therefore decided to
choose the algebraic, second condition in this paper for the definition of a patch. To
further illustrate this point, let us take a look at a further example.

Example 3.7 (Circle and three tangents) Let K ⊂ R
2 be the convex hull of the unit

circle, centered at the origin, and the points (−1,−1) and (−1, 1).
The components of the algebraic boundary are given by the circle x2 + y2 − 1 and

three tangent lines y + 1, y − 1 and x + 1 to the circle. The singular locus of ∂aK in
∂K consists of the points of tangency of the lines to the circle, and the two vertices in
which two of the three lines intersect:

(−1
0

)
,

(
0

−1

)
,

(
0
1

)
,

(−1
1

)
,

(−1
−1

)
.

The primal patches of K are

{((t,−1), (0, 1)) ∈ R
2 × R

2 | − 1 < t < 0}
{((t, 1), (0,−1)) ∈ R

2 × R
2 | − 1 < t < 0}

{((−1, t), (1, 0)) ∈ R
2 × R

2 | − 1 < t < 0}
{((−1, t), (1, 0)) ∈ R

2 × R
2 | 0 < t < 1}

{((x, y), �) ∈ R
2 × R

2 | x2 + y2 = 1, x > 0,

� unit normal of the tangent line at (x, y)}

Note that the line {x = −1} and ∂K coincide locally at (−1, 0). While (−1, 0) also
lies in the unit circle, its intersection with ∂K has local dimension 0 at (−1, 0).

So here, the condition that x should only lie on one irreducible component in order
for (x, �) to be in a patch reflects the algebraic structure of the boundary, rather than
the convex geometric structure. ♦

The next example motivates our usage of the biregular locus, namely the desire for
a patch to project into the regular locus of the dual variety. Using biduality we show
that a patch is a parameterized system of exposed faces of a fixed dimension. If we
were to drop the requirement of biregularity, the dimension of the faces might vary.

Example 3.8 (The elliptope) Let K ⊂ R
3 be the connected component of 0 in

{(x, y, z) ∈ R
3 | f (x, y, z) ≤ 0} where f = x2 + y2 + z2 − 2xyz − 1 is the

Cayley cubic so that K is an “inflated tetrahedron”. The set K is a convex body with
algebraic boundary given by f , an affine part of Cayley’s nodal cubic surface. The
singular locus of ∂aK in ∂K consists of the four points

a = (1, 1, 1), b = (1,−1,−1), c = (−1, 1,−1), d = (−1,−1, 1).
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Fig. 2 The elliptope and its dual body from Example 3.8. The part of the dual boundary in blue is contained
in the Roman surface, while the green part is added by taking the convex hull

Intersecting the four half-spaces

{� | 〈x, �〉 ≤ 3}, x ∈ {a, b, c, d}

with { f ≤ 0} gives us K . For every pair of distinct points v,w ∈ {a, b, c, d} the edge
conv{v,w} is an exposed face of K . Every other proper face of K is an exposed point.
The dual convex body K ◦ is the convex hull of an affine part of the Roman surface,
which is given by g = x2y2 + y2z2 + x2z2 − 2xyz. When moving on K towards the
interior of one of the edges the face dimension jumps from 0 to 1 despite the interior
of the edge being regular in ∂aK . But the singular locus of g in ∂K ◦ are the pinch
points of the roman surface, which expose the six edges of K and hence the edges of
K are not included in any patch.

The primal patches of K are in fact the four areas resembling the interiors of the
sides of a tetrahedron. Each is parameterized by the portion of the respective “lobe”
of the roman surface, which lies in ∂K ◦ (Fig. 2).

If we dropped the condition of biregularity in the definition of a patch and rather
considered the connected components of the set {(x, �) ∈ CN(X) | x ∈ (∂aK )reg}, then
we would get only one patch in this example of the Cayley cubic and the dimension of
the faces is then not constant over a patch. Indeed, most points in the boundary of K are
exposed points but some points lie on the edges joining the four vertices a, b, c, d of
the tetrahedron. The biregularity condition ensures that the face dimension is constant,
as we will see below. ♦

Remark 3.9 While our definition of a patch is similar to the one given by Ciripoi et al.
(2019), it differs in several regards. Their definition is as follows: For any convex
body K ⊂ R

n , a patch is a subset P of the normal cycle N (K ) with the following
properties: (1) P is a connected differentiable manifold; (2) the first projection π1(P)

has dimension n − 1; (3) the projection π2(P) of P to the dual side is contained in
the set of exposed extreme points of K ◦; (4) the fibers of π2 vary continuously in the
Hausdorff metric; (5) P is maximal with these properties.
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Fig. 3 The convex body and its dual from Example 3.10

Our patches, too, are differentiable, and since we only consider semialgebraic con-
vex sets, they are in fact Nashmanifolds. In addition, our patches are explicitly defined,
semialgebraic and always cover a dense part of the boundary (Lemma 3.12). Also, they
are connected by definition but not necessarily maximal in the sense above (c.f. Exam-
ples 3.7 and 3.19). Another difference is that we work in the conic resp. projective
setup, but this is mostly a technicality. Properties (2) and (3) are satisfied by our
patches. The most significant trade-off regards Hausdorff continuity, which we do
not build into the definition but rather wish to deduce under favorable circumstances.
We point out that for hyperbolicity bodies (and therefore spectrahedra), each of our
patches is contained in a unique patch in the sense of Ciripoi et al. (2019). This follows
from Corollary 5.4, which implies property (4). ♦

Even though the closed primal patches cover ∂K and the closed dual patches cover
∂K ◦, the union of all closed patches—primal and dual—may not be dense in the
normal cycle (Fig. 3).

Example 3.10 (Cylinder over nodal cubic) For example consider the convex region
K bounded by the plane cubic y2 − (x + 1)(x − 1)2 = 0 and take the cylinder
K × [−1, 1] ⊂ R

3 over it. The dual convex set is the bipyramid over the dual set K ◦,
which is bounded by a quartic and a line. The 1-dimensional face of K ◦ is dual to the
node of the cubic curve. So the 1-dimensional face of the bipyramid over K ◦ is dual
to the 1-dimensional face (1, 0) × [−1, 1] of K × [−1, 1]. The product of these two
1-dimensional faces is a 2-dimensional subset of the normal cycle of K that is not in
the closure of the union of all closed patches. ♦
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Remark 3.11 Let X ⊂ P
n be an irreducible projective variety. The restriction of the

first projectionπ1 : CN(X) → X toπ−1
1 (Xreg) is an openmap in the Zariski topology,

since π−1
1 (Xreg) is a complex vector bundle over Xreg and therefore locally trivial.

In particular, Xbireg := π1(CNbireg(X)) is open in X . Using the biduality theorem
(see e.g. Flenner et al. 1999, Theorem 4.4.6) we get the same conclusion for the dual
variety, i.e., X∗

bireg := π2(CNbireg(X)) is open in X∗. Since CNbireg(X) is dense in
CN(X), both Xbireg as a subset of X and X∗

bireg as a subset of X
∗ are dense.

The boundary of a convex cone is covered by its closed patches:

Lemma 3.12 For any proper convex cone C, we have

∂C =
⋃

P∈P(C)

π1(P)

Proof. The boundary ofC is covered by the intersections X∩∂C , where X ranges over
the irreducible components of the algebraic boundary ∂aC . Applying Remark 3.11 to
the intersections X ∩ ∂C implies the claim because every boundary point of C has
full local dimension in the semi-algebraic set X ∩∂C for some irreducible component
X ⊂ ∂aC .

Proposition 3.13 Let C be a proper convex cone, then

C∨ = conv
⋃

P∈P(C)

π2(P).

Proof. Denote the set on the right hand side as B which is clearly a convex cone and
contained in C∨. Since C∨ is proper, B is also closed. The other inclusion follows
from duality. If B � C∨ then C = (C∨)∨ � B∨ by duality. Hence there exists
x ∈ ∂C ∩ int B∨. Let U ⊂ B∨ be an open set with x ∈ U . Since

⋃
P∈P(C) π1(P) is

euclidean-dense in ∂C by Lemma 3.12, there is a (y, �) ∈ ⋃
P∈P(C) P with y ∈ U .

Furthermore, y − ε� ∈ U holds for a sufficiently small ε > 0. Hence 〈�, y − ε�〉 < 0,
but � ∈ B, a contradiction.

Lemma 3.14 Let A ⊂ R
n be a closed semi-algebraic set. Let x be a point in the

boundary of the interior of A. Assume that x is a regular point on an irreducible
component Y of ∂a A and, moreover, that there exists an open neighborhood U of x
in R

n such that ∂A ∩ U ⊂ Y (R) ∩ U. Then there exists an open subset V ⊂ U for
which x ∈ V and

∂A ∩ V = Y (R) ∩ V .

The following proof is a careful application of the implicit function theorem.
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Proof. LetI(Y ) = 〈 f 〉.We can assume, by shrinking the neighborhoodU if necessary,
that Y ∩U ⊂ Yreg and 〈∇ f (x),∇ f (y)〉 �= 0 for all y ∈ Y ∩U .

By the implicit function theorem (Bochnak et al. 1998, Corollary 2.9.8) there exists
anopen semi-algebraic setV1 ⊂ T := x+TxY with x ∈ V1 and anopen semi-algebraic
set V2 ⊂ R with 0 ∈ V2 such that V := {y + λ∇ f (x) : y ∈ V1, λ ∈ V2} ⊂ U and an
injective Nash-function

ϕ : V1 → V

with im ϕ = Y ∩ V and idV1 = π ◦ ϕ, where π is the orthogonal projection onto T,
the affine tangent space to Y at x .

Let U1 ⊂ V1 be the connected component containing x and let U2 ⊂ V2 be the
connected component of 0. Then there are ε−, ε+ > 0 with U2 = (−ε−, ε+). Now
put U ′ := {y + λ∇ f (x) : y ∈ U1, λ ∈ U2}. Since ϕ(x) = x ∈ U ′ we have, by
continuity, that ϕ(U1) ⊂ U ′. Hence the restriction ϕ̃ : U1 → U ′ is a well-defined,
injective Nash-function with im ϕ̃ = Y ∩U ′ and idU1 = π ◦ ϕ̃.

Let λy ∈ R with ϕ̃(y) = y + λy∇ f ((x) for each y ∈ U1. Then λy ∈ (−ε−, ε+).
Let π̃ be the restriction of π onto {z ∈ U ′ : f (z) > 0}.

Now f assumes a constant sign σ1 on {y+λ∇ f (x) : ε+ > λ > λy} and a constant
sign σ2 on {y + λ∇ f (x) : ε− < λ < λy}. Since 〈∇ f (x),∇ f (y)〉 �= 0 we have
σ1 = −σ2. Hence a fiber of π̃ is of the form {y + λ∇ f (x) : ε− < λ < λy} or
{y + λ∇ f (x) : ε+ > λ > λy}. In any case the fibers of π̃ are connected. Further
im π̃ = U1, π̃ is open and U1 is connected. Hence U ′ ∩ { f > 0} is connected and by
the same argument U ′ ∩ { f < 0}, too.

Since x ∈ ∂ int A, we get int(A ∩ U ′) �= ∅. Hence there is a y ∈ A ∩ U ′ with
f (y) �= 0. By changing the sign of f if necessary, we can assume that f (y) > 0.
Now

U ′ ∩ { f > 0} = (U ′ ∩ { f > 0} ∩ A) ∪ (U ′ ∩ { f > 0} ∩ Rn \ A)

and sinceU ′ ∩ A∩Rn \ A = U ′ ∩∂A ⊂ Y this is a disjoint union. Because the first set
in the union is nonempty andU ′ ∩ { f > 0} is connected, we haveU ′ ∩ { f > 0} ⊂ A.

By the same argumentU ′ ∩ { f < 0} ⊂ A orU ′ ∩ { f < 0}∩ A = ∅. But in the first
case we would haveU ′ ⊂ A, since A is closed, and hence the contradiction x ∈ int A.
Hence U ′ ∩ A = U ′ ∩ { f ≥ 0}. In particular, ∂A ∩ U ′ = Y ∩ U ′ (due to σ1 = −σ2
for each y ∈ U1).

We will mostly use this result in its homogeneous form, which we may state as
follows:

Corollary 3.15 Let C be a proper cone in R
n+1 and let x ∈ ∂C, x �= 0. Assume that x

is a regular point on an irreducible component Y of ∂a(C) and, moreover, that there
exists an open neighborhood U of x in R

n+1 such that ∂C ∩ U ⊂ Y (R) ∩ U. Then
there exists an open neighborhood V of x in U satisfying

∂C ∩ V = Y (R) ∩ V .
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Theorem 3.16 Let C be a proper cone in R
n+1 and let P be a patch of C over an

irreducible component Y of ∂aC.

(1) P is of pure projective dimension n − 1.
(2) π1(P) is open in ∂C ⊂ P

n(R) and of pure projective dimension n − 1.
(3) π2(P) is an open semi-algebraic subset of Y ∗

reg(R). In particular, it is of pure
dimension d with d = dim(Y ∗).

(4) For � ∈ C∨, let H� = {x ∈ R
n+1 | 〈�, x〉 = 0}. Then

dim(C ∩ H�) = n − d

as a cone in R
n+1 for all � ∈ π2(P). Furthermore, π1(P) ∩ H� is Zariski-dense

in the face C ∩ H�, for all � ∈ π2(P).
(5) In the situation of (4), the union of π1(P)∩ H� taken over all patches P of C over

Y is dense in C ∩ H� in the euclidean topology.

Proof. For (1), we use Corollary 3.15: For (x, �) to be in a patch P over Y = V( f ), x
needs to be a regular point of Y and not lie on any other irreducible component of ∂aC ,
implying � = ∇ f (x) (see Remark 3.3). So Corollary 3.15 shows that (y,∇ f (y)) ∈ P
for all y in U ∩ Y for an open neighborhood U of x , hence P has local dimension
n − 1 at x . This also proves (2).

For (3), we show the following: IfU ⊂ ∂C is open (in the euclidean topology) and
contained in Ybireg(R)∩ (∂aC)reg(R), then π2(π

−1
1 (U )) (via the normal cycle) is open

in Y ∗
reg(R) in the euclidean topology.

Note that B := {(x, �) ∈ R
n+1 × R

n+1|� ∈ Y ∗
reg and x ≡ 0 on T�(X)} is a real vector

bundle over Y ∗
reg(R) since Y is a real variety. Let y ∈ intC . Since U ⊂ Yreg, we have

π−1
1 (U ) = π−1

B,1(U ) ∩ {(x, �)|〈y, �〉 > 0} by the biduality theorem, where πB,1 is the
projection of B onto the first factor. This implies the claim.

To show (4), pick � ∈ π2(P) ⊂ Y ∗. Let F� = H� ∩ C be the face of C exposed
by � and let V� = clZar(F�) = span(F�). We know that π1(P) ∩ H� �= ∅ and since
π1(P) is open relative to ∂C , it follows that π1(P) ∩ H� is Zariski-dense in F�.

To finish claim (4), we show that dim(C ∩ H�) = n − d as a subset of R
n+1,

where d = dim(Y ∗) as a projective variety. We know that dim(C ∩ H�) = dim(V�)

so it suffices to show that dim(V�) = n − d. Let L be the real annihilator of T�Y ∗,
which has dimension n − d as a linear space in R

n+1, since Y ∗ is a real variety, and
is contained in H�. Note also that L ⊂ Y . We show that L = V� by showing that
π1(P) ∩ H� is Zariski-dense in L .

First, π1(P) ∩ H� is contained in L because � defines the supporting hyperplane
to C at F� and for every point in π1(P) the local tangent hyperplane to Y is the
unique supporting hyperplane to C at that point (by Corollary 3.15). Since π1(P) is
open relative to ∂C and ∂C ∩ U = Y (R) ∩ U in an open neighborhood of any x
with (x, �) ∈ P (again by Corollary 3.15), we conclude that π1(P) is open relative to
Y (R) (in the euclidean topology) and therefore open (and non-empty) in L . Therefore,
π1(P) ∩ L is Zariski-dense in L . This shows that the dimension of F� is n − d as
claimed.
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For (5) assume that there is an open, nonempty U ⊂ F� = H� ∩ C such that no
patch over Y intersects U . Then

U ⊂
r⋃

i=2

Yi ∪ (Y \ Ybireg),

where Y = Y1, . . . ,Yr are the irreducible components of ∂aC . Since U is Zariski-
dense in V� and the union above is closed it follows that V� is included in the union.
Hence no patch over Y intersects F�, which contradicts our assumption. Hence the
claim follows.

Remark 3.17 This theorem shows that we can determine the family of patchesP(C)

from a cylindrical algebraic decomposition ofN+(C). Theoretically speaking, the set
of patches is therefore computable. Practically speaking, such computations require
careful thinking and specialized approaches, already for examples of moderate dimen-
sion and complexity.We discuss some aspects of computation inmore detail in Sect. 4.

The following statement shows that faces inside a patch vary continuously in a
certain sense inspired by flat families in algebraic geometry. Morally speaking, if we
remove a face from a patch, we may recover the full face by taking the euclidean
closure of the remainder.

Corollary 3.18 Under the assumptions of Theorem 3.16, we have

π1(P) ∩ H� ⊂ π1(P) \ H�,

unless H� = Y .

Proof. If dim π1(P) ∩ H� = n − 1, then H� ⊂ Y and hence Y = H�.
Now we can assume dim π1(P) ∩ H� < n − 1. Define A to be the euclidean

closure of π1(P) \ H�. Suppose π1(P) ∩ H� is not contained in A and pick a point
p ∈ π1(P) ∩ H� \ A. Then p ∈ π1(P) \ A, which is an open semi-algebraic subset of
π1(P) and hence has dimension n − 1 by Theorem 3.16. Since we have π1(P) \ A ⊂
π1(P) ∩ H� by construction, we get the contradiction dim(π1(P) ∩ H�) ≥ n − 1.

The following example illustrates that the (partial) faces in an open patch need not
vary continuously in the Hausdorff metric (Fig. 4).

Example 3.19 (The helmet) Let B be the closed unit ball centered at the origin, a =√
1 − (7/10)2 and f = 1/2x2 + y − 7/10 and let K be the intersection of the two

sets

B ∪ {(x, y, z) ∈ R
3 | y ≥ 0 and x2 + z2 = 1} and

{(x, y, z) ∈ R
3 | z ≤ a and f (x, y, z) ≤ 0}.

Figure 5 shows the part of the boundary of K that is cut out by f . The visible oval
indicates the intersection with the sphere. Since the sphere is part of the algebraic
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Fig. 4 The “helmet” and its dual (Example 3.19)

Fig. 5 The “helmet” (Example 3.19) from a different viewpoint

boundary, this oval is in the singular locus of ∂aK . Indeed, there are two open patches
associated to f . Let P denote the open patch outside of the oval. Consider the face
in the middle, namely the face cut out by l = (0,−10/7, 0) ∈ K ◦. This is exactly
the face at which the oval touches the upper edge and hence the portion of P in this
face is the open interval under the oval. In every neighborhood of this face, however,
there is a face, in which P has a portion below and, more importantly, a portion above
the oval. So the “faces” of P , i.e., the portions of P in respective faces, do not vary
continuously in the Hausdorff metric. ♦

Note that the discontinuity in Example 3.19 disappears if we pass over to the closed
patch P . In fact, this holds in general.

Since we now want to argue about Hausdorff limits, we switch to the affine setup.
We discussed above in Remark 3.5 what a patch means exactly here.

Lemma 3.20 Let K ⊂ R
n be a compact, convex, semi-algebraic set containing the

origin in its interior. Let P be an open patch of K over an irreducible component Y
of ∂aK . Suppose �n ∈ π2(P) is a convergent sequence whose limit � is also in π2(P),
and put Qn = π1(P) ∩ H�n and Q = π1(P) ∩ H�. Then the sequence of sets Qn

converges to the set Q of K in the Hausdorff metric.
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Before we prove this claim, we want to point out that the sets Qn as defined in the
claim do not need to be faces of K because we intersect π1(P) with the supporting
hyperplane H�n of K and not all of the boundary of K .

Proof. For Hausdorff convergence, we need to show that both

dn = sup{inf{‖a − b‖: b ∈ Q} : a ∈ Qn}, and

δn = sup{inf{‖a − b‖: a ∈ Qn} : b ∈ Q}

converge to zero.
Suppose dn does not converge to 0. Then we can find an ε > 0 and pass to a

subsequence such that dn > ε for all n. Hence there is a sequence an ∈ Qn such
that inf{‖an − b‖: b ∈ Q} > ε. Since ∂K is compact, we may pass to a convergent
subsequence an . Its limit, which we call a, is necessarily contained in the supporting
hyperplane H�. By compactness of the normal cycle, the projection of the closed patch
P is closed and therefore contains a, hence a ∈ Q. This is a contradiction because
0 < ε < inf{‖an − b‖ : b ∈ Q} ≤ ‖an − a‖ but the sequence (an) converges to a.

Next we show that δn goes to 0 as well. Fix ε > 0 and b ∈ Q and let U be the ball
around b with radius ε. We can push this neighborhood U of b to the dual space via
the normal cycle to get the subsetU ′ = π2(π

−1
1 (U )∩ P) of Y ∗(R) which is open as a

subset of Y ∗(R) in the euclidean topology. Since the sequence �n lies inside Y ∗(R) and
converges to �which is inU ′ we get that �n ∈ U ′ for sufficiently large n. On the primal
side this conditionmeans that Qn∩U �= ∅. Sowe have inf{‖a−b‖ : a ∈ Qn} < ε and
therefore δn ≤ ε for sufficiently large n because b was arbitrary and by compactness
of Q. This proves the claim.

Observe that Lemma 3.20 is in general false if the limit � lies in π2(P) \ π2(P), as
the face-dimension may jump up, see Example 3.8.

4 Computational aspects

We discuss certain challenges for computing patches in the case of pointed convex
cones C ⊂ R

n+1, which means that, algebraically, we are dealing with real projective
varieties ∂aC ⊂ P

n and homogeneous vanishing ideals.
Our definition of a patch in Definition 3.4 uses connected components of the real

part of the biregular locus of the conormal variety, which is difficult to compute. Let
X ⊂ ∂aC ⊂ P

n be an irreducible component of the algebraic boundary of C . The
naive approach to computing (the Zariski closure of) CN(X) \ CNbireg(X) is to add
the ideal of the union Xsing ∪ X∗

sing of the singular loci to that of the conormal variety.
Let us return to the Cayley cubic (see Example 3.8) to illustrate the computation.

Example 4.1 Here, the algebraic boundary of K is irreducible and equal to the Cayley
cubic V( f ) for f = x2 + y2 + z2 − 2xyz − 1. The conormal variety of the projective
closure is inP

3×(P3)∗, the dual variety is Steiner’s Roman SurfaceV(X2Y 2+X2Z2+
Y 2Z2−2WXY Z), in dual coordinates (W , X ,Y , Z)withwW + x X + yY + zZ = 0.
The singular locus of the Cayley cubic consists of the four points a, b, c, d shown in
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Example 3.8. The singular locus of the Roman Surface consists of three lines, namely
the line spanned by (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0), the line spanned by (1 : 0 : 0 : 0)
and (0 : 0 : 1 : 0), as well as the line spanned by (1 : 0 : 0 : 0) and (0 : 0 : 0 : 1).

To compute V( f ) \ V( f )bireg, we take the conormal variety of X together with the
above ideals and eliminate the dual coordinates. For the Cayley cubic X , the closure
of X \ Xbireg is the union of 9 lines: the six lines that are the Zariski closures of the
six edges of the tetrahedron given by the four singular points on the Cayley cubic, and
three lines at infinity. ♦

To compute the patches, we have to output descriptions of connected components of
the semi-algebraic set of points inN+(C)∩CNbireg(X) that lie over a single irreducible
component X of ∂aC . One advantage here is that ∂aC has pure codimension 1, so that
we can use the Gauss map to the dual variety. Yet the projective dual varieties might
be defective, i.e., it may have lower dimension than ∂aC . This happens if the boundary
of C contains an open, non-empty part of points that lie in faces of dimension at least
1, see Theorem 3.16(4) and Example 3.6.

Proposition 4.2 Let C ⊂ R
n+1 be a pointed and closed semi-algebraic convex cone

and let X be an irreducible component of its algebraic boundary, as above. Let S be
a connected component of the real part of

CNbireg(X)
∖ ⋃

Y �=X

CN(Y ),

where the union is taken over irreducible components Y of ∂aC. Hence S is the set of
pairs (x, �) such that x ∈ Xreg, � ∈ X∗

reg and x lies on only one irreducible component
of ∂aC. Then either S is a patch or S ∩ N+(C) = ∅.
Proof. Suppose S ∩ N+(C) is nonempty. It is a closed subset of S. It is also open,
because for any point (x, �) ∈ S ∩ N+(C) the boundary of C is locally equal to
Xbireg(R) around x . Thus restricting to a sufficiently small neighborhood U of x in
Xbireg(R), the inverse image π−1(U ) is contained in S∩N+(C). Since S is connected,
we conclude S ⊂ N+(C), which shows that S is a patch.

In particular, one can try to compute a sample point in every connected component
of the real part of the quasi-projective variety CNbireg(X)\⋃

Y �=X CN(Y ) and test this
sample point for membership in N+(C) to obtain a description of the patches for C .

4.1 Comparison with previous work

In Ciripoi et al. (2019), the authors suggest an algorithm in Section 5 (Algorithm
5.4) to detect the number of patches for the convex hull of a sufficiently nice curve
which they call simplicial. First of all, their definition of a patch is slightly different
from ours. Secondly, they consider convex hulls of curves C ⊂ R

n , and require the
following properties.

(H1) Every point on the curve C that is in the boundary of conv(C) is an extreme
point of K = conv(C).
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(H2) Every polytopal face of K is a simplex.
(H3) Every hyperplane meets the curve C in finitely many points.

Assumptions (H2) and (H3) are easily satisfied by irreducible curves because (H2)
is implied by the General Position Theorem and (H3) follows from irreducibility of
the curve if it is not contained in a hyperplane. However, (H1) is an assumption that
fails more often.

Their proposed algorithm (Ciripoi et al. 2019,Algorithm5.4) canbeviewed as away
to sample fromN (conv(C)) and the patches without knowing the algebraic boundary
of K = conv(C). Starting with a finite sample of points on C , they first compute the
convex hull of these finitely many points and record the incidences of this polytope
(step 1). Facets that havenormal vectors that are close to eachother and intersect along a
ridge are guessed to belong to a continuously varying family of facets,which is encoded
in a graph on the vertex set of facet normals (step 2). The connected components of
this graph are taken as proxys for the connected components ofN (C)∩CN(X), after a
pruning subroutine (steps 4 to 10). The irreducible component X of ∂aK that contains
the family of faces is not computed but rather the constancy of face dimensions is
substituted for local irreducibility of the boundary of conv(C).

Sampling from the primal patches of the normal cycle numerically is an interesting
problem for convex hulls of sets: In this case, it is not clear how to sample boundary
points of the convex hull in order to find primal patches in the normal cycle. Sampling
boundary points by optimizing in randomly chosen directions is not helpful because
this samples only from dual patches. Indeed, by sampling random directions, we end
up (with probability 1 given a reasonable distribution for our sampling of directions)
in subsets of N (K ) ⊂ R

n × (Rn)∗ that have dimension n − 1 after projection on the
second factor which therefore are dense in irreducible components of the algebraic
boundary of the polar K ◦ and this is a dual patch associated to families of faces of K ◦.
However, on the primal side, we cannot be sure that we cover a full-dimensional family
of faces. In the example of the convex hull of a curve, we expect (with probability
1) to have a unique optimum for a random direction and that optimum will lie on the
curve so that we do not sample from the families of faces that make up the boundary
of the convex hull.

To get to primal patches, we have to identify open subsets of the boundary of the
convex hull itself, which could be done by stabbing the boundary with random lines—
yet it is not immediately clear in this case how to identify the face containing the
sampled boundary point (which we expect to be unique with probability 1) or even its
dimension.

5 Hyperbolicity cones

Hyperbolicity cones are a well-behaved class of semi-algebraic convex cones. A poly-
nomial p ∈ R[x0, x1, . . . , xn] is hyperbolic with respect to a point e ∈ R

n+1 if
p(e) �= 0 and if for every x ∈ R

n+1 the univariate polynomial p(x + te) ∈ R[t]
is real-rooted. For every hyperbolic polynomial p, the connected component of e in
the set R

n+1 \ V(p) is a convex cone. The facial structure at a boundary point x of
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this cone is related to the multiplicity of the root t = 0 of the univariate polynomials
p(x + te), by Renegar’s work (Renegar 2006). In particular, the dimension of the
smallest face containing x (which is the unique proper face containing x in case x is a
regular point) is determined by the rank of the Hessian matrix of p at x , see Renegar
(2006, Theorem 10).

Theorem 5.1 (Renegar) Let p ∈ R[x0, x1, . . . , xn] of degree g ≥ 2 be hyperbolic with
respect to e and let C ⊂ R

n+1 be the corresponding hyperbolicity cone. Suppose that
C is a proper convex cone and let x ∈ ∂C be a regular point of ∂aC. Let d be the
dimension of the unique proper face of C containing x and denote the Hessian matrix
of p at x by H. Let r be the rank of H |TxV(p), then r = rank H −1 and d +r = n+1.

Proof. By Renegar (2006, Theorem 10) for every v ∈ TxV(p) we have either

(1) p(x + tv) = 0 for all t ∈ R, and there exists an ε > 0 such that x + tv ∈ ∂C for
every −ε < t < ε, or

(1) v�Hv < 0.

This implies that W := {v ∈ TxV(p)|v�Hv = 0} is a vector space, namely the
span of the face containing x . Since H is orthogonally diagonalizable, we may choose
an orthogonal decomposition R

n+1 = V+ ⊕ V− ⊕ V0, where v�Hv > 0 for every
v ∈ V+ \ {0}, v�Hv < 0 for every v ∈ V− \ {0} and V0 = Ker H . Note that
V0 ⊂ TxV(p) since 〈∇ px , v〉 = v�∇ px = 1

g−1v
�Hx = 1

g−1 x
�Hv = 0 for v ∈ V0.

Since V⊥+ = V− ⊕ V0, we arrive at V0 = W ∩ V⊥+ . Note that V+ has at most
dimension 1. Now x�Hx = (g − 1)x�∇ px = 0, but Hx = (g − 1)∇ px �= 0. Hence
x ∈ W \ V0. This implies dim V+ = 1 and dimW = dim V0 + 1. We conclude

d + r = dimW + dim TxV(p) − dim V0 = n + 1.

In the situation of the above theorem, the local dimension of the image of the Gauss
map around such a point x is r . So the Hessian matrix being of maximal rank means
that the derivative of the Gauss map has maximal rank. However, having a Hessian
matrix of maximal rank at a point x ∈ ∂C does not imply that x is in the biregular locus
and it does not implyHausdorff continuity of the faces either (even in the spectrahedral
case) as the following examples show.

We have already observed the non-continuity in the Hausdorff metric, even for
constant face dimension and spectrahedra, in Example 3.6. The Hessian matrix of the
two quadratic cones has rank 3 everywhere (here, we take the 4 × 4 Hessian matrix
of the homogenization).

Example 5.2 Let f ∈ Q[x0, . . . , x3] be given by the definite determinantal repre-
sentation f = det(x0M0 + · · · + x3M3), where M0 = I , the identity matrix,
M1 = diag(1, 1, 1, 0),

M2 =

⎛

⎜⎜
⎝

0 1 0 −3
1 4

9 0 − 4
3

0 0 − 1
4 1

−3 − 4
3 1 0

⎞

⎟⎟
⎠ and
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M3 =

⎛

⎜⎜
⎝

0 0 0 0
0 − 10

3 0 5
0 0 0 0
0 5 0 0

⎞

⎟⎟
⎠ .

This calculates to:

f = x40 + 3x30 x1 + 3x20 x
2
1 + x0x

3
1 + 7

36
x30 x2 + 7

18
x20 x1x2 + 7

36
x0x

2
1 x2 − 116

9
x20 x

2
2

− 74

3
x0x1x

2
2 − 106

9
x21 x

2
2 + 13

2
x0x

3
2 + 25

4
x1x

3
2 − 10

3
x30 x3 − 20

3
x20 x1x3

− 10

3
x0x

2
1 x3 + 85

6
x20 x2x3 + 55

2
x0x1x2x3 + 40

3
x21 x2x3

− 25x20 x
2
3 − 50x0x1x

2
3 − 25x21 x

2
3 + 25

4
x0x2x

2
3 + 25

4
x1x2x

2
3

Then f is hyperbolic with respect to e0. Now f is irreducible (over C) and the point
p = e1 lies on the boundary of the hyperbolicity cone C ⊂ R

4 corresponding to
( f , e). The Hessian matrix at p is

⎛

⎜⎜
⎝

6 3 7
36 − 1

3
3 0 0 0
7
36 0 − 212

9
40
3− 10

3 0 40
3 −50

⎞

⎟⎟
⎠

and has rank 4. Furthermore ∂aC = V( f ) =: X and p ∈ Xreg with � := ∇ f p = e0.
Hence, as noted above, the image of the Gauss map on an open neighborhood of p in
C (resp. in X ) is a real (resp. complex), smooth manifold of dimension 3. If the dual
variety X∗ were to agree locally with this complex manifold at �, then � ∈ X∗

reg by
Milnor (1969, pp. 13f.) and hence p ∈ Xbireg. We will see that this is not the case and
that in fact � ∈ X∗

sing.
Consider the point a = (0, 0, 1, i). This point satisfies

f (a) = 0 and ∇ fa = 1

4
e0.

But this means that (p, �) ∈ CN(X) and (a, �) ∈ CN(X). Since p �= a we have � ∈
X∗
sing by biduality. Alternatively one can check that ∇g(�) = 0, where I(X∗) = 〈g〉.
In primitive form, g has degree 8, 127 terms and

−56099859565230000000 X2
0X

4
1X

2
3

is the term with the coefficient of highest absolute value.
Figure 6 shows the affine portion of XR in the hyperplane x0 + 1

2 x1 = 1 with
coordinates x = x1, y = x2 and z = x3, and the corresponding affine portion of X∗

R

in the hyperplane X0 = 1 with coordinates x = X1 − 1
2 , y = X2 and z = X3. Note
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Fig. 6 An affine portion of XR from (Example 5.2) and the respective affine portion of X∗
R

that Fig. 6 does not show components of codimension greater one and in the case of
the dual does not show the dual convex body.

In this setting, p translates to the point (2, 0, 0) and � translates to (− 1
2 , 0, 0).

Indeed, X∗ is not a smooth manifold at �, as the x-axis in Fig. 6 is part of X∗.
♦

For hyperbolicity cones, patches capture families of faces both in their algebraic
structure as well as their convex geometric structure, see Corollary 5.4. The main
reason for this is the following special property.

Lemma 5.3 Let C be the hyperbolicity cone of p ∈ R[x0, x1, . . . , xn] in R
n+1 and

suppose that C is proper. Then for every face F of C either there is exactly one open
patch P with relint F ⊂ π1(P), or there is no open patch intersecting F at all.

Proof. Let e be an interior point of C and write mult(x) for the multiplicity of 0 as
a root of p(x + te) for x ∈ R

n+1. Note that for a point x ∈ ∂C ∩ (∂aC)reg we
have 〈∇ fx , e〉 > 0 since ∂aC = V(p) and e ∈ intC . This implies the equivalence
mult(x) ≥ 2 ⇐⇒ x ∈ (∂aC)sing for x ∈ ∂C .

By Renegar (2006, Theorem 24) the multiplicity is constant on the relative interior
of any face F . Hence either there is a biregular point in the interior of a face and the
face is covered by exactly one open patch, or there is no biregular point in the interior
and no open patch intersects the face.

General theory of hyperbolic polynomials implies the following useful facts for
homogenization: Let p ∈ R[x0, x1, . . . , xn] be hyperbolic with respect to e in R

n+1

and letC be its hyperbolicity cone. SupposeC is pointed and let K = {x ∈ C | 〈x, e〉 =
‖e‖2}. Then K is a compact convex set containing e in its interior and C = K̂ with
properly chosen coordinates.We refer to K as the hyperbolic body of p. For hyperbolic
bodies, the (partial) faces of an open patch already vary continuously in the Hausdorff
metric.
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Corollary 5.4 Let p ∈ R[x0, x1, . . . , xn] be hyperbolic with respect to e and let K be
the associated hyperbolic body. Let P be an open patch of K and let (�n)n∈N ⊂ π2(P)

be a convergent sequence with limit � that is also in π2(P). Write H�n (and H�

respectively) for the supporting hyperplanes corresponding to �n ∈ (Rn)∗ (and �

respectively) and put Qn = π1(P) ∩ H�n and Q = π1(P) ∩ H�. Then Qn converges
to Q in the Hausdorff metric.

Proof. Again, put dn = sup{inf{‖a − b‖: b ∈ Q} : a ∈ Qn} and, symmetrically,
δn = sup{inf{‖a − b‖: a ∈ Qn} : b ∈ Q}.

Showing that δn goes to 0 is analogous to the argument given in the proof of Lemma
3.20. Assume for contradiction that dn does not go to 0. As in Lemma 3.20 we can
find an ε > 0 and pass to a subsequence such that there is a sequence an ∈ Qn

with inf{‖an − b‖: b ∈ Q} > ε. Since ∂K is compact we can choose a convergent
subsequence, if necessary, so that (an)n∈N converges to a, which is then necessarily
in F� = ∂K ∩ H�. Now Lemma 5.3 says that Q = relint(∂K ∩ H�), which is dense
in F�. This leads to a contradiction because 0 < ε < inf{‖an − b‖: b ∈ Q} ≤
‖an − a‖ + inf{‖a − b‖: b ∈ Q} = ‖an − a‖ but the sequence (an) converges to
a.
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